Real Time Disk
Operating System

(RDOS)

‘Reference Manual

093-000075-08

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (083-series) supplied with the sofiware.

“~, Ordering No. 093-000075 :
7 @Data General Corporation, 1972, 1973, 1974, 1975. 1979
“ All Rights Reserved
Printed in the United States of America
Revision 08, March 1979
Licensed Material - Property of Data General Corporation

093-000075-08

Contents

Chapter 1 - Introduction

Generatingan RDOS System . 1-1
Communicating With RDOS 1-1
Program Development L 1-2
Higher-Level Languages 1-2
Assembly Language L 1-2
Main Memory Considerations | 1-2
Foreground/Background Programming 1-3
Mapped Features 1-3
RDOS Organization 1-3
System Libraryand Source Files 1-4
Chapter 2 - Files and Directories
DefinitionofaFile 2-1
FileOverview 2-1
Reserved Device Names 2-1
Disk FileNames 3
File Attributesand Characteristics 2-3
File Transfer 2-4
DiskFiles 2-4
Sequentially Organized Files. 2-5
Randomly Organized Files. 2-6
Contiguously-Organized Files 2-7
RDOS Disk Directories 2-7
Initial Disk Block Assignments 2-8
System Directory (SYS.DR). 2-8
UserDirectories 2-9
Partitions and Subdirectories 2-9
Initializing and Releasing a Partition or Subdirectory 2-10
Referencing Disk Files o . 2-11
Master Directory. 2-11
LinkEntries 2-11
Link Devices 2-13
File AccessExample 2-14
Plan 1. .o o, 2-14
Plan2 R 2-14
Directory Command Summary. 2-16
Magnetic And Cassette Tape Files 2-17
Nine and Seven Track DataWords 2-17
Tape File Organization 2-18
Initializing and Releasinga Tape Drive 2-18
Referencing Tape Files Using File /O 2-18
LinkingtoTape Files 2-20
Free Form Tape Readingand Writing 2-20

Licensed Materiai-Property of Data General Corporation

vii

viii

Chapter 2 - Files and Directories (Continued)

Muliipkxors............,.‘...,.........‘._,............,2-20
Checking Multiplexed Lines for Activity or Interrupts2-21
Line64Reads. 2-21
Line 64 Writes (ALMand ULMonly) 2-21
ULM LineCodes. e, 2-22
Multiple Channels .. . 2-22
ALMand ULM Modem Support 2-22
Multiplexor Error Messages. 2-22
ALMSPD.SR 2-22

L T S A

Chapter 3 - Singie Task Programming

Multiple and Single Task Environments 3-1
Systemand Task Calls 3-1
StatusOnReturn From System Calls 3-4
AC3onReturn, 3-4
I/OChannelNumbers 3-4
SelectingaChannel 3.4
Capsule Command Summary 3-3
Deviceand Directory Commands 3-7
Initialize a Directory or Device CINIT). 3-7
Change the Current Directory (DIR) e 3-8
Release a Directory or Device (RLSE) 3-9
Get Current Directory Name (GDIR) 3-10
CreateaSubdirectory (CDIR). 3-10
Create a Secondary Partition (CPART) 3-10
Assign Temporary Name to Disk or Tape Unit (CEQIV). 3-11
Get the Current Operating System Name (GSYS). 3-11
Get the Name of the Master Directory (MDIR) 3-12
File Maintenance Commands. 3-12
Create a Contiguously-Organized File with All Data Words
Zeroed (CCONT) 3-12
Create a Contiguously-Organized File with No Zeroing of
DataWords (CONN) 3-13
Create a Randomly-Organized File CCRAND) 3-13
Create a Sequentially Organized File 3-14
DeleteaFile (DELET) 3-14
RenameaFile CRENAM) 3-15
Geta File’s Current Directory Status (STAT/.RSTAT) 3-16
Get the File Directory Information for a Channel (CHSTS). 3-17
Update the Current File Size (UPDAT) 3-17
File Attribute Commands 3-17
Change File Attributes CCHATR) 3-18
Get the File Attributes and Characteristics (GTATR) 3-18
Link Commands. 3-19
CreateaLink Entry CLINK)o o 3-20
DeleteaLink Entry CULNK) 3-20
Change Link Access Entry Attributes (CCHLAT) 3-21

Licensed Materiai-Property of Data General Corporation 083-000075-08

F 1

083-000075-08

Chapter 3 - Single Task Programming (Continued)

Input/Output Commands - oot 3-21
OpenaFile COPEN). L 3-22
Open a File for Exclusive Write Access (EOPEN) 3-24
Open a File for Reading Only (ROPEN). e . 3-24
Opena File for Appending (APPEND) 3-25
Open a Magnetic Tape or Cassette Unit for Free Format I/O. 3.25
Getthe Numberofa Free Channel (GCHN). 3-23
Closea File CCLOSE) o oo e, 3-26
Close Al Files CRESET) .« o oo o o s, 3-26
Getthe Current File Pointer (LGPOS) . . . o o o oo o 3-26
Setthe Current File Pointer (SPOS) o oo 3-27
Readaline (RDL) - - o o o oo 3.27
WriteaLine (WRL), 3-28
Use of the Card Reader (SCDR) in .RDL and .RDS
Commands e, 3.29
Read Sequential (RDS) e e e e e e 3-29
Write Sequential CWRS) . . . o 3-30
Read (or Write) Random Record (RDRor.WRR) -« « o o o v oo o oo, 3-31
Write Random Record (WRR) - o o o o oo o 3-31
Read (or Write) a Series of Disk File Blocks (RDB/.WRB) 3-32
Open a Tape Unit and File for Free Format [/O (MTOPD) 3-32
Perform Free Format I/O (MTDIO).o o o . 3-33

Console I/0 Commands - - - « v« o v v o v e e 3-35
Geta Character CGCHAR) - - o o o e 3-35
Puta Character (PCHAR) - -« o o o o s, 3-35
Get the Input Console Name (GCIN) e e 3-35
Get the Output Console Name (GCOUT) . ..« ot oo i i i 3.35

Memory Allocation Commands - - -+« v v v vt e e e e 3-36
Determine Available Memory (MEM) LS 3-36
Change NMAX (MEMD . « - o o o oo e e e, 3.36

Device Access Commands - - - « « v v v v et e e e e 3-37
Enable User AccessofaDevice (DEBL) oo 3-37
Disable User Accessofa Device (DDIS) -« - . o oo oo oo oo, 3-37
Read the Front Panel Switches or Register (RDSW) 3-37

Clock/Calendar Commands - -« - « v v v v v e e e e e 3-38
Getthe Timeof Day (GTOD) - -« v o oo i s e, 3-38
Setthe Time of Day (STOD) .+« v« o i o i it e s e 3-38
GetToday’s Date (GDAY) -+« o o o oo o 3.38
Set Today’s Date (SDAY) - - - o o o o o i i e 3-38

Spooling Commands - - -« « « v v e e e 3-39
Stop a Spool Operation {SPKL} 3-39
Disable Device Spooling (SPDA). . . - o 3-39
Enable Device Spooling (. SPEA) 3-39

Keyboard Interrupts - - -« v v o o oo i S 3-40
Interrupt Program and Save Main Memory (BREAK) - - - 3-43
Disable Console Interrupts (ODIS) - - -« v o v oot e 3-43
Enable Console Interrupts COEBL) - 3-44
Reserve a Program Interrupt Task (INTAD). o .o oo oot 3-44

Licensed Mater:al-Property of Data General Corporation

Chapter 4 - Extended User Address Space: Swaps,
Chains, User Overlays, Window Mapping, and
Extended Memory 1/0

Program Swapping and Chaining - - - - -« oo o 4-2
Swap or Chain a Save File into Execution (EXEC) 4-4
Return to the Next Higher-Level Program (RTN) 4-5
Return from Program Swap with Old Program’s Error Status

CERTN) oo 4-5

User Over}ays .. 4.5
Open Overlays for Reading COVOPN)| 4-7
Load an Over}ay (OVLOD) 4-8
Replace Overlaysinan Overlay File COVRP) 4-9

Protecting User Memory Under Mapped RDOS - -+« . . o oo oo oo oo 4-9
Protect a Memory Area from Modification (WRPR)o oo oo 4-11
Remove the Write-Protection from a Protected Memory

Area (WREBL). - oo 4-11

Extending Your Address Space Under Mapped RDOS -+« « o o oo oo oo 4-11

Virtual Over{ays ... 4-11

Window Mapping - -o 4-14
Determine the Number of Free Blocks (VMEM) « . o oo oo oo 4-14
Define a Window and Window Map (MAPDF) 4-14
Activate a Logical Window Transfer (REMAP) « 4-16

Extended Direct-Block [JO - o o 4.17
Extended Direct Block Read (ERDB) 4-17
Extended Direct Block Write CEWRB) 4-19

Chapter 5 - Multitask Programming

Task Priorities Lo 5-2

Task ControlBlocks 5-2

Building Multitask Programs 5-3
Conserving ZREL Space 5-4
TaskStates ..o L 5-4
TCBQueues 5-5
Task Synchronization and Communication 5-5

UserStatus Table 5-5

Task and System Calls e e e 5-6

TaskInitiation . ..o 5-7
Create a Task ((TASK) T

TaskTerminalion.‘.........‘......_................‘....,.5'7
Define a Kill-Processing Address (KILAD) R
DeiezetthaliingTask{.KILL)..............................5«8
Kill All Tasks of a Given Priority CAKILL) 358
AbortaTask CABORT). 5-9

Task State Modification 5-9
Change the Calling Task's Priority (PRI)59
Ready All Tasks of a Given Priority CARDY) O X1
Suspend the Calling Task (SUSP). L. 5-10
Suspend All Tasks of a Given Priority (ASUSP) D 8 1}

Inter-Task Communication 5-10
Transmit a Message (XMT) and Wait (XMTW) 3-10
Transmit a Message From a User Interrupt Service Routine CIXNMTO. .00 5T
Receivea Message (REC)o 5-11
Locking a Process Via the . XMT/.REC Mechanism L 5-11

Licensed Materai-Property of Data Generat Cerporation 083.000075.08

s
Ve

093-000075-08

User Overlay Management 5-12
LoadaUser Overlay (TOVLD) 5-14
Releasean Overlay COVREL) 5-14
Release an Overlay and Return to the Caller COVEX) 5-14
Kill the Calling Task and Release its Overlay (COVKIL) 5-14

Enqueuing Tasks . * . . ol ooioin 5-14
Queue a Memory-resident or Overlay Task (QTSK) 5-16
Dequeue a Memory-resident or Overlay Task CDQTSK) ... 5-16

User/System Clock Commands 5-17
Delay Execution of the Calling Task (DELAY) 5-17
Definea User Clock (DUCLK) 5-17
ExitfromaUser Clock Routine CUCEX). 5-18
RemoveaUserClock CRUCLK). 5-18
Examine the System Real Time Clock (GHRZ). 5-18

Managing Tasks by ID Number 5-18
GetaTask'sStatus CIDST) 5-18
Change a Task’s Priority (TIDP) 5-19
Readya Task by ID Number (TIDR) 5-19
Suspend a Task by ID Number (TIDS) 5-19
Killa Task by ID Number (TIDK). 5-19

Task/Operator Communications Calls 5-19
Write a Task Message to the Console (TWROP) 5-20
Read a Task Message from the Console (TRDOP) 5-20

Task-Operator Communications Module (OPCOM). 5-21
Initializing the Operator Communications Package (IOPC) 5-22
OPCOM Command Syntax e 5-22
Dequeue a Previously-Queued Task (DEQ) 5-23
KiltaTask (KIL). 0o 5-23
Changea Task’s Priority (PRD) 5-23
Queue a Task for Periodic Execution (QUE) 5-24
ReadyaTask (RDY) 5-24
ExecuteaTask (RUN) 5-25
Suspenda Task (SUS) 5-25
Displaya Task’s Status (TST) 5-26

Disabling and Enabling the Multitask Environment (SINGL and .MULTI) 5-27
Disable the Multitask Environment (SINGL). 5-27
Restore the Multitask Environment (MULTD 5-27

Disabling the Task Scheduler 5-27
Disable Rescheduling (DRSCH). 5-27
Re-enable Rescheduling CERSCH) 5-27

Task Call Summary. oo 5-28

Introduction. 6-1
Dual Programming-Mapped Systems. 6-2
Executing Dual Programs in a Mapped Systemo, 6-3
Checkpointing a Background Program. 6-3
Dual Programming-Unmapped Systems 6-3
Building Foreground Programs 6-3
Executing Dual Programs in an Unmapped System. 6-4

Licensed Matenal-Froperty of Data General Corporation

Xi

Appendix A - RDOS Command and Error
Summary

Error Message Summary

Appendix B - User Parameters

Appendix C - Interrevision Changes

SYSGEN
Other

..

Appendix E - Overlay Directory Structure

Appendix F - Exceptional System Status

Exceptional Status
Controlling Exceptional Status
Producing a Core Dump

Traps

..

......................................

Line Printer Dump
MagneticTape Dump
Diskette Dump

..

Appendix G - Bootstrapping RDOS from Disk

Appendix H - Hollerith-ASCII Conversion Table

Appendix | - ASCII Character Set

Appendix] - Advanced Multitask Programming

093-000075-08

SchedulerCalls
Enter Scheduler State (EN.SCHED)
Task State Save (TSAVE)

Leave Scheduler State Abnormally (ER.SCHED)
Enter Interrupt-Disabled State (INT.DS)
Leave Interrupt-Disabled State (INT.EN)
Task ID search (ID.SRCH)

.....................

Licenseo Mateniai-Property o! Data General Corporanon

L -
’ '

e
O

] '
(TS VIS 57" I PV I VRS I SO I NS T NE I NG e

xiii

Xiv

Appendix J - Advanced Multitask Programming

(Continued)

Handling Additional Task Resources J-3

Task Scheduler Call-outs0 J-4

Task Initiation Call-out (TSK.X) J-4

Task Termination Call-out (TRL.X) J-5

Task Swap Call-out (ESV.X) I-5

Additional Resource Handler " J-5

Restrictionsand Warnings J-6

Providing Even More Resources J-6

Operator Communications e J-6

Task Control Block Values ~"“"°" J-6

[llustrations
Figure Caption

1-1 RDOS AddressSpace 1-5

2-1 Sequentially-Organized Disk File e 2-5

2-2 Randomly Organized Disk File E T 3

2-3 Contiguously Organized Disk Files """ 2-7

24 Apportioning Disk Space Tt 2-9
2-5 LinkEntries o 0. L 2-12
2-6 Partitioned Disk Example ittt 2-14
2-7 DataEncoding(9-trackunils)...............‘.‘...........‘....2-1?
2-8 Data Encoding (7-track units), ittt 2-17
3-1 Double-Precision Byte Pointer. 3-26
3-2 Image Binary Card Reading 0t 3-29
3-3 MTDIO Status Word Bitso 3-34
3-4 MTDIO ValuesReturned S 3-34
3-5 Unmapped Background Memory 000 3-36
3-6 Program with Interrupt Handler. " 3-40
3.7 Programwith INTAD Task~~~ 3-41
3-8 Program Interruption LogicSequence 7 3-42

4-1 ProgramSwapping L 4-3

4-2 Program Chaining 4-3

43 UserOverlays. ottt 4-6

4.4 Segmentlof Overlay File RO.OL~~~ 4-7
4-3 Write-Protecting Memory T 4-10
4-6 Virtwal Overlays Before OVLOD~~~ 4-13
4-7 Virtual Overlays After OVLOD ' 4-13
3-8 Defininga WindowMap 4-13
4-9 Memory beforeRemap 3-16
4100 Remapping L 4-17
411 ExtendedBlockRead oot 4-18

5-1 Task State/Priority Information (TPRST) . . o

52 TCEChamS;
5-3 TOVLD LogicSequence oo 5413
5-4 QTSKExample 000

Licenseg Matenal-Property of Data General Corporation

083-000075-08

o
] i
—

O’OOO
g

\O\O\P\D\O
R I Y S

h

'

i

7 DUOoO
- (.Jn#a.blts.)m-

mom

Table

083-000075-08

Loading Foreground and Background Programs in an

Unmapped System R 6-3
Muitiple Processor Line Connections 8-3
Multiprocessor System Illustration T 8-6
Adequate Cell Apportionment 9-3
[nadequate Cell Apportionment. Tttt 9-3
Disk Blocks of the Tuning File. /7777 rorrrs 9-6
Details of Tuning Summary Report, First Disk Block 9-7
Tuning Overlay Report T 9-7

TIMEC and TASK Messages D
TIMEC Program Listing ... [[0Tt D
TIMEC Flowchart . D-
D

D

D T

Overlay Directory Structure (multitask) ..o E-1
Sample Line Printer Dump ... F-3
Tables

Caption

SystemFileNames 0000 1-6
Reserved DeviceNames 2-2
system CallList oo 3-2
Common Call Summary 0 0TI 3-5
TaskCommand Summary .. . 5-28
CommandSummary L A-1
Error Message Summary 0T A-13
Disk Controller Device Code G-1
TCB Words and How They CanBe Changed J-7

Licensed Mateniai-Property of Data General Corporation

XV

Chapter 1
Introduction

Data General’s Real Time Disk Operating System
(RDOS) combines the advantages of a disk operating
system with the speed of a memory-resident system.
RDOS is real-time oriented: it can allocate program
control to many tasks within separate foreground and
background programs. RDOS offers maximum system
efficiency, economically, to a wide variety of
installations.

Some major features of RDOS are:
® Disk and memory-residence
® Support for real-time FORTRAN IV, FORTRAN 5,
ALGOL, Extended and Business BASIC. and other
advanced languages
® Support for BATCH processing
® Flexible file structure: Disk partitioning and sharing
~of user files; buffered and unbuffered 1/0: multiple
user overlays
® Modular multitask levels of task priority
® 256 software levels of task priority
® Hardware mapping support for
foreground/background programming: Protection
and management of each program; access to mapped
extended memory; checkpointing of background
programs

® Spooling (disk buffering) of output to slow
peripherals

® Dual processor-shared disk support

® Multiprocessor support

® Tuning for improved performance

Consult the Introduction to RDOS for an introduction to
these and other basic concepts in RDOS.

To use RDOS you need a suitable Data General
computer, a console teletypewriter or CRT display, and

093-000075-08

a disk. Larger versions of RDOS can support a
real-time clock, power fail-auto restart. up to 16
megabytes of fixed-head disk storage and more than
1,500 megabytes of moving-head disk storage. RDOS
can support 16 mag tape and 16 cassette units, multiple
line printers, terminals, plotters, reader/punches,
multiplexors, and CPUs. Mapped RDOS features
hardware memory protection, and can support up to
256K bytes of memory (NOVA) or 512K bytes
(ECLIPSE).

Génerating an RDOS System

Each system installation is unique: it must perform
diverse tasks with one of many possible hardware
combinations. You can tailor RDOS for your own
environment with the system generation procedure
(SYSGEN).

SYSGEN, the builder of tailored operating systems, is
an executable system program which can operate in any
installation. A standardized starter (bootstrap) system
was delivered with your RDOS system: this starter
system and SYSGEN enable you to generate one or
more configured systems. If you know vour future
requirements, you can generate other RDOS systems
at this time to fulfill them. A separate manual, How 1o
Load and Generate Your RDOS System, describes all
SYSGEN procedures.

You bootstrap a generated system into execution via
BOOT., the RDOS bootstrap program. Appendix G
contains a convenient summary of RDOS disk
bootstrap procedures.

Communicating With RDOS

You can communicate with RDOS, and make it work
for you, in four ways:

® via system and task calls in an assembly-language
program; or

e through Command Line Interpreter commands; or
¢ through the Batch monitor; or

® indirectly, through a higher-level language.

Licensed Material-Property of Data General Corporation 1 - 1

e,

You wrile system and task calls as instructions in a
program, and use the CLI as a dynamic console
interface to RDOS. System and task calls activate logic
within system or task processing modules. Only those
tusk-processing modules which your program needs
become part of it.

The Command Line Interpreter (CLD) is a system
utility program that accepts command lines from the
console and translates them into commands to RDOS.
Thus, the CLIis an interface between your console and
the system.

RDOS restores the CLI to memory whenever RDOS is
idle--after initialization, after a disk bootstrap, after a
console break, after the execution of a program, etc.
The CLI indicates that it is in control by outputting a
ready message prompt, *‘R*’, and a carriage return.

You activate the CLI by entering a CLI command via
the console. You can interrupt the CLI's action by
pressing the keys CTRL and A, CTRL and C, or CTRL
and F. We'll describe these keyboard interrupts near
the end of Chapter 3.

CLI commands allow you to load programs. invoke
other wutility programs, and activate the BATCH
monitor. BATCH executes jobs serially. without
operator intervention, using job control commands in
the job stream.

Advanced Data General compilers, and the BASIC
interpreter, allow you to write programs in languages
like ALGOL. FORTRAN, and BASIC.

Program Development

Along with the CLI, yvou received a number of utility
programs from Data General. Each program is
described in a separate manual which vou also received.
The utilities help you write code and develop it into
useful. executable programs. During system
generation, (manual: How 10 Load and Generate Your
RDOS Sysiem) you transferred the utility programs to
disk: each utility then became accessible by a CLI
command.

Your first step in program development is to wrile a
source program which does useful work for vour
computer application. You can do this in a higher-level
language like ALGOL or FORTRAN, or in assembly
language. via one of the text editor utilities: the Text
Editor (EDIT command). Multiuser Text Editor
(MEDIT command). or Supereditor {(NSPEED or
SPEED command). Your next step depends on
whether vou have used a higher-level language like
FORTRAN, or assembly language. This manual will be
most useful to assembly-language requirements.

‘t - 2 : Licensed Materiai-Property o Data General Corporation

Higher-Level Languages

If you have written your program in FORTRAN,
ALGOL, or another higher-level language, you will
compile and assemble it with the appropriate compiler
utility (FORT command for FORTRAN IV, ALGOL
command for ALGOL, etc.) You will then process it to
produce an executable program file via the Relocatable
Loader utility (RLDR command). If you have written
the program using the BASIC interpreter, vou can
execute the program directly in BASIC. You check and
correct any errors using the appropriate manual for
vour language, and use the CLI to access, maintain,
and protect your files and devices.

Assembly Language

If you have written your source program in assembly
language via the Text Editor or Supereditor Utility, you
must assembile it into a relocatable binary file (ASM or
MAC commands). After you assemble your source
program into a binary, you'll use another utility to
process the binary into an executable program file
(called a save file). This utility is the Relocatable
Loader (RLDR command). The first time vou load a
program, it will usually need debugging; vou therefore
load with it a symbolic debugger utility. You can then
iry to execute the program. and if it doesn’t run
properly, debug it (DEB command). After any step.
vou can use other CLI commands to maintain, protect,
and examine the file.

Main Memory Considerations

Your computer arrived with a given amount of
memory. The amount of this memory which is
available for your programs will necessariiv be a
percentage of this figure, as determined by the
requirements of the RDOS system vou generated. The
peripherals and software structures vou specified at
SYSGEN cach require some memory. as described in

How 10 Load and Generate Your RDOS Svsiem. Afier
deducting the RDOS total from vour maximum figure,
you musl also consider the space (aside from vour own
code) that the program will actually require.

When vou load a program, RLDR builds certain
required tables. modules. directories. and the required
Task Scheduler into it. The code for each task call vou
use is taken from vour system library and loaded into
the program (sysiem calls are executed in RDOS space.,
hence require little user space). These all require user
memory space when you execute the program - and
you may want 1o conserve space by coding certain
segments of the program as overfayvs. Overlays are called
into memory one-by-one. as the program needs them.
and otherwise stay on disk. You define overiays within
a program in the RLDR command line. Another way to
extend effective user address space is to have an

083-000075-08

executing program swap itself to disk. call a whole new
program into memory, and return to memory when the
new program has executed. This is called swapping. and
it has a variation called chaining. Overlays, swaps. and
chains are described in Chapter 4. This chapter also
explains extended memory - which you can access if
vou have a mapped machine.

Foreground/Background Programming

According to your installation, you may want to run
two logically distinct programs concurrently. RDOS
allows you to divide memory into two areas. called
foreground and background. and run a program
simultaneously in each. When you bootstrap your
system. RDOS starts up in the background; all
programs you execute will run in the background until
you command RDOS to execute one in the foreground.
When you run two grounds, they share such system
resouces as CPU time and 170 devices. The foreground
program has priority, unless you specify equal priority.
The forcground and background programs can

communicate with one another via system calls or.

commonly-known disk files. For more on this. see
Chapter 6.

If your system does not have a hardware mapping
device, you have an unmapped system which runs
under unmapped RDOS: if you want to run a program
in the foreground, you must manually assign memory
to it. You do this in the RLDR command line by
specifying two starting addresses for the foregound
program. These are the start of page zero relocatable
memory (called ZREL) and the start of normal
relocatable memory (called NREL). After you load the
program, and execute it in the foreground, the
addresses you specified will separate the background
and foreground. In an unmapped system, vou can
directly address up to 32K words of user address space,
excluding RDOS system space.

Certain system calls, features, and CLI commands
apply only to mapped systems. We will note these
exceptions in the text: if you see no reference to
mapping or the MAP in a command or feature. assume
that itapplies to both mapped and unmapped systems.

Mapped Features

I you have a hardware map, then you have a mapped
system which runs under mapped RDOS. In mapped
RDOS. background and foreground programs can
operate autonomously, either alone or via a CLI; using
mapped address space, both programs can share all
memory not used by RDOS. Naturally, this depends on
the amount of memory your machine has and the size
of vour RDOS system, as determined by the features
selected during SYSGEN. Tools for accessing extended
memory nclude virtual overlays and window mapping

093-000075-08

(Chapter 4). Any Data General computer with mapping
hardware can support mapped RDOS.

In a mapped system. yvou specify addresses as you do in
an unmapped system, but the system can remap them
in pages of 1.024 words. Addresses in mapped systems
are called logical addresses. instead of physical
addresses.

When vou run two programs, the system maps each
program separately: each program is aware of its own
address space only, and cannot reference locations
outside it. The system allots memory to each program
according to its highest address.

The system assigns each program a complete logical
address space from page zero through its highest
address NMAX, in 1,024-word pages.

When RDOS starts up, it assigns all memory to the
background: you reserve memory for the foreground
with the CLI command SMEM, and execute a program
in the foreground with the EXFG commuand.

Aside from hardware separation of foreground and
background. the mapped system protects itself in three
ways: it guards system devices, prevents infinite
address defers. and protects data channel operations.

Initially, no one can access any device directly
(including the MAP and CPU) on a machine-language
level. If anyone tries to reference a device on a machine
level, without having been enabled to do so. the system
will refuse the request, print a **trap’’ message. create a
break save file. and return to a higher-level program -
usually the CLI The system will do the same thing if it
encounters more than 16 levels of indirect address -
trap, create the break file, and return. We describe
traps in Appendix F.

Users can gain direct access to any system device- and
avoid the map’s safeguards- by using the system call
.DEBL (Chapter 3).

The map also monitors the data channel, and allows
user devices to access it through the system call
STMAP (Chapter 7).

RDOS Organization

The RDOS executive is the main framework of the
operating system and must be memory-resident before
any processing can occur. This resident portion of
RDOS processes system calls and interrupts. and
manages RDOS buffers. Other modules of the system
reside in system overlays. These are brought into
memory from disk storage as required to perform
specific functions like initializing the system. opening,
closing. renaming or deleting files. and spooling
control.

Licensed Material-Property of Data General Corporation 1 "'3

In an unmapped system, the RDOS executive resides
at the top and bottom of memory. Locations 0 through
155 contain program and interrupt entry points into the
top area of RDOS. In a mapped system, resident RDOS
begins at location 0 and extends to the highest address
required; it is invisible to your programs. Above
resident RDOS in all systems (at the very top of
memory in unmapped systems) is a series of system
buffers. The system buffers handle buffered [/0
transfers, and hold system overlays and directories
from disk.

The portion of page zero memory available for your
programs begins at location 165 (labelled USP), skips to
locations 205 though 374 then extends from 504
through address 377;5. In an unmapped system, these
are physical addresses; in a mapped system, they are
logical addresses. NREL memory is allocated in much
the same way for both mapped and unmapped systems.
In a mapped system, ZREL and NREL addresses are
logical; in an unmapped system, they are absolute, but
“your programs won’t care about this distinction.

Above program ZREL., the Relocatable Loader
(RLDR) builds a User Status Table {(called UST) for
vour program. This table starts at address 4005 in an
unmapped background, and logical address 400; in
both the mapped foreground and mapped background
areas. The UST describes, among other things. vour
program’s length, number of tasks required. and
number of I/0 channels needed.

Above the UST RDOS reserves an area for a pool of
Task Control Blocks (TCBs). RDOS uses TCBs to store
task state information, such as the state of the

1 - 4 Licensed Materiai-Property of Data General Corporation

accumulators and carry. If you have defined overlays in
your program via RLDR, an overlay directory sits
above the TCBs. Above the overlay directory (if any) is
NREL memory, which holds the rest of your program.
RLDR reserves a node (vacant space) in your program
for each overlay segment you defined; overlays from
each group will occupy this node one-by-one.

Above your program (background or foreground). still
in NREL memory, are the task-processing modules
and Task Scheduler which it requires to run. RLDR
searched the system library for these, and placed them
on disk with your program. Generally, during
execution, they are highest in NREL memory.

Figure 1-1, below, is a simplified illustration of
unmapped and mapped memory. Each system is
running foreground and background programs: each
program has one overlay node.

System Library and Source Files

Your system library, named SYS.LB. contains
task-processing modules, task schedulers, and other
useful routines for vour programs.

Other files supplied with your system contain
definitions for system features and for system and user
parameters. Depending on the programs you write, vou
may want to include some or all of these files in the
Macroassembler's permanent symbol! file (MAC.PS),
as described in the AMacroassembler User’'s Manual.
Naturally, you can LIST, PRINT or type any of these
files. Table 1-1 lists the names of the most common of
these files.

083-000075-08

S0.00743

<TTT77.

400,

15,

RDOS Buffers
/
R;ggesnt Program Extended All memory not used
Memory Area by Program A and system
{Accessible via window {and optionally, Program B}
mapping or virtual overiays)
e o~
-~ -~
L "
- ~
~ Program B's NREL -
Foreground NREL
Program B
Overlay node {optional)
Foreground overlay
node
2000,
Foreground NREL Program B's page O
UST.TCB s overiay directory
ZREL
FG overiay directory o
Foreground TCB poo!
Foreground UST
-~ P
o~ -~
- Program A’s NREL -
Background NREL
Overiay node
Background overlay node Program A
Background NREL
2000,
Program A's page 0
BG overiay directory UST TCB s overtay drrectory
ZREL
Background TCB poot 6
Background UST
Foreground ZREL RDCS pulters
- RDOS
Backgroung ZREL
RDOS space
physical iogicat
adoresses iwords! agaressesiworos!
UNMAPPED MAPPED
RDCS ADDRESS SPACE

Snacing ingicates RDUS acaress space
‘in a mapped system. resigent RDOS 18 invisibie

083-000075-08

Figure 1-1. RDOS Adddress Space

Licensed Mateniai-Property of Data General Corporation

1-5

.

Table 1-1. System File Names

All Data General computers:

You <can use these files, in addition to the
machine-specific files described below, on all DG
machines.

User parameter file: PARU.SR contains mnemonics
for all system constants and errors; you will probably
use these extensively for assembly-language
programming. Appendix B contains a listing for
PARU.SR.

System parameter file: PARS.SR contains internal
RDOS constants and some macros for system-level
tables, such as device control blocks and certain
buffers.

NOV A Basic Instruction Definition: NBID.SR provides
the basic instruction set for all DG machines.

Operating System Instruction Definition: OSID.SR.

Multiply-divide Instructions: provided with your
language.

RDOS literal macros: LITMACS.SR. RDOS uses these
macros; you can also use them for your own programs.

Floating-point instructions:

For manipulating AC3: See Status on Return from System
Calls, Chapter 3, for a description of these modules.

For ALM multiplexors: ALMSPD.SR. You can edit
this file to reflect your line configuration. It is further
described under Multiplexorsin Chapter 2.

NOVA 3 Computers:
Stack Instruction Definition: NSID.SR

Specific RDOS system instructions

RDOS.SR
NRDOS.SR

Unmapped NOV A3s:
Mapped NOV A3s:

Other NOVA Computers:
Specific RDOS Instructions

Unmapped: RDOS.SR
Mapped: MRDOS.SR

ECLIPSE Computers:

NOVA Extended Instruction Definitions: NEID.SR
Commercial ECLIPSE Instructions: NCID.SR
Hardware floating-point instructions: NFPID.SR
Specific RDOS Instructions

NFPID.SR For machines with hardware floating point Unmapped: BRDOS.SR
Mapped: 128K:ARDOS.SR
FPID.SR For machines with software floating point 256K:ZRDOS.SR
(floating point interpreter package)
End of Chapter
1 "6 Licensed Materniai-Property of Data Generai Corporation

083-000075-08

Chapter 2
Files and Directories

This chapter defines the different RDOS media for files
- generally disk, and mag tape- and explains how to use
each medium. It ends with a description of
multiplexors. The section on disk files describes the
mechanisms which you can use to organize and speed
up access to your disk files, and it outlines the file
structure which RDOS imposes on every disk it uses.
These mechanisms include directories - called
partitions and subdirectories- which contain groups of
files. and link entries. Link entries allow users in
different directories to use a single file. For a practical
introduction to files, subdirectories, and partitions. run
through the console session in Chapter 2 of Learning to
Use Your RDOS/DOS system.

Definition of a File

A file is any collection of information or one of several
devices for receiving or sending the information.
Typical examples of both file types are:

® Source file

® Relocatable binary file

® Executable program file (save file)

® [isting file

® Teletypewriter or CRT keyboard

® Teletypewriter printer or CRT screen
® Paper tape reader or line printer

¢ Cassette or magnetic tape file

Each of the first four file types has certain
characteristics, and represents a step in program
development. You write a source file with a text editor,
and input it to an assembler which produces as output a
relocatable binary file. Y ou process the relocatable binary
file with the loader: this places the file on disk with
absolute location data as a save file. The save file is the
executable program version of the file. Each save file is

083-000075-08

a core-image file: it is stored on disk word-for-word as it
will be loaded into memory and executed. You can
create a listing file to store and/or output the result of
any of these steps. RDOS executes the assembly and
loading step via CLI commands.

Unless you specify another file. the kevboardand printer
or screen are the default input and output files for most
system operations. The paper tape reader is another
type of input file: the line printer, another type of
output file.

Cassette or magnetic tape files are discussed briefly
below, and extensively later in this chapter.

File Overview

You access all devices and disk files by file name: you
access all cassette and magnetic tape files by device
name and file number.

You must open a file (i.e., associate it with an RDQOS
channel via an OPEN system call) before you can
access it. The CLI file 1/0 commands do this
automatically, but when you program in RDOS, your
program must open any files it needs. You can open a
disk file and allow several concurrent users to access
and modify the file’s contents; or you can open it
exclusively, permitting only one user to modify the file
but permitting other users to read the file: or you can
open it for reading only by several users.

Reserved Device Names

170 devices have special names which often begin with
the character 8. Within the limits of the device, you can
use each device name exactly as vou would a disk file
name in a command. You enter each device name as
shown in Table 2-1, below.

Licensed Material-Property of Data General Corporation 2' 1

Table 2-1 Reserved Device Names

Device | Device Device | Device
Name Name
Asynchronous Line Multiplexor (see QTY SOPO | Output dual processor link (see Chapter 8).
for device name). '
SLPT 80- or 132-column line printer.
SCOR | Punched card reader. mark sense card
reader. MCAR | Multiprocessor communications adapter
receiver.
CTn Data General cassette unit n. first controller '
(nisin the range 0-7) MCAT | Multiprocessor communications adapter
transmitter.
DKO Data General model 6001-6008 fixed-head
disk. first controller. MTn First controller, 7- or 9-track magnetic tape
transport n, (nisin range 0-7).
DPn Data General moving-head disk pack, first
controller, unit nis 0. 1. 2. or 3. SPLT | Incremental plotter.
OPnF | Top loader (dual-platter Disk Subsystem). SPTP High-speed paper tape punch.
For the first controller, unit nis number 0, 1,
2, or 3. This unit has two disks. The top SPTR | High-speed paper tape reader.
(removable) disk is DPn. the fixed disk .is
DPnF. This controller also supports diskette QTyY Asynchronous Line Multiplexor (ALM).
drives.. asynchronous data communications
multiplexor (QTY), or Universal Line
DSn Data General Model 6063/6064 fixed head Multipiexor (ULM).
disk. The 6063 is single-density, the 6064 ,
double density. nis 0, 1, 2, or 3. STTI Teletypewriter or display terminal
keyboard*.
DZn 6060 series disk unit, first controller. n is
0.1.2.0r 3. The 6060 uses single-density STTO | Teletypewriter printer or CRT display.
disks, 6061 uses double-density disks.
$TTP Tetetypewriter punch.
SOPI | Input dual processor link (see Chapter 8).
STTR | Teletypewriter reader.
*For most devices, RDOS supplies an end of file mark.
On STTI and QTY input, however, you must indicate
an end-of-file by pressing the CTRL and Z keys (CTRL
Z).
2" 2 Licensed Material-Property of Data General Corporation 083-000075-08

Aside from the ALM and QTY, we have written the
device drivers reentrantly to allow RDOS to support
pairs of devices. Use the following names to address
second device controllers on your system.

DK1 Second Data General fixed-head disk.

DPn Second Moving-head disk pack controller (n
is4,5,6,0r7).

Second top loader (model 6045 or 4234A)
controller; nis 4, 5, 6, or 7. The removable
disk is DPn; the fixed disk is DPnF.

DPnF

DSn Second 6063/6064 fixed-head disk controller.
nis4,5,6,or7.

DZn 6060-series unit, second controller. nis 4, 5. 6,
or7.

CTn Second cassette controller, nis 10-17,.

MTn Second mag tape controller, nis 10-17;.

For other devices, append a **1"" to the primary device
name: e.g., SLPT1, SPTP1, SCDRI1, and so on.

Disk File Names

A disk file name is a string of up to 10 ASCII
characters, including upper and lower case letters,
numbers, and 8. (By default, RDOS converts lower
case letters to uppercase.) The string is packed left to
right, and terminated by a carriage return, form feed,
space or null. You can use any number of characters in
a file name, but the system recognizes only the first 10.
Moreover, you can use S whenever vou want in a disk
file name; but generally, you should avoid the reserved
device name combinations.

You can append an extension to any disk file name. An
extension is a period and one or two alphanumeric
characters, which may include S. The extension can be
any number of characters bui the system recognizes
only the first two. An example of a file name with an
extension is:

FOO.8sV

The CLI often appends an extension to a filename to
indicate the tvpe of information the file contains and to
distinguish it from other types of files created from the
same source file. For example, assume that yvour source
file is named A.SR. The CLI will append extensions to
different versions of A, as foliows:

A.RB relocatable binary file (after assembling source
file).

083-000075-08

A.SV core image (save file) (after loading or binding
binary file)

A.LS listing file (if you specified listing file during the
assembly step)

A.OL overlay file (if you specified overlays in your
load or bind command)

As you develop your source programs into executable
save files via the system assemblers and binders, you
can ignore extensions if you give your
assembly-language source files the extension .SR, or
no extension. The utilities use a search algorithm to
find the file with the appropriate extension. RDOS will
always be given the extension .SV. The CLI gives the
extension .SV to each executable program, but you
need not enter this extension to execute the program;
simply type filename) from the console.

If you append a unique extension to a filename, you
must always append this extension to the filename
when you want to access the file via the CLI or a system
call. (Save files won’t execute with an extension other
than .SV.) For more on extensions, see the CL/ User's
Manual.

When you add your own extension to a file name,
either avoid a CLI extension or use it properly. Don't,
for example, confuse the operating system by giving a
source file the extension .SV.

File Attributes and Characteristics

A file’s auributes protect it; they permit or restrict
reading. writing, renaming, deleting. or linking.

The attributes listed below apply primarily to disk files.
To protect nondisk files, RDOS assigns certain
attributes which you cannot change. (Of course, you
can always wrile-protect a file on magnetic tape by
removing the write-enable ring.) Use either the RDOS
call .CHATR (Chapter 3} or the CLI command
CHATR 1o alter the access attributes of a file.

P permanent file; no one can delete or rename 2 file
while it has the P attribute.

S save file (core image). RLDR or BIND
automatically assigns this attribute. No fiie can be
executed without it.

W write-protected file. which no one can modify.

R read-protected file, which no one can read.

Licensed Materiai-Property of Data General Corporation 2 - 3

A attribute-protected file. The attributes of such a
file cannot be changed. After the A attribute has
been set it cannot be removed.

N no resolution permitted. This attribute prevents a
file from being linked to.

? first user-definable attribute.

& second user-definable attribute.

Note that you can assign your own attributes to a file
with the characters ? and &; you place them in bits 9
and 10 of the attributes word. They are described
further under the . CHATR command, Chapter 3. You
should avoid giving a file more restrictive attributes
than it needs. Note, for example, that you cannot in
any way delete a file with attributes AP (except by
erasing the entire disk by a procedure called full
initialization).

Disk file characteristics are determined when you
create a file, and you cannot change them thereafter.
The list of file characteristics is:

D This file is randomly organized (all save files have
the D characteristic).
C Thisfile is contiguously organized.

L This file is a link entry (which contains nothing.
but points to another file).

T This file is a partition (all partitions also have the

C characteristic).

Y This file is a directory (includes partitions and
subdirectories).

The CLI command LIST allows vou to obtain
information from a file directory about one or more
files.

File Transfer

You can copy a file from any device to any other device
with the CLI command XFER. The XFER command
transfers the contents of one file to another file. There
are two arguments:

XFER sourcefile destinationfile

If vou type:

XFER SPTR A)

a file named A is created on disk. and the contents of
the paper tape mounted in the paper tape reader are

2-4

Licensed Materiai-Property of Data General Corporation

transferred to it. (The symbol) represents a camage
return.) If you type:

XFER MYFILE YOURFILE)

disk file YOURFILE is created, and the contents of the
file named MYFILE are copied toit.

Note that RDOS is a disk-based system, and most of its
commands and calls work best on disk files (many
require disk files). We recommend that you copy any
nondisk file to disk before trving to edit, compile.
assemble, load, bind, execute or debug it. If the file was
previously DUMPed, LOAD it to disk; if it is not in
DUMP format, XFER it to disk. /0 on a disk is always
faster and easier than I/0 on any other medium.

Disk Files

Your RDOS system can support two controllers for
every type of disk drive Data General provides. Each
controller (except for 6001-6008) can control up to four
disk drives. The 6045 or 4234 controller can support
both diskette and disk drives.

The primary unit in an RDOS disk file is the disk block.
which contains 256 16-bit words (512 bytes). When you
create a disk file, the system call or CLI command vou
use directs the system to organize the file in one of
three ways: sequentially, randomly. or contiguously.

In a sequential file, the system reads disk blocks in
logical sequence. one by one: it reserves either the last
word or last two words (depending on the disk) for a
pointer to the next block. RDOS alwavs reads and
writes sequential files in blocks via system buffers.,
which takes time. You create a sequential file with the
system call . CREAT. or the CLI command CREATE.

In a random file, the system uses a file index to access
any block: generally. it never needs more than two disk
accesses Lo access a block. (Very large files may require
more accesses.) RDOS uses all 256 words for data
storage. You can read and write random file blocks via
Direct Biock 170, without system buffering: this saves
time. To create a random file, use the system call
.CRAND or CLI command CRAND.

Contiguous file access is the fastest in RDOS. All
biocks in a contiguous file are contiguous on disk; but
unlike sequential and random files. each contiguous
file has a fixed, unalierable length in blocks. This
means that RDOS does not need a file index. and it
needs only one disk access. Each block uses all 236
words for data storage. You can also use Direct Block
170 for a contiguous file. You create a contiguous file
with system call CCONT or .CONN. or CLI command
CCONT. See Chapter 3 for the difference between
.CONN and .CCONT.

083-000075-08

s

RDOS offers you five ways to access disk files for /0.
In all but the last mode (called Direct Block 1/0).
RDOS transfers files via system buffers. See Chapter 3,
110 Commmands, for I/0 modes.

Sequentially Organized Files

When the system writes a sequential file to disk. the
first block has relative number 0. the sezond 1. and so
on. RDOS gives each block a /ogical address. and uses
this address to derive the block’s physical sector/track
location on disk. To find the next relative block. it
stores a link to the next block in the last word of the

block (lust two words on multiple-platter disks). This
link is invisible to vou, but not to RDOS. which uses it
to compute the physical address of the next or previous
relative block.

As an example, assume that RDOS is reading block 0
of a sequential file. When it reaches the link at the end.
which contains block 1's logical address it then moves
to block 1 and continues reading. Blocks 0 and 1 need
not be contiguous on disk. From block 1, RDOS reads
forward. but it can never skip a block; to reach block 7,
it would have to read until it encountered the link at the
end of block 6. Figure 2-1 shows this concept.

Logical block

3764 data words
(3752 for double-word
addressing disks)

Link word

(2 words for double-word {

addressing disks) —

address 7
word 0
. Relative
: block 0
225
Logical block
address 223
word O
N Relative
. block 1
Logical block
address 16g
word O
. Relative
. block 2
225

80-00534

093-000075-08

Any link word is the block address of the
previous block, XCRed with the biock address

of the next block. Links for the first and last relative
blocks are XORed with zero. (as there is no previous or
next block, respectively).

Figure 2-1. Sequentialiv-Organized Disk File

Licensed Material-Property of Data General Corporation 2' 5

o
& %

Whenever you access a sequential file for 170, RDOS
transfers it via system buffers. Block by block, RDOS
reads the file into a system buffer for the transfer.

When RDOS writes data into its system buffer area. it
overwrites the oldest available buffer block first. When
all buffers have been used, the least-recently used is
the first to be overwritten. After RDOS has read a
block into its buffers, you can read or write the block’s
records directly: no further disk access is required.

Randomly Organized Files

In RDOS, all save files employ random organization.
When you create a random file, RDOS creates a file
index for it. For each block you write in the file, RDOS
enters one or two words (depending on disk size) in the
file index; the index word(s) contains the block’s
logical disk address, which allows you to access any
block on the disk. While index blocks are linked in the

same way as sequential blocks, the last word or two
words points to the next index block. The first data
block in the file is number 0, the second 1, and so on;
the first entry in the index is entry 0, and contains the
logical address of block 0, and so on. If an index entry
contains zeros (no address), then its corresponding
block has not been written.

Figure 2-2 shows the relationship between the file
index and data blocks in a randomly organized disk file.

For files which contain less than 255 data blocks,
RDOS generally needs only two disk accesses to read or
write a block: one for the file index and one for the
block of data itself. If the file index is memory-resident
(as it would be if you access the file previously and the
index remained in a system buffer), only one access
need be made.

If the data block itself is in memory, RDOS needs no
disk accesses at all.

FILE INDEX
entry 0 Biock O's address
entry 1° Block 1's address

Block 2's address

entry 376g |Block 376(177) address
{or 1765;)

Link

Biock 377(177) address

.

.

.

.

Link

SD-00535

2" 6 Licenseg Materniai-Property of Data General Corporation

“index entries are two words for some disks.

Figure 2-2. Randomly Oreanized Disk Fiie

DATA BLOCKS
- Word 0
. Relative
. block O
word 377, /
. word 0 \
. Relative
: biock 2
word 377

083-000075-08

", You can use all 1/0 commands available for sequential

T

files on random files. Because random organization is
more efficient, 170 is generally faster on random files.
For large-scale 1/0, you can shorten processing time
even further by using Direct Block 1/0 commands to
transfer your random files. In Direct Block [/0
transfers, RDOS transfers an entire block from disk to
the memory area you specify, without using system
buffers. By avoiding buffering, you can save time, but
you must manage records yourself: you lose the
automatic management of the system buffers.

Contiguously-Organized Files

As shown in Figure 2-3, RDOS accesses data blocks in
contiguously organized files randomly, without a file
index. Contiguous files consist of a fixed number of
disk blocks which are located at an unbroken series of
disk block addresses. You can be neither expand nor
reduce the size of these files. Since the data blocks are
at sequential logical block addresses, all that RDOS
needs to access a block within a contiguous file is the
address of the first block (or the name of the file) and
the relative block number within the file. RDOS
organizes all disk partitions and overlay files

contiguously.
Biock address n word 0
: Relative
. block 0
word 377
Biock address n + 1 word 0
. Relative
biock 1
word 377
Biock address n + 2 word 0
Relative
biock 2
worgd 377
SD-0C0536

Figure 2-3. Contiguoush Organized Disk Files

083-000075-08

Licensed Matenai-Property of Data General Corporation

All 170 operations permitted on randomly organized
files can be performed on contiguous files, but the size
of the contiguous file remains fixed. Block access is
faster in a contiguous file, since RDOS does not need
to read a file index.

RDOS Disk Directories

Before you introduce a disk to the system, you must
check and fully initialize it with the Disk Initializer
program, DKINIT.SV. DKINIT.SV is a stand-alone
program which you received with your system; it is
further described in How 10 Load and Generate Your
RDOS System. After DKINIT has run on the disk, you
can elect to install a disk bootstrap on the disk; this will
enable you to bootstrap an RDOS system on any other
disk from this disk, as long as the new disk also
contains the BOOT.SV program. The bootstrap
occupies blocks 0 and 1 of the disk. The disk ID is in
block 3, and the bad block pool created by DKINIT
occupies block 4.

The first time you bring the disk into your system,
RDOS creates on it two system directories, called
SYS.DR and MAP.DR. SYS.DR records all file names
and other file data on the disk; RDOS updates it
whenever you create, modify, or delete a file or user
directory on the disk. MAP.DR is a block allocation
map; it records those blocks which are in use and those
which are free for data siorage. MAP.DR is aware of all
disk space except blocks 0 through 5. Thus, these
entries can never be destroved since the system is
unaware of the disk space where they reside.

2-7

.
Ak

Intitial Disk Block Assignments

As shown below, certain blocks on every disk have
fixed assignments; the remaining blocks are free for
system use or your file storage. Block 0 and 1 are
reserved for the disk bootstrap program, BOOT; block
4 records bad disk blocks. Block 6 is the first index
block of SYS.DR, the system directory. Block 7 is
reserved for an index of file index blocks used
whenever a program swap occurs. Blocks 105 through
165 are reserved for swap file indexes. Block 175 is
reserved for the first block of the MAP.DR file.

Disk Block Number (octal)

0,1 root portion of BOOT

3 disk ID

4.5 bad block pool

6 first index block of SYS.DR

7 index of file index blocks used for swap
storage

8-16 | swap storage index blocks

17-n MAP.DR blocks (depend on disk size)

n+1l-m BOOTSYS.OL (always written by

INIT/F)

free blocks for RDOS or user files

The MAP.DR file starts at block 174; it is a contiguous
file. Each bit of each word in MAP.DR indicates
whether or not a specific block is in use, as follows:

Word Contents

0 block allocation map, 1 bit for each block, from
left 1o right in ascending order, starting with
block number 6.

0 means that block is available, 1 means that
block is in use. ‘

oY

n-1 'n’ is the size of the partition in blocks/16
(integer division).

2"' 8 Licensed Materiai-Property of Data Genera! Corporation

System Directory (SYS.DR)

You can create many directories within your RDOS
system, and you can create files in each directory.
RDOS writes a copy of SYS.DR to each directory, 1o
keep track of the files within it. Each SYS.DR is a
random file. ’

The system directory employs a hashing algorithm to
speed up access of directory entries. RDOS aliocates an
initial system directory area at the time you initialize
the disk with DKINIT.SV. This area (called a frame) is
a contiguous set of disk blocks; to minimize head travel
time. You can check and modify the frame size on a
disk with DKINIT.

The first word in each block of SYS.DR is the number
of files listed in the block. Following this word is a
series of 225 -word entries, called user file descriptions
or UFDs, which describe each file. Each block in
SYS.DR looks like this:

Word (octal) Contents

0 Number of files in this block of the
directory (165, maximum)

1

) User file description (UFD)
22

-

23]

9 User file description (UFD)
44 |

Remainder of block.

3764 Contains maximum number of UFDs

which ever existed in this block; if 16,
indicates possible existence of overflow
block.

The UFD describes the file’s name. its two-character
name extension, its size, its atiributes and
characteristics, the address of the first block, other
qualities, and a logical code for the device which holds
this file, as follows:

083-000C75-08

{
i’\

PR

Word (octal) Contents

0-4 Filename (padded with nulls. if necessary)

S Extension (padded with nulls. if
necessary)

6 Attributes and characteristics.

7 Link access attributes.

10 Number of last block in file.

11 Byte count in last block.

12 First address (physical address of first

block in sequential or contiguous file: or
first block of index for a random file).

13 Year and day last accessed.

14 Year and day created or most recently
modified.

15 Hour and minute created or most recently
modified.

16 UFD variable information.

17 UFD variable information.

20 Use count.

21 Device code DCT link.

-

The attributes in words 6 and 7 permit or restrict access
to the file. See .CHATR and .CHLAT in Chapter 3 for
more on this.

A nonzero file use count indicates that one or more
users have opened the file. If a malfunction occurs
when a file is open, its count will often be wrong; you
must clear it to zero (via the CLI command CLEAR)
before you can close, rename, or delete the file.

User Directories

Within any RDOS system, each user needs disk space
for his files. Disk partitions and subdirecrories permit you
to organize and assign file space flexibly, by user or
category name.

Although you can use either CLI commands or system
calls to organize your disk space, we recommend using
the CLI whenever possible. Error interpretation is

faster and simpler through the CLIL. After you have
created the hierarchy you want from the console. you
can access its directories and manipulate files via
system calls in your programs.

Partitions and Subdirectories

Each disk you introduce to the system contains a given
number of blocks available for storage. These biocks
make up an area called the primary partition. According
to everyone's needs, you can logically detach sections
of the primary partition and give them different
filenames. These discrete sections are called secondary
partitions; you create them and give them a fixed size
with the CPART command (system call .CPAR).
Within the primary partition (and secondary partitions,
if any) are smaller groups called subdirectories. You
create a subdirectory with the CDIR (CDIR)
command. Each subdirectory is flexible: it grows or
shrinks according to the files you append or delete from
it. A file can also exist in the master directory. A
subdirectory and its files can never outgrow the fixed
size of its parent partition.

A newly-created subdirectory consists of three blocks:
SYS.DR’s initial index block and data blocks for the
SYS.DR and MAP.DR entries. The map directory
entry in each subdirectory’s SYS.DR is a copy of the
MAP.DR entry in the parent partition.

In a multiuser RDOS system, the type of disk space
anyone receives depends on the installation. Typically,
each user has a personal directory, and unlimited
reading access to several common public files. In some
systems. each user has a large secondary partition for
subdirectories and files; in others, each has a
subdirectory on the primary partition.

Figure 2-4 below, shows a disk before and after
partitioning; it also gives the CLI commands required
to do the partitioning. DXn is a general term. which will
vary according to your own disk(s) described in Table
2-1.

R
DIR Dxn}
R

DIR Dxn}
R

Primary Partition Dxn

S0-00837

083-000075-08

CPART SECONDPART 2000)
R
DiR SECONDPART)

R
CDIR SUBDIR)
R

CDIR SUBDIRA)
R

Figure 2-4. Apportioning Disk Space

SECONDPART

SUBDIR
SUBDIRA

Primary Partition Dxn

Licensed Materiai-Property of Data General Corporation 2"9

Each primary partition, secondary partition, and
subdirectory contains a version of the disk’s SYS.DR to
keep track of the files within it, and enable it to access
1/0 devices. Each partition’s SYS.DR also has a version
of MAP.DR to maintain a record of free and occupied
data blocks. Each subdirectory’s SYS.DR uses a copy of
its parent partition’s MAP.DR.

One important advantage of secondary partitions is that
a disk failure in a secondary partition won't affect files
in other partitions. Other partitions® MAP.DRs aren’t
vulnerable to a failure. For this reason, some people
prefer to place their systems and utilities in a secondary
partition, and operate from that partition, using
directory specifiers.

Partitions are contiguous files, and subdirectories are
random files. They are unusual in that they contain
other files, and receive the extension .DR -- but they
are no more privileged than data files. You can dump,
list, or load them; you can also delete all but the
primary partition.

Initializing and Releasing a Partition or
Subdirectory

You must initialize subdirectories and partitions before
vou can access the files or subdirectories within them.
Intialization opens a subdirectory or partition,
introduces it to the system. and prepares it for use. This
procedure is called parnal initialization. (Full ininali=ation
introduces new disks 1o the operating system; it writes
a new SYS.DR, MAP.DR and BOOTSYS.OL on the
disk, hich effectively destroys all existing file
structures).

When vou have bootstrapped RDOS and completed
the date/time log-on sequence. the CLI displays its R
prompt. At this point, RDOS has initialized only the
master directory, which holds the current RDOS
system: this is often DP0, DPOF, DZ0, or DSO. but it
can be another disk or secondary partition.

You can use either of two commands to initialize a
subdirectory or partition: the CLI commands INIT or
DIR (or system commands .INIT or .DIR).

INIT partition-or-subdirectory

While many partitions and subdirectories can be
initialized at any moment, RDOS allows only one
current directory at a time. The current directory is the
one which RDOS searches for all files- uniess vou have
told it to search elsewhere. The DIR command selects a

2‘" 1 O Licensec Materiai-Property o! Data General Corporation

new current directory and initializes it at the same time
(if it hasn"t already been initialized). For example:

DIR partition-or-subdirectory)

During system generation, you specify the maximum
number of subdirectories and partitions which can be
initialized at any moment. The current maximum is 64.
If your INIT or DIR (or .INIT or .DIR) would exceed
your system’s maximum, you'll receive an error
message (or your program will take the error return).

After you have initialized a directory, it is part of the
system: RDOS will remember where it is, and access it
even if it is on another partition or subdirectory. It
remains in the system until you release it. To release a
directory, type the CLI command:

RELEASE subdirectory-or-partition)

(or use the system call . RLSE). When you RELEASE a
directory, you remove its initialization. If you release
the current directory, the master directory becomes the
current directory until you specify another current
directory via DIR or .DIR. The master directory holds
the operating system, and the system will shut down
when you release it. ,

At shutdown, of course, you release the master
directory via the CLI. You must release this directory
before physically removing the disk which holds it (if
this applies). If you are running two programs, you
must do this from the background console, and you
must terminate the foreground program before you do
it. RDOS will then verify the release: e.g.,

RELEASE DPO)
MASTER DEVICE RELEASED

You can then turn off the computer. disk drive(s), and
peripherals.

If you have more than one disk unit in your system,
vou will need to use a global directory specifier to
initialize each one. Global specifiers are listed in Table
2-2. examples are DP0O, DPOF (removable and
nonremovable disks in unit 0, first top-loader
controller}, and DZ0 (first 6060-series unit).

For exampie, assume that vou have just bootstrapped
your system and that you have three disks: DPO,
DPOF, and DZ0. The disk on which you bootstrapped
RDOS would automatically become the current and
master directory.

083-000075-08

For runtime convenience, RDOS offers an equivalence
command. EQUIV (or .EQIV). EQUIV (.EQIV) allows
you to change the global specifier of any tape drive or
disk (except the master device) before you initialize the
device. This enables you to write programs without
naming a specific disk or tape device. At run time, you
select whatever device is available. and change its
global specifier into your generic name via EQUIV,
€.g..

EQUIV DISK DP4}

You then initialize DP4 under its new name. and run
your program. When you release the device. RDOS will
restore its old specifier.

Referencing Disk Files

Because a file may exist in one of many subdirectories,
and a subdirectory may reside in one of many
partitions, your CLI command or system call must tell
RDOS where to find the file. If you have morg than one
disk unit on your system, you may need {o enter a
global specifier (e.g.. DP4) when you initialize the
directory which holds the file.

Once you have initialized a directory (via INIT or
DIR), you need not do it again: you need only enter
the directory name. a colon, and the filename. For
example, see Figure 2-4. Assume that you want to
execute file MYPROG.SV, in subdirectory SUBDIR,
on secondary partition SECONDPART. If you had
initialized SUBDIR, you could simply type
SUBDIR:MYPROG). But you haven't initialized
SUBDIR. You can initialize any directory by entering
the hierarchy names in descending order, separating
each from the next with a colon. without spaces, e.g.,

INIT SECONDPART:SUBDIR)

You can also do this another way - by designating the
directory you want as the current directory, via DIR
(.DIR call). The command

DIR SECONDPART:SUBDIR)

initializes SUBDIR and makes it the current directory.
All filename references without directory specifiers are
directed to the current directory. Whenever you enter
filenames including a colon specifier, RDOS assumes
that you want a file in another directory, and makes a
directory access there. For example, if your current
directory had been SECONDPART (after the
command DIR SECONDPART), you would have
typed

093-000075-08

INIT SUBDIR)

Naturally. if SUBDIR had been the current directory
(after the command DIR SECONDPART:SUBDIR)
you wouldn’t need to INIT any directory - you could
have executed MYPROG.SV by typing

MYPROG)

Master Directory

The master directory (device) on each disk has the
following uses:

I. It becomes the current directory after you bring up
the system. bootstrap a new system. or release a
different current directory.

2. It contains the current RDOS system save and
overlay files, and usually contains the system
utilities and library, unless they were loaded into
another directory or were never loaded or copied.

It contains push space for program swaps.

()

4. Itcontains the spool files, and tuning file (if any).

You determine the master directory when you
bootstrap RDOS into operation; it remains the master
until you release it, or until you bootstrap another
system or program via the BOOT command.

Link Entries

The link entry allows a user in any directory to access
any disk file or device, like MTO:n, SSTTOI, or SLPT,
by its name or by any other file name.

Link entries save disk file space by allowing users in
different directories to access a single copy of a
commonly-used disk file; this is their most popular
application. Link entries may point to other link
entries, with a depth of resolution of up to ten. The file
which is finally linked to is called the resolution file.
You can create a link entry with the CLI LINK
command or the system command .LINK.

Creating a link entry is easy - the resolution file need
not even exist when you do it. Your only requirement
is that the link entry name be unique within its
directory. The link entry can have the same name as
the resolution file, or not; it can be on the same
partition as the resolution file, or not.

The LINK command has two arguments:

LINK fink-entry-name resolution-file-name

Licensed Materiai-Property of Data Generai Corporation 2‘ 1 1

RDOS will create the link entry in the current
directory, unless you specify another directory. RDOS
assumes that the resolution file is in the current
directory’s parent partition (which can be either a
secondary or the primary partition), nor in a
subdirectory. If the resolution file is elsewhere, you
must indicate its location with colon specifiers.

The link entry need not have the same name as the
resolution file. Link operations are clearer and simpler,
however, if the link shares a name with its resolution
file. Link entries with different names are called aliases.

To use a link, you (or vour program) must initialize the
directory containing the resolution entry and all
directories containing intermediate link entries.
Moreover. the attributes of the resolution entry, and
all intervening link entries must allow linking (see
.CHATR and .CHLAT, Chapter 3).

In Figure 2-5, two links exist to the resolution entry
EDIT.SV on primary partition DPO. The resolution file
- EDIT.SV - is the Text Editor supplied with your
system. Normally, Data General utility programs are
loaded onto the master directory before system
generation, and EDIT.SV is included in these utilities.
Itis not in a subdirectory, and linking to it is easy.

The CLI command sequence which created the
structure shown in DPO is:

DIR SECONDPART)
R
LINK EDIT.SVEDIT.SV (or EDIT.SV/2)

The first EDIT.SV is the link entry name. the second is
the resolution file name.

¢ “SECONDPART"

Link ~SUBDIR"
“EDIT.SV" | / Tink
N

“SUBDIRA"

“CREDIT"

Link "BILLING™

“"ARREARS”

lek “EDIT .SV !
\ \ /
res entry res entry
res file res file
“EDIT.SV” "BILLING™

DPO

SD-00502

2‘ ? 2 Licensed Matenial-Property of Data Generat Corporation

Figure 2-3. Link Entries

1’ Link "BILLING” !

DPOF

083-000075-08

The LINK commuand created a link entry named
EDIT.SV (in partition SECONDPART) to the editor
on SECONDPART's parent partition. DPO. Now that
SECONDPART s linked to EDITSV. any user in
SECONDPART can use it to edit text while EDIT.SV
occupies disk space on DPO only.

The command sequence to link from subdirectory
SUBDIR would be:

DIR SUBDIR)
R
LINK EDIT.SV DPO:EDIT.SV)

or

LINK EDIT.SV/2)
R

(For this chained link example. assume the second link
command).

To link from SUBDIR A. vou'd type:

DIR DPO:SUBDIRA)
R

LINK EDIT.SV/2))
R

To create the link entries from DPOF 1o file BILLING
on DPO. you'd type:

DIR DPOF:CREDIT)

R

LINK BILLING DPO:BILLING)
R

and
DIR ARREARS)
R

LINK BILLING DPO:BILLING)
R

Once again, if the resolution file is not on the partition
which holds the current directory you must input
specifier information.

Before you can use a link, all immediate links must be
resolvable. Thus you must initialize all intervening
directories (if DPO wasn’t initialized in the example.
neither link in DPOF would work). If vou removed the
link entry from SECONDPART (UNLINK or
JULNK), the link in SUBDIR would be useless but the
link in SUBDIRA would still work. Note that UNLINK
((ULNK) is the only way to remove a link entry: if you
try to DELETE ((DELET) a link, the link will persist
and the resolution file will be deleted.

093-000075-08

Licensed Material-Property of Data Generai Corporation

Each link entry is a filename. whose sole function is to
point to the resolution entry (or to another fink entry
which is closer to the resolution entry). Like other files.
each resolution entry has a user file definition which
includes two sets of attributes: file access attributes
(called resolution entry attributes) and link access
attributes.

You assign resolution entry attributes to govern direct
access to the fiie: you change the attributes via the CLI
command CHATR or system command .CHATR
(Chapter 3). The attribute N forbids linking (it actually
allows the link. but prevents anvone from using it):
other attributes govern reading. writing, renaming. or
deletion. The A attribute makes all other attributes of a
resolution entry or file permanent.

Link access attributes permit or restrict access to the
resolution entry. Again. the N attribute forbids linking.
You can use the CLI commuand CHLAT or syvstem
commund .CHLAT to change these attributes.

Thus. although vou can create a link to a resolution file
very easily. two sets of resolution entry atiributes guard
the resolution file. As seen by a link entry, the
resolution file has a composite of link attributes and
resolution entry attributes.

More than one link entry may point to a resolution
entry. Single user read-write opens and multiple
read-only opens are allowed.

In any command or system call, using a link has the
same effect as using the resolution file name. For
example. in Figure 2-5, assume that the current
directory is CREDIT on DPOF. The following sequence
of CLI ¢commands is the same as CRAND DPO:RATINGS

LINK RATINGS DPO:RATINGS)
CRAND RATINGS

After either set of commands, the current directory
remains CREDIT, and file RATINGS exists on DPO.

After you create and link a file, you cannot open the
resolution file (by a system .OPEN command) until vou
have initialized all directories in the path to the
resolution file. The system will return error ERDNI
{Directory Not Initialized) or error ERDSN (Device
Not In System) from the OPEN command if you
haven’tinitialized all intervening directories.

Link Devices

The link entry offers much more than a simple way to
share user files. You can create a link entry for any file -
including a reserved device such as the line printer.

2-13

If you establish a link to a mag tape or a cassette
resolution file, you must initialize the device before the
link will work. You cannot link a nondisk device in turn
to another resolution file.

File Access Example

When you introduce a new disk to the system, only its
primary partition exists. At this point, you can choose a
directory structure for the disk, according to the
partition and subdirectory definitions at the beginning
of this chapter.

For example, assume that six users need space on one
disk for their files. Ideally, each user would have as
much disk space as needed, yet file space would be used
efficiently, and each user’s files would be safe from
unauthorized access or alteration. There are two
obvious plans for dividing the disk:

Plan 1

Create six secondary partitions, and assign one user (o
each partition. '

Plan 2

Create a single secondary partition (six limes as large as

each secondary partition in Plan 1). Assign each person
to a distinct subdirectory within the partition.

In both Plan | and Plan 2, evervone’s disk files would
be protected and each person would be able to access
files in the primary partition (like utility programs).
Plan 1 guarantees a fixed amount of file space to each
person. If one person exhausts his or her space, he/she
cannot appropriate unused space on another person’s
partition. Plan 2 allows each person to grab as much file
space as he/she requires from within the common
secondary partition, as long as there is any unused file
space. Under plan 2, no one has a guaranteed minimum
amount of file space at any moment, although file space
is used more efficiently than in plan 1.

The best solution for this sample installation involves a
middle ground: one secondary partition for two hungry
users. another secondary partition for a prolific, hungry
user, and subdirectories and files for 3 modest users.
Commonly-used public files will remain on the primary
partition; users can link to them from their directories.
Figure 2-6 shows this flexible solution: a sample dialog
with this system’s CLI follows the figure.

In the illustration the symbol ¢ means secondary
partition, © means subdirectory and 3 means data
file.and t meanslink entry.

NOTES DR

PROGRESS

Y [JUNECRDERS

MARY DR

[eoimsv] [Elien
v

SYSNEWS

MANAGER DR

DPO

MDSE DR

JUNE CRDERS

EDITSY

2-14

Figure 2-6. Parunoned Disk Example

Licensed Mater:al-Property of Data General Corporation

STAFF.DR

DICH DiR

ALLEN DIR

ALLENFILE

1

mngiCates a secongary parii:on,

a subtireciory. and

& gata hie

OO

w0
6

-000075-08

w0

bootstrap sequence ...
FILENAME?)

log-on sequence ...

R

PRINT SYSNEWS)

Aftef the bootstrap and log-on sequences. the CLI
announces itself the master directory automatically
becomes the current directory. The PRINT command
prints the contents of file SYSNEWS on the line
printer.

R

PRINT MARY ELLEN)
NOSUCHDIRECTORY:MARY:ELLEN
R

INIT MARY))

R

PRINT MARY:ELLEN)

To RDOS. a directory which hasn't been initialized
doesn’t exist. The INIT command opens directory
MARY: PRINT prints file ELLEN. DP0 remains the
current directory.

R

GDIR)

DPU

R

DIR TOM:NOTES)
NOMOREDCBS:NOTES
R

RELEASE MARY)
R

DIR TOM:NOTES)
R

093-000075-08

Licensed Materiai-Property of Data General Corporation

In this example. the GDIR command returns the name
of the current directory (DP0): the operator then tried
to initialize partition TOM and subdirectory NOTES.
Unfortunately, this RDOS system was generated to
allow only 3 partitions and subdirectories to be
initialized at any moment. DPO and MARY were
initialized. and TOM and NOTES would have brought
the total to 4 hence the error message. Releasing
MARY made room for TOM and NOTES: NOTES
became the current directory.

R
PRINT PROGRESS)

prints file PROGRESS found in subdirectory NOTES.

R
PRINT TOM:MYPROG.SR)

We need the directory specifier. since MYPROG.SR is
notin the current directory, NOTES.

R

DIR TOM; LINK EDIT.SV/2)

R

LINK JUNECRDERS MDSE:JUNEORDERS)
R

RELEASE TOM

R

(You can enter several CLI commands on one line if
you separate them by a semicolon.) The first command
creates a link entry in TOM to the Text Editor utility
program on DPOQ. The second LINK command creates a
link entry named JUNEORDERS o file
JUNEORDERS, in subdirectory MDSE. Now we can
reference both the editor and JUNEORDERS through
partition TOM, although they occupy significant
amounts of file space on partition DP0 only.

R

INITMTO)

R

DUMP/V MT0:0 STAFF)

FILE DOES NOTEXIST: STAFF
R

DIR DPO:STAFF)

R
DUMP/V MT0:0
ALLFILES
*DICK.DR
ALLENFILES
*4LLEN.DR
EDIT.SV
R
DIR DPO)
R
LOAD/V MT0:0)
ALLFILES
*DICK.DR
ALLENFILES
*ALLEN.DR
FILEALREADY EXISTS: EDIT.SV
R

This sequence initializes drive MT0 and dumps the
contents of STAFF 1o file 0 of the tape mounted on
tape unit 0. The /V switch requests verification of the
files dumped. The next sequence makes DPO the
current directory, and loads the dumped files from
MTO0:0 into DPO0. Again, the /V switch requests
verification. The link entry EDIT.SV is dumped but
can’t be loaded, because filename EDIT.SV exists on
DPO.

R

DIR DPO; RELEASE STAFF)
R

DELETE/V STAFF.DR)
DELETEDSTAFF.DR

R
RELEASE DPO)
MASTER DEVICERELEASED

After loading subdirectories HARRY uand ALLEN
onto DPO. the operator deletes their parent partition.
STAFF.DR. He could have deleted them individually.
but he saved a step by deleting STAFF. The space
STAFF occupied returns to partition DPO. The session
cnds with the release of the master directory. DPO.

Directory Command Summary

The following list summarizes the CLI and .SYSTM
commuands used to manage disk files and directories:
see Chapter 3 and the CL/ Reference Manual for more
information about these commands.

CLI Command System

Command
CCONT .CCONT
CDIR .CDIR
CHATR .CHATR
CHLAT .CHLA
CLEAR

.CONN
CPART .CPART
CRAND .CRAND
CREATE .CREAT
DELETE DELET
DIR DIR
EQUIV EQIV
INIT ANIT
LINK LINK
RELEASE RLSE
RENAME RENAM
UNLINK JULNK

Meaning

Create a contiguous
file with all words
zeroed.

Create a
subdirectory.

Change file
attributes.

Change link access
entry attributes.

Set a file’s use count
1o zero.

Create a contiguous
file without zeroing
words.

Creale a secondary
partition.

Create a random file.

Create a sequential
file.

Delete a file.

Specify a new current
directory. initialize it
if necessary.

Assign a new name
to a global directory
specifier, removing
the old name or
system name.

Initialize and open a
directory or device.

Create link entrv o o
file in any any
directory.

Remove a directory
or ¢ device from the
system.

Rename u fle,

Delete w hink entry.

2" T 6 Licensecd Materigi-Property of Data General Corporaton

083-000075-C8

Magnetic And Cassette Tape Files

You can access data on magnetic tape and cassette by
both file 170 and free form 1/0. RDOS permits file
access on nine- and seven- track magnetic tape, and
supports up to 16 magnetic tape and 16 cassette tape
drives. For free form [/0. the wpe controller supports
reading and writing at any density: file /0 requires
high density if on a dual-density drive.

The following are the [/0 modes generated by the
operating system:

Tape File I70: 7-track 8O0OBPI. EVEN Parny
9-truck NRZISCOBPL. ODD Parity
9-track PE 1600BPL. ODD Parity

Parity in any hardware combination
except WRITE EOF is always
EVEN for 7-track, ODD for 9-track.

Free Form 1/0:

If a controller detects an error during reading. the
system will attempt to reread the data 10 times before
issuing error code ERFIL. **file data error.” If a data
error is detected and returned to the CLI. the system
will dislay the message: PARITY ERROR: FILE
MTn:dd. for mag tape. or CTn:dd for cassette. where #
is the unit number and dd represents the file number.

If RDOS detects an error after writing, it will attempt to
backspace. erase, and rewrite up to ten times. If the
rewrite fails the tenth time. then you will get the error
message.

If RDOS receives an undefined error, it will return the
tape status word as the error code. If it returns this code
to the CLI. vou will see it ast UNKNOWN ERROR
CODE n. where #nis the tape status word.

Nine and Seven Track Data Words

Each data word output to nine track units, under both
file 1/0 and free format [/O, is written as two
successive eight-bit bytes. Data is encoded as in Figure
2-7.

Data output to seven-track units is necessarily encoded
in tape file I7/0. RDOS encodes each 16-bit word as 2
data words, in 4 successive frames. In free form [/0,
RDOS encodes each word as 2 successive frames. (See
Figure 2-8.)

Each twpe has a physical end-of-tape (EOT) muarker.
Whenever you attempt to write bevond this marker.
RDOS will return the error ERSPC after it completes
the operation . You cannot start a new file bevond the
physical end of tape marker.

If vou are writing to tape via the CLI DUMP command.
the system will stop writing and abort the commund
when it reaches the EOT mark. If vou are writing on a
system level. make sure that the reel holds enough tape
to accept the file. (The error mnemonic for EOT is
ERSPC: vou can use this to terminate writing before
running the tape from its reel.)

Upon reaching the physical EOT while writing, vou
should terminate the tape file to avoid running the tape
from its reel.

original data word .
[oT1]2]3]«]s]6[7[8]9[10[11]12[13]14]15]

9-track encoding

4 112 N\
\ 6 |14 \
| 0!8 J
/ 1] o /
/ e 7
/ 3|11 /
{ 715 i
\ 5|13 \
-
$D-00538

Fizure 2-7. Data Encoding (9-track units)

TAPE FILE /O

k.
-

SD-00539

093-C00075-08

N P PP N
\\ B .
0|4 812
/ 1151913 /
/ 21610 14 /
/ 3l7li1]1s /

*Forced to O on writing; don't care on reading.
Figure 2-8. Daia Encoding (7-rack units)

Licensed Mateniai-Property of Data Generai Corporation

FREE FORM (DIRECT BLOCK) I/C

16
1
12
13 /
14 /
15 /

\‘"‘K...,mw‘

-
NIl diWwiniT

2-17

Tape File Organization

In tape file format, RDOS writes and reads data in
fixed-iength blocks of 237 16-bit words. It fills short
blocks with nulls. Data files are variable in length, and
cach one contains as many fixed-length blocks as vou
need. The first 235 words of cach block contain yvour
data. and the last two words cach contain the fiie
number. The following ilfustration shows the structure
ol a data block:

Data words

255 words
file number 1 word
fite number 1 word

S0-01032

After the first file, RDOS writes a double end-of-file
(EOF) mark. The system begins writing at the first
double EOF it finds. overwrites the second EOF in the
pair. writes the file. and signifies the end by writing
another double EOF. RDOS writes files in consecutive
order, starting with file number 0 and extending
through file number 99.

Initializing and Releasing a Tape Drive

To initialize a tape drive. use the CLI INIT commuand:
e.g.. INIT MTO).INIT automatically rewinds the tape on
that drive. Full initialization (INIT/F) rewinds the tape
and writes two EOFs (the logical end-of-tape
indication) on the beginning of the tape. You must
always perform an INIT/F on all new mag tapes before
vou use them. Note that INIT/F effectively erases the
tape by permitting the system to overwrite all files on it.

The CLI RELEASE command rewinds a tape and
releases its drive from the system.

2‘ 1 8 Licensed Material-Property of Data General Corporation

Referencing Tape Files Using File I1/0

Files are placed on tape in numeric order. beginning
with file number 0. If a tape is long enough, vou may
place up to 100 files on it: the last file will have number
99.

To access a tape file in a command line. enter the
command and the tape specifier, followed by a colon
and a file number. For example:

PRINT MT0:6)

MT is the specifier for magnetic tape. 0 is the drive unit
number, and 6 is the file number. The format and
definitions of all magnetic tape specifiers are:

MTn:mor Magtape orcassette unit n, where nisa

CTn:m number between 0 and 17; and has no
leading zero: file number mis in the range
0-99.

You need not enter a leading zero to enter the first 10
file numbers. To reference file number 8§ of the tape on
magnetic tape unit 2, you would use either of the
following:

MT2:08 or MT2:8

You must enter both the tape global specifier and the
file number. Violation of this rule will cause the system
to respond: ILLEGAL FILE NAME.

Some examples of references to files on tape and disk
are:

DUMP MT0:0)

Dump all nonpermanent file onto tape from the
current directory (this provides a magnetic tape
backup). The files become file number 0 of the tape
mounted on unit 0.

LOAD MT0:0)

Reload the files in tape file 0 into the current disk
directory.

XFER SPTR CT2:9
Transfer the contents of the file in the paper tape

reader to file 9 of the cassette mounted in cassette drive
2.

093-000075-08

Note that only files which have been DUMPed via CLI
can be LOADed onto disk: you must XFER any file
which is notin DUMP format.

You must write files on magnetic tape in numeric
order. For example, assume that vou transfer a disk file
to tape unit 0. Tape unit 0 contains a new mpe which
you have just fully initialized.

XFER SCURCEFILE MT0:0)

SOURCEFILE becomes the first file on the new tape.
which contains the following:

First file (Q)
containing the
contents of
SOURCEFILE.

eof
eof

Once afileis

. written, the

. number of the next
file is assigned.
File 1 is a null file

— - — — — — — —

The system recognizes only file numbers 0 and 1 on the
tape: because RDOS assigns numbers incrementally,
only these numbers exist.

If you try to reference any other file on the tape:

XFER MYFILE MTO0:2)

The system will be unable to find file 2, because file 0 is
the last file. You will get the error message:

FILE DOES NOT EXIST: MT0:2
As you write files on tape, you should note their

numbers. Otherwise, you could inadvertantly
overwrite a file, and thus destroy the overwritten file

093-000075-08

Licensed Materiai-Property of Data Generai Corporation

and all following files. For example, assume a tape on
drive 0 contains four files:

0 — — —- — — — —_——
———————— eof
1
________ eof
2 —
_______ eof
3 —————
I eof

eof | Logical end of
eof { tape: null file

The command:
XKFER MYFILE MTO0:1)

overwrites the contents of file 1 with MYFILE, and
voids the location data of following files. The original
file 1 and all subsequent files are lost:

R Qriginat
file zero

eof

________ - MYFILE

eof | Logical end of
eof { tape; null file

. -—— | ost data

2-19

Before you physically remove a mag tape, reel or
cassette, you must RELEASE its transport. This
command rewinds the tape and resets the system tape
file pointer to file 0, for correct file access in the future.
(If you forget to do this, simply RELEASE the drive).

You must also note the implications of the logical
end-of-tape mark (double EOFs) employed by RDOS.
For example, if you deliberately write a null file, vou
cannot write any other files to the tape. Your null file
will be the last file.

Linking to Tape Files

You can link tape files from disk files with the
mechanism described under disk files. Linking disk file
A to tape file MTO0:0 creates a link entry in the current
directory for resolution file MTO0:0; the link entry to file
MTO0:0 is named A. References to file A in the current
directory are resolved as references to file MT0:0.

Free Form Tape Reading and Writing

In addition to tape file 1/0, which uses 257-word
blocks, RDOS allows you to read and write data to
magnetic tape in free format, record by record. You
open a tape unit for free form 170 with .MTOPD., and
write or read the data with .MTDIOQ; these calls are
described in detail in Chapter 3, under /nput/Quipur
Commands.

Essentially, .MTDIO allows your program to read or
write from 2 to 4096 words within a data record. and to
space forward or backward through one to 4095 data
records or to the start of a new data file. Additionally,
this call allows vour program to rewind a reel, write an
end-of-file mark, read the transport status, and
perform other machine-level operations. Unlike tape
file 1/0, the system does not maintain a tape file
pointer under free form 1/0 after it locates the file you
specified in MTOPD.

Multiplexors

The SYSGEN program allows you 1o specify
multiplexors and their characteristics. RDOS supports
several kinds of Data General multiplexors: the type
4255-4258 Asynchronous Line multiplexor (ALM-
device codes 34, for the primary ALM, 44, for the
secondary ALM) and the tyvpe 4060-4063
Asynchronous Communications multiplexor (calied
QTY: device code 30, for QTY, 70; for QTY1). Either
the ALM or QTY can support from one to 64 full- or
half-dupiex lines. RDOS also supports a Universal Line
Multiplexor (ULM). A ULM can support 16
half-duplex asynchronous lines or 8 full-duplex
asynchronous lines and/or two synchronous lines.
RDOS does not support the synchronous lines (other
software available with RDOS, like the
Communications Access Manager, does support

2" 2 O Licensed Material-Property of Data Generat Corporation

them). A full-duplex line allows data to flow two ways
simultaneously: users can transmit to RDOS over it,
and RDOS can transmit to users’ terminals. RDOS
assumes full-duplex lines, but you can set up
half-duplex protocols if you want.

Each ALM, ULM, or QTY line is a filename, of the
form QTY:x where xis anumber from 0 to 63. You can
open multiplexed lines on any RDOS 1/0 channel
(channels are described in Chapter 3). After you have
opened a line on a channel, you can use system calls
.RDL/.WRL and .RDS/.WRS to read and write to it. In
Chapter 3, 1/0O Channel Numbers describes selecting a
channel number, and /nput/Quipur Commands describes
opening a file, and the read/write calls. No more than
one read and one write can be outstanding on any one
line. To close a line, and abort 170, you must .CLOSE
its channel (because the .ABORT task call doesn't
affect QTY/ALM 1/0).

When you .OPEN a multiplexed line (or any file). the
contents of ACI determine what operations RDOS will
allow on that line. AC1 acts as a characteristic disable
mask, as described under .OPEN (Chapter 3). The
following characteristic bits affect multiplexors:

AC1 Meaning

DCCRE=1B4 Masking disables carriage return
echoes on line reads (CR then acts as
enter key).

DCLAC=1B6 Maéking disables line feed after CR.

DCPCK=1B7 Masking disables software parity on
QTY:noeffecton ALM or ULM.

DCXON=1B8 Masking enables XON/XOFF
protocol for STTR. (This prevents
the teletypewriter reader from
overflowing the multiplexor read
buffer.)

DCNAF=1B9 Masking disables 20 nulis after line

feed.

DCKEY=18B10 Masking disables echo, CTRL Z
end-of-file, and line and character
rubout.

DCTO=1811 Masking enables backspacing for

rubout (CRT displays only).

DCLOC=1B13 Masking makes this a modem line.

DCCGN=1B14 Masking disables TAB expansion.

enables multiplexor

DCNi=1B15 Masking

nterrupts.

083-000075-08

When ACI equals 0 on the .OPEN. the multipiexed
console hus the following default characteristics:

1) line feeds after carriage returns
20 nulls after line feed
during line reads: charuacters are echoed. SHIFT-L
(V) deletes line. RUBOUT deletes character and is
echoed as —. CTRL Z results in end-of-file error.
ESCAPE also results in end-of-file error.

4} thisis alocal line.

5} TABS are expanded as spaces.

Checking Multiplexed Lines for
Activity or Interrupts

Line 64 Reads

RDOS allows you to monitor both activity on all
unopened multiplexed lines and console interrupts
from all opened multiplexed lines. If a task opens
QTY:64, and issues a read line or read sequential call,
RDOS will suspend this task until someone either
presses a key at the end of an unopened line, or hits an
interrupt on an opened line. When RDOS receives the
character typed, it readies the task. takes the normal
return from the read call, and passes the following data
in AC2:

A

bit: 0 1 78 15

Multipiexed
line number

Character typed on
unopened terminal

When RDOS receives and answers a ring from a
modem, it will send the following data to line 64. in
AC2:

bit: 0 1 78 15

Muitiplexed 0
{ine number

This allows your program to detect a service request
from a distant terminal. If the request comes from an
unopened line, your program can then .OPEN the line
for communications. QTY:64 can be opened by both a
foreground and background task; if this happens each
tusk will receive characters from unopened lines.

083-000075-08

Licensed Material-Property of Data General Corporation

If an open line receives an interrupt (CTRL A and
CTRL C are defaults). RDOS wiil ready the task which
.OPENed line 64. and pass the following data in AC2:

interrupt character
(CTRL-A and CTRL-C
are defaults)

9 Multipiexed
line numbper

At SYSGEN. vou can select interrupts other than
CTRL-Aand CTRL-C.

A task receives and interrupts from an opened line only
if itisin the ground that opened the line’s channel.

Line 64 Writes (ALM and ULM only)

RDOS allows vou to change the device characteristic
disabie mask. line speed. or modem state on any ALM
line. Just issue a .WRL to a channel opened on
QTY:64. and pass the following data:

To change the mask (on .OPENED lines onlv):
ACO=W64DC +line number
ACT= new mask

To change line speed:

ACO=W64LS +line number

ACIl= new line speed (0.1.2. or 3 for ALM clock: |
through 135 for ULM line code. as described below)

To change modem stare:
ACO=We64MS +line number
ACl= [W64DTR][+][W64RTS]

(Entrics in italic brackets are optional.) W64DTR raises
Data Terminal Ready: if you omit it, DTR is lowered.
W64RTS raises Request To Send: if you omitit. RTS is
lowered.

To change any or all characteristics on any line:
ACO=W64CH +line number
AC1= new characteristic mask

These symbols are defined in the user parameter file
PARU.SR. Appendix B contains a PARU listing.

Note that RDOS does not check the validity of your

input. so be careful when you change the characteristics
of an open line.

2-21

ULM Line Codes

At SYSGEN, you select a line speed for all ULM lines.
You can change the line speed of any ULM line via the
QTY:64 mechanism described earlier. Simply specify
one of the codes below (decimal) in AC1 1o select the
matching line speed.

This code: Selects this line speed:

1 19200
2 50

3 75

4 134.5
5 200
6 600
7 2400
8 9600
9 4800
10 1800
1 1200
12 2400
13 300
14 150
15 110

Multiple Channels

A ground can have several channels opened to the
same line. but the saume line cannot be opened in both
grounds (except line 64).

The first channel opened on a line becomes the master
channel, and all other channels opened on it become
subordinate; if you close the master, the subordinate
channel numbers will be unable 1o use the line. Before
vou can reassign (.OPEN) the subroutine channel
numbers on another line, you must close each one. If
vou .OPEN a new channel on a line after .CLOSEing
the master, the new channel becomes the master
channel.

ALM and ULM Modem Support

The ALM and ULM support modems with the
foliowing six signals:

DTR - Data Terminal Ready (set either by
RDOS or yvourself)

RTS - Request to Send (set either by RDOS or

_vourself),

DSR - DataSet Ready

RD - Ring Detect

CD - Cuarrier Detect (this signal is handled by
the hardware).

CTS- Clear To Send (handied by the hardware)

2-22

Licensec Matensi-Property of Data General Corporation

When you bootstrap RDOS, it raises DTR and RTS,
unless you have changed the ALM parameter file
(ALMSPD.SR) 1o specify low DTR and/or RTS. On a
ring interrupt, RDOS raises both DTR and RTS. On a
disconnect, if DSR is low, it lowers both DTR and CTS.

When a modem’s DSR (DataSet Ready) is low, it
cannot communicate; RDOS will take the error return
on all reads/writes to its modem line, and it will place
code ERRDY in AC2. Note however, that the error
return occurs only if you defined the line as a modem
line by masking DCLOC on the .OPEN.

Multiplexor Error Messages

The following errors relate to reads/writes on
multiplexed lines. For other read/write errors, see
.RDL/.RDS or WRL/.WRS in Chapter 3. On the error
return, AC2 may contain one of the following codes:

AC2 Mnemonic Meaning

24 ERPAR Parity error detected on read.

47 ERSIM Duplicate read or duplicate write.

127 ERRDY Line not ready: modem's DSR is
low.

130 ERINT Console interrupt received.

The following errors clear the read buffer and error the
read request:

131 EROVR Hardware overrun error on read.

132 ERFRM Hardware framing error on read.

ALMSPD.SR

The source file, ALMSPD.SR. defines the line
characteristics of each line of the ALM or ULM. You
can edit this source file and assemble it with MAC (a
macroassembler) to tailor vour multiplexed lines for
specific applications. You can then generate a2 new
RDOS system, during which SYSGEN will include the
new ALMSPD.RB. If vou do not define a line in this
module, or if vou set its characteristics at default, then
it has the foliowing characteristics:

1} clock frequency (ALM) or line speed (ULM) as set
inSYSGEN

2) 1stop bit

3) 7 bits per character

4} even parity

5) nc loopback

6} DTR -+ RTS raised on initialization

G83-000075-0¢8

You can define these characteristics for any line by
inserting the line

LNDEF xx,DEFAULT

in ALMSPD.SR where xx is the two digit decimal
number for the line you want to set. If you want to
define different line characteristics, then insert a line of
the form

LNDEF xx,spd,stop,bits,par,loop

or

LNDEF xx,spd,stop,bits,par,loop,dtr,rts

where

xx isthe two-digit decimal line number;

spd is the clock frequency (may be 0.1,2, or 3 for
ALM clock or 1 through 15 for ULM line speed):

stop is the number of stop bits per character (may be 1
or2);

bits is the number of bits per character (may be 3, 6,
7, or 8, not including the parity bit);

par defines whether vou wish no parity to be
generated or checked (specify NO), even parity
(EVEN), or odd parity (ODD):

loop tells whether you want to enable loopback
(specify LOOPBACK or NOLOOPBACK);

dtr defines the state of Data Terminal Ready on
initialization (DTRHIGH or DTRLOW): and

rts defines the state of the Request To Send on
initialization (RTSHIGH or RTSLOW).

Note that you may omit the arguments for dts and rts if
you wish to set their states as high.

For an ALM example, to set line 3 to have clock
frequency 1, 2 stop bits, 7 bits per character, EVEN
parity, and no loopback, vou'd insert the following line.
Both Data Terminal Ready and Request To Send will
be initialized high.

LNDEF 03,1,2,7 EVEN,NOLOOPBACK

Fora ULM example, to set line 4 to run at 4800 baud, 1
stop bit, 7 bits per character, ODD parity, and no
loopback, vou’d insert the following line. Both Data
Terminal Ready and Request To Send will be initialized
high.

LNDEF 04,8,1,7,O0DD,NOLOOPBACK

After defining ALMSPD.SR. type MAC ALMSPD
SLPT/L before performing a new RDOS SYSGEN.

End of Chapter

093-000075-08

Licensed Materiai-Property of Data General Corporation

2-23

Chapter 3
Single Task Programming

This chapter describes most of the system calls you will
neced 1o program in RDOS in a single-task
environment. It explains system and task command
structures, summarizes the most commonly-used
system calls, and then lists complete descriptions of
single-task calls, under the headings:

DEVICE AND DIRECTORY COMMANDS
FILE MAINTENANCE COMMANDS
LINK COMMANDS

FILE1I/0 COMMANDS

CONSOLE I/0 COMMANDS

MEMORY ALLOCATION COMMANDS
DEVICE ACCESS COMMANDS
CLOCK/CALENDAR COMMANDS
SPOOLING COMMANDS

KEYBOARD INTERRUPT COMMANDS

For important single-task material on program swaps
and overlays, read the beginning of Chapter 4: for user
interrupts read Chapter 7. If you want to run two
grounds in your system, read Chapter 6. and. if you
have a mapped system. the last half of Chapter 4.
Chapter 5 covers tasks and multitasking; it includes
system clock commands which you can use in a
single-task environment.

Multiple and Single Task Environments

A program task is an execution path through user
address space which uses system resources such as 1/0,
overlays, or simply CPU control. User address space
includes all memory from location 16, through
NMAX-I1.

In a single-task environment, the program itself is the
only task. A program creates a multitask environment
by creating a task via task calls TASK or .QTSK. If you
plan a multitask program, you must specify multiple
tasks either with assembly-language pseudo-ops or with
RLDR switches. If you do so, RLDR will copy the
multitask scheduler (called TCBMON) into your
program, and allot the number of Task Control Blocks
(TCBs) specified.

If you omit both task and [/0 channel pseudo-ops, and

task/channel switches, RLDR assumes a single-task
program, and copies the single-task scheduler into your

093-000075-08

program. RLDR also allots eight channels for the
program - enough for most single-task programs.
Either a single or multitask program can use all system
calls in this chapter. For more on multitasking, see
Chapter 3.

Note that the task scheduler and other modules differ
from each type of system (e.g.. unmapped NOVA and
mapped NOVA), which means that programs loaded
under one type of system will probably not execute on
another type of system. To load for a different system,
obtain the proper system library (SYS.LB) for the
target system, and ensure that RLDR searches it. not
the current library, during the load. You can do this by
loading from a subdirectory which contains the target
system library and links to RLDR.

System and Task Calls

RDOS system and task calls allow you to communicate
directly with the operating system. System calls and
task calls are similar, but not identical.

You begin each system call with the mnemonic
SYSTM, which assernbles as a JSR @ 17 instruction.
This instruction enables the system to respond to your
command.

After the system has obeyed a system call. it takes a
normal return to the second instruction after the
command word. If it detects an exceptional condition, it
takes the error return to the first instruction following
the command word. System calls always reserve AC2
for the error code.

The general form of a system call description is:
ACn - Required input to the call

SYSTM

commuand

error return (error code in AC2)

normal return (each accumulator, except AC3.
is restored unless it is used to return output)

ACn - Output from the call

AC3 - The contents of location 16 (the User Stack
Pointer) is the default value.

Licensed Material-Property of Data General Corporation 3‘ T

There are two basic types of system calls: those which
require a channel number, and those which don’t.
Channel numbers are described below.

Many system calls require you to include a byte pointer
to a specific filename. When you include this byte
pointer, you can include a directory specifier as well. All
RDOS system calls are summarized in Table 3-1,
below.

A 1ask call resembles a system call, with these
exceptions:

1. You enter no .SYSTM mnemonic before the task
command word.

2. RDOS executes task calls in user address space, not
in system space.

3. Task calls which cannot take an error return do not
reserve an error return location. Almost all system
calls reserve an error return location even if no error
return is possible. The commands in this chapter are
allsystem calls.

See Chapter 5 for more detail on the differences
between system and task calls.

Table 3-1. System Call List

-APPEND Open a file for appending.
.BOOT Bootstrap a new system. Chapter 8.

.BREAK Interrupt the current program; save the
current state of memory in save file format.

.CCONT Create a contiguously organized file with all
data words zeroed.

.CONN Create a contiguously organized file with no
zeroing of data words.

.CDIR . Create a subdirectory.
.CHATR Change file attribues.
.CHLAT Change link access attributes.

.CHSTS Get the status of the file currently open on a
specified channel.

.CLOSE Close a file.

CPART Create a secondary partition.
.CRAND Create a random file.
.CREAT Create a sequential file.

DDIS Disabie user access to a device in a mapped
system.

DEBL Enabie user access to a system {mapped)
device.

.DELAY Delay the execution of 4 task.
DELET Deleteafile.

DIR Change the current directory.
DUCLK Define a user clock.

EOPEN Openafile for reading and writing by one user
only.

EQIV Assign a temporary name to a device.

-ERDB Read one or more disk blocks into extended
memory (mapped). Chapter 6.

-ERTN Onan error, return from program and
describe error (if to CLI).

.EWRB Write one or more 256-word blocks from
extended memory to disk (mapped). Chapter
6.

EXBG Checkpoint a background program (mapped).
Chapter 6.

.EXEC Swap or chain in a new program. Chapter 4.

EXFG Execute a program in the foreground. Chapter
6.

FGND Seeif there isa foreground program running.
Chapter 6.

.GCHAR Get chgracler from the console.

.GCHN Get the number of a free channel.

.GCIN Get the operator input console name.

.GCOUT Get the operator output console name.

.GDAY Gettoday's date.

GDIR Getthe current directory name.

GHRZ Examine the real time clock. Chapter 3.
GMCA Getthe current MCA unit number, Chapter 8.
.GPOS Getthe current file pointer.

.G8YS Getthe name of the current operating system.
.GTATR Get file atiributes.

GTOD Getthe time of day.

3‘ 2 Licensed Materiai-Property of Data Genera) Corporation

Table 3-1. System Call List (continued)

ACMN Define a program communications area,
Chapter 6.

IDEF Identify a user device.

ANIT Initialize a device or a directory.

AINTAD Define a program interrupt task.

ARMV Remove a user device, Chapter 7.

LINK Create a link entry.

.MAPDF Define a window map (mapped). Chapter 6.
.MDIR Get the logical name of the master device.
MEM Determine available memory.

.MEMI Change NMAX.

.MTOPD Open a mag tape or cassette for free format
/0.

.ODIS Disable kevboard interrupts for this console.
.OEBL Enable keyboard interrupts for this console.

.OPEN Open a file for reading and/or writing by one
Or more users.

.OVLOD Load auseroverlay into memory.
.OVOPN Open a user overlay file.

.OVRP Replace an overlay file.

.PCHAR Write a character to the console.
.RDB Read one or more disk blocks.

.RDCMN Read a message from the other program’s
communications area. Chapter 6.

RDL Read a line.

.RDOPR Read an operator message. Chapter 5.
.RDR Read a random record.

RDS Read sequential bytes.

.RDSW Read the console switches.

RENAM Rename afile.

.MTDIO Perform free format 1/0 on tape or cassette.

.RESET Close all files.
.RLSE Release a directory or device.

.ROPEN Open a file for reading only by one or more

users.

RSTAT Getaresolution file’s statistics.

.RTN Return from a program to a higher-level

program. Chapter 4.

.RUCLK Remove a user clock. Chapter 5.
.SDAY Settoday's date.

.SPDA Disable spooling. -

.SPEA Enable spooling.

.SPKL Delete the current spool file.
.SPOS Set the current file pointer.
STAT Getafile's statistics.

.STMAP Set the data channel map for a user device

(mapped), Chapter 6.

STOD S;zl the time of day.

TUOFF Turn the tuning report function off. Chapter 9.
ULNK Delete a link entry,

UPDAT Update the current file size.

VMEM Determine the number of memory blocks.
WRB Wrile one or more 256-word blocks to disk.

\WRCMN WTrite a message 10 the other program’s

communications arca. Chapter 6.

WREBL Remove the write protection of a memory

arca. Chapter 6

WAL Write a line.
WROPR Write an operator message.
WRPR Protect a memory area {mapped). Chapter 6.

WRR Write a random record.

WRS Write sequential bytes.

$93-000075-08 Licensec Materiai-Property ¢f Dala General Corporation

Status On Return From System Calls

Status of the accumulators upon return from the
system (.SYSTM or task call) is as follows: if the system
returns no information as a result of the call, the carry
and all accumulators except AC3 are preserved. For
certain calls, the system returns information in ACO,
ACl and/or AC2.

By default, on return from any system call, AC3
contains the contents of location 16 5, (the USP),
unless you specified a given module in the RLDR
command line, as shown below. On an error return,
RDOS uses AC2 to return a numeric error code.
Appendix A lists the error codes.

Note: In this chapter, and throughout the manual,
error codes listed under each call represent the
most common errors only; the meanings have
been expanded and interpreted in light of the
call.

AC3 on Return

(upon return
from call) AC3
contains contents of:

If you loaded your program then
with module:

NSAC3 (any machine; used
by default)

USP (location 164).

N3SAC3 (NOVA3sonly) Frame Pointer
register.
ESAC3 (ECLIPSEs only) Frame Pointer

(location 415)

i/0 Channel Numbers

Before you can access a file for 1/0, you must give it an
/0 channel number in vour open call. While the file is
open. it retains this channel number, and you must
access it via the number instead of the filename. When
you close the file, the number is relcased. The number
immediately follows the call word in your program: if
the channel number is n. the 1/0 calls for a file could
run:

openn

file reads/writes n

closen

3"4 Licensed Matenai-Property of Data General Corporation

In a mapped system, you specify the maximum number
of foreground and background channels during
SYSGEN: the maximum for each ground is 377¢. Inan
unmapped system, SYSGEN asks no question about
channels and the maximum for the system is 377.

For a single-task program, RLDR allots eight 170
channels, numbered 0 through 7. Usually, this is
enough. If you want to specify more channels, use
either the RLDR /C switch, or the assembler
pseudo-op .COMM TASK.

Selecting a Channel

There are two ways to assign a channel number to a file:
either directly when you open, e.g.,

.OPEN3

or via AC2. If you specify number 77 (or CPU) on your
open, RDOS will open the file on the channel number
contained in the right byte of AC2. To open on a
number above 77 (assuming that vour program permits
one), you must open on 77 and pass the number in
AC2. The major advantage to opening on 77 is that you
can use system call . GCHN to find a free channel for
your open.

.GCHN returns the number of a free channel in AC2,
and yvou can give this number a name. and use the
name for all I/0 to the file. This method ensures a free
channel for file 1/0 (unless all channels are in use).
Here is an example:

.SYSTM
.GCHN

JMP ER
STA 2, FILE1 :STORE THIS CHANNEL

:NUMBER UNDER “FILE1".

LDA 2 FILE1
SYSTM
.OPENT77
JMP ER
SYSTM
WRS 77

:OPEN “FILE1" FOR ANYTHING.
WRITE TO “FILE1™.

SYSTM
.GCHN

JMP ER

STA 2, FILE2
.SYST™M
APPEND 77
JMPER

:STORE NUMBER UNDER “FILE2".

;OPEN “FILE2” FOR APPENDING.

(

Capsule Command Summary

As you write different programs for your application.
you will use certain system calls quite frequently. and
others rarely or not at all. The following table attempts
to summurize the most useful calls. in the sequence
which you might use in a program. It gives the call
name. format. accumulator data, and possible error
codes. It assumes that vou will use the CLI 10 create
and initialize partitions and subdirectories. to execute
mug or cassette tape 170, and to control spooling. and
that vour program won't do such esoteric things as alter
file attributes. create link entries. or manage a
multitask environment. Of course. vou can do all of
these things via RDOS system cails if vou choose.

The summary also assumes a single-task environment;
it does not cover foreground/background calls
(Chapter 6) or multitasking (Chapter 3). Many
commands not given below are included in the rest of

this chapter (or manual). Fach call has the form:

SYST™
call name

error return to program

for example:

BTPTR:

ERROR:

LDA 0.BTPTR
SYSTM

DIR

JSR ERROR

=102

TXT “DP1:SUBDIR"

SYST™
.ERTN
JMP -2

Each file I/0 command requires a channel number. as
noted. The term “biptr’™ means byte pointer.

Table 3-2. Common Call Summary

Call Purpose Remarks Call Purpose Remarks
.CRAND |[Create a random file. ACO:biptrio WRL n Write an ASCll line ACO:btptrto area
filename. to the file OPENed which holds the
on channel n. ASCll line.
.CCONT |Create a contiguous ACO:biptrio Writing begins at
file. filename. startof file if you
AClnumber of disk .OPENed the file; at
blocks for the file. end if vou
.APPENDed the file.
OPEN |Openafile for /0 ACO:biptrto Limitis 132 char-
n onchannel n. filename. ACl: acters, terminated by
characteristic disable a CR, null, or form
mask. You can feed.
specify the system WRS n Write sequential ACO:btptr to starting
default mask (normal bytes to the file on byte address of data.
procedure) by passing channeln. See ' WRL | ACl:number of bytes
Oviaa SUB 1.1 for position to be written.
instruction before the information.
.OPEN. . .
\WRB n, Direct-block 170 ACO:starting address
APPEND | Open u file for ACO:btptrio .RDB n calls. Write orread a | for the block write or
n appending, on filename. AC1: series of disk blocks | read. ACl:starting
channel n. Set characteristic disable to or from the relative block
position for writing mask. As with OPEN random or number in the series.
atthe end of the file. | you can use the contiguous file on AC2:left
default the channeln. byte-number of
APPEND. 256-word blocks to be
written or read to the
RDLn |Readan ASCllline | ACO:biptr to area file.
on channel n. large enough for line .CLOSE n | Close the file.
Counterpart of (133 maximum). opened on channel
WRL. AC! returns the n. RDOS then
count of characters updates the file's
read. UFD infor- mation.
) . (.(ERTNand .RTN
RDS Read sequentially ACO:btptr to starting close all chan- nels in
from the file byte address of data. the current
OPENed on channel | ACI:number of bytes program.)
n. Sequential mode to be read. 1o be read.
is required for binary DELET Delete a file. ACO:biptrto
data. filename.

093-000075-08

Licensed Material-Property of Data Generat Corporation

3-5

The following calls control NMAX, execute and return
from program swaps or chains, and load overlays.

MEM

MEMI

.ERTN
or
.RTN

.OVOPNn

.OVLOD n

3-6

Return the current
program’s NMAX
value in ACO, and
the value of the
Highest Memory
address avail- able
for user programs
in ACIL.

Raise NMAX to
the value entered
in ACO, or lower
NMAX by the
value entered in
two’s complement

in ACO. RDOS
returns the new
value in AC1.

Close all channels
in the current
program and
return to (resume
execution of) the
next higher-level
program {usually
the CLD). .ERTN
relurns an error
code in AC2; if
return is to the
CLI, it also prints
an error message
on the console.

Open overlay file
for reading, on
channel n. Before
VOur program can
use overlays, yvou
must open them
on a channel. You
close the channel
viaa CLOSE n.

Load an overiay
from the overlay
file opened on
channel n into its
reserved memory
node.

codes:

AC2 Mnemonic

0 ERFNO
1 ERFNM
3 ERICD
6 EREOF
7 ERRPR
10 ERWPR
11 ERCRE
12 ERDLE
13 ERDE1
15 ERFOP

ACO:btptr to overlay

filename, including

.OL extension. 21 ERUFT
22 ERLLI
26 ERMEM

ACO:overlay 27 ERSPC

descriptor.

ACl:conditional - N

load flag. 20 ERRD

Licensed Materiai-Property of Data General Corporation

If your program takes the error return from any of the
calls above, AC2 will contain one of the following error

Meaning
Ilegal channel number
(legal range: 0 through
3775).
lllegal filename (only
alphanumeric or S

characters are permitted).

Ilegal command for device
(for example, trying to read
from the line printer).

End of file detected while
reading; or altempt to write

beyond the end of a
contiguous file.

The file is read-protected.
The file is write-protected.
The file already exists.

The file (directory) does
not exist.

The file cannot be deleted
because it has the
permanent attribute.

The file hasn’t been
opened.

This channel is in use.

Line limit (132 characters)
exceeded.

Attempt to allocate more
memory than is available.

Current partition fiie space
exhausted.

Attempt to read or write
into sysiem space
(unmapped systems only).

2

083-0

€3
-4
o
<
o

<
o

AC2 Mnemonic Meaning

36 ERDNM Device notin system.

37 EROVN Illegal overlay number.

40 EROVA File not accessible by
direct-block 170.

47 ERSIM Simultaneous reads or
writes attempted to same
QTY/ALM line.

52 ERIDS Ilegal directory specifier.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space (mapped systems
only).

101 ERDTO Disk timeout occurred.

103 ERMCA This MCA channel is in

use.

104 ERSRR A short receive request

terminated the MCA
transmission.

106 ERCLO MCA/QTY/ALM output
terminated by channel
close.

124 ERZCB Attempt to create a

contiguous file of zero
length.

Device and Directory Commands

This section describes the RDOS system commands
which pertain to opening and releasing disks. mag tape
and cassette drives, and disk directories; it also covers
disk partition and subdirectory creating commands. It
includes these commands:

ANIT Initialize a directory/device.

.DIR Select a different current directory.
.RLSE Release a directory/device.

093-000075-08

.GDIR Get the current directory’s name.

.CDIR Create a subdirectory.

.CPART Create a secondary partition.

EQEY Temporarily rename a nonmaster device
or tape drive.

.GSYS Get the current RDOS system’s name.

MDIR Get the master directory’s name.

Commuands for individual files are covered in the
following section. Fie Maintenance.

RDOS can support many directory devices
simultaneously. During SYSGEN. vou configured your
system for specific disk and tape devices, and you can
address any of these by its name as shown in Table 2-1.

Initialize a Directory or Device (.INIT)

Your program can initialize devices and directories via
the system command .INIT.

If ACI contains anything but -1 when you invoke
ANIT. a partial inttialization of the device or directory
results; this makes all files in the directory available to
the system software. Partial initialization of a magnetic
tape or cassette rewinds the tape and resets the tape file
pointer to file zero. If ACI contains 177777 when you
invoke .INIT, a full initialization of the device results.
Full initialization on a mag tape or cassette rewinds the
tape and writes two EOF’'s to signify the logical
end-of-tape. You lose all files on that tape. Full
initialization of a disk builds a virgin SYS.DR and
MAP.DR effectively destroving all existing files.
RDOS treats full initialization of a secondary partition
or subdirectory as a partial initialization.

Required input

ACO - Byte pointertoa diréctory/device specifier.

In each byte pointer, bits 0-14 contain the word address
which holds or will receive the byte. Bit 135 specifies
which half (0 left, 1 right).

Format

SYSTM

ANIT

error return
normal return

Licensed Materiai-Property of Data General Corporation 3" 7

Possible errors

AC2
1

10

12
27
31
36

45

77

101

102

3-8

Mnemonic

ERFNM

ERWPR

ERDLE
ERSPC
ERSEL
ERDNM

ERIBS

ERNMD

ERIDS

ERDIU
ERLDE
ERMPR
ERSDE

ERDTO

ERENA

EROVF

Meaning
IHegal file name.

Device is write-protected.
(full initialization only).

Directory does not exist.
Out of disk space.

Unit improperly selected.
Device ’not in system.

Insufficient number of
Device Control Blocks
(DCBs), specified at
SYSGEN time.

Insufficient number of
Device: Control Blocks
specified at SYSGEN.

[liegal directory specifier.

In a dual processor system,
using an IPB, the other
CPU is using this directory.

Link depth exceeded.

Address outside address
space.

Error detected in SYS.DR
of nonmaster device.

Disk timeout occurred.

No linking allowed (N
attribute).

Too many chained
directory specifiers caused
system stack overflow. This
can occur only when links
are used in the specifier
string.

Licenseo Material-Property of Data General Corporation

AC2 Mnemonic Meaning

121 ERFMT Disk format error. Try to
dump the disk, and run
DKINIT oniit.

122 ERBAD Disk has invalid bad block
table (for action, see 121

above).

Change the Current Directory (.DIR)

When you bootstrap an RDOS system, the directory
which holds the system becomes the current directory.
The .DIR command selects a different current
directory -- if the new current directory hasn't been
initialized, .DIR will also initialize it.

After you .DIR to a directory. vou can access all files in
it without using directory specifiers.

.DIR is not mandatory for file access in nonmaster
directories, because RDOS permits directory specifiers
in all filename arguments to system commands. For
example, both of the following arguments would access
MYFILE in DP4, from master directory DPOF:

LCa @, _~YFILE

SNYFILE: 412
JIXT "CPRPUIMYFILE™

2. LTXTM

.

Lra e, ,.rPu
LSYsTv
.C1R

LUA @&, _MYF]ILE

LCPU: Ry

LTXT T"ppgn
LMYFILE: L1

LIXT "MypTLE"

C33-000075-08

In the first example, DPOF remains the current
directory: in the second, DP4 becomes the current
directory,

Required input
ACO - Byte pointer to directory name string.

Format

.SYST™M

DIR

error return
normal return

If RDOS takes the error return. the current directory
definiton remains unchanged.

Possible errors

AC2 Mnemonic Meaning

l ERFNM [llegal file name.

12 ERDLE Directory does not exist.

27 ERSPC Out of disk space.

36 ERDNM Device or directory not in
system.

51 ERNMD Attempt to initialize too
many directories at one
time (not enough DCBs
specified at SYSGEN).

52 ERIDS Ilegal directory specifier.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

74 ERMPR Address outside address
space

101 ERDTO Disk timeout occurred.

112 ERCVF System stack overflow due
to excessive number of
chained directory
specifiers.

083-000075-08

AC2 Mnemonic Meaning

121 ERFMT Disk format error. Try to
DUMP the disk. and run
DKINIT.SV on it.

122 ERBAD Disk has invalid bad block

table. See 121 for action.
Release a Directory or Device (.RLSE)

This command dissociates a directory or device from
the system. and prevents further I/0 with it.

You should alwayvs release a removable disk via either
the CLI command RELEASE (or .RLSE) before
removing it from the unit. You must also close all files
within a directory before vou can release it. Release of a
master directory releases all directories. The muaster
directory is the directory which holds the current
RDOS system. You can get its name by using the
.MDIR call or the MDIR command.

Required input
ACO - Byte pointer to a directory or device specifier.

Format

SYSTM
.RLSE

error return
normal return

Possible errors

AC2 Mnemonic Meaning

1 ERFNM [llegal file name.

31 ERSEL Unitimproperly selected.

36 ERDNM Device notin system.

56 ERDIU Directory in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

Attempted release of a tape
unit containing an open
file.

114 ERNIR

Licensed Material-Property of Data General Corporation 3' 9

Get Current Directory Name (.GDIR)

This call returns the name of the current directory or
device (e.g., DP0). This name is followed by a null; it
doesn’t include the names of superior directories, or
colon specifiers. For current directory
DPOF:PART2:DIR1, it would return DIR .

Required input

ACO - Byte pointer to 133 -byte area to receive the
current directory/device name.

Format

SYSTM
.GDIR
errorreturn
normal return

The first 12 bytes will contain the name (with trailing
nulls, if necessary); byte 13; will contain a null
terminator.

Possible errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read into
system area.
74 ERMPR Address outside address

space.

Create a Subdirectory (.CDIR)

This call creates an entry for a subdirectory name in the
current partition’s system directory (SYS.DR). The
subdirectory will automatically receive the .DR
extension.

Required input

ACO - Byte pointer to the directory name (directory
specifiers permitted).

Format

SYSTM
.CDIR

error return
normalreturn

Licenses Matenial-Property of Data General Corporation

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Illegal directory name.

i1 ERCRE Altempt to create an
existent directory.

53 ERDSN Directory specifier
unknown.

55 ERDDE Attempt to create a
subdirectory within a
subdirectory.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

Create a Secondary Partition (.CPART)

This command creates an entry for a secondary
partition name in the current SYS.DR. The secondary
partition will automatically receive the .DR extension.

Required input

ACO - Byte pointer to secondary partition name.

AC1 - Number of contiguous disk blocks in secondary
partition (the minimum is 60;). RDOS allocates
disk blocks in integer multiples of 20, if vour
number is not an integer multiple of 204, the
system will truncate it 1o the next lower
multiple.

Format

SYSTM
CPART

error return
normalreturn

083-000075-08

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Illegal secondary partition
name,.

11 ERCRE Attempt to create an
existing secondary partion.

46 ERICB Insufficient number of free
contiguous disk blocks
available.

53 ERDSN Directory specifier
unknown.

54 ERD2S Partition too small (must
have at least 604 blocks).

55 ERDDE Attempt (o creale 4
secondary partition in a
secondary partition (i.e., a
tertiary partition).

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address

space.

101 ERDTO Disk timeout occurred.

Assign Temporary Name to Disk or Tape Unit
(EQIV)

This command assigns a temporary name to a disk or
tape unit, permitting unit independence during the
execution of vour program. Thus yvou might write all
mag tape references in vour program as MTAPE, and.
at run time, use the .EQIV command to assign the
name MTAPE to a specific device (e.g.. MT6). You
must issue this command before vou initialize the
device (under its new name). You canno!l assign a
temporary name to the master device.

A device keeps a temporary name until vou release iti it
then reverts o its old specifier. You can then EQIV
(CLI command EQUIV) another name before
initialization. if you want.

083-000075-08

Required input

ACO - Byte pointer to current global specifier name.

ACI - Byte pointer to temporary name.

Format

SYSTM
EQIV

error return
normal return

Possible errors

AC2 Mnemonic Meaning

53 ERDSN Directory specifier
unknown.

56 ERDIU Device in use (i.e., already
initialized).

74 ERMPR Address outside address

space.

Get the Current Operating System Name
(.GSYS)

This call returns the name of the currently-executing
operating system, its .SV extension, and a null
terminator.

Required input
ACO - Byte pointerto 154 -byvie area.

Format

.SYSTM
.GSYS
errorreturn
normalreturn

The first 12, bytes will contain the name (with trailing
nulls. if necessary): byvte 13, will contain a null
terminator.

Possible errors

AC2 Mnemonic Meaning

33 ERRD Attempt 1o read or wriie
into system area.
74 ERMPR Address outside address

space.

Licensed Materwi-Property of Data General Corporation 3" 1 1

Get the Name of the Master Directory
((MDIR)

Because you can bootstrap an RDOS system in a
secondary partition, the master directory might not
have an obvious disk name, like DP0. MDIR returns
the name of the master directory.

Required input

ACO - Byte pointer to 13; byte area to receive the
directory name.

Format

SYSTM
.MDIR

error return
normalreturn

The first 12 bytes will contain the name (with trailing

nulls, if necessary); byte 13 will contain a null
terminator.

Possible errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read or write
into system area

74 ERMPR Address outside address
space.

File Maintenance Commands

The commands in this section relate to individual files;
they enable you to create, delete, set position, and
check the status of files. The file maintenance
commands are:

.CCONT Create a contiguous file with data words
zeroed.

.CONN Create a contiguous file with no data
words zeroed.

.CRAND Create a random file.

.CREA Create a sequential file,

DELET Delete a file.

RENAM Rename a file.

.GPOS Get the current file pointer.

3-12

Licensed Materiai-Property of Data Genera! Corporation

.SPOS Set the current file pointer.

STAT Get a file’s status.

.RSTAT Geta link entry’s resolution file status.
.CHSTS Get a channel’s file information.
.UPDAT Update an open file’s size information.

Each file maintenance command requires you 1o
specify the file name(s) by means of a byte pointer to
the file name. In the byte pointer, bits 0-14 contain the
word address which holds or will receive the first byte.
Bit 15 indicates which half: 0 is left, 1is right.

If you want to specify an extension, separate it from the
filename with a period (). For example, the word at
location BTPR contains a byte pointer to a properly
specified file name, MYFILE.SR.

TIXTM 1

BPTR:.+1°2
TXT “MYFILE.SR"

File names can include directory specifiers.

If vou attempt to create a file with the same name as a
device in the current system (e.g., SLPT), the svstem
will treat the command as a no-op and take the normal
return.

Create a Contiguously-Organized File with
All Data Words Zeroed (.CCONT)

This call creates a contiguously-organized file with all
data words initialized 1o zero. If the file’s name exists as
a link entry, and if no resolution file exists for this link
entry. RDOS will create a contiguous resolution file.

Required input
ACO - Byte pointer to the file name.

AC!l - Number of disk blocks in the file.

Format

SYSTM
CCONT
error refurn
normalreturn

083-000075.08

P

Possible errors

AC2 Mnemonic Meaning

1 ERFNM llegal file name.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to
create a SYS.DR entry for
this file.

46 ERICB Insufficient number of free
contiguocus disk blocks
available to create the file.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

124 ERZCB Allempt to create a zero

length contiguous file.

Create a Contiguously-Organized File with
No Zeroing of Data Words (.CONN)

.CONN creates a contiguously-organized file: it is faster
than .CCONT because RDOS doesn’t need to zero the
data words. If the file’s name exists as a link entry, and

if no resolution file exists for this link entry, RDOS will
create a contiguous resolution file.

Required input
ACO - Byte pointer to filename.

ACI - Number of disk blocks in the file.

Format

SYSTM
.CONN

error return
normal return

093-000075-08

Licensed Materiai-Property of Data Generai Corporation

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Hlegal file name.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to
create a SYS.DR entry for
this file.

46 ERICB Insufficient number of free
contiguous disk blocks
available to create the file.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

124 ERCZB Attempt to create a zero

length contiguous file.

Create a Randomly-Organized File ((CRAND)

This command makes an entry for the file name of a
randomly-organized file in the system file directory
(SYS.DRJ, and assigns the first index block to the file.
If the file's name exists as a link entry, and if no
resolution file exists, RDOS will create a random
resolution file.

Required input
ACO - Byte pointer to the file name.

Format

SYST™M
.CRAND

error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Illegal file name.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to
create the file.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address.

Error detected in MAP.DR
of non- master device.

100 ERMDE

101 ERDTO Disk timeout occurred.

Create a Sequentially Organized File
(.CREAT)

This call creates an entry in the system file directory
(SYS.DR) for the file name of a sequentially-organized
file, and assigns the first file block. If the file's name
exists as a hnk entry, and if no resolution file exists for
this link entry, RDOS will create a sequential resolution
file.

Required input
ACO - Byte pointer to the file name

Format

SYSTM
.CREAT

error return
normal return

3‘ } 4 Licensec Materal-Property of Data Generat Corporation

Possible errors

AC2 Mnemonic Meaning

1 ERFNM lllegal file name.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to
create the file.

53 ERDSN Directory specifier
unknown.

57) ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

Delete a File (.DELET)

Use this command to delete a file and its entry in the
systerd file directory. Do nor delete link entry names
with this call. If you attempt to delete a link entry
name, its resolurion file will be deleted unless 1) either
the link access or resolution entry attributes words
contain the permanent attribute (in which case RDOS
returns error ERDEL), or 2) a resolution file doesn’t
exist (ERDLE returned).

Required input
ACO - Byte pointer to filename.

Format

SYST™M
DELET
errorreturn
normal return

043-000075-08

Possible errors

AC2
1

12
13
53

56
57
60
66
74

100

Mnemonic

ERFNM
ERDLE
ERDE1

ERDSN

ERDIU
ERLDE
ERFIU
ERDNI

ERMPR

ERMDE

ERDTO

ERENA

083-000075-08

Meaning

Illegal file name.
File does not exist.
File is permanent.

Directory specifier

unknown.

Directory in use.

Link depth exceeded.
File in use.

Directory not initialized.

Address outside address
space.

Error detected in MAP.DR
of nonmaster device.

Disk timeout occurred.

Link access not allowed (N
attribute).

Rename a File (RENAM)

This call renames a file. You may rename a file in a
different directory, as long as you use the same
directory specifier in both the current name and new
name.

Required input
ACO - Byte pointer to the current filename

ACI1 - Byte pointer to the new name.

Format

SYST™M
.RENAM
error return
normai return

After a normal return, the old name no longer exists in
the file directory.

Possible errors

AC2 Mnemonic Meaning

1 ERFNM lllegal file name.

11 ERCRE Attempt 1o create an
existent name. (AC1)

12 ERDLE Attempt to rename a
nonexistent file. (ACO0)

13 ERDE1 Attempt to rename a
permanent file. (ACO)

35 ERDIR Files specified in different
directories.

53 ERDSN Directory specifier
unknown.

60 ERFIU File in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

Licensed Materiai-Property of Data Generai Corporation 3" “ 5

Get a File’s Current Directory Status
(.STAT/.RSTAT)

Use either of these system calls to get a copy of the
current directory. status information for a file. These
calls write a copy of the 22 y word UFD (as it exists on
disk) into the area you specify.

You can then access this information via the indicated
displacements defined below. If the file is open, the
information returned is a snapshot of the UFD as it
existed on disk at the time of the most recent .CLOSE
or UPDAT.

Use system call .STAT to return the UFD of a file. Use
.RSTAT on links to find the UFD of the link's
resolution file. .RSTAT and .STAT have the same
effect on a nonlink file.

Following is a template of a file UFD with displacement
mnemonics:

Offset or

Displacement Mnemonic Content

00000-000004 UFTFN File name (ASCII file
number for open tape
file).

000005 UFTEX Extension.

000006 UFTAT File attributes.

000007 UFTLK Link access attributes.

000010 UFTBK Number of the last
block in the file (i.e.,
block count-1).

000011 UFTBC Number of bytes in
the last block.

000012 UFTAD Starting logical block
address of the file (the
random file index for
random files).

000013 UFTAC Year/day last
accessed.

000014 UFTYD Year/day created,
update or closed after
write.

000015 UFTHM Hour and minute the
file was created,
updated. or closed
after write.

000016 UFTP1 UFD temporary.

000017 UFTP2 Number of data words
on ¢ disk block.

3-16

Licensea Materiai-Property of Data General Corporation

000020 UFTUC User count (IBO
= EOPEN or
.APPEND or
.TOPEN:; 1Bl =
.OPEN)

000021 UFTDL DCT link. Bits 10-16
contain device code of
device which holds
file; left byte is
unused, except for

large disks, for which
bits 0-2 contains the
high order of the disk
address.

If you issue .STAT 1o a link entry, RDOS returns the
link’s UFD. In a link UFD, words 7 and 14; have
mnemonics UFLAD and UFLAN; words 7-13 and
14-21 contain the link’s alternate directory specifier (if
any) and an alias (if any), respectively.

Required input
ACO - Byte pointer to file name string.
AC1 - Starting address of 22, word UFD data area.

Format
.SYSTM SYSTM
STAT or RSTAT

errorreturn
normal return

error return
normal return

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Iliegal file name.

12 ERDLE File does not exist.

33 ERRD Attempt 1o read or write
into system file space.

36 ERDNM Device notin system.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded
(.RSTAT only).

66 ERDNI Directory notinitialized.

74 ERMPR Address outside address
space.

101 ERDTO Device imeout.

083-000075.08

\

Get the File Directory Information for a
Channel ((.CHSTS)

.CHSTS returns a copy of current directory status
information for whatever file is currently open on a
specified channel. RDOS returns directory status
information as a copy of the 22 , word UFD. as
described in STAT, except that it shows file status as of
last file [/0 (by the system. not by yvou) of this channel.
For example. .CHSTS would return the status after a
WRL. whereas STAT/.RSTAT would show status. on
disk. as of the last update or close.

Required input

ACO - Starting address of data area. This areca must be
at least 22, words long.

Format

.SYSTM
.CHSTS n
error return
normal return

:nis the file’s channel number

Possible errors

AC2 Mnemonic Meaning

0 ERFNO [llegal channel number.

15 ERFOP No file opened on the given
channel.

33 ERRD Attempt to read into
system area.

75 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

093-000075-08

Licensed Material-Property of Data General Corporation

Update the Current File Size (UPDAT)

This call allows vou (9 update the size information in a
file’'s UFD while the {ile is open. The UFD contains a
file’s size. creation date. attributes. and other
information. Specifically, this call updates information
in UFTBK and UFTBC in the disk UFD for the file
opened on a specified channel, and it writes all
modified system buffers which are not in use to ensure
that the file contains all information that vour program
has written into it.

This call is particularly useful when a file is open for a
long time. Any file that is open during a system failure
may have inaccurate size information in its UFD: if so
you will be unable to read new data. By .UPDATing the
file frequenuy, you keep its UFD current and minimize
the amount of data which could be lost.

Format

SYSTM
UPDAT n
error return
normalreturn

:nisthe file's channel number

Possible errors

AC2 Mnemonic Meaning

0 ERFNO [legal channel number.

15 ERFCOP File not opened.

101 ERDTO Disk timeout occurred.

File Attribute Commands

File atiribute commands allow you to check or change
the current attributes of a file; you can also use them to
check device characteristics. The bit settings of ACO
determine the file attributes; ACI contains the device
characteristics of the file.

This section describes the following calls:

.CHATR Change the attributes of the file opened
on channeln
.GTATR Get the attributes or characteristics of the

file opened on channel n.

Note that these calls work only on an open file. For link
commands, see the next section.

Change File Attributes ((CHATR)

This command changes the access attributes of an open
file (or the resolution entry attributes, as viewed from a
link entry), according to the contents of ACO.

When vou create a file, it has no attributes. If a link
user or a user who has opened via .ROPEN issues
.CHATR. RDOS temporarily changes his/her copy of
the file aitributes until he/she closes the file; however,
the true resolution entry attributes persist. You must
open a file (OPEN or .OPEN) before vou can change its
attributes.

Note that RDOS provides two special attribute bits; you
can use these to define your own unique file access
specifications.

Format

SYSTM
.CHATR n
error return
normal return

:n is the file's channel number

Required input

ACO- an auribute word which contains bits set
according to the attributes vou want. Set the
contents of ACO according 1o the following
bit/attribute relationships:

Symbolic

Bit Attribute =~ Mnemonic Meaning

B0 R ATRP Read-protected file:
cannot be read.

1Bl A ATCHA Atribute-protected file.
No attribute can ever be
changed after vou set
this bit.

1B2 S ATSAV Save file (core image
file).

IB7 N ATNRS No link resolution
allowed.

1B9 7 ATUSH First user-definable
attribute for the file.

IBI10 & ATUS?2 Second user-definable
attribute for the file.

IBI4 P ATPER Permanent file: cunnot
be deleted or renamed.

IBIS w ATWP Write-protected: cannot
be written.

3-18

Licensed Materai-Property of Data Genera! Corporation

The following are disk file characteristics, RDOS
assigns them when you create a file; you cannot change
them.

Bit Characteristic Mnemonic Meaning

IB3 L ATLNK Link entry.

1B4 T ATPAR Disk partition.

IBS Y ATDIR Subdirectory.

IB6 - ATRES Link resolution
file (temporary).
Other file
attributes persist
for the duration
of the open.

1B12 C ATCON Contiguous file.

IB13 D ATRAN Random file.

Possible errors
AC2 Mnemonic Meaning

0 ERFNO Hlegal channel number.

ERCHA lllegal attempt to change file
attributes (file has A attribute).

No file open on this channel.

Disk timeout occurred.

4

15 ERFOP
101 ERDTO

Get the File Attributes and Characteristics
(.GTATR)

Use this command to obtain the attributes or device
characteristics of a file.

Format .

SYSTM
GTATRn
error return
normal return

.nisthe file’s channel number

When RDOS returns, ACO will contain the file
attributes. See the .CHATR command for a description
of the bit positions that specify atiributes. ACI will
contain the device characteristics of the file. These
pertain 1o files on reserved devices, e.g., SLPT. These
do not reflect the characteristic disable mask supplied
when the file was opened. Use this bit/characteristics
table to interpret the bit configuration returned in ACH:

Bit Mnemonic Meaning

1BO DCSPC When the file is a spoolable
device. 1B0 means spooling
enabled (disabled if 0BO).
1BO DCDIO When file is an MCA link,
this means that protocol is
suspended on transmit.

083-000075-08

Bit

1Bl
1B2

1B3

1B4

1B6

1B7

1B10

Mnemonic

DCC80

DCLTU

DCFFO

DCFWD

DCSPO

DCLAC

DCPCK

DCRAT

DCNAF

DCKEY

DCCNF

DCLCD

DCIDI

083-000075-08

Meaning

80-column device.

Device changes lower case
ASCII to upper case.

Device requiring form
feeds on opening.

Full word device (reads or
writes more than a byte.)

Spoolable device.

Output device requiring
line feeds after carriage
returns.

Input device requiring a
parity check; output device
requiring parity 1o be
computed.

Output device requiring a
rubout after every tab.

Output device requiring
nulls after every form feed.

CTRL Z end-of-file,
backslash line delete, and

rubout character delete are

disabled for this keyboard
input device.

Teietypewriter output
device or equal leader and
trailer for STTP and SPTP.

Output device without
form feed hardware.

Input device is 60353-tvpe
terminal.

Input device requiring
operator intervention.

Bit

1B14

1B15

IB15

Mnemonic

DCCGN

DCCPO

DCSTO

DCN!

DCSTB

Possible errors

AC2

LINK

UNLK

.CHLAT

Mnemonic

ERFNO

ERFOP

ERDTO

Meaning

Output device without

tabbing hardware.

When file is STTR/STTP:
output device requiring
leader and trailer.

When file is MCA line:
User-Specified MCA
transmitter timeout.

When file is MUX line: no
CTRL-A or CTRL-C
interrupts from this line.

When file is SCDR: trailing
blanks are suppressed.

Meaning
Illegal channel number.

Attempt to get attributes of
an unopened file.

Disk timeout occurred.

Link Commands

As we described in Chapter 2, RDOS permits vou to
link files in one directory to files in other directories.
Either directory can be a primary partition, secondary
partition, or subdirectory. The link commands are:

Create a link entry.

Delete alink entry.

Change the link access attributes of a file.

Licensed Matenial-Property of Data Genera! Corporation

3-19

Create a Link Entry ((LINK)

This call creates a link entry in the current directory to a
file in the same or another directory. This link entry
may or may not have the same name as the resolution
file: if not, the link entry name is an alias. No attributes
restrict a link when you create it, but it cannot reach the
resolution file without satisfying both the link entry
and the file access attributes of the resolution entry.
Your program can alter the link access rights (but not
the file access rights) of any nonlink file by using the
.CHLAT call.

Typical examples of alternate directory/alias name
strings are as follows:

Resolution

Linkname Filename Meaning to RDOS

LFE.SV LFE.SV Create link entry LFE.SV
in the current directory;
link it to resolution file
LFE.SV on the current
directory’s parent
partition.

LFE.SV SAM:LFE.SV Create link LFE.SV in the
current directory: link it
to resolution file LFE.SV
in directory SAM.
NLFE.SV DP1:LFE.SV Create link NLFE.SV in
the current directory; link
it to resolution file
LFE.SV in primary

partition DP1.

Required input
ACO - Byte pointer to link entry name string.

AC1 - Zero if the link and resolution file have same
name. and if the resolution file is in the parent
partition. Byte pointer to the name string if the
link entry has an alias name. or is not on the
parent partiion. You can omit a direciory
specifier from the resolution file name if the
resolution file is on the link entry’s parent
partition. For example, in Figure 2-4,
SECONDPART is SUBDIR’s parent partition:
Dxnis SECONDPART s parent directory.

Format

SYSTM
LINK

error return
normaireturn

3-20

Licensed Materiai-Property of Data General Corporation

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Illegal file name.

11 ERCRE Link entry name already
exists.

27 ERSPC Insufficient disk space to
create SYS.DR entry.

53 ERDSN Directory specifier
unknown.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

Delete a Link Entry ((ULNK)

This call deletes a link entry (created earlier by LINK or
.LINK) in the directory to which the link entry name
points. This call does not delete other links of the same
name in other directories. You must be sure that the
link entry you are deleting does not also exist between
other links and the resolution entry: if it does, vou will
not be able 1o resolve these more remote links after
this deletion.

Required input
ACO - Byte pointer o the link entry name string.

Format

SYSTM
ULNK

error return
normal return

Possible errors

AC2 Mnemonic Meaning

1 ERFNM lliegal file name.

12 ERDLE File does not exist.

53 ERDSN Directory specifier
unknown.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space

75 ERNLE Notalink entry.

101 ERDTO Disk timeout occurred.

083-000075-08

e
Va

Change Link Access Entry Attributes ((CHLAT)
This command changes the link attributes word of the
file opened on a channel. according to the contents of
ACO. When vou open a file via a link entry, the
attributes you see will be a composite of the resolution
entry’s file attributes and vour copy of the link access
entry attributes. When you create a file. no link entry
access attributes exist.

Note that RDOS provides two special attribute bits: you
can use them to define vour own unigue link access
specification.

Required input

ACO - File attributes word (identical 1o .CHATR)

Format

SYSTM
.CHLAT n
error return
normalreturn

:nis the channel number

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO lllegal channel number.

14 ERCHA Resolution entry is
attribute-protected (has A
attribute).

15 ERFOP No file is open on this
channel.

101 ERDTO Disk timeout occurred.

Input/Output Commands

This section describes the calls your program can use to
write data to, and read data from. an existing, open file.
It begins by describing the five 1/0 modes available.
and proceeds to explain the calls which open and close a
file.

It then covers the calls you can use to change position
in a file, and finally lists the different writing/reading
calls themselves.

Generally, you can do nothing with a file until you have
opened it and given it a channel number with one of the
OPEN commands: .OPEN, .EOPEN, .ROPEN,
.APPEND, or MTOPD.

console input; or QTY:xx, multiplexor line) or a disk

Remember that a file can be a device (e.g., STTI.

063-000075-08

file (e.g.. MYFILE.SR). which can include a directory
specifier (e.g.. DPI:MYFILESR) if you have
initialized the directory.

These are the file 170 calls:

.CPENn Open afile for I/0 on channel n.

ECPENn Open a file for exclusive writing on
channeln.

.ROPENn Openafile for reading only on channel n.

.AAPPEND n Open a file for appending on channel n.

.GCHN Get the number of a free channel.

.CLOSEn Close the file on channel n.

RESET Close all files.

.GPOS n Get the position of the file pointer.

.SPOSn Set the position of the file pointer.

.RDL n Read an ASCll line from a file.

WRL n Write an ASCI! line to a file.

.ROSn Read sequential bytes from a file.

WRS n Write sequential bytes to a file.

.RDR n Read a 64-word record.

WRR n Write a 64-word record.

.RDBn~ Read (or Write) a series of disk blocks
fromorto

.WRB n a file, without a system buffer.

-MTCOPDn Open a mag tape or cassette file for
free-form 1/0.

MTDIOn Write or read data to or from a mag tape or

cassette file in free form.

If RDOS detects an error when it executes your I/0
command. it will retry the command (if possible)
before reporting the error with code ERFIL.

RDOS provides five basic modes for reading and
writing files:

® line

® sequential

® random record
® direct block

® free form (tape)

This section presents the calls for these modes in order.

You will generally use /ine and sequential * mode for.
ASCII character strings and binary files, respectively.

Random record mode allows you to read or write
64-word records. Direct-block 1/0 allows you to transfer
a contiguous group of disk blocks without a system

buffer. Free form 1/0 allows you to read or write free
form blocks of data to mag tape.

*The RDOS System Library contains a module to speed
up line and sequential mode operations. This module is
called the Buffered 1/0 Package, and is described in that
Appiication Note.

Licensed Material-Property of Data General Corporation 3“ 2 1

In /ine mode, the system assumes that the data vou
want to read or write consists of ASCII character
strings, terminated by either a carriage return, a form
feed, or a null character. RDOS processes file data
line-by-line in sequence from the beginning of the file
toits end.

In line mode, the system handles all device-dependent
editing at the device driver level. For example, it
ignores line feeds on paper tape input devices and
supplies them after carriage returns to all paper tape
output devices. Furthermore, reading and writing
never require byte counts, since reading continues
until RDOS reads a terminator and writing proceeds
until you write a terminator. The line mode commands
are Read a Line (RDL) and Write a Line (WRL).

The second mode is the unedited sequential mode. In
this mode, RDOS transmits data exactly as it reads it
from or writes it to the file or device. You must use this
mode for processing sequential binary files. To use
sequential mode, your program must specify the byte
count necessary to satisfy your read or write request.
The sequential mode commands are Read Sequential
(.RDS) and Write Sequential (WRS).

In line or sequential modes, vour position within a file
is always the position at the end of your last line or
sequential mode call, or .SPOS call. The first read or
write occurs at the beginning of the file, unless your
program opened the file for appending.

The third mode, random record, permits random access
to fixed-length records within random or contiguous
disk files. The fixed length of a random record is 100,
words. The random calls are .RDR and 'WRR.

The fourth mode, direct biock 1/0, allows vou 1o transfer
a continuous group of blocks in a random or contiguous
file without using a system buffer. RDOS uses
sequential memory locations in the transfer, and it
transfers only 512-byvte blocks of data between memory
and disk. You can transfer only an unbroken series of
relative block numbers: i.e., you may process the third,
fourth, and fifth blocks in a file in a single call, but not
the third, fifth, and sixth blocks. You can execute
direct-block I/O with .RDB and .WRB.

If you have 2 mapped system. you can employ window
mapping. which permits extended direci-block 1/0. In this
mode. vour program can transfer disk blocks to and
from extended address space via .ERDB and EWRB,
as described in Chapier 4.

3-22

Licensed Matenai-Froperty of Data General Corporation

Finally, free form 1/0 permits you to read or write free
form blocks of data to magnetic tape. With free form
/0, you can read or write from two to 4096- word data
records, you can space forward or backward through
one to 4096 data records or to the start of a new data
file, and you can read the transport status word. To use
free form I/0, you must open a file via .MTOPD, and
direct its operation via .MTDIO. You cannot mix
MTDIO with WRL, or .WRS on the same tape drive.

Open a File (OPEN)

Before your program can issue other 1/0 commands, it
must associate a file to an RDOS channel number.
.OPEN associates a file with a channel number and
makes the file available to anyone for both reading and
writing. The .OPEN command does not guarantee
exclusive use of the file; other users may also have
opened the file via .OPEN and modified its contents.
Everyone using a file must close it before anyone can
delete or rename it. In RDOS, there is no command to
reduce the size of a file. This means that files never
shrink, and they maintain space for all material written
to them by any user. If you want to remove redundant
or useless material from a file, you can either edit it
with a text editor utility, or vou can overwrite the
useless data with nulls or new material, using file
position and system write calls.

Required input
ACO - Byte pointer to the filename

ACI - Characteristic disable mask (except for MCA
lines; see below). For every bit vou set in the
mask word, RDOS disables the corresponding
device characteristic for the duration of the
.OPEN. (See .GTATR in the File Attributes
Commands section of this chapter.)

For example, if you want to read an ASCII tape without
parity checking from the paper tape reader. you can
disable checking by the following:

LDAOREADR
LDA 1 MASK
SYST™M
OPENS

READR: 102

TIXT“SPTR”

DCPCK :DISABLE PARITY
:CHECKING.

MASK:

083-000075-08

T

RDOS normally restricts console output to 80 columns.
If your terminal is a DASHER, you can instruct RDOS
to print the full 132 columns by opening STTO
(STTO1) with disable bit DCC80 set; e.g.,

LDAO,NTTO
LDA 1, DMASK
SYSTM
.OPENn

NTTO.+1°2
TXT “STTO"
DMASK: DCC80

To use system mnemonics like mask and error words,
you should assemble your program with a
macroassembler, and the assembler’s symbol table file
must include PARU.SR. See Chapter 1, System Library
and Source Files, for more information on this.

In general, vou will want to preserve all device
characteristics defined by the system. To preserve
them, insert a SUB 1, | instruction before the .OPEN
call.

Format

SYSTM
.OPENn .n becomes the channel
:number of the file

;until n is closed.
error return

normal return

Note that RDOS will interleave line printer output if
multiple tasks in the same program write to the printer.

To open an MCA line for transmit, you must specify a

transmit timeout period (not a mask) in AC1. Set AC! to
0 to specify the default timeout period (633 seconds):

for a shorter timeout period. set AC] to | (specify the
actual timeout period in the write- -sequential call,
.WRS).

To open an MCA line for receiving, pass 0in ACI.

083-000078-08

Licensed Materiai-Property of Dats General Corporation

If the file opened requires leader, RDOS will output it
on the .OPEN. If the file opened requires intervention.

RDOS will display the message LOAD /“lename STRIKE
ANY KEY.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

1 ERFNM Illegal file name.

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel
already in use.

27 ERSPC File space exhausted.

31 ERSEL Unit improperly selected.

36 ERDNM Device notin system.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

60 ERFIU File opened for exclusive
use (.(EOPEN).

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N

attribute).

111 ERDOP Attempted open of an open

tape file.

3-23

Open aFile for Exclusive Write Access
(.EOPEN)

This command gives you exclusive write access to a
file. Thus only you can modify a given file when you

open it via .EOPEN, although other users may gain .

read access to this file via .ROPEN.
Required input

ACO - Byte pointer to file name.

ACI1 - Characteristic disable mask.

Format

SYSTM
EOPEN
error return
normal return

:nis the file's channel number

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

1 ERFNM Hlegal file name.

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel
already in use.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

60 ERFIU File already opened for
writing.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N
attribute).

I ERDOP Atlempt 1o open a file
which i1s already open.

3-24

Licensec Materiai-Property of Data General Corporation

Open a File for Reading Only (.ROPEN)

This call opens a file for reading only. Your program
can gain read-only access to a file which is currently
open by either .EOPEN, .OPEN, or another .ROPEN.
Thus several users may access a file for reading only
while one of those users has write access privileges to
the file. All users must have closed the file before
anyone can delete or rename it.

Required input

ACO- Byte pointer to file name

ACI - Characteristic disable mask

Format

.SYSTM
ROPENn
error return
normal return

:nis the file’s channel number

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

1 ERFNM Illegal file name.

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel
already in use.

31 ERSEL Unit improperly selected.

36 ERDNM Device notin system.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address

space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N
altribute}.
111 ERDOP Attempt to open an open

tape file.

083-000075-08

Open a File for Appending ((APPEND)

.APPEND is identical to .EOPEN, except that it opens
a file specifically for appending.

If your program tries to read a file which vou have
opened for appending. RDOS will return error code
EREOF (end-of-file). because the file pointer is
positioned after the last byte.

Ina BATCH environment, if you want your program to
output to SYSOUT. you must open SYSOUT for
appending (not simply opening).

Required input
ACO - Byte pointer to the filename

ACI - Device characteristic disable mask

Format

SYSTM
APPEND n
error return
normal return

.nis the file’s channel number

On a disk, RDOS opens the file, and appends whatever
you write to that file. On @ magnetic tape device, RDOS
opens the tape file and reads to the end-of-file (EQF):
it then writes from that point. On a line printer, RDOS
opens the printer without a form feed.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO [llegal channel number.

1 ERFNM [llegal file name.

3 ERICD ltllegal command for device.

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel
already in use.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

093-000075-08

Licensed Material-Property of Data General Corporation

AC2 Mnemonic Meaning

60 ERFIU File in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N

attribute).
111 ERDOP Attempt to open a file that
1s already open.

Open a Magnetic Tape or Cassette Unit for
Free Format 1/0

The commands .OPEN, .EOPEN., .ROPEN and
.APPEND cannot open a tape file for free format /0.
See MTOPD and .MTDIO at the end of Input/Output
Commands, this chapter.

Get the Number of a Free Channel ((GCHN)

This call returns (in AC2) the number of a free
channel. Your program can then use AC2 to open a file
via one of the open file calls. .GCHN does not open a
file on a free channel; it merely indicates a channel that
is free at the moment. Occasionally, in a multitask
environment, you will find that the channel .GCHN
indicated is no longer free when you issue your open. If
this happens, you will receive error return ERUFT:
reissue the call .GCHN, to discover another free
channel.

Format

SYST™M
.GCHN

error return
normalreturn

Upon a normal return, RDOS returns the free channel
numberin AC2.

Possible error

AC2 Mnemonic Meaning

21 ERUFT No channels are free.

3-25

Close a File (.CLOSE)

You must close a file after use to update its UFD
directory information, or delete it, or release its
directory or device. When you close a file, its channel
number becomes available for other 1/0. The calls
.RTN, ERTN, .BREAK or .RESET automatically close
all channels.

Format

SYSTM
.CLOSEn
error return
normalreturn

:Close channeln

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

15 ERFOP Attempt to close a channel
not in use.

101 ERDTO Disk timeout occurred.

Close All Files (.RESET)

This command closes all open files after writing any
partially-filled system buffers. You can issue .RESET in
a multitask environment only when no other task is
using a channel.

Format

SYSTM
.RESET
errorreturn
normalreturn

Possible error
AC2 Mnemonic Meaning

101 ERDTO Disk timeout occurred.

3’ 2 6 Licensed Material-Property of Dats Genera! Corporation

Get the Current File Pointer ((GPOS)

Use this call 1o determine the next character position
within a file where program writes or reads will occur.
RDOS indicates a relative character position within a
file by a double-precision byte pointer. This is a
two-word byte pointer containing the high-order
portion of the byte address in ACO and the low-order
portion of the byte address in AC1. Bit 15 of the second
word indicates the byte selection (left or right), as
shown in Figure 3-1.

high order byte address

O
[}
~ D

low order byte address

o] 14

—
wn

Figure 3-1. Double-Precision Byie Pointer ———

Format

SYSTM
.GPOSn
error return
normaireturn

nis the file’s channel number

RDOS returns the pointer position in AC0 and AC1. as
described above. RDOS returns zero if you open a
nondisk file on channel n.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO IHegal channel number.

15 ERFOP No file is open on this
channel.

083-000075-08

Set the Current File Pointer (.SPOS)

This call sets the current system file pointer to a new
character position for future program file writes or
reads. RDOS indicates the relative character position
within a file by the double-precision byte-pointer
described above in .GPOS. For a mag tape or cassette,
vou can specify only position 0 (the file starting
location).

This call enables you to access characters and lines
randomly within any block of a given file. You can read
a character after writing or rewriting it simply by
backing up the pointer to its previous position.

If you set the file pointer bevond the end of the file.
RDOS automatically extends the length of the file. If
the file is contiguous - hence cannot be extended -
RDOS will take the error return. and pass ERSCP in
AC2.

Required input
ACO - High-order portion of byte pointer.

ACI - Low-order portion of byvte pointer.

Format

SYSTM
.SPOSn
error return
normal return

:nis the file’s channel number

Possible errors

AC2 Mnemonic Meaning

0 ERFNO [Hlegal channel number.

15 ERFOP Attempt to reference an
unopened file.

64 ERSCP File position error.

093-000075-08

Licensed Materiai-Property of Data General Corporation

Read a Line (.RDL)

.RDL reads an ASCII line from a file to your specified
area. ACO must contain a byte pointer to the starting
byte address within user memory into which RDOS will
read the line. This area should be 133, bytes long.

Reading terminates normally after RDOS has read
either a carriage return, form feed. or null. and
transmitted it to your program. The system stops
reading and takes the error return if it transmits 133
characters without detecting a carriage return. form
feed. or null. or upon detection of a parity error. or
end-of-file.

If RDOS is reading from a multiplexed line. it also
terminates reading if it reads a pre-assigned interrupt
character. See Multiplexorsin Chapter 2.

If the file you are reading from is the keyboard (STTI,
STTI1), keyboard controis work as usual (unless you
have masked DCKEY in ACl--see .GTATR). Rubout
deletes the preceding character, and backslash
(SHIFT-L) deletes the preceding line. from the
keyboard stream. RDOS echoes all printing characters
and ignores line feeds. You can indicate an end of file
by pressing CTRL-Z. Note that when you are reading
from a multiplexed line, ESC also indicates an end of
file.

RDOS will always return the number of bytes read
(including the carriage return. form feed. or null) in
ACI. If the read terminates because of a parity error,
RDOS stores the character having incorrect parity as
the last character read and clears the parity bit. You can
always compute the byte pointer to the bad character as
(ACO0) + (AC1)-1. (Note: (AC0) means the contents
of AC0.)

Required input
ACQ - Byte pointer to receiving buffer.

Format

SYSTM
.RDLn

error return
normal return

:Read from channeln

After anormal return, AC1 will contain the number of
bytes read.

3-27

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for devce.

6 EREOF End of file.

7 ERRPR Attempt to read a
read-protected file.

15 ERFOP Attempt to reference a file
not open.

22 ERLLI Line limit (133
nonterminator characters)
exceeded.

24 ERPAR Parity error (tape - possibly
dirty heads).

30 ERFIL File read error (bad tape;
possibly dirty heads).

33 " ERRD Attempt to read into
system area.

34 ERDIO File accessible by direct
block 170 only.

47 ERSIM Simultaneous reads from
the same multiplexor
(ALM/QTY) line.

74 ERMPR Address outside address
space (mapped only).

101 ERDTO Disk timeout occurred.

106 ERCLO Channel closed by another

task.

Write a Line ((WRL)

.WRL is the counterpart of .RDL: it writes an ASCII
line to the file open on the specified channel. ACO must
contain a byie pointer to the starting byte address
within user memory from which characters will be
writlen. ‘

If vou have opened the file with .OPEN or .EOPEN.
writing starts at the beginning of the file (unless you
have moved the file pointer via the .SPOS command).
Writing begins at the end of the file if vou open it via
-APPEND. Normally. the system stops writing when it
detects a null. a carriage return, or a form feed.
Abnormally, it stops writing after transmitting 132
(decimal) characters without a carriage return. a null.
oraform feed as the 133rd character.

3-28

Licenses Mateniai-Property ¢t Data Genera: Corporation

Upon termination, AC1 contains the number of bytes
written from your area to the file. The null terminator
does not force a carriage return or line feed. A carriage
return generates a line feed upon output (if the device
characteristics so dictate).

Required input
ACO - Byte pointer to starting byte address.

Format

SYSTM
WRL n

error return
normalreturn

; Write to the file on channeln

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF End-of-file when writing to
a contiguous file.

10 ERWPR Attempt 1o write to a
write-protected file.

15 ERFOP Attempt to write a file not
opened.

22 ERLLI Line limit (132 characters).

27 ERSPC Out of disk space.

34 ERDIO File accessible by
direct-block 1/0 only.

47 ERSIM Simultaneous writes 1o the
same multipiexor
(ALM/QTY) line.

74 ERMPR Address outside address
space

101 ERDTO Disk timeout occurred.

The MCA receiver on this
channel issued no transmit
request.

103 ERMCA

104 ERSRR MCA transmission
terminated by receiver
(short receive request).

106 ERCLO Channel closed by another

task.

g
L

Use of the Card Reader (SCDR) in .RDL and
.RDS Commands

When vou use the card reader as an input device to
.RDL. indicate an end-of-file by punching all rows in
column 1 {multipunch the characters "+, -, and 0
through 9). Hollerith-to-ASCII translation occurs on a
.RDL. not on a .RDS. The translation assumes the
keyvpunch codes shown in Appendix B.

A .RDL terminates upon the first trailing biank uniess
vour .OPEN command suppressed DCSTB. thus
causing RDOS to transfer all 80 characters. If RDOS
transfers all 80 characters. it will append a carriage
return as the eighty-{irst character. unless vour .OPEN
command suppressed DCC80 (allowing RDOS to
process a maximum of 72 characters). The system
replaces each illegal character with a backslash.

In RDL calls, RDOS ignores ail columns following the
EOF. The card reader driver permits an unlimited
amount of time to elapse until it reads the next card.
thus permitting the operator to correct pick errors or
insert new card files. The card reader driver employs
double buffering, and you will lose at least one card
image if you close prematurely; therefore your program
must wait until RDOS reads the last card or end-of-file
to close SCDR.

You can close the reader after it has read an end-of-file
card. reopen it without losing any data, and continue
card reading. When RDOS reads an end-of-file card it
returns a byte count of 0 and error code EREOF. If you
issue another .RDL, it will read the next card normally.

If you issue .RDS (see below), RDOS reads the card in
image binary. It uses each two bytes to read a single
column, packing them as shown in Figure 3-2.

f
Byte e 1 >l 2 >

Row
Number 1211012 345867829

Bit 0t 23456789 1 11

T 11
012345

|
l
!
!
|
?
|
0000ddddddddddda

SO-00420A

Figure 3-2. Image Binary Card Reading

093-000075-08

Licensed Material-Property of Data General Corporation

Each **d"" will be 1 for everv punched hole in the
column. In .RDS. you signify an end-of-card (EOC) by
a byte pair containing the word 100000. Thus. to read
two entire 80-column cards. one card at a time. vou
would issue two successive .RDS calls for 162 bytes
each. If you requested only 160 bytes for each read. the
second .RDS would return the first end-of-card word.
and the first 79 columns of the second card.

Read Sequential ((RDS)

In the sequential mode, RDOS transmits data exactly
as it reads it to or writes it from a file. You must use this
mode for binary data, and it is often useful for MCA
transmissions.

The .RDS call tells RDOS to read data exactly as it is in
the file. unless it is reading from the system console.
When reading sequentially from a system console.
RDOS sets the parity bits to zero. Note that RDOS
does not recognize CTRL Z from the console as an
end-of-file character in this mode. Upon detection of an
end-of-file, RDOS will return the partial bytecount in
ACL.

Required input

ACO - Byte pointer to the starting byte address within
user memory into which RDOS will read the
data.

AC! - Number of bytes to be read.

Format

SYSTM
.RDSn

error return
normalreturn

:Read from channeln

3-29

Possible errors

AC2 Mnemonic Meaning

0 ERFNO lllegal channel number.

3 ERICD Illegal command for device.

6 EREOF End of file.

7 ERRPR Atempt to read a
read-protected file.

15 ERFOP Attempt to reference a file
not open.

24 ERPAR Parity error (tape). Often
caused by dirty heads.

30 ERFIL File read error (bad tape or
dirty tape heads).

33 ERRD Attempt to read into
syvstem area.

34 ERDIO File accessible by direct
block 170 only.

47 ERSIM Simultaneous reads from
same multiplexed line.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

103 ERMCA ‘ The MCA transmitter
issued no transmit request.

106 ERCLO Channel closed by another

task.

Write Sequential (WRS)

WRS is the counterpart of .RDS: it writes data
verbatim from memory to a file. Note that RDOS
recognizes no character as an end-of-file in this mode.

If vou open a file via .OPEN or .EOPEN. RDOS starts
writing at the beginning of the file (uniess vou moved
the file pointer by the SPOS command after opening).
If vou opened the file via .APPEND. RDOS staris
writing at the end of the file.

Required input
ACO - Byte pointer to the starting address of the data

within user memory.

ACTH- Number of bytes to be written.

3-30

Licensec Mater:a-Property of Data Genera: Corporation

Format

SYSTM
WRS n

error return
normal return

:Write to channeln

To transmit (write) data over an MCA line, you must
pass an even byte pointer in ACO, and specify an even
byte countin ACI. If you .OPENed this MCA channel
and specified a nondefault retry period in ACI, then
vou must specify the length of the timeout period in the
left byte of AC2. Each retry takes about 200
milliseconds, and acceptable values input in AC2 are |
to 3774. If the left byte of AC2is 0, RDOS will allot the
maximum transmit retry period (about 655 seconds).

To send an end-of-file over an MCA line, set AC1 10 0;
RDOS will disregard the contents of AC0. For more on
MCA programming. see Chapter 8.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel numer.

3 ERICD Ilegal command for device.

6 EREOF End-of-file when writing to
a contiguous file.

10 ERWPR Attempt 1o write a
write-protected file.

15 ERFOP Attempt to write a file not
open.

27 ERSPC Out of disk space.

34 ERDIO File accessible by direct
block 1/0 only.

47 ERSIM Simultancous writes to the
same QTY/ ALM line.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

103 ERMCA The MCA receiver on this
channel issued no receive

request.

104 ERSRR NMCA transmission
terminated by receiver
(short receive request).

106 ERCLO Channel closed by another

1ask.
113 ERNMC No outstanding receive
request.

083-000075-C8

Read (or Write) Random Record (.RDR or
.WRR)

These calls allow your program to read (or write) one
64-word record in either a random or contiguous disk
file. There are four 64-word records in a disk block: for
the first disk block in a file, these are numbered 0, 1, 2,
and 3. For the second block, the numbers are 4, S, 6, 7,
and so on. You need consider record numbers only for
the random record calls (to read or write blocks (.e.,
four records at a time), you'd use .RDB/.WRB: to read
or write lines you’d use the read/write line (RDL) or
sequential (RDS/.WRS) calls.

Required input
ACO - Destination memory address.

ACI - Record number (record numbers start with 0).

Format

SYSTM

RDR n

error return
normal return

:Read from the file
;opened on channel n.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOQOF Attempt to read past the
end of a contiguous file.

7 ERRPR Attempt e} read a
read-protected file.

15 ERFOP No file is open on this
channel.

30 ERFIL File read errors (mag tape
or cassetlle - probably a bad
tape).

33 ERRD Attempt to read into
system area.

34 ERDIO File accessible by

direct-block 170 only.

083-000075-08

Licensed Materiai-Property ¢! Data General Corporation

AC2 Mnemonic Meaning
74 ERMPR Address outside address
space.
101 ERDTO Disk timeout occurred.

Write Random Record ((WRR)

.WRR writes a 64-word record from memory to a
randomly- or contiguously- organized disk file. RDOS
will write 64 words to the record number you specify,
starting from the address you pass in ACO.

Required input
ACO- Memory address.

AC1 - Destination record number.

Format

SYSTM
WRR n

error return
normal return

:Write to the file
.opened on channel n.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO [llegal channel number.

3 ERICD Illegal command for device.

6 EREOF Atlempt to write past the
end of a contiguous file.

10 ERWPR Attempt 1o write a
write-protected file.

15 ERFOP Attempt to reference a file
not opened.

27 ERSPC Out of disk space.

34 ERDIO File accessible by direct
block 1/0 only.

74 ERMPR Address ouiside address
space.

101 ERDTO Disk timeout occurred.

3-31

Read (or Write) a Series of Disk File Blocks
(.RDB/.WRB)

These are direct block 1/0 calls. Use these calls in your
program to transfer blocks to or from random or
contiguous files. RDOS uses no system buffers for the
transfer.

Blocks in random and contiguous disk files have a fixed
length of 256,, words; they are numbered sequentially
from 0. A .RDB for the first block in a file would
transfer the 64-word records numbered 1, 2, and 3. as
described under .RDR, above.

Required input
ACO - Starting memory address for the block transfer.

ACI - Starting relative block number in the series to be
transferred.

AC2 - The left half of AC2 must contain the number of
blocks which you want RDOS 1o transfer. If you
set the channel number to 77, the right half of
AC2 must contain the channel number.

Format

.SYST™M

.RDB {(WRB) n
error return
normal return

:nis the channel number

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Ilegal channel number.

3 ERICD lllegal command for device.

4 ERSV1 Not a random or
contiguous file.

6 EREOF" End of file.

7 ERRPR File is read-protecied
(.RDBJ.

10 ERWPR File is write-protected
((WRBJ.

“Upon detection of error EREOF or ERSPC. RDOS
returns the code in the right byte of AC2: the left byte
contains the partial read or write count.

3-32

Licensed Materiai-Property of Data Genera! Corporation

15 ERFOP File is not open.

27 ERSPC* Disk space is exhausted.

30 ERFIL File read error, mag tape or
cassette. Probably a bad
tape or dirty head.

33 ERRD Attempt to read into
system area ((RDB).

40 EROVA File' not accessible by
direct- block 1/0.

74 ERMPR Address outside address
space (mapped only).

101 ERDTO Disk timeout occurred.

Open a Tape Unit and File for Free Format
170 (MTOPD)

Before you can read or write in free format on a
magnetic tape. you must open the device and associate
it with a channel. Use the .MTOPD command to do
this. After you have finished with the drive. release it.

-MTOPD is a global cail: after vou use it. YOU can access
all files on the specified device.

To position a free format tape to a specific file, pass the
file name to .MTOPD in the form MTn:m.

Required input

ACO - Byte pointer to the magnetic or cassette tape file
specifier.

ACI - Characteristic disable mask (see . GTATR).

Aside from the tape file specifier. these parameters are
identical to those for .OPEN. If vou want 1o know more
about device characteristics, see .OPEN and .GTATR
above.

Format

SYSTM
MTOPDn
error return
normalreturn

:nis the channel number

$93-000075-08

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Hlegal channel number.

] ERFNM ' Illegal file name.

3 ERICD legal command for device.

12 ERDLE File does not exist.

21 ERUFT Attempt to use a channel
already in use.

27 ERSPC File space exhausted.

31 ERSEL Unitimproperly selected.

- 36 ERDNM Device not in system.

33 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address

space.
i1l ERDOP Attempted open of an open
tape file.

Perform Free Format I/0 ((MTDIQ)

This command gives you a direct interface with
magnetic tape units on a machine level. Using
-MTDIO, you can read or write data in variable length
records from 2 to 4096 words long, you can space
forward or backward from 1 to 4096 data records or to
the start of a new data file, or you can perform other
similar machine-level operations.

Before you can read or write in free format on a tape
unit, you must open the unit for free format 1/0 with
the MTOPD system command. For information about
the hardware characteristics, see Magneric Tape, in
Programmer’s Reference Manual For Peripherals .

Required input (to read device status word)
ACIl - Command word - bits 1-3 set, other bits 0.

AC2- Channel number if nequals 77.

093-000075-08

Licensed Materiai-Property of Data General Corporation

Required input (for other MTDIO
operations)

ACO - Memory address for data transfer.

ACIl - Commaund word. subdivided into the following
fields:

bit 0: set to 1 for even parity. 0 for odd
parity.

sel to one of these seven command
codes: 0 - read (words)* | - rewind
the tape 3 - space forward (over
records or over a file of any size up
to 4096 records) 4 - space backward
(over records or over a file of any
size up to 4096 records) § - write
(words) 6 - write end-of-file (parity:
odd for 9 track, even for 7-track) 7 -
read device status word

bits 1-3;

bits4-13: word or record count. If O on a space
forward (or backward) command.
and the file is no more than 4096
record, RDOS positions the tape 10
the beginning of the next (or
previous) file on the tape. If 0 on a
read command. RDOS reads words
until it encounters either an
end-of-record or 4096 words. If 0 on
a write command. the system will
write 4096 words.

AC2 - channel number if nequals 77.

Format

SYSTM
MTDIOn
error return
normaireturn

:nis the channel number

*When reading a 7-track tape with odd parity (ie., a
tape not written on an RDOS system), the controller
will not detect the end-of-file; it will read the first word
in the next record as 007417. Thus RDOS appends the
first record of each file (after the first file) to the
end-of-file of the previous file.

3-33

Upon a read status command, if RDOS detects no
system error, control will go the normal return and
AC2 will contain a device status word with one or more
of the bits shown in Figure 3-3 set:

bit 0, error (bit1,3,5.6,7,.8, 10, 0r 14)

bit 1, data fate
bit 2, tape is rewinding
bit 3, illegal command

bit 4, high density if set to 1, otherwise, low
density (always 1 for cassettes)

bit 5, parity error

bit 6, end-of-tape

bit 7, end-of-file

bit 8, tape is at load point

bit 8, 1 for 9-track, O for 7-track
(always 1 for cassettes)

bit 10, bad tape (or write failure)
bit 11, send clock (0 for cassettes)
bit 12, first character (O for cassettes)

bit 13, write-protected or write-jocked
bit 14, odd character (0 for cassettes)
bit 15, unitready

SD-00540A

Figure 3-3. .MTDIO Status Word Bits ——

When your program issues a read, write, space forward,
or space backward command, the command word in
ACI contains the number of words written (or read) or

the number of records spaced. A word or record count
isreturned upon a premature end-of-file.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Hliegal channel number.

3 ERICD Itiegal command for device
(i.e., improper open).

15 ERFOP Attempt to reference a file
not opened.

40 EROVA File not accessible by free
form1/0.

74 ERMPR Address outside address

space.

Figure 3-4 summarizes the possible returns by .MTDIO
and the values returned in AC1 and AC2. On hardware
errors, RDOS sets bit 0 of TSW (in AC2): on system
errors it clears this bit.

As with regular magnetic tape 170, the system will
perform 10 read retries before taking the error return.
For write errors, the system will perform the following
sequence 10 times before taking the error return:
backspace, erase a length of tape, and write.

3-34

COMMAND RETURN AC1 AC2
Any MTDIO Error Same as input System
* command with a error code
system error detected
Rewind Normal
Original input Transport Status
Rewind iost Word {(TSW]
{tape at load point.etc) Error
Read Status Normal TSW
Original input
iost
Read Status Error TSW
Read. Write,
Space forward, Normal
Space backward ' Word or record rsw
Reag. Write, Error count
Space forward, {only atter 10 retries
Space packward inread/write}
Write end-of-file Error Original input iost TSW
SD-004314
— Figure 3-4. MTDIO Values Renirned

Licensecd Materiai-Sroperty of Date Genera: Corporetion

083-000075-08

Console /0 Commands

To transfer single characters between your console and
ACO, use commands .GCHAR and .PCHAR. These
calls operate like a read or write sequential of one
character. They do not affect the column counter, nor
do they provide special character handling (e.g., of
carriage returns).” These commands reference
STTI/STTO or STTII/STTOI, the console is always
available to them, and you need no channel number or
open command.

Get a Character (GCHAR)

This command places a character typed on the console
in ACO. RDOS right-adjusts the character (without
parity) in ACO, and clears the left byte of ACO. You
need no 1/0 channel for GCHAR. RDOS will not echo
the character on the console.

Format

SYSTM
.GCHAR
error return
normal return

If no character is currently in the console input buffer,
the system waits.

Possible error

AC2 Mnemonic Meaning

3 ERICD Console not in system.

Put a Character (.PCHAR)

This command types the character in bits 9-15 of ACO
on the console.

Format

SYSTM
PCHAR

error return
normalreturn

Possible error

AC2 Mnemonic Meaning

3 ERICD Console notin system.

083-000075-08

Licensed Material-Property of Data Genera! Corporaton

Get the Input Console Name (.GCIN)

This command returns the name of the current console
input device. This name is $TTI for the background
program, and $TTI1 for the foreground program.

.GCIN and .GCOUT are useful in dual-ground systems
because they allow each program to select the
appropriate console for its ground at run time.

Required input
ACO - Byte pointer to a six-byte area which will receive
the console name.

Format

.SYSTM
.GCIN

error return
normal return

Possible errors

AC2 Mnemonic Meaning

33 ERRD Atlempt to read into
system area (unmapped
only).

74 ERMPR Address outside address

space.

Get the Output Console Name (.GCOUT)

This command returns the name of the current output
console: STTO for the background program, and
STTO! for the foreground program.

Required input
ACO- Byte pointer to the six-byvte area which will
receive the console name.

Format

SYST™M
.GCOUT
error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read into
system area (unmapped
only).

74 ERMPR Address outside address

space.

3-35

Memory Allocation Commands

Excluding the Task Scheduler, and locations 0-154,
RDOS resides in upper memory. It executes your
programs in lower memory. Unmapped RDOS
memory looks essentially as shown in Figure 3-5.

RDCS system and
buffers

Unused address space

-<—NMAX (first unused
location above the
executing program)

~ User program Pyt
16
RDOS
0
SD-00432A

Figure 3-3. Unmapped Background Memory

The highest memory address available (HMA) is
usually the first word below RDOS in an unmapped
system. If, during loading, RLDR has placed its symbol
table at the high end of user memory, HMA will be the
first word below the table. The table will be in upper
memory only if vou include the global switch /S in the
RLDR command. By default, RLDR loads it just above
your program.)

Determine Available Memory (MEM)

This command returns the current value of NMAX in
ACI. and the value of HMA in ACO.

In unmupped systems, HMA represents the location
immediately below the bottom of RDOS (or the
bottom of the symbol table, if the program was loaded
or bound with giobal /S). In mapped systems, HMA is
the highest logical address available in the current
program space.

Follow .MEM with a SUB 1.0 and INC 0.0 instruction
to determine the amount of additional memory
available to vour program.

Format

SYSTM
MEM

error return
normailreturn

Possible errors

none

3-36

Licensed Matenai-Property of Data General Corporation

Change NMAX ((MEMI)

This commamd allows your program to increase or
decrease the value of NMAX. The command updates
the value of NMAX in the UST (in USTNM) and
returns the new NMAX in AC1.

RDOS will not change NMAX if its new value would be
greater than HMA+1. The system does not check
NMAX against its original value (as determined by
RLDR).

Whenever one of vour programs will require memory
space above its NMAX, it can invoke .MEMI 1o
allocate the number of words needed. RDOS uses the
value of NMAX to determine the amount of memory
to save if it suspends a program. Generally, you should
update NMAX even for temporary storage above the
current NMAX. If vou store a program without
updating NMAX, the program may be suspended
without enough information to continue. This is
explained further in the discussion of program swaps,
Chapter 4.

However, each of your programs should request only
the memory space it actually needs, and should release
memory space when it no longer needs it.

Required input

ACOQ - The increment (positive) or decrement (in two's
complement) of NMAX.

Format

SYSTM
MEMI

error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

26 ERMEM Attempt to allocate more
memory than available.
74 ERMPR Address outside address

space.

093-000075-08

Device Access Commands

This section describes the device access commands,
.DEBL and .DDIS. In mapped RDOS systems. the map
will trap if any user program attempts to access a system
device (like the CPU or the floating-point unit). The
call .DEBL gives a user program access to a syvstem
device, but vou should use it carefully because it
circumvents the map's safeguards. (Such instructions
as INTDS or IORST will disable RDOS if access to the
CPU is enabled.)

You must use .DEBL in any system if vou have a
hardware floating-point unit and are running
foreground and background programs which both use
floating-point arithmetic. In any such system, each
program must enable access to the FPU so that the
system can save and restore the FPU.

In a mapped NOVA system, the grounds can issue a
.DEBL to device code 75 or 76. Either call will enable
access to all three FPU devices (codes 74, 75. 76). Do
not issue a .DEBL to device code 74 in a NOVA
system.

In an ECLIPSE system, the programs can enable access
to the FPU by issuing a .DEBL to device code 74 --
unless some other device (e.g., the I/0 bus) is already
wired as device 74, 75, or 76. If you have an ECLIPSE
system in which both programs will not use
floating-point arithmetic, and a device is wired as 74,
75, or 76, programs can access these devices if they use
IDEF (Chapter 7) instead of .DEBL.

Similarly, if your system has an optional integer
MPY/DVD, and both programs want to use the
MPY/DVD, they must enable access via .DEBL, then
save and restore the MPY/DVD.

If you're in an unmapped system, in which two grounds
won’t access the FPU, the device access calls .DEBL
and .DDIS are no-ops, and take the normal return.

If any system, we recommend that you .DEBL the FPU
before using it.

Enable User Access of a Device (.DEBL)

This call permits your program to reference any device
on a machine level, bypassing the normal system
safeguards. Use it carefully. .DEBL is a no-op in
unmapped systems (except as noted above, for
hardware FPUs).

Required input

ACO - Device code of the device you wish to access.

083-000075-08

Licensed Material-Property of Data General Corporation

Format

SYSTM
.DEBL

error return
normalreturn

Possible error

AC2 Mnemonic Meaning

36 ERDNM Device code exceeds 77;.

Disable User Access of a Device (.DDIS)

This call is the complement of .DEBL. .DDIS prevents
further machine-level access of a device in the system.
thus restoring the system safeguards removed by a
previous call to .DEBL. This call is a no-op in
unmapped systems, except as noted above.

Required input
ACO - Device code of the device to which you wish to
disable user access.

Format

SYST™M
.DDIS

error return
normalreturn

Possible error

AC2 Mnemonic Meaning

36 ERDNM Device code exceeds 77;.

Read the Front Panel Switches or Register

((RDSW)

This system call allows your program to read the
position of the front panel switches or the contents of
the switch register. RDOS returns the switch
configuration in ACO. Bit 0 equals switch 0, or the first
number, etc.

Format

SYSTM
.RDSW

error return
normalreturn

Possible errors

none

3-37

Clock/Calendar Commands

RDOS provides four commands to keep track of the
time of day and the current date. It stores dates as days
from December 31, 1967 (day 1 is January 1, 1968).
RDOS uses a 24-hour clock. To set this clock, you must
pass hours, minutes, and seconds in binary, in three
accumulators.

Get the Time of Day ((GTOD)

This command requests the system to pass you the
current time in hours, minutes, and seconds. RDOS
will return the time in binary as follows:

ACO - Seconds
ACI - Minutes

AC2 - Hours (24-hour clock)

Format

SYSTM
.GTOD

error return
normal return

Possible errors

none

Set the Time of Day (.STOD)

This command sets the system clock to a specific hour,
minute, and second. You pass the initial binary values
as follows:

ACO - Seconds
ACI - Minutes
AC2- Hours (24-hour clock)

Format

.SYSTM
.STCD

error return
normalreturn

3-38

Licenser Materiai-Property of Data General Corporation

Possible error

AC2 Mnemonic Meaning

41 ERTIM Illegal time of day.
Get TodaY’s Date (.GDAY)

This command requests the system to return the
number of the current month, day and year. RDOS
returns the month in ACI, the day in ACO, and the
current year (less 1968) in AC2.

Format

SYSTM

.GDAY

error return
normal return
Possible errors

none

Set Today’s Date ((SDAY)

This command sets the system calendar to a specific
date. The system will increment the date when the time
of day passes 23 hours, 59 minutes, and 59 seconds.
This routine works only on years from 1968 to 2099,
Required input

ACO - Number of the day within the month.

ACI - Number of the month (January is month 1).

AC2- Number of the current vear, less 1968.

Format

SYSTM
.SDAY

error return
normalreturn

Possible error

AC2 Mnemonic Meaning

41 ERTIM Ilegal day, month, or vear.

083-000075-08

Spooling Commands

SPOOL is an acronym for simultaneous peripheral
operation on-line. RDOS automatically spools data
output to the following devices: SDPO, SLPT, SLPTI,
SPTP, SPTP1, STTO, STTO!, STTP, STTPI. You must
explicitly enable spooling for a plotter (SPLT or
SPLT1). During a spool, RDOS queues data on disk for
one or more spoolable devices, making the CPU
available for further processing while those devices
receive the queued data. Spooling occurs only when no
other system operations are ready; you control spooling
by means of system commands .SPKL, .SPEA, and
SPDA.

Spooling requires that you SYSGEN at least 2 stacks in
a single program environment, and at least 3 system
stacks in a dual program environment (you allocate
stacks at SYSGEN). RDOS will not spool with fewer
stacks than these and all spooling commands will
become inoperative. Spooling also requires disk
buffering, and RDOS will allocate space for this
dynamically from the master directory. If RDOS needs
more disk space for spooling buffers and none is
available, it will disable spooling ((SPDA). You can
re-enable spooling later, when more disk space is
available.

Stop a Spool Operation (.SPKL)

Use this command to halt a current spool operation.
After vou kill spooling on a device, vou will lost all data
on the output queue.

Required input

ACO - Byte pointer to the name of the device receiving
the spooled data.

SYSTM
SPKL

error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Hiegal file name.

3 ERICD Iliegal command for device.

36 ERDNM Device notin system.

74 ERMPR Address outside address
space.

Disable Device Spooling (.SPDA)

The SPDA command stops a spoolable device from
spooling its output. If vou issue SPDA while a device is
spooling, RDOS will delay execution of the command

083-000075-08

Licensed Materiai-Property of Date General Corporation

until it has output all data waiting to be spooled. Data
output to the device before the spooled data has been
exhausted will itself be spooled to the output device,
delaying execution of SPDA even longer.

Required input

ACO - Byte pointer to the device for which you are
disabling spooling.

Format '

SYSTM
SPDA

error return
normal return

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Ilegal file name.

3 ERICD Illegal command for device.
36 ERDNM Device not in system.

74 ’ ERMPR Address outside address

space.

Enable Device Spooling (.SPEA)

Use .SPEA 10 enable spooling on a device for which
spooling has previously been disabled. RDOS itself may
have disabled spooling because it lacked disk space: or
vou may have disabled spooling via SPDA or CLI
command SPDIS.

Required input
ACO - Byte pointer to the device name.

Format

SYSTM
SPEA

error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

I ERFNM Hiegal file name.

3 ERICD lllegal command for device.
36 ERDNM Device notin system.

74 ERMPR Address outside address

space.

3-39

Keyboard Interrupts

You can interrupt the background program from the
console by typing either CTRL and A or CTRL and C.
To halt the foreground program from the background
console, type CTRL and F. CTRL A and CTRL F work
abruptly; they halt program execution in their
respective grounds, save nothing, and give control to
the higher-level program - generally the CLI. CTRL C
writes the current core image to disk file BREAK.SV
(FBREAK.SV if you issued the CTRL C from the
foreground console), and gives control to the CLI.
After RDOS has executed CTRL A, the message -INT
will appear on the console; after CTRL C, the message
BREAK will appear. For more on CTRL F, see Chapter
6.

If you want to program an interrupt, use the system call
.BREAK: this produces the same effect as CTRL C. If,
upon any of these interrupts, you want any program
other than the CLI to gain control, you must set up its
User Stack Table as described below.

For each program level, the sysiem creates a User
Status Table (UST). Each UST is 24, words long. and
resides in user address space, starting at location 400.
Every UST includes two words, USTIT and USTBR.
which contain addresses for CTRL A and CTRL C
interrupt routines. USTIT contains the address of the
routine which will gain control after you enter CTRL
A: USTBR holds the address of the CTRL C routine.
When you load a program, the loader initializes both
words to -1, and you must change this if you want to
specify your own routines. Chapter 5 describes the UST
in detail.

If USTIT contains -1 when you hit CTRL A, or if
USTBR holds -1 on a CTRL C or .BREAK, the system
closes all channels on the current level and loads the
next higher level program. This level’s UST is then
checked for the address of an interrupt routine. The
system continues this process until it finds a program
level whose UST contains the address of an interrupt
routine. If it reaches the CLI on level 0, it uses the
CLTI's routine. Butif you have CHAINed from the CLI,
and the new level 0 program contains no interrupt
routine address, the system will halt in Exceptional
Status (see Appendix F).

During this search, the system checks each program
level for a TCB queue. If the queue is missing (perhaps
because you accidentally overwrote it; it is in user
address space), the system skips this program and
examines the next higher level program (see Figure
3-8).

After finding a program with USTIT or USTBR (as
appropriate) containing an address instead of -1, RDOS
checks another UST word, USTIA, tofind atask’s TCB
address. The loader sets USTIA to 0 but it may contain
a TCB address, as described below.

If USTIA contains 0, then the system appropriates the
TCB of the current highest priority task (pointed to by
USTACQC), transfers that task’s PC 1o temporary storage
(TTMP in the TCB), and places the UST interrupt
address in TPC (TPC is the program storage counter in
the TCB). Control then goes to the scheduler, which
starts the highest priority task. Since the UST interrupt
address was placed in TPC of the highest priority task.
RDOS executes the interrupt routine. (In a single task
program. the program is the highest priority task.)
Figure 3-6 shows a program with an interrupt handier.

MEIN:

o0
« s e

“ s s

ERKA:

* s .
s 0.
* s ..

BRrs

3-40

START: LDA 2, USTP

STA @, USTIT,

Figure 3-6. Progran warh Interrupt Handler

iPut UST acer ir AC2.
LDA @, .BRKA ;Pcinter to acer cf
;CTIRL=A harmrcler.

2 iStore CTRL=-2

jecor im ULSTIT.

iThe mein crocram follcows here,

PCTRL=A hancler= this coce will te
iexecyteg cr [CTRL-4,

Licensed Material-Property of Data Genera Corporation 093-000075-08

AN

If a task issued system call INTAD before the
interrupt, RDOS finds a nonzero value in USTIA (the
issuing task’'s TCB address) RDOS then readies the
issuing task. and stores the USTIT or USTBR address
in the task’s PC storage. TPC. It then disables further
CTRL A or CTRL C interrupts, and passes control to
the Task Scheduler. When the .INTAD task gains
control, it executes the appropriate interrupt service,
and reenables console interrupts -- if you desire -- by
reissuing system call .INTAD or by issuing system call
.OEBL. described below. Note that your main program
should not issue .INTAD -- unless you want it to
suspend itself. Figure 3-7 shows a program with an
ANTAD task.

The BREAK file created by a CTRL C (or BREAK) is
a save file. containing the current state of main
memory from SCSTR (the start of save files. location
16) through the highest of NMAX or the start of the
symbol table, SST. RDOS places the break file in the
current directory and uses the file name BREAK.SV
(FBREAK.SV if the foreground program issued
.BREAK: it deletes any existing (F)BREAK.SV first. If
the system cannot write file (F)BREAK.SV (possibly

because it lacks disk file space). control will go to one
location before the address specified in USTBR, and
AC2 will contain a system error code.

Although the (FIBREAK.SV is a snapshot of the
current state of main memory. the file is not directly
executable: it is generally useful for debugging. Before
you Iry 1o execute it, you must consider how the CTRL
C (or BREAK) interrupt affected the system:

1) It closed all open channels, and vou must reopen
them if the breakfile requires them.

2) It purged all DELAY commands (vet their tasks
remain suspended).

3) Itremoved all user-defined clocks and user interrupt
devices: vou must re-identify them if desired.

4) Itdestroved all read-operator messages.

5) It disabled your access to all devices enabled via
.DEBL. including the floating-point unit, and you
must re-enable access if the breakfile will need these
devices.

i
;i
START: ~suB 9,9
LCA 1, JIMTSK
. TASK
JVP ER
LCA 2, usTP

LCA 2, .RNUTI
STA @,uUsSTIT,2

MATNG

e s

o2 e

SINTSK: INTSK

LFOUTL: RCUTI

jrere is the INTAD task,

he main task creates the INTAD task anc
nitializes the A processing accress.

i% priority for INTAD task.
sAcdr of INTAD task.
iCreate the INTAL task.
iMandatcery,

sPut UST acor in AC2.
;Name of 1A routine,
iPut TA routine accr of
s INTAD task im USTIT.
iThe main crogram follows here.

G83-000075-08

Figure 3-7. Program with INTAD Task

Licensed Materiai-Property of Data General Corporation

INTSK: ,SYSTM™ i0n procram executicn, the INTAC
<INTAD jtask issues .INTAD, suscencinc
jitself until 14 is entered,
JVP ER iSystem never takes errcr or
JVP INTSK ;normal return frcm ,INTAC,
ROUTL: ..., 70n T4, the INTALC task awakens
ceas 7anc executes this coce.
JVF INTSK jAfter coing its thinc, the INTAC
Ftask re-issues INTAD, rputting
iite]f to sleer enc re-erabling
JTA interrupts,
ER: .SYSTM ;(1f proaran reacs frem console,
LERTN ierror handler must pass tREOFs,
JvE isince tA,tC surccly ECFs tc corscle.)
LENC START

3-41

$0-00753

Console
interrupt

Does
USTIT (USTBR)

contain -1
?

Was

Goto next
higher level.

Yes

No INTAD issued?
+ (USTIA = 0)
Get highest
priority task’'s
TCB.

v

Put task's oid PC
in TTMP.

i
Y

Put USTIT (USTBR)
contents into
TPC.

v

Disable further
CTRLA (CTRLC)
Interrupts.

!

Ready the .INTAD
task; place contents
of USTIT (USTBRIJ in

TPC".

RDOS task
scheduler

*if break faiis. USTBR-1 is placed in TPC.

3-42

Licensed Mateniai-Property of Data Genera! Corporation

Figure 3-8. Program Inmterruption Logic Sequence

083-000075-08

By default, when you execule a program, keyboard
interrupts are enabled. RDOS provides two system calls
to disable or re-enable further keyboard interrupts:
ODIS and .OEBL. These two calls do not affect the
system call .BREAK (below), which performs the same
operation sequence as CTRL C. To restore keyboard
interrupts after .INTAD and any interrupt (CTRL A,
CTRL C, or .BREAK), the INTAD task must issue
either .OEBL (below) or another calito INTAD.

Interrupt Program and Save Main Memory
(.BREAK)

System call .BREAK is operationally equivalent to
typing CTRL C on the console; it saves the state of
memory in save file format from location 16 to the
highest of NMAX or the start of the symbol table, SST.
The file name used is BREAK.SV (FBREAK.SV if
BREAK was issued by the foreground program). Any
previous version of (F)BREAK.SV is deleted, and the
breakfile is written to the current directory, where you
can retain it, SAVE (CLI command) it under another
name, or delete it. Generally, because system breaks
close all channels, the breakfile is useful only for
debugging with a disk editor, such as OEDIT or SEDIT.

The memory image file created by CTRL-C and
BREAK saves the program in the following state:

1) all open channels are closed:

2) all .DELAY commands have been purged (vet their
tasks remain suspended);

3) user-defined blocks. user interrupt devices and user
device enables ((DEBL) are removed:

4) all read-operator messages are lost.

3) all user accesses enabled via .DEBL are lost.

Unlike the CTRL Cinterrupt mechanism. the . BREAK
call is operative at all times and is not disabled by the
.ODIS command.

If USTBR {see preceding section) contains a vahd

address. control goes to this address after RDOS writes
(F)BREAK.SV 10 disk. If USTBR contains -1, control

093-000075-0¢8

will return to the next higher level program and RDOS
will examine its USTBR. Control eventually goes to the
first higher level program whose USTBR contains a
valid address. If RDOS cannot write the break save file
(e.g., due to insufficient file space), control goes to one
location before the address contained in USTBR.

Format

SYSTM
BREAK :No standard error

;or normal returns
Possible errors

AC2 Mnemonic Meaning

27 ERSPC Qut of disk space.

BREAK.SV (or
FBREAK.SV)isin use.

60 ERFIN

101 ERDTO Disk timeout occurred.

Disable Console Interrupts ((ODIS)

Use this command to disable console interrupts within
vour program. When you issue .ODIS from the
background, it disables CTRL A and CTRL C
interrupts. When you issue .ODIS from the
foreground, it disables CTRL A and CTRL C
interrupts and the background CTRL F interrupt.
However. you can never disable the .BREAK system
command with this command. You can re-enable
console interrupts by issuing svstem call OEBL from
VOUT program.

Format

SYST™M
.ODIS

error return
normalreturn

Possible errors

noneg

Licensed Matenial-Property of Data Genera! Corporation 3" 4 3

Enable Console Interrupts ((OEBL)

When you first bootstrap a system, RDOS enables
console interrupts CTRL A, CTRL Camnd CTRL F. If
you disable console interrupts by system call .ODIS or
by processing a console interrupt and system call .ODIS
or by processing a console interrupt with an INTAD
task, this call re-enables them within its program
environment.

Format

SYSTM
.OEBL
errorreturn
normal return

Possible errors

Reserve a Program Interrupt Task (.INTAD)

This system call enables keyboard interrupts and
permits you to assign a task to service CTRL A, CTRL
C and .BREAK program interrupts. The task that will
service these interrupts must issue .INTAD; RDOS
will recognize it as the interrupt ask. The main task
should not issue .INTAD. RDOS uses the .INTAD
task (instead of a program task’'s TCB) for interrupts,
hence it perserves the current program environment
(aside from any system call executing when the
interrupt occurs). For more on .INTAD, see the
preceding section.

Format

SYSTM
ANTAD

error return
normal return

Possible errors

none none
End of Chapter
3— 44 Licensed Materai-Property of Data General Corporation 083-000075-08

=

£

(

Chapter 4
Extended User Address Space: Swaps,

Chains, User Overlays, Window
Mapping, and Extended Memory 1/0

Occasionally. one of your programs will require more
memory than is available in the machine. This chapter
explains how to extend the limits of main memory with
disk space. It has two main sections:

® Swaps. chains. and User Overlays - This material
applies to all systems and applications: you must
understand these concepts to write advanced
programs in RDOS.

® Memory protection, Virtual User Overlays, Window
Mapping, and Extended Direct-Block 170 - you may
want to exploit these programming tools if you have
a mapped system.

Program swaps, chains and user overlays effectively
extend main memory with disk space. When a program
swaps or chains, it calls another program into
execution. During this process, the same areas of your
address space can do many different things.

Programs can execute a swap from one of four RDOS
levels of control, where one level calls another. Chained
programs are called in sequence by a program on the
same level, and overwrite the calling program. Overlays
also operate on one level, but they are called in
succession by a root program in core and nlaced in a
reserved area (node) in core.

Swaps and chains are described below; you will find
user overlays in the next section.

When you plan program swaps vou should ensure that
the NMAX memory in use accurately reflects the core

calling program might be lost. Upon a program swap,
RDOS saves the current core image up to the higher of
NMAX or SST (start of the user symbol table). It is
very important that your program does not use
temporary storage above its original value of NMAX at
load time without instructing the system first to allocate
more memory (see .MEMI, Chapter 3) for this space. If
your program exceeds NMAX and invokes another
program, RDOS will not save part of the calling
program’s memory state. Even if the executing
program does not call another program, a BREAK from
your console may force suspension. To avoid these

The operations of swapping, chaining, and returning
halt activity in the current program. RDOS terminates
calls and conditions that would not be appropriate in the
new program (most of these involve multitask
activity). The system terminates the following calls and
conditions when a change of program occurs. Many of
the calls are detailed elsewhere in this manual, and you
should read the indicated sections if you want more
information.

1) A return or chain closes all channels, and
the new program must open the channels
it . requires: as described under /0
commands, Chapter 3.

2) All STTI (STTI!) input is halted: this
applies to such calls as .GCHAR (Chapter
3). .-TRDOP (Chapter 3), and .RDOP
(Chapter 6).

3) Any system devices enabled for user
access via .DEBL (Chapter 3) are disabled;
thus the new program must enable access
to the hardware floating-point unit (if you

have one).

4) Console interrupts are enabled, removing
any outstanding disable calls by .ODIS
(Chapter 3). :

5) The state of the floating point unit is not
preserved.

6) All interrupt mesage transmissions,

IXMT (Chapter 5), are removed.

7) If you have defined a user clock
(.DUCLK, Chapter 5) or a system delay
(.DELAY, Chapter 5), it is removed.

8) If your system has operator messages, the
state of the OPCOM (Chapter 3) is lost.

9 All user-defined interrupt service (.IDEF,
Chapter 7) is removed, as is any mapped

problems. NMAX must always correctly reflect the system data channel map setting
core in use. (.STMAP, Chapter 7).
093-000075-08 Licensed Materiai-Property of Data Generai Corporation 4-1

10) Mapped only. All memory
write-protection definitions, .WRPR, are
removed.

11 Mapped only. Extended space reserved for
virtual overlays is released.

12) Mapped only. All extended memory
definitions made via window mapping are
removed.

13) Mapped only. Any dual-program

communications area defined via system
call ICMN (Chapter 6) is removed.

Program Swapping and Chaining

This section describes the swapping and chaining call
.EXEC, .RTN and two swap return calls: .RTN and
.ERTN. It also describes the overlay replacement call,
.OVRP.

Any program executing under RDOS can suspend its
own execution and swap in another program, or chain
to an executable segment of itself. Programs with open
multiplexor lines must close them before swapping er
they will take the error return from .EXEC.

Program swaps can exist in up to five levels, where one
level calls for another and the Command Line
Interpreter exists at the highest level, level 0. The CLI
is merely one program which RDOS can execute. Its
only special property is that it normally executes at the
highest level in the system. Normally, the sysitem
utility programs supported by the CLI (e.g., the Text
Editors, the assemblers, and the binder or loader)
execute at level 1. When vou execute a program or
system utility from the CLI, RDOS often swaps the
CL1 to disk and calls it back automatically after
execution via .RTN.

4- 2 Licensed Mateniai-Property of Dats Generai Corporation

You can also write a large program in a sequence of
executable segments, where the end of each segment
evokes the beginning of the next segment, and the
series ends by evoking the CLI. This process is called
chaining, and it all occurs on one level. The length of
the entire program is limited only by the available disk
space. You can begin the execution of a program chain
by either .EXEC, or, from the console, via the CLI
CHAIN command.

When your program issues the .EXEC call, a program
swap or chain occurs (you specify which in AC1). For a
swap, RDOS saves a core image of the current program
and brings the new program specified in ACO into main
memory and executes it. The calling program’s task
control block (TCB) saves its accumulators, Carry, and
PC. The new program can swap itself and execute the
old program by issuing the call RTN (or .ERTN); or it
can swap to a lower level by issuing a .EXEC call. Any
program can check its current level by issuing system
call . FGND (Chapter 4).

Occasionally, we will use the term “‘push’ instead of
“swap’’. Each term means the same thing: execute a
program on the next lower level via .EXEC. The CLI
command POP, which instructs RDOS to execute the
program on the next higher level, corresponds roughly
tosystemcall .RTN.

If AC1 specifies a chain, RDOS does not save the core
image, and brings the program specified in ACO into
core and executes it. The new program can .EXEC the
old program (or any other) into execulion when it is
finished.

Any program you plan to swap or chain must be an
executable save file.

When the calling program’s execution resumes after a
swap all channels which were open when the swap
occurred will be open. To restore the other conditions
(2 through 12 above) to the calier. vou must use the
appropriate system or task call.

083-000075-08

R

MYSWAP) LEVELO
R
A
TITL MYSWAP
i
i
SUB 1.1
LDA O, byte pointer to LEVEL2.SV LEVEL 1
SYSTM
EXEC
| IR S—
H
' 1
RTN —_—
JMP ERR TITLLEVEL2
END :
SUB 1.1
LDA 0, byte pointer to LEVEL3.SV LEVEL 2
SYSTM
EXEC
:<-—-—-—-
RTN Y
JMP ERR TITL LEVEL3
END '
t
AN LEVEL 3
JMP ERR
END

SD-00504
Figure 4-1. Program Swapping
R
CHAIN MYCHAIN) ——
—~ R) - -
- TITL MYCHAIN T}TL CHAIN TITL CHAIN2
i '
t f i
1 i 1
! ! : LEVELO
H I 1
t i &
SUBZR 1.1 SUBZR 1.1 LDA C. byte pointer 1o "CLLSV"”
LDA C. byte pointer 1o "CHAINT SV LDA C. byte pointer 1o "CHAIN2 SV~ SYSTM
SYSTM SYST™ EXEC
(EXEC EXEC JMP ERR
JMP ERR JMPERR END
END END
SD-00505

Figure 4-2. Program Chaming

093-000075-08 Licensed Materiai-Property of Data General Corporation 4'3

Swap or Chain a Save File into Execution
(.EXEC)

This command requests the system to swap or chain a
program. See Figures 4-1 and 4-2 for illustrations of
each. :

Required input
ACO - Byte pointer to save filename of new program.

AC1 - Specifies a code for swap or chain (see below for
code).

The code in ACI indicates one of two starting
addresses: the program starting address (USTSA), and
the Debug I1I starting address (USTDA). See Chapter
5. User Status Table, for descriptions of the addresses.

If bit 0 of AC1 is 1, RDOS will not save the current
level, and the operating level will remain unchanged.
This feature provides unlimited program chaining.

Note that you cannot swap from the foreground of an
unmapped system. If an unmapped foreground
program tries to swap, RDOS will return error 25
(ERCM3). You can, however, chain from an
unmapped foreground, if the new program has the
same or a smaller memory requirement than the oid.

The permissible codes input in AC1 are:

Code Meaning

0 Swap to user program. Control goes to
the highest priority ready task.

1B0 Chain 1o user program.
1 Swapand start at debugger address.

IBO+1B13 Chain and start at debugger address.

Note that the new program will receive the contents of
AC2. If the new program is the CLI {(CLLSV), and
AC2 contains a nonzero value, the CLI will search its
special command file CLIL.CM for commands. This
mechanism is fully described in an appendix of the CL1
manual.

Format

SYSTM
EXEC

error return
normalreturn

Possible errors

AC2

1

25

26

Note:

Mnemonic Meaning

ERFNM Illegal file name.

ERSV1 File requires save attribute
S).

ERDLE File does not exist.

ERCM3 More than 5 swap levels or
swapping from unmapped
foreground.

ERMEM Attempt to ailocate more
memory than is available.

ERADR Illegal starting address.

ERDSN Directory specifier
unknown,

ERLDE Link depth exceeded.

ERDNI Directory not initialized.

ERUSZ Too few channels defined
at load time or SYSGEN
time.

ERMPR Address outside address
space.

ERDTO Disk timeout occurred.
ERENA No linking allowed (N
altribute).

ERNSE Program not swappable.

RDOS will return ERADR (32) status if”

b

4"4 Licensed Material-Property of Dats Generai Corporation

No starting address wus specified for
the save file and code 0 is given (e,
bit I3isresetto 0).

The Debugger was not loaded as part
of the save file and code 1 is given
(i.e..bit 13issetio]).

Return to the Next Higher-Level Program
(LRTN)

.RTN closes all open channels and returns to the calling
program at its normal return point. All the calling
program’s accumulators are restored. and control
passes to the instruction at the return point. If the level
0 foreground program issues .RTN, RDOS will close all
foreground channels and release the foreground. The
message FG TERM will appear on the background
console.

Format

SYSTM
RTN
error return

The normal return is impossible, since RDOS restores
the calling program in memory. The error return is
reserved for compatibility with RTOS but is never
taken. Error conditions cause Exceptional System
Status (see Appendix F).

Return from Program Swap with Old
Program’s Error Status (.ERTN)

This command instructs a called program to return
error information to the calling program. Use it for
error returns when you want to know why a swapped
program took the error return.

This call is identical to .RTN except that normal return
is made to the error return of the higher level program:
upon return, AC2 contains the lower-level program’s
AC2 instead of the higher-level program's AC2. A
single word of status can, therefore, be returned. If a
program issuing a .ERTN has been executing at level |
(and is returning to the CLI) the CLI will output an
appropriate message concerning the status code in
AC2. (If the CLI recognizes the code as a system error
code, it will print a text message. ERDLE (12) would
evoke the message FILE DOES NOT EXIST) If
RDOS returns nuil error ERNUL (20) in AC2, the CLI
will report no error message.

Note that if the called program passes EREXQ (17) in
AC2, the CLI will take its next command from disk file
CLLCM. This mechanism is described in an appendix
of the CLI manual. If the CLI does not recognize the
code, RDOS will type out the message UNKNOWN
ERROR CODE n, where nis the numeric code in octal.

Format

.SYST™M
.ERTN
error return

093-000075-08

The error return is reserved for compatibility with
RTOS but is never taken. Error conditions cause
Exceptional System Status (see Appendix F).

User Overlays

User overlays are blocks of code. placed in an overlay
file. that support a root program. This root program is a
save file that remains in memory throughout a program
level; it extends from location 165 to NMAX, and calls
overlays from disk into core as required. The overlay
file is a contiguous file. and is divided into segments.
Each segment contains the overlays which the root
program will load one at a time into a reserved area of
memory called a node. The RLDR command loads the
oot program. creates the overlay file, places overlays
into segments of the file. and establishes the core node
size. If you specify overlays in the RLDR command
line, RLDR produces a save file, named filename.SV,
and an overlay file named Silename.OL. Unless you
specify otherwise with switches. fifename is the name of
the first binary in the command line.

To use overlays. your program must open the overlay
file on an DOS channel ((OVOPN nj. it must then
instruct DOS 10 load (OVLOD n) one overlay at a time
from a segment into its node. The node is reserved for
the overlays in its segment until the program
terminates. Your program can free the channel by
.CLOSEing it. (This process differs slightly for a
multitask program; if you plan a multitask program, see
“User Overlay Management™ in Chapter 5.) The
EXAMPLE program in Appendix D shows a root
program supporting 2 overlays.

The size of each node is the smallest multiple of 400,
words large enough to contain the largest overlay in the
node’s segment. If any overlay is not exactly the size of
its node, it will be padded out with zeroes. This means
that any segment size equals the node size multiplied
by the number of overlays within the segment. Each
segment is identified on disk by its corresponding node
number.

Each overlay file is a contiguous disk file and can hold
up to 124 overlay segments. You can place no more
than 125 overlays in a segment, and no overlay can be
larger than 126 disk blocks (31,256 words). If the
overlays in a segment differ significantly in size, a lot of
disk space will be used to pad out the smaller overlays
to the standard size; the same amount of memory will
be used to pad out the core node. Therefore, if you can,
you should place overlays of roughly the same size in
the same segment.

Licensed Materiai-Property of Data General Corporation 4 - 5

Directory information for each overlay resides in an
overlay directory, which RLDR builds into the
program’s save file (see Appendix E). Each overlay has
a label which the system uses to identify it; this label
resolves 10 a node number and an overlay number,
packed by half-words.

The format required for creating an overlay file and
associating it with a root program is shown in Chapter 4
of the CLI manual under the RLDR command. The
following discussion extends the sample commands
presented there:

RLDR RO [A,B,C.D]IR1 R2 [E,F G,H])

As illustrated in Figure 4-3, this command creates a

disk save file, R0.SV, and an overlay file, RO.OL. The
file contains RO, R1, and R2; it also contains vacant
areas (nodes) for the overlays in each segment. The
overlay file contains seven overlays: binary versions of
A,B,C,D.E, FG, and H. These overlays are grouped
in two segments according to the brackets. Segment 0
of overlay file R0O.OL contains overlay A (number 0,
for node 0), overlay B (number 1 for node 0), overlay
C (number 2 for node 0), and overlay D (number 3 for
node 0). Segment 1 of RO.OL contains overlay E
(number 0 for node 0), overlay F and G (number 1 for
node 1), and overlay H (number 2 for node 1). Note
that the order in which you give the overlay binaries in
the command line determines both the overlay number
and node number of each overlay.

MAIN MEMORY

$0-00498

Figure 4-3. User Overlays

Licensed Mateniai-Property of Data Generai Corporation

\
(Overlay 2(H}
Segment 1 Overlay 1(F G!
. ? Overlay O(E!}
Overiay file
RO
Overiay 3(D} oL
Overiay 2(C)
Segment 0 -
Overiay 1(B)
Overiay O(A}
\ s
-~ -
-~ o
\‘
Node 1 For overiays Vacant gisk space for
s
n segment overiays in segment 1
]2 R2
R R
. & For overiays in Vacant gisk space for
Node O segment © overlays in segment O ?Save file RO SV
RC RO
Overiay Direciory Cveriay Directory
400
o J

083-000C75-08

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number

1 ERFNM Illegal file name

6 EREOF End of virtual overlay
(mapped files only).

7 ERRPR Attempt to read open a
read- protected overlay
node (mapped only).

12 ERDLE Nonexistent file.

21 ERUFT Atempt to use a channel
which is already in use.

26 ERMEM Insufficient memory 1o
load (.OVLD or .TOVLD)
virtual overlays (mapped
only).

30 ERFIL File read error or virtual
overlay file (mapped
only-mag tape (bad tape)).

40 EROVA Not a contiguous file
(virtual overlays - mapped
only).

53 ERDSN Nonexistent file.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N

altribute).

Load an Overlay (.OVLOD)

This command loads an overlay into its reserved
memory node.

There are 2 tvpes of overlay loads: conditional and
unconditional. An unconditional load loads an overlay
whether the overlay is in memory or not. This
guurantees @ fresh copy of the overlay (except for
virtual overlavs). A conditional overlay request. on the
other hand. ioads an overiay only if it is not already in
memory. The conditional request can save vou time,
butvou should use it for reentrant overlays only.

4-8

Licensed Matena-Property of Dats Genera: Corporation

The .OVLOD command will load the overlay
conditionally if you set AC1 to 0; or unconditionally if
you set it to -1. We recommend that all your overlays
be reentrant; if any overlay is not, be sure to load it
unconditionally.

Required input
ACO - Overlay node value in the left byte, and the
overlay number value in the right byte. Or, if

you used .ENTO, symbolic name, as explained
under User Overlays.

ACL-If 0, load
unconditionally.

conditionally; if -1 load

Format

SYSTM
.OVLODn
error return
normalreturn

:Load overlay opened on channel n

In a multitask environment, only one task can issue
.OVLOD commands. (See ““User Overlay
Management,” .TOVLD command in Chapter 3 for
more on multitasking.)

Under certain conditions (such as a nonmatching save

and overlay file), the left byte of AC2 may be nonzero
on an error return.

Possible errors

AC2 Mnemonic Meaning

0 ERFNO lllegal channel number.

6 EREOF End of fiie.

7 ERRPR Altempt 1o read a
read-protected file.

15 ERFOP File not opened.

30 ERFIL Read error (tape).

37 EROVN Hiegal overlay number.

10 EROVA Overlay file is not a
contiguous file.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

s

Replace Overlays in an Overlay File ((OVRP)

Although the RLDR utility can create an overlay file. it
cannot modify that file. You can. however, create a
replacement overlay file with the CLI OVLDR utility
and execute the replacement with the call .OVRP (or
CLIcommand REPLACE).

When creating the new overlay file with OVLDR, you
make the changes you want. and give the new file the
same name as the old file. The CLI appends the
extension .OR to this name. The old file is not affected
by the execution of the OVLDR command: it remains
the current overlay file until vou execute either .OVRP
or REPLACE.

Even if both grounds are using the old overlay file.
your program can update it via OVRP without halting
the programs that are using it. (See OVLDR in the CLI
manual for more detail.)

Required input

ACO - Byte pointer to overlay replacement file name
(savefilename.OR)

ACl- Byte pointer to overlay file name.
(savefilename.OL)

Format

SYSTM

.OVRP

errorreturn
normalreturn

Possible errors

AC2 Mnemonic Meaning

1 ERFNM Illegal file name.

6 EREOF End of file.

12 ERDLE One or both files do not
exist.

27 ERSPC Out of disk space.

53 ERDSN Directory specifier
unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address
Space.

101 ERDTO Disk timeout.

093-000075-08

Protecting User Memory Under
Mapped RDOS

If you have a mapped system, your programs can
write-protect 1K blocks of memory with the WRPR
call. By default. RDOS does not protect memory; after
you write-protect it, it remains protected until you issue
the call WREBL (or execute a new program).

Write protection prevents system read calls (which read
from a file and write to a specified address - e.g...RDL.
.RDB) from writing into the protected block: it also
prevents such instructions as STA from writing to
these block(s). WRPR does nor prevent your program
from loading overlays. or swapping or chaining a new
program into the protected biocks.

In RDOS. a memory block is 1.024,, (IK) words.
unlike a disk block. which is 256,, words. RDOS allots
all mapped memory to programs (via CLI command
SMEM) in 1.024-word blocks: hence .WRPR
write-protects memory in 1,024-blocks. If an area vou
want to write-protect extends across a 1024 word
boundary, RDOS write-protects both blocks.

For greater code integrity, vou can write-protect your
overlay nodes. You must do this carefully, however. to
protect onlv the nodes: if your program inadvertantly
write-protects other areas, it may not be able to run
properly.

Luckily, RLDR reserves overlay nodes in integer
multiples of 400, words, and you can use these
mulitiples to help align your write-protection. The
following examples show how you might do this (and
what might happen if you didn"t bother). Assume that
you are about to bind/load a program which will have
one overlay segment, and include 3 overlays. You
contemplate (but don’t type) this command:

RLDRROR1 R2[A,B,C D]

You then proceed to check the sizes of all binaries with
the Library File Editor (LFE). RO, R1. and R2 require
3600, words, which you round up to 40004; A and B are
each 1000y, and C D is 1500, words. The loader
reserves an overiay node for the third (i.e.. the largest)
overlay, which is 1500 words. Therefore the node will
be 20005 words long (15004 exceeds 3*400,).

This node size fits nicely in a memory block (20005 =
1,024, = 1K); You will need to write-protect only one
block, if you align it properly.

Misalignment of the overlay node will write-protect
biocks outside the overlay and this would be
undesirable.

Licensed Material-Property of Data General Corporation 4‘ g

You can align the node for future write protection by
judicious use of the RLDR local switch /N. The
following command illustrates the use of local switch
/N:

RLDR RO 2000/N R1 R2 4000/N [A,B,CD])

/N forces the NREL pointer to the specified octal
value. RLDR builds NREL upward from the bottom of
user space for each binary loaded. The NREL figure
pertains to the file whose name follows the switch. See
RLDR in the CLI manual for more detail.

As shown in Figure 4-3, locations 40005 through 60Q0
would be reserved for the overlay node. There’s

enough room in RO to insert a .WRPR instruction

which will protect the node, without affecting the rest
of the save file.

LDAO,LA ;THE LOWER ADDRESS
LDA 1, HA THE HIGHER ADDRESS
.SYSTM

WRPR

JMP ER

LA:4000
HA:5777

6000, :
Overlay Node
4000,
R2
R1
RO
2000,
CORRECT
S0-00489

4-10

Shading indicates memory protection.

Figure 4-5. Write-Protecting Memory

Liensec Materiai-Property of Data General Corporation

* e 0090 e

Ovérlay Node ..
1,024 A EefedE ol b
R1

1.024 {

|

X
(@)

® e s 00 w0

INCORRECT

083-000075-08

Protect a Memory Area from Modification
((WRPR)

By default, RDOS write-enables all memory blocks.
This system call write-protects contiguous sections of
mapped memory, as specified in ACO and ACl1. The
blocks you specify will remain write-protected until
your program removes this protection via .WREBL,
until it issues an .EXEC, .RTN, or .ERTN, or until you
enter a keyboard interrupt.

RDOS protects memory in 1024, - word blocks, just as
it allocates mapped memory in 1024-word blocks. If the
addresses you specify cross a block boundary, RDOS
will write-protect both blocks entirely.

WRPR is a no-op in unmapped systems, and takes the
normal return.

Required input
ACO - Lower address of the series to become protected.

ACI1 - Higher address of the series.

Format

SYSTM
WRPR

error return
normal return

Possible error
AC2 Mnemonic Meaning

74 ERMPR liegal address.

Remove the Write-Protection from a
Protected Memory Area ((WREBL)

This call removes the write-protect restriction from a
memory block or a series of blocks. Memory which vou
write-protected by a call 1o WRPR was protected in
1024,, word blocks: ‘WREBL also write-enables in
1024, word blocks. If the addresses vou specify cross a
block boundary., RDOS will write-enabie all addresses
in each block.

Required input
ACO - Lower address of the series to be write-enabled.

ACI - Higher address of the series.

Format

SYST™M
WREBL
error return
normal return

Possible error
AC2 Mnemonic Meaning

74 ERMPR [llegal address.

Extending Your Address Space Under
Mapped RDOS

In any Data General computer, mapped or unmapped,
the directly-addressable memory available to a program
cannot exceed 32K words. Naturally, this depends on
the total amount available in the machine; in a
dual-program environment, each of two programs can
use up to 32K of this directly-addressable space. In a
mapped system, directly-addressable space is called
logically-addressable space.

Mapped RDOS, however, permits a program in either a
single or dual environment to access memory outside
its logical address space. Memory outside logical
address space is called extended address space or extended
memory.

You allot the total (both logical and extended) address
space to a program via the CLI SMEM command.

Mapped RDOS offers two programming tools for using
extended address space: window mapping and virtual
overigys. Window mapping also allows vou to transfer
256-word blocks of data via extended direct/block 1/0.

Virtual overlays (like conventional overlays) are most
useful for storing vour subroutines; you define them
via RLDR. Window mapping is most useful for
extended data storage: vour program defines a window
map. You can use both features in one program.

Virtual Overlays

Virtual overlays provide one means of using extended
address space. The major difference between ordinary
user overlays and virtual overlays is that the former are
disk-resident and permit only one memory resident
overlay at a time from any segment while all virtual
overiays are resident simulancously in extended
address space.

Licenseg Materiai-Property of Date General Corporation 4“ 1 'I

After vou have built a virtual overlay file into your
program, your program handles it as an ordinary
overlay file. That is, both the normal and virtual
overlay files are contained in the overlay ((OL) file
which you must open (via .OVOPN) before you can
access any overlay within the file. You must load each
virtual overlay, like each normal overlay, via . OVLOD
or . TOVLD (Chapter 5), before your program can use
it. Multiple tasks can share a virtual overlay reentrantly.
When all tasks have released the overlay (OVREL),
another task can use the overlay node. Loading a
virtual overlay is quicker than loading a normal
overlay, since the former requires only a memory
remap operation, while the latter requires a disk access.
Note that you cannot “‘refresh’ virtual overlays by
reloading them.

You can define a virtual overlay with the RLDR load
/V switch:

RLDR root program ... [virtual overlay,..]/V

Virtual overlays must precede conventional overlays in
the RLDR command line. Space for each virtual
overlay is allocated in 1K (1,024,,) word pages (RLDR
pads unused space). Each page begins on a 1K
boundary (from page 0).

The virtual overlay node always occupies logical
address space. and it alwavs holds the first viriual
overlay in the RLDR commaund line when you open the
overlay file. Other virtual overlays occupy extended
address space. When the program .OVLODs
(TOVLDs) another virtual overlay, the new overlay
remaps into logical space. and the original overlay
remaps into extended spuce. Thus the amount of
extended space which RDOS uses for each virtual
overlay segment will be:

(number-of-virtual-overlays-in-segment-1)* (node-size)

As mentioned above. .OVLODing (TOVLDing) a
virtual overlay causes a remap. while OVLODing

4-12

Licensec Matenal-Froperty of Data General Corporation

(TOVLDing) a conventional overlay requires a disk
access.

Virtual overlays release extended address space only
when the program performs a program swap, chain or
return (EXEC, .RTN/.ERTN): therefore if your
program has virtual overlays open, and it will swap, it
should .CLOSE them before the swap and reopen them
when it returns.

For example, the following command:
RLDR MAIN [VW X,Y.Z]/V [A,B,C]

creates save file MAIN.SV, and overlay file MAIN.OL:
MAIN.OL contains binaries A, B, and C as
conventional overlays, and VW, X, Y, and Z as virtual
overlays. When MAIN opens the overlay file, RDOS
will use the map to set up a pointer from the virtual
node to overlay V W. The overlay open command
allocates all extended memory required for virtual
overlays, and loads them from disk into this memory.

RDOS will do nothing with the conventional overlay
node. Memory and disk will look like Figure 4-6.

Now, assume that MAIN opened overlays on channel
3. used virtual overlay V W_ and wanted 10 use virtual
overlay Z:

LDA 0,0VZ ;0VZ HAD BEEN ASSIGNED
;VIA ENTO.

SuB 1,1 JVIRTUAL OVERLAYS ARE

.SYST™M JALWAYS LOADED
:CONDITIONALLY.

.OVLOD 3 ;LOAD VIRTUAL OVERLAY Z.

V' W would remap into extended memory, and Z would
remap into logical address space. as shown in Figure
3.7, '

093-000075-08

" e 2000000

User Overlay
Node

1K

Virtual Overlay
Node

MAIN

LOGICAL

X

—

x

X
e e U

.
.

Virtual
Overiay Z

Virtual
Qveriay Y

Virtual
Overlay X

Virtual
Cverlay VW

ee s 0

EXTENDED

SD-00509

MEMORY

Figure 4-6. Virtual Overlays Before .OVLOD

Segment 1

Segment 0 <

VW

¢
\

P
ANA)

MAIN.SV

DISK

MAIN.CL

.

Virtual
Overlay VW

Virtual Overlay

User Overlay Y
Node
Virtual Overiay
X
Virtual Overlay
Node (Z} .
MAIN
LOGICAL EXTENDED
MEMORY
SD-00506

083-000075-08

Figure 4-7. Virtual Overlays After . OVLOD

Licensed Materiai-Property of Data General Corporation

Window Mapping

Swaps, chains, and overlays will help you write a large
program which will run in limited address space. If your
main program requires more logical memory than the
computer has available, vou can use another mapped
feature: window mapping. Window mapping allows you
to gain direct access to portions of extended memory; it
also allows you to transfer blocks between extended
memory and disk. You can use both virtual overlays
and window mapping in one program. Follow these
steps to define and use a window map:

1) Determine the amount of memory available for
extended addressing use (VMEM). Do this after all
.MEMIs and after OVOPN.

2) Define the size and position of the window in user
address space, and the number of blocks in the
extended map (MAPDF).

3) Logically transfer data between the window and
extended memory by activating the memory
management unit (task call .REMAP). (Note that
no true data transfer occurs; a remap operation
changes the addressesof the data).

After your program has defined the map, it can repeat
-REMAP as often as it wants. It shouldn't issue
-REMAP when another task is using the window for
I70: but it can issue extended read/write block calls
.ERDB and .EWRB. If it issues other calls. the other
task will mistakenly access the new window.

A program can also redefine the window. but a program
can have only one window and one window map at a
time.

You define windows, like virtual overlays, in multiples
of 1024-word pages: they are also page-aligned. Your
program accesses data in extended space by redefining
the start of the window in logical address space.

RDOS returns blocks aliocated to the window via
-MAPDF to the pool only when a program executes
either a program swap or chain, or a return (LENEC or
RTN/.ERTN). If vour program performs a swap, the
window goes away. and the program must redefine it.
Note that after a .BREAK call or trap. the state of the
window in the break file is indeterminate.

Determine the Number of Free Blocks
((VMEM)

The CLI command SMEM allocates yvour address
space. System call .VMEM provides you with a count of
the number of free blocks available to vour program for
extended map use. If too few blocks are free for vour
program, vou can change memory allotments via the
CLlcommand SMEM.

4-14

Licensed Materai-Property of Data General Corporation

Required input
none.

ACO returns the number or free memory blocks for
this program.

Format

SYSTM
VMEM

error return
normalreturn

Possible errors

none in a mapped system.

Define a Window and Window Map
(.MAPDF)

As described earlier, window mapping allows your
program to transfer data between a window area within
logical address space and a series of blocks in extended
address space. An extended or window map contains a
list of physical memory blocks which can be mapped
into the window. System call .MAPDF defines a
window and window map; only one window and map
can exist within a program. You must define the
window area in the address space below NMAX.

The .MAPDF call will assign relative extended block
numbers 0 to n-1 to the blocks in extended memory; n
equals the number specified in ACO. The first window
block in logical space will receive exrended relative block
number 0, the second block (if any) in logical space will
receive number 1: the numbers proceed sequentially in
extended space. (See Figure 4-8.) Note that defining
the window map will not alter the initial contents of the
window.

Required input
ACO - Total number of memory blocks to be assigned
to the extended memory area. (This number

includes those blocks in logical address space
which currently reside within the window.)

ACI - The starting page number for the window in
logical space, from 1 through 31 (decimal) (30
for NOVA 830s and 840s). You cannot specify
the first block, (block number 0) because it
includes page zero. Also. since the window is
block-aligned. remempber that the logical address
of the beginning of the window falls at the start
of a block.

AC2 - The size of the window in 1K blocks.

Format

SYSTM
MAPDF
errorreturn
normalreturn

093-000075-08

Possible error LDAO,C10 ;TOTAL SIZE OF WINDOW (2
:BLOCKS IN LOGICAL SPACE,

AC2 Mnemonic Meaning 110 TOTAL IN EXTENDED

26 ERMEM The specified block is out of the ;SPACE).
range of the window or the window LDA1,C8 BOTTOM OF WINDOW AT 20000=
map. ;RELATIVE LOGICAL BLOCK

. ;SPECIFY 2 BLOCKS

Example LDA2,C2 ;INAC2.

Assume that you want to define a window of 2K in .SYSTM

logical space, with 10 blocks total in extended address .MAPDF ;DEFINE THE MAP.

space. Given the rest of your program, you want to JMPER

start the window at 20000y; it will end at 237774. This
sequence defines the map you want;

SYSTM
VMEM JALWAYS CHECK THE NUMBER)
, :OF EXTENDED BLOCKS C10:10.
AVAILABLE. c8:8.
:(THIS CODE GIVES THE PROGRAM c2:2
AN OPTION, IF,
;FOR ”\;/E%ATEVER REASON, THE Figure 4-8 shows what logical and extended memory
REQU ill look like after this sequence:
'NUMBER OF 16 1K BLOCKS WHHIooR H 154
AREN'T AVAILABLE))
Relative extended
block numbers:
:
o
|
7‘,
|
: 6!
|
Logical X
biock 8 WINDOW 5 5
e {Contents —t { Window
Logicat } | unchanged by MAPDF} Map
biock 8 4}
20000,)
3s
|
bt pot i
2
!
-
N
2000, [
. H {
g:’:;:% Forbidden o ;
LOGICAL MEMORY EXTENDED MEMORY
S0-00507

Figure 4-8. Defining a Window Map

083-000075-08 Licensed Materiai-Property of Data Genera! Corporation 4' 1 5

Activate a Logical Window Transfer (REMAP)

Once your program has defined a window and window
map. it can remap data from the memory in the window
map to or from any part of the window in logical space.
The .REMAP call performs a remap operation by
placing blocks from the extended address area into the
window. An example sequence of mapping operations
will illustrate the use of . REMAP.

Note that .REMAP is a task call; hence you must
specify the name .REMAP in an .[EXTN statement.

Required input

ACI - Left byte: Starting relative block number in the
map (extended space). If vou have an array
processor, pass the starting relative block
number of the array processor. Right byte:
Starting relative block number in the window.

AC2- Number of blocks you wish to remap to the
window area. If you have an array processor.
pass the number of blocks in AP memory. in
two's complement.

Note that block numbers within the windows and the
map are relative numbers beginning with 0 (see Figure
4-9. below).

Format

REMAP
error return
normalreturn

The contents of all accumulators are lost upon return
from this call.

Possible error

AC2 Mnemonic Meaning

32 ERADR liiegal starting address.

We have defined (under .MAPDF) the two-block
window and ten-block window map shown in Figure
4-9. The blocks currently in the window have become
relative block numbers 0 and 1. The program now
performs a remap with block numbers 2 and 3 of the
map. RDOS maps blocks 2 and 3 from the extended
address area into the logical window. The remap occurs
with little system overhead, since RDOS does not
actually transfer data beiween memory locations; it

4-16

Licenseg Matenial-Property of Data Genera! Corporation

merely updates the map of the memory management
unit and then triggers that map. As we mentioned
earlier, your programs shouldn’t issue a .REMAP
when another task has [/0 outstanding to or from the
window. This would cause the other task’s 1/0 to
reference the new window.

Reiative block @

Logical block 9

Logical b‘Icc‘x <3

" Wingow
Reiative biock 3 Map

Relative biock 2

Relative biock 1

togical biock O

Relative block 0

LOGICAL EXTENDED

S$0-00508

Figure 4-9. Memory before Remap

.EXTN REMAP

" :THE CODE IN FIGURE 4-8 1S
JINHERE.

LDA 1,BLKZ2;PUT 1ST BLOCK NUMBER(S)
;TO BE REMAPPED IN LEFT BYTE
:OF AC1.
;PUT 18T BLOCK IN WINDOW INTO
RIGHT BYTE OF ACT.
JACT NOW CONTAINS THE
:CORRECT DATA
AN EACHBYTE FOR THE REMAP.

LDA2.C2 SPECIFY THE NUMBER OF
‘BLOCKS TO
‘BE REMAPPED IN AC2 (2.
Lo

REMAP

BLK 2:2B7-0B15
c2: 2

This sequence remaps 2 blocks (relative block numbers
2 and 3) into the window. In this sequence. we have
mupped both blocks. but this wasn't required; we could
have mapped either of the blocks independentiy.
Figure 4-10 shows the results of the remap.

083-000075-08

Rerative block 9

7

_ &

Logest Bicoa 3

Logicai Sinex §

Minaow
“Map

Retative piock 3

Reiative biock 2

Reative cioes

LIGCa ook 2 Retative sioce J

LOGICAL EXTENDED

Figure 4-10. Remapping
Extended Direct-Block I/0

After your program has defined a window map, it can
use extended direct-block 1/0. This special form of I/0
is similar in concept and in operation to direct-block
170, as described in Chapter 3 (see .RDB/.WRB).
Direct block 1/0, you will recall, transfers 256-word
blocks between core and disk. without using a
intermediary system buffer.

The extended direct-block 1/0 calls -. . ERDB and
.EWRB - can transfer 256-word data blocks between
the map in extended memory and disk files. This 1/O
type provides a quick means of altering data in the
extended memory area. Your reference is independent
of any remaps which have occurred or may occur
during execution of these calls. Moreover, it can

transfer disk file data directly to the extended memory -

area, without passing it through the window in logical
address space. Neither .ERDB or .EWRB use an
intermediary buffer. The calling sequence of .ERDB
and .EWRB resembles the direct-block calling
sequence. These are described below. ‘

Extended Direct Block Read (_LERDB)

System call .ERDB can read one or more 256-word disk
blocks from a randomly- or contiguously-organized file
into one or more 1024- word extended memory blocks.

This call resembles .RDB. However, since RDOS uses
the map in extended memory instead of
directly-addressable logical memory, the parameter you
pass in ACO to .ERDB differs from that passed to
.RDB. (See the example below.) The parameter you
pass in ACO to .ERDB specifies both the map’s relative
memory block number (in the range 0-244) and a
256-word offset into this block. Since you must have
defined a window map (MAPDF) to use this call, you
should know the relative block numbers in the map.

093-000075-08

Licensed Materiai-Property of Data General Corporation

Required input

ACO - Right byte: extended memory block number in
map.

0. read into first 256-word group.
read into second 256-word group.
read into third 256-word group.
read into fourth 256-word group.

Left byte:

G B e
ST

ACI - Starting relative disk block number in the file:
from 0 to »n -1 for a file consisting of n disk
blocks.

AC2- Leftbyte: number of 256-word disk blocks to
be read.
Right byte: channel number (if file was opened

on channel 77).

Format

SYST™
.ERDBn :Read from the disk file *
.opened on channeln
lor 77).

error return -

normalreturn

Possible errors
AC2 Mnemonic Meaning

lllegal channel number.

0 ERFNO

3 ERICD Illegal command for device.

4 ERSVI Not a randomly- or
contiguously-organized
file.

6 ERECF* End of file.

7 ERRPR File is read-protected.

I3 ERFOP No file is open on this
channel.

30 ERFIL File read error (mag tape or
cassette, bad tape).

40 EROVA File not accessible by
direct-block 170.

74 ERMPR Address outside address

space.

101 ERDTO Disk timeout occurred.

*Upon detection of error EREOF, RDOS returns the
code in the right byte of AC2: the left byte contains the
partial read count.

4-17

Example

You can use the following code to transfer disk file E to
the map via .ERDB. Let’s continue the configuration
we showed in Figure 4-10. The code in Figure 4-11
writes file E to relative block numbers 0 and 1 in the
map.

task can still access extended blocks 2 and 3.

The 256-word offset into the selected block will indicate
either 0, 4004, 100054, or 14004 for the start of each
256-word disk block. RDOS adds the extended
memory block number and the offset. This produces
the memory block number in the right byte and either
0. 1, 2, 3 in the left byte for the first, second, third, or
fourth 256-word disk block.

s e e 0000

LOGICAL

LDA O, FILEE

SuB 1.1
SYSTM
.OPEN3

SuBO.0
SuB 1,1

LDA2.C8

SYSTM
ERDB3

C8:8.87
FILEE: x1°2
TXTE”

RELATIVE
BLOCK NUMBERS:

:BYTE POINTER TO DISK FILE E.
:DEFAULT DISABLE MASK.

;OPEN E ON CHANNEL 3.

:GET 0 TO START READING
:TOEXTENDED BLOCK 0.

:GET 0 TO START READING
:FROM STARTING POSITION IN
:DISK FILEE.

:SPECIFY THE NUMBER OF DISK
:BLOCKS TO BE READ, INLEFT
BYTE OF AC2-- 8 THESE
:BLOCKS WILL FiLL MAP BLOCKS
OAND 1.

:READ FROM FILE E ON CHANNEL 3.

= “\9

Figure 4-10. Extended Block Read.

Licensec Materal-Froperty of Date Genera! Corporation

LI Y

O =P w

EXTENDED

.o

O - mw

e FILEE

EXTENDED

0393-000075-08

Extended Direct Block Write ((EWRB)

Use .EWRB to write one or more 256-word blocks from
extended memory to a randomly- or
contiguously-organized disk file. The current contents
of the window remain unchanged, as do the contents of
the map.

This call resembles .\WRB, but the parameter passed in
ACO to .EWRB differs from that passed to . WRB. AC0O
must specify both the relative extended memory block
number (in the range 0-244) and a 256-word offset into
this block. Your program must have defined a map via
MAPDF to use this call; hence vou should know the
relative 1K block numbers in the map. See .ERDB for
details on the offset.

Required input
ACO - Right byte: extended memory block number
Leftbyte: 0, write from first 256-word group
1, write from second 256-word
group 2. write from third 236-word
group 3, write from fourth
256-word group

ACT - Start writing to this relative block number in the
disk file.

number of 256-word blocks to be
writlen.

Right byte: channel number (if file was opened
on channel 77).

AC2 - Left byte:

Format

SYSTM
.EWRB n :Write to the disk
file opened on
:channeln (or 77).
error return

normalreturn

Possible errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD lliegal command for device.

4 ERSVI Not a randomly-or
contiguously-organized
file.

6 EREOF End of file in a contiguous
file.

10 ERWPR File is write-protected.

15 ERFOP No file is opened on this
channel.

27 ERSPC* Disk space is exhausted.

40 EROVA File not accessible by
direct-block [/0.

74 ERMPR Address outside address
space.

101 ERDTO Disk timeout occurred.

*Upon detection of error ERSPC, RDOS returns the
code in the right byte of AC2: the left byte contains the
partial write count.

End of Chapter

Licensec Matenai-Property of Data Genera! Corporation

4-18

Chapter 5
Multitask Programming

This chapter describes tasks. task management, task
overlay management. and task control from the
console via operator messages. It begins by explaining
task prioritites and the Task Control Block (which the
RDOS Task Scheduler uses to keep track of each task
in a program). it then describes the possible task states.
and the User Status Table, which monitors all TCBs
during program execution. Finally it gives the calls
which a task can issue to control itseif or other tasks.
Your program is the initial task: after it initiates one or
more tasks. any of those tasks can issue a task or
svstem call.

After vou have written a task routine. vou should
assign a task ID to it. An ID number is not mandatory,
but certain useful task calls. as well as the OPCOM
console communicat-ons feature. require it. Your
program then proceeds to initiate the task via .TASK or
QTSK (or. from the console. via OPCOM commands
RUN or QUE): RDOS then assigns the task a TCB
from the TCB pool you established either via a .COMM
TASK statement or during loading. The task is then
ready for execution. Depending on its priority, and
other conditions specified in your program. the task
achieves CPU control and executes. It retains CPU
control until it either suspends itself, or is suspended by
an equal or higher priority task’s reques: for the CPU
after an interrupt. The task’s TCB saves its current
state. The program’s User Status Table monitors all
TCBs and their associated tasks: this enables the Task
Scheduler to resume execution of any suspended task
from the point of suspension. The task retains its TCB
until the task kills itself, or is killed. via .KILL.
AKILL. .ABORT, .OVKIL, or OPCOM command
KIL. After a task is killed, its TCB returns to the free
TCB pool and the task remains inert until you
re-initiate it, and it receives another TCB.

Each task you write into vour program is
memory-resident during program execution. unless it
resides in an overlay. If it resides in an overlay, your
program must use .OVOPN, then load the overlay via
either TOVLD or .QTSK.

The following list summarizes the major headings in
this chapter, and the calls these sections contain.

093-000075-08

Task Initiation

.TASK Create a task with the specified priority
and ID number. Your program must issue
.TASK or .QTSK 1o initiate a multitask

environment.

Task Termination

KILAD Pass control to this address when a task
defining a kill-processing address is killed.
KILL Kiil the cailing task (i.e.. kiil vourself).
LAKILL Kill all tasks of the specified priority.
.ABORT Kill the specified task and its
currently-executing system call (if any).

Task State Modification

.PRI Change the priority of the calling task
(yourseif).

ARDY Ready all tasks of a given priority.

SUSP Suspend the calling task (yourself).

.ASUSP Suspend all tasks of a given priority.

Intertask Communication

XMT Transmit a one-word message to a given
address for eventual receipt by another
task.

XMTW Transmit a one-word message (as in

XMT) and wait (suspend yourself) until
the other task receives the message.

IXMT Transmit a one-word message (as in
XMT) from a special (nonstandard)
user-defined interrupt routine.

.REC Receive a message from another task.

Overlay Management

.TOVLD Load the overiays which were opened on
channel n, for either your own, or another
task’s, use.

.OVREL Release an overlay.

.OVEX Release an overlay and return to a
specified address.

.OVKIL Kiil the caller (yourself) and release its

overlay node.

Licensed Material-Property of Data General Corporation 5" 1

Enqueuing Tasks

.QTSK Create a task at the specified priority;
place it in the task queue for execution at
the specified time, and execute a specified
number of times.

Dequeue a task which has been enqueued
by .QTSK.

.DQTSK

User System Clock Commands

.DELAY Delay the caller (vourself) for the
specified number of RTC pulses.

.DUCLK Define a periodic interrupt, at which
system control will go to the specified
address.

JUCEX Return to the system after executing a
routine specified in the .DUCLK address.

.RUCLK Remove the interrupt interval and address
specified in .DUCLK from the system.

.GHRZ Get the frequency of the real-time clock.

Managing Tasks by ID Number

ADST Get a task’s status.
.TIDP Change a task s priority.
.TIDR Ready a task.

.TIDS Suspend a task.

TIDK Kill a task.

Task/Operator Communications Calls

JTWROP Write 2 message to the console.
.TRDOP Read a message from the console.

Task/Operator Module (OPCOM) Commands

DEQ Dequeue a QUEued task.

KIL Kill a task.

PRI Change a task’s priority.

QUE Queue a task for periodic execution.
RDY Ready a task.

RUN Execute a task.

SUS Suspend a task.

TST Display a task’s status.

Disabling the Multitask Environment or Task
Scheduler

SINGL Disable the multitask environment.
NMULTE Enable the multitask environment.
.DRSCH Disabile the task scheduler.
ERSCH Re-enable the scheduler.

5-2

Licensed Matenai-Property of Data Genera Corporation

Task Priorities

Task priorities range from 0 (highest priority) through
255 decimal. RDOS automatically creates one task at
priority 0 for the task whose starting address vou
specify in the .END statement at the end of your
program.

Several tasks may exist at the same priority. Equal
priority tasks receive CPU control on a round-robin
basis, which means that the task which most recently
received control will be the last to receive control again,
unless other tasks are unable to receive control at the
moment that rescheduling occurs. Whenever your
program changes a task’s priority (.PR1), RDOS places
the task at the end of the list of all tasks within its new
priority.

Task Control Blocks

A task is an asynchronous execution path through user
address space which demands the use of sysiem
resources. You can assign many tasks lo a single
reentrant path, and vou can assign each of these tasks a
unique priority. Given the asynchronous nature of
tasks. the RDOS Task Scheduler must maintain certain
status information about each task. RDOS retains this
information within a Task Contro!l Block (TCB): there
is one TCB for each task. The following illustration
describes the structure of TCBs:

Word Mnemonic Contents

0 TPC User PC (B0-14) and Carry (B135).

1 TACO ACO.

2 TACH ACIL.

3 TAC2 AC2.

4 TAC3 AC3.

5 TPRST Status bits and priority.

6 TSYS System call word.

7 TLNK Link word. to next TCB.

10 TusP USP (User Stack Pointer).

11 TELN Extended save area.

12 TiD Task ID number. right byvie.

13 TTMP Scheduler temporary storage.

14 TKLAD Task kill address (if program specified
one).

15 TSP Stack pointer.

16 TFP Frame pointer.

17 TSL Stack limit.

200 TS0 Overflow address (singie 1ask

environment).

Words 1-4 in the TCB are self-explanatory. Word 3,
TPRST, contains the task state and priority information
shown in Figure 5-1.

(o)
o

0007508

3.

System Field
Suspend Fieid
Transmit/Receive Field or TOVLD

TRDOP
ABORT Lock
! User task extension bits (see below)
\d Y Y
[s]ulT]r]A]-] Priority
bit 0 1 2 3 4 578 15

SD-00541

L— Figure 5-1. Task Statel/Priority Information (TPRST) —
The Task Scheduler sets the fields in TPRST as follows:

Field Bit Setting/Meaning

S 1 = Task has issued a system call and has been
suspended until the call is done. 0 = System call
is done, or no call is outstanding for the task.

U 1 = Task is suspended by .SUSP, .ASUSP, or
.TIDS. ’

T 1 = Task has issued either . XMTW/.REC or
.TOVLD.

R 1 = Task is awaiting a message via . TRDOP.

A | = Taskis being aborted.

Bit 5 is reserved: bits 6 and 7 allow vou to expand the
RDOS task-handling mechanism, as described in
Appendix J. ’

Bits 8-15 contain the task priority.

RDOS uses TSYS. word 6. 1o store information about
system calls and in XMTW/ REC/.TOVLD.

TLNK contains the starting address of the next TCB in
the chain. TUSP contains the value of location USP at
the time this task last changed from the executing state.
You may use USP as a general-purpose storage location
for each task while the task is executing. The svstem
will restore the USP value for each task that gains CPU
control.

TELN points 10 the task’s higher-level language save
area: if you do not use it, the system sets TELN 10 0.

0§3-000075-08

TID contains the task identification number, if any, in
its right byte.

TKLAD, word 14, contains the address which is to
receive control whenever a task is killed. if you have
defined such an address via a .KILAD call. Bit 0 is set if
a .KILL or . ABORT of the task has been issued.

The remaining four words contain stack stale save
information which is reserved for TCBs.

Building Multitask Programs

Before you run a multitask program. you must specify
both the number of RDOS channels and the number of
TCBs which that program needs. You can do this
before assembly, within the program, via a .COMM
TASK statement. You can also specify tasks and
channels with the /K and /C local switches in the
RLDR command line. If vou use .COMM TASK. it
must appear in your first binary in the RLDR command
line, since it affects the loading process of the
remainder of the program and determines which task
scheduler (TMIN or TCBMON) will become part of
the program. If vou use either the /C or /K switch
along with @ .COMM TASK statement, the switch
information overrides the statement specification. The
format of the source program statements is:

.COMM TASK, k"400+¢

where:
k represents the octal number of tasks and
c represents the octal number of RDOS channels

which vour program will use.
Example:
.COMMTASK, 7°400+ 16

In mapped syvstems. the maximum number of tasks (k)
cannot exceed 44,, This is due to the requirement (in
mapped systems) that all TCBs must reside in NREL,
in the first 1K page of memory. If the program uses
overlays, the overiay directory must also reside in the
first 1K page, which reduces space for TCBs.

Data General supplied TMIN and TCBMON, all task
command modules, the interrupt-on symbolic
debugger, and BFPKG (see Application Note: Buffered
/O in RDOSJ in the system library (SYS.LB). Unless
vou specify otherwise with an RLDR switch, RLDR
will place all items required from the library directly
above the program code.

Licensed Matena-Property of Data Generat Corporation 5~ 3

Note: Because the system library (SYS.LB) differs for
each type of system (e.g. unmapped NOVA and
mapped NOVA), programs loaded under one
tvpe of system will probably not execute under
another tyvpe of system. To load for a different
kind of system, vou must obtain the proper
system library for the target system, and ensure
the RLDR searches it, not the current library,
during the load. You can do this by loading from
a subdirectory which contains the target system
library and links to RLDR.

If vou wish to write vour own task command modules,
or define a task memory or FPU save area, see the
source listings for the system library (if you acquired
library source listings with your system).

Conserving ZREL Space

Normally, each different task call a program will use
requires one word of page zero (ZREL) space. For
example, in the following conventional use of call
.TASK:

EXTN .TASK

. :Set up Accumulators.
.TASK

The task call word .TASK is resolved by SYS.LB 1o a
JSR instruction which transfers control through a page
zero address. Thus .TASK requires one word of ZREL
(other subsequent .TASK calls will not require
additional ZREL). If vou want to conserve on ZREL
space, vou can use an alternate method. Replace each
task call with a transfer to a label which has the same
name as the original task call, but with the first two
characters transposed. The transfer must be a JSR or
equivalent. You must declare the transposed call
EXTN. For example:

EXTNT.ASK

. :Set up accumulators.
JSR ATASKO

TASKO: T.ASK

The transposition scheme uses no ZREL space.

Task States

A task can exist in any of three states. Tasks are either
ready 1o perform their functions. or they are actually in
control of the CPU and are evecuring their assigned
instruction paths. or they are suspended and temporarily
unable to receive CPU control. A task can also be
“dormant, having relinquished its TCB (or never having
had @ TCBJ: a dormant task has no priority and no
chance of gaining CPU control until activated by a
TASK or QTSK commaund.

5' 4 Licensed Materai-Property of UDats Genera' Corporation

The Task Scheduler always gives CPU control to the
highest priority task that is ready.

Suspended tasks are tasks which have at least one of
the four status bits (S, U, T, R) in TPRST set to 1. A
task may become suspended for one or more of the
following reasons:

1. It has been suspended by .ASUSP or .TIDS.

2. It has suspended itself for a specified period by
.DELAY, oran indefinite period via .SUSP.

3. Itis waiting for a message from another task, .REC.

4. It hasissued a message-and-wait call, XMTW.

W

It is waiting for the use of an overlay node.

6. It has issued a SYSTM call, and is waiting for
completion of that call.

Just as a number of different events can suspend a
ready task, several events can ready a suspended task:

1. The action of .ARDY or .TIDR task calls on the
task.

2. The receipt of a message by a task which has issued
.REC.

3. The loading of arequested overlay.

4. The completion of a .SYSTM call (such as a request
for170).

If a task is suspended by both a task suspend call and by
some other event, you must ready the task both by an
ARDY (or .-TIDR) call and by whatever other event
suspended it. Thus a task may be doubly suspended,
with both bits S and U set in the task’s priority and
status word, TPRST. The environment must allow
RDOStoresetbits S, U, T and R 1o ready the task.

You can delete tasks from the active queue and place
them in dormancy, either separately (KILL, . TIDK or
_ABORT) or by priority group (.AKILL). Tasks which
vou have deleted add their empty TCBs to an inactive
chain of free element TCBs.

If all tasks are killed. and no task is awaiting execution
via .QTSK, the effect is the same as:

SYSTM
RTN

Program control then returns to the next higher
program level.

083-000075-C8

TCB. TC8, TCB8,
USTFC TLNK TLNK Terminator (TLNK=-1)
or * .
USTAC
$D-00542
Frewre 322 TCB Cham
TCB Queues Address label Contents
E‘hfre is one TCB queue for tasks, which are currently 012 USTP ZREL pointer to UST.*
executing, suspended. or ready. This queue consists of 100 USTPC Used by the system.
a chain of TCBs, connected by the TLNK word in each 101 USTZM ZMAX
TCB. and is called the active chain. USTAC of the User 102 USTSS Start of Symbol Table (SST)
Status Table points to the first TCB. This TCB points to 3 : el . '
the next TCB, etc. The last TCB in the chain has a 3 oS Endof Symbol Tuble (EST).
TLN’K‘Of-I T ! 404 USTNM NMAXafter runtime .MEMs.
:) 403 USTSA Starting address of Task
Scheduler.
The free element TCB chain is a simple queue of 406 USTDA Debugger address: -1 if the
dormant TCBs. TCBs in the free element chain are debugger wasn't loaded.
joined by TLNK words: all other words in each of these 407 USTHU USTNM after loading (original
TCBs are unused. There is no priority among TCBs in NMAX).
the free element chain. USTFC of the User Status 410 USTCS FORTRAN common areu size.
Table points to the first TCB in the free element chain 411 USTIT ~ CTRL-A interrupt address: -1
(see Figure 5-2). initially.
412 USTBR CTRL-C or .BREAK address:
-1 initially.
Task Synchronization and Communication 413 USTCH qubcr of TCBs (left byte)
and channels (right byte).
Each task can communicate with another by sending a 414 USTCT Current TCB pointer.
one-word message to an agreed-upon location in user 415 USTAC Surtofactive TCB chain.
address space. This address space includes all locations 416 USTFC Surtof free TCB chain.
from address 16 through NMAX. (But avoid locations 417 USTIN Initial start of NREL code
0-17; and 405 -47; in ZREL and system tables directly (INMAX).
above 400;.) 420 USTOD Overlay directory address.
421 USTSV Available for wuse by the
The task sending a message may either return to the o . System.
Task Scheduler immediately (XMT) or it may suspend 422 USTRV REYIS’OQ level nqmber, and,
itself (XMTW) until a receiving task has issued a :i:ﬁ;inme;gzgmn’ the
recetve request ((REC) and has received the message. 423 USTIA Address of TCB for console

Receipt of the message includes the resetting of the
contents of the message location to zero. Upon receipt
of the message, the recipient task has bit T set to 0. The
message location must contain 0 before the message is
sent.

User Status Table

The User Status Table (UST) is a 245 word table which
records runtime information about a program. This
table is located at addresses 0400, through 0423, and
has the following structure in memory:

093-000075-08

Licensed Material-Property of Data General Corporation

interrupt task: 0 initially.

*The UST for a program running in an unmapped
foreground starts at the beginning of the foreground
memory partition.

Location 12, USTP, in page zero, points to the start of
the UST belonging to the currently executing
foreground or background program. The loader creates
symbol USTAD as an .ENTry; USTAD also points to
the base of the program’s UST.

5-5

USTPC indicates which program is running; 0 indicates
the background is running, and 1 indicates that the
foreground is running: it also provides compability with
SOS.

USTZM contains ZMAX, the first free location in page
zero after loading.

Locations 402 and 403, USTSS and USTES. point to
the start and end of the symbol table, respectively. By
default, the loader loads the symbol table so that one
location after the last location in the symbol table
coincides with the value of NMAX. If you request that
RDOS place the symbol table in upper memory (by
using the global /S switch in the RLDR command), the
symbol table is moved so that it will be immediately
below RDOS space when the save file is executed. If
the symbol table has not been loaded, locations 402 and
403 contain zeroes.

USTNM contains the current value of NMAX at run
time. This value changes as NMAX is increased or
decreased. Location 407, USTHU. is set by the loader
to the value of NMAX after loading. RDOS never
changes this word during program execution.

USTIT is the interrupt address (CTRL A). After
loading, this address is set o -1. If it is unchanged at
run time, control goes to the next higher level program
with USTIT set to a valid address when a CTRL A
interrupt occurs. (If the foreground is interrupted and
there is no higher level program in the foreground with
a valid USTIT address, RDOS terminates the
foreground.) The user core image is not saved. Your
program can set USTIT an execution time to an address
to which the system will transfer control ona CTRL A
interrupt.

USTBR is the break address (CTRL C). After loading,
RDOS sets this address to -1. Whenever a CTRL C
break occurs, the svstem will write the core image 1o
file BREAK.SV (or FBREAK .SV in the foreground) in
the current directory. If USTBR remains unchanged at
run time. control goes to the next higher levei program
with USTBR set to a valid address when a CTRL C
interrupt occurs. Alternatively, vou can set USTBR 1o
an address to which control will be directed upon the
successful creation of the break file. If RDOS can’'t
create the break file (e.g., because it is out of disk
space), control will go 10 the address specified by

5'6 Licensec Materiai-Property of Data General Cornoration

(USTBR) -1, i.e., one less than the address contained
in USTBR; AC2 will contain the error code.

USTCH contains the number of program TCBs in its
left byte, and the number of 1/0 channels in the right
byte.

USTSV isreserved for RDOS.

USTRYV is reserved for storage of the revision number
information for this save file. and for runtime data on
the machine which is running the program. Revision
numbers can extend from 00 to 256; RDOS stores the
major revision number in the lefl byte, and the minor
revision number in the right byte of this word. While a
program is running, USTRV contains values which
indicate what kind of machine and RDOS system is
running the program. You can find these values and
interpretations under ENVIRONMENT STATUS
BITSIN USTRV, in file PARU.SR in Appendix B.

USTIA contains the TCB address of the task that issued
an .INTAD system command. The loader initializes
this word to 0.

Task and System Calls

There are four essential differences between task calls
and system calls: first, task calls have no .SYSTM
mechanism; each call uses a module from the system
library, and therefore vou must declare each call included
ina program as external, in an .EXTN siatement. 1f your
program doesn’t declare each call external. the loader
won't load the call’'s module. and the call won't work.

The second difference relates to the first: RDOS
executes all system calis in RDOS space, but executes
all tasks calls in user space. Therefore the diversity of
task calls in a program affects the program size. whereas
the diversity of sysrem calls does not.

The third difference is that most task calls do not have
error returns, and hence do not reserve an error return
location.

The fourth difference is that vou use the accumulators
to pass all paramelers to most task calls. You will
generally use ACO and ACI to enter or return data,
You occasionally use AC2 to enter data: when an error
1s defined for a call, AC2 will contain the code on an
errorreturn,

By default, on return from all task calls, AC3 will
contain USP, the contents of location 165. RDOS
maintains the frame pointer in location CSP. If you
have a NOVA 3, vou can return the contents of the
hardware frame pointer in AC3 by loading the program
with module N3SAC. (In NOVA 3s, the hardware
stack is moved for each task swap, but the stack
-overflow handler remains at location 43;. On an
ECLIPSE, you can return the frame pointer by
inserting module ESAC3 in the loader command line.
Here isa summary of returns in AC3:

If program was loaded with
module:

Then upon return from
call AC3 contains
contents of:

NSAC3 (any machine: alwavs USP (location 16,.
used by default)

NSACS3 (NOVA 3sonly) Frame pointer
register.
ESAC3 (ECLIPSEs only) Frame pointer

(location 41,).

In summary, task calls differ from .SYSTM calls in four
ways:

1. Task calls reference library modules. and must be
declared external. Task calls are not preceded by the
SYSTM mnemonic, and are resolved by the
binder/loader to be JSR calls to task processing
modules.

2. Task calls are processed in user address space, while
RDOS or system calls require system action which
occurs in RDOS space.

3. Not all task calls have error returns. Those which do
not have error returns do not reserve an error return
location.

4. You must pass all parameters 1o task calls via the
accumulators (except .QTSKJ.

Task Initiation

The .TASK command will initiate any
memory-resident task. The QTSK command.
described under ENQUEUING TASKS. will initiate
either a core-resident or overiaved task for periodic
execution.

Create a Task ((.TASK)

This command initiates a new task at a specified priority
in your program, and assigns un identificatiion number
to the task, il you desire. When vou load the program,

083-000075-08

Licenseg Materai-Property of Data General Corporation

only one task exists: therefore your system must issue
this call (or .QTSK) to initiate a multitask
environment.

.TASK will pass the contents of AC2 10 the created
task. This permits your program to relay an initial
one-word message to the newly-created task.

Required input

ACO - Right byte: priority of the new task (range: 1 to
377). If you set this byte to zero, the priority of
the new task will be identical 1o the calling task’s
priority. Left byte: (optional but recommended)
ID number for the new task (range 1 to 377).
You may give an ID number of zero to more
than one task. Each nonzero 1D must be unique.

ACIl - Address where the new task will begin
execution.

Format

TASK
errorreturn
normal return

Possible errors
AC2 Mnemonic Meaning

42 ERNOT No TCBs available.
61 ERTID A task with the requested ID -
(except 0) already exists.

Note: Error codes listed under each call represent the
most common errors. and the meanings have
been expanded and interpreted in light of the
call.

Task Termination

This section and the following sections describe the
calls vour program can use to manipulate tasks without
using their ID numbers. To control tasks by ID
number. see ““Managing Tasks by ID Number."” later
in this chapter.

Your program can kill a group of tasks by priority
CAKILL). or an individual task by 1D number (. TIDK
(described later) or .ABORT). or it can instruct a task
to killitself CKILL). The .KILL cali has no return.

To aliow your program to proceed efficiently, RDOS
provides the .KILAD call. This specifies an address to
receive control before a task is killed. The KILAD
address can instruct the task to close its channel(s).
release its overlavis), or give it a choice of action.

o
1
~

Upon most orderly task terminations, .AKILL or
.TIDK, RDOS raises each task you are terminating to
the highest possible priority and readies it. If several
tasks exist with a priority of 0, RDOS will service these
tasks before killing the specified task(s). Thus if a task
was suspended by a .REC, . XMTW, SUSP, or .TIDS
task call, RDOS would lift the suspension. If the task
were in suspension because it had a .SYSTM call
outstanding, RDOS would complete that call before
readying the task. In either case, RDOS terminates the
task vou wish to kill when the task receives CPU
control, unless your program has specified a
kill-processing address.

If you specify a kill-processing address via .KILAD,
control will go to that address when the task achieves
CPU control. This will allow the task to close any
channels or release (OVREL) any overlays it was
using. Moreover, the kill-processing routine can act as
a reprieve, since RDOS will not actually terminate the
lask processing routine until it is killed a second time.
The kill-processing routine can thus act as a validation
procedure 1o determine whether or not the target task
should be terminated. At this point, the task being
killed can renew its kill-processing address by re-issuing
KILAD.

After a task has been killed by any means, it
relinquishes its TCB to the free TCB pool for possible
use by future tasks.

Define a Kill-Processing Address (.KILAD)

The .KILAD task call permits a task to define a special
address which will gain control the first time that your
program tries 10 terminate the “‘target task’". On vour
second attempt to kill the task, RDOS will terminate
the task without transferring control to the
kill-processing address.

The kill address aliows a task o release svstem
resources before terminating. Each task must explicitly
release such resources as overlays, channeis, user
devices and user clock definitions -- and YOu can write
code for this into the task’s .KILAD routine. After
releasing these resources and following any other
instructions, the task must then itself issue a .KILL call
to terminate itself. On this second attempt 1o terminate
the task. termination wilj occur immediately.

If. on the other hand. the target task decides not to
terminate itself, then. before branching out of the
kill-processing routine. it should issue a KILAD calito
the same or to a different Kill-processing routine. This
will ensure that if an attempt is made later to kill this
task. it will not be killed immediately but will branch
2gain 1o its kill-processing routine.

5-8

Licensec Materai-Property of Data Genera! Corporation

A task in a kill-processing routine is in execution at the
highest priority; it has CPU control. Thus such routines

will retain control until they relinquish this control by a
task state transition or by a priority level change.

Required input
ACO - Address of the kill-processing routine.

Format

KILAD
normal return

There are no error returns from this call.

Delete the Calling Task (.KILL)

This command deletes the calling task’s TCB from the
active queue and places it in the free element TCB
chain. The calling task is the only task that you may
delete via .KILL. There is no return from this call. If
vou have defined a kill-processing address for this task,
then RDOS raises the task to the highest priority and
control returns to the Task Scheduler. Otherwise,
control returns to the Task Scheduler so that it can
allocate the system resources to the highest priority
ready task.

Format
KILL

There are no returns from this call.

Kill All Tasks of a Given Priority (AKILL)

This command first raises all tasks of a given priority to
the highest priority, and then either kills them or
transfers control to their kill-processing addresses. All
TCBs that it deletes from the active queue are placed in
the free TCB chain. It also immediately kills any tasks
suspended by XMTW, TIDS. .REC. or SUSP. If vou
attempt 1o kill a task waiting for completion of a
SYSTM call, RDOS will not delete that task until the
SYSTM call has executed. If the calling 1ask itself
belongs to the specified priority. RDOS will delets it

Required input
ACO - Priority class of the tasks vou wish 1o kill.

Format

AKILL
normalreturn

There isno error return from this command. [f no tasks
exist with the priority given in AC0. RDOS takes no
action.

o

4
{

Abort a Task (LABORT)

The .ABORT task call readies a specified task
xmmudmz; . and makes it execute the equivalent of
KILL call when it gains CPU control. If a .KILL
processing address exists. RDOS will transfer control to
it. The exact time of compietion of the .ABORT
depends on the internal priorities of the system. For
example. a task attempting to perform a write
sequential of 500 byvtes might be aborted after writing
any numbu of bvtes. You use an ID number to specify
the task vou want to abort. Thus. the caller can abort
either itself or some other ready or suspended task.

Task call . ABORT does not release any open channels
used by the aborted task. nor does it release any

overlays. All outstanding operations performed by the
task. like waiting for a message transmission/reception
(XMTW/.REC). are terminated. Likewise. all system
calls are aborted. with two exceptions:

1. Calls performing muitiplexor or MCA 1/0

2. System read or write operator message calls,
.RDOPR or .WROPR (Chapter 6).

Your program can abort multiplexor or MCA 1/0 by
closing their channel(s). You can .ABORT operator
messages initiated by sask calls TRDOP and .TWROP.
Messages initiated by the system call versions,
.RDOPR and .WROPR, are not aborted. (A single
program can't use both task and system versions of
these calls.)

Required input
ACI - ID of the task to be aborted.

Format

ABCRT
error return
normalreturn

You will lose the contents of ACO upon return.

093-000075-08

Possible errors

AC2 Mnemonic Meaning

61 ERTID An ID of zero was
specified. or no such task
ID was found.

110 ERABT The specified task was
performing either
multiplexor or MCA /O or
a system read/write
operator message call; or
was being aborted by
another task.

Task State Modification

Change the Calling Task’s Priority (.PRI)

This command changes the priority of the calling task
to the value contained in ACO. RDOS will assign to the
calling task the lowest priority in its new priority class:
the Task Scheduler will ailocate CPU control to all of
the other ready tasks in the same class before giving it
to this task. Naturally, its position in this priority class
will change as rescheduling proceeds.

Required input

ACO - New priority value for the calling task. If you
request a priority higher than 377, RDOS will
acceptonly the value in bits 8 through 15.

Format

.PRI
normal return

There is no error return from this call

Licensed Material-Property of Data General Corporation 5“ 9

Ready All Tasks of a Given Priority (ARDY)

This command readies all tasks previously suspended
by .ASUSP (SUSP or .TIDS) whose priority you
specify in ACO. That is, this call resets bit U in word
TPRST of each TCB that was set by a previous call to
.ASUSP, SUSP, or .TIDS. The system will not ready
tasks suspended for additional reasons (e.g.,
outstanding system calls) until bit S of TPRST in each
of the TCBs is also reset (e.g., by receiving a task
message via .REC). RDOS cannot ready a task until the
program environment allows it to zero both bits S and
U of that task’s word TPRST.

Required input
ACQO - Priority of task (s) you wish to ready.

Format

ARDY
normal return

There is no error return from this command. If there
are no tasks with the given priority in AC0, RDOS
takes no action.

Suspend the Calling Task (.SUSP)

This command suspends the calling task by setting bit
U of that task’s TCB to one. The task remains
suspended until your program readies it with a . ARDY
or .TIDR call.

Format

.SUSsP
normal return

Thereis no error return.

Suspend all Tasks of a Given Priority
(LASUSP)

This command suspends all tasks of the priority vou
specify in ACO. The calling task may suspend itself with
this call. All tasks suspended by .ASUSP - even those
suspended for other reasons (e.g.. an outstanding
system call, seting bit S of TPRST) - will remain
suspended until readied by a .ARDY or .TIDR
command.

Required input
ACO - Priority of the task (s) vou wish to suspend.

Format

ASUSP
normal return

P
o- 1 O Licensed Materisi-Property of Data General Corporation

There is no error return from this command. If no tasks
exist with the given priority, RDOS takes no action.

Inter-Task Communication

RDOS provides a mechanism which allows single tasks
to transmit and receive one-word messages. You can
also use this mechanism to lock a task process and
prevent multiple tasks from entering the process
concurrently. Your program specifies an address for the
one-word message, and it must clear this address to 0
before depositing the message via a transmit call. If
several tasks attempt to receive a message from the
same address, only the highest priority task will receive
the message.

Transmit a Message (.XMT) and Wait
(XMTWwW)

Each of these calls instructs the calling task to send a
one-word nonzero message to an empty (all-zero)
message location for another task. If a task has issued a
.REC for this location, the task will receive the message
and be readied. If no .REC is outstanding, RDOS will
deposit the message. . XMTW will not return until the
message has been received; .XMT will return as soon
as the transmitting task is readied.

Required input
ACO- The message address in user address space

where you want to deposit the message (this
address must not have bit 0 setto 1).

ACI - The one-word. nonzero message which RDOS
will pass 10 the address given in ACO, for receipt
by the receiving task.

Format

XMT or

error return
normal return

XMTW
error return
normal return

Possible errors

AC2 Mnemonic Meaning

43 ERXMT The message address is

already in use.

115 ERXMZ Zero message word.

083-000075-08

Transmit a Message From a User Interrupt
Service Routine (.IXMT)

The .IXMT* call enables an interrupt routine to send a
message (o a task in the current environment. .JIXMT
from an interrupt routine has the same effect as a
XMT from atask.

Your program can specify a nonSYSGENed device via
the call .IDEF (Chapter 7). When such a user-defined
device interrupt occurs, control passes to the interrupt
service routine which vou have written for the device.
RDOS freezes the entire task environment while the
interrupt routine executes; the routine then ends with
task call JUEX. If AC1 contains 0 at the .UIEX, RDOS
will restart the environment at its former state; if ACI
contains nonzero, it forces rescheduling.

If the message you have sent to the task could affect
the environment, you may want to force rescheduling
on exit from the interrupt routine.

If the task for which a .IXMT message is intended has
issued a .REC for the message, RDOS immediately
readies that 1ask, even though the task environment is
frozen. Contents of all accumulators are destroved
upon return from .IXMT, so your program must
restore AC3 and AC2 (if unmapped). before it tries to
exit from the service routine via .UIEX. (See Chapter
7. Servicing User Interrupts, and .UIEX))

Required input

ACO - Location of the message. (The contents of this
location must be zero before vou invoke
AXMT))

ACI - The nonzero message you want Lo transmit.

Format

AXMT
errorreturn
normaireturn

Possible errors

AC2 Mnemonic Meaning

43 ERXMT Message address is already
inuse.

115 ERXMZ Zero message word.

“IXMT and certain other user interrupt calls are not
really task calls, since vou can issue them only {rom an
interrupt-processing routine. When vou use them. the
task scheduler and task environment are in suspension.
See Chapter 7.

Receive a Message (.REC)

This command returns a message in ACI that another
task (or interrupt service routine) has posted by a
transmit command, and restores the contents of the
message address to all zeroes. The message address
must be lower than 2% (bit 0 must not be set).

If a task issues .REC and no other task has posted a
message to the message address, the receiving task
remains suspended until the message is sent. If the
message has already been issued and if the receiving
task has not also been suspended by .ASUSP (or
.TIDS). control returns to the Task Scheduler.
Otherwise the task remains suspended until you ready
it with .ARDY. If several tasks attempt to receive the
same message, only the highest priority task will
receive the message.

Required input
ACO - The message address.

Format

.REC
normal return

There is no error return froma .REC Commdnd RDOS
returns AC2 unchanged.

Locking a Process Via the .XMT/.REC
Mechanism

You can use .REC and .XMT to lock and unlock a
process or database which several tasks share, and to
prevent more than one task at a ume from accessing
the database or the process path. To do this, vour
program must define a synchronization word, the
message location. to which all tasks will issue a .REC.
The task in control of the locked resource then issues
.XMT 1o the synchronization word when it wants (o
open the resource to the other waiting tasks. RDOS
then readies the highest priority task waiting to receive
(.RECJ the synchronization word and gives it unique
control of the resource. This task. in turn. can use the
resource until it unlocks the resource and so on.

Your program mus! initialize the locking facility before
any tasks can use it. It can do this either by setting the
synchronization word initially 1o a nonzero value, or by
heving an nitalization task issue XMT 1o the
synchronization word.

User Overlay Management

In a muliitask environment, different tasks can
compete for an overlay node. or they can use the same
overlay simultancously. To handle this properiv, vou
must consider several th ngs that were unnecessary in a
single-task environment.

r~
Licenses Matenai-Property of Data Generat Corporation - ‘i 1

You should use .TOVLD, the task call version of
OVLOD, to load overlays in a multitask program. If
vou use .OVLOD, only one task in the program can
load overlays; moreover, you can’t use .OVLOD and
.TOVLD in the same program. If you choose .TOVLD,
the maximum number of overlay nodes you can
reserve is 125,

As part of its resource management activities, the Task
Scheduler maintains a record called the overlay use
count (OUC) of the number of tasks using a
currently-resident overlay. It keeps the OUC in an
overlay direclory which the loader creates for each
node in your program. (See Appendix E).

A ready task can request an overlay (via . TOVLD)
either by segment and overlay number, or by symbolic
name,. if you assigned the name viaa .ENTO pseudo-op
(see Chapter 4, User Overlays). Whenever a task
requests an overlay, RDOS checks the overlay
directory and the overlay request for certain
parameters. If the parameters permit, it loads the
overlay into the node, increments the OUC by 1. and
gives control to the Scheduler. If the parameters don't
allow the load, RDOS suspends the calling task (bit T of
TPRST) and control goes to the Scheduler; the task will
be readied and the overlay loaded when the parameters
permit. All this happens each time a task requests an
overlay load.

Every time a task releases a resident overlay (via
OVREL, .OVEX, or .OVKIL), the overlay's OUC is
decremented by 1. The overlay which currently
occupies the node is not released (allowing a task to
load another overlay into the node) until the OUC
reaches 0. thn it reachps 0, another task can load a
new overlay: thiswill set the OUC 1o 1.

An unconditional disk (not virtual) overlay request
guarantees a fresh copy of the overlay. A conditional
overlay request loads the overlay only if it is not already
in memory: if the overlay is resident. RDOS
increments the QUC by 1. Conditional loads can save
lime, but vou may use them only for reentrant
overlays. As mentioned in Chapter 4. we recommend
thatall vour overlays be reentrant: if any overlay is not.
a task which wants it must load it unconditionally.

Load a User Overlay (TOVLD)

This command requests the use of the appropriate
overlay node und the loading of the overlay whose

The overlay number is the relative position of the
overlay within its segment. Segment 0's overlays are
numbered 0, 1, ..n. The second segment loaded is
segment 1, corresponding to node 1; its overlays are
0.1, ..n,and so on.

You can specify either a conditional or unconditional
load (described above) in ACI. If the load request is
conditional and the node is free, RDOS loads the
overlay. If the node already contains the requested
overlay, RDOS return to the Scheduler immediately.
Because another task is also using the overlay, it must
be reentrant. If another overlay is currently in the
node, with a nonzero OUC, the caller is suspended
until the node becomes free.

If the load request is unconditional and the node is free.
RDOS loads the overlay whether it is currently
memory resident or not. If the overlay use count has
not gone to zero (freeing the node), the caller is
suspended (bit T of TPRST) until the node becomes
free.

Figure 5-3 shows the sequence which the system
follows when you issue .TOVLD.

Required input
ACO - Overlay node/number word.

ACI- For a conditional load, pass 0. For a
unconditional load, pass -1.

AC2- The channel number on which you opened the
overlay file (see . OVOPN, Chapter 4).

Format

.TOVLD
errorreturn
normal return

Note that you must pair all overlay load requests with
an eventual overlay release
(OVREL/.OVEX/.OVKIL) or the node will be
reserved indefinitely.

Under certain conditions (such as a nonmaltching save
and overlay file), the left bvie of AC2 may be nonzero
onan error return,

Possible errors

node/number vou specify in ACO. AC2 Mnemonic Meaning

If yvou didn’t give a symbolic name to the overlay via 37 EROVN Invalid (nonexistent)
-ENTO before loading the program, you must pass the overlay name or segment.
node number which it will occupy in the left byie. and

its overlay number in the right byvte. The node number 40 EROVA Overlay file is not a
C(}f'es;}mas to the segment number within the overlay contiguous file

file. The first segment. number 0. was defined by the

first set of brackets in the RLDR command line: it 101 ERDTO Ten-second disk timeout
corresponds 1o node 0 in memory. occurred.

5-? 2 Licensed Materna-Propertv of Data Generai Corporatan 093-000075.08

e

Task
1Issues
TOVLD

Conditional

Yes

load ?

No
< No
-
No
Yes

QUC becomes 1

!

System suspends
task untif icad
is compiete

System suspends
task until
QuUC =0

S0-0084C

093-000075-08

y

CUC becomes
CuUC +1

Is another

Task

task loading
this overlay ?

System suspends
task until loady
is complete

Scheduler

Figure 3-3. . TOVLD Logic Sequence

Licensed Mater:al-Property of Data General Corporation

Release an Overlay ((OVREL)

This command decrements the overlay use count and
releases the node if the use count equals zero. The
overlay which you wish to release must not issue this
command.

Required input

ACO - Overlay node/number word.
Left byte: node number
Right byte: overlay number

Format

.OVREL
error return
normal return

Possible error

AC2 Mnemonic Meaning
Invalid overlay
node/number; or the
overlay node is not
occupied by the specified
overlay.

37 EROVN

Release an Overlay and Return to the Caller
(LOVEX)

This command decrements the overlay use count and
releases the node if the overlay use count equals 0.
Additionally, control returns (o an address specified by
the caller - typically the return address of the calier if
returning from a subroutine within an overlay.

Required input
ACO - Overlay node/number word.

AC2- Return address upon successful execution of
this call.

Format

.OVEX
error return

Possible error

AC2 Mnemonic Meaning

37 EROVN Invalid overlay number:
the overlay node is not
occupied by the specified
overlay.

5’ ? 4 Licensed Materiai-Property of Data Genera! Corporation

Kill the Calling Task and Release its Overlay
(LOVKIL)

OVKIL kills the caller and decrements the overlay use
count: it also releases the node if the QUC equals 0.
This is the normal method of lerminating a queued,
overlayed task. The overlay which vou wish to release
can issue this call. .

Required input

ACO - Overlay node number in the left byte, overlay
number in the right byte.

Format

.OVKIL
errorreturn

Possible error

AC2 Mnemonic Meaning

37 EROVN Invalid overlay number,

Enqueuing Tasks

Queue a Memory-resident or Overlay Task
(.QTSK)

This command periodically initiates a task and queues it
for execution. If the task resides within an overlay, this
call loads the overlay. You need not issue .TOVLD for
an overlayed task, but the .QTSK mechanism requires
that you declare .TOVLD external CEXTN) in the
program. If there is no TCB currently available for the
creation of the new task, RDOS will carry out this call
as soon as a TCB becomes available. If two tasks are
queued for execution at the same time of day, the
higher priority task will receive control first. (The
EXAMPLE program in Appendix D shows .QTSK and
overiaysin action.)

A task created and queued by .QTSK resembles any
other task, and it is vour responsibility 1o kill it or
suspend it after it has done what vou want. If it resides
in an overlay, it can kill itself and release the overlay
node via OVKIL (if it doesn’t release its node. no
other task will be able to use the node).

ITRDOS does not tzke the error return. control returns
to the task issuing the call at the normal return based
on the task’s priority: the calling task is not suspended.
When the queued task gets control. AC2 will contain a
pointer to the Task Queue Table.

If vour progrum doesn’t declare ejther TOVLD,
OVKIL., OVREL. or .OVEX as external LEXTN),
RDOS will execute a SYSTM ERTN. with AC2 equal
to ERQOV.

083-006075-08

.QTSK doesn’t require input to ACO or ACI, but it
does require you to build a tabie of specifications for
the new task, and to input the starting address of this
table in AC2. The table must be QTLN words long
(these symbols are defined in file PARU.SR, Appendix
B), and have the following entries:

User Task Queue Table

Displacement Mnemonic Meaning

0 QpPC Starting address of

task.

Number of times to
queue the task (-1 if
the task is to be
queued an unlimited
number of times).

1 QNUM

2 QTOV Symbolic name or
node number/overlay
number (-1 for a
memory-resident

task).

3 QSH Starting hour (-1 if the
task is to be queued

immediately).

4 QSMS Starting second in hour
(reserved but unused

if QSH=-1).
5 QPRI Task ID/1ask priority.

6 : QRR Rerun time increment

in seconds.
7 QTLNK
10 QOCH

System word.

Overlay channel
(unused by
memory-resident
tasks).

11 QCOND
load flag (unused by
core-resident tasks).

Foran example of .QTSK. see the application delow.

“Entry QPC must contain the eniry address in the
overlay or memory-resident task where control will be
directed when RDOS raises the task to the executing
state. QNUM is an integer value describing the number
of times the task will be queued. The task will be
queued QNUM times (or without limit if QNUM = -1)
uniess you issue the task call .DQTSK. This call halts
the queuing of the specified task. RDOS decrements
QNUM each time it queues the task.

093-000075-08

Conditional/unconditiona

Licenseg Matenai-Property of Data Genera! Corporation

QTOV must contain the overlay's .ENTO name, or its
number, in the left byte, and overlay number in the
right byte for overlay tasks; for memory-resident tasks,
set thisword to -1.

If you didn’t assign a symbolic name to the overlay with
.ENTO, you must use the segment/node number and
overlay number assigned by the loader. Make sure that
the values of QTOV correspond to the values assigned
at load time.

Entries QSH, QSMS, and QRR all affect the time that
RDOS will create the task. QSH sets the hour to
execute, and QSMS set the second within that hour
that the task will be created. If QSH contains -1, RDOS
will create the task immediately.

If QSH occurs before the current time of day, or if QSH
is greater than 24 hours and less than 48 hours, RDOS
queues the task for the next day. If QSH is equal to
(24*d) + h, RDOS will queue the task in d days.

QRR sets the interval (in seconds) between the times
the task will be queued.

QPRI contains the task ID (if any) in its left byte and
the task priority in its right byte. If a task with the same
ID exists at the time that RDOS activates the task, the
system will clear this task’s ID number to zero. The
system maintains QTLNK.

QOCH must contain the number of the channel on
which you opened the overlay file with a previous
.OVOPN call. QCOND must contain a minus one if you
want the overlay load to be unconditional. QOCH and
QCOND are unused by memory-resident queued
tasks.

QAC2is used as a temporary storage arca by RDOS.

Required input
AC2 - Pointer to the task queue table.

Format

QTSK
errorreturn
normalreturn

On the normal return. AC2 will contain the contents of
QAC2.

Possible errors

AC2 Mnemonic Meaning

50 ERQTS tHegal information in Task
Queue Table.
117 ERQOV TOVLD not loaded for an

overlay queued task.

.QTSK Example

Let’s look at a sample application of .QTSK in action:
an airline arrivals/departures closed-circuit television
display network, shown in Figure 5-4 (there is another
example in Appendix D). One overlayed task checks a
central control panel for each arrival and departure, and
displays it, along with pending or recent arrivals and
departures, on network screens throughout the
terminal. The amount of traffic varies with the time of
day, and .QTSK adjusts the interval at which the task
checks the control panel. The following extracts from
the main program show .QTSK code for 12:30 p.m.,
which is a comparatively slow time; .QTSK specifies a
60-second check on the panel.

Dequeue a Memory-resident or Overlay Task
(.DQTSK)

This call dequeues a task which task call .QTSK has
queued for execution. In effect, the .DQTSK «call
bypasses the value which is currently stored in QNUM
of the queued task’s User Task Queue Table. If, at
some later moment the task is requeued by a call to

QTSK, the queuing process will resume its normal
course since .DQTSK does not actually modify the
contents of QNUM.

Required input
ACI - ID of the task to be queued.

Format

.DQTSK
error return
normalreturn

Upon a normal return, AC2 returns the base address of
the task’s queue table.

Possible error

AC2 Mnemonic Meaning

61 . ERTID Task 1D error.

»

:EXTN .GTSK .TOVLL J.CGTSK
LCA 2, .TABLE
.GTEK

-

TABLE:TABLE

JCECLARE ALL RELEVANT
sCALLS EXTERNAL,

LCVKIL ete,

TABLE:START
-1

;STERTING ACDFESS CF FANEL NONITCR TASK,
PUUBUE THRE TASK CCATINUCUSLY (UNTIL

iA DGTSK ANC NEW GTSK CHANGE THE INVERVAL),
JGET THE TASK FROM CVERLAY Ci1214

127TF KCUF,

IS 7, AND ITS PRICFITY
TASK FCK EXECUTICHN

TRIS v(RD,

.CVOPANED ON CRANKNEL 3,
;LOAD THE CVEFLAY LACONDITICMALLY,

A1214
7IN THE OVEFLAY FILE,
1. FGUEUE THE T&SK AT TKE
3e.x60, 730 MINUTES FAST THE FOUR.
Tr420+4 FTHE TESK'S I
;rILL PE 4,
6@, JQGUEUE THE
FEVERY 6@ SFCCADE,
2 iRDCS wILL LSE
3 ;THE PROGRAM'S CVERLEY FILE
JRAS
-1
4 fRDCS wILL LSE TRIS wCR[,
e JANC THIS wCFC,

Figure 5-4. QTSK Example

Licensed Matenal-Property of Data Genera! Corporation

093-000075-08

-
/A" 5,

User/System Clock Commands

You can issue all system clock commands from either a
single task or from a multitask environment. Since
these commands are of little practical use in a single
tusk environment. we present them in this chapter
instead of in Chapter 3.

The following system calls permit your program to
define. exit from. and remove a clock driven by the
system Real Time Clock (RTC). This clock will
suspend the environment at the intervals you specify,
and pass control to the routine whose address you
specify. You can exit from this routine and return to
the environment via call .UCEX. You mayv not issue
any system or task calls (other than .IXMT. SMSK,
and .UCEX) from this routine because RDOS freezes
all multitask activity. just as it does for a user interrupt
(see Chapter 7).

Any user clock routine executes in the interrupt world,
not in program space. hence vou should make sure that
your routine is correct.

Delay Execution of the Calling Task ((DELAY)

This command suspends the calling task for the
number of real time pulses indicated by AC!1. You set
the real time clock frequency at SYSGEN time (see
.GHRZ, below).

The accuracy of .DELAY can be affected by three
variables:

® The frequency of the Real-Time Clock, as set at
SYSGEN;:

® The priority of the issuing task, compared to other
tasks:

® The priority of the issuing program (ground)
compared to the other program.

RTC pulses are not synchronized with the .DELAY
call, thus it may be unrealistic to request single-pulse
delays. Single-pulse delay requests can be delayed
anywhere between O and | RTC pulse.

Required input
AC1 - Number of RTC pulses.

Format

SYST™M
DELAY

error return
normal return

RDOS never takes the error return. You lose the
contents of ACI upon return.

093-0000675-08

Licensed Materiai-Property of Data General Corporation

Define a User Clock (.DUCLK)

This call defines a user clock, which will be entered at
the intervals you specify in AC0O. When this interval
expires, RDOS suspends the Task Scheduler and
multitask environment--if any-- and control goes to the
address you specify in ACl. Each time control goes to
this address. ACO wiil contain a value indicating where
control came from at the interrupt. ACO will contain -1
if control came from the system while it was in an idle
loop (i.e.. awaiting an interrupt): it will contain 100000
if the other ground’s program held control. If vour
program had control ACO will contain the current PC.

When control passes to your user clock routine, AC3
will contain the address of the return upon entry to the
user routine. In unmapped systems, you must use this
address in the .UCEX command to return to the
multitask enironment.

Required input

ACO- The integer number of system RTC cycles
which you want to elapse between each clock
interrupt.

ACI - The address of your routine which will receive
control when each interval expires. Note that
you may not issue any system or task calls
(except for .UCEX, IXMT, or .SMSK) from
this routine. Moreover, you must not issue
assembly instruction INTEN in an unmapped
system.

Format

.SYSTM
.DUCLK

error return
normailreturn

Possible errors

AC2 Mnemonic Meaning

45 ERIBS A user clock already exists.
74 ERMPR Address outside address
space (mapped systems

onlyj.
5-17

Exit from a User Clock Routine ((UCEX)

When RDOS enters a user clock interrupt routine, it
places the return address in AC3. In an unmapped
system, RDOS requires this address to return to the
multitask environment; therefore if your interrupt
routine uses AC3, it must restore AC3 before issuing
.UCEX.

(In mapped systems, RDOS ignores the value input in
AC3 when you issue this call.) In all systems, RDOS
will reschedule both the task environment and the
program environment only if ACl contains some
nonzero value upon exit.

Control returns to the point where the .DUCLK
interrupt occurred. You may issue this call in a single
task environment.

Required input
AC1 - Zero to continue the environment; nonzero to
reschedule.

AC3 - Return address to routine (unmapped systems
only).

Format
UCEX

Possible errors
none.

Remove a User Clock ((RUCLK)

This system command removes a previously defined
user clock from the system.

Format

SYSTM
RUCLK
errorreturn
normal return

Possible error

AC2 Mnemonic Meaning
43 ERIBS No user clock 1s defined.
5-18

Licensed Matenal-Property of Data Generai Corporation

Examine the System Real Time Clock (.GHRZ)

This system call returns a code for the Real Time Clock
frequency in ACO.

ACO0 Meaning

0 Thereis no Real Time Clock in the system.
1 Frequency is 10 HZ.

2 Frequency is 100 HZ.

3 Frequency is 1000 HZ.

4 Frequency is 60 HZ (line frequency).

5 Frequency is 50 HZ (line frequency).
Format

SYSTM .

.GHRZ

error return
normal return

Possible errors
none.

Managing Tasks by ID Number

Get a Task’s Status (.IDST)
IDST returns a code describing a task’s status in ACO.

Required input
ACI - The task’s identification number.

Format

ADST
normal return

The code returned in ACO describes the 1ask’s status:

0 Ready;

1 Suspended by a .SYSTM call or TRDOP:

2 Suspended by a . SUSP, .ASUSP. or TIDS:

3 Suspended by a . XMTW or .REC:

4 Waiting for an overlay node:

3 Doubly suspended by .ASUSP. SUSP. or .TIDS
and by SYSTM;

) Doubly suspended by .XMTW or .REC and

SUSP, . ASUSP. or . TIDS:

7 Waiting for an overlay node and suspended by
.ASUSP, SUSP. or . TIDS:

10 No task exists with this ID number.

RDOS will return the base address (displacement TPC)
of the task’s TCB in AC2.

Possible errors

none.

083-000075-08

Change a Task'’s Priority (.TIDP)

.TIDP changes the priority of the task whose 1D you
specify in ACIL.

Required input

ACO - The new priority (from 0to 255 inclusive) in the
right byte (bits 8-15).

ACI1 - ID of task.

Format

.TIDP
error return
normal return

Possible error
AC2 Mnemonic Meaning

61 ERTID Task ID error.

Ready a Task by ID Number (TIDR)

.TIDR readies only that task whose identification
number vou place in ACI. It resets bit U in word
TPRST of this task’s TCB, which was set by a previous
call to .ASUP, .SUSP, or .TIDS. If the specified task’s
bit U of TPRST was already reset, RDOS takes the
normal return.

Required input
ACI - ID number of the task yvou wish to ready.

Format

.TIDR
error return
normal return

Possible error

AC2 Mnemonic Meaning

61 ERTID Task ID error

Suspend a Task by ID Number (.TIDS)

TIDS suspends only that task whose identification
number is input in ACI. It sets bit U in word TPRST of
the specified task’s TCB. If the task’s bit U in word
TPRST is already set, RDOS 1akes the normal return.

Required input

ACT - ID number of the task vou wish to suspend.

083-000075-08

Licensed Matenai-Property of Data General Corporation

Format

.TIDS
error return
normalreturn

Possible error

AC2 Mnemonic Meaning
Task ID error (no task
exists with the specified 1D
number).

Kill a Task by ID Number (.TIDK)

.TIDK kills only that task whose identification number
is specified in ACl. RDOS will raise the task to the
highest priority (0}, place it at the end of that priority
chain, and transfer it to a kill processing address (if
any) or terminate it. If the task is executing a system
call, the kill will not occur until the call is completed.

61 ERTID

Required input
AC1 - ID number of the task vou wish to kill.

Format

.TIDK
error return
normal return

Possible error

AC2 Mnemonic Meaning

61 ERTID Task ID error.

Task/Operator Communications Calls

This section describes two calls, .TWROP and
.TRDOP, which a task can issue to communicate with
the system console, STTO/STTL You can use these
calls to interact directly with tasks in your program via
OPCOM commands (see next section). or vou can use
just the calls or OPCOM alone. To use either (or both)
features. vou must have selected operator messages
during RDOS system generation. If your program will
usc operator message calls or OPCOM commands, you
must specify an extra task in the load command line to
provide a TCB for svstem use. The format of console
commands i1s similar for the task calls and OPCOM
messages.

Note that vour program can’t use both svstem and task
versions of the operator message calls. The system
versions, described in Chapter 6. are WROPR and
RDOPR: the task versions. described below, are
TIWROP and TRDOP.

5-18

Write a Task Message to the Console
(TWROP)

.TWROP instructs the calling task to write an ASCII
string to the system console, $STTO. The message can
include up to 129 characters, including the required
carriage return, form feed, or null terminator. RDOS
always displays 2 exclamation points (!!), and a “*B™ or
“F" before it displays the text string. The “B"* or “‘F”’
indicates that a background or foreground task,
respectively, issued the message. Depending on your
input to .TWROP, RDOS then displays the task's ID
number and the message. Thus the format of task
messages (o the console is:

"WF [TID]message or !! B [T/D/message

If AC1 contains -1 when the task issues .TWROP,
RDOS will display the three-character prefix (!'F or
''B) followed by the message which can be a string of
up to 129 characters, including a required carriage
return, form feed, or null terminator. If AC1 contains a
value other than -1 on this call, the first four characters
of the message area will be overwritien by the three
octal digits of the task 1D and one space. Text written to
the console is the three-character prefix (as above),
then the task ID, then the remainder of the message - a
string of up to 124 characters, including the terminator.

More than one task can have an outstanding request to
write task messages to the console. However, if you use
task calls . TWROP/.TRDOP to write or read messages
to or from the console, you cannot also use system calls
WROP/.RDOP within the save file. Several tasks can
use the same message string (same byte pointer), but
only if you suppress TID information.

.TWROP requires an extra TCB in the program.

Required input

ACO - Byte pointer to area which holds the message. (If
AC1 does not equal -1, this area must include a
4-byvte null prefix to receive the task ID and
space separator).

ACI - -1 to suppress the task 1D, other value to display
1D (see above).

Format

TWROP
errorreturn
normalreturn

5-20

Licensed Materai-Property of Data Generat Corporation

Possible errors

AC2 Mnemonic Meaning

74 ERMPR Address outside address
space.
120 EROPM Operator messages not

specified at SYSGEN time.

Read a Task Message from the Console
(TRDOP)

This task call prepares the calling task to receive a
message from the system console, $TTI. The task
issuing this call may reside in either the foreground or
the background program areas. and more than one task
message. a program may issue an outstanding request
for a task message. However, if vou use task calls
TWROP/. TRDOP to write or read messages 1o or
from the console, yvou cannot also use system calls
.WROP/.RDOP within the save file.

You must type CTRL E as the first character (echoed
on the console as an exclamation point: !). If the cursor
is not at column 0, 1vpe RETURN first. The second
character must be either an F or B to indicate whether
the task resides in the foreground or in the background.
If you type some character other than F or B in column
2. RDOS sounds the console bell as a warning and
accepts no further characters until you type an F or B.

After the F or B, type the ID of the task to receive the
message. followed by a comma delimiter; then type the
message itself immediately after the comma. The last
character in the message string must be return, form
feed. or null. The total including number of characters,
including the CTRL-E, B or F. TID. comma, message,
and terminator cannot exceed 132. The required format
for an input message is as follows (angle brackets
indicate an ASCII character):

<CTRLE> {?} TiD, message)

If. afier pressing CTRL E. you want to cancel the
message transmission, depress RUBOUT. Pressing the
RUBOUT key in any character position erases a
command or message character, starting with the most
recent character. On TTYs. a left arrow {—) is echoed
for each RUBOUT.

Remember that vou must have specified an extra TCB
for TRDOP in the load commaund line (two extra for
both reads and writes). There must also be one TCB
available for use by the svstem. RDOS will use this
TCB to create a task to monitor the STTI keyboard for
task-kevboard messages, allowing one or more tasks to
issue . TRDOP.

RDOS can dispiay two messages 1o indicate errors in
messages intended for tasks. These messages and their
meanings are as follows:

TIDNOTFOUND No task with the specified ID
number was wailing for a console
message.

INPUT ERRCR Nonnumeric character in task ID.

Required input

ACO - Byte pointer to message arca. RDOS wil] not
transmit the task ID and comma to the message
area.

Format

.TRDCP
error return
normal return

On the normal return RDOS gives the bvte count in
ACI (including the carriage return terminator but
excluding the task ID and delimiter).

Possible errors

AC2 Mnemonic Meaning

42 ERNOT Out of TCBs (ie.. there is
no TCB available 1o

monitor the console).

74 ERMPR Address outside address
space (mapped systems
onlyj.

120 EROPM Operator messages not

specified at SYSGEN time.

083-000075.08

Task-Operator Communications
Module (OPCOM)

The task-operator communications package. OPCOM.
allows you to use console commands to check or
change the status of tasks. and to run these tasks or
qucue them for periodic execution.

OPCOM is unrelated to the Command Line Interpreter
(CLD. and has its own syntax and command
definitions. OPCOM has a limited command repertoire
since it -- unlike the CLI -- js part of the save file with
which it is being used.

We have arranged the OPCOM commands
alphabetically:

DEQ Degueuea queued task.

KIL Kill a task.

PRI Change atask’s priority.

QUE Queue atask for periodic execution.
RDY Ready a sk,

SUS Suspend a task.

TST Display a task's status.

OPCOM requires two modules: OPCOM and either
OPMSG (unmapped) or MOPMS (mapped). RLDR
will load these if you declare IOPC external (EXTN)
in the program. You must also specify an extra TCB (or
two for reads/writes) for RDOS use (this is not
necessary if you included an extra TCB (or two) for the
operator task calls). Also, you must have selected
operator messages during SYSGEN.

The OPCOM module requires about 457, NREL
words, and OPMSG (or MOPMS) requires about 472,
NREL words: thus, you’ll need a total of about 1150,
words for any system.

Each OPCOM command evokes a task call which
performs the desired function; therefore. vou can find
details on the internal operation of each command
under its related call (e.g., QUE and .QTSK). Each
OPCOM command requires that you enter a program
number for the task; you specify this number in a table
which you build for each task before initializing
OPCOM. The program number can be the task ID
number, or not. Certain commands require ID
numbers, and others (RUN and QUE) require program
numbers; to avoid confusion, we recommend that you
use the task’s ID number as its program number.

After initializing OPCOM. you can enter commands in
the format specified under OPCOM command syntax:
OPCOM will respond with the message “"OK™ if it has
executed the command. or with one of four descriptive
error messages.

Licensed Material-Property of Data General Corporation 5 - 2 1

Initializing the Operator Communications
Package (.IOPC)

You must initialize OPCOM before you can issue any
OPCOM commands.

If vou are not going to issue OPCOM commands RUN
and QUE/DEQ, ACO0, ACI, and AC2 must each
contain 0 when you make the .IOPC call. If you intend
to use OPCOM commands RUN or QUE/DEQ,
however, you must input three parameters to .10PC.

The first of these parameters, passed in ACO, is the
address of the queue area reserved for this call.
OPCOM needs one queue area frame for each RUN or
QUE command awaiting execution (the QUE
command awaits execution until the task has been
queued for the last time). The total queue area is

n *QTLN words long where »n equals the number of
gueue frames and QTLN is the queue frame sizg.
QTLN is defined in PARU.SR. The queue area is
munaged exclusively by OPCOM.

You pass the second parameter in ACIL. The left byvte
must contain the channel number on which vou
.OVOPNed the overlay file: if no overlay is involved.
this byte must contain 0. The right bvte of AC1 must
describe the maximum number of different tasks
which you will queue or run simultaneously: this
corresponds to the value n in the discussion of queue
areas. OPCOM can load overlay tasks on request. but
your program must release each node used for these
tasks by issuing .OVKIL, or OVEX.

The last parameter, passed in AC2, is the base address
(displacement 0) of the task table. This table consists of
a series of five-word frames which describe each task to
be RUN or QUEued. Build this table as follows:

Displacement Contents

0 Program number.

1 Overlay symbolic name. or node (left
byvte)/number (right byte) (-1} if a
core-resident task).

2 -1 only if unconditional loading is
required

3 Task 1D (left byte): task priority
{right byte).

4 Task starting address.

5-22

Licensed Mateniai-Property of Data General Cotporation

The program number is distinct from the task ID, but
you may assign the same value to them if you wish.
You can modify the task priority by an appropriate
OPCOM command. Terminate the task table series with
a word containing -1.

Required input

To summarize, if you are not going to issue OPCOM
commands RUN or QUE vou must clear ACO, AC1
and AC2 to zero when you call .IOPC. If you want to
issue RUN or QUE/DEQ commands, you must pass
the following parameters to .IOPC:

ACO - Queue area address.

ACI - Left byte: overlay channel (or zero). Right byte:
maximum number of queues.

AC2 - Task table address.

Format

1OPC
errorreturn
normal return

Possible errors

AC2 Mnemonic Meaning
42 ERNOT Qut of TCBs.
120 EROPM Operator messages not

specified at SYSGEN time.

OPCOM Command Syntax

OPCOM has been designed to accept a limited number
of keyboard commands to keep the command
processor small (it must aiways remain a resident part
of the save file). All OPCOM commands have the
following fixed format:

(B
<CTRLE> {F} . command, task, [arg,, ...arg, |

You enter <CTRL E> by pressing the CTRL and E
kevs simultaneously. If the cursor is not at column 0.
tvpe RETURN first. You must then type either “*B™ of
“F to indicate whether the save file being
commanded is in the background or the foreground.
Both background and foreground programs use
STTI/STTO. Immediately following the “B™ or “F",
type an asterisk followed by a comma.

083-000075-08

Type the OPCOM command immediately after the
comma. Follow the command with a comma and one or
more task arguments; separate multiple arguments by
commas. Terminate the command line with a carriage
return. Note that the command structure is rigid; if you
depart from the command format (e.g., use spaces or
delimiters), OPCOM will reject the command and
display the error message

INPUT ERROR
on the console.

When OPCOM has executed a command, it prints the
message

) o

on the console.

Dequeue a Previously-Queued Task (DEQ)
The DEQ command dequeues the previously-queued
task, whose ID vou specify as an argument.

The rask ID argument must be an octal integer in the
range 1-377, it cannot be 0. After executing the
command, OPCOM displays the message “*OK’"; you
can then issue another command. If OPCOM cannot
execute the command, it will display one of two error
messages and await another command.

Format

<CTRLE> {S} - DEQ, task ID)

Possible errors

Message Meaning

INPUT ERROR Command syntax error.

TIDNOTACTIVE No task with the specified 1ask
identification number was found.

083-000C75-0

o

Kill a Task (KIL)
This OPCOM command immediately kills the task
whose ID you specify as an argument.

The task ID argument must be an octal integer in the
range 1-377; it cannot be 0. After executing the
command, OPCOM displays the message *‘OK™; you
can then issue another command.

Format

<CTRLE> {?} * KIL, task ID)

Possible errors

Message Meaning

INPUT ERROR Command syntax error.

TIDNOTACTIVE No 1task with the specified task
identification number was found.

Change a Task’s Priority (PRI)

The PRI command changes the specified task’s priority
10 the priority given as an argument. The rask /D and
the new prioriry arguments must each be an octal integer
within the range 1-377. After executing the command,
OPCOM displays the message “*OK’ on the system
console; you can then issue another command.

Format

<CTRLE> {g} *, PRI task ID, new priority)

Possible errors

Message Meaning

INPUT ERROR New priority exceeded 377, or

syntax error detected.

TIDNOTACTIVE No task with the specified task
identification number was found.

-
Licenseg Materiai-Property of Uate General Corporation - 2 3

Queue a Task for Periodic Execution (QUE)

QUE creates and periodically executes a task for
execution with task call .QTSK logic. The task may be
either memory-resident or an overiay.

If the task resides in an overlay, the QUE command
will load that overlay. If there is no TCB currently
available for the creation of the new task, RDOS will
carry out this command as soon as a TCB becomes
available. If two or more tasks are queued for execution
at the same time of day, the highest priority task will
receive control first. After each time that this call
creates and activates a new task, vou must ensure that
the system kills or suspends this task. If the task resides
within an overlay, your program must release the node
after the task has executed: if it does not, no other task
will be able to use the node.

Upon successful completion of this command. OPCOM
will display the message ““OK"* on the system console;
and you can then issue another command. If OPCOM
cannot execute the command, it displays one of four
error messages and awaits another command.

Format

<CTRLE> {S} " QUE.program# [hiowr), [minute 11)

[second], [repeais], interval [, priority]
The entries within brackets are optional.

The program # argument is the number that vou chose
when you initizlized OPCOM with .IOPC. This
argument may be the same as the task ID. or not.

If hour is less than the current time of day, or is
between 24 and 48, RDOS will queue the task for the
next day. If howr equals (24*d) + h. RDOS will queue
the task in d days. To queue for midnight. queue for
hour24. To queue the task immediately. omit the hour,
nunute, and second arguments (but keep their comma
delimiters in the command line).

The repears argument defines the number of times the
task will be executed. and mrenal determines the
number of seconds to elapse between each time RDOS
queues the task. The mrerval may not exceed 65.333
seconds (about 18 hours). If vou omit the repeats
argument, the task will be gueued an unlimited
number of times. (Even if vou omit this argument, vou
must include its comma delimiter.)

The prioriy argument indicates the priority of the task
You wani 1o queue. it is optional because vou have

—
- 2 4 Licensec Materai-Property of Data Genera! Corporation

already specified the task priority (along with other task
information) in the task table input to .JOPC. If you
give the priority argument, program # it overrides the
priority vou specified to .IOPC. The priority argument
is an octal integer; all others are decimal.

Possible errors

Message Meaning

INPUT ERROR One or more required arguments
are missing in the command string,
or you specified an invalid priority
argument.

PROG NOT You did not issue the .I0PC call, or

FOUND » you did not define the program
number in the .JOPC call (i.e., the
program table is incomplete).

NO QUEUE You defined an insufficient number

AREA of queue area frames in the call to
JOPC, hence no free queue area is
available.

ILLOGICAL You input illegal information in the

QUEUE argument string (RDOS detected

this when it passed to .QTSK).

Ready a Task (RDY)

This command readies the task whose 1D vou specify as
an argument,

The rask 1D argument must be an octal integer in the
range 1-377. After executing this command. OPCOM
displays the message “"OK™ on the system console; vou
can then issue another command.

Format

<CTRLE> J

o .
nm

} *.RDY. task iD!&

Possible errors

Message Meaning

INPUT ERROR Command syntax error.

No task with the specified task
identification number was
found.

TIDNOT ACTIVE

Execute a Task (RUN)

This call initiates either a memoryv-resident task or one
within an overlay, and queues this task for immediate
execution. It the task resides within an overlay, this
command will load that overiay. If there is no TCB
currently available for the creation of the new task. this
command will be carried out as soon as a TCB becomes
available. After this call creates and activates the task.
you must ensure that this task is killed or suspended. If
the task resides within an overlay. vou must release the
overiay node.

After completing this command. OPCOM displays the
message “OK™ on the system console: vou can then
issue another command.

Format

~

<CTRLE> {E} *.RUN, program=. [prioriv])

The program # argument is the number that was
assigned to this program when vou issued the
initialization call .JOPC. This argument may or may not
be the same as the task 1D, and you must express it as a
decimal integer.

The priorinyis an optional argument which indicates the
priority of the task you wish to queue: since vou already
specified the task (along with other information) in the
task frame input to .I0PC, you need not give a new
priority. If you give the prioriy argument, it overrides
the priority specified to .IOPC. The priority must be an
octal integer.

Possible errors

Message Meaning

INPUT ERROR You did not specify a program
number argument in the
command string, or you
specifed an invalid priority
argument.

$93-000075-08

Message Meaning

You did not issue the .IOPC
call. or vou did not define this
program number in the .JOPC
call (i.e.. the program table is
incompiete).

PROG NOT FCUND

You defined an insufficient
number of queue area frames
in the call to .JOPC; therefore
no free queue area is available.

NO QUEUE AREA

Suspend a Task (SUS)

This command suspends the task whose 1D you specify
as an argument. This rask /D argument must be an octal
integer in the range 1-377. After executing this
command. OPCOM displays the message ““OK™" on the
system console: vou can then issue another command.

Format

<CTRLE> {S} *,SUS, task ID)
Possible errors

Message Meaning

INPUT ERROR Command syntax error.

No task with the specified task
identification number was
found.

TID NOT ACTIVE

Licensed Material-Property of Data Generat Corporation 5-25

Display a Task’s Status (TST)

The TST command displays a specified task’s status on
the console. After executing the command, OPCOM
displays the following status on the console:

STAT=s, PRI=ppp

The status of the task, s, is an octal integer in the range
0-7 where the integers have the following meanings:

s Meaning

0 Ready.

1 Suspended by a .SYSTM call or TRDOP.

2 Suspended by .SUSP, .ASUSP, or TIDS
(SUS).

3 Suspended by . XMTW or .REC.

4 Waiting for an overlay node.

5 Doubly suspended by .ASUP, .SUSP, or .TIDS

(SUS) and by a .SYSTM call.

6 Doubly suspended by . XMTW or .REC and by
.SUSP, .AUSP, or . TIDS (SUS).

7 Waiting for an overlay node and suspended by
.ASUSP, .SUSP, or .TIDS (SUS).

OPCOM returns the priority of the task pppas from one
to three octal digits in the range 0-377.

Format

<CTRLE> {S} * TST, task ID)

The rask /D argument must be an octal integer in the
range 1-377.

Possible errors

Message Meaning

INPUT ERROR Command syntax error.

No task with the specified task
identification number was found.

TIDNOT ACTIVE

5-26

Example:

A typical series of console commands and messages

might appear as follows:

IB*.RUN,1)
I'BOK
IB*,RUN2}
!!BOK

IB"RUN,3)
I!'BINPUT ERROR

B*,TST,1)

I'BSTAT=1, PRI=002
1B*,SUS,1)
!'BOK

IB*,TST,1)

I'BSTAT=2,PRI=002
B*.KIL,1)

I'BOK

B TST.1)

!'BTIDNOTACTIVE

Licensed Materiai-Property of Data General Corporation

Run task with program
number 1 in the
background, and OPCOM
verifies execution of the
command. Similarly,
program 2 is run and is
verified.

An attempt is made to run
3, but OPCOM detects a
syntax error (missing
comma).

Operator requests status of
program 1.

OPCOM responds with
status 1, ready, and priority
2. Operator suspends 1 and
OPCOM verifies execution
of the command.

Operator gets status of 1
again;

status is suspended by SUS.
Operator Kills program 1,
and after system verifies

this. operator tries to test
1S status.

OPCOM responds with
error message.

083-000075-08

Disabling and Enabling the Multitask
Environment ((SINGL and .MULTI)

In a normal multitask environment, ready tasks
compete for CPU control according to their relative
priority. Although you can assign the highest priority
(0) to one or more tasks, rescheduling occurs on each

system interrupt, or when the executing task issues a

system or task call -- thus, in a multitask environment,
even the highest priority task may be suspended.
Under some circumstances, you may want a task to
retain CPU control continuously. To give a task such
control, RDOS provides the task call .SINGL,

When a task issues .SINGL, it disables the multitask
environment and retains CPU control despite system
calls and most task calls it issues; although interrupts
continue, the Scheduler will allow the task 10 retain
control. However, user interrupt routines defined via
IDEF continue to execute as usual. The privileged task
retains CPU control until it restores the multitask
environment by issuing task call .MULTI. The multitask
environment is also restored if the task suspends or
kills itself.

Generally, a task should not disable the environment
unless it must be absolutely autonomous: certainly it
should not do so if it relies on other tasks. If vou must
deny other tasks access 1o a critical resource, like a
database, use the . XMT/.REC mechanism.

Neither SINGL nor MULTI affect the other program,
in a foreground/ background environment.

As with other task calls, vou must declare .SINGL and
MULTI! external (EXTN) in a source program if you
want to use them.

Disable the Multitask Environment ((SINGL)

This call disables the multitask environment. and gives
the issuing task continuing CPU control. despite its
priority or any system calls (and most task calls) it
issues. This can be useful for operations outside of user
state {see Appendix C). There is no required input 1o
SINGL: thereis no error return.,

Format

SINGL
normal return

Restore the Multitask Environment (MULTI)

This call enubles normal Scheduler operations and the
multitask environment after they have been disabled
by call SINGL. There is no required input, nor an error
return from MULTL

Format

MULTH

083-0C0075-08

Licensed Matenai-Property of Data General Corporation

Disabling the Task Scheduler

Generally, the RDOS multitask calls permit vou to
manage a multitask program with complete
satisfaction; the task scheduler always gives CPU
control to the higher priority ready task. In some
instances, however, You may want to suspend the task
scheduler briefly. For example, you might suspend
rescheduling to control race conditions between several
lasks competing for a single resource. Disabling the
scheduler --even briefly-- is a drastic step. Note that
disabling rescheduling will not affect system activities
such as interrupt service. Moreover, RDOS will
reactivate the scheduling function as soon as the
issuing task loses control of the CPU, even though vou
may not vet have reenabled rescheduling explicitly. For
instance, all system calls, .SUSP. and .KILL reenable
scheduling.

Disable Rescheduling (.DRSCH)

This task call prevents rescheduling in this program
environment until either you reenable scheduling
explicitly or the issuing task loses control of the CPU.
Issue task call .DRSCH with caution, since it disrupts
the ordinary management of the multitask
environment; the task that issues this call will retain
control even though other higher priority tasks are
ready. This call has no effect when scheduling is
disabied.

Format

.DRSCH
normal return

Possible errors

none.

Reenable Rescheduling (.ERSCH)

Normally, the task scheduler is enabied and munages
the multitask environment within its program. If you
have suspended task scheduling by a call 1o .DRSCH
and you have not issued a svsiem call, vou can
reactivate the scheduler by issuing task call .ERSCIH.
This call has no effect when scheduling is enabled.

Format

ERSCH
normalreturn

Possible errors

none.

5-27

Task Call Summary

NOTE: You must declare all task names external ((EXTN pseudo-op).

Table 5-1. Task Command Summary

ABORT Terminate a task immediately. .SUSP Suspend the calling task.
AKILL Kill all tasks of a given priority. TASK Initiate a task.
ARDY Ready all tasks of a given priority. .TIDK Kill a task by ID number.
ASUSP Suspend all tasks of a given priority. TIDP Change the priority of a task by ID
number.
.DQTSK Degqueue a previously-queued task.
.TIDR Ready a task by ID number.
DRSCH Disable the rescheduling of the task
environment. TIDS Suspend a task by ID number.
[ERSCH Re-enable the rescheduling of the task TOVLD Load a user overlay in a multitask
environment. environment.
ADST Get a task’s status. .TRDOP Read an operator message.
JopcC Initialize the Operator TWROP Write an operator message.
Communications Package (OPCOM).
(UCEX Return from a user clock routine.
AXMT Transmit a message from a user
interrupt UIEX Return from a user interrupt routine
(Chapter 7).
KILAD Define a kill-processing address.
. . .UPEX Return from a user power fail service
KILL Kill the calling task. routine.
LEFD Disable LEF mode (Chapter 10). XMT Transmit a message to another task.
LEFE Enable LEF mode (Chapter 10). XMTW Transmit 2 message 1o another task
and wait for its receipt.
LEFS Get the LEF mode status (Chapter
10).
{OVEX Release an overlay and return to the
caller. OPCOM Commands
OVKIL Kiil an overlaved task and release the .
overlay. DEQ Deguecue a previousiv-queued task.
JOVREL Release an overlay node. KiL Kill o task.
PRI Change the calling task’s priority. PRI Change o task’s priority.
OTSK Queue a core-resident or overlay task. QUE Queuc a task for periodic execution.
REC Receive a message from a task. RDY Ready atask.
REMAP Trigger the MMPU for a window HUN Execute u task,
remap (Chapter 4). .
Sus Suspend o task.
SMSK Modify the current interrupt mask
{Chapter 7). 78T (et o task s status.
End of Chapter
5" 2 8 ‘Lxcerxseay Materia-Propeaty of Data Genera Corporation 083-000075-08

Chapter 6
Foreground-Background Programming

Thus far in this manual. we have described tools for
using RDOS effectively in one program. Chapter 3
explained the essential calls. Chapter 4 offered some
tools for extending useful memory, and Chapter 3
described multitasking: each chapter built upon the
features explained in preceding chapters, but all were
presented in the context of a single program.

This chapter describes dual programming - which
means running two distinct programs simultaneously.
and letting RDOS apportion CPU time and disk /0
time between them.

Initially, when you bootstrap RDOS, only the
background is running: the CLI, running in
background memory, displays its R prompt. You can
then execute a foreground program directly, via CLI
command EXFG, or vou can execute a background
program, which, in turn, may execute another program
in the foreground via system call .EXFG.

How you handle dual programming will depend largely
on whether or not your system has a hardware map to
separate the two programs. Dual programming is safer
and easier if you have a mapped system. and you can
also use extended address space as described in Chapter
4. If your system is unmapped, you must configure a
program for foreground execution by specifying
starting ZREL and NREL addresses in the RLDR
command line; nonetheless, with a little care, you can
execute a program in both an unmapped foreground
and background.

This chapter contains the following major sections and
system commands:

® Dual programming- mapped systems
® Dual programming- unmapped systems

083-0000675-08

® Foreground/background system calls:

.EXFG Execute a program in the
foreground.

.FGND See if the foreground is running.
and check the status of the current
program.

JCMN Define a program communications
area.

WRCMN Write a message to the other
program.

.RDCMN Read a2 message from the other

: program.

WROPR Write an operator message.

.RDOPR Read an operator message.

.EXBG Checkpoint a2 mapped background

program.
Related calls in other chapters are:

MEM Check the current
. NMAX (Chapter 3).

program’s

MEMI Change the value of NMAX
(Chapter 3).

.EXEC Swap or chain a save file (Chapter
4).

.ERTN Return the next higher-level

and } program (Chapter 4).

.RTN

WRPR Write-protect a memory block -

mapped systems only (Chapter 4).
Introduction

The two programs that run under RDOS are called a

Joreground and a background program. These programs

exist independently of each other, and each one has its
own task scheduler. These two programs can have
equal priority, or you can give the foreground program
a higher priority than the background program. In this
case, control will go to the background only when no
task is ready in the foreground. When you need to run
areal-time program with critical response time, runitin
the foreground. The foreground will then receive a
higher priority than the background, which, you can
use for programs not requiring fast response (e.g.,
assemblies, compilations, and the like).

Licensed Material-Property of Data General Corporation 6‘ -t

Foreground and background programs can
communicate via a Multiprocessor Communications
Adapter line, or they can each define a common
communications area via JCMN and transmit messages
to the other via . WRCMN and .RDCMN. System call
.FGND enables the background program to determine
whether or not a foreground program exists. The
foreground program can terminate its own existence
via .RTN from level 0 (or you can terminate it by typing
CTRL F from the background console). and it can
release all its former memory.

Foreground and background programs can access
common disk files and common directories. If
foreground and background tasks are using the same
directory, either task may release that directory without
affecting the other task’s use of the directory. If one
program, F for example, releases a directory which is in
use by another program, B, F will receive the error
return with error code EROPD as an indication that the
directory is in use by B. Nonetheless, RDOS will
release the directory from F.

The foreground and background cannot use the same
reserved device file simultaneously, nor can they spool
data simultaneously 10 the same output device. Only
the first ground to open the reserved device request
will be able to use that device. Similarly, foreground
and background programs should not issue
simultaneous read commands 10 a common input
device, since RDOS has no way to separate elements in
an input data stream and divert them to two different
programs.

Il vou have a mapped system. vou can use ail mapped
system and task calls (STMAP, .DEBL. and .DDIS
(Chapter 3)), the write-protect, virtual overlay, and
window map calls (Chapter 4). .EXBG (this chapter),
and .STMAP (Chapter 7), as well as the special mapped
calls, WREBL and WRPR. RDOS will treat any special
mapped calls which vou issue in an unmapped
environment as no-ops. and will give control to the
call’'s normal return.

Dual Programming-Mapped Systems

Mapped systems provide an absolute hardware
boundary between the foreground and background
programs. Moreover, the map provides both the
foreground and background programs with 2 complete
page zero (including auto increment/decrement
locations) and a complete NREL memory area. You
can run two CLIs concurrently in a mapped
environment, if two consoles are available.

6" 2 Licensed Materiai-Property of Data General Corporation

In mapped systems, all programs may use locations 164
and above, up to the limits of available memory, since
each program has its own page zero. The system initally
allots all memory blocks to the background program.
You can change this initial memory allocation via the
CLI command SMEM; you can check the current
memory allocations via the CLI command GMEM or
system call . MEM. Each program can change its own
NMAX value via system call MEMI.

Whenever a map violation occurs in an instruction
which is not a call (e.g., an infinite defer, illegal
address, or illegal attempt to reference a system
device), RDOS outputs the contents of the program
counter and accumulators as follows:

TRAP PC ACOAC1 AC2 AC3

PC gives either the location of the instruction that
caused the trap, or -1 if RDOS can't report a
meaningful address. For example, vou would geta-lif
vour program tried a seriously illogical operation, like
exiting from a user interrupt routine (UIEX) when no
such routine had been defined.

Following the TRAP message, RDOS creates a break
save file (named BREAK.SV), places it in the current
directory, and displays the message “BREAK" on the
console. Control then goes to the next higher-level
program whose UST location USTBR is set to a valid
address. (See Chapter 3, Kevboard Inierrupis.)

If you pass an illegal address 1o a system call, RDOS
returns error code 74, ERMPR.

Writing interrupt routines for special user devices is
slightly easier in a mapped system. If you want a user
device to use the data channel, however, you must
identify the device via system call STMAP (Chapter
7).

When your program issues a .MEMI command in
mapped environments. RDOS sets NMAX at whatever
value 1s required by the specified memory increment,
up to HMA, the highest memory address available to
vour program. Nonetheless, the map always allocates
memory in blocks of 2000, words. Thus, for example ,
if NMAX is set at 40000, and vou request a memory
increment of 300,, NMAX will become 40500 even
though a total of 42000 memory words are reserved for
the program. '

You can build foreground save and overlay files for
either ground in a mapped system in the same way
vou'd build suve and overlay files for a single program
buckground. since RDOS reserves an entire ZREL and
NREL memory for cach ground.

Executing Dual Programs in a Mapped System

The RDOS system bootstrap operation brings the CLI
into execution in the background. At this point there is
no foreground program loaded, so all available memory
is allocated to the background. Thus, before you can
issue any foreground command on a mapped machine,
you must allocate memory to the foreground with the
SMEM command.

After you have built an executable foreground save file
(with optional overlays) you can load and execute in
the foreground area by entering the CLI command
EXFG savefilename). (Any background program can
also execute a program in the foreground by issuing
system call .EXFG.)

You can EXFG (EXFG) any executable program,
including a system utility command, or the CLI itself,
and access it via a second system console,
STTIL/STTOL. (If you use .EXFG instead of EXFG --
a utility command -- you must set up the foreground
command file, FCOM.CM, as desribed in an appendix
of the CLI manual.)

To execute a single system utility program in the
foreground, issue the following command from the
background console:

EXFG system-utility-command-stream }

To assemble source file ABC in the foreground with a
cross reference and listing to the line printer, you'd
type the command:

EXFG MAC ABC SLPT/L)

To execute the CLI itself or any other save file in the
foreground, use the form:

EXFG program-name)

Any program executing in the foreground, may push
other program levels into execution via the system call
.EXEC.

The foreground program can terminate by issuing as
many .RTN (LERTN) system calls as it needs to pop
through level 0 (f the CLI is not active in the
foreground). This occurs when a single system
program, executed at level 0 in the foreground.
terminates its operation. Alernatively., you can
terminate a foreground program by typing CTRL F on
the background console. You must use this second
method to terminate @ program which has a CTRL-A
and/or CTRL-C handler. When vou issue CTRL A (or
CTRL C}) via the foreground console (il anyv). the
foreground program will terminate if RDOS finds ne
interrupt processing address in USTIT/USTBR of the
foreground UST. and if no higher level program
contuins such a processing address in its UST. Each
system utility automatically issues a .RTN when it
terminates to return control to the backeround (or, if

executing in the background, to return control to the
CLD.

Whenever the foreground program terminates via
system calls .RTN or .ERTN, RDOS displays the
message “FG TERM™ on the console. The same
message appears if you terminate the foreground by a
CTRL Finterrupt.

Checkpointing a Background Program

Checkpointing allows a foreground program to
interrupt the current background program, run a new
program in the background, and then restore the old
background program.

Some processing applications will work better if the
foreground program can make use of the background’s
resources in this way. One example of such an
application is a mapped dual program system which
contains a data collection program in the foreground
and one of several system utilities in the background.
In such an application, the foreground might
occasionally need to execute a data reduction program
in the background. Checkpointing the data reduction
program into execution from time to time would fulfill
this need. You can checkpoint via the mapped RDOS
system call .EXBG. described in this chapter.

Dual Programming - Unmapped
Systems

Unmapped systems must use software boundaries 1o
scparate the foreground and background program
areas. You must define those boundaries before
execution. in the RLDR command line.

Each boundary is a starting address for execution: the
local /F switch defines the starting NREL address. and
the /Z switch defines the starting ZREL address for
execution.

Locations 20, through 37, are reserved for use by the
background.

Building Foreground Programs

When vou plan to run foreground and background
programs in an unmapped syvstem. bear 1 mind that
the memory requirements of each will be critical.

Aside from this. and any possible
foreground/background svstem calis, writing the
source code for a foreground program doesn’t require
special consideration.

Depending on your application, vou may wanl a
background program 1o change NMAX (MEMI.
Chapter 3) if it will execute a specific program in the
foreground via .EXFG.

Licensed Matenai-Property of Data General Corporaton 6— 3

After you've written and assembled your source
program, configure it for foreground operation by
including the starting ZREL and NREL boundary
addresses in the RLDR command line. (It’s good
practice to check the ZMAX and NMAX requirements
of the programs which vou may want to execute
simultaneously in the background; you can do this with
the program load map or the SEDIT (or OEDIT)
utility. The boundary information must include both
NREL and ZREL address information in local switches
Fand Z.

An example of such a command line is:
RLDR 13000/F 250/ZROR1[OVOOVI, OV2]

This command creates a save file named RO.SV
(containing binary files RO and R1), and an overlay file
named RO.OL (containing two overlays). When you
load the save file into memory, RDOS will load its
ZREL portion into locations 250; and above, and its
NREL portion into locations 13016, and above.

When you're building programs for an unmapped
foreground. always remember that the programs will be
separated by soft boundaries only; hardware does not
protect the address space of the two programs. Thus,
for example, you must ensure that no background
program attempts to return to a higher level
background program requiring more core storage. If
such a return is performed (e.g., via .RTN) and the
higher level background program requires space now
occupied by the foreground program, system failure
results.

This situation would occur after the following sequence
of program loads:

. The CLI resides in the background and there is no
foreground program in execution.

2. A background program (BGD). smalier than the
CLI.isexecuted via the CL1 on level 1.

3. BGD issues the foreground load command .EXFG.
loading a larger program whose starting address
immediately follows BGD's NMAX.

4. BGD issues .RTN, attempting to return to the CLIL
The CLI. however, requires memory storage which
the foreground program now occupies. System
failure occurs.

You can avoid this by planning vour program flow
carefully.

Executing Dual Programs in an Unmapped
System
The RDOS system bootstrap operation brings the CLI

into execution in the background. At this point there is
no foreground program. so all memory is allocated to

6' 4‘ Licensed Marenai-Property of Data General Corporation

the background. Once you have built an executable
save file (see the previous discussion), you can execute
itin the foreground.

You can execute a program in the foreground area via
the CLI command EXFG or by the corresponding
system call .EXFG. For either command to work, you
must have loaded the foreground program with
software boundary information.

To load and execute a program in the foreground, type
the command:

EXFG program-name)

If the boundary requirements of the foreground
program would overwrite any portion of either the CLI
or the background program, RDOS won't load the
foreground program.

If the foreground program’s boundaries are valid,
RDOS will foad and execute it; the CLI will display its R
prompt when execution begins. You can then try to
execute a new background program via the CLI,
swapping the CL1L If the program yvou wish to execute
in the background requires more memory than is
available, RDOS will not execute it.

You can terminate a foreground program by either
typing the command CTRL F on the background
console, or CTRL A (or CTRL C) on the foreground
console, STTIl (f any). This will terminate a
foreground program as long as it has no interrupt
processing address in USTIT (or USTBR) in its UST
and no higher-level foreground program has such a
processing address in its UST. The foreground program
can release its memory to the background by issuing
.RTN.

When vou terminate the foreground via CTRL-F, (or
CTRL-A/CTRL-C from TTIl), or when the
forcground program vields its memory 1o the
background via .ERTN (RTN), the message “FG
TERM ™ appears on the background console.

The following iliustration (Figure 6-1) depicts two
possible command sequences to produce
foreground/background operation in an unmapped
svstem. It uses two sample programs, FGN and BGD.
The shaded arcas in this illustration represent the
storage areas occupied by User File Tables (UFT s).
These are 45, -word data structures used by the
operating system to record fiie and device information
for each disk {ile opened on a channel. RDOS stores file
information in a section of each UFT called a UFD: vou
can access UFD information with the .STAT system
call discussed in Chapter 3. (In all mapped systems,
UFTs reside in svstem space.)

093-000075-08

BG NMAX

Execute program FGD
via the CLI: EXFG FGD)

FG NMAX

FGD'S NREL

free area
BG NMAX b o — — —

STAGE 2

Execute program BGD via
the CLI on level 1; the CLI
is swapped to disk: BGD)

\

FG NMAX

BG NMAX

HinHi

free area

STAGE 1

»NREL

BG NMAX

FGD'S NREL

free area

BDG'S NREL

FGD'S ZREL

STAGE 3

BDG'S ZREL)

»NREL

- ZREL

Execute program BGD via
Clionievei 1:Cllis
swapped to disk: BGD)

free area

> NREL

BGD'S NREL

free area }

— — — — — L 7pEL
BGD'SZREL ||

STAGE 2

Program BGD executes program

FGD via .EXFG

e

NREL

tgﬁgﬂgﬁ% UFT Storage

1ro0s

Toreturn to stage 1, FGD issues .RTN, reiinquishing its
memory to BGD. BGD then issues .RTN. From the
console, typing CTRL-A, then CTRL-F would achieve the
same end by interrupting the programs.

Figure 6-1. Loading Foreground and Background Programs inan U nmapped System

Licensed Materiai-Property of Data Generai Corporation

6-5

Foreground/Background System Calls

Execute a Program in the Foreground (.EXFG)

The .EXFG system command loads a program save file
into foreground memory and transfers control to it.
Only a background program can issue this command. In
an unmapped system, you must have loaded the save
file with boundary information (see preceding section).
RDOS will pass the contents of AC2 to the foreground
program.

Required input

ACO - Byte pointer to the foreground program save file
name.

AC1 - Appropriate starting address/foreground

priority code.

Two possible addresses are allowed: The program
starting address (USTSA), and the Debug IlI starting
address (USTDA). The permissible codes input in AC1
are:

Code Meaning to RDOS

0BI5 USTSA: pass control to the highest
priority ready task in the program.
(Initially this is the program itself’)

I1BI15 USTDA; pass control to the debugger.

0B1 Give the foreground program a higher
priority than the background.

1Bl Give the foreground and background
the same priority.

Format

SYSTM
EXFG

error return
normal return

('D
(o2}

Licensed Matenal-Property of Dats General Corporaton

Possible errors

AC2 Mnemonic Meaning

1 ERFNM IHegal file name.

4 ERSV1 File requires ““Save™
attribute.

12 ERDLE File does not exist.

21 ERUFT Not enough channels
SYSGENed into the
mapped system o satisfy
the value specified in
USTCH of the save file.

26 ERMEM Attempt to allocate more
memory than is available.

32 ERADR* [llegal starting address.

53 ERDSN Directory specifier
unknown.

66 ERDNI Directory not initialized.

70 ERFGE Foreground already exists.

73 ERUSZ Too few channels defined
at load time or at SYSGEN
lime.

74 ERMPR Address outside address

space

101 ERDTO Disk timeout occurred.

*RDOS will return ERADR if the code inputin ACl is
illegal or if the required address is missing from the
UST. This can occur if:

L. You didn't specify a starting address for the save {ile
and you gave code OB13.

2. You did not load the debugger as part of the save {ile
and you gave code 1BIS.

See if a Foreground Program is Running and
Check Your Own Level ((FGND)

Use .FGND to determine whether or not a foreground
program is running in the system, and at what program
level the calling program is running.

Required input

none.

Format

.SYST™M
.FGND

error return
normal return

System call .FGND returns
ACO- lifforeground found: 0if no foreground.

ACI - Code indicating the calling program’s level, as
follows:

Code Meaning

Background level 0
Background level |
Background leve] 2
Background level 3
Background level 4
Foreground level 0
Foreground level |
Foreground level 2
Foreground level 3
Foreground level 4

il I e NN S SUR NG RO

B o O

Possible errors

none.

Define a Program Communications Area
((ICMN)

This call permits yvour program to define a conliguous
area of up to 256,, words within its own address space
to send or receive messages {rom another program.
The foreground and background may each define one
communications area.

Required input

ACO - Starting address of the communications area.

ACI - Size of the arez in words.,

093-000075-08

Format

SYSTM
ACMN

error return
normal return

Possible errors

AC2 Mnemonic Meaning

62 ERCMS Communications area
exceeds the program size or
would overwrite the
system.

74 ERMPR Address outside address

space.

Write a Message to the Other Program
(WRCMN)

This call writes a message of up to 256,, words from the
calling program (foreground or background) into the
other program’s communication area. The message
sent may originate from anywhere within the sender
program’s address space.

Required input
ACO- Word address of the start of the message.
ACl- Word offset within the other program's

communications area which will receive the
message.

AC2- Number of words to be sent.

Format

SYSTM
WRCMN
error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

62 ERCMS Message oo large for
communications area.

63 ERCUS No communications area is
defined in the other
program.

74 ERMPR Address outside address

space.

Licensed Mateniai-Property of Data Genera! Corporation 6- 7

Read a Message from the Other Program
(.RDCMN)

This call lets the calling program read a message of up
to 256, words from another program's
communications area. The receiving program may
accept the message anywhere within its address space.

Required input
ACO - Starting word address to receive the message.

program’s
message

the other
where the

ACI- Word offset within
communications area
originated.

AC2 - Number of words to be read.

Format

SYSTM
.RDCMN
error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

62 ERCMS The size of the requested
message exceeds the
communications area size.

No communications area is
defined in the other
program.

63 ERCUS

Address outside address
space.

74 ERMPR

6" 8 Licensed Mateniai-Property of Data General Corporatnn

Write an Operator Message ((WROPR)

This call instructs the calling program to write a text
string to the system console, STTO. There may be only
one outstanding write-operator command in a program
area. The message must consist of an ASCI] string, less
than or equal to 129 characters in length, including a
carriage return, form feed, or null terminator. On the
console, RDOS displays two exclamation points (!!),
either an F or B, and then the message. The F and B
indicates that the message came from the foreground
or background program, respectively. Thus text strings
outputon the console are in one of two forms:

Ftext string or ?.‘Btextstring

You should not issue this call if yvou have also used
OPCOM or the task message commands, . TWROP and
.TRDOP, in the environment. :

Required input
ACO - Byte pointer 10 text string.

Format

SYSTM
WROPR
error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

74 ERMPR Address outside address
space.

120 EROPM Operator messages not

specified at SYSGEN time.

083-000075.08

*

Read an Operator Message (RDOPR)

This call prepares the calling task to receive an operator
message from the system console. STTI: the task may
exist in ecither the foreground or the background
programs.

Before typing the message 1o the program. you must
type CTRL E (echoed on the console as iand an For
@ B. to indicate whether a foreground or background
program is o receive the message. RDOS will
recognize CTRL E only if it is the first character in a
line.

If no program has requested a console message. the
TTY bell Gf any) will ring when you press CTRL E: if
the second character is anyvthing other than an F or B
(or rubout). the TTY bell will ring, and RDOS will
accept no further input until you typean For B.

I immediately after pressing CTRL E. vou wish to
cancel the message transmission. press RUBOQUT
instead of F or B. Pressing the RUBOUT key erases
message characters, starting with the most recent
character. RDOS echoes a left arrow (—) on
teletypewriters; on CRT displays. it erases the last
character each time you press RUBOUT. The last
character in the message string must be a carriage
return. form feed or null, and the to1a] message length
(including terminator) can be up to 132 characters.

Only one program (task) in each ground can have a
read-operator message request outstanding at any one
moment. You must not issue this call if you are using
OPCOM or task operator message commands TWROP
and .TRDOP in this program environment.

Required input

ACO - Byte pointer to message area.

Format

SYSTM
.RDOPR
error return
normal return

On the normai return, RDOS returns the message byte
count (including the terminator) in ACI.

Possible errors

AC2 Mnemonic Meaning

74 ERMPR Address outside address
space.
120 ERCPM Operator messages not

specified at SYSGEN time.

093-000075-08

Checkpointing a Mapped Background
Program ((EXBG)

Checkpointing is the practice of suspending one
background program (the checkpointed program)
temporarily so that you can execute a new background
program.

Only a muapped foreground program may issue the
checkpoint call. The foreground can also pass an
optional one-word message 1o the new background
program. There may be only one checkpointed
program at a time: RDOS does not allow nested
checkpoints.

Before vou can checkpoint a background program, it
must first be checkpointable: that is. it must not
perform any multiplexor /0. and it musl not use any
of the following system calls:

.DELAY

.RDOP

ADEF / .IRMV
.DUCLK 7 .RUCLK

When a background program is checkpointed, RDOS
displays the message

CPENT

on the console. RDOS saves the following constants
from the old background program, and restores them
when it restores that program: priority, floating-point
processor state, ongoing console input, and current
directory.

During the checkpoint, the current directory for both
grounds is the foreground’s current directory. Thus if
the new background program needs to access files.
these must be in the current directory, or you must
include directory specifiers to them.

You can give the new program one of two priorities:
that of the foreground. or that of the checkpointed
program.

Since RDOS preserves STT] input to the checkpointed
program, STTI becomes unavailable for use by the new
background program except via .RDOP. The new
program can direct output to STTO via system call
-WROP, write an operaror message.

The new program can restore the checkpointed
program by issuing .ERTN or .RTN: vou can also
restore the checkpointed program by entering CTRL-A
or CTRL-C from STTI (if the new program’s UST
doesn’tspecify a different interrupt routine.)

Licensed Material-Property of Data Genera! Corparation 8" 9

On a keyboard interrupt, RDOS displays the message

CPINT

on STTO. When the new program restores the
checkpointed program normally (i.e., via .ERTN or
.RTN), RDOS displays the message

CPRTN

on STTO.

Required input
ACO - Byte pointer to the new background save file
name.

ACl - 1B0: Give the new background program the
same priority as the checkpointed program.

(Note that you should clear all other bits in AC1
to zero).

AC2- (Optional) One-word message 10 the new
background program.

Format

SYSTM
EXBG

error return
normalreturn

Possible errors

AC2 Mnemonic Meaning

l ERFNM Ilegal file name.

2 ERICM Altempt to checkpoint in an
unmapped system.

4 ERSV1 File requires **'S™" (save) attribute.

12 ERDLE File does not exist.

21 ERUFT Not enough channels SYSGENed
into the mapped system 1o satisfy
the value specified in USTCH of the
new background program.

25 ERCM3 Attempt 1o checkpoint a

checkpointed background program.

AC2 Mnemonic Meaning

26 ERMEM Attempt to allocate more memory
than is available.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

73 ERUSZ Too few channels defined at load
time or at SYSGEN time.

74 ERMPR Address outside address space.

76 ERNTE Program to be checkpointed is not
checkpointable, or attempt to create
two outstanding checkpoints.

101 ERDTO Disk time-out occurred.

Example

In the following sequence, three sample programs
complete a checkpoint procedure. The background
program which we will suspend with a checkpoint is
called BACK, the foreground program which will
execute the checkpoint is called FORE, and the
program we're checkpointing into the background is
called COMP.

I. We execute FORE and BACK via CLI commands
EXFG FORE)and BACK).

2. While both FORE and BACK are running, FORE
issues .EXBG to COMP, checkpointing COMP into
execution. BACK is suspended, but RDOS saves its
current state, the FPU, all STTI input 10 it. and
remembers its current directory. The console
displays the message CP ENT.

3. COMP reads data from some of FORE’s files: it
issues a few 'WROP and .RDOP calls and receives
replies from the console.

Having done its work, COMP writes duta 10 4 file in
FORE's current directory. It then tells FORE that it
is done, via .WRCMN: FORE receives the message,
reads COMP's data from the file. and continues,

4. COMPissues .ERTN. the console displuvs CPRTN,
and BACK resumes execution from its original
current directory: the console displays CP RTN.

End of Chapter

6" 1 O Licensed Mateniai-Property of Dats Genera: Corporation

Chapter 7 N
User Interrupts and Power Failures

This chapter has two sections: The first describes how
to establish and reference user interrupts; the second
covers the system’s handling of power failures. In some
cases, you may want to write your own routine for
handling power failures. If so, you can use calls from
the first section.

The material in this chapter applies to both single and
multitask environments, and - unless we nole
otherwise - to both mapped and unmapped machines.

This chapter includes the following calls:

USER INTERRUPTS

IDEF Identify a user interrupt device. Exit from
JUIEX a user interrupt routine {this is a task cal}).
JRMV Remove a user interrupt device. Change
SMSK the current interrupt mask (task call). Set
STMAP the Data Channel map (mapped only).

POWER FAILS

Exit from a Power Fail Service Routme
(task call).

UPEX

Servicing User Interrupts

When the CPU detects an interrupt request, it
suspends the current program and directs control to its
device interrupt service program, INTD. (INTD is part
of RDOS and is zlways memory-resident.) The CPU
then directs controf through the interrupt vector tubie
to the proper device control table (DCT), using the
device code as 2 s:uide RDOS created DCT
automatically for all devices specified at SYSGEN,
you want RDOS 1w rcmgmzc a non-SYSG E?\eﬁ
device, you must wrile a routine for it, decide on a
mask for it. and construct a DCT. An Application Note
called RDOS User Device Driver Implementation deseribes
user DCTs. Your three-word DCT provides an
interface between the system and vour service routine,
by telling RDOS how to mask the device and where (o

find the service routine. It looks like this:

Entry

Displacement Mnemonic Purpose

0 DCTBS Reserved for
system use.

1 DCTMS Interrupt service
mask.

2 DCTIS Address of
interrupt service
routine.

DCTIS is a pointer to the routine which serves this
specific device interrupt request. DCTMS is the
interrupt mask that you want RDOS 10 OR with the
current interrupt mask while the system is in vour
interrupt service routine. This mask establishes which
devices -- if any-- will be able to interrupt the currently
interrupting device. (The interrupts are on when VOu
enter the routine but RDOS masks them for this
priority device.) For more on interrupt masks. see the
“Programmer’s Reference Manual for Peripherals.

After a user interrupt occurs, control goes 1o vour
service routine: AC3 contains the return address
required for exit from your routine, and AC2 contains
the address of the DCT. The task call .UIEX exits from
the routine and returns to the current environment,
You can issue .UIEX in both single and multitask
environments.

RDOS removes all user devices from the svstem when
either a program swap or a chain occurs. When the
SVSIem receives a user inlerrupl on a program level
which has not identified the user device. it issues an
NIOC to the device and then returns to normal
program execution.

Whenever a device requiring special user service
generales an interrupt request., the entlire task
environment halts until RDOS has serviced the
interrupt. All tasks will resume former states when the
cnvironment restarts unless yvou transmit a mﬁssmm)
one of them by means of the INMT call from the
interrupt service routine. (See IXMT. Chapter 3.)
Rescheduling of the program and task environment
can occur upon return from the routine. depe nding on
zm contents of ACI in the return command (see
UIEX. below).

Licensed Matensi-Property of Data General Corporaton 7' T

In addition to IXMT, your user interrupt or user power
fail routine can issue the task calls SMSK, .UIEX, and
UPEX. You will find all of them below.

Identify a User Interrupt Device (.IDEF)

This call introduces 1o the system a device which you
did not identify at SYSGEN time, but whose interrupts
you want the system to recognize. (The DEF call
places an entry in the interrupt vector table). A
maximum of 10 user devices can be identified to the
system at any moment. An .IDEF to any device also
gives access to the CPU (code 774, so that you can do
such things as disable and enable interrupts.

The number of free device codes (those which yvou can
assign to user devices) depends on the hardware in
your RDOS system. You can find system devices and
their codes on the instruction reference card for your
compuler.

If your system has an IPB, and you want control when
the watchdog timer times out, you must identify the
timer via IDEF (see Chapter 8). If vou generated the
current RDOS system without an IPB. and you .iDEF a
device on device code 36, then RDOS will issue an
NIOP to device code 37 whenever the real-time clock
or power-fail monitor interrupts. (The IPB has device
code 36, the watchdog timer device code 37). If vou
don’t want this interaction, don’t use device code 36 or
37 for a user device.

If yvou want 1o .IDEF a data channel device, vour
program must establish the data channel map for the
device via STMAP (mapped systems only).

Required input
ACO - Device code of the new device.

ACI - Address of the new device's DCT. (In a mapped
system. this address must be in NREL space,
i.e.. above 400,.) Mapped systems only: Set bit
Oto 1'if you want the new device 1o use the data
channel.

AC2- Number of 1K core blocks which the data
channel map needs. This number must be one
larger than the integer number of 1.024-word
blocks used for data channel core buffers.
(Applicable only to mapped svstems where vou
setbit0of ACI to 1 for this call.)

Format

SYSTM

ADEF -
normalreturn

error return

7" 2 Licenseg Materal-Froperty of Date General Corporation 093-000

Possible errors

AC2 Mnemonic Meaning

36 ERDNM Illegal device code (greater
than 765). Device code 77,
is reserved for for CPU
which supervises the power
monitor/auto restart
option.

45 ERIBS Interrupt device code in
use or 10 user devices
already identified.

63 ERDCH Insufficient room in data
channel map (unmapped
only).

74 ERMPR Address outside address
space (mapped only).

Exit from a User Interrupt Routine ((UIEX)

This exit call returns contro] 10 a program environment
after a user interrupt: vou can use it only to terminate
an interrupt service routine. In all systems, you can
force rescheduling by passing a nonzero value in ACI:
if ACIl contains 0 when you issue this call, the
environment will resume without rescheduling. In a
mapped system, RDOS ignores values input in the
other ACs.

In an unmapped system. vou must restore AC2 and
AC3 1o the addresses they had on entry to the routine.
If you don't do this. the system will crash.

Required input
ACI- Zeroonly 1o suppress rescheduling.

AC2- Unmapped only - address upon entry to routine
(DCT).

AC3 - Unmapped only - address upon entry o routine
{return address).

Format
JUIEX

Possible errors

none.

&)
o
o
o

P

Remove a nonSYSGENed Interrupt Device
(LIRMYV)

To prevent the system's recognition of an interrupt
device which was identified by the IDEF commmund.
issue the IRMV command.

Required input

ACO - Device code for the device which vou want to
remove from the system.

Format

SYSTM
ARMV

error return
normalreturn

Possible error

AC2 Mnemonic Meaning
36 ERDNM [Hegal device code (greater
than 77, or attempt 1o
remove a SYSGENed
device.

Modify the Current Interrupt Mask (.SMSK)

Use this task call to change your interrupt mask for a
service routine in both single and multitask
environments. Whenever a user interrupt occurs,
RDOS ORs the interrupt mask with the mask in the
DCTMS of your DCT to produce the current interrupt
mask. The .SMSK call allows your interrupt routine to
change the old mask, and produce a new mask which is
the logical OR of the old mask and a new vajue. SMSK
destroys the accumulators so you must restore them
for the subsequent .UIEX.

Required input

ACI - New value to be ORed with old mask.

083-000075-08

Format

SMSK
normalreturn

Possible errors

none.

Set the Data Channel Map ((STMAP)

Before a user device can employ the data channel in a
mapped system, vour program must issue STMAP 1o
set up the data channel map. This is a special muap
maintained by the muapping hardware for data channel
use. .STMAP sets up the data channel mup for the user
device and returns in ACI the logical address which
you should send to the device.

This call is a no-op when issued in an unmapped
system. In mapped systems. two possible error
conditions may occur.

Required input
ACO - Device code.

ACI - Starting address (in your address space) of the
device buffer.

Format

.SYSTM
STMAP

error return
normalreturn

Possible errors

AC2 Mnemonic Meaning
36 ERDNM Device code not previously
identified via .IDEF as a
data channel device.

74 ERMPR Address outside address
space.

Licensed Material-Property of Data General Corporation 7"3

Power Fail/Auto Restart Procedures

RDOS provides software support for the power
fail/automatic restart option. When the system detects
a power loss, it transfers control to a power fail routine
which saves the status of all accumulators, the PC, and
Carry.

If the console key is in the LOCK position when power
returns, the system console will display this message
when power returns:

POWER RESTORED

If possible, the system will then restore task state
variables, resuming operating at the point of
interruption. After this message appears, you may need
to wait up to a minute for disks to come back on line.

If the console key is in the ON position when power
returns, you must set all data switches to zero (down)
and lift START when power returns. This outputs the
POWER RESTORED message. restores task state
variables, and resumes operation.

RDOS gives power-up restart service to the following
system devices:

® teletypewriters and CRTs
® disks

® multiplexors

® line printers

® paper tape readers/punches
® curd readers

® piotlers

Character output devices may lose one or more
characters during power up. Since power-up service for
disks includes a complete reread or rewrite of the
current disk block. vou will use no disk information
although you must wait for the unit's READY
indicator to light. When power returns, RDOS restores
the modem multipiexor lines when the user dials in.
Line printers may lose up to a single line of
information. Card readers may lose up to 80 columns of
information on a single card. Devices requiring
operator intervention (such as line printers. card
readers. etc.) must receive such action if power was jost
for an extended period of time.

RDOS does not provide power-up service for magnetic
lape units or cassclies.

No power-up service is possible for semiconductor
memory without o backup batiery,

Power-Up Service for User Devices

If you want to provide service to user devices
(identified by .IDEF), or if, for any reason, you want to
be notified when a power fail occurs, write an interrupt
service routine and issue an .IDEF call, passing 77 in
ACO0 and the address of your powerfail
service-interrupt routine in AC1.

Use the .UPEX 1ask call (below) to exit from your
routine; this will force program rescheduling.

Exit from a Pdwer Fail Service Routine
((UPEX)

Use task call .UPEX 1o return from a user power fail
routine in single or multitask environments. Control
returns to the location which was interrupted by a
power failure. .UPEX has no normal or error return.

Required input

Mapped systems: none.
Unmapped systems:

AC3 - Return address which it contained on entry to
the routine (when the system enters a user
power fail service routine, AC3 contains the
address required to return to your program.)

Format
UPEX

Error Detection and Correction, ERCC
(ECLIPSEs only)

If vour system has the ERCC hardware option
(available on ECLIPSEs only). it will correct all

single-bit parity errors in memory. {(Multiple-bit errors
cause Exceptional Status. as described in Appendix F.)

RDOS detects all corrected memory faults from the
ERCC. You can provide vour own routine for handling
memory errors by IDEFing the error code ERCC. Use
UIEX to return from vour routine. as follows:

Required input

AC3- Return address upon entry to the routine
{unmapped systems onlv).

Format
UIEX

End of Chapter

7"4 Licensec Materiai-Property of Data General Corporation

083-000075-08

Chapter 8
Multiple Processor Systems

This chapter describes managing a system which
includes more than one Data General computer. There
are two hardware options available to manage such a
system: an InterProcessor Buffer (IPB), Model 4240,
which allows two CPUs to communicate via full duplex
lines, and a Multiprocessor Communications Adapter
(MCA), Model 4206, which allows up to 15 CPUs to
communicate via full duplex lines. The MCA also
allows foreground and background programs to
communicate at data channel speeds.

If you have an IPB or MCA, vou can run your
processors together, in a multiprocessor system: this
system can use any or all of the features described in
previous chapters of this book. If you have neither
device, each CPU in your installation must run
independently.

You can configure an RDOS system to support either
(or both) an IPB or MCA during system generation by
answering the SYSGEN questions about these devices
correctly.

The IPB provides one full-duplex line for sequential
and line 170 between two processors. It also provides a
half-duplex line for RDOS; this enabies RDOS to
assure that systems sharing disk partitions do not
simultaneously modify the SYS.DR or MAP.DR of any
partition. The IPB also provides an interval timer which
permits each processor to monitor the activity of the
other. If either processor fails to service its real time
clock periodically. the timer alerts the other processor.

Note that on @ hardware level, each shared disk must be
installed with the same device code and unit name. I
one processor has a disk hard-wired as the first
controlier, DPO, the second processor must also have
the disk hardwired as the first controlier., DPO. Both
processors will reference the disk as DPO. If & disk is
unshared, it must have a unigue device name.

Both sides must run with an RDOS of the same
revision level for IPB support 1o work. If not. one side
or the other will probably enter Exceptional Status.

IPB support maintains the integrity of system files and
disk file structures. but does not provide protection for
the conrents of user files. Thus if both sides Iry 1o write
to the same file at the same time (including. of course.

read-modify-write), one file, or fractions of both may
be lost. :

A typical IPB system consists of two CPUs operating
independently. This system permits each CPU 10 have
a foreground and background program; programs in
both CPUs can access files in the same disk partition.
The IPB maintains the integrity of SYS.DR and
MAP.DR in common disk partitions and allows each
CPU to monitor the other’s activity.

Another dual-processor application might use the IPB
to back up a critical real-t1ime program. In critical
real-time situations, redundancy helps safeguard the
total system, and allows it 10 continue running even if a
CPU fails. One example of a fail-safe IPB application is
a main system which runs the critical process, while a
back-up system stands ready 1o assume the main
system functions if the main system fails. While it is
standing by, the back-up system runs lower-priority
Jobs such as data analysis, summary reporting, and
program development. If the main svstem fails, the
interval timer detects this failure and signals the
back-up system to take control.

The MCA does not have an interval timer. nor does it
allow CPUs to share disk directories. but it does enable
up to 15 CPUs to communicate via their data channels.
Each MCA controller supports up to 135 separate lines
and each MCA line provides asyvnchronous full-duplex
communications links for sequential 1/0. Each line is a
filename, which your program can access via sysiem
culls. and which you can access via CLI commands.
You can also transmit an entire RDOS system via the
special CLI command MCABOOT. Each MCA iine
offers high-speed interprogram or interprocessor
communications with littie processor overhead.

RDOS iself does not use the MCA. Unless you
generate RDOS with IPB support. it will not maintain
the integrity of a partition accessed by more than one
processor.

To run a multiprocessor system under either IPB or
MCA. each CPU must boot up an operating svstemin a
separate disk partition. and each partition must have its
own copy of an RDOS system and CLI files CLISV.
CLI.OL.and CLLER.

Licensed Material-Property of Dats General Corporation 8‘ ?

Interprocessor Buffer (IPB)
Programming

Interval Timer

The Interprocessor Buffer (IPB) hardware features an

- mterval timer which tells one processor that the other
processor has stopped. Specifically, the timer generates
an interrupt request if either processor fails to service
its real-time clock every second. RDOS treats this
interrupt request as a user interrupt. You can write
routines to identify the interrupt via system call .IDEF
(Chapter 7). The device code of the interval timer is
37,.

An interval timer interrupt indicates to RDOS that the
other processor has stopped; hence you shouldn’t use
IDEB, or any other program that suspends interrupts
for extended periods while both processors are
running.

Dual Processor Program Communications

IPB hardware also allows the two processors to
communicate via a full-duplex line. This
communications link permits a user program running
in either processor to read or write line or sequential
170 1o the other processor, via special filenames.

The filenames for the read and write operations are:

SDPI - Input dual processor link (device code 404).
SDPO - Qutput dual processor link (device code 41,).
Each side has a SDPI and a SDPO: each side's SDPO is

connected to the other side’s SDPL. Thus one side's
SDPO writes 1o the other side’s SDPL.

8‘ 2 Licensea Materiai-Property of Data Genera' Corporation

So, if CPUO's program wanted to write to CPU1’s
program, program 0 would write to SDPO and program
1 would read from S$SDPIL. Simultaneously, program 1
could write a message 1o program 0 via its SDPO. Each
SDPO is a spoolable device. (Program 1 should issue
the read request before program 0 issues the write, or a
character will be lost.)

IPB Example

In this example, the main program (P) monitors and
controls a real-time environment, and a secondary
program (S) stands by to take over if P fails. A special
restart task will bootstrap a system for S via system call
.BOOT, described below.

P, the control program, runs in the foreground of one
CPU, while less critical programs run in the backround
(P could also run in the background of a single-ground
environment).

As the primary program (P) monitors and controls the
real-time environment, it sends periodic status reports
o a log file on P’s disk so that, in the event of its
failure, S can seize control and maintain continuity.

The backup program. S. runs in the second CPU, in
either a single- or dual-ground environment. At s
very beginning. S creates a highest-priority restart task.
which suspends itself by issuing a .REC 1o the user's
interval timer interrupt routine. This interrupt routine
issues .IXMT to wake up the restart task, which then
bootstraps S.

If the main CPU, running P, develops a problem. the
interval timer will generate an interrupt, and the
interval timer service program in S will ready the restart
task. The restart task will then close all files in program
S. release all S’s directories, reset 1/0 and bootstrap a
new RDOS system, identical to P, Having
bootstrapped this new system, S reads P's status
reports to determine where it stopped and proceeds to
monitor and control the real time environment.

-

Bootstrap a New Operating System (.BOOT)
This call executes an orderly shutdown of the current
RDOS system. and bootstraps the svstem you have
indicated by a byte pointer in ACO.

Specifically. a .BOOT resembies the CLI command
BOOT - it closes ail background and foreground files.
releases their directories. and resets all 170 it then
bootstraps the new system, which must exist in a
secondary or primary partition. If the byte pointer
specifies a link entry 1o the new system. you must also
link the new system’s overlay file and initialize all
partitions involved in the resolution chain.

When vou bootstrap a system conventionally, it asks
questions about the date and time. and then invokes
the CLI If the data switches are all up or the switch
register contains -1, then RDOS searches for a file
named RESTART.SV. if it doesnt find
RESTART.SV. it invokes the CLIL If a program issues
.BOOT. and the data switches are up or register
contains -l. and the new svstem can find
RESTART.SV, then the new system will come up
automatically, with the default date and time (January
1, 1968): then .BOOT will chain control on level 0 1o
RESTART.SV. If RESTART.SV doesn't exist, .BOOT
will ask the conventional log-on questions.

Initially, RESTART.SV does not exist: YOu must create
it to .BOOT a system without operator intervention. It
could also be the name of the user program itself, or
LINKed to the program name. If the current date and
lime are important to the real-time process, you must
find some way to get them to the new program -
perhaps via RESTART.SV itself. if the old program
periodically stored date/time data in a file which
RESTART will read when it gets control.

Required input

ACO - Byte pointer to name of new operating system.

Format

SYST™ -
.BOOT
error return

There is no normal return, since upon the normal

completion of this call BOOT will receive control, and
pass control to the new operating system.

Passible errors

AC2 Mnemonic Meaning

1 ERFNM [llegal file name.

12 ERDLE File name does not exits.

083-000075-08

AC2 Mnemonic Meaning

23 ERRTN File RESTARTSV does
not exist. vet data switches
were set for restarting

without operator
intervention.

53 ERDSN Unknown directory
specifier.

74 ERMPR Address outside address
space (mapped systems
only).

101 ERDTO Disk timeout occurred.

107 ERSFA Spool file is active.

Multiprocessor Communications
Adapter (MCA) Programming

Data Transmissions

The type 4206 Multiprocessor Communications
Adapter receiver/transmitter (MCAR/MCAT) allows
programs to communicate over full duplex lines. in
blocks of up to 8192 bytes, via the data channel. Each
program can exist within the program space of a single
CPU. or within up to 14 other CPUs, or both. A second
4206 receiver/transmitter, MCARI/MCATI, provides
up to 15 similar additional communications links. Each
CPU may communicate with any other CPU.

Depending on whether it is transmitting or receiving,
each MCA line is a file name of the following form:

MCAT:rr (MCAT1:rr)
or

MCAR:tt (MCAR1:tt)

where rr represents a receiver unit number from 1
through 13, and where represents a transmitter unit
number in the range 0 through 15. Thus. four CPU'’s,
each running foreground and background programs.
could have ten possibie line connections (see Figure
8-1).

CPU
No t
MCAl~e___ v
T S MCA
* 4
CPU i / cPu
Ne. 3 i { No. 2
4 1
P
MUA | e
CPu
No 4
&0-00554
—— Figure 8-1. Muluple Processor Line Connections —|

Licensed Material-Property of Data General Carporation 8 - 3

If CPU 1 wanted to read (receive) from CPU 3, each
unit would have to issue the following sets of
instructions:

CPU 1

.OPEN n JOPEN MCAR:3

.RDSn WAIT FOR THE DATA,
JREAD IT WHEN SENT.

CPU 3

.OPENn JWRITE (TRANSMIT) TO

WRS n ‘WRITE (TRANSMIT) TO

;THE RECEIVER LINE,

CPUs I and 3 are operating under distinct RDOS
systems. Thus, in the illustration, above there is no
relationship between channel » for unit 1 and channel »
for unit 3.

A receiver can request a transmission from any
transmitler by issuing a read call to transmitter 0
(filename MCAR:0). After a receiver issues this read
calllany transmitter can write to it. Thus if 4 program in
CPU T had issued three receive requests. 1o MCAR:1.
MCAR:3 and MCAR:0. it would receive lransmissions
from three sources: from its own machine
{transmission from the other ground). from a program
in CPU 3. and from any other program that wanted to
transmit to it. Each transmitter would transmit by
issuing a write to MCAT:].

Al messages must begin on o word boundry. and the
receive and transmit byvte counts must match. To
transmit an end of file. vou can transmit a zero-byvie
message (egoa WRS of zero bytes).

A timcout can oceur only in an MCA transmiitier: o
TCCCIVET Gl wail indefinitely. The timeout period
ranges from about 200 milliscconds 1o about 633
scconds. The default timeout is 635 seconds. but vou
can select @ shorter timeout period when vou .OPEN
the MCA fine and issue u write sequential. See Chapter
JOOPEN and WRS. for details,

Get the Current CPU’s MCA Number
(L.GMCA)

Your program can gel the MCA unit number of its
CPU by issuing system call .GMCA. It can then
communicate this number (o programs running in
other CPUs.

Required input

ACO- MCA transmitter octal device code (6 for
MCAT., 46 for MCATI).

8" 4 Licensed Matenai-Property of Data General Corporation

Format

SYSTM
.GMCA

error return
normalreturn

Upon the normal return, AC] contains the MCA unit
number.

Possible errors

AC2 Mnemonic Meaning

3 ERICD Improper device code input
to system call.

36 ERDNM Device not in system (you

did not specify an MCA at
SYSGEN time in this
RDOS system).

Using CLI Commands on MCA Lines

As described earlier, each MCA line has a filename.
This means that you can use the MCA line filename in
many CLI commands that take a filename argument.
The only special requirement is that the CLI command
be present in both receiver and transmitter, since no
data transmission can occur without simultaneous
receive and transmit requests.

Moreover. you can XFER (but you cannot LOAD or
DUMP) disk files via MCA lines. Thus. in Figure 8-1,
to transfer file ABC from CPU 4's disk CPU 2's disk,
someone would type the following CLI commands on
Lhe appropriate consoies:

System 2
XFER MCAR:4 ABC)

CPU2 1ells its MCA 1o transfer the contents of
MCAR4 10 ABC on my disk. Because CPU2 is
addressing a receive line. this is a receive
request.

or
XFERMCAR:0 ABC)

CPU2 tells its MCA 1o Transfer any
transmitter’s input to ABC on my disk.

System 4

XFER ABC MCAT:2)

CPU4 tells 1ts MCA 1o Transfer the contents of
ABC on my disk to MCAT:2. Because CPU4 is

addressing its trunsmitter, this is a transmit
request.

0923-000075.08

When a CPU issues a CLI command over an MCA
line, the CLI prompt won’'t return to its console until
RDOS has executed the command (or, if the
transmitter issues the request, until the transmitter has
timed out).

Transmitting Copies of Operating Systems or
Stand-Alone Programs

RDOS provides a bootstrap program, MCABOOT,
which transfers and bootstraps a copy of an RDOS
system to another unit's disk. Before sending the
system, MCABOOT can either fully or partially
initialize the receiver’s disk. Alternatively, MCABOOT
can send and bootstrap a copy of a stand-alone program
to another unit’s disk, provided that this program
follows the conventions of programs which BOOT can
load. (BOOT need not reside in the receiving unit’s
disk space.) As with other MCA data transfers. both
receiver and transmitter must participate.

You execute the MCA bootstrap by issuing the CLI
command MCABOOT. The transmitter and receiver
must be on the same network (MCA or MCA1) for
lransmission 1o occur. An operator at the receiving
CPU must have requested the transmission by placing
1000075 (MCA) or 100047, (MCA1) in the receiver’s
data switches, and by pressing RESET followed by
PROGRAM LOAD. The transmitting unit will wait for
the receiver to request reception, but only up to the
timeout period (633 seconds).

Multiprocessor System Illustration

The following example illustrates one application of a
multiprocessor system. A large laboratory complex
needs an automated system to control the

083-000075.08

environmental conditions within the complex, to keep
track of the number of personnel at different locations,
to monitor the complex for alarm conditions, and to
alert key personnel if it cannot correct a condition. This
system must be fail-safe, and can allow down-time for
no longer than a few seconds.

Figure 8-2 suggests one configuration for this system.
Two master CPUs, running under mapped RDOS, are
connected via an IPB, so that each can act as a watchdog
on the other’s behavior, and take control if the other
fails. The IPB also allows the CPUs 1o access common
disk files. The masters access a common data base
which contains, among other information. alarm
messages and destinations to which they should go on
an alert. This file space also contains a log of the current
master’s activity, so that if it should fail, the alternate
master CPU would have arecord of recent events.

The laboratory includes three vital zones. and there is a
slave CPU to monitor and control conditions within
each zone. Each slave can monitor and adjust both
humidity and temperature. Additionally, each slave
keeps track of the positions of personnel within each
zone. Finally, each slave monitors its zone for alarm
conditions; if they occur, it can take some remedial
action lo emergencies, e.g., it can aclivate a sprinkler
system if it detects fire. Each slave computer does
relatively simple things, and could run under RTOS. a
core-resident compatible subset of RDOS.

Each slave has a data channel line through its MCA 10
each master computer (lines MCA1 through MCA6).
This allows the current master to generate continuous
status reports and transmit them to CRT monitors via
the bus switch to an ALM. An SLM multiplexor
connects “*hot lines™ to security guards and fire station
personnel to alert them in an emergency.

—
Licensec Materiai-Property of Data General Corporation 8' o}

CRTs

“HOT LINES"

CPU 1 1PB CrPU2
(MASTER) < » (MASTER)

|
MCA 1 MCA 2

IMCA BUS

A

Y

ch
{

MCA 3 MCA 4 | MCA 5
T {:-: ;

SLAVE 1 SLAVE 2 SLAVE 3
a b ¢ d a b ¢ d a b ¢ d
Ne— Ne—_— N— oo
BUILDING ZONE 1 BUILDING ZONE 2 BUILDING ZONE 3

a -temperature sensor and control

b - personnel monitor

C - humidity sensor and control

d -intrusion, fire, smoke alarm and controf

S0-00553
Figure 8-2. Muluprocessor System Hiustration
End of Chapter
8.5
-0 Licensed Matenai-Property of Data General Corporation

Chapter 9
Tuning RDOS

This chapter describes tuning - a feature which allows
an RDOS system to monitor its own performance. and
suggest a more efficient configuration for any
application. Concurrently, it explains some internal
workings of RDOS. In this order. it explains:

® Tuning

® The data structures invoived in tuning
® RDOS system overlays

® [{ow tuning works

® Tuning system calls

During system generation. you tailor an RDOS system
for a specific environment by answering SYSGEN
questions. (For details on SYSGEN. read the manual
How 10 Load and Generate Your RDOS System. This
manual also has a practical section on tuning.) Your
answers 1o the SYSGEN questions determine what
features your RDOS system will have. and what
peripheral hardware it will support. There are two
tuning questions in SYSGEN, and your answers to
these decide whether this RDOS system will have
tuning at all, and how extensive the tuning function
will be.

The tuning mechanism itself deals with certain
software data structures, called stacks, cells and buffers.
As it happens, SYSGEN asks questions about stacks,
cells, and buffers. The tuning mechanism takes your
answers to these questions and tests them as RDOS
runs; it can then print a tuning report which allows you
to decide on more efficient answers, or it can tell
SYSGEN to modify your original answers during a new
system generation,

The latter approach, called self-muning can generate a
moderately efficient version of RDOS for any
application. During seif-runing, SYSGEN examines a
previously-generated tuning report file and selects
more appropriate responses to questions about buffers,
stacks, and cells. You can direct a system to tune itseif
by including the name of the old SYSGEN dialog file,
and the /T switch, in the SYSGEN command:

SYSGEN dialog-file/A tuning-file/T
SYSGEN examines the tuning file and attempts to
generate a system that is more efficient for this

application than the system that was running when the
tuning file was recorded. During self-tuning. SYSGEN

093-000075-08

does not have a giobal view: it has only the tuning file
to work from. hence it must make certain arbitrary
decisions. such as the value of user memory to this
given application. Thus SYSGEN can’t determine the
complete impact of tuning decisions upon any given
application’s efficiency. Nonetheless. it does an
adequate job for applications which don't require
maximum efficiency. Tuning file statistics by
themselves are helpful, but other considerations are
important too: in the final analysis, comparative
timings of different system configurations provide the
true measure of efficiency.

System Stacks, Cells, and Buffers

Before exploring tuning, we’ll define the terms sysiem
buffers, stacks, and cells. RDOS is partially core-resident
and partially disk-resident. This allows RDOS to have
features found ordinarily only on larger operating
systems, while the total memory-resident portion of
RDOS in the system remains modest. Stacks. cells. and
system buffers are all memory-resident parts of RDOS.

RDOS uses a system stack as a data base. to execute
each concurrent .SYSTM call. The greater the number
of outstanding .SYSTM requests. the more system
stacks RDOS needs to service each request in parallel.
For example. if two executing user tasks concurrently
issue a .SYSTM call, two system tasks are then

“outstanding. To service both system tasks in parallel,

RDOS would require two system stacks. At a single
moment, RDOS will service only as many requests as it
has available system stacks, in the order that these calls
were made. System tasks are associated not only with
SYSTM calls, but also with I/0 device requests and
with spooling.

Each system task also requires a cell, to save state
information, just as each user task has a Task Control
Block. There is a fundamental difference between cells
and TCBs, however: RDOS sometimes appropriates
cells for temporary data storage, but it never uses TCBs
for this purpose.

A large part of memory-resident RDOS is a collection
of system buffers, which serve two functions. First,
RDOS uses buffers to receive system overlays, which
provide code not found in the resident portion of the
system. Secondly, RDOS buffers all 1/0 except
read/write block operations via system buffers.

Licensed Materiai-Property of Data General Corporation 9" 1

RDOS requests and uses system stacks. buffers and
cells dynamically, as resources. When it needs and
cannot get any of these resources a fawulr occurs, it
suspends the calling system task. and system operation
suffers.

System Stack Requirements

The foltowing guidelines will help vou select the proper
number of system stacks. RDOS nreeds stacks for Disk
170, Spooling. and the concurrent execution of system
calls. as follows:

System Task Number of Stacks Required

Disk 1/0 Two stacks if you will be running
multitask programs, or foreground
and background programs that
need to issue disk 1/0 system calls
concurrently (e.g., .OPEN, .INIT,
.WRL).

Spooling One stack

SYSTM call One stack for each user task that is
to be able to execute a .SYSTM call
(requiring the use of an /O
device) concurrently with other
user tasks.

SYSGEN permits vou to select from one to 10
(decimal) system stacks. If this RDOS system will run
single task programs in a background - only
environment, you need specify only one system stack.
To spool output data, add another system stack. If you
allocate only one stack. RDOS won't spool, and if you
issue system spooling commands, it will treat them as
no-ops. Likewise, if a system also has a foreground
program active and you have defined only two stacks,
no spooling will occur. We recommend at least 2 stacks
for a single-ground system, and 3 for a dual-ground
system (more for Extended BASIC).

To illustrate further, let’s say that you have a
background-only multitask program which spools to
the line printer and performs disk /0 on only one
channel at a time. This program requires the allocation
of 3 system stacks: one stack for disk 170, one for line
printer output, and one for the spooler.

In general, you should allocate enough stacks to
prevent .SYSTM calls issued to slow peripherals
(SPTR, MTA, etc.) from interfering with .SYSTM calls
necessary to support a real time environment. Each
.RDL or .RDS to a non-multiplexed console requires a
system stack until the read is completed.

Each system stack requires about 250, or 350, words
depending on your computer; see How 1o Load and
Generate Your RDOS System for exact figures. Add the
stack total to the basic RDOS system memory
requirements.

9"‘ 2 Licensed Materiai-Property of Data Generai Corporation

When the system attempts to allocate a stack and none
is free. it suspends the calling task and control passes to
whatever other system task is ready for execution:
RDOS will attempt to allocate a stack for the suspended
task at some future moment. Thus. the tuning report
may indicate multiple unsuccessful stack requests for
the same system task. The same is true of certain cell
requests. However, all unsuccessful buffer and overlay
requests, and most unsuccessful cell requests. cause
the system task to wait until the appropriate resource
becomes free.

System Cell Requirements

A system cell is a 20, -word control tabie which the
system uses primarily to save system task state
information. The optimum number of cells depends
largely upon your system’s application.

SYSGEN automatically allocates two cells for future
read/write block operations, three cells for each stack,
and two cells for an IPB (if vou specified one); we
recommend that you specify extra cells as follows: each
active spool request requires two, and the IPB (if any)
will run better with one or two extra cells.

Each active .SYSTM call also needs an extra cell.

Since one goal of tuning is to keep all peripheral devices
active concurrently, vou need not allocate a cell for
every possible future concurrent .SYSTM call. For slow
peripherals, a lack of cells can degrade the system’s
operation. Consider the following illustration in Figures
9-1 and 9-2. In Figure 9-1, this RDOS system contains
three devices: a disk, a mag tape drive, and a line
printer; it has nine cells. The program environment
contains 20 user tasks, each one desiring the use of
each of the three dcvices. It so happens that these tasks
want to use different devices, hence the system runs
efficiently. As each task issues an 1/0 request. RDOS
enqueues its cell to that device so that when the device
becomes free, the next task in line will eventually be
able to use the device. Thus RDOS enqueues only nine
system tasks for the devices (and stores 11 requestsin a
special system table, PTBL). Even though 11 requests
are waiting in table PTBL, the system is running
efficiently.

Notice the difference in Figure 9-2. This is the same
system, but somehow nine ready tasks want to use the
mag tape; these tasks monopolize the cell queue.
Although up to 11 other tasks want to use the disk and
line printer, they can’t be readied until they receive a
cell. RDOS will free cells one by one as the ready tasks
finish with the mag tape; meanwhile, the other tasks
stagnate in PTBL. There are too few cells for this
program although there were enough for the same
system in the first program. The waiting tasks cannot
use the disk and line printer even though these devices
are not busy, and the system is running inefficiently.

083-C00075-08

DEVICE QUEUE DEVICE

Disk

Task | Task Task
Cell 7 | Cell4 | Cell 1

Task | Task | Task Mag
Cell8 | Cell5 | Cenia| 1ask Tape

Line
Printer
Task

Task | Task | Task

Cell9 | Cell6 | Cell 2

Task 10

.
.
.

Task 20

SD-00567
o Figure 9-1. Adequate Cell Apportionment

DEVICE QUEUE DEVICE

System Buffer Requirements

System buffers are portions of memory which RDOS
allocates dynamically to receive either user data or
system overlays. RDOS requires a minimum of two
buffers per system stack or six buffers total, whichever
is greater. SYSGEN automatically allocates this
minimum; at SYSGEN time you can specify as many
extra buffers as core memory will allow. Each system
buffer requires 4164 (274,, words. If any multiples of
274 words are available in the last 1024-word block of
system space in mapped systems, RDOS will use these
multiples for additional system buffers.

When RDOS needs a buffer, it flushes the contents of
the oldest buffer that is not in use. However. if extra
buffers are available, fewer get flushed and their
contents can remain accessible to system memory. If
your application favors having buffered data in core
(for fast reaccess), or having many system overlays
resident in core (for fast SYSTM call execution), then
you must specify extra buffers. Extra buffers increase
system speed, but they reduce the total amount of
memory available for your programs. Thus, the idea is
1o select enough system buffers to provide the speed
you want, while leaving adequate memory for your
programs.

RDOS requires some system buffers to receive system
overlays. The following list describes each overlay, and

, Disk the system calls or functions that it executes. Each
overlay’s number (octal) precedes its name in the list;
vou'll need this number to understand the tuning

Task | | Task Task Mag report, since the report doesn't include system overlay
Cell g cetiz2 | | cent Task Tape names.
ﬁ""" Line Overlay Name Functions
‘ Printer Number
PTBL . ,
0 DFRWS Disk file WRL,
Task 10 .RDR/.WRR,
.RDS/.WRS.
.] DFRWS Disk file .CHSTS. .RDL,
Task 20 .LINK, .RDL, .STAT.
SD-00568 i 2 UTIL! Mag lape GCHN,
Figure 9-2. Inadequaie Cell Apportionment GMEM. .SMEM. 1ape
MTDIO
3 CREATE Starts file * creation:
In the environements shown in both Figures 9-1 and CONN, .CCONT,
9-2, RDOS would report cell faults. However, .CRAND. CREAT
additional cells would not improve system efficiency in
Figure 9-1. Thus. vou must supplement the fault 4 DELETE Deiete a file, a
information provided in the tuning report by timing subdirectory or a
vour application programs to determine whether the secondary partition:
reported faults really degrade svstem performance. DELET.
083-000075-08 Licensed Material-Property of Data Generai Corporation 9" 3

Overlay
Number

5

o
wh

9-4

Name

FILSY

SOV1

SOvV2

SOV3

SOv4

DVINI

CRSFS

RINGI

RING3

Functions

Maintains directories and
searches for entries in
them.

Implements periodic
rescheduling for
.QTASK and QUE. Also
implements the

following system calls:

.CHATR, .CHLAT,
.FGND, .GCIN,
.GCOUT, .GTATR,

.GTOD,, .ODIS, .OEBL,
and .STOD

Checks file names for
validity, interprets
directory specifier
prefixes, and unpacks file
names into SYS.DR
format.

Processes disk file errors,
reads disk core images.

Opens files (.OPEN,
.EOPEN, .ROPEN):
.CLOSE, .RESET. and
implements CLI CLEAR
command.
Initializes directories:
.EQIV.

Createsa MAP.DR entry
in SYS.DR. and creates
peripheral device entries
in SYS.DR after a full
initialization.

Opens and closes
character devices on
level: writes messages to
the console.

Console kevboard and
reader .RDL/.RDS:
RDS. .GCHAR: system
fevel character 170
{ACHR.WRS. PCHiy).

Performs svstem-leve]
character 1/0 (ACHR,
WRS. PCH).

Licensed Matenai-Property of Data Genera! Cerporation

Overlay
Number

17

20

21

22

24

()
wh

(%]
A

o
don

(7]
wh

Name

SOV3

MTAIO

MTAUC

TUON
CDROV

WDBLK

SPOLR

CODER

SOV6

SOV7

SOV
SOV9

SOVI0

SOV1li

JEHOV

Functions

Performs housekeeping
necessary to execute
kevboard interrupt or
.BREAK.

ANIT, .RLSE, .CLOSE;
block-level reading and
writing for magnetic
tapes/cassette units.

.OPEN for magnetic
tape/cassette units.

.TUON (turn tuning on).
ASCII

Card reader
.RDL.

Completes the file
creation activities
originating in CREATE;
withdraws a single block
from MAP.DR.

Supports spooling.

Encodes and decodes
7-track magnetic tape;
.SKPK, .SPDA, .SPEA.

Writes a core image 1o
disk.

Continues disk core
image read function
started by SOV 3.

EXEC, .[EXFG. .EXBG.

Resolves directory link
entries: .EXEC, EXFG.
EXBG.

Continues directory
resolution function of
SOV9, INIT. .RLSE.

Determines size of a
fixed-head disk for INIT
system call; ICMN.
.RDCM., WRCM.

Creates an initial system
directory.

083-000075-08

N

Overlay
Number

36

-

[o¥]

44

4
L

46

50

v
()

093-000075-08

Name

SOV12

SOV17

SOV18

WDCBK

SOV19

SOV20

SOV2l1

SFTAB

Functions

Continues the function
performed by SOVS:
creates file BREAK.SV
and completes a program
break caused either by
BREAK or console
keyvboard interrupt.

Opens. closes a disk file:
.UPDAT.

.DIR. .RDOP/.WROP.
.CDIR..CPART.
ADEF, .DEBL/.DDIS.

Preprocesses the
deletion of partitions
subdirectories;
RENAM.

Finishes the

housekeeping started by
SOVS for .EXEC/.RTN
and keyboard interrupts;
JRMV,

Produces an orderly
shutdown upon a system
release; .BOOT.
Withdraws a series of
contiguous blocks from
MAP.DR; creates an
elemental MAP.DR for
for DIVINI and SOV15.

Determines size of a
moving head disk during
ANIT system call; does
QTY open/close.

Prepares program
environment for a
core-image load (mapped
systems only).

Provides MCA
read/write sequential
and and other MCA
support functions.

This is a data overlay
used to build pd
peripheral device entries
during a full system
initialization.

Overlay
Number

Ay

-
-]

1

A4
F oy

L5
(¥ 1

hn
o

sy
]

60

61

62

63

64

66

Name

SOvV22

SOV23

SOV24

SOV

()
L

FSTAT

DVRLS

SOV26

SOV27

SOV28

TUNOV

QTYOV

SOV29

Licensed Material-Property of Data General Corporation

Functions

Continues the code
begun in SOVI1S:
.OVRP.

Abortsasystem process.

Resolves spooling
deadlocks: .GPOS/
SPOS. .GMCA; .OPEN
for MCA.

Completes the operation
inttiated by overlay
WDCBK (46).

Provides support to other
system overlays by
getting and/or updating
file status and by
Qblaining block
addresses for disk [/0.
Deposits a {ree block in
MAP.DR.

Releases a directory:
determines the DCT of a
device for the spooling
routines in CODER
(26). .GDIR, .MDIR,
.GSYS.

.WRPR,
STMAP.

WREBL,

Completes the execute
functions starterted
SOV8. continues the
functions performed by
by SOV3, SOVS and
SOVI12: .RTN/.ERTN.

OVOPN;
VMEM
systems only).

.MAPDF,
(mapped

TJUOFF (turn tuning
off)

Provides QTY/ALM
driver support.

Replaces overlays in a
OL file.

9-5

How Tuning Works

After you have generated a system with tuning (having
specified a number of stacks, cells and system buffers),
you can turn tuning on, and start recording in the
tuning file. If you find your system inefficient, you can
examine the tuning report and reSYSGEN, specifying a
different number of stacks, cells and/or buffers. As
mentioned earlier, you can also have SYSGEN
examine the tuning file, and modify the original
answers to these questions. ReSYSGEN as often as you
like, to generate one or more RDOS systems which run
your application(s) well. You will cause a system
failure, however, if you turn tuning on in a system
before you have deleted the tuning file of a previous
system with the same name.

As with many RDOS features, vou can use either
system calls or CLI commands to turn tuning on or off.
You must, of course, have selected tuning and
specified the kind of report you want at SYSGEN time
as well as the type of tuning report you desire.
SYSGEN automatically reserves extra buffers within
the system for use by the report function. One buffer is
required for the summary report; detailed reports
require 3 buffers.

The CLI commands to turn tuning on and off are
TUON and TUOFF; the command to display the
contents of the tuning file is TPRINT. The
corresponding system calls to turn tuning on and off
are .TUON and .TUOFF. CLEARIng the tuning file
will not turn tuning off, nor will it affect the tuning
report file. However, you must not delete this file while
tuning is on. To produce a fresh tuning report, issue
CLI commands TUOFF, RENAME or DELETE, and
TUON.

When tuning is on, the tuning function accumulates
the number of requests for stacks, cells, buffers, and
system overlays. RDOS records this information in a
disk file named sysname.TU, which resides in the
master directory; sysname is the name of the current
RDOS system. Additionally, RDOS also records the
number of times it defaulted these requests because
the resource was not available. You can then compute
the ratio of requests to faults as an indication of the
system efficiency.

9 - 8 Licenseo Materal-Property of Data Gereral Corporation

Note that your program can access the tuning file by
opening it, and then issuing system call .RDS for
2*TULEN bytes. (TULEN defines the number of
words in the summary report).

The tuning report file is a contiguous disk file
consisting of either one or three disk blocks depending
on whether you requested an overlay report at
SYSGEN. The first disk block contains the summary
report. If you requested an overlay report, it follows on
the next two disk blocks (Figure 9-3).

Block O Summary Biock O
Report
Block 1
Detailed
Report
Biock 2
SD-00569

———— Figure 9-3. Disk Blocks of the Tuning File ————

The summary report contains four sections: one each
for system stacks, cells, buffers, and system overlays.
Each section in the summary is five 16-bit words long.
The first word in each section lists the number of
elements (stacks, buffers, etc.) in the system. The next
two words are a double-precision integer count (2
16-bit words) of all requests for this element. The last
two words are a double-precision integer count of
faults, i.e.. unsuccessful requests for the resource. Each
double-precision count returns to zero upon overflow.
The remaining words in the summary disk block are
not meaningful. '

Figure 9-4 shows the arrangement of information in
the summary portion of the tuning report file. The
named word displacements relative to the beginning of
the file are defined in the file PARU.SR (user
paramelers supplied with your RDOS system: see
Appendix B).

083-000075-08

Word
Number of stacks in system | .TUNSTK
Stack S stack .TUSTK
Data requests TUSTK +1
I stack TUPSTK
faults TUPSTK+1
Number of cells in system TUNCEL
Cell S cell .TUCEL
Data requests TUCEL+1
z cell .TUPCEL
faults TUPCEL+1
‘ Number of buffers in system | .TUNBUF
buffer TUBUF
g{a":;er requests TUBUF + 1
l buffer TUPBUF
faults TUPBUF+1
Number of system overiays | .TUNOV
Overlay ‘ system overlay .TUOV
Request requests TJUOV+1
Data I system overiay TUPOV
fauits .TUPOV+1
meaningless
8D-00570

—Figure 9-4. Details of Tuning Summary Report, First Disk =
Block

The number of stacks and cells (displacements
.TUNSTK and .TUNCEL) is the total of each in the
system; the number of buffers (displacement
.TUNBUF) is the total number of buffers, excluding
tuning buffers. The buffer request count reflects the
requests for data buffers and requests for buffers
needed to receive system overlays. Also, as indicated
earlier, multiple stack and cell faults can occur and be
recorded for the same system task.

If vou specified a detailed tuning report at SYSGEN
time, then RDOS places it in the blocks immediately
following the summary report in the tuning report file.
The detailed report consists of a series of four-word
descriptors, with one descriptor for each system
overlay. Each descriptor contains a count of requests
for a system overlay and a count of the number of
requests requiring that the overlay be read from disk
(because it was not then resident in memory). Each
count is a double-precision integer; if an overflow
occurs, RDOS returns the count to zero. The detailed
report can list up to 128 separate system overlayvs. The
counts of defined, but unused. overlavs are set to zero.
Figure 9-5 depicts the arrangement of information in
the detailed report for a system with moverlays:

Each system overlay is described earlier in this chapter.

083-000075-08

overlay zero request
count
Tuning file overlay zero fault
block 1 count
(other syst.em overlay
descriptors)
overiay m-1 request
count
Tuning file overiay m-1 fault
block 2 count
{meaningless)
SD-00571 R
‘———— Figure 9-3. Tuning Overlay Report

Start Recording in the Tuning File (TUON)

This system command turns on the tuning mechanism,
which reports system resources and faults in the tuning
file. If the tuning report file does not exist, this
command creates it as a contiguous file of either 1 or 3
blocks; the size depends upon vour choice of report
functions at SYSGEN time. RDOS names the file
sysname.TU, and places it in the master directory:
sysnameis the name of the current RDOS system.

If the tuning file already exists, then new report
information will be added 1o this file.

If the tuning report function is already on, this
command is an effective no-op.

Required input
ACO - Setto zero.

Format

SYSTM
TUON

error return
normal return

wicensed Mateniai-Property of Data General Corporation 9" 7

Possible errors

AC2 Mnemonic

2 ERICM
27 ERSPC
46 ERICB

101 ERDTO

9-8

Meaning

Illegal system command
(tuning not SYSGENed).

Insufficient disk space to
create tuning file.

Insufficient number of free
contiguous disk blocks
available to create the
tuning file.

Disk timeout occurred.

Stop Recording in the Tuning File (TUOFF)

This system command halts the tuning report function
until and unless you turn it back on with a .TUON
command. This command does not delete the tuning
file itself. It also releases any extra system buffers
required by the tuning function, for use by the system.

If the tuning report function is already turned off, this

callis an effective no-op.

Required input

None.
Format

SYSTM
.TUCOFF

error return
normal return

Possible errors

AC2 Mnemonic

12 ERDLE

101 ERDTO

End of Chapter

Licensed Materiai-Property of Data General Corporaton

Meaning

Tuning file was deleted
before tuning was turned
off.

Disk timeout occurred.

C83-002075.08

Appendix A
RDOS Command and Error Summary

Table A-1 describes the required input to (or remarks
on) the accumulators for each RDOS system or task
call. nis the file’s channel number, as assigned on the
open. By default, after a task or system call, AC3
contains the User Stack Pointer (USP); To return the

frame pointer, see System and Task Calls (Chapter 3).
RDOS returns error codes, if any, in AC2. Task calls
sometimes destroy ACs, as noted. SYSTM calls
preserve ACs if they don't specifically return values.

Table A-1 Command Summary

Call ACO AC1 AC2
.ABORT Destroved. Bits 8-15: task I.D. number.
AKILL! Priority of tasks to be killed.
SYST™ Byte pointer to file name. Device characteristic mask (see Channel number (if n = 77)
APPEND n .GTATR).
ARDY! Priority of tasks to be readied.
ASUSP! Priority of tasks to be suspended.
SYSTM Byie pointer to primary-partition or
BOOT? specifier:filename.
SYSTM!
BREAK?
SYSTM Byte pointer to file name. Integer number of disk blocks.
.CCONT
SYSTM Byte directory to new directory
.CDIR name.
SYSTM 1BO: read-protect this file. Channel number (if n = 77)
.CHATR n IBI: atiribute-protect this file.
iB7: allow no link resolution.
1BY: user attribute.
1B10: user attribute.
1B14: make this file permanent.
IB1S: write protect this file.
SYSTM same as .CHATR Channeinumber (if n = 77)
CHLAT n
Footnotes

‘noerrorreturn

‘nonormal return

3

()
w
[X)
Q
<

s

00075-08

Lizensec Matenal-Property of Data General Corporation

A-1

e

Table A-1. Command Summary (continued)

’.\V‘_____‘____—____‘__._—
Call ACO AC1 AC2
‘ —
SYSTM Starting address of 22 word area. Channe] number (ifn = 77)
CHSTS n
SYSTM Channe] ifn=77)
CLOSE n number (if n
SYSTM Byte pointer to file name. Integer number of disk blocks.
.CONN
.SYSTM Byte pointer to file name.
.CRAND
SYSTM Byte pointer to secondary Number of contiguous blocks
.CPART partition name. (must exceed 60).
SYSTM Byte pointer 1o file name.
.CREAT
SYSTM Device code to be user-access
.DDIS disabled.
SYSTM Device code to be user-access
.DEBL enabled.
8SYST™M Number of RTC ticks.
.DELAY
SYSTM Byte pointer 1o file name.
DELET
SYSTM Byte pointer to
-DIR direclory/directory device
specifier.
.DQTSK Bits 8-15: task I.D. number. (returned) Base address of
released queue area.
.DRSCH'
SYSTM Number of RTC ticks. Address of user interrupt routine.,
DUCLK
SYSTM Byte pointer to file name. Characteristic disable mask (see Channel number (if p = 77)
EOPEN n .GTATR). Oicaves characternstics
unchanged.
SYSTM Byle pointer 1o current disk or Byte pointer 1o temporary
EQIV tape specifier. specifier.
SYSTM Right byvie: ext. memory block no. | Starting relative block no. in disk Right byte: no. of 256-word
ERDB (0.1.2.0r 3) file. blocks to be read?
Left byte: 236-word g£roup no. Left byte: channel no. (ifn =
(0.1.2.0r3) 771
Footnotes

‘nocrror return

3. - - . R L.
“iferror EOF. errorcode in right-byie, purtial countin iefy byte.

A-2

Litensed Materiai-Property of Data Gereral Corporanon

093-0nNNTE. Ne

Table A-1. Command Summary (continued)

Call ACO AC1 AC2
[ERSCH!'
SYSTM Data word to be passed to
ERTN? next higher level.
SYSTM Right byte: extended memory Stwrting relative block no. in disk Right byte: no. of 236-word
EWRB block no. file. blocks to be written®
Left byte: 256-word group no. Left byte: channel no. (ifn =
(0.1.2. or 3). 77).3
SYSTM Byte pointer to new BG program 0Bl: new BG to have same Optional message to new BG.
EXBG name. priority as old BG.
IBl:new BG to have same
priority as FG.
SYSTM Byte pointer to save file name. 0: swap to user program. Message to new program.
EXEC 1BO: chain to user program. ’
1:swap to debugger.
1BO + I:chain to debugger.
SYSTM Byte pointer to save file name. OBl: FG to have over BG. Passed to new program.
EXFG IB1: FG/BG equal priority.
OBI13: pass control to save file.
1B15: pass control to debugger.
SYSTM (returned) 0 (returned) program level code:
FGND 1=BG level 0 ...
12 = FG level 4.
SYSTM (returned)
.GCHAR bits 9-135: character
bits 0-8: cleared.
SYSTM (returned) Free channel
number.
SYSTM Byte pointer to 6-byte area
.GCIN receiving the input console name.
SYSTM Byte pointer to 6-byte area
GCCuT receiving the output console
name.
SYSTM (returned) (returned) {returned)
GDAY Day Month Yeuar minus 1968
Footnotes

i

Ino normal return.

noerror return.

it error EOF. error code in right byte, partiul countin left byte.

083-000075-08

Licensed Material-Property of Data General Corporation

A-3

Table A-1. Command Summary (continued)

Call ACO AC1 AC2
SYSTM Byte pointer to 134 -byte area.
.GDIR
3YST™ (returned)
GHRZ 0:no RTC
1: 10 HZ
2: 100 HZ
3: 1000 HZ
4:60HZ
5:50HZ
SYSTM MCA transmitter device code (65 | (returned)
GMCA or 464) MCA unit number
SYSTM (returned) (returned) Channel number (ifn = 77)
.GPOS n High order portion of byie Low order portion of byte pointer.
pointer.
SYSTM Byte pointer to 155 -byte area.
GSYS
SYSTM (returned) (returned) Channel number (if n = 77)
GTATR n 1BO: read protected. MCA shares 0 and 13; see file
1B1:attribute protected. PARU.SR
1B2: save file 1BO: spoolable device.
1B3:link entry* 1B1: 80-column card.
1B4: partition® 1B2: lower-1o-uppercase.
1B3: directory file® 1B3: form feed on open.
IB6: link resolution entry* 1B4: full word device.
IB7: no link resolution allowed. 1B6: LF after CR.
IB9: user atiribute. IB7: parity check/generation.
1B10: user attribute. 1BS8: rubout after tab.
1B12: contiguous file* 1BY: null after FF.
1B13: rundom file® IB1G: keyboard input.
IB14: permanent file IBH:TTY output.
IB15: write-protected 1B12: no FF hardware.
1B13: operator intervention
needed.
1BI4: no TAB hardware.
1B15: leader/trailer.
Footnotes

“cannot beset by user

Licensed Materiai-Property of Data Genera! Corporanon

083-000075-08

Table A-1. Command Summary (continued)

Call ACO AC1 AC2
.SYSTM (returned) (returned) (returned}
.GTOD Seconds Minutes Hours (using a 24-hour
clock}).
SYSTM Starting word address of Size of area in words.
ACMN communications area.
SYSTM Device code of user device. DCT. (1B0if data channel device
ADEF is mapped systems). User power
restart address if ACO = 77,
ADST! 0: ready bits 8-13: task I.D. number. treturned)
1: suspended by .SYSTM call. Base address of task's TCB.
2: suspended by SUSP. . TIDS.
" LASUSP.
3: waiting for XMTW/.REC.
4: waiting for overlay node.
5: suspended by .SUSP. .ASUSP.
or . TIDS and .SYSTM call.
6: suspended by . XMTW/ REC
and .SUSP. .ASUSP. or .TIDS.
7:suspended by .ASUSP. SUSP.
or .TIDS and waiting for overlay
node.
10: no such task exists.
SYSTM Byte pointer to directory/global -1z full (tape or disk)
ANIT device specifier. 0: partial
Footnotes

I onocrrorreturn

083-000075-08

Licensed Material-Property of Data General Corporation

(03]

Table A-1. Command Summary (continued)

Call ACO AC1 AC2
SYSTM
ANTAD
SYSTM Queue area address (0if no RUN | Right byte: max number of queue | Program Table Address (0 if
10oPC or QUE) areas (0if no RUN or QUE), no RUN or QUE).
Left byte: overlay channel no. (0
if right byte = 0).
SYSTM Device code.
IRMV
AXMT Message address (destroved). Nonzero message (destroyed). (destroyed)
KILAD! Address of kill-processing
routine.
Kiee t2
LEFD!? (contents lost upon return)
LEFE? (contents lost upon return)
.LEFS! (returned)
user status word
1B9 - LEF mode is enabled
0B9 - LEF mode is disabled
SYSTM Byte pointer to link name. O:link will be resolved in parent
.LINK partition of link entry’s residence.
non-0: byte pointer is either to an
alternate directory alias nume or
to an alias name string.
SYSTM Number of blocks for extendad Starting logica! block number of Size of window in 1K blocks.
MAPDF addressing use. window.
SYSTM Byte pointer to 13, byte area.
MDIR
SYST™ HMA NMAX
MEM
SYST™M NMAX increment or decrement {returned) new NMAYN (after
MEMI (2’scomplement) change)
Footnotes
bonocrror relurn
nonormal return
A“G Licensed Materiai-Property of Data Generai Corporation 083-000075-08

Table A-1. Command Summary (continued)

Call ACO ACT AC2
SYST™ Core data address. if a data bit 0: 1. even parity: 0. odd parity. | Channel number (if n = 77,).
MTDIOn transfer. bits 1-3:
0. read (words). Status word or system error
1. rewind tape. code if error returns: status
3. space forward. word if read status normal
4. space backwards. return. Returned:
5. write (words). 1BO: error.
6. write EQF. 1B1: data late.
7. read device status word. 1B2: tape rewinding.
bits 4-13; 1B3: illegal command
word or record count: if O on 1B4: high density or cassette if
space command. position tape to 1: low density if 0.
new file il itis less than 4096 IBS: parity error.
records away. 1B6: end of tape.
(returned) number of words 1B7: end of file.
read/written or number of 1B8: tape at load point
records spaced. ’ 1B9: 9-track or cassette if 1:
7-track if 0.
IB10: bad tape: write failure.
IB11:send clock (0if
cassette).
IB12: first character (0if
cassette).
IB13: write-protected or
write-locked.
IB14: odd character (Qif
cassetle).
IB1S5: unit ready.
SYSTM Byte pointer to tape giobal Characteristic inhibit mask (see Channel number (ifn = 77)
MTCPD n specitier. .GTATR)
SYSTM
.ODts
SYST™
OEBL
SYSTM Byte pointer to file name. Characteristic inhibit mask (see Channel number (ifn = 77)
OPENn .GTATR): Oleaves previous

characteristic unchanged. 0 for
MCAL or 01 to specify your own
MCAT retry timeout.

093-000075-08

Licensed Material-Property of Data General Corporation

A-7

Table A-1. Command Summary (continued)

Call ACO AC1 AC2
.OVEX?3 Bits 0-7: node number Return address.
Bits 8-15: overlay number.
OVKIL® Bits 0-7: node number
Bits 8-15: overlay number.
SYSTM Bits 0-7: node number. -1 unconditional Channel number (ifn = 77)
.OVLOD n Bits 8-13: overlay number. 0: conditional
SYST™ Byte pointer to overlay file nume Channel number (if n = 77)
.OVOPN n (with .OL extension)
.OVREL Bits 0-7: node number.
Bits 8-15: overlay number.
SYSTM Byte pointer to overlay Byte pointer to overlay file name
OVRP replacement file name (LOR). (.OL).
SYSTM Bits 9-15: character:
.PCHAR Biis 0-8: 1ignored.
PRI? Bits 8-15: new task priority.
QTSK Address of User Task Queue
table.
Footnotes

i noecrrorreturn

> iferror EREOF, error code in bits 8- 13, partial read count in bits 0-7.

normal return through AC2

4 nonormalreturn

A-8

Licensec Matera-Property of Uata General Corporaton

G83-000075-08

Table A-1. Command Summary (continued)

Call ACO AC1 AC2

SYSTM Starting core address to receive Starting disk relative block Bits 0-7: number of blocks to

RDBn data. number. be read?

Bits 8-15: channel number (if
n=77)

SYSTM Word address 1o read into. Offsetinto communications area. Word count.

RDCM

SYSTM Byte pointer 10 user core area. (returned’ Read byvte count Channel number (if n = 77)

RDLn (including terminator).

SYST™M By1te pointer to message arca. (returned) Byte count.

.RDOP

SYSTM Core address to receive record. Record number. Channel number (if n = 77)

RDR n

SYSTM Byte pointer to core area. (Must Number of byies 1o be read (if Channel number (if n = 77)

RDSn be even for MCA). EOF detected. partial byte count
returned).

SYSTM (returned) Console with switch

RDSW position.

REC! Message address. Message.

REMAP Destroved. Destroved. Destroved. Number of 1K
Left byte: starting reiative biock biocks to be remapped.
number in map.

Right byte: starting relative block
number of window.

SYSTM Byvie pointer to old name. Bvte pointer to new name.

RENAM “

SYSTM

RESET

SYSTM Byie pointer to directory or global

" RLSE device specifier.

SYSTM Byte pointer to file name. Characteristic inhibit muask fsee Chunnelnumber (if n = 77}

ROPEN n GTATRY, Gpreserves
churactensucs without chunge.

For MCA L see OPEN.

SYSTM Byte pointer to file nume string. Starting address of 22, word urea.

RSTAT

SYSTM

RTN!

SYSTM

RUCLK

Footnotes

Borciror relurn

e el rotur

083-000075-08

n Herror REOI

carret corde o Bits KPS nartnad road count in bt 07

Licensed Matenzi-Property of Bata General Corporation

A-S

Table A-1. Command Summary (continued)

Call ACO AC1 AC2E .
SYSTM Day Month .
'SDAY Year minus 1968
SMSK! Lost New interrupt mask 10 be ORed Lost
with old mask, PR
SYSTM Byte pointer 10 device name.
SPDA
SYST™M Byte pointer to device name.
SPEA
SYSTM Byte pointer to device name.
SPKL
SYSTM High order portion of byte Low order portion of byte pointer. Channel number (ifn = 77)
.SPOSn pointer,
.SYSTM Byte pointer to file name string. Starting address of 22, word area.
STAT
SYSTM Device code. Starting user address of device
STMAP buffer. (Logical address of device
buffer is returned.)
.SYSTM Seconds Minutes Hours
.STOD '
.SuUsp!
TASK Leftbyte: tusk I.D. number New task entry point address. Contents passed to new task.
Right byte: task priority.
TIDK Right byte: task I.D. number.
.TIDP Bits 8-135: new priority Right byte: iusk 1.D. number.
.TIDR Right byte: task I.D. number.
TIDS Right byte: wask 1.D. number.
.TOVLD Bits 0-7: urea number -1: unconditional load. Channel number on which
Bits 8-15: overlay number. 0: conditiona! load. overlay file was . OQVOPNed.
.TRDOP Byte pointer to messuge areu (returned)
{must be even). Byvie count
Footnotes

I noerrorreturn

Licensed Materiai-Property of Data Genera! Corporation

093-000075-08

f

§

Table A-1. Command Summary (continued)

Call

ACO

ACT

AC2

SYSTM
TUCFF

SYSTM
.TUCN

TWRCP

Byvte pointer to message area.

-1 to suppress tusk [D number.

ucex 23

Any nonzero value to force
rescheduling.

uigx 23

Any nonzero value to force
rescheduling.

Unmapped: value upon the
call = return address
Mapped: unimportant

SYSTM
ULNK

Byte pointer to link entry name.

SYST™
UPBAT n

Channel number (if n = 77)

upex 23

SYSTM
VMEM

{returned) Number of available
blocks.

SYST™
WRB n

Starting memory address.

Starting relative block number.

Left byte: number of disk
blocks*

Right byte: channel number
(ifn=77)*

SYST™

WRCM

Word address of message.

Offset into communication area.

Word count.

SYST™M
WREBL

Starting address of series.

Ending address of series.

SYSTM
WRL n

Byte pointer 1o core buffer.

Write byte count, including
terminator, returned at end of
write.

Channel number (ifn = 77)

SYST™
WROP

Byte pointer to text string.

Footnotes

I noerrorreturn

2 nonormal return

3 unmapped: on the interrupt, AC3 contained the return address. You must restore AC3 to this va

4 iferror ERSPC, error code in right byte, partial write countin left byte.

093-000075-08

Licensed Material-Property of Data General Corporation

iue before you issue this call.

A-11

Table A-1. Command Summary (continued)

Call ACO AC1 AC2

SYSTM Starting address of 1K block Ending address of 1K block series.

WRPR series.

SYST™M Core address of record. Record number. Channel number (if n = 77)

WERR n

SYSTM Byte pointer to core buffer (must Number of bytes to be written. Right byte: Channel number

WRS n beeven for MCA} (ifn=177)
Left bvie: No. of MCA retries
(cach retry takes 200
milliseconds)

XMT Message address. Message must be (nonzero).

XMTW Message address. Message must be (nonzero).

A-12

Licensed Material-Property of Data General Corporation

093-000075-08

Error Message Summary

Applicable commands are arranged alphabetically in columns. in descending order.

Table A-2. Error Message Summary

Code Mnemonic Meaning Applicable Commands
0 ERFNO [ffegal channei number. APPEND EWRB OVOPN
.CHATR .GPOS .RDB
.CHSTS .GTATR .RDL
.CHLAT .MTDIO .RDR
.CLOSE MTOPD RDS
EOPEN .OPEN .ROPEN
ERDB .OVLOD .SPOS
1 ERFNM Ilegal file name. APPEND .CREAT LINK
.BOOT .DELET .MTOPD
.CCONT .DIR .OPEN
.CDIR .EOPEN .OVOPN
.CONN .EXBG .OVRP
.CPAR .EXEC .RENAM
.CRAND .EXFG .ROPEN
INIT
2 ERICM Illegal system command. .TUON:;: any unimplemented call.
3 ERICD [llegal command for device. APPEND MTOPD RDS
.ERDB .PCHAR .RDL
.EWRB .RDB SPDA
.GCHAR SPEA
.GMCA
MTDIO
4 ERSVI File requires the Save attribute .ERDB EXBG .RDB
and the ranDom characteristic. .EWRB EXEC
.EXFG
6 EREOF End of file .ERDB .OVLOD .RDL
.EWRB .OVOPN RDR
.RDB .RDS
.WRB
7 ERRPR Attempttoread a .ERDB .OVLOD .RDB
read-protected file. .EWRB .OVOPN .RDL
10 ERWPR Attemptto write a .EWRB .WRB WRR
write-protected file. JANIT WRL
11 ERCRE Attempt (o create an existent .CCONT .CONN .CRAND
file. .CDIR .CPAR .CREAT
12 ERDLE Attempt to reference a .APPEND .EOPEN MTOPD
nonexistent file. .BOOT EXBG .OPEN
.DELET EXEC OVOPN
.DIR EXFG .OVRP
ANIT .ROPEN
13 ERDEI Attempt (o alter a permanent .DELET .RENAM .ULNK
file.
14 FRCHA Itlegal attempt to chuange file CHATR .CHLAT
dattributes.

.WRB
WRL
.WRR
WRS
.UPDAT

.RLSE
RSTAT
SPDA
SPEA
SPKL
STAT
.UNLK

SPKL
.WRB
WRL
.WRS

.WRB

WRL
WRR
.WRS

.RDR
.RDS

.WRS

LINK
.RENAM

.RSTAT
STAT
.TUOFF
JULNK

083-000075-08

Licensed Materiai-Property of Data Generai Corporation

A-13

Table A-2. Error Message Summary (continued)

15

16

30

‘s

'od
g

Code Mnemonic

ERFOP

ERFUE

EREXQ

ERNUL

ERUFT

ERLLI

ERRTN

ERPAR

ERCM3

ERMEM

ERSPC

ERFIL

ERSEL

ERADR

ERRD

ERDIO

ERDIR

Meaning

Attempt to reference an
unopened file.

Fatal utility error.

Execute CLI.CM on return 1o
CLIL (Thisis not really an
error. but an instruction.)

Invisible error code.

Attempt to use a channel
already in use.

Line limit exceeded on read or
write line.

Attempt to restore a
nonexistent image.

Parity error on read line.
Magnetic tape parity. (Often
caused by dirty heads.)

Trying to push 100 many
levels.

Attempt to allocate more
memory than available.

Out of disk space. Magnetic
tape - EOT

File read error. Magnetic tupe -
bad tape - odd count. Often
caused by dirty heuds.

Unitimproperly selected.

Hlegal starting address.

Attlempt to read into system
ared.

Auempt to perform direct
block I/Oona sequentially
organized file.

Files specified on different
directories.

Applicable Commands

.CHATR
.CHLAT
.CHSTS
.CLOSE
.ERDB

.ERTN

.APPEND
.EOPEN

.RDL

.BOOT

.RDL

EXBG

.EXBG
EXEC

.BREAK
.CCONT
.CDIR
.CPAR
.CRAND

.ERDB
OVLOD
APPEND
DIR

EXEC
EXFG

CHSTS
GCIN
GCOUT

ERDB

RENAM

.EXEC

GCHN
MTOPD .

EXFG
MAPDF

CREAT
.DIR
EWDB
ANIT

.OVOPN
.RDB

.EOPEN
ANIT

MAPDF
REMAP

.GDIR
.GSYS
MDIR

EWRB

WRL

.RDS

.EXEC

.EWRB .RDB
.GPOS .RDL
-GTATR RDR
MTDIO RDS

.OVLOD SPOS

-EXEC (argument to .ERTN).

RTN

-EXEC (argument to .ERTN)

OPEN
OVOPN

MEMI
.OVOPN

.OPEN
.OVRP

LINK
‘MTOPD

.RDR

.OPEN
MTOPD

WREBL
.RDB
.RDL
.RDR

.RDB

-UPDAT
.WRB
.WRS
.WRR
.WRL

.TUON
WRL
.WRR
.WRS

.RDS

.ROPEN
RLSE

WRPR
.RDS

RSTAT
STAT

WRB

A-14

Licenseg Materiai-Property of Data Genera: Corporation

083-000075-08

P
7

Table A-2. Error Message Summary (continued)

Code Mnemonic
36 ERDNM
37 EROVN
40 EROVA
41 ERTIM
42 ERNOT
43 ERXMT
43 ERIBS
46 ERICB
47 ERSIM
50 ERQTS
51 ERNMD
52 ERIDS
53 ERDSN
54 ER2DS
55 ERDDE
56 ERDIU
57 ERLDR

Meaning
Devicenotin system or illegal
device code.

lilegal overlay number.
File not accessible by direct
(free form) 1/0.

Attempt to set itlegal time or
date.

Out of TCBs.

Message address is already in
use.

Interrupt device code in use.
Insufficient number of free
contiguous disk blocks to

create file.

Dupiicate read or duplicate
write to mux line.

llegal information in task
queue table.

Allemptto open 100 many
devices ordirectories.

Iegal directory specifier.

Directory specifier unknown.

Partitionis too small.
Directory depth exceeded.
Directory in use.

Link depthexceeded.

Applicable Commands

APPEND
.DIR
.DEBL
.EOPEN
GMCA

.OVEX
OVKIL

.ERDB
EWRB

SDAY

opC

AXMT

.DUCLK

.CCONT

.RDL

QTSK

.DIR

.APPEND
.CCONT
.CDIR
.CONN
.CPAR
.CRAND

ADEF
ANIT
ARMYV
MTOPD

.OVLOD
MTDIO
OVLOD

STOD

.TASK

XMT

ADEF

.CONN

.RDS

ANIT

ANIT

.CRAND
.CREAT
.DELET
.DIR
.EOPEN
.EQIV

.CPAR

.DELET

CREAT
DELET

.DIR
.EOPEN
.EXBG
.EXEC

.OPEN
.RLSE
.ROPEN
.RSTAT

.OVREL

.OVOPN
.RDB

.TWROP

XMTW

.RUCLK

.CPAR

WRL

.EXBG
.EXEC
.EXFG
.LINK
.MTOPD
.OPEN

EQIV

ANIT
LINK
.MTOPD
.OPEN
.OVOPN
OVRP

SPDA
SPEA
SPKL
STAT

TOVLOD

.TOVLD
.WRB

.TUON

.WRS

.OVOPN
.RENAM
.ROPEN
.RSTAT
STAT
ULNK

.RLSE

RENAM
.ROPEN
RSTAT
STAT
ULNK

093-000075-08

Licersed Material-Property of Data General Corporation

A-15

Table A-2. Error Message Summary (continued)

Code Mnemonic Meaning Applicable Commands
60 ERFIU File 1sin use. APPEND DELET .OPEN RENAM
BREAK EOPEN
61 ERTID Task L.D.error. ABORT TASK .TIDP TIDS
DQTSK TIDK .TIDR
62 ERCMS Communications area size JCMN .RDCM WRCM
error.
63 ERCLUS Communications usage error. RDCAM WRCM
64 ERSCP File position error. SPOS
63 ERDCH Insufficient room in data ADEF
channel map.
66 ERDNI Directory/device not APPEND .CRAND .EXEC .OVRP
initialized. BOOT CREAT EXFG RENAM
CCONT . DELET LINK .ROPEN
.CDIR .DIR .MTOPD .RSTAT
CONN .EOPEN .OPEN STAT
.CPAR EXBG .OVOPN .ULNK
67 ERNDD No default directory.
70 ERFGE Foreground already exists. EXFG .ECLR SMEM
71 ERMPT Error in partition set.
72 EROPD Releused directory in use by .RLSE .BOOT
other program.
73 ERLSZ Not enough room for UFTs EXEC .EXFG .EXBG
within USTCH.
74 ERMPR Address outside address space .APPEND .EWRB .OPEN SPKL
(in a mapped system only). .BOOT .EXBG .OVOPN STAT
.CCONT .EXEC .OVRP STMAP
.CDIR .EXFG .RDB .TRDOP
.CHSTS .GCIN .RDCM .TWROP
.CONN .GCOUT .RDL JUNLK
.CPAR .GDIR .RDOP .WRB
.CRAND .GSYS .RDR WRCM
.CREAT ICMN .RDS WREBL
DELET ADEF .RENAM WRL
.DIR ANIT .RLSE WROP
DUCLK .MDIR .ROPEN WRPR
.EOPEN MEMI RSTAT WRR
EQIV MTDIO SPDA WRS
.ERDB MTOPD SPEA
75 ERNLE Attempt to delete an entry JULNK
lacking the link characteristic.
76 ERNTE Buckground program is not EXBG
checkpointable.
A"T 8 Licensed Materiai-Property of Data General Corporation 093-000075-08

Table A-2. Error Message Summary (continued)

Code Mnemonic Meaning Applicable Commands
77 ERSDE Error detected in SYS.DR. ANIT .CREATE If error
.RENAME occurs
.CPART when
.CDIR directory
.CCONT has to be
.CRAND extended.
.LINK
100 ERMDE Error detected in MAP.DR. .BREAK .DELET
101 ERDTO Device timeout. .APPEND .DELET .OVLOD STAT
.BREAK .DIR .OVOPN . TOVLD
.CCONT .EOPEN .OVRP .TUOFF
.CDIR .ERDB .RDB .TUON
.CHATR _EWRB .RDR .UNLK
.CHLAT .EXBG .RDS .UPDAT
.CHSTS .EXEC .RENAM _WRB
.CONN .EXFG RESET WRL
.CPAR .GTATR RLSE .WRR
.CRAND LINK .ROPEN .WRS
.CREAT .OPEN .RSTAT
102 ERENA Link not allowed. .AAPPEND _EOPEN INIT .OVOPN
.DELETE .EXEC .OPEN .ROPEN
103 ERMCA No complementary MCA .RDS WRL .WRS
request.
104 ERSRR Short MCA receive request. .RDS WRL .WRS
105 ERSDL System deadlock (RDOS is out
of buffers).
106 ERCLO 170 terminated by a channel .RDL WRL .WRS RDS
close. .RDS
107 ERSFA Spool file is active. .ABORT .BOOT
110 ERABT Task not found for abort. .ARORT
111 ERDOP Allempt 1o open a magnetic APPEND .OPEN MTOPD ROPEN
lape or cassette unit that is .EOPEN
already open.
112 EROVF System stack overflow (the INIT DIR
current system command is
aborted).
113 ERNMC No outstanding receive request WRS
by an MCA device.
14 ERNIR Attempt to initialize or release INIT RLSE
4 tape unit with a currently
open file.
115 ERXMZ Atlemplto transmit a XMT OXMTW IXMT
zero-word message.
119 ERCANT Gross input error. such as
ECLIPSE codeona NOV A, or
towercase ASCH characters.
093-000075-08 Licensed Mateniai-Property of Data Genera! Corporation

Table A-2. Error Message Summary (continued)

130

131

134

Mnemonic

ERQOV

EROPM

ERFMT

ERBAD

ERBSPC

ERZCB

ERNSE
ERBLT

ERRDY

ERINT

EROVR

ERFRM

ERSPT

ERPWC

Meaning

-TOVL not loaded for overlay
task.

Operator messages not
specified at SYSGEN time.

Disk format error. If it recurs,
DUMP disk and run
DKINIT.SV.

Disk has invalid bad block
table. Run DKINIT.SV.

Insufficient space in core for
bad block pool.

Allempt 10 create a contiguous
file of zero length.

Program is not swappable.
Blank tape.

Line not ready, modem's DSR
is low (multiplexors only).

Console interrupt received
(mux only).

Hardware overrun error (mux
only).

Hardware framing error {mux
only),

Too may framing errors (DOS
only. not RDQOS).

Previous WCHAR
outstanding (returned from
WCHAR only).

.QTASK

10OPC
.RDOP

ANIT

ANIT

ANIT

.CCONT

.EXEC

.OPEN

.RDL

.RDL

.RDL

.RDL

Applicable Commands

.-TRDOP .WROP

.DIR

.DIR

.DIR

.CONN

MTOPD
.RDS .WRL
.RDS
.RDS

.RDS

.TWROP

.WRS

A-18

End of Appendix

Licensec Materiai-Property of Data General Corporation

083-000075-08

Appendix B
User Parameters

This appendix lists file PARU.SR, which describes all
RDOS wuser parameters. These parameters define
important system calls, task calls, and mnemonics for
user programs. PARU.SR was delivered with your
RDOS system. File PARS.SR contains all sysiem
parameters.

During SYSGEN, these files were loaded into the
master directory.

083-000075-08

An assembler cross-reference listing follows the
parameter listing. Use this cross-reference to find
individual parameters. The numbers in the
cross-reference indicate /listing pages, not appendix
pages. For example, parameter UFTCN has entries
1/56 and 2/05; these indicate listing page 1, line 56 and
listing page 2, line 5, respectively.

Licensed Materiali-Property o/ Data Generat Corporation B" 1

. e we

.Cuse
.CUSR
LCUSR
LCUSR
.Cusr
.LusF
.Cusr
.CUSR
.CusSr
.CUSF
.CUSR
.CLSR
.CUSR
.CUSR
.CLSR
.CUSR

.CUSK
.CUSR
.CUSK
.CUSR
.CUSF
.CUSR
.CUSFK
.CUSK
.CUSR
.CuSK
.CUSR
.CUSR
.CUSK
.CUSR
.LUSR

i DCs

.CUSR
.Cuse
.Cusk
.CUSR

.CUSR
.CUSR

.LUSR
.CUSR
.LUSK
LLUSH

" -

USER FILE TABLE (UFT)

UFTFN=9
LFTEXx=S
LFTAT=zs
LFTLK=7
UFLAC=7
LFTBr=12
UFTHEC=11
LFTaC=12
UFTAC=13
LFTYCL=14
UFLANZ 1Y
LFTRMZ1S
UFTPI=1b
LFTP2=17
UFTULC=2@
LFTCL=21

D N L T I T o o o = = - ——————— - - -
B T g

-—SwIZIZZZZZzz==z

TEMPLATE

i USER FILE DEFINITION (LFD) OF UFT

JFILE NAME

FEXTEASICA

FFILE ATTRIPLTES

FLINK ACCESS ATTRIELTES

sLINK ALTERNATE CIFECTURY

iINUMBER OF LAST BLCCK IN FILE

FMNUMBER CF EYTES IN LAST ELCCK

sCEVICE ACCFESS CF FIRST PLCCK (@ UNASSIGAECL)
iYEAR-CAY LAST ACCESSEC

PYEAR-DAY CREATEC

JLINK ALIAS NAME

iFCUFR=MINUTE CwEATEC

JUFD TEWPCRARY

inORDS/ELOCK L,STAT,RSTA,CRST

FUSEP CCUNT

i0CT LINK (FRR) KIGH=-CRDER CEVICE ADUKESS (LF)

i DEVICE CLANTROL BLOCK (DCB) CF UFT

LFTCC=22 sCCT ACURESS
LFTUN=23 FUNIT NUMBER
LFCat1=24 JCUPRENT BLCCK ADLKESS (MIGF ORCER)
LFTCa=25 FCUFRENT RLCCK ACCRESS (LCh CRDER)
LFTCE=26 FCURKEAT BLCCK NUMEER
LFTST=27 JFILE STATLS
LFEA1=34 PENTRY'S ELCCK ACCFRESS (KIGF ORFLER)
UFTEA=3] PENTRY'S BLCCK ADCKESS (LCw GRLER)
LENAT=32 iMEXT BLOCK ACDRESS (KRIGH ORDER)
LFTNAZ33 iNEXT ELCCK ACDRESS (LOW CRCER)
LFLAT=34 FLAST BLOCK ACDRESS (HIGH ORDER)
LFTLAS3S iLAST BLOCK ACDRESS (LOW CRCEK)
LFTCk=3p ;SYS.DF DCB ACDFRESS
UFFA1=37 sFIRST ADDCRESS (RIGH ORCLER)
LFTFa=4e ;FIRST ADCRESS (LCh CRDER)
EXTENSION
LFTBNZzAY FCURFEMT FILE BLOCK MUMEER
LFTBR=42 FCURRENT FILE RLOCK BYTE PCINTEF
LFTCr=z43 JCEVICE CHAFACTERISTICS
LFTCN=zud FACTIVE REG COUNT

iE@ INCICATES G, €30SG1,1=0862
UFTELSUFTCN=UFTEN+ JUFT ENTRY LEANGTH
LFDEL:UFTQL*UF?FN%} PUFC ENTRY LENGTH

UCBAT=UFTAT=-UFTOC
LCCL=LFTDOL-UFTODC

UCBAD=SUFTAD=UFTODC
LCBEKzUFTEK=-UFTOC
LCBENZUFTBN=UFTDC

INEGATIVE DISF. TC ATTRIRUTES

INEGATIVF CISF., TC FIRST ADCRESS (HIGH OKCER)
FNEGATIVE CISF, TC FIRST ACCRESS (LOW ORDER)
iNEGATIVE CI1SP., TG LAST BLOCK

PPUSITIVE CISFP, 1C CURRENT ELOCK

B-2

Licensed Materiai-Property of Data General Corporation

093-000075-08

.CUSR
.CUSR
.CUER
.DUSK
.CUSR
.CUSR
.DUSR
.CUSR

. DUSK

.CUSR
., DUSR
, CUSR
.DUSR
.DUSR
.DUSR

i
i BC71
H

.CUSR
.CUSR
.CUSR

.CUSR
LLCUSK
.CUSR
.CUSR

.CUSR
.CUSR
LCUSR
LCUSR
LCUSR
.CUSR
.CUSR
LCUSK
LCUSR
.CLSR
LCUSK
LCUSR
LCUSR
.CUSR
.CUSR
.CUSR

.CUSR

; FILE ATIRIBUTES

ATRP =180
ATCHAz1B1
ATSAv=18B2
ATNRS=187
ATUS1=18B9
ATUSZ=1EB1@
ATPER=1B1Y
ATwP =1B1S

ATNEK=T7BT

ATLNK=Z B3
ATPAK=1BuY
ATDIR=1ES
ATRES=1B6
ATCON=1B12
ATRAN=1B13

PARANMETERS

CCTES=2
CCTvS=y
CCTIs=e

DCsST8=
OCCFO=
blsvt0s=
CCCCN=

OCiCl=
DCLCD=
DCCONF=
CCTC=

DCKEY=
CCNEF:
DCrR&T:
CCPCK=
DCLACE:
CLS8FO=
OCFnD=
DCFFU=
DLLTu=
CCLEe=
OCC1i0=
DCECK=

DCsFC=

;7 FILE CHARACTERISTICS

-

i DEVICE CRARACTERISTICS

1B1S
1B1S
1815
1814

1813
1g1e
1812
1811
1e1e
1629
1Ee8
1827
1826
18¢S
1884
1823
1Re2
1Bedl
1872
IR-147

1602

(IN UFTAT)

JREAD PFOGTFCTED

JCHANGE ATTRIBUTE FPRUTECTEOD
;SAVED FILE

;CANNGCT BE A RESGLLTICN ENTRY
FUSER ATTRIEUTE # 1

JUSER ATTRIEUTE # 2
FPERMANENT FILE

}wRITE FROTECTED

CIN UFTAT)

70 GET HIGF CROER FART OF 133p
; ADDRESSES OLT OF LFTDL

JLINK ENTRY

FPARTITION ENTRY

;DIRECTURY ENTPY

sLINK RESOLLTION (TEMPORARY)
FCCNTICGULOLS FILE

JRANDOM FILE

71Bb=1 => CEVICE LSES DATA CHAMMFL
iMASK LF LCWER PRICKITY DEVICES
7ALDDRESS CF INTERRLFT SERVICE RCLTINFE

(IN UFTCH)

SUPPKESS TRAILING BLANKS $CDP CALY

DEVICE REGUIRING LEADFR/TRAILEFR

USER SPECIFIED TIMNE QUT CCASTANT (MCR)
GRAPHICAL CLTPUT CEVICE WITHOLT TABEING
HARDRARE

INPUT DEVICE REGLIRING CPERATCR INTERVENTION
INPUT DEVICE IS 6@S3-TYFE TERMINAL

GUTPUT CEVICE WITHOLT FCRM FEEL HARDWARE
TELETYPE CUTPLT CEVICE

KEYECARD CEVILE

RUBOUTS AFTER TAPS REQUIREC

DEVICE KEGUIPING FARITY (rECK

FEGUIRES LINE FEECS AFTER CARFILGE FTN
SPOOLABLE DEVICE

FULL wORC DEVICE (ANYTFING GREATER THAN
FORM FEELS CN CFER

CRANGE LCPER CaSE ASCII YC LPRES

KEAD EP LCLLMVS

SUSFERD FRLTUCOL Ch TRARSNMIT (NC2)

DISKk (hERECTERISTIC (SFT ACR=FARAMETRICALLY)
SET MEANS 178 313¢

SFOCL CCMTRCL

SET = SPLCLING ENEBLED

RESET = SFCCLING CISABLFCL

NE Me NE Me e N N e N % e Ne %e N we e wa

WA W N e me we we e

CUTPUT DEVICE REGULIRING MLLLS AFTER FCRM FEEDS

083-000075-08

Licensed Material-Property of Data General Corporation

B-3

- we we

7 «UUSR
.DUSR

.DUSR
.DUSR

ws we we

i .DUSR
.DLUSR

~e

.DUSR
.DUSR
.DUSR

-, e

e w8 we we we

DCAIs=
DCCGN=
pCLCC=

DCTC=
DCKEY=

DCNAF=
DCXCN=

bDCLAC=
DCSFO=
DCCkE=

+WRL TO LINE

AC@=z CCODE+LINE ¥

1BIS
1b14
1813

1812
1811
1B10

189
188
187

186

185
184

64

DEVICE CHARACTERISTICS FUR RTY AND ALM (FARL.SR)

P(MASKING ENAFLES) COANSOLE INTFRRLPTS
F(MASKING UISABLES) TAB EXPANSICA
;LOCAL LINE (VMASKING MAKES MODEM LINE)

iSAVE FGR 3 MCDEM PRCTOCALS

'~ FGR FUBCLT (MASKING GIVES RACKSPACE)
(MASKING CISAELES) INPUT ECROING,

LINE EDITE, AND 17 EOF

~e wa we

7 (MASKING LUISABLES) 2¢ NULLS AFTER FQORM FEEL
P (MASKING FNABLES) XCN/XCFF PROTCCALL FOR STTK
s SAVE FOR FLTLRE LSE

F(MASKING CISABLES) LINE FEED AFTER CARRAIGE RETLFRN
: (MUST EE CFF) SPCCLING

iCARRAIGE RETLRN ECKC

H (MASKING ENAEBELES CR AS EANTER KEY)

AC1= DATA
+CUSR wodlC=z @R7 sCHANGE DEVICE CHARACTERISTIC MASK (ACH)
.CUSR ho4lL S= 187 ;CHANGE LINE SPEED (ACIz ¢ -> 3)
.CUSR wedv¥S=z 2B7 sCHANGE MCCENM STATE (ACL) AS FOLLORS
.CUSR wWed4DTR= IBIS ; RAISE CATA TERMINAL READY
; ELSE LCrek
.CUSR WEURTS= 1814 7 FAISE REGUEST TC SEANC
; ELSE LChER
H
¢ SWITCFES
H
.CUSR A,Sp= 1BA2
.CUSR B,Sn= 1621
.CUSR C.Sn= 1B@2
.CUSR C.Sns= 1823
.CUSR E.8n= 1RQY
.CUSR F.Swn= 1B@S
.CUSR G.Sr= 1806
.CUSR H.Snz 1827
.CUSR 1.8n= 1R28
.CUSR J.Srsz 1R@9
.CUSR K.S¢= 1818
.CUSR L.Swn= {BI1L
.LCUSR M,.Sk= 1812
.CUSR NeSwnz 1813
+CUSR C.S8r= 1E1d
-CUSR P,Sk= TELS
.CUSR G.8r= 1BUR
.CUSK R,Swn= 18021
.CUSR S.8n= 1882
.CUSR T.Sn= 1H23
.CUSR L.Sr= 1RQY
.CUSR V.Srz 1ReS
.CUSK w,8r= 1R26
.CUSR X.Swk= 18@7
.CUSR Y.Sn= 1E@K
.CUSR Z.Swnz= 189
8"4 Licensed Materiat-Property of Data Genera! Corporation 033-000075-08

e we we

.Cugr
LCUSR
LLUgR
.CUSR
.LUSR
.CUSR
+CUSK
.CUSR
.CLSKR
+LUSK
.CUSK
.CUusFk
.CUER
.CUSR
.CUSR
.CUSR
«LUSR
.CUSR
.CUSR
.CUER
.CUSK
.LUSR
LLUSR
.Cusr
.CUSR

SYSTEM CCASTANTS

SChaFB=2283, inCKDS FER FLCLK

gClBs=256., 7812t CF CISKx FLCCk

SCRRL=64, iwOREGS FER FAANCCM RECCRO
sCLLG=132, IMAX LINE LENGTFR

SCAv¥x=24, iNAX AKGUMEANT LENGTF INM EYTES
SCANLSUFTEX=UFTFN+L JFILE NAME LEANGTH

SCEXT=UFTEX=UFTFN FEXTENSICMN CFFSET Ih MAME AREA

SCMER=13. JVAX EKFOR KETRY CLUNT

SCSTR=16 JSAVE FILE STARTIAG ACDRESS

SCTiv=z==-84a, FRINGIO 1 ME, LGCP TINME (SN)

SCFPL=A FPRIMARY FARTITICM LEVEL

SCFPFPaAzs FiPRIMAFY PARTITICY SASE ALCRESS

SCDSk=3 FAESULUTE ACLRESS CF CISK INFORMATICOM BLOCK
SCRAC=4 JABSOLUTE ACCRESS CF BAD vLCCK TABLE FLOCK
sCsve=2 7SYS.DF ACCKESS CFFSET

SCFPSK=1 sPUSH DIRECTCRY CFFSET

SCPANZU JMAX NUMBER CF PUSH LEVELS
SC¥AP=SCPNM22+SCPSKF ;RELATIVE BASE ANCRESS CF MAF.CK

SCRPE=1 JRELATIVE BFACKKCUAC PLSH EASF
SCFPB=SCBPB+SCPNVM ;RELATIVE FCREGRGULAC FUSH RASE

SCFZwz=SCPNM»U+SCBPE ;FRAME SI17t vCRC (SKIP COLERLE WCRD FUSH INDICES)

SCNVA=SCFZn+t FNUMBER=OF-SYSTEM=CVERLAYS WORD
SFINT=1BO JINTERRUPT FLAG

SFBRK=181S JRREAK FLAC

SCNSC=64, iNUMPER CF SYSTEM CVERLAYS

7 SYSTEM¥ BCCTSTRAP CUNSTANTS

.CUSR
+CUSK
.CUSR
.CUSR
.CUSR
.CUSR
+CUSR
.CUSR
.CUSR
.CUSR
.LUSR
.CUSR
.LUSR
.CUSR

.LUSF
.CUSR
.CUSR
.CUSR

SCTEP=Q FTEXT STRING EYTE PCINTER

SCIANS=1 7SPITCHED FLLL/PARTIAL-UVERLAYS ALDRESS
SCPSA=Z iPROGRANM STAFT ACCRESS

SCPAR=SCPSA FPAPTIAL INIT AUDRESS

SCINT=3 FFULL/PARTIAL-CVERLAYS INIT ACCRESS

SCCLI=SCINT+! JADDRESS CF END OF CLI

SCZV¥Xx=SCCLI+! FSGUASFED/ULASGUASKFEL FLAC
SCCPL=SCZVX+1 FCURFENT FARTITICM LEVEL
SCPEAZSCCPL+! FPAKTITION BASE ACCRESS (LCw CRCEFR)
SCCFA=SCPBAYL FOVERLAY BASE AUDRESS (LCw CRCEFR)
SCPE1=8CCFa+l FPARTITICN BASE ACCRESS (FIGR CLRLEP)
SCCF1=8CPB1+1 CVERLAY EBASE ACORESS (HIGR CRCUEFR)
SCeAS=8COF1+1 FBASE OF INFURMATICN BLOCK

SCsnC=SCBaAS JSWITCH FCR SCINS EATHY
SCiCv=2a FIMNITIAL CEVICE CCCE
SCALN=Q JASCII UNIT NLVBER

SCUA=L FUNIT (CEVICE CCOLE)

SCGC= JENMTRY TO FASS FILEAANE
SCNGO=4 JENMTRY 70 ASKR FRCM CONSOLE

083-000075-08

Licensed Material-Property of Data Generai Corporation

B-5

7 SYSTEM™ ERRUR CORES
.CUSR ERFAC= @ 7 ILLEGAL CFAMNEL ALMEEF
LLUSK ERFANZ 1 ; ILLEGAL FILE NANE
.CUSR ERICK;= 2 ; JLLEGAL SYSTENM CCMNMAMND
.CUSR ERICC= b4 5 ILLEGAL CCVMNMAAND FCR DEVICE
.CUSR ERSVL= 4 ; NOT A SAVED FILE
.CUSR ERaREs S ;O ATTEMPT TC wRITE AM EXISTENT FILF
.LUSR ERECF= & ; EMD (F FILE
.CUSR ERRPK= 7 3 ATTEWFT TC REAC A KEAD PRCTECTECD FILE
.CUSR ERwPR= 1@ : WRITE PRCTECTED FILE
+CUSR EFCKE= 11 ; ATTEMFT TC CREATE AN EXISTENT FILE
.CUSF ERDLES= 12 ;7 A MON-EXISTENT FILE
.CUSR ERCELS= 13 i ATTENMPT TC ALTER A FERMANENT FILFE
.CUSH ERCHA= 14 ; ATTRIEBUTES PKROTECTED
.CUSR ERFCF= 1S ; FILE NCT CPEREC
.CUSF ERFLE= 18 ; FATAL UTILITY ERRCHK
.CUSR EREXG= 17 7 EXECUTE CLILCM (ANC ERRCR)
.CUSR EFNLLE 24 ; INVISIBLE FRRCOR CCOE
.CUSF ERUFT= 21 ; ATTEMPT TC LSE & LFT ALFREACY IN USE
LCUSKR ERLLI= 22 ; LINE LIMIT EXCEECED @
LCUSK ERRTA= 23 i ATTEMPT TC RESTCRE A NCA-EXISTENT IMAGE
.CUSR ERPAKE= 24 i PARITY EKFRCR CN FEAC LIANE
.fUSR ERC¥1= Z2s 7 TRYING TC PULSR TCC MAMY LFEVELS
.CUSR ERMENZ 26 : NOT ENUF NEMORY AVALILAELE
.[USR ERSFCs= 27 ; CUT OF FILE SPACE
.CUSR ERFIL= ia ; FILE KEAC ERKCK
.CUSR ERSELS= 31 i UMIT ANOT FRCPERLY SELECTEC
.CUSR ERACR= 32 ; ITLLEGAL STARTING ADCRKRESS
.CUSR ERRC= 33 7 ATTEMPY TC READ IANTC SYSTEM ARFA
.CUSP ERDILS 34 5 FILE ACCESSIELE EY CIRECT I1/C CALY
«CUSR ERDInz 3 7 FILES SFECIFIED CMN CIFF, CIKECTCRIES
LCUSR ERCANME 36 ¢ DEVICE NCT IN SYSTEWM
.CUSR ERQOVNS 37 7 ILLEGAL CVERLAY ANLVMBEF
.CUSR ERQVA= 4 ;7 FILE NOT ACCESSIRLE RY CIRFCT I/0
LCUSKR ERTIN= 41 7 USER SET TINME EBRRCR
.OUSR ERNCT= up ; OUT OF TCe'S
.CUSR ERXNTz 43 7 SIGNAL TC ELSY ACCR
.CUSR ERSGF= 44 7 FILE ALREADY SGULASKED ERRCK
.CUSR ERIBS: 45 i DEVICE ALREADY IN SYSTEWM
.[USR ERICES= 46 ;7 INSUFFICEMT CONTIGUOUS BLCCKS
.CUSF ERSIVE 47 7 SIMULTANECUS KEAC CF WRPITE 70 MLX LINF
LOUSP ERGTSE S¢ ;7 ERROF IN ULSEW TASK GUFUE TABHLE
.CUSR ERAMNMC= Si 7 MC MUKE CCB'S
.CUSK ERILSE 52 ;7 TLLEGAL DIRFCTORY SFECIFIER
.CUSR ERCSA= 52 i DIRECTOFRY SFECIFIER NUT KACRMN
.CUSK ERDZS: sS4 i CIFECTORY 1S TCC sMaLL
.CUSR ERDOE= SS 7 DIRECTOFY DEPTH EXCEFUED
.CUSR ERDIUS= S6 ; DIRECTORY IMN USE
.CUSKk ERLCES= 57 ; LINK DEPTF EXCEECED
.CUSR ERFIUS= 60 ; FILE IS IMN LSE
.CUSR ERTID= 61 i TASK IC EERRCR
.CUSF ERCNES= 62 7 COMNMUN STZF BRRCR
.CUSR ERCUSS 632 ; COMMCN USAGE FRRCR
.CUSR ERSCP= 64 i FILE FOSITICN EKRCR
.CUSR ERDCF= &S 7 INSUFFICIENT KGCM IN DATA CHAMNEL NMAP
.CUSR ERDMN]= bb ; DIRECTORY NCT INITIALIZED
.CUSR ERNCLC= 67 i MG DEFAULT CIRECTCRY
.CUSR ERFGE= 7¢ ;7 FORECGCROUNE ALREACYS EXISTS
.CUSR ERNMPT= 71 } EFRCR IN FARTITCN SET
.LUSR ERQOFC= 72 i DIRECTORY IM USE BY CTHER PRUCGRAM
.CUSR ERUSZ:= 73 i MJ ROCM FCR UFTS CN EXEC/EXFC
.CUSR ERMFR: 74 ;7 ADDF ERRCR CN .SYSTNM PARAN
.CUSK ERNLES= 75 i NCT A LINK ENTRY
LCUSR ERNTES= 76 ; CURPEMT BG IS NCT CHECKPUINTAEBLE
.CUSR ERSLE= 77 i 8YS.OK LKFRCR
B- 6 Licensed Materal-Property of Data General Corporation 093-000075-08

.DUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.DUSR
.CUSR
.CUSR
.LUSR
.LUSK
.CUSR
.CUSR
.CUSK
.CUSK
.CUSR
,CUSR
.CUSR
.CUSF
.CUSR
.CUSR
.CUSR
.CUSF
.CUSK
.CUSR
.CUSR

i CLI

.CUSK
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR

pLgp

. W

.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSK
.CUSR
.CUSR
.CUSR
.CusP
.DUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.PUSR
.CUSR
.CUSR
.CUSR

~
[Sul o
w wm
EL 4]

ERVMDE=
ERDTC=
ERENAS
ERMCASZ
ERSKR=
ERSDL=
ERCLC=
ERSFAS
ERABTS
ERDCP=
EROVF=
ERNNMC=
ERNIRS
ERXNZ=
ERCANT=
ERGOVE
ERQPNZ=
ERFNT=
ERkBAD=
ERBSPC=
ERZ(E=
ERNSE=
EREBLTS
E~RRCYS
ERINT=
ERQVK:
ERFRM=
ERSPI=

jee
161
182
123
1ed
1es
106
1e7
11e
111
112
113
114
115
116
117
12@
121
122
123
124
125
126
127
130
131
132
133

ERROK CODES

CNEAR=
CILaT:
CNCED=
CCLTL=
ChSE&D=
CCKEks:
CNEFS=
CNECME
CILEK=
CSPER=
CFRERE=
CTVARE
CIvels
CILANAS:
CSFLE=
CILARS
CCANT=
Civli=
CSYER=
CBRER=
CPARES
CCART=
(CeRiz
CINCE=
CFLRT=
CIVER=
CILTA=
CTETL=

CCwexz
ERML =

ee
3e1
3e2
g3
3¢4
3¢5
g6
g7
318
311
312
313
31y
31S
316
317
32@
321
22
323
324
32%
126
327
330
11
332
113

CTaTL
e,

e NS Ne NE We e e ME ME Me Me WE We WO WA ME Ne Wy N We wm N e W W4 ws We o

me %e Wa me we We e me e a We WE e WE WA we We s T W W Se Na N8 e We e S

e me

¥AP,DF EFRKRCR

PEVICE TIME OUT

ENTRY NCGT ACCESSIFLE VIA LINK

MLA REGUEST ULTSTANCING

INCOMFLETE TRANSMISSION CAUSED BY RECIEVER
SYSTENM CEADLOCK

1/0 TERVMINATED BY CHANNEL CLCSE

SPOOL FILE(S) ACTIVE

TASK NOT FOUND FCF ABORT

LEVICE FREVICUSLY CUFEMED

SYSTEN STALK COVERFLGR

NGO MCA KFCEIVE FREGUEST CUTSTAANLCING

MO INIT/RELEASE CN OPENED DFVICE (NAG TAPF)
JXMT 8 LIXMT MESSAGES MLST BE NCN-ZERC
'YOU CAN'T 0O THAT!

.TO0VLL NCT LCADEDR FCR GUELED CVERLAY TASKE
GPERATOR MESSAGE MOLUULE NCT SYSGENED

DISK FORMAT EFRCR ’

UISK KAS INVALIC BAC BLCOCK TAELE
INSUFFICTIFNT SPACE IN RAC BLOCK POOL (CORE)
ATTEMFT TC CREATE CUNTIG CF ZEKC LENGTH
PROGKAM IS NOT SwAFPABLE

bl ANK TAPE

LIME NCT FEACY

CONSCLE INTERRUFT RECEIVECD

CHARACTER CVER KLAN ERKOF

(HARBCTER FRANING ERROR

700 MANY SCFT ERKCRSE (DCS ONLY)D

MOT ENCUGE ARGUMEANTS

JLLEGAL ATTRIRUTE

NO DEBULG ADCRESS

CuMMAND LINE TOC LOANG

NO STARTING ACCREES

CHECRSUM ERFCK

NO SOLRLE FILE SPECIFIED

NOT A CCOMMAAND

JLLEGLAL BLCCK TYFE

NO FILES MATCH SFECIFIEFR
FHASE EFRCR

T00 MANY ARGUMEANTS

160 MANY ACTIVE CEVICES
TLLEGAL NLMERIC ARGUMENT
FATAL SYSTENM UTILITY ERRCH
JILLEGAL ARGLMENT

INPRCFER CR NALICICLS INPLT
TCO MENY LEVELS CF INDIRECT FILES
SYNTAX ERRUK

BFACKET EFRCER

PAREN ERRCR

< WITFCOUT > COFR > v ITHOUT <
ILLEGAL NESTING CF <> arD ()
JLLEGAL TRDIRECT FILENANME
JLLEGAL MESTIANG CF () AND 1]
JLLEGAL VERIERLE

ILLEGAEL TEXT ARCGLMENT

TEXT ARGULMERT TCC LCAG

MAY (L1 ERRCR LODE
MEAXIMUNM ERKCR MESSACGE LENCTHE

083-000075-08

Licensed Matenai-Property of Data General Corporation

B-7

.CUSR
.DUSR
.LUSR
.CUSR
.CUSR
.DUSR
.CUSR
.CUSR

+CUSR
.CUSR
.CUSR

.DUSR
.DUSR
.CUSR
.CUSR
.CUSR

~e w0 we

.CUSR

.DUSR
¢ NCTE=-

.CUSR

.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSKR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
+CUSR
.CUSR
.CUSR
.CUSR
.CUSK

.CUSR
.LUSR

.CUSR

7 EXCEPTICNAL SYSTEM STATUS CCDLS

PNVEE= 31t MAP,DR ERRCK

PNSCE= a2 SYSTENM DIRECTURY EKROK
PNCSC=z .23 SYSTENM STACK FALLTY
PNICA= a4 INCONSISTENT SYSTENM DATA
PMVED= @S MESTER CEVICE CATA ERKCOF
PNMC Tz g6 MASTER DEVICE TIME CUT

MOVING READ DISK ERFUR

UNCLEARABLE UNDEFINED INTERRLFT
INSUFFICENT CCMNTIGUOUS BLCCKS TC KUILD
PUSH SPACE INCICES

TLLEGAL EXTENDED INSTRUCTICA

KTN BEYCAND TOP CF WOKLD

INCUNSISTENT CR IMPCSSIBRLF CCALTITICN
RELATED TC CUAL PROLESSCRS (IFE)

INT WCRLC TRAPPFD

MULTIBIT MEVMORY EKKROR

MEMORY PARITY EFFRCR

IMFOS INSLFFICIENT MEMORY (INIT TIME)
SPOOLER

PNDFE= a7
PNCUI= d1@
PNCEK= @12

PNILL= @11
PNPSH= @13
PNIFB= a14

PNITR= @15
PNERC= @16
PNPER= @17
PAVENMZ a20
PNSFL= g2t

THE NE TE NE Ne M Ne M N N W %e e SE e wa % we e

USER STATLS TABLE (UST) TENPLATE

usST= aee # START OF EACKGRCUND USFF STETLS AREA

USTF=12 i PZEFQ LOC FCR UST PCINTER
USTF MUST CURRESPOND TC FARS FZERC ALLOCATICAS

USTFCz o i @=>BACKGRCUND, 1=>FOFEGROLAD
i (WHEN NCT IN SCHEC STATE)

ustzm= g ;oZVEX

usTss= 2 i STAFT OF SYNBCL TABLE

USTES= 3 } ENC CF SYMBCL TAFLE

USTAM= 4 7 AMAX

USTSA= S i STARTING ADCRESS

usTCAz 6 ; DEBUGGER LDCRESS

USTRU= 7 i RIGFEST ACCRESS LSED

usics= 1e i FURTRAN CCMMON AREA SIZE

UsSTIT= 11 : INTERRLFT ACDRESS

USTER= | i BREAK ADCRES

USTCh= 13 } & TESKS (LEFT), & CRANS (RIGHT)

USTCT= 14 ; CURRENTLY ACTIVE TCE

usTecs g i STAKT OF ACTIVE TCB CRAIN

USTFC= 16 ; START UF FKEE TCE CHEIN

USTINZ 17 i INITIAL START COF ANRFL

usTCO= 2@ ; UVLY CIFECTCRY ALLP

usTSVE 21 3 FORTREN STATE VARIABLE SAVE RCLTIME (OR)

USTRVE 22 i PEVISIOA
: ENVIRONMENT STATE WORD weEN EXECLTING

LsTIAs 23 i TLb ADCR (F INT CR EkEAK FEOC

USTENT USTIA 5 LAST EATFY

LFPT= 3@ 3 SEVE SCS

B-8

Licensec Matenai-Property of Data Genera: Corporaton

/ﬂ'f'
N

; ENVIRCNMEAT STATUS BITS (IN USTRV CURING EXFCUTICAN)

.CUSR EAVaAPz (RQ JNAPRED MACKINE
.CUSR ENUEC= (B2 FUNMAFFED ECLIPSE
.CUSP EAVMEC= 1R3 JMEPPED ECLIPSE
LLUsSR ENUAVE 1B4 JUNMAPPED NCVA
.NUSR FAMAYE 1ES INAPPED NQVA

.CUSR ENUNI= (B JUNMAPFED NCVA 3
.CUSR EAMAIZ 1B7 JNAPPED NCva 32
.CUSR FANUNMNZ 1RR JUMVAPPED NICKRO NCVA
.CUSER ENCCS= 1B1 ;CCS SYSTEW

.CUSR ENINFQ= 1R12 ; INFUS SYSTEM

+CUSER ENSCS= 1EL3 FSTANC ALCNE SYSTEWN
.CUSER EANRTOS= 1Bl4 JRTCS SYSTEW

.CUSK ENRCGS= 1818 iRDCS SYSTEw

TASK CCNTROL BLCOCK (TCE) TEMPLATE

~e we we

;USER PC (EB@«14) + CAFRY (F1S)

.CUSR TPRST=
.CUSR T&ys&s=
.CUSR TLMK=

7SYSTENM CALL nORD
sLIMNK WORC

.CUSR TFC= @
.CUSR Ta(C2= 1 ;ACS
.LUSR TaC:= 2 iACH
LLUSR Ta(le= 3 iaCe
.CUSR TAaC3= q JAC3
S
6
7

.CUSK TLSFP= FUSP -
.CUSK TELNS= ;TCHE EXTENSIOMN ADCFR
.CUSR TIC= ;TASK 1D

i SCHECULEF TENPCRARY
tUSER KILL FRCC ACCF
;STACK FOINTEK
iFRAME POINTER

.CUSR TTMP=
[CUSR TxLAC=
.CUSFk TSP=
.CUSR TFP=
.CUSR TSL= JSTACK LINMIT

.CUSR T8C= JCVERFLOW ACDFR

LLUSR TLN=TKLAD=TPC+1 ;SHURT TCE LENGTH
LCUSR TUNB= TSO=TPC+! 3LONG TCB LENGTH

L R R
D~ AL N e D

n
[\~

i TASK STATLS BITS (IN TPRST)

.CUSR TSSyS= 18@ ;SYSTENM BIT

.CUSR TSSLSP= 181 iSUSPEND ETIT

.CUSR TSx¥T= 1R2 PXMT/REC ANC CVERLAY PIT
.CUSR TSRCOP= B3 i.TRLOP BIT

.CUSR TSAET= (B4 7ABCRT LOCK BIT

.CUSR TSRSV= 1BS FRESERVED

.CUSF TSUFN= 1E6 FUSER PENC EBIT

.CUSR TSUSR= 187 FUSER FLAG FIT

OVERLAY CIRECTORY

. me we

.CUSR CynCS= @ s NUMBER COF MOCES

;i FCR EBEACK NQODE:

.CUsSk gvoliss 2 ;7% OVLYS (E@=7), LOACING EBIT (B8,
;7 SIZE IN ELKS (BG=-15)

.Cusr OVBLK=

.CUSR CyNAD=

= o

sCORE ADDR FCR NCCE(BI=1S)
; 1B@ FLAGS VIKTUAL NCDE

- JSTATUS BITS (LEFT) + PRICRITY (RIGKT)

.CUSR CvRES= 1 FCURRENT CVLY(P@~7), USE (CUNT(EB-15H)

sSTRT BLX # IN CVLY FILE FCF FIRST OVLY

$93-C00075-08 Licensed Materiai-Property of Data General Corporation

B-9

- e we

.CUSR
.Cusr
.Cusr
+Lusr
+CUSK
.CUSR
LCUSR
.CUSR
.CUSK
+LCUSR
«CUSR

~e we we

.CuUsRr
Cuse
.CUSR
.LUSR
.CUSR

.Cusr

.CUSR

e we we

USER TASK GUEUE TABLE

GFC=z 2 JSTARTIMNG FC
GALVs ! iNUMEER CF TINES TC EXEC
GTCv= 2 JCVERLAY
GSk= 3 iSTARTING KCUF
GSvss= 4 iSTARTIMNG SEC IN KCLK
GFRI= TPKST sMUST BE Save
GRR: 6 FREPUN TINE IAC IN SEC
GTLAK= TLAK sMUST PE SANE
GCCr= 1e¢ ;CHAN CVERLAYS CFPEN OAN
GCCAD= 11 JTYPE GF LCAC
GaCes= 12 IRAKEUF ACS?

i 1BAz LCACING, 1F1%S= CEGLE KEQ REC
GTLA= GAC2-GPC+]
GPEx= WTLN FUSER TASK G AREA EXTENSICA

USER FRCGLRAM TABLE FOR CPERATCR CCMMUNICATICNS PACKAGE

LFA= @ JFROGRAM ANLMNBER

LCvs 1 iCVERLAY MUMBER OF =1

LCCAD= 2 FCONDITICANAL/UNCONCITIONAL LOAD
LTPR= 3 sTASR IL (LEFTY) + FRICRITY (RIGFT)
LFC= 4 iPHOGRAM CCULATER

LTLAS LPC=LPN+1 ;TABLE LENGTR

LFExs= LTLN FCUMMUMICATICAS EXTENSION AREA START

TUMING FILE DISPLACEMENTS

.CUSR . TUN=3 FCFFSET TC AUNMBRER WCKC IN FAIR
.CUSR LTUC= TUN+L fCFFSET TC 1ST COULANT IN PAIR
.CUSR LTUF=,TUC+2 JCFFSET TC 2NC COUNT CF PAIR
.CUSR LTUNXZ,TUP+2 JLENGTH OF COUAMT FAIR
.CUSR .TUNSTK={ FNLMBER STACKS IN SYSTEWN
.CUSR STUSTK= [TUNSTK4,TUC-.TUN sSTACK COUNT
«CUSR «TUPSTK=,TUNSTK+,TUP=, TUN FETACK PEAND COUNT
.CUSR ~TUNCEL=.TUNSTK+. TUNX INUMBER CELLS IN SYSTEM
.CUSK «TUCEL= _TUNCEL4,TUC=.TULN JCELLS COUNTS
.DUSR STUFPCEL=, TUNCEL+4.TUP=,TUN
.CUSR < TUNBUF=, TUNCEL ¢+, TUNX JELFFERS, EXCLUDING TUMNIAG BUFFERS
.CUSR LTUBUFz [TUNBUF+.TUC=,TLN sCOUNTS
.CUSR - TUFBUF=, TUNBUF+, TUP=, TUN
.DUSR ~TUNOVE TUNBUF+,TUNX JOVERLAYS
.CUSR LTUCVE [TUNOV4,TUC-. TUA
.CUSR .TUFCOV= ,TUNOV+,TUP=.TUN
.CUSR TULEN= . TUNOV+, TUNX
End of Appendix
B - 1 O Licensed Matenai-Property of Data Generai Corporation 093-000075-08

Appendix C
Interrevision Changes

This appendix outlines some major changes in RDOS
between revisions 5.00 and 6.00. Perhaps the most
significant change involves the system library, SYS.LB.
This has global importance because RLDR uses code
from SYS.LB to build every RDOS save file.

Changes often occur in RDOS within revisions {e.g.,
between revisions 6.10 and 6.20): also, patch updates
are often issued after a revision is released. Thus you
should consult the Release Notice and Update Notice
supplied with the RDOS software for specific details.

SYSGEN
For RDOS revision 6.00. the disk initializer,
DKINIT.SV, BOOT.SV and the starter system

(BOOTSYS.SV or FBOOTSYS.SV) all support several
new disks and devices. The starter system no longer
supports a line printer; to use a printer, you must
generate a tailored system.

Revision 6.00 and later SYSGENs cannot use
pre-revision 6.00 dialog files (SYS.SG or equivalent).
In fact, revision 6.4 SYSGEN cannot use pre-revision
6.4 dialog files. (Every time a new question is added to
SYSGEN, the SYSGEN with the new question
becomes incompatible with older dialog files.)

Other

The revision 6.00 CLI supports some new features
(e.g.. macro files): thus revision 6.00 and later CLIs
may not run with pre-revision 6.00 RDOS systems.

Certain revision 6.00 utility programs (e.g.. MAC) may
not run under a pre-revision 6.00 RDOS system.

The system library (SYS.LB) now provides more
support for high-level Data General languages. The
new interface within this library is called the Universal
MultiTasking Interface (UMTI), and future high-level
language development for RDOS will be based on it.
Programs built with a pre-revision 6.00 SYS.LB may
not execute under a revision 6.00 (or later) RDOS
system; we also recommend that you reload your old
programs using the new SYS.LB, if possible. Some
older compilers, however, produce code incompatible
with the new SYS.LB. To allow you to use these, we
have provided an updated version of the old system
library; its name is SYS5.LB. You can use this library to
load programs produced by your old compiler if you
choose not to replace your old compilers with new
ones.

Another change for revision 6.00 is that we no longer
supply the Task Monitor sources with the RDOS
software; if you want them, you must order them
specifically. Because of this, we have described some
major features of the new monitor in Appendix J.

End of Appendix

083-000075-08

Licensed Materiai-Property of Data General Corporation

C-1

Appendix D
Real-Time Programming Examples

This appendix contains two examples of
assembly-lunguage programs written for a real-time
environment.

TIMEC Program

The first example is TIMEC, a bare-bones program
which creates an additional task (TASK) at the same
priority. (See Figures D-2 and D-3.)

During execution, TIMEC creates at the same priority
as itsell (0). Task competes for CPU control, gets it
when TIMEC suspends itself, and retains it until it
suspends itself. When each task gains control, it prints a
message on the console. TIMEC suspends itself for 2
seconds. and TASK suspends itself for 4 seconds. After

about eight seconds. the console shows:

I'M TIMEC
I'M TASK
I'M TIMEC
I'M TASK
I'M TIMEC
I'M TIMEC
I'M TASK
I'M TIMEC

The messages appear in syncopated fashion because the
tasks suspend themselves for different times as shown
in Figure D-1.

TIMEC includes no code to return to the CLI,
therefore yvou must use an RDOS interrupt (CTRL-A
or CTRL-C) tostopitand return to the CLIL

seconds 0 2
I'M TASK

I'MTIMEC I'MTIMEC I'MTASK [I'M TIMEC I'M TASK

Figure D-1. TIMEC and TASK Messages

4 6 8
I'M TIMEC I'M TIMEC

093-000075-08 Licensed Materiail-Property of Data Generai Corporation D‘ ?

LTITL TIMEC

.CCMM TASK,2+4dd+}

LEXTN L TASK
LENT START
LIXTM
JNREL

n
wd
1 5
e
-4
e

LCa ¥, NTTO
SLE 1,1

LSYSTM
.CFEN 2
JMP ERRGOR

Sue 9, @
LCa 1, TACDR

LTASK
JVF ERRQOR

TvEC: LCA 3, ,TIMES

LSYSTV
.ARL @

JVP ERRQR
Lca. 1, .S2
LSYSTM™
.CELAY

JNF ERRCR
JNP TVEC

TADCR: LCa @8, ,72MES

.SYSTM™
LARL @
JVP ERRQOR
LCA 1, ,S4
.SYSTM™
.DELAY
JVP ERROR
JVP TADDR

NTTC: .+1x2
LTIXT “STTCO"
.TACDR: TACLCR

LTINES: Lt 1x2

jPointer tc ccnscle
jcutput _file rare,
iUse cefault mask
;jen STTC,

;Ccen $7TC cn charrel 2,
iCn most errcrs, let the

iCLI explsair,

;Give new task pricrity

janc IC of ¢. .
;Start task at this
racaress,

iCreate {t.

JTINEC, eick up
icointer tc messace,
inrite

imessace,

iPointer tc irterval,

JTIMEC, celay |
ivourself, civing TASK
icontrel until celay
jexpires,

JTASK, pick ue
jrocinter tc messace,
ihrite it,

iPointer te §n§erva¥.
iCelay vourself,
saiving TINMEC contrel,

iwhen you awaken, write

jmessace acair,

STXT "ItM TIMEC,<15>"

JTSVES: .tla2

LIXT "IN TASK,<1S>"

w

er 2¢.

(3]

LS4 4.,

ERFRCR: ,SYSTM
LERTN
JVP ERROR
LENC START

D-2

Figure D-2. TIMEC Program Listing

72010 Hz FTIC frecuency

iis 2 seccncs.
jUPx1CHz is 4 seccrcs,

ikeserved, rever tasken,

Licensed Material-Property of Data General Corporation

093-000075-08

@ TADDR
\
TIMEC opens
$TTO TADDR gets
and writes
“ “I'M TASK"
TIMEC creates ;
Rty TADDR delays itself
for 4 seconds
v
TIMEC gets
and writes
“I'M TIMEC™

Y

TIMEC delays itself
for 2 seconds

Each procedure box represents a request
to the system, which then surrenders control
to the task scheduler.

SD-00572

Figure D-3. TIMEC Flowchart

Example Program

The second program, EXAMPLE, is a multitasking
program that uses overlays: it shows multitask overlay
calls and a quecued overlay task. The assembler listing
for EXAMPLE. and its two overlays, QUE and COMP,
appear in Figure D-4; a flowchart follows in Figure D-3.

In EXAMPLE, the main program task opens the
console input, output. and overlay files; then it sets its
priority to 40 and creates a second task via call .QTSK
at priority 30.. The new task, called QUE, will be
created and readied every three seconds. After creating
task QUE. the main program momentarily retains CPU
control and types a prompt (?) on the system console.
The main program task recognizes two command: B)
(return to the CLD) and C) (load overlay COMP and
execule code in overlay COMPJ. Overiay COMP types
the message:

lTama Data General Computer.

The code in overlay COMP then releases the overlay
node and goes back to the prompt loop in the main
program. (on characters other than B or C. the main
program repeats the prompt loop.)

Very soon after the main program has tvped its prompt.,
and while it is waiting for a B or C, the QUE task is

083-000075-08

readied. At the next device interrupt (from the Real
Time Clock, console, etc.), rescheduling occurs and the
Task Scheduler gives QUE CPU control because it has
a higher priority than the main program. The system,
under direction of the Task Scheduler, suspends the
main program, loads the overlay containing QUE, and
transfers control to code in QUE; QUE then types the
message:

1'mthe queuedtask...about to OVKIL myself.

At this point, QUE prints the prompt (?) and kills itself
via call .OVKIL. This gives control back to the main
program, which once again waits for a B) or C) . In
three seconds, task QUE is created and readied again
and the whole sequence repeats.

When QUE is ready to run, it gets control, types its
message, and kills itself very quickly. In fact, because
QUE issues system calls, it is suspended briefly before
it can type the message and prompt -- this gives the
main program a slice of CPU control. All this means
that the person who runs the program can type B)or C)
at any time and get a very fast response.

The two tasks (the main program and QUE) are totally
unaware of one another. Furthermore, when an
interrupt occurs and the scheduler decides to suspend
one task and execute another, the original task simply
continues from the point at which it was suspended --
which can be any location in its address space. When
QUE kills itself, its whole state (TCB data) is wiped
out; after the .QTSK interval, it is created as a
brand-new task. Thus there is no simple way to have
QUE return control 1o the prompt loop in the main
program, which is why we have QUE type a prompt
before it kills itself. (The . XMT and .REC calis could
return control to the main prompt loop. but this would
have produced a far more complex example.)

Here is a sample of dialog from EXAMPLE:

R
EXAMPLE)
?

I'm the queued task...abour 1o OVKIL myself.
?

C)

lama Data General computer.

2

I'mi the queued task...about to OVKIL myself.
B)
R

The assembler command for the EXAMPLE program
was:

MAC/L (EXAMPLE QUE, COMP))
The load line was:

RLDR 2/K EXAMPLE [QUE COMP])

Licensed Materiai-Property of Date General Corporation D‘ 3

2egeu!

+TITLE EXAMPLE

JENT AGAIN,ICUNP,IQUF,ERRQR ;OVERLAYS NEED THFSE,

LEXTN CCCVMP,UGUE,CONMP, GUE FUVERLAYS CONTAIN THESE,

JEXTN WPRIFLGTSK, JTUVLD iGET TASK CGCE FROM SYS.LB,

s TXTM FPACK BYTES LEFT 7C RIGKT,
iFor KOUS revisions 6.¢® throuah £.27, egoly patch "JMP .+2" to
tlocation "y, TSK+333" of ary save tile which uses .6T8K, Clc

scontents were LLA sorethirg,

Incluce the cetugecer (RLDR/D) cor

isymbol tatle (.EXTh .SYNM,) to patch with the SELIT ecitor.

BOYLlY=-177420 PMASK:
Quee1-202226"'OCHANS
YR0e2~0220@3=-t RRUK:
29003-280213"

«IREL
1774282
CVCRN
JVP
SERF

SNREL

;i OPEN CONSOLE

Cevee'P2¢dus START:

2AAr 1126409
QA2 P21 7
ORI e1udPe
oaeeutdeuper-

ceeestvaeddy
Quuee'elodl7
PodeT'eLUel
cupte'ecudel-

Yu@11'¢ovduy
Cpriereicery-
Cee¢l3'e¢eevl?
geaiLe'e1oet?
QelS'y2ubrv2-

FERCCEED -~

CoBlete2euus
CGBIT'eTTTT7T7

GRe22'L3¢sSe
e2e21'0777177
Cygezteeugve-

LAR23'¢22auyp
pRplutezeel7
222251 7¢vy
orpetreueg-
gau2ilte2pudy
eee3e' ool 7
YBe31'2154v;
PRARZ'PRLUAL -

LGL TN

LLA

Sk

. SYSTM

. OPEN
JSR

LOA

.SYSTW

LUFEN
JSP

DA
LCA
«SYSTH

LOVORA
Jsk

D-4

iMASK FUF FIPST 2 BYTES IN LINE BULFFEFR,
PCINTER TO CHANNEL NUMBER CF GVLY FILE.
;ON ERRUR, JUMP TO

; FRRUK RANDLEFR SERR,

al,+1

LUTPLT, IWFUT, AND UVEKLAY FILES FOR 1/0.

SyNTTC FRYTE PCINTER 70 CONSQLE OUTFUT FILENANME,
i (FLR GPERATIUN IN EITHER GFROUND, INCLUCE
H LGCOUT, JGCIN CALLS BEFCOKRE CPEM CALLS.)
1.1 7SET PEFALLT CEVICE CRARACTERISTIC MASK,
sCHEN THE CCASOLE QUTPUT FILE
¢ H OGN CHANKEL €.
ERK(K i LAPTUKRE &KY ERRUP, (JSKk FELPS CERUG,)
¢, PTTI eYTE PUINTER TCL CONSOLE INPUT FILENANE,
;CREN COMSOLE IMPLT FILE ON
1 ; (FANNEL 1 (AC1 STILL CONTAINS MASK @),
EFPLK ; ERPCR,
E,LFILE SGET CVERLAY FILERANME,

2rallkAaN FGET CrmEANNEL MUMBER FOR OVERLAY FILE,

;CPEN GVEFLEY FILE OM THE
77 ; SPECIFIED LratnEL,
EEECR H ERKUF,
SET YCLK PRICFITY TU 4& ALL GUELE & TaSK,

LBA v, (&L :GET A 4,
LPFR1 ;i SET YUUR PRIUFITY TC 4e,
Lba 2, LALUCKR FGET TASK GULEULE T&BLE £DRE,
LGLTEK i SET UP CVLY TESK TU WUN EVERY 3 SELCADS,
SK ERRCH 7 LFRLR,
JTHIS IS TrE MALIM FRUMPT END KEYRCZRD LISTENER LCOF,
LUk Vo FROMT JBYTE FOINTER 0 FRUNPT,
LIYETN inkITE TRE BROMET
P EL ¢ ; TC Trb CUnSULLE Un CrRARNEL @,
JEr Erk{k H ERFCE,
LUA CLLINEP JEYTE PUIFRTER TL LINE RUFRER,
LOYSTH PRELD 2 LInE Fr(w
LR0L i ; COMSULE REYRCAWD OF CHARMEL f.
JSk PRE(CR ; ErRUP,
Frgure D-4. EXAMPLE Program Lisung
Licensed Matenal-Property of Data Generai Corporaton G53-000075-08

093-000075-08

Figure D-4. EXAMPLE Program Listing (continued)

21 ;7 CrECK LINE FUR B CP C, (THIS ¥IGHT BF STREAMLINED FULR A CCMEUTER
ce H wITH RARUWAKE LCAC, STCRE EBYTEL)

23

©d 9¢adll'22443e LCA 1/LINE 7GeT FIRST wURD (2 CHARS) FROM LINE BLFFER,
€S 202341232024~ Lua 2,FPNASK JNMASK TU STRIP FARITY, KIGFT CHAR, IN &C2,
A AAgis 113172 ANDS 1,2 ;ISCLATE FIRST Craw, IN BITS Qw6 CF AC2, SwaAP.
7 22236'3224S13s Lca 1,8 JGET 4 mpm,

P8 23437146418 SuBs 2:1,SNK ;SKIP IF FIRST CrHAR., WASN'T A wgw,

8% ¢eada'2gdessa JrE Byt ; Cn g™, WETLRN TC TRE CLI.

1 €241 "224533 LCa 1,C JGET A "C",

11 2284z2'14ed1sS SUEB=z 2,1,8NKk ;SKIP |F FLRST (CrAR, WASN'T A u(Cw,

12 ¢3dd3'23¢534 JMP GCCwP ; Cch "C", GO TC THE "COMPLTER"™ CVERLAY,
13 24Q44'd¢e 787 Jvp AGAIN FNCT "R™ LR "C", IGNORE CHARACTER, TKY AGATA,
14

1S

16 20Q4S'Qee114m™NTI0: 12 JPCINT TO

17 ¢dQdueraczizu LIXT "$ITLC" FILENAVE "sTTC™,

18 ES2it7

16 e

e

21 ©824S1'@22124"ANT T Hlxg JECINT TC

22 @33S2'd22124 CTXT "SITIY FILENAVE "8TTI™,

23 @Setitt

cu AdA0du

2s

26 B38SS'AQ2134d"CFILEr L +1x2 JFOINT TC

27 d¢AsSe'eucsia STXT "EXANPLE,CL" ; OVEFLAY FILENANE,

28 @dasis

2¢ ¢Se¢lld

32 gdz2dss

31 Au7sS14d

32 Quedve

33

14 24364 'dceeue Cue: ug iNEW PRIORITY FUKR MALIN PROGRAM TASK,

3e

3t QAv6S'AR21SUPRUMT: L +1x? JPCINT 70

37 24266'23741S «TXT "7<155" MAIN PKCGFRANM PROMFT,

318 ¥eevda

39

Ug 290872'¢08162"L INEP: LINE*2 i FCINTER TC FIRST KYTE OF LINE BLFFER,

41 22¢71'24¢123 LINE: LEBLK 132./72¢+1 ; BLFFFR TO KGLL MAX., LINE LENGTF,

a2

43 20174'2d¢1a2 B "8 JASCILI "gv,

44 29175'00@2143 e JASCIT "c»,

48 2Q176'283216"'GACOK: GTAR iACCRESS CF "GUE"™ TASK GUFUE TABLE.

d4e

47

48 ;7 THIS COCE PHUCESSES THE "C" (RARACTFR. IT LOADS THE "CCMEM

ug ;7 OVERLAY ANU TRANSFERS TC WRITE-LINE CCRE IN THE UVERLAY,

g2

Si1 802177'02241% GCOMP: Lia ©,1C0NME ;GET "CUMPUTER"™ QVERLAY NANE,

S5¢ a2ee' 2642y SuR 1s1 JSPECIFY CONDITIONAL LOADING,

53 agcd1'a3zees- LUA 2,alCrak ; GET OVEFLAY FILE CHANNEL AUNMBER,
S4 Ja2¢2'e77777 LTOVLD FHUMBLY REGUEST SYSTEM™ ALTICN,

SS 6devii'guyduz- JSR ERFCK ; ERKOR,

56 832¢utyresue JSK FACCMP GEXECUTE THE GVERLAY CUDE, THEN

2; ¥02d35'¢¢db16 JHMP AGAIN ; GU BACK FUR NMORE INPUT.

SG d22¢6'277777 ACUMP: (OMP FSTART ADCRESS IN OVERLAY,

bl @A2¢T'Q77777 I1LUMP: QCOMF F"COMPUTER" OVERLAY IDENTIFIEFR,

Licensed Materiai-Property of Data General Corporation

D-5

B2
73 i THIS CUPE FROCESSES THE "E" CHAKACTER, IT TERNMINATES

ey i THE PROGRAM AND KETURNS TC THE CLI.

es

06 BY21R'eRo217 BYE: LSYSTWV JRETURN TG THE RDOS CLI.

27 @r211'eQuLve LRIN ;

P8 Qv212'02@08B2~ JvP EPXRCR JRESERVED, NEVER TAKEN,

pa

1¢

11 i THIS IS THE ERROR HANDLER.

12

13 2@213'Qeedl7 SERR: LSYSTH FLET THE CLI TELL US WHAT'S WROMNG,
14 BB214'Q06400 JERTN ;

15 Q28215'Pd¢776 JVP SERK iNEVER TAKEN,

16

17

18 i THIS IS THE GUEUE TABLE FOR Tkt "GUE" OVERLAY TASK,

19

2¢ @B216'¢77777 GTAB: GUE FSTARTING ACUFESS FOR THE TASK.

21 8@217'177777 -1 JEXECLTE UNLIMITED NUMBER OF TIMES.
22 ©@22¢'877777 1QUE: UGLUE ;OVERLAY IDENTIFIER == LENTC.

23 vve21'177177 -1 FSTARTING HCUK: RIGHT NOw.

24 @e2zz'everd: LELK 1 sSTARTING SECOND (DOESN'T MATTER FERE).
25 08223'vuRL3n 1E7+430 iTASK 1D CF 1, PRIORITY UF 30,

2t B2224'002003 3, ;RERUN EVERY 3 SECONDS,

27 e8r225'20023! JBLK 1 iSYSTEM WORC.

28 Qu226'@u2ué2 OVCHN:D 2 iUSE CHANNEL 2 FCR THE OVEKLAY FILE.
29 ee227'9eeoen @ FCONDITIUNAL OVERLAY LOADING,

30 @@23e'veeud! JELK 1 JSYSTEM WORD.

3y @¢231'geeeat JBLK 1 iwCRD FOR EXTENDED GUEUE TABLE USAGE.
32

33 JEND START iSTARTING ALDFESS 1S START.

**xQQ0RY TOTAL ERKORS, 0B¢@e FASS 1 EKRURS

D-6

Figure D-4. EXAMPLE Program Lisung (continued)

LitensegMaterai-Property of Data General Corporation 083-000075-08

v 2v¢udl

H
1¢ ;
12 ©Llove'c2eu2d QUE:
13 QUoR1'guell?

14 Q0rE2'¥1790w
1S 20uRl'eRedll
1o @eeved'eedll
17 eeegs'edeey7
{8 2Q@oeetw17000
19 ©RYe7'ededesS

21 eeele'e2oue’
22 6w811'677777
23 keelz'eeeuee

25 ©2813'277777 0G:
26 @RQ14'@77777 ERK:

28 eer1Steavelu"PROMT:
29 ecele'r3TL1d
e Qevee

32 QBR2K'RYCRL2"MESS:
33 ¢eeelteududr

34 Roeddy
35 ¥72158@
36 ge2uuv
37 272565
g 062565
19 pe2544
ue g2eled
4Gl voeS5el
up neSuSe
43 g27es56
Uy 871145
a5 veSuau
46 grdauy
a7 2721%7
us e2¢117
a9 €53113
5¢ 2uusSiy
51 22155
52 274563
53 2ozb5u
Sy 263¢56
5% gépued
Sé

57

#x¢@22¢ TOTAL ERRORS,

"OUE Y
QUEUED TASK,

LTITLE

LENT

LENTO
LEXTN
LEXTN
L TXTM
JAREL

UVERL

QUE

GUE

OGUE

ERRCR, IGUE, ALAIN
LOVKIL

1

AY = WRITES MESSAGE TO COMNSCLFE, KILLS SELF AND

LUA 2,MESS ; BYTE FOINTER 70O MESSAGE.
LSYSTH sRRITE MESSAGE
L AWRL 4 i TG CUWSCOLE CuT,
JSR @ERR JERROR RETURN,
LUA ¢, PROMT 7 BYTE PCOINTER TO PROMPT,
«SYSTWV IWRITE PROUMPT
ShRL) H TO CONSCLE UUT (FOR CUNSISTENCY),
JSk dEKRER ; EPROR,
LCA 6,aCC JGEY THE CVERLAY IDENTIFIER,
LOVRIL JFELEASE CVERLAY ANDL KILL TASK,
JSK dERK ; EKKOF,
IQUE OVERLAY IDENTIFIER,
ERPUR JERKOUR HANDLER,
SH1In2 JFCINT Tu
LIXT "2<15>" i FPRUMPT,
ft1x2 JPCIMT TU "GUEUELC"™ MESSAGE,
SIXT "1'm the cueuec task,,.reacy to OVKIL ryself,<15>"
+EANL

Figure D-4. EXAMPLE Program Lisung (continued)

Goede PASS | EPKURS

Licensed Materiai-Property of Data Genera! Corporation

D-7

LTITLE COVF

v LENT CUNP

23 LENTO UCONMP

24 LEXTN ERKCR, ILONMP

¢5 LEXTN .OVEX

ve QoeRol L TXTM 1

e7 , SNREL

¢ve

29 ¢ 'COMPUTER' UVERLAY = PRINT MESSAGE ANC RETURN,

1¢

11 ¢@eve'ysSuBie COMP: STA 3,USP ;FOR KE=ENTRANCY,

12 ¢ope1'@ze4ale LUA @,CMESS ;GET MESSAGE ADDFR.

13 edvez'acesl7 .SYSTM FWRITE IT

14 200@3'817000 +HWRL '] H T0 THE COUNSOLE,

15 2Q@evy'Rgedns JSK QE Kk sERROR RETURN,

16

17 @@aeS'gc2des LOA @,aCCP ;GET THE COVERLAY IDENTIFIER,
18 goeee'eigele LDA 2,USP i AMD THE RETURN ADDRESS

19 eare7'v77777 LOVEX 7 1C EXIT AND RELEASE THIS CVERLAY.
2@ Yepie'ceeudy JSK af kk JERKDR

21

22 ¢B211'277777 ERR: ERROK ;EKRUR HANDLER,

23 Q@R12'@77777 GCP: IComp ;OGVERLAY IDENTIFIEK,

24)
25 Bud13'@RLeIB"LMESS: L+1x2 JPCINT TC "COMFUTER" MESSAGE,
26 veR14tpubaye L TXT "] am s Date Generasl! computer,<iS>"
27 62555

28 greldl

29 Pe2layg

ie eeesS6d

31 eeguue

32 243545

33 67145

Iu 671141

15 CoeouR

3¢ 261357

37 266560

38 272564

26 262562

4¢ Ce7ets

41 e

42

43 +JEND

**2222¢ TOTAL ERRORS, @@@@e PASS 1| ERRURS

D-8

Figure D-4. EXAMPLE Program Lisiing (continued)

Licensed Materal-Property 0! Data General Corporation 083-000075-08

S0-00573

|
A4

Open console
cutput fiie
|
\
Cpen console
input e
|
\
Cpen overiay
file
|
\d
Change priofity
10 40
|
\

Cueue "QUE" task
every 3 seconds
at priority 30

|
Y

Write prompt
to console

Read line
from console

| No
Y

v

Write message
to console

Write prompt
toc console

Kiil seif,
release overlay

Return to
the CLI
Load “COMP" Overiay routines
ca prints "COMPUTER"
overiay

message

083-000075-08

As with TIMEC, each procedure box represents a reguest
arequest 1o the system. which then surrenders full control
to the task scheduler.

Figure D-5. EXAMPLE Flowchart.

End of Appendix

Licensed Materiai-Property of Cata General Corporation

D-9

Appendix E
Overlay Directory Structure

When yvou load a program which has an associated
overlay file. RLDR creates an overlay directory for it.
During program execution, this directory occupies low
NREL memory, right above the TCB pool, and it
contains a four-word descriptor for each overlay. In a
mapped system, the directory must it into the lowest
1K block of memory.

You. or your program. can examine the directory
through entry USTOD in the User Status Table.
USTOD points to the directory base: it contains -1 if
there are no overiavs. The overiay directory buiit for
cach multitusk program has the structure shown in
Figure E-1.

oits O 78 15 A
Overiay QVNAD (V! nege agcress
nece a s ovBLK starting DiocK numoer
gescriptor | OVDIS nymper of cvertavs igadi SiZze in DICCKS
trame (COVYRES Cwariay numoer i overiay use count

Overiay & OVNAD ! noce adaress

noce O OvBLK starting Biccx numboer

descriptor } OVOIS sumper of overiays {i0ad| size :n biocks
frame l OVRES Jverigy numper i Qveriay use count

e OVONS | Totaincce count]
s
increasing
memory
addresses
Task Controt Blocks 1
User Status Tatle
USTOD
40Ca
S0-00532

———Figure E-1. Overlay Directory Siructure (multitash j——i

Euach overlay node in the save file has a corresponding
four-word descriptor frame. Bits 0-7 of OVRES contain
the number of the overlay which currently resides in
the overlay node or which RDOS is loading into it. The
overluy use count (QUC) (bits 8-15 of OVRES)
describes the number of tasks using or requesting the
resident overlayv. RDOS uses OUC only in a multitask
environment: see . TOVLD, Chapter 5.

Bits 0 to 7 of OVIDS describe the number of overlays
associated with this overlay node (i.e.. included in the
same pair of square brackets in the RLDR command
line). RDOS uses the load bit, bit 8, in multitask
programs (.TOVLD). Bits 9 to 15 of this word describe
the size (in integer multiples of 4004 words. the size of
each disk block) of this overlay node. OVBLK contains
the starting logical disk block address of this node’s
segment in the overlay file, and OVNAD contains the
memory address for the start of this overlay mode. For
virtual overlay node, RDOS sets BOof OVNAD to 1.

The overlay directory built for a single-task
environment is identical to that described above except
that the system ignores the load bit. A program can
define a maximum of 236 overlay nodes in both
muititask and single task environments. The maximum
number of 256-word overlay nodes is 124 (which need
about 60K bytes of memory). Page zero and task
scheduler space requirements limit the maximum size
of a single overlay to 126 disk blocks (64K bytes).

End of Appendix

093-000075-08

Licensed Materiai-Property of Data General Corporation E‘ 1

Appendix F
Exceptional System Status

Certain serious error conditions can either halt the
entire system in a crash, or cause the system to suspend
processing and display an exceptional status or a trap
message. The message returned from exceptional
status or a trap will help identify the error; no
information will return from a crash.

Both exceptional status and crash condition require full
initialization of all disks that were initialized when the
condition occurred.

Traps

A trap is less serious than an exceptional status or a
crash: we have described traps here because they do
stop program execution.

On a trap, the system displays the contents of the
program counter and the accumulators on the console
in this format:

TRAP (PC) (ACO) (AC1) (AC2) (AC3)
Bit 0 of the PCis carry.

In both mapped and unmapped systems, a trap usually
results from a violation of map protection. The
memory-image file (F)BREAK.SV is created and
placed in the current directory.

For some user causes, see ‘‘Dual Programming -
Mapped Systems,”” in Chapter 6, for details. Some
common causes are: someone tried to access memory
outside his logical space: or modify write-protected
memory; or used more than 16 indirect references to
an address: or tried to access a system device without
having issued .DEBL (Chapter 3).

In some cases, the CLI will regain control after a trap,
in others, not.

Exceptional Status

If you selected the core dump feature at SYSGEN, you
can dump a core image of address space on the line
printer, tape, or diskette after a crash or exceptional
status. This dump is described below.

093-000075-08

In exceptional status, the system will output the
contents of the accumulators and an error code on the

console, for example:
000013 177777 000011 037300 100010
ACO ACI AC2 AC3 error code

Note that if a SYSTEM error caused the exceptional
status. bit 0 of the error code will be reset to 0, and the
rest of the code word will contain a system error
number (explained in Appendix A). The dump
procedure described below applies to both kinds of
error. If bit 0 is set to I, the last two digits of the error
code have the following meanings:

1 File system inconsistency detected; that is,
RDOS tried to return a master device block
which had no record in MAP.DR.

2 RDOS detected a SYS.DR error while accessing
a directory on the master device. This means
that either the entry count in a block of the
directory exceeds 163, or a free entry in the
block was indicated but RDOS could not find the
free entry. If ACO contains 16, AC2 contains the
illegal count; if ACO doesn’t contain 16, RDOS
expected a free entry but did not find it.

3 Interrupt stack overflow. The low-order bits of
ACO contain the address of the overflowed
stack. If this is a system stack address (see load
map), the cause can be a system device. If the
address is not a system stack address, the cause
is a software stack fault.

4 Inconsistent system data, such as an illegal
device address. This will also happen if you INIT
or DIR to a “*‘new” disk before fully initializing it

with INIT/F.

5 Master device data error; run a disk reliability
test.

6 Master device timeout. If there are no obvious

errors, run a disk reliability test.

7 lllegal device address on the moving-head
master device. This can be caused by a
misreading of the disk. Run a disk reliability test.

Licensed Material-Property of Data General Corporation F" 1

10

16

F-2

RDOS has detected an undefined interrupt and
cannot clear it via an NIOC. The right byte of
AC2 contains the code of the device.

There aren’t enough contiguous disk blocks
avatlable to build push space indexes.

[

Attempted RTN frem level 0 in th
background. Remove this instruction from th
level O program, or execute itat a lower level.

[¢%)

Inconsistent [PB data. Pesform an IPB reliability
test. AC2 can give a clue to the problem. //'the
following conditions were true when the
exceptional status occurred:

l. Both processors were up. and running the
same revision of RDOS.

2. No user program issued /0 commands to
the IPB. or overwrote the (unmapped)
svstem.

. If AC2 contains -1 or a DCB address. the
exceptional system status indicates an
internal system (software) bug.

. If AC2 has a cell address, then RDOS has
received an invalid message type: ACI has
the type byte. This probiem indicates an
IPB hardware failure.

. If AC2 has an address in the IPB interrupt
handler (between IPBDC and IVTINT).
then this is the address at which the
exceptional system status actually
occurred. If ACO and ACI do not contain
64400, then the interrupt handler
detected an invalid condition. such as
incorrect message length. This indicates
an IPB hardware failure. If ACO and ACI
equal 644005, then that processor timed
out to the other processor, but resumed
communication without booting. This
would happen if the operator pressed the
STOP switch and more than one and a half
seconds later pressed CONTINUE: orifa
user program turned interrupts off for
more than one and one-half seconds (e.g..
via the interrupt-disable debugger).

A hardware map violation {trap) occurred while
a user interrupt rountine or user clock had
control. The ACO data field output on the
console will contain the PC, not the contents of
ACO. in this exceptional status.

ECLIPSEs with ERCC option only. Multibit
ERCC memory error. See appropriate CPU
technical manual.

Licensed Materai-Property of Data Generai Corporation

17 NOVA 3s with hardware parity option only:
Hardware parity error.

20 (INFOS system only) insufficient memory
available atinitialization time.

21 The spootler detected a MAP.DR error.

Controlling Exceptional Status

If you have an unmapped system, you can write vour
own routine to handle exceptional status situations.
Your programs must store the address of yvour routine
in location llg, at run time. and restore the original
value before the program ends. Your routine will then
gain control at an exceptional status: the console will
not display the accumulator/error code message, but
ACO. ACI, and AC2 will retain the contents they had
at the error. and AC3 will contain the address of the
error code.

If you have a mapped system, you must modify the
operating system at source level if you want to insert
your own exceptional status routine.

Producing a Core Dump

When this RDOS system was generated, the person
who generated it determined whether or not you can
produce a dump and which device will receive the
dump. A SYSGEN question asks about the CORE
DUMP FACILITY. and the answer given was 0 (no
dump), 1 (line printer dump), 2 (magnetic tape dump),
or 3 (diskette dump). If you are dumping after an
exceptional status, proceed to the appropriate section
below, and execute the steps there. If you are dumping
after a crash, take the following steps.

After a system crash, the console will display nothing.
Press the CPU switch STOP, then record the contents
of the ACs, PC, carry, and the machine state. Now, lift
RESET, and enter 1l; in the data switches, lift
EXAMINE, and note the number returned in the data
lights. Enter this number in the data switches, lift
RESET, then START. The consocle will then display
the contents of the accumulators and an error code:

nNNNNN NNNNNN ANANNND NANNNN eeeeee
Disregard the error code, and proceed with the

sequence described above for exceptional status
dumps.

Line Printer Dump

In this dump, vou can select portions of memory, or
dump all of memory.

093-000075-08

The line printer dump has three parts: the left column
shows a memory address, the middle 8 columns show
the contents of each word in the address, and the right
column shows the ASCII value (if any) of each byte in
the address. Figure F-1 contains a sample line printer

dump.

To dump the entire address space of either a mapped or
unmapped machine, press CONTINUE twice. To dump
selected portions of address space, follow one of these

Mapped
Machines:

RODOS will shift each address that you
input via the data switches left three bits
so that you can dump the full range of
possible mapped addresses. That is, if
data switch 15 is up, and the rest down,
this will be interpreted as address 104;
this adds an implicit zero to any address
you enter. To dump a range of mapped
addresses, load the desired starting dump
address into the data switches, and press
CONTINUE. The CPU will halt. Load

procedures: the desired ending address of the dump
into the data switches, and again, press
CONTINUE. RDOS will dump all
Unmapped Load the desired starting dump address locations from the low order address
Machines: into the data switches. Press (times 105) to (but not including) the
CONTINUE; the CPU will halt. Load the high order address (times 10;). That is,
desired ending address of the dump into if you select low address / and high
the data switches, and again, press address /# on the data switches, RDOS
CONTINUE. You can enter as many will dump locations 105 *1 through
starting/ending address pairs as vou (105 *h) -1. Repeat the dumping process
wish. as often as vou wish.
You can abort the core dump anytime by striking any
key on the console and proceed with another dump
sequence as you desire.
A1222 vhP277 DILSIP UERDTT7 PL1ASAE PERPTT P145R4 @6R277 A{45A2 eeeHseeFeveDooeB
21A30 »6v277 P145A2 P6POT7T7 Q14476 @BQ277 ALR532 PALSI2 PEMSI2 svebuoad>eeAll07
A1240 54532 [7K66Q #54524 P24466 (25224 0eR42P P340 12 P20TA2 YZeeYT)BeeneBele
A1A54 163U PL274) 25415 21418 1R10RS PAS41d P2QR454L PORAPS esEveeNereKe] 00
AL260 1P6414 ReRABA P25406 PA1ARE PES4PS 0I4R12 Q25405 PAL5LS weveeeleKeBoonle
A1a7¢ v3veE3d6 2514¢5 P25I77 PL4PIT7 @2541& 04537 A3R43] P51414 (+SereHeenleinSe
RLL@d PAPITT7 Y247 16 PASPID P24426 QR445PS P2P536 PARL22 040422 ew(eleYelF ehoke
21110 »34BP2 152122 121420 04IL10 175400 153102 RRET74 (37002 SBePuuleevsBerns
D122 125778k VE451Y P1A&bT PARLIP (76440 0P2466 PPEYNL PAPKYISE ¢ellaleven ebovaw
A1130 Cerely BURULL PALRI4 PIST7E85 2048 PII766 PIPLEY PPALIL eveesvrtsven]oey
A11er vDLAVA PUPTEY 234857 PPPSTIS Q544ER 06447 (26490 PLLLS2 ees oG (eeYurloel
RL115¢ VOALLA P24L46 234475 (37000 Q25400 PRBLLY P24441 PIP4LLQ el)ROBecceeN) |y
PLiey 102120 (w7237 125401 0p2436 2Rr6423 2e@763 ARPPPP PPPPIY ePevscevssrrvece
PLITA »0R326 DYPPES AN10I4 PSALY] PRBL2D P2RAL] (4IPPP PPEAPE eceveveYere[svoee
RL2¥A PPRAvT P¢R414 PRS128 Q024D QODPRAR NP2P L PAIPKT OPIILE eeveeTovrerenB /e
A121a C21ave 177777 RalT777 Q22076 222013 2p2647 POI(3T QPORRP eveerrsderarvane
A1220 PRIBJSY DP2Qapr 222001 12P2R0 Q0203 APRPO2 PEPPRR POI25T sreecsrerevenens
A1232 L2000 Ap2 4PN @22032 0DARDP PRPLZ4E DRRT LA PO23ET (TTVTTR sverscrveasveenee
Figure F-1. Sample Line Printer Dump

093-000075-08

Licensed Materiai-Property of Data General Corporation

F-3

Magnetic Tape Dump

To dump to magnetic tape, follow these steps:

1.

Select unit number 3 on a magnetic tape drive, and
make sure no other drive has this number. Mount a
blank tape (300" or more), with ring in, on this
drive. Then press drive switches LOAD and ON
LINE.

. Press the CPU switch CONTINUE. The dump

program then displays the message READY?.

. Press the CPU switch CONTINUE again. The dump

program then copies all memory address to the tape,
and displays the message DONE, then READY on
the console. To stop the program, press CPU switch
STOP; to produce another dump, RESET and
UNLOAD the tape with drive switches, mount
another tape and execute steps 2 and 3 again.

If you have forgotien a step, the program displays
the message ERROR, then READY?. Execute the
step and press the CPU switch CONTINUE.

The magnetic tape cannot be copied under RDOS.

Diskette Dump

To dump to diskette, follow these steps:

1.

F-4

Select unit number 3 on a diskette drive, and make
sure no other drive connected to this controller has
the same number.

. Tape the write-protect hole of a Data General

diskette (or other diskette which has been hardware
formatted); insert this diskette in the drive. Shut the
door and turn the diskette drive ON.

. Press CPU switch CONTINUE. The dump program

then displays the message READY 7.

. Press the CPU switch CONTINUE again. The dump

routine copies memory to the diskette; if it displays
the messages DONE and READY, gotostep 9.

. If all addresses won’t fit on one diskette, the

program displays the message REPLACE, then
READY?. Open the diskette door, remove the
diskette, insert another hardware-formatted
diskette in the drive, and close the door. Press the
CPU switch CONTINUE. The program then copies
the rest of memory to the second diskette, and
displays the message DONE and READY?.

. The diskette dump is complete. To stop the

program, press the CPU switch STOP; to produce
another dump, remove the diskette, then execute
steps 3. 4, and S again.

. If you have forgotien a step, the program displays

the message ERROR, then READY?. Execute the
step and press CONTINUE.

The diskette dump cannot be copied under RDOS.

End of Appendix

Licensed Matenai-Property of Data Generat Corporation

083-000075-08

Appendix G

Bootstrapping RDOS from Disk

This appendix describes the steps vou must follow to
bootstrap (start up) RDOS from disk.

The disk from which you bootstrap must be in the first
drive on its controller: DPO. DP4, DZ0, DZ4, DSO.
DS4., and so on. It must have a bootstrap root and a
copy of BOOT.SV on it. but it need not have an RDOS
system or CLI if another disk on your system has these
onit.

The preliminary steps are:

1.

A\

083-000075-08

. Press

Turn on the system console and any other CRT or
printing consoles which the system will service. If
the system console is an upper- and lowercase
console, put it in ALPHA LOCK. because
BOOT.SV does not accept lowercase letters.

Power up your computer by turning the POWER
switch to ON.

. Getyour disk(s) ready. If you removed a removable

disk cartridge or pack after your last RDOS session.
insert it in its drive. If you have a nonremovable
disk. or if you left a removable disk in its drive for
convenience, proceed.

the rocker switch on the disk drive to
READY,START, or RUN, depending on vour type
of disk. Wait for the READY light.

Now, with the preliminaries done, you can bootstrap
the system. If your computer has a programmed
console (i.e.. a microcoded virtual consoie. as in the
NOVA 4 family), go to step 6. If it has hardware data
switches and automatic program load, go to step 7. If
it lacks automatic program load. go to step 8.

. The system console (CRT and printer) should show

an exclamation point (!} prompt. Check Table G-1
for vour disk device code, then type:

1000nnL

on the console and go to step 9.

7. Make sure the data switches are set as shown in

Table G-1. Lift

the RESET switch.

then

PROGRAM LOAD switch, and go to step 9.

Table G-1. Disk Controller Device Codes

the

With hardware data

Disk Type nn =
(octal) switches, set these
switches up (others
down)
Fixed-head
Model 6063-6064
Controller # 1 26 0, 11,13, 14
Controller # 2 66 0.10,11,13,14
Model 6001-6008
Controller # 1 20 0,11
Controller # 2 60 0,10, 11
Moving-Head
Model 6060-6061,
6067
Controller # 1 27 0.11,13.14.15
Controller # 2 67 0,10, 11.13. 14,13
All other disks
Controller # | 33 0,11, 12,14, 15
Controller # 2 73 0,10, 11,12.14,15

Licensed Material-Property of Data Generai Corporation

G-1

8. Key inaloader program via the switches:

a. Set the data switches to 0003765 (switches 8
through 14 up. the others down); then lift
EXAMINE.

b. Set the data switches to 0601nn (get nn from
Table G-1). Lift DEPOSIT.

¢. Set the switches to 000377, (switches 8 through
15 up. the others down). Depress DEPOSIT
NEXT.

d. Set the data switches to 000376; (put down
switch 135.) Lift RESET. then START.

9. Your program load steps will read the bootstrap root
in from the beginning of the disk. The root then
invokes BOOT.SV, and BOOT.SV asks:

FILENAME?

Respond with the name of your RDOS system. or of
any other stand-alone program vou want to execute.
DKINIT.SV, BOOT.SV, or an RTOS or RDOS
system is a stand-alone program. For example. type:

MYSYS)

to bootstrap a system named MYSYS.SV on the
bootstrap disk. If the system or program you want is
on a different disk (not the one you are
bootstrupping from), precede its name with a
directory specifier . A directory specifier is simply the
name of the disk (directory) that holds the system,
followed by a colon: e.g., DPOF: . Thus your
response to the FILENAME? query might be:

DPOF:MYSYS)

If your system name is SYS, and it is on the disk from
which you are bootstrapping, you can simply type) in
response to FILENAME?, because SYS is the default
name.

10. RDOS will start up. asking vou for the data and
time:

wpe RDOS REV x.xx
DATE (MID/Y) 110 78) (current date)

1. TIME (H:M:5)713 10) (current time)
R

When you see the CLI's R prompt. your RDOS
system is ready to execute your commands. At
this point, you may want to turn or press the
computer power switch to the LOCK position:
this disables all other front panel switches and
prevents anvone from inadvertantly stopping
RDOS by pressing them.

During the bootstrap, the disk directory that holds the
RDOS system files becomes the master directory.

Before vou turn off power to your computer or disks,
be sure to RELEASE the RDOS svstem. You can do
this either by typing the master directory name; e.g.,

RELEASE DPO)

or with the CLI variable %MDIRY%, which contains the
master directory name; e.g.,

RELEASE %MDIR%)

After either command, RDOS should display a sign-off
message and shut down:

MASTER DEVICERELEASED

If the foreground program is still running, you can
terminate it with CTRL-F from the background
console (STTI); if any system spool files are active, you
can kill spooling to the appropriate device(s) with the
SPKILL command. Then, type the RELEASE command
again.

End of Appendix

G - 2 Licensed Material-Property of Cata Generat Corporation

083-000075-08

Appendix J
Advanced Multitask Programming

For most multitask application programs, the features
described in Chapter 5 will suffice. You need read this
appendix only if:

® You want 1o write your own multitasking primitives
(task calls)

® Your tasks require one or more special resources (for
example, floating-point hardware). that the system
does not provide for in a TCB.

The features described in this appendix can:

® provide more ‘programming flexibility than the
standard features alone, without requiring you to
modify the task monitor sources: and

® provide this flexibility in a system-independent way.
You can use the calls in this appendix to develop
application programs for any system configuration
(RDOS or RTOS, mapped or unmapped). All you
need do to reconfigure for a different system is load a
program (via RLDR) with the appropriate system
libraries.

Before you proceed, you should be familiar with the
material in Chapter 5.

Definitions

The following definitions relate to tasks and task states:
they apply throughout RDOS and RTOS.

General Terms

Task Resources are those storage elements of the
computer, such as accumulators and special memory
locations, two or more tasks must share. The task
scheduler allows such sharing by ensuring that the
proper values for each task’s resources appear in the
actual storage elements of the computer while the task
is executing. When a task is not executing, the current
values of its resources are held in its TCB.

Rescheduling is the process of selecting and executing
the highest priority ready task. The task scheduler
performs rescheduling after each task call, after
receiving control from the system following an
interrupt, and when a system call completes. You can

083-000075-08

suppress rescheduling via the DRSCH or .SINGL task
calls, or by entering scheduler state. as described
below. If you have not disabled rescheduling, vou must
assume that it can happen at any time.

A 1ask swap occurs during rescheduling when the task
scheduler determines that it should execute a different
task from the one which was last executing. If the task
which was executing was not terminated (by KILL,
etc.), the scheduler saves the current state of the task’s
resources in the task's TCB. The scheduler then
restores the former state of the new task’s resources
from its TCB. Then, the scheduler places the new task’'s
TCB in the active TCB chain at the end of its priority
class, so that the next time rescheduling occurs the task
will be considered for execution only after all other
tasks in its class. Finally, the new task receives CPU
control and becomes the current task.

CTCB is a location maintained by the scheduler which
contains the address of the current task’s TCB. If no
task is currently active (for example, all tasks are
suspended or rescheduling is occurring), CTCB
contains the address of the most recent task’s TCB, if
that task was not terminated. If it was terminated, then
CTCB contains 0. Thus CTCB identifies the task to
which the current values of task resource storage
elements belong: 0 means that these values are no
longer relevant.

CTCB is a page zero location. You can access it as
follows to obtain the TCB address for the current task:

.EXTD CTCB
LDAac, CTCB

Location USTCT in the User Status Table (UST) also
contains the current TCB address. However, you
should use CTCB instead of USTCT.

The hardware stack is the storage element of the
computer which has built-in stack functions. On an
ECLIPSE computer, the hardware stack occupies
locations 40; through 43;. On a NOVA 3 or
microNOVA computer, the stack occupies the stack
and frame pointers and location 42, which the system
interprets as the stack limit. RDOS treats the hardware
stack as a task resource, thus it is available for use by all
tasks.

Licensed Materiai-Property of Data General Corporation J - 1

A reentrant section of code {sequence of instructions)
allows anocther task to enter this code before the
original task exits. Code which several tasks can access
is reentrant only if each task has its own local storage.
which no other task executing the code can access.
Giving each task its own stack area and using the stack
for local storage is a common way to achieve
reentrancy.

State Definitions

User state is the normal state for an application program.
This is the state from which system and task calls are
made. as described in Chapter 5. Code must be
reentrant in user state if more than one task will use it.
In this state, task execution is suspended on an
interrupt if a higher priority task is ready for execution.
A task in user state can use the User Stack Pointer
(USP) and the hardware stack: it can also examine (but
not modify) CTCB and the current TCB. In
dual-ground operation, it can determine the current
ground by examining USTPC in the UST:. USTPC
contains O for the background, or | for the foreground.
If there are no indicators of other states, the program is
in user state.

Singletask State is used occasionatly for a critical section
of an application program. You enter this state via the
SINGL task call: it prevents other tasks from gaining
control. However, interrupts and the other ground (if
any) continue to execute. A task can issue system calls
from singletask state as weli as from user state; it can
also issue any task call except MULTI or one which
- would kill or suspend itself. If it issues MULTI, or kills
or suspends itself, the program enters user state. Code
executed from singletask state need not be reentrant. [t
can use USP, the hardware stack, CTCB. and the
current TCB as it can in user state. If location SM.SW
contains a nonzero value, the program is in singletask
state.

Scheduler state is the normal state for task call code. An
interrupt can cause temporary loss of control, but,
unlike user and singletask states, control returns to the
point of interruption without rescheduling. Thus,
scheduler state ensures that no other task in the same
ground will get control, although interrupts and the
other ground continue. Code executed in scheduler
state need not be reentrant. It should not use USP or
the hardware stack; but it can both read and modify
CTCB and the current TCB, subject to restrictions
described later. In unmapped RDOS systems, code

J-2

|

Licensed Materiai-Property of Data General Corporation

cannot use USTPC to distinguish foreground from
background: instead. it should compare the UST base
(USTAD) 1o the value 400,. A value of 400, for
USTAD indicates the background: a value other than
400 indicates the foreground. A task is in scheduler
state for unmapped RDOS if focation USTPC contains
a value other than 0 or 1. or, for mapped RDOS. if
location 1 is nonzero. For RTOS. location .SYS. is
nonzero in scheduler state.

Use wuerrupt-disabled state to perform critical
manipulation of TCB data or the active TCB chain.
There is no way for a task in this state to lose control of
the CPU, even temporarily.

Coding Your Own Task Calls

TCB and Status Bits

Two status bits of word TPRST in a TCB are allocated
for your use: you can use them to extend the standard
teatures. Bit TSUPN, the user suspend bit, will prevent
a task from running when set. Bit TSUSR, the user
status bit, will not affect task readiness but is available
for storing an additional piece of task-related
information. :

Also, word TELN is available for your own use. A
typical use for TELN is to store the address of a *“TCB
extension’ in it. This allows you to store as much
additional task-related information as you need.

Scheduler Calls

The scheduler calls defined below are, like task calls,
external symbols which you must identify as .EXTN in
your source program. The relocatable loader (RLDR)
resolves them at load time, according to system type.
Each version of SYS.LB defines the calls for its version
of the system (RDOS or RTOS, mapped or unmapped.
NOVA computer or ECLIPSE computer).

Enter Scheduler State (EN.SCHED)
Toenter scheduler state from user or singletask state:
:AC3 not equal to O {also notequali to 1
; for unmapped RDCS systems).

EN.SCHED
‘Returns here with all ACs and carry preserved.

A task already in scheduler state can safely reissue
EN.SCHED, but no change in state will occur.

083-000075-08

Task State Save ((TSAVE)

For a task in scheduler state, this call saves the ACs.
carry. and program counter in its TCB. The PC saved is
the value in bits 1-13 of AC3 at the time of the last
EN.SCHED.

;ACs, carry, PC to be saved.

TSAVE

;Returns here with ACO, AC1, and carry unchanged,
AC2 = value that was in AC3 at

time of last EN.SCHED;

AC3 = TCB address.

v

ENSCHED and .TSAVE are meant to be used
together at the start of code which implements a
user-designed task call. For a task call with error return,
you might use them this way:

.ENT .TASK, T.ASK
.EXTN EN.SCHED, .TSAVE

ZREL
.TASK = JSR &
T.ASK
NREL
T.ASK: INC 3.3 ;Assume normal return.

EN.SCHED ;Enter scheduler state.
TSAVE ;Save task state.

For a task call without an error return, you would omit
the INCrement instruction.

Leave Scheduler State Normally (RE.SCHED)

When you successfully complete the processing for a
task call, issue RE.SCHED to exit to the scheduler for
rescheduling. Use RE.SCHED in scheduler state.

;No input.
RE.SCHED
;No return.

Leave Scheduler State Abnormally (ER.SCHED)

When you detect an error during task call processing,
place an error code in AC2 and exit to the scheduler via
ER.SCHED. This returns control to the location
preceding the one specified by TPC, and passes back the
error code in AC2. Use ER.SCHED in scheduler state.

;AC2 = error code.
ER.SCHED

;No return.

093-000075-08

Licensed Materiai-Property of Data Generai Corporation

Enter Interrupt-Disabled State (INT.DS)

Use INT.DS to enter interrupt-disabled state from
scheduler state.

;No input.

INT.DS

;Returns here with ACO, AC1, AC2,
;and carry unchanged.

Leave Interrupt-Disabled State (INT.EN)

To leave interrupt-disabled state and return to
scheduler state, use INT.EN.

:No input.
INT.EN
;Returns here with ACO, AC1, AC2,

;and carry unchanged.

Task ID Search (ID.SRCH)

Use ID.SRCH to search for a task with a given ID. You
can issue ID.SRCH in either scheduler or
interrupt-disabled state.

;AC1, right byte=1D of sought task.

ID.SRCH

;Errorreturn here, AC2 = error code.

;Nermal return here, with AC2 = TCB address

; of sought task.

For both returns, ACO and carry are preserved-- the
left byte of AC1 is zeroed and the right is preserved.

Handling Additional Task Resources

This section tells you how to manage task resources
that are not automatically managed by the system. At
certain points in its scheduling process, the scheduler
calls out to routines which you may supply to handle
your additional task resources. These call-outs are
described in the first section, below.

If floating-point hardware and/or a block of contiguous
memory locations are among the resources you need,
you can simply use a handler supplied in SYS.LB. This
is explained in the second section, below.

If you want to handle additional task resources while
using operator communications, see the final section.

J-3

Task Scheduler Call-outs

To use any call-out described below, write, assemble,
and load a routine of the appropriate name and
function. You must insert the name of the routine in
the RDLR command line before RLDR searches
SYS.LB (by default, this occurs at the end of the
command line). If you do not supply a routine, RDLR
will oad a dummy routine, which does nothing, from
SYS.LB.

Task Initiation Call-out (TSK.X)

This call-out allows you to endow a new task with
additional task resources. When the scheduler initiates
a task, it first removes a TCB from the free TCB chain.
Then it initializes certain parts of the TCB, as described
later under Task Conitrol Block Values. The scheduler
then calls out to your TSK.X routine in scheduler state.

Your TSK.X routine can initialize certain parts of the
TCB and change the parts the scheduler initialized
(subject to the restrictions mentioned in the TCB
Values section). On a normal return, the scheduler
links the TCB for the new task, as modified by your
TSK.X code, into the active TCB chain.

The scheduler transfers control to address TSK.X with
the accumulators set up as follows:

ACO contains the value passed to .TASK in
AC2. ACO is irrelevant if .QTSK initiates
the task.

ACH contains -1 if .TASK initiates the task, or
the address of the task queue table if
.QTSK initiates the task.

AC2 contains the address of the TCB for new
task.

AC3 contains the (error) return address.

J - 4 Licensec Matenai-Property of Date General Corporation

The routine you supply with entry address TSK.X need
not preserve accumulators or carry. If you detect an
error, place an error code in AC2 and return control to
the location whose address you received in AC3. On a
normal return, return contro! to the location whose
address is one greater than the one you received in
AC3. For example:

ENT TSK.X
NREL

TSK.X: STA3,RTNAD :SAVE RETURN.
COM#1,1,SZR :.TASK OR.QTSK?
JMP QUE

TSK: . :HANDLE .TASK CASE.

QUE: ‘HANDLE .QTSK CASE.

BAD: LDA 2 CODE :ERRORRETURN.
JMP @RTNAD

GOOD: ISZ RTNAD ‘NORMAL RETURN.
JMP @RTNAD

RTNAD: BLK 1

When you return an error indication, and .TASK is
initiating the task, the task will not be initiated, and its
TCB will return to the free TCB chain; the error code
vou place in AC2 will be passed to the task which issued
.TASK. When vou return an error indication and
QTSK is initiating the task. the system will try again
one second later.

%

Task Termination Call-out (TRL.X)

The TRL.X call out frees a task’s additional resources
when a task is terminated-- typically those resources
you assigned in a TSK.X routine. The scheduler calls
this routine in scheduler state whenever a task is being
killed. with the task’s TCB already unlinked from the
active chuin but not vet restored to the free chain. The
scheduler transfers control to address TRL.X with ACs
setup as follows:

AC2 contains the TCB address of task being
killed.
ACT contains the return address.

The routine you supply with entry address TRL.X need
not preserve accumulators or carry. When vou have
finished your processing. return control to the location
whose address you received in AC3. There is no way (o
signalan error from TRL.X.

Task Swap Call-out (ESV.X)

This call out allows you to save and restore additional
task resources as needed when a task swap occurs. The
scheduler calls the routine in scheduler state and
transfers control to address ESV.X with the
accumuiators set up as follows:

AC2 TCB address for task losing control, or 0 if
no task is losing control (as described
under CTCB, earlier).

CTCB TCB address of task gaining control.

AC3 return address.

The routine you supply with entry address ESV.X need
not preserve accumulators or carry. When you have
finished processing, return control to the location
whose address you received in AC3. There is no way to
signalan error from ESV.X.

A O passed to vou in AC2 indicates that there is no valid
most recently active task whose resources you would
need to save. This situation occurs as the default task is
initially selected for execution. ESV.X will be called
with 0 in AC2 and the TCB address for the default task
in CTCB. It also occurs after a task is terminated,
because the terminated task’s resources were freed by
TRL.X, and are no longer meaningful to ESV.X.

Additional Resource Handler

The system library (SYS.LB) contains an ESV. X
routine, which partly provides for the additional task
resources of floating-point hardware and a block of
contiguous storage words. To load this module. insert a
EXTN ESV.X in any source module whose name will

093-000075-08

oceur in the RLIDR command line before SYS.LB is
searched.

For euach task that needs access to the floating-point
hardware. you must provide a block of words to store
the task’s values for its floating point state. The size
and contents of this block depend on the kind of
computer you use. For an ECLIPSE computer. the
block has this format:

Status 2 words
FPACO 4 words
FPAC! 4 words
FPAC2 4 words
FPAC3 4 words

This format matches that used by the FPSH and FPOP
instructions.

Fora NOVA computer, the format is:

FPAC 4 words
TEMP 4 words
Status 1 word

To provide for a block of contiguous memory locations
as an additional task resource. you must define two
symbols with .ENT and give them the following values:

ESV.S equals the starting address of the block.

ESV.Z equals the number of words in the block.
Also. you will need to provide a block of memory that
is ESV.Z words leng for each task that is to use this
additional resource.

Finally, for each task that will use either the
floating-point hardware or contiguous memory
locations, you must initialize offset TELN in the TCB.
within the TSK.X routine that you must supply. The
value you place in TELN depends on the task’s needs.

o [f TELN contains either 0 or 1000005, neither the
floating-point resource nor the contiguous memory
resource will be handled. Thus, since RDOS
initializes TELN to 0, you need not change it for a
task which needs neither resource.

® If the task requires floating-point hardware but not
the contiguous memory, set TELN to the indirect
address of the appropriate floating-point block
described earlier.

® [f the task needs the contiguous memory but not the
floating-point hardware, set TELN to the (direct)
address of a block of words ESV.Z+1 words long,
and set the first of these words to either 0 or 100000s.
The contiguous memory locations will be saved in
the remaining words of this block.

Licensed Materiai-Property of Data General Corporation 'J '5

® If the task requires both resources, set TELN as
immediately above. but set the first word of the
block to the (direct) address of a floating-point save
area as described above.

When vou initialize TELN. vou can also initialize the
contents of these save areuas as well. The values that
vour TSK.X routine piaces in these areas will be the
iniial values when the task being initiated starts
executing.

Restrictions and Warnings

The system-supplied additional-resource handler
assumes that TELN is set up properly for either or both
of the resources: it does not prevent an unprepared
task from using one of these resources inadvertantly. If
this occurs, results are unpredictable.

For a task to use these resources. you must set up the
task’s TELN in your TSK.X routine. You cannot
change a task’s TELN after the task has been initiated.

Providing Even More Resources

If a task needs resources in addition to floating-point
hardware and contiguous memory locations, you can
write your own ESV.X routine to handle the extra
resources and use the supplied handler as a subroutine.
From within your own ESV.X routine. call out to the
supplied handler. using the alias ESV.A instead of
ESV.X. with the accumulators set up appropriately.

Operator Communications

When vou issue a .QTSK task call, you must pass in
AC2 the address of a task queue table, whose format
and length are as described in Chapter 5. When the
scheduler calls out to TSK.X, it passes the queue tabie
address in ACI. Thus, you can append additional
information to the queue table (that is, you can supply

J - 6 Licensed Materiai-Property of Data General Corporation

alonger table), and access this information from within
TSK.X.

The operator communications feature (OPCOM)
describes “*programs™ to be run from the console by
means of a “program table’ consisting of **program
frames™ of a given length. When the operator types a
QUE command. the scheduler copies information from
a program frame into a queue tabie. You can increase
the size of a program frame and thereby have the
scheduler pass additional information about a program
to TSK.X via a longer queue table.

To do this. define symbol LPN.X with .ENT and set it
equal to the number of additional words in each
program frame. On an OPCOM QUE command. these
words will be copied, in order, to the end of the
associated task queue table, where they will be
accessible to TSK.X.

Task Control Block Values

Table J-1 describes the initial values the scheduier
assigns to words in a TCB and when these values can be
changed during a task’s lifetime. A bracketed number
indicates a note. Entry Nameis the symbolin PARU.SR
which represents the offset within the TCB. /niial
Contents describes the value placed there by the
scheduler and seen on input to TSK.X. In column
TASK?a *Yes™ means that TSK.X can set or change
the contents of this word if .TASK is initiating the task:
**No™ means that TSK.X can't change this word. A
“Yes™ or **No™" in column .Q7SK means the same
thing for .QTSK. In column Larer? , a **Yes means
that this word can be changed later in the task’s life:
“No means it cannot be changed. A bracketed
number indicates a note. In the /nirial Contents column,
the entry applies to both .TASK and .QTSK. unless
there are two entries separated by a slash (/) in this
case. the first entry applies to .TASK and the second to
.QTSK.

083-000075-08

Table J-1. TCB Words and How They Can Be Changed

Name Initial Contents .TASK? | .QTSK? | Later?
TPC BO-14:Start addr:B15:Undefined Yes Yes Yes
TACO Undefined / System-maintained Yes No Yes
TACH Undefined / System-maintained Yes No Yes
TAC2 AC2at TASK/System-maintained | Yes No Yes
TAC3 K.ILL {1}/System-maintained {2} Yes No Yes
TPRST B0-7:0; BS-13: Start pri. Yes Yes [3} [4]
TSYS Svstem-maintained No No No
TLNK Svstem-maintained No No No
TUSP Undefined Yes Yes [3]
TELN 0 Yes Yes (6]
TID Task identifier No No No
TTMP System-maintained No No No
TKLAD | 0 Yes Yes Yes
TSp Undefined Yes Yes {s]
TFP Undefined Yes Yes sl
TSL Undefined Yes Yes (5]
TSO Undefined Yes Yes {31

Notes:

1.

093-000075-08

Address K.ILL is the entry for the .KILL task call
code. This address is placed in TAC3 so that a task
can kill itself by simply returning to the address it
receivesin AC3.

. At TSK.X ti