X

CPB-252

This data also
applies to the
= GE-215

and
GE-235

(Ble=225
PROGRAMMING
REFERENCE
MANUAL

GENERAL % ELECTRIC

COMPUTER DEPARTMENT

(Ble=225
PROGRAMMING
REFERENCE
MANUAL

GENERAL @3 ELECTRIC

TTTTTTTTTTTTTTTTTT

Copyright © 1963
by

GENERAL ELECTRIC COMPANY

In the construction of the equipment described, General
Electric reserves the right to modify the design for

reasons of improved performance and operational
flexibility.

(7o)

2

XD

PREFACE

This manual provides all information essential to basic
programming for the GE-225 Information Processing
System. Itsprimarypurposeistoserve as a reference
and a guide topersons actively engagedin programming
or applying the GE-225 system. However, the develop-
mental method used in presenting the subject matter
makes the manual useful as anaidin training program-
mers and systems personnel.

CONTENTS

Section
I THE GE-225 INFORMATION PROCESSING SYSTEM
System Components
Simultaneous Operations
iI MACHINE LANGUAGE

Number Systems
Data Words
Instruction Words

I CENTRAL PROCESSOR ORGANIZATION

Magnetic Core Storage
Arithmetic and Control Registers
Basic Operating Cycle

Iv GENERAL ASSEMBLY PROGRAM II

General Description
Coding Sheet
Pseudo Instructions

: 1 . ™

Detected Coding Errorg
Assembly Operation
Systems Tape
Modifications
Relocatable Object Programs
Paper Tape Assembly

v CENTRAL PROCESSOR OPERATIONS

General

Arithmetic Instructions

Data Transfer Instructions

Shift Instructions

Internal Branch Instructions
Modification Instructions
Programming 16K Memory Systems

Programming Central Processor Operations

\'2¢ DIRECT INPUT-OUTPUT OPERATIONS

Control Console Operations
Console Typewriter Operations
Paper Tape Operations

Card Reader Operations

Card Punch Operations

VII CONTROLLER SELECTOR OPERATIONS

D
)
U

(mru
[
[N
(&

Controller Selector Priority
Controller Selector Instructions
Automatic Program Interrupt

Page
I- 2
1- 8
Im- 1
Im- 7
IIr- 9
nr- 1
omr- 3
Im- v
- 1
v.- 7
- 18
LA
v - 21
IV - 32
IV - 35
Iv - 37
v - 3¢
V-1
V- 32
V-14
V -24
v -31
V- 34
vV - 37
VvV -41
VI- 1
Vi- 8
VI- 10
VI-18
VI - 36
VIi - 3
VII - 1

Section

VIII MAGNETIC TAPE OPERATIONS

Magnetic Tape

Magnetic. Tape Handler

Magnetic Tape Alert Conditions
Magnetic Tape Instructions
Programming Magnetic Tape Operations

IX HIGH-SPEED PRINTER OPERATIONS

On-Line Printer
Off-Line Printer

X DOCUMENT HANDLER OPERATIONS

See new, separate manual entitled,
""GE-225/235 DOCUMENT HANDLER
REFERENCE MANUAL" (CPB-307).

X1 DISC STORAGE UNIT

File Discs

Error Checking Features

DSU Control Words

DSU Addressing

DSU Data Transfer Instructions

DSU Operating Times

DSU Controller Test-and-Branch Instructions
DSU Unit Test-and-Branch Instructions

DSU Programming Examples

DSU With Automatic Program Interrupt (API)

XII AUXILIARY ARITHMETIC UNIT OPERATIONS

Auxiliary Arithmetic Unit
Instruction Words

Data Word Format
Exponential Arithmetic
AAU Operating Logic
AAU Instructions

XHI PROGRAMMING CONVENTIONS

Memory Layouts
Input/Output Documentation
Use of Symbols

Subroutine Usage
Typewriter Utilization
Debugging Techniques
Program Documentation

Page
Vil - i
VII - 3
VIiI - 7
viI - 9
VIII -16
IX - 1
IX -12
XI- 2
XT- 3
X1~ 3
XI- 4
XI- 6
XI- 8
XI - 190
XI- 10
Xl - 12
XI-13
X -1
X - 2
X1 - 3
XiI - 4
Xl - 5
Xt - o
XIII - 1
X1 - 1
X - 8
X1 - &
X - 9
XII - 10
X - 12

ii

October 1963

()

[(d
D)
NS
&

Figure
1-1
1-2
1-3
1-4
1-5
2-1
2 -2
2-3
2 -4
2-5
2-6

WWWwWwwWwwWwWw w
]
=TI W —

Y
1 '
RN

t
P
WhRoOO©® oo

N N L [
1

4 -17
4-18

4-19
4-20
4 -21

[l S G2 IS,
1
B W DN

ILLUSTRAT

GE-225 System Components

Central Processor and Controller Buffers
GE-225 Priority Access System

Large GE-225 System Configuration
Controller Selector Priority

Binary Addition Table

Octal Addition Table

Table of Powers of 2 and 8
Octal-to-Decimal Conversion Chart
Decimal-to-Octal Conversion Charts
Basic GE-225 Word

Bit Storage in a Ferrite Core
Representative Allocation of Memory
GE-225 Arithmetic and Control Register
GE-225 Arithmetic Registers

GE-225 Control Registers

ON S

Basic Timing for Single Length Word Operations

GE-225 Instruction-Execution Cycle

Flow Chart Showing Central Processor Operating Cycle

GFE-225 GAP Coding Sheet
Flow Diagram of GAP II
Pass U Packed Deck Card

Special Symbol Table as Produced by a Punched Card

System and Listed on the High-Speed Printer by a Magnetic

Tape GAP System
Printer Listing of Symbol Errors, Pass 0

ST2 Card and Printer Listing of Symbol Table 2 of Pass 1
Assembly Listing and Object Program Binary Card(Absolute)

from Pass 2 of GAP
Symbol Fields
Typical Instruction Lines
Assembly Control Lines
Constant Lines

GAP Coding Sheet Illustrating Operand Use by Instruction Lines

Examples of Operand Field in Assembly Control and

Constant Lines
X Field Examples
Remarks and Szquence Entries

Transfer Card Generated by END Instruction of GAP
High-Speed Printer Listing from Pass 0 of GAP

Flow Diagram of GAP II Input Media, Intermediate Storage,

and Final Output Media
Octal Card Deck
Relocatable Instruction Card Format

Paper Tape Character Set 8 Channel Friden Flexowriter

Model SPD

Two Numbers in Memory before Scaling

Incorrect Sum after Addition without Scaling

Numbers in Memory after Scaling
Using a Rounding Factor of . 05

Page

I-8

I- 9

I-11

1-13

I1-14
II- 2
II- 3
II- 4
II- 5
II- 6
II- 7
nmr- 1
I - 2
I - 4
IIr- 5
I - 6
nr- 7
I - 8
III - 10
v - 1
v - 2
Iv- 3

IV - 4
IV-5
IV- 5
IV- 6
v - 17
IV- 8
IV- 8
IV- 8
IV - 8
IV- 9
IV - 9
IV- 9
v - 16
IV - 19
IV -22
IV - 27
IV - 38
IV - 40
vV -13
vV -13
V-13
V- 14

iii

Figure Page

5-5 16K Memory Layout VvV =37
5- 6 Instruction Characteristics when Addressing 16K Memories Vv -38
5- 1 Rejected Parts Cost Flow Chart V -42
5- 8 RPC Program - Initialization V -43
5- 9 RPC Program - DPARTS Calculations V -43
5-10 RPC Program - EPARTS Calculations and Constants V -44
5-11 RPC Program - OVRFLO Routine V -44
6- 1 Units Directly Accessing Memory Vvi-1
6- 2 The Control Console Panel VI- 2
6- 3 Console Typewriter VI- "1
6 - 4 Typewriter Character Set vI- 17
6- 5 Sample Typewriter Coding Vvi- 9
6- 6 Paper Tape Reader-Punch Maintenance Panel VI -10
6 - 17 Paper Tape Modes VI -11
6- 8 Paper Tape Reader Control Logic VI -11
6- 9 5-Channel Tape Code to Memory Code VI -14
6 -10 Memory Code to 8-Channel Tape Code VI -15
6 -11 Standard Punched Card VI -20
6 -12 400 CPM Card Reader Mechanism VI -20
6 -13 Card Reader Feature Summary VI -21
6 -14 Standard or Hollerith Punched Card VI -22
6 -15 Memory Equivalent of Card Data VI -23
6 -16 Memory Equivalent of Word 27 VI-23
6 -17 Hollerith Punched Card Code for GE-225 VI -24
6 -18 10-Row Binary Data Representation VI -24
6-19 12-Row Binary Data Card VI -25
6 -20 12-Row Binary Card to Memory VI -26
6 -21 400 CPM Synchronization Word VI -30
6 -22 High-Speed Card R eader VI -31
6 -23 Flow Chart of Typical Card Read Procedure VI -34
6 -24 GAP Coding of Card Read VI -35
7-1 GAP Coding for API Problem VII- 6
8- 1 Composition of Magnetic Tape VII - 1
8- 2 Magnetic Tape Records and Interrecord Gaps VII - 2
8- 3 Representation of Characters in Memory and on Tape VIII - 4
8 - 4 BCD Characters on Magnetic Tape VIII - 5
8- 5 Memory to Magnetic Tape (Decimal Mode) VIII - 5
8- 6 Memory to Magnetic Tape (Binary Mode) VIII - 6
8- 1 Memory to Magnetic Tape (Special Binary) VIII - 6
8- 8 Lateral and Horizontal Magnetic Tapz Parity VIII - 8
8- 9 GE Magnetic Tape Sub-Systems VIII - 9
8 -10 Sample Magnetic Tape Record Layout Sheet VIII -19
9-1 High-Speed Printer Character Set IX-1
9- 2 High-Speed Printer, Controller, and Controller Selector IX- 2
9- 3 Operator Control Panel - High-Speed Printer Controller IX- 2
9- 4 Printer Controller Buffering Diagram IX-3
9-5 Printer Instructions IX- 4
9- 6 Field Spreading in Off-Line Operation IX -13
9- 1 Field Spreading for Both On- and Off-Line Printing Modes IX -13
9- 8 Command Words for Off-Line Printing IX -17
9- 9 Format Line Command Word Bit Configuration IX -18
9 -10 Sample Completed Format Command Word IX -18
9-11 Sample Coding of Format and Data Information For Off-Line

Printing IX -19

e oo i
el e s/ B!
HISZA74%)

iv

[N IR S O =T O Ui W DI =

OO0 ~IT O W DN =

D)

)

Page

Data Line Command Words and Bit Configurations IX -19
Sample Data Line Command Words IX -20
Off- Line Printing Block Diagram IX -21

See new, separate manual entitled, '""GE-225/235 DOCUMENT HANDLER
REFERENCE MANUAL' (CPB-307).

MRADS Sub-System XI-1
MRADS Disc Format X1-2
Summary of MRADS Characteristics Xi-2
MRADS Positioning Arm and Head Configuration XI- 3
MRADS Record Address Bit Configurations XI- 6
MRADS Timing XI- 8
MRADS Instruction Timing XI-9
MRADS Programming Sequence XI-11
Setting the Calculating Mode XII - 2
AAU Instruction Word Format XII- 2
Fixed-Point Data Word Format XII- 3
Floating-Point Data Word Format XII - 4
AAU Register Operations XII- 5
Typical Memory Allocation XIr - 1
Magunetic Tape Record Layout XIII - 2
Magnetic Tape Record Layout Sheet XII - 3
Memory Layout Sheet XIII - 4
BCD Multiple Card Layout Sheet Xm 5
Memory Allocation Layout Sheet XIII - 6
80-Column Card TLayout Form Xr - 7
Typical Symbolic Addresses XTI - 8
Representative Subroutine X1 - 8
Subroutine Requiring a Calling Seguence X1 - 8
Subroutine Calling Sequence XIII - 9
Printer Controller Octal Memory Dump XIII - 10
Programmed Octal Memory Dump XMOI - 11
Octal Correction Card XIIT ~ 12

)
D)
NS
G

(5

v October 1963

SECTION i

THE GE - 225

The GE-225 Inforimation Processing System is a
medium-scale, general-purpose digital computer that
permits an integrated approach to the total infor-
mation processing needs of business, government, and
science, while providing an economical means of
processing large volumes of data at high speed.

The modular design of the GE-225 system provides
flexibility in meeting data processing reguirements
for a wide range of applications. A GL-225 system
consists of reading (input) and writing (cutput) devices
interconnected and controlled through a central pro-
cessor. The number and types of input and output
devices, as well as the configuration of the central
processor, are determined largely by the desired
applications. Input data can be from papertape, mag-
netic tape, punched cards, and magnetically-encoded
(MICR) paper documents. Output canbe inthe form of
paper tape, magnetic tape, punched cards, andprinted
reports. Both alphabetic and numeric data can be
received or produced by the computer, either locally,
or over long distances from the central processor using
peripheral data transniission equipment, such as the
Datanet-15 and its associated terminals.

]

"

1

A

INFORMATION

PROCESSING SYSTEM

The GE-225 is a solid-state, single-address computer
that operates under both stored program and oper-
ator control. Also, it is a buffered computer with an
input-output priority system that permits simultaneous
operations, such as reading, writing, and processing.
Further flexibility is provided through the ability to
operate internally in either the binary or the decimal
modes.

The basic programming language for the GE-225 is
provided by the General Assembly Proeran:, It is
an automatic assembly system that permits the pro-
grammer 10 preparc routings i wucauniuglul symbolic
language, rather than in the absolute machine lan-
guage, or code, of the GE-225 and then utilize the
GE-225 (and the assembly program) to assemble a
computer-ready program, Extensive clerical effort
is eliminated by using significant mnemonic codes
that generally have a one-to-one correlation to basic
machine instructions, Added flexibility is provided
because addresses can be assigned using either deci-
mal or symbolic notation, Capabilities of the General
Assembly Program also include the ability to incor-
porate the many library routines provided by General
Electric, suchas input-output and mathematical pack-
ages.

NS,
NS
C)

(52
[m
0

/

October 1963

SYSTEM COMPONENTS

The GE-225 system can assume various configurations,
depending upon the application requirements. Brief
descriptions of system components are given below.
More detailed descriptions and information pertaining

to their use are provided in appropriate programming
sections of the manual.

Central Processor

The GE-225 Central Processor provides arithmetic,
comparison, and decision circuits and automatic con-
trol facilities for the processing system. In addition,
it houses the randomly-accessed magnetic core stor-
age (or memory).

Core storage provides the main memory element for
the system, although it can be augmented by external
storage in the form of magnetic tape or disks. Both
data to be processed and the controlling instructions
are held in core storage and called forth by the con-

trol element as required. Information in storage is
retained by tiny magnetic cores, each core capable of
holding one bit (binary digit) of data. The basic unit of
storage is the word, each word consisting of 20 bits
(plus a check bit), and each word being individually
addressable. The access time associated with trans-
ferring a word into or out of memory is 18 micro-
seconds, or one word time. Core storage can consist
of 4,096, 8,192, or 16,384 locations, each of which

can contain a single-address instruction, a binary
data word, or three alphanumeric or binary-coded-
decimal (BCD) characters.

Ble-225

Control Console tapes at 250 or 1000 characters per second, and a

mechanism for punching five-, six-, seven-, and
The GE-225 Control Console, attached to the central eight-channel paper tapes at 110 characters per
processor, provides manual control of operations, second. Provisions are made to accommodate all com~
visual display of the contents of appropriate registers, mon paper tape codes.

program monitoring facilities for the operator, and

typed output via the console typewriter, under program

control. From the console, the operator controls the

initial loading and starting of programs and can per-

form in-process modifications based upon processing

results.

Card Reader

Paper Tape Reader-Punch Either a 400 cardper minute or 21000 card per minute

card reader isavailable with the GE-225. Both readers

can read standard 80-column punched cards in one of

The GE-225 Paper Tape Reader-Punchistwo mechan- three modes: ten-row or twelve-row binary, or stan-

ically-independent units: a mechanism for reading dard Hollerith (alphanumeric) mode. Cards are read
five-, six-, seven-, and eight-channel perforated paper

serially (one column at a time) in all three modes.
GE-225

I-3

Either card reader canoperate simultaneously with the
central processor and other peripheral operations.
For example, cards can be read at the same time that
data is input from magnetic tape or from a 12-pocket
document handler; simultaneously, previously input
data can be processed within the central processor.

Standard cards are 7-3/8 by 3-1/4 inches and con-
sist of 80 columns along the long dimension and 12
rows along the short dimension, As cards are moved
through the card reader mechanism, all twelve row
positions of a column are simultaneously photoelec-
trically sensed, Card reader logic, whichis contained
within the central processor, permits cards to be
read on demand by the processor or continuously,

Card Punch

The card punch is anoutput device which punches stan-
dard 80-column cards at a rate of either 100 or 250
cards per minute, depending upon the model selected.
Cards are punched in either of three modes: ten-row
or twelve-row binary, or standard Hollerith mode,
depending upon program control.

The card punch is primarily an on-line peripheral and
receives basic control signals from the centralproces-
sor. However, gang punching, or duplication of many
cards from a master card, can be performed off-line.

As an on-line peripheral, the card punch can operate
simultaneously with the central processor and other
peripherals.

Controller Selector

The GE-225 Controller Selector serves as a common
control and data transfer point between the central
processor and the peripheral controllers for magnetic
tape handlers, document handlers, high-speed prin-
ters, mass random access data storage, Datanet-15
terminals, and the auxiliary arithmetic unit, The
controller selector contains eight hubs or addresses
to which eight controllers can be connected, By
priority assignments, which are determined by the
addresses, the controller selector controls access to
core storage for the attached peripheral units, This
permits simultaneous operation of as many as eight
peripherals on the controlier selector, plus the card
reader and punch, for a total of 10 concurrent input/
output operations,

The logic for the controller selectoris contained within
the central processor. Access tothe central processor
and memory for peripherals and their associated con-
trollers is provided by cables between the controller
selector and the controllers.

October 1963

Magnetic Tape

Magnetic tape provides a fast method of transmission
of data between the central processor and bulk storage,
Millions of bits of data can be recorded on a single
reel of tape, thus providing a compact and economiecal
storage medium. Magnetic tape canprovide in-process
(on-line) or static (off-line) storage for immediate or
subsequent use, yet can be erased and be re-used
repeatedly.

Up to eight magnetic tape controllers canbe connected
to the controller selector; up to eight magnetic tape
handlers can be connected to each controller, providing

EEETEERE

a maximum of 64 magnetic tape handlers for the GE-
225 system. Different models of magnetic tape
handlers provide two data transfer rates: 15,000 and
41,700 characters per second. Data can be read or
written either in standard binary or in binary-coded-
decimal (BCD) mode.

The combination of a tape controller andits associated
tape handlers comprises a magnetic tape subsystem.
A subsystem of one tape controller and multiple tape
handlers permits reading or writing concurrently with
other operations. A subsystem containing two or more
tape controllers permits reading and writing simul-
taneously with other operations.

Ble-225

High Speed Printer

The GE-225 High Speed Printer is an output unit for
applications requiring presentation of large quantities
of printed information. The printer produces alpha-
numeric output, up to 120 characters per line, 900
lines per minute. Printing format is governed by the
printer controller, which contains logic for automati-
cally editing the print line independent of the central
processor. Editing features include zero suppression,
deletion of data, and insertion of special symbols,
constants, and spaces. Printing canalsobeperformed
completely off-line from the system by using magnetic
tape as an interim storage medium. Printing and
editing can proceed simultaneously with other peri-
pheral and central processor operations.

Disc Storage Unit

Disc Storage Units, each consisting of 16 vertically-
mounted rotating magnetic disks, are available for
non-sequential file processing, Each DSU has a total
capacity of 98,304 records, or over 6 million words,
This provides storage for about 19 million alpha-
numeric characters or 34 million numeric digits,

October 1963

One or two DSU controllers can be connected to the
controller selector; up to four DSU units can be
connected to each controller, DSU reading and writ-
ing operations can proceed simultaneously with other
peripheral and central processor operations,

12-Pocket Document Handler

The 12~pocket document handler is an on-line or off-
line peripheral that reads and sorts documents printed
with magnetic ink in E13B font at a speed of 1200
documents per minute. The document handler can be
used off-line as a document sorter, and it is possible
to use two sorters simultaneously. The document
handler adapter (controller) permits concurrent oper-
ation with other peripherals and the central processor.
Two document handlers under the control of a single
adapter permit an input rate to the central processor
of 2400 documents per minute.

Auxiliary Arithmetic Unit (AAU)

Although the AAU is connectedto the central processor

through the controller selector (address 7), itismore
properly considered to be an extension of the central

processor, rather than a peripheral unit. The AAU
provides increased facilitiy for double-length word
binary arithmetic in either normalized or unnormal-
ized floating-point modes or in fixed-point mode. The
AAU canoperate concurrently with normal central pro-
cessor and peripheral operations.

I-7

October 1963

Datanet-15

Transmission and reception of data between the GE
225 Central Processor and remote locations is made
possible by the Datanet-15, which can accept serial
data at speeds from 60 to 2400 bits per second. The
Datanet-15 can operate with as many as 15 remote
stations, one at a time, in addition to controlling a
paper tape reader-punch. Terminal devices include
Teletype equipment, other Datanet-15unitsor virtually
any terminal device utilizing five-, six-, seven-, or
eight-channel bit codes.

SIMULTANEOUS OPERATIONS

The logical design of the GE-225 permits up to eleven
simultaneous input-output operations. That is, data
can be transferred between core storage inthe central
processor and several direct and indirectperipherals
at the same time that the centralprocessoris engaged
in processing data previously readin. Suchoperations
are made feasible because of the vast differences in
data transfer rates between core storage (18 micro-
seconds per word), and peripherals, such as the 400
cpm card reader (5610 microseconds per BCD word).

Maximun
Per
Name System
CENTRAL PROCESSOR (mandatory) 1
CONTROL CONSOLE, including Console
Tvpewriter (mandatory) 1
DIRECT INPUT-OUTPUT UNITS
Paper Tape Reader-Punch 1
Card Reader, 400 cpm or High Speed 1
Card Punch, 100 or 250 cpm 1
PERIPHERAL CONTROLLERS
Controller Selector 1
Mass Random Access Data Storage
Controller 1
Magnetic Tape Controller 8
High-Speed Printer Controller 8
Datanet-15 8
Document Handler Adapter 8
Auxiliary Arithmetic Unit 1
CONTROLLER SELECTOR PERIPHERALS
Mass Random Access Data Storage
Units 8
Magnetic Tape Handlers 64
High-Speed Printers 8
Datanet Terminals 120
12-Pocket Document Handlers 16

Figure 1-1. GE-225 System Components

To make optimum use of the high speed of core stor-
age, the GE-225 makes provision for time sharing ac-
cess to memory by buffering data transfers, assigning
peripheral priorities for access to memory, and
permitting simultaneous processing of two or more
unrelated programs.

Buffers and Buffering

Buffering is a technique for providing optimum data
transfer between two components having different
data transfer rates such as core storage and the
400 cpm card reader mentioned above, Buffering
involves using a temporary storage device, or buffer,
that can be filled with data at a rate governed by the
data source component, and subsequently unleaded
into the data receiving component at a rate governed
by that component, This permits both components
to function at their optimum speeds when processing
unrelated data without the faster component being
slowed down during data transfers by the slower one,

Thus, in transfers between core storage and the 400
cpm card reader, although it takes 150,000 micro-
seconds to read all 80 card columns, core storage

1-8 October 1963

CORE STORAGE BUFFERS

Card Reader —» Buffer ‘Pl l‘—! - ——
l o | Typewriter
ore
| £ Paper Tape
l Storage | Buffer Reader-Punch
Card Punch % Buffer 4‘| ""' >
l |
Central Processor
CONTROLLER BUFFERS
<+ — — — — —
Core
Storage — — — — P
L
Central Processor ¢ '
Controller
Selector
g Tape
Magnetic Control
Tape Buffer
Printer |g—o
Control
Buffer
High
Speed
Printer
To Other
Peripheral
Buffers

Figure 1-2. Central Processor and Controller
Buffers

Il
0
N)
)
Jal

(o)

1-9

is occupied in receiving the data read for only 1512
microseconds (one word time per column), The
balance of the time it takes to read the card (148,560
microseconds) can be used for other data processing,

Buffers in the GE-225 are of two types: direct I-O
buffers and controller buffers, as illustrated in
Figure 1-2. Direct I-O buffers, located within the
central processor, are for use withperipheralshaving
direct access to core storage, suchas the card reader
and punch, the paper tape reader-punch, and the con-
sole typewriter. Controller buffers are located in the
separate controllers for high-speed peripherals, such
as magnetic tape handlers, MRADS units, and high-
speed printers. Buffers for these units have access
to core storage indirectly through the controller
selector.

The Interrupt Principle

The interrupt principle takes advantage of the signi-
ficant difference in operating speeds of the central
processor and the peripherals by permitting the normal
‘fetch instruction, execute, fetch instruction, execute,
fetch...etc.,” sequence of the central processor to be
interrupted for data transfers.

Two kinds of interrupt are provided in the GE-225.
One, related to normal program processing, is called

priority interrupt; the other, related to multi-program
processing, is called automatic program interrupt.

PRIORITY INTERRUPT

In the GE-225, buffering permits two or more oper-
ations in a program to be performed simultaneously;
for example, cards or tape canbe read while computing
oceurs in the central processor and, atthe same time,
cards or tape can be written. Inthe example, compu-
tation and access to core storage by the central pro-
cessor are interrupted whenever the input or output
buffers are filled or emptied and a core storage access
cycle is required to transfer data.

If the central processor requests memory access while
input or output peripherals are requesting access, the
processor obtains access on the first free cycle. Be-
cause several requests for access to core storage
might be made at the same time, provision is made to
grant only one request for access during a memory
cycle. The priority interrupt logic incorporated into
the system analyzes these requests foraccess and de-
termines which of four possible channelsistohave ac-
cess during that particular cycle. Refer to Figure 1-3.

All access to memory, including that by the central
processor, is controlled by the priority interruptlogic,
which controls four channels. The first channel has

highest priority; the fourth channel has lowestpriority.
Normally, priority is assigned to components thusly:

Channel and Peripheral
Priority or
Assignment Equipment
1 Card Reader
2 Controller Selector
3 Card Punch
4 Central Processor, including

Console Typewriter and
Paper Tape Reader-Punch

In general, priority is determined by the operating
characteristics and buffering of system peripherals.
Usually, the peripheral havingahighdata transfer rate
will have a highpriority; theperipheral witha low data
transfer rate will have a low priority. Two major ex-
ceptions to this arrangement are the card reader and
the central processor.

The card reader is buffered in such a way that it
must have uninterrupted access to core storage while
it is reading each character on a card, or data may
be lost, The card reader is assigned the highest
priority,

On the other hand, the central processor is assigned
the lowest priority (with the console typewriter and
paper tape reader-punch) because there is no danger
of lost data if central processor operation is inter-
rupted by higher-priority peripherals. Also, program-

run-time is optimizedif fully-bufferedperipheralsare
permitted to operate at capacity.

The controller selector, through which all high-speed
peripherals access core storage, is assigned the
second-highest priority. These peripherals are fully
buffered and there is little danger of dataloss if their
operation is interrupted. Controller selectorpriority
is further discussed below.

The card punch which is a comparitively slow peri-
pheral, is assigned the third priority channel because
a card punch operation is initiated only when the card
punch buffer is filled. The card punch buffer can
maintain a partially-filled condition indefinitely; thus,
interrupting card punch operations cannot cause inad-
vertent data loss.

Controller Selector Priority Interrupt. The controller

selector is the common control and transfer point for
input-output peripherals. Specifically, the controller
selector: 1) provides peripheral configuration flexi-
bility and 2) permits the establishment of user-de-
termined priority systems.

BE-223

1-10

October 1963

<>

Priority Interrupt Logic

—— m— — —e e e — — —

Central Processor
Console Typewriter
Paper Tape Reader-Punch

(3)—>

4

Card Punchw

Controller
Selector

Card Reader

To
Peripheral
Controllers

Figure 1-3.

=5

GE-225 Priority Access System

&

I-11

The controller selector permits the use of a wide va~
riety of peripherals. Through plug-in connectors,
peripheral controllers can be connected in many ways
and changed to meet varying system requirements.
This ability allows for addition of specific peripherals
as the needs of an installation grow, It also allows for
the addition of new or improved input-outputunits with
little or no logic or wiring changes. Figure 1-4 illus-
trates one possible system configuration. Smaller or
different configurations are also possible.

In Figure 1-4, the card reader, cardpunch, paper tape
reader-punch, and console typewriter are connected
directly to the central processor. The other peri-
pherals, through their controllers, are connected to the
central processor through the controller selector. As
many as eight controllers can be connectedto the con-
troller selector through eight plug-in connectors, each
with an individual address; these controllers can be a
combination of the following:

1 or 2 DSU Controllers

1 to 8 Magnetic Tape Controllers

1 to 8 High-Speed Printer Controllers

1 to 8 Datanet-15 Controllers

1 to 8 Document Handler Adapters (Controllers)
1 Auxiliary Arithmetic Unit (includes Con-
troller)

As shown in Figure 1-4, controllers can direct the
operation of several peripherals. The following list
shows the maximum possible number of peripherals
each respective controller can handle:

1 to 4 DSU Units
1 to 8 Magnetic Tape Handlers
1 High-Speed Printer
1 to 15 Datanet Terminals, plus a Paper Tape
Reader-Punch
1 to 2 12-Pocket Document Handlers
1 Auxiliary Arithmetic Unit

The priority interrupt system actually operatesontwo
levels. The first level assignspriority accessto core
storage through one of the four priority channels, with
the controller selector being assigned the second-
highest priority (channel 2). The second level exists
within the channel 2 priority of the controller selector
and is assigned through eight address hubs, numbered
0 through 7. Once a controller selector request for
access is granted, the controller selector priority
system determines which of two or more requesting
controllers is to receive memory access. Which con-
troller receives access isdetermined by its assigned
priority, as evidenced by the controller selector
address hub to which it is connected. The controller

connected to address hub 0 has highest priority; the
controller on hub 7 has lowest priority within the con-
troller selector priority.

Thus, any controller on the controller selector has a
higher priority than the card punch (channel 3) or the
central processor and its associated peripherals
(channel 4).

Figure 1-5 is an expansion of the priority interrupt
control system shown previously in Figure 1-3. This
diagram further illustrates the relationship between
overall system priority and controller selector pri-
ority.

The priority assignments for peripherals connected
through the controller selector should be consistent
with the data transfer rates and the relative amounts
of data to be transferred by each peripheral. If re-
quests for access are received from two units simul-
taneously, the one having the higher transfer rate
will have the higher priority and be granted access
first. The other unit, having the lower priority, must
wait at leastone memory cycle before attaining access.
The reasoning behind this arrangement is that the
slower unit can wait longer with less effect on total
processing time and less danger of data loss than can
the faster unit. A magnetic tape controller, for
example, generally should have a higherpriority (lower
priority address) than does a printer controller. Once
a magnetic tape controller initiates tape motion, the
controller must have ready access to memory for opti~
mum data transfer. The printer, on the other hand,
does not startprinting until it has receivedall requisite
data, and can therefore afford to wait several cycles
for data.

AUTOMATIC PROGRAM INTERRUPT

Because the central processor will lose no information
if program processing is temporarily interrupted, it
is possible to provide instruction coding in a main
program for an automatic interruption of the program
to process one or more ‘priority’ programs.

Automatic program interrupt is an optional feature to
control the simultaneous processing of two or more
unrelated programs. This provides for concurrent
operation of peripherals while the main program is
being processed. Priority programs could include
those inwhichitis desiredto transfer data from cards,
tape, or core storage to the high-speed printer, or to
an MRADS unit.

Automatic program interrupt in the centralprocessor
monitors the card reader, card punch, and controller
selector peripherals; the interrupt feature takes effect
only when a peripheral thathaspreviously been engaged
returns to the idle status. Initial engagement of the
peripheral is controlled by the stored program. An

BE-22%

October 1963

wmm

Control [

Reader-Punch

Console l
| Card Reader Central
I Processor / l‘
Card Punch |
Controller i
Selector Auxiliary
Arithmetic
Unit
7
0 1 2 3 4 5 6
\

MRADS H Magnetic | Magnetic H Document ! High-Speed H l{ High-Speed ‘
! Controller | anape t Tape Il Handler || Pprinter ;;DATANET-M{? Printer i
I \ J|_Controlier || Controller IL Adapter || Controller || || Controller |

+ M / i 1 i

J v
E()) Paper-Tape
1 1 Punch
Printer
PO e HD
.J/ .-J—/
15
Figure 1-4. Large GE-225 System Configuration

RE-975
I ESZAVZARY))

I-13

instruction early in the main program sets the auto-
matic program interrupt to permit exit from the pro-
gram when a peripheral signals the centralprocessor
that it is idle. Note that this differs from priority
interrupt, which requires that a peripheral actively
request access to memory. An automatic program
interrupt causes atransfer from the mainprogramto a
‘priority’ routine whichinitiatesuse ofaperipheraland
subsequently returns control to the main program,;
simultaneously, the peripheral continues operation.
When interruption of the main program occurs, the

location of the next main program instruction to be
executed is stored in a special modification word.
When the ‘priority’ routine is completed, a branchin-
struction returns control to the main program.

Entry to a ‘priority’ routine automatically turns off the
automatic program interrupt. Topermit further inter-
ruptions of the main program, the ‘priority’ routine
must reset the automatic program interrupt before
returning control to the main program.

Core
Storage

3

Priority Interrupt Logic

Priority Interrupt Control

Central Processor
Console Typewriter

\T“*t@

Paper Tape Reader-Punch

’ CENTRAL PROCESSOR

Card
Reader

N

Card
Punch

Controller
Selector

Magnetic Auxiliary
MRADS Tape DATANET-15 Arithmetic
Controller Controller Unit
Magnetic Document High-Speed High-Speed
Tape Handler Printer Printer
Controller Adapter Controller Controller
Figure 1-5. Controller Selector Priority
1 @3 C.99DR
I e R A
BIE " A4

MACHINE

To efficiently program the GE-225, the programmer
should have a certain amount of knowledge concerning
numbering systems other than the familiar decimal
notation. He should also know how to convert num-
bers from one system to another. THe reasons for this
are simple: 1) the GE-225 system holds and manipu-
lates data in binary notation, 2) the programmer gen-
erally functions most effectively when working with
numbers in the decimal form, and 3) because neither
decimal nor binary notation is satisfactory as a com-
mon language between programmer and computer, an

wlerinedlalc nuimnpering system (octail notationj is viten

useful.

NUMBER SYSTEMS

The decimal number system consists of ten digits, 0
through 9, which are used in combination to express
values greater than 9. Depending upon their relative
positions in a number, digits are considered to be
equal to the digit times a positional factor. This
factor is some exponential power of ten, the base of
the decimal system. For example, the number 458
is actually an abbreviated way of expressing the fol-
lowing:

Positional
Digit factor Value
4 X 102 = 400 hundreds
+5 x 101 = 4+ 50 tenths
+8 x 100 - 4 B8 uynits
= 458

Any value less than infinity can be expressed in
the decimal system by expanding the number of
positional factors as far as necessary,

LANGUAGE

10,000’s 1,000’s 100’s 10’s 1’s

Positional

factor 10™..... 104 103 102 10! 100
Digit

positions X X X X X X

Other number systems are possible, using bases other
than ten. In each system, the number of digits used
corresponds to the base. Anumber systen: with a base
01 7V could have the digits U through 0, with positionai
valnee eorresponding to the powers of 7 Noto that)
widlevel Ule nuinber sysiem, e nignest aigli used
is one less than the base of the system.

Binary Number System

The binary number system uses two digits, 0 and 1,
called binary digits or bits, and has a base of 2.
Positional notation is similar to that of the decimal
system. Successive positionsinabinarynumber, from
right to left, have values corresponding to increasing
powers of 2. Thus, the binary number 11011101 is
equal to 1 x 27 +1x26 1 0x25 +1x24+1x234+1x

22 4 0 x 21 + 1 x 20, or 221 in decimal notation.

Like the decimal system, anynumber less than infinity
can be expressed by using enough positions.

MNaoanirminl

value etc.....256 128 64 32 16 8 4 2 1
Positional _

factor ol .98 27 96 95 94 93 92 51 50
Digit

position X X X X X X ¥X XX

AT ON N
N el
Sis (e

October 1963

Countinyg in binary is similar to decimal, beginning with
0. then 1. Oncethehighestdigitis reached, a carry to
the left adjacent digit position is made and the count

starts at zero again. Thusly:
Decimal Binary
¢ 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
ete. etc.

addition in binary is simpler than decimal addition,
as illustrated in Figure 2-1. Other arithmetic oper-
ations are similarly easy.

Octal Number System

The octal number system uses eight digits, 0 through
7, and the base 8. Again, positional notation is similar
to that of the decimal and binary systems. Successive
positions in an octal number, from right to left, have
values corresponding to increasing powers of 8. Thus
the octal number 1376 is equal to 1 x 83 + 3 x 82 4+ 7

x 81 + 6 x 80, or 766 in decimal notation.

The octal system can be extended to expr:ss any size
number.

Decimal

value ete..... 262,144 32,768 4096 512 64 8 1
Positional

factor 8% gb gd g% g3 g2 gl g0
Digit

position X X X X X X X X

Octal counting is also similar to decimal counting. The
count begins with 0, proceeds to 7 (the largest octal
digit), generates a carry into the adjacentleftposition,

+ 0 1 and starts again at zero. Thusly:
0 0 1
Decimal QOctal
1 1 10
0 0
1 1
2 2
- s 3 3
Figure 2-1. Binary Addition Table 4 4
5 5
6 6
7 7
The table shows that 0 + 0=0, 0 + 1=1, 1 + 0=1, and 8 10
1+ 1=0plus a 1 carry. In a two-number addition, the 9 11
largest intermediate sum is never more than 1 with a 10 12
1 carry. 11 13
12 14
13 15
14 16
Example: Add the binary numbers 10110101 and 15 17
11010110 16 20
etc etc.
1111 1 <—carry
10110101 Octal addition and other arithmetic operations are
+11010110 more difficultthanbinaryor the familiar decimal oper-
ations. The most useful is octal addition, which is
=11 0001011 facilitated by tables such as that shown in Figure 2-2.
(AT L DG

Octal Digits

+ o 1 2 3 4 5 6 7
o flo 1 2 3 4 5 6 7
1 h 2 3 4 5 6 7 10
b
2 f2 3 4 5 6 7 1011
[}
3 I3 4 5 6 7 10 11 12
§ 4 4 5 6 7 10 11 12 13
5 15 6 7 10 11 12 13 14
6 6 7 10 11 12 13 14 15
7 M7 10 11 12 13 14 15 16

Figure 2-2. Octal Addition Table

The table 1s useful in adding two octal numbers, which

is the most common application the programmer will
require.

Example: Add the octal numbers 642351 and 162534.

111
642351
+ 162534
1025105

carry

Notation Convention

Wherever the possibility of confusion exists, a sub-
script notation is used to indicate to which system a
given number belongs, For example, 1010 could be
a binary representation of the decimal number 10,
an octal representation of the decimal number 520,
or the decimal number 1010 0 If a number is ex-
pressed in binary notation tflle subscript , is used:
1010,. Octal numbers are shown with a su%script :
1238. Decimal numbers are shown with a subscript
10: 87610. If it is evident from the text which nota-
i ¥ate] 1vaAA ~ s Al an

ig + o Famd I Azaaiddad
LiVLL 1o UoTtyY, LUIT SubsULIpUL IS ulllllcuy,

Decimal-To-Binary Conversion

To convert a decimal number to binary, divide the
decimal number repeatedly by 2. After eachdivision,

write down the remainder in sequence from right to
left. The remainders will be the binary equivalent of
the initial decimal number. Note thateachdivision by
two leaves either a 0 or a 1 as a remainder.

quivalent of the decimal 53.

1st remainder

1st two remainders

1st three remainders

w s BRI as
FCilaiaiiandn

1st five remainders

0
21
-9

1 —— 110101 all remainders

Binary-to-Decimal

Binary numbers can be converted to decimal by the
same method as decimal-to-binary conversion, except
that the division is by 101 expressed inbinary (1010)
and the arithmetic is in binary. After each division,

the binary remainder is converted to a decimal digit.

The remainders, in reverse sequence, are the decimal
equivalent of the original binary number.

e 2
el A 2 /7 /7 AN
RIS

II-3

October 1963

Exampie: Convert 1011110115 to decimal notation. PAEY
0= 1 2
100101
1010 | 101111011 2 L
1010 4 2
1110 b= oL L 8 3
1010
10011 16 4
1010 32 5
1001 = 935" 9 units digit B 64 6
128 7
11 256 8
1010 [100101 8= .. 512 9
1010
10001 1024 10
1010 2 048 11
111 = 7;g——»79 tens and units st=, L L. 4096 12
digits
§192 13
0) 16 384 14
1010} 11 8= .. 32768 15
0
11 - 310—>379 hundreds, tens, 65 536 16
and unit digits. 131 072 17
8=, 262 144 18
524 288 19
1048576 20
Another method would be simply to look up the decimal 87=, ., 2 097 152 21
equivalents of the corresponding powers of two in the
table shown in Figure 2-3 and add. 4194 304 22
8388 608 23
88=, 16 777 216 24
33 554 432 25
Example: Convert 1011110119 to decimal notation. 67 108 864 26
89%= 134 217 728 27
268 435 456 28
Binary 536 870 912 29
1;‘05?10“31 g0 ... 1073 741 824 30
actors
28 27 26 25 24 23 22 21 204—~ 2 147 483 648 31
4294 967 296 32
1 0o 1 1 1 1 0O 1 1 gl .. 8589934592 33
| Binary
i Digits 17 179 869 184 34
34 359 738 368 35
L 1 gl2= ., 68 719 476 736 36
2
—P 0 137 438 953 472 37
8 274 877 906 944 38
16 g13=, .. 549755813 888 39
P32
64 1099 511 627 776 40
> 0
256
= 3799 Figure 2-3. Table of Powers of 2 and 8
RE.OPE
Gl2" L4

Binary-To-Octal Conversion

Converting numbers from binary to octal notation is
a simple mechanical procedure. Three binary digit
positions are the equivalent of one octal bit position.
Thus, a 15-bit number, such as 101 001 110 111 001,
is a 5 digit octal number when converted. To convert,
the binary digits are separated into groups of three,
beginning on the right. Each group of three is evalu-
ated individually; the right-most bit has a weightof 1,
the center bit is 2, andthe left-mostbit equals 4. As-
suming 1-bits in all three positions of a group, the
highest value expressible is 7, which is the largest
octal digit.

Example: Convert 1010011101110019 into octal nota-
tion.

84 83 82 81 80 Octal Position Factors

421 421 421 421 421 Conversion Weight

101 001 110 111 001
=5 1 6 7 1

Binary Number
Octal Equivalent

Octal-to-Binary Conversion

| o TN J . . - .
A4Sy A v L d Dedan il AU Y A UULDO, UULLY L e DAV 4d UL UG Lal

to binary notation is simplified. Beginning with the
right-most digit of the octal number, each digit is
converted to its binary equivalent. Each octal digit,
upon conversion, requires three bit positions.

Octal-to-Decimal Conversion

One method of converting octal numbers to their deci-
mal equivalents is to 1) convert the octal number to
......

by the previously described procedures.

Another method is touse a conversion table and merely
look up the equivalent decimal number, Forlarge octal
numbers, such conversion tables often run to many
pages. The short conversion table in Figure 2-4 is
useful in converting octal numbers up to 3777777
(sufficient for GE-225 programming) directly to deci-
mal notation. The table shows the decimal equivalents
of all octal digits as a function of their position in the
octal number.

To illustrate the use of the table, consider the octal
number 1761354. To convertthis numbertoits decimal
equivalent, read the equivalent decimal value of each
octal digit from the table and addthem to find the total
decimal equivalent, as shown helow:

Octal Positions Decimal Positions

86 85 g% 83 82 g1 g0 10 104 103 102 10! 100

Example: Convert 1234567g into binary notation. 1 7 6 1 3 5 4—- 4
L 5 = 4 0
7 Lﬁ = 1 9 2
6 - 5 1 2
5 = 2 4, 5 7 6
4 S- 2 2 9, 3 17 8
3 = 2 6 2, 1 4 4
> J |
1 —001 0’0 011 100 101 110 111 thus, 1761354¢ =5 1 6, 8 4 4,
OCTAL
DIGIT OCTAL DIGIT POSITION
VALUE
L g6 g5 gt g3 g2 sl g0
1 262,144 32,768 4,096 512 64 8 1
2 524,288 65,536 8,192 1,024 128 16 2
3 786,432 98,304 12,288 1,536 192 24 3
4 - 131,072 16,384 2,048 256 392 4
5 - 163, 840 20,480 2,560 320 40 5
6 - 196,608 24,576 3,072 384 48 6
7 - 229,376 28,672 3,584 448 56 7
Figure 2-4. Octal-to-Decimal Conversion Chart
(e . 9o)ie
Vs & 4 2/ 0
NN S . N

Decimal-To-Octal Conversion

Decimal-to-octal conversion can be done by first con-
verting the decimal number to its binary equivalent,
then reconverting the resulting binary number to octal
notation.

Another method involves the use of the two tables in
Figure 2-5. Theoctal equivalents of the decimal digits
are found in the upper table and are then added octally.
The lower table assists in the required octal addition,
by permitting the octal equivalents tobe addedin deci-

mal, a column at a time, then convertedto octal nota-
tion.

CONVERSION CHART

DECIMAL POSITION
DECIMAL
DIGIT 101 100
1 303, 240 23,420 1,750 144 12 1
2 606,500 47,040 3,720 310 24 2
3 1,111,740 72,460 5,670 454 36 3
4 1,415, 200 116,100 7,640 620 50 4
5 1,720, 440 141,520 11,610 764 62 5
6 2,223,700 165,140 13,560 1,130 74 6
7 2,527, 140 210,560 15,530 1,274 106 7
8 3,032,400 234,200 17,500 1,440 120 10
9 3,335,640 257,620 21,450 1,604 132 11
OCTAL EQUIVALENTS OF DECIMAL NUMBERS
DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL
1 1 15 17 29 35
2 2 16 20 30 36
3 3 17 21 31 37
4 4 18 22 32 40
5 5 19 23 33 41
6 6 20 24 34 42
7 7 21 25 35 43
8 10 22 26 36 44
9 11 II 23 217 37 45
10 12 24 30 38 46
11 13 25 31 39 47
12 14 26 32 40 50
13 15 27 33 41 51
14 16 " 28 34 42 52

Figure 2-5. Decimal-to-Octal Conversion Charts

I Example: Convert 3459781 to octal notation.

Decimal Positions Octal Positions

105 104 103 102 101 100 86 85 g4 83 g2 gl g0

3 4 5 9 1 8—>= 1 0
l L 5= 1 0 8
l = 1 6 0 4
> = 1 1 6 1 0
= 1161 00
»>=_1 11 1 17 4 0
thus, 34597810 =12 4 3 5 7 2

Adding the 80 column in decimal gives 1099, which is
12g, according to the lower table in Figure 2-5.
Writing the 2, carrying a 1 into the 8! column, and
adding in decimal gives 7g and no carry; write the 7.
Adding the 82 column in decimal gives 21y, which is
258. Writing the 5, carrying a 2 into the 83 column,
and adding gives 11410 or 13g. Writing the 3 and carry-
ing the 1 into the 8% column gives 4g, no carry; write
the 4. The 85 column gives 2 and the 86 column is 1.

October 1963

DATA WORDS

In the GE-225, the word (or basic unit of information)
consists of 20 binary digits. Words can be stored in
4096 to 16,384 core storage locations, each of which
is individually addressable. Additional random access
and sequential access storage is available in MRADS
units and magnetic tape.

ho

A word can be P

& Wora bL‘LUu, a u:.uax_y‘ data word or
nurmmber, a binary- coded decimal word (for expressing
either alphabetlc or numeric characters), or any pat-
tern of 20 bits the programmer so desires. The 20
bit positions of the GE-225 word are depicted in Fig-
ure 2-6. S (or0) refers to the sign position, 1 indicates
the high-order bit position, 2 the next highest, and so
on. Bitposition19indicates the low-order bit position.

HIIENEREEERRRRRENNEE

6123
S

Figure 2-6. Basic GE-225 Word

Binary Data Words

When a word is interpreted by the GE-225 as binary
data, the O (or S) position acts as the arithmetic sign.
A 0-bit in the sign position indicates that the word is
positive; a 1-bit indicates that the word or number is
negative. Inbinarywords, 1-bitsinpositions 1 through
19 indicate values corresponding to the powers of two.
A 1-Dbit in bit position 1 equals 218 or 262,1441¢; in
position 2, a 1-bit equals 217 or131 10724 in position
19, 20 or 1. The largestpositive decimal number that

can be expressed in the 20-bit binary wordis 219 . 1,
or 524,287,.

Negative numbers are expressed in binary form by
placing a 1-bit in the signpositionandthe 2’s comple-
ment of the desired number in bit positions 1 through
19.

To express a given negative number:

1. Write the positive number in binary

2. Change it to the 2’s complement form by
a) converting all 1-bits to 0-bits andall 0-

bits to 1-bits and

adding a 1-bit to the leastsignificant bit

position.

b)

For example, to express the decimal -68, in binary,
write +68, in binary:

ayanyir?
\

lololo olololololololoblolllolo|o|1|0|0|
S123. .19

. R

Inverting all bit positions gives:

L]

[1

! 1L]

1 1|1|1|1.1I1Il 1|o!1!1|1lo]1|1|

11
2 3

Ol

1
S

Adding a 1-bit to bit position 19:

|1[111J1I1|1|1I1]1|1[111|1|0|1I1|1I1l0]0|
s123.............. 19

The largest negative number that can be ‘expressed in
the 20-bit binary word is 219, or 524 28810

A machine instruction is provided for automatlcally

convertin itive number to a ‘r*b tive n ,Jr
converting a positive number to a negative number.
Also, in subtract operations involving positive num-
bers, the required complements are automatically
formed.

Double Length Binary Words

The GE-225 can perform double length data word oper-
ations. Double length words consist of two 20-bit words
which are normally stored in adjacent memory loca-
tions. For processing, they are treated as a single
word consisting of a sign bit and 38 data bits.

For illustration, consider the decimal 3,862,483 o-In
binary, this number would be stored in two adjacent
memory locations:

921 |
L|o)o|oio|o|o|o|o|o|o|ololojo|o |0|1|1 1]
S123. . 19
Memory Locatlon 1

216 914
Lloll]01

911 28 25 20
[1 \110|11111L1 mlioll 10|011|11

S 1
Memory Locatlon 2

|
A

(85

m ~
i s}

e
|2
=

e

The most significant half of the double word is stored
in the first memory location. The adjacent (higher)
location contains the least significant half of the word.
Bit positions in the second memory location have values
correspondmg to the first nineteen powers of two (2
through 218), while those of the first (lower) memory
locatxon correspond to the second nineteen powers of
two (219 through 237). The signs of both locations are
the same, 0 for plus or 1 for minus. Double length
negative numbers are expressedinthe 2’s complement
form.

Floating=-Point Notation

The auxiliary arithmetic unit (AAU) expands the arith-
metic capability of the GE-225 to include normalized
and unnormalized floating-point operations. Repre-
sentation of floating-point numbers is discussed inthe
section, Auxiliary Arithmetic Unit Operations.

GE-225 installations, with or without the AAU, can
process floating point arithmetic with utility subrou-
tines provided by General Electric for this purpose.
However, for voluminous floating point calculations,
the AAU provides greater efficiency, because of its
speed and capacity.

Binary-Coded-Decimal Data Words

In addition to its basic binary capability, the GE-225
can process binary-coded-decimal (BCD) or alpha-
numeric data, The six bit positions of the BCD code
may be used to express 64 character configurations,
including all alphanumeric and special characters of
the GE-225 character set,

The 6-bit code consists of two groups:

ZONE NUMERIC
GROUP GROUP
B A 8 4 2 1

CT 1 il T]

The numeric bits correspond to the first four powers
of two, as they do in the binary system, and can express
up to 16 numeric values, 0 through 15. The zone bits
provide for coding alphabetic and special characters.

Selected characters are shown below in BCD. All GE~
225 characters and their equivalent BCD codes are
shown in the Appendix.

In the BCD mode, the GE-225 word can contain three
characters, occupying 18 bit positions (2 through 19).

B A 8 4 2 1
1 0 0 0 0 0 1
5 0 0 0 1 0 1
9 0 0 1 0 0 1
A 0 1 0 0 0 1
N 1 0 0 1 0 1
R 1 0 1 0 0 1
/ 1 1 0 0 0 1
Z 1 1 1 0 0 1
$ 1 0 1 0 1 1

The remaining two bit positions (S and 1) do not nor-
mally contain data, but are used for program and
printer control purposes discussed later, A repre-
sentative GE-225 BCD word is shown:

bwwhwwhmmmﬁﬁﬂhﬁﬁﬂﬂzh

~"

B

6 2

Double length BCD words are possible to express al-
phanumerics consisting of as many as six characters.

Optional instructions permit variable length BCD arit-
metic operations. Negative numbers must be expres-
sed in 10’s complement form with a 1-bit in the sign
position. Note that, in BCD numerics, the zone bits
(2, 3, 8, 9, 14, 15 bit positions) are set to zero. Al-
though the BCD word contains only three numerics, the
variable length feature permits operations with BCC
numbers of any practical length.

Examples of BCD quantities:

Decimal BCD word(s)

+ 10 _+lof1]o]

+ 989

- 10 -lolglo |

- 089

.87649 | +lolsl7 |[s16la]9]
-gm49 | -l9l1]2 |[F 351,

GE-228

I1-8

October 1963

INSTRUCTION WORDS

Instructions are expressed as 20-bit words. Three
different formats are used.

Format I. Allinstructionsinvolving reference tomem-
ory arc written in Format I. Includedare arithmetic,
memory transfer, and certain branch instructions.
Complete descriptions of these instructions are pro-~
vided in subsequent sections.

The format for memory reference instructions is:

DO WITH DATA
THIS - LOCATED HERE
0 4 5 6 7 19
OR
OPERATION X X OPERAND
CODE ADDRESS
0 4 5 6 7 19

The five bits (0 through 4) indicate the operation to be
performed, such as add, subtract, read cards, etc.

Bits 5 and 6 provide for automatic address modifica-
tion by stipulating whether the contents of one of sev-
eral X registers are to be used to modify the operand
address. Automatic address modification is treated
in Section V.

Bits 7 through 19 designate the operand address; that
is, the memwory location where the data to be added,
subtracted, etc., is stored.

About 60 of the over 300 instructions in the GE-235
reperioire require operand addresses, Instructions
without operand addresses cannot be address modi-
fied, This permits bits 5and6, and 7 through 19 to be
used for other purposes, Instructions in this cate-
gory (no operand address) are called general instruc-
tions, Format II, or shift instructions, Format III,

Format II. All instructio

ns

indata transfer (excluding

Cata Liallsie Caliuillyg

memory transfer) and mput—output categories and most
internal test-and-branch instructions are written in
Format II. Instructions in this format are commonly
called general instructions and have the same oper-
ation code in bit positions Sthrough4 (10 101, or 25g).
Format II has three variations, corresponding to the
three general categories mentioned.

n\/ﬁ\l—_‘
/7 //b\\

The word movement variation is for instructions in-
volving full word transfers between arithmetic regis-
ters and the arithmetic unit. They assume this format:

S—>4 56 78 9 >19
Opée;‘gglon Specifies Exact Opera"cioﬁruI
Iy 1 RN I_ /
! 1

Always is 01 indicates

25g for Word Move-

General ment Variation

Instruction
No Address Interpretation of
Modification these bits is ex-

plained under
‘Micro-program-
ming~

The input-output variation is used for instructions in-
volving the central processor and peripherals. Bits
S through 4 contain 25g (10 101) and bits 7 and 8 are

0's. The remaining oils specily the input-output oper-
ation. The format is as follows:
S——>4 56 78 9—>13 14—>19
Operation 0 0 Starting Specific
Code Address | Operation
Always is Designates Designates
25g for Input- Output the specific
General Variation input-output
Instruction ‘ operation
No Address Either a mem-
Modification ory location or

peripheral con-
troller address

The test-and-branch variation is usedfor instructions
that provide for breaking the normal sequence of in-
struction execution. These instructions are identified
by 25g (10 101) in bit positions S through 4 and 1-bits

/ﬂ“! i’
}

o

j—

(S5

N

October 1963

in positions 7and 8. The test conditicn for determining
a branch to anotherinstructionis specifiedby bit posi-
tions 9 through 19. The format is:

S—>4 56 178 9 10——>19
f T
Opgﬁ%;on 1 1| 1,0 | Branch Condition

J

X N . VANVAN

| !]
Alwa‘ys is Designates Specifies con-
258 for Test-and- dition to be
General Branch tested
Instruction Variation l
No Address 1 =branch on

Modification negation (no)
0 =branch on

affirmation (yes)

The specific bit patterns for all Format I instructions
can be found by converting the octal equivalent of the
instructions to binary. The octal form of each in-
struction is included in the instruction descriptionsin
subsequent sections.

Format III. Only shift instructions are written in
Format III. Shift instructions are used to shift one or
more bits within or between arithmetic registers. Bit
positions S through 4, designating the operation code,
contain 25g; bits 7 and 8 contain 1 and 0 respectively,
identifying a shift operation; bit 9 indicates direction
of shift (right or left); bits 10 through 14 identify the
registers involved; bits 15 through 19 designate the
number of bits to be shifted. The format is:

S—>4 56 7 8 9 10 14 15 19
Operation Exact Length
Code 00|10 J1/0 Operation | of Shift
q /;VJ;\/FJLVAW_J —
Always is Shift Specifies
25g for Varia- Registers
General tion
Instruction l
No Address =left Up to
Modification shift 31 bit
0 =right positions
shift

While it is possible to prepare programs for GE-225
processing directly in binary notation, it is infre-
quently done because such programming is tedious and
subject to clerical error. However, a knowledge of
binary notation and instruction structure is essential
in micro-programming (the building or creating of

instructions by the programmer). Micro-program-
ming is discussed in a later section.

In program debugging and patching, octal notation is
frequently used for 3 reasons: 1) octal notation pro-
vides the programmer with a more meaningful pre-
sentation than does binary, 2) the GE 225 provides
printed outputs (during GAP program assembly) and
memory dumps inoctal notation, and 3) octal can easily
be converted to binary or decimal. Onthe other hand,
binary is difficult to reador write; alsoit is tedious to
convert to the familiar decimal notation.

GE-225 Octal Notation

Conversion of GE-225 words from binary to octal or
octal to binary is a simple mechanical procedure.

Given the GE-225 binary word:

[0‘1 }1[0‘

1‘0
S 1 .

.

11[111!010%1|011i1|0P0!1!1|igl

. .

Starting on the right, divide the word into groups of
three bits (giving six groups of three, andone group of
two) and assign octal values to the bit positions as
shown:

01 1101 Jo11 | 100 | 101 [100 | 111 |<—Bits
Octal
DI|I®|®|®|®|® [arouw
No.

Evaluate eachgroup andwrite the equivalent octal digit:

01
101
011
100
101
100
111

$ - 15345474

QEEEEEE

LN I S L2 2 LI

The result of the binary-to-octal conversion is a 7-
digit number in place of the longer, less meaningful
20-bit binary word.

BE-225

I1-10

Note that any GE-225 word can be representedas a 7-
digit octal number, whether it beadataword or an in-
struction.

muliched by rovergine the above proces
P4180CQ Oy roversing Wil avlve process:

The epresentatio f the number 1234567g inbinary is

IO U W M) e
i
—
o
o

Because of the simplicity and convenience of octal nota-
tion, it is used freely in the balance of the manual to
simplify explanations and to provide familiarity.

Symbolic Programming

Mogt orovrarnming for the (3F <225 1< fone Wifh SV~
bolic (,odmg, made pOSblble by the General Assembly
Xavgiaii \\.ut jo GAF pLuviUEs Lk basic PLUZ L ALl
ianguage and permits programming in ineaningful
mnemonic codes, using symbolic addressing. This re-
lieves the programmer of much clerical and ‘house-
keeping’ detail, thus making GAP generally preferable
to binary or octal coding.

The GAP programming system is comprised of two
parts: 1) the symbolic language usedby the program-
mer in coding the source program and 2) the General
Assembly Program that automatically processes the
source (or symbolic) program into a ready-to-process
machine~language (or object) program.

Section 1V discusses all phases of the General Assem-
bly Program, including the pseudo-instructions for
controlling GAP assembly, the assembly process, and
operating procedures.

The GAP symbolic programming language consists of
a ant Af atanAdAarndiand mnamAanis andna dividad inta twn
A DUL VA DLAQIIVUA L MAUT\W ALl iiIVIIAY VUMV D \“V \-4\—\-! LAL\-V LA A4

categories:

[y

Pseudc-instructions used for memory loca-
tion assignments, program constant stor-

age, and program controld rinotheagssem-
age, an ringtheassem

’ Cpaaill ULLLIVILS

bly process.

2. Mnemonic operation codes corresponding
to the over 300 machine instructions of the
GE-225.

Pseudo-instructions, described in Section IV, have
no correlation with the GE-225 machine instructions
contained in the assembled object program, On the
other hand, there is generally a one-to-one correlation
between the mnemonic operation code prepared by the
programmer and the machine instruction appearing
in the object program,

In addition to conventent svimbolie codes for instrue-
tions, GAP permits the programmer to reference
Memory with eithel acludi NUIMEric o SVINDOLLC iuCa-
tions previously defined with GAP pseudo-instructions,
thereby facilitating program coding, debugging, and
incremental preparation and revision.

All GE-225 instructions are described, beginning in
Section V. For each instruction, the mnemonic code,

its machine language equivalent (in octal), its func-
tional description, execution time, registers affected,

liberal examples of its use, and appropriate comments
are shown. Instructions are grouped functionally for
ready reference and are indexed both numerically and
alphabetically in the Appendix.

October 1963

—_—

S

CENTRAL PROCESS

The central processor performs all arithmetic and
logical functions in the GE-225 system and acts as a
central control for all internal and peripheral oper-
ations. Because the program (or instructions for data
processing) is held in memory like the datato be pro-
cessed, the GE-225 is known as a stored program
computer.

MAGNETIC CORE STORAGE

Instructions and data are held in the primary sterage
unit, or memory, through the use of uny ferrite cores.
Each core isaring, ortoroid, of ferromagnetic mater-
ial capable of being magnetized in one of two polarities
when current is passed through wires inserted through
the cores. Currentthroughthe wires generatesa mag-
netic field which in turn magnetizes the core; when the
current is stopped, the core remains magnetized. If
the direction of current flowis reversed, the field about
the wire is reversed and the ferrite core will be mag-
netized in the opposite direction. The two possible
states of magnetization can be called 1 and0, corres-
ponding to the two binary digits.

Current Sense

Winding

No
o

Flow

!

Current —>

CTION

|
O

R ORGANIZATION

Figure 3-1 illustrates this principle of storage. Note
that two wires areusedtoprovide the magnetizing cur-
rent and current mustbe presentinbothwires to mag-
netize a core or switch the core from one magnetic
polarity to the other. Thethirdwire shown, the sense
winding, is used to sense the change in magnetization

of the core. Asthe core ‘flips’ from one magnetic pol-
arity to the other, a pulse is induced in the sense

winding by the collapsing field of original polarity and
the increasing field of the new polarity.

The basic GE-225 memory moduleisanarrayor block
of cores €4 wide, €4 cores long, and 21 cores
deep. It can be visualized as 4096 vertical columns ot
21 cores each. Each column of cores can contain 20
information bits plus a parity (or check) bit. When a
word is stored in or read from memory, the bit pat-
tern of the wordis simultaneously set intoor read from
all 21 cores of the desired columnor storage location.
In addition to the basic 4096-word module, memoryis
also available with storage capacities of 8192 and
16,384 words.

»
cores

Each memory word is individually addressable. Ad-
dresses are used to make data stored in memory

Current
Flow

Induced
Current

Flow
N Direction of

4 ' Magnetization .

Setting a Core
to the ‘1’ State

&

A ‘1’ Bit
Retained

Resetting a Core
to ‘0’ and Reading

out a ‘1’ Bit.

Figure 3-1. Bit Storage in a Ferrite Core

|

NOI=
{1 - VAV Iaal)
N INZA7aY)

III-1

relocatable. Instructions requiring data to be moved
to or from memory must specify an operand address
corresponding to the memory address containing the
data. Instructions held in memory are accessed by
their addresses. Addressesare numbered sequentially
from 0000 to 4095 (or 8191) for basic memory sizes.
Addressing the additional 8192 words in a 16,384 word
memory is covered in a later section.

Access time for a word stored in memory is 18
micorseconds (millionths of a second); thisincludes 1)
reading the word from core storage, 2) storing the
word in a register external to memory, and 3)restor-
ing or replacing the word in core storage, Core
storage access time is also called a memory cycle
or a word time, A single data word transfer to or
from memory, including access time for the instruc-
tion effecting the transfer, requires 36 microseconds
(2 word times); a double length word transfer requires
54 microseconds (3 word times), When a word is
read from memory, all 21 bits are transferred simul-
taneously, Storing a word in agivenaddress destroys
the previous contents of that address,

Stored Program

Because instructions, like data, are storedin memory,
data processing canproceed automatically, performing
instructions in sequence as they exist in storage, or
branching to otherinstructions in the sequence depend-
ing upon the preceding instruction.

For the same reason, self-modifying programs are
possible. Instructions can be manipulated as well as
data, permitting changes to the basic program as a
result of in-process decisions.

Addresses:
0000
INDEXING
0128
AUTOMATIC
PROGRAM INTERRUPT
0256
CARD
INPUT-OUTPUT
1000
PROGRAM
2500
CONSTANTS
2800
MAGNETIC TAPE INPUT-OUTPUT
2940
PRINTER INPUT-OUTPUT
3100
SUBROUTINES

Figure 3-2. Representative Allocation of Memory

Programming efficiency is aided by good planning
or the orderly use of available memory. The designa-
tion of specific areas of memory for specific purposes
reduces programming time and errors. Figure 3-2
illustrates a possible allocation of memory space for
input-output, constant, instruction, and subroutine
storage.

X Register Operation

Memory addresses 0000 through 0003 have specialpro-
perties, Instructions are provided to permittheiruse
as program counters by making provision for incre-
menting their contents by a constant and testing the
contents with one of two special test instructions.

In addition, iccations 0001 through 0003 canbe used for
modification word storage and are called X registers.
Bit positions 5 and 6 of the basic instruction word can
be used to specify which of the three X register con-
tents is to be used for modification, as indicated:

Bit Position X Register
5 6 Selected
0 0 None
0 1 0001
1 0 0002
1 1 0003

If an instruction containing an operand address also
specifies an X register in bit positions 5 and 6, the
contents of the specified location (0001, 0002, or 0003)
are added to the operand address to give the effective
address. Theinstructionis executedusingthe effective
address, rather thanthe operand address. The original
instruction in storage remains unchanged.

X registers facilitate addressing upper memory (loca-
tions above 8191), as describedin the section, Addres-
sing Upper Memory.

Additional modification words are available as partof
an optional package that also provides a three-way
compare instruction and decimal (BCD) arithmetic
capability. The added modification words consist of
31 groups, each containing a word that can be incre-
mented as can location 0000, and three words with the
same modificationproperties aslocations 0001 through
0003. This provides 96 modification words and 32
counter words in memory locations 0000 through 0127.

Use of the optional modification groups requires the
specification of the desired modification group with a
special select instruction. A group remains selected
until a subsequent special select instruction isusedto
specify another group. Once a group is selected, the

HE-995
] —;_/jM

II1-2

October 1963

desired modification word within the group is specified
by bits 5 and 6 of the instruction. For example, if
modification word group 28 were specified by a special
select instruction during a normal program sequence,
all subsequentinstructions withX register coding of 01,
10, or 11 wouldbe modified by the contents of locations
0113, 0114, or 0115, respectively, until another modifi-
cation group was specified by another select instruc-
tion.

<

Register Operation

The M register is a 21-bit register (see Figure 3-3).
All information transferred to or from core storage
must first pass through the M register, which is the
focal point for information transfers among GE-225
system components. The 21 bits of the M register
include 20 information bits, plus a parity check bit.

Parity Checking

A parity check isperformedautomaticallyasaword is
xead from memorv into the M register. The parxtv

N i1 1

BFELSION.4 id LiiT & ’|..£.>.. wosrteedaiaiond i L-L i .J‘L
positions; if the count is odd nar*rv is correct and
nnpvqhnnc ;nv\nr«ﬁrl q&‘ &L.,- potnt . A-LA:A; “r“‘“.!

error (bit drop or pick-up) has ocourred and the parity
alarm light on the control console is turned on. In
addition, depending upon the position of the ‘Stop on
Parity Alarm’ switch on the control console, a com-
puter halt or aprogrammedbranch for remedial action
can occur,

Words written into memory have a parity bit generated
(as required) by the parity check circuits, while the
word is held in the M register. The parity check cir-
cuits count the bits and, if the countis even, generates
a bit for the 21st bit position. If the count is odd, no
parity bit is required. Ineither case,the entire 21 bit
positions of the M register are stored in memory.

ARITHMETIC AND CONTROL
REGISTERS

Arithmetic operations, such as addition, subtraction,
multiplication, and division, require temporary stor-
age devices external to memory for holding inter-
mediate and final results and performing the necessary
calculations. The GE-225 uses arithmetic registers
for these purposes. In addition, arithmetic registers
are used for shifting and other data manipulations
related to decision-making and arithmetic capabilities.

Arithmetic registers include:

B Register
A Register
Q Reg1ster

(optlonal not illustrated)
T

Control registers contro
and interpretation of ins
include:

tructions.

I Register
X Registers
P Counter (or register)

Arithmetic Registers (Figure 3-4)

B REGISTER. The B Register is a 20-bit register

which acts as a buffer register between the M register
and the central processor during data transfers. The
B register is also a buffer for arithmetic operation
and contains:

The addend for addition

The subtrahend for subtraction
Pile mnullipiicana (or mlipiac s
The divienr Aurine divigion

Outputs from the B register are suppliedto the I regis-
ter andthe arithmetic unit. The B register is alsc used
in the execution of certain data transfer commands.

A REGISTER. The A Register isa 20-bit register and
is used most frequently in central processor oper-
ations. It receives information from and transfers
information to the arithmetic unit. It serves as the
accumulator for the central processor and performs
this function by holding:

The
The
The
The
The

augend during addition

sum after addition

minuend during subtraction

resuit after subtraction

most significant half of the product after mul-

tiplication

‘most significant half of the dividend before

division

quotient after division

most significant half of a word after the exe-

cution of all douhle Tpno*fn word instructions

A word transferred from, or to be transferredto,
memory

The word on which extractionisperformedduring

the execution of the extract instruction (Ex-

traction is the examination and replacement

of bits in a word according tc a previously-

defined pattern)

The

The
The

/o] NN
Ml . 90
£ L4

T Sadrass =
Decoding ! i P Counter
Network [S A A S 15
Core 1
Storage
I Register
[A N 19
r
- M Register g1
Card Reader B Register
Card Punch S I 19 P Sz e e e e e e e e e e e e e e e e 19
Controller 3
Selector
Peripherals
Parity
Check .
Arithrer o
Unit
y
A Register) Register
S 123 . o e e e e e 19 S 123 e 19
N
Register
2
Console Typewriter

Paper Tape Reader-Punch

Figure 3-3. GE-225 Arithmetic and Control Register

The word to be shifted during various shift
instructions

A word to be transferred toanother registeror to
he modified in some way during the execution
of varicus data transfer commands .

The word that determines future action during the
execution of branch instructions.

In addition, manual access to the A register is per-
mitted by 20 console switches provided for this pur-
pose.

Q REGISTER. The Q Register is a 20-bit register
which acts with the A register to forma double length
word accumulator (38 bits plus a sign bit) during the
execution of double length word instructions. Infor-
mation is not transferred directly from memory into
the Q register, but is readintothe A register and then

—

=9 L‘;\

Slb o

shifted into the Q register. The Q register performs
the foliowing functions:

1. Holds the least significant half of the augend
before double precision (double length) addi-
tion, and the least significant half of the sum
after addition.

2, Holds the least significant half of the minuend
before double precision subtraction, and the
least significant half of the result after sub-
traction,

3. Holds the multiplier before multiplication.

4, Holds the least significant half of the result
after multiplication,

5. Holds the least significant half of the divi-
dend before division,

6, Holds the remainder after division,

N B (oo

II1-4

October 1963

Holds the least significant half of the double length
word during the execution of double length word
instructions.

Holds the least significant half of information to be
shifted during double length shift instructions.

N REGISTER. TheN Registerisa 6-bit register which
is used asa single character buffer between the central
processor and 1) the console typewriter, 2) the paper
tape reader, and 3) the paper tape punch. This permits
input-output operations with these units to occur simul-
taneously with other central processor operations.
Information is transferred directly betweenthe N reg-
ist nd the i

S

er a

i
=
Is¢]
>
-5
3]

i)
[
n

C REGISTER. The C Register, or Real Time Clock, is
an optional equipment feature that permits the timing
of operations in either relative or real time. This
feature is convenient where it is necessary to deter-
mine or record elapsed time of operations performed

by the GE-225, or ofoperations external to the GE-225
system. In addition, it is possible to determine the
time of an occurrence relative to actual (Greenwich
or local) time or to any suitable time base.

The C register is a 19-bit binary register that can be
set directly from, or read directly into, the A register.
Only bits 1 through 19ofthe A register are involved in
such transfers.

The C register is automatically incremented by one,
in binary mode, every sixth of a second while power is
applied to the GE-225. When the C register count

reaches the binary equivalent of 24 hours (518,400
sixths of a second), it automatically resets to zero and

starts counting again. Translation of the C register
contents from binary notation to clock time can be
performed either manually or by a simple conversion
routine. Instructions and conversion procedures are
discussed in Section V.

! Addrgss P Counter Ty
Decoding - !
Network 123, 0 0 00 e 15 I
Core T !
! Sfeny i ! ? : :
i 1 Register J’——"‘“‘-‘])
1 [} PEaX! [
q | e _ ol
3
M Register B Register
Card Reader "
Card Punch 51283 . 0 i v v it e e e e e 19 P S 123 . . 0 it e e e e
Controller 1
Selector
Peripherals Parity
Check Arithmetic
Unit
4
A Register Q Register
MS 123, . 19 S 123 . 0 it e 9
N
Register
(A 6
:
Console Typewriter
Paper Tape Reader-Punch
Figure 3-4. GE-225 Arithmetic Registers
SN A S
(15 e 5=
i I AN aReS
SIS T L4

A HI'I I—l\'\fIF'”[‘I(‘l

unctions.

ITNIT

The arithmetic unit is a high-
2ry adder network,

s It serves twn
I)erg amthmetlc operations, it performs

the calculations specified by the operation code in the

1 register.

It also serves as atransfer bus for words

moved between the A register and memory (via the M

register).

moving into the I register.

(Figure 3-5)

and for the operand portion of instructions

I BEGISTER. The 1l Register is the instruction regis-

rer.
thie

s

X ¥

mff)mafm address modification,
execution of instructions involving memory loca-

the

Tt contains all 20 bits ofan instruction word during
execution of a computer instruction. While instruc-
are being processed, bits 0 through 4 indicate the
:n to be performed, and bits 5and 6 control the
if required. During

rions. bits 7 through 19 specify the memory address

X REGISTERS.

iiireugh 19 have other meanings during

involved, i3its ot
¢ and «hift instructions.

the ccaoririoe o ceo el

Tnstructions are read frommemory into the M register
and set into the B register. From the B register, bit
positions ¢ through 6, comprising the operation code
and the address modification bits, are transferred
directliv T vegigter for decoding. At the same
time, hit nocitions 7 through 19, the operandportion of
the instruction, 4are routed to the arithmetic unit. If
bit positions & and 6 indicate address modification, the
contents of the indicated X register are added to the
nstracilon o wind i the avithmetic unit and the modi-
fied operan sat into the I register. If no address
modificatio dicated, the unmodifiedoperandis set
into the I register,

into the

¥ Registers, memory locations 0000
through 0003. ar¢ not actually registers, but serve
some of the same functions as do control registers.

X Registe Address 5 o .
glsters Decoding Lonniol
Network 123, 000 v i oo 15
Core
Storage
1 Register
01 2 3 0 v v v v e e e e e e e e e e e e e e s 19
4P M Register » B Register
vard Reader
Card Punch S1283 . i it e i e ... 19P S 1283 . . . 0 e e e e e e e e e 19
Controller
Selecior
Peripherals
cripherats Parity
Check
o Arithmetic
Unit
A Register Q Register
M S 123 e e e e e e e 19 S123. .19

Register
12.

3

Console Typewriter

Paper Tape Reader-Punch

Figure 3-5. GE-225 Control Registers

111-6

These four memory locations are reservedto serve as
counters and for automatic address modification.

P COUNTER, The P Counter (or register)is a 15-bit
location counter that contains the memory address of
the next instruction to be executed. The contents of
the P counter are incremented by one before the exe-
cution of an instruction so that the P counter indicates
the next instruction in sequence. The Store P and
Branch instruction is an exception. The contents of the
P counter can be setfrom thelregister when uncondi-
tional branching is specified by the program. The con-
tents of the P counter (the addressof the next instruc-
tion) are displayed by 15 lightsonthe control console.

BASIC OPERATING CYCLE

Program execution normally proceeds with instruc-
tions executed sequentially under the control of a 450
kilocycle crystal-controlled timer. This basic timing
device emits pulses every 2.25 micro-seconds. Eight

" Word Time

sr . e e ‘ o

T Times

sequential pulses comprise the GE-225 operating cycle
of 18 microseconds, one word time. A word time is
the interval required to read a word from memory,
transfer it to the proper register(s), and restore the
word in memaory. Figure 3-6A; Word Time #1, illus-
trates the basic read-write cycle.

In executing a program instruction, one word time is
required to fetch an instruction from memory and
another (Word Time #2, Figure 3-6A) is normally re-
quired to fetch the operand specified and perform the
operation -~ a minimum of two wordtimesper instruc-
tion. Instructions indicating address modification
require an additional word time to fetch the address
modifier from the specified X register, augment the
original operand with the modifier, and transfer the
updated address to the appropriate register. See
Figure 3-6B.

Some instructions require more than one wordtime for
execution. Examples include double length word, mul-
tiply, divide, and shift instructions. The additional

No Address Mod:ification Required

Word Time Word Time
#2 #3

Lae B b N Trabpenbinm W ul

s}

Tyornte Tnatpnntinn) I

70 | T1|T2|T3| T4|T5| T6|T7 i T0| T1|T2|T3 |T4|T5|T6|T7|T0|T1|T2| T3|T4 |T5[T6|T7

Extract Instruction 1
Word From Mcmory &
Transfer To M.

Transfer Instruction
Word From M To B —
To I.

Re-Write Instruction
Word In Memory ——

Extract Data Word

From Memory &
Transfer To M.

Word Time
#1
{Fetch Instruction Word)

T Times 10|11 T2|T3| T4 T5 | TB|T7

(Fetch Address Modifying

Word)
T0|T11T2|¥3|T4|T5IT61T7 To|11|T2|T3|T4 |T5|T6 |T7 | TO|T1|T2|T3| T4| T8 T6|T7

Same As 1 In
| Word Time #1

1 1

Same As 2 In
| Word Time #1

Same As 3 In
Word Time #1
-

Transfer Data Word X Re-Write Data
To Appropriate Word In Memory
Register (S)

1B. Address Modification Required

Word Time Word Time
#3 #4
(Fetch Operand Word & |(Fetch Next Instruction Word)
Execute Instruction)

Word Time
#2

Same As 1 Above In
Word Time #1

Same As 2 Above In
Word Time #1

Same As 3 In Above
Word Time #1

Extract Modifier From
Memory & Transfer To M

Combine Modifier With
Address Portion Of I &
Transfer Modified Ad-

dress To I

1 1 1

W
|

Extract Data Word From
Memory & Transfer To M

Re-Write Modifier
In Memory

Re-Write Data
Word In Memory
Transfer Data Word
To Appropriate
Register (S)

Same As 2 In
Word Time #1
Same As 1 In
Word Time #1

Same As 3 In
Word Time #1

Figure 3-6. Basic Timing for Single Length Word Operations

-
o))

ﬁ\
[~
0
>
N
Ch

-7

word times required are automatically provided by the
central processor sequence control logic.

Single word transfers from or to memory, including
instruction access time and not involving address
modification, require two word times; double length
word transfers require three word times. Execution
times for all instructions are included in the individual
instruction descriptions.

Sequencing

Instructions are normally executed sequentially. With-
in each operation cycle, the controllogic of the central
processor provides sequence control for:

1. Fetching the instruction,

2. Modifying the operand address (if required),
and

3. Executing the instruction.

The sequence control causes repetitive performance
of this cycle automatically, thus permitting execution
of successive program instructions. In addition, by
monitoring the execution of multiple-word-time in-
structions, the sequence control provides appropriate
control signals to make available the necessary word
times for execution before the next instruction is
fetched from memory.

Operation Cycle, General

Instructions are executed sequentially, except when
decision instructions«rpriorityor program interrupts
break the sequence a' 1 commence processing at an-
other point in the program. The operation cycle des-
cribed briefly in Sequencing, above, consists of two
phases: the instruction phase andthe gxecutionphase,
thereby giving meaning to the term, instruction-exe-
ution cycle.

INSTRUCTION PHASE, The instruction phase serves
three functions:

1. To locate the instruction in memory and
transfer it to the I (instruction) register.

2. To locate the data in memory as specifiedby
the instruction operand address.

3. To establish execution control circuits for the
instruction.

The instruction phaseisillustrated more clearly by the
flow chart in Figure 3-7. During this phase, an in-
struction is read from memory and storedinthe I reg-
ister. The operation code (bits 0 through 4) of the

RE.HDE

instruction word are examined by the instruction de-
coding logic to determine the kind of instruction, that
is, branch, shift, arithmetic, ete. If necessary, the
remaining bits are also examined. This examination
established the necessary controls for directing pro-
cessing during the execution phase.

During the examination, the P counter is incremented
by one to contain the address of the next instruction
in sequence, The control circuits ask, « is the instruc-
tion in the I register to be modified?” If yes, the
contents of the specified X register are read from
memory and added to the operand address in the
A register, then sent tc the I register. If no, the
instruction is executed, When the central processor
is stopped manually, the P counter displays the address
of the instruction currently in the I register,

P
Look up Instruction

and Stere in the

I Register

1WT

Increment the
P Counter for
the Address of
the next

L Instruction

Is the Instruction
in the I Register
0 be Modified ?

Modify
Address
1WT

No

1or
more
units

Execute the
Instruction

Figure 3-7. GE-225 Instruction-Execution Cycle

Normally, the instruction phase of allinstructions re-
quires the same amount of time: placing instruction
in the I register and incrementing the P counter takes
one word time. However, if the instruction is to be
modified, an additional word time is required.

EXECUTION PHASE, During the execution phase, the
central processor performs the action specified by the
operation code. For example, if the instructionis LDA
3200 (load the contents of memory location 3200 into
the A register), the operand address in the I register
selects the proper control lines through the address
decoding network to bring the contents of memory loca-
tion 3200 into the M register and, throughthe B regis-
ter and arithmetic unit, into the A register. Instruction
execution can require one or several word times,
depending upon the instruction.

October 1963

The instruction-execution cycle is continuous in nor-
mal operation. As soon as the instruction phase is
completed, the centralprocessor entersand completes
the execution phase, and another instruction phase is
initiated. The cycle is automatic as long as power is
applied to the system.

Operation Cycle, Detail

Three different kinds of memory access are required
to execute GE-225 instructions: one requires access
to memory under control of the P counter, another in-
volves control by an X register, and the third type of
access is controlled by the I register. The type of
access permitted during any word time is governed
by one of three flip-flop circuits as setby control logic:

1. AMP - A flip-flop in the sequence controller
that is used to Address Memory from the P
counter,

2. AMX - A flip-flop in the sequence controller
that is used to Address Memory from one of
the X registers.

3. AMI - A flip-flop in the sequence controller
that is used to Address Memory from the I
register.

Figure 3-8 1s a fiow chart depicting the operations
performed by the central processor while executing a
program. This diagram illustrates the nature of the
operations and tests performed during one complete
instruction cycle, including: 1) extraction of the in-
struction from memory (AMP), 2) modification of the
address portion of the instruction, if required (AMX),
and 3) the subsequent execution of the operation (AMI,
GIS, or AMX). GIS is a flip-flop in the sequence con-
troller that controls the execution sequence duringall
general instructions, hence General Instruction Se-
quencing, or GIS.

Program execution is accomplished by properly re-
peating the basic operating cycle until the program has
been completely executed. Program execution can be
interrupted at any time from the control console, in
which event the cycle stops immediately following an
AMP operation.

The symbols used in Figure 3-8 require some explan-
ation. Each circle containing alphabetic characters
represents an operation requiring one wordtime. The
abbreviations correspond to controlling flip-flops in
the instruction sequence control logic. Each smaller
circle containing an X indicates that the cperation in-
volves memory access during the associated word
time.

Note, for a manual start, that the first instruction is
assumed already to be in the Iregister. Upon depres-
sion of the Start button, the firstactionis the stepping
of the P counter by one, in preparation for the next
sequential instruction.

If the instruction currently inthe I registerinvolves an
X register, the next operating cycle isan AMX access
cycle. Otherwise, the next cycle is eithera basic AMI
cycle or a general GIS cycle. Format I instructions
require one or more AMI cycles for execution. After
each AMI cycle, the control logicisinterrogated for an
end-of-execution condition, which (when detected)
turns on the EQO (end of operation) signal.

If the instruction is a general instruction, the next
cycles (if any) are one or more GIS cycles (to complete
instruction execution) or two AMI cycles (for input-
output operations involving the controiler selector)

Iu all Cases, CUILPIELION UL IISTIUCLION BXEcUTion resnite

in the generation of the EQO signal, which initiates an
AMP cycle for reading out the next instruction. Fur-
ther action at this point is contingent upon the position
of two switches on the control console: the Automatic-
Manual switch and the Stop on Parity Error switch.

If the Automatic-Manual switch is in the Manual posi-
tion, the processor halts. Otherwise, processing of the
next instruction is initiated, unless the Stop on Parity
Error switch is in the Stop positionanda parity error
has occurred during one or more of the memory access
cycles of the previous instruction cycle or the just-
completed AMP cycle.

If a processor halt occurs for any reason, the address
in the P counter is the address of the instruction that
is held in the I register upon completion of the AMP
cycle preceding the halt.

111-9

End of Operation (E00) End of Operation (E0®*

Look up the
instruction
word & store
it in the I
Register

Is this a manual or an
Automatic Operation.

Load
Card

Automatic
Increment P Counter By One

1s the instruction in the I
Register to be Modifted?

Compute Address of
Next Instruction

Bita 5& 8 = 00

Bits 5& 6 #

Yes

Does its Execution require

Modify Data Address
use of an X Register?

Portion of Instruction

Word. (Add 17-19 To

X5-19 and place result gy;utell:ﬂ?m.

in 15-19). or
Instruction.

18 the instruction in the 1
Register A General
Instruction?

No

Yes

Execute General Instruction.
1f an Input/Output Instruction,
Initiate Execution Process.

Has the instruction been
completely éxecuted?

1s it an Input/Output
Instruction?

Complete Execution

of Instruction,
Does it Involve the
Controller Selector?
1s it a Branch Instruction Yea
whose Branching Condition —
was not satisfied?
Has the Instruction been Yes J

Completely Executed?

Transmit 2nd
Command Word
To Controller

Selector

Increment The P
Counter By One

Complete Execution Of
General Instruction.

Transmit 3rd
Command Word
To Controller
Selector

Increment The P
Counter By One

Figure 3-8: Flow Chart Showing Central Processor Operating Cycle

11-10

GENERAL ASSEMBLY PROGRAM i

GENERAL DESCRIPTION

General Assembly Program II is an assembly routine
that provides fast, accurate and documented object
programs in absolute or relocatable forms for either
magnetic tape, paper tape, or punched card systems,
It permits programmer use of convenient pseudo-codes
and mnemonics rather than the more difficult machine
codes. Additional advantages are obtained by:

1. Address representation by symbols or by
decimal rumbers.

2. Easily made additions or deletions in coding.

3. Ready detection of certaintypesof clerical or
coding errors, thus saving considerable ma-
chine debugging time.

4. A listing of the assembled program plus error
indications, symbol listings, and assigned
addresses.

Thus, General Assembly Program IIisa tool that pro-
vides its user with accurate, well-documented pro-
grams, which can be quickly debugged and placed in
operation, resulting in significant monetary savings,
Figure IV-1 is an illustration of a General Assembly
Program coding sheet containing representative
pseudo-codes, symbolic addresses, and mnemonics,

[PROGRAE e v
G E Coder Manufacturing Cost - Run #1 Ix/o/os or
Opr X REMARKS

22 sl el el e wTlevo[valvafva]aw us]s7 ve]re]ac]3l T e 71w 17s 148
) ORG1000 e, LB
*IRROUND |DDC|50 ROUNDING CONSTANT 1.0
IRATE DEClY 0925 PROCESS COST PER ITEM 15
‘I A s K ccTlanne sz MASKING CONSTANT FOR MOD ROUTINE H P
*IF 1.V E D E C|5) 25
sflcoN#1 [DEC|- 34 3.0
T|S.T ART |LDXZER,DO, 2 | ZERO INDEX REGISTERS 2 & 3 35
* LD X/ZERO 3 ., 40
* S,P.B|C R D,IN .| 1| CARD READ SUBROUTINE L 45
1 B,R U CRDEOF, CARD END-OF-FILE RETURN . 50
" S,P.B[STR,I.P, 1 | BCD-BINARY CONVERSION ROUTINE 5 5]
A D EC|CRD , CARD IMAGE ORIGIN 8 0
" D E C|1 . BEGINNING OF FIELD 8.5
1. D E C|4 L FIELD SIZE 7.0
i STA|AMT#,1 ITEMS PREVIOUSLY PROCESSED 1.5
1. S PB[STRI1 P, 1 8.0
” D E C[C R D 8.5
o D EC|1 6) 8 0
”» D E _C[4] L 9 5
» STAJAMT % 2) ITEMS CURRENTLY PROCESSED 100
b ADDAMT# 1 1.0.5
bl I . IS T, A|S U M TOTAL ITEMS PROCESSED 110
- N M AQ X N 118
» MPYRATE PROCESS COST PER ITEM L 1,20
- ARIROUND ROUND PROCESS COST 1.3 8

Figure IV-L GE-225 General Assembly Program Coding Sheet
n
Dl
@b (A5,

Qctober 1963

An assembly flow diagram is shown in Figure IV-2, appropriate section of the assembly program ispassed
Other assembly configurations are possible, threugh the GE-225 three times. The outputproduced
by each pass forms partof the input for the succeeding
pass. General Assembly Program Il canprovide as its
General Assembly Program II produces anobjectpro- final output anobject program onpunched cards, binary

gram by successively processing the source program or octal; a listing, a program tape, punched paper tape,
three times; that is, the source program with the or combinations thereof.

Symbolic Program,
Cards, Paper Tape,
or Magnetic Tape

v
Pass 0
Loaded from Cards, _
Paper Tape, or _ -
Magnetic Tape _
~

iQutput - Pass 0 -

‘____Cards, Paper Tape, | .- d
or Magnetic Tape |~ — - — — —— — — — — » | Typewriter

v

Pass 1
Loaded from Cards,

Paper Tape, or
'Magnetic Tape »| Printer
Output Pass 1 - -

Cards, Paper Tape, |~~~ _ _ >
pr Magnetic Tape Typewriter
Y !
> + ‘
Pass 2 Pass 2

Absolute Qutput Relocatable
Loaded from Cards, Qutput. Loaded
Paper Tape or from Cards or

agnetic Tape Magnetic Tape

v
y [
IAssembled Program|
Cards, Paper Tape,
and/for
Magnetic Tape

Figure IV-2. Flow Diagram of General Assembly Program II

DT DG
8E® Led)

Iv-2

Each of the three passes of the assembly program
perform certain functions which are designed to pro-
vide the programmer with maximum information con-
i tho object Nnroora

ning the program.

Pass O 2,

Pass 0 accomplishes three operations:

1. It prepares the pseudo-codes for subsequentuse in

PR

other passes by packing the symbolic input pro-
gram deck, four (4) instructions to one card as

shown by Figure IV-3, This packed deck is pro-
duced in the form of punched cards or placed on
either paper tape or magnetic tape, depending
upon whether a punched card, paper tape or mag-
netic tape system is used.

A table of special symbols is formed containing
all symbolic operands appearing in the card input-
output, double length, floating point, or document
handler instructions. This symbol table, referred
to as symbol table 1 (ST1), can be on magnetic
tape, paper tape, or punched cards, FigurelV-4 is
a symbol table 1 card and a HSP printout of the

T DT

T

o7

123438 /830010 BHIBKITNIRAZNNARIASDNZBUSERTRNRNQCUSRTSANNLONBERTRANIRBURNIRARTIZTINS KT 0NN

XN XERRY

IARRRDARE! SERGREEEDI IRRRR BN NRRR RN RN
g 1 = HESSE =y BTN
1222102112 mer m [11
3131333333
n 1 11] 1]]

nlllllﬂllMﬂllﬂllMMDIlHIHI““lﬁﬂlﬂlnlllﬂl'ﬂllllHIIIIDIIMII(IMllIIIHIIII!HHIIII.'IIII

T2 3ES BTN UE RN AN AN S AT ANDN YDA SR T AN NN RNMSET AR VDU BT AN ROUERO RSN RN R B,

0 EJ=10 b

2222222121212

33333333033
9388884

IIIIIlIlllllllllllllIIIIIlllllllIHHII]IIIIH]I]IIHlll]llll“!lllll]llllllllll

IERERN] |
P

IRERRY] RRTY
ssHBssslsls

onoMalnooaaonanaMaunuuaouMunwnnununlua"unuan»nunnnunnuuoauunulullnluu

P23458 70 30NREUIBKIBNNARANSRIANNIRIHS B BRI QSUSES T OO0 TS ERTASRO RONSETRENTI RN B0

LR Ry N ENY RNy Ry R PR R RN RN NSRS R R NI I
55555555555550555555555555555555555555655655555555555555555555555555555555555555
GEE66GE566666666666666666666666MNG6666666666666656666566666666666665666666666666
TR I I I I iR I I I i i i 1111111111111
880898888 8R880806888880088860886800088080B85850068836808888886a8820886RA85838088388
9999999099030999999999999095099999999999999999900999993999939999499

9999989994989
B2 IS 1 IS D2 B2 2T 2928303235 3935 35 37 30 39,40 41 4243 444546 47 48 48 50 51 2 53 54 55 55 57 58 59 K051 82 63 6¢ 45 65 57 69 69 70 14 7293 73 75 76 77 18 33 £3

—

PROGRAMMER ROGRAM (
Symbol Opr Operand X REMARKS)
|[z[s] 4] sl e |80 |z]|s|u]uluin!ls|u 20 | 31 ‘(
. . |[OR Gj1 0 0.0 _—)
R.O.UND. D D C|5 0 .
RA.TE., D.E.Cl1 0.2 5 — 1’ Aﬁ\
MASK. . loc.T]3.71764.30, | J /
N 7 {
e
. R v e——)
V\NNV\MI
Figure IV-3. Pass 0 Packed Deck Card
PRy ges] Y
(BlE .99
WOIHE — /4/40)
Nt [S S N

Iv-3

October 1963

T R

llﬂnﬂﬂﬂﬂllﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ05000000000000800000000Dﬂ(\flﬂﬂﬁﬂKHIOUDﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂllllﬂﬁ
12345678 90NN NN 25BN WA I90 41424346345 657 B0 KI5 5T SIS DB 2 I GIESEETREI NN NI MIS BT NN
llllll1IIllllllllllllllllllll!llllIlll!lHl]IHIillll]lllllHlHllllllllllllllll
B22222222222221222222222222222222222220222212222222222222222222222222222222222212
303333333333333233333333333333333333333333333322333333333333333333333333333333333
A4 4440004444444 44444 8444040404888 8 8080084800830 4 444844840444 08 0484000080444
55555555555555555555555555555585955558555555555533555586555535556555555555565555555
6666 666666666665666666666G6666666666666666666666666AR66666E6666665666666666666666668
TV I i i i i i i i i1t i111111i1171
8R388808C88RR8568888R883888068838608088888853568883888880888888888868808888536888838

99991999299999099999999999999999998999
Vi TRe 28

99999999999998999939999499
P IR I Z NI 222623031 213106 51 38294041 4243 6445 4527 29 /9 0 51 ST

951 52 L2 54 35 56 L7 5859 L3 81 &

g

J I \

ST1 Card

STI 0017

ROUND DL STOR DL CON DL CON1 DL RND2

Symbol Table 1.

Listing from High-Speed Printer

Figure IV-4.

Special Symbol Table as Produced by a Punched Card System and T isted on the
High-Speed Printer by a Magnetic Tape System

table as it appears on tape. Columns 1 through 3
on the symbol card contain the identifying letters
ST1, with columns 74 through 78 containing the se~
quence number of the card in the Pass 0 packed
deck.

Pass 0 checksall symbolic names in the input deck
for no reference, undefined, or multiple-defined
usage. If any one of these conditions exist, Pass 0
provides a listing on the HSP or, if desired, on the
console typewriter, Figure IV-5 is a sample
printout by Pass 0 on the HSP,

Upon completion of Pass 0, symbol table 1 and the
packed instructions are used as input for Pass 1.

Pass 1

Pass 1 uses the output of Pass 0 to assign memory
locations to all symbols in the input source deck. It
forms a sorted table of these symbols and the numeric
values assigned. Symbol Table 2 (ST2) islisted on the
HSP, written on magnetic tape, punched onpaper tape,
or punched into cards. If no printer is available, the
typewriter is used, Figure IV-6 shows a HSP listing
of Symbol Table 2 and a representative ST2 card.

V-4

October 1963

—~— ~— T S SN __,——-~\‘__,,——-—~_—/_.=7

®
P ®
° UNDEFINED SYMBOLS L]
AMT#1 AMT#2 CRDIN CRDEOF STRIP SUM STOR ZERO
®
o
NO REFERENCE
] BEGIN CON#1 FIVE MASK START g
0 ERRORS TAPE 3
° 0 ERRORS TAPE i ®
END OF PASS O
L []
LJ:"‘-"-__—f’-‘“\s_4‘—-‘\.__a"-—‘\-*’—-‘\\-——"-‘\-_—”—_“~._f”—\\~_4f’—-“-a”‘-.\‘\~——"-‘\\\:_

Figure IV-5. Printer Listing of Symbol Errors, Pass 0

v

L N e
nen
111

R R L L T L L T T T L LT T I T tupupuuuuuuia o0
ll!‘llll\ll'lll!l!lllllllllllllllllfl|l'!Ill‘l!1IIllll‘lllll!lllllllllllll 14t

Ill!lllll!!lllll!!112222221221212!!!2!21121!2222222222121222212212221221121122!!
tll!!3333!3!!!!3!!!!!1!!3338’3!3!!323!!J!!!!!!JJJJIE313!3333333133313113133331!0
C‘lldllllllltl‘lll‘ll444444444‘44444444‘!6444‘444‘4444444ll‘llll‘l‘lllll(ll‘l&ﬂ‘
6555555555l5555§$555!55555555!55551!
llllllllGG‘IiIlIIOIC!CC‘llIIlllllliltill‘lllliilil‘illllltll‘lillli!iillillilll.
1!1111711171117111111171717117171111117111171717111T17111111111111711111171117!)
IIJ!ll!lllllllllllllllll

l'.illlllllllCl!Il!l’l.!ll.!ll"!l'!!l'0'!!0'!!l!’lll!'llillll"l'!.l!l!'f"'ll!
123469100NNRSNRNNEINERSS . enassssses esun SUARGARINERRRINERN ARG

[]

. ST2 00052 90000 *
AMT 003733BEGIN 003772CON1 103752CON#1 001755CON 103746FIVE 10175% 00010 ®

] MASK 00T753RATE 001752RND1 003750RND2 103754RND 003726ROUND 101750 00020 e

. SCAL 003720START 001756 00030
END OF PASS 1 i

®

Figure IV-6 ST2 Card and Frinter Listing of Symbol Table 2 of Pass 1

>
1

G
o
n]
N,
D
&

Iv-5

Pass 2

The outputs of Pass 0 and Pass1are used for input to
the final pass of the general assembly program, Pass
2 does the complete assembly of each instruction as
specified by the symbolic input program. The output

L *h@ assembly listing, with indicated errors,
prorrmrn itself, oncards, paper tape or

g of the mqtrnvhons <hown on the coding sheet of
‘r’ .gdu I[V-1. and a typicalobject programbinary card,
Pass 2 of General Assembly Program II may be
relocutable (Pass 2R) or absolute (Pass 2A).

[l[z[s‘«\

m[15[m‘ 7\48‘ slzo'?x Taz! _3}24 25 [zs 27[71.;(25‘3013: [32153]'34 35‘36[37 -

i \
@M@m@c !
RN

Word
Count
T 1st T_
| Instruction Ahoe
Absolute Checksum
Address
(Origin)
of 1st Instruction
01750 ORG 1000 00005
01750 0000000 ROUND DDC 50 ROUNDING CONSTANT 00010
01751 0000062
01752 0002001 RATE DEC 1025 DATEST NART DER TTEM 00015
01753 3776430 MASK 0CT 3776430 MASKING CONSTANT FOR MOD ROUTINE 00020
01754 0000005 FIVE DEC § 00025
01755 3777736 CON#1 DEC -34 00030
01756 0640000 START DX 7FRO 2 7000 TNDEX REGISTERS 247 00035
01757 0660000 LDX ZERC 3 00040
01760 0720000 SFB CRDIN i CARD READ SUBROUTINE 00045
01761 2600000 BRU CRDEGCF CARD END-OF-FILE RETURN 00050
01762 0720000 SPB STRIP 1 BCD-BINARY CONVERSION ROUTINE 00055
01763 0000000 DEC CRD CARD IMAGE ORIGIN 00060
01764 0000001 DEC 1} GEGINNING OF FIELD 00055
01765 0000004 DEC 4 FLELD Siit 00070
01766 0300000 STA ART#1 LitMs PREVIUGULLY PROCESSED 0675
01767 0720000 Spp <TRIR 1 00080
01770 0000000 DEC CRD 00085
01771 0000020 DEC 1é 00090
01772 0000004 DEC L4 00095
01773 0300000 STA AMT=2 TTEML CURRENTLY PROCESSED 00100
01774 01000090 ADD AMT#1 00105
01775 0300000 STA SUM TOTAL 176MS PROCESSED 00110
01776 2504006 MAQ 00115
01777 1501752 MPY RATE PRCCESS COST PER ITEM 00120
0§20§0 1101750 DAD ROUND ROUND PROCESS COST 00125
Figure IV-7. Assembly Listing and Object Program Rinarv Card (Absolute) from Pass 2

October 1963

CODING SHEET

The GE-225 General Assembly Program Coding Sheet
(Form CK-34) is divided into six fields designated left
to right as symbol, operation operand, X (index),
remarks, and sequence, Each of these ficlds indicate
to the assembly program that certain operationsare to
be performed, A few simple rules are provided to
insure that correct results are obtained,

Symbo! Field

The symbol field can be a very powerful programming
aid where carefully-assigned symbols can supply help-
ful program information, However, certain rules apply
to its proper use., These rules are:

1. Symbols used can vary from one to six char-
acters in length and contain any combination
of alphabetics and numerics,

2. Due to relative addressing (described later)
the use of plus (+) or minus (-) is not allowed
in the symbol field.

3. Any symbol used must contain at least one
non-numeric character,

The assembly program assigns any symbol field entry,
along with its associated information, a specific
memory location, Thus, the programmer need not know
the actual computer address, but can refer to the
symbolic address when the information is needed.

w3 a TW7_O 1Y et
rigure i1v-o Sa0WS Boun proper and 1mproper usc of

symbols, The symbols shown are for illustrative
purposes only,

Entries 8 and 10, CON+1 and A-B4 are improper
entries in the symbol field because they violate rule
two, above,

Entry 9, 110, is improper because it violates rule

three,

Entry 11, A B4, violates rule one pertaining to imbed-
ded blanks, However, the assembly program would
assemble such an entry and interpret A B4 as AB4; if
the symbol AB4 were defined and used elsewherein the
same program, errors would occur,

Operation Field

The operation field of the coding sheet uses a three-
character mnemonic to specify the required function
of the line, These mnemonics indicate tothe assembly
program the type of line; i,e., and instruction, assembly

4. Symbols may start atany point within the field control or a constant line, The Jatter two types of
because leading and 1inserted blanks are entries involve pseudo-instructions which are dis-
ignored by the General Assembly Program, cussed in detail later in the section,

Symbol Ope Operand X REMARKS /
s[a{s]a]s[efafsjrofvafrajrafusjrefur]rajrafac]3l \
‘lcoN#.1 |DEC|5, . . |)
¢2|Z ERO |DECJO, ., ; . (
*lroT ALSIBSS|{30 .| \
s/ aB4lOoCT[2,17.653.1,)
*{1 .10 DEC|1.10, [
7| IMPROPER USE OF SYMBOLS:, |, . \
slcoN+ 1, |DEC|5 ., . ., .)
sf110 _ |pEC|1.10, | (
©la-B4, . |lOoCT|21765,31, \

"o B4 , DECl4. |)

iz ‘ L (\

"» N L J

14 L &

Figure IV-8. Symbol Fields
=

G
(o
0
9
)
51

October 1963

An instruction line containg a mnemonic indicating the
desired computer operation, Usually this line is
handled by the assembly program as one computer
machine operation for each instruction mnemonic,
I Typical instruction lines are shown by Figure IV-9,

Qperand Field

The content of the operand field depends upon the type
of line, whether it is instruction, assembly control,
or constant, If an instruction line is involved, the
operand may be:

Symbol Opr Operand X
vl z] s 51 =] 618 s [1o]:z]vs[1a]i5]te 1715920
‘ LDAAMT | - 1. A mnemonic specifying an operation to be
ADDAMT 2 performed by the computer, as shown by
ST AIS U M line 1 of Figure IV-12,
B . Z E ; . R
,) B RU|ICHECK, ., . Symboi Opr Operand X
l I - a1 21 3 4. =, s 810910 l2]13[|4J'blldl|7ll5")D 20
- DLDITOTAL, . . B —d -
A B CS|IBPN | - 6
- , BRU*--.1_
Figure IV-9. Typical Instruction Lines LDAPRINT+ 40
. ¢cHs| ., ...,
An assembly control line is interpreted and used ST APRIN.T.+.4.0
for internal assembly operations and does notbecome B C N :
part of the assembled program, However, a control BRU*-1
line in certain applications can cause additional words
; . . RCDO256 =
to be reserved in the assembled program, Figure
IV-10 illustrates typical control lines, L . HCR . .,
LDAISYNC, , , |
Symbol Opr Operand X) . ‘ L
4!2‘31425(5 a[bilo lz]lsluluite[nlulm 20
O R GJ1 00
§.U .M, BSS|20. Figure IV-12. Coding Sheet Illustrating
C. R DI N, EQU|2.5 6, — Cperand Use by Instruction Lines
4 I e i n A i L " +

figure IV-10. Assembly Control Lines

Constant lines indicate to the assembly program the
type of constant required by the user, The assembly
program then assembles the constant in the correct
l form, Figure IV-11 rontains constant lines,

Symbol Opr | Operand X
T v ™ —+ —
t{z 3. a; s &85 "0 ‘“"4‘“1"'"1"["“' 20
F 1V E DEC|S, , ., . | ‘
) DEC|[3.1 4117
CONG# 1 DDC|6.2 589 2
OCT|(37717 17608
FDC|1.0B. 1, _ |

Figure [V-11. Constant Lines

2. A decimal number which is the address por-
tion of a computer instruction, Thisdecimal
address will be converted to binary by the
General Assembly Program, For an example,
see line 8 of Figure IV-12,

3. A symbol representing some address or num-
ber within the program. This symbolincon-
junction with plus (+) or minus (-) canbe used
for relative addressing. The combination of
symbol and sum (+) or difference (-) must
not exceed eight (8) characters, FigureIV-12
contains illustrative examples. The asterisk
and relative addressing involving arithmetic
expressions can be used to reduce the total
number of program symbols used, if neces-
sary.

IV-8 October 1963

Symbol Opr Operand X REMARKS

1] 2] 3| a| s| 6| 8|10 lzllajuJquelnluln 20 [31 75
b . |OR G|1 0,0 0, —
2iIC AR D B SS|3 4))
31S T O R E B Ssi4 0
‘ITO T AL |E QU[5, 00, PR
? L R E M| |))) CONSTANTS o o
§]JIC ONS T, bECj28
7IC O N # 1 DD C;6 2 8 15 4
g 0.C.T|3.7.7,7.7,6,6,
9

Figure IV-13. Examples of Operand Field in Assembly Control and Constant Lines

When an assembly control line is specified, the oper-
and field of the line contains information required by
the General Assembly Program. Figure IV-12 con-
tains illustrative examples,

If the operand field is part of a constant line, the
operand then must specify the constant,

X Field

The X field (column 20) specifies address modification
before execution of the assembled computer instruc-
ticn, or it may provide additivual information to the
assembly program, such as plug number or tape
handler number, If theXfieldispart of an instruction
line, it may be blank or contain either a number or an
alphabetic, No significance is attached iothisfield by
constant lines, Figure IV-14 shows use of the X field,

Remarks Field

The remarks field is a helpful programming aid in
that it can be used by the coder to explain or describe
the actions of each program line, The remarks field
is handled by the assembly program and does not
require memary locations within the assembled pro-
gram, nor does it affect the assembly process, The
remarks field should be used extensively by pro-
grammers for adequate documentation, Refer to
Figure TV-15 for examples,

Sequence

The sequence field specifies the order of the lines to
be assembled, This is strictly a programmer’s con-
venience and is checked only by General Assembly
Program II when specifically requested by use of an

Opr Operand X SEQ pseudo-instruction, Cards for the source pro-

s [v [10 2] 1s]va] 8 16 17 ¥s | 19]20] 31 gram should be sequenced to prevent accidental mixing
going unnoticed, Normally, the General Assembly Pro-
B CS|B PN , 6 .

LR’ U b A gram does not check the card sequence; it does show
RS *r -1 . the sequence on the object program listing, Figure
LDAISTORE =]2 IV-15 shows sequenced lines,

ADDSUM L . * A symbolic program written for General Assembly
STA|ISUM L, . Program II has both pseudo-and machine instructions,
L AQ L. . |A Pseudo-instructions are symbols representing infor-
mation needed by the assembly program for proper
Figure IV-14. X Field Examples assembly, These instructions, along with the machine
Opr Operand X REMARKS Sequence
s [s |10 'ZT'”“JUINI"!”I" 20 | 31 75 791771”]"?0
REM , . SUBROUTINE TO CHECK VOID DATE .5
DLD/VOI D | VOID DATE DAY/MONTH/YEAR ., 1.0
S UB/ CONM# 1 VOID CONSTANT T
BNZOK = | DATA NOT VOID SO PROCESS . 20
S PBICLOSE, 1| CLOSE FILE DATA VOID .25
Figure IV-15. Remarks and Sequence Entries
ANTT NS
(215 = TP
GG G

Iv-9

October 1963

PSEUDO INSTRUCTIONS
ICONTENTS OF
OPR FIELD TYPE OF ASSEMBLED INFORMATION NUMBER OF CHARACTERS SPECIFIED
ALF/NAL One BCD Word 3 Alphanumeric
MAL One to fifteen consecutive BCD Words 3 Alphanumeric per word
PAL One to fifteen consecutive BCD Words
with sign bit on in last words 3 Alphanumeric per word
DEC One Fixed Point Binary Number
DDC One Double Length (2 word) Fixed Point
Binary Number
FDC One Floating Point (2 word) Binary
Number
ocCT One Binary Word Up to 7 Octal Characters
Z(XX) One Binary Word Up to 7 Octal Characters

Table 1.

instructions, areincludedin the object program listing,
Normally, pseudo-instructions are not executed by the
computer, but are used to generate constants, control
the assembly, and provide information onthe program
listing,

Pseudo-Instructions Used for Constant Lines

ALF ALPHANUMERIC

This instruction causes alphanumeric constants (if
three alphabetic or numeric characters) to be entered
in the object program, The first three characters in
the operand are converted to BCD and placed in a
memory location determined by the assembly program,
Blanks or spaces, where desired, must be indicated,
Only columns 12, 13, and 14 of the operand field can
contain the data for the instruction,

Pseudo-Instructions for Constant Lines

Note that spaces are indicated by leaving the column
blank, which results in an octal 60 being placed in the
memory location by the assembly program, If the
desired data is not left-justified, starting with column
12, incorrect constants will invariably result,

Example:
Symbol Opr Operand 3y
v [2] s 4l 6] 6 |e] v to|ra]vs]Ta]vs]se[t7]ts]e]20]31 7
1 Appears in L
2 . N Memory)
3 ALF PLA , 0604743
4 ALF NT. . 0606045
5 A

The constant in line three (3) results in the loss of
the character A, and line four (4) contains two blanks
(octal 60) and the character N only, losing the char-
acter T.

It should also be noted that an ALF command is re-
quired for each line containing the desired alphanu-
meric constant,

NAL NEGATIVE ALPHANUMERIC

This pseudo-instruction is used to enter the 2’s com-
plement of an alphanumeric constant in the object
program, The assembly program applies the same
requirements to this instruction as it does to ALF,

Example: The words, “PLANT CODE NOT IN
TABLE”, comprise a program type-
writer message and may be enteredinthe
object or assembled program by using
the ALF instruction,

Symbol Ow Oversnd x C
LTSS IR CHC EIHCH 13 K13 S0 K R0 5 L3 XN £
I N . L Appears in Memo
TYPE ALFPLA 0474321
AL F|INT 0456360
ALFCOD 0234624 1
ALFE N 0256045 }
ALFOT . 0466360 {
ALFIN 0314560 \
ALF[TAB 0632122 1
ALTLE 0432560 /
|
) mymnig
82" 449

Example: The 2’s complement of the codes A14,
AB2, ABF are to be placed in the object
program,

Symbel Ope Operand x =

] 2] 8] a] o] sl e[o jre|ta]ts]va[oaftaler[te]re[ao| 3N 7
Appears in \

B Memory }

CODE NA.L|A 1.4, 3567674 R {
NA L|lAB 2 3565576 1

NA L|ABF, 3565552 -

\

]

MAL MULTIPLE ALPHANUMERIC

This pseudo-instruction will enter alphanumeric data
into as many as fifteen consecutive memory locations,
The number of words to be filled mustbe specified by
a numeric in columns 12 and 13 and the data in the
remarks field,

Example:

Symbol Opr Operand X l
|lzlslalule elslw|z||:l|4]15[|elnllslls 20}31 J
TY,RE, , MAL[8 , ,,,,, | | PLANT CODE NOT IN TABLE)

L1 4] Ll I

This data is placed in memory as follows:

Data Memory
PLA —» 0474321
NT —» 0456360
COD —p 0234624
EN —p 0256045
oT —» 0466360
IN ——» 0314560
TAB —————p» 0632122
LE —P 0432560

PAL MULTIPLE ALPHANUMERIC FOR PRINTER
WITH PRINT LINE INDICATOR

This pseudo-instruction is similar to the MAL instruc-
tion with the exception of entering a minus sign in the
last word of the alphanumeric data, (The minus sign
is primarily used for control purposes during high-
-speed printer operation,)

Example:
Symbol Opr Operand X S
1 lz]al415]s srsllo |zlya[r4l15]|6F7]15119 20/31 (
11y 1 |PALY PLANT CODE)
I N I N R R A A A A (

The data enters memory as shown below, Note that
memory word four (4) of the data containsa one (1) in
the sign bit or zero (0) position of the word,

Data Memiory

1. PLA 0474321

2. NT 0456360

3. COD 0234624

4, E 2256060
DEC DECIMAL

This instruction places the binary equivalent of a
decimal constant in the object program, The constant
is assigned a memory location as determined by the
assembly program, The operand portion of the con-
stant can be symbolic or decimal, If symbolic, at
least one character must be used other than 0 through
9, plus (+), minus (-), decimal point(.), B, or E. If no
sign is present, the number is assumed to be plus (+).
A minus sign, specifying a negative number, results
in the 2’s complement of the number being placed in
memory,

Exawmples of plus nuuibers:

Opr Operand X \
1
/

NERELD |z]u|ultu||cln|njn 31

~»
3

N A Appearsin/

L L Memory {
DEC|5. . . ., 0000005\
DEC|1,2.8, . ., . . 0000200
D.E.C|7.3.7.3.8, . . 0220012/
DEC|9.2. 8, . . . | 0001640 (
DEC|1 2. 0000014 \
D.E.Cl+ . 1.7.5.0, , . 0003326 J\

Examples of minus numbers:

Opr Operand X \

s | s [10 lz[wlululiein“s!n 20 | 31 ‘

) L Appears in /

A . Memory [

DEC|-5 3777773\

DEC|- 128 3777600
DEC|- 73717338 3557766
DEC|- 63978, 3603026

DEC|- 1 L 377777 \A

)
]
a
(D
D)
L1

[
(

Iv-11

The character B can be used to specifya binary scale
for either plus (+) or minus (-) numbers. The number
following B is used to position the binary point for the
decimal constant preceding the B in the operandfield.
If no scaleis specified, the assembly program assumes
a binary scale of 19.

Examples using the B character:

DDC

DOUBLE LENGTH DECIMAL

DDC, like DEC, is used to enter adecimal constant in
the object program. This constant is assigned two
sequential memory locations starting with the first
even-numbered location available. If no binary scale

5 p X / is specified, the assembly program assumes a binary
i . Operand scale of 38,
s | s 110]|12] 13 1aj¥5 |46 17 18 1020 31 \
Appears in
)) o Memory Example of DDC:

DEC|5B 16 0000050 \

DEC|-5 B 16 | 3777730 / Opr Operand X /

DEC|7.3 7.3 B‘B‘]_JB 0440024 \ HNENED '2[151”]”1"1”1“1” 20 | 31 {

DEC|-4 B3 3000000) . , _ . | |Appearsin \

D EC|+ 4 B 3 1000000 \ L L Memory
‘ x § pDDCl1.2 ., . . 0000000

L L 0000014 |
DDC|{7.8 6432 0000001\
The characters . and E can be used to specify deci- L ‘ . L 1000000)
mal scales, or decimal exponents. Normally, the . DDCl- 2 4 37T (
indicates a mixed number, while E specifies leadingor — —t
trailing zeros. For example, E-2 indicates leading P S S S 37117750 \
zeros and E2 indicates trailing zeros. If the char- DDC|. 07 9 6 8 9 6 0024315)
acter B is not used with . or E, only the integral . 79 2 8B 2
portion of the converted number will be used. If the — s 0127545 —(
number of characters used to specify a decimal con- DDC|2 4 B3 6 , | 0000000 \
stant exceeds eight, the operation field of the next L ‘ L 0000140 }
line is le'ft blan1.< and the. constant is continued in the DDC|1.570.7.9348 0622077 {
operand field, using two lines for one entry. Only one - ’ \
binary scale and one decimal scale can be indicated T 3,1,84,78B 2, 0651010
for a single decimal constant. D,D.Cl1 . 0.1.8 B.0O.E, - 0000000 }
10 0066516 |
Examples using the characters . and E: — SR E—
E g - DDC|L 5 2,527 B,0| | 0000007 \
, E -.1,0 . . 1774566 |
Opr Operand X /
NIEENED ‘i[”l"l"l“i"]”l" 20 | 31 /
I N Appears in \
L e Memory \

DEC|5 .52 0000005 FDC FLOATING POINT DECIMAL

DEC|5, .5 2 B,1, 8, 0000013

DEC|]. 52 B,1,8, 0000001

DEC|5.5B1.8.E,?2 0002114 (

DEC|. 7373 8E 2 0000000 \ This instruction is used to enter a floatingpoint deci-
— B 1‘ 8l — \ mal constant in the object program. The use of FDC
s : - e is the same as the DDC, i.e., two sequential memory

DEC|- 56 25 B 1 3 locations, starting with an even-numbered location,

0 . 3777340 / are assigned by the general assembly. After con-
) — version, the constant is in normalized form, if the
DEC-,.18758B,1 8777640 \ specified binary scale is minimum; otherwise the con-
. 0 R / stant is unnormalized. If no binary scaleis specified,
DE C|. 32117 B,0, 0511327 A the assembly program determines the binary scale and
a normalized floating-point number results.
AT _HGE
oLy

Iv-12

October 1963

Examples of FDC:

Opr Operand X \
8 | ® |10 !21131‘|4]|5i15i|7|lai|9 20 | 31 \

Appears ir;\
Memory
0006000
0000000
0006705
0507312

L 1) i " i n s !

I L . " L 3 " " .

0013244
1517022
0022400]
0000000

N [[

e feo |
o foy oo |

L I L L ‘

L ! L 1

FDC|1 F40
. jad |, L
F.DC|1E.4.0,B1.33

Both give

same results?
1027530
0430221

Result unnor-

. . ; malized
F.D.C/|1 E4.0,B,1,3,4] | 1031654 /

i i p91411n
N ; . 02214230

OCT OCTAL

The entering of octal constants in the object program
is accomplished with the OCT pseudo-instruction. The
octal number specified in the operandis right-justified
and assigned one memory location designated by the
assembly program. Leading zeros inthe operand field
are ignored. A leading minus (-) in the operand sets
the sign bit of the constant to one (1). Octal constants
are used primarily for establishing particular bit
configurations in memory.

Example of OCT:

Opr Operand X 7
» s rofrelisvafvsrefi e Tie]2c [{
Appears i
Memory
OCTI2 77171766 2777766 /
OCT3 17717 0000377 j
OCT-37171 20003717 \
OCT.2 7600 0027600)
OCT3 17717 17.4.86 3777746 /
QC Ti-171717.7.4.6. [3777746 \

D
]
X
g

i

Zz OCTAL OPERATION CODE

The Z pseudo-instruction is used to set the operation
bits of the assembled instruction to any desired con-
figuration. The operand can be decimal or symbolic,
and indexing is opticnal. In usc, a Z is placed in col-
umn 8 with the two octal digits desiredas an operation
code in columns 9 and 10.

Sample Coding:

Opr Operand X) REMARKS

N0 (D DD D D AT D Y £l 7

IT.E.M P 12 UIVALENT TO LDA TEMP 2

QO 4/- 1 00 2 EQUIVALENT TO BXL 100 2
20100 EQUIVALENT TO WORD 1 OF RWD
|
Listing:
Memory Memory
Location Contents
(Octal) (Octal) GAP
01764 0000000 TEMP DDC O
01765 0000000 -
((¢ (<
F R i 4
n770 00L1764 700 TEMP 2
UiTi SL570358 2o 1o 2
0772 2000000 720 0

Control Line Pseudo-Instructions

Assembly control instructions provide information
which controls the internal operations of the general
assembly program, although this information doesnot
become part of the assembled program. In certain
cases, additional words may be added to the assembled
program. Table 2 is a list of control instructions.

Symbol Opr Operand
ORG Decimal or Symbolic
LOC Octal
Optional EQU Decimal or Symbolic
Optional EQO Octal
Optional BSS Decimal or Symbolic

SBR Symbol of Subroutine
TCD Decimal or Symbolic
END Decimal or Symbolic

Table 2. Assembly Control Pseudo-Instructions

=
FEL
J
N
N
cn

(
I
[
[

Iv-13

SBR SUBROUTINE CALL

This pseudo-instruction can only be used if the
assembly is called from the General Assembly Pro-
gram II master tape. SBRisusedto instruct Pass 0 to
obtain the specified subroutine from the General
Assembly Program II master tape. An error indi-
cation results if the specified routine is not present.
(See section Addition of Symbolic Routines for de-
tailed information about error indication.)

The subroutine calls are saved until the user’s END
card is encountered. The specified subroutines are
then placed behind the user’s coding. Note: the sub-
routines are assigned memory following the last in-
struction of the user’s coding. Iftheuser desires, the
subroutines can be placed in reserved memory loca-
tions. See examples below.

Example:

In both of these examples, the STRIP and NPRIBD
subroutines are assigned memory locations following
the last instruction (ZERO DDCO) of the coding.

If the programmer desires toplace the subroutine in a
specific location other than at the end of his program,
he must reserve a sufficient number of words in mem-
ory by using a BSS instruction and by placing an ORG
card with the origin of the reserved area immediately
preceding the END card.

Example:
§ symbel Ope Opersnd Tx] REMARKS
| IRERERER M N MO D SR U D R E L

. RESERVE 76 LOCATIONS FOR ROUTINE

SHCHR N
B

Opr “Operand x REMARKS
1 ulnTn[uI\TF]’n]u 2e § 31

om F;_‘ n
Mt

[
w |
ol

BUBRG4$ 1

ENDBSTART

O
B RST R 1.P
D8 T A RT

Listing:
02623 SBR STRIP
REM
02623 2514003 STRIP BOV
02624 0000000 =1102 LDA 0
02625 0000000 LDA 1

This subroutine can also be called in the following
manner:

The NPRIBD subroutine is listed at the end of the
object program, but the ORG SUBR#1 instruction
causes General Assembly Program II to assign
memory locations starting at SUBR#1 rather than
locations following the BRU*,

ORG ORIGIN

This pseudo-instruction controls the memory assign-
ments performed by the general assembly program.
When an ORG instruction is encountered, the assembly
program uses the contents of the operandfield to reset
an internal counter in the assembly program referred
to as the Memory Allocation Register (MAR). If the
operand is decimal, it is converted to binary before
being used. If symbolic, the operand must be pre-

Coding: defined before being used. The general assembly
program ignores all but the operand field on an ORG
Symbol Opr Operand X instruction. When no ORG is used, the assembly pro- I
T 5 4 g e l8& 8 12|12, 13 \Allsi!6‘17;ls‘|9j2c gram assigns an originof 00000,
LD ATEMPE Examples of ORG Pseudo-Instructions:
- ADDT OTA 1L
[/ v Ops Operand X REMARKS
\ \ : ORG!1I 2 8 THE MAR IS SET TO 010000000 (200) AND NEXT
((' INSTRUCTION STARTS AT AN OCTAL 200
S PBNPRTIBD 1
NPRI BD SBR
(.
. 3 » r Opr Oparand x REMARKS
! . EREERED) RO R Rl 75
Z E_ R O DD Ci (0] ORGBEGIN THE SYMBOL "BEGIN" MUST BE PREDEFINED
: | AND THE MAR IS SET TO THE ASSIGNED VALUE
T T - E N D S T A R T {IF BEGIN IS NOT PREDEFINED THE MAR IS SET
! TO ZERO
Mo . 9H9e
A
(ARSI

v-14

October 1963

Example: Use an ORG to assemble an object pro-
gram at memory location 1000 (decimal).
Symbol Opr Operand X
1] 2] a] 4| 5] 6|6 [o [10[12]1s]vafss] 1647 ve|1s]z0
L ‘ ORG{1000
T WO) D EC 2))
T E N _ ID E C/1.0
LOC LOCATION IN OCTAL

This operation performs the same functions as an ORG;
however, the contents of the operand field must be an
octal number. The assembly program will ignore
leading zeros.

Example of LOC:

REMARKS

. MARIS SET TO 001111101000

EQU EQUALS

This instruction can be used to over-rule the normal
memory assignment by the assembly program. The
operand (decimal or symbolic) indicates the specific
memory location to be used. Thisinstructiondoes not
affect the memory allocation register, thus it may be
used as often as necessary and at any point within the
source or symbolic program without disturbing the
memory assignment sequence. If the operandissym-
bolic, the symbol mustbe predefined. A decimal oper-
and is converted to binary before being utilized.

Example of EQU:

Symbol Opr REMARKS.

BSS BLOCK STARTED BY SYMBOL

A BSS causes the assembly program to increase the
Memory Allocation Register (MAR) by the number in
the operand field. This instruction is usedto reserve
a block of memory locations in the object program.
The operand field may be decimal or symbolic. If
symbolic, the symbol used must be predefined; if
decimal, the operand isconvertedt
The BSS can be used as often as needed.

Examples of BSS:

Symbel Opr Operend X REMARKS
SN CIOE (D SETIO ST 7
O RGO 256
CRD BSS |28 MAR IS INCREASED BY 28
PRINT |BSS|40 | MAR IS INCREASED BY 40
INDEX BSS|3 | MAR 1S INCREASED BY 3
I ORE |BSSISAVE | SAVE MUST BE PREDEFINED

The BSS instruction of Line 2 of the example will re-
serve 28 consecutive memory locations starting at
location 256. The other BSS commands reserve addi--
tional blocks of memory.

TCD PUNCH TRANSFER CARD

A TCD generates an instruction that transfers control
to the location specified by the operand field at exe-
cution. In the relocatable formatthisisa type 5 curd
The operand may be decimal or symbolic. A TCD may
Le used as ullen as necessatly i a4 buutce pLugiass
because this instruction does not affect the memory
allocation register. A symbol in the operand must be
predefined.

Examples of TCD:

o

Rl

Symbol Opr Operand REMARKS
[[T e T

TCD[2800
I T CD|START# 1_| [|START #1 MUST BE PREDEFINED _

The transfer card is the last card of the object pro- .
gram; when the program is loaded for execution, the

I I -]
' bt - transfer card directs the central processor to the loca-
CRD 'EQU 256 e . s ses . .
AREA 'EQUCRD _ _ " "CRD MUST HAVE BEEN PREDEFINED tion of the initial program instruction:
AREA2 EQUCRDS+ 40
START ¢— <«—
EQO EQUALS OCTAL v T
e PROGRAM
The EQO instruction is the same as the EQU except BODY
that the operand field must be in octal form. Leading v T
zeros in the operand field are ignored. STOP ’
CON#1
Examples of EQO: etc. T
Symbol Opr Operand B Lxﬁ B REMARKS ORG
i TV PR — ’ BSS 4
AREA . EQU CRD —~ CRD MUST HAVE BEEN PREDEFINED = ORG
S S B T BSS 4
TCD START —p
lols a /7 /778N
GG~ LAY

v-15

END END OF PROGRAM

This pseudo-instruction causes the assembly program
to generate a transfer card to transfer control to the
initial program location (specified inthe operand field)
when the object program-is loaded into memory for
execution, In the relocatable format, this is a type 3
card., The operand field may be decimal or symbolic;
if symbolic, the symbol must be predefined, The END
instruction indicates the end-of-program and termi-
nates assembly, It must be used only once and must
be the last instruction of the source program,

Failure to use the END instruction results in a type-
writer message soindicating, Assembly continues, but
no transfer card is generated, Thus, this instruction
should appear in the program,

Examples of END Instructions:

The END instruction of Line 1 would result in the
puuching of a transfer card as shown in Figure 16.

REM REMARKS

The REM mnemonic in the operation field is used to
provide additional information on the object program
listing as given in the remarks and sequence fields
columns 31 through 80, Allother fieldsin the instruc-
tion line are ignored,

Opr Operand X REMARKS Example of REM:
I DD I R D R Ell 73]
END{1 000
ENDSTART START MUST BE PREDEFINED op | Operend x REMARKS
O KN K0 0 0 I i K B)42 O i A
ENDCONST+ 3 CONST MUST BE PREDEFINED B E % SUBROUTINE TO CEECK VOID DATE V. 0.0.8
!
2
&
o
s
g
g
z
H
B
©
3
lnslgsiailalalys slg s|sslelslsialolelolslolslolaloly
13 14115 18{17 18] 19 221 273 24 38 57 34{59 B0]61 62183 64) ﬁs)ﬂssﬁnﬁinn
Figure IV-16. Transfer Card Generated by END Instruction
R HIHE
BIIE = 443
NN (3

1V-16

ADDITIONAL PSEUDO-INSTRUCTIONS

General Assembly Program II provides additional
pseudo-instructions:

EJT EJECT PRINTER PAPER

Normally the assembly program prints 54 lines per
page and then ejects to the top of the next page, When
the EJT command is encountered, the line count is
reset and the paper is immediately ejected to the top
of the next page,

Coding:

O Operand Ix] REMARKS ”]
[EENED D KD D K0 0 KN K0 £ 6

DEC|62 16

EJT | CONTINUE LISTINGONNEXTPAGE =~ |

SEQ CHECK SOURCE PROGRAM CARD SEQUENCE
NUMBERS

Except for listing, sequence numbers are normally
tgivred, However, il die dhiw CUluinand 18 used, tue
assemblv program checks to see that the card sequence

NAM PRINT NAME OR TITLE ON EACH PAGE

A page number is printed at the top of each page of
listing, When NAM is used with aname or title in the
operand, this name is also printed at the top of each
page, The name may be changed by issuing 2 new NAM

instruction,

Coding:
Symbel Ope Oporend x rsmd
W] a3l sl 4] 5] sl=;¢jiofralte] el n]ieer e a0as 30 ’,'
, INAMEDI T.4.3. ROUTINE TITLE [
ORG|[100 0 \
EROQ D.E.C|0)
{
)
NLS NO LIST

General Assembly Program II normally lists the
object program on the high-speed printer, The NLS
pseudo-instruction may be used at any point in the
source program to inhibit the printer listing,

LST LIST

Where the assembled program listing has been stopped
bv an NLS, the listing can be resianed with an LST
instruction,

LUBDILEDS AU i a3Ccuding ulder, Diaiine alc igiiuscd, rxample:
Numbers less than, or equal to, the preceding number — }
are errors and are flagged with an S in the right Symbol Opr Operand X REMmal
margin of the listing. 1z sl al sl els s vofsa]valva]sn]rafs7[vs relao (0 1
NLS m.mmuz_mmg_c&(
Coding: PUN D.D C{0 | | NPRIBD SUBROUTINE
~oding: UN1 BSS|4 i)
PUN2 BSS|2 /
Opr Operend x REMARNS]
(NENE0 (DD DN U L bdd | ((
s EQ c o) > \
LDXZERO 2 1)\
DLDTEMEP 2 1 NPRIBDEQUPUN: 1.2 /
i L. ST W———S
— T EM.P B.8.8[2.0
. /
e L oo
e = A0
Jits (Bdsw

IvV-17

RELATIVE ADDRESSING

The General Assembly Program provides the facility
for assigning addresses relative to some starting point
or some symbolic memory location,

This is termed relative addressing and is a useful pro-
gramming aid, Relative addressing can be accom-
plished in several ways, Some examples are shown
below,

Coding:

Symbol N Operand IES REMARKS
SRS I IR LLIE ST e e e
C ON EQU5 00

DR GCON .. THIS ORG WILL START AT MEMORY_LOCATION

500 AS ESTABLISHED BY USE OF EQU FOR THE
SYMBOL B

_._STARTING MEMORY LOCATION HERE IS 550

: .,DUE TO RELATIVE ADDRESSING _

A very convenient method of relative addressing that is
widely used and which can greatly reduce the number of
symbols required is the use of the asterisk (*) char-
acter, Anasteriskinthe operandfieldof an instruction
is interpreted by the assembly program as the address

Example 1:
Coding: of the instruction itself,
Symbol opr Operand Tx i REMARKS]
At lEevzoo ¢ THIS INSTRUCTION ASSIGNS THE SYMBOL AMT Example of Use of Asterisk:

| TO MEMORY LOCATION 200

LDAAMTG+ 6 THIS INSTRUCTION ILLUSTRATES RELATIVE

LOCATION 208

lLpalaMT-2

JAMT - 2 1S MEMORY LOCATION 168
i \ ‘

.

Ope Operand x REMARKS

NEND DD AT O £l) R G

C N IF THESE INSTRUCTIONS START AT MEMORY

R U/* -1 LOCATION 1000, THE ASTERISK IN THE OPERAN]

L

Since the general assembly program has relative
addressing capabilities, it will assign the correct
memory addresses to AMT + 6 and AMT - 2,

Example 2: The starting locations of sections withina
program can be determined by relative
addressing ORG instructions,

B

B

RCDICRD FIELD OF THE SECOND INSTRUCTION IS INTER-
HCR PRETED BY GAP AS BEING 1001. THE ADDRESS
LDA|*+ 8 IN THE OPERAND FIELD I8 1001 - 1 or 1000.

B MI

B R U+ THE INSTRUCTION ON LINE 7 CAUSES THE COM4¢
8 UB|CON 4 PUTER TO ENTER A CONTINUOUS LOOP SINCE
BRU®* + 8 THE ASTERISK IS INTERPRETED BY GAP AS THH

ADDRESS OF THE INSTRUCTION ITSELF. THE

MACHINE THEN EXECUTES THE SAME INSTRUC

TION CONTINUOUSLY.

The use of the asterisk in the above example (line 7)
is equivalent to writing the same symbol in both the
symbol and operand fields of the same line.

o)
InTal
ul
N,
NS
&l

(o

Iv-18

DETECTED CODING ERRORS

As an aid to the programmer, the general assembly
program detects certain types of coding errors and
lists them on either the typewriter or high-speed
printer.

Pass 0 provides a listing of undefined symbols, mul-
tiple symbols, no reference, and, if the tape assembly
nroocram ig used, an indication of anv tape errors.

pavgaaill Used, a1 Aleatlonl Ol 41 dpe cl10L's,

Figure 17 is a sample print-out from Pass 0.

Pass 1 provides a multiple symbol list that gives the
memory locations referring to the symbol. Thisprint-
out can be done on the high-speed printer or, if no
printer is available, the console typewriter. A print-
out from the HSP appears as shown:

MULTIPLE SYMBOLS
SUM 01760
END OF PASS 1

01756

Pass 2 lists the assembled program along with codes

which indicate an error or a suspected error in the

program coding. Six symbols (O, U, M, A, T, aud S)

are used as error codes. These error codes are

printed to the left of each line on which they occur. A

brief description of these codes follows:

Code Meaning

(0] Illegal Mnemonic Operation. This

becomes an LDA (00).

Example:

W

Example: Print-out from Pass 2

P

¢

0001757 LDB) FIG \
/
/

0 01752

The OPR field
contains an
illegal operation.

Code Meaning

U Undefined Symbol. A symbolic name
appearing in the operand field does
not appear in the symbol field of any
instruction or constant line. 0000is
used as an operand address.

Print-out from Pass 2
e
Loa @)

The symbol AMT is not
defined in the symbol field.

0175 0000000

#8
#16
#2h4

#9
#17
START

#10
#18

® UNDEFINED SYMBOLS
AMT ouT SAVE STRIP
MULTIPLE SYMBOLS
SUM
® NO REFERENCE
#3 #h #5 #6 #7
® 41 #12 #13 #14 #15
#19 #20 #21 #22 #23
° 0 ERRORS TAPE 3
0 ERRORS TAPE L
® END OF PASS O

L/WV_N\—/'\N\"A_A—’—\—/‘“_"

Figure IV-17. High-Speed Printer Listing from Pass 0

Heto o 777N
Gl &&Ed

Iv-19

Code Meaning

M Multiple -Defined Symbol. Either the
symbol fleld or the operand field
contains a symbolic name whichap-
pears in the symbol field of two dif-
ferent instruction lines. Iftheerror
detected was in the symbol field,
assembly will continue withthepre-
sent setting of the memory allocation
register. If the error detected was
in the operand field, the value as-
signed to the symbol the last time it
appeared will be used as the operand
address in the assembled instruc-
tion.

Example: From Pass 2

01751 0301760

more than once in the
symbol field.

Code Meaning

A Error or Suspected Error in the
Operand Address. Blank operand
field in a line normally requiring an
address. An entry in the operand
field of a line which normally should
be blank. The numeric value of the
operand does not meet the require-
ments of the line in which it was
used. The value of the operand ad-
dress will be logically OR-ed into
the instruction.

Example: From Pass 2

o A 01753 o1oo‘w@
/

Address left blank. This
is a possible error because
the address may be added
later in the program.

Code

Example:

Meaning

Error or Suspected ErrorinX-Field.
The X-Field is blank in a line nor-
mally requiring an entry. The X-
Field contains anentryinaninstruc-
tion line which may be altered by
address modification. The numeric
value of the entry inthe X-Field vio-
lates the requirements of the line in
which it appears.

From Pass 2

0175k 1400001

Code

Example:

The X-field is blank on an
instruction which requires
an entry.

Meaning

Scale Factors in DEC, DDC, FDC.

The specified binary and decimal
scales are incompatible. Twodeci-
mal or binary scales have been spe-
cified in the constant line.

From Pass 2

01757 0000000 FIG DEC

W\

The constant in the operand
field is larger than the scale
which is assumed to be binary
19 (B19). This constant must
be double length.

&
(mrd
RO
NS)
&

Iv-20

ASSEMBLY OPERATION

General Assembly ProgramII consists of four separate
programs: DPass 0, Pass 1, Pass 2A (absolute), and
Pass 2R (relocatable), Operating instructions for
General Assembly Program II depend upon whether
a card, paper tape, or magnetic tape system is used
for assembly and upon the configuration of the object
system,

A flow diagram of the four programs is shown in figure
18. The specifications of the input/output media can
be changed during assembly, as long as the output from
one pass is acceptable as input to the subsequent
passes, Thus, the operating instructions and console
switch settings vary with different hardware configu-
rations,

System Configurations

The minimum hardware requirements for the operation
of the General Assembly Program II are:

A, System 1 - Punched Card

[T SRR R

lypewriter
4096 words of memory

B. System 2 - Punched Paper Tape

.

Card Reader
Paper Tape Reader
Paper Tape Punch
Typewriter

Options & Console Switches

The console switches are used to indicate the peri-
pheral configuration available to the General Assembly
Program II program as well as other maodifications
that may be employed while assembling. The setting
of the console switches may be altered between passes,
but care must be exercised to maintain peripheral
compatibility between passes, For example, it is
possible to specify magnetic tape, card, or paper tape
input and magnetic tape output to Pass 0. At the end
of Pass 0, the switches must be altered to specify
magnetic tape input/output to Pass 1, At the end of
Pass 1, the switches may be altered to specify mag-
netic tape input and paper tape output to Pass 2,
Figure 18 is a flow diagram of the input/output
relationships,

Console Switch Settings

muh.oal\&r—‘

. 4096 words of memory
C. System 3 - Magnetic Tape or Punched Cards

The hardware requirements for the operation of
General Assembly Program II are:

1. Card Reader
2, Card Punch
3. Magnetic Tape Subsystem and 4 Magnetic
Tape Handlers (5 Handlers for complete tape
operation)

High-Speed Printer

Typewriter

8192 wordsofm cu‘LOi‘y Minimum for

i
W
able General Assembly Program II)

.Ch.ul»&

S RS
elocat-

Regardless of the hardware configuration used during
assembly of the source program General Assembly
Program II will assemble object programs for any
hardware configuration,

Switch 1

Normal: Absolute output,

Down: Relocatabie output,

Switch 2

Normal: Printer is on-line,

Down: No on-line printer, An octal deck is
punched instead of binary cards,

Switch 3

Normal: Tape 3 is used to obtain comments on the
Pass 2 program listing,

Down: Tape 3 is not available, and no comments
will appear on the listing., (If switch4 is
down, switch 3 is ignored.,)

Switch 4

Normal: Tape 4 is used as output by Pass 0 and
input by Pass 1 and Pass 2, Tape 5 is
used as output by Pass 1 and input/cutput
by Pass 2,

'S PR i madin tamog Aol $1ahl a1l desmist/

DJOWI LVU uuxgucuu Lapca avau.auxc aii LlllJul-/
output via cards or paper tape (switch 4
overrides switches 3 and 6),

Switch § _

Not used,

Iv-21

Symbolic Program (Mag Card Paper Tape
Input Pass 0 Tape Jfomm - — —,
]
|
]
1

v Printer Card Paper Tape
tional
Output Pass 0 ¥ag Option
Input Pass 1, 2 ape .

I

______ Y
Printer Typewriter Card Paper Tape
Optional
Output Pass 1 Mag
Input Pass 2 Tape

\ g;irigﬁgl Typewriter Card I Paper Tape
Mag
Output Pass 2 Tape s_—\J

I

Figure IV-18. Flow Diagram of General Assembly Program II Input Media, Intermediate

Storage, and Final Output Media

[i

v-22

Switch 6

This switch is used only by Pass 2,

Normal: No tape 6 available, Punched output on
cards or paper tape,

Down: Binary program output from Pass 2 is
written on tape 6 (if switch 4 is down,
switch 6 is ignored),

Switch 7

Not used,

Switch 8

Not Used,

Switch 9

Normal: Card punch on-line,

Down: No on-line card punch (if switch 4 is down
and/or switch 6 is normal, switch 9 is
ignored),

Switch 10

Not used.

Switch 11

Normal: Card or magnetic tape input,

Down: Paper tape input.

Switch 12

Normal: Card or magnetic tape output, Switch 13
is ignored,

Down: Paper tape output, Switch 13 isinterro-
gated,

Switch 13

Switch 13 affects only Pass 2,

Switch 15

This switch is used only by Pass 0,

Normal: Read input from card or paper tape and
process concurrently,

Down: Read input from card or paper tape and
write tape #3, Alter Pass0toread input
from tape #3 and process,

Switch 16

This switch is used only by Pass 0,

Normal: Input to Pass 0 ison cardsor paper tape,
Switch 15 is interrogated,

Down: Input to Pass 0 is on magnetic tape #3.
(If switch 3 or 4 is down, switch 16 is
ignored, if switch 16 is down, switch 15
is ignored.)

Switch 17

Not used,

Switch 18

Normal: “No reference” symbols are typed or
printed after Pass 0,

Down: Suppresses or terminates the typing or
printing of the “No reference” symbols,

Switch 19

Except for machine malfunctions, the computer will
stop during assembly under three circumstances only:

1. The number of special symbolic operands (symbol
table 1) exceeds 250, the size allowed by the
symbol table,

2. The total number of symbols (symbol table 2)
exceeds the size of the table,

3. During thefinal phase of assembly, a name appear-
ing in the symbol field cannot be found in the sym-
bol table,

When these errors occur, anindicative typeout results
and the computer goes into a programmed loop, Tog-
gling switch 19 bypasses the “Symbol Table Overflow”
stop during Passes 0 and 1 and the “Symbol Lost”
stop during Pass 2,

Normal: If switch 2 is normal, printer listing and
paper tape program, If switch2 isdown,
paper tape listing.

Down: Typewriter listing and paper tape pro-
gram (if switch 2 is normal, switch13is
ignored),

Switch 14

Normal: No packed symbolic listing,

Down: Print packed symbolic listing (if switch2
is down, switch 14 is ignored),

I
TSN EYERY)

IvV-23

Operating Instructions
for the Minimum Card Configuration

The following instructions are for loading General As-
sembly Program II from cards for this configuration:

Card Reader
Card Punch
Typewriter
Printer (optional)

PASS 0

When operating a minimum card system, Pass 0 must
be processed first, as follows:

1. Place the symbolic program followedby one blank
card behind the binary Pass 0 deck.

Blank Card

“Symbolic]
Source Deck Pass 0
; Deck Set-up

Pass 0
Binary Deck

A

2. Load card deck into card reader.

3. Set console switches as desired.

Switch settings

Switch Setting Result
4 down no magnetic tapes
2 up on-line printer
2 down no printer on line

All other switches normal.

4. Start Pass 0.

5. The output from Pass 0 will be a card deck con-
sisting of packed symbolic program cards with
sequence numbers starting with 20000 (columns
74-78) followed by a table of special symbolic
operands (ST1) with sequence numbers startingat

10000 (columns 74-78). Figures 3and4illustrate
these cards. Pass Ooutputislistedby the HSP, if
available. A packed list of special symbols, a list
of multiple symbols, a list of undefined symbols,
and the symbolic names which are not referenced
in the program, are printed. If no high-speed
printer is available on-line, the above lists will be
typed on the typewriter.

Controller selector plug assignments can be altered
if necessary to meet the requirements of individual
installations.

Pass 0 Messages

At the conclusion of (or during) Pass 0, messages on
the typewriter or HSP indicate operating conditions.
Some of these messages require immediate inter-
vention in the form of console switch settings or re-
reading of input cards. These messages for Pass 0
are described in Table 3.

Card Read Error Recovery

1f, during the loading of the input source deck, a card
read error occurs, Pass 0 types the message CARD
READ ERROR, which indicates that the last card in
the output may have been mis-read or that a punch is
present in column 7 or 11. If the card has a punch in
column 7 or 11, correct the card. Also examine the
card for off-center punching or physical damage.

Recovery from a card read error is simple. For the
400 cpm card reader:

a. Depress the MANUAL button on the GE-225
control console.

b. Remove the card deck from the input stacker;
remove the card from the read platform and
place it in front of the deck; load the card
previously read incorrectly into the read
platform: replace deck in the input stacker.

c. Press the A to I button on console.

d. Place the computer in AUTOMATIC and de-
press START button.

For the 1000 cpm card reader, follow essentially the
same procedures, except for step b. Step b for the
1000 cpm card reader requires returning thelastcard
in the output stacker to the front of the deck in the
input hopper and then performing steps ¢ and d.

v-24

MESSAGES

NO END CARD

assembling, the trans
at the end of the object deck.

MEANING

Indicates that the symbolic deck does not terminate with an END
card. Assembly will continue to the normal end of job. After
card may he punched manually and added

fer

——

N

END OF PASS 0 |

Signifies the end of the Pass 0 run.

SYMBOL TABLE

OVERFLOW 1
switch 19.

phases.

Indicates that the number of special symbolic operands exceeds
250. Program goes into loop which may be overridden by setting
This causes Pass 0 to continue, but the special
symbolic operands encountered after the error halt are not
entered in Symbol Table 1.
assignment of a memory address to these symbols in the following

This may result in the improper

SYMBOL TABLE

OVERFLOW 2 of symbol table.

reterence.

Indicates that the total number of symbols exceeds capacity
The program goes into a loop which may be
overridden by setting switch 19.
the symbols following the error halt are not entered in Symbol
Table 2, and are not analyzed as undet:ned, multiple, or no

Pass 0 then continues, but

Table 3. Pass 0 Messages

Other Stops or Loops

Place computer in manual mode. Check the ready
status of all input/output devices. If anyare in a not-
ready status, take the necessary actions to ready these.
Place computer in automatic and start.

If the card feed light in on, check the card deck for

damaged cards. Replace such cards asnecessaryand
reload Pass 0 from the beginning.

PASS 1

Pagg 1 Follows Pass 0:

1. The output from Pass 0isinputtoPass 1, but
it must be rearranged. The cards that have
sequence numbers beginning with 1XXXX
(columns 74 through 78) should be placed in
front of cards starting with 2XXXX (columns
74 through 78). Set up the cards starting

-] A/

Al

.l\J

Pass 1
Binary Deck ¥

with the rearranged output from Pass 0, fol-
lowed by one blank card:

=

Packed 20000
eck
1000.%
S m}zol Tabl

S\

Pass 1 Deck Set-up

The output from Pass 1 is a sorted table of
symbols (ST2) and equivalent locations which
is punched into cards and, if the printer is
on-line, listed on the high-speed printer as
they are punched. In addition, a list of all

= "/ /
= (4arrs

RN
s
N

S

m Ll”)‘
/

IvV-25

multiple-defined symbols, together withall of deck as follows: theoutputfrom PassO and 1
the equivalent values associated with each followed by one blank card:
symbol, is printed (or typed, if no printer is

available).

Errors or possible errors detected in the . BlaCard

operand field of a BSS, EQU, or ORG instruc- Packed 20000
tion are printed or typed with the present Deck

S e P ———
setting of the memory allocation register, the T1 10000 |}
Symbol Table

card type, and the error code. The error
Symbol Table 2|

codes are:

U - an undefined symbol

A - a possible error in an address (=—==— Pass 2 Deck Set-up
Pass 2 Binary]
Figure 6 contains an ST2 card. Deck
¢

Pass 1 Messages Absolute
. or Relocatab1e>
Table 4 shows messages that canoccur during Pass 1.

PASS 2
Pass 2 Processing Follows Pass 1: 2. Process Pass 2.
1. The input for Pass 2A or Pass 2Ris the out- 3. The output from Pass 2isapunchedcard deck
put from Pass 1 and Pass 0. Set up the input (if no printer is on-line), or a punched card
MESSAGES MEANING
NO END CARD Indicates the symbolic deck does not terminate with an END card.
Assembly continues to the normal end of job.
END OF PASS 1 Signifies the end of the Pass 1 run.
SYMBOL TABLE Messages (and action to be taken) are the same as for the Pass 0
OVERFLOW run,
CARD READ Card improperly read. Place GE-225 in MANUAL, backspace as
ERROR described in Pass 0, press A to I, set in Automatic, and start.
ERROR IN DECK Output cards from Pass 0 are not arranged properly. Check
SETUP arrangement, correct, and reload Pass 1.
Note:

Action required for other stops or loops is the same as for Pass 0.

Table 4. Pass 1 Messages

T .99

(Lo

Iv-26

deck and a printer listing (if a high-speed
printer is available). The listing (or cards
if no printer is on line) contains the octal
memory location assigned to the instructionin
octal, the symbolic instruction, and the codes
for real or suspected errorsg in the instruc-

tion. These codes are:

O - illegal operation

U - undefined symbocl

A - possible error in the address

M - a multiple-defined symbol in either

Figure 7 illustrates the output from Pass 2 as listed

by the HSP.

Pass 2 Messages

Operating Instructions
Minimum Card Configuration
Plus Magnetic Tape and Printer

symbol or address fields
S - errors in specified scale factors in
DEC, DDC, or FDC operations

T - possible error in index

The following operating instructions are for loading
General Assembly Program II from cards for the
folllowing configuration:

These output cards represent the assembled
program deck. If the program deck is in
octal (as shown in Figure 19), it can be

listed off-line to obtain a program listing and Card Reader

loaded for execution with an octal loader; or Card Punch) \
it can be converted to a binary deck which 2 Magnetic Tape Handlers (minimum)
can be loaded with a binary loader. Ifa Typewriter

Printer (pptional)

printer is on-line, the output deck will be a
2 additional Magnetic Tape Handlers (optional)

binary deck.

e Eorror Indication

'

o RESED e For TEAENT
" ' \
1
saigessnnige O T T O T O T AT OO
—_TT?!' TS ® ry - " -1 A TR B0 § X RANBATINR®
Sheel AEReine S eE iy " IRRERRRN
1 1 1 P 1 I\
1222122
1 1 n m1]]
S B R L OO DO S L T OO ERERERE
122488 RANHQBUSUTRERTINNINERTIRNS
a1750 AT YTy
[] Card 55555
1l Columns Contents s886s
$0000000800DBEOO OO0t onRORRRRORCIOg)? 11111
123456738 UNRBIHBENIBBIAN2DNBANARNIRIUBRTN
URRRRRRRRRERRL RARRRRRRRRRRRARRRRY LRARE NSO Blanks T
22222222222222222222222222222222222222 9 5-9 Memory location in octal 19188
NNINRN
$3333333333333333333333323333333333333f 10-11 Blanks
R R R NN RN RN AR RN RANRRY] 12-18 Instruction in octal
§ 19-21 Blanks
§5555555555555555[5555555555555555555559 22-27 Symbolic location name
§6G66EEEEEGEE66E6EE0GOEEEEEEFEbaGEo0nS gg 5 Blank
-31 Symbolic operation code (m i
[ARRERRRRRRRRRA] LERRRRRRRRRRRA] LRRRRRRE I 7 P code (mnemonic)
2 Blank
e;egesg;llnl!lll!lllilllﬂllllllIillli! 29 AN [N R et s> aTe |
............................. 33-40 Symbolic operand
1599900988989998093599809s0asfassasenre 41 Tag
!'lilllTIQI"ﬂﬂul'ﬂﬂﬂﬁﬂlﬁ)ﬂ!l EE L EE L REL 42_51 BlankS
52-80 Comments

Figure IV-19. Octal Card Deck

G F\/n
aa /) /7N
LS (55

N =3
e
\u

r=
|
K

Iv-27

MESSAGES

ERROR

MEANING

Indicates presence of a real or suspected programming error.

NO ERRORS

Indicates no real or suspected programming errors were found.

END OF PASS 2

Signifies the end of Pass 2 run.

SYMBOL LOST

Is typed with the setting of the memory allocation register and
the symbol in question when a symbol appearing in the symbol
field cannot be found in the symbol table. This may result from
a mispunched symbol table from Pass 1, a bad read of the
symbol table by Pass 2, or a bad read of the present instruction
card. The program will go into a loop. Whenever a symbolic
name appears in the symbol field, Pass 2 must search the
symbol table formed by Pass 1 to insure that the assembled
program is in phase with the memory assignment made in

Pass 1. Toggle switch 19 to finish assembly or restart
assembly at Pass 0.

This message also results from overriding a symbol table
overflow message in Pass 1.

Caution: If this message is overridden, the symbol which was
lost will not be found when it is used in the operand field. This
may result in a number of undefined references which must be
corrected by the user.

ERROR IN DECK
SETUP

Indicates that the input cards to Pass 2 are not arranged pro-
perly. Correct the deck and reload Pass 2.

Note:
Action required for SYMBOL LOST.

a. Separate Pass 1 output cards from Pass 0 output cards.

b. Place Pass 0 output cards behind Pass 1 binary deck.

¢. Reload Pass 1 to obt2in a new symbol table,

For ail other errors, restart the assembly from Pass 0.

RIE. DR

Table 5. Pass 2 Messages

SIS tahw

1v-28

PASS 0 5, As the symbolic cards are read by Pass 0,
these will be written in card image records
1. Set up cards as for card-to-card Pass 0, (27 words) on tape 3, if tape 3 is available,
2, Load cards into the card reader, 8. The packed symbolic output from Pass 0 will
be written on tape 4,
3. Set console switches as desired:
7. The table of special symbols (ST1) will be
Switch settings left in memory for Pass 1,
Switch Setting Result 8. Messages, see Table 6.
2 Normal Printer on-line, All messages and recovery procedure will
2 Down No on-line printer, be the same as for card-to-card Pass O,
3 Normal 1 additional tape
available for com- 9, If switch 3 is up, and the symbolic program
ments, is on tape 3 in decimal records 27 words
3 Down Only two tapes long, switch 16 may be set down, This will
Available for General cause Pass 0 to read the symbolic program
Assembly Program II, from tape 3 instead of from cards. If a read
No comments will error occurs while reading from tape 3, the
appear on listing, message, READ ERROR TAPE 3 RESTART
6 Normal 2 or 3 tapes available PASS 0, will be typed and the program will
as specified by switch halt, This means either tape 3 must be
3. corrected before trying again, or that as-
6 Down 1 additional tape sembly must be restarted from the original
available to write symbolic cards,
assembled binary
program on tape €, 10, Whenever Pass 0 detects a write error while
3ord tapes available writing tape 3 or tape 4, the assembly will
as specified by switch rewrite the record until a successful write
3. is performed,
16 Optional
A count of the number of rewrites necessary
All other switches normal, during Pass 0 is typed and printed, if the
printer is on-line, If these error counts are
4, Start Pass 0, not zero, it does not necessarily mean that
MESSAGE MEANING

XXX ERRORS If Tape 3 is used for comments, this typeout signifies the number
TAPE 3 of bad spots on Tape 3.

XXX ERRORS Signifies the number of bad spots on Tape 4.

TAPE 4

READ ERROR Read error occurred while reading from Tape 3. Correct Tape 3
TAPE 3 RESTART or restart assembly with Pass 0.

PASS 0

|

[F =)

(=72
[
]

Table 6, Pass 0 Magnetic Tape Messages

al

25AT
—

NS
e

Iv-29

the assembly should be restarted, It is Alternate Assembly Configurations

merely an indication of the number of times

Pass 0 was required to rewrite the tapes,

in order to get a good tape, A user may wish tc specify the input/output devices
in a mixed fashion, For example, symbolic input
from punched cards, the use of magnetic tapes as
intermediate storage, and output on the printer and

PASS 1 punched paper tape, This can be attained by pro-
perly altering the console switch settings between
1. The input to Pass 1 is in memory and on passes, The minimum configuration required is:
tape 4.
2. Place two blank cards behind the Pass 1 Card Reader
binary deck, Two Magnetic Tape Handlers
Typewriter
3. Load cards, Printer

Paper Tape Punch
4, The output from Pass 1 is the sorted table
of symbols and equivalent values, This is
written on tape 5 and printed, if the printer

is on-line, PASS 0
5., The remaining outputs are the same as for Switch settings
card-to-card Pass 1,
Switch Setting Result
6. Messages and recovery procedures are the
same as card-to-card Pass 1, 2 Normal Printer on-line
3 Down No magnetic tape 3
4 Normal Tapes 4 and 5 used

in assembly.
PASS 2 (ABSOLUTE OR RELOCATABLE)

1. The input to Pass 2 is the output from Pass 1. Load Pass 0 from cards,
0 on tape 4 and on tape 3 (if present), and
the output from Pass 1 on tape 5, 2. The output from Pass 0 will be written on
tape 4. The special symbol table will be
2. Place two blank cards behind the Pass 2 left in memory for Pass 1.

binary deck.

3. Load cards,

PASS 1
4, The output from Pass 2 is the same as the
output from card-to-card Pass 2, Inaddition, 1. No change in switches,
the program listing is written on tape 5,
which may be used to obtain multiple listings, 2, Load Pass 1 from cards,
If tape 6 is available, the binary program
will be written on tape 6 as it is being 3. The output from Pass 1 will be written on
punched. tape 5.
5. Messages and recovery are the same as in
card-to-card Pass 2,
PASS 2
6. ERROR TAPE 5 indicates that tape 5 was
read incorrectly, Reload Pass 2, If the 1. Set switch 12 down,
error message is repeated, restartassembly
from Pass 0 with switch 16 down. 2. Load Pass 2 from cards,
7. For all other errors, restart assembly from 3. The output from Pass 2 will be a printed
Pass 0 with switch 16 down, listing and paper tape program,

(BS99
IS

1v-30

Operating Instructions for Magnetic Tape

MAGNETIC TAPE

The assembly program can be operated from a
systems tape by installations having magnetic tape
capability, The tape assembly program requires
less assembly time than the card assembly program

hnnanse roadine and ocard nunehine ig

becau reading and card punching is
necessary, The systems tape format is described
in the following section, The basic difference in
operating instructions is that General Assembly
Program II is to be loaded from magnetic tape 1.

lagse

card
i€88 carg

1, Set console switches as desired.

2, Place symbolic input program behind the assembly

program call card:

Blank Card
e Y
Symbolic
Source Deck
GAP Binary
LCali Card |

Pass 0 Tape GAP
Deck Set-up

3., Load cards,

4, The output from Pass 0 will be as specified by

the switches,

>
—

10,

At the end of Pass 0, Pass 1 will automatically
be loaded into memory, and will go into execution
phase,

The output from Pass 1 will be as specified by
the Pass 1 switch settings previously described,

At the end of Pass 1, Pass 2 will automatically
be loaded into memory, and will go into execution
phase,

The output from Pass 2 will be as specified by
the switches,

At the end of Pass 2, the systems tape will
rewind and the computer will halt,

if a tape or check sum error is detected during
the actual loading of the assembly, the computer
will halt at location 44g, Restart the assembly
from the beginning, If the error halt occurs
again, use the General Assembly Program II
master deck to rewrite the systems tape and try
again,

Failure to load after a rewrite may be due to
torn webbing in the master deck, card reader
errors, or iape read errors,

Switch settings may be altered during the as-
sembly, as indicated in the previous examples,
Each pass reads the control switches once at the
beginning of each run, After each pass begins
reading the input, the switches can be altered as
desired without affecting the execution of the
current phase, Duplicate listings of the program
can be obtained by printing tape 5,

C)
[

[F;\B;)
Il

1v-31

SYSTEMS TAPE

The General Assembly Program II master deck to
produce the systems tape is made up of the com-
ponents listed below, including service routines for
the system such as memory dumps, tape dumps, etc,
The user may add service routines to the assembly
program master deck as desired, It is possible for
the user to insert subroutines in the master deck and
up to 10 subroutines can be added to the symbolic
deck at assembly time by use of the SBR pseudo-

operation, The master deck is formed as follows:
1, Tape writer
2, Define controller and handler
3. PCLLDR
Utility programs + 1 blank (additional
routines may be inserted)
4, WEFPCLLDR
Rewind tape 3 and load test program
+ 1 blank
5, RCDWTB
Run ID+EOT +'1 blank
6. LDR
Test for ID and end of tape + 1 blank
7. RCDWTB
Run Pass 0 + 1 blank
8, LDR
Pass 0 + 1 blank
9, WEFRCDWTD
Subroutines + 1 blank (user option)
10, 111111BSSO
11, WEFRCDWTB
Run Pass 1 + 1 blank
12, LDR
Pass 1 + 1 blank
13, RCDWTB
Run Pass 2A + 1 blank
14, LDR
Pass 2A + 1 blank
15. RCDWTB
Run Tape 3ID + 1 blank
16, LDR

Test tape 3 for ID record + 1 blank

17, RCDWTB
Run Pass 2R + 1 blank
18, LDR
Pass 2R + 1 blank
19, RCDWTB
Run RELOAD ID TEST + 1 blank
20. LDR
Reload ID + 1 blank
21, WEFRWD + 2 blanks
The master deck will produce a tape in the following
format:
1, Tape loader
2. Memory dump program
3., Tape loader
4, Tape dump program
5, End-of-file
6. Tape loader
7. Rewind tape 3 for General Assembly Program II
8, Identification record
9, Tape loader
10, Test for program identification and end-of-tape
record
11, Identification record
12, Tape loader
13, Pass 0
14, End-of-file
(Users Subroutine Library inserted here,)
15, End-of-file
16, Identification record
17, Tape loader
18, Pass1
19, Identification record
20, Tape loader
21, Pass 2A - Absolute
22, Identification record
23, Tape loader
24, Reposition tape 3
25, Identification record
26, Tape loader
27, Pass 2R - Relocatable
28, Identification record
29, Tape loader
30. Reload test program, blocks 9 and 10
31. End-of-file

Addition of Service Routines

The user may add service routines tothe master deck
by removing any card loaders from his service
routine deck. The deck consisting of the binary pro-
gram cards and the program transfer cardis inserted
in the master deck between blocks 3 and 4 in the

GlE-228

Iv-32

master deck format, Use the altered deck to write a
new systems tape, During generation of the system
tape, a call card is punched for each service routine
in the master deck,

Addition of Symbolic Subroutines

It is also possible for symbolic subroutines to be
placed onto the systems tape by modifying the assembly
program master deck, The subroutines placed on
the tape are normally the ones most frequently used,
A typical arrangement might be:

Name Description

CHOOSE Least Key Finder

CRDIN Card Read Routine
IDBNPR Internal BCD-to-Binary
NPRIBD Internal Binary-to-BCD
TPI/O Tape Input and Output
SORT Internal Memory Sort
PRINT 1 Typewriter Print Routine
nMPY Doathle Precicion Multiply
TRACE Trace Routine

Although more subroutines can be stored on the tape,
no more than ten can be called for during one
assembly,

The advantages of having the subroutines on tape are:
1. Reduces card reading time,

2, Reduces card handling by operators and
programmers,

3. Routines are easily changed and maintained,

The subroutines on the systems tape are called for
as needed by the programmer using the SBR pseudo-
instruction,

a subroutine for addition to the deck

To prepare
m the following steps:

erfor

:—"‘d

Obtain a deck of the symbolic program cards
for the desired subroutine,

2, Punch two symbolic cards to be placed at the
front of the deck,

Card 1 columns 1-6 Subroutine name
8-10 BSS
12 0

Card 2 columns 8-10 REM

3. Punch one symbolic card to be placed at the end
of the deck,

Columns 8-10 END
12 0

4, Run this modifjed deck through Pass 0 with
switch 4 down to obtain a deck of punched cards,
This deck will look as follows:

Card 1 columns 1-6 Subroutine name
7-9 BSS
10 0
74-78 20000
Card 2 columns 7-9 REM
74-78 20010
Card 3 Packed Symbolic Subroutine
columns 74-78 20020
Card N-1
Card N columns 7-9 END
10 0
Card N+1 columns 1-3 ST 1
9-12 number of special
symbols
74-78 10000
Card N+2 Special symbol table

(These will not appear if there are
no special symbols.)

Card N+M ¢

5. Insert cards N + 1 and N + 2 through N+ M (if
any) between cards 1 and 2,

6. Insert this deck in block 9 in the assembly pro-
gram master deck, If two or more subroutines
are in the library, they must be in ascending
order according to the binary value of columns
1 through 6, card 1, which contains the symbolic
name of the subroutine,

7. Use the altered deck to write a new systems
tape,

Any modifications to the General Assembly Program
II must be inserted in the appropriate program
(Blocks 8, 11, 13, 17) in the master deck,

Where a subroutine contains a symbol in the name
field of its first instruction, it is a simple matter to
adopt this symbol as the SBR call name, Most of the

BE- 225

Iv-33

programming routines have this symbol - FLIP,
STRIP, etc, Where a subroutine does not contain a
symbol in the name field of the first instruction, the
user could insert the symbol he has chosen for his
SBR call in this field, This insures that the general
assembly program will link the SBR name with a
symbol in the subroutine,

When a subroutine which is not on tape is called for,
a print-out occurs in Pass 0, This print-out gives
the subroutine call symbol followed by SBR OP,
For example:

CRDIN SBR OP

Multiple Assemblies

When using the system tape to assemble a program
and absolute output is desired, the general assembly
program assembles one program,

When using the system tape to assemble and re-
locatable output is desired, it is possible to write
several programs on tape 3 and to assemble these

consecutively, However, if any one of the pseudo-
instructions SBR, MAL, or PAL appears in any
assembly, it will not be possible to call the source
program from tape 3 for assembly, Eachprogram on
tape 3 should be preceded by an identification card
containing an asterisk in column1, Columns 2 through
80 may contain any BCD information desired, There
must be an end-of-file after each symbolic program
on tape 3, In addition, an end-of-tape record must
be written on tape 3 after the last program to be
assembled,

The format of the end of tape card is as follows:

Columns Contents
1 Asterisk
4 through 6 END

7 Blank

8 and 9 OF

10 Blank

11 through 14 TAPE

50
oy
0
RS
D)
&l

(
[

Iv-34

MODIFICATIONS TO
GENERAL ASSEMBLY PROGRAM 1|

Symbol Table Length

I e aas 1

and 8K WModifications

General Assembly Program II requires a2 minimum
of 4096 words of core storage. Each program is
packed at the beginning of memory. All of the avail-
able memory following each program may be used
for working storage. If a larger memoryis available,
the following corrections to Pass 0 and Pass 1 serve
to increase the available working storage. This
allows the assembly program to form alarger symbol
table, but has no effect on the internal functions.

Octal Correction for
Program Location 8192 words
Pass 0 00054 0017776
Pass 1 05043 0017777

These alterations specify to Pass 0 and Pass 1 that
the constant in the specified locations is the address
of the last memory location that may be used. This
may be set to any desired constant beyond the pro-
grams at the user’s convenience. For example, if
the user desires to reserve the last 256, . locations
of an 8102 micinoiy, these cursrections should be
UU17400. The size of the symbol table which may be
held by each pass is as follows:

Symbol Table 1
1. Built in pass 0 only.

2. Consists of DL, 1/0, FLP, and document handler
symbols.

3. Maximum size is 250.

4. Printed out at end of pass 0.

5. Error message “Symbol Table Overflow 1” when
table exceeds 250.

Symbol Table 2

1. Built in Pass 0 and Pass 1.

2. Consists of all symbols used in a program.

3. Maximum size is indicated on assembly listing
in decimal form immediately following the words
“GAP 0” and ““GAP 1”.

4. This table size will vary if the number of in-

structions contained in Pass 0 or Pass 1 is
changed. The general assembly program itself

determines the number of symbols each Pass
will hold. The table size is printed out at the
beginning of each assembly.

5. Printed out only at end of Pass 1.

6. Error messages:

Pass 0 - “Symbol Table Overflow 2” when table
size exceeds the number indicated on the listing
at hasinning ~AF h o PP

+h o
@l UTRLIILGE ULl uUl€ rasSs.

Pass 1 - “Symbol Table Overflow” when table
size exceeds the number indicated on the listing
at beginning of the Pass. This number will not
be the same in both Pass 0 and Pass 1.

Plug Assignment Modification to
Pass O, Pass 1, Pass 2

Without modification, the tape controller is on Plug 1
and the printer controller is on Plug 6.

Modification of plug assignments is accomplished by
inserting binary correction cards just ahead of the
branch card of each deck.

The octal format of the controller number assign-
ment word 1s: U00000P.

Octal Octal
Location of Location of

Program Printer Plug # Tape Plug #
Pass 0 00055 00056
Pass 1 05044 05045
Pass 24,

Absolute 06747 06750
Pass 2R,

Relocatable 07132 07133

Caution: All tape plug numbers or all printer plug
numbers for all four programs should be changed at
one time,

An example illustrating the ease with which changes
in plug assignments may be made follows: Change
the tape controller from Plug 1 to Plug 2.

A. Make up octal correction cards.

Card Columns

5-9 12-18
For Pass 0
Card 1 00056 0000002
For Pass 1
Card 2 05045 0000002

Iv-35

For Pass 2A Modifications to assembly program card decks are

Card 3 06750 0000002 easily made by punching the octal correction cards.
converting them to binary, and inserting the binary
For Pass 2R card before the respective transfer cards of each
Card 4 07133 0000002 assembly program deck.
B. Use Utility Routine CD225C3.002, Octal to Binary
Card Converter, with checksum and origin to System Tape Controller
convert the octal correction cards to binary Plug Modification

correction cards.

C. Insert the respective binary correction cards To change the tape controller number for the system
just before the transfer cards of Passes 0, 1, tape, it is necessary to change the system tape
2A, and 2R. definition card (block 2, General Assembly Program

II Systems Tape).
Vacuum Pocket Retrofit Modification

Punch a card as follows:
Normally, General Assembly Program II assumes

that magnetic tapes available have vacuum pockets. Columns Contents

If the tapes do not have vacuum pockets, the following

locations in each program should be altered by 1-3 CON

inserting binary correction cards just ahead of the 9 Controller Number

I transfer card, 15 1
Octal Octal

Program Location Instruction Tape loaders will be altered and written as required
- on the master tape. In addition, new call cards for
Pass 0 06127 0000125 the programs in block 3 and inblock 4 will be punched
Pass 1 05673 0001211 for the specified tape. The call card punched for
Pass 24, block 4 (File 2 Program 1) is the required assembly
Absolute 07700 0002647 program call card for this tape. This individual pass
Pass 2R, must be modified by inserting binary correction
Relocatable 10062 0002660 cards just ahead of the branch card.

o M2

=

vV-36 October 1963

RELOCATABLE OBJECT PROGRAMS

General Assembly Program II can provide the user
with relocatable object programs. The binary cards
produced are in a format acceptable to the Multi-

T =
Capabzhty Modular Loader (}v’x’u}uL Il.[CD225B1.006R.

For additional information, refer to the MCML II
documentation.

To conform to the requirements of MCML, a TCD
card causes a type 5 card containing the appropriate
address to be punched, and an END card causes a
type 3 card containing the transfer address to be
punched,

Figure 20 shows the format for relocatable instruc-
tion cards,

Calculation of Checksum

Figure 20 (page 38) illustrates the relocatable in-
struction card format, The checksum is punched in

LDX wWDCT
I.DX ZERO
LDA START
ADD START + 1
ADD ADD START + 2
BOV
ADD
INX -1
INX 1
BXH 1
BRU ADD
STO CKSM
SRA 13
EXT MSK
ADD CKSM
SLA 6
SRA 6
BOV
ADO
STO START + 1
MSK OCT 3777600
CKSM DEC 0
ZERO DEC 0
WDCT DEC 0

]

—

AN ————

bit positions 7 through 9 of column 3 and bit positions
0 through 9 of column 4, The checksum is the sum
of all words in the load string with the exception of
the checksum itself,* Because there is the possibility
of overflow there must be a test for overflow after
each addition and a one must be added to tire sum
whenever overflow does occur, The 20-bit calculated
checksum must be punched in the 13 bits allowed for
it in the releocatable card format, For this reason
bits 0 through 6 of the calculated checksum must b

added to hits 7 through 19 of the checksum., Ther

L0V 1Y

LS. 0 4 B Ul CHCCKS1II, 111

U) U) ﬂfl

e i
the yOSSAbIlAt} of overflow as the result of thi
addition and, in the case of overflow, a one must be
added to the 13-bit checksum, The following coding
illustrates how the checksum may be calculated for
information punched on a card in the relocatable
format, This example assumes that the overflow
flip-flop has been cleared, index word zero contains
the word count (WDCT) and index register one con-
tains the word currently being added to the checksum,

.

-y

Check A Register
Compute 20-bit Checksum

Save 13 bits of
Checksum

Position bits 0
through 6 of Checksum

Test for Overflow

Word computed by assembly program

* A load string consists of one or more sequential instructions to be
contiguously loaded into memory immediately preceded by two words
which contain the origin, the checksum, and other information (see

Figure 20).
N=ls a 77 7/ 8
U SZA743)

Iv-317

S

3
®
[

I olnhizlizliafis 15«1 zclz: 2‘2;\i242% 26\¢7;28 29130[31
.Jﬂﬂ_ﬂa_ﬂ 'Hue LU 'I;ﬂ Lu ghpH
e i

!Hf Hunhing

1 1
22222221' 2

3

v TH I

w 225 20 BINARY CARD GE 225 Ca 30 (10/62)

1318818 1e
lalslgisigialglalglsialoiglsins
Ell 63 B8]89

70|11 72frs 1ehs Wl e 7e

i
S} 819
nksstfn sjn‘a

K P K p ——>>|K P K

MEEREICEL us[ﬁs(ﬁsnn 9(84{y]
12 3 48 &) aj e tope 12113 1S 1817 18[19 201 23 24]

Bl

o

Words

Explanation of Figure 20.

Field Column Rows Description

TYPE 1 0-3 Type indicator: a 03 indicates a standard
relocatable instruction card; a 05 indicates
a mark transfer point: a 11 indicates a
loader card.

B 1 4 Checksum override indicator,

0 = card checksummed during loading.

1 = checksum ignored,

Usually the card will contain a checksum,

START ADDRESS 1 5-9 Location of the first instruction relative
2 0-9 to the program origin.

D 3 0 Not used

WORDS 3 1-6 Number of program words on the card.

CK SUM 7-9
0-9 Checksum.

> w

K as shown Relocation key or control word for the
next sequence of one to nine program
words.

This key contains a rclocation indicator
for each of the following program words
(P). The K field consists of nine two-
bit fields each of which contains a code
which applies only to the operand portion
of the program word. This code is:

Code Operand Address
(Binary) is
00 Absolute
01 Positive address
ive to the re-
lneation constant
10 Negative address
relative to relocation
constant

Control Word

89 *————>
Bits 0123458\’_’ 18 19
not 1st 2nd < Oth

used ;

Program Word

P as shown Program words to be stored in consecutive
memory locations relative to the location
given in field.

Figure IV-20. Relocatable Instruction Card Format

(5

G}
R
(&

(

Iv-38

PAPER TAPE ASSEMBLY

General Assembly Program II accepts paper tape as
an input medium. The output can be in paper tape
form, if desired.

The paper tape input is punched from the regular
assembly program coding sheet using the standard
Friden* Flexowriter SPD character set. Character
sets are shown in Figure 21. The first character
punched must be a Carriage Return (CR) followed by
the 80 columns from the sheet. Each source line of
coding punched from the coding sheet must be sepa-
rated by a CR. However, paper tape codes prepared
by off-line devices may vary widely and the user
may wish to modify the paper code used by General
Assembly Program II. This is easily accomplished
by changing the conversion tables as describedbelow.

Paper Tape Input-Output
Conversion Tables

Pass 0 reads and converts punched paper tape codes
to internal GE-225 BCD from a conversion table.
This table can be modified by correction cards to

conform to the user’s requirements. This table
occupies octal locations 5146 to 5251:
5146 Paper tape code for lower case
5147 Paper tape code for upper case
e1en Ty rn b sy e T . U S
LE R VAN 4 uy&.r & uu,lJL/ LW AT R AL wald LLCLSU PSRN DAY FY
o101 Paper tape code for tab
5152 Tape codes for character set
5251

Each entry in the table of characters carries two
BCD configurations: one corresponding to an upper
case paper tape code, and one to a lower case. For
example, the second entry in the table contains the
BCD character corresponding to a lower case paper
tape 2 in bit positions 8 through 13 and the BCD

Table Memory Word

012345678910111213141516 171819
lofoololofololofoJoloT ol 1JoloJoji111lol o]
0

0 0 0 2 1 4
N\ J\ _J
) }
Lower Upper
Case Case

* Trademark of Friden, Inc.

character corresponding to an upper case paper tape
2 in bit positions 14 through 19.

As Pass 0 and Pass 1 prepare input tapes for suc-
ceeding passes, no conversion is reguired. These
intermediate tapes are punched in codes correspond-
ing to internal GE-225 BCD.

The output from Pass 2 may bhe listed on off-line
devices which require a character conversion. This

is accomplished by another conversion table. A
typical table memory word appears below.

Table Memory Word

01234567891011 12 1314 1516 17 18 19
olofofofo]al1lofololo foTolalsT1ToJoToT1]
0 8 10 1 8 1

R,JK_V_JH,__); ~— J

|

tape tape
character character
code code

it m 1id . .
Lilildive Al LT

upper lower

fase Ay o
Case CAST

In Pass 2A (absolute) this table occupies locations
6213 through 6254. Location 6213 is the lower case
code, and 6214 the upper case code. Each word in
the table carries the paper tape codes for two internal
BCD characters, the first code in bit positions 2
through 10, the second in 11 through 19. In each
9-bit configuration, the first octal digit is a 0 if the
corresponding paper tape code is in upper case and
a 1 if it is in lower case. The next two octal digits
contain the paper tape code itself.

Note that, in the character set shown in Figure 21,
several of the Flexowriter codes are meaningless
(with the two exceptions given below) to the 225 and
are interpreted as spaces (Memory Octal 60). Also,
any other of the Flexowriter codes that are not
listed are meaningless and interpreted as spaces.
The two exceptions are LOWER CASE and UPPER
CASE. These are not meaningless, as they are
necessary in the interpretation of two identicallv-
punched codes that may be punched from the same
Flexowriter Key, such as 3 and #.

MIE o2
| [=] /,///L;‘
Gl adad)

Iv-3¢

5aper Tape Code
Chann a_Lr;lun' bers
——— o
Memory
Tape Code
Character] Lower Case | UpperCase| 8|7} 6] 5/4]s|3]2]1 (Octal)

0 x [} 00
1 x [01
2 x [} 02
3 x ° ele 03
4 X [') 04
5 x ° [} ° 05
6 x ° @i o 06
K x ojo]eo 07
8 x ° 10
9 x ole [11
A X X ol e ° 21
B X X ol o ® 22
[x x IK] ole 23
D x X o| @ ° 24
E X X Jelele . ole 29
F b3 x el eo| e ole 26
G X X ol e olele 27
H x x ol e) 30
1 x X o/ ojo]e ° 31
J X X [) ¥) 41
K X X ° ° ° 42
L X X ° eole 43
M X X) [} [} 44
N X X [} ° ° 45
Q X X [) ole 46
P X X ° ° o|o]e 47
Q X X ° oo 50
R x X ° . ° 51
S x X ol e . . 62
T X X [ole 63
U x X ol e ° 64

X X ° ° ® 65
w x X ° ele 66
X x b3 ole eo|loje 67
Y X X olole 70
Z X X [} e].) 71
SPACE X X ° . 60
@ x ° 14
* X ° etle 13
S X [) 53
= X [] [] [] 16
. x ° 54
(X ole . 75
) X ° 6
Vi X ol e ® 61
: X e| 0 ° 60
- X ° 40
4 X ° 60
% x ° oo o|e 14
- x ° ole}. ole 60
+ x ole|e 20
: X elele 60
. x X ol e of. ofe 33
’ X . [60
LOWER CASE o|o|o]e) 60
UPPER CASE o|loj|eo]e) 60
CARRIAGE
RETURN X X °

Figure IV-21. Paper Tape Character Set 8 Channel Friden Flexowriter Model SPD

bE-223

IvV-40

CENTRAL PROCESSOR OPERATIONS

GENERAL

Operations that occur within the central processor and
do not involve either direct input-output or controller
selector connectedperipheral devices are classifiedas
central processor operations. These operations are
further divided into five basic categories:

Arithmetic

Data Transfer

Shift

Internal Test-and-Branch
Address Modiiication

(ST NEVLR b

Withiu eaclhi categoury, all insiructivie are discussed
and presented in essentially the same format. Intro-
ducing each instruction, in GAP format, is the mne-
monic operation code, the operand field (if required),
and the address modification code, if the instruction can
be automatically modified, thusly:

ADD Y X

— N
Mnemonic Memory Address
Code Location Modification

The Y symbol is usedto indicate that, for this instruc-
tion, the operand field refers to a memory location; Y
can be a symbolic or actualaddress. For instructions
requiring an operand other than an address, the symbol
K is specifiedin the heading. K has different meanings,
depending upon the instruction, and is explained inthe
description of the individual instructions. TheX sym-
bol indicates that the instruction can be automatically
modified. On the same heading line, the machine

mie =
7/)

language form of the instruction is given inoctal, fol-
lowed by the required execution time of the instruction
(including instruction read-out time):

ADD Y X 0100000 Word Times: 2
ﬁ — . f.— L
Octal Execution
Instruction Time

Following the heading is the Functional Description of

the instruction, which details the effect of executing
the instruction, and one or more examples of instruc-
tion usage. Included in each example are the actual
GAP coding for the instruction and the contents of
the affected registers before and after execution.
Normally, control register contents are not shown;
it can be assumed that, unless otherwise stated, the I
register will contain the instruction being executed and
the P counter has been stepped to the next sequential
address. In other words, only the effect of the instruc-
tion is detailed.

Also, most examples are illustrated using data ex-
pressed in octal and using symbolic locations inorder
to provide familiarity with these forms. Octal is the
form in which most GAP print-opts are made; sym-
bolic locations are more convenient for the program-
mer to use than are the actual numeric locations.

Mo
//

12" 449)

ARITHMETIC INSTRUCTIONS

SUB Y X

0200000 Word Times: 3

ADD Y X 0100000 Word Times: 2

Functional Description: ADD. The contents of memory
location Y (S,1-19) are algebraically added to the con-
tents of the A register (S,1-19). The result is placed
in the A register (S,1-19). Yisunchanged. Overflow,
discussed at the end of this section, is possible.

Example 1: Addapositive number 421899 (0122315g),
located at GAP symbolic location AMT#2, to the posi-
tive number 52630, (0146626g), which has previously
been loaded into the A register.

GAP Coding:
Symbol Opr Operand X
vl 2 s 4 s e|s 9 10tz 13 1af4s 1o 718 1920
ADDIAMT # 2
Register Contents in Octal
A Q
Before execution: [0146626 l [? I

[Lo2m1a3 | []

Example 2: Addanegative number 42189, (3655463g),
located at GAP symbolic location AMT#3+1, to the
positive number 52630, (01466265), which is already
in the A register.

After execution:

GAP Coding:

Operand X

Y2, 83 14 18| te 17 [1s . 1020

'ADDIAMT # 3 + 1

Symbol Opr

Register Contents in Octal
A Q

placed in A (8,1-19).

Functional Dﬂs"ription SUBTRACT. The contentsof
location Y (S, 1-19) are algebraically subtractedfrom

the contents of the A register (S, 1-19). The result is
Y is unchanged. Overflow is

[o146626 [7

Before execution:

possible.
GAP Coding:
Symbol Opr Operand X
V] 215 4 5 s ls e tofizliavalas e 7 s 9]0
. S UB|AMT # 2
Example 1: Subtract the positive number 421891'

(0122315g), located at GAP symbolic location AMT#Z
from the positive number 52630;q (0146626g), whlch
has been previously loaded into the A register.

Register Contents in Octal

A Q
Before execution: 0146626 ?
After execution: 0024311 >

Example 2: Subtract the positive number 65421,
(0177615g), located at GAP symbolic location AMT#3
from the smaller positive number 52630 (0146626),
which has been previously loaded into the A reglster

GAP Coding:
Symbol Opr Operand X
|[;ﬁf4TgLe s s 10 |z{1si'4}‘s}loi|7atsiye 20
. X S UBIAMT # 3

Register Contents in Octal

A Q
§

| 0146626

{ 3747000 || »]

Comments: Note that, when a larger number is sub-
tracted from a smaller number of like sign, the result

is in complement form.

Before execution:

After execution:

DAD Y X 1100000 Word Times: 3

[49924311]{ ?

After execution:

Comments: Note the use of relative addressingin the
operand field of Example 2. AMT#3+1 isone memory
location beyond AMT#3.

AE)42

Functional Description: DOUBLE LENGTH ADD. If the
(modified) address of memory location Y is even, the
contents of Y (S,1-19) and Y+1(1-19) arealgebraically
added to the contents of register A (S,1-19) and
Q (1-19). However, if the (modified) address Y is odd,

(o PN ALY
R s | [R N

the contents of Y (S, 1~19) and Y (1-19) are algebrai-
cally added to the contents of A (S,1-19) and Q (1-19).
The result is placed in A (S, 1-19) and Q (1-19). The
sign of the Q register issettoagree with that of the A
register. Y and Y+1 are unchanged. Overflow is pos-
sible.

Example 1: Add the positive number 821,695,
(0000001 1104677,), located at GAP symbolic locations
AMT#7 and AMT#7+1, to the positive number 52630010
(0000001 0003734g), which has been previously loaded
into the A and Q registers. AMT#7 is an even-num-
bered memory location.

GAP Coding:

GAP Coding:

Symbol Opr Operand X

T T H
1 2 3 4 5 6 8 o [1olt121 13 141 ¥8 | 1eji17]| 18 |19]20
‘ H ‘ ! ! { | J[1 1 L i

D AD/AMT#9

Register Contents in Octal

A L

Before execution: ! 3777776 _I I 3774044 |

I 3777775 I l 3141724 l

After execution:

Example 4: Addthe positive number 155,926,921,82810

Symbol Opr Operand X

N

[2] 3] il 5] NENEL u{la[u]!sllsln‘xalw)

DADAMT# 7

I L A |

Register Contents in Octal

A Q
Before execution: LOOOOOOI l [‘ 0003734]

(1104677 0001144g), located at GAP symbolic loca-
tions AMT#7+1 and AMT#7+2, to the positive number
52630010 (0000001 00037348), which has been pre-
viously loaded into the A andQ registers. If AMT#7+1
is an odd memory location, the contents of AMT#7+1
are added to the contents of both A and Q. and the con-
tents of AMT#7+2 are ignored.

GAP Coding:

After execution: L 00000027 [1110633]

Example 2: Add the positive number 821,695,
(0000001 1104677g), located at GAP symbolic loca-
tions AMT#7 and AMT#7+1, to the negative number
—52630010 (3777716 37740448), which has been pre-
viously loaded into the A andQ registers. AMT#7 is an

Symbol Opr Operand X

¥ 2 5 4, 5: & |8 $ 10 it2; 13, 1435, 1647 ;38 19{z26

i i i I i i I i i bl 1 i 1 .

DADIAMT#7 + 1

i

Register Contents in Octal

even-numbered memory location. A Q
Before execution: | 0000001 | [0003734 |
GAP Coding:
After execution: 1104700 1110633
PROGRAMMER
Symbel oer Operand X DSU Y X 1200000 Word Times: 5

N

o

1] 2] 3] 4] s] e8| [10]12]1s]1a]45]16]17 [1s]1s

D ADIAMT # 7

Register Contents in Octal

A Q
{ 3777116 | [3774044]

[ooooooo | [1100743]

Example 3: Add the negative number -1734288,
(37777176 31456608), located at GAP symbolic loca-
tions AMT#9 and AMT#9+1, to the negative number
-526300, (3777776 3774044g), which has been pre-
viously loaded into the A and Q registers. AMT#9 is
an even-numbered memory location.

Before execution:

After execution:

)
]

TN,
-]
[

Functional Description: DOUBLE LENGTH SUB-
TRACT. If the (modified) address of memory location
Y is even, the contents of Y (S, 1-19) and Y+1 (1-19)
are algebraically subtracted from the contents of reg-
isters A (S, 1-19) and Q (1-19). However, if the
(modified) address Y is odd, the contentsof Y (S, 1-19)
and Y (1-19) are algebraically subtracted from the
contents of A (S, 1-19) and Q (1-19). The result is
placed in A (S,1-19) andQ (1-19). The sign of Q is set

A agveos wurd ol]

to agree with the sign of A. Y and Y+1 are unchanged.
Overflow is possible.

Example 1: Subtract the positive number 526300,
(0000001 0003734g), located in GAP symbolic locations

AMT#6 (even) and AMT#6+1, from the positive number
82169510 (0000001 1104677g) which has been previously
loaded into the A and Q registers.

NS
<

4 C

Ietal
o

NS

VAT

GAP Coding:

Symbol

Operand X

v21 13
i

14‘551‘\“”““

A MT# 6

Register Contents in Octal

A Q
Before execution: [0000001][1104677 l

Atter execution: 0000000 | | 1100743]

¥

“yamrle 20 Add one to the negative number -42189yp
{ which has been previously loaded into the

3555463).
A register.

GAP Coding:
Symbol Opr Operand X
Tlet\41: s étaiu 1‘:193‘1i§'a‘itc;17;193~n 25
A D O l

Register Contents in Qctal

A Q
Example 2: Subtract the positive 155,929,921,8284¢ Before execution: r§655463 J [2]
(1104677 00011448), located in GAP symbolic locations o ‘
AMT#6+1 (0dd) and AMT#6+2, from the positive number After execution: 3655464 ?
155,927,218,624; o (1104677 1104700g), which hasbeen
previously loaded into the A and Q registers.
SBO 2504112 word Times: 3 |
M Functional Description:- SUBTRACT ONE. Plusone is
Symbol Opr Operand X algebraically subtracted{rom the ~ontentsnfthe A reg-
R DN R KR B R R R EER AN AL L ister (bit position 19). If the capacityof the A register
, DSU|lAMT# 6 + 1, is exceeded, overflow occurs.

Register Contents in Octal

Example 1:

Subtract one from the positive number
654214 (017761%g), which has been previously ioaded

A Q into the A register.
GAP Coding:
Before execution: 1104677 1104700 GAZ LOoCng:
Symbol Opr Operand X
After execution: 0000000 0000001 v | 2 [s | ‘1 51 BERERR ”I"i“}“l”f”i“f” 20
- S B O _
Register Contents in Octal
ADO 2504032 Word Times: 3 e EE RIS

Functional Description; ADD ONE. Plusoneis added
algebraically to the contents of the A register (bit
position 19). If the capacity of Ais exceeded, overflow
occurs.

Example 1: Add one to the positive number 5263010
(514662685, which has been previously loaded into the
A register.

A Q
Before execution: r0177615 J ‘ 2 ‘]

[o1mm614 L2 |

Subtract one from the negative numbe

After execution:

Example 2: mb
-65421 (36001€3g), which has beenpreviously inade
into the A register.

S

GAP Coding: GAP Coding:
Symbol Opr Operand X Symbol Opr Operand X
|Izl3‘14\s\e s 9 (10 |2‘}|a‘u]|5115‘n‘1sim 20 ,[233:4'5?‘e s | 9 |10 |2'{13}14||51|6i|7119{l|9 20
A DO .. {S B O

Register Contents in Octal
A

Before execution- ‘ 0146626 “ ? l
[o1aee2n [2 |

After execution:

m

Al

Register Contents in Octal

A
Before execution: r3600163]I— ?

[Seooiez J[> |

After execution:

r>
)
)

GiEs

2

October 1963

MPY Y X 1500000 word Times: 9to23

DVD Y X 1600000 Word Times: 26 to 29

Functional Description: MULTIPLY. The contentsof
memory location Y (S,1-19) are aigebraically multi-
plied by the contents of the Q register (S, 1-19). The
product is placed in registers A (S,1-19)and Q (1-19),
The sign of Q is the same as the sign of A after mul-
tiplication. If the contents of A are not set to zero
before MPY, the contents of A are addedalgebraleally
to the least significanthalf of the product, thus permit-
ting evaluation of expressions of the form AB+C.
Overflow is possible.

Example 1: Multiply the positive number 52630 o
i31466268; in GAP symbolic location AMT#1 by the
positive number 42189, (01223158) in the Q register.
The A register contains zeros.

Functional Description: DIVIDE. The contents of reg-
isters A(S,1-19)andQ (1-19) are algebraically divided
by the contents of location Y (S,1-19). The quotient is
placed in A (S, 1-19); the remainder is placed in
Q (1-19). The sign of the remainder (Q) is the sign of
the quotient (A), For proper division, the absolute
magnitude of the divisor (Y) must be greater than
the magnitude of the contents of A, otherwise over-
flow occurs,

Example 1: Divide the positive number 524220,
(1’.’7767483 in the Q register by the positive number
52630, (0146626g) in GAP symbolic location AMT#1.
The A register contains zeros.

GAP Coding: GAP Coding:
Symbol Opr Operand X Symbol Opr Operand X
t]2] =] a8 600 2] 45 1a]15]16] 17181520 «[2] s a7l s e8] [toftva]1s]1a]is|te[t7] 48 1920
T L IM P Y AMT# 1 DVDAMT#, 1 ,

Register Contents in Octal

A Q
| 0000000 | [0122315 |

Before execution:

e s

After execution: [h&nofglar j [N(_)134436]

Example 2: Multiply the positive number 52630 0
201466268) in GAP symbolic location AMT#1 by t%ne
positive number 418,254, (14607168) in the Q register.

The A register contains the positive number 3795510
(01121038).

GAP Coding:

Symbol Opr Operand X

:z[tsg "i”i”i"l”l"

|[2(:]415[a

e[al\o

MP YAMTG# 1

i L i

Register Contents in Octal

A Q
Before execution: 0112103 1460716
After execution: 0122001 1754367

Register Contents in Octal

H A H Q
| oooo000 || 1777874 |

| ooooo1r | [o14zs66 |

Before execution:

After execution:

Decimal Arithmetic

In business applications, data to be processed is
often recorded externally in the BCD format, To
process such data in a binary computer requires
conversion of data from BCD to binary, computation
in binary mode, and subsequent reconversion to
BCD format for externaluse,

The decimal arithmetic optional feature* provides the
GE-225 with the capability of performing addition and
subtraction of BCD data directly in the decimal mode,
thereby eliminating the need for converting and recon-
verting data.

A GE-225 with the decimal arithmetic feature normally
operates in the binary mode. Operationis shifted to the
decimal mode only by executing a SET DECMODE in-
struction, and can be returned to the binary mode by

executing a SET BINMODE instruction or depressing

* Part of the optional group which includes additional
modification word groups and the three-way compare
instruction.

A~ NN
M OnE
L5 ARl
s L o

October 1963

the Power Onswitchon the control console. The initial
power on sequence automatically sets the GE-225in the
binary mode.

Rather than providing entirely new instructions and
mnemonics, the decimal arithmetic feature modifies
the execution of the following existing binary arithmetic
instructions:

Single Add ADD
Single Subtract SUB
Add One ADO
Subtract One SBO
Double Add DAD
Double Subtract DSU

All other GE-225 instructions are unaffected and con-
tinue to be executed as they are in the normal binary
mode. Indexing is performed in binary regardless of
the mode set.

In decimal mode operations, affected GE-225 words
are considered to consist of three decimal digits as
shown:

S 1 4 7 10 13 16 19

lo]ofo oJoo10foofoo10fooloo1o]

:

Bit positions 4 through 7. 10 through13.and 16 through
19 are used to express decimal digits in standard BCD
format. Decimal quantities greater than 999 are ex-
pressed by using two or more 20-bit words.

The sign of the decimal number is in the S position of
the word containing the most significant decimal digit;
a 0-bit designates a positive decimal number, while a
1-bit indicates a negative quantity.

Zone bits of each BCD character(2and3, 8 and 9, and
14 and 15) contain 0-bits and do not enter into arith-
metic operations.

The decimal word containing the most significant (high-
order) digit must be marked or flagged to define the
end of the decimal field by placing a 1-bit in bit posi-
tion 1.

Thus, the decimal quantity +979989 would appear in
memory as two words of three digits each:

Memory Location Y

S1 4 7 10 13 16 19

lojiJoolioo1foofor11foofi001]

o

9

End of Field
Flag

Memory Location Y+1

lololo ol1 0010 oﬁ 0000 0]1 001]

R

9 8

The programmer should flag each BCD number prior
to arithmetic operations by coding which sets a 1-bit
into bit position 1 of the most significant word of each
quantity. Sample coding to accomplish this is shown
under Program Insertion of End-of-Field Flag.

Besides defining the length of the decimal number, the
end-of-field flag affects the disposition of carries
generated during arithmetic operations. A carry out
of the most significant digit position of a word is re-
membered if the word does not containan end-of-field
flag. The carry is remembered either until the next
decimal instruction is executed or the Clear Alarmis
depressed.

If the end-of-field marker is set(a 1-bitin position 1),
then a carry out of the most significant digit position
causes overflow, which turns onthe overflowindicator
and reverses the sign of the most significant word of
the decimal number.

The end-of-field flagisnot essential for bothquantities
involved in a decimal operation; only the high-order
word of the quantity loaded into the A register must
be so marked. If the field in memory is flagged and
the field in the A register is not, an error condition
occurs. If both fields are flagged, the effect is the
same as if only the A register wereflagged. A flag in
the A register fieldautomatically generatesan end-of-
field flag for the result field.

Negative decimal numbers must be expressed in the
10’s complement form before decimal operations. The
10’s complement is formed automatically by subtract-
ing the decimal number from a decimal zero (delimited

by an end-of-field flag in bit position 1) while in the
decimal mode. Negative results of decimal operations
also appear in the 10’s complement form. Thus, the
decimal number -222222 would be converted to
-777,778 (1,000,000 - 222,222) before being used in
arithmetic operations.

DECIMAL ARITHMETIC INSTRUCTIONS

ADD Y X 0100000 Word Times: 2

Functional Description: DECIMAL ADD. The contents
of Y (3 BCD digits, S, 4-7,10-13,and 16-19) are alge-
braically added to the contents of the A register (bits
S, 4-7, 10-13, and 16-19). The result is placed in the
A register (bits S, 4-7, 10-13, and 16-19).

Example 1: Decimal add the quantity +333 in sym-
bolic location INCR to +444 which has beenpreviously
ioaded iastc the A register, Assume that the central
processor is operating in the decimal mode, by a
prior SET DECMODE instruction,

GAP Coding:
Symbol Opr Operand X

vz o3 4 £ 6 8 P {10 | ¥z Vs RA[¥ N6 17 18 H8 |20

AID,DEI,NC R

i i i

Memory and A Register Contents in BCD

SUB Y X 0200000 Word Times: 3

Functional Description: DECIMAL SUBTRACT. The
contents of Y (bits S, 4-7, 10-13, and16-19) are alge-
braicaily subtracted from the contents of the A reg-
ister (bits S, 4-7, 10-13, and 16-19). The result is
placed in the A register (bits S, 4-7, 10-13, and 16-
19).

Example 1: Decimali subtract the quantity +333in sym-
bolic location DECR from +444 which has been prer
viously loaded into the A register. Assume that the
central processor is operating in the decimal mode.

GAP Coding:

Symbol Opr Operand X
1] 2] a] s sl el [o [ro]se]va]va] s 1e 17 1a] s

S,. U BIDECR . .

~
o

! L N i

- | L i

A INCR
Before execution: +]14|4]4 +(13(3]3
After execution: +si7l7ln +1313]3

Example 2: Decimal add the quantity -333 in symbolic
Tocation NEGN to +444 which has been previously loaded
into the A register. Assume that the central processor
is operating in the decimal mode.

GAP Coding:

Memory and A Register Contents in BCD

A DECR
Refare exerution® !_:! 4 ! 4 ! 4 ! !LJ- ! K] ! 2 !3 -!
After execution: + 111|1|l+|3|3|3l

Example 2: Decimal subtract the quantity -333 in

symbolic location NEGN from +444 whichhasbeenpre-
viously loaded into the A register. Assume that the

central processor is operating in the decimal mode.

Symbol Opr Operand X

BEEREDREDEE 12718 falas 1eT17 [1a 719 [20

ADDNEGN

! i It A

GAP Coding:
~ Symbol Opr Operand X
v 2] s] a] s] e[o jto[vasa]1a[t8[te 17 18] 10|20
e S UBINE G N, Y

Memory and A Register Contents in BCD

A NEGN
Before execution: +14(414 -6 6|7
After execution: +11(111 j 3% €, 7 j

Memory and A Register Contents in BCD

A NEGN
Before execution: +1414)4 -16]|6117
After execution: +i7l7ln -18le |7

e R R VA LN
@JIF s

October 1963

] pap Y X

1100000 Word Times: 3

Functional Description: DOUBLE DECIMAL ADD, If
Y is even, the contents of Y (S, 4-7, 10-13, and 16-19)
and Y+1 (4-7, 10-13, and 16-19) are algebraically
added to the contents of registers A (S, 4-7, 10-13, and
16-19) and Q (4-7, 10-13, and 16-19). If Y is odd, the
contents of Y (S, 4-7, 10-13, and 16-19) and Y (4-7,
10-13, and 16-19) are added to registers A (S, 4-7,
10-13, and 16-19) and Q (4-7, 10-13, and 16-19). The
result is placed in registers A and Q.

Example 1: Double decimal add the quantity +123456 in
symbolic locations POSN and POSN+1 to the quantity
+543210 which has been previously loaded into the A
and Q registers. Assume that POSN isan even mem-
ory address and thatthe central processor isoperating
in the decimal mode.

GAP Coding:
Symbol Opr Operand X
|[zla] A;l s e |8 KD ‘ﬂ‘ﬂ“["’}“i"[”’j" 20
DA DIPOSN,
Memory and A and Q
Register Contents in BCD
Before execution: A Q
+1514]3 Iz 110
POSN POSN+1
+111 213 41518

After execution:

A Q
L+ lelele] [|e[efe]

Memory and A and Q
Register Contents in BCD

Before execution: A Q
+15] 4|3 21110
PREP PREP+1
+111213 415]|6

After execution: A Q
+16(1616 31313
PREP PREP+1
+11] 213 41516

DSU Y X 1200000 Word Times: 5 |

Functional Description: DOUBLE DECIMAL SUB-
TRACT. If Y is even, the contentsof Y (S, 4-7, 10-13,
and 16-19) and Y+1 (4-7, 10-13, and 16-19) are alge-
braically subtracted from the contents of registers A
(S, 4-7, 10-13, and 16-19) and Q (4-17, 10-13, and 16-
19). If Y is odd, the contents of Y (S, 4-7, 10-13, and
16-19) and Y (4-7, 10-13, and 16-19) are subtracted
from the contents of registers A (S, 4-7, 10-13, and
16-19) and Q (4-7, 10-13, and 16-19). The result is
placed in the A and Q registers.

Example 1: Double decimal subtract the quantity
+123456 in symbolic locations DECR and DECR+1 from
the quantity +543210 which has been previously loaded
into the A and Q registers. Assume that DECR is an
even memory address and that the central processor
is operating in the decimal mode.

POSN POSN+1 GAP Coding:
+11]121]3 415]6 Symbol Opr Operand X

Example 2: Double decimal add the quantity +123456 in
symbolic locations PREP and PREP+1 to the quantity
+543210 which has been previously loaded into the A
and Q registers. Assume thatPREP isan odd memory
address and that the central processor is operating
in the decimal mode.

GAP Coding:

o

v 2] 8] 4] 51 o] [® toftz[ts tajefte]rr e 10]z20

. |IDSUIDECR, &6

Symbol Opr Operand X

N
o

v 2] 4| o] |8 8|0 1213 4] 18|16 17 18] 10

D AD/PREFP

L i i i

- . " L i

Memorv and A and Q
Registe; Contents in BCD

A Q
Lesfafs|] J2{2]o]

Before execution:

DECR DECR+1
+11(2]8 |4|5‘6|

October 1963

After execution:

A Q
Lelalalol | Trls]4]

DECR+1
T T
[4]5]6]

DECR
]
12]3

+

Example 2: Double decimal subtract the quantity
+123456 in symbolic locations NEGR and NEGR+1 from
the quantity +543210 which has been previously loaded
into the A and Q registers. Assume that NEGR is an
odd memory address and that the central processor
is operating in the decimal mode.

GAP Coding:
Symbol Opr Operand X
«[2] 2|] 5] ¢ [to]tre]1s]va]rs]te[17][1a]10]z0
; D. S U|INE GR,

Memory and A and Q
Register Contents in BCD

Refore evecution: [Te l4 I3 Pty rc 1
S T S . N N SRt B |
NEGR NEGR+1
il [Te[e)
After execution: A Q
+ 1412 OI 0|87
NEGR NEGR+1
+117248 4586
ADO 2504032 Word Times: 3

Functional Description: ADD ONE DECIMAL. Oneis
algebraically added to the contents of the A register
(4-7, 10-13, and 16-19). If the capacity of A is ex-
ceeded, the overflow indicator is turned on. This
instruction operates properly only on decimal words
of three digits or less.

Example: Add a decimal one to the quantity +832 in
the A register.

GAP Coding:
Symbol Opr Operand X
T o1 4] ST o1z e lseleaTvalaalemlvaivzitetiselon
A S B N B | | i ! 1 L | Il :
I 4 ADO ., .,
‘ |
Register Contents in BCD
A
Before execution: + 18|32
After execution: + 18|88
SBO 2504112 Wword Times: 3

Functional Description: SUBTRACT ONE DECIMAL.
One is subtractedalgebraically from the contents of the
A register (4-7, 10-13, and 16-19). If the capacity of
the A register is exceeded, the overflow indicator is
turned cn. Thie instructicn operates properly onlyon

decimal words of three digits or less.

Example: Subtract a decimal one from the quantity
-763 in the A register. Assume thatthe 10’s comple-
ment of -763 has already been formed.

GAP Coding:
Symbol Opr Operand X
112|3]415|r5 s [o 10 12] 13 14]45] 16 17 1619 20
.. . {SsBO} ., . .

Register Contents in BCD,

Before execution: -

After execution:

MODE CONTROL INSTRUCTIONS

SET DECMODE 2506011 Word Times: 2

Functional Description: SET DECIMAL MODE causes
the arithmetic commands ADD, DAD, SUB, DSU, ADO,

V-9

and SBO to be executed inthe decimal mode. No other
commands are affected.

SET BINMODE 2506012 Word Times: 2

Functional Description: SET BINARY MODE causes
the arithmetic commands ADD, DAD, SUB, DSU, ADO,
and SBO to be executed in the binary mode. No other
commands are affected.

RELATED CONSOLE CONTROLS

1. Power On Switch. Depressionof this switch at any
time sets the central processor into the binary mode
of operation.

2. _Clear Alarm Switch. Depression of this switch
removes any carry resulting from uncompleted deci-
mal operations and prepares the decimal controls for
a new sequence.

PROGRAM INSERTION OF END-OF-FIELD FLAGS

To designate the beginning of a decimal field, a 1-bit
is inserted into bit position 1 of the high-order word of
the field. A typical method of accomplishing the bit
insertion is:

Comments: The OCT 1000000 places the flag constant

in storage; LDA MILL and ORY DECW insert a 1-bit
into bit position 1 of DECW (the high-order word).

TEN’S COMPLEMENT FORMATION

Preparatory to decimal arithmetic operations, nega-
tive decimal quantities must be convertedto 10’s com-
plement form. One method for so doing is:

GAP Coding:
Symbol Opr Operand X
:[2 | 3{ 4T 5i N EREREE 12T|3J14]|5116117|ls119 20
MI L L O.C.Ti{1 00000 O
LDAMI L L ‘
ORYDETCW
DECW Contents
in Binary
Before
execution: lOIOIOOOIOIO‘OOOlOIOIOOOTOI(ﬂ
4 — [e
+ 2 2 2
After
execution: |0[1]{000lo10Jooofo10[o00]o10]
—— ~— ~——
+ 2 2 2

End-of-Field Flag

GAP Coding:

Symbol Opr Operand X
'{21314L5J° NEREE 121|3i|4llslloinluln 20
MI L. L. O C T|1 0.0 0.0 0,0,

, o.c T{0 OO0 0 000
DLDMI L L R
L DS UIN.EG.D . .
DST|ICOMP
Memory Contents
in BCD
NEGD and NEGD+1: +]3]2]5 41116
COMP and COMP+1:
(after execution) - 1874 5/8 /4

PROGRAMMING DECIMAL OPERATIONS

The GAP listing below illustrates the fundamentals of
performing arithmetic operations in the decimal mode.
Address location 01750 contains the end of field marker
to be inserted in the two BCD numbers before addi-
tion. In theory, both numbers need not contain a flag;
only the number in the A register must have the
marker. However, it is a good practice to flag all

numbers to be used in decimal arithmetic operations.
Memory locations 01756, 01757 and 01760 contain the

commands for flagging the BCD numbers.

Command 01761 converts the internal operation of
the computer to BCD prior to the addition and com-
mand 1765 restores the computer to the binary mode.

> 203

V-10 October 1963

GAP Listing

01750 ORG 1000
0i750 1000000 MILL OCT 1000000
01751 0000000 OCT 0000000
01752 0020202 Al ALF 222
01753 0020202 A2 ALF 222
01754 0040404 B1 ALF Lii
01755 00LCoLOL B2 ALF Lbb
01756 0001750 START LDA MILL
01757 2301752 ORY Al
01760 2301754 ORY BI
01761 2506011 SET DECMODE
01762 1001752 DLD A1
01763 1101754 DAD B1
01764 1301604 DST 0900
01765 2506012 SET BINMODE

The printout of the memory addresses used in the
program shows that locations 01752 and 01754 con-
tain flags i L o0ds iontax ning the most significant
digits . ¢ eontains the sum which also

S
is autonmaricals

2600007

4
DANOGAC ONRNKNE | DDANNNN ArANSTT 9Ky Aoﬂﬂ
S O I CTR o

00230 OUbULL: W :
00260 000CO0G - i 00007 2000000
00250 ©0000OCT 7 L4G 27000k 37O ¢ 73 076I0L0
00260 0700040 G700040 40 | 0700040 0700040 0700 £700040
01600 0700040 0700040 0700CLA omoouo 1060605 3080609 07C0NLE 079000
01610 0700040 0700040 0J0QOL 00040 0700040 0700040 0700040 0700040
01750 1000000 ©000000) (muogoE OOLOLORHy 0001750 2301752
01760 2301754 2506011 1001752 1101754 1301804 2508012

01752 1756

2 1

01753 01755
Overflow

During arithmetic operations, the result of the cal-
culation can exceed the capacity of the 20-bit A
register. When this happens, the register overflows
(loses a bit from the high-order position). This is
known as an overflow condition.

The A register can also overflow asa result of double
length word calculations. For a divide instruction,
register overflow can occur when the magnitude of the
divisor is not greater than that portion of the dividend
in the A register. An overflow condition also is pos-
sible when an attempt is made to negate (execute a
NEG instruction) the largest possible negative number.

When anoverflow condition arises, three things happen:

1. The sign of the result is reversed.

2. The most significant bit of the result (in bit

position 1) is lost, and

|

The overflow indicator on the control con-

sole is turned ON.

3.

The reversal of the sign bit in the A register causes
the overflow indicator to turn ON, regardless of the
type of 1nstruction causing overflow.

Register Capacity. The A register can holdany num-
ber consisting of 19 numerical bits (haf: 1 through 19)

plus the sign bit (bit 0). Thus. it is possible to rep-
resent a maximum positive number of 524.287,, and
a maximum negative number of -524.288) {)efore
overflow could occur. These two numbers. Wwith their
binary equivalents are shown below:

S

012345678910111213141516171819

0111111111 11 11111111

Maximum Positive Number = +524.28710

S

-
0123456789101112i2141516171819'

Maximum Negative Number = —544.2881

0

The addition of any number. except 0. to the largest
positive number causes an overflow of a 1-bitinto the
sign bit position, thereby reversing the sign.

As shown, the maximum negative number consists of
a 1 bit in the signbitposition followed by all zeros. It
is incorrect to consider this configuration asa ‘minus
zero;' it is —524,28810 An attempt to negate the
largest negative number (with the NEG instruction)
results in overflow: allthebitpositionsare reversed,
giving the I's complement, and when one is added to
form the 2’s complement, aone is carriedinto the sign
bit position. It can be seen that, although bit 0 indi-
cates the sign of the number (0 = plus: 1 = minus), all
twenty bits are involved in arithmetic operations.

The specific conditions for overflow are summedup in
the following paragraphs. Overflow for each kind of
arithmetic operation is illustrated by examples.

Addition Overflow. The overflow indication occurs
during the addition of two positive numbers when there
is a carry from the most significant bit position (bit
position 1) to the sign bit position. No overflow indi-
cation is possible during the addition of numbers with
unlike signs. The overflow indication occurs during
the addition of two negative numbers when there is a
reversal of the sign bit position.

BE-298
[e Y s EA

v-11

Example 1: Add the contents of symbolic location
AMT#1 (0146626g) to 1777674g, which has previously
been loaded into the A register.

Example: Subtract the negative number in symbolic
location AMT#3 (-65421,4 or 36001634} from the posi-
tive number 52422013, which has previously been
loaded into the A register.

GAP Coding: .
GAP Coding:
Symbol Opr Operand X
t] 2 2 4. s e]8s % 'yo|1z 13 ta Aste 1716 18|20 Symbo! Opr Operand X

_ |ADDIAMT # 1.

Register Contents in Octal

A Q
Before execution: 1777674 ?
After execution: 2146522 ?

Examplq 2: Add the contents of symbolic location
AMT#2 (-524288(or 2000000g) to -1, which haspre-
viously been loaded into the A register.

GAP Coding;
Symbol Opr Operand X
|[z[a]4Ts]e s [o [tofva[1a]1a]¥s 16717 18 19]20

A DD/AMT# 2

i ; .

Pegister Contents in Octal

A Q
Before execution: l 377NN I [?]
After execution: 1777777 I o]
H

Comments: Note that, in both examples, the sign bit
of the A register is reversed. In example 1, initially
the sign bit position and bitposition 1 contain 01; after
addition, these positions contain 10. In example 2,
initially the sign bit and bitposition 1 contain 11; after
addition, these positions contain 01.

Subtraction Overflow. In subtraction, the 2’s comple-
ment of the subtrahend is added to the contents of the
A register. The rules for overflow which apply to
addition also apply to subtraction.

T Ty T e T s e e i s [1ofs2l 13 tajrs e 17| 18 |10]20
|

) SUBIAMT# 3

Register Contents in Octal

A Q
Before execution: 1777674 ?
After execution: 2177511 ?

Comments: Note that this subtraction is performed
by adding the 2’s complement of 3600163g (0177615g)

to 1777674g. Overflowoccurs when the sign bit changes
from 0 to 1.

Multiplication Overflow. The overflow indication oc-

curs in multiplication only when there isanattempt to
multiply the maximum negative number by the maxi-
mum negative number (-219 x -219). The overflow
indicator on the control console is automatically turned
off prior to execution of a multiply instruction.

Example: Multiply -524,288;p in symbolic location
AMT#7 by -524,2881p, which has previously been
loaded into the Q register.

GAP Coding:

Symbeol Opr Operand X

.[2 | 3| 4| 5i B ENEREL l2[13l'4]|5l|61!7l|81!9 20

., MPYAMT## 1)

— " L

Register Contenis in Octal

A Q
Before execution: 0000000 2000000
After execution: 2000000 2000000

V-12

Division Qverflow. Forproperdivision, the magnitude
of the divisor must be greater than the magnitude of
that portion of the dividend in register A. If not, the
overfiow indication is turned on and controi is trans-
ferred to the next instruction in sequence. The over-
flow indicator on the control console is automatically
turned off prior tothe executionof a divide instruction.
Also, overflow will occur if division results in a
quotient that exceeds the capacity of the A register.

Example: Divide the positive number 17,338,832,32910
(0100457 03127118), which has been previously double

loaded into the A and Q registers, by 20,0004
(0047040g) in symbolic location WRDS.

GAP Coding:
Symbol Opr Operand X
1 2j’i.‘i’i' NEERED nfujuTu]u‘nlujn 20
] _|IDVD|WRDS
Register Contents in Octal
A G
Beforc cxecution. | 0100457 0312711 |

After execution:

1T
I
| 0201136 | | oease2z |

Scaling

The movement of the decimal point to the right or left
to properly align numbers is called ‘scaling’ or ‘deci-
mal positioning.” Before decimal numbers can be
correctly added or subtracted in the central processor,
the number of places to the right of the decimal point of
both numbers must be the same. Forexample, to add
3.0 to 4.16, 3.0 is arranged to correspond to 3.00 and
then added to 4.16. If the decimal point is moved to the
right in preparation for calculations, the number is
‘scaled to the right;’ if the decimal point is moved to
the left, the number is ‘scaled to the left.’

When two numbers are multiplied, the number of places
to the right of the decimal point in the product is the
sum of the places to the right of the decimal point in
both the multiplier and the multiplicand. If it is de-
sired to scale the product (which is expressed as a
binary number) for subsequent calculations, the pro-
duct must be divided by a constant that is the binary
equivalent of an appropriate power of 10.

To further illustrate the concept of scaling, consider
the example of adding the following two decimal num-
bers:

24.4
+ 13.25
37.65 Desired sum

Because the central processor does not recognize
decimal points in arithmetic operations, the binary
equivalent of 244;and 1325, would appear in memory
as shown in Figure 5-1.

012345678910111213141516171819

0000000000 O[O0 1 1|1 1 Of1 O O

0000000001 Of{1 0 0|12 0 1|1 0 1

= 24410 and 132510

Figure 5-1. Two Numbers in Memory before Scaling

When thesc two numbers are added, the result would
appear in the A registeras 15694 (Figure 5-2). This,
of course. is incorrect, for the desired sum is 37.6510,

012345678910111213141516171819

0000000001 1 000 1000O0O0T1

= 156910

Figure 5-2. Incorrect Sum after Addition without
Scaling

To obtain the correct sum of 37.6510, it is necessary
to scale the augend 244, to the leftone decimal posi-
tion by multiplying 244,4 by 1044- Through multipli-
cation, 2441 becomes 2440 and thusis scaledto the
left so that the decimal points in the two numbers are
properly aligned. After scaling, the two numbers are
aligned as shown in Figure 5-3.

012345678910111213141516171819

00/0o00jOOO[10 O/]2 1 0J]O O 1|0 0 O

00/000j000J01 01 0 Of1 O 1|1 0 1

= 2440, and 132510

Figure 5-3. Numbers in Memory after Scaiiiyg

Because the two numbers are now properly aligned, the
correct sum of 37.65)¢ is achieved when the numbers
are added.

Note that scaling operations can be accomplished in
one of two ways: (1) by multiplying or dividing by the
binary equivalent of the appropriate power of 10, or
(2) by using GE-225 scaling routines available to the
programmer.

Rounding

After a calculation has been completed, itis sometimes
necessary to round the result to the next highest in-
tcger. ‘Rounding’ is accomplished by adding a <5’
into the decimal position to the right of the position
to receive any carry. Since all calculations, within
the GE-225 are performed primarily withbinary num-
bers, the proper rounding factor of ‘5’ is expressed
in binary and is carried as an appropriate constant
within memory. For example, this constant might be
programmed by using the pseudo-instruction DEC to
obtain the binary equivalent of 5. The instruction
would be DEC 5. SeeSectionIV for detailed discussion
oi pseudo-instructions. After the rounding factor is
added, the positions to the right of the digit which
receives any carry can be deleted through scaling.

To illustrate further, assume that the decimal 10.75
is to be rounded to the nearest tenth. By using a
rounding factor of .05 stored asa constantin memory,
the desired result, 10.80, is achieved by adding the
rounding factor as shown in Figure 5-4.

012345678910111213141516171819

1
1,00{6300[000[01 0{0 0 G, 1 ¢ !u 1ot

2./00/000/000C|20 0jC ¢©

[
¢
ber
[«
s

3.|00/000/00001 00 O O)1 1 1}J0 O O

where 1 = 10. 7510

2= 05
3 - 10.8070

Figure 5-4. Using a Rounding Factor of .05

BE-997

DATA TRANSFER INSTRUCTIONS

Data transfer instructions are grouped into two major
categories: memory transfers and register transfers.
Although not involving a true transfer of data, register
modification instructions are alsoincludedin this sec-
tion.

core m 3 :or registers. In
general, the previous con‘rel ts of the ‘receiving’ unit
(memory location or register) are replaced by the
transferred word, whlle the transferredword remains
unchanmed in the orizinal memory iccationor register.

Arithmetic register transfers involve the transfer of
information between registers; the condition of the
register initially holding the informationisunchanged,
after execution, except as noted in the discussion of
each instruction.

Register modification instructions change the contents
of the specified register in a predetermined manner,
such as complementing, sign changing, and negating.

T d s 4

ala IUELEiCr nalluions oive either or both the
A and Q registers. In general transfer instructions
cause parallel transfers (all bits simultaneously),

rather than serial transfers (a bit at a time).

Data Transfers-Memory

LDA Y X 000000C Word Times: 2

Functional Description: LOAD A REGISTER. The con-
tents of memory locations Y (S, 1-19) replace the con-
tents of the A register (S, 1-19). Y is unchanged.

Example 1: Load the A register with the contents of
GAP symbolic location AMT#1, which contains the
positive number 526301¢ (01466264). The A register
initiallv contains zeros.

GAY Uiz
Symbol Opr Operand X
1] 2] 2] 4] s]s|sie]s0 1213 14] 15 te[17 181020
, _ [LDAIAMT# 1
Register Contents in Octal
A Q
Belore sxecution. { 0000000 ?
After execution: 0146626 °

v-14

Example 2: Load the A register with the contents of
GAP symbolic location AMT#5, which contains the
negative number -42189,, (3655463g). The A register
initially contains 42189;¢ (0122315g).

GAP Coding:

Symbol Opr Operand X
L[zlg]g}s(g [NERED ”I'a}"T”l“i”I”J” 20
L N LD AAMT#5 L

Register Contents in Octal
A Q
Before execution: 0122315 ?
After execution: 3655463 ?
DLD Y X 1000000 word Times: 3

Functional Description: DOUBLE LENGTH LOAD. If
the (modified) address of location Y is even, the con-
tents of Y (S, 1-19) and Y+1 (S, 1-19) replace the con-
tents of the A (S, 1-19) and Q (S, 1-19) registers. If
the (modified) address of Y is odd, the contents of Y
(S, 1-19) replace the contents of the A (S, 1-19) and Q
(S, 1-19) registers. Y and Y+1 are unchanged.

Example 1: Double length load the A and Q registers

Example 2: Double length load the A and Q registers
with fEe positive number 52630010 (0000001 00037348)

in GAP symbolic locations AMT#6 (odd) and AMT#6+1.

GAP Coding:
Symbol Opr Operand X
|iz|3ja[uiu °1°|’° |2‘|a‘|4]|5“”|7jla]n 20
. |ID L DIAMT # 6

Register Contents in Octal

A Q
Before execution: ? ?
After execution: 0000001 0000001

Comments: Note that, if the specified operandaddress
is odd, the contentsof thataddressareloaded into both
the A and Q registers and the second address is
ignored.

STA X 0300000 Word Times: 2

Functional Description: STORE A. The contents of the
A register (S, 1-19) replace the contents of memory
location Y (S, 1-19). Thecontentsof A are unchanged.

Example 1: Store the A register contents 4218919
(0122315g) in GAP symbolic location RESULT.

with the positive number 821695, (0000001 1104677g) GAP Coding:
in GAP symbolic locations AMT#7 (even) and AMT#7+1. Symbol Opr Operand X
|[z|s‘\4(u[e ENED 12113 vers e[0T 1e Tae 0
: . STAIRESUTL T,
GAP Coding:
Symbol Opr Operand X Register Contents in Octal
1[2}3%1?5}‘0 s 9 10 |zI|3‘\u!u]|e§r7!|a‘in 20
oL oplamTsn A Q
Before execution: r 0122315 l [? |

Register Contents in Octal

Q
Before execution: ? ‘! ?
After execution: 0000001 I 1104677

]

After execution:

[o122315j L ? j

GAP Symbolic Location, RESULT

A
Before execution:
After execution: 0122315

M[E _6)5)[2
iimHD////kQT
\Yilhs (9w

Example 2: Store the A register contents -65421%0
(3600163g) in GAP symbolic location OUTPUT. ouT-
PUT initially contains -421891¢ (3655463g).

GAP Coding:

Symbol Opr Operand X

|Tzi3‘\4|51e NENEE ‘z{ul“l”l”l”l”]"' 20

. S. T A|O.U.T.P.UT,.

n

Register Contents in Octal

Q

[360:163 17 -]
[seooes | [2 |

GAP Symbolic Location, OUTPUT

Before execution:

After execution:

A
Before execution: . 3655463
After execution: 3600163
DST Y X 1300000 Word Times: 3

Functional Description: DOUBLE LENGTHSTORE. If
the (modified) address of memory location Y is even,
the contents of the A (S, 1-19)andQ (S. 1-19) registers
replace the contents of Y (S, 1-19) and Y+1 (S, 1-19).
If the (modified) address of Y is odd, the contents of
Q (S, 1-19) replace the contents of Y (S, 1-19). The
contents of A and Q are unchanged.

Example 1: Double length store AandQ register con-
tents 821695, (0000001 1104677g) in GAP symbolic
locations AMT#8 (even) and AMT#8+1.

GAP Symbolic Locations

AMT#8 AMT#8+1
Before execution: ? 1 ! ? j
f 3 .
After execution: 0000001 1104677

Example 2: Double length store A andQ register con-
tents 526300, (0000001 0003734g) in GAP symbolic
locations AMT#7 (odd) and AMT#7+1.

Register Conren.s in Octal

A Q
Before execution: 0000001 J Q003734
after execution: 0000001 l 0003734

GAP Symbolic Locations

AMT#7 AMT#7+1
Before execution: ? } ?
After execution: 0003754 ?
STO Y X 2700000 Word Times: 3

Functional Description: STORE OPERAND ADDRESS.
The contents of the A register (7-19) replace the con-
tents of memory location Y (7-19). A (S, 1-19) and Y
(S, 1-6; are unchanged.

Example: Store the operand address that is in the A
register, 6553510 (177778), in GAP symbolic location
TAX#1, which initially contains 00016675, an LDA
instruction.

GAP Coding: GAP Coding:
Symbol Opr Operand X Symbol Opr Operand X

'Izls 4 5, 6|8 9 10 (lezi

"“51“1"[""" 20
)| i i

DS TIAMT # 8

T T T
|J‘2,31¢{510 s | 9 ;10 ‘21’31“i|5l‘°“7|'5J” 20

STOITAXG#1

Register Contents in Octal

A Q
[ooo0001 | [1104677 |

Before execution:

After execution: I 0000001][1104677]

]
|

)

Register Contents in Octal

A Q
Before execution: r 0017777 J r ?]
After execution: l 0017777 l [2 }

i
(29

—

;
S0 S
C° 4L

o
\

V-16

1 I T |

GAP Symboilic Location, TAX#1

Before execution: 0001667 _]
After execution: 0017777
ORY Y X 2300000 Word Times: 3

Functional Description: OR AINTOY. Corresponding
bit positions of memory location Y (S, 1-19) are set
with 1-bits for every bit position of the A register

Operand X

i a4l s e |8 ® 10 Jve: io Ve 43,3837 [15 | iv a0

ORYPRI!I CE

Memory and A
Register Contents (BCD)

(S, 1-19) containing a 1-bit. The contents of the A A Reg PRICE .
register and other bitpositions of Y remainunchanged. Before execution: $1 0|0 0| 5|6 |
o
Example 1: OR Ainto Y withthe A register containing .
1641374g and Y is GAP symbolic location $OUT, con- After execution: $100 $1 51686
taining 00137118.
GAP Coding:
Symbol Opr Operand X
1] 2] 3 a5 6|8 9 .10 |2T|3"l}'5}1!}l7|lai|g P
ORY|$SOU T
EXT Y X 2000000 Word Times: 3

Memory and A Register before Execution (binarv):

$OUT

e N

~

oojooojoo1i01 11 1 10 0 1]0 01

012345678910 111213 141516 171819

01f110f100(00 110 1 1)1 1 11 0 O

J

A Reg

Memory and A Register after Execution (binary):

souT

ﬁ)l’lthOllOl 1] 1110 1]

012345678910 111213 141516 171819

L .) T
[o1j110f100l00 1]¢ 1 1{1 11

11 0 of
A
S
A Reg
Exc mple 2: Placea dellarsign ($), »reviously loaded

into the A register, beifore the 2—dfgit BCD quantity
56 in GAP symbolic location PRICE.

Functional Description;: EXTRACT. Foreachl-bitin
Y (S, 1-19) a 0-bit is placed in the corresponding bit
position of the A register (S, 1-19). If bit positions in
Y contain O-bits, the corresponding bitpositions in the
A register are unchanged. Y is not affected.

Example 1: Extract 1-bits from the A register con-
tents 2465317g according to the pattern 1234753 con-
tained in GAP symbolic location MOD.

Symbol Opr Operand X
T

|[z;3 4, e el8 o . 10 tzl|aj‘u1|s||o||1“eln 20

EXTMOD

Memory and A Register before Execution (binary):

MOD

~

| T T |
jo1/o1o0j011(10 01 1 1)1 0 10 1 1

012345678910 111213 141516 171819
|10i100|110|10 1{0 1 1]0 01_\1 1 1J
J

N

~

A Reg

Memory and A Register after Execution (binary):

MOD

r

[9 1)0 1 olo 1 1|1 0 0] 11 1| 101 |o 14;]

012345678910 111213 141516 171819

10/100{100/00 1{0 0 0|0 O Oll 0 Ol
. /
TN
A Reg

Example 2: Delete the dollar sign ($) from the BCD
word $89 in the A register preparatory to storing the
word into memory. Assume GAP symbolic location

Memory and A Register before Execution (BCD):

STRIP eentains the BCD word $00.

GAP Coding:
Symbol Opr Operand X
v 2]] 4] 8] s[s][0 1z 15 1418 1617381920
L EX T{STRIP,
Memory and A
Register Contents (BCD)
A Reg STRIP
Before execution: L$ | 8 I 9J L$l 0 \ 0 J
After execution: ol 8 lg] $| 0 | 0 |
* MOV Y 2400000 Word Times: 4+ 2N

Functional Description: MOVE, A block of infor-
mation starting at Y is moved to another area of
memory, The A register must contain the starting
address of the area to which the data is to be moved,
and the Q register must contain the 2’s complement
of the number of words to be moved, The contents
of the P counter are stored automatically in index
word 00 (bits 5 through 19), The time required to
execute this command is 4 plus 2N word times,
where N is the number of words to be moved, After
execution, the A register is set to 0’s and the Q
register contains the 2’'s complement of the number
of words moved, This instructi~- ~annot be auto-
matically modified,

* This instruction is an optional feature.

Example: Move a block of 10 words initially stored in
an area starting at symbolic location START to the
memory area starting at symbolic location TOTALS.
Assume that GAP has assigned the symbolic location
START to actual address 017710 and TOTALS to actuai
address 12001p- Assume that the number of words to
be moved has previously been loaded into the Q reg-
ister in 2's complement form.

Memory ana Register Contents in Octal:

Before execution:

Memor Registers
Octal
Address Contents A
0261 0123456 0002260 |= 120010
0262 0246531
0263 1234567
0264 0765432
0265 0135764 Q
0266 2345670 3777766 |= -1010
0267 1001234
0270 0132456
0271 2147765
0272 L77T17717
v
2260 ?
2261 ?
2262 ?
2263 ?
2264 ?
2265 ?
2266 ?
2267 ?
2270 ?
2271 ?

V-18

October 1963

Memory and Register Contents in Octal: Example: LoadA from Q,or replace the existing con-
tents of A 1234567g with the contents of @ 365432ig. I

After execution:

GAP Coding:
AT A~ ey Dasiatara
AV C iU A Z J.bcaxc\.c; =
Symbol Opr Operand X
Octal tlalel sl el el Tan w2l ve] valvm [tat7 e selas
Address Contents A L . |L. A Q L o
0261 0123456 0000000 -
0262 0246531 Register Contents in Octal
0263 1234567 A Q
Before execution: 1234567 3654321
0264 0765432
After execution:
: 3
0265 0135764 Q 654321 3654321
0266 2345670 ‘ 3777768 Comments: No operand address is required. Auto-
0267 1001234 matic modification will change the instruction.
0270 0132456
LQA 2504004 Word Times: 3
0271 2147765
0979 177777 Functional Description: LOAD Q FROM A. The con-
——g—— tents of the A register (S, i-19) replace the contents
° of the Q register (S, 1-19). A is unchanged.
2260 0123456 Example: Load Q from A, or replace the existing con-
tents of Q 2465317g with the contents of A 1117776g.
2261 0246531
GAP Coding:
2262 1234567 —
Symbol Opr Operand X
2263 0765432 :[213141515 aio\w 'Z‘HI“L”L'””I”I'Q 20
L A
2264 0135764 — 9,
2265 2345670 Register Contents in Octal
2266 1001234 A Q
2267 0132456 Before execution: | 1117776 | | 2465317 |
2970 2147765 After execution: 11177767 1117776 |
2271 1777777 Comments: No operand address is required. Auto-

matic modification will change the instruction.

Data Transfers-Arithretic

MAQ 2504006 Word Times: 3
LAQ 2504001 Word Times: 3

Functional Description: MOVE A TO Q. The contents
Functional Description: LOAD A FROM Q. The con- of the A register (S, 1-19) replace the contents of the Q
tents of the Q register (S, 1-19) replace the contents register (S, 1-19). Zeros replace the contents of A
of the A register (S, 1-19). Q is unchanged. (s, 1-19).
m ~
RE.DPR
GlE=225

V-19 October 1963

Example: Move A to Q, or replace the existing con-
tents of the Q register 37777778 with the contents of the
A register 1333444g and zero the A register.

GAP Coding:

Symbol Opr Operand X
o] 2| s | 4| B ENEREE 12] 13 valis] e 17 16 1920

M A Q

i

5 . n . n . n

Register Contents in Octal

A Q
Before execution: 1333444 37717
After execution: 0000000 1333444

Comments: No operand address is required. Auto-
matic modification will change the instruction.

XAQ 2504005 Word Times: 3

Functional Description: EXCHANGE A AND Q. The
contents of registers A (S, 1-19) and Q (S, 1-19) are
interchanged.

Example: Exchange A and Q, or interchange the con-
tents of A 1234567g and Q 1777777g.

GAP Coding:

Symbol Opr Operand X
1] 2] 2] «] s] 6|8 o [10[1z]1a]1e]95]ts[17] 18 10]20
XAQ

Register Contenis in Octal

A Q
Before execution: 1254567 1777777
After execution: 1Ty 1234567

Comments: No operand address isneeded. Automatic
modification will change the instruction.

* LAC 2504202 Word Times: 3

Functional Description: LOAD A REGISTER FROMC
REGISTER. The contents of the A register (1-19) are
replaced by the contents of the C register (real time
clock). The sign of the A registeris set to zero. The
contents of the C register are unchanged.

Example: Load A register from C register. Assume
that the C register contains the binary equivalent of
1 hour (52,140, sixths of a second).

Symbol Opr Operand X
|12\3]4’| 5[@ °|°l'° |z]1alu]lsj\si|7lle||g 20
L. AC
Register Contfents in Octa
A C
Before execution: ? 0052140
After execution:® 0052140 0052 140

* LCA 2504210 Word Times: 3

Functional Description: LOAD C REGISTER FROM A
REGISTER. The contents of the C register are re-
placed by the contents of the A register (1-19) The
sign of the A register cuntents is ignored. The con-
tents of A are unchanged.

Example: Load C register from A register. Assume
that the A register contains the binary equivalent of 12
hours (259,20010 sixths of a second).

GAP Coding;

Symbol Opr Operand X
1] 2] 3] 4] s] s [e] [10 lz[laj|allslle||7!leln

L CA

»~
o

! " I

* Thisinstructionis partof the real time clock optional
feature.

V-20 October 1963

A C
Before execution I 0772200 JI l ? J
After cxecut
After cxecution r 0772200 | [0772200 I

mment The C register o
counter thaL is incremented by one every sixth uf a
second. When the binary count reaches the equivalent
of 24 hours (518,400 sixths of a second), it automati-
cally resets to zero and starts counting again.

The C register contents are not directly accessible
for processing or console display. However, the LAC
instruction, by transferring those contents to the A
register, makes the C register available to the stored
program or to the console operator.

A conversion subroutine is required for program
translation of the C register contents from binary nota-
tion to hours, minutes, seconds, and sixths/seconds,
and for print-out of elapsed or actualtime through the
control console typewriter.

1 below to

A air O I3 W 1o
illustrate how conversion could be done. In actual
practice. a more sophisticated approach invoivine X
registers and controlled looping would be more ef-
ficient.

—;I.r» gtrai n»hrhnn sub

Example: Convert the C register contents 12057018
to decimal hours, minutes, seconds, and sixth-seconds.
Assume symbolic locations CON1 through CON3 con-
tain conversion constants as follows:

C Q
1205701 ?
Registers Affected by Each Instruction
GAP Registers
Coding A Q
LAC 1205701 ?
MAQ 0000000 || 1205701
DVD CON 1 0000017 || 0015041
STA HOURS 0000017 || 0015041
LDZ 0000006 0015041
DVD CON 2 0000022 || 0000321
STA MINS 0000022 || 0000321
LDZ 0000000 CC’JCCZI
DVD CON 3 0000042 |1 0000005
STA SECS 3000042 0000005
XAQ 0000005{]| 0000042
E—
STA SXTHS 0000005 0000042

Memory Contents after Conversion:

Symbolic

Location Contents Remarks
CON 1 52,1408 Hours Factor
CON 2 550 g Minutes Factor
CON 3 6 Seconds Factor
Ope Operand x REMARKS

DR MDD PR LE)

LAC TRANSFER TIME TO A REG B

M A Q TRANSFER TIME TO Q REG FOR DVD

DVDCON. COMPUTE HOURS . i

ST A{HOUR S

L DZ CLEAR A REG

DV DICON?2 COMPUTE MINUTES _ e

ST AIMI NS

L D Z e o

DV DICON3 COMPUTE SECONDS

S TA|SEC 8

XAQ . _ TRANSFER SIXTH-SECONDS TO A REG

S T AISX TH § I

I

Symbolic

Location Contents
HOURS 0000017
MINS 0000022
SECS 0000042
SXTHS 0000005¥“—

The time represented by the C register contents can
also be converted manually to a chronological scale
by dividing those contents by appropriate conversion
factors. Perhaps the simplest method wouldbe to con-
vert the binary contents of the C register to octal, then
decimal, and divide by decimal conversion factors. The

V-21

conversion chart in Figure 2-4 makes the octal-to-
decimnal conversion easy. Decimal conversionfactors
usged for division could be:

Hours = 21,600
Minutes = 360
Seconds = 6

(Any remainder would be in sixth-seconds.)

For example, assume that the contents of the C register
are 1205701g. By keying in an LAC instruction at the
control console, 1205701g is displayed in the A register
indicators. The octal-fo-decimal conversion chart in

Figure 2-4 provides the decimal equivalent 330,689
(in sixth-seconds).

Dividing by the hours conversion factor:

15 hours

21600 1330689
21600
114689

108000
6689 sixth-seconds remainder

Dividing the remainder by the minutes conversion
factor:

18 minutes
360! 6689
360
3089
2880
209 sixth-seconds remainder

Dividing this remainder by the seconds conversion
factor:

34 seconds
61209
18_
29
_24
5 sixth-seconds remainder

Thus, the C register contents 1205701g represent 15

hours, 18 minutes, 34 seconds, and 5 sixth-seconds, or
15:18:34:05.

Register Modifications

LDZ 2504002 Word Times: 3

Functional Description: LOAD ZERO INTO A REG-
ISTER. The contents of the A register (S, 1-19) are
replaced by zeros.

BlE=-225

Example: Load zero into A register, or replace the
existing contents of the A register 3777777g with zeros.

GAP Coding:

Symbol Opr Operand X
1[2 | a] ‘T 51 B EREREE tzL\slu]lsllslnlu“o 20

LD 3%

\ ! a L H i L ; L L

Register Contents in Octal

A Q
Before execution: 3771777 J L ? J
After execution: 0000000 1 2]

Comments: No operand address isneeded. Automatic
modification will change the instruction.

LDO 2504022 Word Times: 3 J

Functional Description: LOAD ONE INTO A REG-
ISTER. A 1-bit is placed in bit position 19 of the A
register; all other bit positions (S, 1-18) are set to
0-bits.

Example: Load one into A register. Assume that the
A register initially contains 3777777g,

GAP Coding:
Symbol Opr Operand X
1] 2] 3] 4] s] 6|8 o [rof12][1s]14]v5]t6][17 18] 15|20

t L i 1 LKDIO L I

i i Il

‘L

Register Contents in Octal

A Q
Before execution: 31 ?
After execution: 0000001 ?

Comments: No operand address isneeded. Automatic
modification will change the instruction.

Vv-22

October 1963

LMO 2504102 Word Times: 3

Functional Description: LOAD MINUS ONE INTO A
REGISTER. The contents of the A register (S, 1-19)
are replaced by 1-bits, giving the octal configuration
37777713,

Example: Load minus one into A register. Assume

nin
that the A register initially contains 1357642g.
GAP Coding

Symbol Opr Operand X

|J2| s | 4] 5| e NIENED '21'3J”]“]'°1”|”i'° 20

LMO .

i L 5

Comments: No operand address isneeded. Automatic
modification will change the instruction.

NEG 2504522 Word Times: 3

Functional Description: NEGATE A. The 2’s com-
plement of the contents of the A register (S, 1-19)
replaces the contents of A (S, 1-19). If the capacity
of A is exceeded, in anattempt to negate the maximum
negative number, overflow occurs.

L " i

Register Contents in Octal

A Q
| 1357642 [[2]

317771 | > |

Comments: No operand address isneeded. Automatic
modification will change the instruction.

Beiore execution:

After execution:

Example: Negate A register contents 00001014
GAP Coding:
Symbol Opr Operand X

PR EVRErS . T T————
‘[2'3i4l”i5 8 15 {10 ""{'3]"}'51‘“!"[‘8!‘9 20

oo INE G| . .

i It L

CPI, 2504502

T (g o1 .
Word Timeos: 2

Functional Description: COMPLEMENT A. Each bit
position in the A register (S, 1-19) is inverted; each
1-bit is replaced by a 0-bit and each 0-bit is replaced
by a 1-bit.

Example: Complement A register. Assume that the
A register contains 12345674,

GAP Coding:

Symbeol Opr Operand X
|[2 | sj 4] s] A ENENED 12[|31!4115|16||7I|BIIQ

CPL

~
o

! L L L L L L

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

=l

< i

,011!10 c! 10

1110{111

After execution:

10{101j100/01 1 000

010]001

2 5 4 3 2 1 0
Octal Equivalent

Register Contents in Octal

A Q

Before execution: 0000101 ?

After execution: amnngne i n
L

Cumnments: Note that, unlike tne C¥PL. instruction
which forms the 1’s complement, NEG forms the 2’s
complement of the contents of A, Nooperand address
is needed, Automatic modification will change the
instruction, Overflow occurs if an attempt is made
to negate the largest negative number, —524,28810.

CHS 2504040 Word Times: 2

Functional Description: CHANGE SIGN OF A REG-
ISTER. The sign bit of the A register is changed. Bit
positions 1 through 19 of A are unchanged.

Example: Change sign of A register. Assume that the
A register contains 1357642g.

GAP Coding:

Symbof Opr Operand X
;[z[sl‘Is‘s INIERED |z{:ajujas|mi‘7lieju 20
. . |CHS ,
Register Contents in Octal
A
Before execution: [1357642] L ? i
After execution: 3357642 _! > 1

v-23 October 1963

Comments: No operand address isneeded. Automatic
modification will change the instruction.

NOP 2504012 Word Times: 3

Functional Description: NO QPERATION. Zero is
added to the contents of the A register (S, 1-19).

Example: No operation, or add zero to the contents
12345678 of the A register.

GAP Coding:

A shift instruction canrequirefrom 2 to 12 word times
for execution (including instruction access time),
depending upon the length of shift. A shift of one bit
position or less requires two word times. Each addi-
tional 3-vit shift, or fraction thereof, requires an
additional word time.

Automatic modification of shift instructions changes
the instruction.

Arithmetic Register Shifts

Symbol Opr Operand X
1[2{ s | n] s[s s | 9 [10 iz]:slu]lsixs‘lni!eln

N. O P

~N

]

n L. ! L

A -) L " n L " L I L {

SRA K =31 2510000 Word Times: 2to12

Functional Description: SHIFT RIGHT A REGISTER.

Register Contents in Octal

A Q
Before execution: 1234567 ?
After execution: 1234567 ?

Comments: This instruction isuseful in programming
delays or reserving space in a program for later in-
sertion of an instruction. No operand address is
needed. Automatic modification will change the in-
struction.

SHIFT INSTRUCTIONS

Shift instructions involve the serial (bit-bv-bit) move-
ment 7 “at within or between registers. Shifts fall
into two caiegories: arithmetic register shifts and
input-output register shifts.

Shifting is useful in arranging data before and after
transfer between direct input-output peripherals, and
the central processor, scaling quantities before and
after arithmetic operations, recovering from overflow
conditions, and performing simple multiplications and
divisicns.

Shifting is limited to 31 bitpositionsper shift instruc-
tion because bit position 15 through 19 of the instruc-
tion word are used to indicate the length of shift. With
5 bit positions, the largest number that can be ex-
pressed is 31.

The contents of the A register (1-16) aie shifted right
K places. If Aisplus,0-bitsare inserted in the vaca-
ted positions of A; if Ais minus, 1-bits are inserted in
the vacated positions. Bits shifted out of bit positicn 19
are lost. The sign of A is not changed.

Example 1: Shift right 3 bitpositions the positive num-
ber 12315378, previously loaded into the A register.

GAP Coding:

Symbol Opr Operand X
v 2| 5| 4| 5] 6|8 9 [t0]sa] 13 14]18 16 17 18] 1520

S, R A|3,

Il 4 i 1 " i i + i ’

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

oj1j010/011j10 04 1 0 1} 1 1 0] 1 11

+1 2 3 4 5 6 7

After execution:

012345678910 111213 141516 171819

ojojoo1j010/01 1/1 0 01 0 1}]1 10

+0 1 2 3 4 3]

V-24 October 1963

Example 2: Shift rigcht 7bitpositions the negative num-
ampl hift right 7 bitpositions the negative num
ber 3765432g, previously loaded into the A register.
GAP Coding:
Symbol Opr Operand X

T s & 15 s soliza!l 1z ta 1% ts $70 18 10lo2c
1203 4. s &8s & 1012 JEEN | "

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

1|1ft111j11010 1y 1 0 0 01 1 010

3 2

3 7 6 5 4

After execution:

012345678910 111213 141516 171819

fijrrafrrajir 1y 11 10 1 0/1 10

3 7 7 7 1 2 6

Example 3: Divide by 8the positive number 464,104,
(1612350g), previously loaded into the A register.

laces. Vacated hit positions of A are filled with

i
If a non-zero bit is shifted out of position 1,
rflow occurs and the bit is lost. The sign of A is
h

o8
¢
-
....
w
'
o
=)
®
gl
~
o]
<
L
o
e
7]
—

GAP Coding:

Symbol Opr Operand X

|[2\3 4 s o |8 8 10|12 13 145 s 17 18 1920

S L AJ2

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

0i0001)j010(01 141 0 0|1 0 1|1 1 O

+ 1 2 3 4 5 6

After execution:
012345678910 111213 141516 171819

JUlUlUUlllUUlU'lllUU‘
I) | | | | I J

+ 5 1 6 2 7 0

Example 2: Shift left 5 places the negative number
20§63618, previously loaded into the A register.

GAP Coding:

Symbol Opr Operand X
GAPCoding: |i21514,5]e [NENEL 12 13 “I”"””J”l” 20
Symbol Opr Operand X SL AIS
I! 2 0 3 4 05 e L]] 12 ‘2' 13 ‘4‘ “‘ 16 17 ; 18 19 |22
S R A3

Register Contents in Octal

Q

[161:;50] []

Before execution:

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

10000!011!110 01 1{1 10]001

After execution:

| o161235 | | >]

= 58013;

SLA K 2512000 Word Times: 2to12

Functional Description: SHIFT LEFT A REGISTER.
The contents of the A register (1-19) are shilted left K

ME 062

[P = =RV VA G

2 0 3 6 3 6 1

After execution:

012345678910 111213 141516 171819

T
i

T
1 1[1 1 1,0 01{11 1[0 0 0/ 1 0 0[{0 00

3 7 1 7 0 4 0

GIG T S

Example 3: Multiply by 4 the positive number 133619

: Example 2: Shift right double 2 bit positions the con-
I (2470g), previously loaded into the A register.

tents of the A and Q registers.

GAP Coding: GAP Coding:
Symbo! Opr Operand X
Symbol, Opr Operand X v 2, 5] :l 5 s|e . e 0 2775 14|38 1e 17 s 1s 20
v 2] a1 2] 5] 6|8 o [tofvz[1s[1ajrs]4s 17|16 10520 S R D2
IS L A2,
Register Contents in Octal Register Contents
in Binary
& g f t
Before execution:
I Before execution: 0002470 ?
. A Reg
After execution: 0012340 2
ooft1o0fto1fot 11 0 1f1 1 070 0 1
534419
01234567 8910111213 141516 1718189
oo0fo11f010§11 0j1 1 00 1 10 1 O
SRD K 2511000 Word Times: 2to12
Q Reg
Functional Description: SHIFT RIGHT DOUBLE. The
contents of the A and Q registers (1-19) together are
shifted K places to the right. Bits shifted out of A (19) After execution:
shift into Q (1). Bits shifted out of Q (19) are lost.
A Reg
If the sign of A isplus(0), 0-bits fill the vacated posi-
tions. If the sign of A is minus (1), 1-bits fill the 0o0j001|101/01 0y1 1 10 1 111 00
vacated positions. The signofQis replaced by the sign
of A. The sign of A is unchanged. 012345678910 111213 141516 171819
| When the instruction is written SRD 0, only the sign 00/100f110J10 11 0 1|1 0 0}J1 1 O
of A is shifted into the sign position of Q, There is
no other data transfer, Q Reg
Example 1: Shift right double 2 octal positions the con-
tents of the A and Q registers. A contains 1234567g;
Q contains 3654321g.
SLD K 2512200 Word Times: 2to12
GAP Coding:
Symbol Opr Operand X
v 2] 2] sl 5] oo v [t0]te]is]va]1s[tejt7 e 15]20 Functional Description: SHIFT LEFT DOUBLE. The
SRDIs contents of the A and Q registers {1-19) together are
— i : shifted K places to the left. Bits shifted out of Q (1)
shift into A (19). The vacatedpositionsof Q are filled
with O-bits. If a non-zero bit is shifted out of A (1),
) . overflow occurs and the bit is lost.
Regist. - Contents in Octal

A - Q
[1234567 | | 654321 |

[oorzsas | [ssreses

Before execution:

The sign of Q replaces the signof A. The sign of Q is
unchanged. (SLD O shifts only the sign of Q to Al
There is no other data transfer.)

After execution:

BE-223

V-26 October 1963

Example: Shift left double 4 bit positions the contents
of the A and Q registers.

GAP Coding:

Symb

x

v
ym
3

IEIEEN

a0

lzlisl’illlullsi|7llél|9

4,

Register Contents

in Binary

Before er=cution:

A Reg
0000001011 00 1 11101 01
012345678910 111213 141516 171819
oo011/(011(01 1{1 0 10 1 1;0 1 1
Q Reg

After execution:

A Reg

00(101]100(11 1 1011'010 011
012345678910 111213 141516 171819
00/110/111{01 0|1 1 04 1 1 0/ 0 O0O
Q Reg

SCA K 2510040 Word Times: 2to12

Functional Description: SHIFT CIRCULAR A REG-
ISTER. The contents of the A register (1-19) are
shifted right K places ina circular fashion; that is bits
shifted out of position 19 are inserted in position 1,
replacing bits as they are shifted out of position 1. The
sign of A is unchanged.

Example: Shift circular A register contents 8bit posi-
tions.

GAP Coding:

Symbol Opr Operand

112\3]41515

6]91!0

n

121131 ”I”]NI”I”J'Q °

S C A (8,

i s L

Register Contents

in Binary
Before execution:
A Reg
0123456878910 111213 141516 171819
0j61111y001i600; 1 1 1;1 0 171 11

.....

012345678910 111213 141516 171819

1 0001 00 01

11110 1|1

0

1

110

SCD K 2511200 Word Times: 2to 12

Functional Description: SHIFT CIRCULAR DOUBLE,
The contents of the A and Q registers (1-19) together
are shifted K places to the right ina circular fashion.
Bits shifted out of A (19) shift into Q (1) and those
from Q (19) shift into A (1). The sign of A replaces
the sign of Q. The sign of A is unchanged.

Example: Shift circular double 4 bitpositions the con-
tents of the A and Q registers.

GAP Coding:
Symbol Opr Operand X
|izis|4is[e 8 | 9 |10 Iz['3l141|51|6|l7|la[1s 20
} i 1 S IC 1D 4 1 i " L 1 Il

Register Contents
in Binary

Before execution:
A Reg

01100111000 1 01 011 0O01

0(1/1234(567(8910(111213|141516(171819

0|0{011/000j11 10 1 0{1 0 0|1 1 0

Q Reg

After execution:
A Reg

00110110011 1 00 010 101

0/1/1234|567/8910{111213{141516(1718 19

0(1j001/001{10 0/ 0 1 1{1 0 10 10

Q Reg

Ble-225

v-27

Arithmetic Register Shifts

SAN K 2510400 Word Times: 2to12

GAP Coding:
Symbol Opr Operand X
|1:|314T5Le BERED |zI|3J}|4Tlulleilvlqu 20

L __|S N A6)

Functional Description: SHIFT A AND N RIGHT. The
contents of the A (1-19) and N (1-6) registers together
are shifted K places to the right. Bits shifted out of A
(19) shift into N (1).

Bits shifted out of N (6) are lost. If the sign of A is
plus, 0-bits fill the vacated positions of A. If the sign
of A is minus, 1-bits fill the vacated positions of A.
The sign of A is unchanged.

Example: Shift A and N right 6-bit positions (1 BCD
character).

GAP Coding:
Symbol Opr Operand X
|[zlxi4-luke NERED 'Zl'ﬂ“}”l”i”=”i" 20
- S A N6
Register Contents in BCD
A N
Before execution: $59 l l ? I
After execution: 085 9

Comments: While this instruction can be modified
automatically, its use ina modified formisnot recom-
mended. However, if the lengthof the shift is modified
by the contents of an X register, thenthe length of the
shift, plus the contents of X, cannot exceed 31 places
in any one shift instruction.

Register Contents (BCD)

A N
(e][5

Before execution:

After execution:

ANQ K 2511400 Word Times: 2to12

Functional Description: SHIFT AINTONANDQ. The
contents of the A register (1-19) are shifted K places
to the right into both registers N and Q. Bits shifted
out of A (19) enter both Q (1) and N (1). Bits shifted
out of N(6)andQ (19) arelost. If the sign of A is plus,
the vacated positions of A are filled with 0-bits; if the
sign of A is minus, 1-bits fill the vacated positions of
register A. The sign of A replacesthe sign of Q. The
sign of Aisunchanged. The N register must be ‘ready’
before this instruction is executed. See BNNand BNR
instructions.

Example: Shift A into NandQ registers 6 bit positions.

SNA K 2510100 Word Times: 2to12

Functional Description: SHIFT N AND ARIGHT. The
contents of registers N (1-6) and A (1-19) together are
shifted K places to the right. Bits shifted out of N (6)
shift into A (1). Vacated vositions inN are filled with
0-bits. Bits shifted out of A (19) are lost. The sign
of A is unchanged. The N register must be ‘ready’
before this instruction is executed. See BNN and BNR
instructions.

Example: Shift N and A right 6 bit positions (1 BCD
character).

GAP Coding:
Symbol Opr Operand X
1[2\: a5 e|8 @0 ”I”A“J"iulnlul" 20
. |A N Q|6
Register Contents in BCD
A Q
Before execution: 123 J l ??? 1
N
[2]
A Q
After execution: 012 J [37?2]
N

BE-225

v-28

October 1963

NAQ K 2511100 Word Times: 2to12

Functional Description: SHIFT N, A, AND Q RIGHT.
The contents of registers N (1-6), A (1-13), and Q
(1-19) together are shifted K places to the right, Bits
shifted out of N (6) shift into A (1). Bits shifted ot of
A (19) shift into Q (1). Bits shifted out of Q (19) are
lost. Vacatedpositionsof Narefilled with 0-bits. The
sign of A isunchanged. The signof Q is set to the sign
of A. The N register must he ¢

instruction is executed.

afare thic

’
ready’ before this

Example: ShiftN, A, andQ right 6 bit positions (1 BCD
character).

GAP Coding:
Symbol Opr Operand X
|rz|a]415[e s [9 [0 lz[isJuJu||eiv7||a|19 20
1 i i NlAlQ 6 i i i " 1 L

Register Contents in Octal

A Q
Before execution: L 888 l I ??? 1|
N
3 ol ¥
[
A Q
After execution: L 788 | l 8°??
N
0

NOR K 2513000 Word Times: 3to12

Functional Description: NORMALIZE THE A REG-
ISTER. The effect of thisinstruction depends upon the
value of K, the sign of the A register contents and R
(the number of leading zeros in A),

If the A register sign is plus, and the number of
leading O-bits (R) in A (1-19) is less than K, the con-
tents of A (1-19) are shifted left R places. The dif-
ference K-R replaces the contents of memory location

0000.

If the A register sign is plus, and the number of
leading O-bits (R) in A (1-19) is greater than or equal
to K, then the contents of A (1-19) are shifted left K

places; 0-bits replace the contents of memory location
0000 (15-19); bit positions (S, 1-14) of 0000 are always
set to zeros. The sign of A is unchanged. Vacated
positions of A are filled with 0-bits.

If the A register sign is minus, the number of leading
1-bits of A (1-19) are shifted left; otherwise execution
occurs as described above. If a 1-bit is shifted from

A (1), overflow occurs.

Example 1: Normalize the A register which contains
00012344 (9 leading 0-bits) to 10 bit positions (K = 10,
R=09).

GAP Coding:
Symbol Opr Operand X
|12|a]4]5|e alelvo lz[lslu}w]ls’n!;eir 20
. v INOR]J|1 O

Memory and Register Contents in Ocal

A 0000
Before execution: 0001234 00000 ??
After execution: 1234000 0000001

Example 2: Normalize the A register which contains
00123453 (6 leading 0-bits) to 5 bit positions (K = 5,
R = 6).

GAP Coding:

Opr

e]nl!o

N OR

Operand
|z[13] 14]|5| te 1718 |19

5 1

Symbol
t[z[a[t{s[c

L i

»

0

—_— i

Memory and Register Contents in Octal

0000
000077 |

Before execution:

A
| oo12345 || o

| 1162400 | [0000000 |

After execution:

BE-225

V-29

Example 3: Normalize the A register which contains
the negative number 3776542 (9 leading 1-bits) to 6
bit positions (K = 6, R = 9).

GAP Coding:

Symbol Opr Operand X

llz:s 475;5 8, 8 .10 m]nj‘u}u}u“nl\aln

N O R|b

~N

]

Memory and Register Contents in Octal

A 0000
Before execution: L 3776542—| L 00000 ?? J
After execution: 3654200 0000000

Comments: The NOR instruction is used primarilyin
normalizing the A register in normalized floating-point
arithmetic operations in the AAU. See Section XII.

NOR canbe automatically modified; however, the length
of a shift after modification mustnot exceed 31 places.

DNO K 2513200 Word Times: 2to12

Example 1: Double length normalize the A and Q reg-
isters which contain 00012345 0076543g (8 leading

0-bits) to 6 bit positions (K = 6, R = 8).

GAP Coding:
Symbol Opr Operand X
|[z[3}415[e ENEL |z[|31|4]’|5‘\ei|7|u\n 20

_ {D N O|6

Memory and Register Contents in'Octal

A Q

| 0001234 | [0076543 |
0000
0000072 |

Before execution:

A
| 1123403 | | 1654300-

After execution:

0000
0000000

Example 2: Double length normalize the Aand Q reg-
isters which contain 0001777g 0000177g (9 leading
0-bits) to 15 bit positions (K = 15, R = 9).

Functional Description: DOUBLE LENGTHNORMAL-
IZE. If thesignofthe A register is plus, and the num-
ber of leading O-bits (R) of A (1-19) is less than the
constant (K), then the contents of registers A (1-19)
and Q (1-19) are shifted left R places. K minus R
replaces the contents of location 0000 (15-19).

If R is greater than or equal to K, then the contents of
registers A (1-19) and Q (1-19) are shifted left K
places; 0-bits replace the contentsof memory location
0000 (15-19). BitpositionsS, 1-140flocation 0000 are
always set to zero. Bits shifted outof Q (1) shift into A
(19). Vacatedpositions of Q are filled with 0-bits. The
sign of Q replaces the sign of A. The sign of Q is
unchanged.

If the sign of A is minus, the number of 1’s of A (1-19)
are shifted left; all other conditions are the same as
when the sign of A is plus. If a 1 bit is shifted out of
bit position 1, the overflow indicator is turned ON.

GAP Coding:
Symbol Opr Operand X
1[21314Tu]o [NENEE |zI|aJ|Tr's[|alnlleJn 20

D N O|1.5

! " s

Memory and Register Contents in Octal

A Q
| 0001777 | [ooo0177 |

Before execution:

0000
00000 ??

A
1777000

After execution: L 0177000]

0000
0000006

S

INTERNAL BRANCH INSTRUCTIONS

Branch instructions, which provide decision-making
capability in the GE-225, fall into two categories: 1)
internal branch instructions (described in this section)
and 2) input-output branch instructions {(described in
appropriate peripheral instruction sections).

Internal branch instructions can be further subdivided
into two groups: 1) unconditional branch instructions
and 2) test-and-branch instructions.

Unconditional Branch Instructions

These instructions, when executed, unconditionally
cause transfer of program control to the instruction
contained in the memory location specified by the oper-
and address. Operands can specify actual or GAP
symbolic addresses.

X 2600000 Word Times: 1

BRANCH UNCONDITION-
! nstruction a

memory location Y (Y becomes the address of the next
instruction). If this instruction is modified auto-
matically, all 15 bits of the P counter are altered by the
sum of bits 7-19 of the I register and by bits 5-19
of the specified X register. If no modification, then
only 13 bits of the P counter are altered.

ional Description:
f‘oqfrn‘ igs transferred to the in

Ierr

Example: Branch unconditionally to the GAP symbolic
location STORE. Assume that STORE has been as-
signed the octal address 1766g by GAP and that the
BRU instruction is located in memory location 00460g.

to transfer control to the instructionlocatedinaddress
01766g. Note that automatic address modification is

possible.

0700000 Word Times: 2

.................. qQmAn WITN AT A ATAVEY

Functional Description: STORE P AND BRANCH. The
memory location of the SPB instruction (held in bits
5-19 of the P counter) replaces the contepts of bit
positions 5-19 of the specified modification word (of the
current modification group, for systems having the
additional modification group feature). Bits 0-4 of
the modification word are automatically set to zero.
Control transfers to the instruction held in memory
location Y. The P counter is not incremented during
an SPB instruction.

Example: Store P and branch. Store the location of
the SPB instruction 2676ginX register 3and branch to
the instruction held in GAP symbolic location RERUN.
Assume that GAP has assigned octal location 05004 to
the symbol RERUN.

GAP Coding:
B Symbol i Opr Operand ’ [X
EN R E R R R AN R ER TS FIY
026 76|/sP BIRERUN 3

P Counter and X Register Contents in Octal

p 0003
02676 “ 2992299

Before execution:

After execution:

00500 0002676

Comments: SPB cannot be automatically modified be-

GAP Coding:
Symbo! Opr Operand X
vl 2 s <) sl ala s 10 :z{:s;niwi:s‘wita{w 20
0 0 4 6 0/BRU|S.T ORE

P Counter Contents in Octal

S

After execution: 01766 1 [

Comments: Note that, before execution, the P counter
has already been stepped to the address of the next
sequential instruction. BRU modifies the P counter

fj I

)9

o

a

cause bit positions 5 and 6 are used to specify the X
register to receive the SPB memory location.

Test-and-Branch Instructions

A test-and-branch instruction causes a check of the
status or contents of a central processor indicator or
register to determine if the test condition is true or
false. If the test is true (condition exists), the central
processor executes the next sequential instruction; if
the test is false (condition does not exist), the central
processor skips the next instruction and executes the
second sequential instruction.

FF\E

LD

(4

(jl

v-31

The tested registers are unchanged by the test; tested
indicatqrs may or may not change, depending upon the
test and the indicator status. Test-and-branchinstruc-
tions affect only the P counter. Ifthe condition tested
is true, the P counter is automatically increased by
one, as in non-branch instructions; if the condition
tested is false, the P counter is increased by two,
thereby skipping an instruction.

Test-and-branch instructions require no operand
address; they can be followed sequentially by a BRU
instruction specifying the transfer address. For con-
venience, GAP also permits the use of relative and
symbolic addressing with test-and-branch instruc-
tions, as illustrated in the examples following the
instruction descriptions.

BOV 2514003 Word Times: 2

Functional Description: BRANCH ON OVERFLOW,
The overflow indicator is tested for the ON condition.
If ON, the indicatorisautomatically turned OFF and the
next sequential instruction is executed. Ifnooverflow
occurred, the second sequential instruction is exe-
cuted.

BNO 2516003 Word Times: 2

Functional Description: BRANCHON NOOVERFLOW,
The overflow indicator is tested for the OFF condition
(if overflow occurred, the indicator is automatically
turned OFF).

If no overflow occurred the next sequential instruction
is executed. If overflow occurred the second sequen-
tial instruction is executed.

BPL 2516001 Word Times: 2

Functional Description: BRANCH ON PLUS. The A
register is tested for a plus sign in the sign bit posi-
tion. If the signisplus, the next sequential instruction
is executed. If minus, the second sequential instruc-
tion is executed.

BMI 2514001 Word Times: 2

Functional Description: BRANCH ON MINUS. The A
register is tested for a minus signinthe sign bit posi-
tion. If the conditiontestedis true, the next sequential
instruction is executed. If false, the second sequential
instruction is executed.

BOD 2514000 Word Times: 2

Functional Description: BRANCH ON ODD. The A
register is tested for an odd value; A (19) contains a
1-bit for all odd values.

BEV 2516000 Word Times: 2

Functional Description: BRANCH ON EVEN. .The A
register is tested for an even value; A (19) contains a
0-bit for all even values.

BZE 2514002 Word Times: 2

Functional Description: BRANCH ON ZERO. The A
register contents (S, 1-19) are tested for 0-bits in all
positions.

BNZ 2516002 Word Times: 2

Functional Description: BRANCHON NON-ZERO. The
A register contents (S, 1-19) are tested for 1-bits in
any positions.

BPE 2514004 Word Times: 2

Functional Description: BRANCH ON PARITY ERROR.
The parity alarm indicator is tested for the ON condi-
tion. If a parity error occurred, the indicator is
automatically turned OFF and the next sequential in-
struction is executed; if no parity error occurred, the
second sequential instruction is executed. Note: If
the control console parity alarm switch is in the
STOP ON PARITY ALARM position and aparity error
occurs, the parity alarm indicator turns on and the
central processor halts. If the parity alarm switch
is in the NORM position, a parity error will turn on
the parity alarm indicator but processing will con-
tinue. This permits programmed interrogation of the
indicator with a BPE or BPC (below) instruction and
optional branching to a corrective routine.

BPC 2516004 Word Times: 2

Functional Description: BRANCH ON PARITY COR-
RECT. The parity alarm indicator is tested for the
OFF condition. If parity is correct, the indicator
remains OFF and the next sequential instruction is
executed. If a parity error occurred, and the parity
alarm indicator is ON, it is turned OFF automatically
and the second sequential instruction is executed. See
Note under BPE, above.

BE-229

V-32

Example: Test the A register contents for a positive
value; if negative, test for an even value; if odd, test
for zero; if not zero, store A in symbolic location
RESULT. Assume quantity to be testedhaspreviously
been loaded into the A register and TEST begins in

1lacatinn 02114,
agcatiion Vallg

GAP Coding:
Symbol Opr Operand X
N N N K 0 A R R AR G
. T . E S T/IBP L .)
BRU|PL US
B Z7Z.E , . .
BRU|ZER O)
BE V . ; L
) BR U|E VE, L
Sl}’AA RES UL, T
K ‘ i
v

Comments: If the numberinthe A register is positive,
the P counter is not stepped and the instruction at
TEST:! causcs a to symbolic location PLUS.
If the number tested is negative, the P counter is
stepped to TEST+2, which causes the number to be
tested for zero. If zero, again the P counter is not
stepped and control transfers to symbolic location
ZERO. If not zero, the P counter steps to TEST+4 and
the number is tested for an even value. If even, the P
counter is not stepped and control transfers to loca-
tion EVEN, If not even, the P counter is stepped +1
and the contents of the A register are stored in sym-
bolic location RESULT. One result of the series of
instructions is to store only negative odd numbers in
location RESULT.

+ of
(Fansicr

* CAB Y 2100000 Word Times: 2to 4

Functional Description: COMPARE AND BRANCH.
The contents of the A registerare comparedalgebrai-
cally with the contents of location Y, If the contents of

Y are greater than the contents of A, the next instruc-
tion in sequence is executed. If the contents of Y are
equal to the contents of A, the next instruction is
skipped and the second sequential instruction
cuted. If the contents of Y are less than the contents
of A, the nexttwo instructions 2re skipped and the third

sequential instruction is executed.

isS exe-

Example: Compare the contents of symbolic location
TEST with the contents of the A register. If TEST is
greater than A, go to symbolic location MORE for next

instruction. If TEST equals A, go to symbolic location
EQUALS. If TEST islessthanA, go to symbolic loca-

tion LESS. Assume CAB is in location 0123g.
GAP CodinE
Symbol Opr Operand X
|]z|31415[6 s | o |10 lz[nlul!sl\e“nl«s‘\n 20
A NSI|IC A B TE S.T. ;
B R UMORE
‘ BR UE QU AL S
,LE SSIADD|3 4 e
Registers Affected:
P Counter in Octal
Before execution: 0000123 | = ANS
After execution:
Y > A 00001241 - ANS+1
v A | 0000125' - ANS.2
Vo A : ;
Y<A I 0000126' = LESS
* DCB Y 2200000 Word Times: 2to6

Functional Description: DOUBLE COMPARE AND
BRANCH. The contents of the A and Q registers are
compared algebraically with the contents of memory
locations Y and Y + 1. If the contentsof Yand Y + 1
are greater than the contents of A and Q, the next in-
struction in sequence is executed. Ifthe contents of Y
and Y +1are equal to the contents of A and Q, the com-
puter skips the nextinstruction and executes the second
sequential instruction. If the contents of Yand Y + 1
are less than the contents of A and Q, the computer
skips the next two instructions and executes the third
sequential instruction. Y should be an even location.
If Y is odd, Y and Yare compared with the contents of

AT

Aa
gnorea.

A and Q. The signs of Y+1 and Q are i
Comments: Both the DCB and the CAB instructions
provide a ‘three-way compare’ capability. CAB pro-
vides of single-length word comparisons, while DCB

* This instruction is an optional feature.

mle oYz
[alo o /) 775N
15" LEY)

V-33

compares double-length words. In both instructions
the eifect on the P counter is similar:

Y > A (or A and Q) P unchanged
Y = A(or AandQ) Step P + 1
Y < A {or A and Q) Step P + 2

MODIFICATION INSTRUCTIONS

INX K X 1400000 Wword Times: 3

Functional Description: INCREMENT X. This instruc-
tion adds the number K (bit positions 7 through 19 of the
I register) to the contents of the specified X register
(bit positions 5 through 19). The result replaces the
contents of the X register (positions 5-19); any carry
from position 5 is dropped. Noautomatic modification
is possible. X register locations are 0000 through
0003, -or 0000 through 0127, if the additional modifi-
cation groups are available.

Example 1. Increment X register 0002, which contains
51210 210008), by 1.

GAP Coding:

Symbol Opr Operand X

W] 21 2 a: sl e |8 9|10 lz]ss!u]u]xqﬁluln 20

1 N.X|1. ‘ 12

L

X Register Contents in Octal
0002

0001000
[0001001 |

Before execution:

A fter exeecution

Example 2: DecrementX register 0003, which contains
10010 (144g), by 6 (same as incrementing by 81861¢

4 re ey

or 17772g)-

X Register Contents in Getal

0003
Before execution: 0000144
After execution: 0020136

Comments: If INXisusedtodecrementthe X register,
a carry is generated into bit position 6. This 1-bit in
position 6 does not affect BXH or BXL instructions
(described later), because these commands compare
bit positions 7 through 19 only. However, if the de~
cremented contents of the X register are used to modify
an address, the carry into position 6 will affect the
modification. ThisisbecauseX registerbits5 through
19 are used to modify the operand address. Also,
INX should be used with caution tozeroan X register;
incrementing or decrementing the register by the
quantity required to set it to zero actually sets the
register to 8192 (1-bit in position 6), The LDA
or LDX ZERO instruction is recommended for zero-
ing an X register,
X Register Contents

5 617 18

NWNEg
Wis
\

AN

é

Affects BXL and
\ BXH instructions

o

Modified by INX instruction and
used for address modification

BXH K X 0500000 Word Times: 3

Functional Description: BRANCH IF X IS HIGHER
THAN OR EQUAL TO. If the contents of the X register
(7-19) are greater than or equal to the constant K, the
next sequential instruction is executed; if less thank,
the second sequential instruction is executed. X is
unchanged. No automatic modification is possible. X
register locations are 0000 through 0003, or 0000
through 0127 if the additional modification groups are
available.

Example 1: Branch if X is higher than or equal to 4.
Assume that X register 0002, which contains 6, is to
be used. Assume that BXH is inactual memory loca-
tion 01638‘

Symbol Opr Operand X
1]z s] a]s]efs s a0 1212 1a] V8 Vs 17 16 1920
__GAP Coding o B, X H/4 2
Symbol Opr Operand X F1.CA " B RU|OT7T ., .
112 2 4l s]ele s 1olval1a[rajis[tejt71e]10]20) S TA[ITEMP .
o I NX;8 1 8 6 . 3 L (.)] L

vV-34 October 1963

P Counter Contents
in Octal and Symbolic

Before execution: I 0164 I = FICA
After execution: 0164 | - FICA
Example 2: Branch if X ig higher than or equal to 4,

isg}] e
Assume that X register 0002, which now contains a 3,
is to be used. Assume that BXH is in actual memory
location 0163g.

BXL K X 0400000 Word Times: 3

Functional Description: BRANCH IF XIS LESS THAN.
If the contents of the X register (7-19) are less than the
constant K, the next sequential instructionis executed;
if greater than or equal to K, the second sequential
instruction is executed. X is unchanged. No auto-
matic modification is possible. X register locations
are 0000 through 0003, or 0000 through 0127 if the ad-
ditional modification word groups are available.

Example 1: Branch if X islowerthan 5. Assume that
X register 0003, which contains 6, is to be used.
Assume that BXL is in actual location 0014g.

GAP Coding: _GAP Coding:

Symbol Opr Operand X Symbol Opr Obérqnd X
2] s« s]s o [o [1ofva[s ta]vs]T6[17 s8] 10]z2a 1l 2] s al s el s o rofsz]1a]1a 8 [16 €718 | 1320
"] 1 i i BxX|H 4- 1 i 1 i 1 L 2 i i — L BAX,L 5. 1 i 1 i L L 3
FI1.CA . [BRUO777 | MO D , |BRU|1 4 1 1 , |

. S TAITEMZP S. T.AT.EMP, ., |

P Counter Contents
in Oetal and Symbolic

Before execution: 0164

FICA

After execution:

0165 FICA+1

Comments: Note, in example 1, that because the tested
condition is true, the P counter is not stepped to the
second sequential instruction. Instead, the next in-
struction is the unconditional branch (BRU) which
transfers control to the instruction at 0777. 1In
example 2, the tested condition is false; that is, the X
register contents are not higher than 4. Hence, the
P counter, which has already been stepped once, is
stepped again to 0165 and the unconditional branch is
skipped.

A BXH instruction is generally, but not necessarily,
followed by a BRU instruction specifying the address
of the first instruction of the branch sequence.

If an optional modification word group is to be used,
the BXH instruction must have been preceded by an
SXG instruction, which selects the desired modifi-
cation word group.

P Counter Contents
in Oetal and Svymboiie

Before execution: 0015 MOD

MOD+1

After execution: 0016

Example 2: Branch if X islowerthan 5. Assume that
X register 0003, which contains 2, is to be used. As-
sume that BXL is in actual location 0014g.

GAP Coding:

Opr
°J°l1°
B X L

Symbol Operand

|2T|s’ urnlurnllsjn
5.
B.RU|1 .4 1.1, , ., |
S. TA|T E MP)

- I e

! L . L i I

tlz[a]a[u[e

MO, D, .

L i i

L 3 1 1

) s L

fe——]

P Counter Contents
in Octal and Symbolic

Before execution: 0015 = MOD
After execution: 0015 i = MOD

v-35

October 1963

Comments: In example 1, the tested conditionis false;
that is, the X register contents are not lower than 5.
Hence, the P counter is stepped anadditional location,
and the BRU instruction is skipped. Inexample 2, the
tested condition is true; the X register contents are
lower than 5. Thus, the P counter is not stepped and
the next instruction executed is the BRU, whichtrans-
fers control to the instruction at actual location 1411,

The BXL instruction is generally, but notnecessarily,
followed by a BRU instruction for the branch sequence.

If an optional modification word group is to be used,
the BXL instruction must have been preceded by an
SXG instruction, which selects the desired modification
word group.

Example: Store X register 0002 contents in symbolic
location RESET. Assume 0002 contains 0135746g.

GAP Coding:

LDX Y X 0600000 Word Times: 3

Function2! Description: LOAD X. The contents of

memory location Y (S, 1-19) areloaded into register X
(S, 1-19). Y is not affected.

Example: Load X with the contents of symbolic loca-
tion SET1. Use X register 0003. Assume SETI1 con-
tains 0000001.

Symbol Opr Operand X
7|32Es‘,4‘sfs e EEE xz{la{u[\s]us‘n“e;sg 20
) S TXIRESET) 2
Memory and X Register

Contents in Octal

RESET 0002
Before execution: ? 0135746
After execution: 0135746 0135746

Comments: This instruction cannot be automatically
address modified. X registersinoptional modification
word groups can beused, if STX ispreceded by an SXG
instruction specifying the desired group.

GAP Coding:
Symbol Opr Operand X
.;213‘41515 s [0 10 tz{\sljul{!sl\e;'niteln 20
L LDX[SE T 1. .. 138

Memory and X Register
Contents in Octal
SET1 0003

| oooooor || 2 |

0000001] [0000001 |

Before execution:

After execution:

Comments: This instruction cannot be automatically
address modified. X registersinoptional modification
word groups can be used, if LDX is preceded by an
SXG instruction specifying the desired group. LDXis
useful in initializing an X register.

* SXG Y 2506013 Word Times: 2 ||

Functional Description: SELECT X REGISTER GROUR
The modification word group (00-31) specified by Yis
selected and remains selected until another SXG in-
struction is given. After agivengroupis selected, all
instructions referencing an X register will refer toone
of the words within the selected modification group.

Example: SelectX register group 27 so that subsequent
instructions containing X modification coding (bit posi-
tions 5 and 6) will refer to memory locations 0108
through 0111.

GAP Coding:

STX Y X 1700000 Word Times: 3

Functional Description: STORE X. The contents of
register X (S, 1-19) are stored in memory location Y.
X is not affected.

Symbol Opr Operand X
|[2{3]4E5'e D |zT|ai|4Twile“7lxs!19 20
S X G2
Subsequent
Instruction
Bit Positions Modification Word
5 8 Selected (Decimal)
0 0 0108
0 1 0109
1 0 0110
1 1 0111

* This instruction is an optional feature.

BE-225

vV-36 October 1963

Comments: After execution of the SXG instruction,
subsequent instructions containing 01, 10, or 11 in bit
positions 5 and 6 will reference memory location 0109,
0110, or 0111 until another SXG instruction selects
another modification word group. X registerinstruc-
tiong (INX, BXIL, BXH, LDX, and STX) containing 00,
01, 10, or 11 will reference memory locations 0108,
0109, 0110, or 0111. Note that the location specified by
00 X register coding (0108, in this case) has the same
properties as location 0000,

The decimal locations of the modification words sel-
ected by the SXG are readily computed by multiplying
the modification word group number by 4 and adding
the X register coding of the instruction in question to
the result.

For example, assume thatanSTA instruction specifies
modification word 3 (11) and that a previous SXG in-
struction selected modification word group 18. To
determine the actual location of the modification word,
multiply 18 by 4 (giving 0072) and add 3 (giving location
0075).

PROGRAMMING 16K MEMORY
SYSTEMS

The GE-225 information processing system is avail-
able with a 16k (16,384 word) memory which is
regarded by programmers as being divided into two
basic parts: the lower 8k memory and the upper 8k
memory, referred to as the lower bank and the upper
bank. The lower bank is considered to be memory

locations 0000 through 8191, and the upper bank
locations 8192 through 16,383. In programming 16k

systems, accessing techniques and special restrictions
as to instructions and software use must be considered.

0?00 LINKAGE

READ-WRITE AREAS

LOWER MEMORY
PACKAGED SUBROUTINES

{ WORKING STORAGE
8191 AND CONSTANTS
8102

4 PROGRAM

UPPER MEMORY

TABLES AND
ARRAYS

16383

Figure 5-5. 16k Memory Layout

=2

i

4\
-
[

In addition, the proper allocation and use of meniory
becomes essential. Figure 5-5 illustratesanefficient
and economical memory layout that allocates linkage,
read-write areas, special subroutines, working stor-
age and constants to lower memory and places the
operating prograimn and program subroutines in upper
memory. Using memory in this way minimizes
indexing or address modification operations.

Addressing the Upper Bank

In the 16k system, an operand address requires a
fifteen-bit addressing capability, as opposed to a
thirteen-bit 8k address. Thus, memory locations
00000 through 08191 in the lower bank can be ad-
dressed directly, but memory locations 08192 through
16383 must be accessed through address modification.

When modification is used, both the P and I registers
which possess 15-bit address capability, are affected.

When an instruction is modified, the 15-bit constant
in an index word (bits 5 through19)is added to the 13-
bit operand in the I register. After this addition, the
instruction actually executed has an effective operand
of 15 bits.

An example using address modification to access the
upper bank is shown by the coding:

Symiol Ope Operand x neman(

RN DD DD I DD 3 E \

1JupB Nk, [DEC[8.1 9.2 UPPER BANKCON_ST,A,N(_]
N [

D) |

2 L DX|{UP BNK 2 | SET INDEX TWO = 8192)

(< {

) \

3 LDAS 2 ‘l

The execution of the instruction in line two places the
Constant 8192 in index word 2. The instruction of line
3 is modified by index word 2 and gives an effective
address of 8192+6, or 8198, whichis the desired upper
bank memory location.

Index word 2 can now be used wheneveraccess to data
in an upper bank memory location is desired by the
programmer. However, if the program is executing
instructions in the upper bank, the P counter remains
set for upper memory and is incremented in the normal
manner without the need for modification.

Most GE-225 instructions access only memory loca-
tions in the lower bank when not indexed, but can access
the upper bank when properly indexed. Figure 5-8
contains a brief description of the effect of GE-225
instructions when addressing 16k memories. Further
explanations are given for specific commands.

(52
[
o
>

October 1963

Behavior

Commands
1. MOV and controller commands
2. General commands
3. Indexed BRU
4. SPB and unindexed BRU
5. LDX and STX
6. All others

Any memory location may be
accessed with a 15-bit direct
address.

The operand address is restricted
or non-existent, independent of
memory size.

Any memory location can be
accessed through automatic
address modification, and the P
counter is set to obtain successive
instructions from the memory
bank selected by the BRU.

The 13-bit address applies only
to locations in the memory bank
in which the instruction is stored.

[$2]

The 13-bit address always applies
to locations in the lower memory
bank.

Unindexed instructions access
locations in the lower memory
bank; indexed instructions may
access any location via automatic
address modification.

Figure 5-6. Instruction Characteristics when Addressing 16k Memories

Executing Instructions in the Upper Bank

Control can be shifted to instructions contained in
memory locations in the upper bank of a 16k system
by a suitably indexed BRU instruction. The effect of
an indexed BRU is to set the two high-order address
bits of the P counter. No otherinstruction may accom-
plish this (P automatically advances from 8191 to
8192 when no branch intervenes). Unindexed BRU
instructions do not change the high-order addressbits
in the P counter. Also, anunindexed BRU causes sub-
sequent instructions to be taken from the bank con-
taining the BRU. Control remains in the upper bank
until the next indexed BRU is executed, despite inter-
vening SPB and unindexed BRU insiructions.

Example 1: Change control from the lower bank to
memory location 12000 in the upper bank. Assume
index word 2 contains the constant 08192.

GAP Coding:
Memory Opr Operand X
Location e [s [10]12T s rals] 1617 18 [10]20
BRU|[3 80 8. 2
1756

Next Instruction Location is 12000.

Subsequent instructions executed are in the upper bank.

Example 2: UpperBankExecution. Index word 2 con-
tains 08192.

GAP Coding:
Memory Opr Operand X
Location 8 | 9 |10 I2[|3\|4]|5]16}|7l18l‘|9 20
19250 BRU|[3.80 8, , 2

Next Instruction Location is 12000

Execution of instructions continues in upper bank.

Example 3: Upper Bank Execution. Indexword 2 con-
tains 00000.

GAP Coding:
Memory Opr Operand X
Location NERED |zi13fuj'sJie:|7|ta!|s 20
BRU|3 808 2
12250

Next Instruction Location is 03808

EEe995
8le” 449

v-38

Controls are changed to the lower b.
memory location 03808.

In summary, it is essential that the prog: ..ner re-
member:

1. Only a modified BRU instruction can direct
the central processor to begin executing in-
structions in the upper bank. The BRU must
be modified by the necessary increment, as
illustrated in example 1, above,

2. Once operating in the upper bank, subsequent
BRU instructions do not change the setting of
bits 5 and 6 of the P counter unless another
properly indexed BRU instruction is encoun-
tered. Also,onceoperatingin either the lower
or upper bank it is not necessary to continue
indexing to keep control in thatbank. Modifi-
cation is only necessary when branching from
one memory bank to another.

SPB Instructions

An SPB instruction can beused, atnoincrease in word
time, in the upper bank to refer toan upper bank sub-
routine. However, anSPB instruction in the upper bank
cannot be used to refer to a subroutine in the lower
bank without first modifying a BRU instruction. The
same ruie exists with respecttousing an SPB instruc-
tion in the lower bank to refer to a subroutine in the
upper bank.

Example: Assume index word 2 contains 08192. Use
an SPB and BRU inthe lower bankto access a memory
location in the upper bank.

GAP Co :
Memory Symbol Opr Operand X
Locationf+]a| s« e[ew o to]valvs]raja]ta]i7 v8]1s]20
1750 b . s P BIUPPER,_ . |1
1751 UPPER B RU|3 808) 2

Controls are changed from the lower bank to the upper
bank with the instruction in memory location 12000
being executed next. The return from the upper bank
routine (after execution) to lower bank memory location
01752 can be accomplished by a BRU:

GAP Coding:
Memory Opr Operand X
Location s | o 102l 1sTvalvsT 16 {17 1e 11020
12120 BLRUI2 0 .1

Next Instruction Executed is 01752

An SPB command executed in the upper bankperforms
exactly like an nonindexed BRU.

Example:
GAP Coding:
Memory Opr Operand X
Location s [o [1o[ta]1s] 1a]Vs[16] 17 18 10|20
12225, |S P B 2000 |1

Next Instruction Executed is 10192.

The effective address of the next instruction executed
(10192) is formed by bits 7through 19 of the I register,
plus bits 5 and 6 of the P counter with bits 5 through 19
of P stored in the index word.

The programmer should note that since only SPB and
BRU instructions have operand addresses which relate
directly to P counter contents, only the perform as
described in the previous paragraphs. All other GE-
225 instructions with 13-bit operands accesslocations
in the lower bankunless they are appropriately indexed
for the upper bank, regardless of where they are
located.

LDX and STX Instructions

Index words are normally set and stored with LDX
(Load Index) and STX (Store Index) instructions. These
instructions transfer a 20-bit GE-225 word between a
specified memory location, for which a 13-bitoperand
address is provided, and a specified indexword. Since
the index word selected represents a sending or
receiving location in a data transfer process, auto-
matic address modification does not occur on LDX and
STX operand addresses. The 13-bit address field
means that LDX and STX instructions may access only
locations 00000 through 08191. Although these instruc-
tions may be stored in and executed from the upper
bank, they always refer to data stored in the lower
bank.

Example: GAP Coding:
Memory | ©Pr Operand X
Location | [¢ [tofreltsTvaTisTve]e7 [te 1920
12250 LD X6 .5 0.0, . . . |2
[.
6500 |D.E C |0, : : ;

S
(z 7

ED

NS
-5
al

(5o

October 1963

V-39

STO Instruction

The STO instruction is used for direct instruction ad-
dress modification. Since the standard operand ad-
dress field is thirteen bits, STO is designedto replace
the low-order thirteen bits in the specified memory
location with the low-order thirteen bits of the A reg-
ister. In 8k memories, STO has virtually no special
limitations. In 16k memories, STO cannot handle
MOV or controller commands addressing the upper
bank, nor is it adequate for direct address modifica-~
tion in other instructions when the address being
stored is (or may be) in the other bank.

Example: The contents of index word 2 = 08192.
GAP Coding:

Memory Opr Operand X
Location [e [vefwe]vs]va]ve e v s 1s]s0
12160 LDA|3.0,0.0, . 12
12161 S PB|* +.1.1
12162 S.T.O|2, ; , 1
12163 A DD|O, L .

Designing Subroutines for 16K Memories

Like 8k programs, subroutinesand othez program ele-
ments inlower 8k canaccess data and constants and set
program switches without employing index registers.
Subroutines in the upper bank must either use indexes
or utilize the lower bank for data, constants, and
switches. LDX and STX are essential for indexing
procedures when extra index gzroups zr: annloyed,
But LDX and STX can only access the lower bank, It
is very important to remember this fact whendesign-
ing subroutines for the upper bank, Therefore,
constants should always be in the lower bank,
Subroutines in general contain their own constants and
working storage areas. If they are to be assembled
into the upper bank, they must employindexesto refer
to such values, and they must do so without LDX and
STX. One of two rules is necessary: either subrou-
tines are located inthelower bank, or else subroutines
are written to employ a specific index group, whose
absolute core locations are used in LDA and STA in-
structions with LDX and STX prohibited.

16K Memories and Prior Software

Subroutines which have been written for the GE-225
with 8k memories in mind must usually be modified in
order to function properly with 16k memories. There
are several reasons for this:

1. Negative indexing, if used, is accomplished by
simply adding the 2’s complement of the desired

5

decrement so that a carry is generated into bit
position 6. This bit is effective during address
modification because bits 5 through 19 are trans-
ferred during modification. Programs which use
negative indexing do not perform properly when
they are run on 16k systems.

2. The STO instruction can be employed extensively
to set up data buffer addresses in pertinent com-
mands in input-output subroutines. STO does not
handle 14-bit addresses, so that such routines
must either be modified or else be restricted to
buffers in the lower 8k bank.

3. Subroutines usually contain their own constants
and working storages, and do not access them
with the aid of index registers. They, therefore,
must be located in-the lower bank.

4. Subroutines which call other subroutines have not
been designed to go through a ‘branch relay’ pro-
cess. Therefore, nested subroutines must all be
placed in the same memory bank, presumably the
lower bank.

5. Indirect arguments are often processed with the
use of the STOinstruction. Subroutines which have
employed this mechanism either must be modified
or else must restrict their indirect arguments to
the lower bank.

6. Subroutines frequently have usedthe LDX and STX
instructions which can only access the lower bank.

7. In general, most existing routines and even basic
card formats assumed a 13-bit operand address
field. The 16k memories require fourteen bits for
the operand address field.

Programming for 16K Memories

The following list represents a summary of important
points to be remembered when programming the GE -
225 with a 16k memory:

1. Unindexed instructions, such as LDA, STA, and
ADD, access the lower bank only.

2. Operand addresses of MOV and controller com-
mands cannot be indexed but contain the full 15-bit
direct addresses.

3. . Some subroutines work only in the lower bankand
some only in index group zero.

4. An SPB instruction does not cross the memory
interface (lower-to-upper or upper-to-lower) di-
rectly.

5. Subroutines and other program elements mustnot
straddle the memory interface; thatis, they should

e
L Lrﬂ

> D%

(’ﬁﬂ

(
3

V-40

October 1963

be located entirely in either the lower or upper
bank (subject to the restriction in item 3 above).

6. Instructions LDX and STX always function as if
only the lower bank were present.

7. STO stores only 13-bit operand address fields.

PROGRAMMING CENTRAL PROCESSOR
OPERATIONS

Figure 5-7 illustrates aportion of the flow charting for
a rejected parts cost program. GAP ‘coding sheets
corresponding to that portion of the flow chart are
shown in Figures 5-8 through 5-11. The coding shown
was chosen to illustrate typical usage of central pro-
cessor instructions rather than to show recommended
methods for programming specific problems.

In Figure 5-8, lines 2 through 10 initialize the input
and cost areas by storing zeros in the affected loca-
tions. Note the use of index word 2 to loop through
lines 4 through 6 until the entire block of 200 locations,
starting with symbolic address APART, is filled with
Zeros.

In Figure 5-9, lines 2 and 3, SW#3 is interrogated. If
SW#3 is OFF (contains zeros), calculation of DAREA
parts follows; if SW#3 is ON, the BNZ in line three
transfers control to BYPASS (line 3, Figure5-10),
DAREA calculations are skipped, and EAREA calcula-
tions are made.

Line 20 of Figure 5-9 shows a typical method for
exiting from the main program to a subroutine after
making provision for return to the exitpointupon com-
pletion of the subroutine. The SPB NPRIBD causes
an unconditional branch to a Binary-to-BCD conversion
routine beginning at symbolic location NPRIBD (not
shown) and causes the P counter contents (location of
the SPB) to be placed in index register 1. The final
instruction of the NPRIBD subroutine is a BRU 0001,
modified by index register 1, which returns control to
the instruction following the SPB.

Following the EAREA parts calculation in Figure5-10
is a test for overflow. Ifanoverflow condition exists,
line 11 causes the control location to be stored in modi-
fication word 1 and control transfers to OVRFLO, line 2
of Figure 5-10. After overflow recovery the BRU 0002,
modified by index word 1 returns to the main routine,
line 13, Figure 5-10,

(o2
TRTal
3
x5

\5)
&

V-41

T

Zero Input
and
Cost Areas

J

W#3

4
ON SA OFF
<o >

«

4

Calculate
EAREA Cost

|

Adjust Cost
—»ETOTAL

4

Calculate
AREA#2 Costs

BOV

YES

OVERFLOW
SUBROUTINE:
Construct as

Double Length

Store Result
——» TEMP

!

Set SW#4
ON

NO

|

Calculate
DAREA Rejected
Parts-Total

Cost—»DTOTAL

Calculate
Average DAREA,
Rejected Part
Cost

SUBROUTINE:
Convert DAVG
from Bin to BCD
— DAVG

v

Continuation

Figure 5-7. Rejected Parts Cost Flow Chart

V-42

GAP Coding:

V-43

o GE CODER . iﬂ(v;éxgted}}g;#tzs Cost r“{/’g/SS ::6250
Symbo! Opr Operand X REMARKS Sequence
Vo2 «; 5, 6|8 9 ¢ lf_'g'i_,‘tj'ﬂ,“w”pu,‘" .2.?_.,3.]...,.:—: N o 75]7e (77 78 (75 |60
1 ORG[1 000 MAIN PROGRAM ORIGIN 1.00.0]
2B TART |[DLD|ZERO -] 1.0.05
3 S.TA|2, 1,0.1.0
4 DST/APART 2 1,015
Sy I NXj2. , 2 o 1020
6 BX L2 00 2 B - 10,25
7 B.R U * - 3 , R . 1,0,30
8 LDX|[ZE RO 2 - N 1,035
9 DST|ACOS T . | 2| ZERO COST AREAS 1040
10 I NX|2 2 1,045
11 § §)
Figure 5-8. RPC Program - Initialization
GAP Coding:
5 DATE PAGE
™ e copEr 1 Rejected Parts Cost RTINS
Symboi Cpr Operand I x REMARKS Sequence
12 sT «T 6] e s o [tofvalaslvalvs]vejr7|ve]relz0] 30 VA ETREERETRETREY]
1 'L.D.X|Z.E.R O |4 | ZERO INDEX WORD TWO 1,2 5,0
2) . |L.DAlSW #3) SWITCH NO. 3 1.2 5.5
3 B N ZIBYP ASS. SKIP DAREA COST 1.2,6.0
4 LDA[# DPAR.T NUMBER DAREA INDIVIDUAL PARTS 1.2.6.5
5 , N E G| . (L CONVERT TO TWO’S COMPLEMENT FORM 1.2.70
6 . |S.TO|LOOPD, ., . SET UP NUMBER TIMES THRU LOOP 1,2.7.5
7i{pcAaLC L.D A|D P ART, 2 | NUMBER OF EACH PART REJECTED 1,280
8 M A Q| .) . 1,2, 8 5
9 . _ IMPYDCOST |2 | COST PER REJECTED PART 1.2,90
10 X A.Q L) 1,2.95
11 ADDIDTOTAL 1,3,0.0
12 S, T AIDTOTA,L, TOTAL COST DAREA REJECTED PARTS 1,3,05
13 . I.NX|1, X . L l2 1.3,1.0
141100 PD |B.X. L0, e o 2 ,1,3.1.5
15 B, R U/DCALC, | 1,3.2.0
16 ‘ mMaoQl . o, 1.3.2.5
17 D.V.D|# DPAR,T, . CALCULATE AVERAGE DAREA COST ,1.3,3,0
18 D AD|{ADJ U,S,T ADJUST $ 1,335
19 . IM.A.Q e 1.3.4.0
20 . |S, P BINPR I BD, , !1]|BIN-BCD CONVERSION ROUTINE 1.3,4.5
21) STO{* + 3 1,3.5,0
22 ., lapbo o . . . 1.3,5 5
23 . STO[* +.8, . . . 1.3.6.0
26 . L,D.AlO, , , | , AVERAGE COST DAREA REJECTS ,1,3.6.5
25 STAIDAVG . 13,70
Figure 5-9. RPC Program - DPARTS Calculations
BT, HIE
IS

GAP Coding:

PROGRAMMER PROGRAM Run #2 OATE PAGE: 1]
GE Coder Rejected Parts Cost 1/9/63 or 20
Symbol Opr Operand X REMARKS Sequence
W[2] s] a] o] s [[® 1o]iz]va, tajss[te{17 s 1elz0]31 75 [7e [77 78 [79] 40
.l D alo, . . 1.3.7.5
STADAVG +.1 1.3 8.0
BYPASS|LDA|EPART, NUMBER EAREA PARTS 1,3,8.5
) M. A Q| |))) 1.3, 990
M P YIECOST,) COST PER PART EAREA 1.3.95
X A.Q N 1,4,00
A DDEADJ, | | EAREA ADJUSTMENT 1,405
S TAIETOTAL, . TOTAL ADJUSTED COST EAREA REJECTS 1,410
N A DD AREAS# 2 | CALC AREA#2 COSTS 1,415
B OV L 1,420
‘ SPB|OVRFLO 1 | OVERFLOW SUBROUTINE 1.4,2 5
. B,RU|# 2C. 0S8, T, 1,430
. DSTITEMP | | TEMPORARY STORAGE 1.4 35
) LDAONE | | 1. 4.4 0
ST.A|SW. # 4, . SET SWITCH 4 ON 1 4.45
B.RU/#.2C.O0S.T, ., 14,50
. (r . - P
D P ART, B, S,8|3 0 | ; N
. — R EM e CONSTANTS AND SWITCHES ,1. 7,35
ZERO, [DDC|O, A . . 1.7.40
ONE, ., , |IDEC|Y, , . , , | 1,7, 4.5
ADJ US.TID.D C|5 0.0,)) 1.7.50
S W . # 2 D E Ci0 . .1, 7,55
S W #.3 D E C[0 L . 1,760
S W_# 4 D E C|0 1 76 5
Figure 5-10. RPC Program - EPARTS Calculations and Constants
GAP Coding:
PROGRAMMER PROGRAM DATE PaGE 4&U
GE Coder , Rajnrﬁiﬂl ﬁszn-fq Cost I 1/9/63 or 20
Symbol Opr Operand X REMARKS Sequence
112 3 a' sl ef® e 0 lz"‘:mlt;'s;le;-’gu;‘izc K } 7576 77 . 78 V79, 8¢
L __|r.E M| | .| | OVERFLOW SUBROUTINE 2.4 0.0
OVRFLOI|SRDI1 , S 2.4 0
cC HS| ‘ 2. 410
S RD|1.8_ . - 2.4.15
B R U|2 1 EXIT . 2.4.2 0
S BRISTR.I1IP, . | BCD - BIN CONVERSION ROUTINE 2.4.25
S BR|NPR.I B,D, _ BIN - BCD CONVERSION ROUTINE 2 4.3 0
E NDISTART o o

Figure 5-11. RPC Program - OVRFLO Routine

BE-229

V-44

SECTION VI

CIRECT INPUT-OUTPUT OPERATIONS

GE-225 peripheral units can gain access to memory
either through the M and N registers or through the
controller selector and then the M register, as shown
in Figure 6-1. Peripherals connected to the M or N
register are deemed to have direct access to memory
and include the paper tape reader-punch, console type-
writer, card reader, card punch, and the console
switches. Operations involving these units are dis-
cussed in this section. Other peripheral operations,
such as those involving the MRADS, high-speedprinter,
magnetic tape handlers. document handlers. and
Datanet-15 terminals, are coveredin the section, Con-
troller Selector Opecerations.

CONTROL CONSOLE OPERATIONS

The control console is a control center from which the
GE-225 operator has both manual control of processing
and visual representation of the operating status of
various registers and peripheral units.

Manual control includes the initial reading into memory
of the program, starting program execution, and
(as required) interrupting operation for checking or
other purposes, Manual control is accomplished

through the switches described on page Vi-12, Visuaj

CENTRAL PROCESSOR
: ST T T T T
|]
Core l
! Memory]
P e 1S
| | |
[L I [
| | /
: N Q Regl AU > RB M Reg : } Cardh :
I Reg A Reg °e | : Punc I
LT __ ___ | | /] l
JR B -T- , Card |
’ Reader |
Console !)
Switches il e
&
Indicators Controller DIRECT ACCESS
Selector

m
PT Punch
Console

Typewriter

DIRECT ACCESS

|

]

l

]

!

I

]

| \

, PT Reader
' N,
f

i

i

|

]

]

L

To and from
Peripheral
Controllers

Figure 6-1. Units Directly Accessing Memory

ANTE
[E15 o 99
{ LN/

VI-1

October 1963

representation of register contents and status of oper-
ational units is provided by various lensed lights,
which are also described below, The control consocle
consists essentially of a control and anindicator panel,
as illustrated in Figure 6-2, The upper two-thirds
of the panel contains most of the indicators, although
many of the switches in the control position serve
as indicators as well,

Alarm Indicators

At the top left of the console panel, Figure 6-2, are six
alarm indicators. Theseareturnedonifvarious errcr
conditions are detected during programoperation. All
alarm indicators exceptthe PRIORITY alarmare reset
(turned off) by the RESET ALARM switch.

PRIORITY ALARM. This alarm is turned on under
any of the following conditions:

PARITY ALARM. If the STOP ON PARITY ALARM
switch is on when a parity error is detected, the cen-
tral processor will halt. The PARITY alarm can be
turned off by pressing the RESET ALARM switch or,
aithough not a common practice, by programmed
instructions. The PARITY alarm is turned on under
any of the following conditions:

1. The memory-checking circuits of the central pro-
cessor detect a parity error while the AUTO/
MANUAL switch is in the AUTO position.

2. The parity checking circuits associated with the
paper tape reader detect a parity error.

3. A parity error is detected as information is re-

ceived from a controller through the controller
selector.

OVERFLOW ALARM. The central processor doesnot

1. The AUTO/MANUAL switch is in the MANUAL halt on an overflow alarm. The alarm may be reset
position. automatically several times during a normal MPY in-
struction. The indicator can also be turned off by
2. The STOP ON PARITY ALARM switch isengaged depressing the RESET ALABM switch or by pro-
and a parity error is detected. grammed instructions. The OVERFLOW alarm is
turned on under any of the following conditions:
3. The central processor does not have priority
(access to memory). 1. The capacity of the A register is exceededduring
arithmetic operations.
4, A card punch or card reader alarm condition has
occurred. 2. Anillegal divide is attempted.
v N M] M n
[punre| [aven || om0 11 zcno :E:*;zﬂ} [fg{g’; i e ||
L U U L L U L
INDEX GROUP
700 Q00000 OO0 C OO0 OO0OP
I 8 9 o] il 12 13 14 5 16 ¥ 8 19
= =N A 7N AN A A A\ A I
10O 0OCOO0O0 OO OO0 OO0 OO0
o ' 2 3 4 5 6 7 8 9 [le] i i2 13 14 5 6 7 B 9
ACOOQOQOOOO OO 200 Q00 O @)
© 4 S 6 7 8 9 10 1l | 3 4 5 6 7 8 1]
- = o SN - - - A
O. 0 000 OO0 COC OO0 OO0 OOCH
PR - - n SRRy
oN P\rnrsn Loao | {RESET AuTe INSTR E 1; rf 1 Aany
I | acarm | | camo ° ' P STRRT L Awd a2 NGRM
;:s lu MANGAL| | 25D U - F |
E
Figure 6-2. The Control Consol: Panel
o OIS
BE=a99E
Ulls (Gae

October 1963

3. A 1-bit is shiftedoutof bitposition1 of the A reg-
ister during a shift left operation.

CARD PUNCH ALARM. This alarm is turned on any
time a WCB, WCD, or WCF instruction is attempted
when the card punch is not in the ready condition. As
already noted, the PRIORITY alarm alsc comeson, and
the central processor halts. The alarm can be reset
only by pressing the RESET ALARM switch.

ECHO ALARM. This alarmisturnedonwhen the cen-
tral processor makes anunsuccessful attempt to select
a controller through the controller selector. The ECHO
alarm light can be turned off only by depressing the
RESET ALARM switch, The alarm indicates any of

the following conditions:

1. The selected controller is busy (delay not pro-
grammed).

2. An erroneous address was programmed, the ad-
dressed plug is not installed.

3. Controller is off line.
4. DPower is off to controller.

5. Controller is malfunctioning.

CARD READER ALARM. Thisalarmisturnedon when
attempting to executean RCB, RCD, or RCF instruction
while thc card reader is not in the ready conditien,
When the CARD READER alarm comes on, the
PRIORITY alarm also comes on and the card reader
and the central processor halt. The alarms in this
combination are reset only by depressing the RESET
ALARM switch. The reader can be ‘not ready’ for
any of the following reasons:

1. Card reader is not turned on.

2. Input hopper is empty.

3. A card is not positioned on the sensing platform.
4. Reader is busy (already reading a card).

5. A misfeed or card jam occurs.

Ready Indicators

The upper right corner of the control console contains
the ready indicators which are green. When the card
punch or card reader is ready to receive information
these indicators are on. If the equipmentis not ready
for operation, an attempt to use the equipment will set
an alarm indicator and hait central processor oper-
ation. The standard ready indicators are:

CARD PUNCH READY, This light reflects the status
of the card punch. If the cardpunch is not in an oper-
able condition when a punch instruction is attempted,
the ready light will be off and the CARD PUNCH and
PRIORITY Alarms will come on. The more common

)
|

[

——
>

1

1

conditions affecting the operating status of the card
punch are:

1. An empty input hopper.
2. A full stacker.

3. A misfed card.

4. A jammed card.

5. A punch cycle.

6. An improperly seated chip box which inhibits
the turn on of power.

CARD READER READY., Turn onofthisindicator de-
notes the ready state of the card reader. Execution of
a read instruction while this lamp is off causes the
CARD READER and PRIORITY Alarms tolight andthe
central processor to halt. The following conditions
affect operating status:

1. An empty input hopper.
2. A read cycle.

3. A misfeed.

4. A jam.

N REGISTER READY. This lamp indicates the readi-
ness of the N Register to receive input or transfer
output data. This register is used by the typewriter,
paper tape reader, or paper tape punch. If an illegal
code is placed in the N Register and a TYP command
is given, the N REGISTER READY light goes out and
stays out until a space key is struck.

AIM (AUTOMATIC INTERRUPT MODE), If the GE-225

system configuration includes the optional Automatic
Program Interrupt device, then this light (when ON)
indicates that control has been transferredto an execu-
tive routine for servicing one or more peripherals
in a ready condition,

8K. This is the only red lampin the group. When lit,
this lamp indicates that only an 8K memory is in use.

DECIMAL MODE. IftheDecimal Modeoptional feature
is included, this indicator will come on when the com-
puter operates in the decimal mode.

MODIFICATION GROUP INDICATORS

The five INDEX GROUP display lights are located below
the alarm lights and to the left of the P counter display
lights. The lights are numberedone throughfive from
right to left. These five lights, read as binary digits,
indicate the modification word group that has been
selected by the program (Groups 0 through 31). Each
group has four registers, 0 through 3. When all lights

o
>
NS

October 1963

are off, group zero is available without special selec-
tion. Only modification word group zero is standard
on the GE-225 system; additional groups areoptional.
Any time a light is on in the index group, an index
group other than zero has been selected.

P Counter Lights

The fifteen display lights for the P counter are located
to the right of the INDEX GROUP indicators. They
are numbered, left to right, from 5 through 19, and
are arranged in groups of three to facilitate reading
the binary numbers directly in octal notation. These
lights show the location of the instruction which
appears in the I register. The P counter is useful
when debugging a program and when checking for cor-
rect operation after a manual branch command to a
particular program location.

Save P Switch

This switch permits manual return to a particular
position in the program after interruption to make a
correction, such as to introduce an instruction manu-
ally. The SAVE P switch, in the down position, pre-
vents the P counter from incrementing. When the
SAVE P switch is returned to the up (normal) position
after manual operations, the program is ready to
continue from the place of interruption. When the
SAVE P switch is in the downposition during the auto-
matic mode of operation, the instruction in the I
register is executed repeatedly.

| Register Lights

The 20 I register display lights are located below the
INDEX GROUP and P counterlights, andare numbered
from O to 19. They display the contents of the instruc-
tion register. Like the other register display lights,
they are easily readinoctalnotation. Following either
a program halt or a change of the AUTO/MANUAL
switch to the MANUAL position the I Register displays
the next instruction to be executed.

A Register Lights

The 20 A register display lights are located below the
I register lights. They are numbered from 0 to 19,
and display the contents of the A register. These are
also readable in octal. By usingthe XAQ switch (des-
cribed later), the A register lights can be used to
display the contents of the Q register. All data and
instructions fed manually into the central processor
go through the A register, and are entered by use of
the option switches.

Option Switches

The 20 option or control switches justbelow the A reg-
ister display lights are used to feed information into
the A register. Each of these toggle switches enters

information into the corresponding A register position.

The numbers 0 through 19 below the A register lights
also apply tothe switches. When movedup, the spring-
loaded switches return automatically to the center
(normal) position. When moved down. they remain in
the down position until manually returned to the normal
position.

When the central processor is in the manual mode,
moving an option switchup causesa 1-bitto be put into
the corresponding position of the A register. This is
indicated by an A register display light. Moving an
option switch up has no effect when the central proces-
sor is in the automatic mode.

Moving an option switch down when the central pro-
cessor is in the automatic mode causes a 1-bit to be
put into the corresponding position of the A register
at the time of a programmed RCS instruction. Speci-
fied switches are leftin the down position while running
certain routines and while generating GAP assemblies.

RESET A Switch

This switch is to the left of the option switches. It is
effective only when the central processor is in the
manual mode. Like the option switches, it is spring-
loaded in the up position, but not in the down position.
When moved either up or down, it clears to zero the
contents of the A register, and turns off all of the A
register display lights.

Control Switches

A strip of switches along the bottom of the control con-
sole, and the SAVE P and RESET A switches just des-
cribed, give manual controlover the central processor
and certain functions of peripherals. Eight of the
switches are the pushbutton type that are pressed
momentarily to be activated. Three double-label
switches are the rocker type with two positions. For
example, the AUTO/MANUAL SWITCH isplacedinthe
AUTO position by pressing the end thatis labeled AUTO
and leaving that end in the depressed position.

PWR. ON. Depressing the PWR ON pushbutton turns
on DC power to the central processor, the control con-
sole, and the 400 card per minute reader. It is also
used as general reset for the central processor. The
pushbutton is alsoanindicator, for it lights when power
is on.

PWR, OFF, When DC power is on, depressing this
pushbutton turns it off.

RESET ALARM. This switch is effective only in the
manual mode. Depressing the pushbutton clears any
existing alarm condition. It turns off the alarm lights
and resets flip-flops so that the central processor can
continue operation. It does not clear the cause of the
alarm.

LOAD CARD. Thisswitchiseffectiveonlyin the man-
ual mode. Depressing the pushbutton initiates card
reader action and causes the reader to gothrough one
load and read cycle.

RESET P. This switch is effective only in the manual
mode. Depressing the pushbutton clears the P counter.

AUTO/MANUAL. This two-position, rocker switch
selects either the automatic or the manual mode of
operation for the central processor. When AUTO is
depressed, the central processor isplacedinthe auto-
matic mode, and instructions are processed in a con-
tinuous sequence under program control. When MAN-
UAL is depressed, the central processor is placed in
the manual mode, and the program is executed one

step each time that the START switch i5 depressed.
Setting the AUTO/MANUAL switch to MANUAL during

automatic operation causes the computer tohaltoper-
ations at the end of the instruction or word being
executed. Putting the central processor in the manual
mode causes the PRIORITY alarm light to come on.
The following operations can be performed only when
the AUTO/MANUAL switch is set to MANUAL:

1. Clear or set information into the A register with
option switches.

2. Clear alarm conditions with the RESET ALARM
switeh

3. Reset the P counter with the RESET P switch.

4, Load a card manually, using the LOAD CARD
switch.

5. Transfer the contents of the A register to the I
register using the A to I switch.

6. Exchange the contents of the A and Q registers
using the XAQ switch.

INST/WORD. This is also a two-position, rocker

switch which is effective only in the manual mode. It
determines the length of the cycle of the central pro-
cessor during manual operations. When INST is
depressed, the central processor executes one com-
plete instruction each time the START switch is
engaged. When WORD is depressed, only one word
time is executed each time the START switch is en-
gaged.

A—>1(Atol). This switch is effective only in the man-
ual mode. Depressing the A to I pushbutton transfers
the contents of the A register, including the sign bit,
to the I register. The contents of the A register re-
main unchanged, and can be cleared by toggling the
RESET A switch. The A toIswitch can be used to load
an instruction manually into the Iregisteror to correct
an instruction already there.

XAQ. Thisswitchis effective only in the manual mode.
Depressing XAQ causes an exchange of information
between the A and Q registers. That is, the contents
of A go into Q and the contents of Q go into A. This
permits observation/modification of the contents of the
Q register. By using the RESET A switch and the
option switches, the operator canclear andcorrectthe
contents of the Q register while saving the contents
of the A register.

STOP ON PARITY ALARM/NORM. This is a two-
position, rocker switch. It determines the response
of the central processor to the detection of a parity
error. When STOP ON PARITYALARM isdepressed,
the central processor halts each time a parity error
is detected and the PARITY and PRIORITY alarm
lights come on. When NORM (normal) is depressed,
the central processor continues operation, regardless
of parity errors, and the only indication of a parity
error is that the PARITY alarm light is turned on.
The setting of the STOP ON PARITY ALARM, NORM
switeh is determined bv the programmer. If he has
included remedial action throughout the program for
parity errors and provision for resetting the PARITY
alarm light, he can specify the settingofthe STOP ON
PARITY ALARM/NORM switch to the NORM position.
Otherwise, he can have the program halt at time of a
parity error by specifying the setting of STOP ON
PARITY ALARM.

Manual Operating Procedures

The option switches on the console permit the manual
entry of instructions and data; the register indicators
permit the display of the contents of memoryand reg-
isters.

MANUAL LOAD AND EXECUTION OF INSTRUCTIONS,

Any instruction that is meaningful to the GE-225 sys-
tem can be manually loaded and executed as follows:

1. Set the INSTR/WORD switch to INSTR.

. 2. Set the AUTC/MANUAL switch to MANUAL.
START. In the automatic mode, depressing the START
pushbutton initiates action. After the operationbegins, 3. Toggle the RESET A switchto clear the A register.
the program runs automatically and depressing the
START switch again has no effect. Inthe manual mode, 4. Load the octal equivalentof the instructioninto the
depressing the START switch causes the execution of A register.
one instruction or one word time, depending upon the
setting of the INSTR/WORD switch. 5. Depress the A to I switch.
Y

VI-5

Toggle the RESET A switchandloadany necessary
data into the A register.

7. Depress the START switch.

The central processor will execute the one instruction
and halt.

LOADING DATA MANUALLY., When data is to be
loaded into memory, the following procedure isuseful:

1. Set the INSTR/WORD switch to INSTR.

2. Set the AUTO/MANUAL switch to MANUAL.

3. Toggle the RESET A switch.

4. Load an STA instruction in the A register (Store
A is an octal 0300000) with the memory address
where the data is to be stored replacing the right-
hand digits of the STA instruction.

5. Depress the A to I switch.

6. Toggle the RESET A switch.

7. Load the octal equivalent of the data to be stored
into the A register.

8. Depress the START switch.

Load additional words by repeating steps 3 through 8.

EXTRACTING DATA FROM MEMORY. The contents of
a given memory location can be displayed by following
this procedure:

1. Set the INSTR/WORD switch to INSTR.

2. Set the AUTO/MANUAL switch to MANUAL,

3. Toggle the RESET A switch, thus leaving an LDA
instruction in the A register.

4. Load the memory location of the information de-
sired into bit positions 7 through 19 of the A
register.

5. Depress the A to I switch.

6. Depress the START switch.

The contents of the memory location specified in step
4 now appear in the A register.

Control Console Instruction

This instruction permits operator intervention. Itcan
be used in programs in which alternate pathsof oper-
ation are available. Job requirements may vary daily
for one type of run, necessitating that the operator
determine which path or leg of the program is to be

followed. For example, one program path may be for
card input and tape output, while the alternate path
provides for both tape and printer output.

RCS 2500011 Word Times: 2

Functional Description: READ CONTROL SWITCHES.
Each of the 20 console control switchesforthe A reg-
ister is examined. If a switchisdown (ON), a 1-bit is
placed in the corresponding position of A; otherwise,
the corresponding bit position of A will notbe altered.

Example: Read the control switches and modify the A
register accordingly. Assume thatthe A register con-
tains a BRU 0000 instruction and the control switches
are set to 0001633,

GAP Coding:
Symbol Opr Operand X
1] 2] a] a[s e[o] o 1o]va]ta]va]as] 16 17 1e 1920
1 RACAS I i e i + 1 1

Register Contents in Octal

A
2600000

Before execution:

After execution: 2601633

Comments: RCS is used to interrogate the control
switches during processing. In most applications, the
A register should be cleared to zero before RCS is
executed.

During AUTOMATIC operations, the A register
switches on the console have no effect on the contents
of the A register, except during the time that the RCS
command is in the instruction register. At that time,
each of the 20 console switches is examined.

CONSOLE TYPEWRITER OPERATIONS

The console typewriter, Figure 6-3, is primarily an
output device, which is normally located on the control
console desk. Itcanbeusedtoprovide brief messages
to the operator during program processing, or it can
serve as a more extensive output medium in lieu of a
high-speed printer.

The typewriter receives and types one character at a
time from the N register. The sixposition N register,
in turn, is loaded withone character ata time from the

blE-225

VI-6

Figure 6-3. Console Typewriter

A register. The typewriter can print ten characters
per second under program control. Typewriter capa-
bilities include:

Red printout

Black printout

Print characters 0 through 9, A through Z, minus,
period, slash, dollar sign, and comma

Carriage return

Space

T oYl b
Tabulation

Error messages are normally programmed toprintin
red. Figure 6-4 illustrates typewriter characters and
actions and the corresponding octal codes.

Messages produced through the console typewriter can
serve as a log of program performance. For this pur-
pose, the typewriter can be programmed to record
program identification, list magnetic tape labels, and
provide instructions to the GE-225 operator. Operator
comments can be inserted manually whenever the GE-
225 is in a halt status (AUTO or MANUAL).

Required carriage returns must alwaysbe specifiedin
the program. If returns are omitted, typing continues
to the right margin stop; the carriage then halts, but
typing continues, resulting in illegible messages.
Typeouts involving tabulation require manual inter-
vention. The operator must manually set requiredtab
stops before running the program.

The typewriter shares accessto memory through the N
regigter with Hr\e

CHaSiTi Wil Wl

o vroadar and wimmeahk

rap Layc reaaer ana puncin.

paper Thus,
if the N register is engaged because of a type oper-
ation, paper tape read or punch operations must be
delayed until the N register is released. Also,
electrical power can be on for only one of these three
units at one time; if power is on for the paper tape
reader, for example, then power is off for the paper

tape punch and the typewriter. This permits an

5

m 1)

economy in the assignmentof operation codes; the code

25000064 is used for type, read paper tape, and write
(punch) paper tape.
Typewriter Octal
Character p_.qmva;em

or Action of BCD Codes
00
01
02
03
04
05
06
07
10
11
21
22

23
24

25
26
27
30
31
41
42
43
44
45
46
47
50
51
62
63
64
65
66
67
70
71
40
60
13
. 33
$ 53
Carriage
Return
Print Red
Print Black
Tab

HXR S~ IQOHMEOOQTN > ©O030 0 hWwnNd ~O

k3
Fa

I NKXS<aHuDO™Oo 2

Space
/

37
72
75
76

Figure 6-4. Typewriter Character Set

Programmed use of the typewriter requires that the
typewriter power on switch (under the right front
corner of the typewriter) be turned on manually. In
addition, at least 200 milliseconds before the first
character is to be typed, a typewriter on instruction

[F\\:S’
&

ED

g

IS

VI-7

must be given; the unit will remain on until a subse-
quent instruction (such as OFF, RON, or PON) turns
off typewriter power.

Next, the N register must be testedfora ready status;
if ready, then a shift to move the character to be typed
into the N register may be given, followed by a TYP
command. This sequence of test, shift, and type must
be repeated for each character to be typed.

An optional feature enables the typewriter tobe used as
an input device, in addition to the described output
function. The input feature enables one BCD character,
as selected by a typewriter key, to be placed in the N
register. The character can then be shifted into the A
register for subsequent processing as desired.

The input feature is enabled by the operation code

2500016g, which also serves as the halt paper tape
(HPT) instruction. Normally, HPT has meaning only

when the paper tape reader is on and is moving tape.
Because typewriter andpaper tape reader cannotoper-
ate concurrently, there is no disadvantage to dual use
of the 25000164 code.

To use the optional typewriter input feature, the type-
writer must be ON. Issuinga HPT instruction enables
the typewriter keyboard and causes the N register to
become not ready. Depressinga typewriter keyplaces
the corresponding BCD character into the N register
and returns the register to the ready state.

Typewriter Instructions

TYP 2500006 Word Times: 2

Functional Description: TYPE. If typewriterpoweris
on, one BCD (six-bit) character in the N register is
typed. The contents of N are unchanged.

Example: Examples of all typewriter instructionsare
provided in the coding sample following the last
discussed typewriter instruction.

Comments: Execution of a TYP instruction does not
affect the contents of any aritumetic register.

The TYP instruction is normally preceded by a shift
of data into the N register from the A register, as well
as by a test-and-branch (BNR or BNN).

The N register becomes busy during the execution of
TYP and remains busy until typing of the character is
completed.

No typewriter keys are activated when an attempt is
made to type an illegal character (that is,a character
not included in the typewriter character set as shown
in Figure 6-4); in addition, the N register goes busy

and must be cleared by manually typing a character or
depressing the space bar.

Central processor operation is not delayedby the exe-
cution of a TYP. The next sequential instruction is
initiated in the following word time, although typing may
not be completed for several milliseconds.

The TYP instruction is used to control typewriter
action other than typing. If the N register contains one
of the following codes, the indicated actions occur:

N Register
Contents (Octal) Action
60 Space
78 Tab
37 Carriage Return
72 Print Red
75 Print Black

TON 2500007 Word Times: 2

Functional Description: TYPEWRITERON. The type-
writer power is turned on (if the typewriter power on
switch is on) and power for the paper tape reader-
punch is turned off.

Example: Examples of all typewriter instructions are
provided in the coding sample following the last
discussed typewriter instruction.

Comments: To allow the typewriter motor sufficient
time to attain operation speed after a TON, a delay of
at least 200 milliseconds should be programmed before
executing a TYP instruction. However, if the TON is
given within 1 millisecond after turning off the type-
writer (with a programmed OFF, RON, or PON), no
delay is required.

Unless the typewriter power is already ON, failure
to program a TON instruction before TYP will cause
the N register to become and remain not ready,

OFF 2500005 Word Times: 2

Functional Description: POWER OFF. The power
supply for the typewriter and paper tape reader and
punch is turned off.

Example: Examples of all typewriter instructionsare
provided in the coding sample following the last dis-
cussed typewriter instruction.

Comments: After an OFF is executed, subsequent TON,
RON, or PON instructions will restore poweronto the

GE-228

October 1963

respective units. If power is on for any one of the
units (typewriter, paper tape reader, or paper tape
punch), it is off for the other two.

BNN 2516005 Word Times: 2

Functional Description: BRANCH ON N REGISTER
NOT READY. If the Nregisterisnot available for in-
put or output (that is, if a previous type, read paper
tape, or write papertape instruction hasnotbeen com-
pletely executed), the next sequential instruction is
executed. If the N register is ready, the second
sequential instruction is executed.

Example: Examples of all typewriter instructionsare
provided in the coding sample following the last dis-
cussed typewriter instruction.

Comments: The BNN instruction (or its counterpart,
BNR) is used to insure that the N register is ready
(not in use) before initiating a read or a punch paper
tape operation, as well as before type operations.

BNR 2514005 Word Times: 2

Functional Description: BRANCH ON N REGISTER
READY. If theN registerisavailable for input or out-

put {that is, if the iast type, read paper tape, or write

paper tape instruction has been completely executed),
then the next sequential instruction is executed. If the
N register is not ready, the second sequential instruc-
tion is executed.

Example: Examples of all typewriter instructionsare
provided in the coding sample following this instruction
description.

Comments: The BNR instruction (like its counterpart,
BNN) is used to insure that the N register is ready
before initiating a read or a punch paper tape oper-
ation, as well as before type operations.

Typewriter Sample Coding

Prepared output routines are available to assist the
programmer in preparing coding for typewriter print-
outs. These routines provide for single or multiple
word output, red or black ribbon, punctuation, tabu-
lation, and carriage returns.

To illustrate the use of the various instructions related
to typewriter operations, a simple example is shown

fal

iy, Figiira g
ikl L AQUIT U9,

g ———

—
DATE PAGE.

PROGRAMMER PROGRAM or
Symbel Opr Operand X REMARKS Sequence
v[2] s]] s] els o ro]rz]] 14] 8] vs]t7 s 1s]z0] 3V Te 770 [P0 [0

‘IPREP T .O.N TYPEWRITER ON A
* L.D.Z .\ . R
3 S, T Al) INITIALIZE X REGISTER 1 L
‘ . I.N.X|1. 1
* B.X L{1.58.7 1| LOOP FOR 200 MS
¢ B.RU[PR.E.P.+.3 .
4 LD .2 e .
* S TA|2 . INITIALIZE X REGISTER 2 .
*|IEYPE L.D.A|T.A.X, A TYPEWRITER MESSAGE (3 CHARS.) e
° S.R.,D 2 . SHIFT 2ND TWO CHARS. TO Q
" B NN .
1z B RU|* - 1, TEST N REGISTER e
' S.A/Ni6 ; MOVE CHAR. TO BE TYPED TO N e
" T.Y. P , L TYPE CHARACTER i
. S.L.Di6, ., . | N POSITION NEXT CHAR. IN A
e I.NXx[1 .« . . l2| COUNT CHARS. TYPED .
4 B.X.L{3, . ., . . . 2| IF LAST CHAR., EXIT R
b BRUTYPE+ 2, LOOP TO TYPE NEXT CHAR
" X I1.T I.D. AR, E. T U.R., N, CONTAINS OCTAI, 37
h B.N. N . . , . —
b BRU*. 1., TEST N REGISTER e N
= , Is.a.nl6, . . -
s T.Y.P| , . X OCTAL 37 RETURNS CARRIAGE X
b O, FF TURNS OFF TYPEWRITER POWER R 1
23

Figure 6-5. Sample Typewriter Coding

(o)
TRtal
a
RS
NS,
Gl

October 1963

As presented, the program assumes thatathree-letter
word to be typed is in symbolic location TAX and that
an octal 37 (carriage return) is in location RETURN.
Further, it is assumed that the manual power on
switch on the typewriter has been turned on.

Line 1 of the GAP Coding Sheet turns on the typewriter.
Lines 2 through 6 contain coding that sets up X reg-
ister 1 to operate as a counter, then counts through
the INX, BXL, BRU loop 1587 times to insure that at
least 200 milliseconds (to allow the typewriter motor

to reach operating speed) pass before a TYP is initi-
ated.

Lines 7 and 8 prepare X register 2 to operate as a
character counter during the following TYP operation.

The 3-character message (in BCD) isloadedinto the A
register (line 9) and then shifted right, 2 characters,
into the Q register in order to positionthe first char-
acter to be typed.

Lines 11 and 12 test the N register for ready status.
If it is not ready, the program loops until it is. Line
13 shifts a character into the N register and it is typed
(line 14).

X register 2 is incremented to indicate that the first
character has been typed (line 16), then tested to see
if typing is complete. If it is not, the program loops
back to line 11 and repeats the sequence until the
entire word (3 characters) has been typed.

Upon completion of typing, a carriage return (octal 37)
is loaded into A (line 20), the N register tested (line 20)
for ready, and (if ready) receives the return code.
Line 23, TYP, causes the carriage to return, and the
typewriter is turned off (line 24).

PAPER TAPE OPERATIONS

The GE-225 computer system can use perforatedpaper
tape asanon-line input and output medium. The reader
and punch are housed in one cabinet and consist of a
photoelectric reader, punch, and associated reader
and punch control circuits. Options exist as to the
combinations of paper tape equipment that canbe used.
These options are

1. Reader, spooler, punch

2. Reader, punch

3. Reader, spooler
4. Reader

5. Punch

The spooler has both a takeup spool and a spool for
rewinding the paper tape after completion of reading
or punching.

Paper Tape Reader

The paper tape readerisanon-line device that is capa-
ble of reading information from punched tape at two
speeds: 1000 characters per second, at a tape speed
of 100 inches per second, and 250 characters per
second at a speed of 25 inches per second. Ata
reading speed of 1000 characters per second, the tape
cannot be spooled and thus must be in strips, which
normally do not exceed 10 to 15 feet in length. This
speed, however, is excellent for loading programs
from tape into memory. The tape operating speed is
determined by a switch on the maintenance panel,
Figure 6-6, at the rear of the cabinet.

The GE-225 paper tape reader allows theuserto read
any tape punched with standardcharacter and sprocket
hole spacing. While the GE-225 system uses primarily
an 8-channel tape mode, the reader’s ability to read 5,
6, 7 and 8 channel formats assures maximum com-
patibility with all common paper tape devices which
use sprocket hole spacing for timing. A rotary switch
on the reader maintenance panel, Figure 6-6, selects
the channel type to be read. The paper tape reader
processes standard paper tape 0.004 inch thick with
the width varying with the number of channels as shown
by Figure 6-7.

Paper Tape Punch

The paper tape punch is an on-line output device that
punches paper tape alphanumeric information at the
rate of 110 characters per second (11 inches per
second). Ten characters are punchedper inchof tape.
The punch holds a roll of paper tape 8 inches in
diameter, 800 feet long, and 0.004 inch thick.

READER

%= T MANG AL REn D i 27 -

cata PONER PAPER Nt o B Saide
oSN 5

slee e @ «

CODE LEVEL ~
NORMAL SELECTOR

Figure 6-6. Paper Tape Reader-Punch Maintenance Panel

(o2)
[
)
D)
i

5 Channel 6 Channel

CHANNEL
|
L »l54 53 21
r——a-ooo 0o0oO0
PUNCHES | |
11"
16 »

7 Channel

8 Channel

I~

8 765458532

O o
< 1 >

Figure 6-7. Paper Tape Modes

The GE-225 paper tape punch comes in two models:

Model GA651C punches 6, 7 and 8 channel paper
tape as selected by a switch on the maintenance
panel.

Model GA651D punches 5 channel tape only.

Paper Tape Reading

When a paper tape read instruction is given, tape
reading is initiated under the control of the central
processor paper tape reader control logic. Figure
6-8. Information from tape is detected photoelectri-
cally when perforated tape passes hetween 9 phnto-

cells, or photoread heads, and a light source. Seven
of the nine photoread heads monitor the tape infor-
mation channels, or holes; one photocell monitors the
parity channel; and one monitors the sprocket channel.
How many information channels are used, and whether
a parity hole is to be checked, depends on the tape
mode, or format, to be read.

As each frame of information holes and the sprocket
hole (1 frame per character) passes under the photo-
read heads, light is detected if a hole is punched in a
channel. Once the leading edge of a sprocket hole is
detected, the information punched is automatically
placed into the N register of the central processor
through the read gates and a mode selection switch.
When the trailing edge of a sprocket hole is detected,
this informs the central processor that a character
has been loaded into the N register and is ready for
transfer to the A register. Atthispoint, an odd parity
check (odd number of bits punched on tape) is made if
seven or eight channel tapeisbeing read. No parity is
generated for iive or sixchannel tape. Refer to Parity
or Detection (helow) for additional data,

A read paper tape instruction initiates continuous
reading of data from tape into the 6-bit N register until
either a halt instruction is given or no more punched
characters are detected.

|
PAPER TAPE READER PAPER TAPE READER I COMPUTER
CONTROL LOGIC I
' |
! !
| ' A Register
| |
Photoread Spr ocket| PARITY |
Heads Hole | LOGIC |
l . | N Register
v | MODE
READ *
c I —_.}SELECTO !
l > GATES SWITCH
1 Frame of 3 l
Information | |
|

Tape Movement

Figure 6-8. Paper Tape Reader Control Logic

|
)

r-?j)
It
ju]
)
NS
(&

Data Transfer

During a read operation, once the leading edge of
a sprocket hole is detected by the photoread heads,
the N register becomes not ready, and a tape char-
acter begins filling the N register and continues filling
it until the trailing edge of the sprocket hole is
detected, When a character from paper tape fills
the N register, it must be shifted into the A register
before the next character arrives,

When reading is at the 250 cps rate, the N register is
not busy for 2 milliseconds during which the N regis-
ter must be emptied before the next character from
paper tape enters the register, When tape is read at
1,000 cps, the N register is not busy for 500 micro-
seconds,

In reading paper tape, the sprocketorfeedhole serves
as a timing source. A sprocket hole must be present
with every tape character before the character canbe
transmitted to the N register. The relative bit po-
sitions of a character on paper tape are unchanged
when the character is read from tape into the N reg-
ister and then shifted into the A register. The transfer
of data to the N register and then to the A register is
shown below:

5 CHANNEL

A Register

6789101112131
olol1Tol1T0 |
———

o ——

- —
N1 N2 N3 N4 N5 N6

Lo | 1||1[0]1l <—— N Register

2 1]<———Channel No.

O wm

Sprocket Hole

When reading paper tape in the five channel mode, only
five information channels (5,4,3,2 ond 1) are used in
filling the N register. As shown, onlv N register bit
positions 2 through 6 are used; bit position 1 is never
filled. Note also that there is noparity bit channel on
five channel tape.

VALID AND INVALID CODES. All code combinations
are recognized in five channel tapes. The presence
of a punch in the sprocket hole channel only, such as
for tape leader or trailer strips, is recognized as a
valid character and all zeros are transferred tothe N
register.

One significant difference in using five channel tapeis
that when three tape characters have beentransferred
into the N register andthen shiftedinto the A register,
bit positions 2, 8 and 14 of the A register contain
Zeros:

A Register
0123 7 8 9« 13 14 15«—>19
3rd Tape 2nd Tape 1st Tape

0 0/0|Character|0|{Character 0|Character

This is true because when a characteris read into the
N register, only bit positions 2 through 6 contain data;
bit position 1 automatically is filled witha zero. As a
result, when an SNA 6 instruction shifts N into A, all
six bits are shifted, including the zero. When tape
information is then converted into internal BCD code
and stored in memory, each of the three BCD char-
acters will occupy 6 bit positions in the normal manner.

6 CHANNEL

A Register
01'2345678910111213141516171819
Lolsfofafafofal [[T []]
|\ —

1

e, N

7 —
N1 N2 N3 N4 N5 N6

{1]o]1[1]0]1]e=——NRegister

o O O
5 4 S 3 2 1] <€<—— Channel No.

Sprocket Hole

When six channel paper tape is read, all six infor-
mation channels from tape enter the N register as
shown above. There is no parity bit channel in six

GE-229

October 1963

channel tape. All channels are used as information
channels when data enters the N register.

VALID AND INVALID CODES. All code combinations
are recognized in six channel tapes. The presence of
a punch in the sprocket hole channel only, such as for
tape leader or trailer strips, is recognized as a valid
character and all zeros are transferred to the N reg-
ister.

Shifting from the N register into the A register occurs
as shown below.

A Register
012 >17 8 —>13 14 19
3rd Tape 2nd Tape 1st Tape
0]0i{Character Character Character

7 CHANNEL

A Register

- N\
N1 N2 N3 N4 N5 N6 <———— N Register

lllpll [1 1o [1]

<«————— Channel No.

Parity Channel

Sprocket Hole

Seven channel tape contains six information channels
(1,2,3,4,6 and 7) and a parity channel (5). Tape feed
and timing utilizes the sprocket holes. When a seven
channel tape is read, bits are transferred into the N
register and occupy the bit positions shown. Note that
channel 5 is used only for a parity check and is not
transferred into the N register.

o

0)

rJ

3 O

The bit patterns of information punched on seven and
eight channel tapes are identical. The onlydifference
between the two tapes is that a punch in channel 8 of
eight channel tape causes all ones to be inserted into
the N register.

8 CHANNEL

Nl N2 N3 N4 N5 N6 «———N Register

101 111

1

8 76 548 3 2 1] «<————Channel No.

Sprocket Hole

A punch in channel 8 inhibits the setting of the tape
parity error check. This is necessary becausc parity
ls checkeu on edach character ioaded into the N reg-
ister. Because the N registerisloadedwith six 1-bits,
when a punch appears in channel 8, the parity bit is
incorrect. Therefore, a parity error wouldoccur if no
provisions were made to inhibit it.

ec

VALID AND INVALID CODES. Ineightchannel tape, a

punch in channel 8 only is a special character and is
valid. In both seven and eight channel modes, a punch
in all channels (1 through 7) isa delete code and is_not
transmitted to the central processor as a valid char-
acter.

A Register
012 78 —>13 14— —>19
3rd Tape 2nd Tape 1st Tape
Character | Character Character
Seven and eight channel tape characters shifted from
the N register into the A register are shown

If the photoreader detects either a delete code or
sprocket holes only when operating ineitherthe 7 or 8
channel mode, the N register goes busy, preventing
transfer of data to the A register. The N register re-
mains busy until a legitimate character is detected.

2 r

(572

VI-13

Even though paper tape reading involves the N and A
registers, other operations utilizing these registers
can be performed by inserting them between N-regis-
ter transfers by proper programming, However,
during this time, instructions not requiring use of
these registers can be performed by the central
processor,

Upper Case (Letter Shift)
Lower Case (Figure Shift)

Code Conversions

Some of the code configurations punched onpaper tape
do not correspond to the internal GE-225 BCD con-
figuration. Conversion of bits into BCD and the ar-
rangement of characters (6 bits each) into GE-225

Tape Character

Memory Character Memory Code

Tape Code LC ucC LC UP LC ucC
Tape Tape
00 Feed Feed 0 0 52 52
01 5 T 5 T 05 63
02 Car. Ret. Car. Ret. 37 37
03 9 (¢] 9 (0] 11 46
04 Space Space A A 60 60
05 £ H # H 13 30
06 , N R N 73 45
07 . M . M 33 44
Line Line
10 Feed Feed b 0 32 32
11) L] L 76 43
12 4 R 4 R 04 51
13 & G @ G 14 27
14 8 I 8 5 10 31
15 0 P 0 P 00 47
16 : C = C 16 23
17 R \'4 _ A% 15 65
20 3 E 3 E 03 25
21 " Z + Z 20 71
22 $ D $ D 53 24
23 ? B — B 74 22
24 Bell S EOF S 17 62
25 6 Y 6 Y 06 70
26 ! F / F 61 26
27 1 X 1 X 01 67
30 - A - A 40 21
31 2 w 2 w 02 66
32 ' J * J 54 41
Figure Figure
33 Shift Shift 36 36
34 7 U 7 U o7 64
35] Q ot Q 34 50
RI (K C K 75 42
Letter Letter
37 Shift Shift 35 35

Upper Case and Lower Case

a. The use of upper and lower case in some tape
codes effectively doubles the number of tape code
characters which may be used.

b. The convention employed in read is such that:

Figure 6-9.

(1) Onceanupper case codeis read all succeeding
codes will be translated as upper case codes
until a lower case code is read.

(2) Once a lower case codeis read all succeeding
codes will be translated as lower case codes
until an upper case code is read.

5-Channel Tape Code to Memory Code.

Iy
0

23

/
lu\\

S
1)

VI-14

October 1963

@

IRTal

Upper Case
Lower Case

Memory Memory Tape Tape
Code Character Character Code

00 0 0 20
01 1 1 01
02 2 2 02
03 3 3 03
04 4 4 04
05 5 5 05
06 6 6 06
07 7 7 07
10 8 8 10
11 9 9 11
12

13 # # 13
14 @ @ 14
15

16

17 EOF & 60
20

21 A A 61
22 B B 62
23 C C 63
24 D D 64
25 E E 65
26 F F 66
27 G G 67
30 H H 70
31 I I 71
32

33 . . 73
34 I< a 74
35

36

Carriace

37 Returi Delete 37
40 - - 40
41 J J 41
42 K K 42
43 L L 43
44 M M 44
45 N N 45
46 (¢] [¢] 46
47 P P 47
50 Q Q 50
51 R R 51
52

53 $ $ 53
54 * * 54
55

56

57

60 A Space 00
61 / / 21
62 B B 22
63 C C 23
64 D D 24
65 E E 25
66 F F 26
67 G G 27
70 H H 30
71 1 I 31
72

73 . . 33
74 0 = 34
75

76

Carriage

77 Delete Return 31

=229

Figure 6-10. Memory Code to 8-Channel Tape Code

VI-15

words is done underprogram control. This conversion
and arrangement can be accomplished by standard
paper tape input-output routines. In addition, these
routines can convert paper tape coded charactersinto
internal BCD configurations so that when the infor-
mation in the A register is stored in memory, it is
ready for processing. Subroutines containconversion
tableg that modify the characters as shownby Figures
6-9 and 6-10. Refer to the GE-225 utility routines for
additional information on using these routines.

BINARY ROUTINES, Routines also are available that
will transfer information from paper tape into memory
in binary. Each paper tape word consists of 7 octal
characters and is stored in a memory word as shown
below. The tape readcanbe5,6,70r 8 channel. Refer
to the paper tape binary routines for additional infor-
mation as to their proper use.

Octal Characters

Channel
No.

>0
=
> ot
+-=> o
l—> ~J

2
i

1
1
! o ° °

/pﬁ/’;ﬁ/ﬁg

v/

012345617891011121314151617 1819

S VR O N N e R R e o}

5o o
O O

GE-225 Word

Parity Error Detection

The GE-225 paper tape system uses an odd parity bit
configuration for checking data on seven and eight
channel tape. No parity bit ispunchedfor five and six
channel paper tape.

When data is read from seven or eight channel tape,
each character is checked for parity, as indicated by
channel 5. If present, the parity bitdoes not enter the

N register. The paper tape reader detection logic
senses the contents of the N register after each char-
acter has been read and an even pattern of bits in the
N registerindicaiesthatanextra (odd) parity bit should
have existed on the paper tape for the character read.

If the N register contains an even number of bits and
there is no parity bit on tape, the PARITY light on the
computer control! console is turned ON, Conversely,
if the N contains an odd number of bits and a parity
bit is present on tape, the PARITY lighton the control
console is again turned ON, The testfor a paper tape
parity error condition is made by executing a branch
on parity error (BPE) or branch on parity correct
(BPC) instruction.

Paper Tape Reader Instructions

RON 2500014 Word Times: 2

Functional Description: PAPER TAPE READER ON.,
The power for the paper tape reader is turned ON.
This instruction automatically turns OFF the power for
the paper tape punch and typewriter, because the type-
writer, paper tape reader, and paper tape punch share
a common power supply and only one of the three units
can be ON at any one time.

The RON instruction automatically clears the N reg-
ister of any character that may have been left there
from a previous punching or typing operation.

RPT 2500006 Word Times: 2

Functional Description: READ PAPER TAPE. The
RPT instruction initiates the continuous reading of
characters from paper tape. During the execution cycle
of this instruction, a sprocket or feed hole must be
present with every character before that character can
be transmitted to the N register.

Example: Turn the paper tape reader on and a pro-
gram delay of 200 milliseconds.

GAP Coding:

Opr Operan X i REMARNS Soquence
VT e [a e v e e v ve e an [3V YSe 57 v 150 [
RON |___TURN PAPER TAPE READER ON 1.0
L. DX ZERQ 2 ZERQ INDEX WORD 2 1.0
LN X|1 2 3.0
B X L1388 2; DELAY 200 M8 4 0
B R U|* - 2 i 50
LDX|ZERDO 3 | ZEROC INDEX WORD 3 6 0

VI-16

October 1963

Comments: When an RPT instruction is executed,
assuming that the paper tape reader powerisON, then
the N register is cleared and charactersbegin reading
into the N register until a halt paper tape (HPT) in-

o adian o oivrac
DLIUULIULL 1D KAVl

An RON instruction must be given and a delay of 200
milliseconds mustbe programmedbefore the first RPT
instruction can be executed. This delay is necessary
to allow time for the photo sensor lamp to reach full
intensity. Additional RON instructions are notneeded
before additional RPT instructions are executed, pro-
vided that the power is not turned OFF by either an
OFF instruction or by a power ON instruction for the

typewriter (TON) or paper tape punch (PON).

HPT 2500016 Word Times: 2

Functional Description: HALT PAPER TAPE READER,
This instruction halts the paper tape reader and ter-
minates the read paper tape (RPT) operation.

Example: Assume reader power is on and reader
re~7- Read paper tape at 250 cps and move character
into A register. Stop reader when A register is full.

GAP Coding:
Sywhel op | Operend X AEMARKS Soquonce.
IS K DK KD (D AD KD KO D K R U C £ o) I A
LDX|ZERO 3 | ZERO INDEX WORD 2 3.0
RD#.1 RP.T READ PAPER TAPE 8,0
B.NN* DELAY UNTIL CHARACTER 18 READ 7.0
SN .ALS SHIFT CHARACTER INTO A REG. 80
IN X1 2 | INCREMENT INDEX WORD 9.0
B X LIS 2 | CHECK FOR 3RD CHARACTER 1,00
BRU* -8 1,10
B P T HALT PAPER TAPE READER 1,20

Comments: When paper tape is halted by a halt in-
struction, the tape stops before the next succeeding
character is read, if reading is being done at 250 char-
acters per second. When reading at 1,000 characters
per second, it is possible for two characters to pass
under the read photocells after a halt instruction is
given. During continuous start-stop cycling of the
paper tape reader, a delay of 50 milliseconds is re-
quired between a haltanda readpaper tape instruction.
A delay of less than 50 milliseconds causes erratic
stop distances.

Once an HPT instructionis given, a TON, PON, or OFF
instruction cannot be given for at least 1 millisecond.
This delay is necessary to allow the tape time to stop
before turning reader power off.

In reading paper tape, it is bestnotto execute an RPT
and immediately follow it with a halt (HPT) instruction
as a parity error may be generated. Instead, delay by

executing a test for N register ready allowing time for
the tape character to enter N register.

Paper Tape Punching

By executing a write paper tape instruction, one BCD
character from the 6-bit N registerispunchedon tape
in the mode previously set. Punching is executed under
the control of the central processorpaper tape control
logic. Assuming that the power for the tape punch has
heen turned on, a punch instruction punches one char-
acter from the N register, advances the tape forward
one frame, and halts the punch unit. A punch instruc-
tion is required for punching each tape character,
regardless of what tape mode has been selected.

Before a character can be punched, it must have been
previously shifted into the N register from the A reg-
ister. As shown, a sprocket hole is also punched for
each character punched. This hole servesasa timing
source when punched information is read from tape.
Actual punching of information into tape is performed
by a set of 9 punching dies. The seven possible infor-
mation channel punches and the parity channel punch
(if required) are activated by punching magnets. The
sprocket hole punch is actuated mechanically as each
frame is punched.

An odd parity bitispunchedinchannel 5 when punching
tape in cither the scven or cight channel meode. A
parity bit is never punched for 1ive and six channel
modes.

The paper tape punch mechanism punches any char-
acter placed inthe N register by the central processor.
Also, through a set of six simulator switchesprovided
on the punch unit (reader unit), any configuration can
be manually placed in the N register and punched inde-
pendently of the central processor.

A Register

0123456178910111213141516 171819

EORNCECONIENENENEEEE
r—‘J;—\

l L

N1 N2 N3 N4 N5 N8 < N Register

<«—————— Channel No.

GlE-225%

VI-17

It takes approximately one millisecond to punch a
single tape character. Therefore, other instructions
not requiring the use of the N register may be executed
during this time.

Paper Tape Punch Data Transfer

The punch unit punches any bit pattern placedin the N
register from the A register by a shift instruction.
The same holds true for any bit pattern placed in N
manually by the six simulator switches. Each bit po-
sition of a character in the A register is unchanged
when shifted into the N register and punched on paper
tape. In each shift, the most and least significant bit
positions remain the same as shown in the example
above.

As shown, the relative bit positions (most and least
significant) of the character remain the same when
shifted from A into N andthenpunchedinto tape. Note
that the character in 8 channel code has an odd number
of 1-bits; therefore, when it is shifted into the N
register and checked for odd parity, an extra parity
bit must be punched in channel 5.

The bit patterns for information punched from the N
register into tape in 5,6,7 and 8 channel modes is
exactly the same as shown in the examples for the
paper tape reader in Figure 6-7.

Valid and Invalid Codes

EIGHT CHANNEL TAPE., Whenpunching eight channel
tape, a character of all 1-bits in the N register is
treated by the paper tape punch control logic as a
special character and causes a punch in channel 8
only. Therefore, a bit pattern ot punches in all
channels 1 through 7 is not a valid character.

SEVEN CHANNEL TAPE. All 1-bits intheN register
is an invalid code in seven channel mode and punches
a sprocket hole only.

SIX CHANNEL TAPE. Because of the absence of the
special character in six channel tape, all 1-bitsin the
N register is an invalid code and only a sprocket hole
is punched.

FIVE CHANNEL TAPE, All possible bit patterns can
be punched on five channel tape. No parity bit is
punched. If all zeros are in the N register (no char-
acter), then only a sprocket hole is punched.

Data Conversion

The conversion of internal BCD information to the code
configuration tobeplacedinthe N register for punching
is performed in the central processor under program
control. This conversion can be accomplished by

standard paper tape input-output routines. These rou-~
tines, whichalso contain conversion tables, are similar
to those described in the paper tape reader section.

Parity Error Detection

Error checking for the paper tape punch is an odd
parity check. This means thateachcharacter punched
on tape must have an odd number of holes or bits.
Before the punch operation actually occurs, the 1 bits
in the N register are checked for odd parity by the
paper tape punch parity logic. If parity is even, a
parity bit is generated according to the mode to be
punched (no parity is punched for 5or 6 channel tape).
The mode is sensed by the parity logicfrom the mode
selector switch setting. Simultaneously, the 9punching
dies are energized to reflect the bit pattern in the N
register. These pulses travel through the punchgates
and the mode selector switch, which activates the
punching of channels according to the mode selected.
After a frame is punched, the tape advances one frame
and the punch mechanism halts until another punchin-
struction is executed.

PON 2500015 Word Times: 2

Functional Description: PUNCHON, The power for the
paper tape punch is turned ON and the power for the
paper tape reader and typewriter is turned OFF.

Example: Turn on thepapertapepunchand prograi a
delay of 500 milliseconds.

GAP Coding:

Symbel
SRR

T oers T o -
i

N TURN PUNCH ON

2| ZERQ INDEX CELL 2

N
]
]
o

-

2 INCREMENT INDEX CELL
8 DELAY 500 M8

PUTAPE i

1 l -

Comments: After a PON instruction, a delay of 500
milliseconds must be programmed before executing a
write paper tape (WPT) instruction. This delav is
necessary to allow the punch motor time to reach full
operating speed, since the typewriter, paper tape
reader and paper tape punch share a common power

.supply and only one of the threeunits can be ON at any

one time.

WPT 2500006 Word Times: 2

Functional Description: WRITE PAPER TAPE, Ifthe
power for the paper tape punch is ON, whatever char-
acter is in the N register is punched. The contents of
N are unchanged.

BlE-225

VI-18

Example: Assume the punch is ready. Punch 3 char-
acters contained in A register.

GAP Coding:
Symivel Ope Operend x REMARKS Soquonce

[N K KRNI 3 KR S SOTEITRRN I X £ I
LD X|Z. ERO $ | ZERO INDEX WORD 3 5.0

PUNTAPBNNG® CHECK N READY 6 0
8 A N|8 - SHIFT ONE CHARACTER TO N 70
WPT PUNCE TAPE €0
INX|L 3 | INCREMENT INDEX CELL 3 9.0
B X L|3 3 | CHECK FOR SRD CHARACTER 1,00
B.RU* - 8 119
LDA|DATA

Comments: Thisinstruction has meaningonly when the
power to the paper tape punch is turned ON, A punch
power ON (PON) instruction must be given 500 milli~
seconds before a WPT instruction can be executed. Due
to the nature of punchlogic, itisnecessary that a WPT
instruction be executed for each character to be
punched. A WPT instruction punches one character
from the N register, feeds the tape forwardone frame,
and terminates the instruction. Upon the completion of
a punch operation, the N register becomes ‘ready’,
allowing the next character to be shifted from the A
register into N.

Punch Paper Tape Binary

Through the use of programmed routine data can be
punchcd from memory onto paper tape inbinary form.
Each word 1S in memory 1nbinary andpunched on tape
in the form of 7 octal digits in either 5,6,7 or 8 channel.

Example:
Octal Characters

Channel 1 2 3 4 5 6 7

MNMUJ»&O‘IO}N’IODg

A
y

[2]3[4]5[6]7[8[6]10[11]12|13]14]15[16]17]18]10

O

GE-225 Word

CARD READER OPERATIONS

General

Punched cards are a commonly used media for record-
ing data for processing hecause of their versatility and
the availability of card processing equipment, suchas
key punches, sorters, and duplicators.
Cards can readily be used as the input medium in
electronic information processing systems where input
volume is small enough for economical operation.

verifiers,

Advantages of punched cards include: easy error de-
tection and correction, rapid preparation of inputdata
(using one or several key punches), ready manual
access to records, easy separationand rearrangement
(using sorters and collators), and flexibility of re-
cording modes.

The standard punched card (Figure 6-11) is 7-3/8 by
3-1/4 inches cut from 0.009 inch paper card stock.
For data representation, the card is divided into 80
vertical columns along the long dimensionand12hori-
zontal rows along the short dimension. Data is re-
corded by punching rectangular holesinthese columns
and rows. Theinterpretation of the holes into meaning-
ful data isa function of boththe card reading equipment
and the recording mode or format.

Card Readers

Either of two card readers is available with the GE-
225 system.

400 CPM CARD READER. This card reader is ex-
tremely compact and is designed to sit on the control
console desk. Its speed is 400 cardsper minute when
reading continuously into alternating input areas in
core storage. The maximum speed, when feeding a
single card at a time under program control, is 360 l
cards per minute. Checks provided include input
hopper empty, output hopper full, and misfeed indica-
tions; in each case, the card reader haltsand the Card
Reader Alarm indicator is turned on. Also, pro-
grammed tests can be made to insure thatproper read
synchronization was achieved, that is, each card
column was readonce andonly once. The synchroniza-
tion word, which is generated for each card read, is
discussed later in the section.

Card reading is serially, by column, in one of three
formats: decimal or standard (Hollerith) card code,

snmese ~w watr hina ey
82

18-row binary, or 12-row inary.

The card reader is connected directly to the central
processor, which contains the card reader control
logic, through priority interrupt channel 1, thus per-
mitting card reading to proceed simultaneously with
other peripheral input-output and central processor
operations.

(5
Ital
g
)
NS
Gl

VI-19

October 1963

[Zones 12 \
n
° 11
r 90060000000006000000000000000026006000000006029000000000600000000600000000000800080490
123456788 101NMNNAMISKETNIINN2B4B580808MIRARIBRITIN04Q2IMGHTHHNSIZTHUIENHNNNNGABHOBBNNINBIHNERTADN
IRRRRARRER R RN RN AR R R RN R R R R R R R R R R R R R RN AR R R R R R AR R R RN AR AR RN R RN RN
Rows 22222222222222222222222222202222222221222272222222272220222222212222222021222121211
1 < 13133333333333333333333333233
through
12 BLLA A8t a At aadsittdtadatdnaqedaitaaiaaaniags
Numerics 5555555555555555555555555555555555055555558585555555585565858555555555555558555555
GE666666666666666666666566666666A605605h5563656655066566586566866G5666666685555866
PITIIIIIT T I I N I I I I e I it i1 1i1111i1111
8880808088888 B88 88683 88BB8B 686240 e R 0RLIER33E8nga3F 08387 ¥ RREECHRTRFRE208003
5805°995989996958999999608628§823053¢%. toiyg EER R
k N 2543 TSNP RBTRIBIDN LTI % SRR S A i i
\ J
~—
Columns 1 through 80
Figure 6-11. Standard Punched Card
CARD OUTPUT PRESSURE CABLE 12 - PHOTOTRANSISTOR ANTI STATIC
HOPPER ROLLERS CONNECTION READING STATION MOTC7 ROLLER
/(H_'/ SENSING
[PLATFORM
PUSHER
L~ ARM
)
|l FEED
! ~ ROLLERS
A
\
/[:] HOPPER
KETe u | EMPTY
SWITCH
v INPUT
 HOPPER
SWING OUT EJECTOR FUSE

STACKING KNIFE
TABLE

Figure 6-12. 400 CPM Card Reader Mechanism

VI-20

Basic components of the card reader include an input
hopper, a card feed mechanism, a reading station, and
an output hopper or stacker. Duringnormal operation,
the card reader operates under control of the card
reader control logic containedin the centralprocessor
to move cards from the input hopper, pasta row of 12
read photosensors (the read station), and into the out-
put hopper. Figure 6-12 shows schematically the 400

cpm card reader mechanism.

As a card passes the readstation, itis read, a column
at a time, into a card reader buffer and decoded (if re-
quired by the operating mode) and then transferred to
core storage through the M register. The reading and
transfer rates are governed by the timing circuits in
the card reader rather than the central processor.
After a column is read into the card reader buffer, the
card readerlogic demands access to core storage. The
next full memory cycle is made available to transfer
the card reader buffer contents to memory before the
next card column reaches the read photosensors.

At 400 cards per minute, card columns are read at the
rate of one column every 1875 microseconds. Thus,
there is approximately 103 word times available for
other processing and memory access between reading
of adjacent card columns. During continuous read
operations, the card reader uses only 1% of the avail-
able central processor time, leaving the other 99%
available for other input-output or central processor
operation

HIGH-SPEFED CARD READER. For aprlications in-
volving large amounts of card input, the high-speed
card reader provides card reading at 1500 cards per
minute continuously and up to 850 cards per minute
under program-controlled demand.

Mechanical operation is similar to that of the 400 cpm
card reader. The high-speed card readerhasa 2000-
card capacity input hopper, a card feed mechanism, a
read station, and a 2000-card capacity output stacker.
Card reader control logic is contained in the central
processor.

The high-speed card reader is connected to priority
interrupt channel one. Card reading canoccur simul-
taneously with other peripheral input-output and cen-
tral processor operations.

At 1500 cards per minute, card columns are read at
the rate of one columnevery 500 microseconds. Thus,
there is approximately 27 word times available for
other processing and memory access between readings
of adjacent card columns. During continuous read
operations, the high-speed card reader uses only
3-3/4% of the available central processor time.

During reading, cards are moved from the input hopper,
past the reading station, and into the output stacker,
under central processor control. Unlike that of the 400
cpm card reader, the reading station for the 1500 cpm
reader consists of 12 photo cells, one for each card
row, OR’ed together to simultaneously read each
row. A punched hole is accepted as containing a
punch if sensed by either or both solar cells, thereby
reducing intermittent read errors. Additional checking
includes: feed hopper empty, misfeed check, stacker

£511 o 3 A0 001 3 N

iU, end Gilile, and synchronization checks. Cards are
read in one of three modes: decimalor standard eard
code, 10-row binary, and 12-row binary. An invalid
card code during decimal mode operation causesbit17
of a synchronization word to be set to zero. The syn-
chronization word, which is generated for each eard

read, is discussed later in this section.

Card Reader Model

Processing Time Between Columns

Erxor Checks
Read

Invalid Code

Feed Empty
Misfeed
Stacker Full
End of File

Feature Standard High-Speed
Speed - Continuous 400 1620
~ Demand 320 900
Hopper Capacity - Input 600 2000
- Output 600 2000
Data Formats - Decimal Yes Yes
- 10-Row Binary Yes Yes
- 12-Row Binary Yes Yes

103 word times 27 word times

None Set
sync bit 18
No Invalid Codes BCD only, set
sync bit 17

Stop and Alarm
Stop and Alarm
Stop and Alarm

Stop and Alarm

Stop and Alarm
Set sync bit 16
Set sync bit 1

Synchronization Set bit indicator Set sync bit
in storage pattern
Figure 6-13. Card Reader Feature Summary
(RC - 9PR
WIS T L)

¢
[

VI-21

October 1963

Data Formats

Both the 400 cpm and the high-speed cardreaders can
accept cards punched in three formats, one format at
a time, depending upon the reading mode selected:

Numeric characters are represented by a single punch
per column. Alphabetics are represented by two
punches per column, a zone punchand a numeric punch.
Special characters consist of either two or three
punches per column.

Because Hollerith code characters are converted to 6-

MODE CARD FORMAT bit BCD by the card reader, three characters are

required tofill a GE-225 word; thus three card columns
Decimal Standard Hollerith equal one word. One card can contain 27 data words.
Binary 10-Row Binary Figure 6-15 shows how card data appears when read

Special Binary 12-Row Binary

STANDARD HOLLERITH. Standard format cards can
be read and punched by GE-225 card equipment while
operating in the decimal mode. Inthis mode, the alpha-
numeric data in each card column is converted from
Hollerith code into a 6-bit character as the card is
read into memory,

Hollerith code uses all twelve vertical rows of each
card column to represent one numeric, alphabetic, or
special character. The twelve rows are divided into
two areas, zone and numeric. The zonearea consists
of rows 12,11,and0; rows 0 through 9 are the numeric
area. Row 0 is common to both zone and numeric
areas. Figure 6-14 shows the Hollerith code char-

acters accepted by the GE-225 through the card
readers.

into memory.

Note that bit positions 0 and 1 of the word are not re-
quired for data and are normally set to zero. Data
punched in Hollerith can fill up to 27 consecutive GE-
295 words. However, the twenty-seventh word is not
completely filled because it contains card columns 79
and 80 onlv. This GE-225wordwouldappear as shown
in Figure 6-~16.

There is no data available for word number 27, bit
positions 14 to 19, because there is no column 81 on a
card. In view of this, the computer automatically gen-
erates a blank for the unused area. Note that the
sample word contains a blank (octal 60) in bit positions
14 through 19.

Figure 6-17 illustrates the GE-225 character set, the
equivalent Hollerith code, and the octal equivalent of
each character asitis storedin memoryin BCD mode.

Digits Alphabetics Special Characters
et N — - T —
T1B34EE7ER | BPCDEFGHT JPLIOPRE STULhr. | BUSEL, 5%, RR
12 Punch i i ° -
] (TITL]L]] m-------- -
11or X
Punch " 1nn L]] Zone
990000§00000000000000000000000000000000000000 NNERENR0o000000000000 NANN000000006 -4 Punches
|z:ls|1olwnlzumstmunzulzznm&unu::nlsznu:anannnua«aunauwmusaussss)saawnnnua-aawnnnnnnnnnn-
RRERER RN RN E RN RN IR R R R ERERY ERRRRSRRRRRRR AR RN RRRRRERRRRRARE IRRRRRRARRRAY)

22222222022222222222202222222222202222222222202222222222222222222222222222222222
$3333333303333333332330333333333330333333333330333333333303333030330333333333333
PYYYY R Y IR R R rr R Ry FY Yy Ry LYY RNE) TNRYY I3 L LR R ER LR
§5555555555055555555555505555555555505555555555505565555555055555555505555655555
$666666666560666666666666066666666666066666666666W6666666666H666666666J666666668
YRR RR RN Rl ER R R R R R AR R R R AR RA AR RN R ARt SRR RN R R AR RN ARRRRRERRRE]
es68688888ss0a0sssssssssasolesssssosssahossasscaceshocsssNNNNNNNcRNRNcsss88s8e
?gggsssssss9999lsssasss9sss9lss99999999slss99999995sls99Mssssssassessussnssu

teT e |\utununnnnnrnunu-:nnnrnrnanuﬂa:.uuuuaaauunnusussnussclﬂuuuﬁnaannunuulnnnl

Figure 6-14. Standard or Hollerith Punched Card

VI-22

October 1963

00000000000000000000006000000

123458708 9NNMINRHUBETNINNNRZDNBNNN

[RN ARRRREERRRRRARRRERRRERARE]
2222222222222222222222222222

Hollerith
Data Card

A4444 4444444444444 44404044044
5550555555555555555555555555
666666665666666666666666566¢
T17711171711717771177171711711
885806688883888838888888888
?9?99'9999999599999899999999

5878 0NNNRNUBRITNNA20M52S
i

v R
012 78 13 14 19 012 78 13 14 19
0 0] Col#1 Col #2 Col #3 Col #4 Col #5 Col #6
0 1]23 456 7/8 9101112 1314 1516 17 18 19 0123456 7|8 91011.1213]14 15161718 19
!00000001000011010001 ololololoitiolilolo!l 11 ol ol ol 1} 1l 1lgipl 1
(]) 1 0] 2 1 0 0 5 1 0 7 1
Octal Octal
GE-225 Word #1 GE-225 Word #2
Figure 6-15. Memory Equivalent of Card Data
7 \ Word #27
Decimal s0000004d l |
Data nANENTANS 012 78 13 14 19
(RRRRRRAR)
Card
222222222 0 0] Col#79 Col #80 Blank
333333333
Y i l l
§55555555 0123456 7|8 910111213(14 1516 17 18 19
6666666666
111711117 ojojoioj0j1iojojo0{0|1;1)1{1{1/0|0{0(0
s808888888 0 0 4 0 7 6 0
i
Octal
Figure 6-16. Memory Equivalent of Word 27
MM AN D
(UIT 5 9)9) N
GG ™ Aad)

VI-23

Hollerith Hoilerith Hollerith
Code BCD Code BCD Code BCD
Character (Punch in rows) Memory Character (Punch in rows) Memory Character (Punch in rows) Memory

0 0 00 | G 12-7 27 ik S 0-2 62
1 1 01 H 12-8 30 ik T 0-3 63
2 2 02 I 12-9 31 U 0-4 64
3 3 03 +0 12-0% 32 A% 0-5 85
4 4 04 . 12-3-8 33 W 0-6 68
5 5 05 e § 12-4-8 34 X 0-7 67
6 6 06 - 11 40 Y 0-8 70
7 7 07 J 11-1 41 Z 0-9 71
8 8 10 K 11-2 42 , 0-3-8 73
9 9 11 L i1-3 43 % 0-4-8 74
3-8 13 M 11-4 44 (0-5-8 75
@ 4-8 14 N 11-5 45) 0-6-8 76
(Underling 5-8 15 0 11-6 46 A 2-8 12
= 6-8 16 P 11-7 4 2 7-8 17
+ 12 20 Q 11-8 50 i 12-5-8 35
A 12-1 21 R 11-9 51 g 12-6-8 36
B 12-2 22 -0 11-0% 52 <3 12-7-8 37
C 12-3 23 $ 11-3-8 53 2 11-5-8 55
D 12-4 24 * 11-4-8 54 2 11-6-8 56
E 12-5 25 Space Blank 60 l/ 11-7-8 57
F 12-6 26 / 0-1 61 0-2-8 72
I 0-7-8 M
* Note: The 400 cpm card reader reads all punch con- an octal 32. The GE High Speed Reader treats these
figurations, thus no punch configurationisillegal. For punch combinations 11-2-8 and 12-2-8asinvalid char-
example, an 11-0 and an 11-2-8 are read as an octal acters. The card punch interprets an octal 52 as an
52. The configuration 12-0 and12-2-8are detected as 11-0 and a 32 as a 12-0.

Figure 6-17. Hollerith Punched Card Code for GE-225

sRooc@oRoloBo@oRoRogoncooocacosogoducscooofocoRogogoRofocegoccoffens
msunn||z|nnzzm:nnnu:nun:nsxn:uauuvquunssnuenﬂnuusnnnnmnnuuunnunnnnnunnnnn-
(AR RN RR Nl RRRERE] RRRRR R RERRET IRRRRERRERRRSRRRET RRRRRREREY
Izzzzz:zlllzlzlzzllzlzlzlzlzlzlzlzzz|z2|22z||z|z1||z|2|12||2|z|2|2|zzz|zzzzz|zzz
[EREEEERERERRE] ERR] EJ ERREEY ERT | EEE] EEEEES EERERERY EXEEERY FT FERI F1 EET T I KR | EXR] EXR
R R g i ranmm
§55555555555556555555055555550505555555555555550M5555555[05555555@5M55555055555555
Gevosesceo6ccs6666cMcocMoceoscaclscococMeMcooeooMscMoRoscNoscossMe666666666666566
1|177777711||l1l711|1llll1717731111171111117|1117117171111|71|1l|171111171711l11
N RN R RN RN I R RN P IOy I T NN IR [XX [EXRRRENRRIIN IT)

!!H!!!!3'!!.!9!!!!.!!!.9!9!!9!9!s!lBI!I!!!!!l!!!!!l!!!l!l!I!!!ll!ﬁ!“!!!l!!
123458708 w0 LAY B]

NRHKEERI NI AN R AARN AN NN T AN QOKEBTSANHRAURINNIRNNIRONSECRONT T

- .

Figure 6-18. 10-Row Binary Data Representation

BE-225

VI-24

10-ROW BINARY. The GE-225 card readerscanpro-
cess information punched in the 10-row binary format.
Figure 6-18 shows a 10-row binary card as produced
by the GE-225 General Assembly Program. In this
card, data is punched so that each row position in'a
column represents a binary bit. A punched hole is a
binary 1 and no punch is a binary 0. Only rows 0
through 9 are used in 10-row binary. Because each
row position of each column is a binary bit, two
columns of a 10-rowbinary card (20 binary characters)
fill a GE-225 word. For example, columns 1 and 2 of -
the card in Figure 6-18 fill a GE-225word as follows:

ar

10 Row

Binary

Data {100000000000000000000000000000
123458 7890NRRNUIBBNBRAAZBIAZBAANN
EERRRRRRRERRRRRREERRRERRRRER

)f|222222222222222222222222222222

3333333333333333333333333323333
\\A44444444444444444444444444444
5555555555555555509555555585
666666666606666666666666660686-66

TRA7777171771777771111117171111111
8 82

8
99599995999898
7

148 SN2V

N o

9
1

- w
-
k]

Data for a maximum of 40 consecutive GE-225 words
can be punched on one 10-row binary card.
12-ROW_BINARY. In the 12-row binary mode, all
twelve punching positions of the card columns are
sensed by the card reader. As in 10-row binary, a
punch indicates a binary 1 and no punch is a binary 0.
Figure 6-19 is a 12-row binary card. The binary
information is placed in the 12 least significantbits of
a GE-225 word. The balance of the GE-225 word re-
ceives no information and remains blank. The infor-
mation on a 12-row binary card can thus fill a maxi-
mum of 80 successive GE-225 words. The bit
configuration of each column is placed in memory as
shown in Figure 6-20.

Note that bit positions 0 through 7 do not contain data
and are automatically set to zero. Note also that three
GE-225 words together form the equivalent of a 36-bit
binary word, a data form frequently encountered in
other data processing equipment.

Card Reader Instructions

Two card reader models are available for the GE-225,
with certain basic operations andinstructions common
to the two units.

The GE-225 card readeris anon-line device that reads
mimehed cards by a photoelectric mechanism ina mode
selected by the read instruction. Controlled by a unit

/JL P L\ in the central processor, the card reader transfers
012 371 5678 910111213 14 15 16 17.18 19 information into memory via the M register. Because
the GE-225 system can simultaneously performtwoor
1io0|1|0|0l0{0|0O]O|O|O|O|0O|O] O O]O] 1| 0fO0 more operations, the cardinformationis read serially,
column by column into memory on apriority interrupt
2 4 0 0] 0 0 4 basis: The cardreader always has the highest priority
in accessing memory during a particular word time
Octal because a loss of information will result if access is
I \
i
oocBcooBooNooH0000000000000000000006000000H000000000000000000000000000006000000008
12345628 3BNUBHBRITINZIZ2DNABATABNIRNDUBATABRIQVUSRTIMONILDNSKINBUVNLIUBBEIBBNNINBHERITADIN
(N ERRE RRE ARY SRRRRRRRRRR AR RN R R AR R R AR R R RE] IR AR R RN R R R AR R R R R R R R R R AR RRRRRR AR A RE
§22202202200822222222222222222222222222222022222222222222222222222222222222222222
30333033 M3N303333333333333333333333333333033333333333333333333633333333333333333
A44R44ANUBRRRRRRRR st s aa s aRNNRARANRRRNRARRRARARANRRRUARARENENN
SSSHREESSSHUNBNRNNS5555555555555555555555055555555555555555555555555555555555558
660cocHocHe666665666666565666666555060656H66656066566666506566665656666566656666668
1111111779791 27711770 1111110111001 101 0000717110797117177111111111
IRscHBcENsclosacs8sas6885588580888860882380386808088888806888888386882888883888888888848¢
BoBolslBoleN99999999999999999999999999999[999995999999999999999998999999999998898
‘l:)4!31l0unumusulmnannausnnununnnnnnnn:aunuuuannuws‘s:sossusmum-.unul-uuuununununnnl
Figure 6-19. 12-Row Binary Data Card
MIeE Mo
I[J 3o /)N
\ (5(50)

VI-25

45678 90NNIBUBEINNDNR

JoooBoofJooloooocoo000
3
1

(RN RRY RN ARRRRRARERE]

0
12
11
12

22822022002222222222

IR33303303030333333333
AR ARNNNNTNRANN 44444

SSSHERESSSNRNNBNRNGS5sS

66066GN66NE66666666666

A RRRE FRE KN 1 RRRRRRDRREI

v v A

012345678910111213 1415161718 19

Blsc@BsUNsalessessssss

ofojojojololojofojoj 0}l O[1/0]0f 0 Of 1 1]1

0 0 0 0 2 0 7

BololsBNolol99999999999

12345873 00N UMY A220

Figure 6-20. 12-Row Binary Card to Memory

not granted. The 400 cpm cardreader requires access
to memory once everyl03word times while the high-
speed card reader accesses memory once every 27
word times.

The GE-225 reads punched cards in three different
modes corresponding to the three card formats, de-
pending on the read instruction being executed. Re-
gardless of the card reader mode, the starting memory
address into which data is read must be a multiple of
128 but less than 2048. This means, in effect, that
cards can be read into memory beginning at 128, 256,
384, etc., up to 1920. It is suggested that read oper-
ations not utilize a memory address less than 256 due
to the possibility of the API, Automatic Program Inter-
rupt, being added later if notusedatpresent. The API
uses memory location 128, as well as extra modifica-
tion word groups.

RCD Y 250YY00 Word Times: 2

Functional Description: READ CARDS DECIMAL initi~
ates continuous reading of cards in the decimal mode
(that is, card data is interpreted by centralprocessor
card reader logic as being in Hollerith format) into
memory, starting at location Y. Y mustbe a multiple
of 128, but less than 2048. Thefirst card read enters
locations Y through Y+26, the second enters Y+32
through Y+58, the third enters Y+64 through Y+90, the

fourth enters Y+96 through Y+122. The fifth card
enters Y through Y+26, etc. After each card is read
in, the sign bit of the GE-225 word after the last word
containing card data (Y+27, Y+59, Y+91, or Y+123) is
set to minus. After thelastcardof the deck is read in,
bit position 1 of the GE-225 word after the last word
containing card data (Y+27, Y+59, Y+91, or Y+123) is
set to one. If the card reader is not in ready status
when the RCD is given, the central processor halts
and a card reader errorisindicated on the control con-
sole. Once begun, card reading is continuous until the
card reader is stopped bya halt card reader (HCR) in-
struction, the input card hopper becomes empty, or a
machine malfunction occurs.

HCR 2500004 Word Times: 2

Functional Description: HALT CARD READER. This
instruction halts the card feed. If the first halfof a
card is being read at the time that HCR is given, the
reading of this card into memory will be completed,
and no further cardswill be readuntil another read in-
struction is given. If the second half of the card is
being read and another card has enteredthe feed area,
both the card being read and the card in the feed area
will be read before the card feed stops. This instruc-
tion does not delay the computer while thelast card is
being completely read; the program continues in
sequence and a delay must be programmed to insure
that the data is in memory before attempting to use it.

VI-26

Example 1: Read cards in the decimal mode into
memory, beginning at location 0256.

GAP Coding:

Cperand X

1] 2 | s | a] FEREEREEED 12]13]14J!5||51‘|7i|e119

~
°

RLC D2 5 6

The first four cards read will be entered into memory
in the following sequence.

Note that each card occupies 27 memory locations,
plus 1 for the sync word.

Memory Memory
Locations ////// //// /
0256 LI L ////////‘
0282 Card #1
0283 / Sync Word
0288 pLL/ LI
"L Card 42
0314} ___
0315 / | Sync Word
0320 / /
0346 Card #3
0347 / / Sync Word
0352
Card
0378 ard #4
0379 / / // Sync Word

If the card reader contains more than four cards, and
the RCD is not followed by a HCR, the fifth card is
automatically read into the same memory location as
card #1 (0256). The sixth card enters the same loca-
tions as did card #2 (0288); etc.

Comments: Five words of memory are automatically
skipped after the areas containing card data. In the
above example, between cards #1 and #2, memory
locations283 through 287 are skipped; between cards
#2 and #3, locations 315 through 319 are skipped; etc.
The last four locations of each group of five can be
used by the programmer for storage of constants or

other program data. The first word of each group
(locations 283, 315, 347, and 379, in the example above)
cannot be so used, because it isreservedfor checking
information that is automatically developedinthe card
reader. Theselocationsare knownas synchronization,
Or sync, words and are-.described fully under Card
Synchronization.

Example 2: Read one card in the decimal mode into
location 0384.

x

Symbol Opr Operand
|,2|a‘! 4l s|s 8 9|10 !2T|3iv4’!5|l6i|7‘ltai19 2

R CD|3.8 4
H CR

o

Comments; RCD, whenimmediately followed bya HCR
instruction, will cause a single cardtobe read into the
specified location (0384). If the above coding were in-
corporated into a loop, each time the RCD, HCR se-
quence was executed, one card would be read (in the
decimal mode) into 27 consecutive locations starting at
0384, and the automatically-generated sync word would
be placed in location 0411.

RCB 250YY01 Word Times: 2

Functional Description: READ CARDS BINARY initi-
ates continuous reading of binary cards (that is, card
data is interpreted by the central processor card
reader logic as being in the binary format) into memory
starting at location Y. Y mustbe a multiple of 128 and
less than 2048. The firstcardis read into locations Y
through Y+39, the second card into Y+64 through Y+103,
the third into Y through Y+39, etc. After each card is
read, the sign bit of the second word following the card
data, location Y+41 or Y+105, is set to minus. After the
last card of a deck is read, bitposition 1 of the second
word following the last card image, Y+41 or Y+105, is
set to 1. Ifthe cardreaderis not in ready status when
RCB is given, the computer halts and a card reader
error is indicated on the control console.

Example: Read cards in the binary mode into location
0256.

GAP Coding:

Symbol Opr Operand X

0

n

1] 2] 3 | 4] s s [[10 'ZI”J“I”"””‘”}"

R C Bi2.5.6, . A

L {

- |

Ble-225

VI-27

The first two cards read will be entered into memory
in the following sequence:

Memory M
Locationg pr— em“?f T
////7/,'///// //
0256 ///// /////// /
l Card #1
0295 Sync Word
0297 ////////// ///
/7 //
0320 / ///
J’ Card #2
0359 i
0361 Sync Word

Comments: If the card reader contains more than two
cards and the RCB is not followed bya HCR, the third
card would be automatically read into locations 0256
through 0295, the area previously containing card #1
data; card #4 would be read into 0320 through 0359,
This sequence would be repeated until all cards were
read,

Note thatanareaof 24 words in memory is left between
the end of the first card area and the beginning of the
second card area. In this example, the area consists
of the locations between 0296 and0319. All except one
of these locations can be used by the programmer if
desired. The second words following the last words of
each card (0297 and 0361) are reserved for the syn-
chronization word whichisusedfor checking purposes,
See Card Synchronization,

If an RCB instruction is followed by anHCR, one card
is read in the 10-row binary mode into memory and
the card reader halts. If additional cards are to be
read, this sequence must be repeated for each card.

Example: Readal0-rowbinarycardinto 0256 and halt
the card reader.

GAP Coding:

sequence is later repeated, the next card will enter the
same locations.

RCF Y 250YY10 Word Times: 2

Functional Description: READ CARDS FULL initiates
the reading of all 12 rows of an 80-column binary card
(that is, datapunchedinto the cardis interpreted by the
central processor card logic as being in the special
binary mode). The 12 punching positions of each
column (starting with column one) are placedinthe 12
least--significant bit positions of successive memory
locations, starting at Y (which mustbe a multiple of 128
and less than 2048). The cardis read into locations Y
through Y+79. After the card is read, the sign bit of
the fourth word following the card imageis set to one.
The card reader automatically halts after one card is
read. If the card reader is not in ready status when
RCF is given, the central processorhaltsandan error
is indicated on the control console.

Example: Read a card in the 12-row binary mode into
location 0256.

GAP Coding:

Symribal i Cpr i Operand

s s »)1 3 mi\; 1:ova ts. . 4o

'RCF256

Cperand i
T T T e
-
!
|

e ,A-_...(.-—+.

- (D SV e e e

The card read will be entered into memory locations
0256 through 0295, the sync word will be entered into
location 0297, and the card reader will halt. If the

mle . OQE’

Memory Memory
Locations | /7//~77777/77/
I i
0256
l Card #1
0335
iy
//// it
03397 Sync Word

Comments: One card of 12-row binary data is read
into memory starting in location 0256 through 0335.
The sync word is constructed in location 0339. Only
one card is read and the card reader halts automati-
cally.

Reading Intermixed Cards
High-Speed Card Reader

The following instructionis effective only with the high-
speed card reader as an optional feature.

GIE° 4k

VI-28

October 1963

RCM Y 250YY12 Word Times: 2

Functional Description: READ CARDS MIXED. This
eommand initiates the reading of a single cardof data.
The card reader will automatically halt after each card
is read.

The reading of the cardoccursinthe RCF(READ CARD
FULL) mode if column one contains a 7-9 punch. If
eolumn one does not contain a 7-9 punch the card is

read in the RCD (READ CARD DECIMAL) mode.

GAP Coding:

Symbol Opr Operand X
|[2|3]4I 5{5 NENED |2{:3]u]15]sex17|u|19 20
+ 1 i 1 BlClN *l i i 1 1 it
X . RCMCRDTIN . .,

) LDA|CRD I N+ 83
e . . |BP Ll ‘ R
.) BRU * - 2, R

Comments: The read cards intermixed instruction
allows random intermixed binary anddecimal cards to

be read into memoryone ata time under program con-
trol. A hinary card mustbe sodesignated by a 7 and 9
punch in column one, in which case the card will be
read into memory by setting a bit in bit position 1
of the first memory word. The first word in memory

would appear as 1012700(7)8.

If the 7 and 9 are not sensedin column one, the card is
assumed to be a Hollerith decimal cardand will be read
into memory in the Read Cards Decimal Mode.

A typical binary card with the 7-9punchin column one
is shown at the bottom of the page.

Card Reader Synchronization
and Error Checks

Extensive checking of the GE-225 card reader oper-
ations accompanies the reading of each punched card.
The resuits of these checks are stored in a specific
memory location by the card readerlogic. This check
word is referred to as the synchronization word or
sync word.

The contents of the sync wordprovide the programmer
with information essential to the successful operation
of his program. Thus, the programmer must check
the contents of the sync word eachtimea card is read
into memory.

The location in memory of the sync word depends upon
the read mode and whether the card readeris reading
a single card and halting or reading continuously.
Refer to Figures 6-21 and 6-22.

400 CPM SYNC WORD. The contents of the sync word
gencratcd by the 400 card reader indicates
whether:

213170

Cplil

1. reading of a card is completed andif the card was
properly synchronized upon entering and leaving
the read station, and

2. the last card of the deck in the input hopper has
been read and the hopper is empty.

eogogooooooogooouoosoofoFoBoRoooRoRoRcRoo0B0000000000020000000000000000000000000
123456708 BNIEZNMUIBBTINENA2BUBX783NNRINBBIBBOLHQOUEHETRININIHERTNBRIQRDUSEIIRNNINNIUBATIRIN
RERRRRRRR! RRRI K1 Kl K ERREEERRRERRR R REREREY ERRRRR SRR R R R R RN R R R R RRRRRER AR R RN
220202222222022220 2220020 2020022020 2 AN 22202022222222222222222222222222222222222
333303330333333303330333033303333333030333030#33333333333333333333333333333333333
ARRAA AR AR A Al AB Al At a4 44 A0A00a0 0040000000 00044
5555555550 SHSHSHS55P55555555555555555555SAMS55555555555555555555555555555555555
BE566666666666666666566666066
TR R R K R RARARRERI [RARRRRRAR! | 1 RRRARE K1 ERRAARRRARREARERRRARERERARRRRARERRAY]
shBcccehelocofoscocleNnNsRoscsssoshNoosas oleoses088086880888880880888088888888F

I!l'!lll!l!l!!!!"’!0"l!l!l!’!lllllll!!!l!Ill’l!l'l!l!!!lll!!’!!!!!l!i:l!!’!!!l

1234581 8IRMURNUKBNUNHRARONSBTANNNRDNERT AN LANARTAANNIRIUNRINABNUBUEKNAORINININARTRAS

VI-29

October 1963

Synchronization Contents in
Word M Octal
Card Read Tocation ™ ¢
Mode
Continuous HCR Normal Hopper
Empty
DECIMAL Y+27
Decimal Y+59 Y+27 2606077 3606077
Y+91
Y+123
. Y+41
10-Row Binary 10105 Y+41 200177 300177
12-Row Bina No
Ty Continuous Y+83 2007777 3007777
Read

Figure 6-21. 400 CPM Synchronization Word

Example 1: The RCD instructions below have been
executed by the computer.
GAP Coding:

Opr Operand X REMARKS
RERED ”I"T“I"l"]"l“]" 20 [31 73
R CDj2 5 8 READ A CARD IN DECIMAL MODE
HCR HALT CARD READER

I Normally, the sync word in memory location 0283
(Y+27) assumes one of these forms.

1. A normal read, no synchronization errors, input
hopper not empty.

012345678910111213141516171819
[1]o[1]1]o]o[o[o1]1] o[o] o 0] 1 1] 1] 1] 1] 1]

2] 6 0 6 0 7 7

2. The last card of the deck in the input hopper has
been read and the hopper is empty.

012345678 91011121314151617 18 19

[t]1]1]1ofolofo]1[1]o] of o] o] 1]1]4] 1] 1]4]
3 6 | o | 6 0 7 7

Any other bit configuration indicates that anerrorhas
occurred and the card must be re-read before pro-
cessing the data it contained.

BlE-229

Example 2: If the read card instruction above is a
RCB 256, the sync word in 0297 (Y+41) for 10 row-
binary under the same conditions as above is:

1. Normal Read (10-Row Binary)

012345678910111213 141516171819
1]ojolofolofolofolo]1} [1]1]1]1]1]1]1]1]
210 | o |1 7 7 7

2. Input hopper empty (10-Row Binary)

012345678 910111213141516171819

f1lilolololololololo] 1] al 1] 111l 1] 1] 1] 1] 1]

31 0 0 1 7 7 7

Any other bit configuration indicates that anerrorhas
occurred and the card must be re-read before pro-
cessing its data.

Example 3: For 12-row binary, RCF 256, no HCR
instruction is necessary and the sync word in 0339
(Y+83) for the same conditions of Example 1 appears
as:

1. Normal Read (12-Row Binary)

0123456780910111213141516 171819
| 1{ojoojofololofa|1] 1] 1| 1] of 1] 1] 1] 1] 1]

2|0 0 7 7 7 7

VI-30

October 1963

2. Input hopper empty (12-Row Binary)

012345678910111213 141516171819
[1]1]ofofofolofofs [t {a] 1] 1] 1] 1] 1] 1] 1] 1] 1]

3; 0 0 7 7 7 7

Any other bit configuration in the sync word indicates
that an error has occurred and the card must be re~
read before processing its data.

HIGH-SPEED CARD READER SYNC WORD, The sync

word generated by the high-speed card reader pro-
vides a much greater amount of pertinent information
for programmer use. Figure 6-22 contains infor-
mation on the high-speed card reader sync word.
The sync words generated by this card reader are
identical with those of the 400 cpm reader with the
exception of an invalid character check and a check
for the last card of the deck with the EOF (End of file)
button set.

Interrogation of the bit configurations within the sync
word generated by the high-speed card reader detects
the following operating conditions:

Bit Operating
bosition Contents Condition
0 1 The card is in memory
H o The input hopper still contains
cards

1 The input hopper is empty

16 0 The output stacker is full
1 The output stacker is not full

17 0 Malfunctioning photocell or

card slippage.
1 All photocells functioning
properly and no card slippage

| 18 0* Invalid character exists
1 All characters valid
19 0 Input hopper empty and EOF

switch is set
1 Input hopper not empty and
EOF switch is not set

* Valid Hollerith punch combinations are listed in
Figure 6-17. In the decimal read mode, RCD, char-
acters are checked for validity and when an invalid
character 1s redd, tne sign ol the Word contalning e
character-is set to minus (bit position 0 set to 1) in
addition to the sync word indication (bit 17) as shown.
There is no invalid punch configuration for 10-row
and 12-row binary.

Card Read Octal Contents
Mode
Normal Hopper Character Read
Empty Invalid Error
EOF Not Set EOF Set
Decimal 2606077 3606077 3606076 2606073 2606075
10-Row 2001777 3001777 30017176 2001773 2001775
Binary
12-Row 20077717 3007777 3007776 2007773 2007775
Binary
Figure 6-22. High-Speed Card Reader
ME OO
i e 975
WIS T EED

VI-31

October 1963

Examples of the sync word generated by the high-speed
c¢ard reader are given below. Since a number of card
reader operating conditions can occur with the reading
wI a card, the examples cover only the conditions
mentioned.

Example 1: Sync word on normal card read:

Decimal Mode

012345678910111213141516171819

{1io]t]2lofolofofr{z]o] o of of 1] 1] 1] 1] 1] 4
0

2{ 6 0 6 7 7

10-Row Binary

012345678910111213141516 171819

{1[0 olololofofofofolaf o] 1] 1] ol 1] 114l 4

21 0 0 1 7 7 7

12-Row Binary
012345678910111213141516171819

1lojojojojojolofrj1|1}1| 1)1 1} 1j1f11]|1

-~

7 7 7

21 0 0

Example 2: Sync wordonreaderror (Synchronization)
Bit position 18 set to zero:

Decimal Mode

0123456178 910111213141516 171819

[1[o[1]1]o]o[o]o[1]1] o o] o] of 1] 1|1 1] 0] 1

6

6 0 7 5

10-Row Binary

0123456%78910111213141516171819

1[00]000}0000 1| 1 1| 1] 1) 11} 1]0]1

2| O 0 1 7 7 5

12-Row Binary

012345678910111213 141516171819

When a synchronization error occurs on a card read,
the card must he re-read before processing the data.

Example 3: Sync word on invalid card character
Bit position 17 set to zero:

Decimal Mode
0123456 7891011121314 15161718 19

[1]o]1]iJolololo]1]1] o] o] o] o] 1] 1] 1] 0] 1] 1]

21 6 0] 0 7 3

In addition, the sign of the wordin memory which con-
tains the invalid character from the card is set to
minus. There are no invalid characters when reading
binary cards, and bit position 17 will be set to one (1).

Example 4: Sync word for last card of a deck in the
input hopper with EOF button NOT SET and HOPPER
EMPTY:

Decimal Mode
012345678910111213 141516171819
[1]1]t]1]ololofo1]1] o] o] o] of 1] 1] 1] 1] 1]1]

—

3] 6 0 6 0 7 7

10-Row Binary

0123456789101112131415161718 19

[1]1]o]o]oloofofolo] 1] 1] 1] 1] 1] 1] 1] 1] 1] 4|
3l o

o |1 7 7 7

12-Row Binary

012345678910111213 141516171819

[1ifofololofofo e e a] e]al 1 a1 1]a] 1]]
3 7

0 0 7 7 7

If the EOF buttonis set, bitposition 19 of the sync word
is 0:

OCTAL —> 3606076
OCTAL —> 3001776

OCTAL —> 30077786

DECIMAL
10-ROW BINARY

12-ROW BINARY

If the EOF button is set, the circuitry generates a 1 in
bit position 1 and a 0 in bit position 19 of the SYNC
WORD when thelast cardof the deck in the input hopper
is read into memory.

1lo0j0/0{ojojojo|1|1| 1} 1{1}{1]1{1;1]1|0|1
2] O 0 7 7 7 5
ME OO
BILE° 4D

VI-32

Card Reader Generation of Sync Word

Regardless of the mode in which a card is read, the

logic of the card reader generates 84 readpulses, even
though only 80 columns of information are read.
Dulses 81, 82, 83, and 84 affect the bit configurations
of the sync word in a manner dependent upon the read
mode.

In the decimal read mode, pulse 81 places an octal 60
in bit positions 14 through 19 of the sync word. Pulse
82 and 883 place an octal 60 inbit positions 2 through 7
and 8 through 13, respectively. Since pulse 84 is timed
such that it falls between cards, it generates all ones
in bit positions 14 through 19 and sets a 1 in the sign
bit position, signifying a complete card read. Also,
if the input hopper goes empty, bit position 1 is set to
1.

If a card column contains an invalid punch configu-
ration, a logical OR takesplace and the 400 cpm reader
places the results in memory. The 400 cpm reader,
unlike the high-speed reader, does notindicate invalid
characters. For instance, if a card column contains
the invalid punch configuration of 6 and 9, the logical
OR of the punches are placed in memory as shown
below:

6 ——> 00110

.....

15 —> 01111

In the 10-row binary mode, pulse 83 sets bit positions 2
through 19 of the sync word to zero and pulse 84 sets
bit positions 0 and 10 through 19 to ones to indicate a
complete card read. If this is the last card in the
hopper, bit position 1 is set to one. Pulses 81 and 82
do not generate any sync word information.

In the 12-row binary mode, pulse 84 setsbit positions
0 and 8 through 19 of the sync word to ones upon the
completion of the card read. Bitposition1 is also set
to one if this is thelastcardof the deck in the hopper.

Compatibility of 400 CPM
and High-Speed Card Readers

Programs written for the 400 cpm reader can be run
on a machine using the high-speed reader. However,
the reverse is not true in that, normally, programs
written for the high-speed reader cannot be runon the
400 cpm reader because certain checking features
on the high-speed reader are’ not available on it,
slow machine.

Card Reader Ready Instructions

Instructions are provided that enable the programmer
to determine whether or not the card reader is ready
to receive a read cardinstruction. Aprogrammer can

thus delay or perform other tasks until the reader
becomes ready.

BCR 25

i

Functional Description: BRANCH ON CARD READER
READY. If the card readerisreadyto read cards an
the card hopper is not empty, the central p
executes the next sequential instruction; if n
the next instructionis skipped and the second sequenti
instruction is executed.

BCN 2516006 Word Times: 2

Functional Description: BRANCH ON CARD READER
NOT READY. If the card reader is not ready to read
cards, or if the card hopperis empty, the central pro-
cessor executes the next sequential instruction; if the
card reader is ready, the next instruction is skipped
and the second sequential instruction is executed.

The examples below show typical use of these instruc-
tions.

Example 1: In this example,processing does not com-
mence until the card is completely read. Where a
card read operation is only aninterruption of the main
program this approach would nul be adequale.

GAP Coding:
Opr Operand x REMARKS

o [o[refvaTva alws] e n[uju 20 [31 73
R C.D|B 4 . . READ CARD DECIMAL MODE

HCR HALT CARD READER

B CR . TEST FOR COMPLETION OF READING
1B R U[+ , 2 BRANCH AND PROCESS CARD

BRU|* . 2 BRANCH BACK TO TEST UNTIL CARD IS READ |
LDA|B 4 PROCESSING OF CARD

Example 2: Check for card reader being ready, read
a card and delay further processing until card reader
becomes ready. Note the use of the asterisk.

GAP Coding:

Opr Operand x REMARKS
o [o o]l e e v [aefvefao [31 T
C N+ K FOR CARD R EADY
CDICRDIN READ CARD DECIMAL
CR HALT CARD READER
B C N[+ DELAY FOR COMPLETE CARD READ BEFORE
FURTHER PROCESSING

Mo o)
i'mi: a /)N
Gl (BEaw

VI-33 October 1963

Programming the Card Reader

In most programs, it is easier for the programmer to
read a card and halt than it is to read continuously.
The operating speed of the card read decreases when
the HCR is used as shown below.

Card Reader Card Read Speed (CPM)
Model Non-
Continuous Continuous
400 cpm 360 400
1000 cpm 900 1620

When the high-speed reader is operating in the con-
tinuous mode, a maximum of 30 ms is available for
processing between cards. If duringa continuous read,
an HCR command is given within 2 ms after the sync
word is set on the card just read, only one more card
enters memory before the card reader halts.

Since the sync word generated by the card reader con-
tains information pertaining to the reading of a card,
the programmer utilizes this information before pro-
cessing the data from the card.

The brief flow chart of Figure 6-23 serves as one
example of the procedure that a coder could follow in
programming the card reader. The codingapplying to
this flow chart is shown by Figure 6-24. The 400 cpm
reader is used for these illustrations.

Although the sync word contains information on each
card read, it is the responsibility of the programmer
to determine if the card read was normal. If not, the
corrective measures required must be programmed.
The coding of Figure 6-24 is one method for checking
on syne error, EOF, or hopper empty conditions. The
card read routine written for the high-speed card
reader, in addition to checking the conditions illus-
trated, can check for invalid characters, stacker full,
and hopper empty with EOF button set. The extent to
which the various checks are carried can be deter-
mined by the needs of each installation. An example
of checking for an invalid character is shown below.

tar

s Card Reader) YeS
Ready ?)
No
RCD Card in
& Halt
Yes /Is Card Read
Completed ?

No

Is Sync Word 1\ Yes
Normal ?
No

Yes Is Hopper
Empty ?
No
Card EOF 7)} NO

A

Hopper
Empty

Routine
/ Normal
Sync Error Process
Routine of Data

EOF
Routine

Figure 6-23 Flow Chart of Typical Card Read

Procedure
Symbol Opr Operand X REMARKS

B e TRED KB EEEED I 3 El 7
LDA|CRD+ 27 SYNC WORD i i i i iti
LDACHRDe2T S ARACTER CONST. OCT 3608073 Once an invalid c'haracter is detected,.b}t position 17
BNZPROCES DATA OK PROCESS of the sync word is 0. The word containing the char-
LDX/ZERO 2 {ZERQ INDEX CELL 2 1 3 ifi 3 i i i
NS > LOGATE WoRD CONTATNING BNVALID acter is identified by the sign bit being minus.
B MI iCHARACTER BY CHECKING FOR MINUS
BRU[BADWD (SIGN
SRR L Example of BCD Word with Invalid
BRU[* - & Character as Identified by Card Reader

B ADWD S TX/MSG # 3 + 5 2 [STORE WORD # CONTAINING INVALID CHAR
SPBIPRINT Y 1 {TYPEWRITER ROUTINE i
LDAMSG # 3 TYPEWRITER MESSAGE GIVING OPERATOR 1lotof1{tlol1loloj0o|1}0{0|1]0|0|0|0;1]1
D E C|8 NECESSARY INSTRUCTIONS THEN READ
BRUISTART NEXT CARD N

Indicates Invalid Character
RE=998
/
\8I5° 44T

Vi-34

October 1963

PROGRAMMER

G E Coder

PROGRAM Run #3
Quality Control

Symbol Opr Operand

REMARKS

IEIEIRKIE

alo[!n

|zI 13] 14T|3J te[17] 18 [19

ot 31

~

. . .. |ORG

CARD READ AREA

C. R D .

} 1 i

o |

PROGRAM ORIGIN

SYNC CONSTANT

H

HOPPER EMPTY CONSTANT

CARD EOF CONSTANT

3 [(1 g e |
> o | |t |2
(1 (O |= 1A

w | [N [m [
= 1O

TEST FOR CARD READER READY

olzllalehkole

READ CARD DECIMAL

HALT CARD READER

oo |

DAT S
|
3
SYNC WORD

wlr[m{ww > |olofo [0

e

CHECK SYNC WORD FOR NORMAL READ

NORMAL READ

CHECK FOR HOPPER EMPTY

-

|4

BRANCH TO HOPPER EMPTY ROUTINE

BRANCH TO READ ERROR ROUTINE

-

SECOND DATA WORD FROM CARD

CHECK FOR CARD EOF

|
(oFr-RioRIoRE-AN--NI--BE NI NENFCY

o ww o= [+ (=]

w!

EEACICICIMCICIEI N e

Ol |+ w3z
[=] O [-'.'U

oy

| |BRANCH TO EOF ROUTINE
LQ CODE

@
SUBTRACT ONE

AREA # 1,

PARTS FROM AREA #1

N[N o [N (2o (o~ (e (o lalala e la o

mlom o[m P> almW|m W= >

Wi [0 [t v |- o | o g o

AREA# 2

DELAY UNTIL CARD READ COMPLETED]

PARTS FROM AREA #2

Figure 6-24. GAP Coding of Card Read

The corrective action required is determined by the
individual needs of each installation. In a similar
manner, other types of conditions indicated by the sync
word can be detected and the necessary actions taken.

CARD END OF FILE CONVENTION. The End of File
(EOF) card is used to designate the end of a deck of
punched cards. This card, when detected, signifies
that all cards of the deck have been read.

Recommended EOF cards for the GE-225 are shown
below.

e
11
]
HEN00000000000000000000000000
123458783 8BNRBUISBITBBRARDINSATS BCD
(RRRRRRRRERERERRRRRRERRRRARE!
EOF Card

2222222222222222222222222222
3333333333333333333333333333
A44 440444444440 044444400404004
5550055555555555555555555555
6666666666666666666666666666
[LI RRRRRRRRRRRRRRRRARRRREREAE!
BUNe83883888080888888838388888830

BCD File: Punches in rows 0,7, and 8 of columns 1, 999997599509990099999999994999
2, and 3 and END punched in columns 4 through 6. e

N IR INTS

IS4

VI-35 October 1963

These columns appear in memory as:

Word #1

lofofu[a[a[a[afra[sTafa]aafalafafuf1]1]

o 7 1 7 7 7 7
Word #2
[oJol of1]o]t[o[2[1fo] o 1] o] t]o] 1] 0]1]0]0f

0 25 45 24
E N D

Binary File: Punches in rows 0 through 9 in columns
1, 2, and 3 and END punched in columns 4 through 6.

TEECND
[|
1
000000800000006000000000000080
!!!OS 7B 9MNNRIBUBHITIBBBA2BNS808200NN EOF Card
({1 RRRRRRRRERRRRRRRARRRRRRERARE!
Binary

B0022222222222222222222222222222
NEN333333333333333333333333333333
BEB44B444444444440444484444444444
EEEEN5555555555555555555555555535
ABN6666666666666666666666666666
IA77717771777171717117771117111717171
BRE358888885888683880888882883833388
BEN935599992899539995989599959599

1234538383500 NROKIBIBTBBAALZAMNBLIS3WN IR

For 10-row binary this card appears in memory as:

Word #1

(afalafafafafafafafa[afafafajafajaf1]1]y]

3 7 7 7 7 7 7

Word #2

[fafifaft[a[i]i]i]tToJofofoJo |1 o0 o]0

3 1 7 6 0 2 0

Word #3

[o]o]o]olof1]ojo]oJoJ o] 0] o[0] 1] 0] 0] o] 0] |

0 0 4 0 0 4 0

For 12-row binary, each columnisplacedinone word,
bit positions 8 through 19. Only columns 4, 5, and 6
are shown:

Column #4
Word #4

[o]ofofololofofofao 1]t e e a1 1]1]1]

0 0 0 5 7 7 7

Column #5
Word #5

[oTo[o[o[o[o[o[o]0t Jo o]0 oo [1]0o|0]q]

0 O 0 2 0 2 0

Column #6
Word #6

[ololo]o[o]o[o[o]1]0]o[o]oo]1]oo]o]o] 0]
o 0o o 4 0 4 0

Card Punch Operations

The GE-225 card punch is an on-line device used for
providing output information in the form of punched

cards. Available in two models with punching speeds
of 100 and 300 cpm, respectively, the punches can
produce punched cards in three modes, standard
Hollerith, 10-row binary, and 12-row binary.

A punch instruction causes the punching of a single
card regardless of the punch mode.

The memory address from which the information is
punched must be a multiple of 128, butless than 2048.
The card punch sets up andpunches informationon the
card a row at a time, with the 12-row first, then the
11-row, O-row, etc., and the 9-row last. All infor-
mation punched is transferred from memory through
the M register to an 80 column buffer before a set of
punching dies, under control of the punch logic, is
activated. Since punching is accomplished inde-
pendently of the central processor, other computer
operations can occur simultaneously. The punch has
the lowest priority in access to memory.

An optional feature permits cards punchedinHollerith
can be checked for double punches and for blank
columns if desired., The 100 cpm punch checks up to
30 columns in any combination,

Ble-22%

VI-36

October 1963

Punching Instructions

The QW _998
A€ Gih=4aao

mal, 10-row binary, and 12 row binary. The punching
mode is determined by the punch instruction.

wWCD N4 250YY02 Word Times: 2

Functional Description: WRITE CARD DECIMAL. The
information in memory locations Y through Y+26
(where Y is a multiple of 128, but less than 2048) is
punched into a card in decimal (alphanumeric) format.
If the card punch is not in ready status when this
instruction is given, the computer halts and a card
punch error is indicated on the control console.

The WCD instruction results in the three 6-bit BCD
characters of each word in the memory punchingarea
being converted into the equivalent Hollerith or stan-
dard card code and punchedinto the card. Figure 6-14
illustrates a Hollerith card. Note that bit positions 0
and 1 of each word are notpunched. Figure 6-17 con-
tains the Hollerith code characters applicable to the
punch. Twenty-seven successive memory words are
needed to fill one 80 column card.

wCB Y 250YY03 Word Times: 2

Functional Description: WRITE CARD BINARY. The
information in memory locations Y through Y+39
(where Y is a multiple of 128, but less than 2048) is
punched into a cardinbinaryformat. If the card punch
is not in ready status when this instructionis given, the
computer halts and a card punch error isindicated on
the control console.

One 20-bit memory word occupies two 10-row binary
card columns. Thus 40 consecutive memory words fill
one card. Figure 6-18 illustrates a 10-row binary
card. Note that card rows 12 and 11 are not used.

WCF Y 250YY17 Word Times: 2

Functional Description: WRITE CARD FULL. Thein-
formation in memory locations Y through Y+79 (where
Y is a multiple of 128, but iess than 2048) is punched
into a card in 12-row binary format. The 12 bits
punched are the least significant bits of successive
memory locations. Bit position 8ispunchedin row 12
and bit position 19 is punched in row 9. If the card
punch is not in the ready status when this instruction is
given, the computer halts and a card punch error is
indicated on the control console.

M=

(SR RS NN

l

In 12-row binary, 80 consecutive memory words are
needed to fill one card. Figure 6-19 is an example of
this type of card.

Punch Ready Instructions

Before punching a card, the punch must be in a ready
status or a card punch error results and the computer
halts. Ynefmmhrmq are available that enable the pro-

grammer to determine if the punch is ready.

BPR 2514007 Word Times: 2

Functional Description: BRANCH ON CARD PUNCH
READY. If the card punch is in a ready status, the
computer takes the next sequential instruction. If not
ready, the computer skips the next instruction and
executes the second sequential instruction.

BPN 2516007 Word Times: 2

Functional Description: BRANCH ON CARD PUNCH
NOT READY. Ifthe cardpunchisnot in a readv status,
the computer takes the next sequential instruction; if
il is, the culiputer skips the next INStruction ana exe-
cutes the second sequential instruction.

Programming the Card Punch

Card punching is time consuming, and itisto the pro-
grammers advantage to punch at maximum speed.
When a punch instruction is given, a single card is
punched. In order topunchat maximum speed, another
punch instruction must be given within 10 milliseconds
after completion of punching the previous card. Failure
to meet this timing requirement results in maximum
punching rates of 50 cpm for the 100 cpm punch and 180
cpm for the 300 cpm punch,

Example 1: Testforpunch ready andpunch a Hollerith
card from symbolic memory address PUNCH,

GAP Coding:

Spr Operand X REMARKS

N B D D B El T
B P Ni* DELAY UNTIL PUNCH READY
WCDPUNCH PUNCH HOLLERITH CARD

Symbolic address PUNCH mustbe a multiple of 128 but
less than 2048. Punching from 128 is not recommended

G- 225

VI-37 October 1963

since the Automatic Priority Interrupt (API) uses this
area.

Example 2: Multiple punch areas can be used with
punching proceeding from one area while the other
punch area is being loaded. Normally, a subroutine is
written to accomplish punching. A sample routine is
shown.

x] REmarxs

-2

DEL

loni]

B.P N | TEST FOR PUNCE READY

D LD PUNCH AREAS te
ST A SET-UP PUNCE INSTRUCTION 18
X aQ EXCHANGE PUNCH INSTRUCTIONS 2 0
DS.T i 25
N O P PUNCH CARD 39
B R U 1| EXIT (SPB ENTRY USED) 25
W_C D PUNCEH #1 4.9
W C D PUNCE #2 4

Ble- 225

SECTION Vii

CONTROLLER SELECTOR OPERATIONS

Certain GE-225 high-speed input-output peripherals do
not access memory directly, but are buffered by means
of controllers which, in turn, are granted memory
access through a control and data transfer device, the
controller selector. Figure 1-2 illustrates this rela-
tionship. The auxiliaryarithmetic unit (AAU), although
connected to the controller selector, has character-
istics that distinguish it from the high-speed peri-
pherals. While it is not an input/output unit, it is
discussed in a later section like other peripherals.

CONTRCOLLER SELECTCR PRICRITY
Because the controller selector serves as a means of
communicating between peripheral controllers and
memory, each controller must have a unique address
and a specified memorypriority. Thisisaccomplished
with plug-in connectors which tie together the peri-
pheral controllers and the controller selector.

The controller selector assigns each of the eight avail-
able plugs aunique memory accesspriority. The lower
the plug number the higher isthepriority, as shown in
Figure 1-5. The relationship of priority to plug number
means that the memory access requirements of the
peripheral device must be taken into consideration
before it is assigned toa specific plug. The controller
selector has a data transfer rate of 55,000 20-bit words
per second, which is more than sufficientfora typical
GE-225 installation, A GE-225 system may have any
combination of input-output controllers except for
the following limitations: No more than 1 AAU, 2
41-Kc, magnetic tape controllers, 2 DSU controllers,
or a combination of 2 41-Kc, magnetic tape and DSU
controllers,

Devices with high memory access requirements, such
as a mass random access data storage (MRADS) unit,
require high priority plug numbers. Devices that can
wait for access to memory without loss of information
are assigned low priority. Plugassignments shouldbe
determined during the early stages of system planning
and all programmers informed of the plug number of

each device. Recommended plug assignments when-
ever possible are:

Plug Number Peripheral Controller

0 Mass Random Access Data Storage
(MRADS)

1 2nd MRADS or Magnetic Tape

2 Magnetic Tape

3 Magnetic Tape or Documcnt Handler
Adapter

4 Document Handler Adapter

5 Doc. Handler Adapter/DATANET-15

6 Printer

7 AAU

The adoption of these assignmentsincreases compati-
bility of software and back-up between installations.

CONTROLLER SELECTOR
INSTRUCTIONS

Input-output operations of peripherals connected to the
controller selector are accomplished by a sequence of
instructions.

The controller selector should firstbe tested to deter-
mine if it is ina ready state before issuing an instruc-
tion to perform an operation. Attempted execution by
the computer of a SEL command (discussed below)
when the controller selector isbusy resultsinan alert
halt condition and hangs up the computer. Interrogation
of the controller selector is done by one or more BCS
instructions, which are discussed in the sections on
high-speed peripheral operations.

mc _gml2
‘l?‘\ a /) /8y
[CA (e

October 1963

' BCS XXX P 2514P2C/2516PCC Word Times: 2

Functional Description: BRANCH ON CONTROLLER
SELECTOR. The peripheral connected to controller P
is testedfor the condition (CC) indicated by a mnemonic
placed in the operand address field identified by XXX
above. The BCS instructions are listed anddescribed
with the instructions for the various peripheral de-
vices.

If the controller selector is ready, the plug containing
the peripheral controller that is to be placed in oper-
ation must be selected by a Select (SEL) instruction.

SEL P X 2500P20 Word Times: 2

Functional Description: SELECT. The peripheral con-
nected to controller P (addresses O through 7) is sel-
ected for the operation indicated by an associated
instruction. The execution of the SEL commandalways
sends the contents of the next two memory locations to
the selected peripheral controller. Execution of the
SEL instruction also resets controller error condi-
tions.

Every peripheral connected to the controller selector
requires three memory words containing instructions
to perform an operation: theSEL instruction selecting
the controller and two other words instructing the con-
troller to perform a specific task. The instructions
contained in the two words following the SEL command
are not executed by the central processor. Therefore
when the SEL is in the I register, the P register will
hold the address of the third sequential instruction.

Example of SEL Coding:

Opr Operand X

REMARKS
s [o |10 lz'lslll]'lllell1lllll’)

~
o

31 L
S E.Li6, . . | - SELECTPLUGNUMBE.BJ§

The contents of the two words following the SEL in-
struction is governed by the operation desired and by
the peripheral equipment to be used. Specific details
for programming these peripheral operations are given
in subsequent sections.

AUTOMATIC PROGRAM INTERRUPT
(API)

A GE-225 optional feature makes it possible to pro-
gram an automatic interruption of the mainprogramto
process a higher priorityprogram. This feature, when
used with the Automatic Priority Interrupt Executive

Routine, controls the simultaneous operation of two
or more unrelated programs. The system combines
peripheral-to-peripheral runs (e.g., tape-to-printer,
tape-to-punch, and card-to-tape) with a mainprogram
and can control programs associated with the remote
inquiry stations.

The API feature provides for automatic interrupt of
the main program whenever selected peripheral con-
trollers change status from ‘not ready’ to ‘ready’.
This allows control to be transferred automatically
from the main program to the executive routine de-
signed to service the peripherals. Each controller
on the GE-225, the card reader, and the card punch,
can signal the GE-225 thatithas finished an operation,
and is ready for another operation. This signal may,
or may not, cause a physical interrupt onthe GE-225,
depending upon the status of the computer. The type-
writer and paper tape reader or punch cannot cause
automatic program interrupt.

A switch is provided for each peripheral controller
which allows only desired peripherals to cause an API
thereby, in effect, masking out devices for which an
interrupt is not desired.

When the switch is ‘ON’, the peripheral controller will
be allowed to cause an automatic interrupt (under de-
signated interrupt conditions).

When the APIswitchis ‘OFF’, the peripheral controller
will not be allowed to cause automatic interrupt (under
any conditions).

When a GE-225 system operates with API, the computer
may be in a specific mode of operationwithin the pro-
gram being executed. These operating modesandpro-
gram are defined as:

Non-Interrupt A mode of operation in which the
Mode GE-225 is not processing a priority
program; and can not be physically

interrupted by a signal from a

peripheral device. When power is

initially applied to the GE-225, the

GE-225 is in the Non-Interrupt Mode.

Interrupt Mode A mode of operation in which the
GE-225 is not processing a priority
program; but can be physically in-
terrupted as a resultofa signal from
a peripheral device. A set mode is
required to place the GE-225 in the
Interrupt Mode.

Priority Mode A mode of operation in which the

GE-225 isprocessingapriority pro-

gram, as a resultofbeing physically

interrupted while operating on a

main program in Interrupt Mode.

VII-2

October 1963

Definitions

Main Program - The program thatisbeing executed at

S

all times other than when an Automatic Program
Interrupt occurs.

Priority Program - Aprogram (peripheral-to-periph-
erai) that is designed to be executed in the Inter-

rupt Mode

Remote Inquiry Program - A nrogra-._ that controls the
Remote Inquiry hardware and is executed in the
Interrupt Mode.

Program Interrupt Instructions

SET PST 2506015 Word Times: 2

Functional Description: SET AUTOMATIC PROGRAM

INTERRUPT ON is required to cause the program
interrupt feature to be effectxve This instruction
causes the computer to enter and remain inthe inter-
rupt mode until the priority program is completedand
directions are given for return to the main program.
This command must be given before the mainprogram
can be interrupted. If a programmer doesnot wish to
use the interrupt feature, he merely avoids executing

e Leled]

4 oui Yoi.

SET PBK 2506016 Word Times: 2

Functional Description: SET AUTOMATIC INTER-
RUPT OFF is required to disable the program interrupt
hardware. This instruction causes the computer to
leave the interrupt mode and remain in the normal
mode until the mode is reset by a SET PST instruc-
tion.

To prevent the main routine from being interrupted
after aSET PST has been executed; a SET PBK must be
executed.

Because the program interruptfeature becomes effec-
tive whenever the command SET PST (Priority Set)
is executed and becomes ineffective when the command,
SET PBK (Priority Break) is executed, any attempted
interrupt (caused by a change in status of one of the
selected controllers) which occurs during the time
when Automatic Interrupt is not set will be remem-
bered and will cause an automatic interrupt immedi-
ately following the next SET PST. Itthen becomes the
responsibliity of the Executive Routine to determine
which of the selected peripheral controllers changed
status and must be serviced.

Operation of API

When automatic interrupt is initiated, the following
events occur:

i. Interrupt of the main program is delayed until the
next instruction access time. (The P counter con-
tains the address of the next instruction.)

The computer automatically selects index group
32. NOTE: Index group 32 ig available only on

GE-225 systems w1th the API feature and can
be used only as prescribed for API.

The contents of the P counter are stored in word
one of the API index group 32 (memory location
0129).

Control is transferred to address 0132 (the first
word following index group 32) which is the start
of the Executive Routine and an automatic priority
break occurs.

During the time that control remains with group
32, the SPB command (if used) will refer to group
32 only.

The only index. group available during the Executive
Routine is group 32. It must be remembered that the
address of the next instruction to be accessed in the
Miail prograin has been stored in word 1of this gioup
and the contents must not be destroyed. The com-
puter cannot be interrupted again until SET PST com-
mand has been executed as described below.

To return tc the main program, the following pro-
cedure is required:

1. A SET PST command is required in all cases
regardless of whether or not it is desiredto con-
tinue under control of the program interrupt
feature. If the programmer wishes to return to
the main program with program interrupt dis-
abled, the SET PST must be followed by a SET
PBK.

An indexed unconditional branch (BRU) tolocation
zero, modified by word one of index group 32,
sets the P counter to the address of the next main
program instruction to be accessed. This is
always the final step in the sequence for returning
to the main program.

Any peripheral controller that changed from not
ready to ready status while the computer was
under control of the Executive Routine will cause
an interrupt after return to the main program.

It is permissible to execute any number of instructions
between the SET PST and the indexed BRU which is
used to transfer control back to the main program.

'LF‘[E o H/H/ IL_\]
G 4

October 1963

Also, any number of BRU instructions canbe executed
while in the interrupt mode.

When API is set in the program, the following occurs
when a controller goes from not ready to ready status:

1. P counter + 1 is stored in location 012910.
2. Control is transferred to location 0132¢¢.

3. At this time, any or all controllers may or may not
be tested and may or may not be ‘put to work’. It
is not necessary, however, to do any testingor to
issue any commands to return to the main pro-
gram.

4. The computer-generated-and-executed SPB 13210,
word 1, is the instruction which turns the API flip-
flop off in the central processor. This generated
instruction, in effect, also executes a SET PBK
instruction. Any controller becoming ready while
the program is interrupted will be remembered
until the priority is SET and the modified branch
is executed, at which time the APIflip-flop will be
set again if any controller went ready during the
time the ‘pseudo’ SET PBK instruction was exe-
cuted by the computer.

Once a controller causes aninterrupt, it will not cause
another automatic interrupt until it goes from the not
ready to ready status again.

APl Executive Routine

The API executive routine (CD225J4.000) is in memory
with every main program or remote inquiryprogram.
Programs with precedence or remote inquiry pro-
grams may be in memory, if desired. The APT exe-
cutive routine:

1. Performs functions necessary for starting and
ending all programs being executed under its con-
trol.

2. Saves the A and Q registers and the overflow indi-
cation when a main program is interrupted
because of a peripheral going from busy to not
busy.

3. Determines which peripherals are in ready state
and executes the appropriate priority programs.

4. Restores the A and Q registers and the overflow
condition before returning control to the mainpro-

Three basic combinations of programs are designed to
share memory and peripherals with the APIexecutive
at execution time. These are:

1. A main program andfrom one to fourpriority pro-
grams.

2, A main program and a remote inquiry program.

3. A main program, from one to three priority pro-
grams, and a remote inquiry program.

The Autoinatic Program Interrupt Executive has as
its basic configuration the GE-225 with a4K or larger
memory. Any configurationofperipherals maybe used
in conjunction with this, excluding the document handler
and paper tape reader-punch. The system must include
the API feature.

The routine requires 97 memory locations and, when
added to the front of a user’s program, is assembled
into the following areas:

1. 0128, 01414 = 14 locations
2. 0143y 0169, = 27 locations
3. 05529 06064 = 55 locations
4. 0606, 0639, = 34 locations

for future expansion

With the exception of programs for magnetic tape and
MRADS controllers, programs must not refer to
peripherals used by another program in the same
load. When magnetic tape and MRADS controllers
are both used, the same handler on MRADS must not
be addressed.

Programs must not refer to memory areas used by
another program, except in the use of common subrou-
tines.

Card read-in areas are restricted to locations 025610

and 0384, for programs being executed under the-con-
trol of API Executive.

Card punch areas are restricted to locations 051210
and 0640yg, for programs using API Executive.

All symrbols used in the executive routine start with
#API

Locations 0142, and 014410 are reserved for remote
inquiry and must contain zeros if remote inquiry is
not used.

Restart is provided only for the main program.

All programs being executed simultaneously should
used the same tape or MRADS input/output routine.

gram,

VII-4

October 1963

It is permissible touse two different magnetic tape 1/0
routines only if they refer todifferent tape controllers
or if the read/writers are not buffered and a delay,
error check, and correct is done after each.

Hardware Operation

Each controller, the card reader, and the card punch
can generate a signal to the central processor that it
has finished an input/output operation, and is ready for
another command. Whether or not this signal is
actually sent to the central processor depends upon the
setting of the API switch associated with each device.
The controller switches arelocated on the inside of the
controller, usually near the controller selector plug.
The card reader and card punch switches are located
inside the top door on the front of the control console.
With this switch off, the interrupt signal from the device
is not sent to the central processor. The switch must
be on for the central processor to receive the signal
from the 1/0 device.

The action of the central processor when it receives
an interrupt signal depends upon the mode of operation.
Non-Interrupt Mode is established by a SET PBK com-
mand, or by resetting the computer through depression
of the power on button. Inthe Non-Interrupt Mode, the
signal merely sets a latch to remember that it re-
ceived the signal for later use atsuchtime as Interrupt
Mode is set. Interrupt Mode is established by a SET
PST command.

When a physical interrupt occurs, the central pro-
cessor enters the Priority Mode of operation. The
location of the next command to be executed in the
main program (note the difference from normal SPB
operation) is stored in word 1 of API index group 32
(location 201 octal). Index group 32 is set automati-
cally; and program control is transferred to octal
location 204. A SET PBK operation is executed auto-
matically as a result of the interrupt, resetting the
latch associated with the I/0O devices, and dropping the
Automatic Interrupt Mode. Further signals from 1/0
devices becoming ready during Priority Mode set the
1/0 latch again so that another interrupt may occur
when the priority program is finished and Interrupt
Mode is re-established.

When the priority program has completed its oper-
ations, control is returned to the main program by
issuing a SET PST, followedby a BRU 0, index word 1.

(Any modified BRU following the SET PST will cause
exit from Priority Mode. Modified BRU instructions
prior to issuing the SET PST have no effect, and oper-
ate normally in group 32 in Priority Mode.) Issuance
of the SET PST followedby a BRU 0, word 1, will cause
a return to the main program and the previous index
group that the main program was operating in when the
interrupt occurred. Upon return to the mainprogram,

the computer is in the Interrupt Mode. If it is desired
to return to a main program from a priority program
in Non-Interrupt Mode, a SET PBK should be executed
between the SET PST and the BRU 0, word 1.

Interrupts can occur only at the point that an instrue-
tion has been executed completely and another instruc-
tion is about tobe accessed. Aftera test such as BZE,
an 1nterrupt will not occur until the computer has
analyzed which route it should take. Interrupts can not
occur between a BRU and the location to which it goes.
Hence, a program loop such as BRU * cannot be inter-
rupted.,

Programming Considerations

Each main program to be used in conjunction with the
API and a priority program should be carefully scruti-
nized to ascertain what damage if any, could result
from an interrupt at any given point. For instance,
an interrupt between a RCD and an HCR might result
in continuous reading of cards. (An HCR instruction at
the beginning of the priority program will prevent
this.) An interrupt in the middle of a type routine
might result in the loss of the N register contents
and a meaningless message. An interrupt justafter a
test-and-branch, suchas BZE, has been executed might

;
nrove dicnstrouc if the p‘“lO.“‘, program should re-

verse lle condition just after the test 1s made. Each
of the above conditions might necessitate a SET PBK
and a SET PST around the routine to prohibit interrupt
during the crucial operation. Care should be exer-
cised not to abuse the ability to prohibit interrupts in
this manner, however, or the effectiveness of APIwill
be unnecessarily reduced.

Sample API Problem

Assume that it is desirable to operate two programs
concurrently within GE-225 memory. Oneprogramis
a card-to-tape conversion, the other represents an
independent processing function. This problem canbe
solved efficiently by use of the program interrupt
feature, without use of the API Executive Routine.

Card-to-Tape Conversion - This should be the priority

routine since it involves few program steps re-
continuous use of peripherals, and exe-
cution depends upon the card reader and the tape-

controller being in a ready status.

quires

Independent Processing Function - This should be the
main program because it requires manyprogram
steps and is much less reliant upon peripheral use
and readiness for processing.

Ei@
D)
&l

E‘]

G

VII-5

Symbol Opr Operand X REMARKS
v 2] s 4] s, e[[10 12 1] 14] Vs 1e[17] vs |19]z20]31 75
Al D EC|511 2 . First card read-in area
. D EC|6.4 0, T Second card read-in area
A 2 DE.CI[5.1 2, - First card read-in area
. . IDEC|6.4.0, N . Second card read-in area
CONSTI1DECI]]1 4 2. R Transfer location
CONS. T 2D D C:O L Storage area for coptents of the A and Q registers
B .C N . R Test for card reader not ready
. o B R UJA 6 R R Exit if card reader is not ready
A S , RCD|O. 5 1,2, ., Read card into memory beginning at 0512
A H C R . L Halt card reader
. DSTI|ICONS T 2, . Store contents of A and Q registers for main
. A . 1 program
pLDiALY . Load read-in area constants
‘ XAQ| Switch read-in areas
X) DS T Aj‘l o Store read-in areas as constants
) L ST OlA 2 L | Set up alternate card read-in area
A 4 I B.RUAT, , . . Bypass writing a tape record the first time
) L L . through
. . B C.SIB.T N . | 9 |Test for tape controller not ready
., . BRU* - 1, ., , . Delay until tape controller is ready
. - S E LIl2, . , Select controller selector address two
A 5 w.T.plo,s . 1.2, . . ., |1 |Write tape in decimal mode from memory
NN R . R locations beginning at 0512 onto tape 1
T , R 2.7 L Write a maximum of 27 words
) pLDA2 Load read-in area constants
X, . AQ . ; - Switch read-in area constants
)) DS T|A 2 | L Store read-in area constants
S. T OlAS . o Set up memory address from which tape record is
R . R . ey to be written
A 5 ‘ D,LD|ICONS T 2, Load contents of the A and Q registers from main
L e program
L . S.ET|PS T, . o Set priority interrupt mode on
BR.U e 1 |Branch to zero as modified by word one of index
)) L group 32; i.e., to the setting of the P counter
e . ; o \ when the main program was interrupted
AT LDAICONS T 1, |, Load binary equivalent of 142
. S.T.OlA 4 , . . . Will cause the writing of tape records all succeed-
— R S SR ing times through the program
B, R U|A § e Transfer to exit
Figure 7-1. GAP Coding for API Problem
The programmer should realize that use of the API feature and reduces the housekeeping functions and
executive routine extends the usefulness of the API checks necessary for efficient use.
al G ‘
Glee2ed

VII-6 October 1963

SECTION VI

MAGNETIC TAPE OPERATIONS

MAGNETIC TAPE

Magnetic tape is one of the most widelyused computer
input-output media. Light in weight, compact, and
very durable, magnetic tape is excellent for storage
of data which later can bequickly processed. A single
reel of tape is equivalent to a minimum of nine 2-foot
file drawers, or about 25,000 punched cards.

The GE-225 magnetic tape systemisafastand flexible
means of efficiently processing such large files of data.
Information can be permanently recorded on tape
quickly and accurately, and magnetic tape data can be
selectively changed or completely erased by the write
operation. Since magnetic tape can be used again and
again, its re-use represents a savingsinthe total cost
of processing data.

Magnetic Tape Advantages
and Disadvantages

As a recording and storage medium, magnetic tape has
both advantages and disadvantages. Briefly, some of
these are:

Advantages

Compact recording density per-
mitting high volume density

Fast and accurate recording of
variable lengths of data

Permanent data storage

Re-use resulting in low cost per
unit of recording

Less storage bulk

Audit trail through retention of tapes

Disadvantages

Non-random access to data
Recorded data invisible to the eye
High initial equipment costs

Housekeeping routines are necessary
which use memory and consume time

Physical Characteristics

Magnetic tape normally has a ferro-magnetic surface
coating such as iron oxide held to a mylar or acetate
base ribbon by a hard or soft binder material. Tapes
for the GE-225 have a hard binding material between
the coating and the base. The hard binder provides
better wear characteristics, reduced tendency to shed
oxide coating in the form of a fine powder, and ability

to withstand wider temperature ranges. Figure 8-1
illustrates a section of magnetic tape.
Magnetic-Oxide
/ Coating
' Base Material
Binder

Figure 8-1. Composition of Magnetic Tape

AP O
oo o 7/ /78
A e Y)

VIII-1

The tape used by the GE-225is 1/2inch wide and up to
2400 feet long. It is wound on 10-1/2 inch diameter
plastic reels. Shorter lengths of tape canof course be
used; however tapes less than 50 feet long have limited
applications.

Beginning and End of Tape Detection

The beginning and end of tape is detected in magnetic
tape handlers by photoelectric sensing of tape mar-
kers. Tape markers are strips of aluminum foil
3/16 by 1 inch placed 10 to 15 feet from the physical
beginning of the tape and 15 to 20 feet before the phy-
sical end of the tape. The strips, referred to as leader
and trailer foils, indicate the beginning and the end of
the portion of tape thatis used when reading or writing.

To insure that sufficient tape exists beyondthe trailer
foil to permit memory dumps, the tape reels should be
visually checked and measured. The following table
shows tape lengths required for binary memory dumps
at different densities and memory sizes:

Density 8 k Dump 16 k Dump
15 kc/200 bpi | 14 feet 28 feet
42 kc/555 bpi 5 feet 10 feet

Recording of Data

Information is recorded on magnetic tape as changes
in the magnetic pattern in seven parallel tracks, or
channels. The pattern is changed in appropriate
channels as the tape moves across a multiple channel
recording head consisting of seven magnetic write
heads. These write heads precede a setof seven read
heads: thus, as data is written, it can be immediately
read to provide a check that assures that the infor-
mation has been written correctly.

Magnetic Tape Characters

A magnetic tape character consists of six bits of data
written laterally across the width of the tape in six of
the seven parallel tracks. The seventh track contains
a parity bit which is used for checking the validity of
the tape character. The tracks across the tape are
numbered laterally:

Magnetic Tape Records

A single collection of data written from memory onto
magnetic tape is called a tape record. A record can
vary in length from one word to the entire memory
contents (4, 8, or 16 thousand words). Normally, the
length of a record is apractical size as determined by
the processing requirements.

Inter-Record Gap

Tape records are separated by a three-quarter inch
gap of erased tape called an interrecord gap, or IRG.
During writing, the IRG is automatically produced at
the end of each record and, when reading, the record
begins with the first tape character after an IRG and
continues to the next gap. Thus a tape record is pre-
ceded and followed by an IRG, as shownin Figure 8-2,
and the IRG is used for starting and stopping between
records.

IRG Record | IRG Record IRG

3/4" Tape | 3/4" Tape 3/4" <

Figure 8-2. Magnetic Tape Records and Interrecord
Gaps

End-of-File Gap

The end of all the records of a file is indicated by a
3-3/4 inch section of erased tape followed bya binary
001111 (octal 17) tape mark, or end-of-file (EOF) char-
acter. The EOF record is written on tape by pro-
grammed instructions.

3/4" Tape
IRG Record

3-3/4"
EOF GAP

EOF Character _J

File Protection

Because the writing operation automatically destroys
any previous data on tape, care is imperative in pro-
cessing files containing data that must be preserved.
The GE-225 has a file protection ring that must be
inserted in a groove in the tape reel before the tape
can be written. If the write ring is in place, either
writing or reading can occur. Without the ring, only
reading can take place. The ring thus provides an
added safeguard against accidentally destroying afile.

Parity
Track P
6
5
Data 4
Tracks 3
2
1
MAe o2
BE" s

VIII-2

Magnetic Tape Handler

Each tape handler contains two reels, one for tape
feeding called the supply reel, and the other for tape

takeum

RO,

The tape handler mechanism functions to drive the
tape past separate read and write heads. Tape is
threaded around tape guides, and between the capstans
and their respective pinch rollers. In earlier models
of tape handlers, pressure pads held the tape even
and smooth as it passed the read and write heads; in
the newer models, vacuum pockets perform that
function. When the handlerpower is on, the tape-drive
capstans rotate continuously in opposite directions
(top one rotates clockwise), and are always ready to
drive the tape when a pinch roller forces the tape
against one of them. Tape moves forward when the
pinch roller is against the forward capstan and back-
ward when the pinch roller is against the reverse
capstan. Two sensing cells in the photosensor are
positioned to detect the beginning and end of tape
markers.

Each tape handler has a power supply to move tape
forward at a rate of 75 inches per second or back-
ward (rewind) at 150 inches per second. The infor-
mation transfer rate is 15,000 or 42,000 characters
per second.

Each magnetic tape handler has a control and indi-
cator panel which permits the operator to see various
conditions of tape operation and permits him to per-
form necessary off-line operations. This panel is
located on the front panel of the handler frame; all
switches and indicators are labeled except the rotary
address selector switch which is on the extreme left
of the panel. On the panel are the following:

Address Selector Switch. This eight-position
switch selects the channel from the controller
(0-7) for on-line operations. The switch is
completely disabled when the handler is set for
local operation. Since each handler can be set
to any one of eight channels, any tape reel can
be mounted on any transport, and that handler
can be selected by the computer program.

POWER ON switch and indicator. This push-
button turns on power to the handler when
depressed. It turns power off again when de-

pressed a second time.

REMOTE/LOCAL switch and indicator. This
pushbutton determines whether the handler will
operate under local control from the handler’s
control and indicator panel or whether it will
operate under remote control from program

instructions relayed to the handler through the
tape controller. The pushbutton is horizontally
divided and changes from one condition to the
other when depressed.

REWIND switch and indicator. This pushbution
operates only when the handler is set for local
operation. When depressed, it causes tape to
move in a reverse direction at a speed of 150
inches per second. This movement is caused
by energizing the reverse pinch roller, and
changing the speed of the capstan drive. The
REWIND switch is normally used to return the
tape to its load point, for the tape stops on the
leader foil. The rewind motion is also stopped
by depressing STOP or by placing the REMOTE/
LOCAL switch in the REMOTE position.

REVERSE switch and indicator. This pushbutton
operates only when the handler is set for local
operation. When depressed, it energizes the
reverse pinch roller and causes tape to move in
a reverse direction at a speed of 75 inches per
second until it is stopped by the sensing of the
leader foil. The motion is also stopped by
depressing STOP or by placing the REMOTE/
LOCAL switch in the REMOTE position.

FORWARD switch and indicator. Thispushbutton.
when depressed, energizes the forward pinch
roller and therefure causes [vrward movement
of tape when the handler is in the local state.
Tape will continue moving until the STOP push-
button is depressed, the trailer foil is detected,
the REMOTE/LOCAL switch is placed in the
REMOTE position, or the REVERSE switch is
depressed. The pushbutton is illuminated during
forward movement.

STOP switch. This pushbutton operates only
when the handler is set for local operation:
When depressed, it stops all local movement of
the tape handler; it is not an indicator.

WRITE INHIBIT indicator. This is an indicator
which is illuminated when the tape supply reel
does not have a write-permit ring. (Only reading
can be done on the tape.)

ADDR indicator. This indicator is illuminated
under program control whenever the magnetic
tape controller is addressed by the central pro-
cessor for a read or write operation.

DENSITY select switch. This switch is availabie
on 15/42 kc magnetic tape handlers only. In the
low (15 kc) position, tape can be read or written
200 bits per inch; in the HIGH (42 kc) position,
tape can be read or written 555 bits per inch.
Attempts to read tape with the DENSITY switch
set at other than the recording density of that
tape results in parity errors.

VIII-3

Read/Write Modes

The GE-225 magnetic tape system can read or write
data in three different modes: decimal, binary, and
special binary. The operating mode is specified by the
particular tape instruction given.

DECIMAL MODE

When operating in the decimal mode, the magnetic tape
controller automatically alters the magnetic tape char-
acters as data is transferred to or from memory
through the controller.

The zone bits of some BCD characters are altered by
the tape controller as follows:

BCD CHARACTER
ZONE BITS

MEMORY TAPE

In addition, a BCD zeroin memory (000000) is changed
by the controller and written on tape as 001010.

This alteration of data during the decimal mode makes
GE-225 tape format compatible with decimal tape for-
mats used by other data processing systems.

Figure 8-3 shows the octal equivalent of the BCD char-
acter set as it appears on magnetic tape, and the octal
representation of each character as it appears in
memory. Figure 8-4 illustrates how these characters
are recorded on magnetic tape.

00 00 In the decimal mode, bit positions 2 through 19 of each
01 11 memory word are written on tape as three magnetic
10 10 tape characters which are referred to as a module of
11 01 3.
CHARACTERS - OCTAL CHARACTERS - OCTAL
CHARACTER CHARACTER
MEMORY TAPE MEMORY TAPE

0 00 12 Q 50 50

1 01 01 R 51 51

2 02 02 S 62 22

3 03 03 T 63 23

4 04 04 U 64 24

5 05 05 Vv 65 25

6 06 06 w 66 26

i 07 07 X 67 27

8 10 10 Y 70 30

9 11 11 Z 71 31

A 21 61 + 20 60

B 22 62 - 40 40

C 23 63 A 60 20

D 24 64 / 61 1

E 25 65 # 13 13

F 26 66 @ 14 14

G 27 67 _ (undrscr) 15 15

H 30 70 = 186 16

I 31 71 33 73

J 41 41 3 53 53

K 42 42 * 54 54

L 43 43 , 73 33

M 44 44 % 74 34

N 45 45 f 75 35

(o] 46 46] 76 36

P 47 47

Figure 8-3. Representation of Characters in Memory and on Tape

VIII-4

BCD CHARACTERS

Track
0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ +-A/#@-=.8$*,%7[]

Parity P 11 1 11 11 1 11 1 11 1 1 11 1 111 111 1 1 \
Zones 6 111111111111 111111 11 111

5 111111111 11111111 1 11 1 1111

4 1 11 11 11 11 11111111111
Numerics 3 1111 1111 1111 1111 111 1 111

L? 1 11 11 11 11 11 11 11 11 1 111 1 1]

1 ¥ 111 1 1 1 1 1 111 1 1 1 1 1 1 1 11 1 11 1 1 \

Track P is the Parity track. Note that Parity is even for BCD and is odd for Binary mode.

Figure 8-4. BCD Characters on Magnetic Tape

Figure 8-5A shows the relationship between a BCD memory, these bit positions are automatically set to
word in memory and the three 6-bit characterson tape. zero. Figure 8-5B illustrates a word written from
Note that bit positions 0 and 1 of the memory word are memory onto magnetic tape.

not written on tape. When reading from tape into

0123 456 78 910111213141516171819

L1

Track
l l P 654321
| I ! ~ _/r_/"ﬁ‘—/
Memory | L »[P [1415[16/17]18]10
word i { +P! 8 9l10i11/112013] =
L [P 23 45 67§
Q
3
Track P contains even parity =
bits as required for each character. o
Q4
A /J E‘: v
S P
S 1 23 456 7 8 910111213141516171819
lolol1l1{1]1]olo]olofol1]1T1]0T0la]1]1]0
‘é 7 6
Tracks
P68 54 r’3__‘2_/1,.
F'/
Bit Positions 14 through 19 rO—IO/FO\O 1l1lo
Bit Positions 8 through 13 1) 15 /0l0|1 |1 |1
Bit Positions 2 through 7 _ tlolilililolo!|E
V]
&
B g
Note the alteration of bits 2 and 3 from 11 E
in memory to 01 on tape and the even parity =
bits generated for the first two characters. J Y =
LA
Memory Word + To -+ Magnetic Tape

Figure 8-5. Memory to Magnetic Tape (Decimal Mode)

VIII-5

BINARY MODE

In the binary mode, the twenty bits of a memory word
are written on magnetic tape as four 6-bit tape char-
acters. This isreferredtoasamodule of 4 and shown
in Figure 8-8. Parity of each tape character in the
binary mode is odd.

Tape tracks 1 through 4 of the first character are set
to 0. When reading from tape these zeros are ignored.

SPECIAL BINARY MODE

In the special binary mode, bit positions 2 through 19
of a memory word are written on tape as three 6-bit
tape characters. No alteration of data bits occurs
during the transfer of data through the tape controller.
Parity of eachtape characterisodd. When information
in the special binary format is read from tape into
memory, bitpositions 0and 1 of each memory word are
set to 0. Figure 8-7illustrates the transfer of a binary
word from memory to magnetic tape in the special
binary mode.

[sTi[213T4ls]6 [7]8]o10l11f12l13]1af1s[16[17 ks ho

Memory
Word

) W

P 6 54 3 2/L Track

e TN T

»P 14/1516(17|18{19
—» 8| 910]11{12(13
- 2! 3 41 5 6] 7
»[P S| 1/ 0 0| 0| 0
Tape
Movement

1

Figure 8-6. Memory to Magnetic Tape (Binary Mode)

01 2345678 9101112131415161718 M
oJofaTi1]1Jo oo]olo 1]1]1]o]ofo]1]1]o Word
% 7 6

Note that the format of information in
the special binary mode is the same
as the decimal mode.

P6 5432 1 Track
T~
l1]ofolo|1|1}0

Bit Pogitions 8 through 13,15 o lolol1]1]1
Bit Positions 2 through 7 {;1111l111l0l0
v Tape
Movement

L—-_L/"—\-/

Figure 8-7. Memory to Magnetic Tape (Special Binary)

AP Aoz
i,;.;rj [I A S S
Cls aisy

VIII-6

MIXED DATA MODES

When core storage contains information in both decimal
and binary form, writing and reading of this data to
and from magnetic tape must be done in the binary
mode so that all twenty bits of eachmemory word are
transferred. This means, however, that each BCD
memory wordisplacedontape as four 6-hit characters
instead of 3 characters. Thisfourthwordon tape con-
tains no information and is of no significant value.

Example: BCD word written on tape in binary mode.

0129458678 010111213141518171819 gy
lojofrirjalrjojolojofoirjr{tfofofofififo] memory
1 g 1 2 T s Word

Bit Positions 7 thro 2
No

This BCD memory word is written as four 6-bit tape
characters. Parity of each character is odd.

uple: Binary data wiittenon tape indecimal mode.

- 2 1 Track

Bit Positions 10 thro 14
Bit Positions 13 th: 8|
Positions 7 through 2

‘Tape
Movement

Bit positions 0 and 1 are not written on tape and thus,
when read back from tape, are set to0. However, the
error detection circuits of the GE-225 will indicate an
abnormal read if bits are detected in this area by the
magnetic tape checking features.

MAGNETIC TAPE ALERT CONDITIONS

The GE-225 magnetic tape system automatically per-
forms various checks to insure the accuracy of data
transfer between core storage and tape. The checking
circuits are also designed to prevent the execution of

A

Al

an illegal operation such as addressing a magnetic
tape handler that is in the process of rewinding.

Magnetic tape alert conditions fall into two categories:

1. Conditions that cause an ALERT HALT of a tape
handler and its associated controller and thatre-
quire manual intervention to restore them to
operation.

2. Conditions that do not cause an ALERT HALT,
but do give an indication of abnormal tape oper-
ation.

ALERT HALT Conditions

Certain error conditions and malfunctions that may
occur during magnetic tape operations cause the faulty
or affected tape handler andits associated controller to
halt., At the same time, the ALERT HALT indicator
on the controller display panelis turnedon. Dependent
upon the alert condition and upon local operating pro-
cedures, some form of manual intervention is required
to return controller and tape handler to operation.

In addition, an ATEFRTHAL T maycrmaynct cause the
central prucessor o hait. if tne alert condition occurs
during the instruction process (word 1, 2, or 3), the
central processor halts. If the condition occurs after
the tape handler becomes busy, the central processor
continues processing, but a subsequent attempt to ad-
dress the halted controller and tape handler (or another
handler on that controller) will halt the central pro-
cessor.

Conditions that will cause an ALERT HALT are:

1. A parity error on instruction word two or three as
these words are transferred from memory to the
tape controller.

2. Addressing a tape handler that is rewinding.

3. Addressing an unassigned tape handler.

4. Addressing a tape handler which is one of two units
on a controller having the same address.

5. A detectable malfunction of a tape handler.

6. Giving a write command to a tape handler without
the write permit ring on the tape reel.

7. Giving a read backward instruction when the tape
is positioned on the leader.

&y

a
NS
D'i;?j)

o8

Sy
E

VIII-7

When an ALERT HALT occurs, the normal procedure
requires that all items listed on the preceding page
be checked to determine and correct the alert con-
dition. The majority of magnetic tape ALERT HALT
conditions are due to human error, such as:

1. Failure to load tape properly
2. Failure to set handler addresses correctly

3. Failure to place handler in Remote control
prior to intended program use

4. Insertion of incorrect controller plug

Restart and recovery procedures after alert condition
correction is a function of the individual installation.

Alerts on Last Record

Certain types of magnetic tape errors do not halt the
computer. These error conditions are visually indi-
cated on the tape controller by the ALERT ON LAST
RECORD light and the specific error light.

The programmer can test for these errors by using the
magnetic test and branch instructions describedunder
the heading, Magnetic Tape Interrogation Commands.
Responsibility for corrective action lies with thepro-
grammer once he has determined the specific errors.

The following errors can be tested for by the pro-
grammer.

1. PARITY. In addition toaparity checkon data trans-
fers between memory and the tape controller, data
written on or read from magnetic tape is checked for
validity bv means of lateral and horizontal parity
checks. Figure 8-8 illustrates lateral and horizontal
parity for the decimal mode.

Lateral Parity
in Track P for
Each Character

Track T
P (1l L1 3 {
6 \ W I \
5 J1 1)
4 /[Horizontal {
3 | [1 Parity Bit \
2 ' L1 | | for Each Track)
1 {1]) {
[I I I I I | ___ Horizontal
Check
Character G E - 2 2 5 Character

Figure 8-8. Lateral and Horizontal Magnetic Tape
Parity

Lateral Parity. When data is read from tape, each
character is parity checked for validity (evenparity for
decimal and odd for binary data). A character (or
lateral) parity error turns on the LATERAL PARITY
ALERT light on the tape controller. During writing,
lateral parity bits are generated as required. placed
on tape (track P) and checked. See Write Check, below.

Horizontal Parity. At the end of each record, an
even check bit is written for each of the seven tracks.
Thus, the final character of any record is the hori-
zontal check character composed of the check bits for
the seven tracks. Horizontal parity is checked when
either reading or writing and any errorisindicated on
the tape controller by the HORIZONTAL PARITY
ALERT light. See Write Check, below.

2. MOD 3 OR 4. Adata word is written as three tape
characters in the decimal and special binary modes and
as four tape characters inthe binary mode. When data
is read from tape, a check is made for the correct
multiple of 3 or 4, depending on the mode. A MOD
error lights the MOD ALERT light on the tape con-
troller. Thus, data written on tape inthe binary mode
and read in the decimal mode (or vice-versa) would
give a MOD error.

3. WRITE CHECK. All informationwrittenon tape is
checked for correct horizontal and lateral parity by a
read head physically separate from the write head.
An error turns on the LATERAL PARITY ALERT or
the HORIZONTAL PARITY ALERT.

4, CONTROLLER N REGISTER MEMORY REQUEST
ERROR. The input/output register (displayed as the
N register on the controller display panel) in the tape
controller can store only one word of information at
a time. Note: this N register is a 21-bit register in
the tape controller and not the 6-bit N register in the
central processor.

If, during a tape read operation, a requestfor memory
access is not granted, datainthe controller N register
is written over by the next word read from tape. If
a request for a memory access is not granted during
a write operation, a word from memory does not get
to the controller in time to be written on tape so that
data in the controller N register is written on tape
twice. Either of these conditions turnsonthe MEMORY
ALERT light on the controller display panel.

Note that the magnetic tape test-and-branch instruc-
tions BCS BIO (branch on input/output buffer error)
and BCS BIC (branch on input,‘output buffer correct)
test for two conditions of the tape contrc!ler input’
output register. The first condition concerns the
granting or notgranting of memory requests; a memory
request error is indicated by aMEMORY ALERT light
on the controller display panel. The other condition
concerns a parity error on a data word from memory;
a parity error on a data word is indicated by the N
REG ALERT light, as discussed, below.

VIII-8

5. PARITY ERROR IN THE CONTROLLER N REG-
ISTER. When writing on tape, the parity of a data
word from memory is checked. A parity error turns
on the N REG ALERT light on the controller display
panel (a parity error caused by instruction words 2

armd 9 alan tisvna tha AT DO AT TR lich 3 o AA3
Al U ailPduv tuiluo Ull WiIT AV VLT NAiaavi LLSAI\-, 451 AL~

tion to the ALERT HALT condition discussed above).

6. ALERT HALT. Any of the conditions previously
discussed under ALERT HALT also turns on the
ALERT ON LAST RECORD light

il SR L NSU NS sipeate

Parity and other sucherrcrs are detected while reading
or writing tape. These do not cause an alert halt, but
do give an indication on the tape controller display
panel that a specific error has occurred on the last
record. These errors can be detected underprogram
control by means of the magnetic tape test-and-branch
instructions.

In addition to a parity check ondata transfers between
memory and the controller, instructions can be used
to test for a horizontal or lateral parity error occur-
ring on a data transfer between magnetic tape and the
tape controller.

MAGNETIC TAPE INSTRUCTIONS

Each of the two basic GE-225 tape sub-systems, Fig-
ure 8-9, require three instruction words to perform
an operation by a tape handier. The format of the
instructions is essentially the same for either tape
sub-system.

1/0 - Contains the bits 00 for all input/output com-
mands.

Contains code for the controller address to be
used (0-6),

Plug -

Word No 1 is the SEL command which clears any error
conditions from aprevious operation {exceptan ALERT
HALT which requires manual intervention) and selects
the specified tape controller.

Example of GAP Coding with Tape Controller on Plug 2:

Symbol Op¢ Operand E X
1[2i3]4[5‘(5 8 [9 [10 IZTlalIA!|5||S“|7lle!|gx2‘)
. . IS EL!2.
L i N i
Word No 2:
S-4 |5 ’ 19
T-C M

GE Tape Transfer Density Tape
Sub-System Rate (KC) (BPI) Speed (IPS)
TA 225 15 200 75
15 200
TB 225 AR 555.5 &

Figure 8-9. GE Magnetic Tape Sub-Systems

Word No 1:

S-4 | 5-6 [7-8 9 10-13 | 14 15 [16-19

Gen| Index | I/0 | Not | Plug {Not |[Gen| Not
Used Used Used

Gen - Word No. 1 is the general instruction SEL
which is the same for all input/output com-

mands. The SEL command is octal 2500P20.

Index - Address of index register when used, other-
wise 00.

5
>

TC - Contains the code for the specific tape command
to be performed (write, read, etc.).

M - Starung address inmemory where informationis
to be stored or extracted.

The second instruction word specifies the desired tape
operation and, in the case of reador write operations,
indicates the memory address involved.
This word cannot be indexed. Also, GAP manipulates
the GAP coding to form the word shown above. An ex-
ample showing the GAP instructionline is givenbelow.
P = Plug 2
M = Memory Location 1000

T = Tape Handler 4

GAP Coding:
Symbol Opr Operand X
1] 2] a1 4 s 0|8 ;9 dclial 43 vaids | te 17 18|13 2
SEL .2
'WT D1 000 4

The information contained in line 2 specifies the tape
handler thatistobeused. However, the tape handler is
not part of instruction word 2, as generated by GAP.
Instead this is made a part of GAP word 3.

iminll
O
R
N
(&S5

October 1963

Tape instruction word 3 for the magnetic tape sub-
systems, as generated by GAP, contains the following
information.

Word No 3 15 kc Tape Sub-Systems:

S5-4 5 19

T N

T - Tape handler to be used (0-7).

N - Maximum number of words read or written.

GAP Coding:
P = Plug 2
M = Memory Location 1000

T = Tape Handler 4

N = 200 Words
Symbol Opr Operand | X
112 s &' = sl s o1zl 1a]vs][1s 17]1s 1512
'S E L2
W TD,100 0 4
1 (200

The information of line 3 on the coding sheet and the
tape handler number of line 2 are used by GAP to
generate word 3.

In summation, the three basic instructions that the pro-
grammer must provide for each magnetic tape reador
write operation will assume the following form:

The SEL P instruction clears previous error con-
ditions (except ALERT HALT) and selects the desired
magnetic tape controller P.

The CCC (line 2) represents the three-letter mnemonic
code for specifying the desired operation.

The M (line 2, operand field) indicates the starting ad-
dress for reading and writing operations. For non-read
and non-write operations, such as backspace BKW and
write end of file WEF, the operand field is blank.

The T (line 2, column 20) specifies the desired tape
handler.

The N (line 3) specifies the number of words to be read
or written.

Tape Movement Instructions

The GE-225 tape sub-systems can, during forward
tape movement, either read or write information in
the decimal, binary, or special binary modes, Inter-
mixed reading and writing instructions should not be
programmed on ong tape handler,

FORWARD TAPE MOVEMENT:

The GE-225 tape sub-systems can, during forward tape
movement, either read or write information in the
decimal, binary, or special binary modes.

WTD M T 02MMMMM Word Times: 2
(Blank) N TTNNNNN

Functional Description: WRITE TAPEDECIMAL, The
number of decimal words specifiedby N, starting from
location M, are written by magnetic tape handler T.

Symbol Opr Operand X
|$2i3'a*s?e 8 s 10 sz‘yla‘ujislts‘nnxeus 20
; ; WTB M T 03MMMMM Word Times: 2
SEL.P. ‘ : ; Blank) N TTNNNNN
cCccCcM™M T
N. ‘
Functional Description: WRITE TAPE BINARY. The
} number of binary words specified by N, starting from
‘ location M, are written by magnetic tape handler T.
e @)7 2
[o .
SIS T 4 g@)
VIII-10 October 1963

23MMMMM Word Times: 2

TTNNNNN

WTS M T
(Blank) N

Functional Description: WRITE TAPE SPECIAL BIN-
ARY MODE. The number of words speciiied by N,
starting from location M, are writtenby magnetic tape
handler T. Bits 2 through 19of each word are written
on tape exactly as they appear in memory (zone bits
are not altered).

RTD M T
‘Blank) N

04MMMMM
TTNNNNN

Word Times: 2

Fuvnetional Description: READ TAPE DECIMAL. A
maximum of N decimal words is read by magnetic tape
handler T andplacedin memory, startingatlocation M.

RTB M T
(Blank) N

05MMMMM
TTNNNNN

Word Times: 2

Functional Description: READ TAPE BINARY. A
maximum of N binary words is read by magnetic tape
handler T and placed in memory, starting at location
M.

RTS M T
(Blank) N

25MMMMM
TTNNNNN

Word Times: 2

Functional Description: READ TAPE SPECIAL BIN-
ARY MODE. A maximum of N wordsis read by mag-
netic tape handler T and placed in memory, starting
at location M. A data word from tape is stored in bit
positions 2 through 19 of a memory location just as it
appears on tape (zone bits are unaltered).

WEF T 0200000

TT00000

Word Times: 2

Functional Description: WRITE END OF FILE. The
end-of-file character (0001111) and end-of-file gap are
written on tape by magnetic tape handler T.

Comments: These instructions cannot be automatically
modified. Also, they must always be preceded by a
select (SEL) instruction.

Example 1: Write on magnetic tape, in the decimal
mode, 100 BCD words from memory starting at loca-
tion 1000. Use tape handler number 1 on the tape
controller connected to controller selector plug 1.

)
)

iy
]
.

¢]

=
T

GAP Coding:

oy L ,91‘ _ Jueranu
o S E L 1 .
WTD 1000 1
- o 1 00 .
Resulting GAP
Assembly:
Location Contents
in Octal in Octal GAP Coding
02757 2500120 SEL 1
02760 0201750 WTD 1000 1
02761 0200144 100

Example 2: Read in the decimal mode from magnetic
tape 100 BCD words into memory address 2000. Use
tape handler 1, plug 1.

GAP Coding:
- f i Ooerano
el {
— e S EL.1
. RTD 2 0 0 0 1
L N 1 00
Resulting GAP
Assembly:
Location Contents
in Octal in Octal GAP Coding
03000 2500120 SEL 1
03001 0403720 RTD 2000 1
03002 0200144 100

Example 3: Write an end-of-file record ontape using
tape handler 4, plug 2.

Frors

Operand -

LI N IET A] LT

CE
I
R
@&

VIII-11

October 1963

Resulting GAP

Assembly:
02000 2500220 SEL 2
02001 0200000 WEF 4
02002 2100000

Note particularly that GAP has generated the third in-
struction word.

BACKWARD TAPE MOVEMENT:

The GE-225 tape sub-systems have instructions that
result in a backward tape movement. Data can be read
but not written during backward tape movements.

14MMMMM Word Times: 2

TTNNNNN

RBD M T
(Blank) N

Functional Description: READ BACKWARD DECI-
MAL. Decimal information is read from tape moving
backward. A maximum of N words is read into mem-~
ory, the first word being placed in location M. The
second word is placed in M minus 1 and so on until N
words are read. The tape controller alters the zone
bits of characters read so that they conform to GE-225
internal BCD characters.

BKW T 1600000

TTO00000

Word Times: 2

Functional Description: BACKSPACE AND POSITION
WRITE HEAD. The tape on magnetic tape handler T is
back-spaced one record and the write head is posi-

tioned to write. This command must not be followed
by a read command on the same tape handler until

a write command has been executed,

Comments: If the lasttape operationperformedon the
specified handler was a write operation, read tape
backward commands cannot be performed on this
handler.

Since a BKW command is used to move a specified
tape handler backward one record and position it for
rewriting a record, this command cannot be followed
by a read instruction. The programmer mustexercise
caution in using the BKW command because, if the
record being backspaced is less than 24 words in
length, the record may be ignored and the tape will be
backspaced over the preceding recordalso, regardless
of its length. A subsequent write operation would then
destroy this record. In addition, a write operation
following a BKW command elongates the IRG by
approximately 0.20 inch.

Backspace and Reread One Record. Backspacing and
positioning for re-reading a record can be accom-
plished by using a read backward command withN set
equal to zero.

Example 1: Backspace one recordandposition the read

RBB M T
(Blank)

15SMMMMM
TTNNNNN

Word Times: 2

Functional Description: READ BACKWARD BINARY.
Binary informationis read from tape moving backward.
A maximum of N words is readinto memory, the first
word being placed in location M. The second word is
placed in M mrinus 1 and soonuntil N words are read.

head.

RBS M T
(Blank) N

35MMMMM
TTNNNNN

Word Times: 2

GAP Coding:

Symbol Opr Operand P X
(,ziaw,:?sl{s 319;10 tz[isr’ullr”\s;n!\s.;g!gw
SEL|2
R B D{1.0.0.0 3

0

Functional Description: READ BACKWARD SPECIAL
BINARY. Information is read from tape moving back-
wards. Bit positions 2 through 19 of each word read
are placed in memory exactly as ontape (zone bits are
not altered). A maximum of Nwords is read into mem-
ory, the firstwordbeing placedinM. The second word
read is placed in M minus one and so forth until N
words are read.

2000000
TTO00000

RWD T Word Times: 2

Functional Description:
tape handler T to leader.

REWIND. Rewind magnetic

Tape Movement Residue Word

After a magnetic tape read operation on any GE-225
tape sub-system, a residue word is generated that con-
tains information as to the number of words in the
record just read. The locationofthe residue word and
its contents are as described below.

Reading Tape Forward. After forward reading Nwords
from magnetic tape in the decimal, binary or special
binary modes starting at location M, memory location
M + N (the residue word) contains zeros if exactly N

VIII-12

October 1963

words were read from a tape record containing N
words. For example, if M is 500 and N is 50 and the
record read contains 50 words, the information is
stored in locations 500 through 549 and location 550
contains all zeros,

If the number of words contained in the record is less
than N, then only that number of words is stored in
memory. The two’s complement of the difference (N
minus record length) is stored in memory cellM + N
with a 1-bit in the sign position. For example, if M is
0500 and N is 50, but the record read contains only
30 words, the information is stored in memory cells
0500 through 0529 and the two’s complement of the
difference, 20 (N minus record length), is stored in
memory cell 0550 (M + N) with a 1-bit in the sign
position,

If the number of words in the recordis greater than N,
only N words are storedinmemory, and the number of
excess words (record length minus N) is stored in
memory cell M + N, with a 0-bit in the sign position.
For example, if M is 0500 and N is 50 but the record
length is 75 words, information is stored in memory
locations 0500 through 0549 and the increment 25
(record length minus N) is storedinmemory cell 0550
(M + N) with a 0-bit in the sign position. The tape
controller remains busy for the time required to read
the record; i,e,, the IRG is reached,

Exainple. Two hundred words of a decimal tape record
are read into memory starting at location 2000. Tape
handler 3 on tape controller 1 is used.

GAP Coding:
ETTery i et ' Cneranid
S EL 1 .
____ RTD2 0 0O 3
SO |

The residue word is in memory location (M + N) which

equals 2000+ 0200, or 2200. Three conditions can exist
as shown by the chart below.

Record Octal Contents

Condition Length (R) of 2200 (M + N)
R=N R = 200 0000000
R>N R = 250 0000062
R< N R =100 3777634

The programmer must allow for this residue word when
reading records into memory. Otherwise, he runsthe

risk of destroying the contents of a memory location
vital to successful operation of his program.

Reading Tape Backward. Inreading tape backward, the
first word read is placed in M, the second word is
placed in M minus 1, the third in M minus 2, etc.,
until N words are read or, if the record read is less
than N words, until the entire record is read.

After backward reading of N words from magnetic tape
in the decimal, binary, or special binary modes starting
at location N, memory locationM - N contains zeros if
exactly N words were read from a record containing N
words. For example, if M is 0500and N is 50 and the
record read contains 50 words, the information readis
stored in memory locations 0451 through 0500 and
location 0450 (M - N) contains all zeros.

If the number of words contained in the record is less
than N, then only that number of words is stored in
memory and the two’s complement of the difference
(N minus record length) is stored in memory cell
M - N with a 1-bit in the sign position. For example,
if M is 0500 and N is 50 but the record length is only
25 words, only the record is stored in memory in
locations 0476 through 0500 and the two’s complement
of 25 (N minus record length) is storedin location 0450
(M - N), witha 1-bitin the sign position. If the number
of words in the record isgreater thanN, only N words
are stored in memory and the number of excess words
(record length minus N) is stored in memory cell
M - N with a 0-bit in the sign position. For example,
if M is 0500 and N is 50 but the record length is 75
words, only N words are stored in memory locations
0451 through 0500 and the difference (record length
minus N) is stored in memory cell 0450 (M - N) with
a 0-bit in the sign position. The tape controller re-
mains busy for the time required to read the entire
record.

Example: Two hundredwordsofa decimal tape record
are read into memory starting at 2000 by a read back-
ward instruction. Tape handler 3 on tape controller 1
is used.

GAP Coding:

The residue word is in memorylocation (M - N) which
is 2000 - 200, or 1800. Three conditions can be indi-
cated by the contents of the residue word as shown.

VIII-13

October 1963

Record Octal Contents

Condition Length (R) of 1800 (M -N)
R=N R = 200 0000000
R>N R = 250 0000062
R< N R = 100 3777634

The residue word resulting from a tape read operation
provides the programmer with a means of determining
the actual number of words readinto memory and thus
also provides a way of determining the actual record
size, if desired.

Magnetic Tape Interrogation Commands

Before attempting to perform a magnetic tape oper-
ation, it is essential that the programmer interrogate
the magnetic tape controller as to its status: whether
it is busy or whether a particular condition occurred
during its previous operation. Test-and-branch in-
structions can be used by the programmer to indicate
the controller status.

Test-and-Branch Instructions. Normally, the SEL in-
struction selects the particular controller desired,
while coding lines two and three of the instruction group
then tell what is to be done by the peripheral unit
connected to the controller. However, before these
instructions can be programmed, it is a good pro-
gramming convention always to precede the SEL with
a test for ready condition. These test-and-branch
instructions are performed by executing a BCS
command specifying the particular test condition
desired.

The foliowing instructions test to determine whether
a specified magnetic tape controller conrition is true
or false. If the condition tested is true, the computer
executes the next sequential instruction. If false, the
computer executes the second sequential instruction.
These instructions apply to all GE-225 magnetic tape
sub-systems.

BCS BTR P 2514P20 Word Times: 2

Functional Description: BRANCH ON TAPE CON-
TROLLER READY. The tape controller P is tested
for the ready status.

BCS BTN P 2516P20 Word Times: 2

Functional Description: BRANCH ON TAPE CON-
TROLLER NOT READY. The tape controller P is
tested for the not ready status.

/T M2
ala e ey
iy b 4 vl -t
AL (95T

BCS BEF P 2514P21 Wword Times: 2

Functional Description: BRANCH ON END OF FILE.
The tape controller P is tested for end-of-file indi-
cator ON.

BCS BNF P 2516P21 Word Times: 2

Functional Description: BRANCH ON NO END OF FILE,
The controller P is tested for end-of-file indicator
OFF.

BCS BET P 2514P22 Word Times: 2

Functional Description: BRANCH ON END OF TAPE.
The controller P is tested for end-of-tape indicator
ON.

BCS BNT P 2516P22 Word Times: 2

Functional Description: BRANCH ON NO END OF
TAPE. The controller P is tested for end-of-tape
indicator OFF.

BCS BPE P 2514P24 Word Times: 2

Functional Description: BRANCH ON TAPE PARITY
ERROR. The controller P is tested for parity error
indicator ON.

BCS BPC P 2516P24 Word Times: 2

Functional Description: BRANCH ON TAPE PARITY
CORRECT. The controller P is tested for tape parity
error OFF,

BCS BIO P 2514P25 Word Times: 2

Functional Description: BRANCH ON INPUT/OUTPUT
BUFFER ERROR. The controller P is testedfor input/
output buffer error indicator ON.

BCS BIC P 2516P25 Word Times: 2

Functional Description: BRANCHON INPUT/OUTPUT
BUFFER CORRECT. The controller P is tested for
input/output buffer error indicator OFF.

BCS BME P 2514P26 Word Times: 2

Functional Description: BRANCH ON MOD 3 OR 4

ERROR. The controller P is tested for modulo 3 or 4
error indicator ON.

VIII-14

October 1963

BCS BNM P 2516P26 Word Times: 2

Functional Description: BRANCH ON NO MOD 30R 4
ERROR. The controller P is tested for modulo 3 or 4
error indicator OFF,

BCS BER P 2514P27 Word Times: 2

Functional Description: BRANCH ON ERROR. The
controller P is tested for error indicator ON.

BCS BNE P 2516P27 Word Times: 2

Functional Description: BRANCH ONNO ERROR. The
controller P is tested for error indicator OFF.

In tape sub-systems, the error indicator is turned on
by:

1. A tape parity error

2. 1/0 buffer error

3. MOD 3 or 4 error
These conditions would be detected by a BCS BER in-
struction, although the specific error or errors would
not he identified. Once an error isdetected, it can he
specifically identified by testing for individual error
conditions. it should be noted that

End of File

End of Tape

Tape Rewinding

conditions would not be detected by the BCSBER com-
mand, but must be tested individually.

BCS BRW P 2514P23 Word Times: 2

Functional Description: BRANCHON TAPE REWIND-
ING. Thecontroller P is tested for tape rewinding con-
dition only.

BCS BNR P 2516P23 Word Times: 2

Functional Description. BRANCH ON NO TAPE RE-
WINDING. The controller P is tested for tape not
rewinding only.

The programmer must be aware thata rewind instruc-
tion for any tape handler ona controllerputs that con-
troller in the not-ready status for 250 microseconds,
after which the controller returns to the ready status
even though the tape handler is still rewinding. A read
or write instruction can then be given to any tape unit
that is pot rewinding. The controller indicates when

P N A VR S

one or more tape units is rewinding for the entire re-
wind operation. Addressing a rewinding tape unit to
read or write causes an ALERT HALT condition.

Thus, a rewind interrogation of a tape controller will
indicate that a tape is rewinding without specifying
which particular tape handler.

Exampie i: Test tape controller 1 for ready status.

GAP Coding:
Symbol Opr Operand DX
1] 27 3] 4l 5] 6|8, 0,10 12115 vejis 5 17 15 1550
BCS{BTN 1
BRU* - 1
SEL 1.

Comments: The BCS command above interrogates the
controller on plug 1. Ifthe controlleris not ready, the
computer executes the next sequential command which
is a branch back to the BCS command. Thus, a delay
is effected until the controller becomes ready at which
time the SEL command is executedand a tape operation
can be performed.

When a3 magnetic tape controller is testedand found to
be ready, or not busy, any tape handler connected to it
can be addressed bv a read. write readbackwards, or
rewind instruction, unless the tape handler already is
rewinding. Tape handlers thatare rewinding should not
be addressed until the completion of the rewind oper-
ation.

A read, write, or read backward instruction puts the
controller in the not-ready, or busy, status until the
completion of the operation. A rewindinstructionputs
the controller in a not-ready status for 250 micro-
seconds, after which the controller returns to the ready
status. A read or write instruction can then be given
to any tape handler that is not rewinding. The con-
troller indicates that one or more tape handlers are
rewinding for the entire rewind operation. Addressing
a rewinding tape handler to read or write causes an
ALERT HALT condition.

Example 2: Test tape controller 1 forany error con-
dition and branch to an error subroutine to determine
the type of error, if any exists from the previous tape
operation.

GAP Coding:
Symbo: 7Opr Operand X
i i<’ﬁl“ ﬂlri,i\ yeih?xa}"si\r!nlx«]w 2
B C B E R 1

T JRBRUIERROR

Vil (Aca)

VIII-15

PROGRAMMING MAGNETIC TAPE
OPERATIONS

General Considerations

Before processing data from magnetic tape, it isgood
programming practice to rewind the tapes that are to
be used. This safeguards against the possibility of a
tape not being at load point when processing begins.
The programmer also should rewind a tape upon com-
pletion of processing and provide appropriate mes-
sages to the operator specifying what is to be done
with the rewound tape. It is also necessary to test
the magnetic tape controller or controllers for ready
status before attempting any tape operation.

Example: Flow Chart

HOUSEKEEPING:

Rewind MSTR Tape,
Controller 1,
Handler 2.

Rewind TRANS Tape,
Controller 2,

Handler 1.
GAP Coding:

Syrmbvel [ow T Oparond Tx] AR
RTINS FRARET KD IEEREOAERAEL ¥
8 TART BCSBTN i_CHECK FOR CONTROLLER 1 READY

BRU|* -1 DELAY FOR CONTROLLER READY
BE L SELECT CONTROLLER 1

J.B W n—'[. 2! REWIND TAPE HANDLER 2

B C 8 N 2, CHECK CONTROLLER 2 READY
BRU[* -1

S E L2 SELECT CONTROLLER 2

R W D 1 TAPE 1

After performing a tape operation on a controller and
before using the controller for another operation, tests
must be made to determine if the operation was
successful or if any condition such as end-of-file, end-
of-tape, etc., occurred. It isessential thatthese tests
be made before another SEL command is executed
since this instruction clears the controller.

Example: Assume that a controller onPlug 1 and tape
handlers 2 and 3 are being used.

Flow Chart

Yes

from Tape 1
into Area
1

Yes

ontroiler
Busy ?

No

Any
Errors?

No
Magnetic
Tape Error
Subroutine
Continuation

EOF
Subroutine

GAP Coding:
—_—

Symbel T o 1 Oparemd X nEmaRKS Seawence
RIS ERESEE DD LU T AL T T
A BCSBTN 1_CHECK FOR CONTROLLER BUSY 200

BRU,® -1 210
IFREAN SELECT CONTROLLER $1 230
RTIDAREAS.1 READ MSTR RECORD 230
250 NO, WORDS IN RECORD [240
BCSBTN 1 _DELAY UNTIL READ COMPLETED 250
BRUS® - 1 380
_3.70

BRUERR 380
BCSBEF J_CHECK FOREND-OF-FILE 290
BRUEOF GO TO END-OF-FILE SR 300

VIII-16

Any error occurring during the read operation in the
example would cause a branch to a sub-routine to
determine the type of error and the corrective action
necessary.

Reading and writing operations can be performed
simultaneously only when two or more tape controllers
are available. Again, each operation must be tested

by the programmer for any errorsor other conditions.

Example 1: Assume MSTR tape on controller 1, tape
handler 1; TRANS tape on controller 2, tape handler 1.

Flow Chart

Controller 1
Busy ?

No

Read
{ MSTR \
(Record int
Area /)
1

Controller 2
Busy ?

No

Subroutine
Yes Any Errors
on2?
Error
Subroutine

Continuation

GAP Coding
Svmbol | O i Overane . AEMARNS . yemusnce
0 T e T T Ty
BCEBTN 1 X C LLER #1 BUSY
BRU®.-1 310
SEL1 SELECT CONTROLLER #1 1130
BRI D AREAS® | READ MBTH RECORD 3.3 0
200 NO.WORDS 340
- BCSBTN 2 CHECKCONTROLLER#2BUSY ____ .. ______ 3350
BRU®* -1 e 180
SEL 2 SELECTCONTROLLER® 310
| RTDAREAW#2 READ TRANS RECORD s80
200 NO, WORDS [T I I
BCSBTN 1 _CHECKCONTRQLLER#1BUSY . 400
BRU® -1 e 410
BCSBER i CHECK FOR ANY ERROR - I I I 1
BRUERROR GO TO ERROR SUBROUTINE _ 480
—————— BCSBTN 2 CHECKCONTROLLER2PUSY . 440
BRUS® - 1 450
BCSBER 2 CHECK FOR AN’ ERROR 460
B REUEREOR L GO TO ERROR SUBROUTINE 4.7.90

Example 2: At the conclusion of processing an old
master file on controller 1, handler 1 and creating a
new master file on controller 2, handler 1, write an
end-of-file record on the new master and rewind both
tapes.

GAP Codmg:
e = —r - o
~BCSsRTN 771 CEEXCK CONTROLIER ¢ BUSY 7__AA:_2.‘7 0
| B_R [, * 1 5.3
_ .S ELIl ... SELECT CONTROLLER #1___ 5 4

i A REWIND TU #1

E

et b
ok

B

| sEL2 SELECTCONTROLLERs2
| T wer _ 1 WRTEEOFON THAL

o BCSBTN
- BRU ¢ .|
BEL 2
L R WD

~—-.2 DELAY FOR EQF COMPLETION _

cocopocackok

|
|
|
|
en sl oo
PR R

Multi-Reel Flip-Flops

The use of magnetic tapes implies files of great size,
and in many applications a file consists of more than
one reel of tape. Thus, whenever the end of a tape or
the end of a file is reached, the tape reel must be re-
wound, removed, and replaced with the next tape to be
processed. To maintain the continuity of the running
program, it is worthwhile to program an immediate
switch, or alternation, from the just-completed tape to
a succeeding tape (already mounted on another tape
handler). This is accomplished by a technique called
flip-flopping of multireel tape files.

This technique permits the mechanical rewind and
manual removal of the completed tape to proceed en-
tirely independent of further processing. If sufficient
tape handlers are not available to permit such con-
venient switching of all files, then the most extensive
files should be given priority in the allotment of tape
handlers.

[rm
0
D

)
Chy

VII-17

As explained earlier, the actual number of the tape
handler (T) to perform a specified operation appearsin
bit position O through 4 of the third coding line. The
tape handler is selected according to the following
formats:

Handler Number Bits 0-4 Octal Code
0 00001 01
1 00010 02
2 00100 04
3 01000 10
4 10001 21
5 10010 22
6 10100 24
i 11000 30

These configurations make flip-flopping of multireel
tape files relatively easy. It isonlynecessary to load
the third instruction word of a magnetic tape instruc-
tion into the A register, change the sign and store the
word back into memory.

For example, assume a multireelfile isplacedon tape
handler 1 and the second reel ontape handler 5. When
the end-of-file indication is reached on the tape on
tape handler 1, the third word of the instruction is
loaded into the A register, the sign changed, and then
stored in memory as the third word of the tape instruc-
tion. The same technique canbe usedfor the following
tape handler combinations:

Qe—4
le——»5
2¢—+6

Je—7

Thus, if a spare tape handlerisavailable during a given
program run, the flip-flopping of handler numbers of
all tape instructions related to a given multireel file,
after an end-of-file condition, allows the program to
continue uninterrupted while the ‘used up’ reel is re-
winding.

Processing Magnetic Tape Records

Since the GE-225 is a buffered computer, itis capable
of performing simultaneous peripheral operations.
This is of particular importance in processing mag-
netic tape data in that reading and writing can be done
simultaneously with two tape controllers. However, the

time consumed processing tape data is directly af-
fected by the arrangement of the data records on the
tape. For example:

Tape A - 24 Word BCD Records, 15 kc Tapes

{ TRecord Record Record Record
#1 IRG #2 IRG| #3 IRG| #4

The tape time involved in reading these records is
calculated by the following timing formula.

3RW
K

+(R-1) S Where

R = No. Records

W = Words per Record

K = Tape transfer rate in ke
= Start-stop time in IRG

This equation applies only for tapes with BCD data.
For binary tapes the expression (3RW) should be 4 RW.

For tape A, the tape time for reading the data is:

3x4x24

A o= +3(.012) = .0552 Sec.

This time is based on a start-stop time in the IRG of
12 ms for both the high-density and the low density
magnetic tape sub-systems.

If the data on tape A were written on tape B as a
blocked record as shown below the time to read the
data is:

3x1x96 _
5000 +.012 = .0312 Sec.

Tape B

5#1 #2 | #3 | #4 | 1RG

[_J
One record on tape

The time saved in reading the data from Tape B as
compared to Tape A is due to elimination of three in-
ter-record-gaps due to the blocking of four records into
one. Blocking of records can result in considerable
reduction in tape processing time.

GRS

VIII-18

Record Documentation and file maintenance costs. Figure 8-10 illustrates a
record layout sheet for systems designer or program-
mer use. Documentation of this type providesa clear

Adequate record documentation on the part of the sys- description as to the contents of a record, the size of
tems designer or the programmer helps reduce pro- each individual data field, and the size of the record
gramming costs, machine time needed for debugging, itself.

2un. #2 Inventory Control pate. 1/30/63

Fie: INV MSTR PROGRAMMER: ___GE Coder
recoro e, BCD GE 225 MAGNETIC 'IAPE RECORD LAYOUT SHEET race._1 or.__ 20

B ELECTRIC

0: , Stozck # - 'ﬁ - Item Dsescrlptlon -

I O N N N O O O O O O I I P P P P P P
- D = ={‘h Balanc(?2 on Hand—yh——-—-—-——Qogaﬁgﬁg-——ph-Backorder

i.l.l!‘[Ll‘l.lI.lWE.IIIAI.I,II.LK.IL!.I
guantity—»lg—Reordelf Point—-—»h—ol-gggo(g&:nﬁty—’ ;——gggﬂ ::; Blzzlank >

PO N U N O O O O R
2 5 % 2 s) 0 31

R N N O I [[T T [| []
2 E 3 3 E 7 B £

[7] I T E | |

10 a P s u 5 I o
e : S i I i L
48 49 50 51 52 53 54 55

PR N N N U R s O O O O O O I I I I
5 57 58 5 60 sl 62 6

NP N X X e N O O O I O
€4 65 66 67 68 69 70 71

L rerererererer e ot oo T
72 3 7% 75 76 77 78 9

N N N X O O O O I O
& 81 82 83 84 85 86)

R N O N N O Y O O I I I I I R P

Figure 8-10. Sample Magnetic Tape Record Layout Sheet

|

L]

N
)

VIII-19

SECTION IX

HIGH SPEED PRINTER OPERATIONS

Two high-speed printers are available for use with the
GE-225 system. One printer (Model 4WP2254) is for
on-line operations only and accesses data from core
memory in the central processor. The other printer
(Model 4WPAG690) operates both on-line and off-line.
During off-line operation, a separate core memory
within a special magnetic tape controllerisused. Both
printers operate similarly when on-line, except that
Model 4WPA690 has more powerful field-spreading
ability. With the exception of some indicator lights,
the physical characteristics of the two high-speed
printer models are basically the same with respectto
printing speed, slewing speed, printable characters
and paper specifications. The off-line operation of
Model 4WPA6YU 18 discussed later in the section.

Paper Forms. Minimum paper width for a printed
document is 3-1/2 inches; maximum width is 16-1/2
inches. Maximum form length is 22 inches. During
any printing operation, up to 5 copies can be made,
depending upon the weight paper used.

ON-LINE PRINTER OPERATIONS

The high-speed on-line printer is an output device
operating through the controller selector. Itis capable
of single-line printing at a rate of 900 lines per minute
for either numeric or alphanumeric data. By means
of printer controllers operating through the controller
selector, high-speed printer operations can occur
simultaneously with the processing of other infor-
mation in the central processor.

A print line can contain up to 120 alphanumeric
characters which may occupy more than 40 consecu-

BCD words in memory, A lesser number of
printline characters require fewer memory locations,

+ivr
uve

Printing is executed by a revolving drum (120 print
wheels locked together) and hammer-firing mechanism
which can print up to 50 different characters. These
include 26 alphabetic, 10 numeric, and 14 special
characters as shown in Figure 9-1. All printing is of

the open Gothic type font at 10 horizontal characters
and 6 lines per inch.

HIGH HIGH

SPEED BCD SPEED BCD

PRINTER MEMORY PRINTER MEMORY

SYMBOLS (OCTAL) SYMBOLS (OCTAL)
A 21 0 00
B 22 1 01
C 23 2 02
D 24 3 03
E 5 4 0
F 26 5 05
G 27 6 06
H 30 7 07
I 31 8 10
J 41 9 11
K 42 + 20
L 43 - 40
M 44 blank 60
N 45 / 61
(¢} 46 # 13
P 47 @ 14
Q 50 B 15
R 51 = 16
S 62 . 33
T 63 $ 53
U 64 * 54
\% 65 , 73
w 66 % 74
X 67 [75
Y 0] 76
Z 7 End-of- 37

Line

Figure 9-1. High-Speed Printer Character Set

s @@E‘
oo © /7 776N
lﬂl‘ﬂ (A5

IX-1

October 1963

The high-speed printer provides horizontal and ver-
tical format control and,through programmed format
instructions, the printer controller automatically edits
each horizontal print line. After each line is printed,
the paper is advanced one line under program con-
trol, However, if more than one line is to be spaced,
or slewed, this can be programmed separately or
performed automatically as part of the print instruc-
tion, Vertical slewing can be accomplished by either
the countdown method or by slewing to a particular
channel of the printer punched tape format loop.
Slewing speed is 25 inches per second,

Printer Controllers. All printing operations are con-
ducted by printer controllers. Each controller com-
municates with the central processor core memory
through the controller selector. AGE-225system can
have up to eight printer controllers connected to the
controller selector. However, unlike the magnetic
tape controllers, only one high-speed printer can be
connected to any one printer controller, Figure 9-2.
The controller allows printing operations to occur
simultaneously with central processor computations.

CORE
MEMORY

I

CONTROLLER
SELECTOR

PRINTER
CONTROLLER

HIGH
SPEED
PRINTER
(ON LINE)

Figure 9-2. High Speed Printer, Controller, and
Controller Selector

M. 99E

The controiler serves as the link between the core
memory of the central processor and the high-speed
printer. It monitors the flow of information between
memory and the printer, receives and interprets
printer instructions from the central processor core
memory, and accumulates and stores printable char-
acters in the actual operation of the high-speedprinter
mechanism.

An operator panel on the printer controller, Figure 9-3,
provides for manual operation of the printer. By using
this panel, an operator can slew paper or print out a
central processor memory dump in octal form.

READY
PARITY ALERT
eAPER ALERT

OFF LINE

HAMMER FUSE

POWER
ON

POWER
OFF

. ON LINE
| e—

| OFF LINE

. SLEW TOP
PAGE

MEMORY
DumpP

Figure 9-3. Operator Control Panel
- High Speed Printer Controller

GG T aa)

October 1963

Priority. When operating on-line with other GE-225
peripheral units, a high-speed printer is granted
access to memory according toitsprioritylevelin the
controller selector priority interrupt system. This
level is pre-established within a GE-225 system by
plug-in connectors to the controller selector. Through
this priority interrupt system of time sharing, each
printer controls itself (through the respective printer
controller), executes its own instructions and thus
permits printing operations to occur simultaneously
with central processor computations. Normally the
printer controller occupies plug 8 {one of the lower
priority plugs) because the printer can afford to wait
for priority without a loss of information.

Core
Memory

Process Area

Print Area

v

Controller Data Flow

During all on-line high-speed print operations, datais
sent to the printer controller from the central pro-
cessor M register. This registerisusedfor checking
parity of each 20-bit word {three BCD characters) as

it leaves memory.

Parity is also checked in the printer controller before
the word is stored in the controller. A controller has
two 20-bit (plus a parity bit) buffers; one buffer holds
format line information and the other holds printable
data as it comes from memory. As shown in Figure
9-4, these are the format buffer and the data buffer.

—

M Register

Central Processor

v

Controller
Selector

Data & Format
Address Counters

A

20-Bit Format

Buffer

)

21-Bit Data
Buffer
High-
120-Character Speed
Core Buffer On.-Llne
Printer

f

Printer Controller

Figure 9-4. Printer Controller Buffering Diagram

>)
>)

(70
[
0
N
[
G|

[

The data buffer actually holds 21 bits because data
and format words entering it are checked for parity
before being transferred to the printer controller
120-character core buffer.

By using these buffers and the controller selector
priority interrupt system, it is possible to time share
access to memory, fill the printer buffers, and print,
at the same time allowing central processor com-
putations. This simultaneous operation of processing
and printing may require alternate input and output
areas of memory.

Checking Features. The accuracy of all information
transferred between memory and the printer con-
troller is checked in the following ways: a parity check
for each word received from memory, end of paper
detection, and inoperable hammer drive detection,
Input and buffer errors also are checked by the printer

controller check circuits and indicated on the con-
troller display panels. Program instructions can be
used to check certain of these conditions. These are
described under Printer Test~and-Branch Instruc-
tions.

Printer Instruction Format

Printer instructions always require three lines of
coding before print operations can begin, although at
times, only two instruction words are coded by the
programmer, such as in slewing paper or printing
without automatic format control. In such cases, the
General Assembly Program generates the third line
of coding.

Figure 9-5 illustrates the bit configurations for each
of the three required printer instructions.

01 2 3 415 6|7 8|9 [10 11 12 13} 14 15 16 17 18 19
1 01 0 1|xXx Xj0 Oj0OP P P P{|{O 1 (0O O O O
WORD 1 General Index| 1/0 |NU| Controller Not [Genl Not Used
(SEL) Address Used
Bit positions 7 and 8 are zeros for all Input/Output (I/0) instructions
\4——- octal group——» |«—octal groupT‘
0 1 2 3 4 5 6-19
1=Print & Slew | 1=Format|VFU 8| VFU 7| VFU 6 |1=Numeric |Format
WORD 2 0=Slew only 0=No O=Alpha- |Address
Format numeric
<«—octal group|e—octal group ———
16 8 4 2 1
0 1 2 3 4 5-19
WORD 3 VFU 5| VFU 4 [VFU 3|VFU 2 [VFU 1 Data Address
Figure 9-5. Printer Instructions
AR ONE
GE" @)

October 1963

WORD ONE. The SEL instruction informs a printer
controller that it is to be brought ‘on-line’ to perform
a print operation. Word one prepares the controller
to receive instruction words two and three. Bits 10
through 13 of the word indicate the address (plug) of

the desired printer controiier.

WORD TWOQ. This word determines the operation to
be performed. However, the information contained is
not complete enough to begin the operation indicated.
Note: In Figure 9-5, VFU means vertical format unit

IS AV A Y dli L2 ApyME v v W AraTRaae T avalLfia AV S 2l t =iaas
and is referred to as VFU in the descriptions of
slewing by countdown and slewing to a channel.

Bit Position 0

If this bit position contains a 1-bit, itindicates a write
print line (WPL) instruction in which slew operations
are possible. The slew operation is defined by bits
2 through 4 of this word and bits O through 4 of in-
struction word three (see Figure 9-5). If bit position
0 contains a 0-bit, a slew only operation is indicated,
with the slew operation defined by the bits mentioned.

Bit Position 1

If this bit position contains a 1-bit, the print operation
is to be under automatic horizontal format control.
The lacation in memory in which the format informa-
tion is stored is indicated by bits 6 through 19 within
this word. If bit position one is a U-bit. printing 18
not done under automatic format control. The address
of format data, if it were included in this word, would
be disregarded.

Bit Positions 2 and 3

If these bits are both 1-bits, slewing isto be a definite
number of lines (countdown method) with that number
indicated by the slew bits that follow (bit position 4 of
word two and O through 4 of word three), If both
bits are not on, slew is to a hole in the channel indi-
cated by a bit in one of the VFU positions,

Bit Position 4

This is the most-significant bit in a six-bit binary
number, which is used to indicate the number of lines
that are to be slewed. This bit has a binary value of
32. Thus, if a one were placed in this bit position,
paper would be slewed 32 lines. The five least-sig-
nificant bits are contained in instruction word three.

Bit Positions 6 through 19

These bits contain the fourteen least-significant
address bits of the location in memory in which for-
mat data is contained. The most-significant bitof the
memory address is the same as the most-significant
address bit of the location in memory in which the

information to be printed is stored (bit 5, word 3).
The programmer must insure that the information to
be printed and the format data are stored in the same

half of memory.
""" THREE, instruction word three contains
further information pertaining to the operation that is
to be performed. Thisinformation, in conjunction with
the second instruction word, is sufficient for the
indicated operation to begin.

Bit Positions 0 through 4

Bit positions 0 through 4 contain the five least-signi-
ficant bits of the six-bit binary number indicating the
number of lines to be slewed. The binary values for
these bits are shown in Figure 9-5.

Bit Positions 5 through 19

These bits indicate the starting address in memory
from which information is to be extracted for printing.
The information contained in any such memory lo-
cation is defined as a data word.

High Speed Printer Instructions

2000000
0lYYYYY

WPL Y N Word ‘1'imes: 2

Functional Description: WRITE PRINT LINE. One
line of BCD information, 1 to 120 characters long, is
printed, starting at memory location Y. The N indi-
cates that information is numeric BCD only (if N is
blank, information is alphanumeric). Thisinstruction
cannot be modified and must be preceded by an SEL P
instruction which, when it enters the I register, sends
the two words of the WPL instruction to the selected
controller P automatically. Since onlyone word of the
WPL instruction is shown by the programmer in his
coding, the General Assembly Program automatically
generates the third instruction word necessary.

Example: Print one line of BCD information from
memory location PRT. Assume thatdataisin memory
as required for printing. Printer is on controller
selector plug 6. Symbolic location PRT is memory
cell 1000 (1750 octal).

GAP Coding:
Symbol Opr Operand ﬁ X
vl 213 sl 5] e[8 [9 10 1215 14 s veT 17 e [1920
S.E 1.6,
WP LIPRT .

October 1963

GAP Assembly:
Octal
Memory Contents Coding
01115 2500520 SEL 6
01116 2600000 WPL PRT
01117 0101750
Comments: Print line is terminated by a minus sign

placed in the sign bit of the last word to be printed.

WFL Y X N
(WPL)

30YYYYY
01XXXXX

Word Times: 2

Functional Description: WRITE FORMAT LINE.
One line of BCD information is printed under format
control. Y is the starting location in memory of the
format control words. This instruction shouldalways
be followed by a WPL instruction to specify the lo-
cation (X) of the first word of information to be
printed and whether the information is alphanumeric
or numeric (N). If N is blank, the information is
alphanumerice.

A SEL command must precede this instruction. No
modification is permissible.

Example: Print one line of BCD data under format

control.

GAP Coding:

Operand X

8 9 30¥|2'l3'!4 5 1617 [18 | 19! 2~
| . i | .

This instruction must be preceded by an SEL P in-
struction. Since only one word of the SLW instruction
is shown by the programmer in his coding, the Gen-
eral Assembly Program automatically generates the
second word during the assembly process.

This instruction cannot be modified.

S
W F LLFORMAT
W PLDATA

GAP Assembly:

Octal
Memory Contents Coding
02120 2500620 SEL 6
02121 3602304 WFL FORMAT
02122 0102336 WPL DATA
SLW N 0600000 Word Times: 2
NNO00000

Functional Description: SLEW PAPER N LINES. The
printer paper is spaced N (0-63) number of lines. If
the number of lines is greater than 31, the high-order
bits will be in instruction word 1, the low order bits
in instruction word 2.

mlc .99

Example: Slew the paper in the HSP 4 lines,
GAP Coding:
Symboi 1 Opr Operand - X
s a3 A",")Z‘l 5 1o itz 150 14 15[16,17 18 |15 2-
SEL:6
S L w4
|
GAP Assembly:
Octal
Memory Contents Coding
02144 2500620 SEL 6
02145 0600000 SLW L
02146 0400000
SLT K 0X00000 Word Times: 2
XX00000

Functional Description: SLEW PAPER TO TAPE
PUNCH. The printer paper is spaced until a hole is
detected in the verticai formattape. Kis the specified
tape channel and X, the instruction octal code,varies
with the channel specified.

This instruction must be preceded by an SEL P in-
struction. Since only one word of the SLT instruction
is written by the programmer in his coding, the
General Assembly Program automatically generates
the second word during the assembly process

This instruction cannot be modified.

Example: Slew the paper in the high-speed printer to
the punch in vertical format tape channel 6.

GAP Coding:
H A
Svmbol . Opr Operand © X
112 3 a4t s els 51012l 43 147¥8[16 4718 19125
I
S E L6
S L T 6 L
;

S)IE © 4067

October 1963

GAP Assembly:

Octal

Contents Coding
2556620 SEL 6
0100000 SLT 6
0000000

Printer Test and Branch Instructions

The following branch instructions test whether a par-
ticular printer controller condition is true or false.
If the condition tested is true, the computer executes
the next sequential instruction. If false, the computer
skips the next instruction and executes the second
sequential instruction.

BCS BPR P 2514P20 Word Times: 2

Functional Description: BRANCH ON PRINTER
READY. The printer controller P is tested for the
ready slatus.

BCS BPN P 2516P20 Word Times: 2

Functional Description: BRANCH ON PRINTER NOT
READY. The printer controller P is tested for not
ready status.

Example 1: Test the printer controller for ready
status and, if ready, branch to symbolic memory lo-
cation PRT.

GAP COdmg .

wiperana

[-
’) IR S

__BCS BPR 6|
. BRU PRT

GAP Assembly:

Example 2: Test the printer controller for ready
status and, if ready, print aline of data from symbolic
memory location PRT. If not ready, delay.

GAP Coding:

———————
v m [' Gperana .
_ .. _BCS BPN B
- BRU, * -1]
) .. S EL_6
| - WPL OUTPUT
GAP Assembly:
Octal
Memory Contents Coding
01113 2516620 BCS BPN 6
01114 2601113 BRU *-1
01115 2500620 SEL 6
01116 2600000 WPL OUTPUT
o117 0101373
Comiments: It is good programming practice to test
the printer controller for ready status before issuing

a print command.

BCS BOP P 2514P22 Word Times: 2

Functional Description. BRANCHONOUT OF PAPER.
The printer controller P is tested to determine if the
printer is out of paper.

BCS BNP P 2516P22 Word Times: 2

Functional Description: BRANCH IF NOT OUT OF
PAPER. The printer controller P is tested to deter-
mine if it is not out of paper.

Example: Test the printer controller for an out of
paper condition. Branch to PAPER if condition exists.

Octal T "’P" ";V NP
Contents Coding - — i - : L
et BCS BOP _ 8]

2514620 BCS BPR 6 BRUPAPER.
2601750 BRU PRT

e o2

1= o /) /2

187 49

IX-7 October 1963

GAP Assembly:

Octal

Contents Coding
2514622 BCS BOP 6
2603613 BRU PAPER

Comments: It is the responsibility of the programmer
to test for the printer being out of paper before issuing
a print command. The out-of-paper condition is
indicated when only a few inches of paper remain.

BCS BER P 2514P27 Word Times: 2

Functional Description: BRANCH ON ERROR. The
printer controller P is tested for any error, such as
a parity or input-output buffer error.

BC5 BNE P 2516P27 Word Times: 2

Functional Description: BRANCH ON NO ERROR. The
printer controller P is tested for ano-error condition.

Example: Delay until the printer completes the
printing of a line, then test for any error condition. If
any exists, branch to symbolic memory location PRT
ERR.

assume that the following print instructions were
programmed:

GAFP Coding:

Symbol Cpi Operand X
VD e s s n s [L wiuer sl 8aivsiie 47 is 1w 2.
B.CS{BPN .6
BRU * -1
; S EL 6. _ :
W FL FORM
WPLPRT

GAP Coding:
Symbol Opr Operand X
s T 2T a1 a1 5] ¢] 5 to[telvalvajts]te[t7]1s 1020
PRTLINBCSIBPN 6
B RU>* - 1
] 'S EL 6 _
WPLPRT
BCS/ BPN 6
B R U * - 1 X
B.CS|BER 6
B RUPRTERTR \

Print Cycle

The print cycle consists of three basic phases: filling
the 120-character core buffer, printing the contents
of the buffer, and slewing the paper.

The fill phase begins when format and data words
begin entering the printer controller. This filling
begins when the printer (through the controller se-
lector) is granted access to memory. To illustrate,

When SEL 6 enters the central processor I register,
instruction words two and three (WFL and WPL) are
automatically sent to the printer controller on con-
nector plug 6. Here, they enter the data word buffer
where the starting addresses (symbolic location FORM
for format words and symbolic location PRT for data
words) are transferred to the printer controller for-
mat and data address counters. These instructions
then initiate printer operations.

Note that instruction words, format words, and data
words all enter the printer controller through the data
buffer.

The printer controller then requests the first word of
format data from memory. This request to memory
is made on a priority interrupt basis during each
access time. First, a format word is requested, then
a data word, then a format word, etc. After each
access, words enter the 21-bit databuffer where parity
is checked. Format words are sent to the format
buffer; data words stay in the data buffer.

CORE BUFFER CAPACITY. The loading process
continues until the core buffer isfilled with the desired
number of characters to be printed in one print line.
Note that this buffer need not always hold 120 printable
characters before printing can occur. If only 30
characters (10 BCD words, each word containing 3
characters) need to be printed, thenonly 30 characters
need to be loaded into the core buffer. It should also
be noted that, for the high-speed printer, the core
buffer can hold a maximum of 120 characters, This
includes both data and format words., Thus, if 35
data words are held and the programmer has pro-
grammed to insert 6 words of format control charac-
ters, the 40 word limit is exceeded and the core
buffer overflows and an overflow alarm is shown on
the printer controller display panel,

In addition, whenever data is loaded into the core
buffer, the sign of the last word (3 BCD characters)
to be printed should always be set to minus. This
rule must be followed, regardless of the number of

Ty {Eq (V)
o]

3 SRS R N

REe99K

October 1963

words loaded into the buffer, whether it is 4 words or
40 words.

GAP Coding:

Siewing by Instruction:

Example: rint eight words of data starting with Symbol Cpr Operand A
symbolic memory location PRT, B R R L
BCSBPN 6
* -
GAP Coding: BRU 1]
- .S EL 6 _
Symeol ' Spr i Operand ;X WPL 1060 0 -
| 3 A ! 35 Y312 15 vaiisive 17 1w 991z . BCS BPN ﬁ
LDAPRT + 1 o BRU* -1 -
e B P L o S E L 6
e ..., C HS . S LW10 _
S TAPRT + 17 i
- - BCSBPN 6] Slewing as Part of Print Instruction:
o _ BRU* -1 . . .
S E L 6 Symiol i Gpr i Operand ¢ X
T T - T . 3 st i 13 va 15116 17 18 19 -
‘‘‘‘‘‘ WPILPRT .
- BCSBPN 6
I, B RU>* -1 |
L S ELSE
Comments: It is a serious programming error to OCT26 0 0 00 0 i
fail to set to minus the sign bit of the last data word) Ao T 1 o8 o8+ omoron

to be printed.

After the core buffer is filled, the printing phase of
the print cycle occurs, resulting in the printing of the
data line.

SLEWING PHASE. . Once printing is completed, the
printer controller core buffer is ready to receive
new data (fill phase of the print cycle), and slewing,
or spacing, of the paper begins.

Slewing is the third phase of the print cycle. At this
point, note that slewing can be part of a print in-
struction or it can be a separate instruction. The
normal procedure involves slewing as part of the
print instruction which automatically slews paper one
line after each line is printed. When it is desired to
slew paper more than one line, and a separate slew
instruction (SLW) is programmed, it is possible to
slew only, or print and then slew a specified number

Teo combine the operations of printing and

then slewmg more than one line, the slewing instruc-
tion must be written in octal as shown in the example:

““““““““““

Slewing can be programmed by either of two methods:
(1) slew by the countdown or (2) slew to a paper tape
channel.

Slewing by Countdown. If the programmer desires to
slew by countdown, he can write printer instructions
in octal and conform to the printer instruction format
illustrated in Figure 9-5. Note that bit positions of
instruction words two and three, designated by VFU 1
through VFU 6, contain the binary count for the num-
ber of lines to be slewed. Bit positions designated
by VFU 7 and VFU 8 must always contain 1-bits to
accomplish the countdown slew method, If a 1-bit
does not appear in both of these bit positions, then
slewing is by the paper tape channel method,

Slewing to a Channel. This method of slewing is
accomplished by an eight-channel tape loop located
within the printer unit. The tape loop gives the pro-
grammer the ability to control vertical spacing on
printed forms by slewing to a punch in a specified
channel in the paper tape loop. If only one of the
eight VFU bits is set to 1, paper is slewed until a
hole is detected in the VFU tape channel designated
by that bit. For example, if VFU 3 contains a 1-bit,
paper slewsuntilaholeis detectedin VFU tape channel

Example: Write a print line from location 1000 and three. VFU tape channel eight should be used for
slew 10 lines. slewing paper to the top of the page.
@E oo
I =
[= AN

IX-9

October 1963

Automatic Format Control

In the printer controller, when a data line is to be
printed under format control, format words are stored
in the central processor memory in blocks of words
the same as the print line data. Format control data
consists of (1) any printable character, such as a
dollar sign, and (2) any control characters, such as
ignore, delete, skip, etc. In assemblying a formatted
print line, the printer controller reads from memory
one format word and one data word. The first format
character of a format word is examined by the printer
controller. If it is a printable character, it is stored
in the controller core buffer for printing. Ifitisa
control character, the printer controller takes the
action required. The format character is always
examined before the data character.

FORMAT CONTROL CHARACTERS. Five special
contrcl characters can be programmed in a format
word to control the horizontal formatof aprinted line.
In addition, the $ character (octal 53) exercises a
control function, as well as being a printable character.
These characters, their octal representations, and
their functions are shown below. How to program
them into format words is described in the subsequent
automatic format control examples.

1. Ignore (Octal 35)

If the format character is an Ignore, the next data
character is immediately considered for storage in
the printer controller core buffer. This next data
character will occupy the position on the printed line
that the format character would have occupied had it
been a printable character.

Examnie-
Format 35 35 35 35 35 35
Data G E - 2 2 5
Print Line G E - 2 2 5

2. Ignore/Skip (Octal 36)

If the format character is an Ignore/Skip, the next
data character is immediately considered for storage
in the printer controller core buffer. Thisdata char-
acter will not occupy the same position that the format
character would have occupied on the printedpage, but
is placed in the next position. In other words, a
blank is inserted on the printed page in the position
of the format character.

Format 36 35 35 35 35 35
Data G E - 2 2 5
Print Line G E - 2 2 5

3. Delete (Octal 37)

If the format character is a Delete, neither this char-
acter nor the following data character are stored in
the printer controller core buffer. The nextcharacter
that can be stored in the core buffer is the next for-
mat character. In examining the format/data word
pair, if the second format character is a delete
character, this character and the second data char-
acter are not stored in the core buffer; the third
format character would be the next character that
could possibly be stored.

Example:
Format 37 35 35 35 35 35
Data G E - 2 2 5
Print Line E - 2 2 5

4. Delete/Skip (Octal 58)

If the format character is a Delete/Skip, an action
similar to format delete occurs. The difference is
that a blank is inserted in that position on the print
line. Format character 3 of the format word would
occupy the next print line position, if it is a printable
character.

Example:
Format 56 35 35 35 35 35
Data G E - 2 2 5
Print Line E - 2 2 5

5. Zero Suppress (Octal 57)

If the format character is a Zero Suppress, neither
this character nor the following data character is
stored in the printer controller core buffer. The next
format character can, however, be stored in the core
buffer, if it is a printable character. After this last
format character is considered, blanks are inserted
in the print line for each of the succeeding data char-
acters and printable format characters, until either
a non-zero data character is detected or a period
character is found in a format word,

IX-10 October 1963

For example, if format character 1 is a Zero Sup-
press, data character 1 cannot be stored in the core
buffer. Format character 2 can be stored, if it is a
printable character. After format character 2 has
been considered, blanks are inserted for each suc-
ceeding data character until a non-zero data character
or a period format character is found. When either
of these characters is encountered, it is stored in the
core buffer and the Zero Suppress condition is ended.

Note th_g_t’ once a Zero QImpresq has heen pnf into
effect, print line data is examined by the printer
controller only for a non-zero data character. For-
mat control data is examined only for a period

character.

Examples:

Format 57 35 73 35 35 73 35 35 33 35

Data 0 8 9 9 9 9 9 9 9 9

Print

Line 8 , 9 9 9 , 9 9 9 . 9 9
Format 57 35 73 35 35 73 35 35 33 35

Data 0 0 0 8 9 5 9 9 ¢ 9

Print

Line A A~ 8 9 , 9 9 9 9 9

Format 57 35 73 35 35 73 35 35 33 35

Data 8 9 9 9 9 9 9 9 9 9
Print
Line* 9 , 9 9 9 , 9 9 9 . 9 9

*Note the loss of the first data character in this
example.

Format 57 35 35 35 35
Data 9 , 9 9 9
Print

Line** , 9 9 9

** Note the loss of the first data character and
printing of a comma within the data.

6. $ Zero Suppression (Octal 53)

A $ symbol in the format data word initiates spaces
in the print line inthe same manner as Zero Suppress,
except that the next data character is not ignored

o £t tha @ awn-hal g nrintad T thia angan 3 $ha s ard
aiter uie P DyilivUL is pi initedq. 1inuis canc, i1 i€ nexu

data character is a non-zero character, it will be
printed.

Examples:
Format 53 73 35 35 73 35 35 33 35

Data 8 9 9 6 % 9 9 ¢ 9
Print
Line $ 8, 9 9 9 , 9 9 9.99

Format 53 73 35 35 73 35 35 33 35

Data 0O 8 9 9 9 9 9 9 9
Print
Line $ 8 9 9 , 9 99, 99

Format 53 35 35 35 35

Data o, 9 9 9
Print
Line* 3 , 9 9 9

* Note the zero suppression and printing of the comma
which is a printable character.

Note that when zero suppression on the printline is in
effect as a result of a dollar sign or an octal 57 (zero
suppress) in the format words, a comma in the for-
mat word is notprinted (butablankis printed instead),
unless the data character preceding the comma in
the format word is a non-zero character.

Automatic Format Control Coding

In coding for automatic format control, format words
are loaded into a user’s program in octal form:

Symibol I Opr Operand . X
- g ¥

UM SN 9 10 vz',|3w|4ofs]\$ 17418 13 2c

FORMATOCT 0353535 |
) OCTO03535 35
OCTO03535 35

X-11 October 1963

Then, when the write format line (WFL) instructionis
given, these constants are called from memory and
used to control the format of the print line. A format
character is examined, then a data character, then a
format character, etc., until printing is accomplished.
Also in the process of examining a formatword char-
acter, then a data word character, it is possible for
an Ignore or an Ignore/Skip character (octal 350r 36)
to be encountered in the print line data (as well as in
the format control data). If a data character is an
Ignore, the next format character is immediately con-
sidered and nothing isprinted for the Ignore character.
If a data character is an Ignore/Skip character, a
blank is printed and the next format character is
considered.

In sequence, the second format character, then the
second data character, are considered, followed by
the third format and the third data characters. Fol-
lowing the consideration of the third data character,
another data word and another format word are re-
quested from the central processor in memory. Upon
receiving these new words, the procedure described
above is repeated. This routine is continued until a
1 (minus) in the sign-bit position of the last data word
to be printed is encountered; after consideration of
this data word and its respective format word, the
print line control sequence is ended.

The procedure described makes it possible foraprint
line format arrangement to be stored in memoryonce
and to be used as often as needed to print lines of
data in that same format, such as for payrolls, etc.
The data may, within the limitations imposed by the
editing control as described, be stored in sequence in
computer memory; the printer controller automati-
cally constructs the print line according to the pre-
scribed format. By using such stored format routines,
any number of different printed forms can be used.

HIGH-SPEED PRINTER (OFF-LINE)

The model 4WPAG690 printer is designed for both on-
line and off-line operation. When used on-line, the
printer is similar to model 4WP225A except for
additional field-spreading ability. This additional
capability is discussed later. However, inthe off-line
mode, model 4WPAG690 has very distinctive features,
such as a separate 1024-character core buffer within
a special magnetic tape controller. This buffer is
used only during off-line operations.

On-Line Operations

Operation of the high-speed printer model 4WPA690
in the on-line mode differs from that of the on-line
printer, model 4WP225A, because of the field-spread-
ing feature. This feature allows the insertionof up to

120 characters in the print line from format infor-
mation, without requiring dummy characters to be
included as part of the printdata. To the programmer,
this feature provides the ability to spread fields by
inserting as many blank spaces (or other printable
format data) as necessary in the print line, without
deleting existing print line data.

When field-spreading occurs, the normal one-for-one
comparison of a format word character and a data
word character is interrupted until a field is spread
as desired. After blanks or additional printable for-
mat characters are inserted to spread the field, the
regular one-for-one character examination is re-
sumed. This feature is described more fully below.

NEW FORMAT CHARACTERS. In automatic format
control, various control characters, such as ignore
(octal 35) or delete (octal 37), can be programmed as
format constants in the user’s program. These for-
mat characters are stored in the central processor
memory and, when called by the printer controller,
are used to edit a print line.

For the on/off-line printer operating in the on-line
mode, format characters are programmed and used
in the same manner. However, to allow error-free
formats to be used for printing operations in either
mode, two new format control characters must be
used: an octal 55 to indicate field-spreading and an
octal 77 to indicate end-of-line data. Octal 55 is de-
scribed here because of its relationship to on-line
printing operations with the on/off-line printer. Octal
77 is discussed with off-line programming consider-
ations.

FIELD SPREADING. An octal 55 in a format line
causes the printer controller to store succeedingoctal
characters of the memory format information in the
120-character core buffer until an octal 35 (ignore)is
encountered in the format information. During this
time, data word characters are ignored. Once an
octal 35 1is encountered, the normal process of
examining a format word character against a data
word character is resumed.

This operation is shown in Figure 9-6, which shows a
line of format words and a line of data words. In
normal print operations, word 2000 would enter the
printer controller format word buffer, word 3020
would enter the data word buffer, and the first format
word character would be examined against the first
data word character. If the first format word char-
acter were an octal 35 (ignore), then the first data
word character (B) would be stored in the printer
controller 120-character core buffer. However, in
the example shown, the first format word character
is an octal 55, whichindicates to the printer controller
to begin field spreading.

IX-12

Begin End
Field Spreading Field Spreading
A CCOUNLT N O
Format Words [55 21 23|23 46 64[45 63 60]45 46 35]35 35 35]
Location 2000 2001 2002 2003 2004
Data Words (B12 | 483 [311l
Location 3020 3021 3022

Figure 9-6. Field Spreading in Off-Line Operation

In this case, it is desired to spread the field by
inserting the words ACCOUNT NO before resuming
the normal examination of format word characters
against data word characters. Thus, data word char-
acters B12 remain in the printer controller data
word buffer while format characters in words 2000
through 2003 corresponding to the various octal codes
are brought in from memory through the format word
buffer and inserted in the printer controller buffer.
Note: the octal codes for ACCOUNT NO are shown
beneath each alphabetic character. Field spreading
continues until the printer controller encounters an
octal 35, signifying an end of field spreading. At this
point, characters in tormat word 2004 enter the for-
mat word huffer It should he recalled that the
characters Bi2 of data word 3020 were aiready 1n the
data word buffer when field spreading began. The
normal process of examining format word characters
then begins.

OCTAL 55/35 RELATIONSHIP. A word of caution
about programming for field spreading: When pro-
gramming for on-line printing operation, the octal 35
must be in the same relative position of a word in
which the field spreading code (octal 55) appears.
Figure 9-6 shows a line of format words and a line of
data words. In this case, the octal 35 is not in the
same relative position of format word 2003 as the
field spreading octal 55 in word 2000, This format
line would work satisfactorily only in the off-line mode.
To accomplish the same field spreading results in
both the on- and off-line modes, then the octal 35

which terminates field spreading must be in the same
relative positionof a word as the first octal 55 appears.
This is shown in Figure 9-17.

Note, in this case, that the first octal 55 appears in
position one of the word at location 0800. To keep the
proper octal 55/35 relationship, the octal 35 must
appear as the first position of the word at location
0804. 1If the information to be printed in the on-line
mode is such that this 55/35 relationship does not
exist, then either one or two (in this case, one) octal
55 codes must be placed in the format line to create
that relationship. In the example shown, an octal 55
has been placed in the third position of the format
word at location 0802 so that octal 25 in the format
word at U804 occuples the same relative position in
the word as the first octal 55 does at location 0800.

The important conclusion is that, due to this relation-
ship, the example in Figure 9-7 will now work pro-
perly in both the on- and off-line printing modes. By
contrast, the example in Figure 9-6 will work pro-
perly in the off-line mode only.

COMMAND WORDS. Printer command words for
on-line printing are the same as specified for the
regular on-line printer model 4WP225A, except for
the following additional instructions.

Programs written for the on-line printer, Model
4WP225A, can be run with the on/off-line printer in
the on-line mode.

!

A CCOUNT N O
Format Words [55 21 23]23 46 64[45 63 60]45 46 55]35 35 35]
Location 0800 0801 0802 0803 0804
Data Words [B 12 | 463 [311 | |
Location 0200 0201 0202 0203 0204

Figure 9-7. Field Spreading for Both On- and Off-Line Printing Modes

]
]

e . oo
s)5
bl LLd

IX-13

October 1963

Additional Test-and-Branch Instructions

BCS BAA P 2514P21 Word Times: 2

Functional Description: BRANCH ON ANY ALERT.

BCS BNS P 2516P24 Word Times: 2

Functional Description: BRANCH ON NO SLEW
ALERT. The printer controller P is tested for no
slew alert condition.

The printer controller P is tested for any alert Example: Branch to load print routine, if no slew
condition. Any alert includes the following conditions: alert.
1. Slew Alert GAP Coding:
2. Buffer Overflow i
3. Parity Error Opr % .. S e —
4. Out of Paper s BN . -
BRULOAD BRANCH TO LOAD PRINT ROUTINE |
Example: Branch to print error routine, if any atert | . e —— ——
condition exists.
GAP Coding:
BCS BOV P 2514P23 Word Times: 2
Ope Operand i x| REMARKS
e Functional Description: ~BRANCH ON PRINTER
BRUPRTERR BRANCH TO ROUTINE TQ DETERMINE TYPE BUFFER OVERFLOW. The printer controller P ie

OF ALERT CONDITION

tested for buffer overflow condition.

Example: Branch to buffer error message, if printer
buffer overflow.

GAP Coding:
BCS BNA P 2516P21 Word Times: 2
Opr] Operand Ix| REMARKS .
Functional Description: BRANCH ON NO ALERT. T A
The printer controller P is tested for no alert con- BRUBUTFERR BRANCH TO BUFFER ERROR MESSAGE
dition. -

Example: Branch to print routine, ifnoalert condition
exists.

GAP Coding:

1x REMARKS

BRANCH TO PRINT ROUTINE

BCS BNO P 2516P23 Word Times: 2

Functional Description: BRANCH ON NO PRINTER
BUFFER OVERFLOW, The printer controller P is
tested for no buffer overflow condition.

Example: Branch to processing routine, if no buffer

overflow.

GAP Coding:
BCS BSA P 2514P24 Word Times: 2 Symbol Opr Operand X
Functional Description: BRANCH ON SLEW ALERT. BCS BNO 8

The printer controller P is tested for a slew alert
condition.

Example: Branch to slew error routine.

BRUPROCES

Off-Line Operation Characteristics

When the on/off-line printer is operating off-line, it
functions as an independent system consisting of a
magnetic core buffered tape reader, a magnetic tape

GAP Coding:
Opr Operand (X REMARKS
. B 18 14 18 18 1T e IFEREL
BCS BSA]
TOQ 8! RROR MESSAGE
| - =, E
ST /L /L;O
Sad e [S R N

X-14

controller, a 900 line per minute printer mechanism,
a printer controller, and a self-contained power
supply. In the off-line mode, automatic format con-
trol is provided, along with selective file printing (file
stacking). The buffered (1024 characters) magnetic
tape reader in this system requires the use of 200
character per inch density tapes operating at a rate
of 15,000 characters per second. Tape reading speed
is 75 ips with a rewind speed of 150 ips.

CONTROLLERS. The printer controller has all the
capabilities provided in the regular on-line printer
sub-system previously described, including a 120-
character core buffer. The major difference between
the on/off-line and the on-line printer systems is the
additional format control capability, field-spreading.

The magnetic tape controller used in off-line printing
operations is distinctly different from other magnetic
tape controllers in that it contains a 1024-character
addressable core memory or buffer. The entire
buffer can be used for print dataonlyor, as described
below, for some combination of data and format. This
tape controller can control reading of data reels
which have been prepared by either the GE-225 or
similar tape handler systems.

PROGRAMMING.
gramuing instructions, {oriiial, aud data are stored
on reels of magnetic tape. These reels of tape serve
essentially the same function as does core memory
in normal on-line print operations. From the pro-
gramming viewpoint, three key differences exist:

Before printine off-line. all pro-

1. Because tape handlers do not have a buffer
register as does the central processor or core
memory, the magnetic tape controller contains a
1024-character addressable memory, or buffer,
into which magnetic tapes are read before entering
the printer controller.

2. Write format line (WFL) and write print line
{(WPL) instructions are never programmed when

coding for off-line operations. Printinstructions’

are always given as write tape instructions.

3. All data to be written on tape for off-line
printing must always be written in the 18-bit

Thig incsliidog hath format
1 {11S HICIUUC S UULUL U iliar

Thus, the WTS in-

anaeial hinarv maode
SpClilial Ulllally 1iUuc.

and data instruction words.
struction always is used.

These and other programming considerations for off-
line printing are discussed more fully in off-line
programming considerations.

CONTROL SWITCHES. The following additional con-
trols are located on the high-speedprinter mechanism.

1. START:

When this switch is depressed, off-line printing
operation starts. The system must be in the
automatic mode.

2. AUTO-MANUAL:

Normal off-line printing mode is automatic. Cer-
tain operations such as skip, print one line,
rewind, and space, operate only in the manual
mode. Switching from automatic to manual mode
causes all off-line operations to halt as soon as
the print line in process is completed.

3. PRINT ONE LINE:

When the AUTO-MANUAL switch is in the MAN-
UAL position, this switch causes one line to be
printed each time the switch is depressed. Format
and slew are still determined by the command
words for each line of print.

4. SPACE PAPER:
In the manual mode,depressing this switch causes
the printer to slew one line.

5. BACKSPACE:
Causes the tape reader to backspace one tape
record. When the AUTO-MANUAL switch is in
the AUTOMATIC position, the tape record is
re-read automatically. If backspacing is accom-
plished while in the manual mode, the tape halts
. after backspacing.

6. SKIP:

Causes tape to advance one record. The selected

file is read into the core buffer butis not printed.
This switch operates in the manual mode only.

7. REWIND:

Causes tape to be rewound and positioned at load
point. Operates only in the manual mode.

8. MANUAL CLEAR:

Clears all alert indicators.

RE.HIE
G/

IX-15

9. MEMORY DUMP:

Causes octal printout of the off-line printer core
buffer during off-line mode or the on-line GE-225
core memory during on-line mode.

10. ON-LINE/OFF-LINE SWITCH:

This switch sets tiie mode of operation.

Two additional switches are also provided on the
magnetic tape controller.

These switches are:
1. FILE SELECT:

Selects one or more of eight codes. Code 0 causes
the entire tape record to be written sequentially
(one character at a time) into the core buffer,
starting at location 0000. Codes 1 through 7 per-
mit only those print lines with the pre-selected
file codes tobe storedin the appropriate locations.
Code 0 applies, regardless of the condition setby
the other file select switches.

2. HIGH-LOW DENSITY:

A switch is provided tc select tape density for
use in systems capable of reading high-density
tape.

6. SLEW ALERT:

Indicates that an attempt was made to slew paper
beyond the limitations allowed under program
control.

7. PAPER ALERT:

Indicates loss of paper tension due to tearing cr
out-of-paper condition.

8. INPUT PARITY:

Indicates that a word received from the central
processor during on-line operation has incorrect
parity.

9. ON-LINE/OFF-LINE:

Indicates operating mode.

ERROR CHECKING. Checking features of the off-line

printer sub-system assure accurate performance.
Three of these checks apply to the printer itself and
four apply to the operations of the special magnetic
tape controller. One check, computer parity, is used
for on-line operation only.

The printer checking features include:

INDICATOR LIGHTS. In addition to the indicator
lights on the on-line printer mechanism, other lights 1.
are provided for off-line operationas described below:

Print Buffer Overflow:

1. TAPE ALERT:

A tape alert includes longitudinal parity, lateral
parity, modulo check, core buffer overflow, and
interlock. Each of the above alerts is indicated
separately on the buffered tape reader control
panel.

2. END-OF-FILE:

Indicates that an end-of-file code was detectedon
tape (this is a tape file code and should not be
confused with the logical print file code).

3. END-OF-TAPE:

Indicates that the physical end-of-tape or begin-
ning-of-tape marker has been detected.

4. BUFFER PARITY:

Indicates that incorrect parity has been detected
on a character being read out of the core buffer.

5. INPUT OVERFLOW:

Indicates an overflow condition inthe printer con-
troller core buffer.

This check detects whether 120 characters have
been written into the core buffer without an end-~
of-line code being detected. The printer halts
without printing the line in question.

2. Slew Alert:

This check detects paper slew runaway. If the
top of page channel is detected twice during a
single slew operation, printing is inhibited andan
alert indicator light is turned on.

3. Paper Alert:

An out-of-paper condition or loss of tension due
to paper tearing is revealed by this check.

Checking features involving the operations of the mag-
netic tape controller include:

1. Tape Parity Alert:

When a lateral or longitudinal parity errorontape
has been detected, the system halts as soon as
the record on tape has been read. No portion of
that record is printed unless the backspace button
is depressed and the record is reread without
recurrence of an alert.

BE=99E

e Gaw

IX-16

2. Mod Alert:
Checks to see that the number of characters in
the tape record is a multiple of 3.

3.

‘ore Buffer Qverflow:

If more than1023 charactersare transferred from
tape to the core buffer, an alert is indicated. No
characters are printed until recovery action is
taken.

4. Core Buffer Parity:

Each character read from the off-line core buffer
is checked for correct parity.

Off-Line Programming Considerations

As discussed previously, off-line printing operations
differ from on-line operations in that magnetic tape
is used for holding both format and data words, a
separate magnetic tape controller with its own 1024-
character core buffer is required, and all print
instructions are given as write tape instructions in
the special binary mode (WTS). Format and print
lines can still be programmed to perform automatic
editing of data to be printed. However, the particular
method ot specitying editing information emphasizes
three points that the programmer should keep in mind
when preparing format and data to be written on tape
for off-line printing.

1. An 18-bit command word must precede the
actual format line (Figure 9-8).

2. Two command words must precede the data
line.
3. Special end-of-line codes are required at the

end of both format and data lines.

Format and data lines are discussed below. First, it
is important to explain the use of the octal 77 chai-
acter mentioned earlier.

OCTAL 77. An octal 77 is the code used in an end-of-
line word to indicate the end of either a format or
data line including tape identification labels. Three
possibilities exist for the last word in a data or for-
mat line. Two of these possibilities are shown in
Figure 9-8. In the case of the format line, only one
end-of-line octal 77 is needed, because two printable
or special characters occupy the remainder of the
word., In the last word of the data line, two octal 77’s
are required. The third possibility, obviously, is the
use of three octal 77’s.

In all cases, the programmer should make the last
character on magnetic tape pertaining to any format
or data line an octal 77. When it is necessary to
include more than one octal 77 to fill out a partial
word, such as shown in Figure 9-8, all but one octal
77 is stripped off automatically so that only one end-
of-line code for eachformatordataline need be stored
in the 1024-character magnetic tape controller core
buffer.

The programmer also should note that the tape con-
troller generates an octal 17 and automatically stores
it in the character positionfollowing the last character
of the last print line stored in memory from a block
of tape. The octal 17 tells the controller to read
another block from tape after printing the last line of
print in the tape controller buffer. For example,
assume that format data is stored in the tape con-
troller core buffer from character 0700 through
character 1023. The data to be printed from any one
tape block may then not exceed 699 characters (0-698)
because the octal 17 control character is held in
character position 0699 as shown below:

Core Character

1000 100] «—— 1003 | 1004 Position Contents
Format 0 Data
Memory Command |«——Format Data— i
Word
v v
1005 1006 | 1007«—>1008] 1009 0698 Data
0699 Octal 17
Memory |(Data Command |Print Line Data |77 77 0700 Format
Words
Figure 9-8. Command Words for Off-Line Printing 1023 Format
TR I
iale o /) 7/
il (Aday)

IX-17

Format Line Information

In the off-line printing mode, it is possible to edit
print line data by storing appropriate format codes
(octal 35, 36, etc.) as constants. Thus, when magnetic
tape is read into the controller 1024-character core
buffer, format data is stored or held until such time
as the user’s program calls upon it. The coding for
calling format data from the buffer is described
below.

To understand format editing by the high-speed printer
in the off-line mode, the programmer should recognize
that a format line consists of some combination of
format codes, preceded by one format command word,
and followed by an end-of-line word (a word with
format or data always contains three characters as
was illustrated in Figure 9-8).

A format command word provides such information
as identification, file number, and the starting address
in the core buffer where the format is to be sorted.
The specific bit configuration for this command word
is shown in Figure 9-9.

Bit
Position Format Line

0-19 Command Word

0 Not used

1 Not used

2 Zero

3 One

4 Zero 9

5 File Select 2

6 File Select 21

7 File Select 20

8 Zero

9 Zero
10 Format Address 29
11 » ” 28
12 » Y
13 ” ” 26
14 » » 25
15 » ” 24
16 » ”» 23
17 ” ” 22
18 » » 21
19 » » 20

Figure 9-9. Format Line Command Word Bit
Configuration

Bit positions 0 and 1 are not used. Bit positions 2, 3,
and 4 specify the operation code for a format command
word. Bit positions 5, 6, and 7 specify or select the

format file number, or rather, the kind of report to
be printed and edited by the format data following the
command word. Because there are three bits, each
with a binary weight, the maximum number of different
kinds of reports that can beprintedare 8. If no 1-bits
are shown, then zero is implied. Code zero (in both
the format line command word and data line command
words) cause the entire magnetic tape record to be
written sequentially, regardless of the kind of data,
one character at a time into the tape controller 1024-
character core buffer, starting at core location 0000.
The meanings of codes 1 through 7 are assigned by
the programmer,; for example, he may desire to have
code 1 (001) be a master file report, a code 2 (010)
represent an inventory report, etc.

Returning to the command word, bit positions 8 and 9
are always zeros. Bit positions 10 through 19 specify
the starting address in the tape controller core buffer
where format data for the report is to be stored.
Because bit position 19 has a binary weight of 0 or 1,
bit 18 a weight of 2, bit 17 a weight of 4, and bit 16 a
weight of 8, a 1-bit in any of these bit positions speci-
fies the starting location where format data is to be
stored.

The programmer should note that it is advisable to
store format information in the upper portion of the
core buffer. This is recommended so that the area
where print data is read in will not overlay it. Thus,
a 1-bit should generally be specified in bit position
10 so that format data is stored in the core buffer
above character location 0512 (29 = 0512).

FORMAT EXAMPLE. Assume that an inventory re-
port is to be printed (code 2, for example) and that the
format to edit this report is to be stored in the core
buffer, beginning at character location 0512. The
programmer would prepare the command word as
shown in Figure 9-10.

Bit Position

012345678910111213141516171819
lofo[o]1]o]o]1]o]oJo] 1] o] oToJoJoJoJ o] ol o]
0 2 2 1 0 0 0
Octal

Figure 9-10. Sample Completed Format Command
Word

FORMAT LINE CODING. Format line data is loaded
into the user’s program by programming the octal
representations for the control actions desired (in-
cluding the format command word) as constants inthe
beginning of a program (Figure 9-11). Inthis respect,
off-line programming of format data is similar to
on-line format control coding (see Automatic Format
Control Coding).

=228

As illustrated, the format command word and all for-
mat data associated with format one (shown as FMT1)
are programmed as constants. In the example shown,
note that the octal equivalent in codingline 1 is for the
format command word shown in Flgure 9-10. Other

format data is sho o
J.Ullllal aila 1o euuwu Lll lllch &L Lllluusll 1

el [| Oporend x REmABS

RN [} CREERED) SO SCEEINE il

FPMT Q C 431000
DC$S 5 3 5. 57 FORMAT DATA
ocTlo 36 38 5 7
ocT|o 88 771717

ATAL o] 4.3 5700 DATACOMMANDWORD
0C Tl 603000 DATA COMMANDWORD
Jarrlacec DATA
A L FiO UN

_,___,1&10.:0;11

Figure 9-11. Sample Coding of Format and Data
Information For Off-Line Printing

Note that as many formats canbe preparedin constant
form as desired; however, in the format command
word only seven different kinds of reports can be
formatted. Thus, if a programmer wants to print
three different reports, with each report requiring
five or six different formats, then he must code these
formats (including the appropriate format command
word) as described, store them as constants in the
beginning of the program with the dataline information
and then, during program execution, write them out on
a specified magnetic tape to be used subsequently for
off-line printing. Observe, in the sample coding
illustrated below, that the constant format data was
written on magnetic tape by executing a WTS instruc-
tion. The operating logic of off-line printing is de-
scribed in the material on printing logic.

As indicated previously, a line of data consists of
some combination of codes and printable characters
preceded by two command words and followed by a
termination or end-of-line word (see Figure 9-8). In
contrast to format line data, print line data requires
two command words which provide such inforimation
as shown in Figure 9-12.

Bit
Position Data Line
0-19 Command Word 1| Command Word 2
0 Not used Not used
1 Not used Not used
2 One VFU-8
3 Zero VFU-7
4 Zero VFU-6
5 File Select 22 zZero
6 File Select 21 Zero
7 File Select 20 Zero
8 Print (1) or Slew (0) VFU-5
9 Format (1) or Not (0) VFU-4
10 Format Address 29 zZero
11 ” 28 Zero
12 ” » 27 zZero
13 ? ” 26 zZero
14 ” ” 29 VFU-3
id # 2% VFU-2
16 ” » 23 VFU-1
17 7 22 Zero
18 » " 2l Zero
19 » d 20 Zero

Figure 9-12. Data Line Command Words and Bit

Example:

Symbol Opr Operand X
1] 2] a] «] s s |e [® [to]r2]va]ta]rs]Ve[t7 18 18]20
B.CS/ BTN . ; ’2
BRU[* -1 1
S EL|2
. WTSFMT1 1
9 E
|

Data Line Information

"arardless of whether data is to be printed unedited
or with format control lines, certain considerations
must be followed inpreparing data for off-line printing.

Configurations

In command word 1, bit positions0and1 are not used.
Bit positions 2, 3, and 4 indicate a line of data. Bit
positions 5, 6, and 7 indicate the file number selected
or rather, the kind of report tobe printed. If a report
is to be printed with format control, the particular
report code specified by these bits must always agree
exactly with the report code indicated inthe appropriate
format line command word.

Bit position 8 indicates print, or slew without printing,
and bit position 9 indicates print under format control
or print without using format. Then, if format is
specified, the exact format address indicated in the
corresponding format command word is marked inbit
positions 10 through 19.

In the second command word, bit positions 2, 3, 4, 8,
9, 14, 15, and 16 are used to specify slewing by the
countdown method or slewing to position X, where X
is a channel in the printer vertical format unit (VFU)

IX-19

tape. Note that the same bit configuration rules apply
for the off-line as for the on-line printing mode. If
slewing by the countdown method is selected, bit
positions 2 and 3 in the second command word must
contain 1-bits with the subsequent weighted value VFU
bit positions also containing 1-bits to indicate the
number of lines to slew. Thus, 1-bits in positions 2
and 3 and a 1-bit in bit position 9 would indicate ‘slew
by countdown method 8 lines.” Remember that bit
positions representing VFU1 through VFU6 designate,
in binary form, any decimal number from 0 to 63.
Thus, the countdown method permits slewing any num-
ber-of lines from 0 to 63.

Examples of two filled-in data line command words,
and their octal equivalent values are shown in Figure
9-13. Note that the kind of reportand format address
specified agrees, for this illustration, with the report
and address specified in the format line command
word shown previously in Figure 9-10.

Command
Word
One Format:
Format

Report Print Address

Code lsmw 0512

~\
012345678910111213141516171819
00/100J010f111]0 0 0Jo 0 ofJ0o 0 ©
0 4 2 7 0 0 0
Octal
Command
Word
Two Format

Slew by Slew 8
Coyntdown }ines
0123 45678910111213141516 171819
J11 0jooo0fo1 ofo 0 oJo 0 ofo 0 ©
6 0 2 0 0 0

Octal

Figure 9-13. Sample Data Line Command Words

DATA LINE _CODING. Data to be printed, whether
format edited or not, is programmed at the beginning
of a user’s program as constants. This can be seen
in Figure 9-11. Note that the datato be printed under
format control immediately follows the necessary for-
mat control characters (FMT1 and DATA 1).

There is, however, no need to separate format and
data lines, successive lines of data orformat, or files
of information to be written into the core buffer by an
Inter-Record Gap (IRG). Care must be exercised to

ensure that not more than 1023 characters are trans-
ferred to the 1024-character core buffer during tie
reading of one tape record. To assure off-line oper-
ation at 900 lines per minute (alpha-numeric-single
space only), physical tape records containing 750
characters or less are recommended. This recom-
mendation is for e written at 200 characters per
inch density.

$eaam

tap

Further, the programmer should look at his format
and data line constants to determine how many char-
acters (3 characters per word) of the tape controller
1024-character core buffer that a particular tape
record will occupy. In the example shown in Figure
9-11, there are 6 data words (not counting command
words) at three characters each, or 18 characters. To
this is added the six characters comprising the data
command words (characters 2 and 3 in word two
3 characters in word three, and 1 character for a
total of 24 to be readinto the controller counter). The
format command word is not transferred from tape to
the 1024-character buffer. Thus, whenthe WTS FMT 1
instruction is given to write 9 words onto magnetic
tape as one tape block, 24 characters actually fill the
core buffer when off-line printing occurs. Of course,
if several formats and several lines of print data were
written on tape, the number of total characters would
be much greater. In all cases, however, it is recom-
mended that tape records be 750 characters or less.

Printing Logic

When a WTS instruction is executed, the appropriate
format and/or data line information is written from
core memory onto a reel of magnetic tape (Figure
9-14). After the desired number of records are so
written, this reel of tape is mounted on the special
tape handler used for off-line printing.

As shown, the tape handler then begins reading format
and data words into the tape controller 1024-character
core buffer. As data enters the controller, it checks
the first word of each tape block. The first word of
each block of information on tape and the word im-
mediately following an ‘end-of-line’ code are either
data or format command words. The file-select code
in the command word determines whether or not the
succeeding characters are to be decoded and the infor-
mation read into the 1024-character core buffer. If
the information to be stored is a line of format, the
command word is decoded to determine the starting
address. If it is a line of data, the command words
must be stored, with the data, for future use hy ..
printer controller. Lines of data, their command
words, and the end-of-line code are stored sequentially
by character, starting at memory location zero.

IX-20

T

Core e (e\ AN (D)
Memory > L) w
LS .
Tape
Reel
Central Tape
Processor Handler
(1) @
_/ ~
\@
1024 120 -
Core | f———n——p Character High
R B
Buffer Buffer Speed
Off-Line
Special Tape Printer Printer
Handler and Controller _J

Controller (Including
1024-Character Core
Buffer)

Figure 9-14. Off-Line Printin: Wiy

Core buffer storage allocation can be calculated by
allowing seven additional characters over and above
the actual number of data characters for each line of
rint data. These additional characters include the
following:

Command Word 1
Characters 2 and 3
Command Word 2
Characters 1, 2 and 3- - - - - = - - 3
Data Characters

({any number)

v

Octal 77 Character = === = - = - = - = =
(indicating end-of-line)

Octal 17 = - - e e e w oL
{control character inserted
automatically by controller
once for each tape record)

In addition, include one additional octal 77 end-of-line
character for each line of format. It should be
reemphasized that no octal 17 control character is
inserted, not for format data but for print line data
only to signal the tape controller that it can read in
another block from tape.

When the core buffer isfilled, or whena complete tape
record has been read into the buffer, transfer oper-
ations to the printer controller begin automatically,
one print line at a time.

Format and print line data enter the printer controller
and are processed aspreviously described. To repeat,
each word is examined alternately, character-by-
character starting with a format word., Ifa character
is a printable character, it is stored in the 120-char-
acter core buffer. If it is a format character, such
as an ignore code, the printer controller takes the
format action required. The 120-character core
buffer continues to be loaded either until it is full or
all data for one prmt line is filled. In any case, the

buffer canno d more than 40 words total.

IX-21

October 1963

SECTION X

DOCUMENT HANDLER OPERATIONS

The information on the GE-225 12-pocket, 1200-
document-per-minute document handlers that was
originally in this manual has been superseded by
a new and separate manual entitled “GE-225/235
DOCUMENT HANDLER REFERENCE MANUAL”
(Publication No. CPB-307).

Use this new manual for the latest and most complete
coverage of GE-225 Document Handler operations.
Copies are available from General Electric computer
representatives.

October 1963

SECTION XI

MASS RANDOM ACCESS DATA STORAGE OPERATIONS

Mass Random Access Data Storage (MRADS) provides
the GE-225 with the ability to store vast quantities of
data which can be randomly accessed andquickly pro-
cessed at low cost.

Each MRADS unit consists of 16 circular magnetic data
storage discs which provide 32 recording surfaces. Up
to four 16-disc MRADS units can be connectedto each

MRADS controller. The controller, in turn, is con-
nected to the GE-225 system through the controller
selector as shown in Figure 11-1.

Since a MRADS unit can transfer data at a maximum
rate of 500,000 bits per second, (23,700 words per
second), it requires memory access every other word
time. Thus, the recommended address for a MRADS

To and from GE-225
Central Processor

N

A
v

Controller
Selector

:

Highest
Priority

: Plug 0

MRADS
Controller

:

Plugs 1 through 7
Descending Priority

g

~—,

(O

3 MRADS

Disc Units

Figure 11-1. MRADS Sub-System

XI-1

Direction
of Rotation

Inner Zone
128 Tracks

Outer Zone
128 Tracks
16 Sectors per Track
1 Record per Sector
Transfer Rate:
500, 000 Bits per Second
23,700 Words per Second

8 Sectors per Track

1 Record per Sector
Transfer Rate:

250, 000 Bits per Second

11, 850 Words per Second

The reverse surface duplicates
this format.

Figure 11-2. MRADS Disc Format

unit is plug zero, butit canhave any plug address from
zero to seven, provided that it has the highest priority
plug (lowest plug number) of the particular configu-
ration connected into the controller selector.

Each 16-disc unit hasa capacity of 98,304 records with
each record containing 64 words.

FILE DISCS

Each surface of a disc is divided into an inner and an
outer zone as shown in Figure 11-2.

There are 128 circular tracks in each zone, providing
a total of 256 tracks on each side of a disc. The 128
outer tracks are divided into 16 sectors, while the 128
inner tracks are divided into 8 sectors. Each track
sector can store one 64-word record. The transfer
rate to or from the 128 outer tracks is 500,000 bits,
or 23,700 words per second. The transfer rate to or
from the 128 inner tracks is 250,000 bits, or 11,850
words per second.

Each word recorded on a disc is an image of the cor-
responding memory word; that is, it consists of 20
information bits, plus an odd parity bit. The minimum
amount of information which can be transferred in
either direction by one instruction is 64 words, or one
disc record; data is recorded serially. The maximum
amount of information which can be transferred in
either direction by one instruction is sixteen 64-word
records. A summary of MRADS characteristics is
given in Figure 11-3.

RE L HG)E

Sixteen consecutive records can be read or writtenby
one instruction. Input or output commands which
sequentially address the tracks served by the 8 read/
write heads, make it possible to read or write 96
consecutive records without moving the positioning
arm. The inner heads can address 32 records and the
outer heads 64 records.

Operating Times

Speed of rotation of discs

1200 rpm
Effective transfer rate:

Outer zone 23,700 words/sec

Inner zone 11,850 words/sec
Average latency time 26 ms
Maximum latency time 52 ms
Average positioning time 199 ms
Physical Characteristics
Number of data storage discs per file 16
Number of recording surfaces 32
Number of positioning arms 16
Number of read/write heads per

positioning arm 8
Number of read/write heads per

surface 4
Number of tracks per surface 256

Inner zone 128

OQuter zone 128
Number of words per record 64
Number of records per track

Inner zone 8

Quter zone 16
Number of records per surface 3,072
Number of records per 16 disc file 98,304
Number of data words per file 6,291,456

Figure 11-3. Summary of MRADS Characteristics

N IS EVEER);

XI-2

Positioning Read-Write " Disc-Support
Arm Head (,) Shaft
| N \

—

Disc
Al

AN LT

ANMARNNNN

< A
\) N\\ Inner
\ \

1
NN\ 777777777777
Zone \\) / Outer Zone /
AAAAAN (L4141 17/7

Read-write heads numbered 0-7
4 heads per side - 8 heads per disc.

Heads 0, 1, 2 and 3 serve the

16 discs per file

Heads 4, 5, 6 and 7 serve the
outer zone of each disc.

inner zone of a disc.

Figure 11-4. MRADS Positioning

CONTROL WORDS

In addition to the 64 words of informationin a record,
three additional words are associated with each sector.
These are the header word, the longitudinal parity
check word, and the synchronization word.

Header Word

A header word precedes each sector and contains the
record address. This word is permanently recorded
and is not available to the programmer except for
addressing the record. When a search is made to
locate the correct recordforareador write operation,
the header address and the address contained in the
instruction word are compared. When the two ad-
dresses are confirmed electronically, the addressed
record is read or written, depending upon the com-
mands issued.

Longitudinai Parity Check Word

The second additional word associated with each record
is generated in the controller when the record is
written. This word (word 65) consists of twenty
longitudinal parity check bits, one parity bit for each
of the twenty bit positions of all 64 data words.

=V,

Arm and Head Configuration

Synchronization Word

The third additional word in each sector is the syn-
chronization word which identifies the endofa record.
The purpose of the synchronization word is for timing
and need not directly concern the programmer.

ERROR CHECKING FEATURES

There are many built-in precautions to make certain
that there is a reliable transfer of data between com-
puter memory and the MRADS., These checks are:

1. Parity Check
The controller odd parity error check is used

during both read and write transfers. If a parity
error is sensed at the controller during transfer
between the MRADS controller and memory, the
controller parity light is turned on. The GE-225
can be programmed so that, when this conditionis
sensed, the data can be reread or rewritten until
a correct transfer is completed.

2. Memory Access Check
A memory access error occurs when memory
access is requested by the MRADS controller but
access is not granted. However, the MRADS con-
troller is equipped with a buffer which allows a
delay of one access time before this type of input/
output error condition can occur. Controller

AAC D2
g tE o /))i
\ yyayyary)
AP | S | Sy S— N

XI-3

selector plug 0 isnormally assignedto the MRADS
controller to reduce the occurrence of this type of
error. If a memory access error occurs during
an operation, the programmer must repeat the
operation.

Clocking Check

The clocking check enables the MRADS controller
error light to be turned on if there is an incon-
sistency in the frequency of data transfer during
a read or write operation.

Address Confirmation

Each record on the MRADS disc file hasa header
word preceding the first word of the 64-word
record. Before areador write instructionis pro-
cessed, a comparison is made between the header
word and the address contained in the instruc-
tion. The record is not considered as addressed
until both addresses have been confirmed elec-
tronically. After confirmation, reading or writing
occurs when the head senses the record to be
processed.

Longitudinal Parity Word

A longitudinal parity or check word is written as
part of each record, following record word 64.
If a parity error is detected by the controller
during the read process, word 65, the check word,
is automatically read into memory along with
the 64-word record and the parity error indi-
cator is set. If no parity erroris detected on the
file read process, word 65 does not enter memory.
Word 65 becomes significant when severalunsuc-
cessful attempts are made to correctly read a
record. If this occurs, a subroutine can check
word 65; if only one bit is lost, the record can be
reconstructed by inserting the correct bit, and
processing will continue without interruption. If
it should ever happen that more than one bit is
lost, the record cannot be restored internally.
However, the program can provide for typing out
the record with the incorrect words and continue
processing without interruption. Manual cor-
rection from reference sourcesisthennecessary.

Read After Write Check
This error check is under program control. (See
Special Bit Configuration description below.)

Additional Error Checks

Other error conditions, suchasaninvalid address,
parity error in address, selection of a file not on-
line, and electro-mechanical failures can also be
detected. Except for the electro-mechanical
failure error, all the error conditions canbe cor-
rected through programming. In addition to con-
trols mentioned, there are other electronic checks
used in the equipment to insure accuracy.

e . onke

MRADS ADDRESSING

MRADS addressing is accomplished in a manner
similar to other devices connected to the controller
selector in that a SELECT command must be used to
specify the plug desired.

When the MRADS controller is selected, it receives
the next two positioning words from memory before
the operation is executed. The word format for po-
sitioning an MRADS file follows:

PRF F 2500000
OCT (MRADS Address) MMMMMMM

Word Times: 2

Functional Description: POSITION MRADS FILE. One
of the MRADS units F (0 through 3) is positioned to
receive or transmit a specific record. The line OCT
contains the actual MRADS address (octal) of the
selected MRADS unit. This instruction holds power
upon completion of the operation. These commands
must precede any read or write operations.

Comments:
three are:

The bit configurations for words two and

Word Two, PRF

0—>4 5 6 17 8
[PRF | FileNo.] 00000000000

»19
0 ol

Bit Positions Contents

0 through 4 Position MRADS instruction
5 through 7 File number, as follows:
File 0 = 001
File 1 = 010
File 2 = 111
File 3 = 100

8 through 19 Must be zero

Bit combinations in positions 5, 6, and 7 are auto-
matically developed during assembly. These com-
binations provide additional file protection, in that bit
pick-up or drop in these positions is immediately
detected by error-checking logic.

IS
ISP

XI-4

Word Three, OCT

01 2—»5 6——>i1 12—>18 19
[0 0] Disc | Position | Record | 0/1]
0-15 0-63 0-95 |
Read
Next
Sector
Bit Positions Contents

0 and 1
2 through 5

Must be zero

Selects the disc number,
0 through 15.

Position, 0 through 63
involved in information
transfer.

Record, 0 through 95, to be
read or written,

Zero. See last paragraph
of this Comments section.

6 through 11

12 through 18

19

The seven bits, 12 through 18, designate the head which
will read or write, as well as the number of the record.
All 96 records thal can be read when the arm is in a
given position ecan he addrecsed hv the ceven record
bits whouse binaty value varies {rom 0660000 for recora

zero to 1011111 for record 95.

To read 96 records, the instruction must be
However,

Note:
modified to obtain groups of 16 records.
positioning time is eliminated.

The bit configurations shown in Figure 11-5 indicate
the manner in which specific records are addressed.
(Bits 14 and 15 determine inner zone heads 0 through
3; bits 12, 13, and 14 determine outer zone heads 4
through 7. Bits 16, 17, and 18 determine inner zone
sectors 0 through 7; and bits 15, 16,17, and 18 deter-
mine outer zone sectors 0 through 15.)

The following disc positions must be reserved for
diagnostic routines:

Disc Position Head Sector
0 0 0 0
15 63 7 0-15

Selection of the record tobe transferred automatically
selects the head to perform the read or write oper-
ation. Each of the eight heads on the arm can read a
specified number of records as follows:

Head Number Record Number

0 0- 7
1 8-15
2 16 - 23
3 24 - 31
4 32 - 47
5 48 - 63
6 64 - 79
7 80 - 95

As has been pointed out, the maximum number of
records which can be transferred by one instructionis
16. It is not necessary that these 16 records (or any
part of 16 records) all be in the outer tracks or all
be in the inner tracks. The transfer of information
during the execution of an instruction can start in
the inner tracks and continue in the outer tracks.
As records are being transferred, a count is main-
tained in the MRADS controller so that the read or
write operation continues for the specified number of
records. The sequential incrementing of the RECORD
address in the controller automatically results in the
proper head switching. Because record 95 is the
highest valid address, incrementing the address in
the controller bevond 95 causes the counter to he set
to zero and record zero of the specified position is
the next reoord Thus il ls pussibie
duaress record Yo, request 16 records to be trans-
ferred, and still have 16 records transferred.

Oy S
A ALDI L L T,

NOTE: If 96 recordsare written, starting from record
0 as indicated in Figure 11-5, five instruction modi-
fications are required. If (by programming)anattempt
is made to increment the bit configuration for record
95 (1011111) by one, bits 12 and 13 will become ones;
this produces an invalid record address which results
in an error signal when an attempt is made to use the
address.

It should also be noted thatbit 19 of word three, identi-
fied by READ NEXT SECTOR, is a variable. When
bit 19 of word threeis ON (contains a one) the RECORD
address is ignored and the subsequent reading or
writing operation takes place in the next sector. Bit
19 of word three is used when it is desired to sample
a record from a given position of the positioning arm.
Rather than search for a specific record out of the 96
possible records, the next record can be read. This
form of addressing can also be used when it is known
that every sector in a track is to be transferred and
it does not make any difference which sector is read
first.

@EDQQE
| r /S S)
CHISINETETD)

Bit Positions

12 13 14 15 16 17 18 Record Position

0O 0 O O 0 0 0 |= 0 Inner tracks 0 - 63 (top of disc)
to to

0 0 0 o0 1 1 1 = 7

0 0 0 1 0O 0 0 |-= 8 Inner tracks 0 - 63 (top of disc)
to to

0O 0 0 1 1 1 1 |-= 15

O 0 1 0 0 0 0 |-= 16 Inner tracks 0 - 63 (bottom of dise)
to to

0o 0 1 o0 1 1 1|= 23

0 o0 1 1 0 0 0 |-= 24 Inner tracks 0 - 63 (bottom of disc)
to to

0o 0 1 1 1 1]-= 31

0 1 0 0 0 0 0 |]-= 32 Outer tracks 0 - 63 (top of disc)
to to

o 1 o0 1 1 1 1| = 47

c 1 1 0 0 0 o0]-= 48 Outer tracks 0 - 63 (top of disc)
to to

0 1 1 1 1 1]-= 63

1 0 0 O 0 0 o0}|-= 64 Quter tracks 0 - 63 (bottom of disc)
to to

1 0 0 1 1 1 1= 79

1 0 1 ? 0 0 0]-= 80 Outer tracks 0 - 63 (bottom of disc)
0 to

1 0 1 1 1 1 1= 95

i1 1 0 0 O O O0]-= 96 through 127 are invalid record addresses.
to Thus, when an address is generated, only one

1 1 1 1 1 1 1 test (bits 12 and 13) is needed to detect an

illegal address.

Figure 11-5. MRADS Record Address Bit Configurations

MRADS DATA TRANSFER
INSTRUCTIONS

A MRADS unit which has been positioned can be ad-
dressed for a read or write operation. Itis first
necessary to give a SEL P instruction which selects
the controller selector plug (P) into which the MRADS
unit is connected. Once the MRADS unit has been se-
lected by the controller selector, the MRADS controller
goes busy and waits for the next two words from
memory. These words are sent to the MRADS con-
troller and indicate the operation tobe performed (read
or write), the file which is to perform the operation, the
number of records to be transferred and the starting
address in memory where information is tobe sent or

retrieved. The GAP instructionsfor read/write oper-
ations follow.

RRF
(blank)

N
M

F 1200000

00MMMMM

Word Times: 2

Functional Description: READ FROM MRADS UNIT F.,
N is the number (1 through 16) of 64-word records
to be transmitted from MRADS to core storage. F is
the number (0 through 3) of the selected MRADS unit.
M is the core memory address into which the first
word of the record is stored. Power is held on the
arm after execution of this instruction.

BlE-22%

XI-6

3700000
00MMMMM

WRF N F Word Times: 2

(blank) M

Functional Description: WRITE ON MRADS UNIT F.

N ia thoa numhar 11 fl}rnurrh 1‘-“ of 84-word records

to be transmitted from core storage to MRADS., F is
the number (0 through 3) of the selected MRADS unit.
M is the core memory address from which the first
word is to be transmitted. Power is held on the arm
after execution of this instruction.

1201000
00MMMMM

RRD N F
(blank) M

Word Times: 2

Functional Description: Performs the same function
as RRF, except that power is dropped from the arm
upon completion of the read operation.

WRD N F
(blank) M

3701000
0OMMMMM

Word Times: 2

Functional Description: Performs the same function
as WRF, except that power is dropped from the arm

Ty raranlatine +h Tritn ~ o ti
upon completicon of the write operaticn.

Comments: Note that a position instruction sequence
(SEL, PRF, OCT) must precede any read or write
sequence. The format for MRADS data transfer in-
structions is:

Word Three
§ ——»13 14 —»19

| Origin Address | 00000 0]
Multiple of 64

[« [ea]
o

—yq
000

Bit Positions Contents

Must be zero

Starting location for read
or write operation.
Must be multiple of 64.

Must be zero, because
origin address is multiple
of 64.

0 through 4
5 through 13

14 through 19

Special Bit Configurations

Normally, bit positions 8 through 11 of word two of
the read and write instructions contain zeros, How-
ever, there are special bit characteristics for these
positions that are valuable for checking and timing,
These are described below,

READ-AFTER-WRITE PARITY CHECK - BIT
POSITION 9

A reoad aftor write naritv cheelr 2an he nerformed hn

L8 PRIy, 1004 Tl § oA,

e controiler i pityin the readinstiruction 18 set to 1
If an error shouldoccur, it may be detected under pro-
gram control. During this check, no data (including
the 65th check word) is transferred to memory. Fur-
ther, the controller is busy until the parity check is
completed. When the controller becomes ready, the
program must check the parity error branch, and if
an error occurs, the record shouldbe rewritten. This
check requires a minimum of 52 milliseconds.

Word Two
0—>»4 5 6 7 8—>11 12—»14 15—>19
Read or File Number
Write | Number 00007000 of Records
0-3 Minor 1-16
Ops
Code
Bit Positions Contents
0 through 4 Operation code;
read = octal 12
write = octal 37
5 through 7 File number, 0 through 3
8 through 11 Reserved for minor oper-

ation codes, described in
Special Bit Configurations
Must be zero
Number of records to be
transferred, 1 through 16

12 through 14
15 through 19

RAW N F
(blank) zero

1202000
0000000

Word Times: 2

Functional Description: READ AFTERWRITE CHECK.
N is the number (1-16) of 64-word records to be
checked. F is the number (0-3) of the MRADS unit se-
lected. The second command word of this read instruc-
tion contains zeros. A seek command (SEL, PRF,
OCT) must precede any read or write commands.

o PSR AT TT 222311 ~aanalal +1 [
COUIIIIEIILD. ALy 11 willl asSsSeiniole e m
dropping power and for the read-after-write check.
Thus, if GAP II is useditisnot necessary to set these

bits.

PRR Soe " a far
11T 111Ul 1CS I0T

This command enables aparity check to be made on all
words of a record(s) transferredto the file. The check

ME OGE
82" 249

October 1963

is made after the data has been transferred to the
controller, but no transfer of data is made to the cen-
tral processor.

POSITION RELEASE - BIT POSITION 10

Bit positions 8 through 11 of the readand write instruc-
tions are normally zero. Whenbitposition 10 is zero,
power remains on for the actuator being used and the
arm position is held. Thus, it is possible to read a
record, update it, and write itbackinto random access
memory in the same location without consuming time
for positioning, although latency time must still be
considered. The RRF and WRF, read and write, in-
structions hold power after the operation is complete.
RRD and WRD, read and write, instructions will drop
power after the operation and the position will not be
retained.

There are other advantages to holding power. For
example, positioning time can be saved when it is
known that the next operation can be performed with-
out changing the arm position.

In many cases of purely random processing it is ad-
vantageous to drop power on the actuator after reading
or writing. This saves 9 ms each time a different
arm or position isaddressed. Whena 1-bit is inserted
in position 10 of the read or write instructions, power
is turned off and the position is not held after the
operation has been completed.

READ NEXT SECTOR - BIT POSITION 19

Bit 19, READ NEXT SECTOR, of the OCT instruction,
word 3 of the positioning instructions, is a valuable
tool. When set to zero, only the specific record
indicated by the instruction is read. However, when
the bit is set to 1, the sector part of the instruction
is ignored, the specified head is selected, and the next
record to come under the read-write headis read into
memory. The entire track can be read into memory
by so indicating in the read instruction. For example,
if it is desired to read eight records from head 0 and
the first record read is three, the transferto memory
is in the sequence: 3,4,5,6, 7, 0, 1, 2. Under similar
circumstances, with bit 19 set to zero (normal) the
sequence would be 3, 4, 5, 6, 7,8, 9, 10. In this case,
head switching is accomplished automatically. This
cuts latency time almost to zero.

Bit 19 is useful for dumping disc storage onto mag-
netic tape or cards for file protection or sorting.
Since the data in disc storage is in random sequence,
the sequence of dumping the data onto magnetic tape
before sorting is not important. (This assumes that

(nle L 9)a)e

|

one record contains a unit or several units of infor-
mation.) The savings with this type of dump routine
would be the average latency time of 25 milliseconds
per track. At the lower tape speeds this would not be
of particular advantage as the dump is tape bound.

MRADS OPERATING TIMES

Access Time

Access time to a recordstoredinadisc file is defined
as the time from the initiation of a seek command to
the time when the first data bit in the record is read.
This assumes that no delays are incurred because of
the computer program. Figure 11-6 illustrates the
major components of total access time. Thenumbers
below each letter represents milliseconds (ms) of
time.

I*—_—*Access Time

Positioning Time Latency Time
A B o] D E F
0 or 9 ms[0 or 6-9 ms[0-235 ms |0 or 52 ms|3.2-48.8 ms|3.2-6.4 ms
Position Record Transfer
Con- Con- Time
firmation firmation
Time

A Power Off Delayisincurred when the seek com-
mand calls for a new position orarm. This delay
will be incurred if power was not dropped after the
last read or write command, or power was dropped
after the last read or write command and a new
seek command was received before power had
been dropped.

A Power On Delay is incurred any time an arm
(with power off) must be moved to a specified po-
sition.

Travel Time. (Basically, this depends upon the
starting position of the arm, the directionof move-
ment, and the number of positions to be moved.)

Position Confirmation Time is the amount of time
required to verify that the head is ready to read
or write on the correct track.

Latency Time isthe rotational delay incurred from

completion of address confirmation until the
proper record is available.

Figure 11-6. MRADS Timing

\SJIE ~ (443

XI-8

Positioning Time

Positioning time is A + B + C + D (Figure 11-6). How-
ever, it may be zero. See Case 2 below.

Relationship Between Commands
and Hardware

To minimize access time, read or write instructions
should be issued as soon as the controller becomes
ready, following the issuance of the seek instruction.
The controller holds the instructions and automatically
instructs the file to read or write upon receiving the
file ready signal. The following cases illustrate
possible conditions that may occur in connection with
access time. In all cases, assume that the controller
is ready.

Case 1 - There are no commands held by the controller
and power is not applied to any actuator. In this case,
as soon as a seek command is received by the con-
troller and an address is sent to the file, power is
brought up on the actuator and positioning starts. Thus,
arm positioning time is B + C + D. If there are no
file errors during this time, after the record address

has been confirmed, the file will signal the controller
‘file ready.” A read or write command may be issued
to the controller any time after the seek command is
transferred and when controller ready (80 micro-
seconds) occurs.

Case 2 - A read or write operation has just been
completed and the instruction executed did not cause
actuator power to be turned off. Inthis case, if a new
seek command specifies a record on the same disc
which does not require movement of the arm, there is
no positioning time. The only delay is due to latency
time. However, if a new disc or new position is ad~
dressed, the positioning time is A + B + C + D, since
power must be dropped on the actuator and then brought
up for the new position.

Case 3 - Seek and read instructions have been sent to
the controller, observing proper programming pro-
cedures, but a file error occurs prior to completion
of time period D. In this case, the file will not send a
ready pulse to the controller. However, the file error
and controller ready branch condition will be set. It
is up to the program to interrogate and initiate error
recovery procedures.

The diagram in Figure 11-7 summarizes the inter-
relationship of commands and the physical units.

SEEK
SEL Positoning Tilue Lateucy Tlne f{ 1.6 s
PRF | 80+ A B C D E F to read
OCT | us or write
(Note 1.) (Note 4.)

«————Controller Ready (Note 2.) ———»
«——Addressed File is Seeking (Note 3.)—

<«READ or WRITE Commands may be issued —»
during this time

The controller becomes busy when a read or write instruction is given, and
remains busy until the operation is completed.

Notes:

1. During this time, the seek instruction goes to the
controller, and the controller becomes ready after
80 microseconds.

A read or write command (or, if desired, a new
seek) may be given during this period. The unit
will signal the controller whenitis ready. If read
or write commands are given duringaccesstime,

the controller will hold either until the unit signals
that it is ready.

When the unit is ready to read or write and in-
structions have not yet been issued, 1.8 milli-
seconds are available to issue the commands. If
the issuance of the command is delayed beyond the
1.8 millisecond period, another 52 milliseconds

will
Wiii

elanse hefore readine or writine occurs

ciapostc o©OCI0IC ~calllily iiing O0CCuls.

Editing, etc, may be accomplished during po-
sitioning time. If, under program control, it is
found to be undesirable to read or write a record
for which a seek command has beenissued, a new
seek instruction for a specific unit may be issued.

Figure 11-7. MRADS Instruction Timing

2
5)

o
sl
12
IS
Gl

[':<

XI-9

MRADS CONTROLLER
TEST-AND-BRANCH INSTRUCTIONS

The following branch instructions test the controller
to determine whether a particular MRADS condition
is true or false. If the condition tested is true, the
computer executes the next sequential instruction. If
the condition tested is false, the computer skips the
next instruction and executes the second sequential
instruction. The controller mustbe ‘ready’ before any
other branch condition is tested.

BCS BRN P 2516P20 Word Times: 2

Functional Description: BRANCH ON MRADS CON-
TROLLER NOT READY. The MRADS controller on
Plug P is tested for a not-ready condition.

GAP Coding:
Symbol Opr Operand X
v] 2] s] «| 5] 6|8 [[10]t2] s 1415 ts[17 1e]1e]20
P . BCSIBRN , . , .10
— : BRU|* -1, ., . . .

The above example is typical of programming all
MRADS test and branch instructions.

BCS BRR P 2514P20 Word Times: 2

Functional Description: BRANCH ON MRADS CON-
TROLLER READY. The MRADS controller on PlugP
is tested for the ready condition.

BCS BIO P 2514P25 Word Times: 2

Functional Description: BRANCHON INPUT/OUTPUT
ERROR. The MRADS controlleron Plug P is tested for
input/output error indicator on.

BCS BIC P 2516P25 Word Times: 2

BCS RPE P 2514P26

Functional Description: BRANCHON PARITY ERROR.
The MRADS controller on Plug P is tested for parity
error indicator on.

BCS RPC P 2516P24 Word Times: 2

Functional Description: BRANCH ON PARITY COR-
RECT. The MRADS controller on Plug P is tested for
parity error indicator off.

BCS BER P 2514P27 Word Times: 2

Functional Description: BRANCH ON ANY ERROR,
The MRADS controller on Plug P is tested for error
indicator on. These conditions are:

Illegal command for specific controller
Input/output error

Parity error

Any type of file error

00 10 1

BCS BNE P 2516P27 Word Times: 2

Functional Description: BRANCH ON NO ERROR. The
MRADS controller on Plug P is tested for error indi-
cator off.

MRADS UNIT TEST-AND-BRANCH
INSTRUCTIONS

BCS FKR P 2514P21 (File 0) Word Times: 2
or 2514P22 (File 1)
or 2514P23 (File 2)

or 2514P24 (File 3)

Functional Description: BRANCH ON FILE KREADY.
The specified MRADS unit K on controller Plug P is
tested for ready status. Kin the mnemonicis replaced
by the file number 0, 1, 2, or 3, and may be program
modified. Ready indicates that a seek command has
been executed and that the file is ready to read or
write.

BCS FKN P 2516P21 (File 0) Word Times: 2
or 2516P22 (File 1)
or 2516P23 (File 2)

or 2516P24 (File 3)

Functional Description: BRANCH ON INPUT/OUTPUT
CORRECT. The MRADS controlleronPlugP is tested
for the input/output error indicator off.

Functional Description: BRANCH ON FILE K NOT
READY. The specified MRADS unit K on controller
Plug P is tested for a not-ready status. K in the

XI-10

October 1963

Word Times: 2 l

mnemonic is replaced by the file number0, 1, 2, or3,
and may be program modified. Ready indicates that
a seek command has been executed and that the file
is ready to read or write.

f‘f}yq
tg'_Z
o 4

[l o1}
w @
s
[@]

[

his instruction.

BCS FAC P 2516P31 Word Times: 2

Functional Description: BRANCH ON NO ERROR -
ANY FILE. The MRADSunitsoncontroller Plug P are
tested for file error indicator off. If any file has an
error, the condition will be set and can be tested with
this instruction.

2514P32 (File 0) Word Times: 2
or 2514P33 (File 1)
or 2514P34 (File 2)
or 2514P35 (File 3)

BCS FKE P

Functional Description: BRANCH ON FILE K, FILE
BRROR. The specified MRADS unituucoutiviler Plug
P is tested for a file error. K in the mnemonic is
replaced by file number 0, 1, 2, or 3, andmay be pro-
gram modified.

BCS FKC P 2516P32 (File0)
or 2516P33 (File 1)
or 2516P34 (File 2)

or 2516P35 (File 3)

Word Times: 2

Functional Description: BRANCH ON UNIT K, NOUNIT
ERROR. The specific MRADS unit K on selector Plug
P is tested for no file error. K in the mnemonic is
replaced by file number 0, 1, 2, or 3. K may be pro-
gram modified.

NOTE: When a file error is set, it will remain set
until a seek instruction for that specificfile is issued.
(For instance, to clear an error on File 0, a seek in-
struction for File 0 must be given.) As long as any
file holds an error, the FAE and FAC branches will
indicate that an error exists.

MRADS PROGRAMMING SEQUENCE

Before attempting to execute a MRADS operation, the
programmer must test the MRADS controller for a
ready status and for any error condition resulting
from a previous operation. Figure 11-8 is a flow
chart illustrating the proper programming sequence.

This sequence of instructions is necessary for every
read or write operation regardless of whether or not
a new arm position is required. There is no rule
requiring that the ready branch following a seekcom-
mand be executed within any given length of time. It

H 1 i i 4
is alsc good programming practice to check for ‘any

error’ after read or write operations. If ‘any error’
occurs, the read or write operation shouldbe repeated.

TN
Start

Controller
Ready ?

Yes

Any
Error?

No

Error Routine

, | (sEL
f SEEK ! PRF
L——, oCT

Controller
Ready ?

Any

————® Error Routine
Errors?
o

Yes

No

Y

Seek or Read or Write

SEL SEL SEL
PRF or WRF or RRF
oCT Blank Blank

Figure 11-8. MRADS Programming Sequence

NP oA
ale e 278
i ’ v

\bJ (5(aT)

XI-11

GAP Coding:

Opr Operand X REMARKS
R "‘["L“I“I"l”i"l" 20 | 31

MRADS PROGRAMMING EXAMPLES

Example 1

C.S{R.R.N
R.U|* -1
CSIBER i (1]
R.UIE.RBR.OR

=3

CHECK FOR READY STATUS —]

o pR

BRANCH TO ERROR ROUTINE

If the controller is ready and there areno errors, the
first set of commands to be executed will initiate a
seek operation on the specified file.

GAP Coding:
Opr Opersnd b 4 REMARKS
B DRI 73
S EL]|O SELECT PLUG 0
P R.F|1 POSITION MRADS UNIT
QC.Ti0.5.2.1 4.3.6

Following the transfer of the seek command to the
controller, another ‘Branch on Controller Ready’
command should be programmed. This delay is ap-
proximately 80 microseconds.

GAP _Coding:
opr | Operand X REMARKS
BENED DD D AT KD £ £ 75
R N [1]

BRU[* -1 DELAY FOR COMPLETION OF OPERATION

Any time after the controller is ready, the program
may either initiate a seekonanotherdiscfile, transfer
a read or write command to the file already selected,
or alter the previous seek command.

GAP Coding:
Opr Operand X REMARKS
) ‘Y”‘”J“T”\HJHI" 20 | 3 75
L0
R R F {1 1 {READ RECORD FROM MRADS =~ |
6 4

Read a recordfrom MRADS unit 1; MRADS 1 is plugged
into controller selector Plug 0. The record is to be
read into symbolic memory location RAMIN. The
record is located at disc 10, track position 35, and
record 15.

GAP Coding;
Opr Oparand X REMARKS
R T2 el ey I 20 [31 ki
‘IB C B R N 0 | DELAY UNTIL. CONTROILIER IS READY
IR R 1 1
*is.E.LJo SELECT PLUG 0
‘iP R_F 1 POSITION MRADS UNIT 1
*locTio 521 4358
*lBcsB RN 0 | DELAY UNTIL CONTROLLER IS READY
7IBRU[* - 1
* 0
*IRRFH 1 | READ RECORD FROM MRADS
' AMIN
"B .C N 0 | DELAY UNTIL READ IS COMPLETED
“BRU|* 1
I8

The OCT command of line 5 is constructed as shown
below:

Bit Position Q5 | 6211 | 12«18 19
Address Disc Track | Record [RNS
Bits 001010 { 100011 | 0001111 0
A N g, S S S N
Octal Code 0 5 2 1 4 3 6
Example 2

Using the data of Example 1, assume that all address
data is known except the record number. Read the
record within range of access on the same file, disc,
and track. Assume that the record to be read will
furnish further information for the ‘search’ and further
processing will interrogate the data within the record
itself.

GAP Coding:
Opr Operand X REMARKS

S D DA D R £l 7%
B CSBRN 0 | CHECK FOR CONTROLLER READY
BRU* -1
SEL0
PRFY POSITION MRADS UNIT 1
0C T 052 1 4.0.1
B C S\B R N Q
B R U, * 1
S E.LIO
R R F 1 1 | READ RECORD FROM MRADS

R AMIN
BCSBRN ‘ 0
B Ui * 1

1

59
u]
NS

S
&

{r‘_‘
[

XI-12 October 1963

The preceding coding is identical with thatof Example
1, except for the address of the OCT instruction. This
address is constructed as follows.

Bit Position Oe—eh | Ga—»l]l | 1218 | i5
Address Disc Track |[Record |[RNS
Bits 001010 | 100011 { 6000000 i
K T T
Octal Code 0 5 2 1 4 0 1

Example 3

With reference to Example 1, write a record into the
MRADS unit from symbolic location RAMIN. Assume
the MRADS has been positioned at the desired address

MRADS WITH AUTOMATIC
PROGRAM INTERRUPT (API)

The MRADS counirolier contains a inanual switch which
may be used during normal programmed operation, if
the computer is equipped with the Automatic Program
Interrupt feature. In the off position, interruptpulses
will not be transmitted. If the switch is on, interrupt
can occur as described helow,

The system design will determine whether an MRADS
program is to be runin conjunction with another ‘main’
program. If this should be the case, with the switch
on (and depending upon the manner in which the inter-
rupt is programmed) automatic program interrupt
will occur under the following circumstances:

by a seek command. 1. A read or write operation has been completed.
2. A seek instruction has been completed and the file
GAP_ Coding: is ready to read or write. If the controller is
holding a read or write instruction, no interrupt
Opr Oporand X REMARKS will be provided.
D DD IO G ED Y £ R |
S|B.R N 0 . N . : :
RU* -1 3. A file error is received during the seekoperation
S.ELl0 and the controller is holding a read or write in-
W RF|1 1| WRITE RECORDONMRADSUNIT L | struction for the file that has the error.
A M. I N }
B.C.S|B.R.N, [D ’ pu— B e . N i B '
B.R !”. O + i ‘. Aile CULILLULIEL LlelllveS 4 LBdu Ul wiliile lusuiuc-
| f tion for a file which is holding an error condition.
gx:lEm /)7
Lo YAy
Nead L Lmd L _J N/

XI-13

o~ ——

SECT

AUXILIARY ARITHMETIC

The addition of the Auxiliary Arithmetic Unit (AAU)
extends the arithmetic capability of the GE-225 sys-
tem; it is particularly useful in applications where
numerous floating-point or double word calculations
are required. The AAU processes floating-point
arithmetic at much higher speeds thanispossible when
using a programmed floating-point package. The latter
method is used only when a system doesnot include an
AAU. Floating-point word formatis the same in either
case, however.

AUXILIARY ARITHMETIC UNIT

Although the AAU is connected through the controller
selector to the central processor, it is not an input/
output device; it is anextensionof the basic arithmetic
unit. By routing access to the AAU through connector
plug 7 of the controller selector and the automatic pro-
gram interrupt controls, simultaneous AAU and central
processor arithmetic unitoperations are possible. Due
to its control logic, the AAU can be connected to con-
troller selector plug 7 only.

Function

The central processor is readily adaptable to com-
puting ranges of numbers with fixed decimal points,
such as whole numbers or whole numbers with decimal
fractions (example: dollars and cents, where the
fractional portion of the number isalways two decimal
digits). When the calculations involve numbers that
have varying format, such are often foundin scientific
calculations, the programmer must keep track of the
location of the radix point. This can be laborious and
can easily lead to errors. The AAU enables the pro-
grammer to use floating-point arithmetic with both
ease and speed, thereby avoiding most scaling con-
siderations. In some respects, the AAU canbe thought
of as an extension of the central processor with larger
registers, thereby permitting calculations of greater

complexity than does the arithmetic unit alone.

[@]

’
N

UNIT OPERATIONS

Modes

Three modes of calculations are performed by the
AAU: unnormalized floating-point, normalized float-
ing-point, and fixed-point operations. It isusualto do
floating-point operations in the normalized mode. A
normalized number is one in which the most significant
non-zero bit of the mantissaisnotprecededby leading
zeros. For example, the decimal number 6786 might
be represented in unnormalized form as:

1 normalized forin, this number would be.
.6786 x 104

Addition, subtraction, multiplication, and division can
be done in any of the three modes of operation. Special
commands, discussed later in this section, enable the
execution of the desired type of calculation.

Controller

All AAU operations are conducted through the AAU
controller. However, unlike controller selector pe-
ripherals, the controller and auxiliary arithmetic unit
are not two separate physical units. They are one
unit with all normal controller-type functions being
performed from the AAU to the central processor core
memory through the controller selector. Allinstruc-
tions for the AAU are routed through the AAU con-
troller logic which decodes and executes the desired
operations. A GE-225 system can have only one AAU
connected to the controller selector.

The AAU is granted access to memoryaccording to its
priority level in the controller selector priority inter-
rupt system. This level is pre-established by means
of convenient plug-in connectors to the controller
selector. The AAU occupies plug 7whichis the station
with the lowest priority. Thus, if any peripheral with

XII-1

a higher level priority desires access to memory, the
AAU must wait. Throughthispriority interrupt system
of time sharing, the AAU decodes and executes its
instructions and permits calculations to occur simul-
taneously with central processor computations.

All communication with the central processor core
memory is performed on a priority basis with two
exceptions: (1), when the AAU controller receives a
new instruction during the execution of a current in-
struction, and (2) when the AAU receives a floating-
point divide instruction and the dividend in the AX and
QX registers is negalive. These two conditions are
discussed later in this section.

Registers Affected

All AAU operations process data inthe AAU after data
passes through the central processor M register,
where each 20-bitwordis checkedforparity. The AAU
has an instruction register to hold AAU instructions, a
40-bit buffer register which accepts two 20-bit words
from the central processor to form one 40-bit AAU
word, a 40-bit adder, and two other 40-bit registers,
known as the AX and the QX registers whose function is
similar to the A and Q registers in the central pro-
cessor (these registers are described under AAU
Operating Logic). Note that the size of these two
registers permits both floating-point and fixed-point
calculations on larger numbers that could be con-
veniently processed otherwise.

INSTRUCTION WORDS

Setting the Mode

Unlike the requirements for controller selector pe-
ripherals, three instruction words are not needed to
initiate operation of the AAU. One reason is because
there can be only one AAU ina GE-225 system. Also,
because there is no separate controller with a number
of operating units like the controller selector periph-
erals, there is no need to selectaplug. As stated, the
AAU is always on controller plug 7 and thus no SEL
instruction is needed. All that is required is a set
mode instruction to select one of the three modes
before giving an arithmetic instruction. Following a
set mode are the instructions required to perform the
desired arithmetic operations.

Once the set mode instruction is given for the desired
calculation mode, it need not be given again until the
programmer wants to change modes.

T llor.ratz, Figure 12-1 shows a program which
beglns calculations in the normalized floating-point
mode and then switches to the unnormalized floating-

ji. ...sie as directed by the new mode instruction
shown on line 11.

GAP Coding:
Symbol Opr Operand

1 [2] s] 4] 5] 6|8 o |10 [tz]1a] 148 1617 1e] 10
'l S TARTSETINFLPOINT
z o _lup.alx,
3 F.SU|Y. e
4 . FST{TFM1. . .,
* . - e
s \ L
g P
J R
1 . . . |F,STADIDO, ., ,
"l . SETIU.FL,POIN.T
L DAl
3 . . ey e
14 g) L

Figure 12-1. Setting the Calculating Mode

AAU instructions are similar inperformance to double
word length central processor instructions. For
example, the AAU load instruction, FLD 3200, double
loads the contents of locations 3200 and 3201 into the
40-bit AX register. As is shown laterin this section,
AAU instructions are available to use the AX and QX
registers together, such as might be required in nor-
malized floating-point mode multiply operations.

Format

Instruction words for the AAU are contained in core
memory in one 20-bit word of the same format as cen-
tral processor instructions. Figure 12-2 shows the
word organization of a store AAU (FST 3200) instruc-
tion.

Modification
Bits
Operation
Cade Operand Address

(_/_W(«\f N
01|1234(567(|8910|111213|141516/17 1819

11j/011(000j11 0{0 1 0(0 0 0f{0C 0O O

3 3 0 6 2 0 0
Decimal 3200 = Octal 6200

Figure 12-2. AAU Instruction Word Format

Bits 0 through 4 contain the operation code; bits 5 and
6 contain the automatic modification bits, if required;
bits 7 through 19 contain the address of the operand.

XII-2

As in the case of the central processor, the floating-
point instructions are available to the user through the
use of mnemonics which are listed in the instruction
repertoire. The use of any of the AAU instructions for
floating-point operations assumes that the operands to
be acted upon are already in floating-point format.
Note: information can be placed in floating-point format
using existing subroutines.

DATA WORD FORMAT

Data for AAU operations can exist in memory in
any of three different modes; fixed-point, normalized
floating-point and unnormalized floating-point. All
AAU data words exist in the central processor core
memory as two 20-bit words, with bits of each word
having meaning according to the mode selected pre-
viously. Thus, when an instruction such as ioad the
AAU with the contents of location 3200 (FLD 3200) is
received and executed by the AAU, the contents of 3200
and 3201 are brought into the AAU. The format in
which the contents of 3200 and 3201 are interpreted
depends upon the mode in which the AAU is operating.

Fixed-Point Words

M
€

Fixed-point a mode of operation whereby the binary
wformaiion in a register {(AX or QXj is decoded in
standard hinarv: that is, earh bhit has a hinary value
The least sigiiilicant bit, Lit 18 of ihe first dala word,
has a binary value of 0 or 1, bit 18 has a binary value
of 2, bit 17 has a value of 4, bit 16 has a value of 8,
etc.

In Memory:

Word One
01

Y (3200)

S

Word Two
01

Y+1 (3201)

»19

S

In the AAU AX Register:

Y Y and Y+1

12 —» 20 21 22 —— 40

S

Figure 12-3. Fixed-Point Data Word Format.

P

Fixed-point information can be of the form as shown
below:

62487 (integer)
.62487 (fraction)
62.487 (mixed number)

The format for fixed-point words in memory is shown
in Figure 12-3. To illustrate, the FLD 3200 instruc-
tion is used. Note that the signs of word one and word
two are identical for fixed-point double words. Thus,
when two data words from memory enter the AAU, they
appear in the AX register as one 40-bit word. As
shown, the fixed-point word in the AX register con-
sists of 38 information bits, plus two identical sign
bits. Similarly, a fixed-point word in the QX register
also consists of 38 information bits and 2 sign bits.
Note that bit one is the signbitof the entire word. Bit
21 (the sign of the mantissa in floating-point format)
has no significance in fixed-point operation.

Floating-Point Words

A floating-point number consists of two parts, an ex-
ponent and a mantissa. For clarification, itis helpful
to review some of the basic terms used in floating-
point arithmetic operations.

T e

wxRponent, tire n“b, the exponent \u;
characterlstle) is tho nine moqt significant hits (eioht

1T

AS used will

numeris hite

<lTE .4“, ol a double word \bcc
Figure 12-4). These bits designate to what power of
two the mantissa portion of the word must be raised.

e A 3
<O« Sighn

2. Mantissa. Inthe AAU, the mantissa is the 30 least-
significant bits of a double word. The radix point for
these 30 bits is assumed to be to the left of the most
significant of the 30 bits. Thus, the mantissa is frac-
tional in value (see Figure 12-4).

The mantissa is multiplied by two raised to the ex-
ponential power expressed in bits 0 through 8 to give
the entire word the desired numeric value.

3. Normalization. In the AAU, positive and negative
numbers are normalized, or adjusted, so that the man-
tissa lies in the prescribed range; the absolute value
of the mantissa must be greater than (or equal to) 1/2
and less than (or equal to) 1. Algebraically, this is
expressed as: 1/2<[mantissal < 1.

Positive numbers are normalized by shifting the man-

tissa left until its most significant bit (in the AX reg-
1qur\ is not 2 0-bit, Foreachyposition shifted left. one

100 av 4 LI ORUAPUSIIUI & Ol Al UIIT

is subtracted from the exponent.

Negative numbers (in 2’s complement form) are nor-
malized by shifting the mantissa left until its most
significant bit is a 0-bit, or until the most significant
bit is a 1-bit all other mantissa bits are 0-bits.
The exponent is then adjusted by the number of shifts.

oo
ok

IO
Hale @ 2/ /<)
2 (=

Xmo-3

The mentioned significant 1-bit in the mantissa is a
special condition which exists only when the mantissa of
a negative numberisall zeros. In such cases, the most
significant bit is a 1-bit and the exponentis adjusted so
that the value in the AX register is unchanged.

4. Radix Point. The point in any numbering system
which separates the whole integers from the fraction.
Thus, the decimal pointisa radixpointfor the decimal
system; a binary point is the radixpointfor the binary
system.

Floating-point numbers occupy two 20-bit words in
memory, as shown in Figure 12-4. The binary point is
assumed to be before the first bit (bit 9) of the man-
tissa. This format produces a binary number with a
30-bit mantissa and a binary characteristic range of
-256 to +255. Thisisapproximately equal to a decimal
number with a 9-digit mantissa and a decimal range of
10-77 to 10+77, The fact that two words are used
allows one of the sign positions to be applied to the
exponent.

When data in the two-word floating-point format enters
the AAU, it is converted into one word, 40 bits long, as
shown.

In Memory:

Word One
Y
01 —»8 9 »19

Mantissa

i[Se Exponent

word Two
Y+1

01 —» 19

Sm Mantissa

Se = Sign of Exponent (0 = plus; 1 = minus)
Sm = Sign of Mantissa (0 = plus; 1 = minus)

In the AAU:
Y Y+1

r Al
12 —»910 —»20 21 22 —————»40

Mantissa
(Last 19 bits)

Se | Exponent| Mantissa Sm
(1st 11 bits)

b = Sign of Exponent
Sy = Sign of Mantissa

Figure 12-4. Floating-Point Data Word Format

The QX register is an extensionof the AX register. It
also consists of an 8-bit exponent with sign and a 30-
bit mantissa with sign. The value of the exponent of
the QX registeris the value of the AX register exponent
minus 30.

EXPONENTIAL ARITHMETIC

To perform arithmetic operations in the floating-point
format, several requirements must be met. For
addition and subtraction problems, the exponents of the
numbers involved mustbe equal. Itisnot probable that
a common exponent will be used inall problems; how-
ever, the AAU automatically adjusts exponents. The
AAU adjusts the exponent with the smaller numeric
value. Adjustment is accomplished by automatically
shifting the mantissa of the word with the smaller ex-
ponent right and incrementing its exponent by the
number of positions shifted.

Addition and Subtraction

Once exponents are equalized, addition or subtraction
of the mantissas canoccur. The exponentof the answer
will be the adjusted exponent while the mantissa of the
answer will be the sum or difference of the shifted
mantissas.

Multiplication

For multiplication, exponents are added and mantissas
are multiplied. The resultant exponent in multipli-
cation is the algebraic sum of the original exponents,
while the resultant mantissa is the product of multi-
plying the original mantissas.

Division

In division, the exponent of the divisior is subtracted
from the exponent of the dividend, and the mantissa of
the dividend is divided by the mantissa of the divisor.
The resultant exponent is the algebraic difference
between the dividend and the divisor exponents. The
resultant mantissa is the result of the algebraic divi-
sion of the dividend mantissa by the divisor mantissa.
In summary, floating-point division causes the sub-
traction of exponents and division of mantissas.

Overflow and Underflow

Floating-point arithmetic operations can result in
overflow or underflow during both normalize and un-
normalize modes.

Overflow occurs if the exponent of a partial or final
result in the AX register exceeds +377g (+25510).

Underflow occurs when the exponent of a partial or
final result in the AX register becomes less than -400g
(-25610)-

b v) Ll),f N
Sle” A4

Overflow or underflow can resultatany of these times:

1. During the formation of the initial estimate of the
result exponent.

2. During a right shift one and addone as a result of
mantissa overflow.

3. During the normalization of a result (normalize
mode). Recall thatnormalization involves shifting
the mantissa left N places and adding N to the ex-
ponent, possibly causing overflow, N being the
number of leading zeros in a positive mantissaor
the 2’s complement of the negative mantissa.

FAD Instruction. Overflow or underflow can occur
during events 2 and 3, above, never during event 1.

FSU Instruction. Overflow or underflow can occur
during events 2 and 3, above, never during event 1.

FMP Instruction. Overflow or underflow can occur
during events 1 and 3, above. Overflowduring event 2
could only occur if both operands were the maximum
negative values (this is illegal and results in unde-
tected errors).

FDV Instruction. Overflow or underflow can occur
during events 1 and 3. Also, overflow can occur during
event 2 if Am >BM and AM/2 < Bm, where Am = the
dividend mantissa and Bm = the divisor mantissa.

AAU OPERATING LOGIC

Before AAU operations can be performed, the ap-
propriate instruction such as load the AAU (FLD) is
sent to the AAU control circuitry, once the AAU is
granted access to memory. This instructionis stored
in the AAU 20-bit instruction register (Figure 12-5).

Core
Memory
Central
Processor
! M Register
|
\
Controller
Selector
A
Auxiliary
Arithmetic
Unit

20-Bit
Instruction Register

20-Bit Buffer
Y

40-Bit Conversion Register
Y

40-Bit Adder

40-Bit AX Register
A

y
40-Bit QX Register

Figure 12-5. AAU Register Operations

)
|
|

NI
\FIA =N IAV VAN
Vil (aEe)

XO-5

Priority

As discussed earlier, all communication with central
processor core memory isperformedthroughthe AAU
when, under the priority interrupt system, itis granted
access to memory. There are two basic exceptions:

1. Once the AAU is given an arithmetic function to
perform, the AAU operates independently of the
central processor. Ifasecondinstructionisgiven
to the AAU before the first instruction is com-
pleted, the AAU prevents the computer program
from- advancing by removing computer priority
through the controller selector.

2. The normal priority arrangement also is inter-
rupted if the AAU receives a floating-point divide
instruction and the dividend in the AX and QX
registers is negative. During the request for
priority, the 2’s complement of the dividend is
formed in the AX and QX registers.

At the elimination of either of these two conditions,
priority is returned to the central processor so that it
may complete its function with respect to the current
operation. Note that, whenpriority is takenaway from
the computer, it is also taken away from the card
punch. However, the AAU can not monopolize priority
to the extent that card punch operations are affected.
Also, a unit of higher priority can override a priority
request from the AAU.

Registers

Once the AAU is granted access to memory, two data
words are brought from memory through the central
processor M register and checked for parity. As shown
in Figure 12-5, each data word first enters a 20-bit
buffer and then the 40-bit conversion register where
the 40-bit double word format of the AAU is formed.
The format of data in this register is pre-determined
by a previous set mode instruction.

The function of the conversion register is similar to
that of the B register in the centralprocessor; it acts
as a data link for words being transferredto the 40-bit
AX register.

The 40 bits from the conversion register enter the 40-
bit adder which performs essentially the same arith-
metic operatidns as the arithmetic unit of the central
processor. Another input to the adder is from either
the 40-bit AX or the QX register. Within the adder,
arithmetic operations are performedwhich, in the case
of floating-point mode calculations, might include
carries from the mantissa portion of a data word into
the exponent portion. In calculations, the AX and QX
registers play the same functional role asthe A and Q
registers in the central processor. Thus, in the
floating-point mode, for example, mantissa bits shifted
out of AX are shifted into QX.

BE-225

After the designated calculations are completed, and
the AAU again gainsaccess to memory, the results are
transferred out of the AAU, through the controller
selector, and stored in memory as programmed.

Subroutines

Subroutines are required initially to create floating-
point words from BCD data or create BCD words from
floating-point format. This conversion fromone form
to another is possible using GE-225 utility routines.

AAU INSTRUCTIONS

Mode Control Instructions

These instructions establish the mode inwhich subse-
quent AAU arithmetic instructions will be executed.
Once a set mode instruction is executed, the AAU will
execute all AAU arithmetic instructions in that mode
until the mode is changedby another set mode instruc-
tion. The execution times given are in addition to
access time of 43 microseconds (usec).

SET UFLPOINT 3200010 Timing: 49.5 usec

Functional Description: SET UNNORMALIZED
FLOATING-POINT MODE. The AAU is setto execute
AAU arithmetic instructions inunnormalized floating-
point mode.

SET NFLPOINT 3100010 Timing: 49.5 usec

Functional Description: SET NORMALIZED FLOAT-
ING-POINT MODE. The AAU is set to execute AAU
arithmetic instructions in normalized floating-point
mode.

SET FIXPOINT 3500010 Timing: 49.5 usec

Functional Description: SET FIXED-POINT MODE.
The AAU is set to execute AAU arithmetic instructions
in double-word fixed-point mode.

Data Transfers Within the AAU

These instructions are similar to certaincentralpro-
cessor data transfer instructions in that they involve
transfers of data between arithmetic registersandare
specified by similar mnemonics. However, the AAU
data transfer instructions are identified by placing the
letter A in the X column (card column 20) of the GAP
coding sheet.

’

XII-6

AAU error conditions are reset when any AAU data
transfer instruction is executed. Execution timesare
given below in microseconds; to these times add 36
usec for accesstime, The AAU mode of operation does
not affect the execution of these instructions.

LAQ A 3600002 Timing: 49.5 usec

Functional Description: LOAD AX FROM QX. The
contents of the QX register replace the contentsof the
AX register. The contents of the QX register are un-
changed.

MAQ A 3100002 Timing: 49.5 usec

Functional Description: MOVE AX TO QX. The con-
tents of the AX register replace the contents of the QX
register. The AX register is reset to zero.

LQA A 3200002 Timing: 49.5 usec

Functional Description: LOAD QX FROM AX. The
contents of the AX register replace the contents of the
QX register. The contents of the AX register are un-
changed.

XAQ A 3500002

Functional Description: EXCHANGE AX ANDQX. The
contents of the AX and QX registers are interchanged.

Data Transfers Between AAU and Memory

For proper execution, instructions causing data trans-
fers between the AAU and memory must specify even
effective memory addresses (Y) greater than 0015.
Execution times are given below in microseconds; to
these times add 72 usec for access time. The AAU
mode of operation does not affect the execution of these
instructions.

FLD Y 3000000 Timing: 72usec

Functional Description: LOAD AUXILIARY ARITH-
METIC UNIT. The contents of memorylocationsY and
Y+1 replace the contents of the AX register. The con-
tents of Y and Y+1 are not changed.

FST Y 3300000 Timing: 72usec

Functional Description: STORE AUXILIARY ARITH-
METIC UNIT. The contentsof the AX register replace
the contents of memory locations YandY+1. The con-
tents of the AX register are not changed.

AAU Arithmetic Instructions

The modified addressinall arithmetic operations must
be even and greater than 15 for proper execution. In
addition to the execution times listed, 99 usec must be
added for access and resynchronization, exceptfor the
FDV with a negative dividend (135 usec). Each arith-
metic instruction is described once for each of the
three operating modes: normalizedfloating-point, un-
normalized floating-point, and double-word fixed-
point.

FAD Y 31YYYYY Timing: Min. 162 usec

Max. 709 usec

Functional Description: NORMALIZED FLOATING-
POINT MODE - ADD. The floating-point number in
memory location Y and Y+1 is added algebraically to
the floating-point number in the AX register. The re-
sult is placed in the AX register in normalized form.
The contents of Y and Y+1 are unchanged.

UNNORMALIZED FLOATING-POINT MODE ‘- ADD.
Execution is the same as above, except that the result
is placed in the AX and QX registers and may or may
not be in normalized form.
"""" The
contents of Y and Y+1 are algehraically added to the
contents of the AX register. The resultis placed in the
AX register as a 38-bit fixed-point number. The con-
tents of Y and Y+1 are not changed.

FMP Y 35YYYYY Timing: Min. 297 usec

Max. 1062 usec

Functional Description: NORMALIZED FLOATING-
POINT MODE - MULTIPLY. The floating-point num-
ber in memory locations Y and Y+1 is algebraically
multiplied by the floating-point number in the QX reg-
ister. The 60-bit product of the two mantissas is
normalized. The most significant half of the nor-
malized product is placed with its exponent in the AX
register; the least significant half is placed in the QX
register (with the exponent less, by 30, than the
floating-point exponent in the AX register). The pre-
vious contents of the AX register are destroyed.

UNNORMALIZED FLOATING-POINT MODE - MUL-
TIPLY. Ezxecution is the same as above except that
the result may or may not be normalized.

DOUBLE-WORD FIXED-POINT MODE - MULTIPLY.
The fixed-point number in memory locations Y and
Y+1 is algebraically multiplied by the fixed-point
number in the QX register, giving a 76-bit product
and 4 identical sign bits. The most significant half of

g L)9
e =/ 4/ 0
il (9

XII-7

the product is placed with 2 sign bits in the AX reg-
ister; the least significant half is placed with 2 sign
bits in the QX register. The previous contents of the
AX register are destroyed.

FDV Y 36YYYYY Timing: Min. 837 usec
Max. 1062 usec

+168.25 if dividend is neg.

Functional Description: NORMALIZED FLOATING-
POINT-MODE - DIVIDE., The floating-point number in
the AX and QX registersisautomatically divided by the
floating-point number in memory locations Y and Y+1.
The normalized quotient is stored in the AX register
and the remainder (which may or may not be nor-
malized) is stored in the QX register. A Divide Check
Error condition will occur if the absolute value of the
mantissa in the AX registerisequal toor greater than
twice the absolute value of the mantissainthe divisor.
If the contents of Y and Y+1 are zero, the division is
invalid and a Divide Check Error condition occurs.

Timing: Min. 814.5 usec
Max. 837.25 usec
+168.25 if dividend is neg.

UNNORMALIZED FLOATING-POINT MODE - DIVIDE,
Execution is the same as above, except that the quo-
tient is stored in the AX register and may or may not
be in normalized form.

Timing: Min. 1017 usec
Max. 1095 usec
+168.25 if dividend is neg.

DOUBLE-WORD FIXED-POINT MODE -DIVIDE. The
contents of the AX and QX registers is divided by the
contents of memory locations Y and Y+1. The quotient
is stored in the AX register and the remainder is
stored inthe QX register. The magnitude of the divisor
in memory locations Y and Y+1 must be greater than
the absolute value of the dividend in the AX register.
If not, a Divide Check Error condition occurs. If the
divisor is zero, the division is invalid and a Divide
Check Error condition occurs.

FSU Y 32YYYYY Timing: Min. 162 usec

Max. 709 usec

register. The result is placed in the AX and QX reg-
isters in normalized form. The contentsof Y and Y+1
are unchanged.

UNNORMALIZED FLOATING-POINT MODE - SUB-
TRACT. Execution is the same as above, except that
the result is placed inthe AX register in unnormalized
form.

DOUBLE-WORD FIXED-POINT MODE - SUBTRACT.
The contents of Y and Y+1 are algebraically subtracted
from the contents of the AX register. The result is
placed in the AX register as a 38-bitfixed-point num-
ber. The contents of Y and Y+1 are unchanged.

AAU Test-and-Branch Instructions

All AAU test-and-branch instructions conform to the
following format:

Operation Operand P

BAR XXX 7

The mnemonic XXX identifies the specific test to be
performed. If the condition tested is true, the com-
puter executes the next sequential instruction. If the
condition tested is false, the next instruction is skipped
and the second sequential instruction is executed.

Before any test (except tests for ready status) can be
correctly made, any previous AAU instruction must
have been completed. This can be assured by testing
the AAU for ready status before testing for specific
conditions. Either the Branchon AAU NotReady (BAR
BAN) or the Branch on AAU Ready (BAR BAR), des-
cribed below, can be used for this preliminary test.

All other AAU instructions are correctly executed
without being precededby a ready test because the AAU
will not accept arithmetic or data transfer instructions
until a previous instruction is completed.

BAR BAN 7 2516720 Word Times: 2

Functional Description: BRANCH ON AAU NOT
READY. The AAU is tested to determine if it is not
ready to accept another instruction.

Functional Description: NORMALIZED FLOATING-
POINT MODE - SUBTRACT. The floating-pointnum-
ber in memory locations Y and Y+1 is subtracted
algebraically from the floating-point number inthe AX

BAR BAR 7 2514720 Word Times: 2

Functional Description: BRANCH ON AAU READY.
The AAU istestedtodetermineifitis ready to receive
another instruction.

XII-8

BAR BPL i 2516721 Word Times: 2

BAR BNE i 2516727 Word Times: 2

Functional Description: BRANCH ON AAU PLUS. The
AX register is tested for a plus sign.

Functional Description: BRANCH ON NO ERROR. The
error indicator is tested for OFF.

Example 1: Normalized floating-point operation with

BAR BMI 7 2514721 Word Times: 2

the AAU.

Functional Description: BRANCH ON AATIMINUS. The
AX register is tested for a minus sign.

BAR BZE 7 2514722 Word Times: 2

Functional Description: BRANCHON AAU ZERO. The
AX register is tested for all zero content.

BAR BNZ 7 2516722 Word Times: 2

Functional Description: BRANCHON AAU NOT ZERO.
The AX register is tested for non-zero content.

BAR BOV 7 2514723 Word Times: 2

Funcuonal Description; BRANCH ON OVEKFLOW.
The AAU is tested for overflow indicator ON.

BAR BNO 7 2516723 Word Times: 2

Functional Description: BRANCH ON NOOVERFLOW.
The AAU- is tested for overflow indicator OFF.

BAR BUF 7 2514724 Word Times: 2

Functional Description: BRANCH ON UNDERFLOW.
The AAU is tested for underflow indicator ON.

BAR BNU 7 2516724 Word Times: 2

Functional Description: BRANCH ON NO UNDER-
FLOW. The AAU is tested for underflow indicator

OFF.

BAR BER 7 2514727 Word Times: 2

Functional Description: BRANCH ON ERROR. The
error indicator is tested for ON.

GAP Coding:
Symbel Opr Opsrand X REMARKS |

1R D D RN R D D \
! SETINFLPOIN.T
* F LD NUM
: . A
4 FMPANUM?2
. FST|TEMP
‘ yay
’ v\]
. 1/ /
Example 2: Normalized floating-point with simul-
taneous central processor and AAU operations.
GAP Coding:

Symbel Ope x REMARKS /

PRI I3 IR) 3 08 K0 £ 00 K0 0 3 6 6 D K XX 1) 7
‘18T ART SE.TINFLPOINT SIMULTANEQUS OPERATION I
. [0 OF CPU AND AAU |
s L D A|ZERLO \
. . 8 T A|2, \
[rP T TLD[NU M \
. FSU/NUM?Z e]
- £.8 UiN U M3, i
. FST|TEMP stmhwmx_/
. R AR'RPTY d w,
" BR U . 2 J4
" A DO |\
" IN X[2 \
" B X L4 2 \
1 BRU|RP T 1
" FLDINUMS }
s A Q A 7
v XAQ A| ZERO QX REGISTER /
" FDV|NUMSE N
" BAR[BAN, 1 i
» BRO[* - 1, 1
" B AR[BOV [\
" BRUIOVRF LO \
B F s T|TEMP A)
n ETAlCOUNT]
L] V4

Example 3: Test AAU results for minus and show
delay necessary.

GAP Coding:
Opr. Operand X \
s [o |10 |z[|aJ:4J-sI|e"71|aJ|o 20 | 31]
+ |F.LD|IN UM, , (
: |FAD|ITEMP . \
slbuplsav e \
+|IpAaD|TWO ,),
s|Ds.Tis A v.E , /
¢« |[BARBA N, L)
7 BRU* -1 |
s|BAR[BM 1, , 7]
s[BRU|E R R | , (
wl|F S T/TEMP . \

XII-9

omments: Note the use of the FST TEMP (line 8,
Example 2), which is a ‘dummy’ storetoprovide a de-
lay until the AAU completes the preceding floating-
point instruction before testing for a plus condition.
The FST at this point serves no other function than to
delay before testing.

In line 17, Example 2, anXAQ A instructionis used to
zero the QX register before executing an FDV. If the
QX register is not zeroed before division, results may
be inaccurate.

XII-10

SECTION Xl

PROGRAMMING CONVENTIONS

The efficiency of any computer installation depends
to a great extent upon proper organization of pro-
gramming procedures and techniques. This section
contains suggestions and lists items that should be
considered in establishing installation procedures.

MEMORY LAYOUTS

Many installations have (as standard procedure) allo-
cation of memory areas which all programmers must
vbserve. A few advantages of such a system are:

1. Standardization of input and output, sub-
routine, constant, and main program areas.

2. Programmer familiarization with the oper-
ating program is increased.

3. Changes and modifications are more easily
and correctly made.

4. Debugging is accomplished more readily.

Because operating conditions and requirements vary
from installation to installation, the memory layout
used may be unique and suitable only for that parti-

cular installation. A typical layout is shownin Figure
13-1.

INPUT/OUTPUT DOCUMENTATION

Proper documentation and layout of input and output
data is the responsibility of the programmer; in
addition, good documentation is a valuable tool for the
programmer, because it enables the programmer to
modify or change data with a minimum of effort,
debugging is made easier and program operation is
possible in less time. Typical forms available are
shown in Figures 13-2 through 13-7.

Decimal

0000
to
0003

0004
to
0127

0128
to
0169

0170
to
0255
0256
to
0283
0284

to
0383

0384
to
0401

0402
to
0511

0512
to
0539

0540
to
0639

0640
to
0719

0720
to
0839

0840
to
1999

2000
to
8191

Location

Description
Index Registers

Optional
Index Registers

Reserved for
Automatic
Program Interrupt

Miscellaneous
Constants nr
Working Storage

Card Read-In
Area

Miscellaneous
Constants or
Working Storage

Card Read-In
Area

Miscellaneous
Constants or
Working Storage

Card
Punch
Area

Reserved for
Automatic
Program Interrupt

Printout and
Format Areas

Magnetic Tape
Input and
Output Areas

Subroutines

Main
Program

Figure 13-1.

Typical Memory Allocation

BlE-225

XIII-1

GE 225
MAGNETIC TAPE RECORD LAYOUT

CK - 62

PROGRAMMER

DATE

RUN

BCD
BIN

MODE:

OF

PAGE

SPEC BIN

=)
—
- - - - - - - - >=--"+-+~++---+-+--:---+-—-+---E - - |- - = =
©
—
[
—
- +—- - - - - - -~} -} -t - ‘+- -+ +—-+k+k+4FERF~RPBPBRRRP
©
—
— - - - - - -~ — M~ }- ~ /- - -} -}~ I~ } -~} }I - -t~ - K~~~ =~}
w
—
— - - — — +— - - - - - -~ } — I - — — }— }= b~ P - = = = =
<
—
)
—
L - - +— — — - -~ ~ -~~~} ~ M~} -9+~~~ 4+~®kM kBB —
o~
—
-+~ - - -+~~~ ++++H+tKk~kKkKFR~~EBERHHRBBSRRHPRHRRRRRPFRBR
—
n |~
zZz -+ +~~- -~~~ —-—-+—-+~—+—+~—+<-+~x<~~~K—-4+—HH~+KM+MPMPPMERPMRPF B
2o
=
—
n -~ +<<+~-<++++~<—HH—H=~H+F—< KPR PFEFF}B9BF
gl
L — be_ = = = = - - - +~ — — + — —_ _ - - = - = — =
2 — — —
2| w
~
- - - -+~~~ M+~~~ PF PR
©
- - - - -~~~ +~<~+<+++4+E A+ >R BB B b - -} -
e}
-~ - -+~ +<-~s+s+++r+-r+<K++E+H~EFRERAHRAAREKRRRPFRE
«
— - - -+ +-+~ -+~ +~+ 4+~~~ +4++++FFPF PR
)
A U
™
-
- - - -+ +<+=++>++>++—r+—r+—r—+—H++—cr+H+++FH~FFHPFBRF
o
o]
DO.\. o —| @ o <« w o = o o| o = N e « w ©o| - o] o Of =l ~f o * W} ©o -] ©

Figure 13-2. Magnetic Tape Record Layout

XIII-2

¢-IIIX

=)

u\

(il

NS

~/
N
&1

RUN:

FILE:

RECORD TYPE:

GENERALED ELECTRIC DATE:
Coriputer D :partment

PROGRAMMER:

GE 225 MAGNETIC TAPE RECORD LAYOUT SHEET race.

CK 52 (2M 6-61)

T 500 O 0 O 0 A A S
T [0 T A O O O O A
T [O 0 A S
T O O 0 O O e A
TTT 50 0 O O 0 O A O A
T 50 O O
L [T T T 1 T 1 T T 1T T T T T
T [O A O O
T [P O A

Figure 13-3. Magnetic Tape Record Layout Sheet

\

N

663

)

(b

5

y-1UIX

GE 225
CK 87
MEMORY LAYOUT .
RUN © DATE
SYSTEM PROGRAMMER PAGE OF
10 20 30 40 50 50 70 a0 90
1T 11 T T UL T T T T T L T 11 T 17T T 11 LI
0
I I 11 1114 Ll I I 1 I I
T 1 T 1 1 T T LI LI L LI T 1 T 1T UL I I
100
I 11| 111 L1 11 - [- L1 T | | I
T 11 1T LANE B L T UL LR LN A LI N T
200
[|| Ll I I | I I I - I L1
R B | T 1 LI B 11 L B L L LI 11
300
[T . | | Lyl O 11 1 I | I [
LI 1 L 1 LRI T T T 11 L 1
400
I I | I I 11 I T I I I T N Y | L1 [
T T LI I B I R I | UL T 1 T 11 T 1 T 1 I I B
500
I T I I - | I I I I T I I
11 I LI I 1 L T 11 B T | B T 11
600
L1 1 | I I 11 11 I | I I | L1 14 |
11 LI I L LI S R I A O B L | I L L B 11
700
I I I I | 111 I | I T S T I L1 11
[N N 11 11 T L LI T LI A LI B LI
800
| [| bl I I 11 O T I L]
LI S N O O A N L I 11 I I L I 1T I I I
900
L1 114 I I [I T O I I I I L1 11 L1 4! LoLoid

EACH BLOCK REPRESENTS 10 WORDS OF STORAGE

Figure 13-4. Memory Layout Sheet

G-IIIX

(ol
8]
NS
&

GE 22t MULTIPLE CARD LAYOUT CK 6t
RUN BINARY CODEL DECIMAL DATA PROGRAMMER
SYSTEM DATE
T T T T T I T f I I T T T T T T T I f T T T T T T
| ') | | | i ! | I | | i 1 | t } 1 ! I | | I | ! }
| 1 | | | | | ! | | | | | | | [| 1 1 1 | | | | | |
! | 1 | | t | | l | | | | 1 | | | t | | | | | ! I I
| | | | | I 1 | 1 | | I ! i | | | I | | | | | | 1 |
| 1 I | | | I | | i | I | [| | | ' I | 1 i ! | | 1
| | i | 1 | | | t 1 | | t ! | | I | | | | | 1 | | |
1 | | | | | t t | f | | I | ! | I | | | I
123 1456 789 (101112113 14 15)16 17 18119 20 21|22 23 24125 26 27128 29 30{31 32 33134 35 16 17 38 39140 41 42|43 44 45|46 47 48149 50 51(52 53 54155 56 57158 59 80161 62 63164 65 6667 68 69170 71 72173 74 75/76 77 781 79 80
i | ! | | I | | ! t [| [! 1 [[[l | 1 [[I [[1
| | i | | | | ! | | | | 1 i | I | ! | | ! I | | | |
| ! b 1 | | | | | 1 § ! 1 | I | | | | 1 I | | | | I
I | | | | I | | ! | 1 ! | | | | | | | | | | | ! | I
! | | | | | ! | | t |) | t 1 1 | | I | | | | | i 1
! l I ! t l 1 | | | | | t | I | { | ! } | I t | | |
| | | 1 | { I { | | | | l 1 | | 1 1 | | | | | | | i
123 : 456 : 789 Im 1 IZIIS 14 15:15 1 m:xo 20 zn{zz 23 ulzs 26 27:23 29 30:31 32 aa:u 35 ml 37385 9}140 41 42:43 44 45:46 47 43149 50 51:52 53 54{55 56 5'1"53 59 60:61 62 63:64 65 se:s: 68 59170 7 '72:73 4 75:% 7 7aI 9 80
| | | t | | [1 | ' | ! ! | | | 1 ! | 1 ! 1 1 ! l !
| i | | | | t | | 1 | | | 1 | | | i | | ! I l | { |
| | l | 1 [| t | | | ! 1 | | | I | | | | | t i 1 |
! | 1 t | | l | l | ! | i | | | ! | | I | | | i i |
{ | | 1 | | | l l | 1 | ! 1 | | ! t | | | | | b | i
| | | | | | 1 i { | i ' | | i | 1 1 1 | l | | | 1 |
| | { I | ! | I | { 1 | | | | 1 I | | | i 1 | | | |
123 :4 56 j' 789 :10 11 12:13 14 ISEle 17 13:19 20 21:22 23 zoizs 26 z':!zs 29 30:31 32 33!34 35 m 3738 ;;:40 4 42{43 4 45146 47 «;'49 50 51 '52 53 54'55 56 571)53 59 eo'sl 62 63|64 6566 !ov 68 69'70 n '72!73 4 15!76 i 75! 79 80
t + + + + + } +
| | | | i | | | | | | 1 ! I | l | I i l l | l | | |
| I | I | | | t | | | 1 b 1 I | | | | | | | t | | !
| | ! | | | 1 | | [| | i | | | ! ! I | | 1 | | | |
1 | | | | | I 1 | ! | | | ! | | 1 | I | | | { { | |
! | 1 | | l | ! i ! | ! ! I 1 | | | | | | | | t I |
! | | | I | | 1 | | | i | | f t) | | | | | | 1 ! |
| I I | [} | | | | 1 1 i ! | 1 | | | | 1 1 [} | i | 1
123 laselzse lion 12'13 14 |5|1s 171819 20 21’22 23 za'zs 26 z'l'n 29 30/31 32 33l34 35 :s'a'l 38 19‘40 a 42'43 “ 45'16 “ 40'49 5051 '52 53 54'55 56 57 l5&; 59 60/61 62 63164 65 ae'w 68 sn"lo 7112 '73 [N 75'76 +7 78 79 80
T T 1 T T 1 T T T
I 1 | I | § I | I | I ! | l | l I l | | | | l l | !
! 1 ! 1 1 1 | ! | | | ! | ! | | 1 | | | I | | | |
| | i | I 1 | | | 1 | | ! ! | | I | | |] | | | !
| t 1 | ! | ! | ! | | | | ! | | 1 l | ! I | | | 1
! l | | | | | t | | | t i I | | | i 1 I | | | | |
| | | t 1 | i] | { | I | 1 | | 1 | | ! | | I | |
i i |] I [i | i | t i 1 | | i | | | I | ! | |
123 (456 17809 110111213 14 15116 17 18]19 20 21122 23 24125 26 2728 20 30131 32 33134 35 36 37 38 39140 41 42143 44 45146 47 48149 50 51152 53 54155 56 57158 59 6016162 63 64 65 66167 68 69170 71 72173 74 75176 "7 781 79 80O
| | | | | I [}] 1 t 1 1 ! | | | [l 1 | [| |]
| | ! | | | | | | | | ! ! | | I | | | | 1 ! | | !
| l | | | | | | t | 1 { I ! l | | | ! { | ! 1 | I
				I	t				I I		!							
			I		I						I		I	1				
	! ! I		!			i	!						j					
! | | I | { | | | | l 1 I | | | | 1 | t | | | | |
123 :4 56 : 789 !m 11 n!u 1415!16 17 m:m 20 21!22 23 24!35 26 zv!zs 2 30!31 3z sa:u 35 36 37 38 39:40 41 42!43 4 45{4047 45}49 50 51 sz 53 sa'ss 56 51:59 59 80:61 62 es!sq 65 ss}ev 68 ss!vo 772 !13 b2} 15!76 "8, L2050
+ + + + + + + b
| ! 1 | | I 1 | I I | I t | | I i | | | | i | | |
WORD ! | | | | | | | | ! | | 1 | | | i I 1 | I i 1 | |
NUMBER | © | 1 | 2 | 3 | 4 t 5 | 6 | 7 1 8 I 9 I 10 |t n 12 0013) 14 boas Loae b1 11 boae o201zt f 22 |23 1 24 |25 1 26
1 ! { I i J 1 1 -l i i | 1 1 1 | 1 1 L | I { Il | 1

Figure 13-5. BCD Multiple Card Layout Sheet

9-IIX

MEMORY ALLOCATION

GI 225

LAYOUT SHEET

INPUT - - OUTPUT CK 68
RUN ___ e ___ PROGRAMMER DATE PAGE OF
WORD MEMORY CARD BIT_POSITIONS DESCRIPTION WORD MEMORY CARD BIT POSITIONS DESCRIPTION
NBR LOCATION COL {0 2 -7 18-13 OF DATA NBR LOCATION COL Q0 - 12 -7 18- 13]14-19; Of DATA

Y 0
1 1
2 2
3 3 —
4 o 4
5] 5 L
6 1 6
7 - 1
8 8
9 9
0 0
1 1
2 2
3 3
4 4
5 5 — -
6 6
7 o 1 . R
8 S J I S - 8 L RV S S [R
9 9
0 . 1 0 I R S o o
1 R 1 _ - S D
2 o 2 o - ~
3 R 3 S R R - I . .
4 I . 4 ~ R _ “
5 5 . N ~ o
[L 6 o R _ ~
7 . [. = R
8 8 _ o I R ~
9 9
0 o N o 0 1 1o _ R
1 _ o 1 _ _ S S
2 e 2 ~ S o B
3 . i 3 _ e
4 4 . 1 IS S - _
S . 5 [o _ i
6 L . 6
7 i . — T -

L8 1 8 N o o
9 . 9 e o § ~ _ o

Figure 13-6. Memory Allocation Layout Sheet

L-10X

GE 224 cx 81
LAYOUT C1M -~ 80 5iUMN CARD
NUT o0 puT
R
x
o @0 o o © ¢ 0 0 ¢ 0 0 0 0 O H 0O 0 0 0 0 0 9 0 0 0 0 0 0 0 > 0 0 0 : b O 9" 0 6 0 0 0 0 0 C 0 0 0 0 0 0 06 0 0 0 O 9 0D 0O O 3 0 0 ¢ 00 O & 0 0 0 0 o
L2 3 ® 10 1112 13 1415 16 17 1819 20 21 22 23 24 25 25 27 28 20 30 31 32 33 34 35 36 37 8 5 40 1. 42 43 44 45 46 47 A8 49 50 51 52 53 54 55 56 57 S8 59 60 61 62 63 64 65 66 67 €5 69 10 71 72 3 74 5 76 71 18 19 0
1 v 1 L L L T T T S T T T S S T S S T S S S N R S S S S S S S S S S S S S SRR
2 T2 2 2 202 2.2 2 1 2 2 2 2 22 2 2 2 2 2 2z 2 2z 2 2 2 2 ? 2 ® %z % 4+ t 2 ¢ 2 2 2 %z 2 2z 2 2 i 2 2 2 2 32 2 2 2z 2 2 2 2 % 2z 2 2 2 2 2 2 2 2z 2 2z 2 2 2 2
3
.
5
5
7
8 LI 5 8 3 8 ® 8 & 8 % 8 8 8 B B 8 8 5 8 & 8 B B 8 8 B & b 8 8 & 4 v 8 % 8 8 8 & 8 8 8 £ & 8 8 8 8 8 8 8 8 8 8 8 39 8 8§ § 5 8 8 4 6 8 8 B 8 8 8 § &
s EICIY » 9 9 9 9 ® 5§ 9 9 8 9 0 9 9 9 9 9 9 3 9 9 % T 9 9V y 8 % B 9 ¥ O 409 9 9 9 9 3 9 9 3 9 8 9 9 8 9 8 9 9 9 9 9 3 9 6 9 9 9 9 4 5 9 9 w9 Yy g 9 @
2 3 o ® 10 1L 12 13 14 1S 16 37 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 10 40 92 4% 44 43 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 €3 64 65 66 67 48 69 70 11 72 73 T4 15 76 17 18 1% 80
TITLE _ - - . - —
—— — RN [- e S—
CARD NUMBEK __ sy e e - e [R - —
DATE o o L REMTRS

Figure

13-7. 80-Column

Card Layout Form

USE OF SYMBOLS

The use of symbolic memory addresses rather than
absolute addresses is of utmost importance to the
programmer because it relieves him of having to keep
track of the location of each constant or instruction
in memory. By shifting the burden of memory location
o the assembly program, the programmer can code
with less errors and thus produce an operating pro-

for general applicability and must be self-specializing
to the particular problem at hand.

The calling sequence which supplies the information
(parameters and linkage) needéd by the subroutine can
vary in size and form. An example of a simple sub-
routine is illustrated in Figure 13-90.

gram more quickly. In addition, the symbol used can Symbol Opr Operand X
convey information as to the action taking place within 1[afsfalefofeforofta]rajrafrafuefrrjuefrefzo
the program. Figure 13-8illustrates typical symbols. L) D LDINUM . ., . |
l . |\IDADINUM 2 , . |
S.PBIMP Y T E N 1
Symbol Opr Operand X ‘ ‘ D.S TIR'ES UL T
3 ENIERITS I KRN AT KR AR KD A0 KO A KON D X — Cr .
T_. W 0. IpECl2. o,)) Y) 1 L
T E N D.E.Cl1.0. . . ., . | - ‘)) o
C A RDINIBS.S|2.7 ; e M P YTEN/S.L.D|1. . ’
s . TORE |DDC}{O . . . , ., | . S TA|TEMP. .
C D E OF ALF¥|Z27Z 2. . . ., s L D|2 o
el . ., . ., |IDADITEMP,
. R B R U|[1, e 1
Figure 13-8. Typical Symbolic Addresses T EM P D.D,C| 0. L

SUBROUTINE USAGE

The use of subroutines can result in saving of both
programming and machine running time. Subroutines
can control all input and output operations and many
internal operations of aprogram and use less memory.
Normally, a subroutine is a series of instructions
which perform a repetitive function for the main pro-
gram.

The use of subroutines enables the programmer to
employ the ‘building block principle’ in the con-
struction of the program. All frequently-used data
processing functions at an installation canbe prepared
in subroutine form. It is then only necessary for the
programmer to use these routines to construct a
major portion of the main program with less effort
and time than would otherwise be necessary.

The ability to jump to a subroutine and return to the
main program requires the retention of information
for the return. This concept of informing the sub-
routine how to get back is termed ‘linkage’. In the
GE-225, the SPB command provides the ‘link’ for
returning control to the main program after the sub-
routine function is performed.

In addition to linkage, it is also necessary to specify
the parameters which define the problem to the sub-
routine. Subroutines are usually written in a form

Figure 13-9. Representative Subroutine

This type of subroutine requires no parameters or
elaborate calling sequence. The data needed is con-
tained in the A and Q registers before entry and the
results from the routine are in the A and Q registers
upon exit.

A subroutine requiring a set of parameters in the
calling sequence is shown in Figure 13-10.

Opr Opeuﬁd X
HERED Iz[lsl'4]l5]lsil7ilells
SsPBISTRI P . |1
1.2 8, |

b

31

~
3

L i L '

R ROR . .
‘ MT #1 . \
7 e)

I N i

)

>tl.j QW (=

® 9 2 W N
© W |O oo
=0 e |E (e

Figure 13-10. Subroutine Requiring a Calling
Sequence

Gle-229

XII1-8

00620 ORG 0LOO

REM

REM

REM

REM

REM

REM

REM

REM
00620 0020001 *CRDIN LDA 1
00621 2700636 STO *RD#1
00622 2700663 STO *RD#2
00623 2700650 STO *EOF
00624 2700656 STO *MOVE
00625 010064k ADD *SYCON
00626 030064k STA *SYCON
00627 0020002 LDA 2
00630 0300657 STA *STORE
00631 0000707 LDA *ENCON

BCD CARD READ SUBROUTINE
CALLING SEQUENCE
A SPB * CRDIN 1

A1l NEC ~AADN TNDHT ADEA
AT ULV UANRU 1NV Wi ARCA

A+2 DEC WORKING STORAGE
A+3 ALF PROGRAM EOF
A+L EOF RETURN

A+5 NORMAL RETURN

CARD INPUT AREA

RCD #1

RCD #2

EOF LOCATION

MOVE LOCATION

SYNC CONSTANT LOCATION

WORKING STORAGE AREA
ENTRY CONSTANT

Figure 13-11. Subroutine Calling Sequence

Since the parameters necessary for a subroutine can
vary over a wide range, the exits from a routine can
vary, depending upon the condition encountered within
the routine. In the example above, an error in the
roullne results in the return to line 5 on the coding
sheet. Tn programming, this can be accomplished

within the routine by an instrucuon consisting of
BRU 4 1

A subroutine calling sequence and the use of the
parameters within the sequence isillustratedin Figure
13-11.

The exits from the routine are handledinthis manner.

GAP Coding:

Opr Operand X ’
HENED |z[|a]|4]151|sllvl|e]ia o | 31

~

B RU|4, L, 1 |[EOF Return
B RUI[S, e 1 {(Normal Return

In summary, the use of subroutines makes possible
considerable saving of memory space and program-
ming time at the very slight expense of the space and
complexity of linkages and calling sequences.

o

TYPEWRITER UTILIZATION

The GE-225 console typewriter can he used by the
programmer to type messages concerning conditions
within a program and also to instruct the computer
operator 4s to program needs. Using the typewriter
for operation control can help reduce human errors.

Typical messages on program conditions are:

1. O ERRORS TAPE 3
O ERRORS TAPE 4
END OF PASS O

2. END OF JOB
3. EOF P 1 T 2002 - OO4 PREMATURE START

002 - 00k PREMATURE START
003 - 010 PREMATURE START

Typewriter messages concerning the operator will be
similar to these:
1. JOB DONE. TAPE 7 IS NEW MONITOR TAPE, SAVE 6 AND 7

TAPE 7 XONT READ

2. REMOV TAPE 2
MOUNT TAPE 5
TOGGLE SWITCH 18

(RS
IND)
Gt

HE-

XIII-9

Since the typewriter is a relatively slow output device,
megsages and operator instructions should be asbrief
as possible.

DEBUGGING TECHNIQUES

Debugging can be extremely expensive and wasteful of
time unless done properly. A few simple and basic
rules can do much to reduce the expense involved in
getting an operational program. Because debugging
methods vary with the individual and the situation,
the following is offered merely as a guide.

Desk Checking

When the symbolic program is returned from key
punching, a listing is usually sent with the card deck.
Check this listing for discrepancies due to misinter-
pretation by the key punch operator and any possible
key punch machine errors. In scanning the symbolic
program listing, watch for mistakes in the operation
codes and for punches in card columns 7 and 11.
During GAP assembly any card containing punches in
columns 7 and 11 will be rejected. Correct any errors
found before proceeding to the GAP assembly.

Gorrecting Errors Detected By Gap

After the symbolic program has been assembled by
GAP and returned, correct the errors detected and
listed by the General Assembly Program. If there
were numerous errors listed, make the corrections
to the symbolic program deck and reassemble. If
relatively few errors were detected, make these cor-
rections in the symbolic program deck without re-
assembling but by punching octal correction cards to
placs with the GAP binary program deck.

Flow Chart Utilization

A flow chart is a valuable debuggingaidin that it pro-
vides for easier detection of logic errors and can be
used by the programmer to check off debugged paths

within the program. Because this provides the pro-
grammer with an indication of what porticns are
completed, debugging time and check-out time can be
reduced.

During debugging, if the programmer uses valid input
data and predetermined answers at various program
check-points, he can use flow charts as an aid in
error location or bracketing, thereby reducing de-
bugging time and machine time requirements.

Memory Dumps

During debugging, memory dumps are essential. Sev-
eral types of dumps are available but the most fre-
quently used are octal dumps.

The quickest dump of memory is obtained by pressing
the memory dump button on the Printer Controller.
This automatically produces an octal dump (Figure
13-12), starting at memory location 0000 and continues
until the manual clear button on the printer controller
is depressed. The printer does not stop automatically
when the entire memory has been dumped, but con-
tinues looping through memory until the clear bhutton
is pressed.

The octal dump that is most frequently used provides
the octal memory location for each eight (8) word line
of print (column 1 of Figure 13-13). If the words for
a line of print are identical to those of the last line
printed, the line is skipped, This saves the number
of lines printed and machine time required for dump-
ing, This routine is a program feature and thus must
be either in memory or read in from cards or tape,

Memory can also be dumped on magnetic tape. Nor-
mally, this type of dump is intended for later use by
rerun or recovery routines and, in the case of long
running programs, should be done periodically. Rou-
tines are then available to list these tapes via the
high-speed printer.

2500201 2500004 2516006 2600006
2514002 2601277 2504522 2700031
0100200 2514003 2504032 0300200
2514002 2600002 2514006 2600036
0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000

Figure 13-12. Printer Controller Octal Memory Dump

2514003 0001340 0000002 2600002

0000200 2700023 2700015 2510015

2504002 0300001 0020201 0321277

1420001 0437732 2600022 0220201

2600002 0000000 0000000 0000000

0000000 2001777 0000000 0000000
At . o9)ole

p
n

0
I
-
CE!

(¢

XMI-10

October 1963

Octal

Location
. 0000000 0000000 2600004 0000071 0000000 0000000 000000 04002000060

V000U Z6uUUUU4 VD0D27/5 0000010 0000003 2500201 2500004 2516006 2600006 0402 00 003021004R 6 a4
00010 0000200 27p0015 2700024 5 5 2 L3
00020 2504002 0300001 1500001 0020201 0320050 0100200 2514003 2504032 0-2H016801221 0Q820R-30Q-
00030 0300200 1428003 0437775 2650023 6228241 2531404z 2600004 2600037 n20K0it [.gCB21R=-2 04 §__
00040 2516120 2600040 1300040 2500120 0300000 0101000 2600046 0000000 R/+ 0-H0-01+H00880 00000
00050 2504002 2500011 25146088 £00050 2000260 0300066 25564802 2500011 G=2G09R 1 0002 HWOWQ-2009
00060 2514001 2600056 2514002 2600071 0300067 0720075 0000000 0000000 R-1 0 R-2 0ZHOX 00080000
00070 2600050 072007 00204 01
00100 1740206 1760207 0020001 0300175 0020002 2000174 0300176 0620261 %26127201H1120201%KH11S2/
00110 0000256 0320210 14200031 0437735 2600111 0640261 1440010 0660254 02. .28KplL 19U2/Mp8W2e
80120 1765205 0725132 0720262 §720140 0060000 02600ip 2516002 2600134 120 1 2S5 1-600F08R 2 1
00130 1460001 2600123 .1720177. 2600275 . 1460010 0720140 0720262 2600123 001 1C ¢ 2(008 1- 2S5 4C
00140 1760200 0000200 2000174 0200176 2514001 2620001 0720262 0600204 12002001%+11R-1501 2S 24
00159 0620205 0640206 0660257 1006202 2620003 J060060 2531022 2500255 S25126W276225035800R8802

Figure 13-13. Memory Dump Printout
Showing Octal and BCD Representation

Memory dumps when properly utilized are very in-
formative and very efficient since only a small amount
of computing time is used when dumping through the
high-speed printer. The advantages of a memory
dump are:

a. It gives the results of any program modifi-
cation that may have been done.

b. Programmer can check memory to see that
information is correct and in the proper
locations.

c. It gives temporary or final results in key
memory locations up to the time memory
was dumped.

d. It shows input or test data being used as a
program is run.

Memory dumps via the typewriter or card punch con-
sume computer time and should be used only when a
high-speed printer is not available.

Memory dumps should be used frequently during
debugging. However, if they prove insufficient, then
tracing may provide the solution.

TRACING

The TRACE routine can be used when other techniques
have failed. However, at first, trace only the portions
of the program that are known or suspectedto contain
bugs. If it then becomes necessary, trace as much of
the program as required. Tracing canbe an extremely
powerful debugging tool but often its use is abused.
Tracing is time-consuming and thusis expensive when
used to excess.

Options are available with most trace routines that
may supply the desired information without tracing
each program instruction.

Typical options are:

1. Snapshot Option

This type lists index registers 0, 1, 2, and
3, and registers P, I, A, andQ before a BRU,
SPB, or SEL instruction is executed.

2. Single Address Option

This type lists the same registers as the
SNAPDHO L opuon. oniy when 4 Speciiic
address is referenced.

3. Normal Option

The same registers listed in the other types
are printed before each instruction is exe-
cuted.

Tracing output is normally through the high-speed
printer.

Loaders

When the program deck from GAP is in binary form,
a binary loader deck is used to read the GAP program
deck into the proper memory locations.

During debugging, it is best to use a binary loader
with octal correction cards. This type of loader will
read into memory the binary deck and then read the
octal corrections into the specified memory words.
Thus, errors can be corrected without repeated re~
assembly of the symbolic deck and, when the program
is completely debugged, a corrected symbolic deck
can be produced in a single new GAP assembly. Nor-
mally a loader, such as the Lower Memory Binary
Loader for Binary Deck with Octal Correction Cards,

li=ls o 7/ 7/
IS Giad)

XIII-11

00230 zedcubl \

]
HOZBKS KT ENRNNANSEINANNINDBUBRTANANHLQHNHERVSANSINDUBATIRARNNOUERTAANNIRAUEETIIAN
1

[RRERERl AR R AR AR RN RRRR R
22222202222022122222212222222211

1oslloe
234581
(RRRRAR|

33333330333323232333233233333223333333323333333333333333232333333323333333333331
AR A0 000040044 0080040444444440044004444443404444004004440400100 44040044414
§55855555558555555555555555555553§
56666666666 Mo MoMec6666666666666666666666666666666656666666666666666666566666666¢6
TIITT110 0000000000 000001 1111111111111 111111111111 11111111111117111111
FEEOB SRS USROS 0B 0800880080080 00800 80080080 BsB08BE0BNBB00BRRBsBRBBIBRBLYE

£9900990898 898088000989 80998899999909939999999980998599089599999909998599999989998348
1234587 8AMURNUBSHIRBINNBNSRTAIRNNRIUIRTANGHQOUEBTUANIDNUSNIRNNNHROKENOBANTIRAKERTIRAN

For use with a binary loader containing

an octal correction subroutine to change

a specific memory location.

Figure 13-14. Octal Correction Card

CD225B1.3, is used. To illustrate loader and cor- or correction to operating programs be made quickly
rection card usage, the deck set-up using octal and correctly. Without adequate documentation,
corrections for Routine CD225B1.3 is shown: changes and corrections may become difficult to ac-

complish. Since each computer installation has dif-
ferent characteristics, program documentation can
vary from site to site. However,a basic pattern can
be used by each system.

rogram
Trar’(mggfer Card

Octal
Corcrections

Run Book
Loader

Transfer Card

A RUN BOOK should exist for every program run
within a system and should contain documentation so
complete that modifications can be made with minimum
effort. Also, if trouble develops, the source can be

Binary
Deck

4 readily found. A typical run book would contain the
following:
The octal corrections are punched as follows: One A. Run Number and Title.
card is punched for each change tobe made. Columns
5 through 9 contain the octal address and columns 12 B. Name of Programmer, Date Completed, and Date
through 18 contain the octal contents required. Figure of Last Modification.

13-14 shows a sample octal correction card.
C. A Concise Description of what the run is to

When the program is considered debugged, the cor- accomplish.
rections should be made to the source deck and the
program reassembled. A final checkout should now D. A Write-up containing all internal and external
be made with the new object deck. controls pertinent to the program, including:

1. A completed Operator Instruction or Run
PROGRAM DOCUMENTATION Form that contains,

a. Average run time andprocedure to follow

Accurate, up-to-date program documentation can if established time limit is exceeded.
produce considerable savings in programming and
operator effort, as well as computer time. Efficient b. Console switch settings and brief de-
operation of a computer system requires thatchanges scription of each.

AT T
o Sy

Cic

4

~ ;
L e
[} S S N

LY

XIII-12

c. Error and special procedure loops with
brief explanation of each.

d. Tape controller and input and output tape
handler numbers.

e. Identification and disposition of* tapes.

fad

Rerun and restart procedure.

(]

All peripheral device set-ups and plug
designation.

Completed description and Layout Forms for
all input and output.

Memory Allocation Layout
a. Mark input and output areas
b. Program and subroutine areas

c¢. Working storage areas identifying each
location used

d. If overlays are used, identify areas in
which it occurs.

b

Run Diagram and Flow Chart

An up-to-date run diagram and an accurate flow
chart should be in the Run Book. GAP coding
reference points should be marked or identified
on the [low chart. This provides references
between the operating program and the flow chart
providing for easier program corrections.

If the high-speed printer is used during the run,
a sample of the output can be extremely useful.
The samples should be marked with the runnum-
ber.

GAP Listing

The GAP program listing can be included in the
run book. If the GAP listing is in a separate
binder, indicate the binder number for quick
location of the program. Any corrections or
modifications to the listing should be entered in
red and initialled and dated if the program is not
to be reassembled at this time.

XIII-13

APPENDICES

REPRESENTATION OF GE-225 CHARACTERS

OCTAL LIST OF GE-225 INSTRUCTIONS

ALPHABETIC LIST OF GE-225 INSTRUCTIONS

APPENDIX

REPRESENTATION OF GE-225 CHARACTERS

HIGH CONSOLE HOLLERITH BCD
CHARACTER SPEED TYPEWRITER PAPER TAPE CODE BCD MAGNETIC
PRINTER CHARACTER CHARACTER (PUNCH MEMORY TAPE
SYMBOLS OR ACTION (8 CHANNEL) IN ROWS) (OCTAL)** (OCTAL)

0 0 0 Space 0 00 12
1 1 1 1 1 01 u1
2 2 2 2 2 02 02
3 3 3 3 3 03 03
4 4 4 4 4 04 04
5 5 5 5 5 05 05
6 8 6 6 6 06 06
7 7 7 7 7 07 07
8 8 8 8 8 10 10
9 9 9 9 9 11 11
A A A / 12-1 21 61
B B B s 12-2 22 62
C C C T 12~3 23 63
D D D U 12-4 24 64
E E E v 12-5 25 65
F F F W 12-6 26 66
G G G X 12-7 27 67
H H H Y 12-8 30 70
1 1 1 Z 12-9 31 71
J J J J i1-1 41 41
K K K K 11-2 42 42
L L L L 11-3 43 43
M M M M 11-4 44 44
N N N N 11-5 45 45
[s) 3] [s) 3] 11-6 46 46
P P P P 11-7 47 47
Q Q Q Q 11-8 50 50
R R R R 11-9 51 51
S s s B 0-2 62 22
T T T C 0-3 63 23
U U U D 0-4 64 24
v v v E 0~5 65 25
W w w F 0-6 66 26
X X X G 0-7 A7 27
Y ke Y it 0.9 70 2n
Z Z Z 1 0-9 71 31
+ + 0 12 20 60
_ - - - 11 40 40
Space Blank Blank & Blank 60 20
/ / A 0-1 61 21
2-8 12 12
/ Stop 3-8 13 13
a Q 4-8 14 14
(Underline) - 5-8 15 15
= = 6-8 16 16

7-8 17
12-2-8 32* 72

+0 12-0 32%
. . : 12-3-8 33 73
. 12-4-8 34 74
12-5-8 35 75
Tab 12-6-8 36 76

Carriage

Roturn 12-7-8 37 77
-0 11-0 52* 52
11-2-8 52* 52
$ $ $ $ 11-3-8 53 53
* . 11-4-8 54 54
11-5-8 55 55
11-6-8 56 56
11-7-8 57 57
Print Red 0-2-8 72 32
, f 0-3-8 73 33
% % 0-4-8 74 34
{ C Print Black 0-5-8 75 35
) 3 Tab 0-6-8 76 36
Delete 0-7-8 77 37

*The 400 card per minute card reader reads 11-0 and 11-2-8 as 52 and 12-0 and 12-2-8 as 32.
minute card reader treats 11-2-8 and 12-2-8 as invalid characters.
12«0 for 32,

The 1000 cards per

The card punch punches only 11-0 for 52 and

**The OCTAL notation is a shorthand for binary representation. Conversion between the two representations can
be done mentally. In the OCTAL system, there are eight admissible symbols: 0, 1, 2, 3, 4, 5,6, 7. Each may
represent (when used) a maximum of three binary bits.

October 1963

APPENDIX Il

OCTAL LIST OF GE-225

INSTRUCTIONS

Word Word
Octal Mnemonic Times Page Octal Mrnemonic Times Page
0000000 LDA Y X 2 V-14 05MMMMM RTB M T 2 VoI - 11
Load A Register TTNNNNN (blank) N
Read Tape Binary
0100000 ADD Y X 2 V- 2
*Decimal Add 2 V-1 0600000 LDX Y X 3 V - 36
Load X
0200000 SUB Y 3 v- 1
*Decimal Subtract 0600000 SLW N 2 IX- 6
NNQ0000
0200000 SUB Y X 3 V- 2 Slew Paper N Lines
Subtract
0700000 SPB Y X 2 V-31
0200000 WEF T 2 VIII- 11 Store P and Branch
TTNNNNN
Write End of File 0X00000 SLT K 2 IX- 6
XX00000
02MMMMM WTD M T 2 VIII- 10 Slew Paper to Tape Punch
TTNNNNN (blank) N
Write Tape Decimal 1000000 DLD Y X 3 V- 15
Double Length Load
0300000 STA Y X 2 V-15
Store A 1020000(N=2) RSD M N 2 X- 3
Read Document Singie
03SMMMMM WTB M T 2 V11I- 10
TTNNNNN (blank) N 1040000(N=2) RDC M N 2 X- 4
Write Tape Binary Read Document Continuously
0400000 BXL K X 3 V- 35 1060000(N=2) PKT X N 2 X- 4
Branch If X Is Less Than Pocket Select
0420000(N=1) RSD M N 2 X- 3 1100000 DAD Y X 3 V- 2
Read Document Single * Double Decimal Add 3 V- 8
0440000(N=1) RDC M N 2 X- 4 1100000 DAD Y X 3 V- 2
Read Document Continuously Double Length Add
0460000(N=1) PKT X N 2 X- 4 1100000(N=2) HLT M N 2 X- 5
Pocket Select Halt Continuous Feeding
04MMMMM RTD M T 2 VII- 11 1120000(N-2) ERB N 9 X 5
TTNNNNN (blank) N 0000000
Read Tape Decimal End Read Busy
Branch If X Is Higher Than *Double Decimal Subtpact
or Equal To V-8
1200000 DSU Y X 5 V- 3
0500000(N=1) HLT M N 2 X- 5 Double Length Subtract
Halt Continuous Feeding
1200000 RRF N F 2 XI- 6
0520000(N=1) ERB N 2 X- 5 00MMMMM (blank) M

0000000

=

G

C)

@JD

YO

N

End Read Busy

*QOptional Instruction

Read from MRADS Unit F

October 1963

Word Word
Octal Mnemonic Times Paye Octal _Mnemonic Times Page
1201000 RRD N F 2 XI- 1 23MMMMM WTS M T 2 VII - 11
00MMMMM (blank) M TTNNNNN (blank) N
Read from MRADS Unit F Write Tape Special Binary Mode
1202000 RAW N F 2 XI-7 2400000 *MOV Y 4 - 2N v-18
0000000 (blank) zero Move
Read After Write Check
2500000 PRF F 2 XI- 4
1300000 DST Y X 3 V -16 MMMMMMM OCT (MRADS Address)
Double Length Store Position MRADS File
1400000 INX K X 3 V -34 2500004 HCR 2 VI-26
Increment X Halt Card Reader
14MMMMM RBD M T 2 VIII - 12 2500005 OFF 2 Vi- 8
TTNNNNN (blank) N Power Off (Direct I/O Devices)
Read Backward Decimal
2500006 RPT 2 VI- 16
1500000 MPY Y X 9to23 V-5 Read Paper Tape
Multiply) »
2500006 TYP 2 VIi- 8
Type
2500006 WPT 2 VI-18
15 MMMMM RBB M T 2 VIII - 12 Write Paper Tape
TTNNNNN (blank)
Read Backward Binary 2500007 TON 9 vi- 8
Typewriter On :
1600000 DVD Y X 26to29 V- 5
Divide 2500011 RCS 2 VI- 6
Read Control Switches
1600000 BKW T 2 VIII - 12
TT00000 2500015 PON 2 VI-18
Backspace and Position Write Head Punch On
1700000 STX Y X 3 VvV - 36 2500016 HPT 2 VI- 17
Store X Halt Paper Tape Reader
2000000 EXT Y X 3 vV -17 2500014 RON 2 VI- 16
Extract Paper Tape Reader On
2000000 WPL Y N 2 IX- 5 2500P20 SEL P X 2 ViI- 2
01YYYYY Select
Write Print Line
2504001 LAQ 3 vV-19
2000000 RWD T 2 VIII - 12 Load A from Q
TT00000
Rewind 2504002 LDZ 3 V-22
Load Zero into A Register
2100000 *CAB Y 2to4 VvV -33
Compare and Branch 2504004 LQA 3 V-19
Load Q from A
2200000 *DCB Y 2to6 Vv -33
Double Compare and Branch 2504005 XAQ 3 V-20
Exchange A and Q
2300000 ORY Y X 3 V- 17
Or Ainto Y 2504006 MAQ 3 V-19
Move A to Q
* This instruction is an optional feature.
= o =
A-4 October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
2504012 NOP 3 V-24 250YY02 WCD Y 2 VI - 37
No Operation Write Card Decimal
2504022 LDO 3 V- 22 250YY03 WCB Y 2 VI - 37
Load One intc A Register Write Card Binary
2504032 ADC 3 V- 4 250YY10 RCF Y 2 VI- 28
Add One Read Cards Full
2504032 ADO Add One 3 v- 4 250YY12 RCM Y 2 VI - 29
*Add One Decimal 3 v- 9 Read Cards Mixed
2504040 CHS 2 VvV - 23 250YY17 WCF Y 2 VI - 37
Change Sign of A Register Write Cards Full
2504102 LMO 3 V-23 2510000 SRA K 2 to 12 V- 24
Load Minus One into A Register Shift Right A Register
2504112 SBO Subtract One 3 V-4 2510040 SCA K 2 to 12 T 97
*Subtract One Decimal 3 V-9 Shift Circular A Register
2504202 *LAC 3 vV -20 2510100 SNA K 2 to 12 V- 28
Load A Register from C Register Shift N and A Right
2504210 *LCA 3 V-20 2510400 SAN K 2 to 12 V- 28
Load C Register from A Register Shift A and N Right
2504002 crr 2 Vo23) 2311000 SRD X 2t 12 v 26
Complement A Shift Right Double
2504522 NEG 3 V-23 2511100 NAQ K 2 to 12 V- 29
Negate A Shift N, A, and Q Right
2506003 *SXG Y 2 V- 36 2511200 SCD K 2 to 12 V- 217
Select X Register Group Shift Circular Double
2506011 SET DECMODE 2 V-9 2511400 ANQ K 2 to 12 V- 28
Set Decimal Mode Shift A into N and Q
2506012 SET BINMODE 2 V-10 2512000 SLA K 2 to 12 V-25
Set Binary Mode Shift Left A Register
2506015 SET PST 2 VII- 3 2512200 SLD K 2 to 12 V-26
Set Automatic Priority Interrupt On Shift Left Double
2506016 SET PBK 2 VII- 3 2513000 NOR K 3to12 V-29
Set Automatic Priority Interrupt Off Normalize the A Register
250YY00 RCD Y 2 VI- 26 2513200 DNO K 2to12 V- 30
Read Cards Decimal Double Length Normalize
250YY01 RCB 2 Vi -27 2514000 BGD 2 V- 32
Read Cards Binary Branch on Odd
L. 2514001 BMI 2 V- 32
* This instruction is an optional feature. Branch on Minus
I O TN T
Hels a /7 /770
G A4
A-5 October 1963

=

[l

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
2514002 BZE 2 V- 32 2514P21(K=2) BCS SKR P 2 X- 6
Branch on Zero Branch on Document Handler K
Ready
2514003 BOV 2 V- 32
Branch on Overflow 2514P22 BCS BET P 2 VIII- 14
Branch on End of Tape
2514004 BPE 2 V- 32
Branch on Parity Error 2514P22 BCS BOP P 2 IX- 17
Branch on Printer Out of Paper
2514005 BNR 2 Vi- ¢
Branch on N Register Ready 2514P22(File 1) BCS FKR P 2 XI-10
Branch on File K Ready
2514006 BCR 2 VI - 33
Branch on Card Reader Ready 2514P22(K=1) BCS NPK P 2 X- 6
Branch on No Pocket Decision,
2514007 BPR 2 VI - 37 Document Handler K
Branch on Card Punch Ready
2514P23 BCS BOV P 2 IX - 14
2514720 BAR BAR 7 2 Xmm- 8 Branch on Printer Buffer Overfiow
Branch on AAU Ready
2514P23 BCS BRW P 2 VIII- 15
2514721 BAR BMI 17 2 XII- 9 Branch on Tape Rewinding
Branch on AAU Minus
2514P23(File 2) BCS FKR P 2 XI - 10
2514722 BAR BZE 17 2 XII - 9 Branch on File K Ready
Branch on AAU Zero
2514P23(K=2) BCS NPK P 2 X- 6
2514723 BAR BOV 17 2 XII - 9 Branch on No Pocket Decision,
Branch on AAU Overflow Document Handler K
2514724 BAR BUF 17 2 XII- 9 2514P24 BCS BPE P 2
Branch on AAU Underflow Branch on Mag Tape VIII- 14
2514727 BAR BER 7 9 XI - 9 Parity Error
Branch on AAU Error 2514P24 BCS BSA P 2 IX - 14
Branch on Printer Slew Alert
2514P20 BCS BPR P 2 IX - 1
Branch on Printer Ready 2514P24(File 3) BCS FKR P 2 XI - 10
Branch on File K Ready
2514P20 BCS BRR P 2 XI - 10
Branch on MRADS Controller Ready 2514P24(K=1) BCS FSK P 2 X- 6
Branch on Feeding, Document
2514P20 BCS BTR P 2 VIII - 14 Handler K

2514P20(K=1)

2514P21

2514P21

2514P21(File 0) BCS

5

0
I~
(25

25y
).

Branch on Tape Controller Ready

2514P25 BCS BIO P 2
BCS SKR P 2 X- 6 Branch on Mag Tape I/O VII- 14
Branch on Document Handler K Buffer Error
Ready DSU XI- 10
2514P25(K=2) BCS FSK P 2 X- 6
BCS BAA P 2 IX-14 Branch on Feeding, Document
Branch on Any Alert Handler K
BCS BEF P 2 VII-1l4 2514P26 BCS BME P 2 VIII- 14
Branch on End of File Branch on Mod 3 or 4 Error
FKR P 2 X1-10 2514P26(K=1) BCS ICK P 2 X- 6
Branch on File K Ready Branch on Invalid Character,
Document Handler K
2514P26 BCS ICK P 2 X1-10
Branch on DSU Parity Error
H
A-6 October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
2514P27 BCS BER P 2 2516005 BNN 2 Vi- 9
Branch on Error VIII-15 Branch on N Register Not Ready
2516006 BCN 2 VI - 33
2514P27(K-2) BCS ICK P 2 X- 6 Branch on Card Reader Not Ready
Branch on Invalid Character,
Document Handler K 2516007 BPN 2 VI - 37
Branch on Card Punch Not Ready
2514P30(K=1) BCS SKE 2 X- 7
Branch on Any Error, 2516720 BAR BAN 7 2 XII- 8
Document Handler K Branch on AAU Not Ready
2514P31 BCS FAE P 2 XI-11 2516721 BAR BPL 7 2 XII- 9
Branch on Error - On Any File Branch on AAU Plus
2514P31(K=2) BCS SKE 2 X-7 2516722 BAR BNZ 7 2 XII- 9
Branch on Any Error, Branch on AAU Not Zero
Document Handler K
2516723 BAR BNO 7 2 XIT- 9
2514P32(K=1) *BCS DQK 2 X-7 Branch on AAU No Overflow
Branch on Document TCD Correct,
Document Handler K. 2516724 BAR BNU 7 2 XII- 9
Branch on AAU No Underflow
2514P32(File 0) BCS FKE P 2 XI-11
Branch on File K, File Error 2516727 BAR BNE 7 2 XII- 9
Branch on AATU No Error
4514P33{K=2; *BCS DQK 2 X- 7
Branch on Document TCD Correct, 251i6P2u BLS BPN P 2 X - 7
Document Handier K. Branch on Printer Not Ready
2514P33(File 1) BCS FKE P 2 XI-11 2516P20 BCS BRN P 2 XI- 10
Branch on File K, File Error Branch on MRADS Controller
Not Ready
2514P34(File 2) BCS FKE P 2 XI-11
Branch on File K, File Error 2516P20 BCS BTN P 2 VIII - 14
Branch on Tape Controller Not
2514P35(File 3) BCS FKE P 2 XI-11 Ready
Branch on File K, File Error
2516P20(K=1) BCS SKN P 2 X- 86
2514PCC BCS XXX P 2 VII - 2 Branch on Document Handler K
Branch on Controller Selector Not Ready
2516000 BEV 2 VvV -32 2516P21 BCS BNA P 2 X - 14
Branch on Even Branch on Printer No Alert
2516001 BPL 2 VvV -32 2516P21 BCS BNF P 2 VIII - 14
Branch on Plus Branch on No End of File
2516002 BNZ 2 VvV -32 2516P21(File 0) BCS FKN P 2 XI-10
Branch on Non-Zero Branch on File K Not Ready
2516003 BNC 2 Vv -32 2516P21(K=2) BCS SKN P 2 X- 6
Branch on No Overflow Branch on Document Handler
K Not Ready
2516004 BPC 2 VvV - 32
Branch on Parity Correct 2516P22 BCS BNP P 2 IX- 7

* This instruction is an optional feature.

o)
U
b)
1

4

5

Branch if Printer Not Out of Paper

¢ ‘.ﬁ/ﬁ

-
D’:\i‘
O

(‘_

October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
2516P22 BCS BNT P 2 VII- 14 2516P27(K=2) BCS VCK 2 X - 7
Branch on No End of Tape Branch on Valid Character,
Document Handler K
2516P22(File 1) BCS FKN P 2 XI -10
Branch on File K Not Ready 2516P30(K=1) BCS SKC 2 X- "
Branch on Document Handler
2516P22(K=1) BCS PDK P 2 X- 6 K Correct
Branch on Pocket Decision,
Document Handler K 2516P31 BCS FAC P 2 XI -11
Branch on No Error - Any File
2516P23 BCS BNO P 2 IX -14
Branch on No Printer Buffer 2516P31(K=2) BCS SKC 2 X- 7
Overflow Branch on Document Handler
K Correct
2516P23 BCS BNR P 2 VII-15
Branch on No Tape Rewinding 2516P32(File 0) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P23(File 2) BCS FKN P 2 XI-10
Branch on File K Not Ready 2516P32(K=1) *BCS NQK 2 X- 1
Branch on Document TCD Not
2516P23(K=2) BCS PDK P 2 X-6 Correct, Document Handler K
Branch on Pocket Decision,
Document Handler K 2516P33(File 1) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P24 BCS BNS P 2 IX - 14
Branch on No Printer Slew Alert 2516P33(K=2) *BCS NQK 2 X- 1
Branch on Document TCD Not
2516P24 BCS BPC P 2 Correct, Document Handler K
Branch on Mag Tape -
Parity Correft P var- 14 2516P34(File 2) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P24(File 3) BCS FKN P 2 XI -10
Branch on File K Not Ready 2516P35(File 3) BCS FKC P 2 XI- 11
Branch on File K, No Unit Error
2516P24(K=1) BCS NFK P 2 X- 6
Branch on Not Feeding, 2516PCC BCS XXX P 2 VII- 2
Document Handler K Branch on Controller Selector
2516P25 BCS BIC P 2 25MMMMM RTS M T 2 VIII - 11
Branch on Mag Tape /O VIII - 14 TTNNNNN (blank) N
Buffer Correct Read Tape Special Binary Mode
2516P25(K=2) BCS NFK P 2 X- 6 2600000 BRU Y X 1 V-3
Branch on Not Feeding, Branch Unconditionally
Document Handler K
2700000 STO Y X 3 V- 16
2516P26 BCS BNM P 2 VII-15 Store Operand Address
Branch on No Mod 3 or 4 Error
3000000 FLD Y 72 usec XII- 7
2516P26 BCS RFC P 2 XI- 10 Load Auxiliary Arithmetic Unit
Branch on DSU
Parity Correct 30YYYYY WFL Y X N 2 IX- 6
01XXXXX (WPL)
2516P26(K=1) BCS VCK 2 X- 1 Write Format Line
Branch on Valid Character,
Document Handler K
2516P27 BCS BNE P 2
Branch on No Error VIII - 15 * This instruction is an optional feature
BE-225
CY IR
A-8 October 1963

Word Word .
Mnemonic Octal Times Page Mnemonic Octal Times Page
3100002 MAQ A 49.5usec XII - 7 3500010 SET FIXPOINT 49.5 usec XII- 6
Move AX to QX Set Fixed- Point Mode
3100010 SET NFLPOINT 49.5 usec XII- § 35MMMMM RBS M T 2 VIIo- 12
Set Normalized Floating- Point Mode TTNNNNN (blank) N
Read Backward Special Binary
31YYYYY FAD Y Min. 162 usec XII- 7 .
Max. 709 usec IBYYYYY FMP Y Min. 297usecXIl- 7
AAU Add Max. 1062 usec
AAU Multiply
3200002 LQA A 49,5usec XII- 7
Load QX From AX 3600002 LAQ A 49.5usec XII- 17
Load AX From QX
3200010 SET UFLPOINT 49.5usec XII- 6
Set Unnormalized Floating-Point 36YYYYY FDV Y Min.814.5usec XII- 8
Mode Max.1095 usec
2YYYYY FSU Y Min. 162 usec XII- 8 AAU Divide
Max. 709 usec
AAU Subtract 3700000 WRF N F 2 XI- 7
00MMMMM (blank) M
3300000 FST Y 72 usec XII- 17 Write on MRADS Unit F
Store Auxiliary Arithmetic Unit
3701000 WRD N F 2 ~ XI- 1
3500002 XAQ A 117 usec XII- 7 0OMMMMTM (blank) M

Exchange AX and QX

Write on MRADS Unit F

APPENDIX I1ll. ALPHABETIC LIST OF GE-225 INSTRUCTIONS

Word Word
Mnemonic Oclal Ties Page Mngmonic Octal Times Page
ADD Y X 0100000 2 V- 2 BCN 2516006 2 VI- 33
*Decimal Add 2 V-7 Branch on Card Reader Not Ready
ADD Y X 0100000 2 V-1 BCR 2514008 2 VI - 33
Add Branch on Card Reader Ready
ADO 2504032 3 V-4 BCS BAA P 2514P21 2 IX - 14
Add One Branch on Any Alert
ADO 2504032 3 V-9 BCS BEF P 2514P21 2 VIII - 14
*Add One Decimal Branch on End of File
ALF (Pseudo) Iv -10 BCS BER P 2514P27 2 VIII - 15
Alphanumeric Branch on Error IX- 8
XI- 10
ANQ K 2511400 2 to 12 V -28
Shift A into N and Q BCS BET P 2514P22 2 VIII - 14
Branch on End of Tape
BAR BAN 7 2516720 2 XII- 8
Branch on AAU Not Ready BCS BIC P 2516P25 2 VIII - 14
Branch on Input/Output XI- 10
RAR RAR 7 2514720 2 XTI - R i Ruffer Correct
Branch on AAU Ready |
i BONS BiO P 2hi4P2Lh Z Viil - 14
BAR BER 7 2514727 2 XII- 9 Branch on Input/Output XI-10
Branch on AAU Error Buffer Error
BAR BMI 7 2514721 2 XII- 9 BCS BME P 2514P26 2 VIII - 14
Branch on AAU Minus Branch on Mod 3 or 4 Error
BAR BNE 7 2516727 2 XII- 9 BCS BNA P 2516P21 2 IX - 14
Branch on AAU No Error Branch on Printer No Alert
BAR BNO 7 2516723 2 XiI- 9 BCS BNE P 2516P27 2 VIII - 15
Branch on AAU No Overflow Branch on No Error X- 8
XI- 10
BAR BNU 7 2516724 2 XiI- 9
Branch on AAU No Underflow BCS BNF P 2516P21 2 VIII - 14
Branch on No End of File
BAR BNZ 7 2516722 2 Xa- 9
Branch on AAU Not Zero BCS BNM P 2516P26 2 VIII - 15
Branch on No Mod 3 or 4 Error
BAR BOV 7 2514723 2 XII- 9
Branch on AAU Overflow BCS BNO P 2516P23 2 IX - 14
Branch on No Printer Buffer
BAR BPL 7 2516721 2 Xil- 9 Qverflow
Branch on AAU Plus
BCS BNP P 2516P22 2 IX- 7
BAR BUF 7 2514724 2 XiI- 9 Branch if Printer Not Out of
Branch on AAU Underflow Paper
BAR BZE 7 2514722 2 XII- 9 BCS BNR P 2516P23 2 VIO - 15
Branch on AAU Zero Branch on No Tape Rewinding
*Optional Instruction

A-11

October 1963

Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
BCS BNS P 2516P24 2 IX - 14 BCsS FAC P 2516P31 2 XI- 11
Branch on No Printer Branch on No Error - Any File
Slew Alert
BCS FAE P 2514P31 2 XI- 11
BCS BNT P 2516P22 2 VII- 14 Branch on Error - On Any File
Branch on No End of Tape
BCS FKC P 2516P32(File 0) 2 XI- 11
BCS BOP P 2514P22 2 IX- 7 or 2516P33(File 1)
Branch on Printer Out of or 2516P34(File 2)
Paper or 2516P35(File 3)
Branch on File K, No Unit Error
BCS BOV P 2514P23 2 IX - 14
Branch on Printer Buffer BCS FKE P 2514P32(File 0) 2 XI- 11
Overflow or 2514P33(File 1)
or 2514P34(File 2)
BCS BPC P 2516P24 2 or 2514P35(File 3)
Branch on Tape Parity Correct VIII - 14 Branch on File K, File Error
BCS BPE P 2514P24 2 BCS FKN P 2516P21(File 0) 2 XI-10
Branch on Tape Parity Error VIII- 14 or 2516P22(File 1)
or 2516P23(File 2)
BCS BPN P 2516P20 2 IX- 7 or 2516P24(File 3)
Branch on Printer Not Ready Branch on File K Not Ready
BCS BPR P 2514P20 - 2 X- 7 BCS FKR P 2514P21(File 0) 2 XI-10
Branch on Printer Ready or 2514P22(File 1)
or 2514P23(File 2)
BCS BRN P 2516P20 2 XI - 10 or 2514P24(File 3)
Branch on MRADS Controller Branch on File K Ready
Not Ready
BCS FSK P 2514P24(K=1) 2 X- 6
BCS BRR P 2514P20 2 XI - 10 or 2514P25(K=2)
Branch on MRADS Controller Branch on Feeding, Document
Ready Handler K
BCS BRW P 2514P23 2 VII- 15 BCS ICK P 2514P26(K=1) 2 X-6
Branch on Tape Rewinding or 2514P27(K=2)
Branch on Invalid Character,
BCS BSA P 2514P24 2 IX - 14 Document Handler K
Branch on Printer Slew Alert
BCS NFK P 2516P24(K=1) 2 X-6
BCS BTN P 2516P20 2 VIII- 14 or 2516P25(K=2)
Branch on Tape Controller Branch on Not Feeding.
Not Ready Document Handler K
BCS BTR P 2514P20 2 VIII- 14 BCS NPK P 2514P22(K=1) 2 X-6
Branch On Tape Controller Ready or 2514P23(K=2)
Branch on No Pocket Decision,
*BCS DQK 2514P32(K=1) 2 X- 1 Document Handler K
or 2514P33(K=2)
Branch on Document TCD Correct, * BCS NQK 2516P32(K=1) 2 X- 7
Document Handler K. or 2516P33(K=2)
Branch on Document TCD Not
* This instruction is an optional feature Correct, Document Handler K
o 6’\} —
U (Aaan
A-12 October 1963

; Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
BCS PDK P 2516P22(K=1) 2 X- 6 BNZ 2516002 2 V - 32
or 2516P23{K=2) Branch on Non-Zero
Branch on Pocket Decision,
Document Handler K BOD 2514000 2 VvV - 32
Branch on Odd
BCS RPC P 2516P26 2 XI- 10
Branch on DSU Parity Correct BOV 2514003 2 vV - 32
Branch on Overflow
BCS RPE P 2514P26 2 XI - 10
Branch on DSU Parity Error BPC 2516004 2 V- 32
BCS SKC 2516P30(K=1) 2 X- 1 Branch on Parity Correct
or 2516P31(K=2)
Branch on Document Handler K BPE Branch on Paf'istl4g}(i“i'or 2 V- 32
Correct v
BCS SKE 2514P30(K=1) 2 X- 7 BPL o nch on DLoTE00 2 v-32
or 2514P31(K=2)
P;;‘:.né:lh;)r;(Any Error, Document BPN 2516007 9 VI - 37
ndie Branch on Card Punch Not Ready
BCS SEN P ggiggg?gfg 2 X-6 BPR 2514007 2 VI - 37
N Branch on Card Punch Ready
Branch on Document Handler K
Not Ready BRU Y X 2600000 1 v - 31
nes SKR D 2514DP20(K-1) 2 ¥ e Branch Unconditionally
or 2514P21(K=2))
Branch on Document Handler K BSS (pse;l;llgik Started by Symbol v - 15
Ready v
_ BXH K X 0500000 3 V- 34
BCS VCK 2516P26(K=1) 2 X-1 Branch if X is Higher Than or
or 2516P27(K=2) Equal To
Branch on Valid Character,
Document Handler K BXL K X 0400000 3 V- 35
BCS XXX P 2514PCC 2 VII- 2 Branch If X is Less Than
or 2516PCC
Branch on Controller Selector BZE Branch on 263214002 2 V- 32
BB ehon E 2516000 2 v-32 *CAB Y 2100000 2tod4 V- 33
ranch on Lven Compare and Branch
BKW T 1600000 2 VIII- 12 CHS 2504040 9 V- 23
TTO00000 Change Sign of A Register
Backspace and Position Write
Head CPL 2504502 3 V- 23
Complement A
BMI 2514001 2 Vv -32
Branch on Minus DAD Y X 1100000 3 V- 2
Double Decimal Add 3 V- 8
BNN 2516005 2 VIi- 9
Branch on N Register Not Ready * This instruction is an optional feature.
BNO 2516003 2 VvV -32
Branch on No Overflow
BNR 2514005 2 VI- 9
Branch on N Register Ready
SN TN AN T

[T

Wi

=
RN S|

o /)N

Sl A
(535

A-13

October 1963

Word Word
Mnemonic Octal Times Page Miemopic Ocial Times Page
DAD Y X 1100000 3 V-2 FAD Y 31YYYYY Min.162 usec XII- 7
Double Length Add Max.709 usec
AAU Add
* DCB Y 2200000 2to 6 Vv -33
Double Compare and Branch FDC (Pseudo) v-12
Floating Point Decimal
DDC (Pseudo) IV -12
Double Length Decimal FDV Y 36YYYYY Min. 814.5usec XII- 8
Max.1095 usec
DEC (Pseudo) v -11 AAU Divide
Decimal
FID Y 3000000 72 usec XII- 7
DLD Y X 1000000 3 V-15 Load Auxiliary Arithmetic Unit
Double Length Load
DNO K 2513200 2 to 12 V- 30 FMP Y 35YYYYY Min. 297 usec XII- 7
Double Length Normalize Max. 1062 usec
AAU Multiply
DST Y X 1300000 3 V-16
Double Length Store FST Y 3300000 72 usec XU -7
DSU v 1200000 5 V- 8 Store Auxiliary Arithmetic Unit
* Double Decimal Subtract FSU Y 32YYYYY Min. 162 usec XII- 8
Max. 709 usec
DSU Y X 1200000 5 V- 3 AAU Subtract
Double Length Subtract
DVD Y X 1600000 261029 V- 5 HCR 2500004 2 vi-26
Divide Halt Card Reader
EJT (Pseudo) Iv - 17 HLT M N 0500000(N=1) 2 X-5
Eject Printer Paper or 1100000(N=2)
Halt Continuous Feeding
END (Pseudo) IV - 16
End of Program HPT 2500016 2 VI-17
EQO (Pseudo) IV - 15 Halt Paper Tape Reader
Equals Octal INX K X 1400000 3 V-34
EQU (Pseudo) IV - 15 Increment X
Equals LAC 2504202 3 V-20
ERB N 0520000(N=1) 9 X- 5 Load A Register from C Register
0000000 . LAQ 2504001 3 V-18
or 1120000(N=2) Load A f Q
0000000 oad A lrom
End Read Busy LAQ A 3600002 49.5 usec XII- 7
EXT Y X 2000000 3 V- 17 Load AX from QX
Extract *LCA 2504210 3 V-20
Load C Register from A Register
LDA Y X 0000000 2 V-14
* This instruction is an optional feature. Load A Register

e
Gl

A-14

October 1963

Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
LDO 2504022 3 V-22 NOP 2504012 3 V-24
Load One into A Register No Operation
LDX Y X 0600060 3 V - 36 NOR K 2513000 3to12 V- 29
Load X Normalize the A Register
LDZ 2504002 3 V- 22 OCT (Pseudo) Iv - 13
Load Zero into A Register Octal
LMO 2504102 3 vV -23 OFF 2500005 2 Vi- 8
Load Minus One into A Register Power Off (Direct I/O Devices)
LOC (Pseudo) IV - 15 ORG (Pseudo) IV - 14
Location in Octal Origin
LQA 2504004 3 V-19 ORY Y X 2300000 3 vV-17
Load Q from A Or Ainto Y
LQA A 3200002 49.5 usec XII- 7 PAL (Pseudo) Iv - 11
Load QX From AX Multiple Alphanumeric for Printer
with Print Line Indicator
LST (Pseudo) IV - 17
List PKT X N 0460000(N=1) 2 X- 4
or 1060000(N=2)
MAT, (Paeudo} v -11 Paocket Select
Multiple Alphanumeric
PLD (Pseudn) v - 18
MAQ 2504006 3 V-19 Punch Loader Cards
Move Ato Q
PON 2500015 2 VI - 18
MAQ A 3100002 49.5 usec XII- 7 Punch On
Move AX to QX
PRF F 2500000 2 XI- 4
* MOV Y 2400000 4 + 2N V- 18 OCT (MRADS
Move Address) MMMMMMM
Position MRADS File
MPY Y X 1500000 9 to 23 V-5
Multiply RAW N F 1202000 2 XI- 17
(blank) zero 0000000
NAL (Pseudo) IV - 10 Read After Write Check
Negative Alphanumeric
RBB M T 15MMMMM 2 VII- 12
NAM (Pseudo) IV - 17 (blank) N TTNNNNN
Print Name or Title on Each Page Read Backward Binary
NAQ K 2511100 2 to 12 V-29 RBD M T 14MMMMM 2 VIII- 12
Shift N, A, and Q Right (blank) N TTNNNNN
Read Backward Decimal
NEG 2504522 3 Vv -23
Negate A RBS M T 35MMMMM 2 VIII- 12
(blank) N TTNNNNN
NLS (Pseudv) Iv - 17 Read Backward Special Binary

No List.

* This instruction is an optional feature.

S ERCRy /AN
N ERNEETENY,

A-15

October 1963

Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
RCB 250YY01 2 VI - 27 SAN K X 2510400 2 to 12 V- 28 I
Read Cards Binary Shift A and N Right
RCD Y 250YY0D 2 VI - 26 SBO 2504112 3 v- 4l
Read Cards Decimal Subtract One
RCF Y 250YY10 2 VI - 28 SBO 2504112 3 V- 9
Read Cards Full *Subtract One Decimal |
RCM Y 250YY12 2 VI - 29 SBR (Pseudo) IV - 14
Read Cards Mixed Subroutine Call
RCS 2500011 2 VI- 6 SCA K X 2510040 2 to 12 v-27 1]
Read Control Switches Shift Circular A Register
RDC M N 0440000(N=1) 2 X- 4 SCD K X 2511200 2 to 12 v-21 |
or 1040000(N=2) Shift Circular Double
Read Document Continuously
SEL P X 2500P20 2 VII- 2
REM (Pseudo) Iv - 16 Select
Remarks
SEQ (Pseudo) v - 17
RON 2500014 2 VI - 16 Check Source Program Card Sequence
Paper Tape Reader On Numbers
RPT 2500006 2 VI - 16 SET BINMODE 2506012 2 V- 10
Read Paper Tape Set Binary Mode
RRD N F 1201000 2 XI- 1 SET DECMODE 2506011 2 V- 9
(blank) M 00MMMMM Set Decimal Mode
Read from MRADS Unit F
SET FIXPOINT 3500010 49.5 usec XII - 6
RRF N F 1200000 2 XI- 6 Set Fixed-Point Mode
(blank) M 00MMMMM
Read from MRADS Unit F SET NFLPOINT 3100010 49.5 usec XII - 6
Set Normalized Floating- Point Mode
RSD M N 0420000(N=1) 2 X-3
or 1020000(N=2) SET PBK 2506016 2 VIL - 3
Read Document Single Set Automatic Priority Interrupt Off
RTB M T 05MMMMM 2 VIII- 11 SET PST 2506015 2 VII - 3
(blank) N TTNNNNN Set Automatic Priority Interrupt On
Read Tape Binary
SET UFLPOINT 3200010 49.5 usec XiI - 6
RTD M T 04MMMMM 2 VIII- 11 Set Unnormalized Floating-Point Mode
(blank) N TTNNNNN
Read Tape Decimal SLA K X 2512000 2 to 12 vV -25 l
Shift Left A Register
RTS M T 25MMMMM 2 VIII- 11
(blank) N TTNNNNN SLD K X 2512200 2 to 12 V- 26 I
Read Tape Special Binary Mode Shift Left Double
RWD T 2000000 2 VIII- 12 SLT K 0X00000 2 IX- 6
TTO00000 XX00000
Rewind Slew Paper to Tape Punch

A-16

October 1963

Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
SLW N [§16101020101V] 4 IX - © WCD Y 250YY02 2 VI - 37
NNOOOOO Write Card Decimal
Slew Paper N Lines
SNA K X 2510100 2to 12 V- 28 WCF :X e i 359‘YY17 2 vI- a1
Wwrite Cards Fuill
Shift N and A Right
WEF T 0200000 2 VIII - 11
SPR Y X 0700000 2 Vv -31 TT00000
Store P and Branch Write End of File
SRA K X 2510000 2 to 12 V-24 WFL N 36YYYYY 2 IX-6
Shift Right A Register (WPL) Y X 01XXXXX
Write Format Line
SRD K 2511000 2 to 12 V- 26
Shift Right Double WPL Y N 2000000 2 IX-5
01YYYYY
STA Y X 0300000 2 V-15 Write Print Line
Store A
WPT 2500006 2 VI -18
STO Y X 2700000 3 V- 16 Write Paper Tape
Store Operand Address
WRD N F 3701000 2 XL "
STX Y X 1700000 3 V- 36 (blank) M 00MMMMM
Store X Write on MRADS Unit F
Q1K y ® (200000 3 Voo 2 WRF 76000 X~ 7
Subtract | (blank) M 00MMMMM
' Wi tie o viilAiso Liiil I
SUB Y X 6200000 3 V- 1
*Decimal Subtract WIB M T 03MMMMM 2 VIII - 10
(plank) N TTNNNNN
SXG Y 2506003 2 vV -36 Write Tape Binary
Select X Register Group
WTD M T 02MMMMM 2 VIII - 10
TCD(Pseudo) Iv - 15 (blank) N TTNNNNN
Punch Transfer Card Write Tape Decimal
TON 2500007 2 VIi- 8 WTS M T 23MMMMM 2 VIII - 11
Typewriter On (blank) N TTNNNNN
Write Tape Special Binary Mode
TYP 2500006 2 Vvi- 8
Type XAQ 2504005 3 V-20
Exchange A and Q
WCB Y 250YY03 2 VI - 37
Write Card Binary XAQ A 3500002 117 usec XII- 7
Exchange AX and QX
Z (Pseudo) IV -13
* This instruction is an optional feature. Octal Operation Code

A - 17

October 1963

CPB-252

Progress ls Ouvr Most Important Product

GENERAL % ELECTRIC

COMPUTER DEPARTMENT ¢ PHOENIX, ARIZONA

o
@

Litho in U.S.A.

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	xBack

