

ECLIPSE’MV /8000 Principles of

Operation

Notice

Data General Corporation (DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in
whole or in part without DGC’s prior written
approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications
and materials contained herein and shall not be
responsible for any damages (including
consequential) caused by reliance on the materials
presented, including but not limited to
typographical, arithmetic, or listing errors.

NOVA, INFOS and ECLIPSE are regisiered
trademarks of Data General Corporation, Westboro,
Massachusetts. DASHER and microNOVA are
trademarks of Data General Corporation, Westboro,
Massachusetts.

Ordering No. 014-000648
©Data General Corporation, 1980
All Rights Reserved
Printed in the United States of America
Rev. 00 April, 1980

ECLIPSE MV /8000 Principles of

Operation

Introduction

Definition of Terms

The Addressing Scheme
Protection

The Instruction Set

The Organization of this Manual
Related Manuals

Chapter 1

An Introduction to the MV /8000 Hardware
Memory System

System Cache

Memory Modules

Bank Controller

Address Translation Unit
Processing Unit
Instruction Processor
Microsequencer

ALU

1/0 System

Chapter 2

Logical Addressing
Program Counter
Instruction Addressing
Data Addressing

Data Lengths
Displacements
Addressing Modes
Direct and Indirect Addressing
Word Addressing

Byte Addressing

Bit Addressing
Summary

Chapter 3

Logical to Physical
Address Translation
Introduction

The Paging Mechanism
Referenced and Modified Flags
Segment Base Registers

Page Tables

The Translation Process

3.5.1 One-level Page Table Translation
Two-level Page Table Translation
Initialization

Power Up

Summary

NAhEAWOW

10
1
12
13
13
14
14
15
15
16

19
19
20
20
20
21
22
23
23
25
27
29

31
31
32
32
32
33
34
356
36
38
38
38

Chapter 4

The Protection System
Process-wide Protection
Source-Destination Verification
Referencing Other Segments for Data
Ring Crossing

Indirection Protection

Page Protection

Page Table Entry Validation
Access Validation

Protection Faults

Priority of Protection Faults
Servicing a Protection Fault
Page Faults

Chapter 5§

Reserved Memory Locations

and Faults

Page Zero

Page Zero Locations for Segment O
Page Zero Locations for Segments 1-7

Chapter 6

Data Types

Program Counter
Processor Status Register
Fixed Point Data

Fixed Point Accumulators
‘Fixed Point Format

Carry

C/350 Compatability
Floating Point Data
Floating Point Registers
Floating Point Format
C/350 Compatability
Commercial Data
Commercial Registers

Data Type Indicator
Commercial Formats
Character Strings
Data Manipulation

39
39
40
40
41
44
45
45
45
45
46
46
47

49
49
49
51

55
55
65
56
56
56
57
57
57
57
58
59
60
60

60
60
63
63

Chapter 7

Fixed Point Instructions

Conventions

Fixed Point Indexed Address Instructions

Fixed Point Single-Word indexed Arithmetic Instructions
Fixed Point Double-Word Indexed Arithmetic Instructions
Memory to Accumulator Instructions

C/350 Word Memory to Accumulator Instructions
Bit Manipulation Instructions

Byte Manipulation Instructions

Fixed Point Single-Word Arithmetics

Fixed Point Double-Word Arithmetics

Fixed Point Single-Word Logicals

Fixed Point Double-Word Logicals

Single-Word Compare Accumulators

Double-Word Compare Accumulators

Other Instructions

Programming Notes

C/350 ALC Manipulation

ALC Instructions

C/350 ALC Instruction Execution

Chapter 8

Floating Point Instructions
True and Impure Zero
Normalized Format
Magnitude

Guard Digits

Floating Point Operation
Maintaining Accuracy
Finishing Up

Floating Point Instructions
Floating Point Faults

Chapter Y

Commercial Instructions
Decimal Instructions
Commercial Faults

Return Blocks

CFO, CF2 and CF3

CF1

CF4 and CF7

CF6

Chapter 10

Character String Instructions
Character Manipulation

Character Instructions

C/350 Character instructions

Chapter 11

Stacks and Fault Handling
Introduction

The Wide Stack

Stack Registers

Wide Stack Operation

Wide Stack Instructions

The Narrow Stack

Narrow Stack Pointer

65
65
66
67
67
68
68
68
70
71
72
73
74
75
76
76
77
77
77
78

83
83
83
83
84
84
84
85
85
88

91
91
92
93
93
94
95
96

97
97
97
97

99
99
29
99
100
101
102
102

Narrow Frame Pointer

The Narrow Stack Limit
Narrow Stack Fault Address
Return Block Format
Narrow Stack Instructions
Stack Faults

Wide Stack Faults

Narrow Stack Faults
Examples

Stack Usage

The Protection Mechanism
Fixed Point Overflow
Floating Point Fault
Program Flow

Chapter 12

Program Flow Instructions
Direct Alteration

Stack Changes

Chapter 13

System Control Instructions
Privileged Instructions

Queues

Building a Queue

Queue Descriptor

Setting Up and Modifying a Queue
Examples

Queue Instructions

Chapter 14
Input/Output

The 1/0O System
Programmed 1/0

Data Channel 1/0

Burst Multiplexor 1/0
Busy and Done Flags
Interrupt On Flag

Priority Mask

1/0 Instructions

Interrupts

ATU Enabled/Disabled
Address Resolution
Handler ldentification
C/350 Interrupt
Immediate Interrupt
Vectored Interrupt
Interrupting An Instruction
Standard 1/O Devices
Programmable Interval Timer
Real-Time Clock
Asynchronous Line Controller

Chapter 15

The I/0 Processor
Forms of Host-10P Communication
The MAP

Communication Instructions
Elements of the IOP

{OP Memories

MAP

User and Data Channel Maps
Parity Generator

Host-IOP Interface

Interface Elements

103
103
103
103
103
104
104
106
107
108
108
109
110
111

113
113
116

121
121
122
122
123
123
123
126

131
131
131
131
132
132
133
133
133
134
134
135
135
1356
135
137
140
141
142
142
143

145
145
145
145
146
146
146
146
147
147
147

Cross Interrupts

Setting the Interrupt Request Flags

Host-IOP Communications Instructions
Programming Examples

Example 1

Example 2

Changing the Host Data Channel Map from the IOP

Chapter 16

The MV /8000 Instruction Dictionary
General Programming Notes

Instruction

Chapter 17

I/0 Instruction Dictionary
General 1/O Instructions

Burst Multiplexor Channel
Device Flag Commands

Map Load Formats

Map Dump Formats

Central Processor

Device Flag Commands
Common Process

Mode A

Modes B Through E

Host/IOP Communication

Device Flag Commands

Memory Allocation and Protection
Device Flag Commands
Programmable Interval Timer
Device Flag Commands

Real Time Clock

Device Flag Commands

Primary Asynchronous Line Input
Device Flag Commands

Primary Asynchronous Line Output
Device Flag Commands

Chapter 18

IOP Communication Instruction Dictionary
I0P/Host Communication

Device Flag Commands

Appendix A
The ASCH Character Set

Appendix B
Context Block Format

Appendix C

MYV /8000—C/350 Program Combinations

Using C/350 Instructions

Expanding a C/350 Program to Run on the MV/8000 Computer
Calling a C/350 Subroutine From an MV/8000 Program

148
148
149
150
150
151
154

167
157
158

323
323
328
328
328
328
332
332
338
338
338
339
339
341
342
347
347
348
348
349
349
350
350

351
351
351

355

357

361
361
362
363

Appendix D

Anomolies

MV/8000 Instruction Opcodes
Program Counter Wraparound
Float/Fixed Conversions

Address Wraparound

C/350 Signed Divide Instructions
C/350 Vector and NIO Instructions
Floating Point Trap

Floating Point Numerical Algorithms
C/350 Commercial Faults

C/350 MAP Instructions

Appendix E

C/350 Memory Allocation and Protection
MAP Functions

Address Translation

Sharing Physical Memory
MAP Modes

Mapped Mode

Unmapped Mode

MAP Protection Capabilities
Validity Protection

Write Protection

Indirect Protection

1/0 Protection

MAP Protection Faults

Load Effective Address Mode
Initial Conditions

MARP Instructions

Appendix F
Instruction Execution Times

Appendix G

Floating Point Operations
Floating Point Addition
Floating Point Subtraction
Floating Point Multiplication
Floating Point Division

Appendix H
Standard I/0 Device Codes

365
365
365
365
365
366
366
366
366
367
367

369
369
369
370
370
370
371
371
371
371
371
371
372
372
372
373

375

377
377
377
377
378

379

Introduction

The ECLIPSE® MV /8000 system represents an extension of minicomputer technology
which provides computational characteristics normally associated with mainframe
machines. It is a sophisticated, state of the art, 32-bit processing system that retains
substantial hardware and software compatability with previous 16-bit ECLIPSE systems.

Some readers may be unfamiliar with the terms used to describe the features of the
ECLIPSE MV /8000 system, so the following section provides a brief definition of
terms. This is followed by a short description of the organization of this manual, and a
list of associated manuals.

Definition of Terms

The following glossary relates particularly to the new addressing scheme and instruction
set of the MV /8000. (Note that throughout this manual the ECLIPSE MV/8000
system is usually referred to simply as the MV /8000.)

The Addressing Scheme

Logical and Physical Address Spaces

The MV /8000 main memory makes up the physical address space. Physical addresses
range from 0 to 2 megabytes. This space is much smaller than the logical address space,
which is 4 gigabytes.

Logical Addresses
The MV /8000 uses 31-bit word addresses which can reference all 4 gigabytes of the
logical address space.

Segmentation

The MV/8000’s large logical address space is divided, or segmented, into eight smaller
logical address spaces. Each of these eight segments is a complete address space of 512
megabytes.

Mapping and Demand Paging

The size of the MV /8000 logical address space means that not all logical locations can
be represented in physical memory at the same time. The demand paging system moves
pages between physical memory and a storage device upon demand, and also keeps track
of pages currently in memory. The address translation unit, or ATU, translates the
specified logical address to its physical equivalent.

4 introduction

Protection

Page

A page is a 2 Kbyte block of contiguous logical addresses. The demand paging system
uses the page as the smallest unit of logical memory that can be moved between physical
memory and storage devices.

Page Table

A page table is made up of page table entries, or PTEs. Each PTE contains information
about one page. The processor uses this information when translating a logical address to
a physical one. A page table contains up to 512 PTEs.

The MV/8000 system uses a hardware-implemented hierarchical protection system that
allows programs different levels of privilege. Each segment has a different level, or ring,
of protection associated with it. This means that each ring governs the associated
segment with a different degree of privilege. Ring 0 has the highest degree of protection,
so the kernel of the operating system would normally reside in Segment O.

The Instruction Set

The ECLIPSE MV /8000 instruction set is a superset of the previous (16-bit) ECLIPSE
instruction set. In this manual, the new 32-bit instructions are referred to as
MV/8000-specific instructions. The 16-bit instructions supported by the MV /8000, but
which are also supported by previous (16-bit) ECLIPSEs (such as the ECLIPSE C/350),
are referred to as C/350 instructions.

MYV /8000-Specific Instructions

These instructions manipulate data with lengths of 8, 16, or 32 bits. The mnemonics of
the instructions indicate the size of the data fields referenced. The mnemonic preceded
by the letter N manipulate 16-bit (narrow) data; W, 32-bit (wide) data. There is no
special mnemonic prefix for those instructions that manipulate 8-bit data.

There are also mnemonic prefixes that indicate the addressing range of the instruction. X
indicates that the instruction has a 64-Kbyte (extended) offset addressing range; L, a
4-gigabyte (long) addressing range.

MV /8000 — C/350 Compatibility

The MV/8000 supports the instruction mnemonics and binary opcodes of most
instructions implemented on the ECLIPSE C/350 . This means that most programs that
execute on the C/350 computer will also execute on the MV /8000 without recompiling
or reassembling.

Note that the C/350 instructions maintain their limitations of a 64-Kbyte addressing
range.

The Organization of this Manual

The contents of each chapter and appendix of this manual are as follows.

Chapter 1 An Introduction to the MV /8000 discusses the hardware implemented on the
MV /8000. A general system overview introduces many of the system’s capabilities and
how they interact, as well as many of the terms that will be discussed in later chapters.

Introduction 5

Chapter 2 Logical Addressing illustrates how the MV /8000 uses information contained
in registers and instructions to form logical addresses. These addresses can reference
data and other instructios.

Chapter 3 Logical to Physical Address Translation takes the logical addresses described in
Chapter 2 and shows how they are converted into physical addresses in main memory.
The demand paging system that implements this translation mechanism is also explained.

Chapter 4 The Protection System details the types of checks that are made to ensure
valid addresses. System-wide protection shows how rings, the instruments of the
MYV/8000’s hierarchical protection system, check memory references for valid accesses
and control transfers. To ensure page protection, rings check for valid accesses to pages
of physical memory. The consequences of invalid references, page and protection faults,
are also described.

Chapter 5 Reserved Memory Locations and Faults lists the memory locations that contain
information pertinent to system maintainance. Such locations contain the starting
addresses of fault handlers, the contents of system registers, and other types of
information.

Chapter 6 Data Types describes the various data types supported on the MV /8000,
their formats, and the registers used to manipulate them.

Chapter 7 Fixed Point Instructions introduces the instructions used to manipulate fixed
point data. The instructions are grouped in tables according to function.

Chapter 8 Floating Point Instructions summarizes how the MV /8000 performs floating
point operations. The instructions used to perform these operations are summarized in
tables.

Chapter 9 Commercial Instructions illustrates the decimal data formats used by MV /8000
commercial data. The instructions that manipulate decimal data and a brief discussion
of comercial faults ends the chapter.

Chapter 10 Character String Instructions lists the instructions that manipulate character
strings.

Chapter 11 Stacks and Fault Handling discusses two types of stacks and their variety of
uses in the MV /8000 system as well as in applications programs. Stack instructions and
examples round out the discussion.

Chapter 12 Program Flow Instructions details the two types of program flow: direct
alteration of sequential flow, and changes made to the stack. Both categories use
MYV /8000-specific and C/350 instructions to perform the change.

Chapter 13 System Control Instructions describes the MV /8000 privileged instructions
and the conditions which must be met in order to use them. Queues and the instructions
that manipulate them make up the second half of the chapter.

Chapter 14 Input/Output describes the three types of I/O used on the MV /8000:
programmed I/O, data channel I/O, and burst multiplexor channel I/O. Closely
connected to the I/O system is the interrupt mechanism, which supports three types of
interrupts: C/350 interrupts, MV /8000-specific immediate interrupts, and vectored
interrupts. A brief description of the programmable interval timer, the real-time clock,
and the asynchronous line controller completes the chapter.

6

Introduction

Chapter 15 The I/O Processor introduces the [/O Processor (IOP), a complete ECLIPSE
processor contained within the MV /8000 cabinet. The IOP interfaces with the host
processor, but operates independently. Examples of loading the IOP are included in the
discussion.

Chapter 16 The MV /8000 Instruction Dictionary contains a detailed explanation of all
instructions supported by the MV /8000 (except I/O and IOP instructions). The
instruction entries are presented alphabetically by mnemonic.

Chapter 17 1/0 Instruction Dictionary contains instruction entries for all MV /8000 I/O
instructions. The instructions are grouped according to the device that uses them:
general 1/0, followed by those used by the BMC, CPU, IOP, MAP, PIT, RTC, TT]I,
and TTO. Within each category, the instructions are arranged alphabetically, by device
mnemonic.

Chapter 18 IOP Instruction Dictionary contains instruction entries for the four instructions
that manipulate the IOP. The instructions are presented alphabetically by mnemonic.

Appendix A ASCII Character Set is a table of the ASCII character set, with the related
decimal, octal, and hexadecimal codes.

Appendix B Context Block Format shows the format of the context block.

Appendix C MV/8000—C/350 Program Combinations describes how to run C/350
programs on the MV /8000 computer, how to use C/350 instructions on an MV /8000,
how to expand a C/350 program to run on an MV /8000, and how to call a C/350
subroutine from an MV /8000 program.

Appendix D Anomolies discusses restrictions in using C/350 instructions on an MV /8000
computer.

Appendix E C/350 Memory Allocation and Protection describes the C/350 MAP, which is
supported on the MV /8000.

Appendix F Instruction Execution Times lists typical execution times for all the instructions
supported by the MV /8000.

Appendix G Floating Point Operations describes the four floating point operations,
addition, subtraction, multiplication, and division.

Appendix H Standard Device Codes is a table of the Data General standard device codes.

Instruction Indexes are aids to locating entries in the Instruction Dictionaries. These
indexes are: instruction index by instruction name; instruction index by mnemonic.

Introduction 7

Related Manuals

Other manuals describing aspects of the ECLIPSE MV /8000 system are:
The System Control Processor, Operator’s Reference Series (DGC No. 014-000649)
The ECLIPSE MV/8000, Product Summary Series (DGC No. 014-000650)

The ECLIPSE MV/8000, Field Engineer’s Maintenance Series (DGC No. 015-000106)

Chapter 1
An Introduction to the MV /8000

Hardware

The ECLIPSE MV /8000 is a sophisticated 32-bit system equipped with advanced data
processing features. The majority of these features are implemented in hardware to
provide fast service with a minimum of system overhead. This chapter gives a brief
description of the hardware that implements these features and how the hardware
interacts.

As shown in Figure 1.1, the MV /8000 computer contains four main systems:

* A block-oriented MOS memory system,
* A microprogrammed processing unit,
* An independent I/0 system,

* An operator-controlled System Control Processor (SCP) for system interface and
diagnostic functions.

The four main systems are connected by three 32-bit data busses. IPM connects memory,
the I/O system, and the SCP. CPM allows data to flow between memory and the
processing unit. The third data bus, CPD, connects the processing unit, the SCP, and the
I/O system. In addition, there are two physical address busses: IPA, which connects
memory, the SCP, and the I/O system, and CPA, which connects memory and the
processing unit.

10 An Introduction to the MV/8000 Hardware

No 7
/ e 2
/ / /
/ / /
/ / /
)
No. 1 ,/
Memory No. O /
module o
wi
MM
{MMm) / <0-38>>
ADDR
<0-7> e
MODSEL RD<0-38>
Bank
— controller
(BC)
CA/WD __ | CRD
<0-35> T~ <0-35>
L1 System cache
1IPA <7-31> 1 f CPA<8-31>
IPM <0-35> CPM<0-31>
1/0 Console Address Instruction
channel controller = translation processor ALU Microsequencer
(10C) (CC) unit (ATU) (1P)
[1 SBUS SBUS <0-3>
<14-31>
<16-31> CPD<0-31>
1/0
bus LA<1-31>
BMC RA<0-11>
bus
MBC/1 1 2 MBYTE
diskette
System
console
DG-06437
Figure 1.1

Memory System

The MV/8000 memory system is block-oriented. This means that the elements that
make up the system expect and manipulate uniform data sizes and formats. The elements
transfer data in 16-byte blocks (4 successive double-words) to one another.

The major elements of the memory system are:

* The system cache,

* The memory modules,

¢ The bank controller,

o The address translation unit (ATU).

An Introduction to the MV/8000 Hardware 11

System Cache

The system cache functions as both a look-ahead and look-back buffer for the system.
This reduces the time needed by both the CPU and the I /O system to access main
memory.

The system cache contains 1024 blocks of 16 bytes each. These blocks are directly
mapped to main memory locations (see Figure 1.2). This means that any block in the
system cache contains 16 contiguous bytes from main memory. Note that the system
cache blocks cannot contain arbitrary locations from memory. As shown in Figure 1.2,
memory can be divided into up to 128 units; each unit contains 1024 16-byte blocks.
Block 0 in the system cache can contain Block 0 of any unit in main memory; Block 1 in
the system cache can contain Block 1 of any unit in main memory, and so on.

Main Memory/System Cache
Block Mapping

System cache Main memory

|<— 16 bytes —»| |«— 16 bytes __>|

| Memory block 0, 0
Memory block 0, 1
Memory block 0, 2

~
Cache block 0

(Cache block 1
Cache block 2

1024 J

blocks

1024

M k blocks

(16 Kbytes)

[—
L Cache block 1023

Cache blocks map directly to
memory blocks. Cache block O,

for example, may correspond only to
memory blocks 0.0; 1,0; ...; n, O.

Memory block 0,1023

| Memory block 1, O J
Memory block 1, 1
Memory block 1, 2

N ———— e’
N ————

Memory block n, O
Memory block n, 1

Memory block n, 2

n=128 maximum
(2 megabytes)

Memory blockn, 1023

DG-06433

Figure 1.2 Block mapping from main memory to system cache

When a process makes a memory reference to Block 7 of Unit » in main memory, the
system cache loads the appropriate 16-bit memory block containing the referenced data
into system cache Block #. This memory block will remain in the system cache until a
new memory reference is made to Block # of some other Unit J in main memory.

When this happens, the system cache examines the cache block modified bit of Block n
of Unit m (the block currently in the cache). If the cache block modified bit is 1, the
system cache writes Block n of Unit m back into main memory, then loads the new Block
n of Unit j into system cache Block ». If the cache block modified bit is 0, the system
cache simply overwrites the current contents of system cache Block 7 with those of Block

12 An Introduction to the MV/8000 Hardware

n of Unit j.

Block n of Unit m
is Currently in Cache
Block n.

\
Reference is Made
to Block n of

Unit j.

Modified Bit for
Cache Block n
= 1?

A
Cache Block n has
Been Modified Since

the Current Contents
Cache Block n has not Were Loaded.

Been Madified Since
the Current Contents
Were Loaded.

Copy Contents of
Cache Block n Back
into Memory.

\
Load Block n of
Unit j into Cache
Block n.

DG-06921

Figure 1.3

The system cache contains two ports: one for the CPU and the other for direct transfers
between memory and the I/O system.

The interface between the system cache and main memory transfers 16 bytes of
information in 550 nanoseconds for write operations, and 16 bytes in 440 nanoseconds
for read operations.

Memory Modules

The MV/8000 can support up to eight dynamic RAM memory modules of 256 Kbytes
each. Each module is 64K double-words, where each double-word is 4 bytes long. Each
double-word has seven error checking and correction bits associated with it.

Each memory module contains four independent planes, each containing 16K
double-words. The planes are arranged so that each plane contains every fourth
double-word. This means that plane 0 contains location 0, plane 1 contains location 1,
plane 2 contains location 2, and so on. This arrangement allows memory operations to
overlap so that 4 double-words (the standard unit of data for the memory system) can be
accessed with one address.

The address sent to the module by the bank controller references a position in all four

planes of the module. The module checks if the address is valid; if so, the module starts
the specified operation in plane O for the first double-word. It then starts the indicated
operation in plane 1 for the second double-word, then in planes 2 and 3 in the same way.

An Introduction to the MV/8000 Hardware 13

Overlapping memory operations mean that transfer rates between memory modules and
the system cache are very high. The MV /8000 transfers data at a rate of 36.4 megabytes
per second.

Bank Controller
The bank controller:

* Performs error checking and correction on transfers between itself and memory;
e Performs the refresh operations required by the memory modules;

* Selects a memory module upon receipt of an address from the system cache;

* Checks for byte parity between the system cache and itself.

Error Detection

Error detection within the memory system helps ensure system reliability and makes a
“fail soft” capability possible. The error detection mechanism operates as two independent
systems: one that checks data passing between the memory modules and the bank
controller, and one that checks data passing between the system cache and the bank
controller.

The error checking and correction feature (ERCC) operates on all data passing between
the memory modules and the bank controller. It detects and automatically corrects all
single-bit errors and detects all double-bit errors.

The second error detection system operates on all data block transfers between the
system cache and the bank controller. It generates and checks parity on every byte of
data passed between the two eclements.

Refresh Operations

As described above, each memory module contains four planes. The planes consist of
16K by one bit chips. To specify the position of any bit on the plane requires a column
address and a row address. Because the memory modules of the MV /8000 are dynamic
MOS, a refresh operation must occur every 15 microseconds. The bank controller does
this by sending a row address to the modules; everything in that row on all planes in all
modules will refresh.

Each time a refresh operation begins, the bank controller reads one word from the
memory row being refreshed. This word goes through a complete ERCC check and
correction and is written back to the memory module. This operation occurs on a
different word during each refresh cycle; the entire contents of memory are checked and,
if need be, corrected every 4 seconds. This mechanism reduces the possibility of
encountering memory errors.

Address Translation Unit

The MV /8000 has a logical memory size of 4 Gbytes and a physical memory size of up
to 2 Mbytes. Because the logical address space is so much larger than the physical
address space, the MV /8000 uses a demand paged system where units of logical
memory called pages are stored on disk until needed. When a page on disk is referenced,
it is moved to physical memory for manipulation. In addition to the page swapping
mechanism, this system also requires a translator that will convert the logical address of
a piece of data into a physical address in memory. This translator is called the address
translation unit, or ATU.

14 An Introduction to the MV/8000 Hardware

To perform the translation, the ATU uses a series of page tables that contain information
about the pages of logical memory. These tables contain entries, one for each page, and
they indicate if the page is currently in physical memory, if the page is valid and can be
accessed, and other information. To avoid referencing a page table for every memory
reference, the ATU maintains a table of address translations and access privileges for
256 recently referenced pages. The hardware checks the ATU’s table for entries before
referencing a page table in memory.

Because the memory references for a procedure tend to cluster in several pages, a needed
page translation is likely to be in the ATU’s table of address translations. The ATU
updates the entries in this table as execution continues.

Referenced and Modified Bits
The ATU also controls two memory management bits for each page: the modified bit
and the referenced bit. The operating system uses these bits during page faults.

A page fault occurs when a reference is made to a page that is not currently in physical
memory. Each time a page fault occurs, a new page must be transferred from disk to
physical memory. This may mean that a page in physical memory must be removed from
physical memory to make room for the new page. The modified bit indicates whether the
old page has been changed since it was brought into physical memory. If the modified bit
for the old page is 1, then some change has been made to the old page and a new copy
must be sent to the disk before the new page can be brought in. If the modified bit is 0,
the copy of the old page on disk is still valid and the new page can be moved into memory
immediately.

The referenced bit helps determine which page in memory should be replaced by a new
page being brought in from disk. In general, the page least frequently referenced is the

A]
pasc ts be lvyland The referenced b‘t n"n“m fkn npnrohng guctem to ﬂPfPrmlnP fhP

frequency of references to individual pages.

Protection Validation

The ATU performs all hardware checks required by the protection system. These checks
include access validation, page validation, ring crossing validation, and others. If any of
the checks fails, the ATU initiates a protection fault to the operating system. For more
information about the types of protection checks, refer to Chapter 4.

Processing Unit

The processing unit of the MV /8000 is composed of:

» A pipelined instruction processor,
¢ A RAM-based microsequencer,
e A high-speed arithmetic and logical unit (ALU).

Instruction Processor

The instruction processor decodes instructions for execution. Its main component is the
instruction cache, which provides input to the instruction decoder. The instruction cache
is 1 Kbyte in size, 64 blocks of 16 bytes per block, and maps directly to the system cache.

An Introduction to the MV/8000 Hardware 15

Note that the 16 bytes in the instruction cache blocks correspond to the 16 bytes in the
system cache blocks. Like the system cache blocks, the instruction cache blocks cannot
contain arbitrary information; Block 0 of the instruction cache can contain any Block 0
in the system cache; Block 1 in the instruction cache can contain any Block 1 in the
system cache; and so on.

During program execution, the instruction cache provides a speed increase because of its
look-ahead and look-back potential. Program loops or backward jumps, in particular,
profit from this feature.

Instruction Execution
The instruction processor executes instructions in four steps:

e An instruction is fetched from instruction cache.

* The instruction opcode is parsed to obtain the the starting address of the microcode
routine, and operand information is collected.

¢ Parsed information waits to be executed (while a new instruction is parsed.
* The microinstructions are executed.

This four-stage sequence allows four instructions to be in the pipeline at any one time:
one instruction being executed, the next being parsed and readied, the next being
decoded, and the fourth being fetched.

Microsequencer

ALU

The microsequencer contains the RAM memories that form the control store for the
MV /8000’s microcode. The microcode generates the control signals required by the
other elements of the system to perform their operations. In particular, the microcode
controls all ALU operations.

Because the control-store is constructed from RAMs, the microcode must be reloaded
each time the system is powered up. This is done by the System Control Processor (see
next section).

Built around advanced bit slices, the 32-bit ALU performs complex operations in a
minimum number of cycles. Two separate sections exist; one manipulates the exponents
of floating point numbers, and the other manipulates floating point mantissas, fixed
point quantities, and addresses.

ALU Accumulators

The MV /8000 contains four 32-bit fixed point accumulators. The ECLIPSE C/350
16-bit fixed point accumulators correspond to bits 16-31 of the MV /8000 accumulators.
The program counter (PC) is 31 bits wide; bits 1-3 specify the current segment of
execution, and bits 4-31 specify an address in the segment. The C/350 15-bit PC
corresponds to bits 16-31 of the MV /8000 PC.

Four floating point accumulators, each 64 bits wide, contain both the exponent and
mantissa of any single- or double-precision floating point operand. These four registers
are identical to the C/350 floating point registers. The MV /8000 floating point status
register (FPSR) is 64 bits wide.

16 An Introduction to the MV/8000 Hardware

Four 32-bit registers govern the MV /8000 wide stack: the wide stack pointer (WSP), the
wide frame pointer (WFP), the wide stack limit (WSL), and the wide stack base (WSB).
Maintaining the stack in hardware speeds up stack management operations.

I/0 System

The MV /8000 1/0 system is both electrically compatible and program compatible with
the ECLIPSE C/350. This means that MV /8000 supports the full family of standard
DGC peripherals with high-speed burst multiplexor channel (BMC) 1/0, data channel
1/0, and programmed 1/O. All three types of 1/O are under the control of the I/O
channel board.

Both the BMC and the data channel transfer data to and from the system cache directly;
data does not pass through the processor. The BMC transfers blocks of data to and from
memory at a rate up to 14.54 Mbytes per second on output and up to 16.16 Mbytes per
second on input. The data channel operates at rates up to 1.3 Mbytes per second on
output and 2.27 Mbytes per second on input. Information can move between the system
cache and the I/O channel board at a maximum of 18.2 million bytes per second. Even
at this rate, the central processing unit can continue unabated.

The programmed 1/O system operates with words or parts of words being transferred
between accumulators in the processor and 1/O devices. These transfers can be used to
set up the parameters of the transfers for the higher speed channels.

System Control Processor

The System Control Processor (SCP) is a system within the MV /8000 that has its own
microcomputer. That is, the SCP has its own CPU and iis own operaiing systein. The
SCP:

» Is a soft system console,

o Performs diagnostic functions,

» Loads MV /8000 microcode into the microsequencer.

As a soft console, the SCP performs system control functions under operator control. It
permits the operator to load or examine and modify MV /8000 main memory and
microcode, verify either one against a reference file, and single-step his way through a
program, instruction by instruction.

As a diagnostic tool, the SCP runs programs designed to help isolate hardware problems.
It also maintains an error log. When an error occurs, the log records the type of error, its
location, and the time it occurred.

As a microcode loader, the SCP loads and verifies the MV /8000 microcode when the
system is powered up, or under operator control.

The SCP consists of four major parts:

e The console control (CC) board,

¢ The MCB microcomputer with its own memory,
o A diskette drive,

* An operator’s terminal.

An Introduction to the MV/8000 Hardware 17

The CC board provides all the system timing for the MV /8000. It also connects to other

MYV /8000 components via several busses to allow internal registers to be examined and
modified.

The MBC is the interface between the operator’s terminal and the CC board. It operates
under the control of its own operating system (i.e., the SCP operating system), which
supports all traditional operator functions and also allows the operator to run diagnostic
programs.

The diskette drive holds the diskette containing the SCP operating system, diagnostic
programs, error logs, and copies of the MV /8000’s microcode. The MBC controls the
drive.

The operator’s terminal gives the operator complete controi over the MV /8000 system
by transmitting commands to the system and providing direct responses and reports.

Chapter 2
Logical Addressing

As mentioned in the Introduction, the ECLIPSE MV /8000 has a logical address space
of 4.3 billion bytes. This address space is partitioned into eight 512 Mbyte sections called
segments to make memory management easier. The segments are numbered from 0 to 7;
Segment 0 is in the lowest order part of logical memory. Figure 2.1 shows the segments
of memory.

Segment O (Kernel) 0

Segment 1

Increasing
addresses
Segment 3 |

Segment 4
Segment 5

Segment 2

Segment 6

Segment 7

4 Gbytes
DG-06791

Figure 2.1

To reference information in any segment, use a logical address. Each logical address
specifies a segment number and a location within that segment. With a logical address,
two types of information can be referenced: data, or instructions. To reference data, the
processor uses information coded in the referencing command to construct the logical
address of the desired data. To reference instructions, the processor uses the address
contained in a register called the program counter.

Program Counter

The program counter (PC) is 31 bits long. It specifies the logical address of the currently
executing instruction. Bits 1-3 of the PC specify the current segment of execution; bits
4-31 specify an address within the segment, as shown in Figure 2.2.

20

Logical Addressing

SEGMENT ADDRESS
1 3 4 31

DG-06400

Figure 2.2 Format of the MV/8000 program counter (PC)

When the processor increments the PC to reference the next sequential instruction, only
bits 4-31 take part in the increment. This means that every address formed by
incrementing the PC will remain within the current segment. The MV /8000 has
instructions that change the segment of execution (see Chapter 4, The Protection
System).

C/350 program flow instructions leave bits 1-3 of the PC unchanged, and set bits 4-16
to 0. Bits 17-31 are loaded with the address provided by the program flow instruction.
This means that all C/350 programs are constrained to be located in the first 64 Kbytes
of each segment. For more information about specific instructions, refer to the individual
instruction descriptions found in Chapter 16, The MV/8000 Instruction Dictionary.

The PC can be used as a base register for PC-relative addressing, as described later in
this chapter.

Instruction Addressing

The processor addresses all instructions, regardless of their type, in the same ways; it
fetches the contents of the location specified by the PC.

Data Addressing

As shown above, the PC is used to address an instruction. This type of addressing does
not depend on the instruction’s contents. To reference data, however, the structure of the
data must be known before a reference can be made. Data comes in different types and
lengths to cover a variety of requirements. Data types are:

¢ Fixed point numbers

¢ Floating point numbers

¢ Decimal numbers

e Alphanumeric character strings

Chapters 6 through 10 contain detailed discussions of all of these data types.

Data Lengths

The four basic units of information are bits, bytes, words, and double-words. A byte
contains eight bits, a word contains sixteen bits, and a double-word contains thirty-two
bits.

The first physical word in memory has the address 0; the next, address 1; the next,
address 2; and so on.

Logical Addressing 21

MYV /8000 instructions can specify data of varying precision. The first one or two letters
of an instruction mnemonic indicate the sizes used in that instruction. Table 2.1 lists the
various mnemonic prefixes and their meanings.

Prefix Meaning
N Narrow data - 16 bits wide
w Wide data - 32 bits wide
X Extended displacement - 15 or 16 bits wide
L Long displacement - 31 or 32 bits wide

Table 2.1 Prefixes for MV/8000-specific instructions

Displacements

A displacement is a value contained in an instruction that the processor uses to calculate
a logical address. The processor uses it as an offset from some predetermined base value
to produce a logical address.

There are three types of displacements used in MV /8000 instructions. Word
displacements are 8, 15, or 31 bits long and are used to form a word address. When
manipulating 8- or 15-bit word displacements, the processor extends them to 28 (Mode
0, see next section) or 31 (Modes 1-3) bits before using them to form a word address.

Byte displacements are 16 or 32 bits long; the processor uses them to form byte
addresses. When manipulating 16-bit byte displacements, the processor extends them to
29 (Mode 0) or 32 (Modes 1-3) bits before using them to form a byte address.

Figure 2.3 shows the various types of displacements.

[[0e T Ac [@]INDEX] 8-Bit Displacement]
0 23 456 78 15

A typical instruction format with a 8 -bit displacement (word addressing)

[1index] ac] Op | 1001 Je[15-Bit Displacement]

012345 1112 1516 17 31

A typical instruction format with a 15-bit displacement (word addressing)

[Tindex] Ac] Op [1001 Je] 31-Bit Displacment]
012345 1112 151617 47

A typical instruction format with a 31-bit displacement (word addressing)

l1 hndexl AC [Op [1001 I 16-Bit Displacement
012 345 1112 15 16 31

A typical instruction format with a 16-bit displacement (byte addressing)

[1 llndexl AC [Op l 1001 l 32-Bit Displacement]
012345 1112 1516 47

A typical instruction f t with a 32-bit displacement (byte addressin
DG-06792 ypical instruction format with a it displ nt (byt g)

Figure 2.3

22 Logical Addressing

As with data, MV /8000 instruction mnemonics specify the size of the displacement used
in the address calculation. The first or second letters of the mnemonic describe the
displacement size. Table 2.1 lists the mnemonic prefixes and their meanings.

Addressing Modes

To reference a unit of information in logical memory, specify the address of the
information. Usually, the instructions used will specify various pieces of information that
the processor needs to construct a logical address. This information is located in the the
displacement, index bits, and the indirect (@) bit.

The two index bits specify an addressing mode. The modes specify a base address to be
used with the displacement to produce a logical address. These modes are:

Absolute mode (Mode 0) - index bits are 00
PC-relative mode (Mode 1) - index bits are 01
AC2-relative mode (Mode 2) - index bits are 10
AC3-relative mode (Mode 3) - index bits are 11

Addressing Modes — 31- and 32-bit Displacements

For all modes, the processor adds the base address specified by the mode to the offset
specified by the displacement. The sum of the two values is the intermediate logical
address.

Addressing Modes — 8-, 15-, and 16-bit Displacements

For Mode 0, the processor zero extends any 8-, 15-, or 16-bit displacements. Word
displacements (8 or 15 bits long) are extended to 28 bits; byte displacements (16 bits
long), to 29 bits. The processor adds the base address specified by the mode to the offset
specified by the displacement. The processor appends the value of PC bits 1-3 to the
leftmost bit of the 28- or 29-bit value; the result is the intermediate logical address.

For Modes 1-3, the processor sign extends any 8-, 15-, or 16-bit displacements. Word
displacements (8 or 15 bits long) are extended to 31 bits; byte displacements (16 bits
long), to 32 bits. The processor adds the base address specified by the mode to the offset
specified by the displacement. The sum of the two values is the intermediate logical
address.

Absolute Mode

In absolute mode, the processor uses zero as the base value added to the displacement
value. With a 31-bit displacement, any location in the logical address space can be
directly specified. With a zero-extended 15-bit displacment, any location in the first 64
Kbytes of the current segment of execution can be specified. With a zero-extended 8-bit
displacment, any location in the first 377 words of the current segment of execution can
be specified.

PC-Relative Mode

The PC-relative mode uses the value contained in the program counter as the base value
added to the displacement. This mode allows a program to specify addresses greater
than 64 Kbytes with a sign-extended 15-bit displacement.

When an 8- or 15-bit displacement is specified in PC-relative mode, the PC contains the
address of the word containing the displacement. When a 31-bit displacement is specified,
the PC contains the address of the word containing bits 1-15 of the displacement.

Logical Addressing 23

Accumulator-Relative Modes

There are two accumulator-relative modes. One uses the value contained in AC2 as the
base value; the other uses the value contained in AC3. As with the PC-relative mode,
these two modes allow a program to specify addresses greater than 64 Kbytes with a
sign-extended 15-bit displacement.

Direct and Indirect Addressing

After producing the intermediate address from the displacement and index bits, the
address translation unit (ATU) translates it from a logical address to a physical one. The
processor then uses the indirect bit (bit 0 of the intermediate address) to determine the
final address.

An indirect bit of 0 specifies direct addressing. This means that the physical address
becomes the final address without change.

An indirect bit of 1 specifies indirect addressing. This means that the contents of the
logical address are to be treated as a double-word pointer to another address. The
processor fetches the contents of the double-word location specified by the intermediate
address and examines bit 0. If bit 0 is 1, the ATU fetches the contents of the fetched
location, translates the contents to a physical address, and fetches the contents of the
addressed location. This indirection chain is followed until bit 0 of some double-word
location is 0. The contents of that double-word location form the last logical address in
the chain; the ATU translates the address into a physical one, and uses it as an address
to a piece of data.

NOTE: The indirection chain may include a maximum of 15 levels of indirection. If more
levels are specified, a protection fault occurs; AC?2 contains the code 5.

When an instruction that calculates an effective address is used, the processor checks all
source and destination addresses for access validity. This means that when indirect
addressing is used, the processor checks each intermediate address obtained in the
indirection chain, even if the instruction will not use that intermediate address as the
final address (see the LEF instruction). When no indirection is specified, the processor
compares the final address to the current segment to check for valid access. For more
information about validity checks, refer to Chapter 4.

Word Addressing

To form the logical address of a word in memory, the processor uses the information
coded in the index and displacement bits of an instruction. As described in previous
sections, the processor determines the correct addressing mode and adds the displacement
to the specified base value:

SEG SEGMENT OFFSET

T T T T T T T T T T T T T T T T T T T T

0 1 3 4

T31

where
SEG contains the segment number found in bits 1-3 of the PC, and
SEGMENT OFFSET specifies the displacement in words from the start of the
segment.

24 Logical Addressing
Segment O
0 —{ 15 :
3 1-bit word address 105766
A -
r Y 105767 A
Hooo [0] oool ooo]ooo| 001 [oool 101 | 11 l 11 | mﬂ 106770
) 3 4 31 105771
—— — 105772
Indirect Specifies (» 105773
bit Segment O Word address specifies a word in memory. 0 5
in memory Words in
memory
DG-06922
Figure 2.4
C/350 Word Addressing
To reference a word with a C/350 instruction when the ATU is enabled, the processor
forms an address with the following format:
st |o|lolojolojojofo]o|o|o]|o fo C/350-GENERATED ADDRESS
o1 374 5 6'7 '8 9 10111213 1415 16 17 T T T T T T T T
where
SEG contains the segment number found in bits 1-3 of the PC, and
C/350-GENERATED ADDRESS is the 15-bit address formed from the information
in the C/350 instruction.
Segment 3
0 i 15 :
C/350 word address 7734
A
r N\ 7735
[0[011 Io[ooo[ooo[ooo [000 I 000 I 11 I 111 J 1001 001] 7736
o1 3 4 Py 7737
—— 7740
Ir?direct Specifies (> 7741
bit iegment Word address specifies a word in memory. 7742
0 15
Words in memory
DG-06923
Figure 2.5

When the C/350 MAP is enabled, the word address is 15 bits long and is formed from

the index bits and displacement in the C/350 instruction:

@ C/350-GENERATED ADDRESS

0 1

Logical Addressing 25

C/350 word address
A

r N 0 15
r

Mooo{ooolom[nolm 164
o1 15 165
2N) 166
Indirect L I 167
bit Word address specifies a word in memory. 170 /

0 15
Words in memory
DG-06924
Figure 2.6
Byte Addressing
Calculating a byte address is much like calculating a word address. As in word addressing,
the index bits and displacement determine an intermediate address.
NOTE: Byte addresses cannot specify indirection.
After all calculation is complete, the processor interprets the byte pointer according to
the following format:

SEG SEGMENT OFFSET BI
e e T e A
where

SEG contains the segment number specified in bits 1-3 of the PC,

SEGMENT OFFSET specifies the displacement in words from the start of the
segment, and

Bl is the byte indicator. A 0 in this bit specifies the left byte; a 1 specifies the right

y
byte.
Segment 0 ———7 Byte indic?tor specifies
32-bit byte address 0 13 low-order or high-order
A 602354 byte.
‘ } 602355 ¢
602356
looo|o]ooolooo|ooo’ 110[000]010[011‘ 11o|001loJ 02357 Ql I
[s] 2 3 30 31 0 7 8 A];’;
It — 602360 b \ G
Specifi 1 > 602361 Word 602361
S::r‘:e::fo Word address specifies a word in memory. 602362 /
in memory 602363 /
6 15
Words in memory
DG-06925

Figure 2.7 Byte addressing: MV/8000 instructions; ATU enabled

C/350 Byte Addressing
To reference a byte with a C/350 instruction when the ATU is enabled, the processor
forms an address with the following format:

SEG ojofofo|jo|o|ofofo (0|0 |O |O C/350-GENERATED BYTE ADDRESS

T T T T T T T T T T

07 T2'3'4'5 6 7 8 9 101112713 14 15 16"~ T 31

26 Logical Addressing

where
SEG contains the segment number specified in bits 1-3 of the PC, and
C/350-GENERATED BYTE ADDRESS is the byte address formed from the
information in the C/350 instruction. This byte address is 16 bits long; bits 0-14 specify
a word address and bit 15 is the byte indicator.

Segment O Byte indi .
- 2 yte indicator specifies
o 5 low-order or high-order
C/350 byte address 7030 ¢ byte
f A} 4031
4032 | I l
FOOIOOO]OOO]OOO!OOOIO[OOO]100]000‘011‘110[1l 4033
15
o 23 15 16 30 31 2034 i e ,
— (4035 Ly
Specifies > 2036 Word 4036
Segment O Word address specifies a word in memory 2037
in memory
4040
0 15
Words in memory
DG-06926

Figure 2.8 Byte addressing: C/350 instruction; ATU enabled

When the C /350 MAP is enabled, the processor uses a 16-bit byte pointer wi*' the

format:
C/350 WORD POINTER Bt
0 ' i ! ! 14 15
where

C/350 WORD POINTER is the address of a 2-byte word, and

BI indicates one of the two bytes in the addressed word. If bit 15 is 0, the high-order
byte (bits 0-7) will be used. If bit 15 is 1, the low-order byte (bits 8-15) will be used. See
Figure 2.9.

~

0 15 Byte inidicator specifies low-order
C/350 byte address or high-order byte.
N 1106 *
C D 1107
romioo1lw1loo1lo11lﬂ 1110 r | J
0 14 15 1111 ﬁ 0 78 15
S (— 1112 b g —
: ot 1113 j Word 1113
Word address specifies a 1114
word in memory. 111 5
o] 15

Words in memory

DG-06927

Figure 2.9 Byte addressing: C/350 instruction; MAP enabled

Logical Addressing 27

Bit Addressing

Bit addressing uses a word pointer and a bit offset to calculate an address. The word
pointer can be indirectable. The format of the word pointer is:

3

SEG

SEGMENT OFFSET

The bit offset can reference any bit in the current segment. It has the format:

31

BIT OFFSET

The word pointer acts as a base address; it specifies a word in memory. The bit offset
specifies a number, n. The nth bit past the word addressed by the base address is the

desired bit.

31-bit word address Segment 7
/ A Al 04\‘_,115:

[o] 19 Iooo|ooo[ooo[101l1o1[no|no[110 | 000 |

~ 40056654

Q1 34

e

31
J

Indirect Specifies
bit Segment
7

k -
Word address specifies a word in memory. A

40056655

40056656

40056657

40056660

40056661

40056662

Word offset specifies a word relative to the word
specified by the word address.

40056663

40056664 |

DG-06928

40056665
40056666
40056667
40056670

N

R
Jo] 000 [000 [000 | 000 [000 [000] 000 | 000 [o010 [1101]
0 : 2728 3t

N

——

32-tnt bit offset Bit offset

specifies a bit
in addressed word.

7 o
|

Word 40056662

Figure 2.10

To specify the word pointer and bit offset, load the appropriate values into two fixed
point, 32-bit accumulaters. These accumulators are then specified in a bit instruction. If
the two accumulators are the same, then the word pointer is assumed to be zero in the
current segment.

C/350 Bit Addressing
To reference a bit with a C/350 instruction when the ATU is enabled, the processor

forms a word pointer and bit offset from the information contained in the C /350
instruction. The format of the word pointer is:

SEG ofojojo(o|jo|ojo|o|o|o (o |0

C/350-GENERATED WORD ADDRESS

0t "3°4'56 '6'7 8'9 101112131415 16 17" " Y

28 Logical Addressing

The format of the bit offset is:

olo|ofo|ojo|o]lo|o|o|0o]Oo |o |O |O |O

C/350 BIT OFFSET

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T T T

T T T T T T

"3

C/350 word address

A

r

~

[o] 710 [o] 0oo [000 [000 000 Jooo] 000 Joco [11 [111]

01 3 4

VA (

Indirect Specifies

31
J

bit Segment
6

Word address specifies a word in memory.

Word offset specifies a word relative to the
word specified by the word address.

([N\

1

[0 J000 [000] 000 [000 0o Jo] 000 [000 [000 11 Jof 011
L .

~—
C/350 bit offset

Bit offset specifies a bit in addressed word.

15 16 3
(. S

Word 102

Segment 6
0 C 15 :
4

73
74
75
76
77
100
101
102
103
104
o] 1
Words in memory

DNG-06929

Figure 2.11

When the C/350 MAP is enabled, the processor forms a 15-bit word address and a
16-bit bit offset. The word address has the format:

C/350-GENERATED WORD ADDRESS

The bit offset has the format:

C/350 BIT OFFSET

Logical Addressing

29

Summary

DG-06930

C/350 word address

o] 15
A
- _ 74
{o] 000|000 [001 [ooo [ooo =z
0.1 15 76
i C — 77
Ilerect > 50
bit Word address specifies a word in memory. 101
Word offset specifies a word relative to 102
the word specified by the word address. 103
104
105
lr 1 ST T ‘l 1 106
| G00 | 000 [000 | 101 | 1111 | gﬂﬁw
0 1112 15 0
- v Words in memory

Y
C/350 bit offset

Bit offset specifies
a bit in addressed word.

[]

15
— J

Y
Word 105

or

AL

Figure 2.12

This chapter has explained how the processor uses information provided in an instruction
to produce a logical address. This logical address, however, is not sufficient to allow the

processor to reference a physical memory location. To do this, the processor must

translate the logical address into a physical address. It must also be able to manage the
physical locations specified by the translated addresses. The next chapter will describe

how the processor translates logical addresses into physical addresses, and how physical
memory is managed.

Chapter 3

Logical to Physical
Address Translation

This chapter describes the steps used to translate a logical address to a physical address,
and the information provided for the management of physical memory.

Introduction

Each of the eight segments in the MV /8000 has its own logical address space. This
means that for each segment the processor must translate all logical addresses to
physical addresses before it can reference the desired location. To perform the
translations, the processor uses a series of tables.

This translation algorithm is based on the following items:

* A standard unit of memory allocation called a page. A page contains 2048 bytes of
storage which can contain instructions, data, or both.

* A table of entries (referred to as a page table) which contains information used to
translate a logical address to a physical address. Each page table entry, or PTE,
contains information relevant to one page of storage.

* A segment base register (SBR) for each segment. An SBR contains the physical base
address of a page table and an indication of the number of page tables that have to be
traversed to produce a physical address.

This translation mechanism is used to implement a demand paged storage allocation
approach. Demand paging means that a page can be referenced without it necessarily
being located in main memory: it may be located in secondary storage. The operating
system controls the pages that are in main memory, and when necessary it moves pages
from secondary storage to main memory, and from main memory to secondary storage.

The translation process and page management is performed by the address translation
unit, or ATU, of the MV /8000.

As part of the production of a physical address, the translation mechanism performs
protection checks and provides information necessary for the management of physical
memory. The protection system that preserves system integrity is discussed in the next
chapter. In this chapter, the translation process is described as if no protection violations

32 Logical to Physical

Address Translation

occur.

The Paging Mechanism

Referenced a

Because its logical address space is larger than the physical memory space, all pages
cannot be in physical memory at the same time. The MV/8000’s paging mechanism
(under the control of the operating system) moves referenced pages in and out of
memory whenever necessary. The paging mechanism uses page tables and registers to
keep track of the pages and their status.

The paging mechanism also includes a page fault handler. When a reference is made to
a page that is not currently in memory, a page fault occurs, signalling the operating
system to load the referenced page into memory. The page fault handler loads the
appropriate page, and the processor completes the reference. For more information
about page faults, refer to the next chapter.

nd Modified Flags

Associated with each physical page in memory are two flags: referenced and modified.
When a successful read is initiated, the referenced flag associated with the physical page
of the translated address is set to 1. When a successful write is initiated, the referenced
and modified flags associated with the physical page of the translated address are both
set to 1.

For the purposes of memory management, a successful action is defined as a memory
reference which does not result in a protection fault on a resident page. I/O memory
references do not effect the state of these flags.

Privileged instructions exist to manipulate the referenced and modified flags. They are
shown in Table 3.1.

Mnem Name Meaning

LMRF Load modified and Loads the modified and referenced bits of a
referenced bits specified page into ACO.

ORFB OR referenced t 't Inclusively ORs the specified referenced bits

with a bit string in memory and resets the
referenced bits to the ORed value.

RRFB Reset referenced L't Resets the modified bits of the specified
pages to zero.
SMRF Store modified and Stores bits 30-31 of ACO in the modified
referenced bit and referenced bits of the specified page.

Table 3.1 MV/8000 instructions that manipulate the referenced and modified bits

Segment Base Registers

There is a segment base register (SBR) for each of the eight segments. An SBR contains
information used for the logical address translation mechanism and for I/O protection.
An SBR indicates whether a segment is currently defined, the number of page table
levels necessary for logical address translation, the address of translation information,
and other system data. The processor checks these registers not only for the data
contained there, but to ensure that a specified logical address is valid. If it is not, the

Logical to Physical
Address Translation 33

processor invokes the protection system. (For more information about the protection
system, see the next chapter.)

Each 32-bit SBR has the following format:

V| L |LEF|I/O RESERVED PHYSICAL ADDRESS

T T T T T T T T T T T T T T T T T

o 1t 2 3 4 12 13

The meanings of the SBR fields are shown in Table 3.2.

Bit field Symbol Description

0 \Y% Segment validity bit — indicates whether
the segment can be referenced.

0 indicates an invalid SBR

1 indicates a valid SBR

1 L Length bit — indicates the maximum range
of the physical memory address.

0 indicates a 1-level page table (maximum
range is 1 Mb).

1 indicates a 2-level page table (maximum
range is 512 Mb).

2 LEF LEF bit — indicates whether the processor
will operate in LEF or 1/0 mode.

0 indicates 1/0 mode.

1 indicates LEF mode.

3 1/0 1/0 enable bit — indicates if an |/O
protection violation will occur when you try|
to execute an |/O instruction in your
program.

1 indicates the |/O instruction will execute.
O indicates the protection violation will occur
(code=10in AC1).

4 RESERVED Hardware reserved.
5-12 RESERVED Software reserved.

13-31 PHYSICAL Identifies the physical page address in
PAGE memory of the indicated page table.
ADDRESS

Table 3.2 SBR fields

Page Tables

The processor uses page tables to keep track of data pages and page table pages. These
tables contain entries, one for each page, that contain the information necessary to
reference locations in a particular page. A page table entry (PTE) contains flags that
indicate if the page is in physical memory and if it can be referenced. It also contains
information needed to translate a logical address to a physical address.

The format of a PTE is shown below.

V [RS| ACCESS RESERVED PHYSICAL ADDRESS

T T T T T T T T T T T g T T T T T T T T T T T T T T

12 4 5 12 13

The meanings of the PTE fields are shown in Table 3.3.

34 Logical to Physical

Address Translation

Bit field Symbol Description

6] \% Valid page bit — indicates whether a page
is currently defined (valid).

0 indicates page is currently invalid.

1 indicates page is currently valid.

1 RS Resident bit — indicates presence of page
in physical memory.

0 indicates page is not in physical memory.
1 indicates page is in physical memory.

2 R Read access bit — indicates whether a
read reference to this page is valid.

0 indicates the read is invalid.

1 indicates the read is valid.

3 w Write access bit — indicates whether a
write reference to this page is valid.

0 indicates the write is invalid.

1 indicates the write is valid.

4 E Execute access bit — indicates whether an
execute reference to this page is valid.
0 indicates the execute is invalid.
1 indicates the execute is valid.
5 -— Reserved for hardware use.
6-12 -— Reserved for software use.

13-31 PHYSICAL Physical Address field — specifies the 19
ADDRESS high order bits of a physical address.

Table 3.3 PTE fields

The physical address contained in the PTE references one of two things: a page containing
an instruction and/or data, or the base of another page tabie. if ithe ATU uses oniy one
page table for address translation, the PTE contains the physical address of a data page.
In this case, the ATU uses a one-level page table. If the ATU uses two page tables for
the translation process, then the first PTE referenced contains the address of the second
page table. In this case, the ATU uses a two-level page table.

The option of specifying either a one- or a two-level page table allows the address space
to be tailored to the program. For a small program (less than 1 Mbyte), a one-level
mechanism would be used, since a one-level scheme can access the lowest one
five-hundred-and-twelfth of memory. For larger programs, a two-level mechanism would
be used.

Bit 1 of the referenced SBR determines whether the ATU uses a one-level page table or
a two-level page table. When bit 1 of the SBR contains a 0, the ATU uses a one-level
page table. When bit 1 contains a 1, the ATU uses a two-level page table.

The Translation Process

The following paragraphs describe how the ATU uses one-level and two-level page
tables to translate logical to physical addresses.

Logical to Physical
Address Translation 35

3.5.1 One-level Page Table Translation

An earlier section described how the processor generates a logical address. Once the
logical address is in the proper form the translation process takes place.

In the following discussion, refer to Figure 3.1. The numbers labeling the text correspond
to the numbers displayed on the diagram.

Logical word address

1 34 1213; 2122 31
SBR All zeroes 1 level page table Page offset ‘]
Specifies an SBR \ / N\ /
with the format ®
12 13 31

L lo]

] Physical address I

DG-06261

Specifies starting word address
of a page table
Specifies a PTE
offset from
PTEO @ PT's start
PTE1
Page : PTEn format
table : 0 12 1213 31
. Valid resident
PTEn 111 physical address
* /
PTE511 3 21 22 31

3 I@ 2122) 4 30 31

l Physical address I 1 level page table I OI
AN /

Final physical
word address

l Physical address Page offset]

Figure 3.1 One-level page table translation

1. The logical word address to be translated has the format shown in the diagram. Bits
1-3 of the word address specify one of the eight segment base registers (SBRs). The
ATU will use the contents of this valid SBR to form the physical address of a PTE.

2. To form this physical page address, the ATU begins with the physical address
specified in bits 13-31 of the SBR discussed above. This address becomes bits 3-21 of
the PTE address. Bits 13-21 of the logical word address become bits 22-30 of the PTE
address. The ATU appends a zero to the right of the PTE address, making a 29-bit word
address.

3. Bits 3-21 of the PTE address (unchanged in 2 above) specify the starting address of
a page table. Bits 22-31 of the PTE address specify an offset from the start of the table
to some PTE (labelled PTE# in Figure 3.1). This PTE specifies the starting address of a
page of memory.

36 Logical to Physical

Address Translation

4. PTEn bits 13-31, the page address, become bits 3-21 of the physical address. The
page offset field specified in bits 22-31 of the logical word address become bits 2231 of
the physical address. This is the physical word address translated from the original word
address.

NOTE: When using a one-level page table, bits 4-12 of the logical word address must be zero.
If they are not zero, a page fault occurs. For more information, see the next chapter.

Two-level Page Table Translation

Just as in the one-level page table translation process, the processor produces a logical
address. In the paragraphs that follow, refer to Figure 3.2. 1. The logical word address
to be translated has the format shown in the diagram. Bits 1-3 of the word address
specify one of the eight segment base registers (SBRs). The ATU will use the contents of
this valid SBR to form the address of a PTE.

2. To form this address, the ATU -begins with the physical address specified in bits
13-31 of the SBR discussed above. This address becomes bits 3-21 of the PTE address.
Bits 4-12 of the logical word address become bits 22-30 of the PTE address. The ATU
appends a zero to the right of the PTE address, making a 29-bit word address.

3. Bits 3-21 of the PTE address specify the starting address of a page table. Bits 22-31
of the PTE address specify an offset from the start of the table to some PTE (labelled
PTEn in Figure 3.2). The PTE specifies the starting address of a page table.

4. The ATU now constructs the address of a second PTE. The physical address
specified in bits 13-31 of the first (PTEn) become bits 3-21 of the address of the second
PTEm. Bits 13-21 of the logical word address become bits 22-30 of the second PTE’s
address. The ATU appends a zero to the right of the second PTE address to make a
29-bit word address.

Logical to Physical
Address Translation 37

DG-06262

Logical word address
1 3 4 1213 2122 31
| SBR [2 level page table | 1 level page table l Page offset]
/\ /\ /
Specifies an SBRA W)
with the format @
0 1 2 12 13 31
[1] 1 l [Physical address I
3 ;@ 21 22 y 30 31
| Physical address 2 level page table ! 0—|
— /\ J/
Specifies
a page table Specifies a
particular PTE
Starting E- PTEO @ in the specified
word address page table
PTE1
PTE2
PTEn format
: 0 1 12 13 31
V 7 3 Valid resident
PTEn physical address
PTE511 3 21 22 [30 31
0 31 I Physical address [1 level page table | 0 |
Page table \—Y—/_ J—
PTEO N
Specifies starting word address
PTE1 of a page table
PTEm -
Specifies the offset to the
PT starting address to choose
a particular PTE.
PTE511
0 12 12 13 31
0 31
| 1 {1 Physical address I
Format of PTEm
3 21 22 Y 31
] Final physical
l Physical address l Page offset word address

Figure 3.2 Two-level page table translation

5.

Bits 3-21 of the second PTE address specify the starting address of a second page

table. Bits 22-31 of the second PTE address specify an offset from the start of the
second table to some PTE (labelled PTEm in Figure 3.2). The second PTE specifies the

starting address of a page.

6. The second PTEm’s bits 13-31, the page address, become bits 3-21 of the physical
address. The page offset specified in bits 22-31 of the logical word address becomes bits
22-31 of the physical address. This last value is the physical word address.

38 Logical to Physical

Address Translation

Initialization

Power Up

Summary

When the power is first turned on, or after a system reset, the processor is in the
following state:

o Logical address translation is disabled (this means that logical and physical addresses
are the same),

o The protection system functions as if logical address translation is still enabled. That
is, ring maximization is still performed.

» The values of the referenced and modified flags are indeterminate.

e The processor status register (PSR) is cleared to 0, and the processor is halted.

Executing the I/O Reset instruction disables logical address translation, just as a system
restart or power up does. In addition, after the I/O reset occurs, the processor sets the
PSR and bits 0-9 of the floating point status register (FPSR) to 0.

The MV /8000 effective address calculation works the same way when in physical mode
as it does when the ATU is enabled. However, because the logical address space exceeds
the physical address space, the processor discards a number of the logical address’ most
significant bits (to give a 20-bit word address) before referencing memory.

When in physical mode, the processor executes a C/350 LMP, SYC, or a MAP Enable
instruction exactly as if the processor were an ECLIPSE C/350 .

This chapter described the logical-to-physical address translation mechanism. The next
chapter describes the protection system and how it ensures that all references are valid.

Chapter 4
The Protection System

The previous chapter described the address translation mechanism. This chapter will
describe how the protection system works when the ATU is enabled to validate the
translation mechanism. Protection takes two forms: process-wide protection, and page
protection. Process-wide protection checks ring protection, data references to other
segments, control transfers, and I1/O protection. Page protection checks for valid pages
and valid page accesses.

Process-wide Protection

The MV /8000 uses a hierarchical protection mechanism. Under such a scheme, the
operating system can assign varied degrees of privilege to programs. This scheme
provides protection for sensitive data as well as for the operating system itself, and also
allows common routines to be used by all programs.

In a system using a hierarchical protection mechanism, the address space of each user
includes the operating system. This greatly reduces the number of calls to the operating
system that must be included in a program. A program invokes the operating system
with a subroutine call rather than specific system calls. In fact, a program sees the
operating system as a system-provided subroutine.

To make this hierarchical arrangement work, the MV /8000 uses a separate protection
system for each segment. These protection systems (rings) allow varying degrees of
access to locations in the corresponding segment. Ring 0 corresponds to Segment 0 and
provides the most rigorous protection. (Privileged instructions can only be executed in
Ring 0.) The kernel of the operating system is located in Segment 0. Ring 1 corresponds
to Segment 1, and so on. Ring 7 is the least privileged protection system. User programs
are usually located in Segment 7 to minimize the chance of damage to the operating
system or other facilities.

Process-wide protection governs the first part of the address translation process. When a
reference from one segment to another is made, the ring of the destination segment
determines whether the source segment can legally make the reference to the destination
segment. This holds true whether the reference is a simple data reference, or a transfer
of control from one segment to another.

40

The Protection System

Source-Destination Verification

When the processor translates a logical address to a physical address, the protection
system first checks the SBR specified by the logical address. As described in the previous
chapter, the SBR contains information about the validity of the referenced segment. Bit
0 determines if the segment can be referenced. If it cannot, a protection fault occurs and
ACI contains the code 3.

Bit 1 of the SBR specifies the number of page table levels this segment uses in the
translation mechanism. The value of this bit places a restriction on the segment’s logical
address to be translated. If SBR bit 1 contains a zero, indicating that this segment can
perform only one- level page table translations, then zeroes must be specified in bits
3-11 of the logical byte address. If a value other than zero is specified in this field, a
page table fault occurs. For information about page faults, see the end of this chapter.

Bit 2 of the SBR is as an indicator of LEF mode. The C/350 Load Effective Address
instruction uses the same format as C/350 1/O instructions. The processor must have
some means to identify when these instructions should be interpreted as I/O instructions
and when as LEF instructions. When bit 2 of the SBR contains a 0, then the processor
will execute all LEF and 1/O instructions as I/O instructions. A 1 in this bit means that
the processor will execute all LEF and 1/O instructions as LEF instructions.

The SBR also determines whether 1/0 instructions can be used. A 1 in bit 3 of the SBR
means that any I/O instruction will be executed. If this bit contains a 0, a protection
fault will occur each time the processor attempts to execute an 1/O instruction. When
this fault occurs, AC1 contains the code 10.

Referencing Other Segments for Data

A program’s ability to reference data in another segment depends upon:

o The program’s logical location in memory;
 The protocols defined by the ring protecting the referenced segment.

When a reference to another segment is made, the processor notes the segment from
which the reference is being made (the source segment). It also notes the destination
segment, and determines if the cource segment’s reference is valid according ta the
destination segment’s protection mechanism. Table 4.1 shows which accesses are valid or
invalid. A ¥ shows that the access is valid; an F shows that the attempted access will

cause a protection fault. If a fault occurs, ACI contains the code 4.

The Protection System 41

Source Destination Segment
Segment

0112 3 |4|5|6]|7
0 VIiVviVvIivIiv|v]Vv]|vVv
1 FlV|IV]|V]|V|V]IV]V
2 FIFIViVIV]ViV]V
3 FIF|IF|IV| IV |V]|V]V
4 FI1F|F|F |V IV|IV]|V
5 F|IF|F]F FIVIV]V
6 FIF{F|F|F|F|lV]V
7 F | F FIF|FI|F|F |V

Table 4.1 Valid and invalid segment accesses

Access Brackets

The MV /8000 protection system controls cross-ring accesses with access brackets. Each
ring has an access bracket which specifies a set of segments that can make legal
references to data protected by this ring.

When performing a read or a write, the access bracket indicates the highest order
segment that can make legal references to data protected by this ring. In the example
used above (Table 4.1), the read and write access brackets for Ring 4 would specify 4,
which means that Segments 0 through 4 can access data protected by Ring 4, but
Segments 5 through 7 cannot.

When performing an execute, the access bracket indicates a set that contains only the
current segment. This means that if the current segment is 6, only programs located
within Ring 6 can be executed.

When the processor determines that the reference to another segment is valid, the rest of
the translation process and protection checks take place. If the reference is invalid, a
protection fault occurs and AC1 contains the code 4.

Ring Crossing

When the processor increments the PC to reference the next instruction, it increments
only the 28 least significant bits. This is to keep all standard program references in the
current segment.

To transfer control to another segment, a particular type of program control instruction
must be used. The processor will execute this type of program control instruction only if
two conditions are met:

¢ The instruction must be a subroutine call or return, such as LCALL or WRTN. The
processor ignores the segment field of the logical address generated by any other type
of program flow instruction.

* A subroutine call must be inward (towards Ring 0); a subroutine return must be
outward (towards Ring 7). Outward calls and inward returns will cause protection
faults and AC1 will contain either 7 (outward calls) or 8 (inward returns).

42

The Protection System

Gates and Gate Arrays

A valid inward subroutine call causes the processor to transfer control to the specified
segment. The transfer is strictly controlled by a gate array, which is part of the
protection system. A gate array is a series of locations in the destination segment that
specify legal entrypoints, or gates, into that segment. The gate array has the format
shown in Figure 4.1.

o] 15 16 31
Unused Maximum no. of gates
- Gate PC offset Gate O
bracket
Increasing
address
°
[}
°
Gate
- ffset -
bracket PC offse Gate (max)-1
0 1 34 31
- indicates don’t care.
DG-06263
Figure 4.1

The first-double word of the gate array specifies the total number of gates in the gate
array. The rest of the locations contain the gates.

Bits 1-3 of each gate specify a gate bracket. A gate bracket is similar to the access
brackets used in acessing another ring. The gate bracket specifies an unsigned integer in
the range of 0 to 7. This integer specifies the rings that can legally use this gate. For
example, a gate contains a 3 in its gate bracket field. This means that only Rings 0
through 3 can use this gate. If the gate bracket field contains a 6, then Rings 0 through
6 can use this gate.

Specifying an invalid gate causes a protection fault to occur. AC1 contains the code 6.

Logical locations 34-35g in the called segment contain a pointer to the first word of the
gate array.

When a valid inward cross-ring call is specified, the processor interprets the address
specified by the calling instruction according to the following format:

- SBR UNUSED GATE NUMBER

T

] T3 4 T T T T T T T IETRET N T T T T T T T T T T T Y

Bits 1631 specify one of the gates in the gate array.

Performing the Crossing

When an inward cross-ring call is specified, the processor compares the gate number
specified in the call to the maximum number of gates specified in the gate array (bits
16-31 of the first double-word). If the gate number in the call is greater than or equal to
the maximum, then the call fails and a protection fault occurs. AC1 will contain 6. Note
that the protection fault occurs in the original segment, not the called one.

The Protection System 43

If the gate number in the call is less than the maximum, then the processor uses the gate
number to index one of the gates. The processor reads the contents of the appropriate
gate, and compares the segment number specified by the PC to the segment number
specified by the gate. If the number specified by the gate is less than or equal to that
specified by the PC, then the cross-ring call is not made and a protection fault occurs.
AC1 will contain a 6. Again, the fault occurs in the source segment, not the destination
segment.

If the number specified by the gate is greater than that specified by the PC, then the
processor changes the contents of the PC. The processor loads PC bits 4-31 with the
28-bit PC offset specified in the gate. Bits 1-3 of the PC specify the number of the
segment that contains the gate array.

NOTE: If the maximum number of gates is 0, then the segment containing the gate array can
not be the target of an inward ring crossing.

The WRTN or the WPOPB instructions are used for outward returns. The processor
interprets the address specified by either of these instructions as a normal word address.
This means that the processor does not need gates or gate arrays to return control to the
outer segment.

Transferring Control to the New Segment

When a valid ring crossing is specified, the processor references a gate and reloads the
PC. However, before control can transfer from the old segment to the new, the processor
must save the source segment’s state, create a new wide stack for the destination
segment, and copy any parameters onto the new wide stack. For more information about
MV /8000 wide stacks and how the processor manipulates them during a ring crossing,
see Chapter 10.

Copying Parameters

Once the new wide stack in the destination segment has been created, the processor
checks for potential stack overflow. The number of parameters to be copied is specified
by the LCALL or XCALL instruction that initiated the ring crossing. The processor uses
this information to determine if the number of parameters to copy exceeds the size of the
wide stack.

If copying the parameters would cause a stack overflow, the processor does not copy the
parameters and a stack fault occurs. AC1 will contain 2. Note that since the ring
crossing is valid, the stack fault occurs in the destination segment, not the source
segment. The PC contains the address specified in the gate array entry; this is the
address of the first instruction to be executed in the destination segment.

If copying the parameters would not cause a stack overflow, the processor copies the
parameters from the source wide stack to the destination wide stack. The order of the
arguments in the destination wide stack matches the order of the arguments in the
source wide stack. This means that the parameters are referenced exactly as if no ring
crossing had occurred.

Finishing Up
After copying all parameters, the processor pushes a double-word onto the top of the

destination wide stack. This double-word contains the PSR and the number of arguments
pushed.

44

The Protection System

The processor completes the ring crossing process by executing the instruction specified
by the PC. As described above, this address is specified by the gate array entry.
Normally, the instruction specified by the PC is a WSAVR or WSAVS. Either of these
pushes a return block onto the newly defined stack, and loads WFP with the updated
value of WSP.

NOTE: All the actions necessary for ring crossing are the result of the execution of an LCALL
or an XCALL instruction. The processor performs these functions without software assistance.

Trojan Horse Pointers

Suppose a program in Segment 6 calls a subroutine in Segment 2, and suppose one of the
arguments passed to Segment 2 is a pointer to information in Segment 2. When
execution in Segment 2 uses this pointer to make a reference, the processor will use
Segment 2’s access privileges to determine the validity of the reference. These access
privileges may allow references to data that would otherwise be restricted. A pointer
that attempts such access is called a Trojan Horse pointer.

Argument Validation/Physical Address Instructions

The Validate Word Pointer and Validate Byte Pointer instructions check for Trojan
Horse pointers. Table 4.2 describes these instructions; also included is an instruction that
translates a logical address to a physical address.

MNEM Name Action

VWP Validate Word Pointer Checks a word pointer for validity and skips depending on the
outcome of the check.

VBP Validate Byte Pointer Checks a byte pointer for validity and skips depending on the
outcome of the check.

LPHY Load Physical Translates a logical address to a physical address.

Table 4.2 Argument validation/physical address instructions

Note that instructions such as WCMT and WCMYV can move data in descending order.
When this occurs, the instructions check to make sure that the segment field of the
source data does not change during the move.

Indirection Protection

Each time an indirect address is specified, the processor must check for a valid ring
crossing. When a memory reference is made for the first time, the processor treats the
segment specified in the PC as the source segment, and the segment specified in the
intermediate address as the destination segment. The processor compares these two
fields. If the access is invalid, then a protection fault occurs, and AC1 will contain a 4.

If the access is valid, then the processor fetches the new address specified by the
intermediate address. If further indirection is to occur, the segment specified in the
intermediate address becomes the source segment, and the segment specified in the new
address becomes the destination segment.

Up a maximum of 15 levels of indirection can be specified. If more than 15 are specified,
a protection fault occurs and AC1 will contain the code 5. Indirection protection is
always enabled whenever the processor is operating with the ATU enabled.

The Protection System 45

If an instruction can resolve two indirection chains (such as WBLM) then the total
number of indirect references between the two chains can not be more than 16.

Page Protection

The previous section described process-wide protection between segments. Page
protection checks to see if the process-wide reference can legally access a particular page
in the segment. There are two types of page protection: page table entry validation, and
access validation.

Page Table Entry Validation

As mentioned earlier, bit 0 of the PTE (the validity bit) indicates whether the page is
defined. A 1 in bit O specifies a defined (and therefore valid) page; a 0 specifies an
invalid (non-defined) page. Bit 1 of the PTE specifies if the page referenced by the PTE
is currently in the physical memory allocated to the program. The page is in memory if
bit 1 contains 1. If this bit contains a 0, the page is located in a secondary storage device
(e.g. on a disc) and must be fetched into memory. Referencing a non-resident page
causes a page fault. For more information about this fault, see the section entitled Page
Faults at the end of this chapter.

Access Validation

When a referenced page is in physical memory, the processor determines whether the
page is restricted to a particular access. Bits 2—4 of the referenced PTE contain the
access bits that specify any restriction.

When the reference to memory is a read, the processor checks bit 2. A 1 in this bit
indicates a valid read; a zero indicates an invalid read. If the reference is invalid, a
protection fault occurs and ACI1 contains the code 0.

NOTE: When executing an instruction that specifies an immediate field, the processor will not
interpret the read access bit of the page containing the immediate field.

Bit 3 determines if any write reference to the page is valid. A 1 in this bit indicates a
valid write; a zero indicates an invalid write. An invalid reference causes a protection
fault, and AC1 contains the code 1.

Bit 4 governs the transfer of control from one location to another (execute). A 1 in this
bit indicates validity; a zero indicates invalidity. When the reference is invalid a protection
fault occurs and ACI contains the code 2.

Protection Faults

As mentioned throughout this chapter, the address translation process and subsequent
references or control transfers can initiate several kinds of protection faults. When a
fault occurs, the processor takes suitable actions to correct whatever caused the fault, if
possible, or to transfer control to a protection fault handler.

46

The Protection System

Priority of Protection Faults

Because a reference could produce multiple protection violations, the MYV /8000 imposes
priorities on the protection faults. This means that only the highest priority fault is acted
upon. Lower priority faults are suppressed, and thus they do not result in additional
protection faults. Table 4.3 shows the priority of the protection faults. A level of O means
that the fault has the highest priority.

Level of Priority | Type of Protection Fault

Privileged or 1/O instruction violation
Defer (indirection) violation

Inward reference violation

Segment validity violation

Page table validity violation

Read, write, or execute access violation

o U P WM 2O

Ring crossing violation

Table 4.3 Priority of MV/8000 protection faults

Servicing a Protection Fault

When a protection fault occurs, the processor first stores the WSP and the WFP in the
appropriate page zero locations of the current segment. The processor then performs a
ring crossing to Segment 0 (if Segment 0 is not the current segment).

After the ring crossing, the processor pushes a wide return block onto the Segment 0
stack. The PC in the return block points to the instruction that would have been
executed next had the protection fault not occurred. ACO contains the address of the
instruction causing the fault, and AC1 contains a code indicating the kind of protection
fault. The processor then checks for stack overflow. If overflow has occurred, the
processor pushes an additional return block onto the stack and a stack fault occurs.
(Note that this second return block contains the values of the PC, carry, and accumulators
as they were during the initial processing of the first fault.) AC1 will contain the value 4.
Processing continues with the stack fault handler.

If overflow has not occurred, the processor sets OVK, OVR, and IRES to 0, and loads
AC1 with the correct fault code. A jump via page zero location 36 transfers control to
the protection fault handler. Location 364 contains a 16-bit pointer to the fault handler.

Note that interrupts are not handled before the first instruction of the protection fault
handler has executed.

If a protection fault occurs while any other type of fault is being serviced, the processor
aborts service of the first fault. The return block pushed onto the stack for the protection
fault is undefined, as are the contents of ACO and ACI1. After servicing the protection
fault, the processor loads ACO and AC1 with the contents appropriate to the fault.

The protection fault codes placed in AC1 and their meanings are summarized in Table
4.4. For more information, refer to the preceding sections of this chapter.

The Protection System 47

Code Meaning Explanation
] Read violation Bit 2 of the specified PTE contains a 0.
1 Write violation Bit 3 of the specified PTE contains a O.
2 Execute violation Bit 4 of the specified PTE contains a O.
3 Validity violation (SBR | Bit O of the specified SBR or PTE
or PTE) contains a 0.
4 Inward address Attempted access to a location in an
reference inner ring.
5 Defer (indirect) violation | More than 15 levels of indirection
specified.
6 Illegal gate Gate number specified in an inward call

is greater than or equal to the maximum
number of gates; or the gate’s PC offset
is-1.

7 Outward call Attempted transfer of control from the
current ring to another ring with an
outward subroutine call.

8 Inward return Attempted transfer of control from the
current ring to another ring with an
inward return from a subroutine.

9 Privileged instruction Attempted use of a privileged
violation instruction in @ segment other than
Segment O.
10 I/0 protection violation | Attempted use of an I/O instruction

when bit 3 of the current segment’s
SBR is set to O.

11 — Reserved for future use.
12 — Reserved for future use.

Table 4.4 MV/8000 protection fault codes

Page Faults

A page fault occurs when:

* A reference is made to a page that is part of the logical address space, but not part of
the system’s physical address space;

* An attempt is made to translate a logical address using a two level page table when
only a one level page table has been specified.

When a page fault occurs, the processor stores a copy of the context block into memory.
The context block contains information about the status of the machine. Locations
32-33g of Segment 0 specify the address in memory where the first double-word of the
context block will be stored. The processor stores the remainder of the context block in
the double-word locations that follow.

The context block contains a code that specifies the type of page fault that occurred. The
code is located in words 1819 of the context block and specifies one of three types of
page faults:

* Page table depth,
 Page fault when referencing a page table,
* Page fault when referencing an object page.

48 The Protection System

For more information about the format of the context block, refer to Appendix B.

After storing the context block, the processor performs a ring crossing to Segment 0 if
the current segment is not Segment 0, then jumps indirectly through locations 30-31g of
Segment 0 to the MV /8000 page fault handler.

If a page fault occurs while the processor is storing the context block, crossing to
Segment 0, or transferring to the page fault handler, the processor halts and a message
is displayed at the operator’s terminal. For more information, refer to The ECLIPSE
MV/8000 System Control Processor, Operator’s Manual, DGC. No. 014-000649.

Chapter 5

Reserved Memory Locations
and Faults

As described in the previous chapter, control transfers to an appropriate fault routine
when a protection violation occurs. To transfer to these fault routines, the processor
determines the starting address of the desired handler then and transfers control to that
location. To do this, the processor references a reserved storage location, which contains
the starting address of the fault handler.

Each segment has a set of reserved storage locations. This chapter describes these
locations for all segments, and also lists the locations that apply when the C/350 MAP
is enabled.

Page Zero

Each segment has a page zero that occupies the first 377g words.

Page Zero Locations for Segment 0

When an MV /8000-specific interrupt occurs, locations 0-47g have the meanings shown
in Table 5.1. For information on MV /8000-specific interrupts, refer to Chapter 14.

When the MV /8000 ATU is enabled, the processor interprets all locations as logical.

When the C/350 MAP is enabled, the processor interprets locations 0,1,2, and 3 as
physical locations (see Table 5.2). Locations 4,5,6, and 7 may be interpreted as either
physical or logical as determined by the state of the C/350 MAP. Locations 4047 also
have new meanings.

Note that some of the pointers desribed in Tables 5.1 and 5.2 are 16 bits long. This
means that they can reference locations in the first 64 Kbytes only of the segment that
contains the pointer. If the pointer is indirect, all pointers in the indirect chain can also
reference only the first 64 Kbytes of the segment.

50 Reserved Mémoyc Locations

and Faults

Word

Name

Function

10-11

12-13

14

156-17
20-21
22-23
24-25
26-27
30-31

32-33

34-35

36

37

40

41

42

43

44

45

46

47

Interrupt level

1/0 handler

1/0 return address
MV/8000, higher
bits

1/0 return address
MV/8000, lower
order bits

Vector stack pointer

Vector stack limit

Vector stack fault
address

MV/8000
breakpoint address

MV/8000 XOP
origin address

MV/8000 stack
fault address

Reserved
WFP
WSP
WSL
WSB

MV/8000 page fault
handler

MV/8000 context
block pointer

WGP

Protection fault
handler address

Fixed point fault
handler address

Stack pointer
Frame pointer
Stack limit

C/350 stack fault
address

XOP origin address

Floating-point fault
address

Commercial fault
address

Reserved

Level of interrupt processing. Zero indicates base level
processing; Non-zero indicates intermediate level
processing.

Address of the 1/0 interrupt handler. Indirectable.
Higher order bits of the MV/8000 1/0 interrupt return.

Lower order bits of the MV/8000 /0 interrupt return.

This is a 16-bit word offset. Lower order 16 bits of
vector stack pointer, base and frame. High order bits
are zero.

This is a 16-bit word. Lower order 16 bits of vector
stack limit.

Address of the vector stack fault handler. Indirectable.
Address of the breakpoint handler. Indirectable

Address of the beginning of the MV/8000 extended
operations table. Non-indirectable.

Address of the MV/8000 stack fault handler.
Indirectable.

Reserved.

MV/8000 frame pointer. Non-indirectable.
MV/8000 stack pointer. Non-indirectable.
MV/8000 stack limit. Non-indirectable.
MV/8000 stack base. Non-indirectable.

Address of the MV/8000 page fault handler.
Indirectable.

Address of the base of context block save area.
Indirectable.

MV/8000 gate pointer. Address of the gate array.
Non-indirectable.

Address of the MV/8000 protection fault handler.
Indirectable.

Address of MV/8000 fixed point fault handler.
Indirectable. Indirectable.

Address of the top of the C/350 stack.
Non-indirectable.

Address of the start of the current C/350 frame minus
1. Non-indirectable.

Address of the last normally usable location in the
C/350 stack.

Address of the C/350 stack fault handler. Indirectable.
Address of the beginning of the C/350 extended
operations table.

Address of the floating point fault handler. Indirectable.

Address of the commercial fault handler. Indirectable.

Table 5.1 Page zero locations for Segment O, ATU enabled

Réﬁrv@d Memory Locations

‘and Fauits

51

Word

Name

Function

40

41

42

43

44

45

46

47

1/0 return address

1/0 handler address
SC handler address

Protection fault
handler address

Current C/350 mask
Stack pointer

Frame pointer

Stack limit

C/350 stack fault
address

XOP origin address

Floating-point fault
address

Commercial fault
address

Reserved

Return address used by C/350 programs during I/0
interrupts.

Address of the |/0 interrupt handler. Indirectable.

Address of the C/350 System Call instruction.
Indirectable.

Address of the C/350 protection fault handler.
Indirectable.

Current interrupt priority mask.

Address of the top of the C/350 stack.
Non-indirectable.

Address of the start of the current C/350 frame minus
1. Non-indirectable.

Address of the last normally usable location in the
C/350 stack.

Address of the C/350 stack fault handler. Indirectable.
Address of the beginning of the C/350 extended
operations table.

Address of the floating point fault handler. Indirectable.

Address of the commercial fault handler. Indirectable.

Table 5.2 Page zero locations for Segmet 0, C/350 MAP enabled

Page Zero Locations for Segments 1-7

Page zero locations 0—47g for Segments 1-7 are shown in Table 5.3.

When the C/350 MAP is enabled, the processor interprets the page zero locations as

shown in Table 5.4.

Reserved)emorf Locations

and Faults

Location |Name Function
0-7 Reserved —
10-11 MV/8000 Address of the breakpoint handler. Indirectable.
breakpoint address
12-13 MV/8000 XOP Address of the beginning of the MV/8000 extended
origin address operations table. Non-indirectable.
14 MV/8000 stack Address of the MV/8000 stack fault handler.
fault address Indirectable.
15-17 Reserved
20-21 WFP MV/8000 frame pointer. Non-indirectable.
22-23 WSP MV/8000 stack pointer. Non-indirectable.
24-25 WSL MV/8000 stack limit. Non-indirectable.
26-27 WSB MV/8000 stack base. Non-indirectable.
30-31 Reserved —
32-33 Reserved —
34-35 EGP MV/8000 gate pointer. Address of gate array.
Non-indirectable.
36 Reserved —
37 Fixed point fault Address of MV/8000 fixed point fault handler.
handler address Indirectable.
40 Stack pointer Address of the top of the C/350 stack.
Non-indirectable.
41 Frame pointer Address of the start of the current C/350 frame minus
1. Non-indirectable.
42 Stack limit Address of the last normally usable location in the
C/350 stack.
43 C/350 stack fault Address of the C/350 stack fault handler. Indirectable.
address
44 XOP origin address | Address of the beginning of the C/350 extended
operations table.
45 Floating-point fault | Address of the faulting point handler. Indirectable.
address
46 Commercial fault Address of the commercial fault handler. Indirectable.
address A -
47 Reserved Ac}(}f'\: 0 DERR t\a.,v,;",’f o

Table 5.3 Page zero locations for Segments 1-7, ATU enabled

Réserved\Memory Locations

\

dnd Faults

53

Location Name Function
40 Stack pointer Address of the top of the C/350 stack.
Non-indirectable.
41 Frame pointer Address of the start of the current C/350 frame minus
1. Non-indirectable.
42 Stack limit Address of the last normally usable location in the
C/350 stack.
43 C/350 stack fault Address of the C/350 stack fault handler. Indirectable.
address
44 XOP origin address | Address of the beginning of the C/350 extended
operations table.
45 Floating-point fault | Address of the faulting point handler. Indirectable.
address
46 Commercial fault Address of the commercial fault handler. indirectable.
address
47 Reserved —

Table 5.4 Page zero locations for Segments 1-7, C/350 MAP enabled

Chapter 6
Data Types

As mentioned in Chapter 2, the MV /8000 manipulates several types of data:

* Fixed point data,

* Floating point data,
¢ Character strings,
* Bits,

e Commercial data.

This chapter describes the registers used to manipulate each group of data, the formats
associated with each group, and the range of magnitudes possible with each group. First,
however, two registers that are used to store system information, the program counter
and the processor status register, are discussed.

Program Counter

The program counter is 31 bits long. Bits 1-3 specify the current segment of execution.
Bits 4-31 specify an instruction address. The 16-bit PC used by C/350 programs is
mapped into bits 17-31 of the PC.

When the processor increments the PC to reference the next sequential instruction, only
bits 4-31 take part in the increment; this means that every address will remain within
the current segment. Instructions exist to change the ring of execution; for more
information, refer to Chapter 4.

Processor Status Register

The processor status register (PSR) contains information about the state of the MV /8000.
The table shown below describes the information contained in this register.

56 Data Types

OVK | OVR | IRES RESERVED
) 1 2 3 j) j 15
BITS |NAME CONTENTS or FUNCTION
[¢] OVK Overflow Mask. If this bit is set, a 1 in bit 1 will result in a fixed-point trap.
1 OVR Fixed-point Overflow Indicator.
2 IRES Interrupt Resume.
3-15 — Reserved.

Format of the PSR

Table 6.1 lists the MV /8000-specific instructions that affect the contents of the PSR.

MNEM Name Action

LPSR Load processor status Loads the OVK, OVR, and IRES bits into ACO.
register

SPSR Store processor status Loads bits 0-2 of ACO into the OVK, OVR, and IRES flags in
register the PSR.

SNOVR Skip on OVR reset Tests the OVR flag and skips the next 16-bit word if OVR is 0.

Table 6.1 PSR instructions

Fixed Point Data

Fixed point values are signed integers, unsigned integers or logical (bit string) quantities.
The processor uses four fixed point accumulators to manipulate these values.

Fixed Point Accumulators

Each fixed point accumulator is 32 bits wide and can contain either a fixed point integer,
a logical quantity, or an address.

When executing an MV /8000-specific instruction, the processor sign-extends all 16-bit
integers located in memory to 32 bits before loading them into a 32-bit accumulator.
The processor zero-extends all 8-bit bytes located in memory to 32 bits before loading
them into a 32-bit accumulator.

Fixed Point Format

Fixed point numbers are signed and unsigned integers. A signed integer uses two’s
complement representation to distinguish between positive and negative values. A positive
integer contains a 0 in its bit 0; a negative integer contains a 1 in its bit 0.

The MV /8000 manipulates fixed point integers in units of 16 and 32 bits. Table 6.2
shows the possible range of 16-bit and 32-bit integers represented by this format.

Data Types 57

16-Bit Integers 32-Bit Integers
Unsigned |0 to 65,535 0 to 4,294,967,295
Signed -32,768 to +32,767 |-2,147,483,648 to
+2,147,483,647

Table 6.2 Range of 16-bit and 32-bit integers

Carry

Sometimes the arithmetic logic unit (ALU) produces a result that is larger than the data
size specified in the executed instruction. When this occurs, the processor sets the value
of carry to indicate that the result just calculated was too large. Carry can have a value
of O or 1. A value of 1 usually indicates that the ALU result is too large. Note, however,
that instructions exist to set carry to the appropriate value. This allows carry to be used
as an indicator.

The instructions used to explicitly set carry are shown in Table 6.3.

MNEM Name Action

CRYTC Complement carry Complements the value of carry.
CRYTO Set carry to one Sets the value of carry to one.
CRYTZ Set carry to zero Sets the value of carry to zero.

Table 6.3 Carry instructions

C/350 Compatability

The 16-bit C/350 accumulators correspond to bits 1631 of the wide accumulators.
That is, C/350 instructions load and store bits 1631 of the wide accumulators, generally
leaving bits 0—15 undefined.

C/350 program flow instructions leave bits 1-3 of the wide PC unchanged, and set bits
4-16 to 0. They load bits 17-31 with the appropriate address. For more information
about specific instructions, refer to the individual instruction descriptions found in the
MV/8000 Instruction Dictionary, Chapter 16.

Floating Point Data

Floating point numbers allow the use of very large numbers and fractions. Floating point

numbers can be as large as a 16-word multiple precision integer, and as small as 1/16 x
16764,

Floating Point Registers

The floating point processor provides five registers accessible to the programmer. The
four floating point registers are called FPACsand are numbered FPACO, FPACI,
FPAC2, and FPAC3. Each FPAC is 64 bits wide. The fifth register is called the floating
point status register (FPSR). The FPSR is 64 bits wide and contains information about
the current status of the floating point processor. The format of the FPSR is shown
below.

58 Data Types

ANYOVF’UNFDVZ'MO TE} Z } N RN RES 0 1 !LI‘O ojo|o}|j0}]0}0 0 OIO olofo o|o0 [¢]
ot Ttz t3 a5 678 9" 11 1213 14 16716 17 18719720721722°23 242526 27 28 29 30 31
S FLOATING POINT PROGRAM COUNTER
———— T T T T T T T g
BITS |NAME CONTENTS or FUNCTION
0 ANY The value of this bit is the logical OR of FPSR bits 1-4.
1 OVF Overflow indicator. While processing a floating point number, an exponent overflow|

occurred; the result is correct except the exponent is 128 too small.

2 UNF Underfiow indicator. While processing a floating point number, an exponent
underflow occurred: the result is correct except the exponent is 128 too large.
3 Dvz Divide by zero. While processing a floating point number, a zero divisor was
detected: division was aborted and the operands remain unchanged.

4 MOF Mantissa overflow. During a FSCAL instruction a significant bit was shifted out of
the high order end of the mantissa. During a FFAS, FFMD, or WFFAD instruction|
the result did not fit into the destination location.

5 TE Trap enable. If this bit is 1, a 1 in any of bits 1-4 will result in a floating point
trap, except where noted.
z Zero bit. The result of the last floating-point operation was true zero.
7 N Negative bit. The result of the last floating-point operation was less than zero.

RND Rounding bit. Indicates whether unbiased rounding or truncation is used during
floating point arithmetics.

0 indicates truncation;

1 indicates unbiased rounding.

9 RES Indicates an interrupt has occurred during execution of a resumable instruction.
10-11 | — Reserved for future use.

12-15 | FPMOD MV/8000 floating point ID code. Must be 0111.

16-32 | — Reserved.

33-63 | FPPC Floating point program counter. This is the logical address of the first floating

point instruction that caused a fault.

Format of the floating point status register
Note that all reserved fields in the FPSR must be zero.

Floating Point Format

Floating point numbers occupy either four bytes (single precision) or eight bytes (double
precision). The format of single and double precision floating point numbers is shown in
Figure 6.1.

Data Types 59

DG-06787

Single-Precision Floating Point Format

LS I EXPONENT I MANTISSA]
0,1 78 31

Double-Precision Floating Point Format

I s I EXPONENT l MANTISSA I
0.1 7.8 31
L MANTISSA]
32 63
S = sign bit

Figure 6.1 Floating point format

Sign

Bit 0 of the first byte is the sign bit. If the sign bit is 0, the number is positive. If the sign
bit is 1, the number is negative. Numbers using this form for sign representation are
referred to as “sign and magnitude”.

Exponent

Bits 1-7 of the first byte contain the exponent. All exponents are represented in excess
64 representation. This means that the value represented in bits 1-7 of the number is 64
greater than the true value of the exponent. Table 6.4 illustrates this.

Exponent Field True Value of Exponent
Y -64
64 0
127 63

Table 6.4 Excess 64 Representation

Mantissa

The mantissa is an unsigned fraction. The mantissa of a single precision number
occupies bytes 2—4; the mantissa of a double precision number occupies bytes 2-8. The
binary point lies 1o the left of the first bit of the mantissa.

All single precision operations that specify an accumulator fetch the most significant 32
bits of the FPAC and ignore the least significant 32 bits. Upon completion of the
specified operation, the processor returns the result to the most significant portion of the
FPAC. The processor loads the least significant 32 bits of the FPAC with Zeros.

C/350 Compatability

The C/350 floating point registers are identical to those of the MYV /8000. The formats
of MV /8000 and C/350 floating point numbers are also identical.

60 Data Types

Commercial Data

Commercial Registers

The MV/8000 uses the fixed point and floating point registers when manipulating

commercial data.

Data Type Indicator

Most MV /8000 instructions explicitly specify the format of data in memory. For
example, the Load Byte instruction loads a single byte of information, and the Block

Move instruction mo

ves several bytes of information. Likewise, the Load Floating Point

Double instruction loads an eight-byte aggregate of data.

The commercial inst

ructions, however, do not make such explicit specifications. A

parameter must be passed to these instructions that defines the type and precision of the
number to be manipulated. This parameter, the data-type indicator, defines the data
representation the instruction is to use and the size of the number. The data-type
indicator (which is passed to the instruction in an accumulator) has the following

format:

RESERVED

TYPE SIZE

T T T T

BITS NAME

CONTENTS or FUNCTION

8-10 TYPE

11-15 SIZE

Reserved for future use.
Data type:

Unpacked decimal, low-order sign.
Unpacked decimal, high-order sign.
Unpacked decimal, trailing sign.
Unpacked decimal, leading sign.
Unpacked decimal, unsigned.

Packed decimal.

Two's complement integer, byte aligned.
Floating point, byte aligned.

NOoO Ok WN =0

Data length:

For all except data type 5, count of bytes in number minus I (including sign);
For data type 5, the count of digits in the number.

Format of the data type indicator

Commercial Formats

The two basic forma
unpacked decimal.

Unpacked Decimal

ts used to represent commercial data are packed decimal and

In this format, one byte contains the code for one ASCII character. Each ASCII

character represents

one decimal digit. Table 6.5 shows the ASCII characters used to

represent the combination of a digit and sign.

Data Types 61

Digit Digit With + Sign Digit With - Sign
ASCII Character Octal Code ASCII Character Octal Code
0 { 173 } 175
1 A 101 J 112
2 B 102 K 113
3 C 103 L 114
4 D 104 M 115
5 E 105 N 116
[¢] F 106 0 117
7 G 107 P 120
8 H 110 Q 121
9 | 11 R 122

Table 6.5 ASCII character sign/digit combinations

There are four ways to represent the sign of an unpacked decimal number, as illustrated
in Figure 6.2. The first two columns name and describe the sign representation. The rest
of the columns show an example. In each example, the first column shows the normal
representation of the number. The second column shows the ASCII characters placed in
each byte. The third column shows the octal code of each byte.

Example
Type Characteristic Normal ASCIl characters in |Octal code in each
represent- |each byte byte
ation
Leading sign | Sign appears in +2048 | +f{2]ofa]s | |053[062|oeo[oe4[07o]
separate byte before
number.

Trailing sign Sign appears in -1756 l 1 l 7 | 5—[6 Ij |0j1k)671065I060|055]

separate byte after

number.)
High-order First byte indicates +1850 | A] 8 l 5 | 0 l I1o1|o7ol065loeo|
sign sign and high-order
byte.
Low-order sign |Last byte indicates 3972 [3 I 9 l 7] K | l063J071L067l113I
sign and low-order
byte.
DG-06935
Figure 6.2

The tables below show the ASCII characters that can be used to represent legal
unpacked decimal numbers. Table 6.6 lists the characters that can represent a digit-sign
combination of data types 0 and 1. Table 6.7 shows the equivalent information for data
types 2 and 3. Table 6.8 shows the characters that can represent decimal digits of data
types O through 4.

62 Data Types
Character | Octal Code | Numerical | Sign | Character | Octal Code | Numerical | Sign
Value Value

blank 040 0] + E 105 5 +
+ 053 0 + F 106 6 +
{ 173 0 + G 107 7 +
0 060 0 + H 110 8 +
1 061 1 + ! 11 9 +
2 062 2 + - 055 0 -
3 063 3 + } 175 0 -
4 064 4 + J 112 1 -
5 065 5 + K 113 2 -
6 066 6 + L 114 3 -
7 067 7 + M 115 4 -
8 070 8 + N 116 5 -
9 071 9 + (o) 117 6 -
A 101 1 + P 120 7 -
B 102 2 + Q 121 8 -
C 103 3 + R 122 9 -
D 104 4 +

Table 6.6 Valid characters for data types O and 1; sign position
Character | Octal Code | Numerical | Sign
Value

+ 053 None +
- 055 None -

Table 6.7 Valid characters for data types 2 and 3;

sign position

Character

Octal Code

Numerical
Value

Blank

o

0w 0NN -

040
060
061
062
063
064
065
066
067
070
071

0 N s WN 2 OO

©w

Table 6.8 Valid characters for data types O,

1, 2, 3, and 4; non-sign position

Data Types 63

Packed Decimal

In this format, each decimal digit occupies one half byte (four bits) in memory. The sign
appears in a separate trailing half byte. The number must start and end on a byte
boundary.

Note that a packed decimal number always consists of an odd number of digits followed
by the sign. A zero is placed in front of numbers with an even number of digits.

Numbers represented in packed decimal format use the octal codes 14 or 17 to represent
a plus sign; 15, a negative sign. To represent a decimal digit, packed decimal numbers
use the octal codes 000 through 011 to represent the decimal digits O through 9.

Several examples of packed decimal numbers are shown below.

Example Decimal digit in each half Binary code in each half byte
byte
+2048 0|2 |0| 4|8+ |0000 [0010 | 0000 | 0100 | 1000 | 1100
+32,456 3 (2]|4|5 |6 |+ [0011 | 0010 | 0100 | 0101 | 0110 | 1100
-1756 O|1[7 |5 1]6 - 0000 | 0001 [0111 | 0101 | 0110 | 1101
-25,989 2 1{519]|8 |9 - |0010 | 0101 | 1001 | 1000 | 1001 | 1101
Figure 6.3

Character Strings

Character strings use the same format as decimal data (see the preceding section). The
MV /8000 uses the fixed point registers when manipulating character strings.

Data Manipulation

The MV /8000 has many sets of instructions that manipulate all of the data types
described in the preceding sections. These instructions are described in detail in the next
four chapters.

Chapter 7

Fixed Point Instructions

The last chapter described the format of fixed point numbers and the registers used in
manipulating them. This chapter introduces the instructions used to perform operations
on fixed point data. Chapter 16, the MV /8000 Instruction Dictionary, discusses each
instruction in detail. Appendix C describes the generic properties of MV /8000-specific
and C/350 instructions and discusses programs using both types of instructions.

Because the MV /8000 has many fixed point instructions, they are divided into categories
based on the variety of functions and data lengths. These categories are:

Conventions

Indexed address instructions
Memory to accumulator instructions
Bit manipulating instructions
Byte manipulating instructions
Single-word arithmetics
Double-word arithmetics
Single-word logicals
Double-word logicals
Single-word compares
Double-word compares

ALC instructions

The following mnemonic conventions are used to distinguish between instructions with
similar semantics:

X

L
N
w

Extended displacement (one word)
Long displacement (two words)
Narrow data (16 bits)

Wide data (32 bits)

66 Fixed Point Instructions

Fixed Point Indexed Address Instructions

Indexed address instructions either load, store, or modify data. The displacements
specified by these instructions can be 15 or 31 bits long (word displacements), or 16 or
32 bits long (byte displacements). These instructions can reference data thatis 1, 2, or 4

bytes long.

MNEM Action

LLDB Calculates a byte pointer. Loads the addressed byte into bits 24-31 of the specified accumulator.

LLEF Calculates an effective address and loads it into the specified accumulator.

LLEFB Calculates an effective byte address and loads it into the specified accumulator.

LNDSZ Calculates an effective address. Decrements the 16-bit contents of the specified memory
location by one and skips the next 16-bit word if the decremented value is zero.

LNISZ Calculates an effective address. Increments the 16-bit contents of the addressed memory
location by one and skips the next 16-bit word if the incremented value is zero.

LNLDA Calculates an effective address. Loads the 16-bit contents of the addressed location into bits
16-31 of the specified accumulator, and sign extends bits 0-15.

LNSTA Calculates an effective address. Stores bits 16-31 of the specified accumulator into the
addressed memory location.

LPEF Calculates an effective address and pushes it onto the wide stack.

LPEFB Calculates an effective byte address and pushes it onto the wide stack.

LSTB Calculates a byte pointer. Stores the byte contained in bits 24-31 of the specified accumulator
into the addressed byte in memory.

LWDSZ Calculates an effective address. Decrements the 32-bit contents of the addressed location and
skips the next 16-bit word if the decremented value is zero.

LWISZ Calculates an effective address. Increments the 32-bit contents of the addressed location and
skips the next 16-bit word if the incremented value is zero.

LWLDA Calculates an effective address. Loads the 32-bit contents of the addressed location into the
specified accumulator.

LWSTA Calculates an effective address. Stores the 32-bit contents of the specified accumulator into the
location addressed by the effective address.

XLDB Calculates a byte pointer. Loads the addressed byte into bits 24-3 1 of the specified accumulator.

XLEF Calculates an effective address and loads it into bits 16-31 of the specified accumulator.

XLEFB Calculates an effective byte address and loads it into the specified accumulator.

XNDSZ Calculates an effective address. Decrements the 16-bit contents of the addressed location by
one and skips the next 16-bit word if the decremented value is zero.

XNISZ Calculates an effective address. Increments the 16-bit contents of the addressed location by
one and skips the next 16-bit word if the incremented value is zero.

XNLDA Calculates an effective address. Loads the 16-bit contents of the addressed location into the
specified accumulatomkeSt

XNSTA Calculates an effective address. Stores the contents of the specified accumulator into the
location addressed by the effective address.

XPEF Calculates an effective address and pushes it onto the wide stack.

XSTB Calculates a byte pointer. Stores the byte contained in bits 24-31 of the specified accumulator
into the addressed byte in memory.

XWDSZ Calculates an effective address. Decrements the 32-bit contents of the addressed location by
one and skips the next 16-bit word if the decremented value is zero.

XWISZ Calculates an effective address. Increments the 32-bit contents of the specified location by one
and skips the next 16-bit word if the incremented value is zero.

XWLDA Calculates an effective address. Loads the 32-bit contents of the location into the specified
accumulator.

XWSTA Calculates an effective address. Stores the 32-bit contents of the specified accumulator into the
location addressed by the effective address.

Table 7.1 Fixed point indexed address instructions

Fixed Point Instructions 67

Fixed Point Single-Word Indexed Arithmetic Instructions

These instructions perform arithmetic operations between 16-bit integers located in
memory and 16-bit integers located in an accumulator. Each instruction specifies a
displacement and index bits that are used to calculate the address of the integer in
memory. The integer in memory is fetched and used in the specified operation. The
accumulator specified in the instruction supplies the second operand and stores the result
of the operation.

Table 7.2 lists the instructions of this type. Those with X in the mnemonic use 15-bit
displacements to calculate the address of the integer in memory. Those with L in the
mnemonic use 31-bit displacements.

MNEM Action

LNADD, Narrow add with memory word
XNADD

LNSUB, Narrow subtract with memory word
XNSUB

LNMUL, Narrow multiply with memory word
XNMUL

LNDIV, Narrow divide with memory word
XNDIV

Table 7.2 Fixed point single-word indexed address arithmetic instructions

Fixed Point Double-Word Indexed Arithmetic Instructions

These instructions perform arithmetic operations between 32-bit integers located in
memory and 32-bit integers located in an accumulator. Each instruction specifies a
displacement and index bits that are used to calculate the address of the integer in

memory. The integer in memory is fetched and used in the specified operation. The
accumulator specified in the instructrion supplies the second operand and stores the
result of the operation.

Table 7.3 lists the instructions of this type. Those with X in the mnemonic use 15-bit
displacements to calculate the address of the integer in memory. Those with L in the
mnemonic use 31-bit displacements.

MNEM Action

LWADD, Wide add with memory word
XWADD

LWSUB, Wide subtract with memory word
XWSUB

LWMUL, Wide multiply with memory word
XWMUL

LWDIV, Wide divide with memory word
XWDIV

Table 7.3 Fixed point double-word indexed address arithmetic instructions

68 Fixed Point Instructions

Memory to Accumulator Instructions

Instructions of this type move data between memory and an accumulator.

MNEM

Name

Action

LDATS

LNLDA,
LWLDA

LNSTA,
LWSTA

NLDAI,
WLDAI

STATS

XNLDA,
XWLDA

XNSTA,
XWSTA

Load accumulator with
contents pointed to by WSP
Long load Accumulator
Long store Accumulator
Load accumulator immediate
Store accumulator at location
pointed to by WSP

Extended Load accumulator

Extended Store accumulator

Loads the contents of the@zovord addressed by WSP into the
specified accumulator.

Loads the specified accumulator with the contents of a location
in memory.

Stores the contents of the specified accumulator into memory.

Loads the specified accumulator with the contents of an
immediate value.

Stores the,eE on féms of the specified accumulator into the location
addressed by WSP.

Loads the specified accumulator with the contents of a location
in memory.

Stores the contents of the specified accumulator into memory.

Table 7.4 Memory to accumulator instructions

C/350 Word Memory to Accumulator Instructions

Instructions of this type move data between memory and an accumulator. Note that bits
0-15 of the 32-bit accumulator will be indeterminate after the word of data is loaded
into bits 16-31.

MNEM

Name

Action

LDA,
ELDA

STA,
ESTA

Load Accumulator

Store accumulator

Loads the specified accumulator with the contents of a (16-bit
address) location in memory.

Stores the contents of the specified accumulator into memory.

Table 7.5 C/350 Memory word to accumulator instructions

Bit Manipulation Instructions

As described in Chapter 2, a bit pointer is necessary to address a bit in memory. This bit
pointer is made up of a word pointer and a bit offset. The word pointer is 32 bits long and
points to a word in memory. The bit offset is also a 32-bit value; it specifies the bit

location of the referenced bit relative to the base location specified by the word pointer.

Table 7.6 lists the MV /8000-specific bit manipulation instructions that require bit
pointers. Table 7.7 lists the MV /8000-specific instructions that test or affect bits in an
accumulator. Table 7.8 lists the privileged instructions that affect the referenced and

modified bits.

Fixed Point Instructions 69

MNEM Name Action
WBTO Set bit to one Sets the bit addressed by ACS and ACD to 1.
WBTZ Set bit to zero Sets the bit addressed by ACS and ACD to O.

Table 7.6 MV/8000 bit manipulation instructions

MNEM Name Action

NSALA Skip on all bits set in Performs a logical AND on the immediate field and a specified

WSALA accumuiator accumulator and skips if the result of the AND is zero.

NSALM Skip on all bits set in memory | Performs a logical AND on the immediate field and a specified

WSALM location memory location and skips if the result of the AND is zerc.

NSANA Skip on any Performs a logical AND on the

WSANA bit set in accumulator immediate field and a specified accumulator and skips if the
result of the AND is nonzero.

NSANM Skip on any bit set in memory | Performs a logical AND on the immediate field and a specified

WSANM location memory location and skips if the resuit of the AND is nonzero.

WCOB Count bits Counts the number of ones in one accumulator and adds that
number to the second accumulator.

WLOB Locate lead bit Counts the number of high-order zeroes in ACS and adds that
number to ACD.

WSKBO Wide skip on bit set to one | Tests a specified bit in ACO and skips of the bit is 1.

WSKBZ Wide skip on bit set to zero | Tests a specified bit in ACO and skips of the bit is O.

WSNB Skip on non-zero bit Skips the next sequential word if the bit addressed by ACS and
ACD is 1.

WSZB Skip on zero bit Skips the next sequential word if the bit addressed by ACS and
ACD is O.

WSZBO Skip on zero bit and set to | Sets the bit addressed by ACS and ACD to 1 and skips the next

one sequential word if the bit was originally O.

Table 7.7 MV/8000 bit rest instructions

MNEM Name Action

LMRF Load modified and Loads the modified and referenced bits of a specified page into
referenced bits ACO.

ORFB OR the referenced bits Inclusively ORs a number of the referenced bits with a word

string and stores the result in a second word string.

RRFB Reset referenced bit Resets the modified bits of the specified pages to zero.

SMRF Store modified and Stores bits 30-31 of ACO in the modified and referenced bits of
referenced bit the specified page.

Table 7.8 MV/8000 privileged bit field manipulation instructions

The MV /8000 supports the C/350 bit manipulation instructions shown in Table 7.9.
Some of the bit instructions use a bit pointer to locate a bit in memory; others only affect
bits within the specified accumulators. Note that the bit pointers used by these instructions
have a different format than that used by MV /8000-specific bit manipulation
instructions. For more information, refer to Chapter 2.

70 Fixed Point Instructions

MNEM Name Action

BTO Set bit to one Sets the bit addressed by the bit pointer to 1.

BTZ Set bit to zero Sets the bit addressed by the bit pointer to O.

COB Count bits Counts the number of ones in one accumulator and adds that
number to the second accumulator.

LOB Locate lead bit Counts the number of high-order zeros in one accumulator and
adds that number to the second accumulator.

LRB Locate and reset lead bit Performs a Locate Lead Bit instruction and sets the lead bit to
0.

SNB Skip on non-zero bit Skips the next sequential word if the bit addressed by the bit
pointer is 1.

SZB Skip on zero bit Skips the next sequential word if the bit addressed by the bit
pointer is O.

SZBO Skip on zero bit and set to | Sets the bit addressed by the bit pointer to 1 and skips the next

one sequential word if the bit was originally O.

Table 7.9 C/350 bit manipulation instructions

Byte Manipulation Instructions

Bytes are treated as 8-bit unsigned binary integers. To reference a byte in memory,
specify a 32-bit byte pointer. For information about the format of a byte pointer, refer to
Chapter 3.

Table 7.10 lists the byte instructions. For more information about them, refer to the the
individual instruction descriptions in the MV /8000 Instruction Dictionary, Chapter 16.

MNEM Name Action
LLDB Long load byte Loads a byte in memory into an accumulator.
LLEFB Long load effective byte Calculates an effective byte address and loads it into an
address accumulator.
LPEFB Long push byte address Calculates an effective byte address and pushes it onto the wide
stack.
LSTB Long store byte Stores a byte in an accumulator into a byte of memory.
VBP Skip on valid byte pointer Checks a byte pointer and skips the next word if the byte pointer
is valid.
WLDB Wide load byte Loads a byte in memory into an accumulator.
WSTB Wide store byte Stores a byte in an accumulator into a byte of memory.
XLDB Extended load byte Loads a byte in memory into an accumulator.
XLEFB Extended load effective byte | Calculates an effective byte address and loads it into an
address accurmulator.
XPEFB Extended push byte address | Calculates an effective byte address and pushes it onto the wide
stack.
XSTB Extended store byte Stores a byte in an accumulator into a byte of memory.

Table 7.10 MV/8000-specific byte instructions

The C/350 byte instructions supported by the MV /8000 are shown in Table 7.11. When
an instruction moves a byte to an accumulator, the format of the destination accumulator
will be as shown below. When an instruction moves a byte from an accumulator to
memory, it leaves unchanged the other byte contained in that single word of memory.

Fixed Point Instructions 71

Note that the byte pointers used by these instructions have a different format than that
used by MV /8000-specific byte manipulation instructions. Refer to Chapter 2 for more

information.
MNEM Name Action
LDB, ELDB Load Byte Places a byte of information into an accumulator.
STB, ESTB Store Byte Stores the right byte of an accumulator into a byte of memory.

Table 7.11 C/350 byte instructions

Fixed Point Single-Word Arithmetics

The following instructions manipulate 16-bit data. Most specify two accumulators, ACS
and ACD. When these instructions are used, the processor performs the specified action
on bits 16-31 of ACS and ACD, and produces a 16-bit result. The processor sign
extends the result to 32 bits and loads it into ACD. The processor ignores the initial
values of bits 0-15 of ACS and ACD.

If an instruction using an immediate field is specified, the processor will perform the
specified operation on the contents of the 16-bit immediate field and the contents of bits
16-31 of the specified accumulator.

Note that the fixed point single-word adds and subtracts affect carry. Refer to individual
instruction descriptions in the MV /8000 Instruction Dictionary, Chapter 16, for specifics.

72 Fixed Point Instructions

MNEM

Name

Action

NADD

NSUB

NMUL

NDIV

NNEG

NADI

NSBI

NADDI

Narrow add

Narrow subtract

Narrow Multiply

Narrow divide

Narrow negate

Narrow add integer

Narrow subtract integer

Narrow add immediate

Adds the integer specified by bits 16-31 of ACS to the integer
specified by bits 16-31 of ACD. Sign extends the result to 32
bits, and stores it in ACD.

Subtracts the integer specified by bits 16-31 of ACS from the
integer specified by bits 16-31 of ACD. Sign extends the result
to 32 bits, and stores it in ACD.

Multiplies the integer specified by bits 16-31 of ACS by the
integer specified by bits 16-31 of ACD. Sign extends the result
to 32 bits, and stores it in ACD.

Divides the integer specified by bits 16-31 of ACS by the integer
specified by bits 16-31 of ACD. Sign extends the result to 32
bits, and stores it in ACD.

Negates the integer specified by bits 16-31 of ACS. Sign extends
the result to 32 bits, and stores it in ACD.

Adds the integer specified by 7 to the integer specified by bits
16-31 of the specified accumulator. Sign extends the result to
32 bits, and stores it in the specified accumulator.

Subtracts the integer specified by n from the integer specified by
bits 16-31 of the specified accumulator. Sign extends the result
to 32 bits, and stores it in the specified accumulator.

Adds the integer specified by the specified immediate field to the
integer specified by bits 16-31 of the specified accumulator.
Sign extends the result to 32 bits, and stores it in the specified
accumulator.

Table 7.12 Fixed point single-word arithmetic instructions

Fixed Point Double-Word Arithmetics

The 32-bit fixed point arithmetic instructions specify two accumulators, ACS and ACD.
The processor loads the results of the specified operation into ACD. In most cases,
overflow will contain the output of the ALU; refer to individual instruction descriptions
in the MV /8000 Instruction Dictionary, Chapter 16, for more information.

Note that the fixed point double-word adds and subtracts affect carry. Refer to individual
instruction descriptions in the Instruction Dictionary for specifics.

Fixed Point Instructions 73

MNEM Name Action

SEX Sign extend Sign-extends the 16-bit integer specified by ACS to 32 bits.
Stores the result in ACD.

WADC Wide add complement Adds the logical complement of the 32-bit integer specified by
ACS to the 32-bit integer specified by ACD. Stores the result in
ACD.

WADD Wide add Adds the 32-bit integer specified by ACS to the 32-bit integer
specified by ACD. Stores the result in ACD.

WADDI Wide add immediate Adds the 32-bit integer specified by the immediate field to the
32-bit integer contained in the specified accumulator. Stores the
result in the specified accumulator.

WADI Wide add integer Adds the value specified by n + 1 to the 32-bit integer contained
in the specified accumulator. Stores the resuit in the specified
accumulator.

WASH Wide arithmetic shift Arithmetically shifts the contents of ACS to the right or left a
number of bits. Stores the result in ACD.

WDIV Wide divide Divides the 32-bit integer specified by ACS by the 32-bit integer
specified by ACD. Stores the result in ACD.

WDIVS Wide signed divide Divides the 64-bit signed integer specified by ACO and Aciby
the 32-bit signed integer specified by AC2. Stores the quotient in
AC1 and the remainder in ACO.

WINC Wide increment Increments the 32-bit integer specified by ACS by one. Stores
the result in ACD.

WHLV Wide halve Divides the 32-bit integer specified by ACS by two. Stores the
result in ACD.

WMUL Wide multiply Multiplies the 32-bit integer specified by ACS by the 32-bit
integer specified by ACD. Stores the result in ACD.

WMULS Wide signed multiply Multiplies the 32-bit signed integer specified by AC1 by the
32-bit signed integer specified by AC2. Adds the 32-bit signed
integer contained in ACO to the 64-bit result. Stores the result in
ACO and AC1.

WNADI Wide add narrow immediate | Sign-extends the 16-bit value contained in the immediate field to
32 bits and adds it to the 32-bit integer contained in the specified
accumulator.

WNEG Wide negate Loads the two's complement of the 32-bit integer specified by
ACS into ACD.

WSUB Wide subtract Subtracts the 32-bit integer specified by ACS from the 32-bit
integer specified by ACD. Stores the result in ACD.

ZEX Zero extend Zero-extends the 16-bit integer specified by ACS to 16 bits.
Stores the result in ACD.

Table 7.13 Fixed point double-word arithmetic instructions

Fixed Point Single-Word Logicals

These C/350 instructions perform logical operations on the least significant 16 bits of
the fixed point accumulators. They specify two accumulators, ACS and ACD. ACD will
contain the results of the specified operation.

74 Fixed Point Instructions

MNEM Name Action

ANC AND with complemented ANDs the contents of of one accumulator and the logical

source complement of another accumulator.

AND AND ANDs the contents of two accumulators.

ANDI AND immediate ANDs the contents of an accumulator and and the contents of a
16-bit number contained in the instruction.

CcCOM Complement Forms the logical complement of the contents of an accumulator.

DHXL Double hex shift left Shifts the 32-bit contents of two accumulators left 1 to 4 hex
digits depending on the value of a 2-bit number contained in the
instruction.

DHXR Double hex shift right Shifts the 32-bit contents of two accumulators right 1 to 4 hex
digits depending on the value of a 2-bit number contatined in the
instruction.

DLSH Double logical shift Shifts the 32-bit contents of two 16-bit accumulators left or
fight depending on the contents of a third accumulator.

HXL Hex shift left Shifts the 16-bit contents of an accumulator left 1 to 4 hex digits
depending on the value of a 2-bit number contained in the
instruction.

HXR Hex shift right Shifts the 16-bit contents of an accumulator right 1 to 4 hex
digits depending on the value of a 2-bit number contatined in the
instruction.

IOR Inclusive OR Inclusively ORs the contents of two accumulators.

IORI Inclusive OR immediate Inclusively ORs the contents of an accumulator and the contents
of a 16-bit number contained in the instruction.

LEF, ELEF Load effective address Places an effective address in an accumulator.

LSH Logical shift Shifts the contents of a 16-bit accumulators left or fight depending
on the contents of a third accumulator.

XOR Exclusive OR Exclusively ORs the contents of two accumulators.

XORI Exclusive OR immediate Exclusively ORs the contents of an accumulator and the contents

of a 16-bit number contained in the instruction.

Table 7.14 Fixed point single-word logical instructions

Fixed Point Double-Word Logicals

These instructions perform logical operations on the fixed point accumulators. They
specify two accumulators, ACS and ACD. ACD will contain the results of the specified
operation.

Fixed Point Instructions 75

MNEM Name Action
WANC Wide AND with ANDs the one’s complement of the contents of ACS with the
complemented source contents of ACD.

WAND Wide ADD ANDs the contents of ACS and ACD.

WANDI Wide AND immediate Logically ANDs the contents of the immediate field and the
specified accumulator.

WCOM Wide complement Forms the one’s complement of the value contained in ACS and
loads it into ACD.

WIOR Wide inclusive OR Inclusively ORs the contents of ACS and ACD.

WIORI Wide inclusive OR immediate | Inclusively ORs the contents of the immediate field and the
specified accumulator.

WLSH Wide logical shift Shifts the contents of ACD to the left or right.

WLSI Wide logical shift immediate | Shifts the contents of an accumulator left as indicated by an
immediate value.

WLSN Wide load sign Determines the sign of a number located in memory. Loads a
value into AC1 which indicates the sign of the number.

WMOV Wide move Moves a copy of the 32-bit integer specified by ACS into ACD.

WXCH Wide exchange accumulators | Loads the 32-bit integer specified by ACS into ACD, and the
32-bit integer specified by ACD into ACS.

WXOR Wide exclusive OR Exclusively ORs the contents of ACS and ACD.

WXORI Wide exclusive OR Exclusively ORs the contents of the immediate field and the

immediate specified accumulator.

Table 7.15 Fixed point double-word logical instructions

Single-Word Compare Accumulators

These C/350 instructions compare the contents of the least significant 16 bits of two
accumulators, then skip the next sequential 16-bit word if the test is true.

MNEM

Name

Action

CIM
SGE
SGT

SKP/t]
SNB

SZB

SZBO

Compare to limits

Skip if ACS greater than or
equal to ACD

Skip if ACS greater than ACD

1/0 skip
Skip on non zero bit

Skip on zero bit

Skip on zero bit, set to 1

Compares a signed 16-bit integer with two other numbers and
skips if the first integer is between the other two.

Compares two signed integers in two accumulators; skips if the
first is greater than or equal to the second.

Compares two signed integers in accumulators; skips if the first
is greater than the second.

Skips if the I/0 condition 7 is true.

References a single bit in memory via the bit pointer; skips if the
bitis 1.

References a single bit in memory via the bit pointer; skips if the
bit is O.

References a single bit in memory via the bit pointer; skips if the
bit is 0 and also sets the bit to 1.

Table 7.16 Single-word compare accumulator instructions

76 Fixed Point instructions

Double-Word Compare Accumulators

These instructions test and perform some action depending on the outcome of the test.
They all perform a test between the contents of two accumulators, then skip the next
sequential 16-bit word if the test is true. Note that the two accumulators are the same,
then the processor compares the contents of the accumulator to zero, and skips or does
not skip according to the outcome of the comparison.

MNEM

Name

Action

WSEQ

WSGE

WSGT

WSLE

WSLT

WSNE

WUSGE

WUSGT

Wide signed skip on equal

Wide signed skip on greater
than or equal to

Wide signed skip on greater
than

Wide signed skip on less than
or equal to

Wide signed skip on less than

Wide signed skip on not
equal

Wide unsigned skip on
greater than or equal to
Wide unsigned skip on
greater than

Compares ACS to ACD and skips the next 16-bit word if ACS is
equal to ACD.

Compares ACS to ACD and skips the next 16-bit word if ACS is
greater than or equal to ACD.

Compares ACS to ACD and skips the next 16-bit word if ACS is
greater than ACD.

Compares ACS to ACD and skips the next 16-bit word if ACS is
less than or equal to ACD.

Compares ACS to ACD and skips the next 16-word if ACS is less
than ACD.

Compares ACS to ACD and skips the next 16-bit word if ACS is
not equal to ACD.

Compares ACS to ACD and skips the next 16-bit word if ACS is
greater than, or equal to, ACD.

Compares ACS to ACD and skips the next 16-bit word if ACS is
greater than ACD.

Table 7.17 Double-word compare accumulator instructions

Other Instructions

The instructions in this group perform miscellaneous operations. For specific information
about any of them, refer to individual instruction descriptions in the MV /8000 Instruction
Dictionary, Chapter 16.

MNEM Name Action

BKPT Breakpoint Pushes a wide return block onto the wide stack, then performs a
jump indirect through locations 10-11g.

LCPID Load CPU identification Loads a binary representation of the machine’s model number
into ACO.

OPESC Opcode escape Interprets the second word of this instruction as a new instruction.

PBX Pop block and execute Saves an instruction, pops a return block, then executes the
instruction just stored.

WBLM Wide load block Moves words sequentially from one location to another.

WCLM Wide compare to limits Compares a signed 32-bit integer to two limit values and skips if
the integer is between the limit values.

Table 7.18 Other MV/8000-specific fixed point instructions

The MV /8000 also supports the C/350 instructions shown in Table 7.19.

Fixed Point Instructions 77

MNEM Name Action

SYC, System cail Pushes a return block onto the stack; places the address of the

SvC System Call handler in the program counter.

XOP, Extended operation Pushes a narrow return block onto the stack, indexes into the

XOPO XOP table, and transfers control to another procedure.

XCT Execute Executes the contents of an accumulator as an instruction.
Table 7.19

Programming Notes

Fixed point overflow is enabled on the MV /8000. For information about this topic, refer
to Chapter 11.

When the processor increments the PC, only the least-significant 28 bits take part in this
operation. This means that all normal instruction references will remain in the current
segment.

When an instruction performs a skip, it skips the next sequential 16-bit word. Make sure
that a skip does not occur in the middle of a 32-bit or longer instruction.

C/350 ALC Manipulation

Each of the eight C/350 Arithmetic/Logic Class (ALC) instructions performs a specific
function upon the contents of one or two accumulators and carry. The eight functions
are Add, AND, Subtract, Negate, Add Complement, Move, Increment, and Complement.
The instructions are identified by the mnemonics of the eight functions, which are ADD,
AND, SUB, NEG, ADC, MOV, INC, and COM.

In addition to the specific functions performed by an individual instruction, there is a
group of general functions all ALC instructions can perform. These general functions
include shift operations, which rotate the data left or right, or swap the bytes. Also
included are various tests that can be performed on the data. With each test the
instructions can check the data for some condition and skip or not skip the next
sequential word depending on the outcome of the test. Finally, the instructions can load
or not load the results of the specific and general functions into the destination
accumulator and the carry bit. The diagram below shows the format of the ALC
instructions.

1 cs ACD OP CODE SH C # SKIP
o 1 2 3 a4 5 7 8 ' 9 ' 10 1 12) T 18

ALC Instructions
The C/350 ALC instructions are listed in Table 7.20.

78 Fixed Point Instructions

MNEM

Name

Action

ADC

ADD
AND
COM
INC
MOV
NEG
SUB

Add

AND
Complement
Increment
Move
Negate
Subtract

Add complement

Adds an unsigned integer to the logical complement of another
unsigned number.

Adds contents of one accumulator to the contents of another.
Forms the logical AND of the contents of two accumulators.
Forms the logical complement of the contents of an accumulator.
Increments the contents of an accumulator.

Moves the contents of an accumulator through the ALU.

Forms the two's complement of the contents of an accumulator.

Subtracts contents of one accumulator from the contents of
another.

Table 7.20 C/350 ALC instructions

C/350 ALC Instruction Execution

The C/350 ALC instructions use the Arithmetic Logic Unit (ALU) to process data. The
logical organization of the ALU is shown in Figure 7.1.

17 BITS
FUNCTION
GENERATOR SHIFTER
A AACS A ACD
BITS | BITS Y

AccUMULATORS | | skiP sensor |

CARRY

1 BIT

ACD
16 BITS

DG-06375

LOAD/NO LOAD

O\BI’};

Figure 7.1

When an ALC instruction begins execution, it loads the contents of carry and the
contents of the accumulator(s) to be processed into the ALU.

There are five distinct stages of ALU operation.

Carry

The ALU begins its manipulation of the data by determining a new value for carry. This
new value is based upon three things: the old value of carry, bits 10-11 of the ALC
instruction, and the ALC instruction being executed.

The ALU first determines the effect of the instruction bits 10-11 on the old value of
carry. Table 7.21 shows each of the mnemonics that can be appended to the instruction
mnemonic, the value of bits 10-11 for each choice, and the action each one takes.

Fixed Point Instructions 79

Symbol Value Operation
[¢] omitted 00 Leave carry unchanged
[c]=1 01 Initialize carry to O
[c]=0 10 Initialize carry to 1
[c]=C 1 Complement carry
Table 7.21
Function

The ALU next evaluates the effect of the specific function (bits 5-7) upon the data. For
the instructions AND, Move, Negate and Complement, the ALU performs the function
on the data word(s) and saves the result. The value of carry is as it was calculated above.

For the instructions Add, Add Complement, Subtract and Increment, the result of the
function’s action upon the data word(s) may be larger than 216 — 1. In this situation, the
ALU saves the low-order 16 bits of the function result, but it complements the value of
carry calculated above.

NOTE: At this stage of operation, the ALU does not load either the saved value of the function
result into the destination accumulator, or the saved value of carry into carry.

Shift Operations

Next the ALU performs any specified shift operation on the 17 bits output from the
function generator (16 bits of data plus the calculated value of carry). Depending on
which shift operation is specified in the instruction, the function generator output can be
rotated left or right one bit, or have its bytes swapped. Table 7.22 shows the different
shift operations that can be performed, the value of bits 8-9 for each choice, and the
action each choice takes. Figure 7.2 shows how each shift operation works.

Symbol Value Operation

[sh] omitted 00 Do not shift the result of the
ALC operation

[shj=L 01 Rotate left the 17-bit

combination of Carry bit and
ALC operation result
[sh]=R 10 Rotate right the 17-bit
combination of Carry bit and
ALC operation result
[sh]=S 1 Swap the two 8-bit halves
of the ALC operation result
without affecting Carry bit

Table 7.22

80 Fixed Point Instructions

Coded
Character Shifter Operation
L Left rotate one place. Bit O is rotated into the

carry position, the carry bit into bit 15.

ErR—

R Right rotate one place. Bit 15 is rotated into the
carry position, the carry bit into bit O.

o

S Swap the halves of the 16-bit result. The carry is
not affected.

[815 |
| 815]
DG-06376
Figure 7.2
Skip Tests

The ALU can test the result of the shift operation for one of a variety of conditions, and
skip or not skip the next instruction depending upon the result of the test. Table 7.23
shows the tests that can be performed, the value of bits 13—15 for each choice, and the
action each choice takes.

Symbol Value Operation

[skip] 000 No skip

omitted

[skip]=SKP 001 Skip unconditionally

[skip] =SZC 010 Skip if carry is zero

[skip]=SNC 011 Skip if carry is nonzero

[skip]=SZR 100 Skip if ALC result is zero

[skip]=SNR 101 Skip if ALC result is nonzero

[skip] =SEZ 110 Skip if either ALC result or
carry is zero

[skip] =SBN 111 Skip if both ALC result and
carry are nonzero

Table 7.23

Load/No-Load

If the no-load bit (bit 12) is 0, the ALU loads the result of the shift operation into the
destination accumulator, and loads the new value of carry into carry. If the no-load bit is
1, then the ALU does not load the result of the shift operation into the destination
accumulator, and does not load the new value of carry into carry, but all other operations,
such as skip tests, take place.

Fixed Point Instructions 81

This no-load option is particularly convenient to use when you want to test for some
condition without destroying the contents of the destination accumulator. Table 7.24
shows how to code the load/no-load operation.

Symbol Value Operation

omitted (o} Load the result of the shift
operation into ACD.

1 Do not load the ALC

operation result into ACD;
restore carry to value it had
before shifting.

Table 7.24

NOTE: These instructions must not have both the No-Load and the Never-Skip options
specified at the same time. These bit combinations are used by other instructions in the
instruction set.

Chapter 8

Floating Point Instructions

Chapter 6 described the format of floating point numbers. This chapter explains how to
use these numbers in calculations. Appendix G summarizes the floating point operations
and how they are performed.

Floating point numbers referenced by a word address can begin on any word boundary.
Those referenced by a byte address (as used in commercial or character instructions, see
Chapters 9 and 10) can begin on any byte boundary.

True and Impure Zero

Floating point zero is represented by a number with all bits zero, known as true zero. If
a number has a zero mantissa but not a zero sign or exponent, it is called impure zero.

When representing zero as a floating point number, use true zero; impure zero produces
undefined results in calculations.

Normalized Format

A nonzero mantissa represents a fraction from 1/16 to 1-2-36. A floating point number
represented in this way is said to be normalized. Note that impure zero is not in
normalized form. Most floating point instructions require normalized operands if they
are to produce correct results. Floating point numbers that are not normalized or are not
true zero produce undefined results except as noted.

Magnitude

The magnitude of a floating point number is defined as follows:

Mantissa X 16/
where y is the true value of the exponent.

84

Floating Point instructions

Guard Digits

In order to increase the accuracy of floating point operations, a guard digit (or digits) is
appended to the least-significant bit of each mantissa. A guard digit is one hex digit
(four bits) that contains zeroes. The value of bit 8 of the FPSR determines how many
guard digits to append. If bit 8 is 0, then the processor appends one guard digit; if bit 8
is 1, it appends two guard digits.

In addition to choosing the number of guard digits to append, bit 8 of the FPSR also
specifies a rounding algorithm to be performed on the result of the specified floating
point operation. These algorithms use the guard digits, and are discussed later in this
chapter.

Floating Point Operation

When a floating point operation between two floating point operands is specified, the
processor first appends the appropriate number of guard digits (as determined by bit 8 of
the FPSR). For single precision operands, the processor appends the guard digit or digits
to bit 23 of the operand mantissas; for double, to bit 56. This means that the mantissa of
an operand can be from 28 bits to 64 bits long, depending on the value of FPSR bit 8 and
the specified precision.

After appending the guard digits, the processor performs the specified operation (see
Appendix G). The result of the operation is called the intermediate result. The processor
normalizes this value if necessary. It does this by shifting the intermediate result left one
hex digit (4 bits) at a time until the high-order four bits (bits 0-3 of the mantissa)
represent a nonzero quantity. Zeroes are filled in on the right. For every hex digit
shifted, the processor decrements the exponent of the intermediate result by one.

Note that normalization can cause an exponent underflow or correct an exponent
overflow. Because further processing can correct this underflow or overflow, however,
the processor does not set the appropriate flags at this time. The processor maintains the
normalized result internally until the final result is produced.

Maintaining Accuracy

After normalization, the mantissa of the intermediate value is more than 24 bits (single
precision) or 56 bits (double precision) wide. Because the mantissa must fit into the
specified location or register, the processor must perform one of two rounding algorithms
to correctly size the mantissa. These algorithms are truncation and unbiased rounding.
In truncation, the processor removes the least significant digit of the intermediate
mantissa. In unbiased rounding, the processor uses the 2 least significant digits of the
intermediate mantissa to round the remaining bits up or down to the correct size.

Truncation

Truncation occurs when bit 8 of the FPSR is 0. Because one guard digit was appended to
each of the operands, the processor manipulates 28-bit single precision mantissas and
60-bit double precision mantissas. After normalization, the processor truncates the
mantissa of the intermediate result to 24 or 56 bits. This is the final result.

Floating Point Instructions 85

Unbiased Rounding

Unbiased rounding occurs when bit 8 of the FPSR is 1. Because two guard digits were
appended to each mantissa, the processor manipulates 32-bit single precision mantissas
and 64-bit double precision mantissas. After performing the specified operation and any
normalization, the processor truncates the intermediate result to 24 or 56 bits, but saves
the 2 least significant digits (the guard digits) for rounding.

The processor rounds the mantissa in one of three ways. To determine the rounding
method, the processor treats the two guard digits as an 8-bit integer. If the integer
formed by the guard digits is within the range 0 to 7F ¢ inclusive, then the normalized
intermediate result becomes the final result without change.

If the integer formed from the guard digits is exactly 80;¢, then the processor adds the
least significant bit of the intermediate result to the intermediate result. The sum
becomes the final result. This forces even mantissas to be rounded down to the nearest
integer and odd mantissas to be rounded up to the nearest integer.

If the integer formed from the guard digits is within the range 81-FF inclusive, then
the processor adds 1 to the intermediate result to form the final result. Note that this can
cause a mantissa overflow. If this occurs, the processor shifts the intermediate mantissa
right one hex digit, places 0001 into the mantissa’s most significant hex digit, and adds
1 to the intermediate exponent. The processor truncates the rightmost hex digit so that
the intermediate mantissa is 24 or 56 bits long. This 24- of 56-bit value is the final result.

Finishing Up

After performing the appropriate rounding algorithm, the processor loads the final result
into the specified destination, then checks for any exponent underflow or overflow that
may have occurred during the calculations. If no underflow or overflow condition exists
(the exponent is within the range of -64 to +63 inclusive), the instruction ends.

If an underflow or overflow does exist, the processor sets the appropriate flag in the
FPSR. The exponent field in the destination location contains only the seven least
significant digits of the true value of the exponent; this means that the stored value of the
exponent will be 128 larger or smaller than the true value. Check individual instruction
descriptions in the Instruction Dictionary for details on this topic.

NOTE: Certain floating point instructions do not use unbiased rounding in their manipulations,
even though bit 8 of the FPSR may specify a 1. Refer to the individual instruction definitions
in the MV/8000 Instruction Dictionary, Chapter 16, for specifics.

Floating Point Instructions

The MV /8000-specific floating point instructions are shown in Table 8.1, and the
C/350 floating point instructions are shown in Table 8.2. Note that several instructions
have two forms, one ending in S and one ending in D. The first form uses single precision
floating point format; the second uses double precision floating point format. The
function of the two forms is otherwise identical.

86

Floating Point Instructions

WFFAD

WFLAD

WFPOP

WFPSH

XFAMD,
XFAMS
XFDMD,
XFDMS
XFLDD,
XFLDS
XFMMD,
XFMMS
XFSMD,
XFSMS

LFSTD, LFSTS

XFSTD, XFSTS

status

Long store floating point
double

Wide fix to AC

Wide float from AC

Wide pop floating point state

Wide push floating point
state

Long add

Long divide

Long load floating point
Long multiply double

Long subtract double

Long store floating point
double

MNEM Name Action
LFAMD, Long add Adds a floating point number in memory to the floating point
LFAMS number in an FPAC.
LFMD, Long divide Divides the floating point number in an FPAC by a floating point
LFDMS number in memory.
LFLDD, Long load floating point Loads a floating point number from memory into an FPAC.
LFLDS
LFLST Long load floating point Loads the contents of memory into the FPSR.

status
LFMMD, Long multiply double Multiplies a floating point number in memory by the floating
LFMMS point number in an FPAC.
LFSMD, Long subtract double Subtracts the floating point number in memory from the floating
LFSMS point number in an FPAC.
LFSST Long store floating point Stores the contents of the FPSR into memory.

Stores the contents of an FPAC into memory.

Converts the integer portion of an FPAC to a double precision
signed, two’s complement integer and places the result in an
accumulator.

Converts the double precision signed, two’s complement integer
in an accumulator to a double precision floating point number and
places the result in an FPAC.

Pops a 20-word floating point block off the wide stack and alters
the state of the floating point unit.

Pushes a 20-word floating point block onto the wide stack.

Adds a floating point number in memory to the floating point
number in an FPAC.

Divides the floating point number in an FPAC by a floating point
number in memory.

Loads a floating-point number from memory into an FPAC.

Multiplies a floating point number in memory by the floating
point number in an FPAC.

Subtracts the floating-point number in memory from the
floating-point number in an FPAC.

Stores the contents of an FPAC into memory.

Table 8.1 MV/8000-specific floating point instructions

Floating Point Instructions 87

MNEM Name Action

FAB Absolute value Sets the sign bit of an FPAC to O.

FAMS, FAMD | Add (memory to FPAC) Adds the floating point number in memory to the floating point
number in an FPAC.

FAS, FAD Add (FPAC to FPAC) Adds the floating point number in one FPAC to the floating point
number in another FPAC.

FCLE Clear errors Sets bits 0-4 of the FPSR to 0.

FCMP Compare floating point Compares two floating point numbers and sets the Z and IV
flags accordingly.

FDMS, FDMD | Divide (FPAC by memory) Divides the floating point number in an FPAC by a floating point
number in memory.

FDS, FDD Divide (FPAC by FPAC) Divides the floating point number in one FPAC by the floating
point number in another FPAC.

FEXP FFAS Load exponent Fix to AC Places bits 1-7 of ACO in bits 1-7 of the specified FPAC.
Converts the integer portion of a floating point number contained
in an FPAC to a single precision, signed, two’s complement
integer and places the result in an accumulator.

FFMD Fix to memory Converts the integer portion of a floating point number to double-
precision integer format contained in an FPAC and stores the
result in two memory locations.

FHLV Halve Divides the floating point number in FPAC by 2.

FINT Integerize Sets the fractional portion of the floating point number in the
specified FPAC to zero and normalizes the result.

FLAS Float from AC Converts a single precision, signed, two’s complement integer in
an accumulator to a single precision floating point number and
places the result in an FPAC.

FLDS, FLDD |Load floating point Loads a floating point number from memory to a specified FPAC.

FLMD Float from memory Converts a double precision, signed, two’s complement integer
in two memory locations to a double precision flaoting point
number and stores the result in an FPAC.

FLST Load floating point status Loads the 32-bit contents of two specified memory locations
into the FPSR.

FMMS, FMMD | Multiply (memory by FPAC) | Multiplies the floating point number in memory by the floating
point number in an FPAC.

FMOV Move floating point Moves the contents of one FPAC to another FPAC.

FMS, FMD Multiply (FPAC by FPAC) Multiplies the floating point number in one FPAC by the floating
point number in another FPAC.

FNEG Negate Inverts the sign bit of the FPAC.

FNOM Normalize Normalizes the floating point number in FPAC.

FNS No skip Executes the next sequential word.

FPOP Pop floating point state Pops an 18-word floating point block off the narrow stack and
alters the state of the floating point unit.

Table 8.2 C/350 floating point instructions

88 Floating Point Instructions

MNEM Name Action
FPSH Push floating point state Pushes an 18-word floating point block onto the narrow stack.
FRH Read high word Places the high-order 16 bits of an FPAC in bits 16-31 of ACO.
FSA Skip always Skips the next sequential instruction.
FSCAL Scale Shifts the mantissa of the floating point number in FPAC either
right or left, depending upon the contents of bits 17-23 of ACO.
FSEQ Skip on zero Skips the next sequential word if the Z flag of the FPSR is 1.
FSGE Skip on greater than or equal | Skips the next sequential word if the N flag of the FPSR is O.
to zero
FSGT Skip on greater than zero Skips the next sequential word if both the Z and NN flags of the
FPSR are O.
FSLE Skip on less than or equal to | Skips the next sequential word if either the Z flag or the N flag of
zero the FPSR is 1.
FSLT Skip on less than zero Skips the next sequential word if the [V flag of the FPSR is 1.
FSMS, FSMD | Subtract (memory from Subtracts the floating point number in memory from the floating
FPAC) point number in an FPAC.
FSND Skip on no zero divide Skips the next sequential word if the divide by zero (DVZ) flag of
the FPSR is O.
FSNE Skip on non-zero Skips the next sequential word if the Z flag of the FPSR is O.
FSNER Skip on no error Skips the next sequential word if bits 1-4 of the FPSR are all O.
FSNM Skip on no mantissa overflow | Skips the next sequential word if the mantissa overflow (MOF)
flag of the FPSR is O.
FSNO Skip on no overflow Skips the next sequential word if the overflow (OVF) flag of the
FPSR is O.
FSNOD Skip on no overflow and no | Skips the next sequential word if both the overflow (OVF) flag
zero divide and the divide by zero (DVZ) flag of the FPSR are 0.
FSNU Skip on no underflow Skips the next sequential word if the underflow (UNF) flag of
the FPSR is O.
FSNUD Skip on no underflow and no | Skips the next sequential word if both the underflow (UNF) flag
zero divide and the divide by zero (DVZ) flag of the FPSR are O.
FSNUO Skip on no underflow and no | Skips the next sequential word if both the underflow (UNF) flag
overflow and the overflow (OVF) flag of the FPSR are 0.
FSS, FSD Subtract (FPAC from FPAC) | Subtracts the floating point number in one FPAC from the floating
point number in another FPAC.
FSST Store floating point status Moves the contents of the FPSR to two memory locations.
FSTS, FSTD Store floating point Stores the contents of a specified FPAC into memory.
FTD Trap disable Sets the Trap Enable flag of the FPSR to O.
FTE Trap enable Sets the Trap Enable flag of the FPSR to 1.

C/350 floating point instructions (continued)

Floating Point Faults

Floating point faults can occur upon completion of any floating point instruction. If any
of bits 1-4 of the FPSR have the value 1 at this time, then a floating point fault
condition exists. Bit 5 of the FPSR (the Trap Enable bit) determines how the processor
handles this condition.

If the Trap Enable bit has the value 0, then the processor continues execution with the
next sequential instruction in the currently executing program. Program flow remains
unchanged.

If the Trap Enable bit has the value 1, then a fault will occur. The processor performs an
indirect jump through location 454 to the fault handler and examines the first word of
the handler. If this word’s bit 0 is 1 and bits 12—15 are 1001, the wide stack fault handler

Floating Point Instructions 89

services the fault.

For information about how the processor services floating point faults, refer to the
section Floating Point Faults in Chapter 11.

Chapter 9

Commercial Instructions

Chapter 6 described the kinds of commercial formats used on the MYV /8000. This
chapter describes the instructions that manipulate commercial data. Some instructions
listed here are useful for handling a variety of other data types as well as commercial
types; others are for use with commercial formats only. Also included in this chapter is a
discussion of commercial faults.

Decimal Instructions

The MV /8000 decimal numeric instructions:

* Load decimal numbers from memory into a 64-bit floating point accumulator,
e Store decimal numbers from an FPAC into memory,

* Load the sign of a number,

* Convert decimal integers to byte strings, then process the strings.

Table 9.1 lists these instructions.

MNEM Name Action

WEDIT Wide Edit Converts a decimal integer to a string of bytes controlled by an
edit subprogram; or manipulates a string of bytes.

WLDI Wide Load Integer Converts a decimal integer to normalized floating point format
and places it in the specified FPAC.

WLDIX Extended Wide Load Integer | Distributes a decimal integer into four FPACs.

WLSN Wide Load Sign Evaiuates a number in memory and returns a code that indicates
the sign of the number.

WSTI Wide Store Integer Converts the contents of an FPAC to the specified format and
stores the result into memory.

WSTIX Extended Wide Store Integer | Converts the contents of 4 FPACs to integer format and uses the

8 low-order digits of each FPAC to form a 32-digit integer.

Tabie 9.1 Decimal numeric instructions

In addition, the MV /8000 supports the C/350 decimal numeric instructions summarized
in Table 9.2.

92

Commercial Instructions

MNEM Name Action

DAD Decimal Add Adds together the decimal digits found in bits 12-15 of two
accumulators.

DSB Decimal Subtract Subtracts the decimal digit in bits 12— 15 of one accumulator
from the decimal digit in bits 12-15 of another acumulator.

EDIT Edit Converts a decimal integer to a string of bytes controlled by an
edit subprogram; or manipulates a string of bytes.

LDI Load integer Converts a decimal integer to normalized floating point form and
places it in a specified floating point accumulator.

LDIX Extended Load Integer Distributes a decimal integer into four floating point accumulators.

LSN Load Evaluates a number in memory and returns a code indicating the

sign of the number.

STI Store Integer Converts the contents of a floating point accumulator to a
specified format and stores it in memory.

STIX Extended Store Integer Converts the contents of four floating point accumulators to

integer form and uses the eight low-order digits of each to form
a 32-digit integer.

Table 9.2 C/350 decimal arithmetic instructions

Commercial Faults

When the processor executes decimal instructions, it checks the data for invalid numbers
and invalid data types. If the processor finds either of these, a commercial fault (CF)
occurs.

When a fault occurs, the processor pushes a return block onto the stack (see Chapter
11). The size of the return block depends on which fault occurred and the instruction
that caused it. The PC in the return block points to the instruction that caused the fault.
The processor sets OVK and OVR to 0 and places the appropriate fault code in ACI.
ACO contains the value of the PC for the instruction that caused the fault. An indirect
jump through location 46g transfers control to the commercial fault handler. Location
464 contains a 16-bit pointer to the fault handler.

Table 9.3 describes the commercial faults that can occur. The first column lists the code
that will appear in AC1 when a C/350 fault occurs. The second column lists the code
that will appear in AC1 when an MV /8000 fault occurs. The third column lists the
instructions that can cause the fault. The last column describes the conditions that can
cause the fault.

Commercial Instructions

93

CF C/350 | MV/8000 |Mnem Meaning
Number| Code Code
0 (o] 100000 WEDIT, EDIT An invalid digit or alphabetic character
encountered during execution of one of the
following subopcodes: DMVA, DMVF, DMVN,
DMVO, DMVS.
1 1 100001 WEDIT, EDIT, Invalid data type (6 or 7); AC3 contains the data
LDIX, STIX, size and precision.
WLDIX, WSTIX
2 2 100002 WEDIT, EDIT DMVA or DMVC opcode with source data type
5; AC2 contains the data size and precision.
3 3 100003 WEDIT, EDIT An invalid opcode; AC2 contains the data size
and precision.
4 4 100004 WLDI, WSTI, Number too large to convert to specified data
LDI, STI type.
6 6 100006 LSN, LDI, Sign code is invalid for this data type.
LDIX, WLSN,
WLDI, WLIDX,
WEDIT, EDIT
7 7 100007 LSN, LDI, Invalid digit.
LDIX, WLSN,
WLDI, WLDIX

Table 9.3 Commercial faults and corresponding fault conditions

Return Blocks

As mentioned above, the processor pushes a return block onto the appropriate stack

when a commercial fault occurs. Depending on the type of fault and the instruction that
caused it, the return block can vary in size and contents.

CF0, CF2 and CF3

When CF0, CF2, or CF3 occur during EDIT, the narrow commercial fault handler
services the fault. The processor pushes a narrow return block onto the narrow stack.

The return block has the format shown in Table 9.4.

Word | Contents Interpretation
1-4 |- Reserved.
5 ACO Updated P (PC of EDIT subopcode.)
6 AC1 Data type indicator
7 AC2 Undefined.
8 AC3 Undefined.
9 Carry and PC | Carry and PC of instruction that caused the fault.

Table 9.4 Narrow Return block format

When CFO0, CF2, or CF3 occur during WEDIT, the wide commercial fault handler
services the fault. The processor pushes a wide return block will be pushed onto the wide

stack. The return block has the format shown in Table 9.5.

94 Commercial Instructions

Word | Contents Interpretation
1-2 PSR Processor Status Register
3-4 |ACO Updated P (PC of WEDIT subopcode.)
5-6 AC1 Data type indicator
7-8 AC2 Undefined.
9-10 |AC3 Undefined.
11-12 | Carry and PC | Carry and PC of instruction that caused the fault.

Table 9.5 Wide return block format

CF1

When CFI occurs during execution of WLDIX or WSTIX, the wide handler services the
fault. The return block has the format shown in Table 9.6.

Word | Contents Interpretation

1-2 PSR Processor status register.
3-4 ACO Original value of ACO.
5-6 AC1 Data type indicator.

7-8 AC2 Original SI/DI.
9-10 |AC3 Undefined.

11-12 | Carry and PC | Carry and PC of instruction that caused the fault.
Table 9.6 CF1 return block

When CFI occurs during execution of LDIX or STIX, the narrow handler services the
fault. The return block has the same format shown in Table 9.6 except that it is made up
of single words and does not include the PSR.

When CFI occurs during execution of WEDIT, the wide fault handler services the fault.
The return block is pushed onto the wide stack and has the format shown in Table 9.7.

Word | Contents Interpretation

1-2 PSR PSR at time of fault.
3-4 ACO Original P.

5-6 AC1 Data type indicator.
7-8 |AC2 Original SI/DI.
9-10 |AC3 Undefined.

11-12 | Carry and PC | Carry and PC of instruction that caused the fault.
Table 9.7 CF1 wide return block

When CF1 occurs during execution of EDIT, the narrow handler services the fault. The
return block is pushed onto the narrow stack and has the format shown in Table 9.8.

Commercial Instructions 95

Word | Contents Interpretation
1 ACO Original P.
2 AC1 Undefined.
3 AC2 Undefined.
4 AC3 Undefined.
5 Carry and PC | Carry and PC of instruction that caused the fault.

Table 9.8 CF1 narrow return block

CF4 and CF7

When CF4 or CF7 occurs during an MV /8000 non-Edit instruction, the return block
has the format shown in Table 9.9.

Word | Contents Interpretation
1-2 PSR Processor status register.
3-4 |ACO Original ACO.
5-6 AC1 Data type indicator.
7-8 |[AC2 Original SI/DI.
9-10 |AC3 Undefined.
11-12 | Carry and PC | Carry and PC of instruction that caused
the fault.

Table 9.9 CF4 and CF7 return block

If CF4 or CF7 occurs during a C/350 non-Edit instruction, the return block has the

same format as shown above except that it is made up of single words and does not
include the PSR.

For CF4 or CF7 occurring during WEDIT, the format is as shown in Table 9.10.

Word | Contents Interpretation
1-2 PSR PSR at time of fault.
3-4 |ACO Original ACO.
5-6 [AC1 Data type indicator.
7-8 [AC2 Original SI/DI.
9-10 |AC3 Undefined.
11-12 | Carry and PC | Carry and PC of instruction that caused the fault.

Table 9.10 CF4 and CF7 wide return block

For CF4 or CF7 occurring during EDIT, the format is as shown in Table 9.10, except the
return block is made up of single words and does not include the PSR.

Note that when CF4 or CF7 occurs, AC3 will contain a pointer to the next byte that
would have been processed by the instruction had the fault not occurred.

96 Commercial Instructions

CFe

When CF6 occurs during WEDIT, the wide handler services the fault. The return block
will be pushed onto the wide stack, and has the format shown in Table 9.11.

Word | Contents Interpretation
1-2 PSR PSR at time of fault.
3-4 ACO Original P.
5-6 AC1 Undefined.
7-8 AC2 Undefined.
9-10 |AC3 Undefined.
11-12 | Carry and PC | Carry and PC of WEDIT instruction.

Table 9.11 CF6 return block
When CF6 occurs during EDIT, the return block looks exactly as the one immediately
above, except that it is made up of single words and does not include the PSR.

When CF6 occurs during a non-Edit instruction, the return block has the format shown
in Table 9.12.

Word | Contents Interpretation
1-2 PSR Processor status register.
3-4 ACO Original ACO.
5-6 AC1 Data type indicator.
7-8 |AC2 Original SI/DI.
9-10 |AC3 Undefined.
11-12 | Carry and PC | Carry and PC of instruction that caused the fault.

Table 9.12 CF6 wide return block

When CFG6 occurs during a C/350 non-Edit instruction, the return block has the same

format as shown above except that is is made up of single words and does not contain the
PSR.

NOTE: The WEDIT instruction may use the stack for temporary storage. When a fault occurs,
the processor pushes the return block after any words that the WEDIT instruction has pushed.
Make sure that the comercial fault handler is able to handle this.

Only MV/8000-specific instructions (as opposed to C/350 instructions) can cause MV/8000
commercial faults.

Character Manipulation

Chapter 10

Character String Instructions

The MV /8000 supports four instructions that manipulate a string of characters. A
character string consists of a number of bytes, each containing one character. These
strings can be of any data type.

Character Instructions

The character instructions listed in Table 10.1 can specify forward or backward moves
and scans. When the move or scan is backwards, the processor checks for ring crossing
violations. If a ring crossing would occur, the instruction does not execute and a
protection fault occurs. AC1 will contain a 4.

MNEM

Name

Action

WCMP
WCMT

WCMV

WCTR

Wide Character Compare
Wide Character Move Until
True

Wide Character Move

Wide Character Translate

Compares one string of characters in memory to another string.

Moves a string of bytes from one area of memory to another until
a table- specified delimiter character is encountered or the source
string is exhausted.

Moves a string of bytes from one area of memory to another
under control of the values in the four accumulators.
Translates a string of bytes from one data representation to

another and either moves it to another area of memory or
compares it to a second string.

Table 10.1 Wide character string instructions

C/350 Character Instructions

The MV /8000 also supports the four C/350 character instructions shown in Table 10.2.

98

Character String Instructions

MNEM Name Action

CMP Character compare Compares one string of characters in memory to another string.

CMT Character move until true Moves a string of bytes from one area of memory to another until
a table- specified delimiter character is encountered or the source
string is exhausted.

CcMyV Character move Moves a string of bytes from one area of memory to another
under control of the values in the four accumulators.

CTR Character translate Translates a string of bytes from one data representation to
another and either moves it to another area of memory or
compares it to a second string of bytes.

Table 10.2 C/350 character string instructions

Chapter 11
Stacks and Fault Handling

This chapter discusses stacks, the instructions that are used to manipulate stacks, and
the use of stacks in fault handling.

Introduction

A stack is a series of consecutive locations in memory. In its simplest form, data is
pushed onto the stack in sequential order and popped from the stack in reverse order.
This means that the stack is used as storage for temporary data. More often, the stack is
used to store a return block, which contains information that the processor uses when
entering and exiting subroutines.

Three types of stacks are used on the MV /8000: the wide stack, the narrow stack and
the vector stack. The wide stack is a series of 32-bit locations managed by four 32-bit
registers. This stack is used in programs that use MV /8000-specific instructions. The
narrow stack is also supported on the MV /8000. This stack is a series of 16-bit locations
and is managed by four reserved storage locations. This stack is used in programs that
contain C/350 stack instructions. The vector stack is used during interrupt service, and
is discussed in Chapter 14.

The MV /8000 uses several stacks to maintain the system, but other stacks can be used
in programs at the same time. Note that the same program may use both a wide stack
and a narrow stack.

Stack instructions store the contents of accumulators on the stack, change the stack
registers that control the stack, define new stacks, and other tasks.

The Wide Stack

Stack Registers

Four 32-bit registers manage the wide stack. They are:

100 Stacks and Fault Handling

* WSP - the wide stack pointer
e WFP — the wide frame pointer
e WSB — the wide stack base
¢ WSL — the wide stack limit

NOTE: The symbols for the four registers shown above are used throughout this book to
distinguish them from the narrow stack terms.

Wide Stack Pointer

WSP contains the address of the double-word at the top of the wide stack. When data is
pushed onto the wide stack, the processor first increments WSP by 2 and then stores data
to be pushed in the new location addressed by WSP. When data is popped, the processor
takes the double-word addressed by WSP and places it in the specified register, then
decrements WSP by 2. Note that all 32 bits of WSP take part in the increment or
decrement.

Wide Frame Pointer
WFP contains the address of the first available double-word minus two in the current
frame.

Wide Stack Limit
WSL contains an address used to determine stack overflow. After any push operation,
the processor compares WSP to WSL. If WSP is greater than WSL, a stack fault occurs.

Wide Stack Base
WSB contains an address used to determine stack underflow. After any pop operation,
the processor compares WSP to WSB. If WSP is less than WSB, a stack fault occurs.

The processor initializes WSL and WSB when a cross-ring call is made. There are also
instructions that allow WSP and WFP to be changed directly.

Wide Stack Operation

To be meaningful, the address contained in the stack limit must be 24 to 32 words less
than the address of the last word in the stack. This is because the processor can only
detect stack overflow at the end of a push operation (with two exceptions that are
discussed below). After pushing a 12- to 20-word return block onto the stack, the
processor checks for overflow. If overflow has occurred, the processor signals a stack
overflow, and the stack fault handler pushes another 12-word return block onto the
stack. Depending upon the size of the first return block, the potential overflow can be 24
to 32 words long.

Usually the processor detects overflow only at the end of a push operation. The exceptions
are the use of the WSAVR, WSAVS, WSSVR, or WSSVS instructions or when the
processor copies parameters during an inward cross-ring call. In either of these cases, the
processor checks for overflow before pushing data onto the stack.

A segment’s stack registers are stored in one of two places. For the current segment, the
contents are stored in the hardware registers. For a segment that is not the current one,
the contents are stored in locations 20-27g of that segment.

To reference the stack registers of the current segment, the appropriate instructions
must be used. To reference the stack registers of any other segment, a memory reference
instruction to the appropriate location in the range 20-27g of the desired segment should

Stacks and Fault Handling

be used. Note that a program must not reference locations 20-27¢ of the segment
containing it.

Make sure that the initial values of the stack registers are even. This means that the

registers should address locations that are aligned on double-word boundaries. The stack

and stack operations can be used if the registers contain odd addresses, but the
performance for some stack instructions will be slower.

Figure

11.1 shows a typical wide stack in use and the locations referenced by the four

stack registers.

DG-06781

T

Rest of memory

Referenced by WSB{ PSR

PSR Increasing
Addresses

ACO
AC1
AC2
AC3
Referenced by WFP-3» Carry and PC

Referenced by WSP-»- Data word

A

Referenced by WSL—

Rest of memory

“W""

Figure 11.1 A typical wide stack

Wide Stack Instructions

The instructions shown in the tables below manipulate the wide stack. Table 11.1 lists

the instructions that operate on the four wide stack registers.

MNEM Name Action

LDASP Load accumulator with WSP | Loads the specified accumulator with the contents of WSP.
STASP Store accumulator in WSP Stores the contents of the specified accumulator in WSP.
LDASL Load accumulator with WSL | Loads the specified accumulator with the contents of WSL.
STASL Store accumulator in WSL Stores the contents of the specified accumulator in WSL.
LDASB Load accumulator with WSB | Loads the specified accumulator with the contents of WSB.
STASB Store accumulator in WSB | Stores the contents of the specified accumulator in WSB
LDAFP Load accumulator with WFP | Loads the specified accumulator with the contents of WFP.
STAFP Store accumulator in WFP Stores the contents of the specified accumulator in WFP.

Table 11.1 Wide stack register instructions

102 Stacks and Fault Handling

The instructions shown in Table 11.2 use WSP as a pointer to temporary storage.

MNEM Name Action
LDATS Load accumulator with Loads the contents of the word addressed by WSP into the
contents pointed to by WSP | specified accumulator.
STATS Store accumulator at location | Stores the contents of the specified accumulator into the location
pointed to by WSP addressed by WSP.
ISZTS Increment word addressed | Increments the double-word addressed by the WSP and skips
by WSP and skip if zero the next 16-bit word if the incremented value is zero. Indivisible
operation.
DSZTS Decrement word addressed | Decrements the double-word addressed by the WSP and skips
by WSP and skip if zero the next 16-bit word if the decremented value is zero. Indivisible
operation.

Table 11.2 WSP instructions

The two instructions in Table 11.3 push data onto or pop data off of the wide stack.

MNEM Name Action

WPSH Wide push accumulators Pushes the contents of the specified accumulators onto the wide
stack.

WPOP Wide pop accumulators Pops up to four double words off the wide stack and places them
in the specified accumulators.

Table 11.3 Wide stack operation instructions

The Narrow Stack

The narrow stack uses four control words to manipulate the stack:

» The stack pointer

e The frame pointer

» The stack limit

e The stack fault address handler

Narrow Stack Pointer

The narrow stack pointer is the address of the current top of the narrow stack. When a
single word of data is pushed onto the stack, the processor increments the stack pointer
by 1, then places the data to be pushed in the new location addressed by the stack
pointer. When a single word of data is popped, the processor takes the single word
addressed by the stack pointer and places it in the specified accumulator, then decrements

the stack pointer by 1.

The initial value of the stack pointer should be set to one less than the address of the first
word in the stack. This determines the lower limit.

Location 40g contains the current value of the stack pointer.

Stacks and Fault Handling 103

Narrow Frame Pointer

Unlike the stack pointer, the frame pointer does not change when push or pop operations
take place. If the frame pointer is initially set to the same value as the stack pointer, it
becomes a useful reference, since it preserves the stack pointer’s original value.

The C/350 Save and Return instructions use the frame pointer to store and reset the
value of the narrow stack pointer when entering or exiting subroutines. The frame
pointer can also define the boundary between words placed on the narrow stack by
different routines in a program. A routine can use the frame pointer to reference back
into the narrow stack and retrieve variables left there by the preceding procedure.

Location 41g contains the current value of the frame pointer.

The Narrow Stack Limit

The narrow stack limit is the upper limit of the narrow stack area. After each push
operation, the processor compares the stack pointer to the stack limit. If the stack
pointer is greater than the stack limit, an overflow condition exists.

Location 424 contains the current value of the stack limit.

Narrow Stack Fault Address

If a narrow stack overflow or underflow occurs, the processor transfers control to the
narrow stack fault handler. Location 43¢ contains the (possibly indirect) address of the
handler.

A diagram of a narrow stack area is shown in Figure 11.2.

Main memory|

Lower limit Increasing
T addresses
Stack
pointer —» l

=

Upper limit
(**Stack limit"™’)

DG-04426

Figure 11.2 The narrow stack area

Return Block Format

The return block can take several forms, but it usually consists of five words: the
contents of the four accumulators, the program counter or the frame pointer, and carry
in bit O of the last word pushed.

Narrow Stack Instructions

The MV /8000 supports the narrow stack instructions shown in Table 11.4.

104 Stacks and Fault Handling

MNEM Name Action

MSP Modify stack pointer Changes the value of the stack pointer and checks for potential
overflow.

POP Pop multiple accumulators Pops up to four words off the narrow stack and places them in
the specified accumulators.

POPB Pop Block Returns control from a System Call routine or an 1/0 interrupt
handler.

POPJ Pop PC and Jump Pops the top word off of the narrow stack and places it in the
PC.

PSH Push multiple accumulators | Pushes the contents of up to four accumulators onto the narrow
stack.

PSHJ Push jump Pushes the address of the next sequential instruction onto the
stack and loads the PC with an effective address.

PSHR Push return address Pushes the address of this instruction plus two onto the narrow
stack.

RSTR Restore Returns control from certain types of I/O interrupts.

RTN Return address Returns control from subroutines that issue a Save instruction at

their enrtypoints.
SAVE Save Saves the information required by the Return instruction.

Table 11.4 Narrow stack instructions

Stack Faults

Wide Stack Faults

The two types of wide stack faults are stack overflow and stack underflow.

Stack Overflow

After every push operation, the processor checks for stack overflow by comparing the
contents of WSP to the contents of WSL. If the contents of WSP are greater than the
contents of WSL, then cverflow has occurred.

When an overflow occurs, the processor pushes a wide return block onto the wide stack.
The value of the program counter in the return block points to the instruction following
the instruction that caused the fault. The processor then sets OVK, OVR, and IRES to 0.
After setting bit 0 of WSP to 0 and bit 0 of WSL to 1, the processor updates the contents
of WSP and locations 24-25g of the current segment, then jumps to the stack fault
handler via location 14¢. This location contains a 16-bit pointer to the start of the wide
stack fault handler. (See also “Stack Fault Codes” below.)

Loading -1 (all one’s) into the stack limit disables overflow-caused stack faults.

Stack Underflow

After every pop operation, the processor checks for stack underflow. The processor
compares the contents of WSP to the contents of WSB. If the contents of WSP are less
than the contents of WSB, then underflow has occurred.

When underflow occurs, the processor sets WSP equal to WSL, then pushes a wide
return block. The program counter in the return block points to the instruction
immediately following the instruction that cause the fault. The processor sets bit 0 of
WSP to 0 and bit 0 of WSL to 1. It then updates the contents of WSP and locations 24-25g
of the current segment and executes a jump indirect to the stack fault handler. Location
14¢ contains the starting address of the stack fault handler.

Stacks and Fault Handling 105

Loading the most negative signed integer (-2-31; i.e., 1 followed by zeroes) into WSB
disables underflow-caused stack faults.

Stack Fault Codes

When a stack fault occurs, ACO contains the address of the instruction that caused the
fault, and AC1 contains a code describing the type of fault. These codes and their
meanings are shown in Table 11.5.

MNEM Action

0 Overflow on any stack operation except SAVE,
WMSP, or ring crossing.

1 Underflow or overflow would occur if the
instructions WMSP, WSAVR, or WSAVS were
executed. The PC in the return block references
the instruction that caused the stack fault.

Too many arguments on a cross-ring call.

Stack underflow.

b w N

Overflow caused by a return block pushed during
service of a microinterrupt or fault.

Table 11.5 Wide stack fault codes

Because MV /8000-specific instructions manipulate the wide stack, the processor
automatically invokes the wide stack fault handler.

Narrow Stack Faults

Stack overflows and underflows may also occur when using the narrow stack. Narrow
stack faults are discussed below.

Overflow

Narrow stack overflow occurs when a program pushes data into the area beyond that
allocated for the narrow stack, i.e., beyond the C /350 stack limit. If the locations beyond
the address specified by the stack limit are reserved for other purposes, overflow will
overwrite whatever information is there.

The narrow stack limit provides overflow protection. If a narrow stack instruction pushes
data into the area beyond the location specified by the stack limit, the processor pushes
a return block onto the narrow stack and transfers control to the narrow stack fault
handler.

To disable overflow protection, set bit 0 of the stack pointer to 0 and bit 0 of the stack
limit ot 1.

To be meaningful, the address specified by the narrow stack limit must be 10 to 23
words less than the address of the last word in the narrow stack. This is because the
processor can only detect stack overflow at the end of a push operation (with one
exception explained below). This means that a 5- to 18-word return block can be pushed
onto the narrow stack, starting at the narrow stack limit; the processor would not signal
overflow until after it pushed the last word of the return block. After pushing the last
word, the processor signals a stack overflow, and the stack fault handler pushes another
5-word return block onto the stack. Depending upon the size of the first return block
(from the normal 5 words up to the 18 words used by the floating point instruction set),
the potential overflow can be 10 to 23 words long.

106

Stacks and Fault Handling

Underflow

Narrow stack underflow occurs when a program pops data from the area below that
allocated for the narrow stack (i.e., pops more words off than were pushed on). If this
occurs, the program will be operating with incorrect and unpredictable information.
Furthermore, it is possible that the program will push data into the underflow area,
overwriting data or instructions.

For underflow protection to be enabled, the area allocated to the narrow stack must
begin at location 401, and the narrow stack pointer must be initialized to 400g. If the
narrow stack pointer is less than 400g after a pop operation, underflow occurs.

Stack underflow protection can be disabled in two ways:

« Start the narrow stack at a location greater than 401g.
o Set bit 0 of either the narrow stack pointer or the narrow stack limit to 1.

If the narrow stack starts at a location greater that 401g, underflow will occur only if the
value of the stack pointer is less than 400g. Note that this does not completely disable
underflow protection, since it is always possible to pop enough words off the narrow
stack to underflow it.

If bit 0 of the narrow stack pointer or stack limit is set to 1, one of two things will
happen: all or part of the stack may reside in page zero (locations 0-377g), or the stack
may underflow into page zero without interference from the narrow stack fault handler.

Narrow Stack Overflow Protection

The C/350 Save and Modify Stack Pointer instructions check for overflow before
executing. For every other instruction that pushes data onto the narrow stack, the
processor checks for overflow after the instruction executes. In both cases, the processor
treats the stack pointer and stack limit as unsigned 16-bit integers and compares them.
If the comparison shows that overflow has occurred, the processor:

« Sets bit 0 of the narrow stack pointer to 0;

« Sets bit 0 of the narrow stack limit to 1;

o Pushes a return block onto the narrow stack;

« Executes a jump indirect to the narrow stack fault address.

The processor sets bit 0 of the narrow stack pointer and stack limit as indicated so that
the stack limit will (temporarily) be larger than the stack pointer. The program counter
in the return block points to the instruction immediately following the stack instruction
that caused the fault (unless the instruction that caused the return block to be pushed is
MSP or SAVE; the PC saved in these instructions points to the instruction that caused
the fault).

Narrow Stack Underflow Protection

After every pop operation, the processor checks for underflow. If the narrow stack
pointer is less than 400g, and bit 0 of the narrow stack limit is 0, then a narrow stack
underflow occurs. When this happens, the processor:

Sets the narrow stack pointer equal to the narrow stack limit;
o Sets bit 0 of the narrow stack pointer to 0;
Sets bit 0 of the narrow stack limit to 1;

Pushes a return block onto the narrow stack;

Stacks and Fault Handling 107

Examples

* Executes a jump indirect to the narrow stack fault address.

The processor sets bit 0 of the narrow stack pointer and stack limit as indicated so that
the narrow stack limit will (temporarily) be larger than the narrow stack pointer. This
ensures that the return block pushed onto the narrow stack by the underflow mechanism
(starting at the stack limit) will not cause an overflow fault. The program counter in the
return block points to the instruction immediately following the narrow stack instruction
that caused the fault.

Narrow Stack Fault Handler

The software narrow stack fault handler determines the nature of the fault. It also resets
the appropriate values and takes any other appropriate action, such as allocating more
stack space or terminating the program. Note that the narrow stack fault handler must
reset bit O of the stack pointer and stack limit to their original values.

Narrow stack area 503 words with underflow protection:

Stack
Pointer 377
4004 1 400
44— First word
401 of stack
402
Stack
limit — 436
436 g 437
440
446
447
450
DG-06369
Figure 11.3

Narrow stack area 503 words in page zero with overflow protection:

108 Stacks and Fault Handling

LT
Stack
Pointer 77 First word
100077 g 100 ' of stack
NOTE: Bit O
set to 1
Stack
Limit — 135
100135
8 M/__,_/
147
| 150 |
e o
DG-06370
Figure 11.4

Narrow stack area 100g words, no protection:

Stack — z‘j

Pointer > .
7,43,7_1/”_ First word
100437 4 440 of stack

NOTE: Bit O
set to 1
Stack 537
i 540
imit
177777 :l e
DG-06371
Figure 11.5
Stack Usage

As mentioned in the introduction to this chapter, the MV /8000 allows several stacks to
be in use at the same time. This section describes some of the ways the system uses the
stack.

The Protection Mechanism

When a ring crossing is performed, the stack parameters in the source segment are
preserved and a new wide stack is created in the destination segment (see Chapter 4). To
do this, the processor first stores the source segment WFP and WSP in source segment
locations 20-233 (WSL and WSB are assumed to be unchanged). After saving these
values, the processor sets up the new stack in the destination segment. It then loads the
contents of page zero locations 22-27g into the destination’s WSP, WSL, and WSB.

A check for potential stack overflow occurs before any arguments are copied onto the
new stack. The number of parameters to be copied is specified by the LCALL or XCALL
instruction that signalled the ring crossing. The processor uses this information to
determine if the number of parameters to copy exceeds the size of the stack.

Stacks and Fault Handling 109

If overflow would occur, no parameters are copied, and a stack fault occurs. AC1 will
contain 2. Note that since the ring crossing is valid, the stack fault occurs in the
destination segment, not the source segment. The PC contains the address specified in
the gate array entry; this is the address of the first instruction to be executed in the
destination segment.

If overflow would not occur, then the processor copies the parameters from the source
stack to the destination stack. The order of the arguments in the new stack matches the
order of the arguments in the old stack. This means that references can be made to
parameters exactly as if no ring crossing had occurred.

Fixed Point Overflow

The processor signals fixed point overflow when a division by zero is attempted or when
the processor calculates a two’s complement number that does not fit in the specified
location or register. To signal the overflow, the processor sets OVR to 1. Note that OVK
and overflow determine whether a fixed point overflow trap occurs. If OVK, OVR, and
overflow contain a 1, then a fixed point overflow trap occurs (unless the instruction
currently executing is SPSR, XVCT, WPOPB, WRSTR, WDPOP, WRTN, or WSAVS). If
either OVK or overflow contains a 0, then no fixed point overflow trap occurs even if
OVR contains a 1.

The processor signals fixed point overflow at the end of the current instruction cycle.
When such a fault occurs, the processor pushes a wide return block onto the wide stack.
The block has the format:

Word number in Contents
block

1-2 PSR, 16 O’'s

3-4 ACO

5-6 AC1

7-8 AC2

9-10 AC3

11-12 Bit 0 = carry, bits
1-31 = return
address

Table 11.6 Wide return block format

where the PSR contains OVR set to 0, OVK set to 1, and IRES unchanged, and
return address is the address of the next instruction to be executed.

After the push, ACO contains the address of the instruction that caused the fault. The
processor sets the PSR to 0. Control transfers to the fixed point fault handler through
the 16-bit pointer (which may be indirect) contained in location 37g.

The OVR Flag

If the OVR flag is set to 1, then it remains 1 regardless of the new values of overflow
generated by MV /8000 instructions. This is a convenient feature to use when checking
for overflow traps in sections of code. OVR is altered, however, when any of the
following actions occur:

110 Stacks and Fault Handling

e Interrupts

* Faults

¢ Power ups

* 1/0 or system resets

+ Execution of the WPOPB, WRTN, XCALL, WSSVR, WSSVS, WRSTR, or SPSR
instructions.

Note that the processor loads the values of OVK and OVR produced by the instructions
listed above into OVK and OVR. Unless they directly alter them, subsequent instructions
will not change these values of OVR and OVK. Check the individual topics listed for
more information about changes to OVR.

Floating Point Fault

When a floating point instruction causes a fault, the processor determines whether the
instruction that caused the fault is an MV /8000-specific instruction or a C/350
instruction. It does this by checking the values of bit 0 and bits 12-15 of the instruction
that caused the fault.

Wide Stack Fault Routine
If bit 0 is 1 and bits 12-15 of the instruction are 1001, the processor pushes a wide return
block onto the wide stack. The wide return block has the format shown in table 11.7.

Word number in | Contents
block
1-2 PSR, 16 O’'s
3-4 ACO
5-6 AC1
7-8 AC2
9-10 AC3
11-12 Bit 0 = carry,
bits 1-31 = return address

Table 11.7 Wide return block format

The return address in the block is the address of the next user instruction that the
processor will execute after servicing the fault. Use the LFSST instruction to determine
the address of the floating point instruction that caused the fault.

After pushing the return block, the processor sets the FPSR to 0 and the Trap Enable bit
to 0. If pushing the return block causes a stack overflow, a stack fault occurs. The

processor will service the stack fault before continuing with the floating point fault
handler.

If pushing the return block causes no stack fault, the processor continues to execute the
floating point fault handler.

Narrow Stack Fault Routine

If the first instruction of the fault handler does not meet the condition specified for bit 0
and bits 12—15 (i.e., either bit 0 is not 1 or bits 12—15 are not 1001), the processor
pushes a narrow return block onto the narrow stack. Table 11.8 shows the format of the
narrow return block.

Stacks and Fault Handling 111

Word number in | Contents
block

ACO
AC1
AC2
AC3

Carry in bit O;
return address in bits 1-15

O H WON =

Table 11.8 Narrow return block format

The return address in the return block is the address of the next instruction that will
execute after the processor services the fault. Use the FSST instruction to determine the
address of the floating point instruction that caused the fault.

After pushing the return block, the processor sets the Trap Enable bit to 0. If pushing
the return block causes a stack overflow, a stack fault occurs. The processor will service
the stack fault before continuing with the floating point fault handler.

If pushing the return block causes no stack fault, the processor continues to execute the
floating point fault handler.

Program Flow

As mentioned above, the stack can be used when the sequential order of program
execution is changed. The next chapter describes the various methods used to alter
sequential instruction execution.

Chapter 12

Program Flow Instructions

The previous chapter mentioned that program flow can be altered using the stack.
Another way to alter sequential flow is to jump directly from one place to another. This
can be done in two ways: by using a jump instruction, or by using an instruction that
tests a conditions and jumps on the result of the test. This type of program flow
alteration is called direct alteration.

Direct Alteration

In sequential program execution, the processor executes one instruction after another.
Sequential flow can be altered directly in one of two ways:

» Use a Jump instruction that changes the PC.

» Use a Conditional Skip instruction that tests some condition and increments the PC
by one if the test is true.

When a jump or conditional instruction changes the PC, program execution continues
with the instruction addressed by the new value of the PC. Refer to Figure 12.1.

114

Program Flow Instructions

DG-00543

Increasing
addresses

Sequential

program

flow

Jump

program

flow

Skip

program

flow

Figure 12.1 Program flow alteration
Note that the term skip refers to incrementing the PC by 1, which causes one 16-bit
instruction or word to be skipped.

The tables below list the instructions that change program flow by altering the PC.
Table 12.1 lists jump instructions and Table 12.2 lists conditional skip instructions.

MNEM Name Action

LDSP Long Dispatch Dispatches through a table of 28-bit self-relative addresses
indexed by the PC.

LIMP Long Jump Loads an effective address into the PC.

LJSR Long Jump to Subroutine Saves a return address and transfers control to a subroutine.

WBR Wide Load PC Adds a specified value to the PC.

WCLM Wide Compare to Limits Compares a 32-bit integer to two limit values and skips if the
integer is between the two limit values.

XIMP Extended Jump Loads an effectve address into the PC.

XJSR Extended Jump to Saves a return address and transfers control to a subroutine.

Subroutine

Table 12.1 Program flow jump instructions

Program Flow Instructions 115

MNEM Name Action

DSZTS Decrement Word Addressed | Decrements the contents of the word addressed by ESP and
by ESP and Skip if Zero skips if the decremented value is zero.

ISZTS Increment Word Addressed | Increments the contents of the word addressed by ESP and skips
by ESP and Skip if Zero if the incremented value is zero.

WSALA Wide Skip on All Bits Set in | Logically ANDs ACS and an immediate field and skips if the
Accumulator result of the AND is zero.

WSALM Wide Skip on All Bits Set in | Logically ANDs an immediate field and memory location and
Memory Location skips if the result of the AND is zero.

WSANA Wide Skip on Any Bit Set in | Logically ANDs ACS and an immediate field and skips if the
Accumulator result of the AND is nonzero.

WSANM Wide Skip on Any Bit Set in | Logically ANDs an immediate field and memory location and
Memory Location skips if the resuit of the AND is zero.

NSALA Narrow Skip on All Bits Set | Logically ANDs ACS and an immediate field and skips if the
in Accumulator result of the AND is zero.

NSALM Narrow Skip on All Bits Set | Logically ANDs an immediate field and a memory location and
in Memory Location skips if the result of the AND is zero.

NSANA Narrow Skip on Any Bit Set | Logically ANDs ACS and an immediate field and skips if the
in Accumulator result of the AND is non-zero.

NSANM Narrow Skip on Any Bit Set | Logically ANDs an immediate field and a memory location and
in Memory Location skips if the result of the AND is zero.

SNOVR Skip on OVR Reset Skips if OVR is 0.

WSEQ Wide Skip if Equal Compares ACS to ACD and skips if the two values are equal.

WSGE Wide Skip if Greater Than or | Compares ACS to ACD and skips if ACS is greater than, or, equal
Equal to ACD.

WSGT Wide Skip if Greater Compares ACS to ACD and skips if ACS is greater than ACD.

WSKBO Wide Skip on Bit Set to One | Tests a bit in ACO and skips if the bit is one.

WSKBO Wide Skip on Bit Set to Zero | Tests a bit in ACO and skips if the bit is zero.

Table 12.2 Program flow conditional skip instructions

The MV /8000 also supports the C/350 program flow instructions listed in the tables
below. Table 12.3 shows C/350 jump instructions and Table 12.4 shows C/350
conditional skip instructions.

MNEM Name Action

CLM Compare to Limits Compares a signed 16-bit integer with two other numbers and
skips if the first integer is between the other two.

DSPA Dispatch Compares a signed integer with two other numbers and skips if
the first integer is not between the others; otherwise, uses the
integer as an index into a table and places the indexed value in
the program counter.

JMP, EJMP Jump Loads an effective address in the program counter.

JSR, EJSR Jump to Subroutine Increments the program counter and stores the incremented
value in AC3; then places a new address in the program counter.

SYC, System Turns the MAP off if on. Pushes a

SCL, SVC Call return block onto the stack and places the address of the System
Call handler in the program counter.

XCT Execute Executes the contents of an accumulator as an instruction.

Table 12.3 C/350 program flow jump instructions

116

Program Flow Instructions

MNEM Name Action
DSZ, EDSZ Decrement and Skip if Zero | Decrements the addressed word, then skips if the decremented
value is zero.
ISZ, EISZ Increment and Skip if Zero Increments the addressed word, then skips if the incremented
value is zero.
SGE Skip if ACS Greater Than or | Compares two signed integers in two accumulators and skips if
Equal to ACD the first is greater than or equal to the second.
SGT Skip if ACS Greater Than Compares two signed integers in the accumulators; skips if the
ACD first is greater than the second.
SKP/t] 1/0 Skip Skips if the /0 condition ¢ is true.
SNB Skip on Non-zero Bit References a single bit in memory via a bit pointer; skips if the bit
is 1.
SZB Skip on Zero Bit References a single bit in memory via a bit pointer; skips if the bit
is 0.
SZBO Skip on Zero Bit, Set to 1 References a single bit in memory via a bit pointer; skips if the bit
is O and also sets the bit to 1.

Table 12.4 C/350 program flow conditional skip instructions

Stack Changes

Internal conditions, such as I/O interrupts, may interrupt the normal flow of a program
at some point. When this occurs, the processor saves the address of the next instruction
in the program. This will enable the processor to return to the correct place in the
program after it services the interrupting condition.

After saving the correct return address, the processor places the starting address of the
proper fault or interrupt handler in the PC. Sequential operation continues with the

handler.
Sequential
program
/ flow
(1/0
interrupt
occurs
Increasing
addresses %
1
<
7] Return
<A
]
Continued
program
flow
DG-00544

Figure 12.2 Program flow interruption

Figure 12.2 shows how the processor transfers control from normal flow to an 1/O
interrupt handler and back. Table 12.5 lists the wide stack manipulation instructions.

Program Flow Instructions 117

MNEM Name Action

BKPT Breakpoint Pushes a return block onto the wide stack and performs a jump
indirect through locations 10-11.

LCALL Call Subroutine (long Evaluates the address of a subroutine and jumps to the subroutine

displacement) if the address is valid.

LDSP Long Dispatch Dispatches through a table of 28-bit addresses indexed by the
PC.

LPSHJ Long Push Jump Pushes the PC onto the wide stack and jumps to a subroutine.

PBX Pop Block and Execute Pushes areturn block onto the wide stack and executes a specified
instruction.

WBR Wide Load PC Adds a specified value to the PC.

WDPOP Pop MV/8000 Context Block | Restores the state of the CPU to what it was at the time of the
last page fault. This is a privileged instruction.

WPOP Wide Pop Pops up to four double-words from the wide stack and places
them in accumulators.

WPOPB Wide Pop Block Pops six double-words from the wide stack and places them in
specified locations.

WPOPJ Wide Pop Jump Pops a double-word from the wide stack and places it in the PC.

WPSH Wide Push Accumulators Pushes the contents of the accumulators onto the wide stack.

WRSTR Wide Restore Returns control from an interrupt.

WRTN Wide Return Returns control from a subroutine.

XCALL Cali Subroutine (extended Evaluates the address of a subroutine and jumps to the subroutine

displacement) if the address is valid.
XPSHJ Extended Push Jump Pushes the PC onto the wide stack and jumps to a subroutine.

Table 12.5 Wide stack manipulation instructions

Although some MV /8000-specific program flow instructions have 31-bit displacements,
usually only 28 bits are significant. Only the WPOPB, WRSTR, XCALL, LCALL and
WRTN instructions can legally effect the current segment number.

For all other program flow instructions, only the least significant 28 bits of the PC are
altered. The segment field of the effective address is ignored. This means that all
references will be within the current segment.

If the effective address is a pointer obtained via indirection, the least signifcant 28 bits of
the pointer replace the least signifcant 28 bits of the PC.

In addition to the MV /8000-specific program flow instructions, the C/350 program
flow instructions shown in the following tables are available.

MNEM Name Action

POPJ Pop PC and Jump Pops the top word off the stack and places it in the program
counter.

PSHJ Push Pushes the address of the next sequential instruction onto the
stack and places a new address in the program counter.

RSTR Restore Returns control from 1/0 interrupt handlers that use the stack
change facility of the VCT instruction.

RTN Return Returns control from a subroutine entered via the Save instruction.

VCT Vector on Interrupting Device | Identifies the highest priority interrupt; passes control through a

Code table to a handler routine for the device.

Table 12.6 Narrow stack manipulation instructions

118 Program Flow Instructions

The extended operation feature (XOP) provides an efficient method of transferring
control to and from procedures. It allows control to transfer to any one of 32 procedure
entry points. The instructions that invoke the XOP feature are shown in Table 12.7.

MNEM Name Action

WXOP Extended Operation Pushes a return block on the wide stack, placing the address in
the stack of the specified accumulators into AC2 and AC3, and
transfers control to one of 32 other procedures via the XOP
table.

WXOP1 Extended Operation Same as WXOP except that 32 is added to the entry number
before entering the XOP table, and only 16 table entries can be
specified.

Table 12.7 Extended operation instructions

Table 12.8 shows the C/350 XOP instruction.

MNEM Name Action
XOP0 Extended Operation Pushes a return block onto the narrow stack, indexes into the
XOP table and transfers control to another procedure.

Table 12.8 C/350 extended operation instruction

Table 12.9 lists the skip instructions that test condition codes in the floating point status
register.

Program Flow Instructions 119

MNEM Name Action
FNS No skip Executes the next sequential word.
FSA Skip always Skips the next sequential instruction.
FSEQ Skip on zero Skips the next sequential word if the Z flag in the FPSR is 1.
FSGE Skip on greater than or equal | Skips the next sequential word if the N flag of the FPSR is O.
to zero
FSGT Skip on greater than zero Skips the next sequential word if both the Z and N flags of the
FPSR are O.
FSLE Skip on less than or equal to | Skips the next sequential word if either the Z flag or the N flag of
zero the FPSR is 1.
FSLT Skip on less than zero Skipss the next sequential word if the N flag of the FPSR IS 1.
FSND Skip on no zero divide Skips the next sequential word if the divide by zero (DVZ) flag of
the FPSR is 0.
FSNE Skip on non-zero Skips the next sequential word if the Z flag of the FPSR is O.
FSNER Skip on no error Skips the next sequential word if bits 1-4 of the FPSR are all O.
FSNM Skip on no mantissa overflow | Skips the next sequential word if the mantissa overflow (MOF)
flag of the FPSR is O.
FSNO Skip on no overflow Skips the next sequential word if the overflow (OVF) flag of the
FPSR is O.
FSNOD Skip on no overflow and no | Skips the next sequential word if both the overflow (OVF) flag
zero divide and the divide by zero (DVZ) flag of the FPSR are 0.
FSNU Skip on no underflow Skips the next sequential word if the underflow (UNF) flag of the
FPSR is O.
FSNUD Skip on no underflow and no | Skips the next sequential word if both the underflow (UNF) flag
zero divide and the divide by zero (DVZ) flag of the.FPSR are O.
FSNUO Skip on no underflow and no | Skips the next sequential word if both the underfiow (UNF} flag
overflow and the overflow (OVF) flag of the FPSR are 0.

Table 12.9 Floating point test instructions

Table 12.10 lists the condition tests available for the SKIP/t/ instruction. (This instruction
tests condition codes of a peripheral device, the power-fail monitor or the interrupt

system.)
Symbol Value |Test
[t] = BN 00 | Tests Busy flag for nonzero.
[t] = BZ 01 Tests Busy flag for zero.
[t] = DN 10 | Tests Done flag for nonzero.
[t] = DZ 11 Tests Done flag for zero.

Table 12.10 Skip instruction test conditions

Table 12.11 summarizes skip options of the C/350 ALC instructions.

120

Program Flow Instructions

Symbol Value Operation
[skip] omitted 000 | No skip.
[skip] = SKP 001 | Skip unconditionally.
[skip] = SZC 010 | Skip if carry is zero.
[skip] = SNC 011 | Skip if carry is nonzero.
[skip] = SZR 100 | Skip if ALC result is zero.

[skip] = SNR 101 | Skip if ALC result is nonzero.
[skip] = SEZ 110 | Skip if either ALC result. or carry is
zero.

[skip] = SBN 111 | Skip if both ALC result. and carry is
nonzero.

Table 12.11 ALC skip options

Privileged

Chapter 13

System Control Instructions

System control instructions fall into two groups: privileged instructions, and queue
instructions. Privileged instructions can be executed only when the current segment is
Segment 0. Queue instructions, however, can be executed in any segment.

Instructions

The privileged instructions alter the contents of the SBRs, purge the ATU, reset the
referenced and modified bits, and perform other system functions. These instructions
can be executed from Segment 0 only. If a privileged instruction is executed from any
other ring, a protection fault occurs. AC1 will contain the code 9 when such a fault

occurs.
MNEM Name Action
LSBRA Load all segment base Loads new information into all eight SBRs.
registers
LSBRS Load some segment base Loads new information into SBR1 through SBR7.
registers
PATU Purge ATU Purges the ATU of all entries.
RRFB Reset the referenced bit Loads a number of the referenced bits with zero's.
ORFB OR the referenced bits Inclusively ORs a number of the referenced bits with a bit string
and stores the result in a second bit string.
LMRF Load the modified and Loads the values contained in a number of modified and referenced
referenced bits bits into AC1.
SMRF Store the modified and Stores the values specified by AC1 into a number of modified
referenced bits and referenced bits.
WDPOP Pop the context block Restores the state of the processor to what it was at the time of
the last page fault.
XVCT MV/8000 vector on Identifies the highest priority interrupt and passes control through
interrupting device a table to a device handler.

Table 13.1 Privileged instructions

Note that when the ATU is enabled, the C/350 LMP, SYC or any of the MAP
instructions cannot be executed. An attempt to execute these instructions when the ATU
is enabled will result in the same type of protection fault described above.

122 System Control Instructions

Queues

Table 13.1 lists the privileged instructions and describes them briefly.

A queue is a variable-length list of linked entries that has a beginning and an end. The
operating system uses queues to keep track of processes that it must run (ready queue),
files that must be printed on the line printer, pages that are resident in physical memory,
etc.

An entry in a queue is called a data element. Adding a data element to a queue is called
enqueuing. Removing a data element is called dequeuing. The ends of a queue are called
the head and the tail. A typical first in, first out (FIFO) queue has data elements
enqueued at the tail and dequeued at the head.

One of the advantages of using a queue rather than a single threaded list is that queue
data elements reference the data elements that precede and follow them. In other words,
MV /8000 queues use a priority-based structure. This means that data elements can be
enqueued anywhere in the queue, not just at the head. Conversely, data elements can be
dequeued anywhere in the queue, not just at the tail.

New entries are added to the queue when service, (such as the name of a new file to be
printed) is required, and they are removed from the queue after they are of no further
use. A queue may be empty, it may have only one entry, or it may have many entries.

Building a Queue

For the data elements to be linked together, each data element must contain two
pointers, called /inks. One of the links contains the effective word address of the
following data element in the queue: the forward link. The other link contains the
effective word address of the preceding data element in the queue: the backward link.

The forward and backward links do more than reference the adjacent queue data
elements. They also indicate the elements that are currently at the head and tail of the
queue. If a data element’s forward link contains a —1, then that data element is at the tail
of the queue. If a data element’s backward link contains a —1, then that data element is
at the head of the queue. Note that a data element containing —1 in both its forward and
backward links is the only data element currently in the queue.

A data element contains user information as well as the forward and backward links.
This user information can either precede or follow the forward and backward links, as
shown in Tables 13.2 and 13.3. The structure and the meaning of the information is
determined by the user.

Position in data element Contents

First double-word Forward link.
Second double-word Backward link.
Next n double-words User information.

Table 13.2 Data element with user data following links

System Control Instructions 123

Position in data element Contents

First n double-words User information.
(n + 1)th double-word Forward link.

(n + 2)th double-word Backward link.

Table 13.3 Data element with user data preceding links

Also, note that the length of the user information in the data elements can vary, since the
links of each data element always reference other links and not user information. The
Search Queue instructions, however, do reference the user information, so make sure
that any programs using these instructions take the length of the user information into
account.

Queue Descriptor

Each queue uses a queue descriptor that indicates the current head and tail of the queue.
A queue descriptor is two 32-bit words. The first double-word contains the address of the
data element that is currently at the head of the queue; the second contains the address
of the data element that is currently at the tail of the queue.

0 31
Address of data element at head of queue

Address of data element at tail of queue

0 31

DG-06762

Figure 13.1 Format of queue descriptor

Setting Up and Modifying a Queue

Examples

To define an empty queue, create a queue descriptor that contains —1 in both of its
pointers. To enqueue a data element into the empty queue, load the address of the data
element into both double-words of the queue descriptor (indicating a one element queue)
and load -1 into the data element’s forward and backward links. To enqueue or dequeue
a data element anywhere in the queue, specify the queue descriptor and the address of
some data element in the queue. The descriptor and address specified acts as a reference
point that the processor uses to enqueue the data element at the right point, or to
dequeue the appropriate data element.

Note that a new one-element queue can be created in one step. To create a one-element
queue, create a queue descriptor that contains the address of a data element in both
double-words. Then load both of the links of the particular data element with —1.

The examples below demonstrate how queues are formed, how enqueuing and dequeuing
works, and how the processor updates the various links and descriptors.

Queue Descriptor of an Empty Queue
Figure 13.2 shows the queue descriptor for an empty queue.

124 System Control Instructions

0 31

DG-06763

Figure 13.2 Queue descriptor for an empty queue

Enqueuing a Data Element into an Empty Queue

The second example enqueues a data element (located at location A) into an empty
queue. (See Figure 13.3.)

Queue
0 31 (0] 31
-1 -~ A
-1 4 A
o] 31
User
information Queue descriptor after
enqueuing a data element
0 31 at location A
Data element at
location A
DG-06931
Figure 13.3

The processor has enqueued data element A into the queue, and updated the queue
descriptor. The descriptor shows that the queue has only one element, A. At location A,
the first word of the data element contains the forward link of —1. The last word contains
the backward link of —1.

Enqueuing a Data Element at the Head of a Queue
The third example enqueues a data element (located at location B) at the head of the
queue before data element A. (See Figure 13.4.)

0 31

Data element \
at location B User
information A

-1

Queue descriptor after
enqueuing a data element at
location B

B

Data element
at location A User

information

DG-06932

Figure 13.4

System Control Instructions 125

After the enqueue, the processor updates the queue descriptor to reference the new head
and tail. It also changes the backward link of data element A to reference the preceding
data element (B). The links of data element B show that it is the head of the queue, and
that data element A follows it.

Enqueuing a Data Element at the Tail of a Queue
The fourth example enques a data element (located at location C) at the tail of the
queue, after data element A. (See Figure 13.5.)

Queue
0 31
~
A
-1
Data element
at location B User
information
B C
Data element
at location A User Queue descriptor after
information enqueuing a data element
at location C
> 3
A
Data element
at location C User
information
N
0 31

DG-06933

Figure 13.5

The —1 in data element B’s backward link shows that B is the head of the queue. The -1
in data element C’s forward link shows that C is the tail of the queue. The queue
descriptor also indicates the new head and tail of the queue.

Dequeueing a Data Element
The last example dequeues data element B. (See Figure 13.6.)

126 System Control Instructions

Data element
at location A

Data element
at location C

DG-06934

C

-1

User
information

-1

A

User
information

\

Queue descriptor after
dequeuing data element
at location B

Figure 13.6

The processor dequeues data element B from the queue and updates the queue descriptor
to show the new head (A). A’s backward link shows that it is the new head. C’s links
remain unchanged, since C is still the tail of the queue, and A is still the following data

entry.

Queue Instructions

The MV /8000 uses the instructions shown in Table 13.4 to manipulate queues. Two of
the instructions enqueue data elements onto queues and one dequeues data elements.

The remaining 32 instructions perform queue searches.

System Control Instructions 127

MNEM

Name

Action

ENQH

ENQT

DEQUE

NBSSS

NBSSC

NBSAS

NBSAC

NBSE

NBSGE

NBSLE

NBSNE

WBSSS

Enqueue towards the head
Enqueue towards the tail

Dequeue a queue data
element

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Places a data element at the beginning of the specified queue.
Places a data element at the end of the specified queue.
Removes a data element from the specified queue.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
and sets some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
and clears some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
and sets all the bits in the word to reflect contents of the mask.

Performs a queue search. The drection of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
and clears all the bits in the word to reflect contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
that contains data equal to the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
that contains data greater than or equal to the contents of the
mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
that contains data less than or equal to the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 16 bits wide. Searches for a data element
that contains data not equal to the contents of the mask.
Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
and sets some of the bits to reflect the contents of the mask.

Table 13.4 Queue instructions

128

System Control Instructions

MNEM

Name

Action

WBSSC

WBSAS

WBSAC

WBSE

WBSGE

WBSLE

WBSNE

WFSSS

WFSSC

WFSAS

WFSAC

WESE

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
and clears some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
and sets all the bits in the word to reflect the contents of the
mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
and clears all the bits in the word to reflect the contents of the
mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
that contains data equal to the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
that contains data greater than or equal to the contents of the
mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
that contains data less than or equal to the contents of the mask.

Performs a queue search. The direction of the search is backwards.
The field to search is 32 bits wide. Searches for a data element
that contains data not equal to the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
and sets some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
and clears some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
and sets all the bits in the word to reflect the contents of the
mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
and clears all the bits in the word to reflect the contents of the
mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
that contains data equal to the contents of the mask.

Queue instructions {(cont.)

System Control Instructions 129

MNEM

Name

Action

WFSGE

WFSLE

WFSNE

NFSSS

NESSC

NFSAS

NFSAC

NFSE

NFSGE

NFSLE

NFSNE

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Search queue

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
that contains data greater than or equal to the contents of the
mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
that contains data less than or equal to the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 32 bits wide. Searches for a data element
that contains data not equal to the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
and sets some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
and clears some of the bits to reflect the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
and sets all the bits in the word to reflect the contents of the
mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
and clears all the bits in the word to reflect the contents of the
mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
that contains data equal to the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
that contains data greater than or equal to the contents of the
mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
that contains data less than or equal to the contents of the mask.

Performs a queue search. The direction of the search is forwards.
The field to search is 16 bits wide. Searches for a data element
that contains data not equal to the contents of the mask.

Queue instructions (cont.)

Chapter 14
Input/Output

The MV /8000 has a comprehensive I/O structure that combines three separate systems
monitored by a central I/O controller. Programmed 1/0O allows the transfer of individual
pieces of data. Data channel I/O allows the transfer of blocks of information between
medium-speed I/O devices and memory. Burst multiplexor channel 1/O is available for
transferring blocks of data quickly between high-speed 1/O devices and memory.

The MV /8000 has built-in I/O devices that provide services to the system. The
programmable interrupt timer allows the generation of interrupts at selected intervals.
The real-time clock provides accurate timing information. The asynchronous line
controller connects the host to the console.

The I/0 System

The MV /8000 has a 6-bit device code corresponding to bits 10-15 in the [/O instruction
format. The devices are connected to the 1/O system in such a way that each device will
only respond to commands sent with its own device code. With a 6-bit device code, 64
devices can be individually controlled. Some of these device codes are reserved for the
processor and certain options, but the rest are available for referencing I1/O devices. The
assembler recognizes mnemonics for those devices assigned a code by Data General. A
complete list of these is provided in Appendix A of this manual.

Programmed I/0

Programmed I/O transfers data one word or part of a word at a time under direct
program control. This type of I/O allows data to be examined piece by piece as it is
transferred.

The MV /8000 executes all C/350 programmed I/O instructions exactly as the ECLIPSE
C/350 does.

Data Channel 1/0

Data channel I/O permits data to be transferred in blocks of words, with program
control necessary only at the start and end of the operation. The transfer is made directly
to or from memory via the system cache; no additional steps are required. Data channel
I/0 is an efficient method of transferring blocks of data between memory and a

132 Input/Output

medium-speed 1/O device.

Data channel transfers are set up by a program that specifies the address of the first
word to transfer and the total number of words to transfer. The program then specifies if
a read or write is to take place. Once the device has these parameters, the transfer takes
place in two phases. In phase 1, the device specifies the address of the word to transfer
and the direction of the transfer. In phase 2, the device transfers the contents of the
specified address. These two phases are repeated until the total number of words have
been transferred.

When a data channel device is ready to send or receive data, it issues a data channel
request. At the beginning of every memory cycle, the I/O channel synchronizes any
requests that are then being made and controls the transfers between the 1/0O bus and
the system cache. When a request is honored, a word is transferred directly between the
device and memory via the data channel.

To map the data channel, use the WLMP instruction. Note that the I/O processor can
change the MV /8000 data channel map without host intervention. For more information,
see Changing the Host Data Channel Map From the IOP in Chapter 15.

Burst Multiplexor 1/0

The burst multiplexor channel transfers blocks of data directly between devices and the
system cache via the BMC bus. A given block of data is transferred in sub-blocks of up
to 256 words. Like the data channel, the BMC transfers are set up by a program that
specifies the address of the first word in the block to transfer, and the total number of
words in the block. The program then specifies if a read or write is to take place. Once
the device has these parameters, the transfer of the sub-blocks takes place in two phases.
In phase 1, the device specifies the starting address of the sub-block to transfer, the
number of words in the sub-block, and the direction of the transfer. In phase 2, the
device transfers the sub-block. These two phases are repeated until all of the sub-blocks
have been transferred.

The burst multiplexor channel has two address modes. In unmapped mode, the device
transmits a 21-bit word address to the BMC. The BMC passes this address directly to
the system cache.

In mapped mode, the device sends a 20-bit word address to the BMC. The BMC uses its
map tables to convert the 10 high-order bits of the logical address to a 14-bit physical
page number. The BMC then concatenates this page number to the 10 low-order bits of
the logical address to form a physical address.

Note that the CIO, CIOI, and all BMC programmed I/O instructions specify an 11-bit
physical page address. The WLMP instruction specifies a 14-bit physical page address. It
is convenient to use WLMP when dealing with a very large number of physical pages,
although it can be used even if the system contains less than 14 bits worth of pages.

Busy and Done Flags

1/0 devices are controlled by manipulating their Busy and Done flags. However, some
devices require that several programmed 1/O instructions are properly set up before the
devices can be started with the flags. The value of these flags can be changed by
appending optional flag control command mnemonics to the instruction. When Busy and
Done are both 0, the device is idle. To start a device, the program sets Busy to 1 and
Done to 0. When the device has finished its operation and is ready to start another, it sets

Input/Output 133

Busy to 0 and Done to 1.

Interrupt On Flag

The processor uses the Interrupt On (ION) flag to control the status of the interrupt
system. If the flag is set to 1, the processor responds to and services interrupts. If the flag
is 0, the processor ignores all incoming interrupt requests and does not service them.

Priority Mask

As mentioned above, the MV /8000 uses a priority-based interrupt system. To control
the priorities, the processor uses a priority mask. Each I/O device is associated to one of
16 bits in the priority mask. (Note that more than one device can be associated with each
bit.) When a bit in the priority mask is 1, the devices associated with that bit are
inhibited from making an interrupt request, even if their Busy flags are 0 and their Done
flags are 1. Because the mask can be changed in a program (see the Mask out instruction),
different devices can be inhibited at different times according to the need.

I/0 Instructions

Some I/0 instructions have special mnemonics that can be used in place of the standard
mnemonics. Note that the mnemonics for controlling the state of flags cannot be
appended to these special instruction mnemonics. For example, to alter the state of the
ION flag while performing a Mask Out instruction, use the full mnemonic:

DOBf ac,CPU
instead of the special mnemonic:
MSKO ac
This special mnemonic sets bits 8 and 9 to 00.

Table 14.1 describes the MV /8000-specific instructions, and Table 14.2 describes the

C/350 I/O instructions.
MNEM Name Action
CIO Command 1/0 Performs a read or write data operation on the 1/O system bus.
CIOI Command I/0 Immediate Performs a read or write data operation on the 1/O system bus.
PIO Program 1/0 out A Performs a specified operation on the 1/0 system bus.
WLMP Wide Load Map Loads information into the the specified map slots.

Table 14.1 MV/8000-specific 1/0 instructions

134 Input/Output

MNEM Name Action

DIA Data in A Transfers data from the A buffer of an I/O device to an
accumulator.

DIB Data in B Transfers data from the B buffer of an I/O device to an
accumulator.

DIC Data in C Transfers data from the C buffer of an 1/0 device to an
accumulator.

DOA Data out A Transfers data from an accumulator to the A buffer of an 1/0
device.

DOB Data out B Transfers data from an accumulator to the B buffer of an I/O
device.

DOC Data out C Transfers data from an accumulator to the C buffer of an 1/O
device.

HALT Halt Stops the processor.

(DOC, CPU)

INTA Interrupt acknowledge Returns the device code of an interrupting device.

(DIB,CPU)

INTDS Interrupt disable Sets the Interrupt On flag to O.

(NIOC,CPU)

INTEN Interrupt enable Sets the Interrupt On flag to 1.

(NIOS,CPU)

IORST Reset Sets all Busy and Done flags and

(DIC,CPU the priority mask to O.

MSKO Mask out Changes the priority mask.

(DOB,CPU

NIO No 1/0 transfer Changes a flag without causing any other effect.

READS Read switches Places the contents of the console data switches into an

(DIA,CPU) accumulator.

SKP 1/0 skip Tests a flag and skips the next sequential word if the test
condition is true.

SKP, CPU CPU skip Tests the Interrupt On or Power Fail flag and skips the next
sequential word if the test condition is true.

VCT Vector on interrupting device | Identifies highest priority interrupt and passes control through

3 Table 1o a devite handier.
Table 14.2 C/350 1/0 instructions

Interrupts

When an interrupt occurs, the processor disables further interrupts by setting the ION
flag to 0. The actions that follow depend on whether the ATU is enabled.

ATU Enabled/Disabled

The flow chart in Figure 14.1 summarizes the interrupt sequence.

Interrupt Sequence, ATU Disabled

When the ATU is not enabled, the processor checks if the C/350 MAP is enabled or
disabled. If the MAP is enabled, the narrow interrupt handler services the interrupt. The
processor treats page zero as a C/350 page zero. Note that MV /8000 programs are not
executable when the C/350 MAP is enabled.

If the C/350 MAP is disabled, then the processor is operating in physical mode, and the
interrupt occurred during a MV /8000 program. The processor fetches the address of the
interrupt handler and prepares to resolve any indirection.

Input/Output 135

Interrupt Sequence, ATU Enabled

When the ATU is enabled, the processor fetches the contents of logical location 1 in
page zero of Ring 0. This location contains the address of the interrupt handler. The
processor next determines the current segment of execution. If it is not Segment 0, the
processor performs a ring crossing to Segment 0 (see Figure 14.1). Next, the interrupt
handler address must be resolved.

Address Resolution
If the fetched address of the interrupt handler is indirect, the processor resolves it to a
final direct address. This address is used to reference the first instruction of the handler.
Handler Identification
The first instruction of the interrupt handler will be one of three types:

¢ An XVCT instruction,
* Any instruction whose bit 0 is 1 and bits 12—15 are 1001 (type 1),
e Any other instruction (type 2).

Type 1 instructions are MV /8000-specific instructions. Type 2 instructions are C/350
instructions, WBR, and some memory to accumulator instructions.

C/350 Interrupt

If the first instruction of the handler is a type 2 instruction, the processor stores the
contents of the PC in location 0 in page zero of Segment 0. The PC contains the address
of the next instruction in the program. After storing the PC, the processor jumps to the
narrow handler.

Immediate Interrupt

If the first instruction of the handler is a type 1 instruction, then the processor executes
an immediate interrupt. The processor loads the contents of the PC into logical locations
2 and 3 of Segment 0. The PC contains the address of the next instruction in the
program. The processor then jumps to the interrupt handler.

136 Input/Output
Interrupt
occurs
Set ION to O
enabled?
Fetch pointer to
interrupt NOT AN
handler from MV/8000
location 1, page zero, PROGRAM
Ri
ing 0 Perform standard
C/350 interrupt
(Jump @ 1)
Fetch pointer to
Current .
ing = Ri interrupt handler
rng 'ng from physical
location 1
Store current stack
register values in Yes
current ring’s page
zero locations
Load Segment O
stack location
values into stack
regs.
Cross to
Ring O
| 1.
Resolve indirect
chain (if neces-
sary). Examine
first word of
interrupt handler
r Type 2 instructions Y Type 1 instruction ’l XvCT
Store PC in Store PC in Fetch level
location O, page locations 2-3 of count from
zero, Segment O Segment O location O, page zero,
I Segment O
Jump @ 1 Jump @ 1 I >
DG-06811

Figure 14.1

Input/Qutput

137

Level count

=07

Base level

interrupt Yes

Increment level
count

Save location 144
and 4 stack
registers internally

l

Load 144 and stack
registers with contents
of vector’'s stack
locations

Push saved data
onto new vector
stack

Push wide
return block onto
new vector stack

(-

Intermediate
level interrupt

Increment level
count, store in
location O of
Ring O

Push wide
return block onto
Segment O stack

-

Perform interrupt
to set device
code

Calculate "E”
from displace-
ment of

XVCT instruction

I

Use "E’’ as base
address of vector
table

Use device code
as an index
into vector table

Bits 1-31 of
referenced table
entry point to

g

Load bits 1-31
of DCT entry
into AC2

-

Load result
of OR into
"ACO

l

Store bits 16-31 of]
ACO into current
mask word of
vector table

Do MSKO with
bits 16-31 of ACO.
Enable interrupts

T
!

Load zero-extended
device code into

AC1.
|

Load PC with
first two words
of DCT.

|

Load PSR
with word 4

of DCT.

Stack
overflow?

|

Use current

mask at VCT table
base address-2 to
form mask word:
Bits 0-15=0

Bits 16-31= Mask

Transfer control to
stack fault handler
via location 14g

|

Fetch and execute
instruction
pointed to by PC

Fetch and execute
first instruction

of stack fault
handler

|

Push double-
word from previous
step onto stack

|

OR double-word
with contents of

location 2-3 of
DCT

a DCT

L

Y

Additional
interrupts can
now occur

Vectored Interrupt

If the first instruction is an XVCT instruction, then the processor executes a vectored
interrupt. The processor fetches the contents of location 0 of Segment 0. If the contents

are equal to 0, then the processor will begin base level interrupt processing. If the

contents are non-zero, then the processor will begin intermediate level processing. The

138

Input/Qutput

processor increments the contents by one, then stores them back into location 0 of
Segment 0.

NOTE: Software, as part of its interrupt return program, decrements location 0 by 1. When
the XVCT instruction is executed, locations 2 and 3 are not updated with the value of the
program counter pointing to the next instruction.

Base-Level Interrupt Processing
The initial actions of base-level processing depend on whether the current segment is 0.
Later actions for Segment 0 and non Segment 0 processing are the same.

Segment 0, Initial Processing

When the current segment is Segment 0, the processor saves the contents of location 144
(address of the stack fault handler) and the four stack registers in internal processor
state. Execution continues with the common sequence.

Outer Segment, Initial Processing

When the current segment is not Segment 0, the processor restores WSP and WFP to
their locations in page zero of the current segment. (The register values of WSB and
WSL are assumed to be the same as the page zero, current segment values of WSB and
WSL.) Next, the processor performs a ring crossing to Segment 0. It then saves the
contents of location 14g (address of the stack fault handler) and the four stack registers
in internal processor state. Execution continues with the common sequence.

Common Sequence
The processor loads the five stack parameters (location 14g and the four stack registers)

from the vector stack locations. The locations and their contents are shown in Table
14.3.

Ring 0 Contents Moved into
Location
4 Vector stack pointer WSP
4 Vector stack pointer WFP
4 Vector stack pointer WSB
6 Vector stack limit WSL
7 Vector stack fault address Location 14g

Table 14.3 Vector stack locations and contents

NOTE: The processor interprets the contents of locations 4 and 6 as 16-bit word offsets. This
means that the vector stack is initially limited to 128 Kbytes.

The processor zero extends the contents of vector stack pointer and limit locations before
loading them into the appropriate registers. This enables stack underflow and overflow.

After loading the vector stack information, the processor pushes the old stack parameters
that were stored in internal processor state onto the new vector stack. It next pushes a
wide return block onto the vector stack. Execution continues with the final sequence.

Intermediate Level Interrupt Processing

Intermediate level processing occurs when the contents of location 0 in page zero of
Segment 0 are nonzero. As in base-level processing, the initial action depend on whether
the current segment is Segment 0 or not.

Input/Output 139

Segment 0 Processing
When the current segment is Segment 0, the processor pushes a wide return block onto

Outer Segment Processing

When the current segment is not Segment 0, the processor restores WSP and WFP to
their locations in page zero of the current segment. The values of WSL and WSB in the
register set and those in the current segment are identical. Next, the processor performs
a ring crossing to Segment 0, where it loads the stack registers with the contents of the
appropriate page zero locations. The processor pushes a wide return block and continues
execution with the final sequence.

Final Sequence
All interrupts, whether base-level or intermediate, execute the same sequence of actions
to conclude interrupt service. Figure 14.2 will help explain this sequence.

DCT of
Vector table interrupting device
0 3 0 31] 31
Current .
wide mask O's » Interrupt Routine address
Vector Data for mask
tavle Data for PSR
base
address
plus
device
code
DCT address - dev.n |
XVCT I @ disp |

DG-06268

Figure 14.2

The processor calculates the effective address (E) from the displacement of the XVCT
instruction. E addresses the base of a vector table. This table contains 64 double-word
entries, one for each device. The device code of the interrupting device specifies a
double-word offset from the base of the vector table. The processor adds this offset to the
effective address E to produce the address of some entry in the vector table. Bits 1-31 of
this vector table entry contain a pointer to the interrupting device’s device control table
(DCT). The processor loads this value into AC2.

The processor next pushes a double-word onto the current stack. Bits 0—15 of the
double-word contain 0. Bits 16-31 contain the contents of the current mask (found in the
word preceding the start of the vector table). The processor then loads ACO with the
logical OR of the double-word just pushed and the double-word contained in words 2-3
of the DCT.

After loading ACO, the processor loads the current mask in the vector table with bits
16-31 of ACO. Once the new mask is in place, the processor does a maskout from bits
16-31 of ACO, enables interrupts, and loads AC1 with the device code of the interrupting
device. The device code is a 6-bit value, and the processor zero extends it to 32 bits
before loading it into ACI.

140 Input/Output

The processor loads the PC with the contents of the first two words of the DCT. These
two words contains the address of the device interrupt routine. Then, using the PSR
value loaded into word 4 of the DCT, the processor initializes the OVK, OVR and IRES
flags.

Once all registers are loaded, the processor checks for stack overflow. If overflow
occurred, control transfers to the stack fault handler (the vector stack and vector stack
fault handler are already initialized). Note that the first instruction of the stack fault
handler will execute before any other interrupts will be honored. If no overflow occurred,
execution continues with the next sequential instruction addressed by the PC.

NOTE: The addresses contained in the vector table and the DCT are not restricted to Segment
0. References to other segments must conform, however, to ring crossing rules.

Interrupting An Instruction

When an interrupt is honored, program execution stops. How the processor halts program
execution to service the interrupt depends upon the instruction currently executing
within the program. The currently executing instruction will be one of three types:

¢ A non-interruptable instruction,
e A restartable instruction,
¢ A resumable instruction.

Non-interruptable Instructions

If an instruction is non-interruptable, the processor finishes executing that instruction
before it services the interrupt. Examples of non-interruptable instructions are 4dd,
Load Accumulator, and Complement.

Note that the processor does not set bit 2 of the PSR to 1 if an interrupt occurs during a
non-interruptable instruction.

Restartable Instructions

If an instruction is restartable, the processor services the interrupt before the instruction
finishes. When an interrupt occurs, the processor saves the address of the interrupted
instruction in the PC, and then services the interrupt. When servicing is complete, the
processor can restart the interrupted instruction in one of two ways.

If the parameters of the restartable instruction are unchanged, then the processor
restarts the instruction from the beginning. That is, if an interrupt occurs during a
Floating Point Divide instruction, the processor would restart the instruction from the
beginning because there has been no change in the accumulators containing the operands.

If, however, the parameters of the interrupted instruction have been updated, the
processor restarts execution with the updated values. Block Move is an example of this
type of instruction. This instruction uses pointers to source and destination locations and
updates them after each one-word move. After servicing the interrupt, the processor
restarts execution with the current values of the source and destination pointers, not the
original values.

Note that the processor does not set bit 2 of the PSR if an interrupt occurs during a
restartable instruction.

Input/Output 141

Resumable Instructions

As with restartable instructions, the processor services an interrupt before finishing a
resumable instruction. The processor must save a copy of internal processor state,
however, if it is to restart a resumable instruction correctly. The following paragraphs
show what happens when an interrupt occurs during execution of a resumable instruction.

Before interrupting resumable instructions, ensure that:

e A stack has been defined;

* The interrupt handler uses WPOPB, WRSTR, WRTN or LPSR to return to the
interrupted program. These instructions restore bit 2 of the PSR when interrupt
service completes.

When an interrupt occurs, the processor pushes a copy of all necessary processor state
information (the micro state block) onto the current stack. The information needed
depends upon the interrupted instruction. The processor then sets bit 2 of the PSR to 1.

After pushing the block, the processor checks for stack overflow. If it detects a stack
overflow, the processor services the fault after resuming the interrupted program. In
other words, the processor services the interrupt before servicing the stack fault.

After servicing the interrupt, the processor restores bit 2 of the PSR using the appropriate
return instruction, then tests bit 2. If bit 2 contains a 1, the processor examines the micro
state block on the current wide stack to determine the type of microinterrupt.

If the micro state block is valid, the processor resumes executing the interrupted
instruction. If the block is invalid, actions depend on the interrupted instruction:

* An MV/8000-specific instruction causes a a protection fault to occur. AC1 will
contain the code 12 to indicate the invalid micro state block.

¢ A C/350 floating point instruction causes a floating point fault to occur. The processor
sets bit 9 of the FPSR to 1 to indicate the invalid micro state block.

¢ A C/350 commercial instruction causes a narrow commercial fault to occur. AC1 will
contain the code S to indicate the invalid micro state block.

NOTE: When an interrupt occurs during a ring crossing, the saved PC points to the first
instruction of the called procedure.

Table 14.4 shows how the processor sets bit 2 of the PSR and bit 9 of the FPSR when an
interrupt occurs during execution of a resumable instruction.

Instruction PSR bit 2 FPSR bit 9

C/350 Unchanged 1

MV/8000-specific | Function of interrupted
instruction

Table 14.4 State of PSR bit 2 and FPSR bit 9

—_

Standard I1/0 Devices

The MV /8000 contains three standard I/O devices: the Programmable Interval Timer
(PIT), the Real-Time Clock (RTC), and the Asynchronous Line Controller (ALC) .

142 Input/Output

Programmable Interval Timer

The programmable interval timer is a CPU-independent time base which can be
programmed to initiate program interrupts at fixed intervals ranging from 100
microseconds to 6.5536 seconds in increments of 100 microseconds. It can also be
sampled with I/O instructions at any point in its cycle to determine the time until the
next interrupt. The PIT is used in multiprogram operating systems to allocate CPU time
to different programs on a “time slice” basis.

The PIT consists of a 16-bit initial count register and a 16-bit counter. During operation,
the PIT counter is loaded with the contents of the initial count register. It is then
incremented at 100 microsecond intervals until the count reaches 177777g. The PIT
then initiates a program interrupt request. At the end of the next 100 microsecond
interval, it is again loaded with the contents of the initial count register and the counting
process is repeated. A Busy flag and a Done flag control the operation of the device.

Table 14.5 lists the instructions used to program the PIT.

MNEM Name Action

DOA PIT Specify initial count Selects the value which will be loaded into the counter each time
the PIT is started or overflows.

DIA PIT Read count Reads the current value of the PIT counter.

Table 14.5 PIT instructions

Programming Notes

In order to obtain a particular time interval between program interrupt requests, load
the two’s complement of the number of 100 microsecond intervals between interrupt
requests into the initial count register. When you first start the PIT, the interval to the
first program interrupt request may be anywhere from 0 to 6.5536 seconds. After the
first interrupt request, the time between program interrupt requests will be the value
selected by the contents of the initial count register.

Real-Time Clock

The real-time clock generates low frequency 1/O interrupts for performing time
calculations independent of CPU timing. These interrupts may be used as a time base in
programs which require it. The frequency of the clock is program selectable to a.c. line

frequency, 10Hz, 100Hz, and 1000Hz. A Busy and a Done flag control the operation of
the device.

One instruction programs the real time clock, as shown in Table 14.6.

MNEM Name Action

DOA RTC Select RTC frequency Selects the frequency of real time clock interrrupts.

Table 14.6 RTC instruction

Input/Output 143

Programming Notes

After first starting the real-time clock, the first program interrupt request can come at
any time up to the selected clock period. After the first interrupt has occurred, succeeding
interrupts come at the clock frequency, provided that the program always sets Busy to 1
before the clock period expires. After power up or IORST, the clock is set to the line
frequency. After power up, the line frequency pulses are available immediately, but five
seconds must elapse before a steady pulse train is available from the clock for other
frequencies.

Asynchronous Line Controller

The Asynchronous Line Controller (ALC) is the communication link between the
MYV /8000 computer and the system’s master terminal. It supports asynchronous
communication at selected rates from 110 to 9600 baud in 7-bit codes with program
generated parity, or 8-bit codes with no parity. One or two stop bits may be used with
either format.

Because the asynchronous communications input and output can generate program
interrupts independently, each has its own device code and is controlled by its own set of
Busy and Done flags. The ALC is program compatible with Data General’s Model 4010
controller.

A single instruction (shown in Table 14.7) programs the asynchronous line input (ALI).

MNEM Name Action

DIA ALI Read input buffer Reads a character from the input buffer.

Table 14.7 ALI instruction

A single instruction (shown in Table 14.8) programs the asynchronous line output

(ALO).
MNEM Name Action
DOA ALO Load output buffer Places a character in the output buffer.

Table 14.8 ALO instruction

Programming Notes

The ALC is set up to transmit and receive 8-bit characters without parity checking. 7-bit
characters can be sent or received with even, odd, or mark parity under program control
by using the high order bit in the 8-bit character (bit 8 in the accumulator) as a parity
bit. On transmission, the program which drives the asynchronous line controller calculates
and inserts the correct parity bit. On reception, the program calculates and checks parity
on the received character.

There are timing constraints on the receive portion of the controller. As each character is
received, it is placed in an input character buffer, the Done flag is set to 1, and the Busy
flag is set to 0. If the program controlling the receiver does not transfer the character
before the next character is received, the contents of the input character buffer will be
overwritten and the previous character will be lost. Typically, the inter-character time at

144 Input/Qutput

110 baud is 100 milliseconds and at 9600 baud the inter-character time is approximately
104 microseconds.

Chapter 15
The I/0 Processor

The IOP is a 16-bit ECLIPSE processor that resides within the cabinet of the MV /8000.
The IOP features standard facilities such as stack, standard /O bus, C/350 instruction
set with character instructions, priority interrupt system, etc. The IOP handles
asynchronous communications support. It is not user programmable.

Forms of Host-IOP Communication

The MAP

Communication between the MV /8000 processor and the IOP is necessary to coordinate
their operation. For example, the IOP must be able to signal the host when it has
completed a task or needs more information. The IOP MAP and two groups of special
instructions provide the MV /8000 and the IOP with the necessary ability to communicate.

The IOP hardware MAP allows the IOP to communicate directly with host memory.
The MAP interprets memory references made by the IOP and determines whether the
reference is to a local IOP memory location or a host memory location. When the
reference is to host memory, the MAP sends the reference along the host data channel
and through the host map to the correct memory location. This means that the IOP has
direct access to information stored in the host.

Communication Instructions

The host uses more indirect means to manipulate the IOP. A group of special instructions
allow the host to access IOP memory in much the same way as the control panel switches
on a traditional machine (see Table 15.1). With these instructions the host can load the
IOP map, check the map status, and manipulate the contents of various IOP registers.
This allows the host to oversee the general operation of the IOP.

The IOP also has a special group of instructions that allow it to modify some aspects of
the host’s operation (see Table 15.2). While they do not give the IOP supervisory control
over the host, they do allow the IOP to change the host data channel map and determine
where information will be loaded into host memory.

146 The /O Processor

Each of the host’s and the IOP’s special instructions contains an optional group of
mnemonics that can be used to manipulate host and IOP flags. These flags are the Busy,
Done, and Interrupt Request flags; they are used to indicate the state of the processors.
By setting some of its flags, the host or the IOP can signal the continuation or completion
of a task or request an interrupt.

Elements of the IOP

The IOP includes the following:

e A narrow stack

e Standard C/350 instruction set

e Data General’s standard data channel for medium- to high-speed devices

e Programmed I/O with priority interrupt handling and vectoring capability
» Extended operation feature

e Arithmetic logic unit

IOP Memories

The IOP contains 64 Kbytes of local semiconductor memory. It is not expandable. The
word length is 16 bits. The address range is from 0 to 77777g.

MAP

The IOP MAP can map 2 Kbyte pages of IOP address space into either IOP local
memory or host memory. To do this, the MAP contains two sets of pointers for [OP data
channel and programmed memory references. Each set contains one pointer for each
page. When either type of memory reference occurs, the five most significant bits of the
logical address select a 1-bit pointer from the MAP. This pointer determines if the
address is to local memory or host memory. In references to local memory, the unaltered
logical address references some local memory location. In references to host memory, the
address is sent across the host data channel to the host map. The host map interprets the
physical location of the address sent by the MAP.

User and Data Channel Maps

The IOP has both a user map and data channel map supported on its own I/O bus. The
IOP uses the IOP data channel map when transferring data to IOP I/O devices. The
IOP uses the host data channel and host data channel maps when referencing host
memory.

The 1/0 Processor

147

op
The iOP has 64 Kbytes
10P of local memory. The
IOP local IOP MAP permits pages
memory of the I0Ps logical
address space to be
declared part of local
or host memory.
Host Host
DCH map memory
For IOP references to The host may have
host memory, the up to 2 Mbytes of
physical pages are

selected by one of
the host’s data
channel maps.

main memory. The
host cannot
reference the 10P
local memory at all.

DG-04719

Figure 15.1

Parity Generator

The IOP parity generator provides a parity bit for every word written into IOP local
memory. To enable parity checking for IOP local memory, use the Read Map Status
and Parity Control instruction. This instruction sets the Parity Enable bit (bit 4) in the
map status and parity control register. Detection of an error resets the IOP and its
devices and sets the host interrupt request flag.

Host-1OP Interface

The host—IOP interface is a group of registers in the IOP that function as a
communications link between the IOP and the host:

*» The registers act as the console of the IOP. They are used to examine and modify the
contents of IOP memory, step through the execution of a program, and other similar
operations.

* The registers can be used by the host to control and monitor the IOP. The host does
this by reading information from, or writing information to, these registers.

Interface Elements

A description of the interface’s main elements and the host instructions that access them
is given below. Unless otherwise specified, the registers are host-accessible via
programmed I/O only.

Console Switch Register
This register takes the place of the data switches on a standard console. Load this
register from the host using a Load Console Switch Register instruction.

Console Function Register
This register takes the place of the function switches on a standard console. Load this
register using a Load Console Function Register instruction.

148 The /O Processor

Address Register
This register holds the address of the location last referenced by the IOP. Use the Read
Address Register to examine the contents of this register.

PC Save Register
Each time the IOP halts, the value of the PC is stored in this register. Use the Read PC
Save Register instruction to examine the contents of this register.

Console Register
This register serves the same purpose as the data lights on a standard console. Use the
Read Console Buffer instruction to examine the contents of this register.

Cross Interrupts

When the IOP needs information from the host, it signals the host for an interrupt by
setting the host’s Interrupt Request flag. The host checks this flag for interrupts at the
end of each memory cycle. If an interrupt is pending, then the host halts its program
execution long enough to service the interrupt and set its Interrupt Request flag to 0.

Similarly, when the host needs information from the IOP, it signals the IOP for an
interrupt by setting the IOP’s Interrupt Request flag.

Setting the Interrupt Request Flags

To set the Interrupt Request flags, use the appropriate flag control command appended
to the mnemonic of one of the host 1/O instructions or one of the IOP 1/0O instructions.
The specific ways to set the Interrupt Request flags are described below.

The host can set the IOP’s Interrupt Request flag by issuing an S flag control command
to the IOP device code. This can be cleared by issuing a C flag control command from
the IOP to device code 4.

The IOP can set the host’s Interrupt Request flag by issuing an S flag control command
to device code 4. This can be cleared by issuing a C flag control command from the host
to the IOP device code. Note that a parity error in IOP local memory will also cause a
host interrupt and IOP system reset. This interrupt can be cleared by issuing a P flag

control command from the host to the IOP.

The methods described above will set other flags at the same time they set the Interrupt
Request flags. These other flags are listed below, with tables of the flag control commands
and their actions.

Busy and Done Flags

Both the host and the IOP have a Busy flag and a Done flag to indicate the state of the
processor. The IOP’s Busy and Done flags are in the host; the host’s Busy and Done flags
are in the IOP. Setting the IOP’s Done flag to 1 causes an interrupt in the host. Setting
the host’s Busy flag to 1 will cause an interrupt in the IOP. The IOP’s Busy flag is set to
1 whenever the IOP is running.

The 1/O Processor 149

Parity Error Flag
The IOP parity generator sets this flag to 1 when it finds a parity error. If the IOP does

not mask out parity errors, this flag generates a host interrupt when set to 1.

Host-IOP Communications Instructions

Table 15.1 lists the instructions used by the host to communicate with the IOP.

MNEM Name Action
DIA IOP Read PC save register Loads the contents of the IOP PC save register into an
accumulator.
DIB IOP Read console buffer Loads the contents of the IOP console buffer into an accumulator.
DIC 10P Read address buffer Loads the contents of the IOP address buffer into an accumulator.
DOA 10P Control console function Stores the contents of an accumulator into the IOP console
register function register.
DOB I0P Control switch register Stores the contents of an accumulator into the IOP switch register.
@

Table 15.1 Host communications instructions

The following flag control commands can be used with the host communications
instructions:

f=S Sets the host Busy and the IOP Interrupt Request flags to 1
f=c
/=P Sets the IOP Parity Error and host Interrupt Request flags to 0

IORST Sets the IOP Done flag, host Interrupt Request flag and host interrupt mask bit
to 0; also resets the IOP processor and its I/O devices

NOTE: The C flag control command does not clear a host interrupt caused by an IOP parity
error. The P flag control command does not clear a host interrupt caused by the IOP Done

flag.
Table 15.2 lists the instructions used by the IOP to communicate with the host.

Sets the IOP Done and host Interrupt Request flags to 0

MNEM Name Action

Loads the map status and parity control bits and MAP host/local
flag into an accumulator.

DIA IOPI Read map status

DOA IOPI Control map and parity Stores the contents of an accumulator into the map status and
parity control register.
LMP Load map Loads a number of map entries from a table in memory to the

IOP MAP.

Table 15.2 IOP communications instructions

The following flag control commands can be used with the IOP instructions:
/=S Sets the IOP Done and host Interrupt Request flags to 1

f=c
f=P

Sets the host Busy and IOP Interrupt Request flags to 0
Sets the host Done flag to 0

150 The |/O Processor

IORST Sets bits 2-4, 14, and 15 of the map status and parity control register, host
Done flag, IOP Interrupt Request flag, host Busy flag, and IOP interrupt mask
bits to 0

Programming Examples

Example 1

The following two programming examples illustrate host-IOP communications. The
first example shows how to load data into the IOP. The second example is more complex;
it shows how to start and load the IOP.

The IOP instructions place data in [OP memory by using the IOP console registers. To
place a word of data into an IOP local memory location, first load the IOP address
receiving the data into the switch register. Then specify the Examine function by loading
the function register with the numerical representation of Examine. Next, load the data
value into the switch register, and load ‘the numerical representation of the Deposit
function into the function register.

The following program uses this method of loading data into the IOP. See the IOP
Instruction Dictionary (Chapter 18) for a discussion of the host instructions plus a table
of numerical representations of the functions.

The 1/O Processor 151

Example 2

; Previous part of program.

; This part of the program loads two
; words of data from the host into IOP
; locations 100 and 101.

CO: 0 ; Constant O.
C100: 100 ; This is the address of the |IOP location
; that will receive the first data word.
EX: 050000 ; Code for the Examine function.
DP: 040000 ; Code for the Deposit function.
DN: 044000 ; Code for the Deposit Next function.
DATA: LDA 1,C0 ; These are the two words to be
STA 1,STR ; loaded into the I0P.
LSTART: LDA 0,C100
DOB 0,I0P ; Put address of IOP location in data
; switches.
LDA 1,EX
DOA 1,l10P ; Load console function register with code
; of Examine function.
LDA 0,DATA
DOB 0,ioP ; Put first data word in data switches.
LDA 1,DP
DOA 1,I0P ; Load console function register with
; code of Deposit function.
LDA O0,DATA+1
DOB 0,I0P ; Put second data word into data switches.
LDA 1,DN
DOA 1,10P ; Load console function register with code

; of deposit next function and deposit
; next word into location 101.

; Rest of program.

Example 1

This example shows how to start the IOP. The program below is put into host memory,
starting at location 30. It loads a small bootstrap program and map data into IOP
locations 0-53 via the IOP console registers. It then transfers control to bootstrap which
remaps the IOP and, using the BLM instruction, transfers the contents of 8K of host
memory locations starting at location 40000 to the first 8K of IOP memory.

152 The |/O Processor

:This program demonstrates the use of the
host/IOP communications facilities. The host
program places a 43-word bootstrap program i
the IOP via the console functions and starts the
I0P. Using its mapping capability, the IOP then
moves 8K words into its local memory from host
memory.

TITL START

TXTM 1
; ACO holds switch data for IOP
: AC1 holds function data for IOP
; AC2 holds array address for IOP boot
: AC3 unused

START: INTDS

SuUB 0,0

DOB 0,i10p : Deposit zero in data switches (this ; will be the
starting location of the
: boot program in the 1OP)

LDA 1,EX

DOA 1,I0P ; Specify the examine function

LDA 2,.A

LDA 0,0,2 ; Address of IOP bootstrap in host

DOB 0,I0P : deposit word 1 of boot in switches

LDA 1,DP

DOA 1,I0P . Specify deposit function

INC 2,2

LDA 1,DN : Load deposit next function in AC1 for loop

LOOP: LDA 0,0,2

DOB 0,10P : Deposit next word of boot in switch

DOA 1,I0P ; Specify deposit next function

INC 2,2

DSz CNT ; Test for last word of IOP boot

JMP LOOP

LDA 0,C40 : Load the number of words loaded in {OP LMP

DOB 0,I0P ; Deposit number of words in switches

LDA 1,DP1

DOA 1,10P : Specify deposit into AC1 function

LDA 0.IMAP

DOB 0,I0P : Load IOP map data address into switches

LDA 1,DP2

DOA 1,I0P ; Specify deposit into AC2 function

Example 2

The |/O Processor

153

CNT:
EX:
DP:
DN:
STR:
C40:
DP1:
DP2:
IMAP:

DONE:

SuB
DOB

LDA
DOA
A+1
54
050000
040000
044000
060000
40
024000
030000
10

(A+1)
DiCcC
LMP
LDA
DOA
LDA
LDA
LDA
BLM

0,0
0.,iop

1,STR
1,10P

0,CPU

0,MAPE
0,I0PI
1.K8
2,ACS
3,ACD

’

’

’

i
'
.
,
’
‘
’
1
.
’
v
.
’
’
’
’

’

.

.
.
’
.

‘

; via the IOP console functions. The

; IOP then remaps itself so that its

; upper 16K address space is mapped into
; the host. The IOP then moves 8K of

. data from the host to its lower 8K,

; overwriting the bootstrap.

Deposit zero into switches (where to

start execution in iOP)

Specify start function

Number of words in OP boot
Examine function

Deposit function

Deposit next function

Start function

Number of words in IOP LMP
Deposit in AC1 function

Deposit in AC2 function
address of IOP MAP data

This bootstrap is loaded into the
IOP by the preceding host program

Reset 10P
Load the map

Load map status

Number of words to move in BLM
Location in Host of data to be moved
Location in I0P to put data

Move the data

Example 2, continued

154 The 1/O Processor

MDATA: 000000 ; The IOP map data
002000
004000
006000
010000
012000
014000
016000
020000
022000
024000
026000
030000
032000
034000
036000
140000
142000
144000
146000
150000
152000
154000
156000
160000
162000
164000
166000
170000
172000
174000
176000
ACD: o] ; Destination of IOP BLM.
ACS: 40000 ; Source of IOP BLM.
K8: 17777 - Number of words moved by BLM.
MAPE: 100001
.LoC 040000
: This area of host memory contains the
: 8K of data to be moved into the IOP.
; After control is transferred to the
: IOP the programs contained in this
; data will begin execution.
.END START

Example 2, continued

Changing the Host Data Channel Map from the IOP

When the IOP references host memory, the references must travel across the host data
channel and through the host data channel map to the appropriate location. Generally,
the TIOP uses the same host data channel map for all the references to host memory

during a given program. The host data channel map, however, may change so that when
the IOP makes its next reference the wrong map is loaded. This means that a new host

The 1/0 Processor 155

data channel map must be loaded before the reference from the IOP can be serviced.
The MV/8000 IOP is able to change the host data channel map to the desired map
whenever it references host memory.

To load a new host data channel map from the IOP, set the DCH MAP LOAD flag to one.
This indicates that a host data channel map slot is to be loaded with a new value. Bit 7
of the IOP’s map status and parity control register controls the value of this flag. The
format of this register is shown below.

MS LOGICAL PAGE 0 | DML DS | DL | uL SEL DCH
) 1)) "5) 7 8 9 10 11 12 7 13 1 14
BITS |NAME CONTENTS or FUNCTION
0 MS Permit loading of map status (bits 12-15).
1-5 LOGICAL Selects logical page.
6 PCL Parity control load; must be 0.
7 DML Set DCH MAP LOAD flag.
8 - Reserved for future use.
9 DS Suppress loading of DCH map select (bits 12,13).
10 DL Suppress loading of DCH mode (bit 14).
1 UL Suppress loading of USER mode (bit 15).
12,13 |SEL Selects host data channel map for references to host memory:
00 DCH A
01 DCHB
10DCHC
11 DCHD
14 DCH DCH mode on.
15 u USER mode on.

When a DOA/f] ac,4 instruction is issued from the IOP, and bit 7 contains a 1, then the
processor sets DCH MAP LOAD to 1. When this instruction is issued and bit 7 is 0, the
processor sets DCH MAP LOAD to 0. Note that an IOP system reset or an IOP I/O reset
will set DCH MAP LOAD to 0.

A page of the IOP’s memory must also be mapped to the host. Bits 1-5 of the IOP’s map
status and parity control register specify the page to be mapped to the host.

Finally, the new information to be loaded into the host map slot should be specified.
Since a map slot is more than 16 bits wide in the I /O system, two 16-bit words of
information are needed to completely load a particular slot. The format of the two words
is shown below.

vizjojo|o RESERVED
— T T

o1 2 3 45 T T T T 7 1718

PHYSICAL PAGE NUMBER

31

where

V is the valid page bit;

Z is the transfer zeroes bit;

Physical page number specifies the address of a map slot.

The high order 7 bits of the address select a slot; the least significant bit selects the
portion of the slot to be loaded.

156

The 1/O Processor

The following example shows a typical way to load a host data channel map.

MAPO =116415 : New contents of map status and parity ; control register
bits:

: Allow loading of map status - -
cbit0 = 1.

; Pick logical page 7 - -

; bits 1-5 = 00111.

. Bit6 = 0.

; Set DCH MAP LOAD on - -
cbit7 = 1.

; Bits 8-11 = 0.

; Select host DCH D - -

; bits 12-13 = 11.

: DCH mode is off - - bit 14 = 0O,
: USER mode is on — - bit 15 = 1.

LEF 0,MAPO ;

DOA 0,I0PI . Load new contents into map status and parity
; control register.

LDA 0,MAP1 . MAP1 and MAP2 contain the information to load

LDA 1,MAP2 ;into the map slot.

STA 0,1024*7 : This loads map slot 7 in the host with the
;contents of ACO.

STA 1,(1024*7)+1 : This loads the rest of map slot 7 in the

:host with the contents of AC1.

Loading a host data channel map

In the example, first load the map status and parity control register with the required
contents. Then, set the DCH MAP LOAD flag, specify a page to map to the host, and set
user mode to 1. The desired information should then be loaded into the memory locations
MAPI and MAP2. The information in these locations must have the format shown
above.

Once all the preliminary information has been set up, the host data channel map can be
loaded. When a write memory reference to the page mapped into the host is made, the
processor goes through the host data channel to the host data channel map. There the
processor loads the information in the specified accumulators (ACO and AC1) into the
slot at the specified address (1024*7 and (1024*7) +1). This writes the new map
information into the specified slot.

One of the advantages to using this method of loading the host data channel map is that
the process is transparent to the host. This means that programs executing during an
TOP reference to host memory will not be interrupted when the map load occurs.
Another advantage is that the IOP has control of the host data channal map it requires.

Chapter 16
The MV/8000 Instruction Dictionary

General Programming Notes

The instruction entries that follow contain references to a value called overflow. This
value has meaning only while an instruction is executing. Overflow indicates if the
currently executing instruction has resulted in an overflow condition. The processor
inclusively ORs overflow with the current value of the OVR flag to determine the new
value of OVR.

When a C/350 instruction is executed when the C/350 MAP is enabled; the processor
uses only bits 16-31 in the specified operation (with exceptions, see below). If the result
of the operation is stored in an accumulator, then bits 16-31 of the accumulator contain
the result. Bits 0— 15 of the accumulator are indeterminate.

If the processor tries to execute any MV /8000 instruction when the C/350 MAP is
enabled, an I/O Protection violation occurs. When this happens, the processor sets bit 2
of the map status register to 1 and pushes a narrow return block onto the narrow stack.
The PC in the narrow return block references the instruction that caused the fault.

All C/350 program flow instructions and those that load effective addresses (such as
JMP, RTN, and ELEF) alter the PC or a specified accumulator. Those that alter the PC
leave PC bits 1-16 unchanged. Those that alter an accumulator change only bits 16-31;
Bits 0—15 will always have the format shown in the figure below:

0 SEG olofojo|o|olo|o|olo|o|oO INSTRUCTION-GENERATED CONTENTS
0 ' 1' '3 4'5 '6'7 ' 8'9 1011 12'13 1415 16' ' ' T T T T T T T T gy

where SEG contains the number of the current segment.

C/350 ALC instructions specifying the no-load option (bit 12 is 1) do not alter the
accumulators.

All C/350 instructions specifying an accumulator as a source of information only (such
as CLM) leave the specified accumulator unchanged.

If LMP or SYC, or any C/350 MAP instructions execute when the ATU is enabled, a
protection fault occurs. AC1 contains the code 9.

168 The MV/8000 Instruction Dictionary

If any instruction specifies a word address, the processor ignores bit 0 of the word
address.

An instruction that specifies PC- or AC-relative addressing modes produces a 31-bit
address. This means that bit 0 of the indexed register does not alter the logical address
produced by the instruction.

Instruction
The following is an alphabetical (by mnemonic) listing of all the instructions supported

by the ECLIPSE MV /8000 processor.

The two indexes at the back of this manual enable particular instruction definitions to be
found quickly: if the mnemonic is known; and if the instruction name is known.

Add Complement
ADC/c/[sh][#] acs,acd],skip]

1 ACS ACD 1 0 [o] SH Cc # SKipP

o 1 2 3 ' 4 5 6 7 8

Adds the logical complement of an unsigned integer to another unsigned integer.

Initializes carry to the specified value, adds the logical complement of the unsigned,
16-bit number in bits 16-31 of ACS to the unsigned, 16-bit number in bits 16-31 of
ACD, and places the result in the shifter. The instruction then performs the specified
shift operation, and loads the result of the shift into bits 16-31 of ACD if the no-load bit
is 0. If the skip condition is true, the next sequential word is skipped. For this instruction,
overflow is 0.

If the load option is specified, bits 0-15 of ACD are undefined.

NOTE: If the sum of the two numbers being added is greater than 65,535 the instruction
complements carry.

Add
ADD/c/[sh][#] acs,acd[skip]
1 ACS ACD 1 1 0 SH c # SKIP
) 1T 2 3 7 4 5 6 7 8 ' 9 10 ' 11 12 13 T 15

Performs unsigned integer addition and complements carry if appropriate.

Initializes carry to the specified value, adds the unsigned, 16-bit number in bits 16-31 of
ACS to the unsigned, 16-bit number in bits 16-31 of ACD, and places the result in the
shifter. The instruction then performs the specified shift operation and places the result
of the shift in bits 16-31 of ACD if the no-load bit is 0. If the skip condition is true, the
next sequential word is skipped. For this instruction, overflow is 0.

The MV/8000 Instruction Dictionary 159

If the load option is specified, bits 0-15 of ACD are undefined.

NOTE: If the sum of the two numbers being added is greater than 65,535, the instruction
complements carry.

Extended Add Immediate

ADDI jac

{11 AC Tty 1f{tptyp1r)1jofogo IMMEDIATE FIELD

T T T T T T T T T

Adds a signed integer in the range -32,768 to + 32,767 to the contents of an accumulator.

Treats the contents of the immediate field as a signed, 16-bit, two’s complement number
and adds it to the signed, 16-bit, two’s complement number contained in bits 16-31 of
the specified accumulator, placing the result in bits 16-31 of the same accumulator.
Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Add Immediate

ADI n,ac

Adds an unsigned integer in the range 1-4 to the contents of an accumulator.

Adds the contents of the immediate field /V, plus 1, to the unsigned, 16-bit number
contained in bits 16-31 of the specified accumulator, placing the result in bits 16-31 of
the same accumulator. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in

the immediate field. Therefore, the programmer should code the exact value that he wishes to
add.

Example
Assume that AC2 contains 177775g. After the instruction ADI 4,2 is executed, AC2
contains 000001¢ and carry is unchanged.

BEFORE AFTER
L frafinfinfinfio1] [o] ooofooojooofooofoor]

Carry either O or 1 Carry unchanged

DG-06800

160

The MV/8000 Instruction Dictionary

AND With Complemented Source

ANC acs,acd

AND

1 ACS ACD o o] 1 1 0 0 0 1 0 [s] o

Forms the logical AND of the logical complement of the contents of bits 16-31 of ACS
and the contents of bits 16-31 of ACD and places the result in bits 16-31 of ACD. The
instruction sets a bit position in the result to 1 if the corresponding bit position in ACS
contains 0. The contents of carry and ACS remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

AND/c/[sh][#] acs,acd[,skip]

1 ACS ACD 1 1 1 SH C # SKIP

) 1T 2 3 a4 5 6 7 8 ' 9 10 7 1 12 13 T 15

Forms the logical AND of the contents of two accumulators.

Initializes the carry bit to the specified value. Places the logical AND of bits 16-31 of
ACS and bits 16-31 of ACD in the shifter. Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one; otherwise the resulting bit is 0. The
instruction then performs the specified shift operation and places the result in bits 16-31
of ACD if the no-load bit is 0. If the skip condition is true, the next sequential word is
skipped. Overflow is 0.

If the load option is specified, bits 0-15 of ACD are undefined.

AND Immediate

ANDI

i,ac

111(0] AC 1111|111 |[{1]0]|]O}O IMMEDIATE FIELD
— T T T T T T T

Places the logical AND of the contents of the immediate field and the contents of bits
16-31 of the specified accumulator in bits 16-31 of the specified accumulator. Carry is
unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Block Add and Move

BAM

Moves memory words from one location to another, adding a constant to each one.

The MV/8000 Instruction Dictionary 161

Breakpoint
BKPT

Moves words sequentially from one memory location to another, treating them as
unsigned, 16-bit integers. After fetching a word from the source location, the instruction
adds the unsigned, 16-bit integer in bits 16-31 of ACO to it. If the addition produces a
carry of 1 out of the high-order bit, no indication is given.

Bits 17-31 of AC2 contain the address of the source location. Bits 17-31 of AC3 contain
the address of the destination location. The address in bits 17-31 of AC2 or AC3 is an
indirect address if bit 16 of that accumulator is 1. In that case, the instruction follows
the indirection chain before placing the resultant effective address in the accumulator.

The unsigned, 16-bit number in bits 16-31 of ACI is equal to the number of words
moved. This number must be greater than 0 and less than or equal to 32,768. If the
number in AC1 is outside these bounds, no data is moved and the contents of the
accumulators remain unchanged.

AC | Contents

Addend
Number of words to be moved
Source address

W N = O

Destination address

For each word moved, the count in AC1 is decremented by one and the source and
destination addresses in AC2 and AC3 are incremented by one. Upon completion of the
instruction, AC1 contains zeroes, and AC2 and AC3 point to the word following the last
word in their respective fields. The contents of carry and ACO remain unchanged.
Overflow is 0.

The 32-bit effectibe address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Words are moved in consecutive, ascending order according to their addresses. The next
address after 777774 is O for both fields. The fields may overlap in any way.

NOTE: Because of the potentially long time that may be required to perform this instruction
it is interruptable. If a Block Add and Move instruction is interrupted, the program counter is
decremented by one before it is placed in location 0 so that it points to the interrupted
instruction. Because the addresses and the word count are updated after every word stored,
any interrupt service routine that returns control to the interrupted program via the address
stored in memory location 0 will correctly restart the Block Add and Move instruction.

When updating the source and destination addresses, the Block Add And Move
instruction forces bit 0 of the result to 0. This ensures that upon return from an
interrupt, the Block Add And Move instruction will not try to resolve an indirect
address in either AC2 or AC3.

Pushes a wide return block onto the present stack.

162 The MV/8000 Instruction Dictionary

Block Move
BLM

The value of the PC in the return block is the address of this instruction. After pushing
the block, the instruction checks for stack overflow. If no overflow occurred, the
instruction sets the PSR to zero and performs a wide jump indirect through locations
10-11g in page zero of the current segment. If overflow occurred, a stack fault occurs
and ACI1 contains the code 0; after the fault is handled, the PSR is set to zero and the
jump indirect occurs. Carry remains unchanged by this instruction.

Moves memory words from one location to another.

The Block Move instruction is the same as the Block Add And Move instruction in all
respects except that no addition is performed and ACO is not used. Carry remains
unchanged and overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTE: The Block Move instruction is interruptable in the same manner as the Block Add
And Move instruction.

Set Bit To One

BTO acs,acd

1 ACS ACD 1 0 0 0 0o 0 0 1 0 0o 0

Sets the specified bit to 1.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contains the high-order 16 bits and bits 16-31 of ACD contains the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16-bits of
the bit pointer and assumes the high-order 16 bits are 0. Carry remains unchanged and
overflow is 0.

The instruction then sets the addressed bit in memory to 1, leaving the contents of ACS
and ACD unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTE: The bit pointer contained in ACS and ACD must not make indirect memory references.

The MV/8000 Instruction Dictionary 163

Set Bit To Zero

BTZ acs,acd

Compare To
CLM acs,acd

1 ACS ACD 1 0 0 0 1 [o] [¢] 1 0o [o] (o]

Sets the addressed bit to 0.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contains the high-order 16 bits and bits 16-31 of ACD contains the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16 bits of
the bit pointer and assumes the high-order 16 bits are 0. Carry remains unchanged and
overflow is 0.

The instruction then sets the addressed bit in memory to 0, leaving the contents of ACS
and ACD unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTE: The bit pointer contained in ACS and ACD must not make indirect memory references.

Limits

1 ACS ACD 1 (o] o] 1 1 1 1 1 0 0o 0

0 [3 7 a4 5 6 7 8 9 10 n" 12 13 14 15

Compares a signed integer with two other integers and skips if the first integer is
between the other two. The accumulators determine the location of the three integers.

Compares the 16-bit, signed, two’s complement integer in bits 16-31 of ACS to two
16-bit, signed, two’s complement limit values, L and H. If the number in bits 16-31 of
ACS is greater than or equal to L and less than or equal to H, the next sequential word
is skipped. If the number in bits 16-31 of ACS is less than L or greater than H, the next
sequential word is executed.

If ACS and ACD are specified as different accumulators, the address of the limit value
L is contained in bits 16-31 of ACD. The limit value H is contained in the word
following L. Bits 0-15 of ACD are ignored.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

If ACS and ACD are specified as the same accumulator, then the integer to be
compared must be in that accumulator and the limit values L and H must be in the two
words following the instruction. L is the first word and H is the second word. The next
sequential word is the third word following the instruction.

When L and H are in line, this instruction can be placed anywhere in the 32-bit address
space.

164 The MV/8000 Instruction Dictionary

This instruction leaves carry unchanged; overflow is 0.
Character Compare

CMP

Under control of the four accumulators, compares two strings of bytes and returns a
code in AC1 reflecting the results of the comparison.

The instruction compares the strings one byte at a time. Each byte is treated as an
unsigned 8-bit binary quantity in the range 0-255;,. If two bytes are not equal, the
string whose byte has the smaller numerical value is, by definition, the lower valued
string. Both strings remain unchanged. The four accumulators contain parameters
passed to the instruction. Two accumulators specify the starting address, the number of
bytes, and the direction of processing (ascending or descending addressed) for each
string.

Bits 16-31 of ACO specify the length and direction of comparison for string 2. If the
string is to be compared from its lowest memory location to the highest, bits 16-31 of
ACO contain the unsigned value of the number of bytes in string 2. If the string is to be
compared from its highest memory location to the lowest, bits 16-31 of ACO contain the
two’s complement of the number of bytes in string 2.

Bits 16-31 of ACI specify the length and direction of comparison for string 1. If the
string is to be compared from its lowest memory location to the highest, bits 16-31 of
ACO contain the unsigned value of the number of bytes in string 1. If the string is to be
compared from its highest memory location to the lowest, bits 16-31 of AC1 contain the
two’s complement of the number of bytes in string 1.

Bits 16-31 of AC2 contain a byte pointer to the first byte compared in string 2. When
the string is compared in ascending order, AC2 points to the lowest byte. When the
string is compared in descending order, AC2 points to the highest byte.

Bits 16-31 of AC3 contain a byte pointer to the first byte compared in string 1. When
the string is compared in ascending order, AC3 points to the lowest byte. When the
string is compared in descending order, AC3 points to the highest byte.

Code |Comparison Result

-1 string 1 << string 2
0 string 1 = string 2
+ 1 string 1 > string 2

The strings may overlap in any way. Overlap will not effect the results of the comparison.

Upon completion, bits 16-31 of ACO contain the number of bytes left to compare in

string 2. AC1 contains the return code as shown in the table above. Bits 16-31 of AC2
contains a byte pointer either to the failing byte in string 2 (if an inequality were found),
or to the byte following string 2 (if string 2 were exhausted). Bits 16-31 of AC3 contains
a byte pointer either to the failing byte in string 1 (if an inequality were found), or to the
byte following string 1 (if string 1 were exhausted). Carry remains unchanged. Overflow

The MV/8000 Instruction Dictionary 165

is 0.

If ACO and AC1 both contain 0 (both string 1 and string 2 have length zero), the
instruction compares no bytes and returns 0 in AC1. If the two strings are of unequal
length, the instruction pads the shorter string with space characters <<040g> and
continues the comparison.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

NOTE: The original contents of AC2 and AC3 must be valid byte pointers to an area in the
user’s address space. If the pointers are invalid a protection fault occurs, even if no bytes are
to be compared. ACI contains the code 2.

Character Move Until True

CMT

Under control of the four accumulators, moves a string of bytes from one area of
memory to another until either a table-specified delimiter character is moved or the
source string is exhausted.

The instruction copies the string one byte at a time. Before it moves a byte, the
instruction uses that byte’s value to determine if it is a delimiter. It treats the byte as an
unsigned 8-bit binary integer (in the range 0-255;,) and uses it as a bit index into a
256-bit delimiter table. If the indexed bit in the delimiter table is zero, the byte pending
is not a delimiter, and the instruction copies it from the source string to the destination
string. If the indexed bit in the delimiter table is 1, the byte pending is a delimiter; the
instruction does not copy it, and the instruction terminates.

The instruction processes both strings in the same direction, either from lowest memory
locations to highest (ascending order), or from highest memory locations to lowest
(descending order). Processing continues until there is a delimiter or the source string is
exhausted. The four accumulators contain parameters passed to the instruction.

Bits 16-31 of ACO contain the address (word address), possibly indirect, of the start of
the 256-bit (16-word) delimiter table.

Bits 16-31 of ACI specify the length of the strings and the direction of processing. If the
source string is to be moved to the destination field in ascending order, bits 16-31 of AC1
contain the unsigned value of the number of bytes in the source string. If the source
string is to be moved to the destination field in descending order, bits 16-31 of AC1
contain the two’s complement of the number of bytes in the source string.

Bits 16-31 of AC2 contain a byte pointer to the first byte to be written in the destination
field. When the process is performed in ascending order, bits 16-31 of AC2 point to the
lowest byte in the destination field. When the process is performed in descending order,
bits 16-31 of AC2 point to the highest byte in the destination field.

Bits 16-31 of AC3 contain a byte pointer to the first byte to be processed in the source
string. When the process is performed in ascending order, bits 16-31 of AC3 point to the
lowest byte in the source string. When the process is performed in descending order, bits
16-31 of AC3 point to the highest byte in the source string.

166

The MV/8000 Instruction Dictionary

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, bits 16-31 of ACO contain the resolved address of the translation table
and AC1 contain the number of bytes that were not moved. Bits 16-31 of AC2 contain a
byte pointer to the byte following the last byte written in the destination field. Bits 16-31
of AC3 contain a byte pointer either to the delimiter or to the first byte following the
source string. Carry remains unchanged. Overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kword of the current segment.

NOTES: If ACI contains the number 0 at the beginning of this instruction, no bytes are
fetched and none are stored. The instruction becomes a No-Op.

The original contents of AC0O, AC2, and AC3 must be valid pointers to some area in the user’s
address space. If they are invalid a protection fault occurs, even if no bytes are to be moved.
ACI contains the code 2.

Character Move

CMV

Under control of the four accumulators, moves a string of bytes from one area of
memory to another and returns a value in carry reflecting the relative lengths of source
and destination strings.

The instruction copies the source string to the destination field, one byte at a time. The
four accumulators contain parameters passed to the instruction. Two accumulators
specify the starting address, number of bytes to be copied, and the direction of processing
(ascending or descending addresses) for each field.

Bits 16-31 of ACO specify the length and direction of processing for the destination field.
If the field is to be processed from its lowest memory location to the highest, bits 16-31
of ACO contain the unsigned value of the number of bytes in the destination field. If the
field is to be processed from its highest memory location to the lowest, bits 16-31 of ACO
contain the two’s complement of the number of bytes in the destination field.

Bits 16-31 of AC1 specify the length and direction of processing for the source string. If
the string is to be processed from its lowest memory location to the highest, bits 16-31 of
ACI1 contain the unsigned value of the number of bytes in the source string. If the field
is to be processed from its highest memory location to the lowest, bits 16-31 of AC1
contain the two’s complement of the number of bytes in the source string.

Bits 16-31 of AC2 contain a byte pointer to the first byte to be written in the destination
field. When the field is written in ascending order, bits 16-31 of AC2 point to the lowest
byte. When the field is written in descending order, bits 16-31 of AC2 point to the
highest byte.

Bits 16-31 of AC3 contain a byte pointer to the first byte copied in the source string.
When the field is copied in ascending order, bits 16-31 of AC3 point to the lowest byte.
When the field is copied in descending order, bits 16-31 of AC3 point to the highest byte.

The MV/8000 Instruction Dictionary 167

Count Bits
COB acs,acd

Complement

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, ACO contains 0 and bits 16-31 of AC1 contain the number of bytes
left to fetch from the source field. Bits 16-31 of AC2 contain a byte pointer to the byte
following the destination field; bits 16-31 of AC3 contain a byte pointer to the byte
following the last byte fetched from the source field. Overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64Kbyte of the current segment.

NOTES: If ACO contains the number 0 at the beginning of this instruction, no bytes are
JSetched and none are stored. If ACI is 0 at the beginning of this instruction, the destination
field is filled with space characters.

The original contents of AC2 and AC3 must be valid pointers to some area in the user’s
address space. If they are invalid a protection fault occurs, even if no bytes are to be moved.
ACI contains the code 2.

If the source field is longer than the destination field, the instruction terminates when
the destination field is filled and sets carry to 1. In any other case, the instruction sets
carry to 0.

If the source field is shorter than the destination field, the instruction pads the destination
field with space characters <<040g>.

1 ACS ACD 1 0 1 1 4] (o] (o] 1 0 0] 0
0 T2 3 7 4 5 6 7 8 10 N 12 713 1 14 15
Adds a number equal to the number of oncs in bits 16-31 of ACS to the signed, 16-bit,

two’s complement number in bits 16-31 of ACD. The instruction leaves the contents of
ACS and the state of carry unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If ACS and ACD are the same accumulator, the instruction functions as described
above, except the contents of ACS will be changed.

COM(/c/[sh][#] acs,acd[skip]

1 ACS ACD 0] 0 SH C # SKIP

) 1 2 3 4 5 6 7 8 9 10 7 1 12 13 T 15

Forms the logical complement of the contents of an accumulator.

Initializes carry to the specified value, forms the logical complement of the number in
bits 16-31 of ACS, and performs the specified shift operation. The instruction then
places the result in bits 16-31 of ACD if the no-load bit is 0. If the skip condition is true,
the next sequential word is skipped.

168 The MV/8000 Instruction Dictionary

If the load option is specified, bits 0-15 of ACD are undefined.

For this instruction, overflow is 0.

Complement Carry
CRYTC

Complements the value of carry. Overflow is 0.

Set Carry to One
CRYTO

Unconditionally sets the value of carry to 1. Overflow is 0.

Set Carry to Zero
CRYTZ

Unconditionally sets the value of carry to 0. Overflow is 0.

Character Translate
CTR

Under control of the four accumulators, translates a string of bytes from one data
representation to another and either moves it to another area of memory or compares it
to a second translated string.

The instruction operates in two modes; translate and move, and translate and compare.

When operating in translate and move mode, the instruction.translates each byte in
string 1, and places it in a corresponding position in string 2. Translation is performed by
using each byte as an 8-bit index into a 256-byte translation table. The byte addressed
by the index then becomes the translated value.

When operating in translate and compare mode, the instruction translates each byte in
string 1 and string 2 as described above, and compares the translated values. Each
translated byte is treated as an unsigned 8-bit binary quantity in the range 0-255,¢. If

The MV/8000 Instruction Dictionary 169

two translated bytes are not equal, the string whose byte has the smaller numerical
value is, by definition the Jower valued string. Both strings remain unchanged.

Bits 16-31 of ACO specify the address, either direct or indirect, of a word which contains
a byte pointer to the first byte in the 256-byte translation table.

Bits 16-31 of ACI specify the length of the two strings and the mode of processing. If
string 1 is to be processed in translate and move mode, bits 16-31 of AC1 contain the
two’s complement of the number of bytes in the strings. If the strings are to be processed
in translate and compare mode, bits 16-31 of AC1 contain the unsigned value of the
number of bytes in the strings. Both strings are processed from lowest memory address
to highest.

Bits 16-31 of AC2 contain a byte pointer to the first byte in string 2.
Bits 16-31 of AC3 contain a byte pointer to the first byte in string 1.

Upon completion of a translate and move operation, bits 16-31 of ACO contain the
address of the word which contains the byte pointer to the translation table and ACI
contains 0. Bits 16-31 of AC2 contain a byte pointer to the byte following string 2 and
bits 16-31 of AC3 contain a byte pointer to the byte following string 1. Carry remains
unchanged. Overflow is 0.

Upon completion of a translate and compare operation, bits 16-31 of ACO contain the
address of the word which contains the byte pointer to the translation table. AC1
contains a return code as calculated in the table below. Bits 16-31 of AC2 contain a byte
pointer to either the failing byte in string 2 (if an inequality was found) or the byte
following string 2 if the strings were identical. Bits 16-31 of AC3 contain a byte pointer
to either the failing byte in string 1 (if an inequality was found) or the byte following
string 1 if the strings were identical. Carry contains an indeterminate value. Overflow is
0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

Code Result

-1 Translated value of string 1 <
Translated value of string 2

0 Translated value of string 1 =
Translated value of string 2

+1 Translated value of string 1 >
Translated value of string 2

If the length of both string 1 and string 2 is zero, the compare option returns a 0 in AC1.

The fields may overlap in any way. However, processing is done one character at a time,
so unusual side effects may be produced by certain types of overlap.

NOTE: The original contents of ACO, AC2, and AC3 must be valid byte pointers to some area
in the user’s address space. If they are invalid a protection fault occurs, even if no bytes are to
be moved or compared. ACI contains the code 2.

170 The MV/8000 Instruction Dictionary

Convert to 16-Bit Integer

CVWN ac

Decimal Add
DAD acs,acd

Converts a 32-bit integer to a 16-bit integer.

The instruction converts the 32-bit contents of the specified accumulator to a 16-bit
integer by extending bit 17 into bits 0-16. If the 17 most significant bits do not contain
the same value (i.e., all 1’s or all 0’s) before conversion takes place, then this instruction
sets overflow to 1 before performing the conversion. Carry is unchanged.

1 ACS ACD o] 0 0o 1 0 0 0 1 0 0 (o}

Performs decimal addition on 4-bit binary coded decimal (BCD) numbers and uses
carry for a decimal carry.

Adds the unsigned decimal digit contained in bits 28-31 of ACS to the unsigned decimal
digit contained in bits 28-31 of ACD. Carry is added to this result. The instruction then
places the decimal units’ position of the final result in bits 28-31 of ACD, and the
decimal carry in carry. The contents of ACS and bits 0-27 of ACD remain unchanged.
Overflow is 0.

NOTE: No validation of the input digits is performed. Therefore, if bits 28-31 of either ACS
or ACD contain a number greater than 9, the results will be unpredictable.

Example

Assume that bits 28—31 of AC2 contain 9; bits 28-31 of AC3 contain 7; and the carry bit
is 0. After the instruction DAD 2,3 is executed, AC2 remains the same; bits 28-31 of
AC3 contain 6; and carry is 1, indicating a decimal carry from this Decimal Add.

BEFORE AFTER
ac2 [o] oooooolooofoofoor] [0 ooofooofooofoorfoor |

ac3 [o] ooofooofooofooo]111] [o] ooofooofooofooo]i 10}

Double Hex Shift Left

DHXL n,ac

Carry = O Carry = 1
DG-06798
1 N AC [0} 1 1 1 0 o] o] 1 o] (o] o]
o 1 2 3 4 6 7 8 9 10 1 12 13 14 15

Shifts the 32-bit number contained in bits 16-31 of AC and bits 16-31 of AC+1 left a

The MV/8000 Instruction Dictionary 171

number of hex digits depending upon the immediate field N. The number of digits
shifted is equal to N+ 1. Bits shifted out are lost and the vacated bit positions are filled
with zeroes. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.
NOTES: If AC is specified as AC3, then AC+ 1 is ACO.

The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of AC+1 are placed in AC and AC+ | is filled with zeroes.

Double Hex Shift Right

DHXR nac

Shifts the 32-bit number contained in bits 16-31 of AC and bits 16-31 of AC+1 right a
number of hex digits depending upon the immediate field N. The number of digits
shifted is equal to N+ 1. Bits shifted out are lost and the vacated bit positions are filled
with zeroes. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.
NOTES: If AC is specified as AC3, then AC+ 1 is ACO. ’

The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of AC are placed in AC+ 1 and AC is filled with zeroes.

Unsigned Divide

DIV

Divides the unsigned 32-bit integer in bits 16-31 of two accumulators by the unsigned
contents of a third accumulator. The quotient and remainder each occupy one
accumulator.

Divides the unsigned 32-bit number contained in bits 16-31 of ACO and bits 16-31 of
AC1 by the unsigned, 16-bit number in bits 16-31 of AC2. The quotient and remainder
are unsigned, 16-bit numbers and are placed in bits 16-31 of AC1 and ACO, respectively.
Carry is set to 0. The contents of AC2 remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: Before the divide operation takes place, the number in bits 16-31 of ACO is compared
10 the number in bits 16-31 of AC2. If the contents of bits 16-31 of ACO are greater than or
equal to the contents of bits 16-31 of AC2, an overflow condition is indicated. Carry is set to

172

The MV/8000 Instruction Dictionary

1. and the operation is terminated. All operands remain unchanged.

Signed Divide

DIVS

Divides the signed 32-bit integer in bits 16-31 of two accumulators by the signed
contents of a third accumulator. The quotient and remainder each occupy one
accumulator.

The signed, 32-bit two’s complement number contained in bits 16-31 of ACO and bits
16-31 of AC1 is divided by the signed, 16-bit two’s complement number in bits 16-31 of
AC2. The quotient and remainder are signed, 16-bit numbers and occupy bits 16-31 of
AC]1 and ACO, respectively. The sign of the quotient is determined by the rules of
algebra. The sign of the remainder is always the same as the sign of the dividend, except
that a zero quotient or a zero remainder is always positive. Carry is set to 0. The contents
of AC2 remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If the magnitude of the quotient is such that it will not fit into bits 16-31 of ACI, an
overflow condition is indicated. Carry is set to 1, and the operation is terminated. The contents
of ACO and ACI are unpredictable.

Sign Extend and Divide

DIVX
1 [o] 1 1 1 1 1 1 1 1 o] [0} 1 (o] 0 (o]
o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Extends the sign of one accumulator into a second accumulator and performs a Signed
Divide on the result.
Extends the sign of the 16-bit number in bits 16-31 of ACI into bits 16-31 of ACO by
placing a copy of bit 16 of AC1 in bits 16-31 of of ACO. After extending the sign, the
instruction performs a Signed Divide operation. Overflow is 0.
Bits 0-15 of the modified accumulator are undefined after completion of this instruction.
Double Logical Shift
DLSH acs,acd
1 ACS ACD o] 1 o 1 1 o] o] 1 o} 0 (o]
0 1 2 3 4 6 8 9 10 1" 12 13 14 15

Shifts the 32-bit number contained in bits 16-31 of ACD and bits 16-31 of ACD+1
either left or right depending on the number contained in bits 24-31 of ACS. The signed,
8-bit two’s complement number contained in bits 24—31 of ACS determines the direction

The MV/8000 Instruction Dictionary 173

of the shift and the number of bits to be shifted. If the number in bits 24-31 of ACS is
positive, shifting is to the left; if the number in bits 24-31 of ACS is negative, shifting is
to the right. If the number in bits 24-31 of ACS is zero, no shifting is performed. Bits
0-23 of ACS are ignored.

AC3+1 is ACO. The number of bits shifted is equal to the magnitude of the number in
bits 24-31 of ACS. Bits shifted out are lost, and the vacated bit positions are filled with
zeroes. Carry and the contents of ACS remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If the magnitude of the number in bits 24-31 of ACS is greater than 31, bits 16-31
of ACD are set to 0. Carry and the contents of ACS remain unchanged.

Decimal Subtract

DSB acs,acd

Dispatch

1 ACS ACD o] (o] 0 1 1 0 0o 1 0 0 0

Performs decimal subtraction on 4-bit binary coded decimal (BCD) numbers and uses
carry as a decimal borrow.

Subtracts the unsigned decimal digit contained in ACS bits 28-31 from the unsigned
decimal digit contained in ACD bits 28-31. Subtracts the complement of carry from this
result. Places the decimal units’ position of the final result in ACD bits 28-31 and the
complement of the decimal borrow in carry. In other words, if the final result is negative,
the instruction indicates a borrow and sets carry to 0. If the final result is positive, the
instruction indicates no borrow and sets carry to 1. The contents of ACS and bits 0-27 of
ACD remain unchanged. Overflow is 0.

Example

Assume that bits 28-31 of AC2 contain 9; bits 28-31 of AC3 contain 7; and carry
contains 0. After the instruction DSB 3,2 is executed, AC3 remains the same; bits 28-31
of AC2 contain 1; and carry is set to 1, indicating no borrow from this Decimal Subtract.

BEFORE AFTER

ac2 [o] oooJooofooofooifoot] [o] ooofooofooofooofoot]

ac3 o] ooofooofooofooo]t 11] [oT 0ooJoocfooofooo]t11]
Carry = 0 Carry = 1

DG-06799

DSPA ac,[@/displacement],index]

111[0] AC

INDEX{O[1{1]1|1]|]0|O0f0]@ DISPLACEMENT

T

012 3 4 6 7 8 9 10 11 12 13 14 15 16 17 = = T

o

Conditionally transfers control to an address selected from a table.

174 The MV/8000 Instruction Dictionary

Computes the effective address E . This is the address of a dispatch table. The dispatch
table consists of a table of addresses. Immediately before the table are two 16-bit,
signed, two’s complement limit words, L and H. The last word of the table is in location
E+H-L.

Start of table —§»

Last word ——p» E+ 2x(H-L)
in table

Mm/

DG-01127

Figure 16.5

Compares the signed, two’s complement number contained in bits 16-31 of the specified
accumulator to the limit words. If the number in the accumulator is less than L or
greater than H, sequential operation continues with the instruction immediately after
the Dispatch instruction.

If the number in bits 16-31 of the specified accumulator is greater than or equal to L
and less than or equal to H, the instruction fetches the word at location E-L+ number. If
the fetched word is equal to 1777774, sequential operation continues with the instruction
immediately after the Dispatch instruction. If the fetched word is not equal to 177777,
the instruction treats this word as the intermediate address in the effective address
calculation. After the indirection chain, if any, has been followed, the instruction places
the effective address in the program counter and sequential operation continues with the
word addressed by the updated value of the program counter.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

This instruction sets overflow to 0 and carry to 0.

Decrement And Skip If Zero
DSZ [@]/displacement[,index]

0 0 0 1 1 @ INDEX DISPLACEMENT

—T T T T T T

1 2 3 4 5 6

Decrements the addressed word, then skips if the decremented value is zero.

The MV/8000 Instruction Dictionary 175

Decrements by one the word addressed by £ and writes the result back into that
location. If the updated value of the location is zero, the instruction skips the next
sequential word. Overflow is 0 and carry remains unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Decrement the Word Addressed by WSP and SKkip if Zero
DSZTS

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Decrements the contents of the word addressed by WSP. If the decremented value is
equal to zero, the instruction skips the next word. Carry is unchanged and overflow is 0.

NOTE: The operation performed by this instruction is not indivisible.

Load CPU Identification
ECLID

Loads a double word into ACO.

The double word has the format:

MODEL NUMBER MICROCODE REV MEM SIZE

T T T T T T T T T T T T

o' T T T T T 15 16 723724 25 26 31

where

model # is the binary representation of the machine’s model number,

microcode rev indicates the microcode revision currently in use on this machine,
mem size indicates the amount of physical memory on this machine. A zero in this
field indicates 256 Kbytes of memory; a one indicates 512 Kbytes, and so on.

This instruction leaves carry unchanged. Overflow is 0.

NOTE: When the C/350 M AP is enabled on the MV/8000, this instruction is used to identify
the machine. The processor assumes ACO to be 32 bits long for this instruction. If an interrupt
occurs while ECLID is executing, however, the processor saves only bits 16-31 of ACO.

176

The MV/8000 Instruction Dictionary

Edit
EDIT

Converts a decimal number from either packed or unpacked form to a string of bytes
under the control of an edit sub-program. This sub-program can perform many different
operations on the number and its destination field, including leading zero suppression,
leading or trailing signs, floating fill characters, punctuation control, and insertion of
text into the destination field. The instruction also performs operations on alphanumeric
data if data type 4 is specified.

The instruction maintains two flags and three indicators or pointers.

The flags are the significance Trigger (7) and the Sign flag (S). T is set to 1 when the
first non-zero digit is processed unless otherwise specified by an edit op-code. At the
beginning of an Edit instruction, T is set to 0. S is set to reflect the sign of the number
being processed. If the number is positive, S is set to 0. If the number is negative, .S is set
to 1.

The three indicators are the Source Indicator (SI), the Destination Indicator (DI), and
the op-code Pointer (P). Each is 16 bits wide and contains a byte pointer to the current
byte in each respective area. At the beginning of an Edit instruction, SI is set to the
value contained in bits 16-31 of AC3. DI is set to the value contained in bits 16-31 of
AC2, and P is set to the value contained in bits 16-31 of ACO. Also at this time the sign
of the source number is checked for validity.

The sub-program is made up of 8-bit op-codes followed by one or more 8-bit operands. P,
a byte pointer, acts as the program counter for the Edit sub-program. The sub-program
proceeds sequentially until a branching operation occurs - much the same way programs
are processed. Unless instructed to do otherwise, the Edit instruction updates P after
each operation to point to the next sequential op-code. The instruction continues to
process 8-bit op-codes until directed to stop by the DEND op-code.

The sub-program can test and modify S and T as well as modify SI, DI and P.

Upon entry to EDIT bits 16-31 of ACO contain a byte pointer to the first op-code of the
Edit sub-program.

Bits 16-31 of AC1 contain the data-type indicator describing the number to be processed.
Bits 16-31 of AC2 contain a byte pointer to the the first byte of the destination field.
Bits 16-31 of AC3 contain a byte pointer to the first byte of the source field.

The fields may overlap in any way. However the instruction processes characters one at
a time, so unusual side effects may be produced by certain types of overlap.

Upon successful termination, carry contains the significance Trigger; bits 16-31 of ACO
contain a byte pointer (P) to the next op-code to be processed; AC1 is undefined; bits
16-31 of AC2 contain a byte pointer (DI) to the next destination byte; and bits 16-31 of
AC3 contain a byte pointer (SI) to the next source byte. Overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

The MV/8000 Instruction Dictionary 177

NOTES: If SI is moved outside the area occupied by the source number, zeros will be supplied
Jfor numeric moves, even if SI is later moved back inside the source area.

Some op-codes perform movement of characters from one string to another. For those op-codes
which move numeric data, special actions may be performed. For those which move non-numeric
data, characters are copied exactly to the destination.

The Edit instruction places information on the stack. Therefore, the stack must be set up and
have at least 9 words available for use.

If the Edit instruction is interrupted, it places restart information on the stack and places
177777¢ in ACO.

If the initial contents of ACO are equal 10 177777 the Edit instruction assumes it is restarting
Sfrom an interrupt; therefore do not allow this to occur under any other circumstances.

In the description of some of the Edit op-codes we use the symbol j to denote how many
characters a certain operation should process. When the high order bit of j is 1, j hasa
different meaning, it is a pointer into the stack to a word that denotes the number of
characters the instruction should process. So, in those cases where the high order bit of j
is 1, the instructions interpret j as an 8-bit two’s complement number pointing into the
stack. The number on the stack is at the address:

stack pointer + 1 + j.
The operation uses the number at this address as a character count instead of j.

An Edit operation that processes numeric data (e.g., DMVN) skips a leading or trailing
sign code it encounters; similarly, such an operation converts a high-order or low-order
sign to its correct numeric equivalent.

The edit operations are as follows.

Add To DI
DADI po
0 o] 0 1 0 0 1 0 pO
1 2 3 4 5 6 7 8 14 15

Adds the 8-bit two’s complement integer specified by p0 to the Destination Indicator
(DI).

Add To P Depending On S
DAPS p0
o] o] [o]] 1 1 1 1 pO
0 1 2 3 4 5 6 7 8 ! T ' ! ' T 15

If S'is 0, the instruction adds the 8-bit two’s complement integer specified by p0 to the
op-code Pointer (P). Before the add is performed, P is pointing to the byte containing the
DAPS op-code.

178

The MV/8000 Instruction Dictionary

Add To P Depending On T
DAPT p0
(o] 0 o o 1 o 1 1 pO

If T is one, the instruction adds the 8-bit two’s complement integer specified by p0 to
the op-code Pointer (P). Before the add is performed, P is pointing to the byte containing
the DAPT op-code.

Add To P
DAPU p0
0 0 0 1 o] 1 1 1 po
[1 2 3 4 5 6 7 8 j ! ! ! ' T 15

Adds the 8-bit two’s complement integer specified by p0 to the op-code Pointer (P).
Before the add is performed, P is pointing to the byte containing the DAPU op-code.

Add To SI
DASI p0
[o] 0 (o] 1 o} 0 1 1 p0O
1 2 3 4 5 6 7 8 ! j T ! T "5

Adds the 8-bit two’s complement integer specified by p0 to the Source Indicator (SI).

Decrement and Jump If Non-Zero
DDTK k,p0

ofojojojOo|O |11 K p0O

0o'1'2 3'4's 67 8 ' ' ' ' ‘i, o ' T T '23

Decrements a word in the stack by one. If the decremented value of the word is non-zero,
the instruction adds the 8-bit two’s complement integer specified by p0 to the op-code
Pointer (P). Before the add is performed, P is pointing to the byte containing the DDTK
op-code. If the 8-bit two’s complement integer specified by k is negative, the word
decremented is at the address stack pointer+1+k. If k is positive, the word decremented
is at the address frame pointer+1+k.

The MV/8000 Instruction Dictionary 179

End Edit
DEND

0 0 o 0 0 0 o 0o
] 1 2 3 4 5 6 7

Terminates the EDIT sub-program.

Insert Characters Immediate
DICT jpO,pl,...p(j-1)

0{0|0(1(0|0]|0O |1] =] p1 pli-1)

vvvvvvv

012 3 4656 7 8 T T 15016 237247 T 31'40

Inserts j characters from the op-code stream into the destination field beginning at the
position specified by DI. Increases P by j+2, and increases DI by j.

Insert Character J Times
DIMC j,p0

ojlojof1jo0|1|0}1 j pO
o' 12 3 465 6 7 8 T T T T T 16 T 723

Inserts the character specified by p0 into the destination field a number of times equal
toj beginning at the position specified by DI. Increases DI by j.

Insert Character Once

DINC p0
V] o] 0 1 o] [o] o] 0 p0
0 1 2 3 4 5 6 7 8 T T T T EL

Inserts the character specified by p0 in the destination field at the position specified by
DI. Increments DI by 1.

Insert Sign
DINS pO,p!

olojojo|r|1]1]0 pO pt
0 12 3 4's5' 67 8 T T T T Ty 16" o

23

If the Sign flag (S) is 0, the instruction inserts the character specified by p0 in the
destination field at the position specified by DI. If S is 1, the instruction inserts the
character specified by pl in the destination field at the position specified by DI.
Increments DI by one.

180

The MV/8000 Instruction Dictionary

Insert Character Suppress

DINT pO,pl
o|jojojofr1jo|1]o pO p1
12 3 4 5 6 7 8 T T T Tyg4g’ T T T T T To3

If the significance Trigger (7) is 0, the instruction inserts the character specified by p0
in the destination field at the position specified by DI. If T is 1, the instruction inserts
the character specified by pI in the destination field at the position specified by DI.
Increments DI by one.

Move Alphabetics
DMVA |
[o] [o] o] [o] 1 1 [o] 1 j
0 1 2 3 4 5 6 7 8 ! j i i ! KD

Moves j characters from the source field (beginning at the position specified by SI) to
the destination field (beginning at the position specified by DI). Increases both SI and
DI by j. Sets T'to 1.

Initiates a commercial fault if the attribute specifier word indicates that the source field
is data type 5 (packed). Initiates a commercial fault if any of the characters moved is not
an alphabetic (A-Z, a-z, or space).

Move Characters
DMVC |

[0 [o] 0 1 1 0 [¢] i

0 1 2 3 4 5 6 7 8 ' ! T T j T 1s

Increments SI if the source data type is 3 and j>0. The instruction then moves j
characters from the source field beginning at the position specified by SI to the destination
field beginning at the position specified by DI. Increases both SI and DI by j. Sets T to
1.

Initiates a commercial fault if the attribute specifier word indicates that the source is
data type 5 (packed). Performs no validation of the characters.

Move Float
DMVF j,p0,pl,p2

ojojo|1]jo|1|O]|O j p0 p1 p2

0 1 2 3 4 5 6 7 8 w1 T T T 23 24 3132 39

If the source data type is 3, j>0, and SI points to the sign of the source number, the
instruction increments SI. Then for j characters, the instruction either places a digit
substitute in the destination field beginning at the position specified by DI, or it moves a

The MV/8000 Instruction Dictionary 181

digit from the source field beginning at the position specified by SI to the destination
field beginning at the position specified by DI. When T changes from O to 1, the
instruction places both the digit substitute and the digit in the destination field, and
increases SI by j. If T does not change from O to 1, the instruction increases DI by j. If
T does change from 0 to 1, the instruction increases DI by j+1.

If the source data type is 2, the state of SI is undefined after the least significant digit
has been processed.

If Tis 1, the instruction moves each digit processed from the source field to the
destination field. If 7 is 0 and the digit is a zero or space, the instruction places p0 in the
destination field. If T is 0 and the digit is a non-zero, the instruction sets 7 to 1 and the
characters placed in the destination field depend on S. If S is 0, the instruction places p1
in the destination field followed by the digit. If S is 1, the instruction places p2 in the
destination field followed by the digit.

The instruction initiates a commercial fault if any of the digits processed is not valid for
the specified data type.

Move Numerics

DMVN |
[o] 0 o] [o] 1 [o] (o] o] i
0 1 2 3 4 5 6 7 8 N ! ! ! j T 15

Increments SI if the source data type is 3 and j>0. The instruction then moves j
characters from the source field beginning at the position specified by SI to the destination
field beginning at the position specifed by DI. Increases both SI and DI by j. Sets T to 1.

Initiates a commercial fault if any of the characters moved is not valid for the specified
data type.

For data type 2, the state of SI is undefined after the least significant digit has been
processed.

Move Digit With Overpunch
DMVO p0,pl,p2,p3

ofofOjOfOf1([1(|1 pO p1 p2 p3

vvvvvvv

vvvvvvv

0123456 '7'8 1516 T T T370

Increments S if the source data type is 3 and SI points to the sign of the source number.
The instruction then either places a digit substitute in the destination field (at the
position specified by DI), or it moves a digit plus overpunch from the source field (at the
position specified by SI) to the destination field (at the position specified by DI).
Increases both SI and DI by 1.

If the source data type is 2, the state of the SI is undefined after the least significant
digit has been processed.

182

The MV/8000 Instruction Dictionary

If the digit is a zero or space and S is 0, then the instruction places p0 in the destination
field. If the digit is a zero or space and S is 1, then the instruction places p/ in the
destination field. If the digit is a non-zero and S is 0, the instruction adds p2 to the digit
and places the result in the destination field. If the digit is a non-zero and S is 1, the
instruction adds p3 to the digit and places the result in the destination field. If the digit
is a non-zero, the instruction sets 7 to 1. The instructions assumes p2 and p3 are ASCII
characters.

The instruction initiates a commercial fault if the character is not valid for the specified
data type.

Move Numeric With Zero Suppression
DMVS j p0

oj{ojoj1iof1|1]0 i pO

o' 12 3 a4's 6 7 8 ' ' ' ' Tiwae o T T T Ta3

Increments SI if the source data type is 3, >0, and SI points to the sign of the source

number. The instruction then moves j characters from the source field (beginning at the
position specified by SI) to the destination field (beginning at the position specified by

DI). Moves the digit from the source to the destination if 7 is 1. Replaces all zeros and
spaces with p0 as long as T is 0. Sets T to 1 when the first non-zero digit is encountered.
Increases both SI and DI by ;.

If the source data type is 2, the state of the SI is undefined after the least significant
digit has been processed.

This op-code destroys the data type specifier.

Initiates a commercial fault if any of the characters moved is not a numeric (0-9 or
space).

End Float
DNDF pO,pl

0(0j0{0(0[0]|0 |1 pO pt

o' 1 2 3'a's 6 7 8’ ' ' ' ' ' Tiwe T T T 7 T23

If Tis 1, the instruction places nothing in the destination field and leaves DI unchanged.
If Tis 0 and S is 0, the instruction places p0 in the destination field at the position
specified by DI. If Tis 0 and S is 1, the instruction places pI in the destination field at
the position specified by DI. It increases DI by 1, and sets T to one.

Set S To One
DSSO
0 0 0 o) 0 1 (o) 1

4] 1 2 3 4 5 6 7

The MV/8000 Instruction Dictionary 183

Sets the Sign flag (S) to 1.
Set S To Zero

DSSZ

o 0 [0} 0 0 1 0 [o]
0 1 2 3 4 5

Sets the Sign flag (S) to 0.

Store In Stack
DSTK k,p0

olo|o|ofo|of1]0 k po
0 12 3 45 '6'7 8° 1 T ToTist1e T T T T Tz3

Stores the byte specified by p0 in bits 8—15 of a word in the stack. Sets bits 0~7 of the
word that receives p0 to 0. If the 8-bit two’s complement integer specified by k is
negative, the instruction addresses the word receiving p0 by stack pointer+1+k. If k
is positive, then the instruction stores p0 at the address frame pointer+1+k.

Set T To One
DSTO

0 0 4] 0 1 0 0 1
0 1 2 3 4 5 6 7

Sets the significance Trigger (7) to 1.

Set T To Zero
DSTZ

[0} 0 0 0 V] 1 1 0
1 2 3 4 5 6

Sets the significance Trigger (7)) to 0.

Extended Decrement and Skip if Zero
EDSZ [@/displacement/,index]

1{o(O0|1]1
0o 1 2 3 4

-

INDEX|O |O |1 f1]1]0]|0 0 |@ DISPLACEMENT
6 7 8 910 111213 1415 16 17' ' ' ' ' ' T ' T T T ' '3

o

Decrements the addressed word, then skips if the decremented value is zero.

184 The MV/8000 Instruction Dictionary

Computes the effective address, E. Decrements by one the contents of the location
addressed by E and writes the result back into that location. If the updated value of the
word is zero, the instruction skips the next sequential word.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

This instruction leaves carry unchanged. Overflow is 0.

Extended Increment And Skip If Zero
EISZ [@]/displacement/,index]

110]0]1]|0]| 1 [INDEX

)
<)
-
N
-
)
<)
=)

®

DISPLACEMENT

T

0 1 2 3 4'5 6 7 8 9 10 11 12 13 14 16 16 17 T31

Increments the addressed word, then skips if the incremented value is zero.

Computes the effective address, E . Increments by one the contents of the location
specified by E, and writes the new value back into memory at the same address. If the
updated value of the location is zero, the instruction skips the next sequential word.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

This instruction leaves carry unchanged. Overflow is 0.

Extended Jump
EJMP [@/displacement|[,index]
1iolo|ofo|1|INDEX|O|O |1 |11 |0 |00 |@ DISPLACEMENT
o'1'2 3 5 6 7 910 1112 13 14 15 16 7' ' ' T T T T 7 T 31

Computes the effective address, E, and places it in the program counter. Sequential
operation continues with the word addressed by the updated value of the program
counter.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Carry is unchanged and overflow is 0.

Extended Jump To Subroutine
EJSR /@]/displacement[,index]

110|/0}l0}1|1|INDEX|O}O |1 |1 (1]|0]|0 |0 |@ DISPLACEMENT

Y

0 12 3'4'56 6 7 '8 9 10111213 141616 17 T T T 731

Increments and stores the value of the program counter in AC3, then places a new
address in the program counter.

The MV/8000 Instruction Dictionary 185

Computes the effective address, E. The instruction then places the address of the next
sequential instruction (the instruction following the EJSR instruction) in AC3. Places E
in the program counter. Sequential operation continues with the word addressed by the
updated value of the program counter.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Overflow is 0 and carry is unchanged.

NOTE: The instruction computes E before it places the incremented program counter in AC3.

Extended Load Accumulator

ELDA

ac,[@/displacement[,index]

11011 AC

-

INDEX{OJO(f1|1i1/0]|0]j0 @ DISPLACEMENT
0172 374567 8'9 1011 12 131416516177 T T T T T T 31

Moves a copy of the contents of a memory word into bits 16-31 of the specified
accumulator.

Calculates the effective address, E. Places the contents of the location addressed by E in
bits 16-31 of the specified accumulator. The contents of the location addressed by E
remain unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Carry remains unchanged and overflow is 0.

Extended Load Byte
ELDB acdisplacement/,index]

110|0] AC 1 | INDEX

0 1 2 3 4 5 6

o
-
[=]
o
(=]

DISPLACEMENT

7 8 9 10 1112 13 14 15 16 17 31

Copies a byte from memory into an accumulator.

Forms a byte pointer from the displacement in the following way: shifts the 16-bit
number contained in the displacement field to the right one bit, producing a 15-bit
address and a 1-bit byte indicator. Uses the value of the index bits to determine an offset
value. Adds the offset value to the 15-bit address produced from the displacement to give
a memory address. The byte indicator designates which byte of the addressed word will
be loaded into bits 24-31 of the specified accumulator. The instruction sets bits 16-23 of
the specified accumulator to 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

Carry is unchanged and overflow is 0.

186

The MV/8000 Instruction Dictionary

The instruction destroys the previous contents of bits 16-31 of the specified accumulator,
but it does not alter either the index value or the displacement.

The argument index selects the source of the index value. It may have values in the
range of 0-3. The meaning of each value is shown below:

Index Bits Index Value

00 0

01 Address of the displacement field
(Word 2 of this instruction)

10 Contents of bits 16-31 of AC2

11 Contents of bits 16-31 of AC3

This instruction sets overflow to 0 and carry to 0.

Load Effective Address
ELEF ac,/@]displacement[,index]

1]1[(1| AC
0 1 2 3 4

-

INDEX{O|O|1]|1]1]0|0]0|@ DISPLACEMENT
6 ' 7 8 9 10 11 1213 14 15 16 17 ' T

o

31

Places a 32-bit effective address constrained to be with the first 32 Kword of the current
segment in an accumulator.

Sets bit 0 of the accumulator to 0. Overflow is 0 and carry is unchanged.

Enqueue Towards the Head

ENQH

Enqueues a data element.

ACO contains the effective address of a queue descriptor.

AC1 contains an effective address of a data element in the queue defined by ACO.
AC?2 contains the effective address of the data element to be added to the queue.

The instruction checks the page or pages that contain the element for valid read and
write access privileges. If the privileges are invalid, the appropriate protection fault
occurs and the queue remains unchanged.

If the privileges are valid, the instruction checks the queue descriptor addressed by ACO.
If the queue descriptor indicates an empty queue, the instruction ignores the contents of
AC], places the data element addressed by AC2 in the queue, and updates the queue
descriptor. The next sequential word is executed.

The MV/8000 Instruction Dictionary 187

If the descriptor indicates a queue that contains data elements, the instruction prepares
to enqueue a new data element; the instruction enqueues the data element addressed by
AC2 before the data element addressed by ACI. If the new data element becomes the
head of the queue, the instruction updates the queue descriptor appropriately. The next
sequential word is skipped.

NOTE: If the processor references a page containing a link, the instruction completely updates
that link before the processor references another link or descriptor. This means the instruction
executes correctly even if only one page is resident in memory.

The instruction checks all reads and writes of links in data elements and queue descriptors
against the current ring. Ring numbers of the link addresses must be greater than or
equal to the current ring.

The enqueue operation is not interruptable. The entire operation completes before any
interrupts are enabled.

The instruction leaves the contents of ACO, AC1, AC2, and AC3 unchanged. Carry is
unchanged and overflow is 0.

Enqueue Towards the Tail

ENQT

Enqueues a data element.

ACO contains the effective address of a queue descriptor.

ACI contains an effective address of a data element in the queue defined by ACO.
AC?2 contains the effective address of the data element to be added to the queue.

The instruction checks the page or pages that contain the element for valid read and
write access privileges. If the privileges are invalid, the appropriate protection fault
occurs and the queue remains unchanged.

If the privileges are valid, the instruction checks the queue descriptor addressed by ACO.
If the queue descriptor indicates an empty queue, the instruction ignores the contents of
ACI and enqueues the data element addressed by AC2. The instruction updates the
queue descriptor if necessary, then the next sequential word is executed.

If the descriptor indicates a queue that contains data elements, the instruction prepares
to enqueue a new data element; the instruction enqueues the data element addressed by
AC2 after the data element addressed by AC1. If the new data element becomes the tail
of the queue, then the instruction updates the queue descriptor appropriately. The next
sequential word is skipped.

NOTE: If the processor references a page containing a link, the instruction completely updates
that link before the processor references another link or descriptor. This means that this
instruction will execute correctly even if only one page is resident in memory.

188 The MV/8000 Instruction Dictionary

The instruction checks all reads and writes of links in data elements and queue descriptors
against the current ring. Ring numbers of the link addresses must be greater than or
equal to the current ring.

The enqueue operation is not interruptable. The entire operation completes before any
interrupts are enabled.

The instruction leaves the contents of ACO, AC1, AC2, and AC3 unchanged. Carry is
unchanged and overflow is 0.

Extended Store Accumulator
ESTA ac,/@]displacement],index]

1{1(0}| AC
0o'1 2 3 4

-

INDEX|OjO{1|[1|1]0]|0]|0O |@ DISPLACEMENT
s 58 90 1 iz 13 s 6 12 T MBI

o

Stores the contents of bits 16-31 of an accumulator into a memory location.

The contents of bits 16-31 of the specified accumulator are placed in the word addressed
by the effective address, E. The previous contents of the location addressed by E are
lost. The contents of the specified accumulator and carry remain unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kwords of the current segment.

Overflow is 0.

Extended Store Byte
ESTB ac,displacement/,index]

110]|1] AC

-

inpex|o |11 {1{1]lo|o0]oO DISPLACEMENT
s 7 s 0o 11z 3 e e 7+~ T T ™

0’12 3" 4

o

Copies into memory the byte contained in bits 24-31 of an accumulator.

Forms a byte pointer from the displacement as follows: shifts the 16-bit number contained
in the displacement field to the right one bit, producing a 15-bit address and a 1-bit byte
indicator. Uses the value of the index bits to determine an offset value. Adds the offset
value to the 15-bit address produced from the displacement field to give a memory
address. The byte indicator determines which byte of the addressed location will receive
bits 24-31 of the specified accumulator.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

The argument index selects the source of the index value. It may have values in the
range of 0-3; the meaning of each value is shown below:

The MV/8000 Instruction Dictionary 189

Index Bits Index Value

00 0

01 Address of the displacement field (Word 2 of this
instruction)

10 Contents of bits 16-31 of AC2

11 Contents of bits 16-31 of AC3

This instruction leaves carry unchanged; overflow is 0.

Absolute Value

FAB fpac

1 1 0 FPAC 1 1 o 0 0 1 0 1 0 o] 0o

Sets the sign bit of FPAC to 0. Updates the Z and N flags in the floating point status
register to reflect the new contents of FPAC.

Add Double (FPAC to FPAC)
FAD facs,facd

1 FACS FACD 0 o 0 0 1 1 0 1 0 0 0

Adds the 64-bit floating point number in FACS to the 64-bit floating point number in
FACD.

Adds the 64-bit floating point number in FACS to the 64-bit floating point number in
FACD. Places the normalized result in FACD. Leaves the contents of FACS unchanged
and updates the Z and N flags in the floating point status register to reflect the new
contents of FACD.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Add Double (Memory to FPAC)
FAMD fpac,[@]displacement/,index]

INDEX| FPAC [0 |1 |0 |0 |1]|1]0|1|0 |00 |@ DISPLACEMENT
0'1'2 374 65 6 7 8'9 1011 12°13' 14 16 16 17° ' ' ' ' ' ' T T T T T &

Adds the 64-bit floating point number in the source location to the 64-bit floating point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Adds this 64-bit floating point number to the floating point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point

190 The MV/8000 Instruction Dictionary

status register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kwords of the current segment.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Add Single (Memory to FPAC)
FAMS fpac,/@]displacement[,index]

-

INDEX| FPAC|O|1|O]|O]|O|1{O0O]|]1]0]|0 |0 |@ DISPLACEMENT
172 3 4 576 7 819 10 11 12133418 16 17 . . ' o T T T 7 73

o

Adds the 32-bit floating point number in the source location to the 32-bit floating point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Adds this 32-bit floating point number to the floating point number in bits 0-31
of the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kwords of the current segment.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Add Single (FPAC to FPAC)
FAS facs.facd

1 FACS FACD 0 0 0 0 0 1 0 1 0 0 0

Adds the 32-bit floating point number in bits 0-31 of FACS to the 32-bit floating point
number in bits 0-31 of FACD.

Adds the 32-bit floating point number in bits 0-31 of ACS to the 32-bit floating point
number in bits 0-31 of FACD. Places the normalized result in FACD. Leaves the
contents of FACS unchanged. Sets bits 32-63 of FACD to 0 and updates the Z and N
flags in the floating point status register to reflect the new contents of FACD.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Clear Errors
FCLE

Sets bits 0—4 of the floating point status register to 0.

The MV/8000 Instruction Dictionary 191

NOTES: Since this instruction sets the ANY bit of the FPSR to 0, the FPPC field is
undefined.

The 1ORST instruction and the system reset function will also set these bits to 0.

Compare Floating Point
FCMP facs.facd

1 FACS FACD 1 1 1 0 0 1 [¢] 1 0 o] 0
0 1 2 3

Compares two floating point numbers and sets the Z and N flags in the floating point
status register accordingly.

Algebraically compares the floating point numbers in FACS and FACD to each other.
Updates the Z and N flags in the floating point status register to reflect the result. The
contents of FACS and FACD remain unchanged. The results of the compare and the
corresponding flag settings are shown in the table below.

r4 N Result

1 0 FACS=FACD
(o] 1 FACS>FACD
0 0 FACS<FACD

Divide Double (FPAC by FPAC)
FDD facs,facd

1 FACS FACD o o] 1 1 1 1 0 1 o] 0o 0

Divides the floating point number in FACD by the floating point number in FACS and
places the normalized result in FACD. Destroys the previous contents of FACD. Updates
the Z and N flags in the floating point status register to reflect the new contents of
FACD. The contents of FACS remain unchanged.

Checks the floating point number contained in FACS for a zero mantissa. If the
mantissa is zero, sets the DVZ bit in the floating point status register and terminates.
The number in FACD remains unchanged.

If the mantissa is nonzero, compares the mantissas of the numbers contained in FACS
and FACD. If the mantissa of the number in FACD is greater than or equal to the
mantissa of the number in FACS, the instruction shifts the mantissa of the number in
FACD right one hex digit and adds one to the exponent of the number in FACD.

After aligning the mantissas, the instruction divides the mantissa in FACD by the

mantissa in FACS. The mantissa of the quotient becomes the mantissa of the intermediate
result. The two operands and the rules of algebra determine the sign of the intermediate
result. To calculate the exponent of the intermediate result in excess 64 representation,

192 The MV/8000 Instruction Dictionary

the instruction subtracts the exponent in FACS from the exponent in FACD and adds
64 to this result. The result is already normalized by the shifting algorithm described in
the paragraph above, so the instruction places the result in FACD unaltered. Updates
the Z and N flags to reflect the new contents of FACD.

If the exponent processing produces either overflow or underflow, the instruction sets the
corresponding bit in the floating point status register. If overflow occurs, the sign and the
mantissa in FACD are correct but the exponent is 128 too small. If underflow occurs,
the sign and the mantissa in FACD are correct but the exponent is 128 too large.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Divide Double (FPAC by Memory)
FDMD fpac,/[@]displacement[,index]

INDEX| FPAC |O [1|1 |1 |1]|]1|0o|1|0|0]|0O @ DISPLACEMENT
0 123 4 5 6 7 8 9 101112 13145 16 177 ' ' ' ' T T T T T T T3

Divides the 64-bit floating point number in FPAC by the 64-bit floating point number in
the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Divides the floating point number in the specified FPAC by this 64-bit floating
point number. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Divide Single (FPAC by Memory)
FDMS fpac,/@]displacement][,index]

-

INDEX| FPAC [0 |1 |1|1]0|1|0|1]|0|O]|O|@ DISPLACEMENT
T 273 45 67 8 9 101112 13141816 17 . T T T T T T T '3

o

Divides the 32-bit floating point number in bits 0-31 of FPAC by the 32-bit floating
point number in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Divides the floating point number in bits 0-31 of the specified FPAC by this
32-bit floating point number. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating point status register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

The MV/8000 Instruction Dictionary 193

See Chapter 8 and Appendix G for more information about floating point manipulation.

Divide Single (FPAC by FPAC)
FDS facs facd

1 FACS FACD 0 0 1 1 0 1 (o] 1 0 o] 0

Divides the floating point number in bits 0-31 of FACD by the floating point number in
bits 0-31 of FACS and places the normalized result in FACD. Destroys the previous
contents of FACD. Updates the Z and N flags in the floating point status register to
reflect the new contents of FACD. The contents of FACS remain unchanged.

Checks the floating point number contained in FACS for a zero mantissa. If the
mantissa is zero, sets the DVZ bit in the floating point status register and terminates.
The number in FACD remains unchanged.

If the mantissa is nonzero, compares the mantissas of the numbers contained in FACS
and FACD. If the mantissa of the number in FACD is greater than or equal to the
mantissa of the number in FACS, the instruction shifts the mantissa of the number in
FACD right one hex digit and adds one to the exponent of the number in FACD.

After aligning the mantissas, the instruction divides the mantissa in FACD by the
mantissa in FACS. The mantissa of the quotient becomes the mantissa of the intermediate
result. The two operands and the rules of algebra determine the sign of the intermediate
result. To calculate the exponent of the intermediate result in excess 64 representation,
the instruction subtracts the exponent in FACS from the exponent in FACD and adds
64 to this result. The result is already normalized by the shifting algorithm described in
the paragraph above, so the instruction places the result in FACD unaltered. Updates
the Z and N flags to reflect the new contents of FACD.

If the exponent processing produces either overflow or underflow, the instruction sets the
corresponding bit in the floating point status register. If overflow occurs, the sign and the
mantissa in FACD are correct but the exponent is 128 too small. If underflow occurs,
the sign and the mantissa in FACD are correct but the exponent is 128 too large.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Load Exponent

FEXP fpac

1 0 1 FPAC 1 1 0 0 1 1 0 1 0o 0 (o]

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Loads an exponent into bits 1-7 of an accumulator.

The instruction places bits 17-23 of ACO in bits 1-7 of the specified FPAC. Ignores bits
0-16 and 24-31 of ACO. Changes the Z and N flags in the floating point status register
to reflect the contents of FPAC. ACO and bits 0 and 8-63 of FPAC remain unchanged.
If FPAC contains true zero, the instruction does not load bits 1-7 of FPAC.

194 The MV/8000 Instruction Dictionary

Fix To AC
FFAS ac,fpac

1 AC FPAC 1 0o 1 1 o 1 o] 1 0 0 0

Converts the integer portion of the floating point number contained in the specified
FPAC to a signed two’s complement integer. Places the result in the specified
accumulator.

If the integer portion of the number contained in FPAC is less than -32,769 or greater
than + 32,768, the instruction sets MOF in the FPSR to 1. Takes the absolute value of
the integer portion of the number contained in the FPAC. Takes the 15 least significant
bits of the absolute value and appends a 0 onto the leftmost bit to giver a 16-bit number.
If the sign of the number is negative, formes the two’s complement of the 16-bit result.
Places the 16-bit integer in bits 16-31 of the specified accumulator.

If the integer portion is within the range of -32,768 to + 32,767 inclusive, the instruction
places the 16-bit, two’s complement of the integer portion of the number contained in the
FPAC in bits 16-31 of the specified accumulator.

The instruction leaves the FPAC and the Z and N flags of the FPSR unchanged.

Fix To Memory
FFMD fpac,[@]displacement/,index]

-

INDEX| FPAC | 1|0 | 1|1 |[1]1]o|1|0|0|0|@ DISPLACEMENT
172 '3 4 65 6 7 8'9 1011 12 13 14 156 16 17’ T T T

o

"31

Converts the integer portion of the floating point number contained in the specified
FPAC to a signed two’s complement integer. Places the result in a memory location.

Calculates the effective address, E. If the integer portion of the number contained in
FPAC is less than -2,147,483,649 or greater than +2,147,483,648, the instruction sets
MOF in the FPSR to 1. Takes the absolute value of the integer portion of the number
contained in the FPAC. Takes the 31 least significant bits of the absolute value and
appends a 0 onto the leftmost bit to give a 32-bit number. If the sign of the number is
negative, forms the two’s complement of the 32-bit result. Places the 32-bit integer in the
memory locations specified by E.

If the integer portion is within the range of -2,147,483,648 to +2,147,483,647 inclusive,
the instruction places the 32-bit, two’s complement of the integer portion of the number
contained in the FPAC in the memory locations specified by E.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

The instruction leaves the FPAC and the Z and N flags of the FPSR unchanged.

The MV/8000 Instruction Dictionary 195

Halve
FHLV fpac

Integerize
FINT

1 1 1 FPAC 1 1 0 0o 1 1 0 1 0 V] 0

Divides the floating point number in FPAC by 2.

Shifts the mantissa contained in FPAC right one bit position. Fills the vacated bit
position with a zero and places the bit shifted out in the guard digit. Normalizes the
number and places the result in FPAC. Updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

If underflow occurs, sets the UNF flag in the floating point status register to 1. In this
case, the mantissa and sign in FPAC are correct, but the exponent is 128 too large.

This instruction does rounding.

See Chapter 8 and Appendix G for more information about floating point manipulation.

1 1 0 FPAC 1 1 0 0 1 1 0 1 0 0 0

Zeros the fractional portion (if any) of the number contained in the specified FPAC.
Normalizes the result. Updates the Z and N flags in the floating point status register to
reflect the new contents of the specified FPAC.

NOTE: If the absolute value of the number contained in the specified FPAC is less than 1, the
specified FPAC is set to true zero.

This instruction truncates towards zero, and does not do rounding.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Float From AC
FLAS acfpac

1 AC FPAC 1 0 1 0 [0} 1 0 1 0 0o 0

Converts a two’s complement number in the range of -32,768 to +32,767 inclusive to
floating point format.

Converts the signed two’s complement number contained in bits 16-31 of the specified
accumulator to a single precision floating point number. Places the result in the high-order
32 bits of the specified FPAC. Sets the low-order 32 bits of the FPAC to 0. Updates the
Z and N flags in the floating point status register to reflect the new contents of FPAC.
The contents of the specified accumulator remain unchanged.

196 The MV/8000 Instruction Dictionary

Load Floating Point Double
FLDD fpac,/@]displacement/,index]

INDEX| FPAC [1 |OfOofOf1[1f0of1f0 |00 |@ DISPLACEMENT
0 172 37465 6 7 8 9 10111213 14 15 16 17° ' ' ' ' ' ' ' ' ' T T T 'm

Moves four words out of memory and into a specified FPAC.

Computes the effective address, E. Fetches the double precision floating point number at
the address specified by E and places it in FPAC. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is contrained to be within the
first 32 Kword of the current segment.

NOTE: This instruction will move unnormalized data without change.

Load Floating Point Single
FLDS fpac,/@]displacement/,index]

INDEX| FFAC | 1 |O|O (O[O |1 |O|1 |00 |0 |@ DISPLACEMENT

T

172737456 7 '8 9 1011 1213 14 15 16 17' ']

o

Moves two words out of memory into a specified FPAC.

Computes the effective address, E. Fetches the single precision floating point number at
the address specified by E. Places the number in the high-order bits of FPAC. Sets the
low-order 32 bits of FPAC to 0. Updates the Z and N flags in the floating point status
register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTE: This instruction will move unnormalized or illegal data without change.

Float From Memory
FLMD fpac,[@]displacement][,index]

-

INDEX| FFAC |1 |O |1 |O|1|1|Oft1t|O0O|O0]|0|@ DISPLACEMENT

T T

17273745 '6 7' '8 910 11'12'13 14 15 16 17" 31

(=]

Converts the contents of two 16-bit memory locations to floating point format and places
the result in a specified FPAC.

Computes the effective address, E. Converts the 32-bit, signed, two’s complement
number addressed by E to a double precision floating point number. Places the result in
the specified FPAC. Updates the Z and N flags in the floating point status register to
reflect the new contents of the FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

The MV/8000 Instruction Dictionary 197

The range of numbers that you can convert is -2,147,483,648 to +2,147,483,647
inclusive.

Load Floating Point Status
FLST /@]/displacement/,index]

110
o 1

-

INDEX(11|01 [1]1[0|1]|]0f0]|0|@ DISPLACEMENT

T

T T T T T T T T T T T T T

4 5 6 7 8 9 10 1112 13 14 15 16 17 31

N

3

Moves two words out of memory into the floating point status register.

Computes the effective address, E. Places the 32-bit operand addressed by E in the
floating point status register as follows:

* Places bits 0-15 of the operand in bits 0-15 of the FPSR. Sets bits 16-32 of the FPSR
to 0.
e If ANY is 0, bits 33-63 of the FPSR (the FPPC) are undefined.

» If ANY is 1, the instruction places the value of the current segment in bits 33-35 of
the FPSR, zeroes in bits 36-48, and bits 17-31 of the operand in bits 49-63 of the
FPSR.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTES: This instruction does not set the ANY flag from memory. If any of bits 1-4 are
loaded as 1, ANY is set to 1; otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating point identification
code an are read protected. In the MV/8000 they are set to 0111.

This instruction initiates a floating point trap if ANY and TE are both 1 after the FPPC is
loaded.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Multiply Double (FPAC by FPAC)
FMD facs.facd

1 FACS FACD 0 0 1 0 1 1 0 1 0 0 0

Multiplies the floating point number in FACD by the floating point number in FACS
and places the normalized result in FACD. Updates the Z and N flags in the floating
point status register to reflect the new contents of FACD. The contents of FACS remain
unchanged.

The instruction multiplies the mantissas of the two numbers together. The result is the
mantissa of the intermediate result. The two operands and the rules of algebra determine
the sign of the intermediate result. Adds the exponents of the two numbers together and
subtracts 64 from the result to maintain excess 64 notation. This value becomes the
exponent of the intermediate result. Normalizes the intermediate result if necessary and
loads the result into FACD. Updates the Z and N flags in the floating point status
register.

198

The MV/8000 Instruction Dictionary

If the exponent processing produces either overflow or underflow, the result is held until
normalization, as that procedure may correct the condition. If normalization does not
correct the condition, the instruction sets the corresponding flag in the floating point
status register to 1. The mantissa and sign of the number will be correct, but the
exponent will be 128 too small if overflow occurred; or 128 too large if underflow
occurred.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Multiply Double (FPAC by Memory)
FMMD fpac,[@/displacement[,index]

-

INDEX| FPAC O | 1|1 {0 |1]1|0]|1|O0|O|0O|@ DISPLACEMENT
0 172 3 a's5'6 7 8 9 10 1112131418617 " . ' o T T T 3

Multiplies the 64-bit floating point number in the source location by the 64-bit floating
point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Multiplies this 64-bit floating point number by the floating point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kword of the current segment.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Multiply Single (FPAC by Memory)
FMMS fpac,[@]displacement[,index]

INDEX| FFAC|O|[1}1]|0|j0O|1j0}j1]|0 |00 |@ DISPLACEMENT
T'2'3 456 7 8'9 10 11 1213141816 17° ' T T T T T T T

(=}

Multiplies the 32-bit floating point number in the source location by the 32-bit floating
point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Multiplies this 32-bit floating point number by the floating point number in
bits 0-31 of the specified FPAC. Places the normalized result in bits 0-31 of the specified
FPAC. Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location
unchanged and updates the Z and N flags in the floating point status register to reflect
the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

See Chapter 8 and Appendix G for more information about floating point manipulation.

The MV/8000 Instruction Dictionary 199

Move Floating Point
FMOV facs.facd

1 FACS FACD 1 1 1 0 1 1 0 1 0 0 o]
o ' 1 T 2 37 4 5 6 ' 7 ' 8 ' 9 ' 10 11 12 7 13 14 15

Moves the contents of one FPAC to another FPAC.

Places the contents of FACS in FACD. Updates the Z and N flags in the floating point
status register to reflect the new contents of FACD. The contents of FACS remain
unchanged.

Multiply Single (FPAC by FPAC)
FMS facs,facd

1 FACS FACD o] o] 1 o] [o] 1 (o] 1 o] 0 o]
0 17 2 3 T 4 3 6 7 8 9 10 1 12 13 14 15

Multiplies the 32-bit floating point number in bits 0-31 of FACS by the 32-bit floating
point number in bits 0-31 of FACD.

Multiplies the 32-bit floating point number in bits 0-31 of ACS by the 32-bit floating
point number in bits 0-31 of FACD. Places the normalized result in FACD. Leaves the
contents of FACS unchanged. Sets bits 32-63 of FACD to 0 and updates the Z and N
flags in the floating point status register to reflect the new contents of FACD.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Negate
FNEG fpac
1 1 1 FPAC 1 1 o]] o] 1 (o] 1 0 o] 4]
[v) 1 2 3 ' 4 5 6 10 1 12 13 14 15
Inverts the sign bit of FPAC. Leaves bits 1-63 of FPAC unchanged. Updates the Z and
N flags in the floating point status register to reflect the new contents of FPAC.
If FPAC contains true zero, leaves the sign bit unchanged.
Normalize
FNOM fpac
1 ol o FPAC 1 1 o|o o 1o 1 o|o |o
[} 1 3 4 5 6 7 8 10 11 12 13 14 15

Normalizes the floating point numbers in FPAC. Sets a true zero in FPAC if all the bits
of the mantissa are zero. Updates the Z and N flags in the floating point status register
to reflect the new contents of FPAC.

200 The MV/8000 Instruction Dictionary

If an exponent underflow occurs, sets the UNF flag in the floating point status register.
In this case, the mantissa and the sign of the number in FPAC are correct, but the
exponent is 128 too large.

NOTE: This instruction does not do rounding.

See Chapter 8 and Appendix G for more information about floating point manipulation.

No Skip
FNS

The next sequential word is executed.

Pop Floating Point State
FPOP

Pops the state of the floating point unit off the narrow stack.

Pops an 18-word block off the narrow stack and loads the contents into the FPSR and
the four FPACs. The format of the 18-word block is shown below.

The MV/8000 Instruction Dictionary 201

Narrow stack pointer - ey |
after FPOP
FPSR BITS 9-15
FPSR BITS 16-31
—
—————————— ”
FPACO o [F————————- d
——————————— /A
=
___________ /’
FPACT - | ———==————1 d
I — |1
——————————— /‘
FPAC2 o p=————] -]
___________ /‘
___________ L1
FPAC3 o f—————————+ dl
___________ L]
Narrow stack pointer —gm

before FPOP -)

e i S W

DG-07265
Figure 16.6

The instruction pops the first 32-bit operand on the stack and places it in the FPSR as
follows:

* Places bits 0-15 of the operand in bits 0-15 of the FPSR.
* If ANY is O, bits 16-31 of the FPSR are undefined.

» If ANYis 1, the instruction places bits 16-31 of the popped operand into bits 16-31 of
the FPSR.

The rest of the stack words are popped in the usual way. See Chapter 8 for more
information.

The 32-bit effective address generated by this instruction is constrainted to be within the
first 32 Kword of the current segment.

NOTES: This instruction moves unnormalized data without change.

This instruction does not set the ANY flag from memory. If any of bits 1-4 are loaded as 1,
ANY is set to 1, otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating point identification
code an are read protected. In the MV/8000 they are set to 0111.

This instruction does not initiates a floating point trap under any conditions of the FPSR.

See Chapter 8 and Appendix G for more information about floating point manipulation.

202 The MV/8000 Instruction Dictionary

Push Floating Point State
FPSH

Pushes an 18-word floating point return block onto the narrow stack, leaving the
contents of the floating point accumulators and the floating point status register
unchanged. The format of the 18 words pushed is as follows:

Narrow stack pointer w
—

before FPSH
FPSR BITS 0-15
FPSR BITS 16-31

FPACO -| f—=——————- -

__________ /’

L
—————————— f‘
FPAC1 o f——————=——- -]
’4

L
__________ —+1
FPAC2 o p——===——-—-1 ol

FPAC3 o f=—————————1 g
Narrow stack pointer _ | [~———=—=——-1 ¢
after FPSH g

L/

DG-07266

Figure 16.7

The instruction pushes the contents of the FPSR as follows:

o Stores bits 0-15 of the FPSR in the first memory word.
e If ANY is 0, the contents of the second memory word are undefined.

o If ANY is 1, the instruction stores bits 16-31 of the FPSR into the second memory
word.

The rest of the block is pushed after the FPSR has been pushed.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTES: This instruction moves unnormalized data without change.

This instruction does not initiate a floating point trap under any conditions of the FPSR.

The MV/8000 Instruction Dictionary 203

See Chapter 8 and Appendix G for more information about floating point manipulation.

Read High Word

FRH fpac

Skip Always
FSA

Scale
FSCAL fpac

1 (o] 1 FPAC 1 1 0 0 0 1 0 1 0 0 (o}

Places the high-order 16 bits of FPAC in bits 16-31 of AC0O. FPAC and the Z and N
flags in the floating point status register remain unchanged.

NOTE: This instruction moves unnormalized data without change.

Skips the next sequential word.

1 (o} 0 FPAC 1 1 o] 0 1 1 0 1 [0} 0 0

Shifts the mantissa of the floating point number in FPAC either right or left, depending
upon the contents of bits 17-23 of ACO. Leaves the contents of ACO unchanged.

Bits 17-23 of ACO contain an exponent.

The instruction subtracts the exponent of the number contained in FPAC from the
exponent in ACO. The difference between the exponents specifies D, a number of hex
digits.

If D is zero, the instruction updates the Z and N flags, and stops.

If D is positive, the instruction shifts the mantissa of the number contained in FPAC to
the right by D digits.

If D is negative, the instruction shifts the mantissa of the number contained in FPAC to
the left by D digits. Sets the MOF flag in the floating point status register.

After the right or left shift, the instruction loads the contents of bits 17-23 of ACO into
the exponent field of FPAC. Bits shifted out of either end of the mantissa are lost.
Updates the Z and N flags in the floating point status register to reflect the new contents
of FPAC.

NOTE: This instruction does not do rounding.

204 The MV/8000 Instruction Dictionary

See Chapter 8 and Appendix G for more information about floating point manipulation.

Subtract Double (FPAC from FPAC)
FSD facs.facd

1 FACS FACD o] o] o] 1 1 1 0 1 (o} 0 (o]

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15

Subtracts the 64-bit floating point number in FACS from the 64-bit floating point
number in FACD. Places the normalized result in FACD. Updates the Z and N flags in
the floating point status register to reflect the new contents of FACD. The contents of
FACS remain unchanged.

Refer to Chapter 8 and Appendix G for more information about floating point
manipulation.

Skip On Zero
FSEQ

Skips the next sequential word if the Z flag of the floating point status register is 1.

Skip On Greater Than Or Equal To Zero
FSGE

Skips the next sequential word if the N flag of the floating point status register is 0.

Skip On Greater Than Zero
FSGT

Skips the next sequential word if both the Z and N flags of the floating point status
register are 0.

Skip On Less Than Or Equal To Zero
FSLE

The MV/8000 Instruction Dictionary 205

Skips the next sequential instruction if either the Z flag or the NV flag of the floating
point status register is 1.

Skip On Less Than Zero

FSLT

Skips the next sequential word if the N flag of the floating point status register is 1.

Subtract Double (Memory from FPAC)
FSMD fpac,[@]displacement[,index]

-

INDEX| FPAC [0 |1 |0 |1 |[1[1]o|1|0o|0]0O |@ DISPLACEMENT
1723 4 5 6 7 '8 910 11'12'13 14'15'16 17' ' ' ' ' ' ' ' T T T T T3

o

Subtracts the 64-bit floating point number in the source location from the 64-bit floating
point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Subtracts this 64-bit floating point number from the floating point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Subtract Single (Memory from FPAC)
FSMS fpac,/@/displacement/,index]

-

INDEX| FPAC |O | 1[0 |1|(0|1]|O0|1]|0|0 |0 |@ DISPLACEMENT
1723 4 5 6 7 8'9 10111213 141516 17° ' ' ' ' ' ' T ' ' T T 'a

(=]

Subtracts the 32-bit floating point number in the source location from the 32-bit floating
point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Subtracts this 32-bit floating point number from the floating point number in
bits 0-31 of the specified FPAC. Places the normalized result in the specified FPAC.
Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location unchanged and
updates the Z and N flags in the floating point status register to reflect the new contents
of FPAC.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

206 The MV/8000 Instruction Dictionary

See Chapter 8 and Appendix G for more information about floating point manipulation.

Skip On No Zero Divide

FSND
1 1 0] 1 1 1 (o] 1 o] 1 o] 1 (o] 0 o]
(o] 1 2 3 4 5 6 8 9 10 1 12 13 14 15
Skips the next sequential word if the DVZ flag of the floating point status register is 0.
Skip On Non-Zero
FSNE
1 V] (o] 1 1 1 1 (o] 1 o] 1 (o] 1 V] (V] 0
0 1 2 3 a 5 6 8 9 10 1" 12 13 14 15
Skips the next sequential word if the Z flag of the floating point status register is 0.
Skip On No Error
FSNER
1 1 1 1 1 1 1 o] 1 o 1 0 1 (o] o] (o]
o] 1 2 3 4 5 6 8 9 10 11 12 13 14 15

Skips the next sequential word if bits 1-4 of the floating point status register are all 0.

Skip On No Mantissa Overflow

FSNM
1 1 o 0 0 1 1 0 1 o] 1 0 1 0o 0 o
0 1 2 3 5 6 7 8 9 10 1 12 13 14 15
Skips the next sequential word if the MOF flag of the floating point status register is 0.
Skip On No Overflow
FSNO

Skips the next sequential word if the OVF flag of the floating point status register is 0.

The MV/8000 Instruction Dictionary 207

Skip On No Overflow and No Zero Divide
FSNOD

Skips the next sequential word if both the OVF flag and the DVZ flag of the floating
point status register are 0.

Skip On No Underflow
FSNU

Skips the next sequential word if the UNF flag of the floating point status register is 0.

Skip On No Underflow And No Zero Divide
FSNUD

Skips the next sequential word if both the UNF flag and the DVZ flag of the floating
point status register are 0.

Skip On No Underflow And No Overflow
FSNUO

Skips the next sequential word if both the UNF flag and the OVF flag of the floating
point status register are 0.

Subtract Single (FPAC from FPAC)
FSS facs,facd

1 FACS FACD o [¢] 0 1 0 1 0 1 0 0o 0
T T

Subtracts the 32-bit floating point number in bits 0-31 of FACS from the 32-bit floating
point number in bits 0-31 of FACD. Places the normalized result in bits 0-31 of FACD.
Sets bits 32-63 of FACD to 0. Updates the Z and N flags in the floating point status

register to reflect the new contents of FACD. The contents of FACS remain unchanged.

208 The MV/8000 Instruction Dictionary

Refer to Chapter 8 and Appendix G for more information about floating point
manipulation.

Store Floating Point Status
FSST [@]displacement[,index]

1] 0} 0 |INDEX

1{0|1{t}f1i011|0}0|0 @ DISPLACEMENT

0'1'2 3 4 5 6 7 8 o iz 13 e s e . T T T T,

0

Moves the contents of the narrow FPSR into memory.

Computes the effective address, E, of two sequential, 16-bit locations in memory. Stores
the contents of the FPSR in these locations as follows:

o Stores bits 0-15 of the FPSR in the first memory word.
e If ANY is 0, the contents of the second memory word are undefined.

o If ANY is 1, the instruction stores bits 48-63 of the FPSR into the second memory
word.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTE: This instruction does not initiate a floating point trap under any conditions of the
FPSR.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Store Floating Point Double
FSTD fpac,/@/displacement],index]

-

INDEX| FPAC |1 |0O|O|1|1|[1]|0]|1]|O0O|O0]|O0|@ DISPLACEMENT

T T T T T T T T

T2 '3 4'5 6 7 '8 9 1011 1213 1415 16 17 RS

(=]

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the floating point number contained in FPAC
in memory beginning at the location addressed by E. Destroys the previous contents of
the addressed memory location. The contents of FPAC and the condition codes in the
FPSR remain unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Store Floating Point Single
FSTS fpac,/@]displacement[,index]

INDEX | FPAC

T

olo|1{0}{1}{0}{1]0|0|0|@ DISPLACEMENT

234 5 6 7 8 9 10 11 12 13 14 15 16 17

31

o

1

Stores the contents of a specified FPAC into a memory location.

The MV/8000 Instruction Dictionary 209

Computes the effective address E. Places the 32 high-order bits of FPAC in memory
beginning at the location addressed by E. Destroys the previous contents of the addressed
memory location. The contents of FPAC and the condition codes in the FPSR remain

unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Trap Disable

FID

Trap Enable

FTE

Sets the trap enable (TE) bit of the FPSR to 0.

NOTE: The I/O RESET instruction will also set this bit to 0.

Sets the trap enable TE bit of the FPSR to 1. If ANY is 1 before execution of this
instruction, signals a floating point trap. If ANY is 0 before execution of this instruction,
execution continues normally at the end of this instruction.

NOTES: When this instruction is used to cause a floating point trap, the FPPC portion of the
FPSR will contain the address of the first instruction to cause a fault. Even if another
instruction causes a second fault that occurs before the FTE instruction executes, the FPPC

will still contain the address of the first instruction that caused a fault.

When a floating point fault occurs and TE is 1, the processor sets TE to 0 before transferring
control to the floating point error handler. TE should be set to 1 before resuming normal
processing.

Fixed Point Trap Disable

FXTD

Unconditionally sets the OVK flag to zero. This disables fixed point overflow traps.
Carry is unchanged.

210 The MV/8000 Instruction Dictionary

Fixed Point Trap Enable
FXTE

Unconditionally sets OVK to 1 and OVR to 0. This enables fixed point overflow traps.
Carry is unchanged.

Halve
HLV ac

Divides the contents of an accumulator by 2 and rounds the result toward zero.

The signed, 16-bit two’s complement number contained in bits 16-31 of the specified
accumulator is divided by 2 and rounded toward 0. The result is placed in bits 16-31 of
the specified accumulator.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

This instruction leaves carry unchanged; overflow is 0.

Hex Shift Left
HXL n,ac

Shifts the contents of bits 16-31 of the specified accumulator left a number of hex digits
depending upon the immediate field N. The number of digits shifted is equal to N+1.
Bits shifted out are lost, and the vacated bit positions are filled with zeroes. If IV is equal
to 3, then bits 16-31 of the specified accumulator are shifted out and are set to 0. Leaves
carry unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it
in the immediate field. Therefore, the programmer should code the exact number of hex digits
that he wishes to shift.

Hex Shift Right
HXR n,ac

Shifts the contents of bits 16-31 of the specified accumulator right a number of hex

The MV/8000 Instruction Dictionary 211

Increment
INC/c/[sh][#]

Inclusive OR
IOR acs,acd

digits depending upon the immediate field, N. The number of digits shifted is equal to
N+1. Bits shifted out are lost, and the vacated bit positions are filled with zeroes. If N
is equal to 3, then bits 16-31 of the specified accumulator are shifted out and are set to
0. Leaves carry unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it
in the immediate field. Therefore, the programmer should code the exact number of hex digits
that he wishes to shift.

acs,acd/,skip]

1 ACS ACD 0 1 1 SH C # SKIP

T

[} 1 2 3 a4 5 6 7 8 ' 9 10 " " 12 13 7 T s

Increments the contents of bits 16-31 of an accumulator.

Initializes carry to the specified value. Increments the unsigned, 16-bit number in bits
16-31 of ACS by one and places the result in the shifter. If the incrementation produces
a carry of 1 out of the high order bit, the instruction complements carry. Performs the
specified shift operation, and loads the result of the shift into bits 16-31 of ACD if the
no-load bit is 0. If the skip condition is true, the next sequential word is skipped.

If the load option is specified, bits 0-15 of ACD are undefined.

NOTE: If the number in ACS is 177777 the instruction complements carry.

For this instruction, overflow is 0.

1 ACS ACD 0 0 1 0 0o 0 0 1 o] o 0

Forms the logical inclusive OR of the contents of bits 16-31 of ACS and the contents of
bits 16-31 of ACD and places the result in bits 16-31 of ACD. Sets a bit position in the
result to 1 if the corresponding bit position in one or both operands contains a 1;
otherwise, the instruction sets the result bit to 0. The contents of ACS remain unchanged.
Carry remains unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

212

The MV/8000 Instruction Dictionary

Inclusive OR Immediate

IORI

i,ac

110{0 AC 1t{t1|1{r|1|1j1|]r]ojoOo|0O IMMEDIATE FIELD

0 172 3 4a'5'6 7789 10 11 1213 14 1516 | T R

Forms the logical inclusive OR of the contents of the immediate field and the contents of
bits 16-31 of the specified accumulator and places the result in bits 16-31 of the specified
accumulator. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Increment And Skip If Zero
ISZ [@]displacement],index]

0 0 0 1 0 @ INDEX DISPLACEMENT

T2 3 4 5 6 7 8 i ! ! T 15

Increments the addressed word, then skips if the incremented value is zero.

Increments the word addressed by E and writes the result back into memory at that
location. If the updated value of the location is zero, the instruction skips the next
sequential word.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Carry remains unchanged and overflow is 0.

Increment the Word Addressed by WSP and Skip if Zero

ISZTS

Jump
JMP

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Increments the contents of the word addressed by WSP. If the incremented value is
equal to zero, then the next sequential word is skipped. Carry is unchanged and overflow
is 0.

NOTE: The operation performed by this instruction is not indivisible.

0 0 0 o] 0 @ INDEX DISPLACEMENT

Computes the effective address, E, and places it in the program counter. Sequential
operation continues with the word addressed by the updated value of the program

The MV/8000 Instruction Dictionary 213

counter.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Carry remains unchanged and overflow is 0.

Jump To Subroutine
JSR [@]/displacement/,index]

[o] 0] o] 1 @ INDEX DISPLACEMENT
0 1 2 3 4 j) ! T

o
o
1
«©
o

Increments and stores the value of the program counter in AC3, and then places a new
address in the program counter.

Computes the effective address, E; then places the address of the next sequential
instruction in bits 16-31 of AC3. Places E in the program counter. Sequential operation
continues with the word addressed by the updated value of the program counter.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Carry remains unchanged and overflow is 0.

NOTE: The instruction computes E before it places the incremented program counter in AC3.

Call Subroutine (Long Displacement)

. v e S .
LCALL opcode,argument count,displacement L Cr\w\(A‘)“f”‘“ wi T mf,\e,() Grae e
{
11O 1 UNDEXj 1110 (111{0(0|1{0(0O1i @ DISPLACEMENT
0°1°2°34 56 7 8 910111213 141518617° ' ' ' 1 T T T T T T T T T
s ARGUMENT COUNT
48 1 ! ’) ’ ' 63

Evaluates the address of a subroutine call.

If the target address specifies an outward ring crossing, a protection fault (code=7 in
AC1) occurs. Note that the contents of the PC in the return block are undefined.

If the target address specifies an inward ring call, then the instruction assumes the target
address has the following format:

X [NEW RING UNUSED GATE

o1 " ™3 2 T T T T T T T T T ISTRET M T T T T T T T T T T T \ T T

The instruction checks the gate field of the above format for a legal gate. If the specified
gate is illegal, a protection fault (code=6 in AC1) occurs and no subroutine call is
made. Note that the value of the PC in the return block is undefined.

214

The MV/8000 Instruction Dictionary

If the specified gate is legal, or if the target address specifies an intra ring crossing, the
instruction loads the contents of the PC, plus four, into AC3. The contents of AC3
always references the current ring. If bit 0 of the argument count is 0, the instruction
creates a word with the following format:

ovk| ovk 0jo |0 |O{O|O|O|O|O O |O |O (O |O |O ARGUMENT COUNT
0'1'2'3'4 65 617 B '9 101112 13 14 16 16 17 T T T

31

The instruction pushes this word onto the wide stack. If a stack overflow occurs after this
push, a stack fault occurs and no subroutine call is made. Note that the value of the PC
in the return block is undefined. If bit 0 of the argument count is 1, then the instruction
assumes the top word of the wide stack has the following format:

DON'T CARE 0 ARGUMENT COUNT
— T T T T T

The instruction modifies this word to include the correct settings of OVK and OVR in bits
0and 1.

Regardless of the setting of bit 0 of the argument count, the instruction next
unconditionally sets OVR to 0 and loads the PC with the target address. Control then
transfers to the word referenced by the PC.

Load CPU Identification

LCPID

Loads a double word into ACO. Carry is unchanged and overflow is 0.

The double word has the format:

MODEL NUMBER MICROCODE REV 00 MEM SIZE
7 I e e A A S TS T A AP T P YR % T T T 31

where

model #is the binary representation of the machine’s model number,

microcode rev indicates the microcode revision currently in use on this machine,
mem size indicates the amount of physical memory on this machine. A zero in this
field indicates 256 Kbytes of memory; a one indicates 512 Kbytes, and so on.

Load Accumulator
LDA ac,/@/displacement[,index]

0 0 1 AC @ INDEX DISPLACEMENT

0 1 2 3 4 5 6 7 8

Copies a word from memory to an accumulator.

The MV/8000 Instruction Dictionary 215

Places the word addressed by the effective address, E, in bits 16-31 of the specified
accumulator.

Bits 0-14 are undefined.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

The previous contents of the location addressed by £ and carry remain unchanged.
Overflow is 0.

Load Accumulator with WFP
LDAFP ac

Loads the 32-bit contents of WFP (the wide frame pointer) into the specified 32-bit
accumulator. Carry is unchanged and overflow is 0.

Load Accumulator with WSB
LDASB ac

Loads the 32-bit contents of WSB (the wide stack base) into the specified 32-bit
accumulator. Carry is unchanged and overflow is 0.

Load Accumulator with WSL
LDASL ac

Loads the 32-bit contents of WSL (the wide stack limit) into the specified 32-bit
accumulator. Carry is unchanged and overflow is 0.

Load Accumulator with WSP
LDASP ac

Loads the contents of WSP (the wide stack pointer) into the specified accumulator.
Carry is unchanged and overflow is 0.

216 The MV/8000 Instruction Dictionary

Load Accumulator with Double Word

LDATS ac
1 [o] o] AC 1 1 [0] o] 1 0 o] 1 [} (0] 1
[o] 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Loads the contents of the addressed double word into the specified accumulator. Carry is
unchanged and overflow is 0.
Load Byte
LDB acs,acd
1 ACS ACD 1 0 1 1 1 0 0 1 o] o] 0
) T2 3 7 4 5 6 7 8 9 10 1 12 0 13 14 15

Moves a copy of the contents of a memory byte (as addressed by a byte pointer in one
accumulator) into the second accumulator.

Places the 8-bit byte addressed by the byte pointer contained in bits 15-31 of ACS in bits
24-31 of ACD. Sets bits 16-23 of ACD to 0. The contents of ACS remain unchanged
unless ACS and ACD are the same accumulator. Carry remains unchanged and overflow
is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

Load Integer

LDI fpac

1 0 0 FPAC 1 1 1 1 0 1 0 1 0 (4] 0
T

Translates a decimal integer from memory to (normalized) floating point format and
places the result in a floating point accumulator.

Under the control of accumulators AC1 and AC3, converts a decimal integer to floating
point form, normalizes it, and places it in the specified FPAC. The instruction updates
the Z and N bits in the FPSR to describe the new contents of the specified FPAC.
Leaves the decimal number unchanged in memory, and destroys the previous contents of
the specified FPAC.

Bits 16-31 of AC1 must contain the data-type indicator describing the number.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the number in memory.

Numbers of data type 7 are not normalized after loading. By convention, the first byte of
a number stored according to data type 7 must contain the sign and exponent of the
floating point number. The exponent must be in “excess 64” representation. The
instruction copies each byte (following the lead byte) directly to mantissa of the specified
FPAC. It then sets to zero each low-order byte in the FPAC that does not receive data

The MV/8000 Instruction Dictionary 217

from memory.

Upon successful completion, the instruction leaves accumulators ACO and ACI
unchanged. AC2 contains the original contents of AC3; the contents of AC3 are
undefined. Carry remains unchanged and overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

NOTE: An attempt to load a minus 0 sets the specified FPAC to true zero.

Load Integer Extended
LDIX

Distributes a decimal integer of data type 0, 1, 2, 3, 4, or 5 into the four FPACs.

Extends the integer with high-order zeros until it is 32 digits long. Divides the integer
into four units of 8 digits each and converts each unit to a floating point number. Places
the number obtained from the 8 high-order digits into FACO, the number obtained from
the next 8 digits into FAC1, the number obtained from the next 8 digits into FAC2, and
the number obtained from the low-order 8 bits into FAC3. The instruction places the
sign of the integer in each FPAC unless that FPAC has received 8 digits of zeros, in
which case the instruction sets FPAC to true zero. The Z and N flags in the floating
point status register are unpredictable.

Bits 16-31 of AC1 must contain the data-type indicator describing the integer.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the integer.

Upon successful termination, the contents of ACO and AC3 are undefined; the contents
of ACI remain unchanged; and AC2 contains the original contents of AC3. Carry
remains unchanged and overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

Dispatch (Long Displacement)
LDSP ac,index,displacement

1‘INDEX AC [1|O[1[1|1|1]0|1|0(O]|1 @ DISPLACEMENT
o1 2 3’4’56 78 9'10111213 181516177~ ~ ~ —rTr—/—rm——m—rm—m—rm——m—m—m—m——r+—7——"—"—1——1—1—1—1—1—1—r o)

Dispatches through a table of 28-bit self-relative addresses indexed by the 31-bit PC.

Computes the effective address E . This is the address of a dispatch table. The dispatch
table consists of a table of 28-bit self-relative addresses (bits 0-3 are ignored).
Immediately before the table are two signed, two’s complement limit words, L and H.
The last word of the table is in location £ + 2 x (H - L). The instruction adds the 28-bit
self-relative address in the table entry to the address of the table entry. The ring field of

218

The MV/8000 Instruction Dictionary

the fetched table entry is ignored.

Compares the signed, two’s complement number contained in the accumulator to the
limit words. If the number in the accumulator is less than L or greater than H,
sequential operation continues with the instruction immediately after the Wide Dispatch
instruction.

If the number in AC is greater than or equal to L and less than or equal to H, the
instruction fetches the word at location E - 2 x (L - number). If the fetched word is equal
to 377777777773 (all 1’s), sequential operation continues with the instruction
immediately after the Wide Dispatch instruction. If the fetched word is not equal to
377777777775, the instruction treats this word as the intermediate address in the
effective address calculation. After the indirection chain, if any, has been followed, the
instruction places the effective address in the program counter and sequential operation
continues with the word addressed by the updated value of the program counter. Carry
is unchanged and overflow is 0.

Wraparound occurs within the 28-bit offset. A ring crossing cannot occur. The effective
address, E, references a table of self-relative addresses in the current segment. Thus, bits
1-3 of E and bits 1-3 of any levels of indirection are always interpreted as the current

segment.

The structure of the dispatch table is shown in the figure below.

i: Start of table —»

b
Last,word —p E+ 2x{H-L)

in table
M
DG-01127
Load Effective Address
LEF ac,/@]displacement|,index]
0 1 1 AC @ INDEX DISPLACEMENT
1 2 3 4 5 6 | 7 8 i !) ! T T 15

Computes the effective address, E, within the current segment and places it in the
specified accumulator. Sets bit 0 of the accumulator to 0. The previous contents of the
AC are lost.

The MV/8000 Instruction Dictionary 219

The 32-bit effective address generated by this instruction is constrained to be within the

first 32 Kword of the current segment.

NOTES: The LEF instruction can only be used in a mapped system while in the user mode.
With the LEF mode bit set to 1, all I/O and LEF instructions will be interpreted as LEF
instructions. With the LEF mode bit set to 0, all I/O and LEF instructions will be interpreted

as I/O instructions.

Be sure that 1/0 protection is enabled or the LEF mode bit is set to | before using the LEF
instruction. If you issue a LEF instruction in the I/O mode, with protection disabled, the
instruction will be interpreted and executed as an I/O instruction, with possibly undesirable

results.

Carry is unchanged and overflow is 0.

Add Double (Memory to FPAC) (Long Displacement)

LFAMD fpac,[@]displacement/[,index]

‘|IINDEXFPACOOO11011001@

DISPLACEMENT

012 345678 9 10111213 14'15616 17

T T T T T T T T

"47

Adds the 64-bit floating point number in the source location to the 64-bit floating point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Adds this 64-bit floating point number to the floating point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Add Single (Memory to FPAC) (Long Displacement)

LFAMS fpac,[@]displacement/,index]

1|INDEXFPAC00011001001@

DISPLACEMENT

0°172'3'4'5'6'7 891011121314 15 1617"

Adds the 32-bit floating point number in the source location to the 32-bit floating point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Adds this 32-bit floating point number to the floating point number in bits 0-31
of the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

220 The MV/8000 Instruction Dictionary

Divide Double (FPAC by Memory) (Long Displacement)
LFDMD fpac,/@]displacement],index]

1 INDEX|FPAC|O O |1 [1]|1}1|1]1]|0]|O|1|@ DISPLACEMENT

0 172 3 4'6'6 7 8 9 10111213 141516 17

Divides the 64-bit floating point number in FPAC by the 64-bit floating point number in
the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Divides the floating point number in the specified FPAC by this 64-bit floating
point number. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Divide Single (FPAC by Memory) (Long Displacement)
LFDMS fpac,[@]displacement],index]

1l|NDEx rPaclolof1]|1}1|1|o}1]|0j0|1]|@ DISPLACEMENT
0'1'2'3 4 5'6 7 8 9 10111213 1415 16 17

Divides the 32-bit floating point number in bits 32-63 of FPAC by the 32-bit floating
point number in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Divides the floating point number in bits 0-31 of the specified FPAC by this
32-bit floating point number. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating point status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Load Floating Point Double (Long Displacement)
LFLDD fpac,/@]displacement],index]

1 |INDEX|FPAC|O | 1O |1]1|O[1|1]0|0}1|@ DISPLACEMENT
0'1'2 3 456 7 89 10 11 12 13 14 15 16 17

Moves four words out of memory and into a specified FPAC.

Computes the effective address, E. Fetches the double precision floating point number at
the address specified by E and places it in FPAC. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized data without change.

The MV/8000 Instruction Dictionary 221

Floating Point Load Single (Long Displacement)
LFLDS fpac,/@]displacement/,index]

LhNDEX FPAC

of111/0j0j1j0j0}1|@

DISPLACEMENT

Load Floating Point Status (Long Displacement)

01234

7 8 9 10111213 1415 16

‘a7

Moves two words out of memory into a specified FPAC.

Computes the effective address E. Fetches the single precision floating point number at
the address specified by E. Places the number in the high-order bits of FPAC. Sets the
low-order 32 bits of FPAC to 0. Updates the Z and N flags in the floating point status

register to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized or illegal data without change, but the Z and

N flags will be undefined.

LFLST /@/displacement/,index]

1

-

0]INDEX

of1]tjo|r|1|o|o}1|@

DISPLACEMENT

0123 4

o

7 8 91011121314 15 16

"a7

Moves the contents of two specified memory locations to the floating point status

register.

Computes the effective address, E. Places the 32-bit operand addressed by E in the

floating point status register as follows:

* Places bits 0-15 of the operand in bits 0-15 of the FPSR. Sets bits 16-32 of the FPSR

to 0.

* If ANYis 0, bits 33-63 of the FPSR are undefined.
* If ANYis 1, the instruction places the value of the current segment in bits 33-35 of

the FPSR, zeroes in bits 36-48, and bits 17-31 of the operand in bits 49-63 of the

FPSR.

NOTES: This instruction does not set the ANY flag from memory. If any of bits 1-4 are

loaded as 1, ANY is set to 1; otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating point identification
code an are read protected. In the MV/8000 they are set to 0111.

This instruction initiates a floating point trap if ANY and TE are both I after the FPPC is

loaded.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Multiply Double (FPAC by Memory) (Long Displacement)

LFMMD fpac,/@/displacement/,index]

1 [INDEX| FPAC

t{1{1fof1|1]olo]|1|e@

DISPLACEMENT

017234

7 8 9 10 11121314 15 16

"47

Multiplies the 64-bit floating point number in the source location by the 64-bit floating

222

The MV/8000 Instruction Dictionary

point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Multiplies this 64-bit floating point number by the floating point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Multiply Single (FPAC by Memory) (Long Displacement)
LFMMS fpac,/@]displacement[,index]

1 lINDEX

FPAC

0|0

1j1]1|0|0|1|O|O|1 @ DISPLACEMENT

0 1 2

34 5 6

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

7 8 9 10111213 14 15 16 17 47

Multiplies the 32-bit floating point number in the source location by the 32-bit floating
point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Multiplies this 32-bit floating point number by the floating point number in
bits 0-31 of the specified FPAC. Places the normalized result in bits 0-31 of the specified
FPAC. Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location
unchanged and updates the Z and N flags in the floating point status register to reflect
the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Subtract Double (Memory from FPAC) (Long Displacement)
LFSMD fpac,/@]displacement[,index]

-

INDEX|

FPAC

[=]

0o

oj1f1f{r|1r|[r]|o|O0|1|@ DISPLACEMENT

012

34

5§ 6

Tte s oizshas e T~~~ o T 27

Subtracts the 64-bit floating point number in the source location from the 64-bit floating
point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Subtracts this 64-bit floating point number from the floating point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

The MV/8000 Instruction Dictionary 223

Subtract Single (Memory from FPAC) (Long Displacement)
LFSMS fpac,/@]displacement][,index]

1|INDEX FPAC|OJO 0 f1]1|110|1]|0|0]1|@ DISPLACEMENT
R R A R R R A R T T P A A T T AC A A e e S e S A B e

Subtracts the 32-bit floating point number in the source location from the 32-bit floating
point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Subtracts this 32-bit floating point number from the floating point number in
bits 0-31 of the specified FPAC. Places the normalized result in the specified FPAC.
Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location unchanged and
updates the Z and N flags in the floating point status register to reflect the new contents
of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Store Floating Point Status (Long Displacement)
LFSST [@/displacement/,index]

1

-

OIINDEX
2374

-

1]10j1j1(1|{O0f1|0]|0O]|1|@ DISPLACEMENT

o 5 78 9 1041121348617~ T T T 1T T T T T T T a7

o

Moves the contents of the FPSR to four specified memory locations.

Computes the effective address, E, of two sequential, 32-bit locations in memory. Stores
the contents of the FPSR in these locations as follows:

o Stores bits 0-15 of the FPSR in the first memory word.

e Sets bits 16-31 of the first memory double word and bit 0 of the second memory
double word to 0.

o If ANY is 0, the contents of bits 1-31 of the second memory double word are
undefined.

o If ANY is 1, the instruction stores bits 33-63 of the FPSR into bits 1-31 of the second
memory double word.

NOTE: This instruction does not initiate a floating point trap under any conditions of the
FPSR.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Store Floating Point Double (Long Displacement)
LFSTD fpac,/@]displacement/,index]

1|INDEX FPAC|O[1]O|1|1|1|1[1]|0]|0(1|@ DISPLACEMENT
o 1723745 67 8 9011234567 T T T T T T T T T T T T T T T T T T T 7

Stores the contents of a specified FPAC into a memory location.

224 The MV/8000 Instruction Dictionary

Computes the effective address, E. Places the floating point number contained in FPAC
in memory beginning at the location addressed by E. Destroys the previous contents of
the addressed memory location. The contents of FPAC and the condition codes in the
FPSR remain unchanged.

NOTE: This instruction moves unnormalized or illegal data without change.

Store Floating Point Single (Long Displacement)
LFSTS fpac,/@]displacement/,index]

-

INDEX|FPAC|(O 1|0 |1|1]|1]0[1|0}|0]|1|@ DISPLACEMENT
172 374 567 8 9 101112131415 16 17" T T T

o

Stores the contents of a specified FPAC into a memory location.

Computes the effective address E. Places the 32 high-order bits of FPAC in memory
beginning at the location addressed by E. Destroys the previous contents of the addressed
memory location. The contents of FPAC and the condition codes in the FPSR remain

unchanged.

NOTE: This instruction moves unnormalized or illegal data without change.

Jump (Long Displacement)
LIMP index,displacement

-

1 1|INDEX 11o0j1|(t1f{oj1|1]0(0|1|@ DISPLACEMENT

01 2 34

o

T T

1011123456177 T T T T T L L A T

o

6 7 8

©

Calculates the effective address E. Loads E into the PC. Carry is unchanged and
overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

Jump to Subroutine (Long Displacement)
LJISR index.displacement

110|111 [(1]0|1]|0[01|@ DISPLACEMENT

101IINDEX
0 1T 2 34 56 7 8Te o123 a6 T T T T T T T T T T T T T T g

Loads AC3 with the current 31-bit value of the program counter plus three. Loads the
PC with the effective address. Carry is unchanged and overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

The MV/8000 Instruction Dictionary

225

Load Byte (Long Displacement)
LLDB ac,index,displacement

1’INDEX AC [1]0]Oof1|1]0|0f1]01l0]1 DISPLACEMENT

T T T T T

012374 56 7 8'9 101112131415 16"

Calculates the effective byte address. Uses the byte address to reference a byte in

47

memory. Loads the addressed byte into bits 24-31 of the specified accumulator, then

zero extends the value to 32 bits. Carry is unchanged and overflow is 0.

Load Effective Address (Long Displacement)
LLEF ac,index,displacement

INDEX| AC {O]1[1|1]|1]|1]|0f[1]0]|0]1|@ DISPLACEMENT

T

1727374 5'6'7'8'9'1011'12'13'14'16'16'17

o

47

Calculates the effective address, E. Checks for segment crossing violation. If no violation
occurs, loads E into the specified accumulator. If a violation occurs, issues a protection

fault. Carry is unchanged and overflow is 0.

Load Effective Byte Address (Long Displacement)
LLEFB ac,index,displacement

INDEX] AC |1{0|O(1][1f1]|0f1]0[O|1 DISPLACEMENT

T

017234 5'6'7'8'9 10111213 14'156'16

a7

Calculates a byte address. Checks for segment crossing violation. If no violation occurs,
loads the byte address into the specified accumulator. If a violation occurs, issues a

protection fault. Carry is unchanged and overflow is 0.

Load Modified and Referenced Bits
LMRF

Loads the modified and referenced bits of a pageframe into ACO.

AC] contains a pageframe number in bits 13-31.

The instruction loads the modified and referenced bits of the pageframe specified by
AC1 into ACO. The bits are loaded right justified and zero filled. The instruction then

resets the referenced bit just accessed to 0. Carry is unchanged and overflow is 0.

If the ATU is not enabled, undefined results will occur.

Specification of a non-existant pageframe results in an indeterminate data.

226 The MV/8000 Instruction Dictionary

NOTE: This is a privileged instruction.

Narrow Add Memory Word to Accumulator (Long Displacement)
LNADD ac,index,displacement

1l|NDEX AC |0|1]|0jojOo|0|1|1]|0]|0]|0|@ DISPLACEMENT
0 12 3 4 65 6 7' 891011121314 1516 17 T T T

47

Adds an integer in memory to an integer contained in an accumulator.

The instruction calculates the effective address, E. Adds the 16-bit integer contained in
the location specified by E to the integer contained in bits 16-31 of the specified
accumulator. Sign extends the 16-bit result to 32 bits and loads it into the specified
accumulator. Sets carry to the value of ALU carry, and overflow to 1 if there is an ALU
overflow. The contents of the referenced memory location remain unchanged.

Narrow Divide Memory Word (Long Displacement)
LNDIV ac,index,displacement

1l|NDEX AC [O|1}10]|1|1[0|1}|1|0;0]|0|@ DISPLACEMENT
ov|.23.45678910”‘213141516‘7.:".........v.vvv..,.«...y‘-r”

Divides an integer contained in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Sign extends the integer contained in
bits 1631 of the specified accumulator to 32 bits and divides it by the 16-bit integer
contained in the location specified by E. If the quotient is within the range -32,768 to
+32,767 inclusive, sign extends the result to 32 bits and loads it into the specified
accumulator. If the quotient is outside of this range, or the memory word is zero, the
instruction sets overflow to 1 and leaves the specified accumulator unchanged. Otherwise,
overflow is 0. The contents of the referenced memory location and carry remain
unchanged.

Narrow Decrement and Skip if Zero (Long Displacement)
LNDSZ index,displacement

-

110 0|INDEX
[}

1(oj1|1jojr|[1|{OjO|1|@ DISPLACEMENT

234 6 7879 101112713 14151817 T T T T T T T T LA S S S B B R R L S R B AT

o

Calculates the effective address E. Decrements by one the contents of the 16-bit memory
location addressed by E. If the result is equal to zero, then the next sequential word is
skipped. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

The MV/8000 Instruction Dictionary 227

Narrow Increment and Skip if Zero (Long Displacement)
LNISZ index,displacement

-

1
o}

o

OIINDEX
2'3'°4

1/0({1]1]0|0}1|0|0|1|@ DISPLACEMENT

6 7 8 '9 101112 13 14 15 16 17"

@

Calculates the effective address, E. Increments by one the contents of the 16-bit memory
location addressed by E. If the result is equal to zero, then the instruction skips the next
sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

Narrow Load Accumulator (Long Displacement)
LNLDA ac,index,displacement

INDEX{ AC {O{1|1|1]1{0[{0{1|0|0|t |@
172 345667 89 10111213 14 1516 17

-

DISPLACEMENT

(=]

Calculates the effective address, E. Fetches the 16-bit fixed point integer contained in
the location specified by E. Sign extends this integer to 32 bits and loads it into the
specified accumulator. Carry is unchanged and overflow is 0.

Narrow Multiply Memory Word (Long Displacement)
LNMUL ac,index,displacement

DISPLACEMENT

T T T T T T T T T

1!INDEXAC ol1f{ojr|jofo|1|1|O0jO |0 @
45 67 8'9 101112131415 16 17"

01723 a7

Multiplies an integer in memory by an integer in an accumulator.

Calculates the effective address, E. Multiplies the 16-bit, signed integer contained in the
location referenced by E by the signed integer contained in bits 16-31 of the specified
accumulator. If the result is outside the range of -32,768 to + 32,767 inclusive, sets
overflow to 1; otherwise, overflow is 0. Sign extends the result to 32 bits and places the
result in the specified accumulator. The contents of the referenced memory location and

carry remain unchanged.

Narrow Store Accumulator (Long Displacement)

LNSTA ac,index,displacement

@ DISPLACEMENT

1lINDEXAC01111011001
L e S e e 7 A S S B S B S R S R B T

0'1'2'3'4'6 6 '7 '8 9101112131415 16 17

Computes the effective address, E. Stores the low-order 16 bits of the specified
accumulator into the location specified by E. Carry is unchanged and overflow is 0.

228 The MV/8000 Instruction Dictionary

Narrow Subtract Memory Word (Long Displacement)
LNSUB ac,index,displacement

1IINDEX AC |O|1|0jO0|1|0f1]1|0|O0|0O|@ DISPLACEMENT
671 23 256 78 90 3ase T T T T T T T T T T T T T

Subtracts an integer in memory from an integer in an accumulator.

Calculates the effective address, E. Subtracts the 16-bit integer contained in the location
referenced by E from the integer contained in bits 16-31 of the specified accumulator.

Sign extends the result to 32 bits and stores it in the specified accumulator. Sets carry to
the value of ALU carry, and overflow to 1 if there is an ALU overflow. The contents of
the specified memory location remain unchanged. :

Locate Lead Bit
LOB acs,acd

1 ACS ACD 1 0 1 0 0 0 0o 1 0 (o} 0

Adds a number equal to the number of high-order zeroes in the contents of bits 16-31 of
ACS to the signed, 16-bit, two’s complement number contained in bits 16-31 of ACD.
The contents of ACS and the state of carry remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If ACS and ACD are specified as the same accumulator, the instruction functions as
described above, except that since ACS and ACD are the same accumulator, the contents of
ACS will be changed.

Push Address (Long Displacement)
LPEF index, displacement

110 1lINDEX
172 34

1{0|1f{1]1|1|{1]|]0|0|1|@ DISPLACEMENT
6 778 801112 13185 67T T T T T 7 T T T T T T T T T T T T T T Ty

[=]
o

Pushes an effective address onto the wide stack. Carry is unchanged and overflow is 0.

Push Byte Address (Long Displacement)
LPEFB index, displacement

-

11 OllNDEX

1jof1]1f{1]|1|1]|0f0]|1|@ DISPLACEMENT
012 346 6 7 8'8 101112131415 1617 oro T

‘47

Calculates an effective byte address. Pushes this byte address onto the wide stack. Carry
is unchanged and overflow is 0.

The MV/8000 Instruction Dictionary 229

Load Physical
LPHY

Translates the logical address contained in AC1 to a physical address.

ACI1 contains a logical word address.

If the ATU is disabled, this instruction does nothing. The next word is executed.
If the ATU is enabled, then the actions described below occur.

The instruction compares the ring field of AC1 to the current ring. If AC1’s ring field is
less than or equal to the current ring field, then a protection fault (AC1 = 4) occurs.

If AC1’s ring field is greater than the current ring, then the instruction references the
SBR specified by AC1. If the SBR contents are invalid, then the instruction ends and
the next instruction is executed. The contents of ACO will be unchanged.

If the contents of the SBR are valid, the instruction loads ACO with the last resident
PTE. If the PTE indicates no page or validity faults, the instruction loads AC2 with the
32-bit physical word address of the logical address contained in AC1. The next sequential
word is skipped.

If the PTE signals a page or validity fault, the contents of AC2 remain unchanged. The
next sequential word is executed.

The instruction leaves carry unchanged; overflow is 0.

Push Jump (Long Displacement)
LPSHY index,displacement

1
]

OIINDEX tjoj1(1jo|oj1(o|o|1]@ DISPLACEMENT

23 4

-

6 7' 8 9 101112131418 1617" | ' T T T T T T T T T T T T T T T T T T T 27

@

Saves a return address on the wide stack and jumps to a specified location.

Pushes the current 31-bit value of the program counter + 3 onto the wide stack.
Calculates the effective address, E. Loads the PC with E. Sequential operation continues
with the word addressed by the updated value of the program counter. Carry is unchanged
and overflow is 0.

NOTE: The value pushed onto the wide stack will always point to a location in the current
ring.

230

The MV/8000 Instruction Dictionary

Load Processor Status Register into ACO

LPSR

Loads the contents of the PSR into ACO.

Loads the contents of OVK, OVR, and IRES into bits 0, 1, and 2 of ACO, respectively.
Fills the rest of ACO with zeroes. The contents of the PSR remain unchanged. Carry is
unchanged and overflow is 0.

Locate and Reset Lead Bit

LRB acs,acd

1 ACS ACD 1 0 1 o 1 (o} 0 1 0o [0} 0

Performs a Locate Lead Bit instruction, and sets the lead bit to 0.

Adds a number equal to the number of high-order zeroes in the contents of bits 16-31 of
ACS to the signed, 16-bit, two’s complement number contained in bits 16-31 of ACD.
Sets the leading 1 in bits 16-31 of ACS to 0. Carry remains unchanged and overflow is
0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If ACS and ACD are specified to be the same accumulator, then the instruction sets
the leading 1 in that accumulator to 0, and no count is taken.

Load All Segment Base Registers

LSBRA

Loads the SBRs with new values.
ACO contains the starting address of an 8 double word block.

The instruction loads a copy of the contents of these words into the SBRs as shown in the
table below:

Double Word in Block Destination Order Moved
1 SBRO First

2 SBR1 Second

3 SBR2 Third

4 SBR3 Fourth

5 SBR4 Fifth

6 SBR5 Sixth

7 SBR6 Seventh

8 SBR7 Eighth

The MV/8000 Instruction Dictionary 231

After loading the SBRs, the instruction purges the ATU. If the ATU was disabled at the
beginning of this instruction cycle, the processor enables it now.

If an invalid address is loaded into SBRO, the processor disables the ATU and a
protection fault occurs (code = 3 in AC1). This means that logical addresses are
identical to physical addresses, and the fault is processed in physical address space.

The instruction leaves ACO and carry unchanged; overflow is 0.

NOTE: This is a privileged instruction.

Load Segment Base Registers 1-7

LSBRS

Loads SBR1 through SBR7 with new values.

ACO contains the starting address of a block of seven double words. The instruction
loads a copy of the contents of these words into the SBRs as shown in the table below:

Double Word in Block Destination Order Moved
1 SBR1 First

2 SBR2 Second

3 SBR3 Third

4 SBR4 Fourth

5 SBR5 Fifth

6 SBR6 Sixth

7 SBR7 Seventh

After loading the SBRs, the instruction purges the ATU. If the ATU was disabled at the
beginning of this instruction cycle, the processor enables it now.

If SBRO contains invalid information, then the processor disables the ATU and a
protection fault occurs (code = 3 in AC1). This means that logical addresses are
identical to physical addresses, and the fault is processed in physical address space.

The instruction leaves ACO and carry unchanged; overflow is 0.

NOTE: This is a privileged instruction.

232

The MV/8000 Instruction Dictionary

Logical Shift

LSH

acs,acd

Load Sign

LSN

1 ACS ACD o] 1 o] 1 0 0 o 1 (o} 0o 0

Shifts the contents of bits 16-31 of ACD either left or right depending on the number
contained in bits 24-31 of ACS. The signed, 8-bit two’s complement number contained
in bits 24-31 of ACS determines the direction of the shift and the number of bits to be
shifted. If the number in bits 24-31 of ACS is positive, shifting is to the left; if the
number in bits 24-31 of ACS is negative, shifting is to the right. If the number in bits
24-31 of ACS is zero, no shifting is performed. Bits 16-23 of ACS are ignored.

The number of bits shifted is equal to the magnitude of the number in bits 24-31 of
ACS. Bits shifted out are lost, and the vacated bit positions are filled with zeroes. Carry
and the contents of ACS remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If the magnitude of the number in bits 24-31 of ACS is greater than 15, all bits of
ACD are set to 0. Carry and the contents of ACS remain unchanged.

Under the control of accumulators AC1 and AC3, evaluates a decimal number in
memory and returns in AC1 a code that classifies the number as zero or ‘nonzero and
identifies its sign. The meaning of the returned code is as follows:

Value of Number Code
Positive non-zero +1
Negative non-zero -1
Positive zero 0
Negative zero -2

Bits 16-31 of AC1 must contain the data type indicator describing the number.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the number.

Upon successful termination, the contents of ACO remain unchanged; AC1 contains the
value code; AC2 contains the original contents of AC3; and the contents of AC3 are
unpredictable. Carry remains unchanged. The contents of the addressed memory
locations remain unchanged. Overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

The MV/8000 Instruction Dictionary 233

Store Byte (Long Displacement)
LSTB ac,index,displacement

1 |INDEX

AC

1

(o}

ol1|1jo[1(1(0(O1 DISPLACEMENT

0 172

37

4

5

6 7 8 9 10111213 141516 + ' + ¢~ —T —rm—r—r—m/—mr—r—mr—r—r—r—r1—r—1r— 27

Stores the low-order byte of the specified accumulator in memory.

Calculates the effective byte address. Moves a copy of the contents of bits 24-31 of the
specified accumulator into memory at the location specified by the byte address. Carry
is unchanged and overflow is 0.

Wide Add Memory Word to Accumulator (Long Displacement)
LWADD ac,index,displacement

1 IlNDEX

AC

0o

1

11000111000 |@ DISPLACEMENT

0 172

37

4

5 6

7 89 1011 121314151617 ' ' +~ T~ T —r—/m—/—/——mT—Tr—T/rrr—r—Tr—7—r—77r a7

Adds an integer in memory to an integer in an accumulator.

The instruction calculates the effective address, E. Adds the 32-bit integer contained in
the location specified by E to the 32-bit integer contained in the specified accumulator.
Loads the result into the specified accumulator. Sets carry to the value of ALU carry,
and overflow to 1 if there is an ALU overflow. The contents of the referenced memory
location remain unchanged.

Wide Divide From Memory (Long Displacement)
LWDIV ac,index,displacement

-

INDEX]|

AC

0

1

tj1|1{of1j1jo|olo|@ DISPLACEMENT

o

172

37

4

5 6

7891011121314151617.vv-vv||v.|.y.v:.n.y.y-|-.-..-47

Divides an integer in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Sign extends the 32-bit integer
contained in the specified accumulator to 64 bits and divides it by the 32-bit integer
contained in the location specified by E.

If the quotient is within the range of -2,147,483,648 to +2,147,483,647 inclusive, the
instruction loads the quotient into the specified accumulator. Overflow is 0.

If the quotient is outside this range, or if the word in memory is zero, the instruction sets
overflow to 1 and leaves the specified accumulator unchanged.

The contents of the referenced memory location and carry remain unchanged.

234 The MV/8000 Instruction Dictionary

Wide Decrement and Skip if Zero (Long Displacement)

LWDSZ index,displacement
1{ololnoex{1]1|ol1]1]1{1]1]olo}1|@ DISPLACEMENT
0'1°2 3'4'5 6 7'8 8 101112131415 1617 T T T T47

Decrements the contents of a 32-bit memory location by one. If the result is equal to
zero, then the instruction skips the next sequential word. Carry is unchanged and

overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the instruction is located
on a double word boundary.

Wide Increment and Skip if Zero (Long Displacement)

LWISZ index,displacement
1]0 0|INDEX1 1{ol1]|1{1]ol1]oo |1 @ DISPLACEMENT
9'1'2 3 4'65'6 7 8910111213 1415 16 17 o T T M ! ‘47

Increments the contents of a 32-bit memory location by one. If the result is equal to zero,
then the instruction skips the next sequential word. Carry is unchanged and overflow is

0.

NOTE: This instruction executes in one indivisible memory cycle if the instruction is located
on a double word boundary.

Wide Load Accumulator (Long Displacement)
LWLDA ac,index,displacement

1|lNDEX AC |O

1111 [1]r|r]|0f{O0]|1|@ DISPLACEMENT

47

012 3'4'5

6 7 8 9101112131415 16 17"

Loads the contents of a memory location into an accumulator.

Calculates the effective address, E. Fetches the 32-bit fixed point integer contained in
the location specified by E. Loads this integer into the specified accumulator. Carry is

unchanged and overflow is 0.

Wide Multiply From Memory (Long Displacement)
LWMUL ac,index,displacement

1|INDEX] AC |Ofj1]|1|1]|O|O}1]|1(0]|0|0|@

DISPLACEMENT

"a7

0 12 3 45

6 7 8 9101112 13 14 16 16 17"

Multiplies an integer in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Multiplies the 32-bit, signed integer
contained in the location referenced by E by the 32-bit, signed integer contained in the
specified accumulator. Places the 32 least significant bits of the result in the specified
accumulator. The contents of the memory location and carry remain unchanged.

The MV/8000 Instruction Dictionary 235

If the result is outside the range of -2,147,483,648 to +2,147,483,647 inclusive, sets
overflow to 1; otherwise, overflow is 1. The specified accumulator will contain the 32
least significant bits of the result.

Wide Store Accumulator (Long Displacement)
LWSTA ac,index,displacement

‘IIINDEX ac [1|ojo|1|1{1|1]1]0 of1|@ DISPLACEMENT
.-.-...'..-.y....r.|..r..-...47

0°1°2'3'4°56'7'8'910111213141616'17

Calculates the effective address, E. Stores the 32-bit contents of the specified accumulator
in the location specified by E. Carry is unchanged and overflow is 0.

Wide Subtract Memory Word (Long Displacement)
LWSUB ac,index,displacement

1IINDEX AC fof1f1]o|1|of1|{1]|o|o]|0|@ DISPLACEMENT
0172374 567 '8 9101112131816 1617 " T T T T

47

Subtracts an integer in memory from an integer in an accumulator.

The instruction calculates the effective address, E. Subtracts the 32-bit integer contained
in the location referenced by E from the 32-bit integer contained in the specified

accumulator. Loads the result into the specified accumulator. Sets carry to the value of
ALU carry, and overflow to 1 if there is an ALU overflow. The contents of the specified

memory location remain unchanged.

Move
MOV/c/[sh][#] acs,acd] skip]

1 ACS ACD 0 1 0 SH c # SKIP
0 12 3 a4 5 6 7 8 9 0 0 1 12 13 7 RS

Moves the contents of bits 16-31 of an accumulator into another accumulator.

Initializes carry to the specified value. Places the contents of bits 16-31 of ACS in the
shifter. Performs the specified shift operation and loads the result of the shift into bits
16-31 of ACD if the no-load bit is 0. If the skip condition is true, the instruction skips the
next sequential word. Overflow is 0.

If the load option is specified, bits 0-15 of ACD are undefined.

236

The MV/8000 Instruction Dictionary

Modify Stack Pointer

MSP ac

Changes the value of the stack pointer and tests for potential overflow.

Adds the signed two’s-complement number in bits 16-31 of the specified accumulator to
the value of the stack pointer and places the result in location 40. The instruction then
checks for overflow by comparing the result in location 40 with the value of the stack
limit. If the result in location 40 is less than the stack limit, then the instruction ends.

If the result is greater than the stack limit, the instruction changes the value of location
40 back to its original contents before the add. The instruction pushes a standard return
block. The program counter in the return block contains the address of the Modify
Stack Pointer instruction.

After pushing the return block, the program counter contains the address of the stack
fault routine. The stack pointer is updated with the value used to push the return block,
and control transfers to the stack fault routine. Carry remains unchanged and overflow
is 0.

Unsigned Multiply

MUL

Multiplies the unsigned contents of two accumulators and adds the result to the unsigned
contents of a third accumulator. The result is an unsigned 32-bit integer in two
accumulators.

The unsigned, 16-bit number in bits 16-31 of AC1 is multiplied by the unsigned, 16-bit
number in bits 16-31 of AC2 to yield an unsigned, 32-bit intermediate result. The
unsigned, 16-bit number in bits 16-31 of ACO is added to the intermediate result to
produce the final result. The final result is an unsigned, 32-bit number and occupies bits
16-31 of both ACO and AC1. Bit 16 of ACO is the high-order bit of the result and bit 31
of AC1 is the low-order bit. The contents of AC2 remain unchanged.

Because the result is a double-length number, overflow cannot occur. Carry remains
unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Signed Multiply

MULS

Multiplies the signed contents of two accumulators and adds the result to the signed

The MV/8000 Instruction Dictionary 237

Narrow Add

contents of a third accumulator. The result is a signed 32-bit integer in two accumulators.

The signed, 16-bit two’s complement number in bits 16-31 of AC1 is multiplied by the
signed, 16-bit two’s complement number in bits 16-31 of AC2 to yield a signed, 32-bit
two’s complement intermediate result. The signed, 16-bit two’s complement number in
bits 16-31 of ACO is added to the intermediate result to produce the final result. The
final result is a signed, 32-bit two’s complement number which occupies bits 16-31 of
both ACO and AC1. Bit 16 of ACO is the sign bit of the result and bit 31 of AC1 is the
low-order bit. The contents of AC2 remain unchanged.

Because the result is a double-length number, overflow cannot occur. Carry remains
unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NADD acs,acd

1 ACS ACD 0 0 0 0 1 0 0 1 o] 0 1

Adds two integers contained in accumulators.

The instruction adds the 16-bit integer contained in bits 16-31 of ACS to the 16-bit
integer contained in bits 16-31 of ACD. Stores the result in bits 16-31 of ACD. Sign
extends ACD to 32 bits. Sets carry to the value of ALU carry, and sets overflow to 1 if
there is an ALU overflow.

Narrow Extended Add Immediate

NADDI n,ac

Narrow Add
NADI n,ac

11110 AC tfr]jojofjoj1j1]1]0]|0f1 IMMEDIATE FIELD
T T T T

T

Adds an integer contained in an immediate field to an integer in an accumulator.

Adds the 16-bit value contained in the immediate field to bits 16-31 of the specified
accumulator. Stores the result in the lower 16 bits of ACD. Sign extends ACD to 32 bits.
Sets carry to ALU carry (16 bit operation). Sets overflow to 1 if there is an ALU
overflow (16 bit operation).

Immediate

Adds an integer in the range of 1 to 4 to an integer contained in an accumulator.

238

The MV/8000 Instruction Dictionary

The instruction adds the value n+1 to the 16-bit contents of the specified accumulator,
where 7 is an integer in the range of 0 to 3. Stores the result in the lower 16 bits of the
specified accumulator. Sign extends the specified accumulator to 32 bits. Sets carry to
the value of ALU carry (16-bit operation). Sets overflow to 1 if there is an ALU
overflow (16 bit operation).

NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in
the immediate field. Therefore, the programmer should code the exact value that he wishes to
add.

Search Queue

<width> <direction>S<test condition>

111lololof1}j1}l1]0o]ojOof1]|1]O]|O |1 RESERVED w/| TEST (D

T T

26 27 28 30 31

Searches a queue for the first data element containing information that meets a specified
condition.
AC1 contains the effective address of the first queue data element to search.

AC3 contains a two’s complement word offset. The instruction adds the offset to the
address of the forward link of each data element to get the address of the location to test
(called the test location).

The double word on the top of the wide stack contains a mask word.

Bits 11-15 of the second word of the search instruction specify the conditions of the
search. The table below explains the meanings of these bits.

Bits Name of Field |Encoding Mnemonic Meaning
11 Width (o] N Search field is 16 bits wide.
1 w Search field is 32 bits wide.
12-14 Test 000 SS Some of the bits specified by the mask in the
test condition are one.
001 SC Some of the bits specified by the mask in the
test condition are zero.
010 AS All of the bits specified by the mask in the test
condition are one.
011 AC All of the bits specified by the mask in the test
condition are zero.
100 E* The mask and test location are equal.
101 GE* The mask is greater than or equal to the test
location.
110 LE* The mask is less than or equal to the test location.
111 NE* The mask and the test location are not equal.
15 Direction 0 F Search forward in the queue.
1 B Search backward in the queue.

NOTE: The instruction treats the values contained in the mask and the test location as
unsigned integers for these test conditions.

The MV/8000 Instruction Dictionary 239

The size of the field to search (bit 11) determines the size of the mask and the size of the
offset. If you specify a narrow search, then bits 16—31 of the wide stack word contain the
mask. AC3 specifies a relative word offset to the 16-bit test location. If you specify a
wide search, then bits 031 of the wide stack word contain the mask. AC3 specifies the
relative word offset to the 32-bit test location.

The instruction searches each data element in the queue from the element specified by
AC1 to the head or tail of the queue (depending on the direction of the search). To
perform the search on each element, the instruction adds the offset contained in AC3 to
the address contained in ACI to obtain an address of a location contained in some data
element in the queue. Compares the mask field to the value contained in the calculated
address.

If the search fails, ACI1 contains the effective address of the last data element searched.
Execution continues with the next sequential instruction. Interrupts are honored between
the time the search fails and the time the next word executes.

If the search is interrupted, AC1 contains the effective address of the next data element
to be examined. The next sequential word is skipped and execution continues with the
second word. Interrupts are honored between the time the interrupt occurs and the time
the second instruction executes.

If the search is successful, AC1 contains the address of the data element that met the
specified condition. The next two sequential words are skipped and execution continues
with the third word. Note that interrupts cannot occur between the time the search is
successful and the time the third word executes.

For all returns, the contents of carry, WSP, AC0O, AC2, and AC3 remain unchanged.
Overflow is 0.

Narrow Search Queue Backward

NBSAC

i

-
-

tf1j0jo|of1f1]1jojojol1]|1]0]|0O |1 RESERVED 001

T T T

72627 28129 30 31

See instruction entry “Search Queue”.

Narrow Search Queue Backward

NBSAS

1{1]jo0|jofof1]1r|1jofojo 1|1 {00 |1 RESERVED oo |10 |1

See instruction entry “Search Queue”.

240 The MV/8000 Instruction Dictionary

Narrow Search Queue Backward

NBSE
t{1]/0}lojof1|1]|]1]|O0ofO0jOj1|1]|O|O |1 RESERVED oj1{0 (0|1
0'1 2 3 4 5 6 7 8 10 11 12 13 14 16 16 T 72627 28 29 30 31
See instruction entry “Search Queue”.

Narrow Search Queue Backward

NBSGE
1{1jo}olofj1|1}r1|ofojo|1|1]|O}|O |1 RESERVED of1{0 {1 |1
o1 2 4 5 '6 7 8'9 10 11 12 13 14 15 16 ! TT T T26°27 28 29 30 3t
See instruction entry “Search Queue”.

Narrow Search Queue Backward

NBSLE
1{1]ofolo|1|1|[1|o]JOofO|1]1]O|O |1 RESERVED o1 (|10 1
K 45 6 7 8 1011 12 13 14 15 16 j T T T T26 27 28 29 30 31
See instruction entry “Search Queue”.

Narrow Search Queue Backward

NBSNE
111]o0]lo|o|1ft|r|{Oo}jOfO(|[1[1]|]O]|O |1 RESERVED (o2 I T O O O I
0 12 3 4 5 6 7 8 1071112 13 14 16 16 726 27 28 29 30 31
See instruction entry “Search Queue”.

Narrow Search Queue Backward

NBSSC
111]ojo|lo|tjrj1jOo|OofO{1]1]O|O |1 RESERVED ofoto |1 |1
0 1 2 3 4 5 6 7 8 1071112 13 14 15 16 T TT 72627 28 29 30 31

See instruction entry “Search Queue”.

The MV/8000 Instruction Dictionary 241

Narrow Search Queue Backward

NBSSS

1]1]jojJojofr|1]1|]ofo]of1[|[1]Oo]|O |1 RESERVED 0|0 |0 (0|1

See instruction entry “Search Queue”.

Narrow Divide
NDIV acs,acd

Negate

1 ACS ACD 0o 0 0 0o 1 1 1 1 0o 0o 1

Divides an integer in an accumulator by an integer in another accumulator.

The instruction sign extends bits 16-31 of ACD to 32 bits. Divides this signed integer by
the 16-bit signed integer contained in bits 16-31 of ACS. If the quotient is within the
range -32,768 to +32,767 inclusive, sign extends the lower 16 bits of the result to 32 bits
and places these 16 bits in ACD. If the quotient is outside of this range, or if ACS is
zero, the instruction sets overflow to 1 and leaves ACD unchanged. Otherwise, overflow
is 0. The contents of ACS and carry always remain unchanged.

NEG/c/[sh][#] acs,acd],skip]

1 ACS ACD o] 0 1 SH c # SKIP

T

[1 2 3 a4 5 6 7 8

Forms the two’s complement of the contents of bits 16-31 of an accumulator.

Initializes carry to the specified value. Places the two’s complement of the unsigned,
16-bit number in bits 16-31 of ACS in the shifter. If the negate operation produces a
carry of 1 out of the high-order bit, the instruction complements carry. Performs the
specified shift operation and places the result in bits 16-31 of ACD if the no-load bit is
0. If the skip condition is true, the instruction skips the next sequential word. Overflow is
0.

If the load option is specified, bits 0-15 of ACD are undefined.

NOTE: If ACS contains 0, the instruction complements carry.

Narrow Search Queue Forward

NFSAC

111f(ojojojt1f1|]1]ofojo|1[1]|O}]O |1 RESERVED oo |11]0

See instruction entry “Search Queue”.

242 The MV/8000 Instruction Dictionary

Narrow Search Queue Forward

NFSAS

Narrow Search Queue Forward

NFSE

Narrow Search Queue Forward

NFSGE

Narrow Search Queue Forward

NFSLE

Narrow Search Queue Forward

NFSNE

RESERVED

14

15

See instruction entry “Search Queue”.

0

1

RESERVED

14156 16

See instruction entry “Search Queue”.

T T

RESERVED

(=]

14

15

See instruction entry “Search Queue”.

RESERVED

14

15

See instruction entry “Search Queue”.

T Y

RESERVED

14

See instruction entry “Search Queue”.

15

The MV/8000 Instruction Dictionary 243

Narrow Search Queue Forward
NFSSC

1]1(0jo[o|1[1]r]Oo[|O|[O]1[1]|0]O]1 RESERVED oo jo
0'1°2 '3 46 6 7 8 9 1011 12 13 1416 16 ' T T T T T Tig 27 28" 29 30 31

-
o

See instruction entry “Search Queue”.

Narrow Search Queue Forward
NFSSS

111{0{0|jO0|1|[1|1|j0]O|O|1f1]|]O]O |1 RESERVED 0|0 (0|0 |0

See instruction entry “Search Queue”.

Narrow Load Immediate
NLDAI ac,immediate

t{1{o} Aac |[1]|]1]|o|ojo|1|o|1|o]o |1 IMMEDIATE FIELD
0 12 3 4 5 6 7 8 9'10 11 1213 1415 16’ ' ' ' T T T T T T TTTTS

Sign extends the 16-bit, iwo’s complement literal value contained in the immediate field
to 32 bits. Loads the result of the sign extension into the specified accumulator. Carry is
unchanged and overflow is 0.

Narrow Multiply

NMUL acs,acd
1 ACS ACD o] [0} [0} (o] 1 1 1] 1 (o] (o] 1
0 1 2 3 T a4 5 8 9 10 1 12 13 14 15

Multiplies the signed integer contained in bits 16-31 of ACD by the signed integer
contained in bits 16-31 of ACS. If the result is outside the range of -32,768 to +32,767
inclusive, sets overflow to 1; otherwise, overflow is 0. Sign extends the lower 16 bits of
the result to 32 bits and places these 32 bits in ACD. The contents of ACS and carry
remain unchanged.

Narrow Negate
NNEG acs,acd

1 ACS ACD 1 0 1 1 1 1 1 1] [o] 1

Negates the 16 least significant bits of ACS by performing a two’s complement subtract
from zero. Sign extends these 16 bits to 32 bits and loads the result in ACD. Sets carry
to the value of ALU carry.

244 The MV/8000 Instruction Dictionary

NOTE: Negating the largest negative 16-bit integer, (100000g) sets overflow to 1.

Narrow Skip on All Bits Set in Accumulator
NSALA ac,immediate

11141 AC 1{1{0jojo0jOofOof1]O0}O]|1 IMMEDIATE FIELD

+

0 12 3 4 65 6 7 8 9 10111213 14 1616 L

Logically ANDs the value in the immediate field with the complement of the contents of
an accumulator and skips depending on the result of the AND.

The instruction performs a logical AND on the contents of the immediate field and the
complement of the least significant 16 bits contained in the specified accumulator. If the
result of the AND is zero, then the next sequential word is skipped. If the result of the
AND is nonzero, the next sequential word is executed. The contents of the specified
accumulator remain unchanged. Carry is unchanged and overflow is 0.

Narrow Skip on All Bits Set in Memory Location
NSALM ac,immediate

111 AC 111(0f(0j0|0O|1[1[O0]|0O]1 IMMEDIATE FIELD

0’1 2 '3 4 85 6 7

«©

9 10 11 12 13 14 15 16

Performs a logical AND on the contents of the immediate field and the complement of
the word addressed by the specified accumulator. If the result of the AND is zero, then
execution skips the next sequential word before continuing. If the result of the AND is
nonzero, then execution continues with the next sequential word. The contents of the
specified accumulator and memory location remain unchanged. Carry is unchanged and
overflow is 0.

Narrow Skip on Any Bit Set in Accumulator
NSANA ac,immediate

1111 ac 1{ilojofo|1]of1]|o]|o]|1 IMMEDIATE FIELD

01 2 '3 4 '5'6 7 8 9 1011 121314156 T T T T T T T T 731

Logically ANDS the contents of an immediate field with the contents of an accumulator
and skips, depending on the result.

The instruction performs a logical AND on the contents of the immediate field and the
least significant 16 bits contained in the specified accumulator. If the result of the AND
is nonzero, the next sequential word is skipped. If the result of the AND is zero, the next
sequential word is executed. The contents of the specified accumulator remain unchanged.
Carry is unchanged and overflow is 0.

The MV/8000 Instruction Dictionary 245

Narrow Skip on Any Bit Set in Memory Location
NSANM ac,immediate

ipiga AC i1]0[0jOjT1[r]1]|O]O]1 IMMEDIATE FIELD

T T T y T T T T T T T T

01 2 3745 6'7 '8 '8 10 111213 14 15 16 31

The instruction performs a logical AND on the contents of the immediate field and the
contents of the word addressed by the specified accumulator. If the result of the AND is
nonzero, then the next sequential word is skipped. If the result of the AND is zero, the
next sequential word is executed. The contents of the specified accumulator and memory
location remain unchanged. Carry is unchanged and overflow is 0.

Narrow Subtract Immediate
NSBI n,ac

Subtracts a value in the range of 1 to 4 from the value contained in an accumulator.

The instruction subtracts the value n+1 from the 16-bit value contained in the specified
accumulator, where n is an integer in the range of 0 to 3. Stores the result in bits 16-31
of the specified accumulator. Sign extends the specified accumulator to 32 bits. Sets
carry to the value of ALU carry. Sets overflow to 1 if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in
the immediate field. Therefore, the programmer should code the exact value that he wishes to

subtract.
Narrow Subtract
NSUB acs,acd
1 ACS ACD 0 0 0 [0} 1 0 1 1 0 0 1
0 1 2 3 4 7 8 9 10 1 12 13 14 15

Subtracts the 16-bit integer contained in bits 16-31 of ACS from the 16-bit integer
contained in bits 16-31 of ACD. Stores the result in bits 16-31 of ACD. Sign extends
ACD to 32 bits. Sets carry to the value of ALU carry, and overflow to 1 if there is an
ALU overflow.

OR Referenced Bits
ORFB

Performs an inclusive OR on the referenced bits and the contents of a word string.

246

The MV/8000 Instruction Dictionary

Bits 13-31 of AC1 contain a pageframe number. Bits 28-31 of AC1 are 0 so that the
initial page frame number is a multiple of 16.

ACO specifies the number of words to be ORed.

AC2 contains the starting address of a word string. The instruction will inclusively OR
the contents of this word string with the referenced bits.

The instruction fetches the referenced bits of 16 consecutive pageframes, beginning with
the pageframe specified by AC1. Exclusively ORs these 16 bits with the 16-bit word
specified by AC2. Stores the result of the OR in the location specified by AC2. Resets
the 16 referenced bits to 0, decrements ACO by 1, increments AC1 by 16, and increments
AC2 by 1.

If the contents of ACO are 0, the instruction ends. If ACO does not contain 0, the
instruction continues the ORing process with the next 16 referenced bits specified by
AC]1 and the word specified by AC2. Carry is unchanged and overflow is 0.

NOTE: If ACI contains a nonexistent pageframe number, or if the ATU is not enabled when
this instruction executes, the result of the instruction is undefined.

This is a privileged instruction.

Purge the ATU

PATU

Purges the entire ATU of all entries. Carry is unchanged and overflow is 0.

NOTE: This is a privileged instruction.

Pop Block and Execute

PBX

Saves a 16-bit instruction, pops a wide return block off the stack, and executes the saved
instruction. Carry and overflow are indeterminate.

Bits 16-31 of ACO contain a 16-bit instruction.

The instruction temporarily saves the instruction contained in bits 16-31 of ACO.
Executes a WPOPB instruction, except that execution does not continue with the value
loaded into the PC. After the wide return block is popped, the instruction executes the
instruction that was temporarily saved. The executed instruction determines the value of

the processor flags. The next instruction to be executed is addressed by the popped value
of the PC + 1.

Note that the value popped off the stack and loaded into the PC must reference a BKPT
instruction. If it does not, undefined results occur. If it does, then the instruction
effectively substitutes the 16-bit instruction in ACO for the BKPT instruction referenced

The MV/8000 Instruction Dictionary 247

by the PC after the pop.

Pop Multiple Accumulators

POP acs,acd

Pop Block
POPB

1 ACS ACD 1 1 0 1 0 0 0 1 0 0 0o

Pops 1 to 4 words off the stack and places them in the indicated accumulators.

The set of accumulators from ACS through ACD, bits 16-31, is filled with words popped
from the stack. Bits 16-31 of the accumulators are filled in descending order, starting
with bits 16-31 of the accumulator specified by ACS and continuing down through bits
16-31 of the accumulator specified by ACD, wrapping around if necessary, with AC3
following ACO. If ACS is equal to ACD, only one word is popped and it is placed in
ACS.

The stack pointer is decremented by the number of accumulators popped and the frame
pointer is unchanged. A check for underflow is made only after the entire pop operation
is done. :

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

This instruction leaves carry unchanged; overflow is 0.

Returns control from a System Call routine or an 1/0O interrupt handler that does not
use the stack change facility of the Vector instruction.

Five words are popped off the stack and placed in predetermined locations. The words
popped and their destinations are as follows:

Word Popped |Destination

1 Bit O is loaded into carry

Bits 1-15 are loaded into the PC
AC3

AC2

AC1

ACO

o~ WN

Sequential operation is continued with the word addressed by the updated value of the
program counter. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

248 The MV/8000 Instruction Dictionary

NOTE: If the 1/O handler uses the stack change facility of the Vector on Interrupting Device
Code instruction, do not use the Pop Block instruction. Use the Restore instruction instead.

Pop PC And Jump
POPJ

Pops the top word off the stack and places it in the program counter. Sequential
operation continues with the word addressed by the updated value of the program
counter.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

The stack pointer is decremented by one and the frame pointer is unchanged. A check
for underflow occurs after the pop operation. Carry remains unchanged and overflow is
0.

Push Multiple Accumulators
PSH acs,acd

1 ACS ACD 1 1 0 0 1 (o] 0 1 o 0 0

Pushes the contents of 1 to 4 accumulators onto the stack.

Bits 16-31 of the set of accumulators from ACS through ACD are pushed onto the
stack. The contents of bits 16-31 of the accumulators are pushed in ascending order,
starting with bits 16-31 of the AC specified by ACS and continuing up through bits
16-31 of the AC specified by ACD, wrapping around if necessary, with ACO following
AC3. The contents of the accumulators remain unchanged. If ACS equals ACD, only
ACS is pushed. Carry remains unchanged and overflow is 0.

The stack pointer is incremented by the number of accumulators pushed and the frame
pointer is unchanged. A check for overflow is made only after the entire push operation
finishes.

Push Jump
PSHIJ /@]/displacement/,index]
1]/o|lo|o|o|1|INDEX|1|O|1]|1]|1]0]|O0]|O|@ DISPLACEMENT
o T T2 3475 67 8 8 w0 1112131416 6 17" T T T T T T T 3

Pushes the address of the next sequential instruction onto the stack, computes the

~FCn adds 1
effective address, E, and places it in the program counter. Sequential operation continues

with the word addressed by the updated value of the program counter.

The MV/8000 Instruction Dictionary 249

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Carry remains unchanged and overfiow is 0.

Push Return Address

PSHR

Pushes the address of this instruction + 2 onto the narrow stack. Carry remains
unchanged and overflow is 0.

Reset Referenced Bit

RRFB

Restore
RSTR

Resets the specified referenced bits.

ACI1 contains a pageframe number in bits 13-31. Bits 25-31 are cleared to 0 so that the
initial pageframe number is a multiple of 16.

ACO contains an origin 0 pageframe count that specifies the number of groups of 16
referenced bits to reset. A count of 0 means that the instruction resets 16 pageframes.

The instruction sets to O the referenced bits of 16 contiguous pageframes, starting with
the pageframe specified by the contents of AC1. Decrements the contents of ACO by 1
and increments the contents of AC1 by 16.

If ACO contains a nonnegative number after the decrement, the instruction repeats the
operation with the next 16 pageframes. If ACO contains a negative number, the instruction
ends. Carry is unchanged and overflow is 0.

NOTE: If ACO specifies a nonexistent pageframe, or if the ATU is not enabled when this
instruction executes, the result of the instruction is undefined.

This is a privileged instruction.

Returns control from certain types of I/O interrupts.

Pops nine words off the stack and places them in predetermined locations. The words
popped and their destinations are as follows:

250 The MV/8000 Instruction Dictionary

Word Popped Destination

1 Bit O is loaded into carry

Bits 1-15 are loaded into the PC
AC3

AC2

AC1

ACO

Stack fault address

Stack limit

Frame pointer

© 00 N OO WwN

Stack pointer

Sequential operation continues with the word addressed by the updated value of the
program counter.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Carry remains unchanged and overflow is 0.

NOTES: Use the Restore instruction to return control to the program only if the I/O interrupt
handler uses the stack change facility of the Vector on Interrupting Device Code instruction.

The Restore instruction does not check for stack underflow.

Return
RTN

Returns control from subroutines that issue a Save instruction at their entry points.

The Save instruction loads the current value of the stack pointer into the frame pointer.
The Return instructions uses this value of the frame pointer to pop a standard return
block off of the stack. The format of the return block is:

Word Popped Destination

-

Bit O is loaded into carry

Bits 1-15 are loaded into the PC
AC3

AC2

AC1

ACO

O P wWwN

After popping the return block, the Return instruction loads the decremented value of
the frame pointer into the stack pointer and the popped value of AC3 into the frame
pointer.

The MV/8000 Instruction Dictionary 251

Save
SAVE

[

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Carry remains unchanged and overflow is 0.

1f1{rjojojr1f1l111|t1|ojo}j1|ojOo|O IMMEDIATE FIELD

Saves the information required by the Return instruction.

Saves the current value of the stack pointer in a temporary location. Adds 5 plus the
unsigned, 16-bit integer contained in the immediate field to the current value of the
stack pointer and loads the result into location 40. Compares this new value of the stack
pointer to the stack limit to check for overflow. If no overflow condition exists, then the
instruction places the current value of the frame pointer in bits 16-31 of AC3. Fetches
the contents of the temporary location and loads them into the frame pointer. The
instruction uses the value in the frame pointer to push a five-word return block. The
formats and contents of the five-word return block is as follows:

Word Pushed Contents

Bits 16-31 of ACO
Bits 16-31 of AC1
Bits 16-31 of AC2
Frame pointer before the Save

o A~ WN 2

Bit O = carry
Bits 1-15 = bits 16-31 of AC3

After pushing the return block on the narrow stack, the instruction places the value of
the frame pointer (which now contains the old value of the stack pointer + 5) in bits
16-31 of AC3. Carry remains unchanged and overflow is 0.

If an overflow condition exists, the Save instruction transfers control to the stack fault
routine. The program counter in the fault return block contains the address of the Save
instruction.

The Save instruction allocates a portion of the stack for use by the procedure which
executed the Save. The value of the frame size, contained in the immediate field,
determines the number of words in this stack area. This portion of the stack will not
normally be accessed by push and pop operations, but will be used by the procedure for
temporary storage of variables, counters, etc. The frame pointer acts as the reference
point for this storage area.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

Use the Save instruction with the Jump to Subroutine instruction. The Jump to
Subroutine instruction places the return value of the program counter in bits 16-31 of
AC3. Save then pushes the return value (contents of bits 16-31 of AC3) into bits 1-15 of
the fifth word pushed.

252 The MV/8000 Instruction Dictionary

Subtract Immediate

SBI n,ac

Sign Extend

SEX acs,acd

1 N ACD o 0 0 0 1 0 o] 1 0o 0 0

Subtracts an unsigned integer in the range 1 to 4 from the contents of an accumulator.

The instruction subtracts the value N+1 from the unsigned 16-bit number contained in
bits 16-31 of the specified accumulator and the result is placed in bits 16-31 of ACD.
Carry remains unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts | from it before placing it in
the immediate field. Therefore the programmer should code the exact value he wishes to
subtract.

Example
Assume that bits 16-31 of AC2 contains 000003g. After the instruction SBI 4,2 is
executed, bits 16-31 of AC2 contains 177777g and carry remains unchanged.

+

BEFORE AFTER
foTooofooofooofooofor1] [infin]ind!
Carry either O or 1 Carry unchanged
DG-06797
1 ACS ACD (o] 1 1 (o] 1 o (o] 1 o] o] 1
0 T 2 3 ' 4 5 6 7 9 10 11 ' 12 ' 13 ' 14 ' 15

Sign extends the 16-bit integer contained in ACS to 32 bits and loads the result into
ACD. The contents of ACS remain unchanged, unless ACS and ACD are specified to be
the same accumulator. Carry is unchanged and overflow is 0.

Skip If ACS Greater Than Or Equal to ACD

SGE acs,acd

1 ACS ACD 0 1 0 0 1 o] 0 1 0 0 (o}

Compares two signed integers in two accumulators and skips if the first is greater than
or equal to the second.

The signed two’s complement numbers in bits 16-31 of ACS and ACD are algebraically
compared. If the number in bits 16-31 of ACS is greater than or equal to the number in
bits 16-31 of ACD, the next sequential word is skipped. The contents of ACS, ACD, and

The MV/8000 Instruction Dictionary 253

carry remain unchanged. Overflow is 0.

NOTE: The Skip If ACS Greater Than ACD and Skip If ACS Greater Than Or Equal To
ACD instructions treat the contents of the specified accumulators as signed, two’s complement
integers. To compare unsigned integers, use the Subtract and Add Complement instruction.

Skip If ACS Greater Than ACD
SGT acs,acd

1 ACS ACD o 1 [0} 0o 0 0 0 1 0 0 0

Compares two signed integers in two accumulators and skips if the first is greater than
the second.

The signed, two’s complement numbers in bits 16-31 of ACS and ACD are algebraically
compared. If the number in bits 16-31 of ACS is greater than the number in bits 16-31
of ACD, the next sequential word is skipped. The contents of ACS, ACD, and carry
remain unchanged.

NOTE: The Skip If ACS Greater Than ACD and Skip If ACS Greater Than Or Equal To
ACD instructions treat the contents of the specified accumulators as signed, two’s complement
integers. To compare unsigned integers, use the Subtract and Add Complement instruction.

Store Modified and Referenced Bits
SMRF

Stores new values into the modified and referenced bits of a pageframe.
ACI1 contains a pageframe number in bits 13 —31.

The instruction fetches the contents of the two least significant bits of ACO. Stores these
values in the modified and referenced bits of the pageframe specified by AC]. Carry is
unchanged and overflow is 0.

If the ATU is not enabled, undefined results will occur. If a nonexistent pageframe is
specified, the instruction loads the appropriate modified and referenced bits with
indeterminate data.

NOTE: This is a privileged instruction.

Skip On Non-Zero Bit
SNB acs,acd

1 ACS ACD 1 0 1 1 1 1 1 1 0 (o} 0

The two accumulators form a bit pointer. If the addressed bit is 1, the next sequential

254 The MV/8000 Instruction Dictionary

word is skipped.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contains the high-order 16 bits and bits 16-31 of ACD contains the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16 bits of
the bit pointer and assumes the high-order 16 bits are 0.

If the addressed bit in memory is 1, the next sequential word is skipped. The contents of
ACS, ACD, and carry remain unchanged. Overflow is 0. The 32-bit effective address
generated by this instruction is constrained to be within the first 32 Kword of the current
segment.

NOTE: The bit pointer formed by the two accumulators cannot make indirect memory

references.
Skip on OVR Reset
SNOVR
1 o] 1 0 [o] 1 1 1 1 o} 1 1 1 o 4] 1
(o] 1 2 3 4 5 6 7 8 10 1 12 13 14 15

Tests the value of OVR. If the flag has the value 0, the next sequential word is skipped.
If the flag has the value 1, the next sequential word is executed. Carry is unchanged and
overflow is 0.

Store Processor Status Register From ACO
SPSR

Stores the contents of ACO in the PSR.

Loads the contents of ACO bits 0, 1, and 2 into OVK, OVR, and IRES, respectively. The
contents of ACO remain unchanged. Carry is unchanged and overflow is 0.

Store Accumulator
STA ac,[@]displacement[,index]

0 1 0 AC @ INDEX DISPLACEMENT
0 1 2 3 ' 4 5 6 ' 7 8) j i T T KT

Stores the contents of bits 16-31 of an accumulator into a memory location.

Places the contents of bits 16-31 of the specified accumulator in the word addressed by
the effective address, E. The previous contents of the location addressed by E are lost.

The MV/8000 Instruction Dictionary 255

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

The contents of carry and the specified accumulator remain unchanged. Overflow is 0.

Store Accumulator in WFP
STAFP ac

Stores a copy of the contents of the specified accumulator into WFP (the wide frame
pointer). Carry is unchanged and overflow is 0.

Store Accumulator in WSB
STASB ac

Stores a copy of the contents of the specified accumulator into WSB (the wide stack
base) as well as locations 2627 of the current segment. Carry is unchanged and
overflow is 0.

Store Accumulator in WSL
STASL ac

Stores a copy of the contents of the specified accumulator into WSP (the wide stack
pointer) as well as locations 24-254 of the current segment. Carry is unchanged and
overflow is 0.

Store Accumulator in WSP
STASP ac

Stores a copy of the contents of the specified accumulator into WSP (the wide stack
pointer). Carry is unchanged and overflow is 0.

256 The MV/8000 Instruction Dictionary

Store Accumulator into Stack Pointer Contents

STATS ac

Store Byte
STB acs,acd

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Stores a copy of the contents of the specified accumulator at the address contained in
WSP. Carry is unchanged and overflow is 0.

1 ACS ACD 1 1 0 0 0 0o o] 1 0 o 0o
T T

Moves the rightmost byte of ACD to a byte in memory. ACS contains the byte pointer.

Places bits 24-31 of ACD in the byte addressed by the byte pointer contained in bits
16-31 of ACS.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

The contents of ACS, ACD, and carry remain unchanged. Overflow is 0.

Store Integer

. STI fpac

1 o 1 FPAC 1 1 1 1 0 1 0 1 o] 0 0

Under the control of accumulators AC1 and AC3, translates the contents of the specified
FPAC to an integer of the specified type and stores it, right-justified, in memory,
beginning at the specified location. The instruction leaves the floating point number
unchanged in the FPAC, and destroys the previous contents of memory at the specified
location(s).

Bits 16-31 of AC1 must contain the data-type indicator describing the integer.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the number in memory.

Upon successful completion, the instruction leaves accumulators ACO and ACI
unchanged. AC2 contains the original contents of AC3 and AC3 contains a byte pointer
which is the address of the next byte after the destination field. Overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the

£f2 £ AL R o A vy sessaea A arn
first 64 Kbyte of the current

The MV/8000 Instruction Dictionary 257

NOTES: If the number in the specified FPAC has any fractional part, the result of the
instruction is undefined. Use the Integerize instruction to clear any fractional part.

If the destination field cannot contain the entire number being stored, high-order digits are
discarded until the number will fit into the destination. The remaining low-order digits are
stored and carry is set to 1.

For data types 0, 1, 2, 3, 4, and 5, if the number being stored will not fill the destination field,
the high-order bytes to the right of the sign are set to 0.

For data type 6, if the number being stored will not fill the destination field, the sign bit is
extended to the left to fill the field.

For data type 7, if the number being stored will not fill the destination field, the low-order
bytes are set to 0.

Store Integer Extended

STIX

Converts the contents of the four FPAC’s to integer form and uses the low-order 8 digits
of each to form a 32-digit integer. The instruction stores this integer, right-justified, in

memory beginning at the specified location. The sign of the integer is the logical OR of
the signs of all four FPAC’s. The previous contents of the addressed memory locations

are lost. Sets carry to 0. The contents of the FPAC’s remain unchanged. The condition
codes in the FPSR are unpredictable.

Bits 16-31 of AC1 must contain the data-type indicator describing the form of the in
memory.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the destination field in memory.

Upon successful termination, the contents of ACO are undefined; the contents of ACI
remain unchanged; AC2 contains the original contents of AC3; and AC3 contains a byte
pointer which is the address of the next byte after the destination field. Overflow is 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 64 Kbyte of the current segment.

NOTES: If the destination field is not large enough to contain the number being stored, the
instruction disregards high-order digits until the number will fit in the destination. The
instruction stores low-order digits remaining and sets carry to 1.

For data types 0, 1, 2, 3, 4, and 5, if the number being stored will not fill the destination field,
the instruction sets the high-order bytes to 0.

For data type 6, if the number being stored will not fill the destination field, the instruction
extends the sign bit to the left to fill the field.

258 The MV/8000 Instruction Dictionary

Subtract
SUB/c/[sh][#] acs,acd],skip]

1 ACS ACD 1 0 1 SH Cc # SKIP

T T

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 T 15

Performs unsigned integer subtraction and complements carry if appropriate.

Initializes carry to its specified value. The instruction subtracts the unsigned, 16-bit
number in bits 16-31 of ACS from the unsigned, 16-bit number in bits 16-31 of ACD by
taking the two’s complement of the number in ACS and adding it to the number in
ACD. The instruction places the result of the addition in the shifter. If the operation
produces a carry of 1 out of the high-order bit, the instruction complements carry. The
instruction performs the specified shift operation and places the result of the shift in bits
16-31 of ACD if the no-load bit is 0. If the skip condition is true, the instruction skips the
next sequential word.

If the load option is specified, bits 0-15 of ACD are undefined.

Overflow is 0 for this instruction.

NOTE: If the number in ACS is less than or equal to the number in ACD, the instruction
complements carry.

System Call
SYC acs,acd

1 ACS ACD 1 1 1 0 1 0 0 1 o] 0 [0}

Pushes a return block and transfers control to the system call handler.

If a user map is enabled, the instruction disables it and pushes a return block onto the
stack. The program counter in the return block points to the instruction immediately
following the System Call instruction. After pushing the return block, the instruction

executes a Jump Indirect to location 2, which contains the address of the system call
handler.

If this instruction disables a user map, then I/O interrupts cannot occur between the
time the System Call instruction is executed and the time the first instruction of the
system call handler is executed.

If the ATU is enabled, a privileged instruction protection fault occurs.

This instruction leaves carry unchanged; overflow is 0.

NOTES: If both accumulators are specified as ACO, the instruction does not push a return
block onto the stack. The contents of ACO remain unchanged.

The assembler recognizes the mnemonic SCL as equivalent to SYC 1,1.

The assembler recognizes the mnemonic SVC as equivalent to SYC 0,0.

The MV/8000 Instruction Dictionary 259

Skip On Zero Bit
SZB acs,acd

1 ACS ACD 1 [o] 0 1 0 [o] (o] 1 0 o 0

The two accumulators form a bit pointer. If the addressed bit is zero, the next sequential
word is skipped.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contains the high-order 16 bits and bits 16-31 of ACD contains the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16 bits of
the bit pointer and assumes the high-order 16 bits are 0.

If the addressed bit in memory is 0, the next sequential word is skipped. The contents of
ACS and ACD remain unchanged.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

This instruction leaves carry unchanged; overflow is 0.

NOTE: The bit pointer contained in ACS and ACD cannot make indirect memory references.

Skip On Zero Bit And Set To One
SZBO acs,acd

1 ACS ACD 1 0 0 1 1 0 0 1 [0} 0o 0

The two accumuiators form a bit pointer. The instruction sets the addressed bit to 1. If
the addressed bit was 0 before being set to 1, the instruction skips the next sequential
word. The contents of ACS, ACD, and carry remain unchanged. Overflow is 0.

Forms a 32-bit bit pointer from the contents of bits 16-31 of ACS and ACD. Bits 16-31
of ACS contains the high-order 16 bits and bits 16-31 of ACD contains the low-order 16
bits of the bit pointer. If ACS and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the low-order 16 bits of the bit pointer and
assumes the high-order 16 bits are 0.

The 32-bit effective address generated by this instruction is constrained to be within the
first 32 Kword of the current segment.

NOTES: The bit pointer contained in ACS and ACD must not make indirect memory references

This instruction facilitates the use of bit maps for such purposes as allocation of facilities
(memory blocks, I/O devices, etc.) 1o several processes, or tasks, that may interrupt one
another, or in a multiprocessor environment. The bit is tested and set to 1 in one memory cycle.

260 The MV/8000 Instruction Dictionary

Skip on Valid Byte Pointer
VBP

Checks a byte pointer for valid reference, and skips or does not skip the next word
depending on the outcome of the check. Carry is unchanged and overflow is 0.

ACI contains a ring number in bits 1-3; all other bits contain zeroes.
ACO contains a 32-bit byte pointer.

The instruction compares the ring field of AC1 to the ring field of ACO. If AC1’s ring
field is greater than ACO’s ring field, the next sequential word is executed; otherwise, the
next sequential word is skipped.

Skip on Valid Word Pointer
VWP

Checks a word pointer for valid reference, and skips or does not skip the next word
depending on the outcome of the check.

AC]1 contains a ring number in bits 1-3; all other bits contain zeroes.
ACO contains a 31-bit word pointer (indirectable).

The instruction compares the ring field of AC1 to the ring field of ACO. If AC1’s ring
field is greater than ACO’s ring field, the next sequential word is executed; otherwise, the
next sequential word is skipped. Carry is unchanged and overflow is 0.

Wide Add Complement
WADC acs,acd

1 ACS ACD 0 1 0 o] 1 0 (o} 1 (o] 0 1
0 [3 4 5 6 7 8 9 10 1 12 13 14 15

Forms the logical complement of the 32-bit integer contained in ACS and adds it to the
32-bit integer contained in ACD. Stores the result in ACD. Sets carry to the value of
ALU carry. Sets overflow to 1 if there is an ALU overflow.

The MV/8000 Instruction Dictionary 261

Wide Add
WADD acs,acd

1 ACS ACD o] 0 1 0 1 0 (4] 1 0 [o] 1
[} 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15

Adds the 32-bit fixed point integer contained in ACS to the 32-bit fixed point integer
contained in ACD. Stores the result in ACD. Sets carry to ALU carry. Sets overflow to
1 if there is an ALU overflow.

Wide Add With Wide Immediate
WADDI [{ac¥mmediate

T
t{ofO| AC {1|1j0]1|0|O!O{1|O|O |1 IMMEDIATE

01 23 45 6 7 8 9 1011121314 1516

Ta7

Adds the 32-bit fixed point integer contained in the immediate field to the 32-bit fixed
point integer contained in the specified accumulator. Stores the result in the specified
accumulator. Sets overflow to 1 if there is an ALU overflow. Sets carry to the value of
the ALU carry.

Wide Add Immediate
WADI n,ac

Adds the value n+1 to the 32-bit fixed point integer contained in the specified
accumulator. Stores the result in the specified accumulator. Sets carry to the value of
ALU carry. Sets overflow to 1 if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in
the immediate field. Therefore, the programmer should code the exact value that he wishes to
add.

Wide AND with Complemented Source
WANC acs,acd

1 ACS ACD 1 0 1 0 1 [0} 0 1 0o 0 1
(o} 1

Forms the one’s complement of the 32 bits contained in ACS and logically ANDs it with
the 32 bits contained in ACD. Stores the result in ACD. Carry is unchanged and
overflow is 0.

262 The MV/8000 Instruction Dictionary

Wide AND
WAND acs,acd

1 ACS ACD 1 0 0 [1 0 o 1 0o 0o 1
(o] 1 2 3 7 4 5 6 7 8 9 10 " 12 13 14 15

Forms the logical AND between corresponding bits of ACS and ACD. Loads the 32-bit
result into ACD. The contents of ACS remain unchanged. Carry is unchanged and
overflow is 0.

Wide AND Immediate
WANDI ac, immediate

1({0[{0| AC |1|1|O|1]|0|O[1]1]|0(O |1 IMMEDIATE

o i 234567 8 0Tz a s e L~ T 27

Forms the logical AND between corresponding bits of the specified accumulator and the
value contained in the literal field. The instruction places the 32-bit result of the logical
AND in the specified accumulator. Carry is unchanged and overflow is 0.

Wide Arithmetic Shift
WASH acs,acd

1 ACS ACD 0 1 0 o] 1 1 1 1 0 0 1
0 12 3 T 4 5 6 7 8 9 10 1 12 13 14 15

Shifts the contents of ACD left or right.
Bits 24-31 of ACS specify the number of bits to shift and the direction of shifting.

If ACS contains a positive number, the instruction shifts the contents of ACD left;
zeroes fill the vacated bit positions. If ACS contains a negative number, the instruction
shifts the contents of ACD right; the sign bit fills the vacated bit positions. If ACS
contains zero, no shifting occurs. The instruction ignores bits 0-23 of ACS.

If the instruction is to shift the contents of ACD to the right, it truncates the contents
one bit position for each shift.

In shifting negative numbers to the right, rounding towards zero is performed. For
instance, -3 shifted one position to the right results in -1.

The value of ACS and carry remain unchanged. If, while performing a left shift, you
shift out a bit whose value is the complement of ACD’s sign bit, overflow is set to 1.
Otherwise, overflow is 0.

The MV/8000 Instruction Dictionary 263

Wide Block Move

WBLM
1 1 1 (o] 0 1 1 1 0 1 0 o] 1 0 0 1
(o] 1 2 3 4 5 6 7 9 10 1 12 13 14 15

Moves words sequentially from one memory location to another, treating them as
unsigned, 32-bit integers.

ACI contains the two’s complement of the number of words to be moved. If the contents
of AC1 are positive, then data movement progresses from the lowest memory location to
the highest (ascending). If the contents of AC1 are negative, then data movement
progresses from the highest memory location to the lowest (descending).

Bits 1-31 of AC2 contain the address of the source location. Bits 1-31 of AC3 contain
the address of the destination location. The address in bits 1-31 of AC2 or AC3 is an
indirect address if bit 0 of that accumulator is 1. In that case, the instruction follows the
indirection chain before placing the resultant effective address in the accumulator.

AC Contents

0 Unused

1 Number of words to be moved
2 Source address

3 Destination address

For each word moved, the instruction decrements the count in ACI1 by 1. If data
movement is ascending, the instruction increments the source and destination addresses
by 1 for each word moved. If data movement is descending, the instruction decrements
the source and destination addresses by 1 for each word moved.

Upon completion of the instruction, AC1 contains zeroes, and AC2 and AC3 point to the
word following (ascending) or preceding (descending) the last word in their respective
fields. ACO is unused. Carry is unchanged and overflow is 0.

NOTES: Since this instruction may require a long time to execute, it is interruptable. When
this instruction is interrupted, the processor saves the address of the WBLM instruction. This
instruction updates addresses and word count after storing each word, so any interrupt service
routine returning control via the saved address will correctly restart the WBLM instruction.

If data movement is descending and a ring crossing would occur, a protection trap occurs and
this instruction does not execute. ACI will contain the value 4.

When updating the source and destination addresses, the Wide Block Move instruction
forces bit 0 of the result to 0. This ensures that upon return from an interrupt, the Wide
Block Move instruction will not try to resolve an indirect address in either AC2 or AC3.

264 The MV/8000 Instruction Dictionary

Load PC

WBR displacement
1 DISP 0-3 [o] DISP 4-7 1 1 1 [o] 4] 0
0 [T T4 3 6 T) 10 11 12 13 14 ' 15

Adds the 31-bit value contained in the PC to the value of the displacement and places
the result in the PC. Carry is unchanged and overflow is 0.

NOTE: The processor always forces the value loaded into the PC to reference a location in the
current segment of execution.

Wide Search Queue Backward
WBSAC

1t1({0|0|O0|1|¥t{1]0|O0O|O}{1|1]|O]|O |1 RESERVED 1{oj1 1|1

See instruction entry “Search Queue”.

Wide Search Queue Backward
WBSAS

1l1]o|lojo|1}{1]1]ojo|Oof1 |10 |0 |1 RESERVED 10|10 |1
T26 27 28 29 30 31

See instruction entry “Search Queue”.

Wide Search Queue Backward
WBSE

1]1]lo0fjojott{1|[1]ojofO|1|1]|O O |1 RESERVED 1{1]0]0 |1

See instruction entry “Search Queue”.

Wide Search Queue Backward
WBSGE

1{1|oflojojt{r|1|ojojo}j1|1]of0O |1 RESERVED 111 (0 (1|1
’ 26 27 28 29 30 31

See instruction entry “Search Queue”.

The MV/8000 Instruction Dictionary 265

Wide Search Queue Backward
WBSLE

1j1|1ojofoft1|t1|1jofofo|1]|1]|ofo |1 RESERVED 1)1 10 |1

T

26 27 '28 29 30 31

See instruction entry “Search Queue”.

Wide Search Queue Backward
WBSNE

1f1]ojofoft1|1|1]ofojo|1]|1]|0ofo{1 RESERVED 11111
0 12 '3 45 6 7 8 9 10 111213 14 1616 ' ' ' ' ' ' ' T 2827 28 29 30 31

See instruction entry “Search Queue”.
y

Wide Search Queue Backward
WBSSC

-
-

tj1]jo0jofofrjrj1jofofo|1}1]ofo|1 RESERVED 1/010

T

0 12 3 4 5 6 7 8 9 10 11 12'13 14 15 16" 72627 2829 30 31

See instruction entry “Search Queue”.

Wide Search Queue Backward
WBSSS

1f1]olofof1[1]1|jojofo{1]|1]0o]o0 |1 RESERVED 1{o]o o |1
72627 28 29 30 31

See instruction entry “Search Queue”.

Wide Set Bit to One
WBTO acs,acd

1 ACS ACD 0 1 0 1 0 0 1 1 0 0 1

Sets the specified bit to one. Carry is unchanged and overflow is 0.
ACS contains a 31-bit word address.
ACD contains a bit offset.

The instruction sets the bit specified by ACS and ACD to one. The contents of ACS and
ACD remain unchanged.

266 The MV/8000 Instruction Dictionary

If ACS and ACD are specified to be the same accumulator, then the processor assumes
the word address is zero within the current segment. In this case, the specified accumulator
contains a 32-bit bit pointer.

Wide Set Bit to Zero
WBTZ acs,acd

1 ACS ACD 0 1 o] 1 o] 1 o} 1 0 0 1

Sets the specified bit to zero. Carry is unchanged and overflow is 0.
ACS contains a 31-bit word address.
ACD contains a bit offset.

The instruction sets the bit specified by ACS and ACD to zero. The contents of ACS
and ACD remain unchanged.

If ACS and ACD are specified to be the same accumulator, then the processor assumes
the word address is zero within the current segment. In this case, the specified accumulator
contains a 32-bit bit pointer.

Wide Compare to Limits
WCLM acs,acd

1 ACS ACD 1 o] 1 (o] 1 1 4] 1 (o] [0] 1
0 12 3 ' 4 5 6 7 8 9 10 1 12 13 14 15

Compares a signed integer with two limit values and skips if the integer is between the
limit values. The accumulators determine the location of the limit values. Carry is
unchanged and overflow is 0.

Compares the signed, two’s complement integer in ACS to two signed, two’s complement
integer limit values, L and H. If the number in ACS is greater than or equal to L and less
than or equal to H, execution skips the next sequential word before continuing. If the
number in ACS is less than L or greater than H, execution continues with the next
sequential word.

If ACS and ACD are specified as different accumulators, bits 1-31 of ACD contain the
address of the limit value L. The word following L contains the limit value H. Bit 0 of
ACD is ignored.

If ACS and ACD are specified as the same accumulator, the integer to be compared
must be in that accumulator and the limit values L and H must be in the two words
following the instruction. The first word contains L, and the second contains H. The
third word contains the next sequential word of the program.

The MV/8000 Instruction Dictionary 267

Wide Character Compare

WCMP

Under control of the four accumulators, compares two strings of bytes and returns a
code in AC1 reflecting the results of the comparison.

The instruction compares the strings one byte at a time. Each byte is treated as an
unsigned 8-bit binary quantity in the range 0-255,. If two bytes are not equal, the
string whose byte has the smaller numerical value is, by definition, the lower valued
string. Both strings remain unchanged. The four accumulators contain parameters
passed to the instruction. Two accumulators specify the starting address, the number of
bytes, and the direction of processing (ascending or descending addresses) for each
string.

ACO specifies the length and direction of comparison for string 2. If the string is to be
compared from its lowest memory location to the highest, ACO contains the unsigned
value of the number of bytes in string 2. If the string is to be compared from its highest
memory location to the lowest, ACO contains the two’s complement of the number of
bytes in string 2.

ACI specifies the length and direction of comparison for string 1. If the string is to be
compared from its lowest memory location to the highest, ACO contains the unsigned
value of the number of bytes in string 1. If the string is to be compared from its highest
memory location to the lowest, AC1 contains the two’s complement of the number of
bytes in string 1.

AC2 contains a byte pointer to the first byte compared in string 2. When the string is
compared in ascending order, AC2 points to the lowest byte. When the string is compared
in descending order, AC2 points to the highest byte.

AC3 contains a byte pointer to the first byte compared in string 1. When the string is
compared in ascending order, AC3 points to the lowest byte. When the string is compared
in descending order, AC3 points to the highest byte.

Code Comparison Resuit
-1 String 1 < String 2
0 String 1 = String 2
+ 1 String 1 > String 2

The strings may overlap in any way. Overlap will not effect the results of the comparison.

Upon completion, ACO contains the number of bytes left to compare in string 2. AC1
contains the return code as shown in the table above. AC2 contains a byte pointer either
to the failing byte in string 2 (if an inequality was found), or to the byte following string
2 (if string 2 was exhausted). AC3 contains a byte pointer either to the failing byte in
string 1 (if an inequality was found), or to the byte following string 1 (if string 1 was
exhausted). Carry is unchanged and overflow is 0.

268

The MV/8000 Instruction Dictionary

If ACO and AC1 both contain zero (both string 1 and string 2 have length zero), the
instruction returns 0 in ACI.

If the two strings are of unequal length, the instruction fakes space characters <040g>
in place of bytes from the exhausted string, and continues the comparison.

NOTE: The original contents of AC2 and AC3 must be valid byte pointers to an area in the
user’s address space. If they are invalid a protection fault occurs, even if no bytes are to be
compared. ACI contains the code 4.

Wide Character Move Until True

WCMT

Under control of the four accumulators, moves a string of bytes from one area of
memory to another until either a table-specified delimiter character is moved or the
source string is exhausted.

The instruction copies the string one byte at a time. Before it moves a byte, the
instruction uses that byte’s value to determine if it is a delimiter. It treats the byte as an
unsigned 8-bit binary integer (in the range 0-255;¢) and uses it as a bit index into a
256-bit delimiter table. If the indexed bit in the delimiter table is zero, the byte pending
is not a delimiter, and the instruction copies it from the source string to the destination
string. If the indexed bit in the delimiter table is 1, the byte pending is a delimiter; the
instruction does not copy it, and the instruction terminates.

The instruction processes both strings in the same direction, either from lowest memory
locations to highest (ascending order), or from highest memory locations to lowest
(descending order). Processing continues until there is a delimiter or the source string is
exhausted. The four accumulators contain parameters passed to the instruction.

ACO contains the address (word address), possibly indirect, of the start of the 256-bit
(16-word) delimiter table.

ACI1 specifies the length of the strings and the direction of processing. If the source
string is to be moved to the destination field in ascending order, AC1 contains the
unsigned value of the number of bytes in the source string. If the source string is to be
moved to the destination field in descending order, AC1 contains the two’s complement
of the number of bytes in the source string.

AC?2 contains a byte pointer to the first byte to be written in the destination field. When
the process is performed in ascending order, AC2 points to the lowest byte in the
destination field. When the process is performed in descending order, AC2 points to the
highest byte in the destination field.

AC3 contains a byte pointer to the first byte to be processed in the source string. When
the process is performed in ascending order, AC3 points to the lowest byte in the source
string. When the process is performed in descending order, AC3 points to the highest
byte in the source string.

The MV/8000 Instruction Dictionary 269

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, ACO contains the resolved address of the translation table and ACH
contains the number of bytes that were not moved. AC2 contains a byte pointer to the
byte following the last byte written in the destination field. AC3 contains a byte pointer
either to the delimiter or to the first byte following the source string. The value of carry
is indeterminate and overflow is 0.

NOTE: The original contents of ACO, AC2, and AC3 must be valid byte pointers to an area in
the user’s address space. If they are invalid a protection fault occurs, even if no bytes are to be
stored. ACI contains the code 4.

Wide Character Move

WCMV

Under control of the four 32-bit accumulators, moves a string of bytes from one area of
memory to another and returns a value in carry reflecting the relative lengths of source
and destination strings.

The instruction copies the source string to the destination field, one byte at a time. The
four accumulators contain parameters passed to the instruction. Two accumulators
specify the starting address, number of bytes to be copied, and the direction of processing
(ascending or descending addresses) for each field.

ACO specifies the length and direction of processing for the destination field. If the field
is to be processed from its lowest memory location to the highest, ACO contains the
unsigned value of the number of bytes in the destination field. If the field is to be
processed from its highest memory location to the lowest, ACO contains the two’s
complement of the number of bytes in the destination field.

ACT1 specifies the length and direction of processing for the source string. If the string is
to be processed from its lowest memory location to the highest, AC1 contains the
unsigned value of the number of bytes in the source string. If the field is to be processed
from its highest memory location to the lowest, AC1 contains the two’s complement of
the number of bytes in the source string.

AC2 contains a byte pointer to the first byte to be written in the destination field. When
the field is written in ascending order, AC2 points to the lowest byte. When the field is
written in descending order, AC2 points to the highest byte.

AC3 contains a byte pointer to the first byte copied in the source string. When the field
is copied in ascending order, AC3 points to the lowest byte. When the field is copied in
descending order, AC3 points to the highest byte.

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, ACO contains 0 and ACI1 contains the number of bytes left to fetch
from the source field. AC2 contains a byte pointer to the byte following the destination
field; and AC3 contains a byte pointer to the byte following the last byte fetched from
the source field. The value of carry is indeterminate and overflow is 0.

270 The MV/8000 Instruction Dictionary

If the source field is shorter than the destination field, the instruction pads the destination
field with space characters <<040g>. If the source field is longer than the destination
field, the instruction terminates when the destination field is filled and returns the value
1 in carry; otherwise, the instruction returns the value O in carry.

NOTES: If ACO contains the number 0 at the beginning of this instruction, no bytes are
fetched and none are stored. If ACI is 0 at the beginning of this instruction, the destination
field is filled with space characters; note that AC3 must still contain a valid byte pointer.

The original values of AC2 and AC3 must be valid byte pointers to an area in the user’s
address space. If they are invalid a protection fault occurs, even if no bytes are to be moved.
ACI contains the code 4.

Wide Count Bits
WCOB acs,acd

1 ACS ACD 1 o] o] 1 o 0 0 1 0 0 1

Counts the number of bits in ACS whose value is 1. Adds the count of non-zero bits to
the 32-bit, signed contents of ACD. The contents of ACS remain unchanged, unless
ACS and ACD are the same accumulator. Carry is unchanged and overflow is 0.

Wide Complement
WCOM acs,acd

1 ACS ACD 1 0 o] [¢] 1 0 1 1 0 0 1
[12 3 ' 4 5 6 7 8 9 10 1 12 13 14 15

Forms the one’s complement of the 32-bit fixed point integer contained in ACS and
loads the result into ACD. The contents of ACS remain unchanged, unless ACS equals
ACD. Carry is unchanged and overflow is 0.

Wide Character Translate

WCTR

Under control of the four accumulators, translates a string of bytes from one data
representation to another and either moves it to another area of memory or compares it
to a second translated string.

The instruction operates in two modes: translate and move, and translate and compare.

When operating in translate and move mode, the instruction translates each byte in
string 1 and places it in a corresponding position in string 2. Translation is performed by
using each byte as an 8-bit index into a 256-byte translation table. The byte addressed
by the index then becomes the translated value.

The MV/8000 Instruction Dictionary 271

When operating in translate and compare mode, the instruction translates each byte in
string 1 and string 2 as described above, and compares the translated values. Each
translated byte is treated as an unsigned 8-bit binary quantity in the range 0-255;¢. If
two translated bytes are not equal, the string whose byte has the smaller numerical value
is, by definition the Jower valued string. Both strings remain unchanged.

ACO specifies the address, either direct or indirect, of a word which contains a byte
pointer to the first byte in the 256-byte translation table.

ACI1 specifies the length of the two strings and the mode of processing. If string 1 is to be
processed in translate and move mode, AC1 contains the two’s complement of the
number of bytes in the strings. If the strings are to be processed in translate and compare
mode, AC1 contains the unsigned value of the number of bytes in the strings. Both
strings are processed from lowest memory address to highest.

AC2 contains a 32-bit byte pointer to the first byte in string 2.
AC3 contains a 32-bit byte pointer to the first byte in string 1.

Upon completion of a translate and move operation, ACO contains the address of the
word which contains the byte pointer to the translation table and AC1 contains 0. AC2
contains a byte pointer to the byte following string 2 and AC3 contains a byte pointer to
the byte following string 1. The value of carry is unchanged and overflow is 0.

Upon completion of a translate and compare operation, ACO contains the address of the
word which contains the byte pointer to the translation table. AC1 contains a return
code as calculated in the table below. AC2 contains a byte pointer to either the failing
byte in string 2 (if an inequality was found) or the byte following string 2 if the strings
were identical. AC3 contains a byte pointer to either the failing byte in string 1 (if an
inequality was found) or the byte following string 1 if the strings were identical. The
value of carry is unchanged and overflow is 0.

Code Result

-1 Translated value of string 1 <<
Translated value of string 2
(o] Translated value of string 1 =
Translated value of string 2
+1 Translated value of string 1 >
Translated value of string 2

If the length of both string 1 and string 2 is zero, the compare option returns a 0 in ACI.

The fields may overlap in any way. However, processing is done one character at a time,
so unusual side effects may be produced by certain types of overlap.

NOTE: The original contents of ACO, AC2, and AC3 must be valid byte pointers to an area in
the user’s address space. If they are invalid a protection fault occurs, even if no bytes are to be
moved or compared. ACI contains the code 4.

272 The MV/8000 Instruction Dictionary

Wide Divide

WDIV acs,acd

1 ACS ACD 0 0o 1 o 1 1 1 1 o] (o] 1

Divides an integer contained in an accumulator by an integer contained in another
accumulator.

The instruction sign extends the signed, 32-bit integer contained in ACD to 64 bits.
Divides this integer by the signed, 32-bit integer contained in ACS. If the quotient is
within the range -2,147,483,648 to +2,147,483,647 inclusive, loads the quotient in
ACD. If the result is not within this range, or if ACS is zero, sets overflow to 1 and does
not load the quotient into ACD; otherwise, overflow is 0. The contents of ACS and carry
remain unchanged.

Wide Signed Divide

WDIVS

Divides an integer contained in AC0O and AC1 by an integer contained in AC2.
ACO and AC1 contain a 64-bit, signed integer. ACO contains the high order bits.

The instruction divides the 64-bit, signed integer contained in ACO and AC1 by the
32-bit, signed integer contained in AC2. If the quotient is within the range -2,147,483,648
to +2,147,483,647 inclusive, then places the 32-bit quotient in AC1 and the remainder
in ACO. If the quotient is not within this range, or AC2 is zero, ACO and AC1 remain
unchanged and overflow is 1; otherwise, overflow is 0. AC2 and carry will always remain
unchanged.

NOTE: Zero remainders are always positive. All other remainders have the same sign as the

dividend.
Pop Context Block
WDPOP
1 0 o] o] o 1 1 1 1 1 1 1 1 (o] o] 1
(W] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Restores the state of the machine to what it was at the time of the last page fault.

The instruction uses the information pointed to by page zero locations 32-33g of
Segment 0 to restore the state of the CPU to that of the time of the last page fault.
Execution of the interrupted program resumes before, during, or after the instruction
that caused the fault, depending on the instruction type and how far it had proceeded
before the fault. Carry is unchanged and overflow is 0.

The MV/8000 Instruction Dictionary 273

Wide Edit

WEDIT

NOTE: This is a privileged instruction.

Converts a decimal source number from either packed or unpacked form to a string of
bytes under the control of an edit subprogram. This subprogram can perform many
different operations on the number and its destination field including leading zero
suppression, leading or trailing signs, floating fill characters, punctuation control, and
insertion of text into the destination field. The instruction also performs operations on
alphanumeric data if you specify data type 4.

Upon entry to the Edit instruction, the accumulators contain the following data:

» ACO contains a 32-bit byte pointer to the first opcode of the Edit subprogram,
* ACI contains a data-type indicator describing the number to be processed,

* AC2 contains a 32-bit byte pointer to the first byte of the destination field,

* AC3 contains a 32-bit byte pointer to the first byte of the source field.

The fields may overlap in any way. However, the instruction processes characters one at
a time, so unusual side effects may be produced by certain types of overlap.

The instruction maintains two flags and three indicators or pointers. The flags are the
Significance Trigger (7) and the Sign flag (S). The three indicators are the Source
Indicator (SI), the Destination Indicator (DI), and the op-code Pointer (P).

At the start of execution, the Edit instruction sets 7 to 0. When the instruction
manipulates the first non-zero digit, it sets 7 to 1 (unless an edit op-code specifies
otherwise).

The instruction sets S to reflect the sign of the number currently being processed. If the
number is positive, the instruction sets S to 0. If the number is negative, the instruction
sets S'to 1.

Each of the three indicators is 16 bits wide and contains a byte pointer to the current
byte in each respective area. At the start of execution, the Edit instruction sets SI to the
value contained in AC3 (the starting address of the source string). It also sets DI to the
value contained in AC2 (the starting address of the destination string), and P to the
value contained in ACO (a pointer to the first Edit opcode).

During execution, the subprogram can test and modify S and 7, as well as modify SI, DI
and P.

When execution begins, the instruction checks the sign of the source number for validity.
If the sign is invalid, the instruction ends. If the sign is valid, execution continues with
the Edit sub-program.

The sub-program is made up of 8-bit op-codes followed by one or more 8-bit operands.
The byte pointer contained in P acts as the program counter for the subprogram. The
subprogram proceeds sequentially until a branching operation occurs — much the same
way programs are processed. Unless instructed to do otherwise, the Edit instruction

274

The MV/8000 Instruction Dictionary

updates P after each operation to point to the next sequential op-code. The instruction
continues to process 8-bit opcodes until directed to stop by the DEND op-code. Note that
all 8-bit opcodes must be contained in the current segment.

Upon successful termination, carry contains T; ACO contains P, which points to the next
opcode to be processed; ACI is undefined; AC2 contains DI, which points to the next
destination byte; and AC3 contains SI, which points to the next source byte. The value of
carry is indeterminate and overflow is 0.

NOTES: If SI references bytes not contained in the source number, then the instruction
supplies zeroes for future manipulations. The instruction will use these zeroes for all subsequent
operations, even if SI later references bytes contained by the source number.

Opcodes that move numeric data may perform special actions. Opcodes that move non-numeric
data copy characters exactly into the destination string.

The Edit instruction places information on the wide stack. Therefore, the stack must be set up
and have at least 16 words available for use.

If an interrupt occurs during the Edit instruction, the instruction places restart information on
the stack and in the accumulators and sets bit 2 of the PSR to 1.

If bit 2 of the PSR contains a 1, then the Edit instruction assumes it is restarting from an
interrupt. Make sure you do not set this bit under any other circumstances.

Many of the Edit opcodes use the symbol j. This symbol represents a number; when j is
greater than or equal to zero, it specifies the number of characters the instruction should
process. When j is less than zero, it represents a pointer into the wide stack. The pointer
references a stack word that denotes the number of characters the instruction should
process. The number on the stack is at address:

WSP + 2 + 2%].

An Edit operation that processes numeric data (e.g., DMVN) skips a leading or trailing
sign code it encounters; similarly, such an operation converts a high-order or low-order
sign to its correct numeric equivalent.

Add To DI
DADI p0
0 0 0 1 0 o] 1 0 p0
) 1 2 3 4 5 6 7 8 T) " !) T 18

Adds the 8-bit two’s complement integer specified by p0 to the Destination Indicator
(DI).

Add To P Depending On S
DAPS p0
0 0 0 0 1 1 1 1 p0
0 1 2 3 4 5 6 7 8) i T j j KT

If S is 0, the instruction adds the 8-bit two’s complement integer specified by p0 to the
op-code Pointer (P). Before the add is performed, P is pointing to the byte containing the

The MV/8000 Instruction Dictionary 275

DAPS op-code.
Add To P Depending On T
DAPT p0
0] (4] o} 1 [¢] 1 1 p0O
) 1 2 3 4 5 6 7 8 ' N i j) D

If T is one, the instruction adds the 8-bit two’s complement integer specified by pO to the
op-code Pointer (P). Before the add is performed, P is pointing to the byte containing the
DAPT op-code.

Add To P
DAPU p0
0 (o] 0 1 0 1 1 1 pO
0 1 2 3 4 5 6 7 8 ' i j ! ' T 15

Adds the 8-bit two’s complement integer specified by p0 to the op-code Pointer P).
Before the add is performed, P is pointing to the byte containing the DAPU op-code.

Add To SI
DASI p0
0 0 1 o] 0 1 1 pO
1 2 3 4 5 6 7 8 ’ ! ' i i T 15

Adds the 8-bit two’s complement integer specified by p0 to the Source Indicator (SI).

Decrement And Jump If Non-Zero
DDTK &,p0

oO|O0|O|OfO|O [t]t k pO
0 1°2 345 6 7 8 ' ' T T T Tqgqgr ' T T T T T3

Decrements a word in the stack by one. If the decremented value of the word is non-zero,
the instruction adds the 8-bit two’s complement integer specified by p0 to the op-code
Pointer (P). Before the add is performed, P is pointing to the byte containing the DDTK
op-code. If the 8-bit two’s complement integer specified by k is negative, the word
decrement is at the address (WSP + 2 + (2*)k). If k is positive, the word decremented
is at the address (WFP + 2 + (2#)k).

276 The MV/8000 Instruction Dictionary

End Edit
DEND

0 0 0 0 o] 0 o
1 2 3 4 5 6

Terminates the EDIT sub-program.

Insert Characters Immediate
DICI n,pO,pl,...p(n-1)

o|of{o|1|{OojO|O|1 n p0 p1 pin-1)

vvvvvvvvvvvvvv

0 12 3 4 5 6 7 8 15 16

Inserts n characters from the op-code streant into the destination field beginning at the
position specified by DI. Increases P by (n+2), and increases DI by n.

Insert Character J Times
DIMC j,p0

o|ojoj1io|1}{0]|1 i pO

o' 1' 2 3'a'5'6 78 © ' ' "iwe o T T T 23

Inserts the character specified by p0 into the destination field a number of times equal to
j beginning at the position specified by DI. Increases DI by .

Insert Character Once

DINC p0
[¢] 0 0 1 0 0 0 o] p0
1 2 3 4 5 6 7 8 ') i ! ' RG]

Inserts the character specified by p0 in the destination field at the position specified by
DI. Increments DI by 1.

Insert Sign
DINS pO,pl

ofo|ofloj1t1]1]0 pO p1
o 1 2'3 4’567 8" « ' ' ' ' ‘1.6 ' ' T T T2

If the Sign flag (S) is 0, the instruction inserts the character specified by p0 in the
destination field at the position specified by DI. If S is 1, the instruction inserts the
character specified by pI in the destination field at the position specified by DI.
Increments DI by 1.

The MV/8000 Instruction Dictionary 277

Insert Character Suppress
DINT pO,pl

olofofo|1]|o]|1]0 pO p1
o' 12 3 45 6 7 8 ' T T T T Tqgqg’ T T T T ' a3

If the significance Trigger (7T) is 0, the instruction inserts the character specified by p0
in the destination field at the position specified by DI. If T is 1, the instruction inserts
the character specified by pI in the destination field at the position specified by DI.
Increments DI by 1.

- Move Alphabetics
DMVA j

o|lo|o|o 1 1 0 1 j
0 1 2 3 4 5 6 7 8 ! T T ! j 15

Moves j characters from the source field beginning at the position specified by SI to the
destination field beginning at the position specified by DI. Increases both SI and DI by
J. Sets T to 1.

Initiates a commercial fault if the attribute specifier word indicates that the source field
is data type 5 (packed). Initiates a commercial fault if any of the characters moved is not
an alphabetic (A-Z, a-z, or space).

Move Characters

DMVC j
o] [¢] 0 o] 1 1 (o] 0 i
0 1 2 3 4 5 6 7 8 T 10 1

Increments SI if the source data type is 3 and j>0. The instruction then moves j
characters from the source field beginning at the position specified by SI to the destination
field beginning at the position specified by DI. Increases both SI and DI by j. Sets T to
1.

Initiates a commercial fault if the attribute specifier word indicates that the source is
data type 5 (packed). Performs no validation of the characters.

Move Float
DMVF j,pO,pl,p2

o|o0jO0f1]0|1|0]0O j p0 p1 p2

vvvvvvv

0’123 4586 78 7 15 16 2324 31320 D)

If the source data type is 3, j>0, and SI points to the sign of the source number, the
instruction increments SI. Then for j characters, the instruction either places a digit
substitute in the destination field beginning at the position specified by DI, or it moves a

278

The MV/8000 Instruction Dictionary

digit from the source field beginning at the position specified by SI to the destination
field beginning at the position specified by DI. When T changes from O to 1, the
instruction places both the digit substitute and the digit in the destination field, and
compares j to the number of digits left to move. Increments SI by the smaller of the two
values.

Move Numerics

DMVN
(o] o} o] o 1 (o] o] 0 j
1 2 3 4 5 6 7 8 i ' i ' i RT3

Increments SI if the source data type is 3 and j>0. Moves j characters from the source
field beginning at the position specified by SI to the destination field beginning at the
position specified by DI. Increases DI by j. Compares j to the number of source
characters left to move, and increments SI by the smaller of the two values. Sets T to 1.

Initiates a commercial fault if any of the characters moved is not valid for the specified
data type.

Move Digit With Overpunch
DMVO p0,pl,p2,p3

ofojo|ofo|1 {11 p0 p1 p2 p3

|||||||

|||||||||||||||||||||

0 1 2 3 4 5 6 7 8

Increments SI if the source data type is 3 and SI points to the sign of the source number.
The instruction then either places a digit substitute in the destination field at the position
specified by DI, or it moves a digit plus overpunch the source field at the position
specified by SI to the destination field at the position specified by DI. Increases DI by 1.
Compares the number of digits left to move with 1 and increments SI by the smaller of
the two values.

If the digit is a zero or space and S is 0, then the instruction places p0 in the destination
field. If the digit is a zero or space and S is 1, then the instruction places p! in the
destination field. If the digit is a non-zero and S is 0, the instruction adds p2 to the digit
and places the result in the destination field. If the digit is a non-zero and § is 1, the
instruction adds p3 to the digit and places the result in the destination field. If the digit
is a non-zero the instruction sets 7 to 1. The instruction assumes p2 and p3 are ASCII
characters.

The instruction initiates a commercial fault if the character is not valid for the specified
data type.

The MV/8000 Instruction Dictionary 279

Move Numeric With Zero Suppression

DMVS j,p0
ojofoj1]|of1}1]o0 i pO
0’12 3 4 5 6 7 8 ' T T T T Tqgiqg’ T T ' T T Ta3

Increments SI if the source data type is 3 and j>0, and SI points to the sign of the
source number. The instruction then moves j characters from the source field beginning
at the position specified by SI to the destination field beginning at the position specified
by DI. Moves the digit from the source to the destination if T'is 1. Replaces all zeros and
spaces with p0 as long as T is 0. Sets T to 1 when the first non-zero digit is encountered.
Increases DI by j. Compares j to the number of source characters left to move, and
increments SI by the smaller of the two values.

Initiates a commercial fault if any of the characters moved is not a numeric (0-9 or
space).

End Float

DNDF pO,pi

olofofofofofo|1 p0 o1

0 123 4°5 6 7 8 | T T T Tysgqg’ T T ' ' 23

If T'is 1, the instruction places nothing in the destination field and leaves DI unchanged.
If T'is 0 and S is 0, the instruction places p0 in the destination field at the position
specified by DI. If T'is 0 and S is 1, the instruction places p! in the destination field at
the position specified by DI. Increases DI by 1, and sets T to 1.

Set S To One
DSSO

V] o] V] 0 0 1 0 1
1 2 3 4 5 6 7

Sets the Sign flag (S) to 1.

Set S To Zero

DSSZ
0 0 0 0 [o] 1 0 0
0 1 2 3 4 5 6 7

Sets the Sign flag (S) to 0.

280 The MV/8000 Instruction Dictionary

Store In Stack
DSTK k,p0

olo|ojo|O|O}|1]0O k p0O

TT2'3 a'5'6'7 8" ' ' ' ‘i, ' T T T23

Stores the byte specified by p0 in bits 24-31 of a word in the wide stack. Sets bits 0-23 of
the word that receives p0 to 0. If the 8-bit two’s complement integer specified by k is
negative, the instruction addresses the word receiving p0 by (WSP + 2 + (2*)k). If k is
positive then the instruction stores p0 at the address (WFP + 2 + (2*)k).

Set T To One

DSTO
0 0 0 0 1 0 0 1
0 1 2 3 4 5 6 7

Sets the significance Trigger (T) to 1.

Set T To Zero
DSTZ

0 0 [0} o 0 1 1 [0}

1 2 3 4 5 6 7

Sets the significance Trigger (T) to 0.

Wide Fix from Floating Point Accumulator
WFFAD ac,fpac

1 AC FPAC 1 (o} 0 1 0 0 1 1 0 0 1

0 1 2 3 ' 4 5 6 7 8 9 10 1" 12 13 14 15

Converts the integer portion of the floating point number contained in the specified
FPAC to a 32-bit, signed, two’s complement integer. Places the result in an accumulator.

If the integer portion of the number contained in FPAC is less than -2,147,483,649 or
greater than +2,147,483,648, the instruction sets M\ OF in the FPSR to 1. Takes the
absolute value of the integer portion of the number contained in the FPAC. Takes the 31
least significant bits of the absolute value and appends a 0 onto the leftmost bit to give a
32-bit number. If the sign of the number is negative, formes the two’s complement of the
32-bit result. Places the 32-bit integer in the specified accumulator.

If the integer portion is within the range of -2,147,483,648 to +2,147,483,647 inclusive,
the instruction places the 32-bit, two’s complement of the integer portion of the number
contained in the FPAC in the specified accumulator.

The MV/8000 Instruction Dictionary 281

The instruction leaves the FPAC and the Z and N flags of the FPSR unchanged.
Wide Float from Fixed Point Accumulator

WFLAD ac,fpac

1 AC FPAC 1 0 (o} 1 0 1 (o} 1 0 0 1

0 12 3 4 5 6 7 8 9 10 1 12 13 14 15

Converts the contents of a 32-bit accumulator to floating point format and places the
result in a specified FPAC.

Converts the 32-bit, signed, two’s complement number contained in the specified
accumulator to a double precision floating point number. Places the result in the
specified FPAC. Updates the Z and NV flags in the floating point status register to reflect
the new contents of the FPAC.

The range of numbers that can be converted is -2,147,483,648 to +2,147,483,647
inclusive.

Wide Floating Point Pop
WFPOP

Pops the state of the floating point unit off the wide stack.

Pops a 20-word block off the wide stack and loads the contents into the FPSR and the
four FPACs. The format of the 20-word block is shown below.

282 The MV/8000 Instruction Dictionary

Wide stack
—
pointer after WFPOP
Bits 0-15
Bits 16-31
FPSR
Bits 32-47
L Bits 48-63
—_— /‘
rPaco{ F—— ————
________ /A
,
]
U ——
FPAC1 L — 1
b _—'__..__//
p
o — — — — — ’,
~
FPAC2 b —————q
hoe . — — — —] ’/
.
- — — — —— 4
FPAC3 - —— —— 41
e — — —— -——\”
Stack pointer
before WFPOP e
DG-06795

This instruction loads the FPSR as follows:

o Places bits 0-15 of the operand in bits 0-15 of the FPSR. Sets bits 16-32 of the FPSR
to 0.
e If ANY is O, bits 33-63 of the FPSR are undefined.

« If ANY is 1, the instruction places the value of the current segment in bits 33-35 of
the FPSR, zeroes in bits 36-48, and bits 17-31 of the operand in bits 49-63 of the
FPSR.

NOTES: This instruction moves unnormalized data without change.

This instruction does not set the ANY flag from memory. If any of bits 1-4 are loaded as 1,
ANY is set to I; otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating point identification
code an are read protected. In the MV/8000 they are set to 0111.

This instruction does not initiate a floating point trap under any conditions of the FPSR.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Wide Floating Point Push

WFPSH

Pushes the state of the floating point unit onto the wide stack.

The MV/8000 Instruction Dictionary 283

Pushes a 20-word block onto the wide stack. The block contains the contents of the
FPSR and the contents of the four FPACs, as shown in the figure below:

Wide stack
pointer before ———-
WFPSH r
Bits 0-15
Bits 16-31
FPSR ARl
Bits 32-47
L Bits 48-63
;
o e — —— — ——— ’A
FPACO -——————1
L e e 1
¢
L 1
FPAC1 -—————
=
-
-
s e — — — — — V‘
rPac2{ F—————-1
e —— —— — —— — ”
-
r
e e — — — — ’A
FPAC3 ————— —}1
. -1
.
Stack pointer .J
after WFPSH M
DG-06796

The instruction pushes the FPSR onto the stack as follows:

» Stores bits 0-15 of the FPSR in the first memory word.
* Sets bits 16-31 of the first memory double word and bit 0 of the second memory
double word to 0.

» If ANY is 0, the contents of bits 1-31 of the second memory double word are
undefined.

e If ANY is 1, the instruction stores bits 33-63 of the FPSR into bits 1-31 of the second
memory double word.

The rest of the block is pushed onto the stack after the FPSR has been pushed.
NOTES: This instruction moves unnormalized data without change.

This instruction does not initiate a floating point trap under any conditions of the FPSR.

See Chapter 8 and Appendix G for more information about floating point manipulation.

284 The MV/8000 Instruction Dictionary

Wide Search Queue Forward

WFSAC
1{1]ololo|l1]1|1{o]o|o|1|1]o]o |1 RESERVED 1]of1]1]0
01 5 8 7 10 11 12 13 14 15 16 T26 27 28 29 30 31
See instruction entry “Search Queue”.

Wide Search Queue Forward

WFSAS
1{1]lojofo|s}1]1lo]ofo|1|1|o]o |1 RESERVED 1lo]1]o|o
0'1 2 34 5 617 8 91011 1213 1416 16 o T 7 T26 27 28 29 30 31
See instruction entry “Search Queue”.

Wide Search Queue Forward

WFSE
1{1]lolojo|1|1|[1]o]ofo]|1{1|o]of1 RESERVED 1]1]0fo|o
0o 1 5 6 7 910 11 12 13 14 15 16" ' ' ' T 7 726 27 28 29 30 31
See instruction entry “Search Queue”.

Wide Search Queue Forward

WFSGE
1l1]|olojof1|1]r|ofjojo|1[1]o]o |1 RESERVED 1/1]o0|1]0
01 2 5 6 7 9 10 1112 13 14 15 16 T T 726 27 28 29 30 31
See instruction entry “Search Queue”.

Wide Search Queue Forward

WEFSLE
1{1lo]ofo|r|1|{1]ojojo|1{1}0 |0 |1 RESERVED 1]1]|1]o]o
0 1 2 3 4 5 6 17 10 1112 13 14 18 16 ' ' T T 726 27 28 29 30 3

See instruction entry “Search Queue”.

The MV/8000 Instruction Dictionary 285

Wide Search Queue Forward
WFSNE

t11{ojofofr|1f1jojofo|1{1]o]o]1 RESERVED 111

el o

See instruction entry “Search Queue”.

Wide Search Queue Forward
WFSSC

1{1fojojof1]1f1]ojojo]1[1]lo}o]1 RESERVED 1{0f0 1|0

See instruction entry “Search Queue”.

Wide Search Queue Forward

WFSSS
tj1tolojofl1i1f{1jojofo]|1|[1]o]o|1 RESERVED 1100 |0 |0
0 1 4°6 6 7 8 9 10 11 12 13 14 '16' 16 j 72627 28 29 30 31
See instruction entry “Search Queue”.
Wide Halve
WHLYV ac
1 1 1 AC 1 1 0 0 1 0 1 1 0 o] 1
[+] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides the 32-bit contents of the specified accumulator by 2 and rounds the result
toward 0.

The signed, 32-bit two’s complement number contained in the specified accumulators
divided by 2 and rounded toward 0. The result is placed in the specified accumulator.

This instruction leaves carry unchanged; overflow is 0.

Wide Increment
WINC acs,acd

1 ACS ACD 0 1 o] o] 1 0 1 1 0o (o} 1

Increments an integer contained in an accumulator.

286 The MV/8000 Instruction Dictionary

The instruction increments the 32-bit contents of ACS by 1 and loads the result into
ACD. Sets carry to the value of ALU carry. Sets overflow to 1 if there is an ALU
overflow. The contents of ACS remain unchanged, unless ACS equals ACD.

Wide Inclusive OR
WIOR acs,acd

1 ACS ACD 1 0 0 V] 1 1 (o} 1 0 0 1

Performs an inclusive OR between two accumulators.

Forms the logical inclusive OR between corresponding bits of ACS and ACD. Loads the
32-bit result into ACD. The contents of ACS remain unchanged. Carry is unchanged
and overflow is 0.

Wide Inclusive OR Immediate
WIORI ac, immediate

1}ojo| Ac {1|1]o]|1{ofj1{O0|1]|O|O |1 IMMEDIATE
st s s e s ez e aeeT T T T o T 7

Performs an inclusive OR.

The instruction forms the logical inclusive OR between corresponding bits of the specified
accumulator and the value contained in the literal field. The instruction places the result
of the inclusive OR in the specified accumulator. Carry is unchanged and overflow is 0.

Wide Load with Wide Immediate
WLDAI ac,immediate

17110} AC |1]1lo|1{Oo]OjO[1]O0]O |1 IMMEDIATE
s s e e e e s e e T T T T e,

Loads the 32-bit value contained in the immediate field into the specified accumulator.
Carry is unchanged and overflow is 0.

Wide Load Byte

WLDB acs,acd
1 ACS ACD 1 (o] 1 0 0 1 0 1 0 0 1
o ' 1 ' 2 3 ' 4 ' 6 7 8 9 10 " 12 13 14 15

Uses the 32-bit byte address contained in ACS to load a byte into ACD. Sets bits 0-23
of ACD to zero. Bits 24-31 of ACD contain a copy of the contents of the addressed byte.
The contents of ACS remain unchanged, unless ACS and ACD are the same accumulator.
Carry is unchanged and overflow is 0.

The MV/8000 Instruction Dictionary 287

Wide Load Integer

WLDI fpac

1 1 1 FPAC 1 1 1 1 0 1 0 1 0o 0 0

Translates a decimal integer from memory to floating point format and places the result
in a floating point accumulator.

ACI must contain the data-type indicator describing the integer.

AC3 must contain a 32-bit byte pointer pointing to the high-order byte of the integer in
memory.

Uses AC1 and AC3 to convert a decimal integer to floating point form. Normalizes the
result and places it in the specified FPAC. Updates the Z and N flags in the FPSR to
describe the new contents of the specified FPAC. Leaves the decimal number unchanged
in memory.

By convention, the first byte of a number stored according to data type 7 contains the
sign and exponent of the floating point number. The instruction copies each byte
(following the lead byte) directly to the mantissa of the specified FPAC. It then sets to
zero each low-order byte in the FPAC that does not receive data from memory.

Upon successful completion, ACO and AC1 remain unchanged. AC2 contains the
original contents of AC3. AC3 points to the first byte following the integer field. Carry
is unchanged and overflow is 0.

Wide Load Integer Extended

WLDIX

Distributes a decimal integer of data type 0, 1, 2, 3, 4, or S into the four FPACs.
ACI1 must contain the data-type indicator describing the integer.

AC3 must contain a 32-bit byte pointer which is the address of the high-order byte of the
integer.

The instruction uses the contents of AC3 to reference the integer. Extends the integer
with high-order zeros until it is 32 digits long. Divides the integer into 4 units of 8 digits
each and converts each unit to a floating point number. Places the number obtained
from the 8 high-order digits into FACO. Places the number obtained from the next 8
digits into FACI1. Places the number obtained from the next 8 digits into FAC2. Places
the number obtained from the low-order 8 bits into FAC3. Sets the sign of each FPAC
by checking the number just loaded into the FPAC. If the FPAC contains a nonzero
number, then sets the sign of the FPAC to be the sign of the integer. If the FPAC
contains an 8-digit zero, sets the FPAC to true zero. The Z and N flags in the floating
point status register are unpredictable.

288

The MV/8000 Instruction Dictionary

Upon successful termination, the contents of ACO and AC1 remain unchanged. AC2
contains the original contents of AC3. AC3 points to the first byte following the integer
field. Carry is unchanged and overflow is 0.

Wide Locate Lead Bit

WLOB

acs,acd

1 ACS ACD 0 1 1 1 0 1 0 1 0 /] 1

0 [3 7 4 5 6 7 8 9 10 1 12 13 14 15

Counts the number of high-order zeroes in ACS. Adds the count of high-order zeroes to
the 32-bit, signed contents of ACD. Stores the result of the add in ACD. The contents of
ACS remain unchanged, unless ACS and ACD are the same accumulator. Carry is
unchanged and overflow is 0.

Wide Locate and Reset Lead Bit
WLRB acs,acd

1 ACS ACD o] 1 1 1 o] 1 1 1 (o] 0 1

Counts the number of high-order zeroes in ACS.

The instruction counts the high order zeroes in ACS. Adds the count of high-order
zeroes to the 32-bit, signed contents of ACD. Stores the result in ACD. Sets the leading
bit of ACS to 0. Carry is unchanged and overflow is 0.

If ACS equals ACD, then sets the leading bit to 0 and adds nothing to the contents of
the specified accumulator.

Wide Logical Shift

WLSH

acs,acd

1 ACS ACD 1 [o] 1 o] 1 0 1 1 o} o] 1
[} 12 3 7 4 5 6 7 8 9 10 1" 12 13 14 15

Shifts the 32-bit contents of ACD either left or right.

Bits 24-31 of ACS specify the number of bits to shift ACD. If this number is positive,
then the instruction shifts the contents of ACD the appropriate number of bits to the
left. If this number is negative, then the instruction shifts the contents of ACD the
appropriate number of bits to the right. If ACS contains zero, then no shifting occurs.
The instruction ignores bits 0-23 of ACS.

Bits shifted out during this instruction are lost. Zeroes fill the vacated bit positions. The
contents of ACS remain unchanged, unless ACD equals ACS. Carry is unchanged and
overflow is 0.

The MV/8000 Instruction Dictionary 289

Wide Logical Shift Inmediate

WLSI n,ac
1 N AC 1 0 1 1 [s] 1 1 1 [o] [o] 1
[+] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shifts the contents of the specified accumulator to the left n+1 positions, where 7 is in
the range 0 to 3. Carry is unchanged and overflow is 0.
NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in
the immediate field. Therefore, the programmer should code the exact value that he wishes to
shift.
Wide Load Sign
WLSN
1 1 0 o] 0 1 1 1 (o] 1 1 1 1 o] o] 1
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Evaluates a decimal number as zero or nonzero, and the sign as positive or negative.
AC1 must contain the data type indicator describing the number.
AC3 must contain a byte pointer which is the address of the high-order byte of the
number.
The instruction evaluates a decimal number in memory and returns in AC1 a code that
classifies the number as zero or nonzero and identifies its sign. The meaning of the
returned code is as follows:
Vaiue of Number Code
Positive non-zero +1
Negative non-zero -1
Positive zero 0
Negative zero -2
Upon successful termination, the contents of ACO remain unchanged; AC1 contains the
value code; AC2 contains the original contents of AC3; and the contents of AC3 are
unpredictable. The contents of the addressed memory locations remain unchanged.
Carry is unchanged and overflow is 0.
Wide Move
WMOV acs,acd
1 ACS ACD (0] 1 1 (V] 1 1 1 1] o] 1
o T 2 3 ' a 5 6 7 8 9 10 AR} 12 13 14 15

Moves a copy of the 32-bit contents of ACS into ACD. The contents of ACS remain
unchanged. Carry is unchanged and overflow is 0.

290 The MV/8000 Instruction Dictionary

Wide Modify Stack Pointer

WMSP ac

Changes the value of the stack pointer and tests for potential overflow.

Shifts the contents of the specified accumulator left one bit. Adds the shifted value to the
contents of the WSP and temporarily saves the result. Checks for fixed point overflow. If
overflow occurs, the processor does not alter WSP and treats the overflow as a stack
fault. AC1 contains the code 1.

If no overflow occurs, the instruction checks the value of the result. If the result is
positive, the processor checks it against the stack limit for stack overflow; if negative,
against the stack limit for stack underflow. If underflow or overflow does not occur, the
instruction loads WSP with the saved value.

If either overflow or underflow occurs, the instruction does not alter WSP and a stack
fault occurs. AC1 contains the code 1. The PC in the return block points to this
instruction.

This instruction does not change carry; overflow is 0.

Wide Multiply
WMUL acs,acd

1 ACS ACD 0 o] 1 0 1 1 o] 1 0o [o] 1
0 12 3 7 4 5 6 7 8 9 10 1 12 13 14 15

Multiplies two integers contained in accumulators.

The instruction multiplies the 32-bit, signed integer contained in ACD by the 32-bit,
signed integer contained in ACS. Places the 32 least significant bits of the result in
ACD. The contents of ACS and carry remain unchanged. Overflow is 0.

If the result is outside the range of -2,147,483,648 to +2,147,483,647 inclusive, sets
overflow to 1; otherwise, overflow is 0. ACD will contain the 32 least significant bits of
the result.

Wide Signed Multiply

WMULS

Multiplies two integers contained in accumulators.

The instruction multiplies the 32-bit, signed integer contained in AC1 by the 32-bit,
signed integer contained in AC2. Adds the 32-bit signed integer contained in ACO to the
64-bit result. Loads the 64-bit result into ACO and AC1. ACO contains the 32 high-order
bits. AC2 and carry remain unchanged. Overflow is 0.

The MV/8000 Instruction Dictionary 291

Wide Add with Narrow Immediate
WNADI ac,immediate

1111 Aac |1|1|of1|1]111]1]0|o]1 IMMEDIATE
012 3 4 6 6 7 8'9 10 11'12 13'14'15 16"

3

Adds an immediate value to an integer contained in an accumulator.

The instruction sign extends the two’s complement literal value contained in the
immediate field to 32 bits. Adds the sign extended value to the 32-bit integer contained
in the specified accumulator. Loads the result into the specified accumulator. Sets carry
to the value of ALU carry. Sets overflow to 1 if there is an ALU overflow.

Wide Negate
WNEG acs,acd

1 ACS ACD 0 1 0 0 1 1 [o] 1 o] [o] 1
o 12 3 ' 4 5 6 7 8 9 10 Xl 12 13 14 15

Negates the contents of an accumulator.

The instruction forms the two’s complement of the 32-bit contents of ACS. Loads the
result into ACD. Sets carry to the value of ALU carry. Sets overflow to 1 if there is an
ALU overflow. The contents of ACS remain unchanged, unless ACS equals ACD.

Wide Pop Accumulators
WPOP acs,acd

1 ACS ACD 0 o] (o] 1 (o] 0 0 1 o 0 1
] 17 2 3 4 5 6 7 8 9 10 " 12 13 14 15

Pops up to 4 double words off the top of the wide stack and places them in the specified
32-bit accumulators.

Pops the top double word off the wide stack and places it in ACS. Pops the next double
word off the wide stack and places it in ACS-1, and so on, until all specified accumulators
have been loaded. If necessary, the accumulators wrap around, with AC3 following
ACO, until all specified accumulators have been loaded. If ACS equals ACD, then the
instruction pops only one double word off of the wide stack and places it in the specified
accumulator.

The instruction decrements the contents of WSP by twice the number of double words
popped. Carry is unchanged and overflow is 0.

292 The MV/8000 Instruction Dictionary

Wide Pop Block
WPOPB

Pops six double words off the wide stack and places them in the appropriate locations.

The popped words and their destinations are as follows:

Double Word | Destination
Popped

1 Bit O to carry; bits 1-31 to PC

2 AC3

3 AC2

4 AC1

5 ACO

6 Bit O to OVK; bit 1 to OVR; bit 2 to IRES; bits
17-31 are multiplied by 2 and incremented by
12. This number is subtracted from WSP. WSP
is loaded with the result.

If the instruction specifies an inward ring crossing, then a protection fault occurs and the
current wide stack remains unchanged. Note that the return block pushed as a result of
the protection fault will contain undefined information. After the fault return block is
pushed, ACO contains the contents of the PC (which point to the instruction that caused
the fault) and AC1 contains the code 8.

If the instruction specifies an intra-ring address, it pops the six-double-word block, then
checks for stack underflow. If underflow has occurred, a stack underflow fault occurs.
Note that the return block pushed as a result of the stack underflow will contain
undefined information. After the fault return block is pushed, ACO contains the contents
of the PC (which point to the instruction that caused the fault) and AC1 contains the
code 3. If there is no underflow, execution continues with the location addressed by the
program counter.

If the instruction specifies an outward ring crossing, it pops the six-double-word return
block and checks for stack underflow. If underflow has occurred, a stack underflow fault
occurs. Note that the return block pushed as a result of the stack underflow will contain
undefined information. After the fault return block is pushed, ACO contains the contents
of the PC (which point to the instruction that caused the fault) and ACI1 contains the
code 3. If there is no underflow, the instruction stores WSP and WFP in the appropriate
page zero locations of the current segment. It then performs the outward ring crossing
and loads the wide stack registers with the contents of the appropriate page zero
locations of the new ring. Loads WSP with the value:

(current contents of WSP) - (2 x (argument count))

Checks for stack underflow. If underflow has occurred, a stack underflow fault occurs.
Note that the return block pushed as a result of the stack underflow will contain
undefined information. After the fault return block is pushed, ACO contains the contents
of the PC (which point to the instruction that caused the fault) and ACI1 contains the
code 3. If there is no underflow, execution continues with the location addressed by the

The MV/8000 Instruction Dictionary 293

program counter.

Pop PC and Jump
WPOPIJ

Pops the top 31-bit value off the wide stack, loads it into the PC, then checks for stack
overflow. Carry is unchanged and overflow is 0.

Push Accumulators
WPSH acs,acd

1 ACS ACD 1 o 1 0 1 1 1 1 0 0 1

Pushes the contents of the specified 32-bit accumulators onto the top of the wide stack.

Pushes the contents of ACS onto the top of the wide stack, then pushes the contents of
next sequential accumulators up to and including ACD. If necessary, the accumulators
wrap around, with ACO following AC3, until the contents of all specified accumulators
have been pushed. If ACS equals ACD, then the instruction pushes the contents of only
one accumulator onto the wide stack.

Note that the instruction increments the contents of WSP by two times the number of
accumulators pushed (32-bit accumulators). Carry is unchanged and overflow is 0.

Wide Restore
WRSTR

Returns control from an interrupt.

When this instruction is used, the wide stack should contain the following information,
in the given order:

Contents | Size of Word Notes

WFP (32 bits)
WSP (32 bits)
wsL (32 bits)

WSB (32 bits)

SFA (Lower 16 bits) < Stack fault address
OVK, OVR | (Bits O and 1)

ACO (32 bits)

AC1 (32 bits)

AC2 (32 bits)

AC3 (32 bits)
Carry, PC [(32 bits) This is the top of the wide stack.

294 The MV/8000 Instruction Dictionary

The instruction checks to see if the ring crossing specified is inward. If the crossing is
inward, a protection fault occurs (code=8 in AC1).

If the crossing is not inward, the instruction pops the return block on top of the wide
stack and places the block contents in the appropriate registers. Next, the instruction
pops the stack registers and the stack fault address, temporarily saves them, and checks
for stack underflow. If no underflow occurs, further actions depend upon the type of ring
call.

If the restore is to be to the same ring, the instruction places the temporarily saved stack
management information in the four stack registers. Stores the stack fault address in
location 14g of the current segment. Checks for stack underflow. If underflow has
occurred, a stack underflow fault occurs (code=3 in AC1). If underflow has not
occurred, execution continues with the location specified by the PC.

If the ring crossing is outward, the instruction stores the stack management information
held internally into the appropriate page zero locations of the current segment. Performs
the outward ring crossing. Loads the stack registers with the contents of the appropriate
page zero locations of the new segment. Checks for stack underflow. If underflow has
occurred, a stack underflow fault occurs (code=3 in AC1). If underflow has not
occurred, execution continues with the location specified by the PC.

Wide Return
WRTN

Returns control from subroutines that issue a WSAVS or a WSAVR instruction at their
entry point. Places the contents of WFP in WSP and executes a WPOPB instruction.
Places the popped value of AC3 in WFP.

Wide Skip on All Bits Set in Accumulator
WSALA ac,immediate

1/0[1] AC |{1]1]{O]1|[O0|Of1]|1]|O(O]1 IMMEDIATE

LI B S B S AL B B S B B S RN AR SR B RN SR SR

012 3 45 6 7 8 9 10111213 14 15 16 47

Performs a logical AND between an immediate value and the contents of an accumulator.
Skips depending on the result of the AND.

The instruction performs a logical AND on the contents of the immediate field and the
complement of the contents of the specified accumulator. If the result of the AND is

zero, then execution skips the next sequential word before continuing. If the result of the
AND is nonzero, then execution continues with the next sequential word. The contents
of the specified accumulator remain unchanged. Carry is unchanged and overflow is 0.

The MV/8000 Instruction Dictionary 295

Wide Skip on All Bits Set in Double-word Memory Location
WSALM ac,immediate

11011 AC (111701 (o|1f1]1]o]o]1 IMMEDIATE

012345678910”1213141516|.uv.-.--;.v-.-.-:--;-.rv-ryvv47

Performs a logical AND between an immediate value and the complement of a memory
word. Skips depending on the result of the AND.

The instruction performs a logical AND on the contents of the immediate field and the
complement of the double word addressed by the specified accumulator. If the result of
the AND is zero, then execution skips the next sequential word before continuing. If the
result of the AND is nonzero, then execution continues with the next sequential word.
The contents of the specified accumulator and memory location remain unchanged.
Carry is unchanged and overflow is 0.

Wide Skip on Any Bit Set in Accumulator
WSANA ac,immediate

110]1| AC [1/1]/0]1]|0|0|Oof1|0|0O]1 IMMEDIATE
0123.45678910”‘213“1516.v...'......v...»-y..r'........“

Performs a logical AND between an immediate value and the contents of an accumulator.
Skips depending on the result of the AND.

The instruction performs a logical AND on the contents of the immediate field and the
contents of the specified accumulator. If the result of the AND is nonzero, then execution
skips the next sequential word before continuing. If the result of the AND is zero, then
execution continues with the next sequential word. The contents of the specified
accumulator remain unchanged. Carry is unchanged and overflow is 0.

" Wide Skip on Any Bit Set in Double-word Memory Location
WSANM ac,immediate

110|1{ AC |1|1]|0|1|0f1|Of{1]|0]O1 IMMEDIATE

—r rrorrr rorr T T T T T T T T e T T T T 17

0'1°2'3°4'6'6'7 8'9 101112131415 16 Ta7

Performs a logical AND between an immediate value and the contents of a memory
word. Skips depending on the result of the AND.

The instruction performs a logical AND on the contents of the immediate field and the
contents of the double word addressed by the specified accumulator. If the result of the
AND is nonzero, then execution skips the next sequential word before continuing. If the
result of the AND is zero, then execution continues with the next sequential word. The
contents of the specified accumulator and memory location remain unchanged. Carry is
unchanged and overflow is 0.

296 The MV/8000 Instruction Dictionary

Wide Save/Reset Overflow Mask

WSAVR

1{oj1lojofrj1j1]|jo|Of1{O|1|O|O}1 FRAME SIZE IN DOUBLE WORDS
5T T 23 456 7 8 9 10 1 213486 ' T T T T =&

Pushes a return block onto the wide stack and resets OVK.

The instruction checks for stack overflow. If an overflow would occur, then control
transfers to the wide stack fault routine. If no overflow would occur, then the instruction
pushes five double words of a wide six-double word return block onto the wide stack. The
words pushed have the following contents:

Double Word | Contents
Pushed
1 ACO
2 AC1
3 AC2
4 AC3
5 carry and PC

Note that the five words described above do not make up the entire return block. Either
the LCALL or the XCALL instruction pushes the first double word of the return block
onto the wide stack. This word has the following format:

lovkjovRjres) 0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 0|0 ARGUMENT COUNT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31

After pushing the return block, the instruction places the value of the stack pointer in
WFP and AC3. Multiplies the 16-bit, unsigned integer contained in the second instruction
word by 2. Adds the result to WSP. Sets OVK to 0, disabling integer overflow.

Wide Save/Set Overflow Mask

WSAVS

1foj1|ofojrfjri1fojofj1ir 10|01 FRAME SIZE IN DOUBLE WORDS

T T T T T T T T

0 172 3 4'5 6 7 89 10 111213 14 156 16 T T T

Pushes a return block onto the wide stack, resets WSP and WFP, and sets OVK to 1.

The instruction checks for stack overflow. If an overflow would occur, then control
transfers to the wide stack fault routine. If no overflow would occur, then the instruction
pushes five double words of a wide six-double word return block onto the stack. The
words pushed have the following contents:

The MV/8000 Instruction Dictionary 297

Double Word | Contents
Pushed
1 ACO
2 AC1
3 AC2
4 AC3
5 carry and PC

Note that the five double words described above do not make up the entire return block.
Either the LCALL or the XCALL instruction pushes the first double word of the return
block onto the wide stack. This word has the following format:

VKIOVRIRES| O [O [111 [1 |0]O[1[1]1]0[0]1 FRAME SIZE IN DOUBLE WORDS

T T T T T T T

6°1 2 37456 7 '8'9 1011121314115 16" 3

After pushing the return block, the instruction places the value of WSP in WFP and
AC3. Multiplies the 16-bit, unsigned integer contained in the second instruction word by
2. Adds the result to WSP. Sets OVK to 1, enabling integer overflow.

Wide Subtract Immediate

WSBI n,ac
1 N AC 1 0 1 1 o] (o] (o] 1 0 [o] 1
o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtracts an integer in the range 1 to 4 from an integer contained in an accumulator.
The instruction subtracts the value n+1 from the value contained in the specified
accumulator. Stores the result in the specified accumulator. Sets carry to the value of
ALU carry. Sets overflow to 1 if there is an ALU overflow.
NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in
the immediate field. Therefore, the programmer should code the exact value that he wishes to
subtract.
Wide Skip If Equal To
WSEQ acs,acd
1 ACS ACD o] (o] o 1 0 1 1 1 [0} 0 1
[1T 2 3 ' 4 5 6 7 8 9 10 11 12 13 14 15

Compares one integer to another and skips if the two integers are equal. Carry is
unchanged and overflow is 0.

The instruction compares the 32-bit integer contained in ACS to the 32-bit integer in
ACD. If the integer contained in ACS is equal to the integer contained in ACD, the next
16-bit word is skipped; otherwise, the next word is executed.

298 The MV/8000 Instruction Dictionary

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer equals zero.

Wide Signed Skip If Greater Than Or Equal To
WSGE acs,acd

1 ACS ACD 0 o 1 1 0 0 1 1 o o] 1

Compares one integer to another and skips if the first is greater than or equal to the
second. Carry is unchanged and overflow is 0.

The instruction compares the signed, 32-bit integer contained in ACS to the signed,
32-bit integer in ACD. If the integer contained in ACS is greater than or equal to the
integer contained in ACD, then the next word is skipped; otherwise, the next instruction
is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer is greater than or
equal to zero.

Wide Signed Skip If Greater Than
WSGT acs,acd

1 ACS ACD o | o | 1 1] 0|1 1 1 o] o |

Compares one integer to another and skips if the first is greater than the second. Carry
is unchanged and overflow is 0.

The instruction compares the signed, 32-bit integer contained in ACS to the signed
32-bit integer in ACD. If the integer contained in ACS is greater than the integer
contained in ACD, the next word is skipped; otherwise, the next word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer is greater than
Zero.

Wide Skip on Bit Set to One
WSKBO bit number

1 BITS 1 1 1 1 0 1 BITS 1 0 0 1
0 1

Tests a specified bit in ACO and skips if the bit is one.

The instruction uses the bits specified in bits 1-3 and 10-11 to specify a bit position in
the range 0-31. This number specifies one bit in ACO; the value 0 specifies the

highest-order bit, and the value 31 specifies the lowest-order bit. If the specified bit has
the value 1, then the next sequential word is skipped. If the bit has the value 0, then the

The MV/8000 instruction Dictionary 299

next sequential word is executed. The contents of ACO remain unchanged. Carry is
unchanged and overflow is 0.

Wide Skip on Bit Set to Zero
WSKBZ bit number

1 BITS 1 1 1 1 1 0 BITS 1 0 0 1
0 [E 4 5 6 7 8 9 10 " 1 12 13 14 ' 15

Tests a specified bit in ACO and skips if the bit is 0.

The instruction uses the bits specified in bits 1-3 and 10-11 to specify an a bit position
in the range 0-31. This number specifies one bit in ACO; the value 0 specifies the
highest-order bit, and the value 31 specifies the lowest-order bit. If the specified bit has
the value 0, then the next sequential word is skipped. If the bit has the value 1, then the
next sequential word is executed. The contents of ACO remain unchanged. Carry is
unchanged and overflow is 0.

Wide Signed Skip If Less Than Or Equal To
WSLE acs,acd

1 ACS ACD (o} (o] 1 1 0 1 0 1 0o 0 1

Compares one integer to another and skips if the first is less than or equal to the second.
Carry is unchanged and overflow is 0.

The instruction compares the signed, 32-bit integer contained in ACS to the signed,
32-bit integer in ACD. If the integer contained in ACS is less than or equal to the
integer contained in ACD, the next word is skipped; otherwise, the next sequential word
is executed.

If ACS and ACD are-the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer is less than or
equal to zero.

Wide Signed Skip If Less Than
WSLT acs,acd

1 ACS ACD 0 1 0 1 s} 0 0o 1 0 0 1

Compares one integer to another and skips if the first is less than the second. Carry is
unchanged and overflow is 0.

The instruction compares the signed, 32-bit integer contained in ACS to the signed,
32-bit integer in ACD. If the integer contained in ACS is less than the integer contained
in ACD, the next word is skipped; otherwise, the next sequential word is executed.

300 The MV/8000 Instruction Dictionary

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer is less than zero.

Wide Skip on Nonzero Bit
WSNB acs,acd

1 ACS ACD 0 1 1 1 0 (o} 0 1 0 0 1

Tests the value of an addressed bit and skips if the bit is one. Carry is unchanged and
overflow is 0.

The instruction forms a bit pointer from the contents of ACS and ACD. ACS contains
the high-order bits of the bit pointer; ACD contains the low-order bits. ACS and ACD
can be specified to be the same accumulator; in this case, the specified accumulator
supplies the low-order bits of the bit pointer. The high-order bits are treated as if they
were zero in the current segment.

The instruction checks the value of the bit referenced by the bit pointer. If the bit has the
value 1, the next sequential word is skipped. If the bit has the value 0, the next sequential
instruction is executed.

Wide Skip If Not Equal To

WSNE

acs,acd

1 ACS ACD 0 0 1 1 0 0 0 1 (o] 0 1

Compares one integer to another and skips if the two are not equal. Carry is unchanged
and overflow is 0.

The instruction compares the 32-bit integer contained in ACS to the 32-bit integer in
ACD. If the integer contained in ACS is not equal to the integer contained in ACD, then
execution skips the next word; otherwise, execution proceeds with the next sequential
word.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer does not equal
zero.

Wide Special Save/Set Overflow Mask

WSSVR

11ojlofofof1}jrj1|ofO|1]O|1|O|O |1 FRAME SIZE IN DOUBLE WORDS

T T T T T T T T T

T3t

Pushes a wide return block onto the wide stack and sets OVK to 0.

The MV/8000 Instruction Dictionary 301

The instruction checks for stack overflow. If executing the instruction would cause an
overflow, the instruction transfers control to the wide stack fault handler. The PC in the
fault return block will contain the address of the WSSVR instruction.

Pushes a wide return block onto the wide stack. After pushing the sixth double word,
places the value of WSP in WFP and AC3. Increments WSP by twice the frame size.
The frame size is a 16-bit, unsigned integer contained in the second word of this
instruction. Sets OVK to 0, which disables integer overflow. Sets OVR to 0.

The structure of the wide return block pushed is as follows:

Word in Block | Contents
1-2 OVK, OVR, IRES, 29 zeroes
3-4 ACO
5-6 AC1
7-8 AC2
9-10 AC3
11-12 Previous WFP
13-14 Carry, return PC value
16-18 Stack frame

NOTE: This instruction saves the information required by the WRTN instruction.

This instruction is typically executed after an XJSR or LISR instruction. Note that
neither of these jump instructions can perform a cross ring call. However, they may be
used with WSSVS to perform an intra-ring transfer to a subroutine that requires no
parameters, and that uses WRTN to return control back to the calling sequence.

Wide Special Save/Set Overflow Mask

WSSVS

1jofojojoj1rf1f1]|ojof1f1(1][o]o]|1 FRAME SIZE IN DOUBLE WORDS

T

0 1 2 3 45 6 7 8 9 10 11 1213 14 15 16" T31

Pushes a wide return block onto the wide stack and sets OVK to 1.

The instruction checks for stack overflow. If executing the instruction would cause an
overflow, the instruction transfers control to the wide stack fault handler. The PC in the
fault return block will contain the address of the WSSVS instruction.

If no overflow would occur, the instruction pushes a wide return block onto the wide
stack. After pushing the sixth double word, places the value of WSP in WFP and AC3.
Increments WSP by twice the frame size (a 16-bit, unsigned integer contained in the
second word of this instruction). Sets OVK to 1, which enables integer overflow. Sets OVR
to 0.

The structure of the wide return block pushed is as follows:

302 The MV/8000 Instruction Dictionary

Word in Block | Contents
1-2 OVK, OVR, IRES , 29 zeroes
3-4 ACO
5-6 AC1
7-8 AC2
9-10 AC3
11-12 Previous WFP
13-14 Carry, return PC value
15-18 Stack frame

NOTE: This instruction saves the information required by the WRTN instruction.

This instruction is typically executed after an XJSR or LISR instruction. Note that
neither of these jump instructions can perform a cross ring call. However, they may be
used with WSSVR to perform an intra-ring transfer to a subroutine that requires no
parameters, and that uses WRTN to return control back to the calling sequence.

Wide Store Byte
WSTB acs,acd

1 ACS ACD 1 o] 1 (o] o] 1 1 1 0 0 1

~ Stores a copy of the rightmost byte of ACD into memory at the address specified by

ACS.
ACS contains a 32-bit byte address of some location of memory.

The instruction stores a copy of ACD’s bits 24-31 at the locations specified by ACS.
The contents of ACS and ACD remain unchanged. Carry is unchanged and overflow is
0.

Wide Store Integer

WSTI fpac

1 1 1 FPAC 1 1 0 1 0 1 1 1 0 0 1

Converts a floating point number to an integer and stores it into memory.
AC]I contains the data-type indicator that describes the integer.

AC3 contains a 32-bit byte pointer to a byte in memory. The instruction will store the
high order byte of the number in this location, with the low order bytes following in
subsequent locations.

Under the control of accumulators AC1 and AC3, the instruction translates the contents
of the specified FPAC to an integer of the specified type and stores it, right-justified, in
memory beginning at the specified location. The instruction leaves the floating point
number unchanged in the FPAC, and destroys the previous contents of memory at the

The MV/8000 Instruction Dictionary 303

specified location(s).

Upon successful completion, the instruction leaves accumulators ACO and AC1
unchanged. AC2 contains the original contents of AC3. AC3 contains a byte pointer to
the first byte following the destination field. The value of carry is indeterminate and
overflow is 0.

NOTES: If the number in the specified FPAC has any fractional part, the result of the
instruction is undefined. Use the Integerize instruction to clear any fractional part.

If the number to be stored is too large to fit in the destination field, this instruction discards
high-order digits until the number fits. This instruction stores the remaining low-order digits
and sets carry to 1.

If the number to be stored does not completely fill the destination field, the data type of the
number determines the instruction’s actions. If the number is data type 0, 1, 2, 3, 4, or 5, the
instruction sets the high-order bytes to 0. If the number is data type 6, the instruction sign
extends it to fill the gap. If the number is data type 7, the instruction sets the low-order bytes
to 0.

Wide Store Integer Extended

WSTIX

Converts a floating point number to an integer and stores it in memory.
AC1 must contain the data-type indicator describing the integer.

AC3 must contain a 32-bit byte pointer pointing to the high-order byte of the destination
field in memory.

Using the information in AC1, the instruction converts the contents of each of the
FPAG: to integer form. Forms a 32-bit integer from the low-order 8 digits of each
FPAC. Right justifies the integer and stores it in memory beginning at the location
specified by AC3. The sign of the integer is the logical OR of the signs of all four
FPAC’s. The previous contents of the addressed memory locations are lost. Sets carry to
0. The contents of the FPACs remain unchanged. The condition codes in the FPSR are
unpredictable.

Upon successful termination, the contents of AC0O and AC1 remain unchanged; AC2
contains the original contents of AC3; and AC3 contains a byte pointer pointing to the
first byte following the destination field. The contents of carry are indeterminate and
overflow is 0.

NOTES: If the integer is too large to fit in the destination field, the instruction discards
high-order digits until the integer fits. The instruction stores remaining low-order digits and
sets carry to 1.

If the integer does not completely fill the destination field, the data type of the integer
determines the instruction’s actions. If the data type is 0, 1, 2, 3, 4, or 5, the instruction sets the
high-order bytes to 0. Data types 6 and 7 are illegal and will cause a commercial fault.

304 The MV/8000 instruction Dictionary

Wide Subtract
WSUB acs.acd

1 ACS ACD 0 0 1 0o 1 0 1 1 0 0 1

Subtracts the 32-bit integer contained in ACS from the 32-bit integer contained in
ACD. Stores the result in ACD. Sets carry to the value of ALU carry. Sets overflow to
1 if there is an ALU overflow. The contents of ACS remain unchanged. Carry is
unchanged and overflow is 0.

Wide Skip on Zero Bit
WSZB acs,acd

1 ACS ACD 0 1 0 1 0 1 1 1 0 0 1
T T

Tests a bit and skips if the bit is zero. Carry is unchanged and overflow is 0.

The instruction forms a bit pointer from the contents of ACS and ACD. ACS contains
the high-order bits of the bit pointer; ACD contains the low-order bits. ACS and ACD
can be specified to be the same accumulator; in this case, the specified accumulator
supplies the low-order bits of the bit pointer. The high-order bits are treated as if they
were zero in the current ring.

The instruction checks the value of the bit referenced by the bit pointer. If the bit has the
value 0, the next sequential word is skipped. If the bit has the value 1, the next sequential
word is executed.

Wide Skip on Zero Bit and Set Bit To One
WSZBO acs,acd

1 ACS ACD 0 1 1 1 o 0 1 1 o] 0 1
o 17 2 3 " a4 5 6 7 8 9 10 11 12 13 14 15

Tests a bit. Sets the tested bit to 1 and skips if the tested value was zero. Carry is
unchanged and overflow is 0.

The instruction forms a bit pointer from the contents of ACS and ACD. ACS contains
the high-order bits of the bit pointer; ACD contains the low-order bits. ACS and ACD
can be specified to be the same accumulator; in this case, the specified accumulator
supplies the low-order bits of the bit pointer. The high-order bits are treated as if they
were zero.

The instruction checks the value of the bit referenced by the bit pointer. If the bit has the
value 0, then the instruction sets the bit to one and skips the next sequential word. If the
bit has the value 1, then no skip occurs.

The MV/8000 Instruction Dictionary 305

Wide Unsigned Skip If Greater Than Or Equal To

WUSGE

acs,acd

1 ACS ACD 0 (o} 0 1 0o (o] 1 1 0 o] 1

0 1

Compares one integer to another and skips if the first is greater than or equal to the
second. Carry is unchanged and overflow is 0.

The instruction compares the unsigned, 32-bit integer contained in ACS to the unsigned
32-bit integer in ACD. If the integer contained in ACS is greater than or equal to the
integer contained in ACD, the next sequential word is skipped; otherwise, the next
sequential word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer is greater than or
equal to zero.

Wide Unsigned Skip If Greater Than
WUSGT acs,acd

1 ACS ACD 0 (o] o] 1 0 1 0 1 (o] o 1
[} 1 2 3 ' a4 5 6 7 8 9 10 " 12 13 14 15

Compares one integer to another and skips if the first is greater than the second. Carry
is unchanged and overflow is 0.

The instruction compares the unsigned, 32-bit integer contained in ACS to the unsigned
32-bit integer in ACD. If the integer contained in ACS is greater than the integer
contained in ACD, the next sequential word is skipped; otherwise, the next sequential
word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to zero. The skip will occur if the integer is greater than
Zero.

Wide Exchange
WXCH acs,acd

1 ACS ACD 0 1 1 0 1 1 0 1 0 0 1
0 1 ’

Exchanges the 32-bit contents of ACS and ACD. Carry is unchanged and overflow is 0.

306 The MV/8000 Instruction Dictionary

Wide Extended Operation
WXOP acs,acd,operation #

tjofl1]O0|Of1|[1]1

o|lo|1|0|0]|1]|ACS

ACD

0|0

0O 1 2 3 4 5 6 7

10 1112 13 14 15 16 17

1819

20 21

22 23

24

2526

30

31

Pushes a return block onto the wide stack and transfers control to an extended operation
procedure. Carry is unchanged and overflow is 0.

The instruction pushes a return block onto the wide stack. Places the address in the wide
stack of ACS into AC2; places the address in the wide stack of ACD into AC3. Memory
locations 12-13g must contain the WXOP origin address, the starting address of a 40g
word table of addresses. These addresses are the starting location of the various WXOP

operations.

The instruction adds the operation number in the WXOP instruction to the WXOP
origin address to produce the address of a double word in the WXOP table. Fetches that
word and treats it as the intermediate address in the effective address calculation. After
the indirection chain, if any, has been followed, the instruction places the effective
address in the program counter. The contents of ACO, AC1, and the WXOP origin
address remain unchanged. All addresses must be in the current segment.

The format of the return block pushed by the instruction is as follows:

Wide stack pointer
before WXOP

Wide stack pointer
after WXOP

DG-07267

W on vt

ACO
AC1
AC2

AC3

Address of
Carry lwx0P+ 1

M—/

This return block is designed so that the WXOP procedure can return control to the
calling program via the WPOP instruction.

Wide Alternate Extended Operation

WXOP1 acs,acd,operation #

1{o|1|olOo|1 ||

0{1]1|0[0]1]|ACS

ACD

o 1 2 3 4 5 6 7

9 10 11 12 13'14 16 16 17

187 19

22 23

24

25 26

31

Pushes a return block and transfers control to an extended operation procedure. Carry is
unchanged and overflow is 0.

The MV/8000 Instruction Dictionary 307

The instruction operates in exactly the same way as WXOP except that it adds 40g to the
entry number before it adds the entry number to the WXOP origin address. In addition,
it can specify only 16 entry locations.

Wide Exclusive OR

WXOR acs,acd
1 ACS ACD 1 0 0 0 1 1 1 1 o} 0 1
) 1 2 3 ' 4 5 6 7 8 9 10 1 12 13 14 15

Forms the logical exclusive OR between corresponding bits of ACS and ACD. Loads the
32-bit result into ACD. The contents of ACS remain unchanged, unless ACS equals
ACD. Carry is unchanged and overflow is 0.

Wide Exclusive OR Immediate
WXORI ac,immediate

11010} AC |1 [1}jO0f1|O|1|1|[1]0]|0O}1 IMMEDIATE
0 1 273 a' 56 7 88 012 aaTs e T T T T T T T T T T T T T L A S AT

Forms a logical OR between two values.

The instruction forms the logical exclusive OR between corresponding bits of the
specified accumulator and the value contained in the literal field. The instruction places
the result of the exclusive OR in the specified accumulator. Carry is unchanged and
overflow is 0.

N

Call Subroutine (Extended Displacement)

XCALL opcode,argument count,disp-lacement

110 0|INDEX 1
1234

1|/o0(ojofo|of1}oo]|1 |@ DISPLACEMENT S ARGUMENT COUNT
6 7 8 9 1011121314 1516 17° ' T T T T T T T T T Tgylgptggt T T T T T T T T T gy

(=]
o

Evaluates the address of a subroutine call.

If the target address specifies an outward ring crossing, a protection fault (code=7 in
AC1) occurs. Note that the contents of the PC in the return block are undefined.

If the target address specifies an inward ring call, then the instruction assumes the target
address has the following format:

X [NEW RING UNUSED GATE

T T T

o 1 3 4 T T T T T T 516" y T T T T T T T T T T T T

The instruction checks the gate field of the above format for a legal gate. If the specified
gate is illegal, a protection fault (code = 6 in AC1) occurs and call is made. Note that
the contents of the PC in the return block are undefined.

308 The MV/8000 Instruction Dictionary

If the specified gate is legal, or if the target address specifies an intra-ring crossing, then
the instruction loads the contents of the PC, + 3, into AC3. The contents of AC3 will
always reference the current segment. If bit 0 of the argument count is 0, then the
instruction creates a word with the following format:

ovx’o‘.amc ofolofo|o|ojo|o|o|o|o |0 |O |O ARGUMENT COUNT
0 1 2 '3 4 5 6 7 8 9 1011 12 13 141616 17’ T T T T T T T T T T Ty

The instruction pushes this word onto the wide stack. If a stack overflow occurs after this
push, a stack fault occurs and no call is made. Note that the value of the PC in the
return block is undefined. If bit O of the argument count is 1, then the instruction
assumes the top word of the wide stack has the following format:

DON'T CARE 0o ARGUMENT COUNT

T T T T T T T T T T

o T T T T T T T 1516117 T T T T T T T T T T T

The instruction modifies this word to include the correct settings of OVK and OVR in bits
Oand 1.

Regardless of the setting of the argument count’s bit 0, the instruction next
unconditionally sets OVR to 0 and loads the PC with the target address. Execution
continues with the word referenced by the PC.

Exchange Accumulators

XCH acs,acd

Execute
XCT ac

1 ACS ACD 0 0 1 1 1 0 0 1 0 0 0o

Exchanges the contents of two accumulators.

Places the original contents of bits 16-31 of ACS into bits 16-31 of ACD and the original
contents of bits 16-31 of ACD in bits 16-31 of ACS. Carry remains unchanged and
overflow is 0.

Bit 0-15 of the modified accumulator are undefined after completion of this instruction.

Executes the instruction contained in bits 16-31 of the specified accumulator as if it were
in main memory in the location occupied by the Execute instruction. If the instruction in
bits 16-31 of the specified accumulator is an Execute instruction that specifies the same
accumulator, the processor is placed in a one-instruction loop.

This instruction leaves carry unchanged; overflow is 0.

The MV/8000 Instruction Dictionary 309

Because of the possibility of bits 16-31 of the specified accumulator containing an
Execute instruction, this instruction is interruptible. An I/O interrupt can occur
immediately prior to each time the instruction in accumulator is executed. If an I/Q
interrupt does occur, the program counter in the return block pushed on the system stack
points to the Execute instruction in main memory. This capability to execute an Execute
instruction gives you a wait for 1/0 interrupt instruction.

NOTES: If bits 16-31 of the specified accumulator contains the first word of a two-word
instruction, the word following the XCT instruction is used as the second word. Normal
sequential operation then continues from the second word after the XCT instruction.

Do not use the XCT instruction to execute an instruction that requires all four accumulators,
such as CMV, CMT, CMP, CTR, or BAM.

The results of XCT are undefined if bits 16-31 of the specified accumulator contains an
instruction that modifies that same accumulator.

Add Double (Memory to FPAC) (Extended Displacement
XFAMD fpac,/@/displacement[,index]

-

INDEX| FPAC|O (O[O |O|O (O |1 {1 |0 |0 |1 |@ DISPLACEMENT
172374 56 7 8 91011 12 13 141516 17 ' ' ' T T T T T 'm;m

o

Adds the 64-bit floating point number in the source location to the 64-bit floating point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Adds this 64-bit floating point number to the floating point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Add Single (Memory to FPAC) (Extended Displacement)
XFAMS fpac,[@]displacement/[,index]

-

INDEX| FPAC O |O|O|O[O|O|O |t |0 O |1 @ DISPLACEMENT
17237456 '7 8 '9'10 11 12' 131815 16 17" ' ' ' T T T T T T ';

(=]

Adds the 32-bit floating point number in the source location to the 32-bit floating point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Adds this 32-bit floating point number to the floating point number in bits 0-31
of the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

310

The MV/8000 Instruction Dictionary

Divide Double (FPAC by Memory) (Extended Displacement)
XFDMD fpac,/@]displacement/,index]

-

INDEX| FPAC| OO |1 [O|O |1 [1]|1]0]O[|1|@ DISPLACEMENT

172 3'a4 5 6 7 8 9 10 11 12 13 14 16 16 172 ' T T Ty

(=4

Divides the 64-bit floating point number in FPAC by the 64-bit floating point number in
the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Divides the floating point number in the specified FPAC by this 64-bit floating
point number. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Divide Single (FPAC by Memory) (Extended Displacement)
XFDMS fpac,/@]displacement][,index]

-

INDEX| FPAC |0 (0|1 |0|o|1]0l1 |00} |@ DISPLACEMENT
172 '3 4'5'6' 7 ' 8'9 1011 1213 14 1616 172° ' . ' o ' T T T T T T3

(=]

Divides the 32-bit floating point number in bits 0-31 of FPAC by the 32-bit floating
point number in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Divides the floating point number in bits 0-31 of the specified FPAC by this
32-bit floating point number. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating point status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Extended Load Floating Point Double
XFLDD fpac,[@]displacement/[,index]

INDEX| FPAC | O 1lO0O|O0O|O{O|1]|1[00}|1|@ DISPLACEMENT
172 3 4'5 6 7 89 10 111213 141516 17. . . . o T T T T T T 73

(=]

Moves four words out of memory and into a specified FPAC.

Computes the effective address, E. Fetches the double precision floating point number at
the address specified by E and places it in FPAC. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags
will be undefined.

The MV/8000 Instruction Dictionary 311

Extended Load Floating Point Single
XFLDS fpac,/@]displacement[,index]

-

INDEX| FPAC | O |1 |O|O0|OjOJO |1 |00 |1 @ DISPLACEMENT
172737456 7 8 '9'10 1 121314 1516 17" ' ' . ' ' T T T T T T T T3

o

Moves two words out of memory into a specified FPAC.

Computes the effective address, E. Fetches the single precision floating point number at
the address specified by E. Places the number in the high-order bits of FPAC. Sets the
low-order 32 bits of FPAC to 0. Updates the Z and N flags in the floating point status
register to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized or illegal data without change, but the Z and
N flags will be undefined.

Multiply Double (FPAC by Memory) (Extended Displacement)
XFMMD fpac,/@/displacement][,index]

[N

INDEX| FPAC {0 |O O[O0]Oo |1 {1 [1]0 |01 |@ DISPLACEMENT
1727374 66 7 8'9 101112 13'14 15 16 17" ' ' ' ' T T T T T T T T 5

(=]

Multiplies the 64-bit floating point number in the source location by the 64-bit floating
point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Multiplies this 64-bit floating point number by the floating point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Multiply Single (FPAC by Memory) (Extended Displacement)
XFMMS fpac,/@]displacement[,index]

-

INDEX | FPAC [0 [0 fO0 |0 |0 f1]0|1]|0 |0 |1 |@ DISPLACEMENT
1727374 5 6 7 8 9 1011 1213141516 17" | T T T T T T T '3

o

Multiplies the 32-bit floating point number in the source location by the 32-bit floating
point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Multiplies this 32-bit floating point number by the floating point number in
bits 0-31 of the specified FPAC. Places the normalized result in bits 0-31 of the specified
FPAC. Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location
unchanged and updates the Z and N flags in the floating point status register to reflect
the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

312

The MV/8000 Instruction Dictionary

Subtract Double (Memory from FPAC) (Extended Displacement)
XFSMD fpac,/@]displacement/,index]

INDEX|{ FPAC |O |O [t 1O |O |01 {1]0]|0 |1 |@ DISPLACEMENT

17213 4'5'6 7 8'9 1011121314 16 16 17 . . T T T T T T 73

(=]

Subtracts the 64-bit floating point number in the source location from the 64-bit floating
point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double precision (four word)
operand. Subtracts this 64-bit floating point number from the floating point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Subtract Single (Memory from FPAC) (Extended Displacement)
XFSMS fpac,[@]displacement],index]

-

INDEX| FPAC|O|O |1 |O|O|O|O |1 |00 |1 |@ DISPLACEMENT

T2 '3 466 7 8'9 10 11121314 1516 17° . ' ' T T T T T T T 73

o

Subtracts the 32-bit floating point number in the source location from the 32-bit floating
point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single precision (double word)
operand. Subtracts this 32-bit floating point number from the floating point number in
bits 0-31 of the specified FPAC. Places the normalized result in the specified FPAC.
Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location unchanged and
updates the Z and N flags in the floating point status register to reflect the new contents
of FPAC.

See Chapter 8 and Appendix G for more information about floating point manipulation.

Store Floating Point Double (Extended Displacement)
XFSTD fpac,/@]displacement][,index]

-

INDEX | FPAC {0 | 1|0 |0j0o 1|1]|1j0l0 |1 |@ DISPLACEMENT
172 3 4'5 6 7 8 9 10 111213 14'15 16 17° ' . ' ' T T T TT Ty

o

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the floating point number contained in FPAC
in memory beginning at the location addressed by E. Destroys the previous contents of
the addressed memory location. The contents of FPAC and the condition codes in the
FPSR remain unchanged.

NOTE: This instruction moves unnormalized or illegal data without change.

The MV/8000 Instruction Dictionary 313

Store Floating Point Single (Extended Displacement)
XFSTS fpac,/@/displacement],index]

INDEX| FPAC |O (1[0 |0fjOo|1|O0f{1]|0]0O |1 @ DISPLACEMENT
172737456 7 ' 8'9 1011 1213 141516 17 ! T T

31

(=]

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the 32 high-order bits of FPAC in memory
beginning at the location addressed by E. Destroys the previous contents of the addressed
memory location. The contents of FPAC and the condition codes in the FPSR remain
unchanged.

NOTE: This instruction moves unnormalized or illegal data without change.

Jump (Extended Displacement)
XIMP index,displacement

1| 1[0 |INDEX DISPLACEMENT

)
o
o
<)
<)
<)
IS
®

0172 374 5 6 7 '8 9 1011121314 16 16 17" " T T T T T T T g

Calculates the effective address, E. Loads E into the PC. Carry is unchanged and
overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

Jump to Subroutine (Extended Displacement)
XJSR index,displacement

11

[=]

INDEX| 1 |1]|O0|O0|O]|O|1|1|[0]|0 |1 |@ DISPLACEMENT

0'1° 237456 7 '8'9'10 11 121314151617 " ' T T T T T T T T T3

Calculates the effective address, E. Loads the current value of the PC, plué two, into
AC3. Loads E into the PC. Carry is unchanged and overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

Load Effective Address (Extended Displacement)
XLEF ac,index,displacement

-

INDEX | AC 1{ofo|o|o|o|of1 (0|01 |@ DISPLACEMENT

0172 3745 6 7 8 9 1011 121314 15 16 17 31

Loads an effective address into an accumulator.

The instruction calculates the effective address, E. Checks E for ring crossing errors. If
no errors occur, loads E into the specified accumulator. If errors occur, issues a protection
fault. Carry is unchanged and overflow is 0.

314

The MV/8000 Instruction Dictionary

Load Effective Byte Address (Extended Displacement)
XLEFB ac,index,displacement

-

INDEX | AC 1{o0jofojo{1|1[1]|O0|O (1 DISPLACEMENT

T

T2 3 4 5 6 7 8 9 1w 1112131418516 RS

[=]

Loads an effective byte address into an accumulator. Carry is unchanged and overflow is
0.

The instruction calculates the effective byte address. Checks the byte address for ring
crossing errors. If no errors occur, loads the byte address into the specified accumulator.
If errors occur, issues a protection fault.

NOTE: Index bits of 00 force the first address in the effective address calculation to be in the
current segment of execution.

Narrow Add Accumulator to Memory Word (Extended Displacement)
XNADD ac,index,displacement

INDEX | AC o{ojlo|o|o|O0|1]|1]0}0 |0 |@ DISPLACEMENT

T T T T T T T

172 34 ' 5 6 7 '8 9 10 11 12 13 14 15 16 17 R

-

o

Adds an integer in a memory location to an integer in an accumulator.

The instruction calculates the effective address, E. Adds the 16-bit integer contained in
the location specified by E to the integer contained in bits 16-31 of the specified
accumulator. Sign extends the 16-bit result to 32 bits and loads it into the specified
accumulator. Sets carry to the value of ALU carry, and overflow to 1 if there is an ALU
overflow. The contents of the referenced memory location remain unchanged.

Narrow Divide Memory Word (Extended Displacement)

XNDIV

ac,index,displacement

-

INOEX| ACc |o]o]o|l1jt1jof[1]|1|o]|O0]|0l@ DISPLACEMENT
T 3 4 5 677 8 8 10 11 12 13 146 6 177 . o o o T 7 T

o

Divides an integer contained in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Sign extends the integer contained in
bits 16-31 of the specified accumulator to 32 bits and divides it by the 16-bit integer
contained in the location specified by E. If the quotient is within the range -32,768 to
+32,767 inclusive, sign extends the result to 32 bits and loads it into the specified
accumulator. If the quotient is outside of this range, or if the divisor is zero, the
instruction sets overflow to 1 and leaves the specified accumulator unchanged. Otherwise,
overflow is 0. The contents of the referenced memory location and carry remain
unchanged.

The MV/8000 Instruction Dictionary 315

Narrow Decrement and Skip if Zero (Extended Displacement)
XNDSZ index,displacement

DISPLACEMENT
11712 1314 16 16 17 | T T T T 7 HERER

-
<)
<)
)
)
o
-
1)
[5)
-
®

110
01

-

INDEX
34

(]
o
-
~
©
o

Calculates the effective address, E. Decrements the 16-bit contents of the location
addressed by E. If the decremented result is equal to zero, then the instruction skips the
next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

Narrow Increment and Skip if Zero (Extended Displacement)
XNISZ index,displacement

1|{O0]O|INDEX|1]|1]O|O0|O[ti1]1]0j0|1]|@ DISPLACEMENT

01 2 3 4 65 6 7 8 9 10111213 1416 16 17" ' ' 1 ' EERERER

Calculates the effective address, E. Increments the 16-bit contents of the location
specified by E. If the incremented result is equal to zero, then the instruction skips the
next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

Narrow Load Accumulator (Extended Displacement)
XNLDA ac,index,displacement

-

INDEX| AC |O0f1|1j0f0f0]Oo|[1]0]|O0 |1 |@ DISPLACEMENT
T T

0172 34 5 6'7 8'9 101112 13'14'16 16 17" " ' T T T L

Loads a value into an accumulator.

The instruction calculates the effective address, E. Uses E as the address of 2 16-bit
value. Loads this 16-bit value into the specified accumulator, then sign extends the value
to 32 bits. Carry is unchanged and overflow is 0.

Narrow Multiply Memory Word (Extended Displacement)
XNMUL uc,index,displacement

INDEX| AC |O|OfO|1|[O0j0|1|[t]0|O0]|0O |@ DISPLACEMENT
— T T

45 6 7 8 9 10 11 12 13 14 16 16 17’ ' T T T X

-

T T

(=]

1°2°3

Multiplies an integer in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Multiplies the 16-bit, signed integer
contained in the location referenced by E by the signed integer contained in bits 16-31
of the specified accumulator. If the result is outside the range of -32,768 to +32,767
inclusive, sets overflow to 1; otherwise, overflow is 0. Sign extends the result to 32 bits
and places the result in the specified accumulator. The contents of the referenced

316 The MV/8000 Instruction Dictionary

memory location and carry remain unchanged.

Narrow Store Accumulator (Extended Displacement)
XNSTA ac,index,displacement

-

INDEX | AC of1{1]0jo0|O0|1j1]0}0|'|@ DISPLACEMENT

0 12z 3 4 5 617 8 9 10 111213 1415 16 17° ' T 7 R

Stores the contents of an accumulator into memory.

The instruction calculates the effective address, E. Stores a copy of the 16-bit contents of
the specified accumulator in the location specified by E. Carry is unchanged and
overflow is 0.

Narrow Subtract Memory Word (Extended Displacement)
XNSUB ac,index,displacement

-

INDEX| AC jOojOjOjOf1jO0{1|1|0[0 |0 |@ DISPLACEMENT

[=]

T334 56 7 8 8 10 11 12 1314 56177 ' ' T T =&

Subtracts an integer in memory from an integer in an accumulator.

The instruction calculates the effective address, E. Subtracts the 16-bit integer contained
in the location referenced by E from the integer contained in bits 16-31 of the specified
accumulator. Sign extends the result to 32 bits and stores it in the specified accumulator.
Sets carry to the value of ALU carry, and overflow to 1 if there is an ALU overflow. The
contents of the specified memory location remain unchanged.

Extended Operation
XOPO acs,acd,operation #

11 Aacs | acb{1|1|0|1]1]|0]0o]l1|0jO0|O|lOfO|O|O]|O O (O |O |O |O |O op#
9T 273 475 6 778 9 10 11 121314116 16 17 18 19 20 21 22 23 24 25 26 27 ' 31

Pushes a return block onto the narrow stack and transfers control to an extended
operation procedure.

The instruction pushes a return block onto the narrow stack. Places the address in the
narrow stack of ACS into AC2; places the address in the narrow stack of ACD into
AC3. Memory location 443 must contain the XOPO origin address, the starting address
of a 405 word table of addresses. These addresses are the starting location of the various
XOP0 operations.

The instruction adds the operation number in the XOPO instruction to the XOPO origin
address to produce the address of a double word in the XOPO0 table. Fetches that word
and treats it as the intermediate address in the effective address calculation. After the
indirection chain, if any, has been followed, the instruction places the effective address
in the program counter. The contents of carry, ACO, AC1, and the XOP0 origin address
remain unchanged. Overflow is 0.

The MV/8000 Instruction Dictionary 317

The format of the return block pushed by the instruction is as follows:

............... A
Stack pointer
before XOPO
ACO
AC1
{ AC2
AC3
N T R f
Stack pointer Carry I&%%Sﬁ—ﬂ
after XOPO
L A ™ A an
DG-06794

This return block is designed so that the XOPO procedure can return control to the
calling program via the Pop Block instruction.

Exclusive OR

XOR acs,acd

1 ACS ACD 0 0 1 o} 1 0o 0o 1 0 0 0

Forms the logical exclusive OR of the contents of bits 16-31 of ACS and the contents of
bits 16-31 of ACD and places the result in bits 16-31 of ACD. Sets a bit position in the
result to 1 if the corresponding bit positions in the two operands are unlike; otherwise,
the instruction sets result bit to 0. The contents of ACS and carry remain unchanged.
Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Exclusive OR Immediate

XORI

i,ac

10|t AC j1 (1|11 {1|(1]1]|1f{0]|0]O IMMEDIATE

Forms the logical exclusive OR of the contents of the immediate field and the contents of
bits 16-31 of the specified accumulator and places the result in bits 16-31 of the specified
accumulator. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

318 The MV/8000 Instruction Dictionary

Push Address (Extended Displacement)
XPEF index, displacement

1| 0|0 |INDEX
0 1 '2 3 4 5 6 7 8'9 10 111213 14 15 16 17 T R EEREREL

_.
)
o
o
o
N
[<)
)
-
@

DISPLACEMENT

Calculates the effective address, E. Pushes E onto the wide stack, then checks for stack
overflow. Carry is unchanged and overflow is 0.

Push Byte Address (Extended Displacement)
XPEFB index, displacement

110
o 1

-

INDEX| 1|1 |O0|OjO0O}1|O0|1{0}l0]|1|@ DISPLACEMENT

~r

34 65 6 7 8 '9 1011 12 13 14' 16 16 t7. T T T T T T T T 73

N

Calculates a 32-bit byte address. Pushes this byte address onto the wide stack, then
checks for stack overflow. Carry is unchanged and overflow is 0.

Push Jump (Extended Displacement)
XPSHJ index,displacement

INDEX DISPLACEMENT
3'4 6 6 7 8 9 10 11 12 13 14 15 16 17 . . . T T T T T T T T3

110

)
-
-
[S)
<)
o
)
-
-
o
=)
-
®

o 1

()

Calculates the effective address, E. Pushes the current 31-bit current value of the PC
plus two onto the wide stack. Loads the PC with E. Checks for stack overflow. Carry is
unchanged and overflow is 0.

NOTE: The address pushed onto the wide stack will always reference the current segment.
]

Vector on Interrupting Device (Extended Displacement)
XVCT

1j1|/0j0l0|1]|t|1|[O0|OjO|O|1]|O]|O (1 |@ DISPLACEMENT

When a device requests an interrupt, transfers control to the appropriate interrupt
sequence. Carry is unchanged and overflow is 0.

The instruction interprets the displacement field as an absolute address in the current
segment. See the chapter on interrupt processing for a complete description of this
instruction.

NOTE: This is a privileged instruction.

The MV/8000 Instruction Dictionary 319

Wide Add Accumulator to Memory Word (Extended Displacement)
XWADD ac,index,displacement

-

INDEX| AC |O|Of1]0}0jO0|1|1|0|O0]|0O0|@ DISPLACEMENT

172 34 6 6 7 8 9 101112 13 14 15 16 17"

T T T T T T T

31

o

Adds an integer contained in memory to an integer contained in an accumulator.

The instruction calculates the effective address, E. Adds the 32-bit integer contained in
the location specified by E to the 32-bit integer contained in the specified accumulator.
Loads the result into the specified accumulator. Sets carry to the value of ALU carry,
and overflow to 1 if there is an ALU overflow. The contents of the referenced memory
location remain unchanged.

Wide Divide Memory Word (Extended Displacement)
XWDIV ac,index,displacement

-

INDEX | AC ojojt1f1j{1jo0|1|1jojojo|@ DISPLACEMENT
172 3456 7'8 9 1011 1213141616 17° ' = ' ' ' T T T T T T '3

(=

Divides an integer in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Sign extends the 32-bit integer
contained in the specified accumulator and divides it by the 32-bit integer contained in
the location specified by E. If the quotient is within the range of -2,147,483,648 to
+2,147,483,647 inclusive, the instruction loads it into the specified accumulator. If the
quotient is outside this range, the instruction does not load it into the specified
accumulator. The contents of the referenced memory loaction and carry remain
unchanged.

If the divisor in memory is zero, or if the dividend is the largest negative number and the
divisor is -1, the instruction sets overflow to 1 and leaves the specified accumulator
unchanged. Otherwise, overflow is 0.

Wide Decrement and Skip if Zero (Extended Displacement)
XWDSZ index,displacement

110
0 1

-

INDEX| 1|1 (00|01 |1 |[1[0fO0[1]|@ DISPLACEMENT

T T

3745 '6'7 8 '9 10111213 14 15 16 17" T31

N

Calculates the effective address, E. Decrements the 32-bit contents of the location
addressed by E by one. If the decremented result is equal to zero, then the instruction
skips the next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the word to be decremented
is located on a double word boundary.

320 The MV/8000 Instruction Dictionary

Wide Increment and SKip if Zero (Extended Displacement)
XWISZ index,displacement

110
o 1

-

INDEX

-
o
o
(=)
(=)

11|00 |@ DISPLACEMENT
3'4 65 6 7 8 9 10 1112 13 14 15 16 17 A - 1]

)

Calculates the effective address, E. Increments the 32-bit contents of the location
addressed by E by one. If the incremented result is equal to zero, then the instruction
skips the next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the word to be incremented
is located on a double word boundary.

Wide Load Accumulator (Extended Displacement)
XWLDA ac,index,displacement

-

INDEX | AC oj1{1jo0jofofo|1}|0|O0|1 |@ DISPLACEMENT

T

T2 3 4'5 6 7 8 9 1011 12 13 14 15 16 17 | X

(=]

Calculates the effective address, E. Loads a copy of the 32-bit word addressed by E into
the specified accumulator. Carry is unchanged and overflow is 0.

Wide Multiply Memory Word (Extended Displacement)
XWMUL ac,index,displacement

-

INDEX | AC ojojt}1|o|Oo|1}|1|O[O]|0|@ DISPLACEMENT

T'2 3'4 5 6 7 8 9 10111213 14 16 16 17) R T]

(=]

Multiplies an integer in an accumulator by an integer in memory.

The instruction calculates the effective address, E. Multiplies the 32-bit, signed integer
contained in the location referenced by E by the 32-bit, signed integer contained in the
specified accumulator. Loads the 32 least significant bits of the result into the specified
accumulator.

If the result is within the range of -2,147-483,648 to +2,147,483,647 inclusive, the
instruction sets overflow to 0; otherwise, overflow is 1. The contents of the referenced
memory location and carry remain unchanged.

Wide Store Accumulator (Extended Displacement)
XWSTA ac,index,displacement

INDEX| AC |O|1[1[0]|O|O0|1}1]0]|0 |1 @ DISPLACEMENT

T

T

12 3 4 65 6 7 8 9 10111213 14 15 16 17 i X

o

Calculates the effective address, E. Stores a copy of the 32-bit contents of the specified
accumulator in the memory location specified by E. Carry is unchanged and overflow is
0.

The MV/8000 Instruction Dictionary 321

Wide Subtract Memory Word (Extended Displacement)
XWSUB ac,index,displacement

-

INDEX| AC [O0|O|1|O0|1|0j1]|1]|0]|O0|0|@ DISPLACEMENT
172 '3 4 5 6 7 8 9 1011 1213 14 1516 17 ' T T T T T T TTT T Ty

(=]

Subtracts an integer contained in memory from an integer contained in an accumulator.

The instruction calculates the effective address, E. Subtracts the 32-bit integer contained
in the location referenced by E from the 32-bit integer contained in the specified
accumulator. Loads the result into the specified accumulator. Sets carry to the value of
ALU carry, and overflow to 1 if thee is an ALU overflow. The contents of the specified
memory location remain unchanged.

Zero Extend
ZEX acs,acd

1 ACS ACD 0 1 1 0 1 0 1 1 0 0 1

Zero extends the 16-bit integer contained in ACS to 32 bits and loads the result into
ACD. The contents of ACS remain unchanged, unless ACS equals ACD. Carry is
unchanged and overflow is 0.

Chapter 17

[/0 Instruction Dictionary

This chapter lists the I/O instructions supported by the MV /8000, including those
intended for a specific device such as the MAP, the BMC, and the CPU. These
instructions appear in alphabetical order according to mnemonic.

In general, these I/O instructions can be executed only with Lef mode and 1/O
protection disabled. See Chapter 4 for a discussion of Lef mode and 1/O protection.

General 1/0 Instructions

You can use the following general I/O instructions with any I/O device, using the
appropriate device code.

Device Flag Commands
f=S Issues a Start pulse to the specified device.
f=C Issues a Clear pulse to the specified device.

S=P Issues an I/O pulse to the specified device.
IORST No effect.

Command I/0
CIO

1 ACS ACD 1 0 1 1 1 0 0 1 0 0o 1
T T

Issues a read or write data command using the I/O system bus. Carry is unchanged and
overflow is 0.

The command must have the form:

R/W| O 0 0 REGISTER

0] 2 3 2 Y T T T T T T T T TS

Bits 16-31 of ACS contain the command. Bit 16 of ACS indicates whether a read or a

324

1/0 Instruction Dictionary

write operation is to take place.

The instruction issues the command contained in ACS directly via the 1/O system bus.
Bit 16 of ACS determines the operation to perform. If bit 16 of ACS is 0, the instruction
performs a read data operation. The instruction receives the data via the I/O system bus
and loads it into bits 16-31 of ACD. Bits 0-15 of ACD are undefined.

If bit 16 of ACS is 1, the instruction performs a write data operation and sends the data
in bits 16-31 of ACD via the I/O system bus.

Command I/0 Immediate

CI01

Data In A
DIA/f] ac,device

1] ACS | ACD |1]|Of1]{O0|O0|Of[O|1}O0 (O] IMMEDIATE FIELD
T T T T T

Issues a command via the 1/O system bus. Carry is unchanged and overflow is 0.

The command must have the form:

R/W| O 0 0 REGISTER
3 7 3 3 7 T T T T T T T T T ™5

If ACS and ACD are the same, then the immediate field contains the command to be
issued on the I/O system bus.

If ACS and ACD are different, then the logical OR of the immediate field and bits
16-31 of ACS is the command to be issued on the I/O system bus.

If bit 0 of the command is a 0, then a read data operation issued via the I/O system bus
loads the received data into bits 16-31 of ACD. Bits 0-15 of ACD remain undefined.

If bit 0 of this state is 1, then a write data operation issued via the I/O system bus sends
the contents of ACD bits 16-31 to the device.

(4] 1 1 AC 0 0 1 F < DEVICE CODE

Transfers data from the A buffer of an I/O device to bits 16-31 of an accumulator.

The contents of the A input buffer in the specified device are placed in bits 16-31 of the
specified accumulator. After the data transfer, the Busy and Done flags are set according
to the function specified by F.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device. Bits in the accumulator that do not receive data are set to 0.

1/0 Instruction Dictionary 325

Data in B
DIB/f] ac,device

0 1 1 AC 0 1 1 F DEVICE CODE

Transfers data from the B buffer of an I/O device to bits 16-31 of an accumulator.

Places the contents of the B input buffer in the specified device in bits 16-31 of the
specified accumulator. After the data transfer, sets the Busy and Done flags according
to the function specified by F.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device. Bits in the accumulator that do not receive data are set to 0.

Data In C
DIC/f] ac,device
0 1 1 AC 1 0 1 F DEVICE CODE
) 1 2 3 T 4 5 6 7 8 ' 9 10 ' " " " " 15

Transfers data from the C buffer of an I/O device to bits 16-31 of an accumulator.

Places the contents of the C input buffer in the specified device in bits 16-31 of the
specified accumulator. After the data transfer, sets the Busy and Done flags according
to the specified F.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device. Bits in the accumulator that do not receive data are set to 0.

Data Out A
DOA/f] ac,device

0 t 1 AC 0 1 0 F DEVICE CODE

Transfers data from bits 16-31 of an accumulator to the A buffer of an 1/O device.

Places the contents of bits 16-31 of the specified accumulator in the A output buffer of
the specified device. After the data transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the specified accumulator remain unchanged.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device.

326 1/0 Instruction Dictionary

Data Out B
DOB/f] ac,device
0 1 1 AC 1 0 0 F DEVICE CODE
0 1 2 3 T 4 5 6 7 8 ' 8 10 ' T N j R

Transfers data from bits 16-31 of an accumulator to the B buffer of an I/O device.

Places the contents of bits 16-31 of the specified accumulator in the B output buffer of
the specified device. After the data transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the specified accumulator remain unchanged.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device.

Data Out C
DOC/f] ac,device

o] 1 1 AC 1 1 0 F DEVICE CODE

Transfers data from bits 16-31 of an accumulator to the C buffer of an I/O device.

Places the contents of bits 16-31 of the specified accumulator in the C output buffer of
the specified device. After the data transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the specified accumulator remain unchanged.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device.

No I/0 Transfer
NIO [f] ac,device
ol 1 1 {ojo]o]o}|o F DEVICE CODE
1 2 3) 5 8 9 10 ' ' T 15

Used when a Busy or Done flag must be changed with no other operation taking place.

Sets the Busy and Done flags in the specified device according to the function specified
by F.

Program I\O
PIO acs,acd

1 ACS ACD 1 o] 1 1 1 0 1 1 0] 1

Issues a programmed I/O command to an I/O device via the IOSB.

1/0 Instruction Dictionary 327

1/0 Skip

Bits 17-31 of ACS contain the command.

The command to the I/O device must have the form:

0 0 0 [¢] R oP PULSE DEVICE CODE
0 1 2 3 4 5] 8 ' 9 10 ' ! T T R

Note that the Op, Pulse and Device Code fields of this instruction correspond to the Op,
Pulse and Device Code fields of C/350 instructions.

The instruction issues the command contained in ACS to the specified device. It performs
the specified operation, using bits 16-31 of ACD as the source or destination of the
specified transfer. If ACD is to be the destination of data from the specified device, the
transfer stores the data in bits 16-31 of ACD. Bits 0-15 of ACS are undefined. Carry is
unchanged and overflow is 0.

SKP/t] device

0 1 1 0 0 1 1 1 T DEVICE CODE

If the test condition specified by T is true, the instruction skips the next sequential word.

Wide Load Map

WLMP

Loads a series of double words into successive map slots.

ACO contains a double word with the following format:

ofojo MAP SLOT

o7 T T T T T T T T T T T T T T ™7 18 19 20 21" T T T T T T T T ™

where
map slot references the first map slot to be loaded in the specified 1/O channel.

Note that map slots 0-1777g refer to BMC slots. Map slots 2000-2177g refer to DCH
slots.

Bits 16-31 of AC1 specify the number of map slots in the specified I/O channel to be
loaded. This value is an unsigned number. The instruction ignores bits 0-15 of AC1.

AC2 points to the first double word that will be loaded into the referenced I/O slots.
This double word has the format:

vibio|o|o PHYSICAL PAGE
T

T

071 2 335" T T T T T T T T T T IFTARTY ™

328 1/0 Instruction Dictionary

where

V is the valid field. O implies valid. 1 implies access denied.

D is the data field. 0 implies transfer data. 1 implies transfer zeroes.
PHYSICAL PAGE specifies the physical page of the data.

This command loads the contents of the double word specified by AC2 into the map slot
specified by ACO. It decrements the count in AC1 by 1, increments the map slot number
in ACO by one and the address in AC2 by 2. and continues until AC1 contains zero in
bits 16-31. Upon completion, ACO references the first map slot to be loaded; AC1
contains a 0 in bits 16-31; AC2 contains the address of the word following the last double
word loaded; AC3 and carry remain unchanged; overflow is 0.

If bits 16-31 of AC1 all initially contain zero, the instruction performs no operation.

NOTE: This is a privileged instruction.

Burst Multiplexor Channel

Device Code
5g (Primary)

Priority Mask Bit None

Device Flag Commands
f=S Sets the Busy flag to 1 and initiates a BMC map load or dump sequence.
f=C Sets the status register (except bit 1) to 0.
f=P No effect.
IORST Sets the status register (except bit 1) to O; turns off mapping.
Map Load Formats

To load the map, the burst multiplexor transfers the contents of a memory buffer to the
map register(s). The format of each word in the memory buffer is:

P 0 0 0 0 0 PHYSICAL PAGE NUMBER

0 1 3 4 5 6 77) j ' " " 15

BITS | NAME CONTENTS or FUNCTION
0 PROT When 1, the channel cannot transfer data to/from the memory locations in the

specified physical page. A transfer attempt results in a validity protect error.

1-6 |— Must be 0.

6-15 | PPN Specify the physical page number for address translation.

Map Dump Formats

To dump the map, the burst multiplexor transfers the contents of the map register(s) to
a memory buffer. The format of each word in the memory buffer is:

P 0 0 0 0 0 PHYSICAL PAGE NUMBER
) 1 2 3 4 5 6 7 7 j j T T j) T 15

1/0 Instruction Dictionary

329

BITS | NAME CONTENTS or FUNCTION
0 PROT When 1, the channel cannot transfer data to/from memory in the specified
physical page.
1-6 |- Reserved for future use.
6-15 | PPN Physical page number.
Read Status
DIC/f] ac,BMC
0 1 AC 1 0 1 F 0 0 0 1 o] 1
2 3 5 6 7 8 ' 9 10 1 12 13 14 15

Loads the burst multiplexor status flags into bits 16-31 of the specified accumulator.

The previous contents of the accumulator are lost. The format of the accumulator is

shown below.

E[D]|S]|vV AlP
o T T T T T T T T T T s e 17 18 18 1207 "22 23124 25" T T a1
BITS [NAME CONTENTS or FUNCTION
0-15 |--- Reserved for future use.
16 E When 1, the channel has detected a validity protect error, an address parity error,
or a data parity error.
17 D When 1, the direction for a map data transfer is from the register(s) to memory
{dump).
1 S When 1, the channel is in two step diagnostic mode.
19 \% When 1, the channel has detected a validity protect error.
20-22 | - Reserved for future use.
23 |A When 1, the channel has detected an address parity error.
24 P When 1, the channel has detected a data parity error.
25-31 |- Reserved for future use.

330 1/0 Instruction Dictionary

Specify Low-Order Address
DOA/f] ac,BMC

o] 1 1 AC (o] 1 0 F 0o o] o] 1 0 1

o 1 2 3 4 5 6 7 8 ' 9 10 11 12 13 14 15

The contents of bits 16-31 of the specified accumulator specify the low-order 10 bits of
the 20-bit physical memory address of the first word to be transferred to or from the

map. The contents of the accumulator are unchanged. The format of the accumulator is
shown below.

olojojojo|o PHYSICAL ADDRESS 6-15
o' T T T T T T T T " T Ti5'16'17 18 19 20 21 22 24'25' ' | ' T '3
BITS | NAME CONTENTS or FUNCTION
0-15 |— Reserved for future use.
16-21 { — Must be O.
22-31 {LO ADDR Specify the least significant bits of the physical address for the start of a map data
transfer.
Specify Initial Map Register
DOB/f] ac,BMC
0 1 1 AC 1 0 ¢} F 0 0 0 1 0 1
1 2 3 T a4 5 6 7 8 ' 9 10 1" 12 13 14 15

The contents of bits 16-31 of the specified accumulator select the first map register to be
loaded or dumped in the next map data transfer. The contents of the accumulator are
unchanged. The format of the accumulator is shown below.

1{olojo|O|O MAP REGISTER
0 T T T T T Tis'ie 17 18 19120 21 22' ' 25 26' ' ' 31
BITS | NAME CONTENTS or FUNCTION
0-15 |- — Reserved for future use. Must be 1.
16)

17-21 | —- Must be O.
22-31 | MAP Specify a map register as the first location for a map load/dump.

REGISTER

1/0 Instruction Dictionary 331

Specify High-Order Address
DOB/f/ ac,BMC

0 1 1 AC 1 0 (o} F [0} 0 0 1 0 1

The contents of bits 17-31 of the specified accumulator determine the direction of the
next map data transfer, as well as the high-order part of the physical memory address to
be used. Bit 17 specifies whether map registers are to be loaded or dumped. Bits 22-31
are the the high-order 10 bits of the 20-bit physical address of the first word in memory
to be transferred to or from the map.

The contents of the specified accumulator are unchanged. The format of the accumulator
is shown below.

o|pjof{o]o|o HIGH ADDRESS
o’ T T T T T C T T 5 1617118119 20 21 122" 24 257 ' ' ' a3
BITS | NAME CONTENTS or FUNCTION
0-15 |- —- Reserved for future use. Must be 0.
16
17 DUMP When 1, the direction for the map data transfer is from the register(s) to memory.
18-21 | — Must be 0.
22-31 | HIGH Specify the most significant bits of the physical address for the start of the map
ADDRESS data transfer.
Specify Word Count
DOC/f] ac,BMC
1 1 AC 1 1 o F s} 0 [¢] 1 0 1
1 2 3 a4 5 6 8 ' 9 10 1 12 13 14 15

The contents of bits 16-31 of the specified accumulator determine the number of map
registers to be loaded or dumped in the next map data transfer. The specified number
must be one less than the number of words to be transferred. The contents of the

specified accumulator are unchanged. The format of the accumulator is shown below.

olo(o|o|o|ojo]|o O WORD COUNT -1
ol T T T e e 7 8820 21 T2 s 2 s T T T T T3y
BITS | NAME CONTENTS or FUNCTION
0-15
16-24 | — Must be 0.
25-31 | COUNT Specify a number that is one less than the number of map registers to be
loaded/dumped.

332 1/0 Instruction Dictionary

Set Status
DOC/f] ac,BMC

0 1 1 AC 1 1] F o] 0] 1 o 1

The contents of bits 16-31 of the specified accumulator control the diagnostic functions
of the burst multiplexor. The contents of the accumulator are unchanged. The format of
the accumulator is shown below.

7/o|{s|v|o|o|o|A|D|jO|O}|O OO O O

o ' ' ' T T T T T T T T4s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3
BITS | NAME CONTENTS or FUNCTION
0-15 |- Reserved for future use.

16 -— Must be 1.

17 -— Must be O.

18 S When 1, the channel enters two-step diagnostic mode.

19 \Y) When 1, the channel forces a validity protect error.
21-23 | - Must be O.

24 A When 1, the channel forces an address parity error.

28 D When 1, the channel forces a data parity error.
26-21 | — Must be O.

Central Processor

Device Code
77g (Primary)

Priority Mask Bit None

Device Flag Commands

Device flag commands to the CPU determine whether the current program can be
interrupted by a program interrupt request. When the interrupt enable flag is set to 1,
the program can be interrupted (once the instruction following the enable has begun).
When the interrupt enable flag is set to 0, the program cannot be interrupted. The CPU
interrupt enable flag is controlled by the device flag commands as follows:

f=S Sets the interrupt enable flag to 1.

f=C Sets the interrupt enable flag to 0.

/=P

IORST

1/0 Instruction Dictionary 333

Read Switches
DIA/f] ac,CPU

Places the contents of the console switches into bits 16-31 of an accumulator.

Places the setting of the console data switches in the specified accumulator. After the
transfer, sets the Interrupt On flag according to the function specified by F.

NOTE: The assembler recognizes the special mnemonic READS ac to be equivalent to DIA

ac,CPU.
Interrupt Acknowledge
DIB/f] ac,CPU
(o] 1 1 AC V] 1 1 F 1 1 1 1 1 1
0 1 2 3 ' a4 5 6 7 8 ' 9 10 11 12 13 14 15

Returns device code of an interrupting device.

Places the six-bit device code of that device requesting an interrupt which is physically
closest to the CPU on the I/O bus in bits 26-31 of the specified accumulator; sets bits
0-25 to 0. After the transfer, sets the Interrupt On flag according to the function
specified by F.

NOTE: The assembler recognizes the special mnemonic INTA ac to be equivalent to DIB

ac,CPU.
Reset
DIC/f] ac,CPU
[o] 1 1 AC 1 [o] 1 F 1 1 1 1 1 1
1 2 3 4 5 7 8 9 10 1 12 13 14 15

Sends a reset signal to all devices to clear their state.

Sets the 16-bit priority mask to 0. Sets the Interrupt On flag according to the function
specified by F.

Note that you must code an accumulator to avoid assembly errors. During execution, the
accumulator field is ignored and the contents of the accumulator remain unchanged.

NOTE: The assembler recognizes the special mnemonic 10RST o be equivalent to DICC 0,CPU.
This instruction sets the Busy and Done flags as described above, and sets the Interrupt On

flag to 0.

334 1/0 Instruction Dictionary

Mask Out

DOB/f] ac,CPU
0 1 1 AC 1 (o] o] F 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sets the priority mask.

Places the contents of bits 16-31 of the specified accumulator in the priority mask. After
the transfer, sets the Interrupt On flag according to the function specified by F. The
contents of the specified AC remain unchanged.

NOTE: A | in any bit disables interrupt requests at devices which use that bit as a mask.
Do not use this instruction when interrupts are enabled.

The assembler recognizes the special mnemonic MSKO ac to be equivalent to DOB ac,CPU.

Halt

DOC/f] ac,CPU
0 1 1 AC 1 1] F 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 ' 9 10 " 12 13 14 15

Stops the processor.

Sets the Interrupt On flag according to the function specified by F, then stops the
processor.

NOTE: The assembler recognizes the special mnemonic HALT as equivalent to the instruction
DOC 0,CPU.

Interrupt Disable

INTDS
NIOC CPU
(o] 1 1 0 o] (o} 0 o 1 o] 1 1 1 1 1 1
1 2 3 6 7 8 10 1 12 13 14 15
Sets Interrupt On flag to 0.
Interrupt Enable
INTEN
NIOS CPU

Sets Interrupt On flag to 1.

1/0 Instruction Dictionary 335

If the instruction changes the state of the Interrupt On flag, the CPU allows one more
instruction to execute before the first /O interrupt can occur. However, if the instruction
is interruptible, then interrupts can occur as soon as the instruction begins to execute.

CPU Skip
SKP/t] CPU

If the test condition specified by T is true, the next sequential word is skipped.

The following table lists the possible test conditions.

SYMBOL VALUE ([TEST

[T/=BN 00 Tests Interrupt On flag for 1
[T]=BZ 01 Tests Interrupt On flag for O
[T/=DN 10 Tests Power Fail flag for 1
[T]=DZ 1 Tests Power Fail flag for O

See Programmer’s Reference:Peripherals (DGC No. 014-000632) for a complete set of
examples on using the interrupt system.

Vector On Interrupting Device Code
VCT [@]/displacement/,index]

Spijtjojoopiqijijifi|ijijijiji[s DISPLACEMENT
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 T T T T T TSy

Returns the device code of the interrupting device and uses that code as an index into a
table. The value found in the table is used in one of two ways: it can be a pointer to the
appropriate interrupt handler (Mode A), or as a pointer to another table (Modes B
through E). This second table points to the interrupt handler and contains a new priority
mask. Depending on the mode used, the instruction can also save the state of the
machine by pushing various words onto the stack, create a new vector stack, and set up
a priority structure.

The accompanying flow chart is a complete diagram of the operation of the Vector
instruction. Note that all modes use the vector table to find the next address used. Mode
A uses the vector table entry as the address of the interrupt handler and passes control to
it immediately. Modes B through E all use the vector table address as a pointer into a
device control table (DCT), where the address of the interrupt handler is found, along
with a new priority mask.

Three control bits determine the mode of the Vector instruction which will be used.
Their names and locations are:

336

1/0 Instruction Dictionary

Stack Change Bit
Bit 0 of the second word of the Vector instruction;

Direct Bit
Bit 0 of the selected vector table entry;

Push Bit
Bit O of the first word of the selected device control table.

The value of these bits collectively determine the mode of the Vector instruction. The
bits determine the mode as follows:

Direct Stack Push Mode
[¢] Don’t care Don’t care A
1 0 0 B
1 o] 1 C
1 1 (o} D
1 1 1 E

The diagram shows the arrangement of the various control bits and tables. The modes
perform various functions as summarized below:

Mode Function
A Uses device code returned by INTA as table entry to find address of interrupt
handler.
B Mode A plus: resets priority mask (saving old one) and reenables interrupts.
C Mode B plus: pushes a normal 5-word return block (4 ACs, the program counter, and

carry) onto the stack.

D Mode B plus: sets up a new vector stack for use by the interrupt handler and saves
the old stack parameters.

E Mode C plus Mode D.

1/0 Instruction Dictionary 337

1

START OF
VCT INSTRUCTION

FETCH THE FIRST WORD
OF THEDCT BITOIS
THE "PUSH BIT" BITS
FETCH THE SECOND 1-15 CONTAIN THE
ADDRESS OF THE DEVICE
NSTRUCTON B INTERRUPT ROUTINE
INSTRUCTION BIT
01S THE STACK
CHANGE BIT BITS
1-15 CONTAIN THE
ADDRESS OF THE

BEGINNING OF THE
VECTOR TABLE MODES B, D
! YES mopES C, E
RETURN
DEVICE CODE ' PUSH STANDARD
‘ RETURN BLOCK
BITS 1-15 OF
LAST WORD PUSHED
ADD THE CODE CONTAIN BITS 1-15 OF
RETURNED ABOVE PHYSICAL LOCATION O
TO THE ADDRESS OF THE
VECTOR TABLE (DISPLACEMENT T
FIELD) AND FETCH THE .
WORD AT THAT
LOCATION BIT 0 IS PLACE THE
THE “DIRECT BIT" ADDRESS OF THE
DCTIN AC2

‘ MODES B, C, D, E

DIRECT PUSH THE CURRENT
BIT = 07 MODE A INTERRUPT MASK
(LOCATION 5) ONTO
MODES B, C, D, E THE STACK
BITS 1-15 OF BITS 1-15 OF THE ‘
THE FETCHED FETCHED VECTOR PLACE THE LOGICAL
VECTOR TABLE TABLE ENTRY CON- OR OF THE CURRENT
ENTRY CONTAINS TAIN THE ADDRESS INTERRUPT MASK AND
THE ADDRESS OF OF THE DEVICE THE SECOND WORD
THE DCT INTERRUPT ROUTINE OF THE DCT IN ACO.
NO STACK TRANSFER CONTROL PLACE THE CONTENTS
CHANGE BIT TO THE DEVICE OF ACO IN THE CURRENT
MODES B, C =1 INTERRUPT ROUTINE INTERRUPT MASK
BY PLACING BITS (LOCATION 5)
1-15 OF THE FETCHED
H VECTOR TABLE ENTRY
SAVE LOCATIONS IN THE PROGRAM COUNTER ‘
40-43y DO A MASK OUT
FROM ACO AND
MODES D, E ‘ ENABLE INTERRUPTS
(DOBS 0.CPU)
PLACE CONTENTS OF ;
LOCATION 4 IN
STACK POINTER PLACE ADDRESS
PLACE CONTENTS OF OF DEVICE INTERRUPT
LOCATION 6 IN ROUTINE IN
STACK LIMIT PROGRAM COUNTER.
PLACE CONTENTS OF
LOCATION 7 IN
STACK FAULT.
NOTE: FRAME STACK
POINTER IS DESTROYED OVERFLOW?
AND THE CONTENTS
ARE UNPREDICTABLE NO
=t
{ CONTINUE SEQUENTIAL TRANSFER
ALL OPERATION WITH THE CONTROL TG -
PUSH OLD CONTENTS MODES WORD ADDRESSED STACK FAULT
OF LOCATIONS BY THE PROGRAM ROUTINE
40-434 COUNTER
-]
]
END OF
VCT INSTRUCTION
DG-00570
Figure 17.1

In the following paragraphs, we will consider each mode and follow through the process
step-by-step.

338 1/0 Instruction Dictionary

Common Process

Mode A

All modes perform the initial steps of the Vector instruction. These steps begin when the
instruction returns the interrupting device code. The instruction adds the device code to
the address of the start of the vector table (bits 1-15 of the second instruction word). The
result is the address of an entry within the vector table. The instruction fetches the
contents of this vector table entry and examines bit 0 of the entry (the direct bit).

The instruction performs the functions of Mode A if the direct bit is 0. The values of the
other control bits do not matter. In Mode A, the instruction uses bits 1-15 of the fetched
vector table entry as the address of the interrupt handler of the interupting device.
Control transfers immediately to the interrupt handler with all interrupts disabled.

Modes B Through E

The direct bit has the value 1 for all of these modes. The values of the push bit and the
stack change bit determine which of the four modes will take place. The action of these
modes can be divided into two parts: a first part, whose action varies from mode to mode;
and a second part, whose action is identical for every mode. We discuss each part 1
separately, then the common second part.

Mode B Part I

When the stack change bit and the push bit both have the value of 0, then Mode B takes
place. The instruction uses the vector table entry as the address of the device control
table (DCT) for the interrupting device. Bits 1-15 of the first word of the DCT contain
the address of The desired interrupt handler (bit O is the push bit). The second word of
the DCT contains information used to construct the new interrupt priority mask.

Succeeding words (if any) contain information to be used by the device interrupt
handler.

Mode C PartI

When the stack change bit has the value 0 and the push bit has the value 1, then Mode
C takes place. This mode performs the functions of Mode B; in addition, Mode C pushes
a standard five-word return block onto the standard stack. The return block contains the
contents of the four accumulators, the value of carry, and the contents of physical
location O (the program counter return value).

Mode D PartI

When the stack change bit has the value 1 and the push bit has the value 0, then Mode
D takes place. This mode performs the functions of Mode B; in addition, Mode D sets up
a new stack for the interrupt handler (using the contents of locations 4, 6, and 7) and
pushes the old contents of physical locations 40-43g (the user stack control words) onto
the new stack.

Mode E PartI

When the stack change bit and the push bit both have the value 1, then Mode E takes

place. This mode combines the functions of modes C and D. That is, Mode E performs
the functions of mode B, sets up a new stack, and pushes a 5-word return block and the
old stack control words onto the new stack.

1/0 Instruction Dictionary 339

Modes B through E Part 11
Modes B through E use the same procedure for the remainder of the Vector instruction.

the stack. Next, the instruction updates location 5 and performs a Mask Out instruction,
using the logical OR of the current mask and the second word of the DCT. The
instruction then sets the Interrupt On flag to 1 and passes control to the selected device
interrupt handler. Note that the CPU permits one more instruction to execute (in this
case, the first instruction of the interrupt handler) before the next I/O interrupt can
occur.

Host/IOP Communication

Device Code, Host to IOP
60g (Primary)

Priority Mask Bit, Host to IOP
5 (Primary)

Device Flag Commands

Device flag commands allow the host to interrupt the [OP. These commands do this by
setting interrupt request flags, busy flags, and done flags to initiate the interrupt. The

IOP and the host each have one busy flag, one done flag, and one interrupt request flag.
The host’s flags are located in and are tested by the IOP. The IOP’s flags are located in
and are tested by the host. The device flag commands for the four Host instructions are:

f=S Sets the Host Busy and the IOP interrupt request flags to 1.
S=C Sets the IOP Done and Host interrupt request flags to 0.
S=P Sets the IOP parity error and Host interrupt request flags to 0.

IORST Sets the IOP Done flag, Host interrupt request flag, and Host interrupt mask
bit to 0, also resets the IOP processor and its 1/O devices.

NOTE: An IOP Run flag is read as Busy by the Host. It is set to | when the IOP is not in a
halted state.

Read PC Save Register
DIA/f] acIOP

Loads the contents of the IOP’s PC Save register into bits 16-31 of the specified
accumulator. The IOP updates the PC Save register each time the IOP halts. The
format of the accumulator is as follows.

C PROGRAM COUNTER

T T T T

o T T T T T T T T T T T T T ™5 16 17" T T IPYRETH T T 3

340 1/0 Instruction Dictionary

BITS | NAME CONTENTS or FUNCTION
0-15 |- Reserved for future use.

16 C SP Carry
17-31 | PC SP Program counter

Read Console Buffer

DIB/f] acIOP

AC

Loads the contents of the IOP console buffer into bits 16-31 of the specified accumulator.
The console buffer contains the result of the last console operation performed by the IOP

(such as Examine).

Read Address Buffer

DIC/f] ac,IOP

AC

Loads the contents of the IOP address buffer into bits 16-31 of the specified accumulator.
The IOP address buffer contains the address of the last Host memory reference. If the
address save bit in the IOP is 1, it will contain the address of the last memory reference
to either local or host memory. The format of the register is shown below.

SEL| ADDRESS

1516 177 1 T21'227 31

BITS | NAME CONTENTS or FUNCTION

0-15 |--- SEL Reserved for future use. Current value of the least significant host data channel
16 map select bit

17-31 | ADDRESS SP Logical Address

Control Console Function Register

DOA/f] ac,IOP

0

AC

Stores the contents of bits 16-31 of the specified accumulator into the IOP console
function register. The format of the specified accumulator is:

1/0O Instruction Dictionary

341

FUNCTION S/R

T T

16 177 20721227237 T T T T T T3t

BITS

CONTENTS or FUNCTION

0-16
17-20

21-22

23-31

S/R

Reserved for future use

Selects action when bits 5 & 6 = 0:
0000 Examine ACO
0001 Examine AC1
0010 Examine AC2
0011 Examine AC3
0100 Deposit ACO
0101 Deposit AC1
0110 Deposit AC2
0111 Deposit AC3
1000 Deposit

1001 Deposit Next
1010 Examine
1011 Examine Next
1100 Start

1101 Execute
1110 Program Load
1111 Continue

11 No action

10 STOP

01 RESET

00 bits 1-4 specify action

Reserved for future use.

NOTE: Select the Inst function by specifying STOP and CONTINUE together (i.e., bits 1-6 =
111110,). The IOP ignores functions other than RESET, STOP, EXAMINE, and INST when it is
running. The STOP function halts the IOP after it completes the instruction currently executing.

Control Switch Register

DOB/f] ac,IOP

o] 1

AC

0 1

Stores the contents of bits 16-31 of the specified accumulator into the IOP switch
register. The IOP switch register contains the address or data for the IOP console
operations.

Memory Allocation and Protection

Device Code
3g (Primary)

Priority Mask Bit

None

342 1/0 Instruction Dictionary

Device Flag Commands

Load Map
LMP

f=S No effect.

f=C No effect.

f=P Enables Map Single Cycle.
IORST Disables Map.

Under control of AC1 and AC2, loads successive words from memory into the MAP
where they are used to define a user or data channel map.

Bits 16-31 of AC1 must contain an unsigned integer, which is the number of words to be
loaded into the MAP. Bits 17-31 of AC2 must contain the address of the first word to be
loaded. If bit 0 of AC2 is 1, the instruction follows the indirection chain and places the
resultant effective address in AC2. ACO and AC3 are ignored and their contents remain
unchanged.

For each word loaded, the instruction decrements the count in AC1 by one and increments
the source address in AC2 by 1. Upon completion of the instruction, AC1 contains 0,
and AC2 contains the address of the word following the last word loaded.

This instruction is interruptible in the same manner as the Block add and move
instruction. If you issue this instruction while in mapped mode, with 1/O protection
enabled, the map will not be altered. AC1 and AC2 will be used and their contents
modified as described above. No I/O trap will occur.

The words loaded into the MAP define the address translation functions for the various
user and data channel maps. The contents of the MAP field (bits 6-8) of the MAP status
register determine which map is affected by the Load map instruction. You can alter
this field using either the Load map status or the Initiate page check instruction.

The format of the words loaded into the MAP is as follows:

WP LOGICAL PHYSICAL
5 — T T — rE T T r T T T T 5
BITS | NAME CONTENTS or FUNCTION
0 WP Unused for data channel maps; write protect for user maps.
1-56 | LOGICAL Logical page number.
6-15 | PHYSICAL Physical page number.

NOTE: Declare a logical page invalid by setting the Write Protect bit to 1 and all of bits 6-15
to 1.

1/O Instruction Dictionary

343

Read Map Status
DIA/f/ acMAP

Page Check
DIC acMAP

0 1

AC

[¢] 1

Reads the status of the current map.

Places the contents of the MAP status register in bits 16-31 of the specified accumulator.
The previous contents of the specified accumulator are lost. The format of the information
placed in the specified accumulator is as follows:

I/O|WP[ind[SC| MAP | lef|I/O|WP|ind|a/b|dch|u/
o T T T T T 8 19 120 ' 21 1221 24 25 126 127 128 29 130 ' 31
BITS | NAME CONTENTS or FUNCTION
0-17 |- Reserved for future use.
18 1/0 If 1, the last protection fault was an 1/0 protection fault.
19 WP If 1, the last protection fault was a write protection fault.
20 |IND If 1, the last protection fault was an indirect protection fault.
21 | Single Cycle If 1, the last map reference was a Map Single Cycle instruction.
22-24 | Map Indicates which map will be loaded by next Load map instruction as follows:
000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D
25 |LEF If 1, the Load Effective Address instruction was enabled by the last Load Map
Status instruction.
26 |[1/0 if 1, /O protection was enabled by the last Load Map Status instruction.
27 (wpP If 1, write protection was enabled by the last Load Map Status instruction
28 |IND If 1, indirect protection was enabled by the last Load Map Status instruction.
29 |A/B If O, the last Load Map Status instruction enabled map A.
If 1, the last Load Map Status instruction enabled user map B.
30 DCH Enable If 1, the mapping of the data channel addresses is enabled.
31 User Mode If 1, the last 1/0 interrupt occurred while in user mode.
0 1 1 | AC 0 1 0 0 0 s} 5} ¢} 1 1
1 2 3 5 6 10 7 11 12 T 13 | 14 ' 18

Provides the identity and some characteristics of the physical page corresponding to the
logical page identified by the immediately preceding Initiate Page Check instruction.

344 1/0 Instruction Dictionary

Places the number of the physical page which corresponds to the logical page specified
by the preceding Initiate Page Check or Load Map Status instruction in bits 22-31 of
the specified accumulator. Places additional information about this page in bits 16-19
and destroys the previous contents of the accumulator. The format of the information
placed in the specified accumulator is as follows:

WP MAP PHYSICAL

T T T T T T T T T T T T T T

0 15 16 17" 19 20 21 22

T T T T T T T T

31

BITS | NAME CONTENTS or FUNCTION

0-15 | — WP Reserved for future use. The write protect bit for the logical page which corresponds|
16 to the physical page specified by bits 6-15.

17-19 | Map The map which was used to perform the translation between logical page number
and physical page number is as follows:

000 User A

001 Reserved for future use.
010 User B

011 Reserved for future use.
100 Data channel A

101 Data channel C

110 Data channel B

111 Data channel D

20-21 | -—-- Reserved for future use.

22-24 | Validity If these bits are 1, and bit O is 1, the logical page which corresponds to the
physical page specified by bits 9-15 is validity protected.

25-31 | Physical The number of the physical page which

Load Map Status
DOA ac,MAP

Defines the parameters of a new map.

Places the contents of the specified accumulator in the MAP status register. The
contents of the specified accumulator remain unchanged. The format of the specified
accumulator is as follows:

1/0 Instruction Dictionary 345

MAP lef | I/O|WP|ind|a/b|dch|u/m

2122 24 25 26 27 28 29 30 31

BITS | NAME CONTENTS or FUNCTION
0-21 |- Reserved for future use.
22-24 | MAP SEL Specify which map will be loaded by the next Load Map instruction as follows:
000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channei A
101 Data channei C
110 Data channel B
111 Data channel D
25 LEF If 1, the Load Effective Address instruction will be enabled for the next user
26 1/0 if 1, /O protection will be enabled for the next user
27 WP If 1, write protection will be enabled for the next user
28 IND If 1, indirect protection will be enabled for the next user
29 A/B If 0, the next user map enabled will be that for user A If 1, the next user map enabled will
be that for user B
30 DCH Enable If 1, the mapping of data channel addresses will be enabled immediately after this instruction|
31 User Mode If 1, mapping of CPU addresses will commence with the first memory reference after the
next indirect reference or return type instruction (POPB, POPJ, RTN, RSTR)

If the Load Map Status instruction sets the User Enable bit to 1, this inhibits the
interrupt system and the MAP waits for either an indirect reference or return type
instruction. Either event releases the interrupt system and allows the MAP to begin
translating addresses (using the user map specified by bit 13 of the MAP status
register). Address translation resumes (1) after the first level of the next indirect
reference; or (2) after the first Pop Block, Pop Jump, Return, or,Restore instruction
that does not cause a stack fault.

Map Page 31
DOB acMAP

AC

Specifies that mapping take place for a single page of an unmapped address space.
Mapping is always done for locations 760005 through 777773 (logical page 31). This is
the only page which can be mapped when in unmapped address space. You can use this
instruction to access a page of a user’s memory space when in unmapped mode.

Bits 22-31 of the specified accumulator are transferred to the MAP. These bits specify a
physical page number to which logical page 31 will be mapped when in the unmapped

mode.

The contents of the specified accumulator remain unchanged. The format of the specified
accumulator is as follows:

346 1/0 Instruction Dictionary

PHYSICAL

T T T T T T T T T T T T T T

21 22 R

BITS | NAME

CONTENTS or FUNCTION

0-21 |-—-
22-31 | Physical

Reserved for future use.

The number of the physical page to which logical page 31 should be mapped

when in unmapped mode.

Initiate Page Check
DOC ac,MAP

Identifies a logical page. The Page Check instruction will find the corresponding

physical page.

Transfers the contents of bits 16-31 of the specified accumulator to the MAP for later
use by the Page Check or Load Map instruction. Leaves the contents of the specified
accumulator unchanged. The format of the specified accumulator is as follows:

LOGICAL MAP
I ——— T T T T T T T T
BITS | NAME CONTENTS or FUNCTION
0-16 |-— Reserved for future use.
17-21 | Logical Page Number of the logical block for which the check is requested.
22-24 | Map Specify which map should be used for the check as follows:
000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D
25-31 |- Reserved for future use.
Map Single Cycle
Disable User Mode

NIOP ac,MAP

1/0 Instruction Dictionary 347

Issued from unmapped mode, the instruction maps one memory reference using the last
user map; issued from User mode with LEF mode and 1/0 protection disabled, the
instruction simply turns off the map, returning it to unmapped mode. It is used by the
supervisor to access a user’s memory space when only one or two references are required.
It is also used by a privileged user to turn off memory mapping.

From Unmapped Mode

Enables the user map for one memory reference. Maps the first memory reference of the
next LDA, ELDA, STA or ESTA instruction. After the memory cycle is mapped, the
instruction again disables the user map.

NOTE: The interrupt system is disabled from the beginning of the Map single cycle instruction
until after the next LDA, ELDA, STA or ESTA instruction.

From User Mode

If LEF Mode and I/O protection is disabled, this instruction turns off the MAP. All
subsequent memory references are unmapped until the map is reactivated with a Load
map status instruction.

Programmable Interval Timer

Device Code
43¢ (Primary) Priority Mask Bit
11

Device Flag Commands
J=S Sets the Busy flag to 1 and the Done flag and interrupt request flag to 0; begins
the counting cycle.

f=C Sets the Busy and Done flags and the interrupt request flag to 0; stops the
counting cycle.

f=P No effect.

IORST Sets the Busy and Done flags, the interrupt request flag, the initial count
register, the count output buffer, and the interrupt mask bit (bit 11) to 0; stops
the counting cycle.

Read Count
DIA/f] acPIT

Places the value of the Programmable Interval Timer’s Counter in bits 15-31 of the
specified accumulator destroying the accumulator’s previous contents. After the data
transfer, performs the function specified by F. The format of the specified accumulator
is as follows:

PRESENT COUNT (2'S COMPLEMENT)
0""'"""""""1920"""""'31

348 1/0 Instruction Dictionary

BITS | NAME CONTENTS or FUNCTION
0-19 | --— Count Reserved for future use. Current value of the PIT counter within one count cycle.
20-31

Specify Initial Count
DOA/f] ac,PIT

V] 1 1 AC 0 1 0 F 1 0 o] o 1 1

Loads bits 16-31 of the specified accumulator into the Programmable Interval Timer’s
Initial Count Register. After the data transfer, performs the function specified by F. The
contents of the specified accumulator remain unchanged; the format of the accumulator
is as follows:

INITIAL COUNT (2'S COMPLEMENT)
P e e e e S T A A S S T
BITS | NAME CONTENTS or FUNCTION
0-19 |- Initial Count | Reserved. Two’s complement of the number of 100 microsecond intervals between
20-31 interrupts.

Real Time Clock

Device Code
14g (Primary)

Priority Mask Bit
13

Device Flag Commands

f=S Sets the Busy flag to 1, and the Done flag and interrupt request flag to 0;
enables RTC interrupts.

f=C Sets the Busy and Done flags and the interrupt request flag to 0; disables RTC
interrupts.

f=P No effect.

IORST Sets the Busy and Done flags, the interrupt request flag, the interrupt mask bit
(bit 13), and the clock frequency select bits to 0; disables RTC interrupts.

1/0 Instruction Dictionary 349

Select RTC Frequency
DOA/f] ac,RTC
[¢] 1 1 AC [¢] 1 0 F [¢] 0 1 1 [¢] o]
1 2 3 ' a4 5 6 8 9 10 K] 12 13 14 15

The clock frequency is set according to bits 30-31 of the specified accumulator. The
contents of the specified accumulator remain unchanged. Bits 0-29 of the specified
accumulator are ignored. The format of the specified accumulator is as follows:

RTC|

29 30 31

BITS | NAME CONTENTS or FUNCTION

0-29 |- Reserved for future use. (Set to 0)
30-31 [RTC Selects the clock frequency as follows:
00 ac line frequency

01 10Hz

10 100Hz

11 1000Hz

Primary Asynchronous Line Input

Device Code
10g (Primary)

Priority Mask Bit
14
Device Flag Commands

S=S Sets the Busy flag to 1 and the Done flag to 0.
S=C Sets the Busy and Done flags and the interrupt request flag to 0.
/=P No effect.

IORST Sets the Busy and Done flags, the interrupt request flag, and the interrupt mask
bit (bit 14) to 0.

Read Character Buffer
DIA/f] acTTI

Places the contents of the controller’s input buffer in bits 24-31 of the specified
accumulator. After the data transfer, sets the controller’s Busy and Done flags according
to the function specified by F. The format of the specified accumulator is as follows:

350 1/0 Instruction Dictionary

CHARACTER
0 T 23 24 EREREX]
BITS |NAME CONTENTS or FUNCTION
0-23 |— Reserved for future use.
24-31 | Character The 8 bit character or 7 bit character with parity in bit position 8 read from the
input buffer.

Primary Asynchronous Line Output

Device Code
11g (Primary)

Priority Mask Bit
15

Device Flag Commands

f=S Sets the Busy flag to 1 and the Done flag to 0; begins transmission of the
character contained in the output buffer.

f=C Sets the Busy and Done flags and the interrupt request flag to 0.
f=P No effect.

IORST Sets the Busy and Done flags, the interrupt request flag, and the interrupt mask
bit (bit 15) to 0.

Load Character Buffer
DOA/f] acTTO
0 1 1 AC [o] 1 1 F 0 0 1 0 0 1
1 2 3 T4 [7 8 9 10 1 12 13 14 15

Loads bits 24-31 of the specified accumulator into the controller’s output buffer. After
the data transfer, sets the controller’s Busy and Done flags according to the function
specified by F. The contents of the specified accumulator remain unchanged. The format
of the specified accumulator is as follows:

CHARACTER
0 T T) 23 24 o 31
BITS | NAME CONTENTS or FUNCTION
0-7 |—- Reserved for future use.
8-15 |DATA The 8-bit character or 7-bit character with parity in bit position 8 to be placed in
the output buffer.

Chapter 18

[OP Communication Instruction
Dictionary

This chapter lists the IOP instructions used to communicate with the host.

IOP /Host Communication

Device Code, IOP to Host and local I/0
44 (Primary)

Priority Mask Bit, IOP to Host
5 (Primary)

Priority Mask Bit, IOP Map
None

Device Flag Commands

Device flag commands allow the IOP to interrupt the host. These commands do this by
setting Interrupt Request flags, Busy flags, and Done flags to initiate the interrupt. The
IOP and the host each have one Busy flag, one Done flag, and one Interrupt Request
flag. The host’s flags are located in and are tested by the IOP. The IOP’s flags are
located in and are tested by the host. The device flag commands for the four IOP

instructions are:

S=S Sets the IOP Done and Host interrupt request flags to 1.
f=C Sets the Host Busy and IOP interrupt request flags to 0.
/=P Sets the Host Done and IOP interrupt request flags to 0.

IORST Sets bits 2-4, 14 and 15 of the map status and parity control register, Host Done
flag, IOP interrupt request flag, and IOP interrupt mask bits to 0.

NOTE: 4 IOP Run flag is read as Busy by the Host. It is set to | when the IOP is not in a
halted state.

352 I0P_Communication Instruction Dictionary

Read Map Status and Parity Control
DIA/f] ac,1OPI

0 1 1 AC 0 o 1 F o o 0 1 o 0o
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Loads bits 16-31 of the specified accumulator with the map status and parity control
bits, as well as the MAP host/local flag selected by the previous DOA instruction. The
format of the accumulator is shown below:

AlP|PE HP| SEL |pcH u/+

o' o T T T 77 T T T T T 7181920 21 T 2627 28129 30 31
BITS | NAME CONTENTS or FUNCTION
0-17 |- Reserved for future use.

18 A Address Save on

19 P Parity Test on

20 PE Parity Checking on
21-26 |- Reserved for future use.

27 HP Bit for MAP page selected by previous DOA: O = page is mapped into SPU local

memory. 1 = page is mapped into host memory.

28-29 | SEL Currently selected host data channel:

30 DCH Current state of DCH MODE.

31 UM Current state of USER MODE.

Control (and Select) Map and Page/Parity
DOA/f] acIOPI

0 1 1 AC 0 1 0 F o]] o] 1 0 (o]

0 1 2 3 7 4 5 6 7 8 ' 9 10 1 12 13 14 15

Stores the specified accumulator into the map status and parity control register as
summarized below. Depending on the contents of bit 0 in the specified accumulator, the
contents of bits 12-15 may be ignored; also, the contents of bit 6 controls the interpretation
of bits 1-5. Consequently, the accumulator may take one of the following formats:

Format 1, Control Map Only

MSLE DS DL uL SEL DCH | U/M

0 1 j ' T8 9 10 Xl 12

Format 2, Control Map and Parity

MSLE A P PE 1 DS DL uL SEL DCH | U/M
0 1 2 3 a4 5 6 7

10P_Communication Instruction Dictionary

353

Format 3, Control Map and Select Page

MSLE LOGICAL o DS | oL | uL SEL DCH | U/M
o 1 i i 5 7 8 9 1011 12 " 13 " 1a s
Bits | Name Contents or Function

0 |[MSLE Permit loading of map status (bits
12-15).
1 - Used for map reading only.
2 A Address Save on.
3 P Parity Test on.
4 PE Parity checking on.
1-5 |[LOGICAL Selects Logical Page
6 PCL Permit loading of parity control flags.
7-8 |— Reserved for future use.
9 DS Suppress loading of DCH map select
(bits 12,13).
10 |{DL Suppress loading of DCH mode (bit 14)
11 UL Suppress loading of USER mode (bit
15).
12,13 | SEL Selects host data channel map for
references to host memory:
14 |DCH DCH mode on.
15 |U/M USER mode on.
Control Timer
DOC/f] ac,IOPI
[s} 1 1 AC 1 1 0 F 0 0 [} 1 0 (o}
) 1 2) 5 6 7 8 ' 39 0 0 1 12 7 13 ' 14 | 15

Stores the contents of bits 16-31 of the specified accumulator into the timer control
register and performs the function determined by the bits as shown below.

T I

o' T T i R A IV 31
BITS | NAME CONTENTS or FUNCTION
0-15 |- Reserved for future use.

16 | T 0 = Stop timer

1 = start timer.

17-21 | — Reserved for future use.

22 | If 1, clear interrupt.
23-31 | — Reserved for future use.

354 I0P Communication Instruction Dictionary

NOTE: The timer interrupt may be disabled without stopping the timer by setting bit 2 in the
IOP interrupt mask register.

Load Map
LMP

Load a number of map entries from a table in memory. Bits 16-31 of AC2 must contain
the starting address of the table. Bits 16-31 of AC1 must contain the number of entries
to load. ACO and AC3 are unused. The format of each entry to be loaded into the IOP
map is shown below.

HP LOGICAL DL
5 . T T — o T T r r T — T
Bits | Name Function

0 HP 0 = map page into local memory |

1 = map page into host memory
1-6 [LOGICAL Logical page number.
6-14 |-— Reserved for future use.
15 DL LD 0 = load entry into USER map.
1 = load entry into DCH map.

Appendix A
The ASCII Character Set

KEY KEY

KEY KEY
OCTAL HEX SYMBOL

MONIC DECIMAL OCTAL HEX SYMBOL DECIMAL OCTAL HEX SYMBOL DECIMAL OCTAL HEX SYMBOL

65 [101] 41] A
Les [101] |

[T o7 2

1]orsfan] - |
[loe[=]<]
@l]]

l64 [100[40] @ | | 96[140] 60 |cmuo]

Appendix B
Context Block Format

The context block can be from 20 to 43 double-words long. The block has the format
shown in Table B.1.

358

Context Block Format

Words in Block

Contents

0-1
2-3
4-5
6-7
8-9
10-11
12-13
14-15
16-17

18-19

20-21
22-23
24-25
26-27
28-29
30-31

32-61 (max)
62-63
64-65
66-67
68-69
70-71
72-73
74-75
76-77
78-79
80-81

PSR, 16 zeroes, micro state block
GR2

ACO

AC1

AC2

AC3

carry, PC

ATUO — See Table B.2.

LAR — Contains logical word address that caused
the fault. If the original logical address was a
word address, bit O of LAR is undefined. If the
original address was a byte address, then bit O is
the byte indicator.

ATUF

GR3
LINK
GR1
GRO
GR4

Micro stack count (number of double words that
follow)

Micro stack save area (2 to 8 double words)
GR7

GR6

GR5

DSR

CPDR

MREG

Micro counter

Q

1 Scratch pad location
IPS

Table B.1 Context block format

The contents of ATUO are shown in Table B.2.

Context Block Format 359

Bits Meaning

(0] Page fault on reading an instruction.
1-3 Reserved.
Inclusive OR of bits ATUO O and 5.
5 Page fault due to instruction cache reference.

6 Page fault on reading a double word straddling a
page boundary.

7 Reserved.

0 - - read request for logical location causing
page fault.

1 - - write request for logical location causing
page fault.

9-10 00 - - word operand of word causing page fault.
01 -~ - left byte of word causing page fault.

10 - - double word causing page fault.

11 - - right byte of word causing page fault.

11-15 Reserved.
16 Page fault occurred during effective address

calculation.

17-19 Number of ring currently executing at time of
page fault.

20-25 Reserved.

26-27 Modified and referenced bits of physical page
last referenced.

28-31 Referenced bits of the 8 Kbyte physical page last
referenced.

Table B.2 ATUO contents

NOTE: If either bit 5 or 16 of ATUO is 1, the context block is only 20 words long.

The format of ATUF is shown in Table B.3.

Bits Contents
0-15 Reserved.
16-23 Scratch pad address register.
24-27 Reserved.
28-31 If bit 28 is O, then bits 29-31 specify the fault

code for a protection fault.

If bit 28 is 1, then bits 28-31 are mutually
exclusive:

Bit 29 = 1: page fault occurred when referencing
a page

Bit 30 = 1: page fault occurred when referencing
a page table {occurs during a two level reference
only).

Bit 31 = 1: page table depth fault.

Table B.3 ATUF format

All other words in the context block contain information used by the microcode and
other internal systems. The floating point state is not saved in the context block. To save
this information, use a Push Floating Point State instruction.

360 Context Block Format

Note that the processor assumes that the context block save area, the pointer to the save
area, and all indirect chains used are aligned on double-word boundaries. User programs
should also follow this assumption.

Appendix C
- MV/8000—C/350 Program

Combinations

The MV/8000 computer allows you to execute C/350 programs when operating under
the AOS/VS operating system. Programs that include C/350 instructions must meet
certain requirements for them to be executed properly, however. This Appendix first
describes what happens when C/350 instructions are used, then describes how to mix
C/350 and MV /8000-specific instructions in the same program.

Note that the AOS/VS operating system handles interrupts caused by either MV /8000
or C/350 instructions. This means that programs do not have to use different interrupt
sequences depending on the type of instruction that caused the interrupt.

Using C/350 Instructions

C/350 instructions that specify an accumulator as a source of information (such as

LM) do not change the contents of the accumulator. C/350 instructions that load data
into an accumulator alter bits 16-31 of the referenced accumulator. Bits 0-15 are
undefined.

When PC- or accumulator-relative modes of addressing are used with C/350 memory
reference instructions, the processor forms a 31-bit result from the sum of the index
register contents and the displacement.

All C/350 program flow instructions and all C/350 instructions that load an effective
address will alter the wide PC or an accumulator. During program counter modification,
the PC’s 16 most significant bits are not altered. Bits 17-31 contain the C /350
effective address:

362

MV/8000—C/350 Program Combinations

Seg Effective Address

1 3,4 16, 17 31

DG-06812

Figure C.1

During effective address calculation, the accumulator’s 17 most significant bits appear
as:

0| SEG o|lo|lofojojo o |0 |0 |O|O O (O

When a C/350 ALC instruction with the no-load option (bit 12 contains a 1) is
specified, the accumulators remain unchanged. This option is particularly convenient
when testing for some condition without destroying the contents of ACD.

If the C/350 MAP is enabled, MV /8000-specific instructions cannot be executed. Any
attempt to do so causes a narrow 1/O protection fault to occur and bit 2 of the MAP
status register to be set to 1. The processor pushes a narrow return block onto the stack.
The return address in the return block points to the instruction that caused the fault.

If the ATU is enabled, the C/350 LMP, SYC, or any C/350 MAP instructions cannot be
executed. Any attempt to do so results in a protection fault. AC1 will contain a 9.

When the C/350 XCT instruction is specified, the processor interprets the 16 least
significant bits of the specified accumulator. If these bits specify an MV /8000-specific
instruction, the processor executes that instruction.

Expanding a C/350 Program to Run on the MV /8000 Computer

The appropriate MV /8000-specific instructions can be added to C/350 programs to
produce a number of results:

o Expand the program beyond 64KB,
o Use large arrays and other expanded data areas,
* Use the MV/8000 32-bit fixed arithmetic.

MV/8000—C/350 Program Combinations 363

There are several ways to expand C/350 programs beyond 64 Kbytes. One of the most
reliable is to rewrite one of the subroutines so that it contains MV /8000-specific
instructions, then place it in the high end of memory. This subroutine must be referenced
with a WISR, LCALL, or XCALL instruction in the main program, and the WSAVE and
WRTN instructions must be used in the subroutine, so that control can transfer properly.
Also, ensure that the subroutine uses MV /8000-specific instructions for all memory
references.

To use expanded data areas, use MV /8000-specific instructions for all memory
references, and 32-bit fixed-point arithmetic for all address calculations. This can be
done by changing just the portions of the program that will reference the expanded data
area. New subroutines can also be created that maintain these expanded data areas as
well as reference them. If the latter approach is used, ensure that subroutines referenced
by 32-bit addresses use an MV /8000 save/return setup. If a C/350 SAVE/RTN
instruction combination is used in such a subroutine, the processor will not save the 16
high order bits of the four accumulators upon entering the subroutine.

MYV /8000-specific instructions are required to perform all 32-bit fixed point arithmetic.
As described above, altering a program to use 32-bit arithmetic means changing only the
affected parts of the C/350 program, or writing new subroutines.

Calling a C/350 Subroutine From an MV /8000 Program

An MV/8000 program can call a C/350 subroutine, though such an arrangement requires

many changes to the C/350 subroutine. These changes are shown in Table C.1.

Change to C/350
Subroutine

Reason for Change

Repiace SAVE and RTN with
WSAVE and WRTN

All references from outside
routines may need new
memory reference
instructions

Short negative reference on
the stack may require new
displacements.

Check routines that are
referenced by a JSR through
page zero. to save the 32-bit
PC.

Must allow the main program to call this subroutine from high addresses (PC > 16
bits long). Must be able to handle 32-bit data in accumulators.

Must be able to handle 32-bit arguments passed from other routines. Must be able
to call other subroutines located in high address space.

Using WSAVE in this subroutine changes the size of the stack block pushed. This
means that the processor must recalulate a short negative reference.

Long addresses require 32 bits and may cause you to run out of page zero locations.
Use WISR

Table C.1

Appendix D

Anomolies

This appendix explains differences that affect the conversion of C/350 programs to
MV /8000 programs.

MYV /8000 Instruction Opcodes

The processor recognizes the MV /8000-specific instructions supported by this machine
by the instruction opcodes. All MV /8000-specific instructions are an outgrowth of the
C/350 ALC no load-always skip opcode and the C/350 XOP and XOP1 opcodes. This
means that on this machine you cannot use any C/350 program that contains these
instructions. The processor will interpret these instructions as MV /8000 instructions,
not as C/350 instructions.

Program Counter Wraparound

AAYT IONnNN

The MV /8000 program counter is 31 bits wide. Bits 1-3 specify the current ring of
execution. Bits 4-31 specify an address. When the PC is incremented, only bits 4-31
take part in the increment. This means that the PC will always contain an address in the
current ring. PC wraparound will not occur at 77777 as it does in the C/350.

Float/Fixed Conversions

When the processor converts a floating point number to a fixed point integer, it converts
the largest negative number correctly without MOF overflow. For single precision, the
processor converts the integer portion of floating point numbers to an integer in the
range -32,768 to + 32,767 inclusive. For double precision, the processor converts the
integer portion to an integer in the range -2,147,483,648 to 2,147,483,647 inclusive.

Address Wraparound

When using the C/350 BAM, BLM, CMP, CMT, CMV, CTR, and EDIT instructions,
address wraparound may not occur at 77777g. This means that a C/350 program could

366 Anomolies

possibly generate logical addresses greater than 64 kB. In this situation, results are
undefined.

If any of the instructions listed in the paragraph above move data backwards (i.e., into
descending addresses) and cross a ring boundary, a protection fault occurs. AC1 will
contain the protection fault code 4.

C/350 Signed Divide Instructions

When the C/350 DIVS or DIVX instructions produce a result of 32,768, the MV /8000
processor sets carry to O (meaning no overflow). When this instruction is used on the
C/350, the processor sets carry to 1 (meaning overflow). MV /8000 divide instructions
set overflow to 0 when —32,768 results.

C/350 Vector and NIO Instructions

There are three additional instruction encodings for the C/350 VCT and NIO instructions.
They are the presently defined ECLIPSE encoding with bits 3 and 4 being (0,1), (1,0),
and (1,1). Consequently all C/350 INTA instructions should always use the encoding 00
in bits 8 and 9 to specify “unchanged” for the Interrupt On flag. A 11 encoding in bits 8
and 9 indicates the MV /8000 XVCT instruction.

Floating Point Trap

The MV /8000 processor responds to floating-point traps upon completion of the floating
point instruction that caused the fault. In the C/350, the response to a floating point
trap occurs when the next floating point instruction is encountered. In either case, the
value of the floating point PC ic the same; that is, it contains the address of the floating
point instruction that caused the fault.

Floating Point Numerical Algorithms

The C/350 floating-point loads (FLDS, FLDD) do not correct impure zero input. All
loads simply move the memory operand to the specified FPAC. No normalization and
correction to true zero is performed. The Z and N bits of the FPSR are set to reflect the
loaded operand only if the operand is normalized. The Z and N flags are undefined if the
operand is unnormalized.

For all instructions, true zero is guaranteed to be generated for valid inputs only. If an
impure zero is generated with invalid inputs, the result is not necessarily converted to
true zero.

The C/350 FFAS and FFMD instructions leave the Z and N bits of the FPSR unchanged.

Otherwise, when bit 8 of the FPSR is a 0, the results of the floating point computations
performed on the MV /8000 processor are identical to those obtained on the C/350.

Anomolies 367

C/350 Commercial Faults

A C/350 comercial fault loads different information it AC0, AC2, and AC3 after the
fault is taken. The size of the return block, the fault code in AC1, and the meaning of the
PC in the return block are identical to the results obtained on the C/350.

C/350 MAP Instructions

As noted elsewhere in this manual, an attempt to execute the C/350 SYC, LMP, and
MAP related instructions when the MV /8000 ATU is enabled results in a protection
violation (code = 9 in AC1). Due to the nature of the MV /8000 ATU and virtual
address space, these instructions have no rational meaning when the MV /8000 ATU is
enabled.

Appendix E
C/350 Memory Allocation and

Protection

The MV /8000 supports the C/350 MAP so that C/350 programs can be run on the
MYV /8000 without changing them. Like the MV /8000 ATU, the C/350 MAP performs
address translation, and can run in mapped or unmapped mode. The MAP also has a Lef
mode that determines whether the C/350 Load Effective Address instruction or the
standard I/O instructions will be executed. MAP execution in any mode is closely
governed by a protection system that checks for illegal references and protects important
data.

NOTE: In the following section, “MAP” refers to the Memory Allocation and Protection unit,
whereas “map” refers to a set of memory translation functions used by the MAP.

MAP Functions

The MAP performs the following tasks:

* Translates virtual addresses to physical addresses
* Allows memory to be shared between users

Address Translation

The primary function of the MAP is address translation. The map divides each user’s
logical address space into 2 Kbyte pages and associates each logical page with a
corresponding physical page. The address space the user sees is unchanged, but the map
now translates each logical address into a physical address before memory is actually
accessed.

Note that a user’s physical pages can be in any particular order in physical memory.
This means that the supervisor (the part of the operating system that controls system
functions) can select unused pages for a new user without concern for maintaining any
particular arrangement. It also means that physical memory can be used almost
completely, since no contiguous blocks of memory larger than 2 Kbytes are required.

370

C/350 Memory Allocation and Protection

Sharing Physical Memory

The MAP can allow several users to use the same section of physical memory. This is
useful if several users want to use a commonly used routine, such as trigonometric tables.
Without this ability the processor would have to make a copy of the routine for each
user.

MAP Modes

The MAP can operate in two different modes: mapped and unmapped. The processor
generally operates in mapped mode. Unmapped mode is used to perform diagnostic and
certain MAP functions.

Mapped Mode

In mapped mode, the MAP provides two types of maps:

o User maps are a set of address translation functions defined for a particular user.
They translate logical addresses to physical addresses when the processor encounters
memory reference instructions in a user’s program.

 Data channel maps are a set of address translation functions defined by the
user-specified map. These are defined for the memory references of a data channel
used by a particular device. They translate logical addresses to physical addresses
when data channel devices address the memory.

User Maps

Each user requires a separate user map. The MAP can hold two user maps, but only one
can be enabled at any one time. This means that when two users exist, the processor
specifies the user map for each and loads them into the MAP. The supervisor can then
enable one or the other as needed.

If there are more than two users, the processor must load new user maps as they are
needed. In some operating systems, the operating system itself uses one of the user maps,
so the processor must load a new user map each time another user requires service. This
is not as much of an overhead burden as it sounds; the Load Map instruction loads a
complete map with one instruction and uses relatively little time.

Data Channel Maps

Data channel devices can access memory without direct control from the user’s program.
This offers no assurance that the proper user map will still be enabled at the time of the
data channel request. Therefore, the MAP uses separate data channel devices when such
a device accesses memory.

The MAP can hold four data channel maps. Enabling data channel mapping enables all
four data channel maps at the same time. The I/O controller making the reference
chooses which of the four maps to use. Those controllers not equipped to make this
distinction use data channel map A by default. See the Programmer’s Reference Manual
- Peripherals (DGC No. 015-000021) for more information.

C/350 Memory Allocation and Protection 371

Unmapped Mode

This mode is used for diagnostic purposes and for certain MAP control functions. In
unmapped mode, the processor does not translate addresses in the range 0-75777g (which
form logical pages 0-30). The processor uses a special map to translates addresses in the
range 76000-77777g for logical page 31. This allows you to access selected portions of
user space while in unmapped mode.

MAP Protection Capabilities

The C/350 MAP is equipped with protection functions to protect the integrity of the
system. It does this by preventing unauthorized access to certain parts of memory or to
I/O devices. For example, a set of trigonometric functions stored in a section of memory
accessible to all users can be write protected so that users can read the functions but
cannot change them.

Validity Protection

Validity protection protects a user’s memory space from inadvertant access by another
user, thereby preserving the integrity and privacy of the user’s memory space. When a
user’s map is specified, the blocks of logical addresses required by the user’s program are
linked to blocks of physical addresses. The remaining (unused) logical blocks are declared
invalid to that user, and an attempt to access them will cause a validity protection fault.

Validity protection is always enabled, so the supervisor’s responsibility is limited to
declaring the appropriate blocks of logical addresses invalid.

Write Protection

Write protection permits users to read the protected memory addresses, but not to write
into them. In this way, the integrity of common areas of memory can be protected. An
attempt to write into a write protected area of memory will cause a protection fault.

A block of addresses is write protected when the map is specified. Write protection can
be enabled or disabled at any time by the supervisor.

Indirect Protection

An indirection loop occurs when the effective address calculation follows a chain of
indirect addresses and never finds a word with bit 0 set to 0. Without indirect protection,
the CPU would be unable to proceed with any further instructions, thus effectively
halting the system.

With indirect protection enabled, a chain of 15 indirect references will cause a protection
fault. Indirect protection can be enabled or disabled at any time by the supervisor.

I/0 Protection

1/O protection protects the I/O devices in the system from unauthorized access. In
many systems, all I/O operations are performed through operating system calls. Clearly,
it is undesirable to permit individual users to execute I/O instructions, since this will
interfere with the operating system. If a user with I/O protection enabled attempts to
execute an I/O instruction, a protection fault will occur. I/O protection can be enabled
or disabled at any time.

372

C/350 Memory Allocation and Protection

MAP Protection Faults

When a user attempts to violate one of the enabled types of protection, a protection fault
occurs, as follows:

e The current user map is disabled.
¢ A S-word return block is pushed onto the system stack.

* Control is transferred to the protection fault handler, through an indirect jump via
location 3.

The system programmer must supply a protection fault handler which determines the
type of fault that occurred (using the Read Map Status instruction), and then takes the
appropriate action.

A protection fault can occur at any point during the execution of an instruction.
Therefore, the return address in the fifth word of the return block is not always correct.
For 1/0 protection faults, however, the fifth word will always be the logical address of
the instruction following the instruction that caused the fault.

Load Effective Address Mode

The Load Effective Address instruction has the same format as some of the I/O
instructions. The MAP therefore has a Lef mode bit which determines whether an I/O
format instruction will be interpreted as an I/O or a LEF instruction. When the Lef
mode bit is 1 (Lef mode enabled), all I/O format instructions are interpreted as Load
Effective Address instructions. When the Lef mode bit is 0, all I/O format instructions
are interpreted as I/O instructions.

The Load Effective Address instruction is very useful for quickly loading a constant
into an accumulator. In addition, a user operating in the Lef mode is effectively denied
access to any I/O devices, because all I/O and Lef instructions are interpreted as Lef
instructions in this mode. Thus, Lef mode can be used for I/O protection. Note,
however, that no indication is given if an I/O instruction is interpreted as a Lef
instruction.

When not operating in the Lef mode, all Lef and I/O instructions are interpreted as
I/O instructions. With I/O protection enabled, these instructions will cause a protection
fault in the normal manner. With I/O protection disabled, the Lef instruction will be
executed as an I/O instruction if possible.

Initial Conditions

At power up, the user maps and the data channel maps are undefined, the MAP is in
unmapped mode, and unmapped logical page 31 is mapped to physical page 31.

After an I/O Reset, the MAP is in unmapped mode, the data channel maps are disabled,
and unmapped logical page 31 is mapped to physical page 31.

C/350 Memory Allocation and Protection 373

MAP Instructions

The MAP instructions control the actions of the MAP. They are used by the supervisor
program to change the mapping functions or check the status of the various maps.

NOTE: M AP instructions can be executed in mapped mode if 1/O protection and Lef mode are
disabled for that user. When executed in mapped mode, the Read Map Status, Initiate Page
Check, and Page Check instructions will return the desired information without changing the
map. The Map Single Cycle instruction will disable the user map after the next memory
reference. The remainder of the instructions will change the map while the map is enabled,
with undesirable results for this user, another user, or the system as a whole.

Enabling Lef mode only will convert all IO instructions (including M AP instructions) to Lef
instructions. The Load Map instruction, however, does not use the I/O format and therefore

can still be executed. Enabling both Lef mode and I/O protection will prevent execution of the
Load Map instruction.

The MAP instructions are shown in Table E.1. All except Load Map are in 1/0O format

using the device mnemonic MAP.

MNEM

Name

Action

DIA
DiC

DOA

DOB

DOC
Lmp

NIOP

Read Map Status
Page Check

Load Map Status
Map Supervisor Page 31

Initiate Page Check
Load Map

Map Single Cycle

Reads the status of the current map.

Provides the identity and some characteristics of the physical
page corresponding to the logical page identified by the
immediately preceding Initiate Page Check instruction.
Defines the parameters of a new map.

Specifies the physical page corresponding to logical page 31 of
the supervisor’s address space.

Identifies a logical page.

Loads successive words from memory into the MAP where they
are used to define a user or data channel map.

Maps one memory reference using the last user map.

Table E.1 C/350 MAP Instructions

Appendix F

Instruction Execution Times

The following table gives the average execution times of the instructions supported by
the MV/8000. Times throughout are in microseconds.

ADC
ADD
ADDI
ADI
ANC
AND
ANDI
BAM
BKPT
BLM
8TO
BTZ
am
CMP
CMT
CMmv
coB
coMm
CRYTC
CRYTO
CRYTZ
CTR
CVWN
DAD
DEQUE
DHXL
DHXR
DIv
Divs
DIvX
DLSH
DsB
DSPA
Dsz
DSZTS
ECLID
EDSZ
EISZ
EJMP
EJSR
ELDA
ELDB
ELEF
ENQH
ENQT
ESTA
ESTB
FAB
FAD

0.33
0.33
0.22
0.44
0.22
0.33
0.22

1.64 + ind
1.564 + ind

3.74
0.33
0.22
0.22
0.22

0.77
0.22
0.22
1.10
1.10
3.19
3.74
3.63
3.52
0.22

1.32
1.10

1.32
1.32
0.66
0.66
0.44
0.44
0.44
3.52
3.52
0.44
0.44
0.22
5.17

FAMD
FAMS
FAS
FCLE
FCMP
FDD

FDMD

FOMS

FDS

FEXP
FFAS
FFMD
FHLV

FINT
FLAS
FLDD
FLDS
FLMD
FLST
FMD
FMMD
FMMS
FMOV
FMS
FNEG
FNOM
FNS
FPOP
FPSH
FRH
FSA
FSCAL
FSD
FSEQ

5.83

1.54
0.88
0.66
0.66
40.70 (FPSR8=0);
47.52 (FPSR8=1)
41.36 (FPSR8=0);
48.18 (FPSR8=1)
4.51 (FPSR8=0);
5.61 (FPSR8=1)
3.85 (FPSR8=0);
4.95 (FPSR8=1)
0.44

1.21

2.13

1.80 (FPSR8=0);
1.89 (FPSR8=1)
1.1

0.77

1.10

0.66

1.65

1.10

11.00

11.66

2.86

0.66

2.20

0.44

1.21

0.22

5.61

4.40

0.44

0.44

2.75

5.17

0.88

FSGE
FSGT
FSLE
FSLT
FSMD
FSMS
FSND
FSNE
FSNER
FSNM
FSNO
FSNOD
FSNU
FSNUD
FSNUO

FSST
FSTD
FSTS
FTD
FTE
FXTD
FXTE
HLV
HXL
HXR
INC
I0R
IORI
1Sz
ISZTS
JMP
JSR
LCALL

LCPID
LDA
LDAFP
LDASB
LDASL
LDASP
LDATS
LDB
LDI
LDIX
LDSP
LEF
LFAMD
LFAMS

0.88
0.88
1.10
0.88
5.83
1.54
0.88
0.88
0.66
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.44
0.44
0.44
0.22
0.44
0.60
0.22
0.44
0.33
0.22
0.22
1.32
1.10
0.66
0.66
2.20
6.82

0.44
0.44
0.44
0.44
0.44
0.44
0.44

0.44
5.83
1.54

intra ring,
cross ring

LFDMD

LFDMS

LFLDD
LFLDS
LFLST
LFMMD
LFMMS
LFSMD
LFSMS
LFSST
LFSTD
LFSTS
LJMP
LJSR
LLDB
LLEF
LLEFB
LMRF
LNADD
LNDIV
LNDSZ
LNISZ
LNLDA
LNMUL
LNSTA
LNSUB
LoB
LPEF
LPEFB
LPHY
LPSHJ
LPSR
LRB
LSBRA
LSBRS
LSH
LSN
LSTB
LWADD
LWDiIV
LWDSsZ
Lwisz

41.36 (FPSR8=0);
48.18 (FPSR8=1)
4.51 (FPSR8=0);
5.61 (FPSR8=1)
1.10

0.66

1.32

11.66

2.86

5.83

1.54

0.88

0.88

0.44

0.66

0.66

0.44

0.44

0.66

1.76

0.66

3.74

1.32

1.32

0.44

2.53

0.44

0.66

1.54

0.88 + EFA
0.88 + EFA
1.98

1.76 + EFA
0.44

1.76

8.58 + PURGE BUSY
8.36

2.42

0.44

0.66

5.50

5.50

1.54

0.44

DG-07325

376

Instruction Execution Times

LWLDA
LWMUL
LWSTA
Lwsus
MOV
MSP
MuUL
MULS
NADD
NADD!
NADI
NBSAC
NBSAS
NBSE
NBSGE
NBSLE
NBSNE
NBSSC
NBSSS
NDIV
NEG
NFSAC
NFSAS
NFSE
NFSGE
NFSLE
NFSNE
NFSSC
NFSSS
NLDAI
NMUL
NNEG
NSALA
NSALM
NSANA
NSANM
NSBI
NSuB
ORFB
PATU
PBX

POP
POPB
POPJ
PSH
PSHJ
PSHR
RRFB
RSTR
RTN
SAVE
SBI
SEX
SGE
SGT
SMRF
SNB
SNOVR
SPSR

3.19
0.66
0.33
2.20
3.30
2.20
2.20
0.22
0.44
0.44
0.88 +
0.88
0.88
0.88
0.88
0.88
0.88
0.88
3.52
0.33
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66

1.54 per search
1.54 per search
1.54 per search
1.54 per search
1.54 per search
1.54 per search
1.64 per search
1.54 per search

+ 4+ 4+

.54 per search
.54 per search
.54 per search
.54 per search
.54 per search
54 per search
.54 per search
.54 per search

Attt

2.31
0.22
0.88
1.10
0.66
1.10
0.44
0.22

0.66 + Purge Busy
6.60 + executed
instruction

3.52

4.84

3.96

3.08

3.52

3.62

1.54 + 0.66 per bit
3.96

4.84

4.18

0.44

0.22

1.76
1.98

0.22

STA
STAFP
STASB
STASL
STASP
STATS
sT8
STI
STIX
suB
syc
SzB
S$780
VBP

WADC
WADD
WADDI
WADI
WANC
WAND
WANDI
WASH
WBLM
WBR
WBSAC
WBSAS
WBSE
WBSGE
WBSLE
WBSNE
wBSSC
WBSSS
WBTO
WBTZ
WCLM
WCMP
WCMT
WwCMmyV
WCOB
WCOM
WCTR
WDIV
WDIVS
WDPOP

WFFAD
WFLAD
WFPOP
WFPSH
WFSAC
WFSAS
WFSE
WFSGE
WFSLE
WFSNE
WFSSC
WFSSS
WHLV
WINC
WIOR
WIORI
WLDAI
WLDB

0.44
0.44
0.66
0.66
0.44
0.44
0.44

0.33

1.98
1.98

0.22
0.22
0.44
0.44
0.22
0.22
0.22
4.18

0.66
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
1.54
1.54

1.32 per search
1.32 per search
1.32 per search
1.32 per search
1.32 per search
1.32 per search
1.32 per search
1.32 per search

4+t

7.26
0.22

5.28

5.94

0.44 for restart,
18.48 for restore

1.25
1.21
5.61
4.18
0.66 + 1.32 per search
0.66 + 1.32 per search
0.66 + 1.32 per search
0.66 + 1.32 per search
0.66 + 1.32 per search
0.66 + 1.32 per search
0.66 + 1.32 per search
0.66 + 1.32 per search
0.60
0.22
0.22
0.22
0.44

WLDI
WLDIX
WLOB
WLRB
WLSH
WLS!
WLSN
wMov
WMSP
WMUL
WMULS
WNAD!
WNEG
WPOP
WPOPB
WPOPJ
WPSH
WRSTR
WRTN
WSALA
WSALM
WSANA
WSANM
WSAVR
WSAVS
wssl
WSEQ
WSGE
WSGT
WSKBO
WSKBZ
WSLE
WSLT
WSNB
WSNE
WSSVR
WSSVS
WSTB
WSTH
WSTIX
WSUB
WwszB
WSZBO
WUSGE
WUSGT
WXCH
WXOP
WXOP 1
WXOR
WXORI
XCALL

XCH
XCT

XFAMD
XFAMS
XFDMD

XFOMS

XFLDD
XFLDS
XFMMD
XFMMS
XFSMD
XFSMS

1.32
1.76
2.42
0.77

0.22
1.32
2.97
2.86
0.44
0.22
2.20
6.28
1.10
2.20
6.72
6.16
0.88
1.10
0.66
1.10
2.64
2.64
0.44

1.10
1.110

1.98

3.08
3.08
0.44

0.22
1.98
1.98

0.66

0.22

0.22

2.20 intra ring,

6.82 cross ring

0.66

0.66 + executed
instruction

5.83

1.54

41.36 (FPSR8=0);

48.18 (FPSR8=1)

4,51 (FPSR8=0);

5.61 (FPSR8=1)

1.10

0.66

11.66

2.86

5.83

1.54

DG-07325

Appendix G
Floating Point Operations

As noted in Chapter 8, the processor performs floating point operations between floating
point operands. This appendix describes these operations and how they are performed.

The four floating point operations are:

» Addition,

e Subtraction,
e Multiplication,
e Division.

. Floating Point Addition

The processor compares the exponents of the two floating point operands and finds the
absolute value of the difference between them (a value d). The mantissa of the operand
with the smaller exponent is shifted d hex digits to the right. The processor then adds the
two mantissas using the rules of algebra to get the result mantissa and sign. The result
exponent has the same value as does the exponent of the larger of the two operands.

If the result mantissa is too large, the processor shifts it to the right one hex digit, places
the value 0001 in the mantissa’s most significant digit, and adds one to the result
mantissa.

Floating Point Subtraction

The processor complements the sign bit of the operand to be subtracted (located in ACS
or in memory, depending on the instruction), then performs a floating point add as
described above.

Floating Point Multiplication

The processor uses the rules of algebra to multiply the mantissas of the two operands
together and determine the sign. The exponents of the operands are added together.

378 Floating Point Operations

Floating Point Division

The operand in ACS or memory is called the divisor; that in ACD, the dividend. If the
divisor is 0, the processor sets the DVZ flag in the FPSR to 1 and ends the instruction.

If the divisor is not 0, the processor compares the mantissas of the two operands. If the
divisor mantissa is greater than or equal to the dividend mantissa, the processor shifts
the dividend mantissa to the right one hex digit, places 0000 in the dividend mantissa’s
most significant digit, and adds one the the dividend exponent. Using the rules of
algebra, the processor divides the dividend mantissa by the divisor mantissa, and
determines the sign. The divisor mantissa is subtracted from the dividend exponent.

Appendix H
Standard I/O Device Codes

OCTAL OCTAL
DEVICE PRIORITY DEVICE PRIORITY
CODES |MNEMONIC |[MASK BIT DEVICE NAME CODES| MNEMONIC |MASK BIT DEVICE NAME
00 — | Unused 41* | oro 8 IPB full duplex output
01 -—- -- Unused 40 SCR 8 Synch. communication receiver
02 ERCC -- Error checking and correction 41 SCT 8 Synch. communication transmitter
03 MAP -- Memory allocation and protection unit|| 42 DIO 7 Digital I/0
04 43 DIOT 6 Digital I/Q timer
PIT 6 Programmable Interval Timer
05 44 MXM 12 Modem control for MX1/MX2
06 MCAT 12 Multiprocessor adapter transmitter 45
07 MCAR 12 Muiltiprocessor adapter receiver 46 MCAT1 12 Second multiprocessor transmitter
10 TTI 14 TTY input 47 MCAR1 12 Second muitiprocessor receiver
1 TTO 15 TTY output 50 TN 14 Second TTY input
12 PTR 11 Paper tape reader 51 TTO1 15 Second TTY output
13 PTP 13 Paper tape punch 52 PTR1 11 Second paper tape reader
14 RTC 13 Real-time clock 53 PTP1 13 Second paper tape punch
15 PLT 12 Incremental plotter 54 RTC1 13 Second real-time clock
16 CDR 10 Card reader 55 PLT1 12 Second incremental plotter
17 LPT 12 Line printer 56 CDR1 10 Second card reader
20 DSK 9 Fixed head disc 57 LPT1 12 Second line printer
21 ADCV 8 A/D converter 60 DSK1 9 Second fixed head disc
22 MTA 10 Magnetic tape 61 ADCV1 8 Second A/D converter
23 DACV - D/A converter 62 MTA1 10 Second magnetic tape
24 DCM o] Data communications multiplexor 63 DACV1 -- Second D/A converter
25 64
26 DKB 9 Fixed head DG/Disc 65
27 DPF 7 DG/Disc storage subsystem 66 DKB1 9 Second Fixed Head DG/Disc
30 QTy 14 Asynch. hardware multiplexor 67 DPF1 7 Second DG/Disc storage subsystem
30 SLA 14 Synchronous line adapter 70 QTvY1 14 Second asynch. hardware mux
31’ IBM1 13 IBM 360/370 interface 70 SLA1 14 Second synchronous line adapter
32 1BM2 13 IBM 360/370 interface 71! 13 Second IBM 360/370 interface
33 DKP 7 Moving head disc 72 13 Second IBM 360/370 interface
34! CAS' 10 Cassette tape 73 DKP1 7 Second moving head disc
DCU 4 4 Data Control Unit
34 MX1 11 Multiline asynchronous controller 74 CAS1 10 Second cassette tape
35 MX2 1 Muitiline asynchronous controller 74! 1 Second multiline asynch. controller
36 IPB 6 Interprocessor bus--half duplex 75 11 Second multiline asynch. controller
37 VT 6 IPB watchdog timer 76 DPU 4 DCU To Host Interface
402 DPI 8 IPB full duplex input 77 CPU - CPU and console functions
DG-07317

1. Code returned by INTA and used by VCT
2. Can be set up with any unused even device code equal to 40 or above
3. Can be set up with any unused odd device code equal to 41 or above

4. Can be set to any unused device code between 1 and 76
5. Microinterrupts are not maskable.

Index by Instruction Name

Add Complement 158

Add 158

Extended Add Immediate 159
Add Immediate 159

AND With Complemented Source 160
AND 160

AND Immediate 160

Block Add and Move 160
Breakpoint 161

Block Move 162

Set Bit To One 162

Set Bit To Zero 163

Compare To Limits 163

Character Compare 164
Character Move Until True 165
Character Move 166

Count Bits 167

Complement 167

Complement Carry 168

Set Carry to One 168

Set Carry to Zero 168
Character Translate 168
Convert to 16-Bit Integer 170
Decimal Add 170

Double Hex Shift Left 170
Double Hex Shift Right 171
Unsigned Divide 171

Signed Divide 172

Sign Extend and Divide 172
Double Logical Shift 172
Decimal Subtract 173

Dispatch 173

Decrement And Skip If Zero 174
Decrement the Word Addressed by WSP and Skip if Zero 175
Load CPU Identification 175
Edit 176

Add To DI 177

Add To P Depending On S 177
Add To P Depending On T 178
Add To P 178

Add To SI 178

Index by Instruction Name

Decrement and Jump If Non-Zero 178
End Edit 179

Insert Characters Immediate 179

Insert Character J Times 179

Insert Character Once 179

Insert Sign 179

Insert Character Suppress 180

Move Alphabetics 180

Move Characters 180

Move Float 180

Move Numerics 181

Move Digit With Overpunch 181

Move Numeric With Zero Suppression 182
End Float 182

Set S To One 182

Set S To Zero 183

Store In Stack 183

Set T To One 183

Set T To Zero 183

Extended Decrement and Skip if Zero 183
Extended Increment And Skip If Zero 184
Extended Jump 184

Extended Jump To Subroutine 184
Extended Load Accumulator 185
Extended Load Byte 185

Load Effective Address 186

Enqueue Towards the Head 186
Enqueue Towards the Tail 187
Extended Store Accumulator 188
Extended Store Byte 188

Absolute Value 189

Add Double (FPAC to FPAC) 189
Add Double (Memory to FPAC) 189
Add Single (Memory to FPAC) 190
Add Single (FPAC to FPAC) 190
Clear Errors 190

Compare Floating Point 191

Divide Double (FPAC by FPAC) 191
Divide Double (FPAC by Memory) 192
Divide Single (FPAC by Memory) 192
Divide Single (FPAC by FPAC) 193
Load Exponent 193

Fix To AC 194

Fix To Memory 194

Halve 195

Integerize 195

Float From AC 195

Load Floating Point Double 196

Load Floating Point Single 196

Float From Memory 196

Load Floating Point Status 197
Multiply Double (FPAC by FPAC) 197
Multiply Double (FPAC by Memory) 198
Multiply Single (FPAC by Memory) 198
Move Floating Point 199

Multiply Single (FPAC by FPAC) 199
Negate 199

Index by Instruction Name

Normalize 199

No Skip 200

Pop Floating Point State 200

Push Floating Point State 202

Read High Word 203

Skip Always 203

Scale 203

Subtract Double (FPAC from FPAC) 204
Skip On Zero 204

Skip On Greater Than Or Equal To Zero 204
Skip On Greater Than Zero 204

Skip On Less Than Or Equal To Zero 204
Skip On Less Than Zero 205

Subtract Double (Memory from FPAC) 205
Subtract Single (Memory from FPAC) 205
Skip On No Zero Divide 206

Skip On Non-Zero 206

Skip On No Error 206

Skip On No Mantissa Overflow 206

Skip On No Overflow 206

Skip On No Overflow and No Zero Divide 207
Skip On No Underflow 207

Skip On No Underflow And No Zero Divide 207
Skip On No Underflow And No Overflow 207
Subtract Single (FPAC from FPAC) 207
Store Floating Point Status 208

Store Floating Point Double 208

Store Floating Point Single 208

Trap Disable 209

Trap Enable 209

Fixed Point Trap Disable 209

Fixed Point Trap Enable 210

Halve 210

Hex Shift Left 210

Hex Shift Right 210

Increment 211
Inclusive OR 211
Inclusive OR Immediate 212

Increment And Skip If Zero 212

Increment the Word Addressed by WSP and Skip if Zero
Jump 212

Jump To Subroutine 213

Call Subroutine (Long Displacement) 213

Load CPU Identification 214

Load Accumulator 214

Load Accumulator with WFP 215

Load Accumulator with WSB 215

Load Accumulator with WSL 215

Load Accumulator with WSP 215

Load Accumulator with Double Word 216

Load Byte 216

Load Integer 216

Load Integer Extended 217

Dispatch (Long Displacement) 217

Load Effective Address 218

Add Double (Memory to FPAC) (Long Displacement)
Add Single (Memory to FPAC) (Long Displacement)

212

219
219

Index by Instruction Name

Divide Double (FPAC by Memory) (Long Displacement) 220
Divide Single (FPAC by Memory) (Long Displacement) 220
Load Floating Point Double (Long Displacement) 220
Floating Point Load Single (Long Displacement) 221

Load Floating Point Status (Long Displacement) 221

Multiply Double (FPAC by Memory) (Long Displacement) 221
Multiply Single (FPAC by Memory) (Long Displacement) 222
Subtract Double (Memory from FPAC) (Long Displacement) 222

Subtract Single (Memory from FPAC) (Long Displacement) 223
Store Floating Point Status (Long Displacement) 223

Store Floating Point Double (Long Displacement) 223

Store Floating Point Single (Long Displacement) 224

Jump (Long Displacement) 224

Jump to Subroutine (Long Displacement) 224

Load Byte (Long Displacement) 225

Load Effective Address (Long Displacement) 225

Load Effective Byte Address (Long Displacement) 225

Load Modified and Referenced Bits 225

Narrow Add Memory Word to Accumulator (Long Displacement) 226
Narrow Divide Memory Word (Long Displacement) 226

Narrow Decrement and Skip if Zero (Long Displacement) 226
Narrow Increment and Skip if Zero (Long Displacement) 227
Narrow Load Accumulator (Long Displacement) 227

Narrow Multiply Memory Word (Long Displacement) 227
Narrow Store Accumulator (Long Displacement) 227

Narrow Subtract Memory Word (Long Displacement) 228

Locate Lead Bit 228

Push Address (Long Displacement) 228
Push Byte Address (Long Displacement) 228
Load Physical 229

Push Jump (Long Displacement) 229

Load Processor Status Register into ACO 230
Locate and Reset Lead Bit 230

Load All Segment Base Registers 230

Load Segment Base Registers 1-7 231
Logicai Shift 232

Load Sign 232

Store Byte (Long Displacement) 233

Wide Add Memory Word to Accumulator (Long Displacement) 233
Wide Divide From Memory (Long Displacement) 233

Wide Decrement and Skip if Zero (Long Displacement) 234

Wide Increment and Skip if Zero (Long Displacement) 234

Wide Load Accumulator (Long Displacement) 234

Wide Multiply From Memory (Long Displacement) 234

Wide Store Accumulator (Long Displacement) 235

Wide Subtract Memory Word (Long Displacement) 235

Move 235

Modify Stack Pointer 236

Unsigned Multiply 236

Signed Multiply 236

Narrow Add 237

Narrow Extended Add Immediate 237
Narrow Add Immediate 237

Search Queue 238

Narrow Search Queue Backward 239
Narrow Search Queue Backward 239
Narrow Search Queue Backward 240

Index by Instruction Name

Narrow Search Queue Backward
Narrow Search Queue Backward
Narrow Search Queue Backward
Narrow Search Queue Backward
Narrow Search Queue Backward
Narrow Divide 241

Negate 241

Narrow Search Queue Forward
Narrow Search Queue Forward
Narrow Search Queue Forward
Narrow Search Queue Forward
Narrow Search Queue Forward
Narrow Search Queue Forward
Narrow Search Queue Forward
Narrow Search Queue Forward

Narrow Load Immediate 243

Narrow Multiply 243
Narrow Negate 243

Narrow Skip on All Bits Set in Accumulator
Narrow Skip on All Bits Set in Memory Location
Narrow Skip on Any Bit Set in Accumulator
Narrow Skip on Any Bit Set in Memory Location
245

Narrow Subtract Immediate
Narrow Subtract 245
OR Referenced Bits 245
Purge the ATU 246

Pop Block and Execute 246
Pop Multiple Accumulators
Pop Block 247

Pop PC And Jump 248
Push Multiple Accumulators
Push Jump 248

Push Return Address 249
Reset Referenced Bit 249
Restore 249

Return 250
Save 251
Subtract Immediate 252

Sign Extend 252

Skip If ACS Greater Than Or Equal to ACD

Skip If ACS Greater Than ACD

Store Modified and Referenced Bits

Skip On Non-Zero Bit 253
Skip on OVR Reset 254

240
240
240
240
241

241
242
242
242
242
242
243
243

248

253

253

Store Processor Status Register From ACO

Store Accumulator 254
Store Accumulator in WFP
Store Accumulator in WSB
Store Accumulator in WSL
Store Accumulator in WSP

Store Accumulator into Stack Pointer Contents

Store Byte 256

Store Integer 256

Store Integer Extended 257
Subtract 258

System Call 258

Skip On Zero Bit 259

Index by Instruction Name

Skip On Zero Bit And Set To One 259
Skip on Valid Byte Pointer 260

Skip on Valid Word Pointer 260
Wide Add Complement 260

Wide Add 261

Wide Add With Wide Immediate 261
Wide Add Immediate 261

Wide AND with Complemented Source 261
Wide AND 262

Wide AND Immediate 262

Wide Arithmetic Shift 262

Wide Block Move 263

Load PC 264

Wide Search Queue Backward 264
Wide Search Queue Backward 264
Wide Search Queue Backward 264
Wide Search Queue Backward 264
Wide Search Queue Backward 265
Wide Search Queue Backward 265
Wide Search Queue Backward 265
Wide Search Queue Backward 265
Wide Set Bit to One 265

Wide Set Bit to Zero 266

Wide Compare to Limits 266

Wide Character Compare 267

Wide Character Move Until True 268
Wide Character Move 269

Wide Count Bits 270

Wide Complement 270

Wide Character Translate 270

Wide Divide 272

Wide Signed Divide 272

Pop Context Block 272

Wide Edit 273

Add To DI 274

Add To P Depending On S 274

Add To P Depending On T 275

Add To P 275

Add To SI 275

Decrement And Jump If Non-Zero 275
End Edit 276

Insert Characters Immediate 276
Insert Character J Times 276
Insert Character Once 276
Insert Sign 276

Insert Character Suppress 277

Move Alphabetics 277

Move Characters 277

Move Float 277

Move Numerics 278

Move Digit With Overpunch 278
Move Numeric With Zero Suppression 279
End Float 279

Set S To One 279

Set S To Zero 279

Store In Stack 280

Set T To One 280

Index by Instruction Name

Set T To Zero 280

Wide Fix from Floating Point Accumulator 280
Wide Float from Fixed Point Accumulator 281
Wide Floating Point Pop 281

Wide Floating Point Push 282

Wide Search Queue Forward 284

Wide Search Queue Forward 284

Wide Search Queue Forward 284

Wide Search Queue Forward 284

Wide Search Queue Forward 284

Wide Search Queue Forward 285

Wide Search Queue Forward 285

Wide Search Queue Forward 285

Wide Halve 285

Wide Increment 285

Wide Inclusive OR 286

Wide Inclusive OR Immediate 286

Wide Load with Wide Immediate 286

Wide Load Byte 286

Wide Load Integer 287

Wide Load Integer Extended 287

Wide Locate Lead Bit 288

Wide Locate and Reset Lead Bit 288

Wide Logical Shift 288

Wide Logical Shift Immediate 289

Wide Load Sign 289

Wide Move 289

Wide Modify Stack Pointer 290

Wide Multiply 290

Wide Signed Multiply 290

Wide Add with Narrow Immediate 291

Wide Negate 291

Wide Pop Accumulators 291

Wide Pop Block 292

Pop PC and Jump 293

Push Accumulators 293

Wide Restore 293

Wide Return 294

Wide Skip on All Bits Set in Accumulator 294
Wide Skip on All Bits Set in Double-word Memory Location
Wide Skip on Any Bit Set in Accumulator 295
Wide Skip on Any Bit Set in Double-word Memory Location
Wide Save/Reset Overflow Mask 296

Wide Save/Set Overflow Mask 296

Wide Subtract Immediate 297

Wide Skip If Equal To 297

Wide Signed Skip If Greater Than Or Equal To 298
Wide Signed Skip If Greater Than 298

Wide Skip on Bit Set to One 298

Wide Skip on Bit Set to Zero 299

Wide Signed Skip If Less Than Or Equal To 299
Wide Signed Skip If Less Than 299

Wide Skip on Nonzero Bit 300

Wide Skip If Not Equal To 300

Wide Special Save/Set Overflow Mask 300
Wide Special Save/Set Overflow Mask 301
Wide Store Byte 302

295

295

Index by Instruction Name

Wide Store Integer 302

Wide Store Integer Extended 303

Wide Subtract 304

Wide Skip on Zero Bit 304

Wide Skip on Zero Bit and Set Bit To One 304

Wide Unsigned Skip If Greater Than Or Equal To 305

Wide Unsigned Skip If Greater Than 305

Wide Exchange 305

Wide Extended Operation 306

Wide Alternate Extended Operation 306

Wide Exclusive OR 307

Wide Exclusive OR Immediate 307

Call Subroutine (Extended Displacement) 307

Exchange Accumulators 308

Execute 308

Add Double (Memory to FPAC) (Extended Displacement 309

Add Single (Memory to FPAC) (Extended Displacement) 309
Divide Double (FPAC by Memory) (Extended Displacement) 310
Divide Single (FPAC by Memory) (Extended Displacement) 310
Extended Load Floating Point Double 310

Extended Load Floating Point Single 311

Multiply Double (FPAC by Memory) (Extended Displacement) 311
Multiply Single (FPAC by Memory) (Extended Displacement) 311
Subtract Double (Memory from FPAC) (Extended Displacement) 312
Subtract Single (Memory from FPAC) (Extended Displacement) 312

Store Floating Point Double (Extended Displacement) 312
Store Floating Point Single (Extended Displacement) 313
Jump (Extended Displacement) 313

Jump to Subroutine (Extended Displacement) 313

Load Effective Address (Extended Displacement) 313

Load Effective Byte Address (Extended Displacement) 314
Narrow Add Accumulator to Memory Word (Extended Displacement) 314
Narrow Divide Memory Word (Extended Displacement) 314
Narrow Decrement and Skip if Zero (Extended Displacement) 315
Narrow Increment and Skip if Zero (Extended Displacement) 315
Narrow Load Accumulator (Extended Displacement) 315

Narrow Multiply Memory Word (Extended Displacement) 315
Narrow Store Accumulator (Extended Displacement) 316

Narrow Subtract Memory Word (Extended Displacement) 316
Extended Operation 316

Exclusive OR 317

Exclusive OR Immediate 317

Push Address (Extended Displacement) 318

Push Byte Address (Extended Displacement) 318
Push Jump (Extended Displacement) 318
Vector on Interrupting Device (Extended Displacement) 318

Wide Add Accumulator to Memory Word (Extended Displacement) 319
Wide Divide Memory Word (Extended Displacement) 319

Wide Decrement and Skip if Zero (Extended Displacement) 319

Wide Increment and Skip if Zero (Extended Displacement) 320

Wide Load Accumulator (Extended Displacement) 320

Wide Multiply Memory Word (Extended Displacement) 320

Wide Store Accumulator (Extended Displacement) 320

Wide Subtract Memory Word (Extended Displacement) 321

Zero Extend 321

ADC/c][sh][#] 158
ADD/c/[sh][#] 158

ADDI 159
ADI 159

ANC 160
AND/c/[sh][#] 160
ANDI 160
BAM 160
BKPT 161
BLM 162
BTO 162
BTZ 163
CLM 163
CMP 164
CMT 165
CMV 166
COB 167

COM/c/[sh][#] 167
CRYTC 168
CRYTO 168
CRYTZ 168

CTR 168
CVWN 170
DAD 170
DHXL 170
DHXR 171
DIV 171
DIVS 172
DIVX 172
DLSH 172
DSB 173
DSPA 173
DSZ 174

DSZTS 175
ECLID 175

EDIT 176

DADI 177
DAPS 177
DAPT 178
DAPU 178
DASI 178

DDTK 178
DEND 179
DICI 179

DIMC 179

Index by Mnemonics

DINC
DINS
DINT
DMVA
DMVC
DMVF
DMVN
DMVO
DMVS
DNDF
DSSO
DSSZ
DSTK
DSTO
DSTZ
EDSZ
EISZ
EJMP
EJSR
ELDA
ELDB
ELEF
ENQH
ENQT
ESTA
ESTB
FAB
FAD
FAMD
FAMS
FAS
FCLE
FCMP
FDD
FDMD
FDMS
FDS
FEXP
FFAS
FFMD
FHLV
FINT
FLAS
FLDD
FLDS

179
179
180

180
180
180
181
181
182
182
182
183
183
183
183
183
184
184
184
185
185
186
186
187
188
188
189
189
189
190
190
190
191
191
192
192

193
193
194

194

195
195
195
196
196

FLMD 196
FLST 197
FMD 197

FMMD 198
FMMS 198

FMOV 199
FMS 199
FNEG 199
FNOM 199
FNS 200
FPOP 200
FPSH 202
FRH 203
FSA | 203
FSCAL 203
FSD 204
FSEQ 204
FSGE 204
FSGT 204
FSLE 204
FSLT 205
FSMD 205
FSMS 205
FSND 206
FSNE 206
FSNER 206
FSNM 206
FSNO 206
FSNOD 207
FSNU 207

FSNUD 207
FSNUO 207

FSS 207
FSST 208
FSTD 208
FSTS 208
FTD 209
FTE 209
FXTD 209
FXTE 210
HLV 210
HXL 210
HXR 210
INC/c][sh][#]
IOR 211

211

Index by Mnemonics

IORI 212
ISz 212
ISZTS 212
JMP 212
JSR 213

LCALL 213
LCPID 214

LDA

214

LDAFP 215
LDASB 215
LDASL 215
LDASP 215
LDATS 216

LDB
LDI
LDIX
LDSP
LEF

216

216
217
217

218

LFAMD 219
LFAMS 219
LFDMD 220
LFDMS 220

LFLD
LFLD

D 220
S 221

LFLST 221
LFMMD 221
LFMMS 222
LFSMD 222
LFSMS 223
LFSST 223

LFSTD 223
LFSTS 224
LIMP 224
LIJSR 224
LLDB 225
LLEF 225
LLEFB 225
LMRF 228
LNADD 226
LNDIV 226

LNDSZ 226
LNISZ 227
LNLDA 227
LNMUL 227
LNSTA 227
LNSUB 228

LOB 228
LPEF 228
LPEFB 228
LPHY 229
LPSHJ 229
LPSR 230
LRB 230

LSBRA 230
LSBRS 231

LSH
LSN
LSTB

232
232
233

LWADD 233

LWDIV 233
LWDSZ 234
LWISZ 234
LWLDA 234
LWMUL 234
LWSTA 235
LWSUB 235

MOV /c][sh][#]
MSP 236
MUL 236
MULS 236

NADD 237
NADDI 237
NADI 237
NBSAC 239
NBSAS 239
NBSE 240
NBSGE 240
NBSLE 240
NBSNE 240
NBSSC 240
NBSSS 241
NDIV 241
NEG/c/[sh][#]
NFSAC 241
NFSAS 242
NFSE 242
NFSGE 242
NFSLE 242
NFSNE 242
NFSSC 243
NFSSS 243

NLDAI 243
NMUL 243
NNEG 243

NSALA 244

NSALM 244
NSANA 244
NSANM 245

NSBI 245
NSUB 245
ORFB 245
PATU 246
PBX 246
POP 247
POPB 247
POPJ 248
PSH 248
PSHJ 248
PSHR 249
RRFB 249
RSTR 249
RTN 250
SAVE 251
SBI 252
SEX 252
SGE 252
SGT 253
SMRF 253

235

241

SNB 253
SNOVR 254
SPSR 254
STA 254
STAFP 255
STASB 255
STASL 255
STASP 255
STATS 256
STB 256
STI 256
STIX 257
SUB/c][sh][#]
SYC 258
SZB 259
SZBO 259
VBP 260
VWP 260
WADC 260
WADD 261
WADDI 261
WADI 261
WANC 261
WAND 262
WANDI 262
WASH 262
WBLM 263
WBR 264
WBSAC 264
WBSAS 264
WBSE 264
WBSGE 264
WBSLE 265
WBSNE 265
WBSSC 265
WBSSS 265
WBTO 265
WBTZ 266
WCLM 266
WCMP 267
WCMT 268
WCMV 269
WCOB 270
WCOM 270
WCTR 270
WDIV 272
WDIVS 272
WDPOP 272
WEDIT 273
DADI 274
DAPS 274
DAPT 275
DAPU 275
DASI 275
DDTK 275
DEND 276
DICI 276
DIMC 276
DINC 276

258

Index by Mnemonics

DINS
DINT
DMVA
DMVC
DMVF
DMVN
DMVO
DMVS
DNDF
DSSO
DSSZ
DSTK
DSTO
DSTZ
WFFAD
WFLAD
WFPOP
WFPSH
WFSAC
WFSAS
WFSE
WFSGE
WFSLE
WFSNE
WFSSC
WFSSS
WHLV
WINC
WIOR
WIORI
WLDAI
WLDB
WLDI
WLDIX
WLOB
WLRB
WLSH
WLSI
WLSN
WMOV
WMSP
WMUL
WMULS
WNADI
WNEG
WPOP
WPOPB
WPOPJ
WPSH
WRSTR
WRTN
WSALA
WSALM
WSANA
WSANM
WSAVR
WSAVS
WSBI
WSEQ

276
277
277
277
277
278
278
279
279
279
279
280
280
280
280
281
281
282
284
284
284
284
284
285
285
285
285
285
286
286
286
286
287
287
288
288
288
289
289
289
290
290
290
291
291
291
292
293
293
293
294
294
295
295
295
296
296
297
297

WSGE
WSGT

WSKBO
WSKRBRZ
WSLE
WSLT
WSNB
WSNE
WSSVR
WSSVS
WSTB
WSTI
WSTIX
WSUB
WSZB
WSZBO
WUSGE
WUSGT
WXCH
WXOP
WXOP1
WXOR
WXORI
XCALL
XCH
XCT
XFAMD
XFAMS
XFDMD
XFDMS
XFLDD
XFLDS
XFMMD
XFMMS
XFSMD
XFSMS
XFSTD
XFSTS
XIMP
XJSR
XLEF
XLEFB
XNADD
XNDIV
XNDSZ
XNISZ
XNLDA
XNMUL
XNSTA
XNSUB
XOPO
XOR
XORI
XPEF
XPEFB
XPSHJ
XVCT
XWADD
XWDI1V

298
298

298
200

9

299
299
300
300
300
301
302
302
303
304
304
304
305
305
305
306
306
307
307
307

308
308

309
309
310
310
310
311
311
311
312
312
312
313
313

313

313
314
314
314
315
315
315
315
316
316

316
317

317

318
318
318

318

319

319

XWDSZ
XWISZ
XWLDA
X‘V‘V’}V{UL
XWSTA
XWSUB

ZEX

319
320
320

e 1o 713
J&U

320
321
321

Pleage he!
publications by answering the questions below.
Use the space provided for your comments.

Engineering
Publications

Comment Form

Title:

Document No, __014-000648-00

Yes Mo O You (can,cannot) find things easily. O Other:
0 o O Language (is,is not) appropriate.
O Technical terms (are,are not) defined
as needed.
O Learning to use the equipment O To instruct a class.
O As a reference O Other:
O As an introduction to the
product
O Visuals (are,are not) well designed.
o O
O Labels and captions (are,are not) clear.
O Other:
O O
O O
Name: Title:
Company: Division:
Address: City:
State: Zip: Telephone: Date:
.DG-06895

€»DataGeneral

Data General Corporation, Westboro, Massachusetts 01581

FOLD

FOLD

STAPLE

FOLD

STAPLE

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢y DataGeneral

ATTN: Users Group Coordinator
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

	0000
	0001
	0002
	0003
	0004
	0005
	003
	004
	005
	006
	007
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	replyA
	replyB

