

ERAIR

PROGRAMMING
MANUAL

PROCESS COMPUTER SECTION
INDUSTRY CONTROL DEPARTMENT
GENERAL ELECTRIC COMPANY
PHOENIX, ARIZONA

DL

IN THE CONSTRUCTION OF THE EQUIPMENT DE-
SCRIBED, GENERAL ELECTRIC COMPANY RESERVES
THE RIGHT TO MODIFY THE DESIGN FOR REASONS
OF IMPROVED PERFORMANCE AND OPERATIONAL
FLEXIBILITY.

ii

TABLE OF CONTENTS

I INTRODUGCTION e 1
A. PROCESS COMPUTINGttt ittt ittt ittt et ettt it et et inanes 1
B. BASIC DIGITAL COMPUTER CONCEPTS. ittt ittt it et it et ittt c e eas 1

T, INPUE ComPonent i i i e e e e et e i et e 1

2. Output ComPOonENt i e e e e e e e 1

3. Storage CompPonent e et 1

4. Arithmetic COMPONENt it ittt it it i e e s 2

5. Control Component e e e 2

€. COMPUTER LANGUAGE. ittt ittt et et it et e et e it ittt e 2
T, NUMber Systemsot i e e e e e e e e 2

2. Binary Arithmetic e e e e e e s 4

3. Scale Factors e e 5

Il. DESCRIPTION OF GE 412 COMPONENTS. ... 7
A. CENTRAL PROCESSING UNIT it e it e et et it ittt 7
T Storage Sechion e e e e e e e e e i 7

2. Arithmetic Sechon e e 9

3. Control Section e e e e e e 9

4. Peripheral Secton e 10

5. Special Real-Time Features ittt ittt ittt it ettty 10

B. PERIPHERAL INPUT-OUTPUT EQUIPMENTttt ettt e e 13
1. Paper Tape Readers i i i e e e e e 13

2. Paper Tape Punches e e 13

3. Electric Typewriters e e e e e e 13

C. SYSTEM INPUT-OUTPUT EQUIPMENT it it ittt e et eaateaaanrenannens 13
1. System Operation Input-Output Equipment ittt ittt inretnenneeneannanan 13

2. Process Input-Output Equipment L e e e 14
Ill. PROGRAMMING FUNDAMENTALS 17
A. INTERNAL EFFECT INSTRUCTIONS ittt e it et et ettt et ettt ianas 18
1. Data Transfer and Arithmetic Instructions i i i it i i 18

2. Register Manipulation Instruchions i i i e e i e 20

3. Logical Instructions e e e e e 23

4. Shift InSHUCHIONS i i e e e e e e e 24

5. Branch Instruchions e e e e e e, 28

6. Automatic Address Modification Instructions i e 30

7. Real-Time Instruchions ittt it i et e et e e i 34

8. Magnetic Drum Instructions i e e 36

9. Automatic Program Interrupt Instructions e 37

10. Other Internal Instruchionsttt it ittt et e e e e e 38

B. EXTERNAL EFFECT INSTRUCTIONS i it i it e e et et et e et 38
1. Peripheral Input-Output Instructions i i e 39

2. Scanner-Distributor Instructions i e e e e 46

3. Output Distributor e e e e e 54

4. Digital Data Accumulator/Digital Fast Scanner. i i i e 56

C. PROGRAMMING AND MAINTENANCE CONSOLE it i e 59
Lo Indicators e e e e e 59

2. Alarm Indicators and Controls e 59

3. Register Displays e e 59

. CoMIrols e e e e e e 60

D. CONTROLLER SELECTOR INSTRUGCTIONS.ttt ittt it ittt ittt ettt et ettt ie e 61

iii

IV. PROGRAMMING TECHNIQUES i, 63

A. THE PROCESS ASSEMBLY PROGRAM it ittt ettt ettt et e e i, 63

1. InbrodUuchion e e e e e e e e 63

2. PAP Assembly e e e e 63

3. The PAP Coding Sheet. it e e e e e e 64

4. Pseudo Operation Codes i i i e e i e e e 64

5. Character Set Recognized by PAP i i i e e e e e 68

B. SUBROUTINE PROGRAMMING. ittt it ettt ettt et et et et e et 73

T Introduchion e e e e et e e, 73

2. Use of SUBroutines i e e e e e e e 74

C. REAL-TIME PROGRAMMINGttt ittt st ettt e et e et e e e e et e 77

1. Automatic Program Interrupt i e e 77

2. Elapsed Time Counters and the Digital Clock i, 77

3. The Executive Control Program (ECP). ittt et et e e e e e 77

4. Functional Programst i e e e e e 77

5. Simplified Process Computing System Program ittt ittt i e 77

APPENDIX A. BINARY CODED DIGITS. 97

APPENDIX B. FLOW CHARTING AND FLOW CHART SYMBOLS 99

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE.................................... 101

APPENDIX D. OPERATION CODES IN ORDER BY MNEMONICS..................... 109

APPENDIX E. OPERATION CODES IN ORDER BY OCTAL 12

APPENDIX F. INSTRUCTION FORMATS 115
PROGRAMMING

MANUAL

GE412

iv

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12,
Figure 13.
Figure 14,
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure21.
Figure 22.

Figure 23.

LIST OF ILLUSTRATIONS

The GE 412 Process Control and Monitoring Computer System i
Five Basic Components of Digital Computers it ittt 3
GE 412 Process Computer Systemottt it ittt i i s 8
Information Flow in the GE 412. i e i e e 11
High Speed Storage Unit i i e e it e s 12
Backup Storage Unit e e e i e 12
GE 412 System’s Programming and Maintenance Consoleo iiiana.n. 12
Typical Operator’s Console, General Purpose Type oiiiiii it 14
Single Channel Scanner-Distributor e 47
Scanner Command Format for Analog Input o i i i 48
Analog Input Full Scale Ranges i e 48
Scanner Command Format for Subcontrol Mode 49
Digital Data Accumulator / Digital Fast Scannert tuittiee e iin e, 57
PAP Coding Sheet ittt e e e et e e e e 65
Basic System Flow Chart e 78
Executive Control Program e e 80
SCON Progrom e e e e e e e 81
Alarm Assembly Routine e 82
Alarm Printer Drive Program e e e e e 83
Input-Output Control e e e 83
DemaNnd Programttt e e e e e e e 84
LOg Program . ..ot e e e e e e e e 85
Log Typer Drive Program i e e e e 86

PREFACE

This manual, as the name implies, is devoted to an explanation of how to program for the GE 412 Process
Computer System. Throughout the manual, computer hardware has been described whenever an understanding
of the hardware was considered necessary or helpful to the programmer. Likewise, digital computer concepts
have been dwelt upon to the extent believed necessary. The basic functions performed by a computer are used
to illustrate the computer instructions described. This concept is shown in the matrix below.

Although programming has been presented in the order intended to be most helpful to the student, for exam-
ple, with problems dispersed throughout the text, it is hoped the manual can satisfy the experienced programmer
who wants only reference information.

Other publications on the GE 412 Process Computer System are: the "GE 412 System Manual" which pre-
sents an overall view of the computer system and of the services which General Electric provides to its custom-
ers; application manuals which explain in detail the various types of computer applications and a variety of
publications on equipment operation.

Basic GE 412 Functions

=
an 2 °©
w | 2|58 c| Ble | 2| 2
= S| 5% 2188 Q Q
g |E|25 SIE|E |5 | %
21z 55| g2 8|S |5 E
o aloC g l=|alz 2 3
5§ |9 .#|l3|8|°|s, (o | o
po | SIES 2| 2|85 2 | 2
x| g |58 8|8lE|»e|E | £
SRl E|88|a|e|L|SE| 2 2
cg|l 2| 8@ |08l 82| B 8
~ 8 o 7] T @ Q =] =3
GE 412 Instructions < < |0 A< | /K| M 2 N
Data Transfer X X X XX X X X
Arithmetic X X 1X X X X
Logical X
Shifting X
Branching Xl X X
X Location X
Elapsed Time X X
Automatic Interrupt X
Peripheral Input-Output X
System Input-Qutput X

PROGRAMMING
MANUAL

GE412

vii

gLvy3ao

IVANYW
ONIWWVYYIOOXd

GENERAL P eLecTriC

Figure 1. The GE 412 Process Control and Monitoring Computer System

I INTRODUCTION

A. PROCESS COMPUTING

A discussion of fundamental programming techn-
niques for the GE 412 Process Control and Monitor-
ing Computer System requires an understanding of
basic digital computer concepts and of the functions
that can be accomplished in process logging, moni-
toring, and control with a digital computer. The
complex relationships between the variables in a
process make it extremely desirable to have a fast
and efficient means of coordinating the monitoring
and the control of these variables, Process compu-
ting requires real-time scanning and controlling of
these variables. This means that at the time a
physical phenomenon takes place in a process, the
computer must at the same time be able to sense it,
correlate and evaluate its meaning with other sens-
ings, and take some action to control or regulate the
process.

The GE 412 System's major functions are to
efficiently and quickly sense, correlate and evaluate,
and control the operations of a process. The com-
puter system can sense analog signals from process
sensors such as thermocouples and pressure sensors
by converting these into equivalent digital values.
The computer can directly sense digital inputs of
information such as valve positions, on-off status of
equipment, manual switch positions, and accumula-
tions from counters. The computer can correlate
and evaluate digital values through the use of high
speed digital computer techniques. Control values
are developed through logic and computation, and
dictated to the process as control outputs. These
may be analog signals converted from digital control
values and sent to process control devices, or they
may be in the form of signals to open and close con-
tacts which in turn control the on-off status of
process equipment such as pumps and motors.

In addition to these three major functions, the
GE 412 System may accomplish monitoring of pro-
cess equipment for off-limit conditions, performance
and efficiency calculations, periodic logs, and trend
recording. Because of the "'real-time' aspect of
process computing, timing is of much greater con-
sideration than it is in business or scientific compu-
ting where processing of data is done off-line or
after the fact.

The GE 412 System is highly adaptable to indus-
trial processes and other functions in industries

such as electric and gas utilities, steel mills,
cement, mining, glass making, chemical, petroleum,
and petrochemical. This versatility is achieved by
means of a fast and powerful computer having a wide
array of peripheral input-output equipment facilita-
ting fast, efficient communication between the com-
puter and the process.

B. BASIC DIGITAL COMPUTER CONCEPTS

All digital computers consist of five basic com-~
ponents: input, output, storage, arithmetic, and
control.

1. Input Component

The input component consists of one or more
units that introduce information into the computer
from an external source. It accepts information in
a variety of forms and converts this information into
a digital form ready for entry into the computer.
Paper tape readers, punched card readers, analog-
to-digital converters, and manual switches are
typical input units used with computer systems.

2. Output Component

The output component consists of one or
more units that accept digital information from the
computer and convert that information to a form
applicable to external use. Paper tape punches,
electric typewriters, visual displays, and digital-to-
analog converters are typical output units used with
computer systems.

3. Storage Component

The storage component consists of one or
more units that store or remember information
within the computer system. These units usually
store information electronically, taking advantage of
magnetic or other electronic principles to remember
bistable conditions. Binary 1's and 0's can be indi-
cated as bistable conditions and stored as such. A
fixed number of binary digits make up a storage word.
The storage unit is divided into thousands of addres-
sable positions, each capable of storing one word.
By using special combinations of the bits within a
word, many types of information may be represented
such as: data, constants, special alphabetic codes,
and computer instructions. Computer instructions
are explained in the control component discussion.

PROGRAMMING
MANUAL

GE412

Magnetic drum, magnetic tape, and magnetic core
are storage units used in computer systems.

4. Arithmetic Component

The arithmetic component performs arith-
metic and logical decision-making functions within
the computer system. The numbers used in these
arithmetic and comparison operations may alsobe
stored in the storage unit until used, and the results
of arithmetic operations may also be stored back into
the storage unit, Digital computers carry out all
arithmetic operations by controlled additions. Sub-
traction is done by complementary arithmetic; mul-
tiplication is done by adding and shifting; and divide
is done by subtracting and shifting. The basic
circuit in the arithmetic component is, therefore, a
binary adder.

5. Control Component

The control component automatically con-
trols the operation of the other four components of
the computer system. The step by step description
of what the computer is to do is specified by a logi-
cal sequence of computer instructions, called a
stored program. This program is stored in the
storage unit of the computer system along with the
required data and constants. Each instruction is
contained in a storage word and is a specially
coded ‘group of bits which specify two things: (1) the
operation to perform, e.g., add, subtract, load,
and (2) the storage location of the data or the con-
stant to use as the operand of the operation code.
Therefore, if the computer is to do a sequence of
100 operations, at least 100 locations in the storage
unit are required to store the program. The step
by step execution of each instruction in the sequence
is controlled by the control component. The pro-
gram is executed in a definite cycle which is a
repetition of the following three steps.

a. An instruction is extracted from mem-
ory and decoded in the control component,

b. The instruction is executed during
which time data may be extracted from or put into
storage.

c. Advance the instruction counter indica-
ting which is the next institution to be executed.

Figure 2 shows the relationship between
the five major computer components. The dotted
lines represent control lines and the solid lines
represent information flow.

PROGRAMMING
MANUAL

GE412

C. COMPUTER LANGUAGE

The binary number system is the basic language
or form of information representation in all digital
computer systems. This language uses only two
(binary) digits, zero and one, and is used primarily
because it is very easy to represent physically.
Many physical mediums can be used to represent
binary numbers such as: an electric switch open or
closed, plus or minus polarity, current or no
current, a spot on a magnetizable surface (drum,
disk, tape) magnetized in one direction or another,
and a position on a punched card or paper tape with
a hole or no hole. All of these mediums have just
two stable, mutually exclusive states, and can thus
readily be represented by zero or one.

1. Number Systems

All number systems can be represented in
the same pattern and can then be related one to
another. The following describes the common num-
ber systems used in digital computers.

a. The Pattern of Numbers

N = Anrn+An_1rn-1 +.v. +A 0

where: N is the number

A is an admissible symbol

[0fag@-1) Jandis

an integer,

r is the radix or base (total number
of admissible marks),

n is the position of the symbol with
reference to the point separating
the integer from the fractional
parts.

b. The Decimal Number System

The formula may seem formidable, but
witness the formation of the number 4999 in the dec-
imal system and note the pattern:

4999 = 4000 + 900 + 90 + 9 or
3 2 1 0
4999 = (4 x10°) + (9 x10%) + (9 x107) + (9 x107)
Thus, all numbers are formed by

stating the coefficients (symbols) of the powers (po-
sitions). Other number systems develop numbers

! Control ——————
I - - |
! ! T |
! ' ! |
' ' | !
' | | |
Y ! Y Y

I

Input | Storage SR Output

I

|

|

I

|

|

I

L Arithmetic

Figure 2. Five Basic Components of Digital Computers

in the same manner using radices other than
10.

c. The Binary Number System - The GE
412 Computer's Language

The binary number system has only two
admissible symbols, 0 and 1, and therefore the radix
is two. For example, the decimal number N repre-
sented in the binary number system as 11010 is:
N=(1x29+1x23)+(0x22) +(1x2l)+(0x20

=(1x16)+(1x8) +(0x4) +(1x2) +(0x1)
= 16 + 8 + 2 = 26 (decimal equivalent).
To raise 11010 (binary) to the next num-

ber greater (i. e. binary counting), raise the extreme
right-hand symbol (0) to the next higher admissible

symbol (1). To raise the result, 11011, to the next
number greater, move left to the first zero [in
position 22 in this_example, raise this to the next
higher symbol (1)], setting everything at the right

to 0. Therefore, the next number greater than 11011
becomes 11100.

The use of the binary number system to
represent bistable (2 position steady state) devices is
contingent upon being able to convert conveniently
from one number system (decimal) to another (bin-
ary). This has proved to be a relatively insignificant
problem and well worth the necessary effort. A
single binary digit, either 1 or 0, is commonly called
a "bit". The binary number 11011 would therefore
have 5 bits.

d. The Octal Number System

The octal number system contains the

PROGRAMMING
MANUAL

GE412

admissible symbols 0, 1, 2, 3, 4, 5, 6, and 1.
Therefore, the radix is eight, Applying the octal
number 356 to the pattern of numbers formula to find
the equivalent decimal result we find:

N=(3 x82)+(5x81)+(6x80)

(3x64)+ (5x8) +(6x1)

n

192 + 40 + 6 = 238 (decimal).

Actually an octal digit (0-7) may con-
veniently refer to a group of three binary digits,
since there are eight unique configurations of each
group of three binary digits. For example, (110
101 011)2 = (653)8.

e. Coded Numbers and Letters

A binary coded number expresses each
digit of a number in any system by the binary notation
for each digit of that number. For example, consider
the decimal number 127, which can be written as:

Straight Binary: 1111111 or

Binary Coded Decimal: 0001 0010 0111
v @ O

Other forms of BCD representation are
possible. Note that the straight binary representa-
tion of the decimal number 127 requires only seven
positions, although the binary coded decimal (BCD)
representation of the same number uses twelve posi~
tions. The advantage of BCD is that it is easily
converted position by position from BCD to decimal
or decimal to BCD.

Since alphabetic characters and special
symbols as well as the decimal digits 0-9 are han-
dled by the GE 412, a form of binary notation repre-
senting these characters had to be devised. Common
practice calls for the inclusion of a fifth and sixth
binary digit (in addition to the four bits required to
represent decimal information) to represent each
alphanumeric character. The binary representation
of alphanumeric characters is listed in Appendix B.

2. Binary Arithmetic
a. Addition
Binary addition is really quite simple,

once the rules are learned, because there are so
few combinations possible with only two digits. The

PROGRAMMING
MANUAL

GE412

complete binary, single digit, addition table for A +
B is:

B
+ 0 1
0 0 1
A
1 1 o*

* With a one bit carry.

The one bit carry is roughly equivalent,
in decimal, to the sum 1 + 9 = 0 with a carry of 1 to
the next higher order position. It may also be help-
ful to notice that in counting one place past 001 in the
table of binary integers (which corresponds to the
addition of 1 and 1) gives 010. We can now perform
some examples of binary addition after noting that
1+1+1=1witha 1l bit carry into the next position,
which will sometimes occur.

EXAMPLES
Carries 1 111 11111111
101010 10111000 111111111
+001001 + 101011 + 1
Sum 110011 11100011 1000000000

b. Subtraction

The table for the binary subtraction of B
from A is no more complicated than that for addition:

B
- 0 1
0 0 1*
A
1 1 0

* With a one bit borrowed from the next higher order
to the left.
EXAMPLES
0 0 0001
45 01101 354 1011$0010 44 101100
-25 -11001 -170 -10101010 -34 -100010

20 10100 184 10111000 10 1010

To simplify the operation of the compu-
ter, subtraction is actually done by forming the com-
plement of the subtrahend and then adding the com-
plement to the minuend. This method can be illus-
trated by the following decimal example using the
10's complement of the subtrahend. Notice that the
10's complement of 126, 944 = (1, 000, 000 - 126, 944)
= 873, 056.

Standard Subtraction 10's Complement Subtraction

493,201 493, 201

-126, 944 +873, 056

366, 257 1,366,257
-1, 000, 000
~ 366,257

This may seem to be an exceedingly
difficult way of subtracting two numbers (as, indeed
it is, in decimal). However, in binary, the 2's
complement of the subtrahend is easily obtained
merely by changing all zeros to ones, and ones to
zeros, and then adding a one. Thus, in binary,
notice that the 2's complement of 100010 = (1000000
- 100010) = (011110).

Standard Subtraction 2's Complement Subtraction

101100 101100
-100010 +011110
1010 1001010
-1000000

1010

Note that there is a 1 bit carried out of
the high-order (left) end of the latter sum. This
carry is used to form the correct sign of the result.
In the GE 412, the sign of the number is designated
by a bit in the high order position. A zero in this
position designated a positive number; a one
designates a number in its complement form.
Further, all negative numbers are represented by
the 2's complement of the equivalent positive number.
This will be clearer if we now again do the previous
example, and include the sign bits in the addition.

Example 1. Example 2.
44 0A 101100 -5 1 A 111011
-34 +1A 011110 +7 +0 A 000111
10 0A 001010 2 0 A 000010

The carry out of the sign bit is disregarded. The
"' symbol is used to separate the sign from the
number.

c. Multiplication

This is simply a process of repeated

additions. We can multiply in binary by developing
an appropriate multiplication table and following
a process similar to decimal multiplication.

In binary we have:

- B
x [0 1
010 0
A
1|0 1

For example:

101011
x1011
101011
101011
101011
111011001

Actually in the GE 412, multiplication
is handled as a series of additions of the multipli-
cand and shifts of the product as it is formed.

Each bit of the multiplier is examined in turn; if it
is a one, the multiplicand is added; if it is a zero,
no addition takes place. In either case, the product
that is being formed is shifted one position.

d. Division

This can be carried out in binary by
the same process as decimal; i. e. repeated sub-
traction. For example:

1001 = quotient
1011 / 1101101
1011

10101
1011
1010 = Remainder

As in subtraction, the 2's complement
of the divisor is added repetitively to the dividend to
effect a subtraction. Situations occurring during
multiplication and division when the operands have
unlike signs are handled automatically by the com-
puter.

3. Scale Factors

The position of the decimal point in decimal
arithmetic and the binary point in binary arithmetic,
must be considered in every arithmetic operation,
whether done on paper, with a desk calculator, or by
a computer. Most digital computers, just as desk
calculators, do not have the built-in capability of
keeping track of the binary or decimal point as they
perform arithmetic operations. These machines

PROGRAMMING
MANUAL

GE412

are therefore called fixed point computers. Some scientific digital computers have this built-in capability to
keep track of the point and these machines are called floating point computers. The GE 412 is a fixed point
binary digital computer.

A method of keeping track of the binary point must therefore be devised for the programmer to use.
Locating the binary point relative to one fixed position in the 20 bit words in the GE 412 is an advantageous
method. The fixed position could be anywhere in the word, but once assigned, that position must be used con-
sistantly. In this programming manual the position between the sign bit and bit position number 1 is assigned
as this fixed position used to locate the actual position of the binary point as shown below. The programmer
therefore uses this method to locate the actual binary point in all numbers in the GE 412.

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 18 19

reference point

The binary scale factor, designated by "B", indicates the position of the actual binary point in a word
with reference to this fixed position between the sign bit and bit position 1. For example, the binary equivalent
of (9. 5)10, which is (1001. 1)2, is represented in a 20 bit computer word with a B7, as (040001001100000000000),, .
Since the fixed position is between the sign and bit position 1, the actual binary point is 7 places to the right of
this position. The number therefore has a binary scale factor of 7 (B7). Consider the following examples to
further understand the positioning of binary points and their associated scale factors.

Number in Number in Representation in

Decimal B Binary Computer Word

63.75 9 111111.11 0A0001111111100000000

-63.75 9 -(111111.11) 1A1110000000100000000

496. 19 111110000. 0A0000000000111110000

0.125 -2 .001 0A1000000000000000000

0.5 0 i | 041000000000000000000

496. 21 111110000. 0A0000000000001111100

Notice in the above examples, it is possible for the actual binary point to be positioned outside of the
19 bits of a word. These are the cases where a number has either leading or trailing zeros.

During arithmetic operations, care must be taken in order to position the operands for correct
results of the operation and to prevent overflow, which occurs when the result is too large to be contained in
the arithmetic register at the scale factor used. The following rules apply for keeping track of scale factors
during arithmetic operations.

Operation Condition

Addition The two operands must have equal B's.

Subtraction The two operands must have equal B's.

Multiplication The B of the product is equal to the sum of the B's
of the multiplier and multiplicand.

Division The B of the quotient is equal to the B of the dividend

minus the B of the divisor.

The programmer must know the scale factors of all numbers used in any program at all times, and use
the proper rules to keep track of the scale factors as numbers are used in arithmetic operations.

GENERAL D ELECTRIC

e C:' s

PROGRAMMING
MANUAL

GE412

li. DESCRIPTION OF GE 412 COMPONENTS

The GE 412 Process Computer System shown in
Figure 3, is specially designed for logging, monitor-
ing, and control of industrial processes. The GE
412 System features high speed core storage, mag-
netic drum backup storage, priority program inter-
rupt, over 100 basic computer instructions, and
rugged construction for industrial environments.

A. CENTRAL PROCESSING UNIT

The GE 412 central processing unit is a single
address, stored program, fixed point, binary digital
computer. The central processing unit performs the
computational (arithmetic), storage, and control
functions for the GE 412 System. The units that
make up the central processor are shown in Figure 4.

1. Storage Section

The storage section consists of a high speed
magnetic core storage unit, a backup magnetic drum
storage unit, twobuffer registers, and the associated
address selection circuitry. A group of 20 binary
digits (bits) forms the basic unit of addressable in-
formation, called a word. A word may be used to
store either data, constants, or computer instruc-
tions. When a word is stored in either storage unit,
a parity bit is added, making it 21 bits in length.

This parity bit is used to check the validity of infor-
mation as it is transferred out of storage. The buffer
registers associated with the storage units generate
the parity bit as a word passes into the unit and check
the parity bit as the word passes out of it.

a. High Speed Storage

The high speed storage unit (Figure 5)
employs thousands of tiny magnetic cores, each of
which can be magnetized to represent a binary digit.
Units of 4,096 or 8, 192 words capacity are available
for model 412A systems. Units of 12, 288 or 16, 384
words capacity are also available for model 412B
systems.

b. The Z Register

The Z register is a focal point for in-
formation flowing into or out of high speed storage.
As illustrated in Figure 4, all information passing
between high speed storage and any other unit must
pass through the Z register. Thus the Z register
forms a buffer storage location for one word, which
allows asynchronous devices to share the use of high
speed storage.

c. Automatic Address Modification
Locations

Automatic address modification is
achieved using three locations in high speed core
storage, designated 00001, 00002, and 00003. Words
in these locations contain the address modifiers. The
contents of bit positions 7 through 19 of the words
can be automatically added to the address of an in-
struction in the I register. Bit positions 5 and 6 of
the instruction to be modified specify which one of
the three automatic address modification locations is
to be used. The address portion of the instruction
and the contents of the selected modification location
are sent through the adder where they are added. The
changed address is then returned to the I register
and the instruction is executed. One additional word
time (20 microseconds) is required for automatic
address modification.

d. Backup Bulk Storage

A magnetic drum backup bulk storage
unit (Figure 6) is available in the GE 412 systems to
increase the storage capacity in multiples of 8, 192
words to a maximum of 57, 344 words of backup
storage in model 412A systems or in multiples of
8, 192 words to a maximum of 172, 032 words of
backup storage in model 412B systems.

The magnetic drum is divided into many
tracks with a read-write head associated with each
track. In model 412A systems the drum rotates at
3,600 rpm and each track contains 128 words. In
model 412B systems the drum rotates at.1, 800 rpm
and each track contains 256 words. Since the drum
speed is asynchronous to central processor timing,

a special drum buffer register is provided, through
which the drum storage unit has access to high speed
storage as required for reading or writing operations.
When reading or writing operations are being per-
formed, the drum and the central processor have
access to the high speed unit on a time-sharing basis,
with central processor operations proceeding at
approximately 84% of normal speed. The backup
drum storage may be used for storage of data, tables,
subroutines, or inactive portions of the main pro-
gram as desired. Words are transferred between
drum and high speed storage in blocks of from one

to eight drum tracks at a rate of over 7, 500 words
per second.

e. The W Register

The W register provides a buffer stor-
age means for one word of information. This allows
the asynchronous magnetic drum storage to operate

PROGRAMMING
MANUAL

GE412

cLvy3ao

IVNANVYW
ONIWWVYIOO¥d

Figure 3. GE 412 Process Computer System

with the Z register which is synchronized to central
processor timing. Information flowing between high
speed storage and backup storage passes directly

between the Z register and the drum buffer register.

2. Arithmetic Section

The arithmetic section performs addition,
subtraction, multiplication, and division. It makes
logical decisions concerning the magnitude of num-
bers, algebraic signs, and over accumulations.
Three registers designated A, Q, and B, each 20
bits in length, are used in arithmetic operations.
The A and Q registers can operate independently or
together. When combined, they form a double size
word 38 bits in length plus a sign.

a. The A Register

The A register serves as the accumu-
lator for the central processor. The contents of the
A register may be interrogated for positive values,
negative values, zero, odd, or even numbers in
order to effect program branches. The functions
which the A register performs in the arithmetic
process are the following:

Holds the augend during addition

Holds the sum after addition

Holds the minuend during subtraction

Holds the result after subtraction

Holds the most significant half of the
product after multiplication

Holds the most significant half of the
divident before division

Holds the quotient after division

Holds the most significant half of the
double length word in the execution of all double
length word operations

Holds the word on which extraction is
performed during the execution of the extract in-
struction

Carries the word to be shifted during
various shift instructions

The contents of the A register are dis-
played on the Programming and Maintenance Console
at all times.

b. The Q Register

The Q register acts as an accumulator
when combined with the A register to form a double
length 38-bit word plus sign. This arrangement is
used for all double word length instructions.

+ 1l |a—A—>»f 19 + 1 |e+—Q—» 19

Information flowing from storage into
the Q register must pass through the A register. The
functions which the Q register performs are the fol-
lowing:

Holds the least significant half of the
double length word during the execution of double
length instructions

Holds the least significant half of the
result after multiplication

Holds the least significant half of the
divident prior to division

Holds the remainder after division

Holds the least significant half of the
information to be shifted during double shift instruc-
tions

Can be shifted right or left along with
the N, M, and A registers in special shift instruc-
tions

The contents of the Q register may be dis-
played on the Programming and Maintenance Console
at any time.

c. The B Register

The B register serves as a one word
buffer storage means between the arithmetic and
control sections and the Z register. All information
flowing from high speed storage via the Z register to
other internal registers passes through the B regis-
ter. The B register is used to hold the operand of
arithmetic operations after the operand has been
accessed from high speed storage. The high speed
storage unit and the Z register may then be used for
other functions at the same time as the execution of
instructions that do not require an operand from
storage, such as shifting and branching instructions,
or instructions that require more than one word time
for execution, as do multiply and divide. This allows
the transfer of information between high speed stor-
age and backup storage to take place at the same
time the central processor is executing instructions.
The B register has the following functions during
arithmetic operations:

Holds the addend for addition

Holds the subtrahend for subtraction
Holds the multiplicand for multiplication
Holds the divisor for division

The contents of the B register may be
displayed on the console at any time.

3. Control Section

The control section governs the sequential
execution of the individual instructions of the stored
program. It consists of three registers for automatic

PROGRAMMING
MANUAL

GE412

control, automatic priority program interrupt, and
a programming and maintenance console for manual
control.

a. TheI Register

The I register is the instruction regis-
ter. It holds the 20 bits of an instruction during the
execution of that instruction.

0 4 5 67 19

Operation
Code

Operand

x X Address

Bit position 0 through 4 indicate the
operation which is to be performed. Bits 5 and 6
refer to the automatic address modification location
to be used, if any. Bit positions 7 through 19 refer
to the operand storage address in instructions that
require an operand from memory; or, when an oper-
and address is not required, these bits have various
meanings, as indicated in the instruction repertoire.

The contents of the I register are dis-
played on the console at all times.

b. The P Register

The program address register (P regis-
ter) is the location which controls the sequential exe-
cution of instructions. It holds the memory address
of the next instruction to be executed. The P regis-
ter is incremented by one before the execution of an
instruction so that it normally contains the address
of the next instruction in sequence. The 13 (model
412A) or 14 (model 412B) bits of the P register are
displayed on the console at all times. The contents
of this register may be stored in a specified auto-
matic address modification location; and it may be
loaded directly from the I register.

¢. Automatic Priority Program Interrupt

The automatic priority program inter-
rupt feature permits execution of functions according
to their planned priority. It allows the computer to
keep under constant surveillance critical points in a
process without consuming valuable computer time
by constantly scanning these points. This feature
enables the computer to immediately recognize the
random occurrence of critical conditions and
promptly take whatever action may be necessary.

The basis of the automatic interrupt is
the priority interrupt register. This is a 12 bit reg-
ister divided into three priority groups, each group
having 4 interrupt levels. Each interrupt source is
associated with a bit in the interrupt register. The
program can enable Group I, Groups I and II, and

PROGRAMMING
MANUAL

GE412

10

Groups I, II, and III to be interrupted. After ena-
bling certain groups, the program can then permit or
inhibit an automatic program interrupt. When an in-
terrupt occurs, the contents of the P register are
stored in core storage location (0006)8 the contents
of the A register are stored in location (0007)g and
control is transferred to the instruction in location
(0007)g plus the priority of the interrupt, (1 through
12). If the source of the interrupt was from priority
level 2, then control is transferred to the instruction
in location (0011)g.

d. The Programming and Maintenance
Console.

The programming and maintenance
console shown in Figure 7 provides the indicating
control center for the programmer and product ser-
vice engineer. It permits manual control in contrast
to automatic or program control. Manual control is
used to initially load the program into memory, start
program execution, monitor the progress of the pro-
gram, and occasionally stop the program for main-
tenance and trouble shooting. The central process-
or's operating status can be seen from the display
lights on the console panel. The lights show the
contents of the A register, the I register, and the P
register. Twenty switches on the console permit
direct loading into the A register. The console has
parity and overflow alarm lights and an automatic-
manual lockout switch. The console has other in-
dicating lights and a switch for selection and display
of other registers in the computer.

4. Peripheral Section

The peripheral input-output devices such as
the paper tape readers, paper tape punches, and
typewriters operate much slower than the internal
speed of the computer. The M and N registers are
provided as one-character buffer registers to allow
the slow input- output devices and the central proc-
essing unit to operate simultaneously. The contents
of the M and N registers are transferred to and from
the A register by shifting. These registers are 7
bits in length and store the binary-coded representa-
tion of one character as it is typed or punched, or as
the character is read from the paper tape reader.
This technique allows two peripheral devices and the
central processing unit to operate simultaneously
without loss of time or facility.

5. Special Real-Time Features

Process computer systems require special
facilities not normally found in computer systems.
These facilities allow the process computer system
to operate efficiently on a real-time basis, being
continuously aware of the actual time of day and
elapsed time intervals.

11

cLvyao

IVANYW
ONIWWVYIOOUdd

Magnetic

Controller

Drum Selector
Memory
A
YV
Drum ‘Y] Core
Address Regist Address <
Decoding eg1? er Decoding
Parity Y \
Check & »! 7 Register »>| B Register P Register
Generate
A / A AP A
C . ! ‘ Inst
ore . nstruction
Memory A.U o [Register Decoding
A
Y 1 L y
Time . .
Counters A Register Q Register
A A
| Y
M Register N Register 1/0 Buffer Digital Clock
I I A A
Peripheral Peripheral
Equipment Equipment Console
Scanner
DDA
DFS

1/0 Equipment

Figure 4. Information Flow in the GE 412

phsatetpsibatieritiy

Figure 5. High Speed Storage Unit Figure 6. Backup Storage Unit

BISETAL EAMETER S¥

Figure 7. GE 412 System’s Programming and Maintenance Console

PROGRAMMING
MANUAL

GE412
12

a. Real-Time Clock

A 24-hour real-time solid state digital
clock is provided as an integral part of the GE 412
System. Six binary-coded-decimal characters rep-
resenting hours, minutes, and seconds may be
transferred from the digital clock directly into the
A register by a computer instruction. The digital
clock derives its timing directly from a 60 cycle
a-c source in the computer. Manual clock reset
pushbuttons are provided to set time into the clock
originally.

b. Elapsed Time Counters

The GE 412 System provides four
elapsed time counters capable of counting elapsed
time intervals under program control. Intervals
from 3.2 milliseconds to over four hours can be
timed by the elapsed time counters. Timing incre-
ments of 3.2 milliseconds, 16.7 milliseconds, one
second, and one minute may be used by the counters.
They are 8 bits in length, thus capable of counting up
to 256 increments of time before overflowing. The
overflow of a counter can be sensed by a branch in-
struction in the program or sent to the automatic
priority program interrupt register to automatically
interrupt the program. A counter is initiated by
transferring a control word to the selected counter
directly from the A register under program control.
The control word specifies the interval to be timed,
the interrupt status, and the time increment to be
used. The four elapsed time counters are therefore
under direct control of the program and afford great
flexibility in elapsed time counting.

B. PERIPHERAL INPUT-OUTPUT EQUIPMENT

Peripheral input-output equipment consists of
the digital devices used by the process operators,
programmers, and product service engineers for
communication with the central processing unit.
They are used in loading, checking, and modifying
the computer programs. Information flowing to and
from the peripheral devices goes through the M and
N registers.

1. Paper Tape Readers

Two types of readers are used for input
with the GE 412 System. The high speed paper tape
reader reads 8-channel punched paper tape at a rate
of 100 characters per second. Computer instruc-
tions, data, constants, and other information may be
read into the computer one character at a time from
the reader through the M or N register. The low
speed paper tape reader is identical to the high speed
reader except that it reads at a rate of 20 characters
per second.

13

2. Paper Tape Punches

Two types of punches are used for output
with the GE 412 System. The high speed paper tape
punch produces standard 8-channel paper tape codes.
It is capable of punching at a rate of 100 characters
per second. The low speed paper tape punch is
identical to the high speed punch except that it oper-
ates at a rate of 20 characters per second.

3. Electric Typewriters

Several types of output typewriters are
available for the GE 412 System. They include vari-
ations of standard IBM and Friden machines which
operate at average rates of about 8 characters per
second and the IBM Selectric typer which operates
at about 15 characters per second. Variations in-
clude alphanumeric and numeric typesets and 12,

20, and 30-inch carriages.

C. SYSTEM INPUT-OUTPUT EQUIPMENT

Many types of equipment are provided as optional
devices in the GE 412 System. The exact comple-
ment of equipment used in a particular system is
governed by the requirements of the process.

1. System Operation Input-Output Equipment

The system operation input-output equip-
ment is used mainly in communication between the
GE 412 System and the operator or operators of the
process.

a. Operator Console

The operator console provides a means
for communication between the operator and the
process via the computer. Various types of consoles
are available, depending on the functional require-
ments of the system. See Figure 8.

b. Parallel Entry Column Printer

The parallel entry column printer per-
mits line-by-line printout of 11 numeric characters
per line under program control. A printing speed of
five lines per second is possible. It is primarily
used to print alarm values, but may be used to log or
tabulate other selected values. The printer may be
located as far as 50 feet from the central processor.

c. Serial Entry Column Printer

The serial entry column printer is used
for the same functions as the parallel entry column
printer. This printer prints 10 characters per line
at a rate of one line per second.

PROGRAMMING
MANUAL

GE412

Figure 8. Typical Operator’s Console, General Purpose Type

d. Stack Fed Card Reader

The stack fed card reader is an input
device which reads alphanumeric information into the
computer from Hollerith punched cards at a rate of
30 cards per minute. The reader is stack fed and
has both feed-check and out-of-cards check.

e. Single Entry Card Reader

The single entry card reader reads
alphanumeric information into the computer from
Hollerith punched cards at an average rate of 9.5
characters per second. The cards are manually
placed in the reader one at a time.

PROGRAMMING
MANUAL

GE412

14

f. Trend Recorders

The GE 412 System may incorporate
both graphic (analog) and tabular (digital) trend re-
corders. Under program control digital characters
may be transmitted to tabular recorders or analog
signals may be transmitted to drive graphic record-
ers. Graphic recorders range from one single-
colored pen recorder to variable-colored multipen
recorders.

2. Process Input-Output Equipment
Process input-output equipment is used for

communication between the process and the GE 412
System.

a. The Scanner-Distributor

The scanner-distributor is the major
communication device used for communication be-
tween the process and the computer. It mates the
GE 412 System to process instruments and control-
lers for on-line process control computing. The
exact employment of the scanner-distributor is de-
pendent upon the requirements of the process, but
flexibility and facility make it compatible with
almost any process sensing or controlling equipment.
The scanner-distributor has two basic modes of
operation: analog-to-digital (input), and subcontrol
(output).

Selection of a unique pair of contacts to
sense the output analog signal from a sensor, or
selection of a unique contact through which to distri-
bute a voltage is accomplished with a mercury-
wetted relay matrix multiplexer. The relay matrix
is available in sizes from 96 to 1536 pairs of con-
tacts. The position of the desired pair or individual
contact in the relay matrix is specified by a control
word transferred from the computer to the scanner-
distributor. This matrix address is then decoded by
the control circuits of the scanner-distributor and the
specified pair of contacts or individual contact
selected.

(1) Analog-to-Digital Mode. As an
input device operating under program control, the
scanner-distributor selects one of the many analog
inputs from sensors to be scanned. It then converts
this analog signal to binary digital form for use in
the computer. The characteristics of this analog
sensor signal such as matrix address, polarity, and
range are specified by a command word supplied to
the scanner-distributor by the computer. Once the
scanner-distributor receives this command word, it
executes the operation independently of the computer,
and thus frees the computer to perform other tasks.
The digital equivalent of the analog input signal is
placed in the converter register. The contents of
this register may then be read directly into the A
register of the central processor.

The selection and digitizing of an
analog sensor input may be accomplished at one of
two rates selected under program control for each
input. At the lower rate, which yields 12-bit con-
version accuracy, it requires about 125 milliseconds.
At the higher rate, yielding 10-bit conversion ac-
curacy, it requires approximately 50 milliseconds.
Thus the normal maximum rate of scanning is 20
points per second. If higher scanning rates are de-
sired, they may be achieved through the use of
multiple input channels, with a maximum rate of 114
points per second possible with 8 input channels.

15

If the full-size relay matrix does
not provide sufficient input or output capability, up
to five distinct scanner-distributors may be con-
nected into the GE 412 system.

(2) The C Register. The C register or
converter register is physically part of the analog-
to-digital converter; it has two functional purposes.
While functioning as an integral part of the analog-
to-digital converter, the C register holds the "count"”
proportional to the input analog voltage. The count
range is 0 to 4095 and is indicated in 12 bit positions
of the register. In its other function, the C register
serves as a 12-bit computer output register. Acting
as an output buffer, it holds setup information for
electronic or relay drivers for performing such
operations as resetting analog outputs or updating
visual displays.

(3) Subcontrol Mode. The scanner-
distributor functions as a distributor when it allo-
cates or distributes a selected voltage signal to a
selected system or process device. The selected
voltage to be distributed, the duration of distribution,
and the desired relay matrix address is specified in
the command word transferred to the scanner-
distributor from the computer. Using subcontrol
mode of operation, the scanner-distributor can acti-
vate many operations. It can activate the conversion
of a binary number stored in the C register to an
analog signal to be applied to a process controller or
trend recorder. It can activate the read-in of digital
switches, digital counters, special digital sensors,
and similar devices. It can also open or close a
relay in order to turn on or off equipment such as
motors or pumps. Designated voltages may also be
used to step a stepping-switch control device.

b. Output Distributor

In applications such as fully-automated
hot strip steel mills, which require large numbers
of system outputs (subcontrol functions) in addition
to relatively large or fast input scanning require-
ments, it is advantageous to separate the two func-
tions. This is possible through the use of the output
distributor, which performs essentially the same
functions as the subcontrol mode of operation of the
scanner distributor. The output distributor has its
own independent matrix of 128 or 256 relays and
thus operates entirely independently of the scanner.

c. Fast Digital Scanner

The fast digital scanner is an input de-
vice which samples the open-closed status of sensor
contacts selected at random in groups of 16. A maxi-
mum of 64 groups, or 1024 contacts may be scanned

PROGRAMMING
MANUAL

GE412

by the fast digital scanner. It is used where it is
desirable to sense the open-closed positions of con-
tacts at electronic speeds. Typical applications are
the scanning of two-condition elements such as high-
low pressure or temperature sensors, open-closed
valve positions, on-off status of motors or pumps,
and brakes open or closed. If required, up to five
separate and independent fast digital scanners may
be used in one GE 412 system.

d. Digital Data Accumulator

The digital data accumulator is an in-
put device used to temporarily accumulate digital
sensor information before it is transferred into the
computer for processing. Accumulators are avail-
able that count up to 65, 535 pulses. Using the
digital data accumulator it is possible to count such
things as prime feet, damaged feet, off-gage feet,
and off-color feet of steel being processed in a con-
tinuous strip, or kilowatt-hour counts, flow meter
pulses, or counts from a coal weighing scale in
steam electric plants. The accumulations are then
read into the computer and used to up date cummula-
tive totals. If required, up to five separate and

independent digital data accumulators may be used
in one GE 412 system.

e. Digital-to-Analog Converter

The digital-to-analog converter pro-
vides an analog equivalent to a digital value. Typi-
cal applications are the computation of an optimum
set point for a process controller or regulator and
the transmission of this set point in the form of an
analog signal to the controller. The scanner-
distributor and the C register are used in conjunc-
tion with the digital-to-analog converter to accom-
plish this type of output.

f. Thermocouple Reference Unit

A thermocouple cold reference junction
is available for applications which use thermocouples
as sensors. The reference is of a special GE float-
ing design which provides an extremely accurate
temperature measurement. The computer program
can use this cold reference termperature in lineariz-
ing the output voltages from thermocouples to com-
pute the actual temperature measured by the thermo-
couple.

GENERAL@D ELECTRIC |

BIGITAL coMPUT

PROGRAMMING
MANUAL

GE412

16

Ill. PROGRAMMING FUNDAMENTALS

The GE 412 System has over 100 instructions used to control the operation of the computer and its various
input/output devices. This section of the Programming Manual describes each of these instructions in detail
and includes illustrations of their usage.

Each instruction is represented within the central processor by a specific pattern of 20 binary digits (bits),
which when brought into the I register is decoded to control the required sequence of internal operations, but
for programming convenience each instruction has been assigned a three-letter mnemonic code. Many of the
instructions require, and include in their bit patterns, the specification of one or more operands such as the
memory location (address) of a piece of data, a constant indicating the number of places a number is to be
shifted within a register, or which index location is to be used to modify an instruction. Each different kind of
operand has been assigned a specific letter for convenience in describing the instructions.

The instruction descriptions which follow consist of two parts. The heading is a brief symbolic description
made up of the mnemonic code, the letters specifying the required operands, the execution time in multiples of
the computer word time (20 microseconds), and the octal representation of the binary command as it exists in
the computer. The execution time given includes the time required to extract the instruction itself from mem-
ory, place it in the I register, and decode it.

Below the heading description is a more detailed description of the effect produced by the execution of the
instruction. These detailed descriptions make use of the following conventions and terminology.

Single-letter abbreviations refer to registers or, in the case of the letter Y, to a memory location.
For example, A refers to the A register.

Single letters in parentheses preceded by the letter C refer to the contents of the register speci-
fied by the letter within the parentheses. For example, C(A) is to be read as "the contents of the
A register."”

Subscripts are used to refer to only part of a register or of the contents of a register. For example,
I7_19should be read as "bits 7 through 19 of the I register.”" C(I)7_19 should be read as "the con-
tents of bits 7 through 19 of the I register." As, 1-41s equivalent to Ag_4.

The word "'cleared', when used in reference to a register or part of a register, means that the
contents of the specified register or part of a register are reset to zero.

In all instructions involving the extraction of a word from storage, the word in storage remains
unchanged. Likewise, in all instructions involving the transfer of information from one register
to another or to storage, the contents of the register from which the information is transferred
are unchanged unless the instruction description specifically states otherwise.

Unless the instruction description specifically states otherwise, all instructions may be automatically
modified.

The following table summarizes the use of the various letter designations for registers in the instruc-
tion descriptions.

Letter Designation No. Bits Bit Positions
A Primary Arithmetic Register 20 s, 1-19 or 0-19
Q Auxiliary Arithmetic Register 20 s, 1-19 or 0-19
M Peripheral Register 7 1-7
N Peripheral Register 7 1-7
H Peripheral Register 44 0-43

PROGRAMMING
MANUAL

GE412
17

Letter Designation No. Bits Bit Positions

X* Auto. Add. Modification Location 13/14 7-19/6-19
I Instruction Register 20 0-19
P Program Address Register 13/14 7-19/6-19
C Converter Register 12 8-19

*Actually designates specific memory location rather than a register.

Appendix E summarizes the various instruction formats and
letter designations used in specifying operands in the instruction
definitions.

A. INTERNAL EFFECT INSTRUCTIONS

Internal effect instructions are those that control the operation of all of the internal registers and com-
ponents of the GE 412 Process Computer System.

1. Data Transfer and Arithmetic Instructions

Data transfer and arithmetic instructions facilitate the movement of data between core storage and the
registers in the arithmetic unit. These instructions require an operand address to specify the particular place
in core storage that contains the data that is to be used as the operand of this instruction. The octal operation
code shown in the heading of each instruction is only two octal digits and is representative of bits positions 0
through 4 of the instruction, see I register format page 11.

a. Data Transfer Instruction Definitions

LDA Y 2 00

LOAD A. C(Y) Replace C(A). Y is not changed.

STA Y 2 03

STORE A. C(A) Replace C(Y). A is not changed.

DLD Y 3 10

DOUBLE LENGTH LOAD. If Y is even, the (C(Y) and C(Y+1) replace C(A) and C(Q). If Y is odd, C(Y) replace
C(Q) and C{A). Y and Y+1 are unchanged. If this instruction is automatically modified, the address after modi-
fication determines the result as indicated above.

DST Y 3 13

DOUBLE LENGTH STORE. If Y is even, C(A) and C(Q) replace C(Y) and C(Y+1). If Y is odd, C(Q) replace
C(Y). The contents of A and Q are unchanged. If this instruction is automatically modified, the address after
modification determines the result as indicated above.

STO Y 2 27
STORE OPERAND ADDRESS. C(A)7_19 replace C(Y)7_19. C(A) and C(Y)s 1-6 are unchanged.
?

PROGRAMMING
MANUAL

GE412
18

b. Arithmetic Instruction Definitions

The capacity of the A register may be exceeded in the execution of add and subtract instructions,
resulting in a condition known as "overflow'. When this happens, the overflow indicator is turned on, the high
order (most significant) bit of the result is lost, and the sign of the result is reversed. This overflow condition
may be sensed by the program and the result corrected. (Sensing is described under BOV of Section III 5b.)

ADD Y 2 01

ADD. C(Y) are added algebraically to C(A). The result is placed in A. C(Y) are unchanged.

SUB Y 2 02

SUBTRACT. C(Y) are algebraically subtracted from C(A). The result is placed in A. C(Y) are unchanged.

DAD Y 3 11

DOUBLE LENGTH ADD. If Y is even, C(Y) and C(Y+1) 1_1g are algebraically added to C(A) and C(Q1-19- I
Y is odd, C(Y) and C(Y){_1g are algebraically added to C(A) and C(Q)1-19- The result is placed in A and
Q1-19. The result is placed in A and Q1-19. The sign of Q is set to agree with the sign of A. C(Y) and
C(Y+1) are unchanged. If this instruction is automatically modified, the address after modification determines
the result as indicated above.

DSU Y 3 12

DOUBLE LENGTH SUBTRACT. If Y is even, C(Y) and C(Y+1)1_19 are algebraically subtracted from C(A) and
C(Q)1-19. If Y is odd, C(Y) and C(Y);_1g are algebraically subtracted from C(A) and C(Q)1-19- The result is
placed in A and Q1_19. The sign of Q is set to agree with the sign of A. C(Y) and C(Y+1) are unchanged. If
this instruction is automatically modified, the address after modification determines the result as indicated
above.

MPY Y 13-18 15

MULTIPLY. C(Y) are algebraically multiplied by C(Q). The result is placed in A and Qg_1 with the most
significant half in A. The sign of Q is the same as the sign of A after multiplication. If C(A) are not set to
zero before the MPY command is given, C(A) are added algebraically to the least significant half of the product.
Thus, with proper scaling, it is possible to form the value ab + c. C(Y) are unchanged. The overflow indicator
is turned off by this instruction. The execution time is determined by the bit pattern of the multiplier (the num-
ber in the Q register). The following rule-of-thumb will give the execution time for any specific case: Starting
with a base time of 12-1/2 word times, add 1/4 word time for each 1 bit in the multiplier exclusive of the sign
bit. Any fractional word time in the result should be taken as a full word time.

DVD Y 25, 28 16

DIVIDE. C(A) and C(Q)1.1g are algebraically divided by C(Y). The quotient is placed in A; the remainder is
placed in Q. The sign of the remainder is the sign of the dividend. The overflow indicator is turned off at the
beginning of the execution of this instruction. The magnitude of the divisor must be greater than the magnitude
of A. If not, the overflow indicator is turned ON and control is immediately transferred to the next instruction
in sequence. C(Y) are unchanged. Execution will require 25 word times if the dividend is positive, 28 word
times if the dividend is negative.

PROGRAMMING
MANUAL

GE412
19

c. Examples of Data Transfer and Arithmetic Instructions

(1) Sum the numbers stored in octal locations 11500 and 11501 that have equal scale factors and
store the sum in location 03000. Start the program in octal location 02000.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
02000 LDA 11500 0011500 Load C(11500) into A
02001 ADD 11501 0111501 Add C(11501) to A
02002 STA 03000 0303000 Store sum
02003 next instruction

(2) Sum the double precision number in locations 12550 (upper half) and 12551 (lower half) to the-
double precision number in locations 12560 and 12561, store the sum in octal locations 12000 and 12001. The
numbers have equal scale factors. Start program in octal location 17700.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
17700 DLD 12550 1012550 Load A & Q with 1st number
17001 DAD 12560 1112560 Add to A & Q second number
17702 DST 12000 1312000 Store double length sum
17703 next instruction

(3) Solve R =X+ Y - Z starting the program in octal location 01006.

Location Data B(scale factor)
04000 X 5
04001 Y 5
04002 Z 5
04003 R 5
Actual Form
Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
01006 LDA 04000 0004000 Load A with X
01007 ADD 04001 0104001 Add Yto X
01010 SUB 04002 0204002 Subtract Z from X +Y
01011 STA 04003 0304003 Store R
01012 next instruction

2. Register Manipulation Instructions

The register manipulation instructions are used to transfer information from one register to another,
change the contents of a particular register, or otherwise cause actions in the registers that do not involve
operands from core storage. Since no operand address need be specified, bits 0 through 4 and 7 through 19
specify the operation code. The octal code in the heading of these instructions is given as a 7 digit octal number
equivalent to the 20 binary bits of the instruction. These instructions are not normally modified by use of an
X location.

a. Register Manipulation Instruction Definitions

LQA 2 2504004
LOAD Q FROM A. C(A) replace C(Q). C(A) are unchanged.

PROGRAMMING
MANUAL

GE412
20

LAQ 2 2504001

LOAD A FROM Q. C(A) replace C(A). C(Q) are unchanged.

XAQ 2 2504005

EXCHANGE A AND Q. C(A) and C(Q) are interchanged.

MAQ 2 2504006

MOVE A TO Q. C(A) replace C(Q). Zeros replace C(A).

LDZ 2 2504002

LOAD ZERO INTO A. A is loaded with zeros.

LDO 2 2504022

LOAD ONE INTO A. A is cleared, and a "1" is placed in Aqg.

LMO 2 2504102

LOAD MINUS ONE INTO A. A is loaded with "1's".

ADO 2 2504032

ADD ONE. Plus one is added algebraically to Aqg. If the capacity of A is exceeded, the overflow indicator is
turned ON.

SBO 2 2504112

SUBTRACT ONE. One is subtracted algebraically from Aqg. If the capacity of A is exceeded, the overflow
indicator is turned ON.

CPL 2 2504512

COMPLEMENT A. Each bit in A is inverted; that is, each ""1" is replaced by a zero and each zero is replaced
by l'll'.

NEG 2 2504532

NEGATE A. The 2's complement (negative value) of C(A) replaces C(A). If the capacity of A is exceeded, the
overflow indicator will be turned ON.

CHS 2 2504040

CHANGE SIGN OF A. The sign of A is changed. Positions 1-19 of A are unchanged.

PROGRAMMING
MANUAL

GE412
21

NOP

NO OPERATION. No operation is performed.

2504000

b. Examples of Use of Register Manipulation Instructions

(1) Solve R = (XY) + 1.

Location
07007
07010
07011
Location of Operation
Instruction Code
05000 LDA
05001 MAQ
05002 MPY
05003 ADO
05004 STA
05005 next instruction

(2) Solve R =%+ Z. Start program in octal location 00500.

Data

=V

Operand
Address

07007
07010

07011

Start program in octal location 05000.

B
8

11

19

Actual Form
of Instruction
in Octal

0007007
2504006
1507010
2504032
0307011

Range

1<X<200
1<Y<1000
2<R<200, 001

Remarks

Load A with X(B8)
Move X to Q(B8)

(X-Y) in A and Q B19.
(X+Y)+1 in A and Q B19.
Store upper significant
half of (X-Y)+1

Location Data B Range
01500 X 18 0<X<100, 000
01700 Y 10 500<Y<1000
01777 Z 8 Z = 1 (constant)
02100 R
Actual Form
Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
00500 LDZ 2504002 Zero A and Q since
00501 MAQ 2504006 numerator is single length.
00502 LDA 01500 0001500 Load A with X B18
* 00503 DVD 01700 1601700 Divide X by Y, B8
00504 ADD 01777 0101777 Add Z to X/Y, B8
00505 STA 02100 0302100 Store result, B8
00506 next instruction

*Note absolute form of the maximum size of X in the A register is less than the absolute form of minimum value
of Y in storage and therefore the divide instruction will not cause overflow. (100, 000)10=(303240)8 (500)10=(764)8

040110000110101000000
040111110100000000000

A Register = X B18
Core Storage = Y B10

Absolute binary form X< absolute binary form of Y.

PROGRAMMING
MANUAL

GE412
22

3. Logical Instructions
Logical instructions are used to extract, compare, combine, or otherwise logically operate on infor-
mation. Like the arithmetic instruction they require data from core storage in the form of comparison con-
stants, extraction mask, etc. They must then include an operand address within the instruction.

a. Logical Instruction Definitions

ORY Y 2 23

OR A INTO Y. Each bit of A is examined. If there is a '"1" bit in A in a given position, a '"1" bit is places in
Y in that position. C(A) and the other bit positions of Y are unchanged.

EXT Y 2 20

EXTRACT. Each bit of Y is examined. If there is a '"1'"" bit in Y in a given position, a zero is placed in the
corresponding position of A. If there is a zero in a given position of Y, the corresponding position in A is left
unchanged. Y is unchanged.

ANA Y 2 22

AND Y TO A. Corresponding bits of A and Y are compared. If the corresponding positions in both A and Y
contain a ""1'"", a "1" is placed in that position of A. If either contain a zero, a zero is placed in that position
of A.

ERA Y 2 21

EXCLUSIVE OR TO A. Corresponding bits of A and Y are compared. If the corresponding positions in A and Y
are alike, a zero is placed in that position of A. If they are unlike, that position is set to a "'1".

b. Examples of Logical Instructions

Extract only bits 10 through 19 out of location 11000 and combine them with the information in location
12150 bits 0 through 9. Store combination in location 12151.

Location Data
11000 Bits 10 through 19 important
12150 Bits 0 through 9 important
12151 Combination
10000 Constant (0001777)

1 bits in positions 10 through 19.

Actual Form

Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
01500 LDA 11000 0011000 Load A with C(11000)
01501 ANA 10000 2210000 And out bits 10 through 19
01502 STA 12151 0312151 Store temporarily
01503 LDA 12150 0012150 Load A with C(12150)
01504 EXT 10000 2010000 Extract bit 0 through 9
01505 ORY 12151 2312151 Combine with bits 10 through
01506 next instruction 19 of location 12151

PROGRAMMING
MANUAL

GE412
23

4. Shift Instructions

The shift instructions shift the contents of the A register to the right or left serially (bit by bit) either
alone or with C(Q); they shift C(A) and C(Q) serially to the right with C(M) and/or C(N); they shift C(A) serially
to the right with both C(M) and/or C(N). A maximum number of 31 places can be shifted; and this number is
specified by bits 15 through 19 of the shift instruction. The execution time for shift instructions vary between
2 and 10 word times, depending on the number of shifts specified. Two word times are required for a shift of

2 bit positions or less. One additional word time is required for each additional 4 bit positions shifted or frac-
tion thereof.

Shift instructions take advantage of a micro-coding technique in specifying the instruction. Bits 0
through 4 of shift instructions specify the standard shift code and bits 7 through 14 are assigned special signifi-
cance to further define the exact type of shift to be accomplished.

The format below indicates the significance of these bits for all right shift instructions. For example,
the micro-coding for a shift A into N instruction is a one bit in position 11 and zeros in positions 7, 8, 9, 10,
12, 13, and 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 1 0 0 X X 0 N-»AMAIQ#A|A»N(A®M|A-Q|A»Al= K >

The significance of the micro-coding bits in shift left instructions is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
Log-{Normal-
1 0 1 0 0 X X 1 Q-»A A-A ical lize i: K >

The normal shift instruction have been assigned mnemonics as described in the following section, but
for special operations the programmer may combine the micro-coding bits to specify a very special kind of
shift instruction. These infrequently used special instructions have not been assigned mnemonics. The shift
instructions involving the M and N registers are described in section (I. B.1.). In the octal codes shown for all
shift instructions the value of K is zero.

a. Instruction Definitions

SRA K 2+ 2400000

SHIFT RIGHT A. C(A)j.1g are shifted right K places. I A is plus, zeros are inserted in the vacated positions.
If A is minus, "1's" are inserted in the vacated positions. Bits shifted out of position 19 are lost. The sign of
A is unchanged.

S—»1 A 19 I |

Lost

SLA K 2+ 2410000

SHIFT LEFT A. C(A)1_19 are shifted left K places. Vacated positions of A are filled with zeros. If the sign
of A is positive, the overflow indicator will be turned on if a "one" bit is shifted out of A. If the sign of A is
negative, the overflow indicator will be turned on if a "zero" bit is shifted out of A. The sign of A is unchanged.

S 1 A 19 je—0's

Lost

PROGRAMMING
MANUAL

GE412
24

SCA K 2+ 2400040

SHIFT CIRCULAR A. C(A)l_lg are shifted right K places in a circular fashion; that is, the bit shifted out of
position 19 is inserted in position 1, replacing the bit shifted out of position 1. The sign of A is not affected.

S 1 A 19

SRD K 2+ 2400100

SHIFT RIGHT DOUBLE. C(A){_;g and C(Q)1_19 together are shifted K places to the right. Bits shifted out of
Aqg shift into Q. Bits shifted out of Qg are lost. If the sign of A is plus, zeros fill the vacated positions; if
the sign of A is minus, "1's" fill the vacated positions. The sign of Q is replaced by the sign of A. The sign
of A is unchanged.

S—t»1 A 19 S 1 Q 19 _'l

A Lost

SLD K 2+ 2411000

SHIFT LEFT DOUBLE. C(A)j_1g and C(Q)1.19 together are shifted K places to the left. Bits shifted out of Q
shift into A1g. The vacated positions of Q are filled with zeros. If the original sign of A is positive, the over-
flow indicator will be turned on if a "one' bit is shifted out of A. If the original sign of A is negative, the over-
flow indicator will be turned on if a "zero' bit is shifted out of A. The sign of Q replaces the sign of A. The
sign of Q is unchanged.

' l

S 1 A 19 S 1 Q 19 |=—0's
1
Lost { I
SCD K 2+ 2401100

SHIFT CIRCULAR DOUBLE. C(A);_1g and C(Q);_1g together are shifted K places to the right in a circular
fashion. Bits shifted out of Aqg shift'into Q; and those from Qjg shift into Aj. The sign of A replaces the sign
of Q. The sign of A is unchanged.

] v

S 1 A 19 S 1 Q 19

PROGRAMMING
MANUAL

GE412
25

O0QA K 2+ 2401040

OR QINTO A. C(A)1-19 and C(Q)1-19 are each shifted K places to the right. Bits shifting out of A 19are
combined in an "or" fashion with the bits shifting out of Q 19 and the result placed in Aj;. The sign of Q replaces
the sign of A. The sign of Q is unchanged and zeros shift into the vacated positions of Q. Note that if a K of 19
is specified the C(A)1_1g and the C(Q)1_19 are combined in an "or' fashion.

l v
s |1 Q 19 s |1 A 19
A)
0's —— »| or |
SQA K 2+ 240100

SHIFT Q TO A. C(Q)1_1g and C(A);_19g are shifted K places to the right. Bits shifted out of Qg shift into Ay.
Bits shifted out of Aig are lost. The sign of Q replaces the sign of A. The sign of Q is unchanged. Zeros
replace the vacated positions of Q.

I v

S 1 Q 19 S 1 A 19 ‘
0's ——J L { Lost
NOR K 2+ 2410040

NORMALIZE A. Aj_1g are shifted left K places or until Ay # Ag. The value (Kminus the number of places
shifted) is placed in C(00000)15_19- Zeros replace the vacated positions of A. The sign of A is unchanged.
The C(00000)0_14 are set to zero. This operation is a single-length arithmetic normalize and may be indexed.

s |1 A 19 je—20's
Y

"'sign like' bits

DNO K 2+ 2411040

DOUBLE LENGTH NORMALIZE. Aj_1g and Qq_1g are shifted left (with Q moving to A1g) K places or until
A1 # Ag. The value (K minus the number of places shifted) is placed in C(00000)15_19. Zeros replace the
vacated positions of Q. The signs of A & Q are unchanged. C(00000)0_14 are set to zero. This operation is
a double-length arithmetic normalize and may be indexed.

S 1 A 19 S 1 Q 19 |[«—0's

' “

"sign like' bits

PROGRAMMING
MANUAL

GE412
26

LLA K 2+ 2410100

LOGICAL LEFT A SHIFT. Ag._1g are shifted K places to the left. Zeros are shifted in through the low-order
part of the register. Bits shifted out of the high-order of the register are lost. The overflow flip-flop is not
set by this shift.

r S 1 A 19 («—0's

Lost

LLD K 2+ 2411100

LOGICAL LEFT DOUBLE SHIFT. Ag_1g and Qq_19 are shifted K places to the left. Zeros are shifted in
through the low-order part of the Q register. Bits shifted out of the high-order part of the A register are lost.
The overflow flip-flop is not set by this shift. The sign of Q is unchanged.

r— Se—1 A =19 S 1 Q 19 [+—0's
Lost {

LLC K 2+ 2410300

LOGICAL LEFT CIRCULAR SHIFT. Ag_jg are shifted K places to the left in a circular fashion. Ay shifts
into Ayg, Aq shifts into Ag. The overflow flip-flop is not set by this shift.

Se—1 A =—]9 |«

b. Examples of Shift Instructions

(1) Solve R = (X-Y)/Z and start program in location 15555.

Location Data B Range
17000 X 10 100<X<1000
17001 Y 12 1<Y<4000
17002 Z 10 100<Z<500
17003 R 16 0. 2<R<40, 000
Actual Form
Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
15555 LDA 17000 0017000 Load X (B10) into A
15556 MAQ 2504006 Move it to Q (B10)
15557 MPY 17001 1517001 (X+Y) in A and Q (B22)
15560 SRD 4)10 2400104 (X+Y) in A and Q (B26)
15561 DVD 17002 1617002 (X+Y)/Z in A and Q (B16)
15562 STA 17003 0817003 Store R in core (B16)
15563 next instruction

PROGRAMMING
MANUAL

GE412
27

(2) Count the number of leading zeros in a number stored in location 02200 and store the count in
location 02201. Assume a constant (19)10is stored in location 02300 at (B19).

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
00700 LDA 02200 0002200 Load number into A
00701 NOR K=(19)19 2410063 Normalize number
00702 LDA 02300 0002300 Load constant (19)10 B19
00703 SUB 00000 0200000 Subtract C(00000)
00704 STA 02201 0302201 Store leading zero count.
00705 next instruction

(3) Extract only bits 1 through 4 of the information stored in location 13130, and store at B19 in
location 13131.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
077 LDA 13130 0013130 Load number into A
10000 LLC (5)10 2411105 Move bits 1-4 to 16-19
10001 LLA (16)10 2410110 Shift off top bits
10002 LLC (4)10 2411104 Shift important bits to 16-19
10003 STA 13131 0313131 Store extracted bits
10004 next instruction

5. Branch Instructions

Branch instructions are used to transfer control to instructions not directly in sequence. Unconditional
branch instructions transfer control to the indicated instruction directly. Conditional instructions test some
condition in the computer to determine which of two instructions specified to transfer control to. Conditions
tested are the sign of the A register, zero in the A register, arithmetic overflow and others.

a. Unconditional Branch Instructions

The special "store the contents of the P register and branch unconditionally" instruction is
defined in section 6.

BRU Y 1 26

BRANCH UNCONDITIONALLY. Control is transferred to the instruction located at Y. Y becomes the address
of the next instruction and is transferred from I7_19 to Pp_q19. In model 412B, when C(I)7_19 are transferred
to P7_19, Pg is not disturbed. The BRU instruction will not be interrupted by automatic program interrupt.

JMP Y 1 370

JUMP UNCONDITIONALLY. (Model 412B only.) Control is transferred to the instruction located at Y.

Y (14-bit address) becomes the address of the next instruction and is transferred from Ig_19 to Pg_19. This
instruction may not be automatically modified because bit 6 is part of the address, Y. If bit 5 is set to specify
modification by X-location 2, this instruction will then become the SPJ instruction.

b. Conditional Branch Instructions

A conditional branch instruction will transfer control to one of two instructions located relative to
the location of the branch instruction itself. Control is transferred to either the first or the second sequential
instruction after the conditional branch instruction. Each conditional branch instruction must specify a constant

PROGRAMMING
MANUAL

GE412
28

J, which can equal 1 or 2, that is used to set bit 9 of the instruction to a 0 or 1 respectively. The presence or
absence of the condition and bit 9 of the instruction determine the next instruction to be executed. With the
branch instruction located at location L, the following table indicates the location of the instruction to which
control is transferred.

J Condition Location of Next Instruction
1 Present L + 1 Normal Branch
1 Absent L + 2 Alternate Branch
2 Present L + 2 Normal Branch
2 Absent L + 1 Alternate Branch
BPL J 2 J=1 2514001
J=2 2516001

BRANCH ON PLUS. Branch to location L + J if the sign of A is plus. (Zero is considered to be plus.) Take
the alternate branch if the sign of A is minus. A is unchanged by this instruction.

2514002

BZE J 2 1
2 2516002

J=
J:
BRANCH ON ZERO. Branch to location L + J if C(A) are zero. Take the alternate pbranch if C(A) are not zero.
A is unchanged by this instruction.

2514000

BEV J 2 1
2 2516000

J:
J=
BRANCH ON EVEN. Branch to location L + J if A is even. A is even if C(A);g are zero. Take the alternate
branch if A is odd. A is unchanged by this instruction.

2514003

BOV J 2 1
2 2516003

BRANCH ON OVERFLOW. Branch to location L + J if the overflow indicator is on. Take the alternate branch
if the overflow indicator is off. This instruction turns the overflow indicator off.

2514004

BPC J 2 1
2 2516004

J=
J:
BRANCH ON PARITY, CORE. Branch to location L + J if the core parity error circuit and indicator are on.
The core parity error circuit will then be reset but the indicator will remain on until reset manually from the
console. Take the alternate branch if core parity error circuit is off. Depressing the console parity indicator
to reset the indicator circuit resets the parity error circuit which is tested by the branch command.

BPD J 2 J=1 2514005
J=2 2516005

BRANCH ON PARITY, DRUM. Branch to location L + J if the drum parity error circuit and indicator are on.
The drum parity error circuit will then be reset but the indicator will remain on until reset manually from the
console. Take the alternate branch if drum parity error circuit is off. Depressing the console parity indicator
to reset the indicator circuit resets the parity error circuit which is tested by the branch command.

PROGRAMMING
MANUAL

GE412

29

c. Examples of Branch Instructions

(1) Find the larger of two numbers stored in locations 02000 and 02001 and store it in location
03000. The numbers have equal scale factors.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
04001 LDA 02000 0002000 Find difference between
04002 sSUB 02001 0202001 1st and 2nd
04003 BPL 1 2514001 Test sign of difference
04004 BRU 04007 2604007 Y I plus go to 04007
04005 LDA 02001 0002001 If minus load 2nd
04006 BRU 04010 2604010 Go to 04010 unconditionally
04007 LDA 02000 0002000 Load 1st
04010 STA 03000 0303000 Store larger of two
04011 next instruction

(2) Given two numbers X and Y, compare them and if X=Y set Z=0, if X>Y set Z = X, if X<Y set
Z=Y. X, Y and Z are stored in octal locations 04001, 04002, and 04003 respectively and have equal scale
factors.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
05077 LDA 04001 0004001 Load X into A
05100 SUB 04002 0204002 Subtract Y from X
05101 BZE 1 2514002 Test difference
05102 BRU 05110 2605110 If zero go to 05110
05103 BPL 2 2516001
05104 BRU 05107 2605107 If minus go to 05107
05105 LDA 04001 0004001 If plus X>Y so load X
05106 BRU 05110 2605110
05107 LDA 04002 0004002 Load Y since X<Y
05110 STA 04003 0304003 Store Z=to Xor Yor 0
05111 next instruction

6. Automatic Address Modification Instructions

Data and Instructions appear in storage as combinations of binary digits. This allows the arithmetic
unit to perform arithmetic functions on instructions as well as data. When instructions are changed by arith-
metic operations, the change is referred to as address modification. When automatic modification of instruc-
tions in the I register takes place using one of the address modification locations, it is referred to as automatic
address modification. The three examples in section 6b depict the methods to accomplish these functions.

The automatic address modification instructions operate in conjunction with the first four core storage
locations, locations 0000, 0001, 0002, and 0003. These are called X locations 0, 1, 2, and 3. In all instruc-
tions, except SPB, INX, LDX, STX, BXL, and BXH, bits 5 and 6 indicate whether or not automatic address
modification is to take place. If bits 5 and 6 are zero, no address modification will take place. If bits 5 and 6
are non-zero, the instruction will be modified in the I register before it is executed. This modification consists
of the addition of a portion of the contents of the X location (as specified by bits 5 and 6) to the instruction in the
I register. In model 412A, bits 7 through 19 of the specified X location are added to bits 7 through 19 of the
I register, with any resulting carries out of bit position 7 being lost (ignored). In model 412B, bits 6 through 19
of the specified X location are added to bits 7 through 19 of the I register. In this addition in model 412B, bit 6
of the I register is considered to be a zero, and any resulting carry out of bit position 6 is lost (ignored). Note
that X location 0 cannot be used for automatic address modification. Also, when automatic address modification
is called for, one extra word time is added to the normal instruction execution time.

PROGRAMMING
MANUAL

GE412
30

All four X locations (0, 1, 2, and 3) may be used in conjunction with SPB, INX, LDX, STX, BXH, and
BXL instructions. All X locations may therefore be incremented and tested to accomplish counting or tallying.
In these six instructions bits 5 and 6 are used to specify which of the four X locations is to be used in the execu-
tion of the instruction.

a. Instruction Definitions

LDX Y, X 3 06

LOAD X LOCATION FROM Y. The C(Y)g_19 replace the C(X)g_19. C(Y) are unchanged. It should be noted
that since only 13 bits are available for the specification of Y and bits 5 and 6 are needed to specify the X loca-
tion to be used, Y is limited to the first 8,192 words of memory in all systems.

STX Y,X 3 17

STORE X LOCATION INTO Y. The C(X)(y_19 replace the C(Y)g_19- C(X) are unchanged. It should be noted
that since only 13 bits are available for the specification of Y and bits 5 and 6 are needed to specify the X loca-
tion used, Y is limited to the first 8, 192 words of memory in all systems.

INX K,X 3 14

INCREMENT X BY K. K, C(I)7_1g, are added absolutely to C(X), and the result replaces C(X). In model 412A,
this addition involves only bits 7-19 of X, and any carry out of bit position 7 is lost. In model 412B, the addition
involves bits 6-19 of X, and any carry out of bit position 6 is lost. Also, in model 412B, if K is greater than
4095 the number actually added to C(X)6_19 will be 8192 greater than the specified K.

BXH -K, X 3 05

BRANCH IF X IS HIGH OR EQUAL. If C(X)7_19 are larger than or equal to K, the computer takes the next
sequential instruction; if C(X)7_19 are less than K, the computer skips the next instruction and executes the
second sequential instruction. X is not changed. This instruction cannot be automatically modified since bits
5 and 6 are used to identify the particular X location (Note. K is required to be the 2's complement of the
desired test value.)

BXL -K, X 3 04

BRANCH IF X IS LOW. If C(X)q_1g are less than K, the computer takes the next sequential instruction; if
C(X)7_19 are larger than or equal to K, the computer skips the next instruction and executes the second sequen-
tial instruction. X is unchanged. This instruction is not automatically modified since bits 5 and 6 are used to
identify the particular X location. (Note. K is required to be the 2's complement of the desired test value.)

SPB Y, X 2 07

STORE P AND BRANCH. In model 412A the address of this instruction replaces C(X)7_1g9, and control is
transferred to the instruction located at Y; that is, C(I)7_1g replace C(P)y_19. The CZX)O_s are set to zeros.
In model 412B the address of this instruction replaces C(X)g.19 and control is transferred to the instruction

at Y; that is, C(I)7_1g replace C(P)7_1g. Bit 6 of the P register is undisturbed. The C(X)q_g are set to zeros.
The SPB instruction will not be interrupted by automatic program interrupt. Normally X locations 1, 2, or 3
is specified in using the SPB instruction, but X location 0 may be specified.

PROGRAMMING
MANUAL

GE412
31

SPJ Y 2 374

STORE P AND JUMP. (Model 412B only.) The 14-bit address of the SPJ instruction replaces the C(X2)g_19,
and control is transferred to the instruction located at Y. Y (14-bit address) becomes the address of the next
instruction and is transferred from Ig_1g to Pg_19. C(X2)g_5 are set to zeroes. This instruction cannot be
automatically modified and will not be interrupted by automatic program interrupt.

b. Examples of Address Modification
(1) A sequence of 20 numbers called Nj are stored in locations 02001 through 02024 with equal
scale factors of B19. All of the numbers are less than (100)10 and greater than zero. Average these numbers
and store the average in location 02025 with a B19. Assume a constant (20)10 at B19 is stored in location 02000.

(a) Solution without address modification.

Actual Form

Location of Operation Operand of Instruction

Instruction _Code Address _inOctal Remarks
01001 LDA 02001 0002001 Load N1
01002 ADD 02002 0102002 add Ng
01003 ADD 02003 0102003 add N3
01004 ADD 02004 0102004 add Ng
01005 ADD 02005 0102005 add N5
01006 ADD 02006 0102006 add Ng
01007 ADD 02007 0102007 add Ny
01010 ADD 02010 0102010 add Ng
01011 ADD 02011 0102011 add Ng
01012 ADD 02012 0102012 add N10
01013 ADD 02013 0102013 add N11
01014 ADD 02014 0102014 add N12
01015 ADD 02015 0102015 add N13
01016 ADD 02016 0102016 add N14
01017 ADD 02017 0102017 add N15
01020 ADD 02020 0102020 add N16
01021 ADD 02021 0102021 add N17
01022 ADD 02022 0102022 add Nig
01023 ADD 02023 0102023 add N1g
01024 ADD 02024 0102024 add Ngg
01025 MAQ 2504006 Move sum to B38 in
01026 DVD 02000 1602000 A and Q
01027 STA 02025 0302025 Divide by 20
01030 next instruction Store average at B19

(b) The solution using address modification takes advantage of the fact that instructions are
stored in storage just as data, that is, binary ones and zeros. One ADD instruction can therefore be used to
add all 20 numbers, if after each time the ADD instruction is used, one is added to its address before it is
used again.

PROGRAMMING
MANUAL

GE412
32

Location of
Instruction

01001
01002
01003
01004
01005
01006
01007
01010
01011
01012
01013
01014
01015
01016
01017
01020
01021
01022
01023

01050
01051
01052

SET
SUM =0
I=1
Y
I1=14+1 SUM=SUM+NI
A
Y
o { s1=20)
v Yes
_ SUM
AVERAGE = <0
Actual Form
Operation Operand of Instruction
Code Address in Octal
LDZ 2504002
STA 02025 0302025
LDA 01052 0001052
STA 01006 0301006
LDA 02025 0002025
(ADD 02001) (0102001)
STA 02025 0302025
LDA 01006 0001006
SUB 01050 0201050
BZE 1 2514002
BRU 01017 2601017
ADD 01051 0101051
STO 01006 2701006
BRU 01005 2601005
LDA 02025 0002025
MAQ 2504006
DVD 02000 1602000
STA 02025 0302025
next instruction
ADD 02024 0102024
ADD 02025 0102025
ADD 02001 0102001

33

Flow chart applies
to examples b and c.

Remarks

Set sum =0
Reset modified address
SetI=1

This address changes
Sum = Sum + NI

A contains 0102001
Subtract 0102024

IS I=20

I=1+1add 0102025

Store modified address back
Go back to sum next Nj

Sum in A and Q B38

Divide by (20)19
Store average, B19

Constants

PROGRAMMING
MANUAL

GE412

(c) Solution with automatic address modification uses the computer automatic ability to add
the contents of an X location (00001, 00002, 00003 in core storage) to the address in the I register before it is
executed.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address X in Octal Remarks
01001 LDZ 2504002 set Sum = 0 in A
01002 LDX 01020 1 0621020 setI=1
01003 ADD 02000 1 0122000 .ox
01004 BXH (-20) 1 0537754 Is 1=20
01005 BRU 01010 2601010
01006 INX (1) 1 1420001 I=1I+1
01007 BRU 01003 2601003 repeat sum
01010 MAQ 2504006 Sum in A and Q (B38)
01011 DVD 02000 1602000 Divide by (20)10
01012 STA 02025 0302025 Average (B19)
01013 next instruction
01020 constant (1)19 0000001 Constant

*The address of this ADD instruction is a base address (relative) that the contents of X location 0001 is added to.
The first time it is executed it will be address 02001.

7. Real-Time Instructions

The GE 412 system has a solid state digital clock and four elapsed time counters that enable a program
to be aware of real-time and to measure real-time intervals with precision. These time measuring components
use a 60 cycle power source for a timing base and are as accurate as that source.

a. Real-Time Digital Clock
The real-time solid state digital clock provides a very accurate time base for the computer. It

consists of a group of cascaded counters whose contents may be read directly into the A register of the com-
puter. The binary-coded-decimal format of these counters as they are read into the A register is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 18 19

Hours Hours Minutes Minutes Seconds Seconds
Tens Units Tens Units Tens Units

The contents of the real-time digital clock counters may be read into the A register at anytime under program
control.

RCL 2,3 2510051

READ DIGITAL CLOCK. The 20 bits defining the time indicated by the read-time digital clock replace
C(A)g-19- This instruction should be preceded by a successful BCL instruction.

PROGRAMMING
MANUAL

GE412
34

BCL J 2 J=1 2514012
J=2 2516012

BRANCH ON CLOCK VALID. Branch to location L + J if a valid read-in can be obtained from the digital clock.
Take the alternate branch if not. If the clock is being manually reset or if there has been a power failure a
valid read may not be obtained from the clock. After a power failure the digital clock must be manually reset.

b. Elapsed Time Counters

Four elapsed time counters are provided in the GE 412 System to time elapsed time intervals. The
counters are each 8 bits in length and are capable of counting up to 256 increments of time. There are four
increments of time that can be used to count with the elapsed time counters. They are 3.2 milliseconds,

16.7 milliseconds, 1 second and 1 minute. Each of the elapsed time counters may be provided with increment
pulses from two of the four incremental sources. The arrangement is as follows:

Counter Incremental Source
1 3.2 milliseconds or 1 second
2 3.2 milliseconds or 1 minute
3 16.7 milliseconds or 1 second
4 16.7 milliseconds or 1 minute

The 3.2 millisecond incremental source is based on timing from a very accurate (0. 1%) crystal oscillator in the
computer. The other incremental sources are based on the 60 cycle power supply used by the real-time digital
clock. The program initiates an elapsed time counter by transferring a control word to the selected counter.
The format of the control word is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Not Used Not Not Elapsed Time
Used Used Interval
Interrupt Status Time Increment
1 = interrupt 1 = larger increment
0 = no interrupt 0 = smaller increment

The control word specifies the desired elapsed time interval, the incremental time source, and the priority
interrupt status. The desired elapsed time interval is specified in a true binary form, and the computer trans-
forms this interval into its one's complement form as it is loaded into the elapsed time counter. The specified
incremental time pulses are counted until the counter overflows. The elapsed time counters have a maximum
probable positive error equal to the incremental source specified because the incremental time sources for the
counters are asynchronous with computer timing. The elapsed time counter overflow condition may be fed
directly into the interrupt register or may be branched on by the program. Branching on a specified counter
overflow condition resets the overflow indicator. If the overflow condition has just caused automatic program
interrupt, the overflow indicator must be reset by executing a BTC command or by initiating a new time interval
count to reset the input to the interrupt register from that overflow indicator. Examples of using elapsed time
counters will be given later in conjuction with illustrations of use of peripherals.

PROGRAMMING
MANUAL

GE412
35

LTC K 2 2500017
2500020
2500021

2500022

ARRA
i
B WD =

LOAD TIME COUNTER K. C(A)7, 10, 12-19 2re loaded into elapsed time counter K, and elapsed time count
is initiated.

J=1 J=2
BTC J,K 2 K=1 2514013 2516013
K=2 2514014 2516014
K=3 2514015 2516015
K=4 2514016 2516016

BRANCH ON TIME COUNTER K OVERFLOW. Branch to location L + J if elapsed time counter K has com-
pleted its count (overflowed). Take the alternate branch if the counter has not. The overflow indicator for
timer K is reset.

8. Magnetic Drum Information Transfer

Transfer of information between the high speed storage unit and the magnetic drum storage unit is
initiated under direct program control, but once initiated proceeds independently of further program action.
The magnetic drum is divided into tracks, and all transfers are effected in blocks of from 1 to 8 complete
tracks of information. In model 412A systems each track contains 128 words and a transfer requires 16-2/3
milliseconds per track. In model 412B systems each track contains 256 words, and because the word-transfer
rate is the same in both types of systems, each track transferred requires 33-1/3 milliseconds.

To effect a core/drum transfer, the program must transfer a drum command word from the A
register into the drum command register. The drum command word specifies the direction of transfer, the
number of consecutive tracks to be transferred, the beginning drum track address, and the beginning core
address. The beginning core address is restricted to those core locations which are integer multiples of
(200)g. In model 412B systems the further restriction applies that only even integer multiples of (200)g may
be used. Core location 00000 is a permissible beginning core address in either type of system. The format
of the drum command word is given below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 18 19

Beginning Core Address : See
(200) | Text
8 |

* Number of
Tracks -1

Beginning Drum Track Address

The 9 bits (bits 4-12) designated for Beginning Drum Track Address are insufficient for addressing
more than 512 tracks. This presents no problem in model 412A systems since the maximum number of tracks
available is 448. Model 412B systems, however, may have up to 672 drum tracks. In model 412B systems
having more than 512 drum tracks, bit 19 is used to effect the addressing of tracks 512 through 671. Bit 19
is available for such usage because only even multiples of (200)8 are permissible as beginning core addresses.

If, during a drum/core transfer in either direction, a second transfer is initiated, the transfer in
progress will be safely (without causing parity errors) aborted and the new transfer will begin immediately.

PROGRAMMING
MANUAL

GE412
36

LDC 2 2500026

LOAD DRUM COMMAND REGISTER FROM A. The drum command register is loaded with a drum command
word from C(A). The format of this word is shown above. Normal execution time is 2 word times, but if the
instruction is given while a core-to-drum transfer is in progress, making use of the abort feature, the word
at that time being written on drum will be completed, resulting in a total execution time of up to 9 word times.

BDC J 2 J=1 2514020
J=2 2516020

BRANCH ON DRUM OPERATION COMPLETE. Branch to location L + J if the previous drum transfer operation
is complete. Take the alternate branch if the operation is not complete.

9. Automatic Program Interrupt Instructions.

Automatic program interrupt is one of the most powerful characteristics of the GE 412 System. It
allows for pulses from external sources, (those from process sensing devices) and internal sources (such as
completion signals from peripheral equipment or timer overflow impulses) to cause automatic interruption of
the program currently operating in the computer. The actions demanded by the condition that caused interrup-
tion are then taken care of as quickly as possible and control is then returned to the program that was interrup-
ted. The Program Interrupt Register is 12 bits in length and is divided into three groups of 4 levels (bits) each.
A priority is assigned to each of the levels so that actions are accomplished in order of importance. The pro-
gram can select group I (levels 1 through 4), groups I and II (levels 1 through 8), or groups I, II, and III (all
levels) to cause program interruption. It may also inhibit all levels of interruption from causing program inter-
ruption. Interrupts (pulses) that occur in an inhibited state of operation are not lost, but are held in the inter-
rupt register until such time as that group is enabled by the program and interruption will then occur.

When an interrupt occurs in an enabled group and interrupts are permitted, the following take place
automatically in the order shown.

1. The instruction being executed is completed.
2. All further interrupts are inhibited until permitted by the program.

3. The contents of the P register (address of the next instruction normally executed) are stored in
core storage location 00006. C(00006)0_6 are unchanged in model 412A systems. In model 412B systems,
C(00006)(_5 are set to zeroes.

4. The contents of the A register are stored in location 00007.

5. The P register is set to location 00007 and the enabled portions of the interrupt register are ex-
amined bit by bit starting with the highest priority bit (level 1) and proceeding sequentially in descending order
until the bit which caused the interrupt is reached. Before each bit is examined the P register is incremented
by one. When the first interrupting bit is found, it alone is reset, and control is transferred to the instruction
located at the address then in the P register. The computer then executes the program that begins at one of the
12 sequential locations starting in octal location 00010. For example, if level 2 caused interruption control is
transferred to the instruction that is in location 00011, which is normally a BRU instruction that directs control
to the program associated with level 2 interrupt.

Before permitting further interrupts, the program must transfer the address that indicates the restart
point in the interrupted program (which is now in location 00006) to another location in core. It must by the
same token save the contents of the A register and any other register that it will use and re-establish all con-
ditions that prevailed at time of interruption. This is to ensure a proper re-entry into the interrupted program
from the program that interrupted.

PROGRAMMING
MANUAL

GE412
37

SAI K 2 K=1 2500014
K=2 2500015
K=3 2500016

SELECT AUTOMATIC INTERRUPT GROUP K. Group K interrupt levels are selected to enable automatic pro-
gram interrupts. Interrupts cannot actually occur, however, until permitted by the execution of a PAI instruc-
tion as described below.

PAI 2 2500012

PERMIT AUTOMATIC INTERRUPT. The previously selected priority levels are permitted to cause program
interruption after the execution of the next instruction after the PAI.

TAI 2 2500013

INHIBIT AUTOMATIC INTERRUPT. All interrupts are inhibited or ignored. Interrupt conditions are not lost,
but are stored in the interrupt register until such time as a PAI instruction is executed.

10. Other Internal Instructions

SSA 2 2500025

SET STALL ALARM. This instruction is used to periodically set a time delay device. When the time delay
expires, an alarm condition prevails. The time delay device is manually adjustable for delays of from 5 to 20
seconds.

RCs 2 2500024

READ CONSOLE SWITCHES. The A register is cleared and the bit pattern represented by the 20 A register
toggle switches on the console is loaded into the A register. These switches are operated manually by the
operator. A switch represents a 1 bit when it is depressed and a 0 bit when it is in its normal (raised) position.

XEC Y 1+ 34

EXECUTE THE INSTRUCTION AT Y. The instruction in memory location Y will be performed or "executed"
as if it actually existed at the location of the XEC instruction, with a single exception. If the instruction at
location Y is an SPB or an SPJ, the P register value stored will be that of the XEC instruction plus one. The
XEC instruction may be indexed (modified by automatic program modification) and the C(Y) may be any valid
instruction. The execution time will be one word time plus the normal execution time of the instruction at Y.
Automatic program interrupt will not take place between the XEC instruction and the instruction at Y.

BRD J 2 J=1 2514017

J=2 2516017

BRANCH ON DEMAND. Branch to location L + J if the Demand pushbutton on the programming and maintenance
console has been depressed. Take the alternate branch if the demand button has not been depressed. This in-
struction turns off the light behind the demand button.

B. EXTERNAL EFFECT INSTRUCTIONS

External effect instructions are those that control the input-output equipment of the GE 412 Process Com-
puter System. The operation of slow speed electro-mechanical devices, such as the paper tape, reader, paper

PROGRAMMING
MANUAL

GE412
38

tape punch, typewriters, and card reader, requires the use of an information buffer. This permits the central
processor to operate at normal fast internal speed and yet communicate with these relatively slow peripheral
devices. The Conversion, H, M, N, and other special registers are used as buffers for information flowing
in and out of the central processor.

It should be noted that the coding examples used to amplify the descriptions of commands relating to periph-
eral equipment are intended to illustrate the functioning of the commands but may not reflect typical real-time
usage because the automatic program interrupt is normally used in the implementation of peripheral equipment
in real-time systems.

1. Peripheral Input-Output Instructions

Peripheral input-output instructions control the paper tape reader, paper tape punch, punched card
reader, electric typewriter, serial printer, and parallel printer. All information associated with these devices
flows through the M, N, or H registers. The electric typewriter may be connected to a paper tape punch in an
off-line fashion (not connected to the central processor) for manual preparation of paper tape.

a. Peripherals associated with the M and N Registers.

Information flowing into the computer through the paper tape reader, card reader, or out of the
computer through the paper tape punch, serial printer, and electric typewriter passes through the M or N
registers. This information is in 7-bit binary-coded-alphanumeric form and the M and N registers are 7 bits
in length. The binary-coded-alphanumeric codes are listed in appendix A. A parity bit is generated as charac-
ters are punched on paper tape, and checked as characters are read by the paper tape reader. This parity bit
is punched in channel 5 on the tape and does not enter the M or N registers. The following diagram illustrates
how the standard GE 412 paper tape code is used in conjunction with the 7-bit M and N registers.

Tape Channel 8 7 6 4 3 2 1

M or N register 1 2 3 4 5 6 7

b. Instruction Definitions

SEL S 2 S=M 2500001
S=N 2500000

SELECT PERIPHERAL DEVICE ON BUFFER S. The peripheral device specified by the code in buffer S is
selected, that is its power is turned on. The selection requires 80 milliseconds and when it has been completed,
as indicated by a successful BBR, an additional delay must be programmed for all devices except the serial
printer and the IBM Selectric typer to allow the selected device to reach operating speed. The required delays
are indicated below. No more than one reader, one typer, and one punch on a given register should have its
power on at any time.

Device Delay
Standard IBM typer 100 milliseconds
Flexowriter 200 milliseconds
Low-speed reader or punch 200 milliseconds
High-speed reader or punch 2 seconds
Card reader 200 milliseconds
Parallel printer 150 milliseconds
OFF S 2 S=M 2500011
S=N 2500010

TURN PERIPHERAILS ON BUFFER S OFF. All selected devices connected to buffer S are turned off. Comple-
tion of the operation is indicated by a successful BBR. The operation requires 80 milliseconds.

PROGRAMMING
MANUAL

GE412
39

J=1 J=2
BBR J,8 2 S=M 2514011 2516011
S=N 2514010 2416010

BRANCH ON BUFFER S READY. Branch to location L + J if buffer S is ready (if its last operation is complete).
Take the alternate branch if buffer S is not ready.

J=1 J=2
BBP J,8 2 S=M 2514007 2516007
S=N 2514006 2516006

BRANCH ON BUFFER S PARITY ERROR. Branch to location L + J if the parity error condition is set on buffer
S. Take the alternate branch if the condition is not set. This instruction resets the parity error condition but
does not reset the visual indicator on the programming and maintenance console.

TYP S 2 sS=M 2500005
S=N 2500004

TYPE ON BUFFER S. The 7-bit binary-coded-alphanumeric code in buffer S is typed or typed and punched if
the punch is slaved to the typewriter.

PCH S 2 S=M 2500007
S=N 2500006

PUNCH ON BUFFER S. The 7-bit code in buffer S is punched. This instruction is not used when the punch is
slaved to a typewriter.

RDD S 2 S=M 2500003
S=N 2500002

READ INTO BUFFER S. Buffer S is cleared and one 7-bit code is read into buffer S from the paper tape reader
or card reader whichever is currently selected.

SAB S, K 2+ S=M 2400400
S=N 2500200

SHIFT A TO BUFFER S. C(A)j.19 and C(Buffer 8);_r are shifted K places to the right together. Bits shifted
out of A1g shift into buffer S1. Bits shifted out of buffer S7 are lost. If the sign of A is plus, zeros fill the
vacated positions of A; if the sign of A is minus, ones fill the vacated positions of A. The sign of A is unchanged.

S —»1 A 19 mf” 7

|) Y

Lost
SBA S,K %+ S=M 2404000
S=N 2402000

SH_IFT BUFFER S INTO A. C(Buffer S)1-7 and C(A)1-19 together are shifted K places to the right. Bits
shifted out of A1g are lost. Bits shifted out of buffer S7 shift into Aj. The sign of A is unchanged.

PROGRAMMING
MANUAL

GE412
40

0's— 1 B“féer 7 s | 1 A 19
Lost
ABQ S, K 2+ S=M 2400300
S=N 2400500

SHIFT A INTO BUFFER S AND Q. C(A)1_19 are shifted K places to the right into both buffer S and the Q regis-
ter. Bits shifted out of Ajg enter both Q1 and buffer S;. Bits shifted out of Q19 and buffer Sy are lost. If the
sign of A is plus, zeros fill the vacated position of A; if the sign of A is minus, onesf{ill the vacated position of
A. The sign of A replaces the sign of Q. The sign of A is unchanged.

I ¥
S 1 A 19 S 1 Q 19
|]
Y Lost
Buffer
1 S 7
Lost
SBD S, K 2+ S=M 2404100
S=N 2402100

SHIFT BUFFER S INTO A AND Q DOUBLE. C(Buffer S)1-7, C(A)1-19, and C(Q)1-19 together are shifted K
places to the right. Bits shifted out of buffer Sy shift into A1, bits out of Ajg shift into Q1. Bits shifted out of
Q1g are lost. Vacated position of buffer S are filled with zeros. The sign of A is unchanged and replaces the

sign of Q.
v
0's— 1 B“fsfer 7 s | 1 A 19 s |1 Q 19
)] I
Lost

c. Examples of Peripheral Input-Output Instructions

(1) Read in six binary-coded decimal (BCD) characters with the paper tape reader connected to
buffer M and selected by code (050)8. The number read in is an integer to be stored in location 04000 at B19
and is an integer number less than (524, 287)1.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address X in Octal Remarks
01000 OFF M 2500011 Turn all devices off
01001 BBR 2, M 2516011 Wait of off to be
01002 BRU 01001 2601001 complete
01003 LDA 02000 0002000 Load A with select code
01004 SAB M, 7 2400207 Put select code in M
01005 SEL M 2500001 Select reader
01006 BBR 2, M 2516011 Wait for selection
01007 BRU 01006 2601006 complete

PROGRAMMING
MANUAL

GE412
41

Location of
Instruction

01010
01011
01012
01013
01014
01015
01016
01017
01020
01021
01022
01023
01024
01025
01026
01027
01030
01031

02000
02001

02002

Operation
Code

LDA
LTC
BTC
BRU
LDZ
STA
MAQ
RDD
BBR
BRU
SBA
MPY
INX
BXL
BRU
XAQ
STA
next instruction

Operand

Address

02001
3

2,3
01012

00001

M
2, M
01020
M, 19
02002
1

6
01017

04000

(00000000000000101000)
(00000000000000001010)

(00000000000000001010)

I

Actual Form
of Instruction
in Octal

0002001
2500021
2516015
2601012
2504002
0300001
2504006
2500003
2516011
2601020
2402023
1502002
1420001
0637772
2601017
2504005
0304000

0000050
0000012

0000012

Remarks

Load elapsed time constant
Start time count 3 and

wait for 200

millisecond delay

Set loop counter = 0
Clear Q

Initiate read.

Wait for character.

Shift BCD to B19
Mult. partial no. by
10 and add BCD.
Count no. read and
return for next.
When complete store
result.

Select code for reader
elapsed time counter
constant

constant (10Byg.

Type the decimal equivalent of the binary number stored in location 00100 at B19. The number

is less than (524, 287)1. Use the typewriter on the N register selected by code (060)g. Type the (-) sign if the

number minus and a space if positive in front of the number.

Location of
Instruction

01100

01101
01102
01103
01104
01105
01106
01107
01110
01111
01112
01113
01114
01115
01116
01117
01120
01121
01122
01123

01124
01125

PROGRAMMING
MANUAL

GE412

Operation
Code

QFF

BBR
BRU
LDA
SAB

SEL

BBR
BRU
LDA
LTC

BTC

BRU

LDA
BPL
BRU
NEG
MAQ
LDA
BRU
MAQ

LDX
SAB

Operand
Address

N

2,N
01101
02100
N, 17
N
2,N
01106
02101
3

2,3
01112
00100
1
01123

02102
01124

02112
N, 7

I

42

Actual Form

of Instruction
in Octal

2500010

2516010
2601101
0002100
2400407
2500000
2516010
2601106
0002101
2500021
2516015
2601112
0000100
2514001
2601123
2504532
2504006
0002102
2601124
2504006

0642112
2400407

Remarks

Turn off all peripherals on
N

Wait for off to be

complete

Load selector code

Put it into N

Select peripheral

Wait for selection

to be complete

Loat timer constant

Start delay of 200 msec.

Wait for delay to

be complete

Load number to be typed

Test sign of number

Make (-) number positive
Put + number into Q
Load minus (-) code

Put + number Q set A=0=
Space

Set loop counter = 0

Put charceter into N

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address X in Octal Remarks
01126 TYP N 2500004 Type a character
01127 BXH -6 2 0537772 Test for
01130 BRU 01140 2601140 End of loop.
01131 DVD 02104 2 1622104 Divide by power of ten*.
01132 INX 1 2 1440001 Increment loop counter.
01133 BZE 1 2514002 If character is zero,
01134 LDA 02103 0002103 load zero code.
01135 BBR 2,N 2516010 Wait for last character
01136 BRU 01135 2601135 to be typed.
01137 BRU 01125 2601125 Return for next character.
01140 next instruction
02100 00000000000000110000 0000060 Select code for typewriter
02101 00000000000000001010 0000012 Elapsed time counter

constant

02102 00000000000000100000 0000040 Code for minus sign
02103 00000000000000010000 0000020 Code for zero
02104 00011000011010100000 0303240 Constants (100000)10(B19)
02105 00000010011100010000 0023420 Constant = (10000)4(B19)
02106 00000000001111101000 0001750 Constant = (10000)10(B19)
02107 00000000000001100100 0000144 Constant - (100)1oB19
02110 00000000000000001010 0000012 Constant - (1019B19
02111 00000000000000000001 0000001 Constant = (1)10B19
02112 00000000000000000000 0000000 Constant = 0

*This divide leaves a BCD character in A and the remainder in Q ready to be divided by the next lower
power of ten.

d. The Parallel Entry Printer Instructions

The parallel entry line printer is capable of printing at 5 lines per second with 11 numeric or
special characters per line. The H register buffers information as it flows from the central processor to the
parallel entry printer and is 44 bits in length. The H register holds the 11 binary-coded-decimal (4 bit)
characters to be printed on the line printer. The H register is loaded from the A register.

Up to four parallel printers may be connected to the H register and may all be on at the same time,
but printing may only be done on one printer at a time. It is possible to have two H registers in a given system
and therefore, up to 8 parallel printers.

The binary-coded-decimal format for the standard print position on the printer is shown in the
table below. Special symbols, of any variety, may be specified for a certain print position on the printer, but
there may only be 12 different characters in each print position.

Standard Register
Print BCD Code
Wheel 8421
0 000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
i 0111

PROGRAMMING
MANUAL

GE412
43

Standard Register
Print BCD Code
Wheel 8421

8
9
Blank

Blank
Blank
Blank
Blank

These codes all print as
blanks for all print wheels,
standard or non-standard.

= e e bk ek fed el
e = 2 OO OO
OO MO0
HOMFROHOMO

The format of the parallel entry printer is as follows

Print Position 11 10 9 8 7 6 5 4 3 2 1

H Register Bits 0-3 4-7 8-11 |[12-15 | 16-19 | 20-23 | 24-27 || 28-31] 32-35 [36-39 | 40-43
A Register Bits 8-11 | 12-15 j16-19| 4-7 [8-11 | 12-15] 16-19 4-7 | 8-11 [12-15 | 16-19
Transfer Command *Block 3 Block 2 Block 1

*An determines color (0 = black, 1 = red)

(1) Instruction Definitions

I=1 I=2
SLH LK 2,3 K=1 2510410 2510417
K=2 2510510 2510517
K=3 2510610 2510617
K=4 2510710 2510717

SELECT PRINTER K AND H REGISTER 1. Printer K and H register I is turned on. A delay of 200 milli-
seconds must be programmed after completion of the SLH instruction (indicated by a successful BRH) to allow
the printer to attain operating speed.

OFH I 2 2511010

1
2 2511017

I
I

TURN OFF ALL PRINTERS ON H REGISTER I. The power for all printers on H register I is turned off.

I=1 1=2
LDH LK 2 K=1 2511110 2511117
K=2 2511210 2511217
K=3 2511310 2511317

LOAD BLOCK K OF H REGISTER I. When K=1, bit positions 0-43 of H register I are cleared and then C(A) -19
replace C(H)2g_43. When K=2, C(A)4_19 replace C(H)12-97. When K=3, C(A)g_19 replace C(H)p.11 and bit47
of A sets the color selection. If Ay is 0, printing will be in black. If A7 is 1, printing will be in red.

I=1 I=2
PRH I 2 K=1 2511410 2511417
K=2 2511510 2511517
K=3 2511610 2511617
K=4 2511710 2511717

PRINT ON PRINTER K ON H REGISTER I. The 11 binary-coded-decimal characters in the H register I are
printed on printer K.

PROGRAMMING
MANUAL

GE412
44

J=1 J=2
BRH J,1 2 I=1 2514024 2516024
1=2 2514033 2516033
BRANCH ON H REGISTER I READY. Branch to location L + J if the H register I is ready (last operation com-
plete). Take the alternate branch if H register I is not ready.

(2) Example of H Register Instructions

Print one line in black on H register 1, printer 2 containing the identification, sign, and value
for the integer quantity stored in location 03000 at B19. Location 03001 contains 5 binary-coded-decimal
characters for printing and the formatis |1 4 15 I1 12 13 . The format of printing should be -

11 10 9 8 7 6 5 4 3 2 1 H Register Position

Iy 12 13 I 15 Blank | Sign V1 V2 V3 V4 ID, sign value

The following formats are required in the A register to load the H register properly.

y/% Ll |5 7//A I, | I5 |Blank| sign % Vi V2 | V3 | Vs

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address X in Octal Remarks
05001 SLH 1,2 2510510 Select printer 2
05002 BRH 2,1 2516024 Wait for completion
05003 BRU 05002 2605002 of selection
05004 LDA 06000 0006000 Load timer 3 with 200
05005 LTC 3 2500021 Msec delay and
05006 BTC 2,3 2516015 Wait for time delay
05007 BRU 05006 2605006 complete
05010 DLD 06001 1006001 Load A and Q with zero.
05011 DST 00000 1300000 Set X locations 0, 1, 2,
05012 DST 00002 1300002 and 3 to zero.
05013 LDA 03000 0003000 Load A with value, B19.
05014 BPL 1 2514001 If value is plus, leave
05015 BRU 05020 2605020 zero in X3.
05016 NEG 2504532 If minus, make plus and
05017 INX 1 3 1460001 set X 3=1.
05020 MAQ 2504006 Move value to Q, B38
05021 DVD 06002 1 1626002 Divide by power of 10.
05022 SCA 7 2 2400047 Position BCD character.
05023 ORY 00000 2300000 and store in Temp.
05024 LDZ 2504002 Clear A
05025 INX 4 2 1440004 Increment shift count.
05026 INX 1 1 1420001 Increment loop count.
05027 BXL 4 1 0437774 Test for end of loop.
05030 BRU 05021 2605021 Repeat loop.
05031 LDA 00000 0000000 BCD value to A.
05032 LDH 1,1 2511110 BCD value to H.
05033 LDA 03001 0003001 Load ID into A.
05034 ANA 06006 2206006 Extract Iy, Ig, I3
05035 LDH 1,3 2511310 and load into H.
05036 LDA 03001 0003001 Load ID into A.

PROGRAMMING
MANUAL

GE412
45

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address X in Octal Remarks
05037 EXT 06006 2006006 Extract Iy, Ig,
05040 SRA 4 2400004 position for H, and
05041 ADD 06007 3 0166007 add blank and sign.
05042 LDH 1,2 2511210 Load into H.
05043 PRH 1,2 2511510 Print on printer 2.
05044 next instruction
06000 00000000000000001010 0000012 Constant for time counter
06001 00000000000000000000 0000000 Constant zero
06002 00000000001111101000 0001750 Constant (1000)1(B19)
06003 00000000000001100100 0000144 Constant (100)1,(B19)
06004 00000000000000001010 0000012 Constant (10)10?B19)
06005 00000000000000000001 0000001 Constant (1)1¢(B19)
06006 00000000111111111111 0007777 Extract constant
06007 00000000000011111111 0000377 Two blanks
06010 00000000000011111011 0000373 One blank and minus sign

2. Scanner-Distributor Instructions

The scanner-distributor is the major communication device between the process and the computer. It
mates the digital operation of the computer with the analog operations of process instruments and controllers
for on-line data processing and control, as shown in figure 9. It has two modes of operation: analog-to-digital
input (scanning) and subcontrol output (distributing). The scanner-distributor has two registers used in its
operation: the conversion register for data buffering, and the scanner command register for scanner commands
(program control of the scanner-distributor). Up to five scanner-distributors may be employed in a given
GE 412 System.

The 12 bit conversion register is physically part of the scanner-distributor and functions as a data
buffering register for information flowing into or out of the computer through the scanner-distributor. During
scanning (input) operations, the conversion register is an integral part of the analog-to-digital converter and
holds the counts (0-4095) proportional to the analog voltage scanned. During subcontrol (output) operations,
the conversion register holds the set-up information for electronic or relay drivers for performing such opera-
tion as distributing an analog voltage to a process controller, driving a trend recorder, or causing lighted
visual displays of information.

a. Analog-to-Digital Mode

The characteristics of an analog sensor such as selection matrix position, polarity, signal attenua-
tion and gain settings for the amplifier, and scanning speed are specified by a scanner command word that is
loaded into the scanner command register from the A register under program control. Once the scanner-
distributor receives this command, it executes the operation independently of the computer, and thus frees the
computer to perform other tasks. Upon the completion of any scanner-distributor operation, an operation com-
plete signal is sent to the computer. This signal may be used to cause program interrupt or its presence may
be tested for by the program through a branch command. The format of the scanner command word for analog
input is shown in figure 10.

Bit positions 0 and 1 specify the operation code for the scanner-distributor. When equal to 00,
they specify high speed analog-to-digital input (48. 6 milliseconds per point maximum). Equal to 01, they
specify low speed analog-to-digital input (125. 4 milliseconds per point maximum). When equal to 10, they
specify high speed analog-to-digital input with open thermocouple check. Low speed scanning is more accurate
than high speed scanning in the sense that the longer amplifier settling time results in better resolution. (12
bits vs. 10 bits for high speed scanning) Bits 2 through 12 specify the position in the mercury wetted relay
matrix of the contact pair to be selected. Bit 13 controls an isolation switch used to isolate high level signals
from low level signals and is set to zero for low level, and one for high level signals. Bit 14 is set to one when
it is desired to repeat the analog-to-digital conversion of the signal that is currently selected from the matrix.

PROGRAMMING
MANUAL

GE412
46

Process
Sensors

\

> Relay
Selection

™ Matrix

Alarm
and
Contact
Closure
Output
Controls

Y

Voltage

Control and

Polarity

Attenuator

_—

A

Outputs

_

Matrix
Address
Translator

4

Sub-Control
Preset Voltage

Selection

t

—_——

L____lr_____.______]

.
I
l

A/D and

Sub-Control

Digital-to

>

Amplifier

T
.|

Analog-To
Digital
Converter

\

Conversion
Register

l— — —

Analog -
Outputs

Activate voltages

Translator
A

Scanner Command Register <

\ |

Digital
Display -

OQutputs

Control e e s
Information ____

Figure 9. Single Channel Scanner-Distributor

47

A Register

— — — —— — — — — — — — a——— o— e ewtma)

L

I Register —

PROGRAMMING
MANUAL

GE412

P
Oper- w X Y Coznt Gain o
ation Matrix Row Column . Code 1
Pair a
r
Mode i
t
y
RELAY MATRIX ADDRESS
Attenuator Code
00 - Analog-to-digital input high speed
01 - Analog-to-digital input low speed Command Status
10 - Analog-to-digital input high speed
with open thermocouple checks Isolation Switch Code

Figure 10. Scanner Command Format for Analog Input

Each repeat of the analog-to-digital conversion requires approximately 640 microseconds. Bits 15 and 16
specify the attenuator setting and bits 17 and 18 specify the gain setting for the amplifier. The resulting ranges
are indicated in figure 11. Bit 19 is set to one when negative signals are to be scanned, and zero for positive
signals.

Settings 4000 Counts= Maximum Attenuator Gain
Attenuator Gain Output (Volts) Output (Volts) Ratio Factor
11 11 0.010 0.01023 1:1 1000
11 10 0.020 0. 02046 1:1 500
11 01 0.040 0. 04092 1:1 250
11 00 0.080 0.08184 1:1 125
10 11 0.125 0.127875 12.5:1 1000
10 10 0. 250 0. 25575 12.5:1 500
10 01 0.500 0.5115 12.5:1 250
10 00 1.00 1.023 12.5:1 125
01 11 2.00 2.046 200:1 1000
01 10 4.00 4. 092 200:1 500
01 01 8.00 8.184 200:1 250
01 00 16. 00 16. 37 200:1 125

Figure 11. Analog Input Full Scale Ranges
b. Subcontrol Mode

The scanner-distributor functions as an output device when it distributes the proper amplitudes of
voltage to process and system equipment. The scanner-distributor operating in subcontrol mode is capable of
applying one of 9 preset voltages through the relay matrix to specified terminations. The duration of this volt-
age distribution is also controlled by the scanner-distributor. These voltages may be used to actuate such
things as digital-to-analog output conversion, lighted visual displays, and similar operations. They may also
be used to open or close a relay contact used to start or stop process equipment, i.e. motors, pumps, etc;

PROGRAMMING
MANUAL

GE412
48

turn on or off annunciators either audible or visual; or step a stepping control device to regulate speed, flow,
etc. The format of the scanner command word for subcontrol operations is in figure 12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1
W X Y Z
. Contact Voltage Time
Matrix Row Column and Line Selection Select

Code Code
RELAY MATRIX ADDRESS

Operation Code

Figure 12. Scanner Command Format for Subcontrol Mode

Bit positions 0 and 1 are always 11" for subcontrol mode. Bits 2 - 13 specify the position of the
single contact to be selected in the relay matrix. Bits 14 - 17 select one of nine preset voltages for distribu-
tion. Bit 14 equal to 1" is reserved for the distribution of +6 vdc to implement digital-to-analog outputs and
digital display outputs. When bit 14 is a '"1"", bits 15 - 19 are disregarded. With bit 14 set to zero, the con-
figuration in bits 15 - 17 is used to select one of eight other voltages whose amplitudes depend on system re-
quirements. Bits 14 - 17 set to 0000 is reserved for specifying the use of +12 vdc logic voltage that is available
in the computer system. Bits 18 - 19 specify one of four time durations for the distribution. Three of these
can equal 3.2 to 102. 4 milliseconds depending on system requirements. The fourth, when bits 18 - 19 are set
to 11, specified that the distribution of the selected voltage is to be continuous and terminated only by initiating
a new scanner-distributor operation. In this case of operation complete signal is sent to the computer at the
time the voltage is distributed. The timing of subcontrol operations varies with the characteristics of the out-
put. This timing is shown in the following table.

Bit Positions .
Maximum
14 15 16 17 18 19 msec
1 X X X X X 57.68
0 X X X X X 28.88 + D
0 X X X 1 1 28. 88

D is specified duration of distribution and can equal
from 3.2 to 102. 4 milliseconds depending on system
requirements.

(1) Instruction Definitions

ILsC K 2,3 K=1 2510103
K=2 2510203
K=3 2510403
K=4 2511003
K=5 2512003

LOAD SCANNER COMMAND REGISTER K. The scanner command register K is cleared and then loaded with
C(A). A is not changed. The loading initiates a new scanner-distributor operation.

PROGRAMMING
MANUAL

GE412
49

J=1 J=2
BSC J,K 2 K=1 2514022 2516022
K=2 2514031 2516031

BRANCH ON SCANNER K OPERATION COMPLETE. Branch to location L + J if the scanner-distributor K has
completed its operation. Take the alternate branch if the operation is not complete .

J=1 J=2
BCO J,K 2 K=1 2514021 2516021
K=2 2514032 2516032

BRANCH ON CONVERTER K OVERFLOW. Branch to location L + J it the analog-to-digital converter overflow
indicator is on. Take the alternate branch if the overflow indicator is not turned on. The LSC instruction will
reset the overflow condition.

RCV K 2,3 =1 2510144
=2 2510244

K=3 2510444

K=4 2511044

=5 2512044

READ CONVERTER K. C(Converter K) 1_1g replaces C(A) g_1g9- C(A) g_7 are replaced by zeros. In single-
channel scanners, the C(Converter K) are unchanged. In multiple-channel scanners, the RCV command also
switches the converter to the next input channel, initiating the conversion of that channel. (The multiple-input
scanner will pe discussed later in this manual.)

RDG 2 2500023

READ DIGITAL INPUT. Two 4-bit binary-coded-decimal input characters selected by the scanner-distributor
subcontrol are read into A1-8 with A1 holding the most significant bit. This instruction should be preceded by
a successful BSC instruction. C(A)S, 9-19 are replaced by zeros.

ICV K 2,3 K=1 2510101
K=2 2510201
K=3 2510401
K=4 2511001
K=5 2512001

LOAD CONVERTER REGISTER K FROM A. C(A) _19 are transferred to converter register K. Converter
register K is automatically cleared by this instruction prior to the transfer. A is not changed.

(2) Examples of Scanner-Distributor Instructions

(a) Scanning a Thermocouple Sensor

the following program scans an Iron-Constantan thermocouple sensor and converts the
reading to degrees Fahrenheit. The conversion equation assumes the temperature to be less than 1000°F and
that in this range the relationship between millivolts output and temperature in linear. The equation is based
on data from thermocouples with reference junctions at 32°F and a correction must be applied for any variation
of the reference from this temperature. The actual current reference junction temperature is assumed to be
stored in location (3000)8 at B12. It is further assumed that the linear range of the thermocouple includes the
normal range of the reference junction temperature.

PROGRAMMING
MANUAL

GE412
50

The basic equation for the thermocouple, from standard table data, is
T = 32.5V +40.5

where T = Temperature in °F
V = Output in millivolts

If the referenne junction temperature differs from that for which the equation is true,
a correction must be applied to the measured millivolt output of the thermocouple to adjust the output to that
which would have existed if the reference junction had been correct. The equivalent output of the reference
junction relative to a standard reference is given by the inverse of the above equation.
Tr - 40.5
V = —
r 32.5
This value must be added to the measured thermocouple output. Therefore,

T=32.5(V_ +V_)+40.5
m r

T -40.5

_ T
orT—32.5(Vm+———32.5)+40.5

where T=32.5V_ +T
m r

If the thermocouple is scanned on the 40 mv range, the count value appearing in the C register will be
C_=100V
m m

and the final equation is then T =0.325 Cm + Tr

The thermocouple leads are connected to relay matrix address (3121)8 and the converted temperature is to be
stored in location (05020)8 at B19.

Location of Operation Operand Octal

Instruction Code Address Instruction Remarks
02000 LDA 04000 0004000 Get scanner command and
02001 LSC 1 2510103 initiate scan.
02002 BSC 2,1 2516022 Wait for conversion
02003 BRU 02002 2602002 to be complete.
02004 BCO 1,1 2514021 If converter overflows
02005 BRU XXXXX 26XXXXX go to ERROR Routine
02006 RCV 1 2510144 Read Counts in to A
02007 MAQ 2504006 and move to Q, B19.
02010 MPY 04001 1504001 Multiply by 0. 325, B19.
02011 S1LD 7 2411007 Shift to B12 and add
02012 ADD 03000 0103000 Ref. Temperature.
02013 SRA 7 2400007 Shift to B19 and
02014 STA 05020 0305020 store result.
02015 next instruction
04000 00011001010010011010 0312232 Scanner command
04001 00110000000000000000 0600000 (0. 325)10 at BO.

51

PROGRAMMING
MANUAL

GE412

(b) Scanning a Pressure Sensor

A pressure ranging from 3 to 15 pounds per square inch (psi) is sensed by a transducer
that outputs a current ranging from 4 to 20 milliamps, linearly proportional to the pressure sensed. This cur-
rent is then passed through a 4 ohm resistor which outputs a voltage ranging from .016- . 080 volts. This volt-
age is then sensed by the scanner-distributor on the 80 millivolt full scale range (where 80 millivolts - 4000
counts). The sensor leads are connected to relay matrix address 2131. The following program scans this
sensor, converts, the reading to psi and stores this value in location 03017. The following equation is used in
the conversion.

Pressure (psi) = Counts x 0.00375.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
02500 LDA 02600 0002600 Load scanner command into
02501 LSC 1 2510003 scanner command register
02502 BSC 2,1 2516022 Wait for completion
02503 BRU 02502 2602502 of scanner operation
02504 BCO 1,1 2514021 Test for conversion overflow
02505 BRU XXXXX 26XXXXX Go to error routine
02506 RCV 1 2510044 Read counts into A (B19)
02507 MAQ 2504006 Put counts in Q (B19)
02510 MPY 02601 1502601 Multiply by (0. 00375)
02511 STA 03017 0303017 Store pressure (B11).
02512 Next instruction
02600 00010001001010011000 0213230 Scanner command word
02601 01111010111000010100 1727024 (0. 00375) Constant (B-8)

(c) Read in the Value Dialed on Two Decimal Manual Entry Switches

The decimal values dialed into manual switches and other similar devices may be read
directly into the A register through decimal-to-binary conversion circuits. The read-in is activated by supply-
ing a voltage to the center tap of the manual switch. The 4-bit binary-coded-decimal output of the decimal-to-
binary converter is then transferred directly into the A register.

For the example, the center taps of two switches are commonly connected to relay
matrix contact address (6357)g and the output of each switch is directed to a separate decimal-~to-binary con-
verter.

The outputs of these two converters are transferred simultaneously to the A register into
positions Al— 4 and Ag_g. Store the binary equivalent of these switch positions in location 2000.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
01000 LDA 1100 0001100 Load scanner command into
01001 ISC 1 2510003 scanner command register
01002 BSC 2,1 2516022 Wait for scanner complete
01003 BRU 01002 2601002
01004 RDG 2500023 Read in BCD switch readings
01005 STA 02000 0302000 Store switch readings
01006 Next instruction
01100 11110011101111000011 3635703 Scanner command word

PROGRAMMING
MANUAL

GE412
52

(d) Send a Control Signal to a Process Regulator

Control is normally exercised over the process by supplying set points (analog reference
voltages) to process controllers or regulators. These process controllers are self-contained servomechanisms
or sub-loop control systems such as fuel flow valve controllers that need only be supplied with a set point peri-
odically. The set points are computed optimum values that are placed in the C register by the program and
then, activated by the scanner-distributor in subcontrol, converted to an analog signal that is transmitted to the

process controller.

Example: A 10-bit set point for a process controller is stored in location (05010). This
set point is to be applied to the digital-to-analog channel which is activated by applying a +6 volt reference volt-
age to relay matrix contact address (4333)8.

Actual Form

Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
03000 LDA 05010 0005010 Put digit set point into
03001 LCV 1 2510001 Conversion register
03002 LDA 03100 0003100 Load command into
03003 1SC 1 2510003 Scanner command register
03004 BSC 2,1 2516022 Wait for completion
03005 BRU 03004 2603004 of output operation
03006 Next instruction
03100 11100011011011100000 3433340 Scanner command word

(3) Multi-Channel Scanner-Distributor

In application requiring high rates of scanning multi-channel scanner-distributors are em-
ployed. The following table lists the characteristics of these multi-channel scanner-distributors.

No. of

Channels High Speed Scanning Rate
1 20 Points per second
2 40 Points per second
4 79 Points per second
8 151 Points per second

The multi-channel scanner-distributors have 2, 4, or 8 separate analog conditioning channels
consisting of an attenuator, amplifier, and polarity changer. One analog-to-digital converter is employed to
convert all channels, being switched from one to the next with a solid state selector. The 2, 4, or 8 analog
sensor leads are selected through the relay matrix and connected to the 2, 4, or 8 input conditioning channels
in a parallel fashion. All signals are conditioned simultaneously, after which, the analog-to-digital converter
is switched from channel to channel converting the output of each channel into counts (0-4095) in the Conversion
register. One scanner command word controls the scanning of each group and therefore, all sensors in a group
must have the same characteristics (range, polarity, and scan rate).

Upon receiving a scanner command word, the scanner connects the analog-to-digital converter
to the first channel and initiates the selection and conditioning of the group of sensors specified. The first RCV
instruction causes the contents of the conversion register (digital equivalent of the first channel) to be trans-
ferred to the A register and also steps the analog-to-digital converter to the next channel. Each successive
RCV reads the digital value for the current channel and steps the converter to the next channel.

PROGRAMMING
MANUAL

GE412
53

Each analog to digital conversion after the first one requires 600 microseconds and a scanner-
complete signal is generated after each conversion, including the last one. It is possible to select one of the
channels uniquely as follows. If it is desired to read the fifth channel in an eight-channel scanner, four succes-
sive RCV commands should be executed after the initial conversion-complete signal is received. Then, after
a second conversion-complete signal is received, the fifth RCV command should be executed to obtain the
desired reading. It should be remembered, however, that still another conversion-complete signal will be
received. This creates no special problem; but if scanning is being accomplished by an interrupt program
entered upon receipt of each conversion-complete signal, the program must be aware the additional signal will
be generated. The same logic applies to the reading of the last channel also.

(a) Example of multi-channel scanner-distributor programming:
The following program scans eight sensors selected by group relay matrix address
(1220)g on the 40 mv range and stores the counts in eight sequential locations beginning with location 01000.

These counts would then be converted to engineering units by another program.

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address X in Octal Remarks
00500 LDA 00600 0000600 Load command into Scanner
00501 ISC 1 2510003 command register
00502 LDX 00601 1 0620601 Let loop counter to zero
00503 BSC 2,1 2516022 Wait for conversion
00504 BRU 00503 2600503 to be complete
00505 BCO 1,1 2514021 Test for conversion overflow
00506 BRU XXXXX 26XXXXX Go to error routine
00507 RCV 1 2510044 Read counts into A
00510 STA 01000 1 0321000 Store counts
00511 INX 1 1 1420001 Increment loop counter
00512 BXL -8 1 0437770 Test for end of loop
00513 BRU 00503 2600503 Repeat loop
00514 Next instruction
00600 00001010010000011010 0122032 Scanner command word
00601 00000000000000000000 0000000 Constant zero

3. Output Distributor

The output distributor is designed to relieve the scanner-distributor of most of its subcontrol functions
in systems which require numerous subcontrol functions in addition to heavy loads of analog scanning. Two
primary classes of digital output functions are performed by the output distributor. The two functions, des-
cribed below, are completely independent and a given GE 412 system may include either function alone or both.

a. Multiple Output Function

This function is intended primarily to update the status of annunciators, alarms, decimal displays,
analog outputs, regulator references and the like. It is designed for operation into bistable relay devices but is
not limited to their use.

The multiple output function is initiated by transferring a control word from the A register into the
Multiple Output (MO) Command Register. The MO control logic then decodes bits 0 through 7 as the address of
a group of contacts through which the digital information contained in bits 8 through 19 is transmitted to the
selected bistable relay devices. At the completion of this action, which requires 3.2 milliseconds, a multiple-
output-complete signal is generated which may be tested by a branch command or used to cause automatic pro-
gram interrupt. An interlock action is included which prevents the initiation of a multiple output action unless
the previous action is complete.

PROGRAMMING
MANUAL

GE412
54

Multiple Output Command Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 18 19

Row Column

Data

Group Matrix Address

b. Timed-Contact Function

This function is used whenever a single isolated contact closure (or opening) of a specified time
duration is required. The timed-contact function is initiated by transferring a control word from the A register
into the Timed-Contact (TC) Command Register. The TC control logic then decodes bits 0 through 7 as the
matrix address of the desired contact to be actuated and bits 14 through 19 as the desired time duration. The
time duration is specified as a multiple of 12.8 milliseconds, i.e. a time duration code of 10 (octal 12) specifies
a duration of 128 milliseconds.

When the complete action (selection, contact closure, delay, dropout) has been completed, which
takes 19.2 milliseconds plus the specified duration, a timed-contact-complete signal is generated. The com-
pletion signal may be tested by a branch command or used to cause automatic interrupt. Interlock action pre-
vents the initiation of a timed-contact action until a previous action has been completed.

Timed-Contact Command Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 18 19

Row Column .
Not Used Duration
Code

Contact Matrix Address

c. Multiple-Output Commands

LDM 2,3 2510112

LOAD OUTPUT DISTRIBUTOR, MULTIPLE-OUTPUT FUNCTION. The C(A) replace the C(MO). C(A) are not
changed. A multiple-output function is initiated.

BDM J 2 J=1 2514034
J=2 2516034

BRANCH ON MULTIPLE OUTPUT OPERATION COMPLETE. Branch to location L + J if the output distributor,
multiple-output function has completed its operation. Take the alternate branch if the operation is not complete.

LDT 2,3 2510012

LOAD OUTPUT DISTRIBUTOR, TIMED-CONTACT FUNCTION. The C(A)g_7, 14-19 replace the C(TC)0_7,
14-19 and a timed-contact function is initiated. C(A) are not changed.

BDT J 2 J=1 2514027

J=2 2516027
BRANCH ON TIMED-CONTACT OPERATION COMPLETE. Branch to location L + J if the output distributor,
timed-contact function has completed its operation. Take the alternate branch if the operation is not complete.

PROGRAMMING
MANUAL

GE412

55

4. Digital Data Accumulator/Digital Fast Scanner

The digital data accumulator/digital fast scanner (DDA/DFS) is a solid state device that provides the
GE 412 system with two functional capabilities. Up to five DDA/DFS units may be connected on one GE 412
system.

(1) The DDA accumulates or counts pulses that are normally generated by process sensing equipment,
i.e. tachometer, flow meter, killowatt-hour meter, etc. It provides 4, 8, 12, or 16-bit counters capable of
counting 15, 255, 4095, and 65535 pulses respectively, which are periodically read into the computer. Each
counter is reset to zero by the reading operation.

(2) The DFS senses the status of contact closures related to process sensors, i.e. hot metal detector,
over temperature sensor, etc. It scans these contacts in groups of 16 and transmitts the contact status into
the computer. The DFS may also be employed to read in the position of decade switches, on-off status of proc-
ess equipment, and other similar conditions.

Figure 13 shows the DDA/DFS in block diagram form. The selection of a specific counter or con-
tact group, and the output buffering of the information into the computer are common to both DDA and DFS oper-
ations. It is not possible, therefore, to operate the DDA and the DFS simultaneously. The 6-bit input selector
register is loaded from Aj4_19 by 2 LAC or LDS instruction, depending on whether a DDA or DFS operation is
called for. Loading this register selects the specific counter or group of contacts that is to be read into the
computer. The actual read-in is caused by the execution of an RFA instruction. For DDA operations, the
contents of the selected counter are transferred into the A register, A;g_;q for 4-bit counters and A1g_1g for
8-bit counters. Unused bit positions are reset to zero. For DFS operations the status of the 16 contacts of the
selected group are transferred to Aq_19. A contact closed is répresented by a 1" and a contact open by a ""0"".
A validity bit is also transferred into Ag, with a "1" indicating a valid read-in, and a 0" indicating an invalid
read-in. An invalid read-in takes place when the proper voltage has not been applied to the contacts being
read-in. An invalid read-in indicates a blown fuse or a connector disconnected.

The execution of each RFA instruction also causes the input selector register to be incremented by
one. In this fashion, successive counters or groups of contacts may be read-into the computer in sequence by
executing successive RFA instructions. This method requires only one LAC or LDS instruction specifying the
starting counter or group. The RFA instruction is used with other specially designed process input equipment
and is in a sense a general command used to read-in information from one of many fast access devices.

Special DFS groups are available wherein any change of state of any contact in the group will re-
sult in an output signal which may be wired to cause automatic program interrupt. Several such groups may be
wired to a single level of interrupt, but if this is done certain precautions must be observed to insure that no
change-of-state signals are lost. First, automatic interrupt should be inhibited while the DFS groups are being
read. Second, the interrupt program, which reads and examines the groups for the specific contact which
changed state to cause the interrupt, should read all of the special groups in succession before interrupt is
again permitted.

a. Instruction Definitions

LDS K 2,3 K=1 2510102
K=2 2510202
K=3 2510402
K=4 2511002
K-5 2512002

LOAD DIGITAL SCAN COMMAND REGISTER. Select the digital fast scanner, K, and disconnect the associated
digital data accumulator. C(A)14.1g replace the contents of the DDA/DFS input selector register, which in turn
selects a specific group of contacts for scanning. The DFS will remain selected until disconnected.

PROGRAMMING
MANUAL

GE412
56

From A Register

N P R N
Control B Recfivers o Control
| i |
| Input Selector |
Register
| 6-Bit |
I \ I
: Decoder 6-bit :
Counter 1 -~ DDA/DFS » Group 1
4 bits " <«— — Group or Counter |— — - 16 Contacts
DDA Selector DFS
-—— .
Counter 2
4 bits > Group Group — L]
: -g—— ®
L Switching DDA/DFS Switching
Counter n | > Output Buffer i - Group n
8 bits " - 16 Contacts

Control Path — —p

Information Path ——» To A Register

Figure 13. Digital Data Accumulator / Digital Fast Scanner

PROGRAMMING
MANUAL

GE412
57

LAC K 2,3 K=1 2510100

K=2 2510200
K=3 2510400
K=4 2511000
K=5 2512000

LOAD ACCUMULATOR SCAN COMMAND REGISTER. Select digital data accumulator K and disconnect the
associated digital fast scanner. C(A)l 4-19 replace the contents of the DDA/DFS input selector register, which
in turn selects a specific counter for reazimg into the computer. The DDA remains selected until disconnected.

RFA 2,3 2510046

READ FAST ACCESS DEVICE. The contents of the fast access device selected (DDA, DFS, or other special
devices) replace the C(A). Unused bits in the A register are set to zero. When used with the DDA/DFS this
instruction causes the input selector register to be incremented by one.

OFA 2 2510007

FAST ACCESS DEVICE OFF. Any selected fast access device is disconnected.

b. Examples of DDA/DFS Instructions

(1) Read in counters 1 and 2 in the DDA and add them to the commulative totals stored in loca-
tions 01210 and 01022 respectively.

Actual Form

Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
14000 LDA 15000 0015000 Load counter address into
14001 LAC 1 2510140 Input Select Register
14002 RFA 2510146 Read in counter 1 *
14003 ADD 01210 0101210 Add sum to counter contents
14004 STA 01210 0301210 Store new sum
14005 RFA 2510146 Read in counter 2 *
14006 ADD 01211 0101211 Add sum to counter contents
14007 STA 01211 0301211 Store new sum
14010 Next instruction
15000 00000000000000000001 0000001 Constant counter address

*Each RFA causes the Input Select Register to be automatically stepped by one.
(2) Determine whether contact number 5, counting left to right, in DFS group (15)g is open or

closed. If it is open transfer to a program starting in location 11500, if closed transfer to a program starting
in location 11600.

Actual Form

Location of Operation Operand of Instruction
Instruction Code Address in Octal Remarks
06000 LDA 06011 0006011 Load input select
06001 LDS 2510102 Register with DFS group
address
06002 RFA 2510146 Read in contact group (15)8

PROGRAMMING
MANUAL

GE412
58

Actual Form

Location of Operation Operand of Instruction

Instruction Code Address in Octal Remarks
06003 BPL 1 2514001 If sign - then valid read-in
06004 BRU XXXXX 26XXXXX If sign + then invalid read-in
06005 ANA 06012 2206012 Extract contact 5, bit Ag
06006 BZE 1 2514002
06007 BRU 11500 2611500 Contact open
06010 BRU 11600 2611600 Contact closed
06011 00000000000000001101 0000015 Group address
06012 00000000100000000000 0004000 Extract constant

C. PROGRAMMING AND MAINTENANCE CONSOLE

The programming and maintenance console shown in figure 7, contains the indicators, register displays,
and controls necessary for controlling the computer during normal operation and for performing program
check-out and maintenance functions.

1. Indicators

There are 12 rectangular indicator lights arranged in a row across the top of the console. One is used
to indicate overflow condition in the A register, one is used to indicate the computer is in the permit interrupt
mode of operation, and in the 412B one is used to indicate that the computer is accessing an operand in the
"upper 8K'" of memory. The others are spares which can be used for special system indicators.

2. Alarm Indicators and Controls

There are 12 alarm indicators on the right side of the console, which are lighted-pushbuttons. They
are therefore a combination of indicators and reset pushbuttons for certain alarm conditions within the GE 412
System. They may be single or dual indicators, lighted on the top or the bottom; but only one pushbutton is
available for each one.

The conditions that are indicated with the indicators are:

Core Parity Error

Drum Parity Error

Core Temperature

Stall Alarm

Cabinet Over-Temperature

Digital Clock Error

Paper Tape Parity Error on M Register
Paper Tape Parity Error on N Register
Primary Power Failure

Echo Alarm in Controller Selector

TITER e 20T

Five dual indicators are spare and used for special system functions.
3. Register Displays

Three rows of indicator lights are located in the center of the console and are used to display the P
register, I register, and the A register. One row of 20 indicator lights, called the maintenance display, is
located above these three and may be used to display the contents of the Q, Z, W, Cy, C9, M, N, B, Priority
Interrupt, Drum Address, and Core Address registers. The selection of which register to display is made on
the Maintenance Display Selector rotary switch located on the bottom of the console. This maintenance display
may be used to display the contents of special system registers as defined by the system engineer. These
special displays are selected with the Auxiliary Display Selector located on the bottom of the console. This
selector is active when the maintenance display selector is in the AUX position. Above the maintenance display

PROGRAMMING
MANUAL

GE412
59

lights is another row of 16 lights, also used primarily for maintenance purposes. These lights indicate the
state of internal instruction sequencing and memory accessing priority. (See e and f below.)

4. Controls
a. Key Switch

This key operated switch turns the console on and off. In the "on' position all console switches
are enabled. In the "off" position all console switches except the following are disabled:

parity reset switches,

echo alarm reset switch,

the A register toggle switches,
power off switch,

demand pushbutton,
maintenance display selectors.

b. Power Switches and Indicators

Power On and Power Off pushbuttons are provided on the console to turn D. C. voltages on or off.
A dual indicator light indicates that the power is "on' or "off" with green and amber lights respectively. When
D. C.power is initially turned on, the following units are initialized: Elapsed Time Counters, M Register,
N Register, Memory Access Priority, Instruction Sequencing, Drum Command Logic, Automatic Program
Interrupt, and System Initialization Signal. The System Initialization Signal is available to initialize such
additional equipment as the System Engineer may specify. When power is on and the computer is operating in
the manual mode, depressing the Power On pushbutton will initialize the following: Instruction Sequencing,
Drum Command Logic, Automatic Program Interrupt, and the System Initialization Signal.

¢. Manual/Automatic Toggle Switch

The Manual/Automatic toggle switch is used to select the mode of operation, and is enabled when
the Key Switch is in the on position. When this switch is in the ""Manual' position all console control switches
are enabled. When in the "Automatic" position only the Save P, Save I, Step Switch, and A Register Toggle
Switches are enabled.

d. The A Register Controls

(1) The A Register Clear Switch. The A register clear pushbutton clears the A register to zeros
when the console is in the manual mode of operation.

(2) The A Register Manual Set Switches. Twenty manual "'set A’ pushbuttons are provided that,
when depressed, set the corresponding position in the A register to one. They are active in the manual mode
of operation.

(3) The A Register Toggle Switches. Twenty Toggle switches, corresponding to the 20 positions
in the A register, are located in the center of the console. They operate in conjunction with the READ
CONSOLE SWITCHES instruction, and represent a zero in the up position and a one in the down position.

e. Instruction/Word Toggle Switch

When the console is on and in the manual mode of operation, the Instruction/Word toggle switch
selects the step mode of the computer. In the "Instruction' position it allows a complete instruction to be
executed as the Step Switch is depressed. In the "Word' position it allows the completion of only one word
time of the execution of an instruction as the Step Switch is depressed, and the upper row of maintenance lights
indicates the internal instruction sequencing.

f. Step Switch

When the console is on and in the manual mode of operation, the Step Switch will step the computer
either one word or one instruction depending upon the position of the Instruction/Word Toggle Switch. The Step

PROGRAMMING
MANUAL

GE412

60

Switch is also used to initiate automatic operation of the computer after the Manual/Automatic Toggle Switch
is placed in the Automatic position.

g. Save P Toggle Switch

The save P toggle switch is used to inhibit the changing of the contents of the P register. It is
active when the console is on.

h. Save I Toggle Switch

The save I toggle switch is used to inhibit the changing of the contents of the I register. It is
active when the console is on.

i. Transfer A to I Indicator/Switch

Transfer A to I switch causes the contents of the A register to replace the contents of the I regis-
ter. It is active when the console is on and in the manual mode of operation. The indicator light is on when
the switch is active.

j. Exchange A and Q Indicator/Switch

The exchange A and Q switch when depressed causes the contents of the A and Q registers to be
exchanged. It is active when the console is on and in the manual mode of operation. The indicator is on when
the switch is active.

k. Drum Transfer Indicator/Switch

The drum transfer switch is used in conjunction with other controls on the console to manually
initiate a Drum-Core transfer. It is active when the console is on and in the manual mode of operation. The
indicator is on when the switch is active.

1. Demand Indicator/Switch

The demand indicator/switch is used to set a flip-flop which operates in conjunction with the
BRANCH ON DEMAND instruction. When depressed, the flip-flop is set and the indicator is turned on. When
a BRANCH ON DEMAND instruction is executed the indicator is turned off and the flip-flop is reset.

D. CONTROLLER SELECTOR INSTRUCTIONS

The controller selector shares core memory accesses with the magnetic drum and the central processor.
Using the controller selector, it is possible to use high speed magnetic tape, high speed line printer, disk
storage and data communication systems as input-output media. It is possible through the use of these devices
to do large scale data processing and scientific computing on the GE 412 computer.

1LCS D 2 D=0 2501000
D=1 2501100
D=2 2501200
D=3 2501300

LOAD CONTROLLER SELECTOR. Load the control registers of controller selector D from the next two
sequential core locations. The constant D specifies which of 4 controller selectors to use. This command
initiates the transfer of information between core storage and the device(s) connected to the controller selector.

BCS J,D,E 2 J=1 2515DOE

J=2 2517DOE

BRANCH ON CONTROLLER SELECTOR. Branch to location L + J if the condition specified by E is true for
controller selector D. Take the alternate branch if condition E is false. E specifies one of 8 conditions applic-
able to the controller selector D.

PROGRAMMING
MANUAL

GE412
61

2514023

BEA J 2 1
2 2516023

BRANCH ON ECHO ALARM. Branch to location L + J if the echo alarm flip-flop is set. Take the alternate
branch if it is not set. This instruction resets the echo alarm flip-flop but does not reset the console echo
alarm indicator. The indicator is manually reset by depressing a button on the console. The echo alarm
flip-flop is set as the result of an unsuccessful selection operation by the controller selector.

| GENERALE ELECTRIC

PROGRAMMING
MANUAL

GE412
62

IV. PROGRAMMING TECHNIQUES

A. THE PROCESS ASSEMBLY PROGRAM
1. Introduction

Section III on Programming Fundamentals was devoted to the simple presentation of the basic com-
puter language making use of mnemonic codes to represent instruction operation codes and numerical addresses
to represent locations in storage. That section provided all the required information to prepare a program in
actual computer language (binary), however this language is cumbersome and difficult to use. The more sim-
plified approach to writing programs would be to use some symbolic language that would be more convenient for
the programmer. A symbolic program must later be converted into an actual computer language program
before execution. The Process Assembly Program (PAP), a program written for the GE 412, is capable of
converting programs written in symbolic form into actual machine language. The symbolic language used to
write programs is then called the PAP language, and allows the programmer to refer to computer instructions
and computer storage locations in a symbolic form.

The instructions written in PAP language are only symbolic of the actual language instructions and
bear a one-to-one relationship to the actual language instructions. The PAP program is first loaded into the
GE 412, and then the computer, under control of the PAP program, reads in symbolic PAP language instruc-
tions, converts them into actual instructions, and outputs the actual binary language program, called an object
program. This object program may then be loaded into the storage of the GE 412 System and executed.

2. PAP Assembly

The format of PAP instructions is similar to the actual instructions shown previously. Instructions
are written with location, operation code, operand, tag and comments. The operation code is the only column
which must always be present, and it is used to represent one of the acceptable mnemonic operation codes or
one of the special pseudo operation codes which will be defined in this section. The symbols used in the loca-
tion and operand columns are limited only by the programmer's selection and are usually chosen to mnemonic-
ally represent data, constants, or routines. This mnemonic reference aids greatly in debugging and correcting
programs. A programmer might assign the symbol TYPE to the starting location of a type subroutine, or
ALARM to the starting location of an alarm routine. PAP will then assign actual storage addresses to these
symbols and remember the assignment so that further reference to that symbolic address may be assigned the
same actual address. Address Symbols are usually required only for the starting locations of routines and for
locations that are referred to by other instructions in the programs. PAP will assign addresses to other in-
structions automatically.

A method of assigning storage blocks and starting addresses with actual computer storage locations
is provided through the use of pseudo operations. These pseudo operations are written mnemonically the same
as computer operation codes, but these codes represent instructions to PAP, rather than instructions for the
GE 412. Therefore, the pseudo operation codes never appear in the final actual language program, but rather
provide PAP with the necessary information so that it may perform a correct assembly of the symbolic pro-
gram.

The output of PAP consists of two basic parts, a paper tape output of the actual machine-language
instructions in a format compatible with standard loading routines, and a listing of the original input coding
together with the octal representation of the machine-language instructions generated. This output listing
also includes error codes to call attention to coding errors detected by PAP during the assembly process.
A list of the error codes follows.

Code Meaning

Illegal operation code.

Possible error in operand field.
Possible error in tag field.

Illegal character in location field.
Symbol in location field multiply defined.
Symbol in location field undefined.
Symbol table in full.

Operation table is full.

HUCQZ2HA» O

PROGRAMMING
MANUAL

GE412
63

3. The PAP Coding Sheet

PAP language instructions are written on the PAP coding sheet, shown in figure 14. The sheet has six
separate columns or fields: Location, Operation, Operand, Tag, Comments, and Sequence Number. The PAP
program accepts symbolic instructions from paper tape input or punched card input. If paper tape is used, a
tab character indicates the end of a field and a carriage return indicates the end of an instruction. The punched
card input is fixed in given card columns for each field. The rules and definitions that apply to each field are
given below.

a. Location.

The location field is used to identify the symbolic location in storage of the instruction. The entry
in this field must be symbolic and is restricted in that plus and minus signs may not be used as part of the
symbol. The symbolic representation of a location can be up to 6 characters in length, blanks or spaces will
be ignored, i.e., the symbol "A B" is interpreted as "AB". The first character of the symbol must be alpha-
betic. If an asterisk (*) appears in the first position of the location field, the entire line will be treated as a
remark and will not affect the PAP assembly in any way.

b. Operation

The operation field is always three characters in length and is used to enter mnemonic computer
operation codes or PAP pseudo operation codes. The list of operation codes is given in Appendix D.

c. Operand

The operand field contains additional symbolic and numeric information necessary for complete
definition of the instruction. It may contain a symbolic operand address up to six characters long, a decimal
address, constants associated with shift, X location and other instructions, or may be blank for some instruc-
tions. The numeric entries are assumed decimal unless otherwise specified, i.e., a "/" preceding an octal
constant. Numeric constants in BXH and BXL instruction are automatically negated by PAP and therefore
placed in the actual instruction in the 2's complement form. Arithmetic and relative addressing is permitted
in the operand field of instructions referring to storage locations as operands. The asterisk (*) is used for
relative addressing and represents the address of the current instruction. Symbols appearing in the operand
field need not be previously defined, but, somewhere in the program, they must be defined by appearing in
the location field of some instruction.

d. Tag

The tag field is a single character field and may be used to enter a numeric character or it may
be left blank. The valid entries in this field are 0, 1, 2, or 3 and specify the use of the corresponding auto-
matic address modification location (X location) to be used to modify the instruction. The 0 or blank indicates
that no automatic address modification is to take place, or that X location 0 is to be used with LDX, STX, INX,
BXL, or BXH or SPB instructions.

e. Comments

The comments field is of variable length and is used at the discretion of the programmer to make
remarks associated with each instruction. Comments are never used by PAP in the assembly, but the informa-
tion is very helpful when debugging or changing a program. When programs are prepared for entry to the com-
puter in paper tape form, this field is punched on the tape. The field has a maximum length of 24 characters
when punched on cards.

f. Sequence

The identification field is used to sequence number input cards and this field is not used on paper tape
input. A maximum of 5 characters may be entered into this field.

4. Pseudo Operation Codes

PAP uses a group of terms called pseudo instructions in addition to the mnemonic codes for the in-
structions in the normal repertoire of the GE 412. A pseudo instruction is a symbolic representation of

PROGRAMMING
MANUAL

GE412
64

<9

Sclvy3ao

IVANYW
ONIWWVIOOYUd

GENERAL @B ELECTRIC

PROCESS ASSEMBLY PROGRAM CODING FORM
[PROGRAM |DAT E
[PROGRAMMER ICOMPUTER I
Page of
LOCATION OPERATION OPERAND TAG COMMENTS SEQUENCE

1 8 12 29 31 56

—

-

-
¢ Process Computer Section, Industry Control Department Phoenix, Arizona

Figure 14. PAP Coding Sheet

information required by PAP for the proper assembly of a program. Pseudo instructions have the same
general form as a computer instruction, however, they are never executed by the computer as part of the actual
program. These pseudo instructions provide information to PAP but do not actually become part of the final
program. A list of pseudo instructions available for use with PAP is given below with a complete description
of usage. Some examples are given to illustrate correct usage of the pseudo instructions and to illustrate the
assembly program's reaction to erroneous usage.

a. SLC SET LOCATION COUNTER

The assembly program assigns consecutive memory locations to the instructions being assembled.
The SLC pseudo instruction enables the programmer to control the location of his program in memory by setting
the initial value of the location counter used by the assembly program and resetting it whenever necessary.
Unless otherwise specified, the location counter will automatically be set to zero at the beginning of the assem-
bly. The operand field is used to specify the manner in which the location counter is to be set. The several
options are described below.

(1) If the operand field contains a value, the location counter will be set to that value. The value
may be a decimal number, an octal number (indicated by a 1preceding the number), or a previously defined
symbol. A composite operand consisting of a summation of permissible operands may also be used.

(2) If the operand consists of the single letter, E, the location counter will be set to the next even
value. If this results in a "skipped" location, a NOP instruction will be inserted at that skipped location.

(3) If the operand consists of the single letter, O, the location counter will be set to the next odd
value. If this results in a "skipped' location, a NOP instruction will be inserted at that skipped location.

(4) If the first character of the operand is a plus sign, PAP advances the location counter by the
amount specified, thus skipping over a block of locations to reserve them for data storage or similar purposes.
Any of the operands defined in option (1) above may follow the plus sign to specify the size of the block to be
reserved. If the location field of the SLC pseudo instruction contains a symbol, that symbol will be assigned
to the first location of the reserved block.

b. DCW CONSTRUCT A DRUM CONTROL WORD

The standard loader routine is capable of loading information directly into magnetic drum storage
(using an area of core memory as a buffer). If this is desired, it is necessary that the address word punched
in the output paper tape begin with a "7'" and that the beginning location be specified as a track and sector
address for the drum. Any program loaded into drum memory will eventually have to be transferred into core
memory for operation, however, and it must be assembled to operate in core. The DCW pseudo instruction
provides the assembly program with the information necessary for generating the address word required for
specifying to the loader the correct drum address and also to generate the coding for the area of core memory
in which the program will ultimately operate.

To fulfill these requirements, the DCW pseudo instruction must be supplied with three operands
separated by commas. The first operand gives the drum track number, the second gives the drum sector
number, and the third operand specifies the core starting address for which the program should be assembled.

These operands may be decimal, octal, or symbolic. If they are symbolic, the symbols must have
been previously defined.

c. FOR LOADER FORMAT SELECTION

A program written to operate in a given area of core memory normally will not operate properly
in any other area of memory. For instance, a branch instruction intended to cause a transfer to alternate
coding under certain conditions will not have the desired effect if the alternate coding is not in the expected
location. However, the loader routine is capable of loading a given program into a section of memory other
than that for which it was originally assembled, modifying the operand addresses as required to permit the
program to operate in its new location, providing the load tape is in the proper format.

PROGRAMMING
MANUAL

GE412
66

The assembly program will produce an output paper tape in absolute (nonrelocatable) format unless
instructed otherwise. If a relocatable program or block of instructions is desired, the FOR pseudo instruction
must be used.

If the operand field of the FOR pseudo instruction contains the single letter "R" all following
instructions will be punched into the output tape in relocatable format until the assembler encounters a FOR
pseudo instruction with the single letter "A" in its operand field.

When operating in the relocatable mode, the assembler punches the BCD code for the letter "R at
the end of each instruction containing an operand address which should be modified when the program is relocat-
ed.

Symbols defined by EQL may not be relocated and will not be assembled in relocatable format even
if preceded by a FOR R pseudo instruction. Also, operand addresses specified in absolute on the coding sheet
or by symbols defined while the assembler is operating in the absolute mode will not be relocated.

d. EQL ASSIGN A VALUE TO A SYMBOL

The EQL pseudo instruction requires a symbol in the location field and a value in the operand
field. The value in the operand field may be decimal, octal (indicated by /), or symbolic. If it is symbolic,
the symbol must have been previously defined. Composite operands comprised of a summation of permissible
values are also permissible.

Two symbolic operands are reserved for special usage. The single letter "M" in the operand
field associates the symbol in the location field with the M register. Likewise, the single letter "N" associ-
ates the location symbol to the N register.

e. DEC CONSTRUCT A SINGLE-PRECISION DECIMAL CONSTANT

The DEC pseudo instruction allows the programmer to enter decimal constants directly as part of
the program to be assembled by PAP. The assembly program makes the necessary conversion to binary and
positions the result at the specified scale factor. Integer, fractional, and mixed numbers are permissible with
the letter "E" used to denote exponent of a power-of-ten multiplier and the letter "B used to denote scaling of
the resulting binary number relative to the machine binary point. If E is not given, it is assumed equal to zero,
and if B is not given it is assumed equal to 19.

f. DDC CONSTRUCT A DOUBLE-PRECISION DECIMAL CONSTANT

The DDC pseudo instruction is identical to the DEC pseudo instruction except that a double-length
(2-word) constant is constructed and assigned to the next two available locations. If B is not given, it will be
assumed equal to 38.

g. OoCT CONSTRUCT AN OCTAL CONSTANT

The OCT pseudo instruction allows the programmer to enter octal constants as part of the program
o be assembled by PAP. A right-justified, integer octal value will be generated and assigned to the next avail-
able location. Up to seven digits may be specified and they may be preceded by a minus sign.

h. ALF CONSTRUCT AN ALPHANUMERIC CONSTANT

The ALF pseudo instruction allows the programmer to store, as constants for his program, 6-bit
BCD alphanumeric characters, three to a word, right-justified.

The location field may contain a symbol through which the program can refer to the constant, and
the operand field may contain any three alphanumeric characters recognizable to PAP. (A list of such charac-
ters may be found in Section IV. A.5.)

PROGRAMMING
MANUAL

GE412
67

i. END END OF ASSEMBLY

The END pseudo instruction directs the PAP program to punch a transfer code word into the out-
put paper tape and to complete the assembly. If requested by the PAP operator, the assembly program will
then add to the printed listing a table of EQL pseudo instructions showing the actual octal addresses assigned to
the symbols defined by the program just assembled. This EQL table is also punched into paper tape in a for-

mat such that it may later be used to preassign locations to symbols before assembling another program or
reassembling a corrected version of the same program.

i DEF DEFINE A NEW OPERATION CODE
DES DESIGNATE A NEW OPERATION CODE

These two pseudo instructions are available to simplify the task of adding new mnemonic opera-
tion codes to the list of those recognizable to PAP. DES is used by PAP03 and DEF is used by PAP04.

While their use is simple, it requires some knowledge of the internal logic of the PAP programs.
For this reason, it is suggested that a PAP manual be consulted for their descriptions.

NOTE: It should be noted that the next-to-last column of the examples, which are shown as actual
PAP output listings, shows the actual location in octal, and the last column is the octal representation of the
information actually punched in the paper tape output of the assembly program. Each group of seven octal
characters is a word of program to be stored in memory by the loader routine excepting those which begin
with a "4" or a ""6"". Words beginning with a "4'"" contain an address at which the loader is to begin storing the
following words. The "4" signifies to the loader that a new address is being specified. Words beginning with
a "'6" similarly instruct the loader to skip a specified number of locations. The number of locations to be
skipped is specified in octal.

5. Character Set Recognized by PAP

The following are the only characters recognized by PAP.

Alphabetic: A through Z
Numeric: 0 through 9
Special: + (plus sign)

- (minus sign)
. (period, decimal point)
, (comma)
/ (slash)
* (asterisk)
(blank, space)

PROGRAMMING
MANUAL

GE412

68

PSEUDO CODE

Sk %k kK ok

512
SAM
JOE
*

START

/200v
SAM
JOt
START
+10
+/12
SAM+24
_LDA SAM+Z2 _
STA JOE+4
BRU START
sSLC E

SLC +2
DLD JONES
BRU *

sSLC O

SLC +1
LDA BOB
STA SAM
BRU BEGIN
SLC +2
IR

LDA BETTY
STA JOE
BRU *

SAM
JOE

BEGIN

JONES

s0B

DCW _PSEUDO CODE

fx]x x

DCw
LDA
DCW
B LDA
TRACK EQL
SECTOR EQL
DCW
LDA
DCw
LDA

10093293000
SAM

1600

100

32

/1000

SAM

FOR PSEUDO CODE

IR

LDX JANE
ANX 1
STX JOAN
FOR R

LDA SAM

/100»/325/3000

TRACK#325/3000

TRACKsSECTORs JOE

. . EXAMPLES OF PAP PSEUDO OPERATION CODESSs

DECIMAL OPERANDe

OCTAL OPERANDe

RESERVE TEN LOCATIONSS
RESERVE TEN LOCATIONS.
SYMBOLIC OPERANDe

SET COUNTER EVENe
RESERVE TwWO LGCATIONSe

SET COUNTER ODDe
RESERVE ONE LOCATION

ERROR» NO OPERANDS
SEE® FOR PSEUPC CUDE

DECIMAL OPERANDSe
OCTAL OPERANDSe
SEE EQL DEFINITION
IN NEXT SECTION.
SYMBOLIC OPERANDSe.

MIXED OPERANDSS

1
1
1

REQUEST RELOCATABLE FORM
1

STA /4231

TRELOCATABLE

NEG

STO BETTY

LDA 1000

RELOCATABLE

STO BILL

RELOCATABLE

ANA CHET

STA BOB

“RELOCATABLE

LDA JONES
FOR A

69

o
0
¢
o
0
00001 4001000
00002 01000 0002003
00003 Cloul 0302015
VL0O4 Clouz <6010u02
SIOTOIoP) 4002000
00006 02000 0002003
00607 02001 0302015
00010 0200¢ 2601000
00011 6000Ul2
00012 6000012
00013 4002033
00014 02033 (U02005
0015 02034 030202l
00016 02035 2601000
00017
00020 6000002
00021 V2040 1002036
00022 G204l 2602041
06023 02042 ¢504000
00024 6000001
00025 . Q2044 00Qzuas
00026 02045 0302003
00027 02046 2604033
00030 60000062
00031 A 4000000
00032 000UU 0005004
00033 600Gl 0302015
u0034 000UZ 2600002
0
[
0
00035 7144040

0003605670 0002003
00037 7100032
00040 03000 0001750
00041
00042
00043 7144040
00044 02015 0001000
00045 7144040
00046 03000 0002uU3
0
0 S
0
00047 03001 0620144
00050 03002 1420001
00051 03003 1720117
00052

. 00053 _M_03004 0022003
00054 03003 2603017
00055 03006 0202015
00056 03007 0304231
000b7 03010 2504532
00060 0301l 2703004
00061 03012 0001750
00062 ~ 03013 2703011
00063 ~ 03014 2203006
00064 03015 03020U43
00065 03016 0002036
00066

PROGRAMMING
MANUAL

GE412

MARY
SUE
JANE

EQL
[XETN
EQL
EQL
EQL
LDA
STA
SAB
SBA
LDA
EQL

ouT

JIM

LDA

EQL
LDA
EQL
LDA

JAMES

JOAN

*

DEC

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

* X

DDC
bbC
DDC
bDDC

DbC

*

ocCT

ocT
ocT
ocT
oCT
ocCT
ocCT

*

ALF

ALF
ALF

PROGRAMMING
MANUAL

GE412

MARY
*-8

PSEUDO CODE

100
/100
MARY
N

M
MARY
SUE
OUT»7
IN»19
JANE
JAMES
JIi

JAMES
/1178
JOAN

PSEUDO CODE

932

+932

932eU

932675
932675116
9e3275E2016
963275 EZ B1l6
—9e3275 E2 Blo
« 058U

Ue0583
Ue05b=3

5 E~2 b-3
5ub=-3b-3
«UluuE3B=~-3
UD

524288

PSEUDO COLE
3e¢1415926bB19
31415926E-7819

=1ulu0000B30U

344567 E-11 B=29

PSEUDO CODE

1234567
123
-123
1198
7654321
/123

PSEUDO CODE

DECIMAL OPerAnL .

OCTAL OPERANUS
SYMBOLIC OPERANCe

N REGISTER DEFINITIOUNS
M REGISTER DEFINITIONS

EKRUR s

cRROR s

ERROR s

JAMES UNDEF INEUD.

NO OPERKANUDe

OPERAND WNUT OCTAL 00107

NOTE THAT SPACES MAY BE

USED

FOR READABILITY.

Bl9 YIELDS ZERO

ZRROK

ERROR
ERROR
ERROR»
ERROR»

TOO LARGE

= NOT PERMITTED
NOT OCTAL
TOO0 LARGE

/ NOT REQUIRED

ABC T N
DE

70

uuue7 03017 0300144
00070 03020 2603010
0

0

]

UuuT7l

00072

00073

00074

00075

00076 03021 0COULl44
00077 03022 0300100
00100 ©3023 2400207
0101 03024 2404023
00102 03025 0QuUQUl44
00103

0ulo4 w3u26 UUOOULLL
LUlC5 A

00106 03027 00000V00
00110 03030 0000117
0

o]

0

o111 VU303l 0001644
o112 03032 0uOlo4s
U113 03033 0001644
00114 03034 0001644
00115 03035 0Ul6446
V0116 03036 0016446
o117 03037 0016446
00120 03040 3761332
VU121 03041 (0063146
001¢2 U3042 0006314
00123 03043 0631463
00124 03044 0631463
00125 03045 (0631463
V0126 03046 0631463
00127 03047 ©0000GO
00130 A 03050 (QO0QLUG.
O -
9]

0

00131 03051 0000003
00132 03052 0220773
vU0133 L3053 0000003
00134 03054 0220773
00135 03055 3766355
00136 03056 2300000
0u137_ 03057 0023001
00140 03060 1374000
U _
0 e

0 - B
00141 03061 1234567
00142 03062 0000123
00143 A_03063 0000000
00144 A 03064 0000011
00145 A 03065 3654321
_00146 03066 0000000
0

O - o —— 77‘_-..-

-

00147 03067 0616263
00150 03070 0006465

ALF F 00151 u3071 0GQ00066

ALF ABCD ERRORs TOO MANY 00152 A 0307< 0616263
ALF E ERRORs TOO MANY 00153 A 03073 0000UUO
¥* 6]
% END PSEUDO CODE 0
* 0
END START END OF ASSEMBLY 00154 6101000
* B SAMPLE PAP PROGRAM TO TLLUSTRATE 0
* PRIME FEATURES OF PAP_ 0
* 0
SLC /2000 00001 4002000
START OFF N TURN OFF N=REGISTER 00002 02000 2500010
BBR 23N PERIPHERALSe 00003 02001 2516010
BRU #*=1 00004 02002 2602001
LDA SELCD " TURN ON TYPERe 00005 02003 0002112
SAB N»7 i T 00006 02004 2400407
SEL N) 00007 02005 2500000
BBR 29N WAIT FOR SELECTIONs 00010 02006 2516010
BRU _*=1 . 00011 02007 2602006
LDA WAIT "INITIATE 200 MSEC. DELAY 00012 (02010 0002113
LTC 3 _ FOR OPERATING SPEEDs 00013 02011 2500021
BTC 243 - 77T 00014 02012 2516015
BRY %=1 7 " 7 00015 02013 2602012
o LDX ZERO 1 ZERO WORD COUNTe 00016 02014 0622114
WORD LDX ZERO "2 ZERO CHARACTER COUNTs 00017 02015 0642114
"LDA HEAD 1 GET A WORD AND POSITION 00020 02016 0022131
SRD 18 i ~ _IT IN Qs T 7 00021 02017 2400122
CHAR BBR 2sN _ __WAIT FOR LAST TYPER 00022 02020 2516010
BRU *~1) ACTION TO FINISH. 00023 02021 2602020
SLD 6 T SHIFT NEXT CHARACTER TO 00024 02022 2411006
SAB Ns7 - A AND THEN TO N _AND 00025 02023 2400407
TYP N ~ INITIATE ACTION. 00026 02024 2500004
INX 1777 7777 7 T TR INCREASE CHARACTER COUNT 00027 02025 1440001
BXL 3~ T T Z BY 1 AND TESTs IF NOT 00030 02026 0457775
BRU CHAR © 777 YET 3, RETURN FOR NEXT 00031 02027 2602020
INX 1) "~ "1 INCREASE WORD COUNT BY 1 00032 02030 1420001
BXL 51 77 7771 AND TESTs IF NOT DONE 00033 02031 0437715
BRU WORD RETURN FOR NEXT WORDs. 00034 02032 2602015
Loz - T 77 TTTCLEAR A AND T ' 00035 02033 2504002
STA X T TTTTTTTTUUBET X TO ZEROe 00036 0203% 0302126
CALC DA B ~~ ~777 TTTTTTTTGET B AND MOVE IT TO Q00037 02035 0002125
MAQ R " FOR MULTIPLICATIONG — 00040 02036 2504006
LDA A T 777 GET A AND CALCULATE Y 00041 62637 0002124
MPY X AS A ¥ BXs 00042 02040 1502126
DST Y " T T T STORE Y 00043 A 02041 1302127
LDX ZERO - — T 2 SET X/Y KEY TO X+ 00044 02042 0642115
TYPEY 1LDX ZERO™ ~ "~~~ 73 SET DIGIT INDEX TO ZERU. 00045 02043 0662114
TOA VALUE 2 GET X OR Y AND MOVE IT 00046 02044 0042126
MAQ R TO Q@ FOR DIVISIONs 00047 02045 2504006
TYPE DVD TENX 3 GENERATE NEXT DIGIT IN A 00050 02046 1662115
BZE 1 o 00051 02047 2514002
BRU *+3 IF IT IS NOT ZEROs STORE 00052 02050 2602053
STA SUPCD IT AS SUPPRESSION KEYs 00053 02051 0302122
BRU *+4 —IF IT 1s ZEROy EXAMINE 00054 02052 2602056
LDA SUPCD ~ " 'SUPPRESSION KEYe 00055 02053 0002122
BZE 2 TTTTTTTTIF ZERO' TS TO BE TYPEDs 00056 02054 2516002
LDA Z2EROC ~ GET ZERO CODEs 00057 _ 02055 0002123
'BBR 25N 7 7777 "WAIT FOR LAST TYPER 00060 02056 2516010
BRU *=1 = = ACTION TO FINISHs 00061 02057 2602056
SAB N7 TYPE ZERO OR SPACE OR 00062 02060 2400407
TYP N 7 T THE NON-ZERO DIGITe 00063 _ 02061 2500004
INX 1 T 3 INCREASE DIGIT INDEXe 00064 02062 1460001

PROGRAMMING
MANUAL

GE412
1

BXL 4 3 IF LESS THAN FOURs GO 00065 02063 0477774
BRU TYPE BACK TO TYPE NEXTs 00066 02064 2602046
BXL 5 3 INSURE THAT SUPPRESSION 00067 02065 0477773
oo © T T "TTCODE IS NON=ZERC FOR 00070 02066 2504022
STA SUPCD 5TH AND ZERO FOR 1STe 00071 02067 0302122
BXL 5 3 IF 5TH DIGIT NOT TYPEDs 00072 02070 0477773
BRU TYPE GO TO TYPE 1Te 00073 02071 2602046
INX 1 2 INCREASE X/Y KEYe 00074 02072 1440001
BXL 2 2 IF NOW SET TO Ys GO TO_ 00075 02073 0457776
BRUTTYPEY T TTIYPE Y VALUE. 00076 02074 2602043
LDA CARRT TYPE A CARRIAGE RETURN 00077 02075 0002130
BBR 2sN AT END OF EACH LINE 00100 02076 2516010
BRU %=1 OF TABLEa 00101 02077 2602076
SAB Ns7 00102 02100 2400407
TYP N . 00103 02101 2500004
TOXX 1°GET UAST X VALUEs 7~ 760104 02102 0622126
BXH 20 1 IF IT IS 20s GO TO TURN 00105 02103 0537754
BRU #*+4 OFF TYPERs IF NOT 06106 02104 2602110
INX 1 1 INCREASE X BY 1 00107 02105 1420001
STX X 1 STORE ITs AND GO TO 00110 02106 1722126
BRU CALC CALCULATE NEXT Yo 00111 02107 2602035
OFF N~ TF FINTSHEDY™ TURN OFF 00112 92110 2500010
BRU * "~ "TYPER AND STOPe. 00113 OZIII 2602111
N EGL N " DEFINE N FOR N=-REGISTER 00114
"SELCp OCT 60 TYPER SELECTION CODE 00115 — 02112 ~ 0000060
WAIT OCT 14 200 MSECs CONSTANTSs 00116 02113 0000014
ZERO 0OCT O 7 ~ DEFINE ZERO 00117 02114 0000000
TENX™ ~DEC 1E4B19 TABLE OF POWERS OF TEN 00120 02115 0023420
~ DEC 1E3 FOR GENERATING BCD 00121 02116 0001750
DEC 100 NUMBERS« 00122 02117 0000144
DEC 10 o 00123 02120 0000012
] pDEC1 __0012&4 _ 02121 0000001
SUPCD OCT O ~ ZERO SUPPRESSION KEY _ 00125 02122 00060000
ZEROC OCT 20 7 'ZERO CODE) 00126 02123 0000020
A DEC 200) INTERCEPT CONSTANT 00127 02124 0000310
‘B "DEC -10 T SLOPE CONSTANT 00130 02125 3777766
T SLC E T 77777 7O ENABLE DST Y IN ODD 00131 N i
X SLC +1 STORAGE FOR X 00132 6000001
Y T SLC 4+l T 77T STORAGE FOR Y 00133 60600001
“CARRT OCT 100 T T TTTTTTTCARRIAGE RETURN CODE 00134 02130 0000100
VALUE ~EQL X o 00135 o
HEAD OCT 3003235 TABLE OF BCD CHARACTERS 060136 02131 3003235
“ALF THE FOR TYPING OUT THE 00137 02132 0237065
ALF FO HEADING INFORMATION, 00140 02133 0006646
TALF LLO T T STARTING WITH A 00141 02134 0434346
ALF WIN T T ~CARRTAGE RETURNs 00142 02135 0267145
ALF'G T i - 00143 02136 0670023
ALF ABL 00144 02137 0616243
ALFET1T 7 - - 00145 02140 0650071
ALF 5 G L 00146 02141 0220067
‘ALF ENE o 00147 02142 0654565
ALF RAT i 00150 02143 0516123
ALF ED I 00151 0214% 0656400
ALF FRO - 00152 02145 0665146
ALF M T~ T T 00153 02146 0440023
ALF HE 00154 02147 0706500
ALF "EQU - . - N T 00155 ' 02150 0655024
ALF AT - T 00156 02151 0612371
‘ALF ON T T T 00157 02152 0464500
oCT 3003235 T ToT T T 60160 02153 3003235
0CT 3000000 T T T 00I61 T 02154 3000000
ACF 00162 02155 0000000
ALF 00163 02156 0000000
ALF TUTTT T T 00184 02157 T 0000000
ALF Y E 00165 02160 0300065

PROGRAMMING
MANUAL

GE412

72

ALF
ALF
ALF
ALF
ALF
oCT

ocT

ALF
ALF
ALF
ALF
ALF
ALF
ALF
ALF
ALF
ALF
ALF

ALF

ALF
ALF
ocT
ocCT
ALF

T

QUA
LS

200

10X
3003235

RV
ALY
ES
OF
X I

NS
TEP
S0
F1
FR
oM

02

Oe

3003235

3000000
X

ALF
ALF
ocT
END

Y

3003235
START

B. SUBROUTINE PROGRAMMING

1. Introduction

Subroutines are one of the most powerful and convenient tools available to the programmer.

END=TRANSFER CARD

00166
00167
00170
00171
00172
00173
00174
00175
00176
00177
00200

00201

00202
00203
00204
00205
00206
00207

00210

00211
00212
00213
00214

00215

00216
00217
00220
00221

02161
02162
02163
02164
02165
02166
02167
02170
02171
02172
02173
02174
02175
02176
02177
02200
02201
02202

02203

02204
02205
02206
02207

02210

02211
02212
02213

0502461

0432200
0022020
0004000

© 0012027

3003235
3006646
0510025
0614324
0652200
0466600

.0270071

0450022
0236547
0220046
0660001
0006651

0464400

0200023
0460002
0207300
3003235
3000000
0000027
0000000
0300000
3003235
6102000

When

constructing the logical sequencing required in a program, it is often discovered the same general function

has occurred several times during the entire program.

If it were possible to transfer program control from

the main sequence to a secondary sequence, and later return to the same point in the main sequence, the re-
curring function would only require one set of instructions to accomplish any number of performances of the
specific function. The series of Common instructions which accomplish the desired function is designated

a ""'sub-routine'.

To cite an example, consider the solution of:

The function of determining the square-root of a value occurs twice within the same equation.

X=a/b + cyd

Through the use

of a subroutine to determine square-root, one set of instructions is required to accomplish the function each

time square-root occurs in the entire main sequence.
routine technique need only satisfy one condition.

73

The functions which can be accomplished by the sub-
That is-that the instructions required to accomplish the

PROGRAMMING
MANUAL

GE412

function be contained in a definable block. These functions would include, but are not restricted to, basic
arithmetic sequences, complex mathematical evaluations, information and data transfers, or input-output
routines. By employing the subroutine principle, a programmer may develop a ''building-block' program, with
each block performing a separate phase of the main program. The main program sequence is then only re-
quired to provide the necessary direction, intermediate preparation, and linkages (often designated calling
sequences) between various subroutine sections of the program.

In order to accomplish the demands of the main program, the programmer must include within each
subroutine certain basic requirements. It is of primary importance that the logical power of the subroutine be
universal enough to handle any conceivable situation presented by the main program. The subroutine must
further provide for a single common entrance, but be able to interpret and accomplish a variable exit for re-
turning to the main program. The subroutine must provide the result(s) to be used by the main program in the
form and location specified by the main program. If the subroutine must use registers or other components
which may contain information necessary for subsequent operations of the main program, these components
must be restored to their original form prior to reentry into the main program.

For correct and useful application of a subroutine, the main program must likewise satisfy certain
minimum requirements. The main program must call for the correct entrance location to activate the sub-
routine. The main program must specify the desired reentry point or subroutine exit location. Finally, the
main program must provide all information required by the subroutine to accomplish the function. This in-
formation, often referred to as the argument, is generally supplied in a specific form and location. The extent
and detail of the information required by the subroutine will vary with each subroutine, but the requirements for
supplying this information lie with the main program.

In summary, the use of subroutines and ''building-block’ subroutine techniques can provide the pro-
grammer a considerable saving of memory space and programming time and effort. The very slight expense in
additional complexity and space of subroutine linkages or calling sequence are generally outweighed by the
savings in memory space and programming effort. However, the specific use of subroutines within any given
program will depend on the programmer's experience and ingenuity to a much greater extent than the inherent
requirements of the program itself. The use of subroutines almost always make the execution time longer than
normal programming.

2. Use of Subroutines

The use of subroutines can best be explained by using an example. Consider sensing the analog signal
from a differential pressure sensor with the GE 412, and using the output of the sensor to compute a flow rate.
The sensor output, 0-200 inches of water, corresponds to 0-500, 000 pounds per hour water flow. The relation-
ship between inches of water sensed and pounds per hour flow is shown in the following equation: '

W=K1.K2.(AP)1/2
where: W = Flow (Ibs/hr)
AP = Differential pressure (inches of H,O)

K1 = Orifice Constant (determined by calibration) = 49, 890

Pactu 1 T librati
K2 = Correction coefficient = a X calipration

calibration Tactual

P = Pressure
T = Temperature

The output of the differential pressure sensor (0-200 inches of water) is converted via a transducer to
4-20 milliamps. This signal is then passed through a 100 ohm resistor and converted to a 4/10-2 volt signal.
This voltage is then sensed on the 0-2 volt range of the scanner-distributor and converted to 800-4000 counts.
The equation relating counts to inches of water is then:

AP = (,0625) Counts - 50.

The following program illustrates reading this sensor and using the reading to compute flow. It is

assumed that Kg has previously been computed from current temperature and pressure readings and stored in
location 00400 with (B3).

PROGRAMMING
MANUAL

GE412
74

The main program must satisfy the conditions of setting up the proper linkage to the subroutine The
subroutine in this case is used to compute the square-root function. This linkage is specified as:

Entry Conditions:
1. 12-bit argument in the A register, B12
2. Exit address in location 0003
Exit Conditions:
1. Square-root of the argument is in A, B6
Subroutine Program

A polynominal of the form AN2+BN+C is used by the subroutine to approximate the square-root of
numbers that have even scale factors. The method used is as follows:

Consider:
n = 2B N
where:
n = any number with an even scale factor
B = scale factor of n
1/4<N<1
The approximation is accomplished using N; and the scale factor for the square-root is B.
2
If:
1/4<N<1/2,A = -.563063
B = 1.24912
C = .223801
I:
1/2<N<1 A = -.187688
B = .866579
C = .321985

This approximation has a maximum error of + . 1% for 12-bit numbers.

LOCATION OPERATION OPERAND TAG COMMENTS
LgcC 500 DEFINE STARTING ADDRESS
MAIN LDA C@N1 LOAD CGMMAND INTQ
ISC 1 SCANNER COMMAND REGISTER
BSC 2, 1 WAIT FOR SCANNER
BRU *-1 COMPLETE
RCV 1 READ IN COUNTS
MAQ PUT COUNTS INTO Q B19
MPY CON2 (. 25xCOUNTS) B18
SLD 6 (. 25xCOUNTS) B12
SUB CQN3 (. 256xCOUNTS) -50 B12
SPB SQROGT GO TO SQUARE ROOT SUBROUTINE
MAQ SQRGGT OF DELTAP B6 IN Q
MPY K2 K1 x DELTAP B9
MAQ

75

PROGRAMMING
MANUAL

GE412

LOCATION

C@N1
C@N2
C@N3
K1

K2
FLOW

OPERATION

MPY
SRD
XAQ
STA
BRU
@gCT
DEC
DEC
DEC
EQ®
DEC

3. Square Root Routine

LOCATION

*

SQRGGT

SQRTB

SQRTA

C@N

ONE
ZERQ
XLGC2

PROGRAMMING
MANUAL

GE412

OPERATION

L@C
STX
N@R
MAQ
LDA
BEV
BRU
LDX
XAQ
SRA
STA
MAQ
MPY
ADD
MAQ
MPY
SLD
ADD
STA
LDA
SUB
SRA
STA
LDA
SRA
LDX
BRU
LDX
BRU
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

OPERAND TAG

K1
10

FLGW
NEXT
0345316
.0625B-1
50B12
49890
400

0

OPERAND TAG

1000
XLHC2 2
18

0

2

SQRTA

ZERQ 2

TEMP

C@N 2
CON+2 2

TEMP

C@N+4 2
TEMP

CON+6

0

1

2

TEMP

0

XLGC2

1

@NE
SQRTB
-.187688 B4
-.563063 B4
. 866579 B4
1.24912 B4
. 321985 BO
. 223801 BO
18

1

0
0

N~ DN DN

76

COMMENTS

K2xK1xDELTAP B28
B38

STORE FLOW IN STORAGE
G@ TP NEXT PRGGRAM
SCANNER COMMAND WORD
C@NSTANT

CONSTANT

@RIFICE C@NSTANT B19
C@RRECTIPN C@NSTANT B3

COMMENTS

SQUARE R@QT SUBRGUTINE
ASSIGN STARTING ADDRESS

SAVE C@NTENTS @F X LGCATION 2
NORMALIZE ARGUMENT

PUTITIN Q

TEST N@. @F LEADING ZER®

IF ODD THEN N LESS THAN 1/2

IF EVEN THEN N GREATER THAN 1/2
PUT NGRMALIZED ARGUMENT IN A
MAKE ARG. BE . 1XX @R .01XX
STORE ARGUMENT TEMPQ@RARILY
PUT ARGUMENT IN Q (BO)

(AXN) (B4)

((AXN)+B) (B4)

((AXN)+B)X N (B4)

(BO)
((AN+B)N)+C (B0)
ST@GRE TEMP@RARILY
(18) DECIMAL (B19)
NUMBER @F LEADING ZER@S IN A
DIVIDE BY 2 PAIRS @F LEADING O'S
PUT N@. @GF PAIRS ¢F O'S IN XL2
SQRUJT OF N (B0)
SQRUQOT @F N (B=1/2 OF @RIG)

RESTORE CONTENTS OF X LOCATI@N 2

EXIT BACK T@ MAIN PRGGRAM
SET KEY T@ 1

A C@NSTANTS

A

B

B

C

C

(18) B19
(1) B19

(0)

C. REAL-TIME PROGRAMMING

Process computing applications require the computer to operate on a real-time basis; sensing variables,
correlating these variables with standard conditions, and applying control as the process dynamically operates.
There can be very little delay between the sensing and the application of control. The functions of scanning,
monitoring, logging, performance calculations, and controlling must be accomplished by the program in the
available computing time without falling behind the operation of the process. Automatic program interrupt,
elapsed time counters, and the digital clock are the basis of real-time programming in the GE 412 process
computing system. This computer hardware and a program, called the Executive Control Program (ECP),
coordinate the use of available computing time by all of the functional programs that do the work in the system.
A typical system flow chart is shown in figure 15.

1. Automatic Program Interrupt

The automatic program interrupt system consists of twelve levels of interruption, each corresponding
to a position in the automatic program interrupt register. Any condition that can be related to an open or closed
contact (bistable) can be used to cause program interruption. The overflow condition from an elapsed time
counter, the complete signals from input-output equipment, demand push-buttons, limit switches, limit sensors,
and other process equipment may be used as conditions that cause automatic program interruption. The exact
employment of the twelve levels of interruption will vary from system to system, but the programming approach
to coordinating the many asynchronous happenings in a process computer system is fairly uniform.

2. Elapsed Time Counters and the Digital Clock

The four elapsed time counters in the GE 412 system are capable of accumulating increments of time
and signalling the program upon completion of the count. This communication is done by setting an indicator
that the program can branch on, or by using the overflow signal from the particular time counter to cause auto-
matic program interrupt directly. The elapsed time counters are normally employed by the program for con-
trolling scan frequencies, logging frequencies, and many other time dependent functions. The elapsed time
counters are also used as an integral part of the executive control program to control the effective use of the
available computing time in the GE 412 System. Periodically the ECP reads the digital clock to reference time
to the hour, minute and second of true time.

3. The Executive Control Program (ECDP)

The executive control program is the executor of "real-time' in the process control program. It
governs the sharing of available computing time by all of the functional programs within the process control
system. Since the importance of the functional programs vary, a priority is assigned by the ECP along with
a frequence of execution. The ECP works directly with the elapsed time counters, digital clock, and the auto-
matic program interrupt system to effective control the frequency of execution and priority of all functional
programs.

4. Functional Programs

Each process control program consists of a variable number of functional routines that accomplish
the scanning, alarming, monitoring, performance evaluation, operator demand, and controlling functions.
Each of these programs accomplishes a finite part of the overall process control program. The number and
complexity of the functional routines varies greatly from one application to another. The ECP is responsible
for the proper entry into these routines at the right time, and if a functional program happens to be interrupted
by a higher priority routine, the ECP must also re-enter the interrupted routine at the exact position of inter-
ruption. Functional routines are therefore written as a straight line program and the automatic interrupt will
interrupt it, remembering where to re-enter, so that higher priority routine may take precedence.

5. Simplified Process Computing System Program

To illustrate the concepts of real-time programming for the GE 412 Computer System a simplified
process computing system program is described herein. It is representative of approximately 5% of a true
system program, however, it displays all of the real-time characteristics of a true system program. The
system described scans, monitors, alarms, logs, and does an on-demand display for 100 analog inputs. The
general system flow chart is shown in figure 15. As shown by this diagram elapsed time counters, scanner

PROGRAMMING
MANUAL

GE412
77

Interrupt Register

Elapsed Timer
Scanner Complete

Printer Complete
Typer Complete
Timer 1 & 2

PROGRAMMING

MANUAL

GE412

1

2

3

4

5

6

7 Y

8

9 1-O Control
Program

10

11

12

Y

Alarm Printer
Drive

\

/

Log Typewriter

Drive

A

\i

Scan & Alarm
Program

Executive
Control -
Program
Function 1
— Operator
Demand
| Function 2
o Hourly Log
]
|
I
I
T |
|
I
I
I
|
Y .| Function n.

Go Back

To Interrupted

Pr

ogram

Figure 15. Basic System Flow Chart

78

complete signals, alarm printer ready, and log typewriter ready signals are used to cause interrupt. The
coordination of input and output of information is done using programs, called drivers, which simply keep the
peripheral device busy, if there is something for it to do. The time counter interrupts are used to coordinate
time in the system. As described previously the ECP controls of use of computer time by the functional
routines. Only two functional routines are specified in the system, but normally a true system program would
contain many functional routines.

a. Executive Control Program (ECP)

The basis of the operation of the ECP is an interruption from a time counter that enters the ECP
once every 500 milliseconds (could be less if necessary). Upon entry the ECP saves the contents of all registers
applicable to the interrupted program in an area in storage set aside for that particular program, so that it may
properly re-enter the program when time becomes available. The ECP then updates a relative count of time in
storage. This relative time is then compared with the time at which the functional programs are to be executed
in order of priority, starting with priority one and descending through all priorities. If no functional routine is
required the ECP simply waits for time to pass. Finding a functional routine that is required, the ECP loads
the registers for that routine and re-enters it either at the beginning or, if this routine was interrupted, at the
position of interruption. A program number associated with the operating program is kept in storage so that
the ECP always knows what program is running. The program number of the ECP is "O", functional routine 1
is numbered ""1'" and so on. This program number is used by the ECP to store the register contents in the
proper place in storage. Figure 16 shows a flow chart for the ECP.

b. Scan Program

The scan program drives the scanner-distributor at full speed scanning analog inputs. Inputs are
read-in, stored in a table, checked against high and low limits and alarmed on the alarm printer in read when
the input is out of limits the first time. If the input is within limits, a check is made to see if it was out of
limits last time. If it was, the point is again printed on the alarm printer in black. When the 100 analog input
points have been scanned the scan program starts from the beginning and scans them again. If at any time an
output is required to be performed by the scanner-distributor, the point being scanned is interrupted and the
oulput is initiated. When the output is completed, the program that required the output must then re-initiate
the scan of the point that was interrupted.

(1) The Engineering Conversion Subroutine

The engineering conversion subroutine converts the raw counts signal from the scanner into
engineering units using the equation indicated by the index table. Conversion is accomplished using a second
order polynomial and 32 sets of coefficients. (Simplified from true system program.)

(2) Alarm Assembly Subroutine

The alarm assembly subroutine reads the digital clock, converts the alarm value into binary-
coded-decimal, and places all of this information along with the alarm indication (high, low, etc.) in a queue
table for the alarm printer drive program. If the printer is inactive the alarm assembly routine turns the
alarm printer on and initiates a 200 millisecond delay to allow the printer to attain operating speed.

(3) The Alarm Printer Drive Program

The alarm printer drive program in an interrupt program that simply gets the next item to be
printed out of an alarm queue table and initiates the printing of it. If the queue table is empty, it then turns the
power off on the alarm printer. The time is printed only once every minute while alarms are being printed.

(4) Input-Output Control

The input-output control routine allows time counter to be used in delaying the use of periph-

erals until they are up to operating speed. As the delay expires to input-output control routine start the action
required by transferring to the appropriate driver.

PROGRAMMING
MANUAL

GE412
79

From
Interrupt 1

Initiate New
500 MSEC Delay

Y

Time =

Inhibit
Time + 1 Interrupt
Y
Y
Set Program
Save All Registers I‘E- = tP LO;d All
For Program N egisters For
In Area N

Program P

\

Y
Is Permit
Int t
Time = 12 No - nterrup
Hours /
Yes
Y
Go To
Setl Functional
1 =
Time = Time
12 Hrs

Program
P

Subtract 12 Hours
From Function
Time i

Nogl i=i+1

Figure 16. Executive Control Program

PROGRAMMING
MANUAL

GE412

80

Yes

Program No. =0
Permit Interrupt

ECP

Is It Time
For Functional
Program P

P =P+1

IsP=2 No

TABLES

From
Interrupt —_— Scant Index T
2
100 Index Words
Format
100 Bits
| Save All
Registers Scanner 0 - Alarm Key
Command _ :
Word 1 Hi-lo Key
ords 10-14 Conversion
Index
Read-In Counts 15-19 Limit Index
For Point J and
) Store In Valuet J
Variable IDT Valuet
Initiate 100 100
Scan Of Identification Values
Point K Words For
Format: Current
L ILLII Sensor
Set Alarm Is Point J 172737475 Readings
Key, Set?t Limits
Symbol High
Y No
Set Alarm Is Point J .
1 Key, Settle—22 { Out of Limits Was Point J) No
Out Last Time
Symbol Low
A
/ : \ Reset Alarm Alarm
Was Point J No
> . Key, Set - - Assembly
\Out Last Tlme/ (Blank) Symbol ' Subroutine
Scan >l v
2 VV es
Set J=K
K=K+1
K > 100 Yes K =0 POINTJ = Current Point
POINTK = Next Point
No |« J
\ i
Restore
All
Registers

Go Back
To
Interrupted
Program

Figure 17. Scan Program

81

PROGRAMMING
MANUAL

GE412

ALARM QUEUE TABLE

AQUE1 AQUE2 AQUE3 AGUE4 1
Four Words
Per Item
Format: Format: Format: Format:
Identification Value Time
Color 111213 I‘]!I5 _’ V1V2V3V4 T1T2T3T4 20
Alarm
Assembly
Subroutine,
No Is Alarm
\ Printer On
> A, = Number of items in
Yes
‘ Queue table
) Convert .

Turn On Point J Value A, = Place in ‘table to
Alarm To Eng. Units put next item
Printer A3 = Place in table to

] get next item
Y Put Value, Time,
Turn Off & ID Code, Color
Alarm Printer Bit in Alarm Queue,
Drive Position A2

Y
Initiate 200 MSEC A

Delay For A1 = A1 +1
I-0 Control Routine
A=A, +1
2 2
Y
Yes _
A2 >20 A2 =0
No
v
Exit
To
Scan

Figure 18. Alarm Assembly Routine

PROGRAMMING
MANUAL

GE412
82

Is Time
Different

Abusy = 0

| Turn Printer Off
Turn Off Alarm Drive

No

Print Item

A1=Al-1

From Alarm
Queue

A3=A +1

A >20

No

Yes

From
Interrupt
5

Alarm
Drive

Alarm
Printer
Delay

Figure 19. Alarm Printer Drive Program

Log Typer
Delay

Yes

Yes No No
Y Y Y
Turn on Alarm Turn On Log
Driver Error Driver

Figure 20. Input-Output Control

83

Yes
Is L1=0
Log

Initiate New
200 MSEC
Delay

Back To

Interrupted
Program

To
Interrupt
Program

PROGRAMMING
MANUAL

GE412

c. The Demand Program

The demand program interrogates a demand push-button once every second and if a demand is
indicated, initiates the action called for. Upon finding a request, the demand program reads the decade
switches on the operators console to get the indentification number of the analog input point. The current read-
ing for that point is then displayed on the digital display of the operators console. The demand indicator is then
turned off, and the analog input that was interrupted is re-initiated.

From _/pemand Is There No_ Ad,googﬁnscifgl?d »| Inhibit o] Reset
ECP A Demand / 1 Time Interrupt Entry

Yes

|

Initiate Read-~In
of Decade
Switches Set Scan
1B to Demand 2

Read-In Switches Convert Convert Point
And Convert To Point D to D To BCD & |]Set Scan 1B
Binary Index-D Engln‘?erlng Display Unl.tS. To Demand 3
Units & Tens Position
Display Hundreths
And Thousands | | SetScan1B .
Positions To Demand 4
Turn Off .| setscan 1B -
Demand *1 oD a5 >
Indicator 0 Deman
Re-Initiate Set Scan 1B
Scan Of The *| To Scan 1A >
Interrupted Point

Figure21. Demand Program

PROGRAMMING
MANUAL

GE412
84

d. Log Program

Once every hour the ECP enters the Log Program. The 100 current analog input readings are
converted into engineering units and placed in a log value table. The values are taken out of this table one at
a time, converted to binary-coded-decimal with leading zero suppression, and stored character at a time in
a log typewriter queue table. When the table becomes full the log program waits for the log drive program to
take some of the characters out before putting any more in. The log drive program is an interrupt program
that sends one character at a time to the typewriter from the log character queue table. When the drive program
has typed all of the characters it then types a carriage return, and turns the typewriter off.

From
ECP

L1 = No. of items 1n Queue
L, = Place to put next item
No L, = Place to get next item
Turn Off Log Drive
Turn On Typewriter y
Initiate 200 MSEC Log Value,
Delay I-0 Control BCD.. = M
Q TENXQ

2 Flag # 0 BCDQ = Zero BCD,, = Space

Store BCDQ
In Log
Queue L2
Store Point M Inhibit INT.
In Store L, =L, +1 L =10 Yes Set
Log Table L R&ma“,"“}er Ly = Ly +1 2~ L,=0
n Log Valuey Pé&mitANT.
[xo |
M=M+1
Add 1 Hour
To Log Time Reset
In ECP Entry
No No
Yes Q=Q+1 z F;a;g 0= 0
M=M+1
Set
L1 =1 Q=0
Ly=1 ZFlag=0
L;=0 Put Color
M3 =0 Back In
Log Que

Figure22. Log Program

PROGRAMMING
MANUAL

GE412
85

98

gLvyao

TYANYW
ONIWWVYIOOUd

Interrupt

No

Type Character
From Log Queue
Position Lg

Is Off Flag =1

Turn Off Typer
Turn Off Log
Drive Program

Set
Off Flag = 0

Type Carriage
Return Set
Off Flag = 1

Go
Back To

Figure 23. Log Typer Drive Program

Interrupted
Program

SLC /1000 00001 40010060
ECP DST SAVEAQ. 00002 01000 1301076
LDA ETCON3 ENTRY FROM INTERRUPT 00003 01001 0001137
LTC 3 INITIATE 500 MSEC DELAY 00004 01002 2500021
LDA TIME ADD OnE TO 00005 0l0U3 000113
ADC RcLATIVE COUNT OF GUO0o6 0l0u4 2504032
STA TIME SYSTEM TIMe uLooY 0100 0301135
bLD U 00010 Uluue 1U00UU0
DST SAVEVl 06011 01007 1301100
LDA PROGNO MULTIPLY PROGRAM NUMBER 00012 01010 0001136
SLA 3 BY 8 TO INDEX REGISTER 00013 01011 2410003
STA 1 . STORAGE AREA 00014 01012 0300001
CLD SAVEAQ SAVE ALL 00015 01013 1001076
DST REG 1 REGISTER FOR u0016 vlvul4s 1321102
DLD SAVEO1 PROGRAM N IN ouoLT L1015 1001100
DST REG+2 1 ReGISTER 00020 01016 1321104
DLD 2 AREA N - 06021 V1017 1000002
DST REG+4 1 00022 01020 1321106
LDA 6 00023 C1021 CULOOLU6
STA REG+6 1 00024 V1022 0321110
LDA TIME 00025 01023 0001135
Sus CON864 uo0Z6 016z4 201141
BZE 2 VoG27 01045 2516002
BRU ECPX 00030 01026 2601037
STA TIME 06031 01027 0301135
LDX ONE 1 IT IS 12 HOURS 00032 01030 0621140
ECPW LDA FTIME 1 0033 01031 0021132
SUB CONB64 00034 01032 0201141
STA FTIME 1 00035 01033 03211s2
INX 1 1 V0036 01034 1420001
oXL 3 1 V0U37 01035 0437775
BRU ECPW 0U040 01036 2601051
ECPX 1Al G0041 L1037 2500013
LDz SET PROGRAM NUMBER 060042 01040 2504002
STA PROGNO TO O FOR ECP 0VU043 0104l 0301136
LDX ONE 1 SET P=1 VU044 Gl042 0621140
PAI 00045 0lu43 2500012
ECPB LDA TIME | 1$ IT TIME FOR 00046 . _Qlo44 _00Q1135
sUB FTIME 1 FUNCTIONAL ROUTINE P -00047 _ 01045 0221132
bPL 1 - 006050 01046 2514001
BRU ECPA IF SO GO TO ECPA 00051 01047 2601054
INX 1 1 P=P+1 UOU5S2_ U1050 142000l
BXL 3 1 1s P=2 00053 01051 0437775
BRU ECPB IF NOT REPEAT LOOP 00054 01052 2601044
BRU ECPB-2 IF SO START LOOP AGAIN 00055 __ 01053 2601042
ECPA IAI INHIBIT INTERRUPT 00056 Q1054 2500013
LDA 1 00057 01055_0000001
STA PROGNO ... SET PROGRAM_NUMBER=P. 0006Q _ 01056 0301136
SLA 3 o) 00061 010572410003
STA 1) L . 00062 __C1060 0300001
DLD REG+4 1 _LOAD ALL 00063 01061 1021106
DsT 2 . __REGISTERS _ 00064 __ 01062 1300002
DLD REG 1 FOR _ 00065 _ 01063 1021102
DST SAVEAQ__ PROGRAM 00066 01064 1301076
LDA REG+6 1P B 00067 01065 0021110
STOQ ECPC . __ A 00070 01066 2701074
.DLD_REG+2 1 00071 01067 1021104
DST 0 00072 01070 1300000
DLD SAVEAQ . , 00073 01071 1001076
SAl 3. 00074 01072 2500016
PAI L) 00075 01073 2500012
ECPC BRU * GO TO PROGRAM P _. ___ 00076 01074 2601074

PROGRAMMING
MANUAL

GE412
87

SLC E UGoTT 01075
SAVEAQ SLC +2 TEMP STORAGE FOR A AND G 00100
SAVEOQOL SLC +2 TEMP STOR FOR X1 AND X2 00101
REG _ SLC +24 REGISTER STORAGE ©LOCK 00102
FTIME SLC +3 00103
TIME DEC U 0Ul04 01135
PROGNO DEC 0© 00105 01136
ETCON3 OCT 10036 CONSTANT FOR 500 MSEC 60106 01137
ONE DEC 1 00107 01140
CONB64 DEC 864UV COUNTS = 12 HOURS 00110 01141
* %
* 0
*THE SCAN PROGRAM 0
¥ ENTER FROM INTERRUPT 2 0
SCAN STX SAVEX1 1 SAVE 00111 01142
STX SAVEXZ 2 ALL Vol12 01143
STX SAVEX3 3 REGISTERS 00113 oliasa
DST SAVEAG 00114 0ll4b
LDX POINTJ 1 60115 01146
LDX POINTK 2 00116 01147
RCV 1 READ~IN AND STORE 00117 01150
STA VALUET 1 READING FROM POINTJ 00120 0li51
- LDA SCANT 2 INITIATE SCAN OF voiz1 0lib2z
LsC 1 POINTK w0122 Ullbv3
_ LDA INDEXT 1 EXTRACT LIMIT INDEX 00123 C1154
.. .ANA MASKA FROM INDEX wWORD 00124 Gllbo
. STA 3 AND STORE IN XL3 0601z5 Ullbe
___ LDA HIGHT 3 1S POINTJ 00126 01157
— o SUB VALUET 1 OUT OF LIMITS 00127 01160
 BPL 2 HIGH 00130 vullel
. __ BRU OUTHI 00131 01162
e DA VALUET .1 1S POINTJ 00132 01163
_ . SUB LOWT 3 QUT OF LIMITS 00133 01164
. BPL 2. LOW 00134 01165
_______ BRU.QUTLO . S 00135 Clle6
o _LDA INDEXT 1 WAS POINTJ OUT OF 00136 0l1e7
. BPL 2 LIMITS LAST TIME 00137 01170
- _BRU OLAST. . ___ R 60140 01171
SCANA_ STX POINTJ 2 SET J=K 00141 01172
o INX L 2 K=K+1 00142 01173
____BXH 10 2 IS K GREATER THAN 10 00143 01174
.. LDX ZERO __ . 2 IF S0 SET K=0 00144 01175
____ STX POINTK o2 00145 01176
e LDX SAVEX1_ _1 RESTORE ALL 00146 01177
LDX SAVEX2 2 REGISTERS 00147 01200
. LDX SAVEX3 3 AND GO BACK 00150 01201
___ DLD_SAVEAQ _TO THE 00151 01262
. _ ___BRUS INTERRUPTED PROGRAM 00152 01203
QUTHI LDA INDEXT _ __ 1 00153 01204
o ANA MASKB ______. - . R ..0015¢4 01205
_____ _ADD CON1B1l__ __ _ SET ALARM INDICATOR TO 00155 01206
o .__STA INDEXT 1 HIGH) o 00156 01207
BPL 2 WAS.IT OUT LAST TIME . . 00157 01210
BRU SCANA __IF SO BYPASS.. _ 00160 01211
LDA CON2BO o 00161 ol212
QRY JNDEXT 1. . 00162 . 0l213
BRU ALARM _LF NOTs GO_TO _ALM ROUTIN 00163 _ _ 01214
OUTLO LDA INDEXT 1 SET ALARM INDICATOR 00164 01215
ANA MASKB TO LOW __._ 00165 01216
BRU QUTHI+3 e 00166, . 01217
OLAST ANA MASKC ~~ IF NOT_ SET OUTLAST INDEX 00167 . 012<0
___STA INDEXT 1 AND ALARM _ _ ... 00170 01221

PROGRAMMING
MANUAL

GE412

88

2504000
6000002
6000002
6000030
6000003
ViveleloNele]
0000000
0010036
0000001
0250600

1721223
1741224
1761225
1301076
06212430
0641231
2510144
0321235
0041247
2510103
002izol
2201337
0300003
0061311
0221235
2516001
2601204
0021235
0261305
2516001
2601215
0021461
2516001
260120
1741230
1440001
0557706
0641226
1741231
0621223
0641224
0661225
1001076
2600005
0021261
2201227
0101233
0321261
2516001
2601172
0001234
2321261
2601345
0021261
2201227
2601207
2201232
0321261

SAVEXL
SAVEX2
SAVEX3
ZERC
MASKB
POINTJ
POINTK
MASKC
CON1B1
CONZBL
VALUET
SCANT

INDEXT

IDT

LOWT

HIGHT

Ok k k Ok ok X

ONVER

BRU ALARM 00171 QLl222 .260Q1345
DEC C 00172 01223 0000OUOQO
DEC v .00173 01224 0000000
DEC 0 00174. Q1225 Q000000
DEC O 00175 01226_ 000Q000
oCT 2777777 _ 00176 01227 2777177
DEC © e 00177 01230 _0UQQOOO
DEC 1 o 00200 01231 0000001
OCT 0777777 o 100201 01232 0777777
OCT 100UULU I 00202 . Q1233 10QQUQO
OCT 2000u00) o 00203 01234 2000000
SLC +10 VALUE TABLE | 00204 6000012
OCT G111030 SCANNER _COMMAND TABLE 00205 ... 01247. 0111030
OCT U141030 00206 01250 0141030
OCT Ul51v30 00207 01251 0151030
OCT Ul161u3U R 00210 . 01252 . 0161030
OCT 0112630 00211 01253 0112030
CCT 0122030 00212 01254 0122030
OCT 132030 00213 01255 0132030
OCT 0142030 00214 01256 0142030
OCT 0121030 00215 01257 0121030
OCT 0152030 00216 01260 0152030.
oCT © INDEX TABLE 00217 01261 000@WHO
0CT 1 00220 01262 Q000001
OCT 2 00221 01263 0000002
oCT 3 00222 01264 (0000003
oCT 3 00223 01265 0000003
oCcT 2 00224 01266 0000002
0CT 1 00225 01267 (000001
oCT © 00226 01270 0000000
oCT 3 00227 01271_ 0000003
oCT 1 00230 01272 0000001
0CT 1 IDENTIFICATION TADBLE 0u231 01273 00600001
oCT 2 00232 01274 0000002
oCT 3 00233 01275 0000003
oCT 4 00234 01276 0000004
oCT 5 00235 01277 0000005
oCT 6 00236 . Q1300 . 0000QQ6.
oCcT 7 . 00237 01301 000Q007
0CT 10 B} 00240 01302 0000Q010Q
OCT .11.. e e . 00241 013030000011
OCT 20 _ 00242 01304 0000020
DEC 500 LOw LIMIT TABLE 00243 01305 0000764
DEC 1000 SRR [OOSR 00244 _ 01306 0001750
DEC 1500 00245 01307 0002734
DEC 200U 00246 01310 0003720
DEC 100U ___ . . . HIGH [LIMIT TABLE} . 00247 01311 0001750
DEC 200vV 00250 01312 0003720
DEC 30600 00251 01313 0005670
DEC 3500 o e+ e+ 00252 Q1314 0006654
. o
0. ..

_"__ENQLNERLNL_~_.-. CONVERSION SUBRQUTINE 9
_ ARGUMENT IN A o . R,
. INDEX IN XL1 . . _ . __ Q. . I S

RETURN IN XL3 0
B Y INHIBIT INTERRUPT 00253 01315 2500013
SLA T I 00254 01316 2410007
. STA _COUNTS Bl2 00255 01317 03Q1340
MAQ . . PUT COUNTS IN Q@ Bl2 00256 01320 2504006
_ LDA_INDEXT. S S ... 00257 _ 01321 0021261
SRA 5 i — 00260 .01322 2400005

89

PROGRAMMING
MANUAL

GE412

ANA MASKA 00U0037 00261 01323 2201337

STX CSAVE2 2 00262 01324 1741341

STA 2 00263 01325 0300002

LDz 00264 01326 2504002

MPY COEFA 2 (AX) Bl2 00265 01327 1541342

ADD CQEFbB 2 (AX)+B Bl2 00266 01330 0141343

MAQ 00267 0l331 2504006

MPY COUNTS ((AX)+B)X B24 0027¢ 01332 1501340

SLD 5 . ((AX)+B)X B1l9 00271 01333 2411005

ADD COEFC 2 (((AX)+B)IX)+C=ENG UNITS 00272 01334 Ql4ls4a4

LDX CSAVEZ2 2 Q0273 01335 (0641341

BRU 1 3 RETURN TO MAIN PROGRAM g0274 01336 2660001

MASKA OCT 37 00275 01337 0000037

COUNTS DEC O o . 00276 01340 Q0000LGO

CSAVE2 DEC O 00277 01341 0000000

COEFA DEC © A COEFFICIENTS Bv 00300 01342 0O0000UUO

COEFB DEC 1Bl2 o COEFFICIENTS BlZ 00301 01343 0000200

COEFC DEC O C COEFFICIENTS B1lY 00302 OL344 CUOQUOO
* V]
* o]
* ALARM ASSEMbLY ROUTInG 0

00303

ALARM LDA ABUSY IS ALARM PRINTER 00304 01345 (0001450

BZE 2 BUSY 00305 01346 2516002

BRU ALARMA IF S0 BYPASS 00306 _ 01347 2601357

OCT 2510410 TURN ON PRINTER SLH 1s1 00307 01350 2510410

LDA CONBRU TURN OFF PRINTER DRIVE 00310 U131 0001451

STA 10 00311 . 01352 0300012

LDA ETIMEZ 200 MSEC 00312 01353 0001452

LTC 1 INITIATE DELAY 60313 01354 2500017

LDO SET ABUSY=1 00314 . 01355 2504Q22.

STA ABUSY 00315 01356 0301450

ALARMA LDA VALUET 1 LOAD COUNTS 00316 01357 0021235

SPB CONVER 3 CONVERT_.. COUNTS TO ENG UN 00317_ .. 01360 0761315

MAQ PUT YALUE IN Q@ B19 00320 01361 25040006

DvD CON1E3 00321 . 01362 1601453

SLA 12 . JE . . 00322, .. 01363 . 2410014

'STX ASAVEZ . 2 SAVE XLZ2 00323 Q1364 1741456

LDX A2 2 o . 00324 01365 0641460

STA AQUE3. . __. - 2 CONVERIL _ 00325. 01366 . 0341540

LDZ o i . VALUE . 00326 _ 01367 2504002

DvD CON1lE2 TO 00327 01370 1601454

SLA 8 [T .. BCD ANL .. _00330 01371 241Q010

ORY AQUE3 2 STORE 00331 01372 2341540

LDZ IN 00332 01373 2504002

DvD CON1E1l . ALARM00333 _ 01374 1601455

SLA & . . B QUEUE ... _00334 01375 2410004

ORY AQUE3 ___ 2 _ ... 00335 01376 2341540

XAQ o . R 00336 _ 01377 _2504005

_ORY_AQUE3 2 00337 01400 2341540

kDA IDT . _. .. 1. GET.ID . ._00340 __ 01401 0021273

_SRD. 8 S POSITION I1s]2913 00341 01402 2400110

CANA MASKD . Q0077771 00342 01403 2201461

STA AQUEL 2 STORE___IN ALARM_TABLE 00343 01404 0341470

LDA INDEXT 1 TEST INDEX TQ _ _ . 00344 01405 00Q21lz61

BRL 1 o SET COIOR OF 00345 _ 01406 2514001

BRU %43 _ _____ . ___...____ PRINTING .. 00346 _ 01407 __26014liz

LDA_CON1B7 PUT_IN RED __..00347 01410 0001464

QRY._AQUFE1 2 00350 01411 2341470

SLD 16 . _ _POSITION I4s15 _ _ 00351 01412 2411020

ANA MASKE ... 00352 01413 2201462

_STA AQUEZ2 2 STORE IN ALARM TABLE 00353 0l4l4 0341514

PROGRAMMING
MANUAL

GE412
90

91

LDA INDEXT 1 TEST FOR 00354 01415 0021261
BPL 1 ALARM INDICATOR 00355 01416 2514001
BRU ALARMB 00356 01417 2601427
SRA 18 00357 01420 2400022
BEV 1 00360 0142l 2514000
BRU %+3 00361 01422 2601425
LDA CONAU ARROW UP 00362 01423 0001465
BRU *+4 00363 0l424 2601430
L.DA CONAD ARROW DOWN 00364 0l425 0001466
BRU #+2 00365 01426 2601430
ALARMB LDA CONB BLANK BLANK 00366 01427 0001467
ORY AQUE2 2 00367 01430 2341514
RCL READ CLOCK 00370 01431 2510051
SRD 14 AND 00371 01432 2400116
SLA 1 POSITION 00372, 01433 2410001
SLD 7 FOR 00373 01434 2411007
ANA MASKF 0037777 00374 01435 2201463
STA AQUE4 2 PRINTING 00375 01436 034164
LDA Al 00376 01437 0001457
ADO 00377 01440 2504032
STA Al Al=Al+1 00400 01441 0301457
INX 1 2 A2=A2+1 0040} 01442 1440001
BXH 20 2 15 A2 GREATER THAN 19 00402 01443 0557754
LDX ZERO 2 A2=0 00403 01444 (0641226
STX A2 2 00404 0l44d 1741460
LDX ASAVEZ 2 00405 Ul446 0641456
BRU SCANA __RETURN TO SCAN 00406 01447 2601172
ABUSY DEC © T 00407 01450 GUOOGOO
CONBRU BRU 4 . i 00410 V1451 2600004
ETIME2 OCT 10076 . 200 _MSEC DELAY 00411 . 0l452 00L0OUT6
CON1E3 DEC 1000 CONSTANTS _ 00412 01453 0001750
CON1E2 DEC 100 00413 01454 Q0000144
CON1E1 DEC 10 00414 01455 0000012
ASAYE2 DEC U L 00415 01456 0000000
Al DEC 0 00416 01457 0000000
A2 DEC 0 00417 01460 0000000
MASKD OCT. UQQ7777 . 00420 01461 0007777
MASKE OCT 0177400 00421 01462 0177400
MASKF OCT 0037777 00422 01463 0037777
CON1B7 OCT .0010000 . _ __ o 00423 _0l464 0010000
CONAU ©OCT 0000057 ARROW UP + BLANK 00424 01465 0000057
CONAD OCT 0000UTT ARROW DOWN + BLANK Q0425 01466 0000077
GQONB . QCT_0000377 _. . . . ___BLANK_+ BLANK ...00426 01467 0000377
AQUEL SLC +20 ALARM 00427 6000024
AQUEZ SLC +20 PRINTER 00430 6000024
AQUE3 _SLC 420 . - . __DRIVE .. 00431 . 6000024
AQUE4 SLC +20 TABLE 00432 . 6000024
* . B 0 i
*_ e - B} 0 R
* ___ ALARM DRIVER PROGRAM 0 ,
ADRIVE LDA Al - FROM INTERRUPT3 00433 01610 0001457
BZE 1 . 1S A1=0 ... 00434 _0lell 2014002
BRU ADRIVA IF so 00435_. Q1612 2601646
STX ASAVEL 1 SAVE XLOCATION1 00436 01613 1721655
DX A3 — 00437 01614 0621654
“LDA ATIME " IS TIME SAME AS 00440 01615 0001656
SUB AQUE4 1 LAST PRINTED 00441 01616 0221564
BZE 2 . . — 00442 Q1617 2516002
_BRU ADRIVB . 00443 _ 01620 2601641
_LDA AQUE3 ______1 LOAD H REGISTER 00444 01621 0021540
OCT_ 0 - 00445 01622 2511110
"LDA AQUEZ. 1 PRINT ONE 700446 01623 0021514

PROGRAMMING
MANUAL

GE412

OCT 2511210 LINE LDH 1.2 00447 0lecs 2511210
LDA AQUEL 1 00450 01625 Q021470
OCT 2511310 LDH1,3 00451 01646 2511310
OCT 2511410 PRH 1,1 00452 01l6¢7 2511410
LDA Al 00453 01630 0001457
SBO Al=Al-1 G0454 01631 2504112
STA Al Q0455 01632 0301457
INX 1 1 A3=A3+1 00456 0l633 1420001
BXH 20 1 IS A3 GREATER THAN 19 00457 01634 0537754
LDX ZERO 1 SET A3=0 00460 Clé35 (0621226
STX A3 1 00461 0lé636 1721604
ADRIVC LDX ASAVEL 1 00462 01637 0621655
BRU 4 00463 01640 2600004
ADRIVB LDA AQUE4 1 PRINT V0464 vle4l 0021564
STA ATIME 00465 01642 (Q03Q1l656
OCT 2511110 LDHL1»1 00466 01643 2511110
OCT 2511410 PRH 1,1 uo467 01644 2511410
BRU ADRIVC . G0470 Q1645 2601637
ADRIVA LDA CONBRU TURN OFF 0471 01646 (0001451
STA 10U ALARM DRIVE 00472 01647 0300012
OCT 2511010 TURN PRINTER OFF 00473 01650 2511010
LDZ 00474 V1651 2504002
STA ABUSY SET ABUSY=0 00475 0l652 0301450
BRU 4 00476 01655 «600004
A3 DEC 0 00477 01654 0000000
ASAVE1l DEC © VU500 vle55 U0000LU0
ATIME ©DEC © 00501 01656 0Q000V0O
* 8]
* 0
*) I1/0 CONTROL PROGRAM . [}
IOCONT BTC 1yl FROM INTERRUPT 00502 0l6b7 2514013
BRU APRINT ALARM PRINTER DELAY 00503 01660 2601664
BTC 1s2 - 00504 01661 2514014
BRU LOGTYP .LOG TYPER DELAY 00505 0l602 2601667
BRU &4 ERROR 00506 01663 «600004
APRINT LDA *+2 _ TURN ON ALARM 00507 U164 (QUQ0lobb
STA 10 DRIVER 00510 Ul665 (0300012
BRU ADRIVE GO TO ALARM DRIVEKR Q00511 ul666 2601010
LOGTYP LDA L1 00512 01607 0002107
BZe } IS L1=0 00513 0l670 2514002
. BRU NEWDEL L IF S50 200MSEC MORE DELAY 00514 Ql671 2601675
- e kDA *e2 _TURN ON__ .) 00515 01672 .00Q1674
. STA 11 . . 1.OG DRIVE ROUTINE 00516 01673 0300013
BRU LOGDR 00517 01674 2601700
_NEWDEL LDA ETIME2 00520Q.. 01675, 0001452
e LTC 2 . R . . 00521 Ql676 2500020
BRU 4 RETURN TO INTERRUPTED PR 00522 01677 2600004
* . .. — O
* o N L 0 :
*#LOG_ ___ DRIVER ROUTINE ENTRY_FOR INTERRUPT & 0
LOGDR LDA L1 00523 01700 0002107
e BZE X e 00524 .. 01701 2514002
— _BRU LOGDRA e 00525 01702 2601720
... 8BO o L e 00526 01703 2504112
STA_L1 —— e ALY 00527 Q17040302107
_ STX SAVEX3 . 3 SAVE XL3 _ _ . 00530 01705 1761225
- _LDX. L3 B 00531 (01706 0662111
—— LDA LOGQUE _.Q05 7 6206
_ SAB N»7 TYPE CHARACTER 00533 01710 2400407
i TYP N FROM POSITION L3 _ _ 00534 01711 2500004
INX 1 3 L3=13+1 00535 01712 1460001
BXH 10 .3 IS L3=10 00536 01713 Q577766

PROGRAMMING

MANUAL

GE412

92

LOGDRA

LOGDRB

OF LAG
CRCODE
#*

*
*HOUR
LOG

LOGA

LDX
STX
LDX
BRU
LDA
BZE
BRU
LDA
SAB
TYP
LDO
STA
BRU
OFF
LDA
STA
LDz
STA
BRY

DEC.

OCT

" LOG

LDA
SAB
SEL
LDA
STA
LDA
L7C
LDX
LDA
SPB

PAI
STA
INX
BXL
BRU
LDZ

_STA

STA
LDX

. STX

LOGB

LOGD

LDX
LDX

_ LDA.

STA
LDA
suB
BPL
BRU
LDA

MAQ,

DVD
BZE
BRU
STA
STA
XAQ
STA

93

ZERO 3 L3=0 00537 01714 0661226
L3 3 00540 .. _01715_ 176211).
SAVEX3 3 RESTORE XL3 00541 01716 0661225
4 RETURN TO INTERRUPTED 00542 01717 2600004
OFLAG. LS OFF FLAG=0 00543 01720, 0001737
2 00544 017zl 2516002
LOGDRB 00545 01722 2601751
CRCODE TYPE 00546 UL723_ 000174Q
Ny 7 CARRAIGE 00547 0l7z4 2400407
N RETURN 00550 UlT7Z25 2500004
00551 (1726, . 25Q4022_
OFLAG SET OFF FLAG=1 00552 01727 0301737
4 00553 01730 2600004
N TURN TYPER OFF 00554 01731 2500010
CONBRU 00555 01732 0001451
11 TURN OFF LOG DRIVE 00556 01733 0300013
- 00557 017342504002
OFLAG SET OFF FLAG=0 00560 01735 __ 0301737
4 00561 (01736 2600004
O, . - _ 00562 01737 _0000000
100 00563 (L1740 0U00100
0
e 0 I
PROGRAM ENTRY FROM ECP FUCTION NUMBER 40 O o
TYPSEL 00564 01741 0002046
Ne7 . ooooi . —— . TURN ON TYPEWRITER 00565 U1742__ 2400407
N o 00566 01743 2500000
CONBRU TURN OFF LOG 00567 01744 0001451
11 DRIVER PROGRAM 00570 Ul745 0300013
ETIME2 . oo . .. _SET 200 MSEC DELAY 00571L. 01746 0001452
2) FOR IO CONTROL ROUTINE 00b72 . 01747 2500020
ZERO - 1 SET. M=ZERO 00573 01750 0621226
VALUET . . 1 . 00574 01751 Q021235
CONVER 3 CONVERT TO ENG UNITS 00575 01752 0761315
00576
S e e . 00577, 01753 2500012
LOGT 1 00600 01754 0322047
1 o 1 M=M+1 00601 V1755 1420001
101 1S M GREATER THAN 9 00602 01756 Q437766
LOGA REPEAT 100 TIMES 00603 Q1757 2601751
) 00604 01760 2504002
ZEROF._ . _ZERQ FLAG=Q . ___ . _ . . 00605 __Ql76l 0302101
L3 . . o L3=0 006Q6 . 01762 0302111
ONE 2 L2=1__ __ 00607 01763 0641140
Ll 2 L1=1 00610 _ Q1764 1742107
ZERO . . ____1.M=0 . 00611 01765 0621226
ZERO . ..3Q=0__ __ _ 00612 __ 01766 0661226
TYPBLK PUT BLACK CODE IN 00613 01767 0002061
LOGQUE _ _ _ ___ QUEUE TABLE . 00614 ~ 01770 0302062
L1) e 00615 01771 0002107
CON1E1 e _00616_ 01772 0201455
1 s L)=10 00617 01773 2514001
LOGB . _ . _IF _sQO THEN WAIT 00620 01774 26Q1771
LOGT . 1 GET VALUE OR REMAINDER 00621 Q1775 0022047
i 00622 01776 2504006
TENX - 00623 01777 __ 1662074
1 . 00624 02000 2514002
LOGC e , 00625 02001 2602022
ZEROF Lo SET ZERO_FLAG NOT=0Q0 00626 02002 0302101
LOGQUE_ . 2
. 00630 02004 2504005
LOGT 1 STORE REMAINDER 00631 02005 0322047

PROGRAMMING
MANUAL

GE412

1Al
LDA
ADO
STA
PAL
INX
BXH
LDX
BXH
BRU
INX
BRU
LOGC LDA
BZE
BRU
LDA
BRY
BXH
BRU
BRU
LOGE BXH
BRU
LDX
STX
INX

BRY.

LOGF LDA
ADD
STA
LDA_
STA
BRUY
TYPSEL OCT
LOGT sLC

TYPBLK OCT .

LOGQUE SLC

N CEQLN

L1
L1
1

10
ZERO
4

W N

LOGE
1
LOGB
ZEROF
1

*4+3
ZEROC
LOGD
4 3
*=3

LOGD

9 . 1
LOGF

ZERO L. .3
ZEROF 3
1 1
LOGB

FTIME+2

CON72

w

FIIME+2

CONLOG
REG+22
ECPX
60

+10

35
+10.

TENX _DEC 10000

DEC
DEC
_DEC

1000
100
10

DEC 1

ZEROF DEC
_ZEROC _ OCT

S —
20

Li=L1+1

L2=L2+1

IF L2 GREATER THAN 9
L2=0

1S Q=4

Q=Q+1

LEADING ZERO
SUPPRESSION ZEROF=0Q

LOAD TYPE CUDE FOUR LERO
us4

SPACE
M=9

Q=0
ZEROF=0
M=M+1

ADD 1HOUR TO
LOG TIME IN ECP
RESET

ENTRY

GO TO ECP

LOG TABLE

LOG CHARACTER QUEUE.

_CON72 _DEC

7200

CONLOG BRU.
M. .- .DEC.

LoG.

* __DEMAND PROGRAM FUNCTION NUMBER 1 _ _

DEMAND BRD

1

BRU

DEMA

DEMNDA_ LDA

FTIME+]

_ADD

TwWO

ADD 1SEC TO DEMAND TIME

STA.

FTIME+]

1Al

LDA.

CONDEM

STA

PROGRAMMING
MANUAL

GE412

REG+14

RESET ENTRY FROM ECP

94

00632
00633
00634
V0635
00636
00637
00640
00641
00642
00643
00644
00645
0Q646
00647
00650
00651
00652
0ubs3
00654
00655
00656
00657
00660
00661
00662
00663
00664
VU665
00666
00667
00670
00671
00672
00673
00674
00675
00676

00677

00700
00701

00704

00706
00707
00710
00711
00712

00713
00714,

0
0
0

00715

00716
00717
00720
00721

00723
00724

00722

. 00702
00703

02006 2500013
02007 0002107
02010 2504032
02011 0302i07
0201z 2500012
02013 1440001
V20l4 0557766
02015 0641226
02016 0577774
02017 2602032
02020 1460001
02021 2601771
02022 0002101
02023 2514002
02024 2602027
02025 0002102
02026 2602003
02027 0577774
02030 2602025
02031 2602003
02032 0537767
02033 2602040
02034 0661226
02035 1762101
02036 1420001
02037 2601771
02040 0001134
02041 0102103
02042 0301134
02043 0002104
02044 0301130
02045 2601037
02046 0000060

6000012
02061 0000035

6000012

02074 0023420
02075 0001750
02076 0000144
02077 0000012
02100 0000001
02101 0000U00

00705 .__ 02102 0000020

02103 0016040
02104 2601741
02105 0000000
02106 000QC00
02107 0000000
02110 0000000

~02111 0000000

02112 2514017

02113 2602124

. .02114 0001133

02115 0102233
02116 0301133

02117 2500013

02120 0002123
02121 0301120

CONDEM
DEMA

CONDM2
DEMND2

CONOM3
DEMND3

CONDM4
DEMND4

CONDM5

BRU
BRU
L DA
LscC
LDA
STA
BRU
BRU
DST
STX
STX
RDG

SRD
XAG
SRA
MPY
bsT
LDA
SPB
MAQ
DvD
XAQ
SLA
STA
LbZ
DvD
XAQ
SLA
ADD
LQv
LDA
LscC
Lbz
DvD
SLA
STA
XAGQ
SLA
ORY
LDA
STA
LDX
LDX
CLD
8RU
BRU
LPA
LCv
LDA
LsC
LDA
STA
BRU
BRU
LDA
LscC
LDA
STA
bRU
BRU

ECPX
DEMAND
CONSC1
1
CONDM2
SCAN
DEMNDA
DEMND2
SAVEAQ
SAVEX1
SAVEX3

15

15
CON1E1l
1
VALUET
CONVER

CON1EL

8
TEMPD

CON1E1

4
TEMPD
1
CONSC2
1

CON1E1
4
TEMPD
8
TEMPD
CONDM3
SCAN
SAVEX1
SAVEX3
SAVEAQ
5
DEMAD3
TEMPD
1
CONSC3
1
CONDM4&
SCAN

4
DEMND4
CONSCH
1
CONDM5
SCAN

4
DEMND5

LY

CONSTANT

INITIATE READ IN

OF DECAVE SWITCHLS
SET SCANLB TO
DEMAND2

GO BACK TO ECP
CONSTANT

FROM SCANNER INTERRUPT

CONVERT
INDEX
T0
BINARY

VALUE IN ENG UNITS

UNITS

TENS

PUT UNITS AND TENS IN C
INITIATE SUb CONTRCL
TO DISPLAY UNITS + TENS

STCRE HUND + THOUS TEMP

SET SCAN 1B TO
DcMAND3

GO BACK TO INTERRUPTED

INITIATE DISPLAY OF

HUNDRETHS + THOUSANDS

SET SCAN 18
TO DEMAND 4

TURN OFF DEMAND
LIGHT

SET SCAN 1B

TG DEMANDS

95

00725
00726
00727
00730
00731
00732
00733
00734
00735
00736
00737
G0740

00741
00742
00743
CO744
00745
00746
00747
00750
00751
00752
00753
00754
00755
007H6
00757
00760
00761
00762
00763
CC764
u0765
0766
Co767
QU770
Q0771
Go772
0Q773
00774
00775
00776
00777
01000
01001
ulog2
01003
01Cu4
v1005
vuluo6
01007
¢1l010
C1011
clolz
G1l013
01014
01015
01016
Ulul7
¢lo¢

A

0212<
021e3
Ocle4
021e5
02126
02127
02130
02131
02132
02133
02134
02135

02136
2137
02140
02141
02142
02143
C2144
02145
02146
02147
¢z2150
G211
02102
02155
C2l54
62155
u2156
02157
02160
tzlel
G216l
02165
v2164
021605
02166
v21e7
02170
02171
J2172
02173
Cz2l74
G2175
02176
02177
v2200
v22ul
u2202
L2203
g22u4
w2205
02206
022u7
02210
02211
vez2iz
vz22Lls
LeeLy
Ueg2l>

2601037
2602112
0002¢27
2510103
00021i51
0301142
2602114
2602132
1301076
1721223
L761225
2500023

2400117
2504005
2400017
1501405
1300001
0021235
0761315
2504006
1601405
2504005
2410010
0302434
2504002
1601455
2504005
2410004
010z234
2510101
0002230
2510103
2504002
1601455
2410004
0302434
2504005
2410010
2302234
0002177
0301142
0621223
0661225
1001076
2600005
2602200
0002234
2510101
000231
2510103
0002207
0501142
2600004
2602210
0002232
2510103
000c2ld
0501142
<«600u04
«6Qzelo

PROGRAMMING
MANUAL

GE412

DEMNDS5

CONDMé
CONSCl
CONSC2
CONSC3
CONSC4
TWO
TEMPD

INITLZ.

TABLE

STX SAVEX1] 1 01021 02216 1721223
LDX POINTJ 1 RE-INITIATE SCAN OF 01022 02217 0621230
LDA SCANT 1 INTERUPTED POINTe. 01023 02220 0021247
LsC 1 01024 02221 2510103
LDA CONDMé6 SET SCAN 18 BACK TO 01025 02222 0002226
STA SCAN SCAN 1A 01026 02223 (0301142
LDX SAVEX1 . 1 01027 02224 0621223
BRU & . 01030 L2225 2600004
STX SAVEX1 1 CONSTANT 01031 02226 1721223
OCT 30302Q3 | SCANNER 01C32 02227 3030403
OCT 3010240 COMMANDS FOR 01033 02230 3010240
OCT 3010340 SUB=CONTROL 01034 02231 3010340
OCT 304U004 01035 02232 3040004
DEC 2 01036 02233 0000002
DEC © 01037 02234 0000000
. SLC /3000 . _. 01040 ~ 4003000
LDz 01041 03000 2504002
STA 1. 01042 030Ul 0300001
STA PQINTY 01043 03002 0301250
STA TIME 01044 C30U3 0301135
STA ABUSY 01045 030us4 0301450
STA Al V1046 03005 0301497
STA A2 01047 03006 0301460
STA A3 01050 U30uT 0301654
STA OFLAG 01051 03010 0301737
LDA TABLE 1 01052 03011 0023040
STA & 1 01053 03012 0320004
INX 1 . 1 01054 03015 1420001
BXL 16 1 61055 03014 0437760
BRU ¥*=4 01056 0301> 2603ull
LDO 01057 63016 2504022
STA_POINTK. . 01060 = u301l7 0301231
ADO . _ 01061 03020 2504032
STA FTIME+Ll _ - 01062 . 03Q21.._0301133
LDA CONDEM 01063 03022 0002123
STA REG+14 01064 03023 V301120
LDA _CONLOG . 0L065___.030Q24 . Q0QZ104
STA_REG+22 01066 03025 03Q1130
LDA CON72_ __ Q1067 03026 0002103
STA FTIME+2 = 01070 03Q27. Q301134
_LDA ETCON3 _ - 01071 0303V 0001137
Lic 3 01072 03031 2500021
LDZ 01073 03032 2504002
ATC 01074 V3035 2200017
WIC 2. 01075 03034 2500020
LDA_SCANT____ . 01076 03035 0001247
LsC 1 . . QlOo77. .. v3Q36 __2510103
BRU ECPX 01100 03037 2601037
LDA T __ . 0lio0l 03040 0000007
PAI _ .- 001102 03041 2500012
BRU *__ = 01103 03042 2603042
LDA O 01104 03043 0000000
BRU_ECP e . 01105 . U3044 2601000
BRU_SCAN 01106 03045 2601142
BRY ADRIVE 01107 _ 03046 2601610
BRU LOGDR _ 01110 03047 26Q170Q
_BRU_IQCONT_ - _OL111 __ 03050 26Q1657
JBRU 4 o 01112 03051 2600004
BRU & 01113 03052 2600004
BRU & e 01114 03053 2600004
BRU & R . .. 01115 03054 2600004
BRU & S, Q1116 03055 2600004
BRU & L Q1117 03056 2600004
BRU 4 . 01120 03057 2600004
END_INITLZ _ 01121 6103000

PROGRAMMING

MANUAL

GE41

2

96

APPENDIX A. BINARY CODED DIGITS

N REGISTER BIT

Normally Available on

Hollerith Octal

Numeric Typewriter

Code Code

N6 N7

N3 Parity N4 N5

N2

N1

Character

020
001
002
003
004
005
006
007

0 (zero)

010
011
061

1 & 12

1
0
1
0
1
0
1

062
063
064
065

2 & 12

3& 12

4 & 12

5 & 12

066
067

6 & 12

7T & 12

070
071
041

8 & 12

0
1
1

9 & 12

1&11

042
043

2& 11

0
1

3 & 11

044
045

4 & 11

0
1

5 & 11

046
047

6 & 11

0
1

7T& 11

050
051
022
023
024
025

8 & 11

0
1

9& 11
0& 2

0& 3
0& 4

0&5

026
027

0& 6
0& "7

030
031

0& 8

0& 9

GE412

PROGRAMMING
MANUAL

917

APPENDIX A, BINARY CODED DIGITS (cont)

N REGISTER BIT

Hollerith Octal Normally Available on
Character N1 N2 N3 Parity N4 N5 N6 N7 Code Code Numeric Typewriter

Space (blank key

or space bar) 0 0 0 X 0 0 0 0 Blank 000 X
- (hyphen) 0 1 0 0 0 0 0 11 040 X
/ (slash) 0 0 1 X 0 0 0 1 0& 1 021

$ (dollar) 0 1 0 X 1 0 1 1 3,8&11 053

; (comma) 0 0 1 X 1 0 1 1 0,3&8 033

. {period) 0 1 1 1 0 1 1 3,8& 12 073 X
Tabulate 0 0 1 X 1 1 1 0 0,6&38 036 X
Carriage

Return 1 0 0 0 0 0 0 7T& 9 100 X
Print Red 0 0 1 1 0 1 0 0,2&38 032 X
Print Black 0 0 1 X 1 1 0 1 0,5&8 035 X

PROGRAMMING
MANUAL

GE412
98

APPENDIX B. FLOW CHARTING AND FLOW CHART SYMBOLS

The use of flow charts is of great help in visual-
lizing the flow of data and transformations to be made
in a problem to be programmed. Flow charting an
application before programming has several advan-
tages:

1. It breaks the problem down into logical ele-
ments and subdivisions.

2. It points out areas of the problem which need
further clarification, analysis, and definition.

3. It aids in coordinating the efforts of two or
more programmer's working on the same
application.

4. It aids in error-detection and error-isola-
tion within a program,

5. It is a means of refreshing the programmer's
concept of a program when he returns to a
program which has remained static for some
time.

6. It provides a common language between pro-
grammers not necessarily using the same
computing equipment.

There are many different levels of detail and so-
phistication which may be shown in a flow chart. Us-
ually, an initial ""system' flow chart is drawn which
breaks down a complex problem into relatively large
logical segments. Each of the individual blocks with-
in a flow chart may represent one or two instructions
or as many as several thousand instructions. The
blocks seldom refer to individual computer instruc-
tions such as ADD, SUB, STA. Instead, the blocks
refer to logical decisions and functions which the com-
puter is to perform upon the incoming data. Arrows
show the direction of flow throughout the program.

When the system flow chart is completed, other
flow charts in much greater detail are drawn from the
individual blocks. These more detailed flow charts
arc the charts that the programmer usually uses when
he '"codes' the program. In these flow charts, refer-
ence is sometimes made to actual computer instruc-
tions such as ADD, OSA, RSA, STA. Flow charts of
this type are of considerable help when '"coding' and
debugging the program.

Flow charting is a rather unique process. Seldom
do two programmers obtain the exact same flow chart

for a given problem, although both may be correct.
For this reason, it was deemed advisable to standard-
ize the symbols used in flow charts throughout the
computer industry in order to simplify communica-
tions between programmers as well as manufacturers.
The Standardization Committee of the Association for
Computing Machinery has recommended certain flow-
charting symbols for specific uses which are included
in this appendix.

Other special symbols not shown here may be
used from time to time as the specific occasion de-
mands; however, the meaning of any special symbol
should be clearly defined — preferably on the flow
chart itself at the place where the symbol is first
used.

Many mathematical symbols are used in flow
charts. Some of the more common ones are:

Equal to

Not equal to

Greater than

Less than

Greater than or equal to
Less than or equal to
Yes

No

—»''goes in to"" e.g. "a + b—pma'' means that the
sum of a and b is stored back in the same
memory location that originally contained a.

= »ql/\l\//\\/ S

Flow charts should be as neat and legible as pos-
sible. They are used to clarify the problem, not to
cause confusion. Careless writing of numerics and
alphabetics is 2 common cause of errors in the inter-
pretation of flow charts and program codings. In most
cases, the hand-written coding sheets are handled by
many people other than the person writing the pro-
gram. Therefore, clarity is of the utmost importance.
If this is doubted, a short time writing and debugging
programs will convince any normal skeptic. The fol-
lowing conventions are recommended to avoid con-
fusion.

Numerics Alphabetics

2 Z ("'zee')
4,9

0 0 or @ ("oh™)
1 I (neyen)

5 Sor g ("ess')
7 (seven)

PROGRAMMING
MANUAL

GE412

Suggested Flow Chart Symbols
for Simplified Flow Charting

Symbol Usage

Function or Operation
Description

Logic "Flow"

\j

(Follow the Arrows)

Decision, Test, Comparison
(2-or-3-way split)

Subroutine

Entrance, Exit, Stop

Fixed Connector
(Same symbol)

—®

Variable Connector
(switch function)

1

PROGRAMMING
MANUAL

GE412

100

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE

Octal-Decimal Integer Conversion Table

101

Octal 10000 20000 | 30000 | 40000 | 50000 | 60000 70000
Decimal| 4096 8192 12288 16384 | 20480 | 24576 28672

[Octal T0000 10 0377] [Octal [1000 to 1377 |

[Decmat [0000 1o 0255) [Becmal| o512 15 0707]
Octal] 0 1 2 3 4 5 [7 Octol] O 1 2 3 4 5 6 7
0000] 0000 0001 0002 0003 0004 0005 0006 0007 1000|0512 0513 0514 0515 0516 0517 0518 0519
0010|0008 0009 0010 0011 0012 0013 0014 0015 1010(0520 0521 0522 0523 0524 0525 0526 0527
0020|0016 0017 0018 0019 0020 0021 0022 0023 1020} 0528 0529 0530 0531 0532 0533 0534 0535
0030|0024 0025 0026 0027 0028 0029 0030 0031 1030) 0536 0537 0538 0539 0540 0541 0542 0543
0040| 0032 0033 0034 0035 0036 0037 0038 0039 1040|0544 0545 0546 0547 0548 0549 0550 0551}
0050|0040 0041 0042 0043 0044 0045 0046 0047 1050|0552 0553 0554 0555 0556 0557 0558 0559
0060! 0048 0049 0050 0051 0052 0053 0054 0055 1060|0560 0561 0562 0563 0564 0565 0566 0567
0070|0056 0057 0058 0059 0060 0061 0062 0063 1070 0568 0569 0570 0571 0572 0573 0574 0575
0100|0064 0065 0066 0067 0068 0069 0070 0071 1100|0576 0577 0578 0579 0580 0581 0582 0583}
0110|0072 0073 0074 0075 0076 0077 0078 0079 1110|0584 0585 0586 0587 0588 0589 0590 0591
0120|0080 0081 0082 0083 0084 0085 0086 0087 11200592 0593 0594 0595 0596 0597 0598 0599
0130} 0088 0089 0090 0091 0092 0093 0094 0095 1130|0600 0601 0602 0603 0604 0605 0606 0607|
0140} 0096 0097 0098 0099 0100 0101 0102 0103 1140[0608 0609 0610 0611 0612 0613 0614 0615
0150|0104 0105 0106 0107 0108 0109 0110 0111 1150] 0616 0617 0618 0619 0620 0621 0622 0623]
0160|0112 0113 0114 0115 0116 0117 0118 0119 1160|0624 0625 0626 0627 0628 0629 0630 0631}
01700120 0121 0122 0123 0124 0125 0126 0127 1170|0632 0633 0634 0635 0636 0637 0638 0639
02000128 0129 0130 0131 0132 0133 0134 0135 1200|0640 0641 0642 0643 0644 0645 0646 0647
0210[0136 0137 0138 0139 0140 0141 0142 0143 1210|0648 0149 0650 0651 0652 0653 0654 0655
0220|0144 0145 0146 0147 0148 0149 0150 0151 122010656 0657 0658 0659 0660 0661 0662 0663
02300152 0153 0154 0155 0156 0157 0158 0159 1230|0664 0665 0666 0667 0668 0669 0670 0671
0240 (0160 0161 0162 0163 0164 0165 0166 0167 1240{0672 0673 0674 0675 0676 0677 0678 0679
0250 (0168 0169 0170 0171 0172 0173 0174 0175 1250{0680 0681 0682 0683 0684 0685 0686 0687
0260|0176 0177 0178 0179 0180 0181 0182 0183 1260 | 0688 0689 0690 0691 0692 0693 0694 0695
0270{0184 0185 0186 0187 0188 0189 0190 0191 1270 (0696 0697 0698 0699 0700 0701 0702 0703]
0300 (0192 0193 0194 0195 0196 0197 0198 0199 1300 j0704 0705 0706 0707 0708 0709 0710 0711
03100200 0201 0202 0203 0204 0205 0206 0207 13100712 0713 0714 0715 0716 0717 0718 0719
0320 (0208 0209 0210 0211 0212 0213 0214 0215 13200720 0721 0722 0723 0724 0725 0726 0727
0330|0216 0217 0218 0219 0220 0221 0222 0223 1330|0728 0729 0730 0731 0732 0733 0734 0735
0340|0224 0225 0226 0227 0228 0229 0230 0231 13400736 0737 0738 0739 0740 0741 0742 0743
03500232 0233 0234 0235 0236 0237 0238 0239 1350|0744 0745 0746 0747 0748 0749 0750 0751
0360 (0240 0241 0242 0243 0244 0245 0246 0247 1360|0752 0753 0754 0755 0756 0757 0758 0759
0370|0248 0249 0250 0261 0252 0253 0254 0255 1370|0760 0761 0762 0763 0764 0765 0766 0767

[Goal Jes00 15 0777] [Gaar 1400 15 1777

[Gocmai] 0256 10 0511] [Gecimal | 6769 10 1023]
Octal| O 1 2 3 4 5 [7 Octal| O 1 2 3 4 5 6 ki
0400 | 0256 0257 0258 0259 0260 0261 0262 0263 1400 | 0768 0769 0770 0771 0772 0773 0774 0775
0410] 0264 0265 0266 CR67 0268 0269 0270 0271 1410 {0776 0777 0778 0779 0780 0781 0782 0783
04200272 0273 0274 0275 0276 0277 0278 0279 1420|0784 0785 0786 0787 0788 0789 0790 0791
0430|0280 0281 0282 0283 0284 0285 0286 0287 1430 (0792 0793 0794 0795 0796 0797 0798 0799
0440 (0288 0289 0290 0291 0292 0293 0294 0295 1440 | 0800 0801 0802 0803 0804 0805 0806 0807
0450|0296 0297 0298 0299 0300 0301 0302 0303 1450 | 0808 0809 0810 0811 0812 0813 0814 0815
0460|0304 0305 0306 0307 0308 0309 0310 0311 1460 | 0816 0817 0818 (0819 0820 0821 0822 0823
047010312 0313 0314 0315 0316 0317 0318 0319, 1470|0824 0825 0826 0827 0828 0829 0830 0831
05000320 0321 0322 0323 0324 0325 0326 0327 1500 (0832 0833 0834 0835 0836 0837 0838 0839
05100328 0329 0330 0331 0332 0333 0334 0335 1510|0840 0841 0842 0843 0844 0845 0846 0847
0520|0336 0337 0338 0339 0340 0341 0342 0343 1520|0848 0849 0850 0851 0852 0853 0854 0855
0530|0344 0345 0346 0347 0348 0349 0350 0351, 1530 {0856 0857 0858 0859 0860 0861 0862 0863
0540|0352 0353 0354 0355 0356 0357 0358 0359 1540 {0864 0865 0866 0867 0868 0869 0870 0871
0550 | 0360 0361 0362 0363 0364 0365 0366 0367 1550 | 0872 0873 0874 0875 0876 0877 0878 0879
0560|0368 0369 0370 0371 0372 0373 0374 0375 1560 | 0880 0881 0882 0883 0884 0885 0886 0887
0570|0376 0377 0378 0379 0380 0381 0382 0383 1570 (0888 0889 0890 0891 0892 0893 0894 0895
0600 { 0384 0385 0386 0387 0388 0389 0390 0391 1600 }0896 0897 0898 0899 0900 0901 0902 0903
0610|0392 0393 0394 0395 0396 0397 0398 0399 1610 {0904 0905 0906 0907 0908 0909 0910 0911
0620 | 0400 0401 0402 0403 0404 0405 0406 0407 16200912 0913 0914 0915 0916 0917 0918 0919
0630|0408 0409 0410 0411 0412 0413 0414 0415 1630|0920 0921 0922 0923 0924 0925 0926 0927
0640 | 0416 0417 0418 0419 0420 0421 0422 0423 1640 |0928 0929 0930 0931 0932 0933 0934 0935
0650 | 0424 0425 0426 0427 0428 0429 0430 0431 1650 |0936 0937 0938 0939 0940 0941 0942 0943
0660 | 0432 0433 0434 0435 0436 0437 0438 0439 1660 | 0944 0945 0946 0947 0948 0949 0950 0951
0670|0440 0441 0442 0443 0444 0445 0446 0447 1670 | 0952 0953 0954 0955 0956 0957 0958 0959
0700 0448 0449 0450 0451 0452 0453 0454 0455 1700 (0960 0961 0962 0963 0964 0965 0966 0967
0710|0456 0457 0458 0459 0460 0461 0462 0463 1710|0968 0969 0970 0971 0972 0973 0974 0975
0720|0464 0465 0466 0467 0468 0469 0470 0471, 1720|0976 0977 0978 0979 0980 0981 0982 0983
0730} 0472 0473 0474 0475 0476 0477 0478 0479 1730 {0984 0985 0986 0987 0988 0989 0990 0991
0740 0480 0481 0482 0483 0484 0485 0486 0487 1740 | 0992 0993 0994 0995 0996 0997 0998 0999
0750|0488 0489 0490 0491 0492 0493 0494 0495 1750 (1000 1001 1002 1003 1004 1005 1008 1007
0760| 0496 0497 0498 0499 0500 0501 0502 0503 1760 (1008 1009 1010 1011 1012 1013 1014 1015
0770] 0504 0505 0506 0507 0508 0509 0510 0511 1770|1016 1017 1018 1019 1020 1021 1022 1023

PROGRAMMING
MANUAL

GE412

PROGRAMMING
MANUAL

GE412

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

Octal-Decimal Integer Conversion Table

Octal | 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal | 4096 | 8192 | 12288 [16384 | 20480 | 24576 | 28672
[0ctal T 2000 1o 2377] | Octal]300 10 3377]
[Decmai [102 o 1275 [Becmel 1536 1o 791]
Otall 0 1 2 3 4 5 6 7 Oall 0 1 2 3 4 5 6 71
2000 [1024 1025 1026 1027 1028 1029 1030 1031 30001536 1537 1538 1539 1540 1541 1542 1543
2010 (1032 1033 1034 1035 1036 1037 1038 1039 3010|1544 1545 1546 1547 1548 1549 1550 1551
2020 |1040 1041 1042 1043 1044 1045 1046 1047 8020 [1552 1553 1554 1555 1556 1557 1568 1559
2030 (1048 1049 1050 1051 1052 1053 1054 1055 3030|1560 1561 1562 1563 1564 1565 1566 1567
2040|1056 1057 1058 1050 1060 1061 1062 1063 3040 1568 1569 1570 1571 1572 1573 1574 1575
2050 1064 1065 1066 1067 1068 1069 1070 1071 3050 (1576 1577 1578 1579 1580 1581 1582 1583
2060 (1072 1073 1074 1075 1076 1077 1078 1079 3060 |1584 1585 1586 1587 1588 1589 1590 1591
2070 |1080 1081 1082 1083 1084 1085 1086 1087 3070 1592 1593 1504 1595 1506 1597 1598 1599
2100 1088 1089 1090 1091 1092 1093 1094 1095 3100 [1600 1601 1602 1603 1604 1605 1606 1607
2110 (1096 1097 1098 1099 1100 1101 1102 1103 31101608 1606 1610 1611 1612 1613 1614 1615
2120 (1104 1105 1106 1107 1108 1109 1110 1111 3120|1616 1617 1618 1619 1620 1621 1622 1623
2130 1112 1113 1114 1115 1116 1117 1118 1119 3130 1624 1625 1626 1627 1628 1620 1630 1631
2140 (1120 1121 1122 1123 1124 1125 1126 1127 3140|1632 1633 1634 1635 1636 1637 1638 1639
2150|1128 1129 1130 1131 1132 1133 1134 1135 3150|1640 1641 1642 1643 1644 1645 1646 1647
2160 {1136 1137 1138 1139 1140 1141 1142 1143 8160 1648 1649 1650 1651 1652 1653 1654 1655
2170 (1144 1145 1146 1147 1148 1146 1150 1151 3170 [1656 1657 1658 1659 1660 1661 1662 1663
2200 11152 1153 1154 1155 1156 1157 1158 1159 3200 {1664 1665 1666 1667 1668 1669 1670 1671
2210 (1160 1161 1162 1163 1164 1165 1166 1167 3210|1672 1673 1674 1675 1676 1677 1678 1679
2220 [1168 1169 1170 1171 1172 1173 1174 1175 3220|1680 1681 1682 1683 1684 1685 1686 1687
2230 [1176 1177 1178 1179 1180 1181 1182 1183 3230 [1688 1689 1690 1691 1692 1693 1694 1695
2240 (1184 1185 1186 1187 1188 1189 1190 1191 3240 (1696 1697 1698 1699 1700 1701 1702 1703
2250 (1192 1193 1194 1195 1196 1197 1198 1199 3250 (1704 1705 1706 1707 1708 1709 1710 1711
2260 1200 1201 1202 1203 1204 1205 1206 1207 3260 (1712 1713 1714 1715 1716 1717 1718 1719
2270 {1208 1209 1210 1211 1212 1213 1214 1215 3270 (1720 1721 1722 1723 1724 1725 1726 1727
2300|1216 1217 1218 1219 1220 1221 1222 1223 3300 (1728 1729 1730 1731 1732 1733 1734 1735
2310|1224 1225 1226 1227 1228 1220 1230 1231 33101736 1737 1738 1739 1740 1741 1742 1743
2320 (1232 1233 1234 1235 1236 1237 1238 1239 3320|1744 1745 1746 1747 1748 1749 1750 1751
2330 1240 1241 1242 1243 1244 1245 1246 1247 3330 /1752 1753 1754 1755 1756 1757 1758 1759
2340 (1248 1249 1250 1251 1252 1263 1254 1255 3340 (1760 1761 1762 1763 1764 1765 1766 1767
2350 (1256 1257 1258 1259 1260 1261 1262 1263 3350|1768 1769 1770 1771 1772 1773 1774 1775
2360 |1264 1265 1266 1267 1268 1269 1270 1271 3360|1776 1777 1778 1779 1780 1781 1782 1783
2370|1272 1273 1274 1275 1276 1277 1278 1279 3370|1784 1785 1786 1787 1788 1789 1790 1791
[Octal_[2400 10 2777 [octal_[3400 10 3777]
[Becimal [1260 1535 [eamei] 1792 1o 2087]
Otall 0 1 2 3 4 5 6 7 Otall 0 1 2 3 4 5 6 7
2400 1280 1281 1282 1283 1284 1285 1286 1287 3400 1792 1793 1794 1795 1796 1797 1798 1799
24101288 1289 1290 1291 1202 1203 1294 1295 3410 /1800 1801 1802 1803 1804 1305 1806 1807
24201296 1297 1298 1209 1300 1301 1302 1303 3420 /1808 1809 1810 1811 1812 1813 1814 1815
243011304 1305 1306 1307 1308 1309 1310 1311 3430 (1816 1817 1818 1819 1820 1821 1822 1823
2440|1312 1313 1314 1315 1316 1317 1318 1319 3440|1824 1825 1826 1827 1828 1820 1830 1831
24501320 1321 1322 1323 1324 1325 1326 1327 3450 [1832 1833 1834 1835 1836 1837 1838 1839
2460 (1328 1329 1330 1331 1332 1333 1334 1335 3460|1840 1841 1842 1843 1844 1845 1846 1847
24701336 1337 1338 1338 1340 1341 1342 1343 3470 (1848 1849 1850 1851 1852 1853 1854 1855
25001344 1345 1346 1347 1348 1349 1350 1351 3500 [1856 1857 1858 1859 1860 1861 1862 1863
2510|1352 1353 1354 1355 1356 1357 1358 1359 3510 [1864 1865 1866 1867 1868 1869 1870 1871
252011360 1361 1362 1363 1364 1365 1366 1367 3520 [1872 1873 1874 1875 1876 1877 1878 1879
25301368 1369 1370 1371 1372 1373 1374 1375 3530 (1880 1881 1882 1883 1884 1885 1886 1887
2540|1376 1377 1378 1379 1380 1381 1382 1383 3540 (1888 1889 1890 1891 1892 1893 1894 1895
2550|1384 1385 1386 1387 1388 1389 1390 1391 3550 [1896 1897 1898 1899 1900 1901 1902 1903
2560|1392 1393 1394 1395 1396 1397 1398 1399 3560 |1904 1905 1906 1907 1908 1909 1910 1911
25701400 1401 1402 1403 1404 1405 1406 1407 3570 (1912 1913 1914 1915 1916 1917 1918 1919
2600 (1408 1409 1410 1411 1412 1413 1414 1415 3600 (1920 1921 1922 1923 1924 1925 1926 1927
2610|1416 1417 1418 1419 1420 1421 1422 1423 3610 (1928 1920 1930 1931 1932 1933 1934 1935
26201424 1425 1426 1427 1428 1420 1430 1431 3620 (1936 1937 1938 1939 1940 1941 1942 1943
2630|1432 1433 1434 1435 1436 1437 1438 1439 3630 |1944 1945 1946 1947 1948 1949 1950 1951
26401440 1441 1442 1443 1444 1445 1446 1447 36401952 1953 1954 1955 1956 1957 1958 1959
26501448 1449 1450 1451 1452 1453 1454 1455 3650 (1960 1961 1962 1963 1964 1965 1966 1967
2660|1456 1457 1458 1459 1460 1461 1462 1463 3660|1968 1969 1970 1971 1972 1973 1974 1975
2670|1464 1465 1466 1467 1468 1469 1470 1471 3670 {1976 1977 1978 1979 1980 1981 1982 1983
27001472 1473 1474 1475 1476 1477 1478 1479 3700 (1984 1985 1986 1987 1988 1989 1990 1991
2710(1480 1481 1482 1483 1484 1485 1486 1487 37101992 1993 1994 1995 1996 1997 1998 1999
2720(1488 1489 1490 1491 1492 1493 1494 1495 3720 [2000 2001 2002 2003 2004 2005 2006 2007
2730 (1496 1497 1498 1499 1500 1501 1502 1503 3730 |2008 2009 2010 2011 2012 2013 2014 2015
274011504 1505 1506 1507 1508 1509 1510 1511 3740 12016 2017 2018 2019 2020 2021 2022 2023
2750|1512 1513 1514 1515 1516 1517 1518 1519 3750 (2024 2025 2026 2027 2028 2029 2030 2031
2760|1520 1521 1522 1523 1524 1525 1526 1527 3760 (2032 2033 2034 2035 2036 2037 2038 2039
2770{1528 1529 1530 1531 1532 1533 1534 1535 3770|2040 2041 2042 2043 2044 2045 2046 2047

102

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

Octal-Decimal Integer ConversionTable

Octal 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal | 4096 | 8192 | 12288 | 16384 | 20480 | 24576 | 28672

[ouar 050 10 4577] [Ouer 5000 1 5377]

[Gocimat [2648 o 2303] [Decmat [2560 1o 2675
Octal} 0 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 6 7
4000|2048 2049 2050 2051 2052 2053 2054 2055 5000 | 2560 2561 2562 2563 2564 2565 2566 2567
401012056 2057 2058 2059 2060 2061 2062 2063 5010 [2568 2569 2570 2571 2572 2573 2574 2575
4020} 2064 2065 2066 2067 2068 2069 2070 2071 5020 | 2576 2577 2578 2579 2580 2581 2582 2583
4030§2072 2073 2074 2075 2076 2077 2078 2079 5030 {2584 2585 2586 2587 2588 2583 2590 2591
4040|2080 2081 2082 2083 2084 2085 2086 2087 5040 | 2592 2593 2594 2595 2596 2597 2598 2599
4050|2088 2089 2090 2091 2092 2093 2094 2095 5050 | 2600 2601 2602 2603 2604 2605 2606 2607
406012096 2097 2098 2099 2100 2101 2102 2103 5060 | 2608 2609 2610 2611 2612 2613 2614 2615
4070|2104 2105 2106 2107 2108 2109 2110 2111 5070 | 2616 2617 2618 2619 2620 2621 2622 2623
4100|2112 2113 2114 2115 2116 2117 2118 2119 5100|2624 2625 2626 2627 2628 2629 2630 2631
4110)2120 2121 2122 2123 2124 2125 2126 2127 5110|2632 2633 2634 2635 2636 2637 2638 2639
4120]2128 2129 2130 2131 2132 2133 2134 2135 5120|2640 2641 2642 2643 2644 2645 2646 2647
4130|2136 2137 2138 2139 2140 2141 2142 2143 5130|2648 2649 2650 2651 2652 2653 2654 2655
4140|2144 2145 2146 2147 2148 2149 2150 2151 5140 | 2656 2657 2658 2659 2660 2661 2662 2663
4150|2152 2153 2154 2155 2156 2157 2158 2159 5150 | 2664 2665 2666 2667 2668 2689 2670 2671
416012160 2161 2162 2163 2164 2165 2166 2167 5160 | 2672 2673 2674 2675 2676 2677 2678 2679
41702168 2169 2170 2171 2172 2173 2174 2175 5170|2680 2681 2682 2683 2684 2685 2686 2687
4200)2176 2177 2178 2179 2180 2181 2182 2183 5200|2688 2689 2690 2691 2692 2693 2694 2695
4210)2184 2185 2186 2187 2188 2189 2190 2191 52102696 2697 2698 2699 2700 2701 2702 2703
422002192 2193 2194 2195 2196 2197 2198 2199 5220|2704 2705 2706 2707 2708 2709 2710 2711
4230|2200 2201 2202 2203 2204 2205 2206 2207 5230|2712 2713 2714 2715 2716 2717 2718 2719
4240]2208 2209 2210 2211 2212 2213 2214 2215 5240|2720 2721 2722 2723 2724 2725 2726 2727
42502216 2217 2218 2219 2220 2221 2222 2223 5250|2728 2729 2730 2731 2732 2733 2734 2735
4260|2224 2225 2226 2227 2228 2229 2230 2231 5260|2736 2737 2738 2739 2740 2741 2742 2743
4270]2232 2233 2234 2235 2236 2237 2238 2239 5270|2744 2745 2746 2747 2748 2749 2750 21751
4300|2240 2241 2242 2243 2244 2245 2246 2247 5300|2752 2753 2754 2755 2756 2757 2758 2759
4310|2248 2249 2250 2251 2252 2253 2254 2255 5310|2760 2761 2762 2763 2764 2765 2766 2767
432012256 2257 2258 2259 2260 2261 2262 2263 5320|2768 2769 2770 2771 2772 2773 2774 2775
4330|2264 2265 2266 2267 2268 2269 2270 2271 5330|2776 2777 2778 2779 2780 2781 2782 2783
4340|2272 2273 2274 2275 2276 2277 2278 2279 5340 (2784 2785 2786 2787 2788 2789 2790 2791
4350|2280 2281 2282 2283 2284 2285 2286 2287 5350 12792 2793 2794 2795 2796 2797 2798 2799
43602288 2289 2290 2291 2292 2293 2294 2295 5360 {2800 2801 2802 2803 2804 2805 2806 2807
4370(2296 2297 2298 2299 2300 2301 2302 2303 537012808 2809 2810 2811 2812 2813 2814 2815

(el [4450 10 477)

[rcmol | 7308 1o 7559) [Decmat] 2016 10 3071]
Octal| 0 1 2 3 4 5 6 T Octal| 0 1 2 3 4 5 6 ki
4400 {2304 2305 2306 2307 2308 2308 2310 5400 [2816 2817 2818 2819 2820 2821 2822 2823
44102312 2313 2314 2315 2316 2317 2318 2 41012824 282> 2826 2827 2828 2829 2830 2831
4420 (2320 2321 2322 2323 2324 2325 2320 5420 [2832 2833 2834 2835 2836 2837 2838 2839
4430(2328 2329 2330 2331 2332 2333 4 5430 [2840 2841 2842 2843 2844 2845 2846 2847
44402336 2337 2338 233y 2340 2341 2342 h440 | 2848 2849 2850 2851 2852 2853 2854 2855
4450 [2344 2345 2346 2347 2348 2349 2350 5450 | 2856 2857 2858 2859 2860 2861 2862 2863
4460 [2352 2353 2354 2355 2356 2357 2358 5460 | 2864 2865 2866 2867 2868 2869 2870 2871
44702360 2361 2362 2363 2364 2365 2366 5470|2872 2873 2874 2875 2876 2877 2878 2879
4500 | 2368 2369 2370 2371 2372 2373 2374 5500|2880 2881 2882 2883 2884 2885 2886 2887
4510|2376 2377 2378 2379 2380 2381 2382 5510|2888 2889 2890 2891 2892 2893 2894 2895
4520|2384 2385 2386 2387 2388 238y 2390 5520|2896 2887 2898 2899 2900 2901 2902 2903
4530|2392 2393 2394 2395 2396 2397 2398 5530 [2904 2905 2906 2907 2908 2909 2810 2911
4540 2400 2401 2402 2403 2404 2405 2406 2407 5540 (2912 2913 2914 2915 2916 2917 2918 2919
4550 | 2408 2409 2410 2411 2412 2413 2414 2415 5550 (2920 2921 2922 2923 2924 2925 2926 2927
4560 | 2416 2417 2418 2419 2420 2421 2422 2423 5560 (2928 2929 2930 2931 2932 2933 2934 2935
4570 | 2424 2425 2426 2427 2428 2429 2430 2431 5570 (2936 2937 2938 2939 2940 2941 2942 2943
4600 | 2432 2433 2434 2435 2436 2437 2438 2439 5600 | 2044 2945 2946 2947 2948 2949 2950 2951
4610 | 2440 2441 2442 2443 2444 2445 2446 2447 5610 | 2952 2953 2954 2955 2956 2957 2958 2959
4620 | 2448 2449 2450 2451 2452 2453 2454 2455 5620 [2960 2961 2962 2963 2964 2965 2966 2967
4630 | 2456 2457 2458 2459 2460 2461 2462 2463 56302968 2969 2970 2971 2972 2973 2974 2975
4640|2464 2465 2466 2467 2468 2469 2470 2471 5640 [2976 2977 2978 2979 2980 2981 2982 2983
4650|2472 2473 2474 2475 2476 2477 2478 2479 5650|2984 2985 2986 2987 2988 2989 2990 2991
4660 | 2480 2481 2482 2483 2484 2485 2486 2487 5660 (2992 2993 2994 2995 2996 2997 2998 2999
4670|2488 2489 2490 2491 2492 2493 2494 2495 5670 | 3000 3001 3002 3003 3004 3005 3006 3007
470012496 2497 2498 2499 2500 2501 2502 2503 5700|3008 3009 3010 3011 3012 3013 3014 3015
471012504 2505 2506 2507 2508 2509 2510 2511 5710}3016 3017 3018 3019 3020 3021 3022 3023
47202512 2513 2514 2515 2516 2517 2518 2519 57203024 3025 3026 3027 3028 3029 3030 3031
4730|2520 2521 2522 2523 2524 2525 2526 2527 5730(3032 3033 3034 3035 3036 3037 3038 3039
4740|2528 2529 2530 2531 2532 2533 2534 2535 5740|3040 3041 3042 3043 3044 3045 3046 3047
4750|2536 3537 2538 2539 2540 2541 2542 2543 5750 [3048 3049 3050 3051 3052 3053 3054 3055
4760 2544 2545 2546 2547 2548 2548 2550 2551 5760 3056 3057 3058 3059 3060 3061 3062 3063
4770|2552 2553 2554 2555 2556 2557 2558 2559 5770|3064 3065 3066 3067 3068 3069 3070 3071

103

PROGRAMMING
MANUAL

GE412

PROGRAMMING
MANUAL

GE412

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

Octal-Decimal Integer Conversion Table

Octal 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal 4096 8192 12288 | 16384 | 20480 | 24576 | 28672
[Gaar 050 15 6377) [Saal [7666 10 7377]
[Secmel[3072 10 3327] [Goamal [3584 10 3079
Qctal| 0 1 2 3 4 5 6 7 Octal} 0 1 2 3 4 5 6 7
6000 3072 3073 3074 3075 3076 3077 3078 3079 7000 (3584 3585 3586 3587 3588 3589 3590 3591
6010 3080 3081 3082 3083 3084 3085 3086 3087 7010 (3592 3593 3594 3595 3596 3597 3598 3599
6020 3088 3089 3090 3091 3092 3093 3094 3095 7020 (3600 3601 3602 3603 3604 3605 3606 3607
6030 3096 3097 3098 3099 3100 3101 3102 3103 7030|3608 3609 3610 3611 3612 3613 3614 3615
6040 3104 3105 3106 3107 3108 3109 3110 3111 7040 (3616 3617 3618 3619 3620 3621 3622 3623
6050(3112 3113 3114 3115 3116 3117 3118 3119 7050 { 3624 3625 3626 3627 3628 3629 3630 3631
6060 3120 3121 3122 3123 3124 3125 3126 3127 7060 | 3632 3633 3634 3635 3636 3637 3638 3639
6070|3128 3129 3130 3131 3132 3133 3134 3135 7070 | 3640 3641 3642 3643 3644 3645 3646 3647
6100|3136 3137 3138 3139 3140 3141 3142 3143 7100|3648 3649 3650 3651 3652 3653 3654 3655
6110|3144 3145 3146 3147 3148 3149 3150 3151 7110 § 3656 3657 3658 3659 3660 3661 3662 3663
61203152 3153 3154 3155 3156 3157 3158 3159 7120 (3664 3665 3666 3667 3668 3669 3670 3671
613013160 3161 3162 3163 3164 3165 3166 3167 7130|3672 3673 3674 3675 3676 3677 3678 3679
614013168 3169 3170 3171 3172 3173 3174 3175 7140|3680 3681 3682 3683 3684 3685 3686 3687
6150 (3176 3177 3178 3179 3180 3181 3182 3183 7150 | 3688 3689 3690 3691 3692 3693 3694 3695
6160|3184 3185 3186 3187 3188 3189 3190 3191 7160|3696 3697 3698 3699 3700 3701 3702 3703
6170 (3192 3193 3194 3195 3196 3197 3198 3199 7170|3704 3705 3706 3707 3708 3709 3710 3711
6200 [3200 3201 3202 3203 3204 3205 3206 3207 72003712 3713 3714 3715 3716 3717 3718 3719
6210|3208 3209 3210 3211 3212 3213 3214 3215 7210|3720 3721 3722 3723 3724 3725 3726 3727
6220 (3216 3217 3218 3219 3220 3221 3222 5223 7220|3728 3729 3730 3731 3732 3733 3734 3735
6230 [3224 3225 3226 3227 3228 3229 3230 3231 7230|3736 3737 3738 3739 3740 3741 3742 3743
62403232 3233 3234 3235 3236 3237 3238 3239 7240|3744 3745 3746 3747 3748 3749 3750 3751
62503240 3241 3242 3243 3244 3245 3246 3247 7250|3752 3753 3754 3755 3756 3757 3758 3759
6260 3248 3249 3250 3251 3252 3253 2354 3255 7260|3760 3761 3762 3763 3764 3765 3766 3767
6270 3256 3257 3258 3259 3260 3261 3262 3263 7270|3768 3769 3770 3771 3772 3773 3774 3715
6300 (3264 3265 3266 3267 3268 3269 3270 3271 73003776 3777 3778 3779 3780 3781 3782 3783
631013272 3273 3274 3275 3276 3277 3278 3279 731013784 3785 3786 3787 3788 3789 3790 3791
63203280 3281 3282 3283 3284 3285 3286 3287 7320|3792 3793 3794 3795 3796 3797 3798 3799
6330) 3288 3289 3290 3291 3292 3293 3294 3295 7330|3800 3801 3802 3803 3804 3805 3806 3807
63403296 3297 3298 3299 3300 3301 3302 3303 7340|3808 3809 3810 3811 3812 3813 3814 3815
6350|3304 3305 3306 3307 3308 3309 3310 3311 7350|3816 3817 3818 3819 3820 3821 3822 3823
6360|3312 3313 3314 3315 3316 3317 3318 3319 7360|3824 3825 3826 3827 3828 3829 3830 3831
637013320 3321 3322 3323 3324 3325 3326 3327 737013832 3833 3834 3835 3836 3837 3838 3839
(el [7386 1= 777]
[Decmal[3326 10 3583] [Beomat [3840 1o 4093
Octal} 0O 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 6 7
6400|3328 3329 3330 3331 3332 3333 3334 3335 7400 | 3840 3841 3842 3843 3844 3845 3846 3847
641013336 3337 3338 3339 3340 3341 3342 3343 7410|3848 3849 3850 3851 3852 3853 3854 3855
642013344 3345 3346 3347 3348 3349 3350 3351 7420 1 8856 3857 3858 3859 3860 3861 3862 3863
6430} 3352 3353 3354 3355 3356 3357 3358 3359 7430|3864 3865 3866 3867 3868 3869 3870 3871
64403360 3361 3362 3363 3364 3365 3366 3367 7440 | 3872 3873 3874 3875 3876 3877 3878 3879
6450 [3368 3369 3370 3371 3372 3373 3374 3375 7450 [3880 3881 3882 3883 3884 3885 3886 3887
6460|3376 3377 3378 3379 3380 3381 3382 3383 7460|3888 3889 3890 3891 3892 3893 3894 3895
6470 (3384 3385 3386 3387 3388 3389 3390 3391 7470 | 3896 3897 3898 3899 3900 3901 3902 3903
6500|3392 3393 3394 3395 3396 3397 3398 3399 7500 | 3904 3905 3906 3907 3908 3909 3910 3911
65103400 3401 3402 3403 3404 3405 3406 3407 7510{3912 3913 3914 3915 3916 3917 3918 3919
6520 [3408 3409 3410 3411 3412 3413 3414 3415 7520 §3920 3921 3922 3923 3924 3925 3926 3927
65303416 3417 3418 3419 3420 3421 3422 3423 7530|3928 3929 3930 3931 3932 3933 3934 3935
6540|3424 3425 3426 3427 3428 3429 3430 3431 7540|3936 3937 3938 3939 3940 3941 3942 3943
6550|3432 3433 3434 3435 3436 3437 3438 3439 7550|3944 3945 3946 3947 3948 3949 3950 3951
6560|3440 3441 3442 3443 3444 3445 3446 3447 7560 | 3952 3953 3954 3955 3956 3957 3958 3959
6570 3448 3449 3450 3451 3452 3453 3454 3455 7570|3960 3961 3962 3963 3964 3965 3966 3967
6600 [3456 3457 3458 3459 3460 3461 3462 3463 7600 | 3968 3969 3970 3971 3972 3973 3974 3975
6610|3464 3465 3466 3467 3468 3469 3470 3471 7610|3976 3977 3978 3979 3980 3981 3982 3983
662013472 3473 3474 3475 3476 3477 3478 3479 7620|3984 3985 3986 3987 3988 3989 3990 3991
8630|3480 3481 3482 3483 3484 3485 3486 3487 7630|3992 3993 3994 3995 3996 3997 3998 3999
6640 | 3488 3489 3490 3491 3492 3493 3494 3495 7640 | 4000 4001 4002 4003 4004 4005 4006 4007
6650 [3496 3497 3498 3499 3500 3501 3502 3503 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
6660} 3504 3505 3506 3507 3508 3509 3510 3511 7660|4016 4017 4018 4019 4020 4021 4022 4023
6670 (3512 3513 3514 3515 3516 3517 3518 3519 7670|4024 4025 4026 4027 4028 4029 4030 4031
6700|3520 3521 3522 3523 3524 3525 3526 3527 7700 | 4032 4033 4034 4035 4036 4037 4038 4039
6710 (3528 3529 3530 3531 3532 3533 3534 3535 7710|4040 4041 4042 4043 4044 4045 4046 4047
872013536 3537 3538 3539 3540 3541 3542 3543 7720|4048 4049 4050 4051 4052 4053 4054 4055
6730|3544 3545 3546 3547 3548 3549 3550 3551 77304056 4057 4058 4059 4060 4061 4062 4063
67403552 3553 3554 3555 3556 3557 3558 3559 7740 | 4064 4065 4066 4067 4068 4069 4070 4071
87503560 3561 3562 3563 3564 3565 3566 3567 7750 | 4072 4073 4074 4075 4076 4077 4078 4079
6760 (3568 3569 3570 3571 3572 3573 3574 3575 7760 | 4080 4081 4082 4083 4084 4085 4086 4087
87703576 3577 3578 3579 3580 3581 3582 3583 7770|4088 4089 4090 4091 4092 4093 4094 4095
104

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

Octal-Decimal Fraction Conversion Table

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
000 .000000 .100 125000 200 .250000 .300 375000
.001 .001953 .101 126953 .201 .251953 .301 .376953
.002 .003906 .102 128906 .202 253906 .302 .378906
.003 005859 .103 .130859 2203 .255859 .303 .380859
004 .007812 104 .132812 .204 .257812 .304 .382812
.005 .009765 .105 134765 .205 259765 .305 384765
.006 011718 .106 .136718 .206 .261718 .306 .386718
.007 .013671 .107 138671 207 263671 .307 388671
010 .015625 110 .140625 .210 .265625 .310 .390625
011 .017578 111 142578 211 267578 311 392578
012 .019531 112 144531 2212 269531 312 394531
013 .021484 113 .146484 213 271484 313 396484
.014 023437 114 148437 214 .273437 314 398437
015 025390 115 .150390 215 275390 315 400390
.016 027343 116 .152343 .216 .277343 316 402343
.017 029296 117 .154296 2217 279296 317 404296
.020 031250 .120 156250 .220 .281250 .320 406250
.021 .033203 121 .158203 221 283203 321 408203
022 .035156 122 160156 .222 .285156 .322 .410156
.023 .037109 2123 162109 .223 287109 .323 .412109
.024 039062 124 .164062 224 289062 .324 414062
.025 .041015 125 .166015 1225 .291015 .325 416015
.026 042968 .128 .167968 .226 .292968 .326 .417968
.027 .044921 127 .169921 227 .294921 327 419921
.030 046875 .130 171875 .230 .296875 .330 421875
031 .048828 131 .173828 .231 .298828 331 .423828
032 050781 .132 175781 .232 .300781 332 425781
.033 .052734 .133 177734 .233 .302734 .333 427734
.034 .054687 .134 .179687 .234 .304687 .334 .429687
.035 056640 135 .181640 .235 306640 .335 431640
.036 058593 .136 .183593 .236 .308593 .336 .433593
.037 .060546 137 .185546 .237 .310546 .337 435546
.040 .062500 .140 187500 .240 .312500 .340 437500
041 064453 141 .189453 241 314453 .341 .439453
.042 066406 142 191406 242 .316406 .342 .441406
.043 .068359 .143 193359 243 318359 .343 443359
.044 .070312 144 195312 244 .320312 344 .445312
.045 .072265 .145 197265 .245 .322265 345 447265
.046 074218 .146 .199218 .246 .324218 .346 449218
047 076171 .147 201171 247 326171 .347 451171
.050 .078125 .150 203125 .250 328125 .350 .453125
051 .080078 .151 .205078 .251 330078 .351 .455078
.052 .082031 .152 207031 .252 .332031 .352 457031
053 .083984 .153 .208984 253 .333984 .353 458984
.054 085937 154 210937 .254 335937 .354 .460937
.055 087890 .155 .212890 .255 .337890 .355 462890
.056 089843 .156 .214843 .256 .339843 .356 .464843
.057 .091796 157 .216796 .257 341796 .357 466796
.060 093750 .160 .218750 .260 .343750 .360 468750
.061 095703 .161 .220703 .261 .345703 .361 470703
062 097656 .162 222656 .262 .347656 .362 472656
.063 099609 .163 .224609 263 349609 .363 474609
.064 101562 164 226562 .264 .351562 .364 476562
-065 103515 .165 .228515 .265 .353515 .365 .478515
.066 .105468 .166 .230468 .266 .355468 .366 .480468
087 .107421 187 .232421 .267 .357421 367 .482421
.070 109375 .170 234375 .270 359375 .370 .484375
.071 .111328 171 .236328 .27 .361328 31 .486328
.072 .113281 172 .238281 272 .363281 .372 .488281
073 .115234 173 .240234 2273 365234 .373 .490234
074 117187 174 .242187 274 367187 374 .402187
075 .119140 .175 244140 275 .369140 .375 494140
076 .121093 176 246093 276 .371093 376 496093
0717 123046 177 248046 277 .373046 377 498046

105

PROGRAMMING
MANUAL

GE412

PROGRAMMING
MANUAL

GE412

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

Octal-Decimal Fraction Conversion Table

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
000000 .000000 .000100 .000244 .000200 000488 .000300 .000732
-000001 .000003 .000101 000247 .000201 000492 000301 .000736
.000002 000007 .000102 .000251 .000202 000495 .000302 .000740
000003 .000011 .000103 000255 .000203 .000499 000303 .000743
.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747
000005 .000019 .000105 000263 000205 .000507 .000305 000751
.000006 .000022 .000106 .000267 000206 000511 000306 000755
000007 .000026 000107 000270 000207 000514 000307 000759
000010 .000030 .000110 .000274 .000210 .000518 000310 .000762
.000011 000034 .000111 .000278 1000211 .000522 .000311 000766
.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770
.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774
.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778
.000015 .000049 .000115 000293 .000215 .000537 .000315 .000782
.000016 .000053 .000116 000297 .000216 .000541 .000316 .000785
.000017 .000057 000117 000301 .000217 .000545 .000317 000789
.000020 000061 .000120 000305 .000220 .000549 .000320 .000793
.000021 .000064 .000121 000308 .000221 .000553 .000321 .000797
.000022 000068 .000122 000312 000222 .000556 .000322 .000801
000023 000072 .000123 000316 .000223 .000560 .000323 .000805
000024 .000076 .000124 000320 .000224 .000564 .000324 .000808
000025 000080 .000125 000324 .000225 000568 000325 .000812
000026 .000083 .000126 000328 .000226 .000572 .000326 .000816
000027 000087 1000127 000331 .000227 000576 000327 .000820
000030 .000091 .000130 .000335 .000230 .000579 000330 .000823
.000031 .000095 .000131 .000339 .000231 .000583 000331 000827
.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831
000033 .000102 .000133 000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 000350 .000234 000595 .000334 .000839
.000035 .000110 .000135 .000354 .000235 000598 .000335 .000843
.000036 000114 000136 .000358 .000236 .000602 .000336 .000846
.000037 .000118 .000137 000362 000237 .000606 000337 .000850
-000040 .000122 .000140 000366 .000240 .000610 .000340 000854
000041 .000125 .000141 000370 000241 .000614 .000341 .000858
.000042 .000129 .000142 .000373 000242 000617 .000342 .000862
.000043 .000133 .000143 000377 000243 .000621 .000343 .000865
.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869
.000045 .000141 .000145 .000385 .000245 .000629 000345 .000873
.000046 .000144 .000146 .000389 000246 .000633 .000346 .000877
.000047 .000148 .000147 000392 .000247 000637 000347 .000881
-000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885
.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888
.000052 .000160 .000152 .000404 .000252 000648 .000352 .000892
.000053 .000164 .000153 000408 .000253 .000652 000353 000896
-000054 .000167 .000154 000411 .000254 .000656 000354 .0009800
000055 000171 .000155 000415 .00025% 000659 000355 .000904
.000056 000175 .000156 .000419 000256 .000663 .000356 000907
.000057 .000179 .000157 .000423 000257 000667 .000357 .000911
000060 .000183 .000160 .000427 000260 .000671 .000360 .000915
.000061 000186 .000161 000431 000261 .000675 .000361 .000919
.000062 000190 .000162 .000434 000262 .000679 000362 .000923
.000063 .000194 .000163 .000438 .000263 .000682 .000363 000926
000064 .000198 .000164 .000442 .000264 .000686 000364 000930
.000065 .000202 .000165 000446 .000265 000690 .000365 .000934
000066 000205 .000166 000450 .000266 .000694 000366 .000938
.000067 000209 000167 000453 .000267 000698 .000367 .000942
.000070 .000213 .000170 000457 .000270 000701 .000370 .000946
.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949
.000072 .000221 .000172 000465 .000272 000709 000372 .000953
.000073 -000225 .000173 000469 .000273 .000713 .000373 .000957
.000074 000228 000174 000473 .000274 .000717 .000374 .000961
.000075 .000232 .000175 000476 000275 .000720 .000375 .000965
.000076 .000236 .000178 000480 000276 .000724 .000376 .000968
.000077 .000240 .000177 .000484 .000277 .000728 000377 .000972

106

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

Octal-Decimal Fraction Conversion Table

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000400 .000976 .000500 .001220 .000600 .001464 000700 001708
.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712
.000402 .000984 000502 .001228 .000602 001472 .000702 .001716
.000403 000988 .000503 .001232 .000603 .001476 .000703 .001720
.000404 000991 .000504 .001235 .000604 001480 .000704 .001724
000405 000995 .000505 .001239 .000605 1001483 .000705 .001728
.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731
.000407 001003 000507 .001247 .000607 .001491 .000707 .001735
.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739
.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743
000412 .001014 .000512 001258 .000612 001502 .000712 .001747
.000413 .001018 .000513 .001262 .000613 .001508 .000713 001750
000414 .001022 .000514 .001266 000614 .001510 .000714 .001754
.000415 001026 .000515 .001270 000615 .001514 .000715 .001758
.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762
.000417 .001033 .000517 .001277 000617 001522 .000717 .001766
000420 001037 .000520 .001281 .000620 .001525 .000720 .001770
.000421 .001041 .000521 .001285 000621 .001529 000721 001773
.000422 .001045 .000522 .001289 .000622 .001533 000722 001777
000423 .001049 .000523 .001293 .000623 001537 .000723 .001781
.000424 .001052 000524 .001296 000624 .001541 .000724 .001785
.000425 .001056 000525 .001300 000625 .001544 .000725 .001789
000426 .001060 000526 .001304 .000626 .001548 .000726 .001792
000427 .001064 .000527 .001308 000627 .001552 .000727 .001796
.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800
.000431 .001071 000531 .001316 .000631 .001560 .000731 .001804
.000432 .001075 .000532 .001319 000632 .001564 000732 001808
.000433 .001079 .000533 .001323 000633 .001567 .000733 .001811
.000434 .001083 .000534 .001327 000634 .001571 .000734 001815
000435 .001087 .000535 .001331 000635 .001575 .000735 .001819
.000438 001091 .000536 .001335 000636 .001579 .000736 .001823
.000437 001094 000537 .001338 000637 .001583 .000737 .001827
.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831
000441 .001102 .000541 .001346 000641 001590 .000741 .001834
.000442 .001106 000542 .001350 000642 .001594 .000742 .001838
.000443 .001110 .000543 001354 000643 .001598 000743 .001842
.000444 .001113 .000544 001358 000644 .001602 .000744 .001846
000445 001117 .000545 001361 000645 .001605 000745 .001850
000446 001121 000546 001365 000646 .001609 .000746 .001853
000447 001125 000547 .001369 5000647 001613 .000747 001857
.000450 .001129 000550 .001373 000650 .001617 000750 .001861
1000451 001132 .000551 .001377 000651 .001621 000751 .001865
.000452 .001136 000552 .001380 000652 .001625 .000752 .001869
.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873
.000454 .001144 .000554 .001388 000654 .001632 000754 .001876
000455 .001148 .000555 001392 000655 .001636 000755 .001880
.000456 .001152 .000556 001396 000656 .001640 .000756 .001884
000457 .001155 .000557 001399 000657 .001644 000757 .001888
000460 001159 000560 .001403 .000660 .001647 000760 001892
.000461 .001163 .0005861 .001407 .000661 .001651 .000761 .001895
.000462 .001167 .000562 001411 .000662 .001655 .000762 .001899
000463 001171 000563 .001415 .000663 .001659 .000763 001903
.000464 001174 .000564 .001419 .000664 .001663 .000764 .001907
.000465 .001178 .000565 001422 000665 .001667 000765 .001911
000466 001182 .000566 .001426 000666 .001670 .000766 .001914
.000467 .001186 000567 .001430 000667 .001674 000767 .001918
.000470 .001160 .000570 .001434 000870 .001678 000770 .001922
000471 .001194 .000571 .001438 0008671 .001682 .000771 .001926
.000472 001197 .000572 .001441 .000672 .001686 .000772 .001930
.000473 .001201 000573 .001445 000673 .001689 .000773 001934
.000474 .001205 .000574 001449 000674 .001693 .000774 001937
.000475 1001209 000575 .001453 000675 .001697 000775 001841
.000476 .001213 .000576 .001457 000676 .001701 0007176 .001945
.000477 .001216 .000577 001461 000677 .001705 000777 001949

107

PROGRAMMING
MANUAL

GE412

APPENDIX C. OCTAL-DECIMAL CONVERSION TABLE (cont)

128
256
512

1024
2048
4096

8 192
16 384
32 768

65 536
131 072
262 144

524 288
1048 576
2 097 152

4 194 304
8 388 608
16 777 216

33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824

2 147 483 648
4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368
68 719 476 736

137 438 953 472
274 877 906 944
549 755 813 888

1099 511 627 776

PROGRAMMING
MANUAL

GE412

D O CO DD -t

W0 00 -3

10
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33
34
36
37

38
39

Table of Powers of 2

Iy
o

[=R=N=]
=N

25
125
0.062 5

0.031 25
0.015 625

0.007 812 5
0.003 906 25
0.001 953 125

0.000 976 562 5
0.000 488 281 25
0.000 244 140 625

0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625

0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5
0.000 000 118 209 289 550 781 25
0.000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625

0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125

0.000 000 000 058 207 660 913 467 407 226 562 5

0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 2175 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

108

APPENDIX D. OPERATION CODES IN ORDER BY MNEMONICS

Symbols Octal Description Execution
Time

ABQ S»K 2400300 N0 SHIFT A INTO BUFFER S AND INTO Qs K PLACES 2+
ABQ SsK 2400500 MsO SHIFT A INTO BUFFER S AND INTO Qs K PLACES 2+
ADD Y 0100000 © ADD Y TO A 2
ADO 2504032 ADD ONE TO A 2
ANA Y 2200000 © AND Y TO A 2
BBP JsS 2514006 1sN BRANCH ON BUFFER S PARITY ERROR 2
BBP JsS 2514007 1M BRANCH ON BUFFER S PARITY ERROR 2
BBP JsS 2516006 24N BRANCH ON BUFFER S PARITY ERROR 2
BBP JsS 2516007 2sM BRANCH ON BUFFER S PARITY ERROR 2
BBR JsS 2514010 1N BRANCH ON BUFFER S READY 2
BBR JsS 2514011 1M BRANCH ON BUFFER S READY 2
BBR Js$S 2516010 2sN BRANCH ON BUFFER S READY 2
BBR JsS 2516011 2sM BRANCH ON BUFFER S READY 2
BCL J 2514012 1 BRABCH ON CLOCK VALID 2
BCL J 2516012 2 BRABCH ON CLOCK VALID 2
BCO JskK 2514021 11 BRANCH ON CONVERTER K OVERFLOW 2
BCO JsK 2514032 1+2 BRANCH ON CONVERTER K OVERFLOW 2
BCO JsK 2516021 21 BRANCH ON CONVERTER K OVERFLOW 2
BCO JsK 2516032 252 BRANCH ON CONVERTER X OVERFLOW 2
BCS JsDsE 2515000 1400 BRANCH ON CONTROLLER SELECTORy MINIMUM OPERANDS 2
BCS JsDeE 2517307 29347 BRANCH ON CONTROLLER SELECTORs MAXIMUM OPERANDS 2
BDC J 2514020 1 BRANCH ON DRUM OPERATION COMPLETE 2
8DC J 2516020 2 BRANCH ON DRUM OPERATION COMPLETE 2
BDM J 2514034 1 BRANCH ON MULTIPLE OUTPUT COMPLETE 2
BDM U 2516034 2 BRANCH ON MULTIPLE OUTPUT COMPLETE 2
BDT J 2514027 1 BRANCH ON TIMED CONTACT COMPLETE 2
BDT J 2516027 2 BRANCH ON TIMED CONTACT COMPLETE 2
BEA J 2514023 1 BRANCH ON FCHO ALARM 2
BEA J 2516023 2 BRANCH ON FCHO ALARM 2
BEV J 2514000 1 BRANCH ON EVEN 2
BEV J 2516000 2 BRANCH ON EVEN 2
BOV U 2514003 1 BRANCH ON OVERFLOW 2
BOV J 2516003 2 BRANCH ON OVERFLOW 2
BPC J 2514004 1 BRANCH ON PARITY ERRORs CORE 2
BPC J 2516004 2 BRANCH ON PARITY ERRORs CORE 2
BPD U 2514005 1 BRANCH ON PARITY ERRORs DRUM 2
BPD U 2516005 2 BRANCH ON PARITY ERRORs DRUM 2
BPL J 2514001 1 BRANCH ON PLUS 2
BPL J 2516001 2 BRANCH ON PLUS 2
BRD J 2514017 1 BRANCH ON DEMAND 2
BRD J 2516017 2 BRANCH ON DEMAND 2
BRH Jsl 2514024 141 BRANCH ON H-REGISTER 1 READY 2
BRH J»slI 2514033 142 BRANCH ON H=REGISTER 1 READY 2
BRH Js1 2516024 241 BRANCH ON H-REGISTER 1 READY 2
BRH Js1 2516033 2,42 BRANCH ON H=-REGISTER I READY 2
BRU Y 2600000 © BRANCH UNCONDITIONALLY 1
BSC JsK 2514022 191 BRANCH ON SCANNER OPERATION COMPLETE 2
BSC JsK 2514031 142 BRANCH ON SCANNER OPERATION COMPLETE 2
BSC JskK 2516022 291 BRANCH ON SCANNER OPERATION COMPLETE 2
BSC JskK 2516031 292 BRANCH ON SCANNER OPERATION COMPLETE 2
BTC JsK 2514013 1,1 BRANCH ON TIME COUNTER COVERFLOW 2
BTC JsK 2514014 192 BRANCH ON TIME COUNTER OVERFLOW 2
BTC JsK 2514015 142 BRANCH ON TIME COUNTER OVERFLOW 2
BTC JsK 2514016 194 BRANCH ON TIME COUNTER OVERFLOW 2
BTC JsK 2516013 241 BRANCH ON TIME COUNTER OVERFLOW 2
BTC JsK 2516014 242 BRANCH ON TIME COUNTER OVERFLOW 2

109

PROGRAMMING
MANUAL

GE412

BTC
BTC
BXH
BXL
BZE
BZE
CHs
CPL
DAD
DLD
DNO
DST
DSy
DVD
ERA
EXT
IAI
INX
JMP
LAC
LAC
LAC
LAC
LAC
LAQ
LCS
LCs
LCs
LCS
LCv
LCv
LCv
LCv
LCV
LDA
LDC
LDH
LDH
L.DH
LDH
LDH
LDH
LDM
Lbo
LDS
LDS
LDsS
LDS
LDsS
LDT
LDX
LDz
LLA
LLC
LLD
LMO
LQA
LsC
LscC
LSC
LSC
LSC
LTC
LTC
LTC
LTC
MAQ
MPY
NEG

PROGRAMMING

MANUAL

GE412

JeK
JsK
KsX
KsX

RAARR LR << << <R <<
-
>

L AARARRRQOQUOO

—
- -
zZzZz

IeN
TsN
TN
1N

RARARARR

Y X

RARR

AARARARARARARR

=<

2516015
2516016
0500000
0400000
2514002
2516002
2504040
2504512
1100000
1000000
2411040
1300000
1200000
1600000
2100000
2000000
2500013
1400000
3700000
2510100
2510200
2510400
2511000
2513000
2504001
2501000
2501101
2501200
2501300
2510101
2510201
2510401
2511001
2512001
0000000
2500026
2511110
2511117
2511210
2511217
2511310
2511317
2510112
2504022
2510102
2510202
2510402
2511002
2512002
2510012
0600000
2504002
2410100
24103C0
2411100
2504102
2504004
2510103
2510203
2510403
2511003
2512003
2500017
2500020
2500021
2500022
2504006
1500000
2504532

283
294
Cs0
0s0

[eNeoReNeNoloNoNe]

-
o

VMPOLONEROO

OV LWLNEEWLWNEFO

N =N
- e v »
NN

»

1+3
293

0sC

[eNoNe]

FUOUNPRPVPLN =

(@]

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH ON ZER
CHANGE SIGN O
COMPLEMENT A
DOUBLE~LENGTH
DOUBLE~LENGTH
DOUBLE~LENGTH
DOUBLE=~LENGTH
DOUBLE~-LENGTH
DIVIDE BY Y

X L
ZER

ESS THAN K
0

0
F A

ADD Y
LOAD FROM Y

TIME COUNTER OVERFLOW
TIME COUNTER OVERFLOW
X EQUAL TO OR GREATER THAN K

MORMALIZEs K PLACES MAXIMUM

STORE AT Y
SUBTRACT Y

EXCLUSIVE OR INTO A FROM Y

EXTRACT FROM

A INTO Y

INHIBIT AUTOMATIC INTERUPT

INCREMENT X B
JUMP UNCONDIT
LOAD ACCUMULA
LOAD ACCUMULA
LOAD ACCUMULA
LOAD ACCUMULA
LOAD ACCUMULA
LOAD A FROM Q
LOAD CONTROLL
LOAD
LOAD
LOAD
LOAD
LCAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LCAD
LOAD
LOAD

CONTROLL

CONVERTE
CONVERTE
CONVERTE
CONVERTE
CONVERTE
A FROM Y

H=REGIST
H=-REGIST
H-REGIST
H=REGIST
H=-REGIST
H=-REGIST

ONE INTO

Y K

IONALLY TO Y
TOR SCAN COM
TOR SCAN COM
TOR SCAN COM
TOR SCAN COM
TOR SCAN COM

ER
ER

R REGISTER X
R REGISTER K
R REGISTER K
R REGISTER K
R REGISTER K

ER
ER
ER
ER
ER
ER

Ts
Is
Ty
Iy
Iy
I

BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
3LOCK

A

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

LOGICAL LEFT SHIFT Ay
LOGICAL LEFT SHIFT A CIRCULAR,

DIGITAL SCAN
DIGITAL SCAN
DIGITAL SCAN
DIGITAL SCAN
DIGITAL SCAN

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

MAND
MAND
MAND
MAND
MAND

FROM
FROM
FROM
FROM
FROM

> > > >

DRUM COMMAND REGISTER FROM A

FROM
FROM
FROM
FROM
FROM
FROM

Ns
N
Ny
Ny
N
N

> r>>>>r>

OUTPUT DISTRIBUTOR MULTIPLE~QUTPUT

REGISTER FROM
REGISTER FROM
REGISTER FROM
REGISTER FROM
REGISTER FROM

SELFECTOR D COMMAND REGISTER
CONTROLLER SELECTOR D COMMAND REGISTER
SELECTOR D COMMAND REGISTER
CONTROLLER SELECTOR D COMMAND REGISTER

FUNCTION

> > > >

OUTPUT DISTRIBUTOR TIMED~CONTACT FUNCTION
X=LOCATION FROM Y

ZERO INTO A

K P

LACES
K PLACEs

LOGICAL LEFT SHIFT DOUBLEs K PLACES
MINUS ONE INTO A

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
MOVE

Q FROM A
SCANNER
SCANNER
SCANNER
SCANNER COMMA
SCANNER COMMA
TIME COUNTER
TIME COUNTER
TIME
TIME
A TO Q

COMMA

MULTIPLY BY Y
NEGATE A

110

COMMAND
COMMAND

ND REGI

ND
ND
K
K

REGI
REGI

COUNTER K
COUNTER K

REGISTER
REGISTER

STER FROM
FROM
FROM
FROM

FROM

STER
STER

> P> > > >

HONMNNUUVWLWLUONWWLWRNDNDNDNDWLWND N

NN N
- e »
w W W

(A%
-
w

293

293

243

NOP
NOR
OFA

PRH

RCV

RDD
RDD

SAI
SAI
SAI
SBA
SBA
sBD
SBD
SBO
SCA
SCD
SEL
SEL
SLA
SLD
SLH
SLH
SLH
SLH
SLH
SLH
SLH
SLH
sSPB
SPJ
SQA
SRA
SRD
SSA
STA
STO
STX
suB
TYP
TYP
XAQ
XEC

~

LR (DD

I1sK
IsK

i TsK

IsK
TsK
TsK
IsK
15K

NOARAARARR

SsK
SeK

K

SsK
SsK
Sk
SsK

AR ONHAR

IsK
IsK
IsK
I1sK
TsK
IsK
IsK
IsK
Y X

LD << << RAKR
-
>

<

2504000
2610040
2510007
2500010
2500011
2511010
2511017
2401040
2300000
2500012
2500006
2500007
2511410
2511417
2511510
2511517
2511610
2511617
2511710
2511717
2510051
2500024
2510144
2510244
2510444
2511044
2512044
2500002
2500003
2500023
2510046
2400200
2400400
2500014
2500015
2500016
24020C0
2404000
2402100
2404100
2504112
2400040
2401100
2500C00
2500001
2410000
2411000
2510410
2510417
2510510
2510517
2510610
2510617
2510710
2510717
0700000
3740000
2401000
2400000
2400100
2500025
0300000
2700000
1700000
£200000
2500004
2500005
2504005
3400000

ooNR X2)

=z

1s1
291
12
292
193
292
le&
294

TZuphLN=

Ms O
NsO

My O
NsO
Ms O
NsO

CO X200

1s1

12
2s2
1s3
293
1s4
294
0»C

o O

20000

o]

NO OPERATION

NORMALIZES

TURN
TURN
TURN
TURN
TURN
OR Q
OR A

PUNCH
PUNCH
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

SELECT AUTOMATIC INTERUPT GROUP
SELECT AUTOMATIC INTERUPT GROUP
SELECT AUTOMATIC INTERUPT GROUP

OFF
OFF
OFF
OFF
OFF
AND

FAST ACCESS
PERIPHERALS
PERIPHERALS
PRINTERS ON
PRINTERS ON
A INTO As K

INTO Y
PERMIT AUTOMATIC INTERUPT

ON
ON
ON
ON
ON
ON

BUFFER S

BUFFER §

H-REGISTER 1
H-REGISTER I
H-REGISTER 1
H-REGISTER 1
H-REGISTER I
H=-REGISTER I
H-REGISTER 1
H-REGISTER 1

K PLACES MAXIMUM

DEVICES

ON BUFFER S
ON BUFFER S
H-REGISTER 1
H-REGISTER 1
PLACES

s PRINTER
s» PRINTER
s PRINTER
s PRINTER
s PRINTER
s PRINTER
s PRINTER
s PRINTER

RARAARARRARR

DIGITAL CLOCK INTO A
CONSOLE SWITCHES

CONVERTER
CONVERTER
CONVERTER
CONVERTER
CONVERTER
ON BUFFFR

INTO
INTO
INTO
INTO
INTO

RARARARR

121

ON RUFFER S
DIGITAL INPUT
FAST ACCESS DEVICE

SHIFT A INTO BUFFER Ss K PLACES
SHIFT A INTO BUFFER Ss K PLACES

SHIFT BUFFER
SHIFT BUFFER
GHIFT BUFFER
SHIFT DUFFER
SURTRACT ONF

INTO A

> > > >

RARAR

S INTO As K PLACES
S INTO As K PLACES

S INTO AQ DOUBLES
S INTO AQ DOUBLES

FROM A

SHIFT RIGHT CIRCULAR As K PLACES

SHIFT

RIGHT CIRCULAR DOUBLEs K PLACES

SELECT DEVICE ON BUFFER S
SELECT DEVICE ON BUFFER S
SHIFT LEFT As K PLACE
SHIFT LEFT DOUBLEs K
T H~REGISTER I»
T H=-REGISTER I
T H=-REGISTER 1I»
T H-REGISTER I

SELEC
SELEC
SELEC
SELEC
SELEC
SELEC
SELEC
SELEC
STORE
STORE
SHIFT
SHIFT
SHIFT

STORE X—=LOCATION AT Y

T H-
T H=

REGISTER Iy
REGISTER Iy

T H-REGISTER I

T H=-
P AT X AND BRANCH UNCONDITIONALLY TO Y
P AT X2 AND JUMP UNCONDITIONALLY TO Y

REGISTER I»

Q RIGHT INTO Ay
RIGHT As K PLAC
RIGHT DOUBLEs K PLACES
SET STALL ALARM
STORE A AT Y

STORE OPERAND ADDRESS AT Y

SUBTRACT Y FROM A
TYPE ON BUFFER S
TYPE ON BUFFER S
EXCHANGE A AND Q
EXECUTE THE INSTRUCTION AT Y

111

S
PLACES
PRINTER
PRINTER
PRINTER
PRINTER
PRINTER
PRINTER
PRINTER
PRINTER

RARAARRARAR

K PLACES
ES

K PLACES
K PLACEsS

+ +

NN NN

N
-

3

[V
-
w

293
293
243
293
293
243

293
243
243

NN LN RN

PROGRAMMING
MANUAL

GE412

PROGRAMMING
MANUAL

GE412

APPENDIX E. OPERATION CODES IN ORDER BY OCTAL

- Execution
Symbols Octal Description Time
LDA ¥ 0000000 © LOAD A FROM Y 2
ADD Y 0100000 0 ADD Y TO A 2
sSuB v 0200000 0 SUBTRACT Y FROM A 2
STA Y 0300000 0 STORE A AT Y 2
BXL KsoX 0400000 030 BRANCH ON X LESS THAN K 3
BXH KX 0500000 050 BRANCH ON X EQUAL TO OR GREATER THAN K 3
LDX YsX 0600000 030 LOAD X=LOCATION FROM Y 3
SPB YsX 070G000 040 STORE P AT X AND BRANCH UNCONDITIONALLY TO Y 2
DLD Y 1000000 © DOUBLE=~LENGTH LOAD FROM Y 3
DAD Y 1100000 © DOUBLE=LENGTH ADD Y 3
Dsu v 1200000 0 DOUBLE~LENGTH SUBTRACT Y 3
DST Y 1300000 0 DOUBLE~LENGTH STORE AT Y 3
INX KsX 1400000 040 INCREMENT X BY K 3
MPY vy 1500000 © MULTIPLY BY Y 13-18
DVvD Y 1600000 0O DIVIDE BY Y 25,28
STX YsX 1700000 040 STORE X-LOCATION AT Y 3
EXT Y 2000000 o EXTRACT FROM A INTO Y 2
ERA v 2100000 © EXCLUSIVE OR INTO A FROM Y 2
ANA ¥ 2200000 0 AND Y TO A 2
ORY Y 2300000 0 OR A INTO Y 2
SRA K 2400000 0 SHIFT RIGHT As K PLACES 2+
SCA 2400040 0 SHIFT RIGHT CIRCULAR As K PLACES 2+
SRD K 2400100 0 SHIFT RIGHT DOUBLEs K PLACES 2+
SAB SsK 2400200 M0 SHIFT A INTO BUFFER Sy K PLACES 2+
ABQ SsK 2400300 NyO SHIFT A INTO BUFFER S AND INTO Qs K PLACES 2+
SAB SsK 2400400 NsO SHIFT A INTO BUFFER Sy K PLACES 2+
ABQ SsK 2400500 M0 SHIFT A INTO BUFFER S AND INTO Qs K PLACES 2+
SQA K 2401000 0 SHIFT Q@ RIGHT INTO A, K PLACES 2+
0QA K 2401040 0 CR Q AND A INTO Ay K PLACES 2+
SCD K 2401100 0 SHIFT RIGHT CIRCULAR DOUBLEs K PLACES 2+
SBA SsK 2402000 Ms0 SHIFT BUFFER S INTO As K PLACES 2+
SBD SsK 2402100 MsO SHIFT BUFFER S INTO AQ DOUBLEs ¥ PLACES 2+
SBA SsK 2404000 N»O0 SHIFT BUFFER S INTO As K PLACES 2+
SBD SsK 2404100 NsO SHIFT BUFFER S INTO AQ DOUBLEs K PLACES 2+
SLA K 2410000 0 SHIFT LEFT As K PLACES 2+
NOR k 2410040 0 NORMALIZEs K PLACES MAXIMUM 2+
LLA K 2410100 © LOGICAL LEFT SHIFT As K PLACES 2+
LLC K 2410300 0 LOGICAL LEFT SHIFT A CIRCULARs K PLACES 2+
SLD x 2411000 0 SHIFT LEFT DOUBLEs K PLACES 2+
DNO K 2411040 0 DOUBLE-LENGTH NORMALIZEs K PLACES MAXIMUM 2+
LLD K 2411100 © LOGICAL LEFT SHIFT DOUBLEjs K PLACES 2+
SEL s 2500000 N SELECT DEVICE ON BUFFER § 2
SEL S 2500001 M SELECT DEVICE ON BUFFER S 2
RDD s 2500002 N READ ON BUFFER s 2
ROD s 2500003 M READ ON BUFFER S 2
TYP S 2500004 N TYPE ON BUFFER S 2
TYP s 2500005 M TYPE ON BUFFER S 2
PCH s 2500006 N PUNCH ON BUFFER § 2
PCH s 2500007 M PUNCH ON BUFFER s 2
OFF s 2500010 N TURN OFF PERIPHERALS ON BUFFER § 2
OFF s 2500011 M TURN OFF PERIPHERALS ON BUFFER § 2
PAI 2500012 PERMIT AUTOMATIC INTERUPT 2
TAl1 2500013 INHIBIT AUTOMATIC INTERUPT 2
SAI K 2500014 1 SELECT AUTOMATIC INTERUPT GROUP K 2
SAT K 2500015 2 SELECT AUTOMATIC INTERUPT GROUP K 2
SAT K 2500016 3 SELECT AUTOMATIC INTERUPT GROUP K 2

112

LTC
LTC
LTC
LTC
RDG
RCS
SSA
LDC
LCs
LCs
LCs
LCs
NOP
LAG
Lbz
LQA
XAQ
MAQ
LDoO
ADO
CHsS
LMo
S$BO
CPL
NEG
OFA
LDT
RFA
RCL
LAC
LCv
LDs
LSC
LDM
RCv
LAC
LCvy
LDs
LSC
RCv
LAC
LCv
LDs
LSC
SLH
SLH
RCv
SLH
SLH
SLH
SLH
SLH
SLH
LAC
LCv
LDs
LSC
OFH
OFH
RCv
LDH
LDH
LDH
LDOH
LDH
LDH
PRH
PRH
PRH

RRR R

v v Rw Rw/

RAARARRARAARARARRRN RRARARXR

Fa
- w
R R

IsK
TsK
IsK
IsK

15K

AR RARRR

IsN
TsN
TsN
IsN
TN
IsN
IsK
IsK
IsK

2500017
2500020
2500021
2500022
2500023
2500024
2500025
2500026
2501000
2501101
2501200
2501300
2504000
2504001
2504002
2504004
2504005
2504006
2504022
2504032
2504040
2504102
2504112
2504512
2504532
2510007
2510012
2510046
2510051
2510100
2510101
2510102
2510103
2510112
2510144
2510200
2510201
2510202
2510203
2510244
2510400
2510401
2510402
2510403
2510410
2510417
2510444
2510510
2510517
2510610
2510617
2510710
2510717
2511000
2511001
2511002
2511003
2511010
2511017
2511044
2511110
2511117
2511210
2511217
2511310
2511317
2511410
2511417
2511510

PON =

W N O

NN =

WWNN

1s1
291

152
242

293
1e4
294

PN

1s1
251
192
292
193
293
1,1
2y1
192

LOAD
LOAD
LOAD
LOAD
READ
READ

TIME COUNTER K

TIME COUNTER K

TIME COUNTER K

TIME COUNTER K

DIGITAL INPUT

CONSOLE SWITCHES INTO A

SET STALL ALARM

LOAD

LOAD CONTROLLER SELECTOR D COMMAND REGISTER
LOAD CONTROLLER SELECTOR D COMMAND REGISTER
LOAD CONTROLLER SELECTOR D COMMAND REGISTER
LOAD CONTROLLER SELECTOR D COMMAND REGISTER

DRUM COMMAND REGISTER FROM A

NO OPERATION

LOAD
LOAD
LOAD

A FROM Q
ZERO INTO A
Q FROM A

EXCHANGE A AND Q

MOVE
LOAD

A TO Q
ONE INTO A

ADD ONE TO A
CHANGE SIGN OF A

LOAD

MINUS ONE INTO A

SUBTRACT ONE FROM A
COMPLEMENT A

NEGATE A

TURN OFF FAST ACCESS DEVICES

LOAD OUTPUT DISTRIBUTOR TIMED-CONTACT FUNCTION
READ FAST ACCESS DEVICE

READ DIGITAL CLOCK INTO A

LOAD ACCUMULATOR SCAN COMMAND REGISTER
LOAD CONVERTER REGISTER K FROM A

LOAD DIGITAL SCAN COMMAND REGISTER FROM
LOAD SCANNER COMMAND REGISTER FROM A
LOAD OUTPUT DISTRIBUTOR MULTIPLE=-OQUTPUT
READ CONVERTER K INTO A

LOAD ACCUMULATOR SCAN COMMAND REGISTER
LOAD CONVERTER REGISTER K FROM A

LOAD DIGITAL SCAN COMMAND REGISTER FROM
LOAD SCANNER COMMAND REGISTER FROM A
READ CONVERTER K INTO A

LOAD ACCUMULATOR SCAN COMMAND REGISTER
LOAD CONVERTER REGISTER K FROM A

LOAD DIGITAL SCAN COMMAND REGISTER FROM
LOAD SCANNER COMMAND REGISTER FROM A
SELECT H=REGISTER Is PRINTER K

SELECT H~REGISTER Is PRINTER K

READ CONVERTER K INTO A

SELECT H-REGISTER Is PRINTER K

SELECT H-REGISTER Is PRINTER K

SELECT H-~REGISTER Is PRINTER K

SELECT H-REGISTER Is PRINTER K

SELECT H~REGISTER Is PRINTER K

SELECT H-REGISTER Is PRINTER K

LOAD
LOAD
LOAD
LOAD
TURN
TURN
READ
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

ACCUMULATOR SCAN COMMAND REGISTER
CONVERTER REGISTER K FROM A
DIGITAL SCAN COMMAND REGISTER FROM
SCANNER COMMAND REGISTER FROM A
OFF PRINTERS ON H-REGISTER I
OFF PRINTERS ON H-REGISTER I
CONVERTER K INTO A
H~REGISTER 1Is BLOCK Ns FROM
H-REGISTER Iy BLOCK Ns FROM
H-REGISTER Is BLOCK Ny FROM
H=REGISTER 1Is BLOCK Ns FROM
H-REGISTER I, BLOCK Ny FROM
H~REGISTER Iy BLOCK Ny FROM

P> >»>r>

PRINT ON H-REGISTER Is PRINTER K
PRINT ON H-REGISTER Is PRINTER K
PRINT ON H-REGISTER Is PRINTER K

113

MNP NNNONNNNNNNNNNNONNNNNND NN N N
-
w

A 243

FUNCTION 2

A 2s3
243

2s3
293
243
293
243
243
293
293
233
243

PROGRAMMING
MANUAL

GE412

PROGRAMMING
MANUAL

GE412

PRH
PRH
PRH
PRH
PRH
LCv
LDs
LSC
RCV
LAC
BEV
BPL
BZE
BOV
BPC
BPD
BBP
BBP
BBR
BBR
BCL
BTC
BTC
BTC
BTC
BRD
BDC
BCO
BSC
BEA
BRH
BDT
BsC
BCO
BRH
BDM
BCS
BEV
BPL
BZE
BOvV
BPC
BPD
BBP
BBP
BBR
BBR
BCL
BTC
BTC
BTC
BTC
BRD
BDC
BCO
BSC
BEA
BRH
BODT
BSC
BCO
BRH
BDM
BCS
BRU
STO
XEC
JMpP
SPJY

1sK

1sK
1sK
IsK

CLCLOLCLOARARARRR

JsS
JeS
JsS
JeS

JsK
JsK
JeK
JoK

JsK
JeK
Js 1
JiK
JsK
Jsl

JeDsE

[N SO S SR S S

JsS
JsS
JsS
JeS

JsK
JK
JsK
JsK

JoK
JsK
Jol
JsK
JoK
Jel

JeDE

< << <=

2511517
2511610
2511617
2511710
2511717
2512001
2512002
2512003
2512044
2513000
2514000
2514001
2514002
2514003
2514004
2514005
2514006
2514007
2514010
2514011
2514012
2514013
2514014
2514015
2514016
2514017
2514020
2514021
2514022
2514023
2514024
2514027
2514031
2514032
2514033
2514034
2515000
2516000
2516001
2516002
2516003
2516004
2516005
2516006
2516007
2516010
2516011
2516012
2516013
2516014
2516015
2516016
2516017
2516020
2516021
2516022
2516023
2516024
2516027
2516031
2516032
2516033
2516034
2517307
2600000
2700000
3400000
3700000
3740000

292
193
293
le4
294

[AU AU R

e
. - -
Z=ZTZ

1M

192
19040

NN NN

2sN
29M
29N
29M

291
292
293
294

291
251
21
292
292
292

29397

o NeNoReNe)

PRINT ON
PRINT ON
PRINT ON
PRINT ON
PRINT ON

LOAD CONVERTER REGISTER K FROM

H-REGISTER Is PRINTER
H-REGISTER Is PRINTER
H-REGISTER 14 PRINTER
H=REGISTER Is PRINTER
H-REGISTER Is PRINTER

PARAARAARRR

LOAD DIGITAL SCAN COMMAND REGISTER FROM A
LOAD SCANNER COMMAND REGISTER FROM A

READ CONVERTER K INTO A

LOAD ACCUMULATOR SCAN COMMAND REGISTER

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRABCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRABCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

ON
UN

EVEN

PLUS

ZERO

OVERFLOW

PARITY ERRORs CORE

PARITY ERRORs DRUM

BUFFER S PARITY ERROR
BUFFER S PARITY ERROR
BUFFER S READY

BUFFER S READY

CLOCK VALID

TIME COUNTER OVERFLOW

TIME COUNTER OVERFLOW
TIME COUNTER OVERFLOW

TIME COUNTER OVERFLOW
DEMAND

DRUM OPERATION COMPLETE
CONVERTER K OVERFLOW
SCANNER OPERATION COMPLETE
ECHO ALARM

H-REGISTER I READY

TIMED CONTACT COMPLETE
SCANNER OPERATION COMPLETE
CONVERTER K OVERFLOW
H-REGISTER I READY
MULTIPLE OUTPUT COMPLETE
CONTROLLER SELECTORs MINIMUM OPERANDS
EVEN

PLUS

ZERO

OVERFLOW

PARITY ERRORs CORE

PARITY ERRORs DRUM

BUFFER S PARITY ERROR
BUFFER S PARITY ERROR
BUFFER S READY

BUFFER S READY

CLOCK VALID

TIME COUNTER OVERFLOW
TIME COUNTER OVERFLOW

TIME COUNTER OVERFLOW

TIME COUNTER OVERFLOW
DEMAND

DRUM OPERATION COMPLETE
CONVERTER K OVERFLOW
SCANNER OPERATION COMPLETE
ECHO ALARM

H=-REGISTER 1 READY

TIMED CONTACT COMPLETE
SCANNER OPERATION COMPLETE
CONVERTER K OVERFLOW
H=-REGISTER I READY
MULTIPLE OUTPUT COMPLETE
CONTROLLER SELECTORs MAXIMUM OPERANDS
CONDITIONALLY

STORE OPERAND ADDRESS AT Y

EXECUTE THE INSTRUCTION AT Y

JUMP UNCONDITIONALLY TO Y

STORE P AT X2 AND JUMP UNCONDITIONALLY TO Y

114

243
243
243
293
243
23
243
243
293
243

NN

NHHNHNNNNNNNNNNNNNNNNNNNNI\JNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

APPENDIX F. INSTRUCTION FORMATS

Notes
1. For BXH and BXL, K must appear in 2's complement form, e.g. BXH with K=5 and X=2 is 0557773.
2. Octal representation of bits 14-19 for SAI is K+13.
3. Octal representation of bits S, N, K, I depend upon specific command.
4. D is limited to a single bit in positions 9-13 for selection of one of up to 5 scanners or DDA/DFS
devices.
5. Model 412B systems only.
6. In model 412B systems, K will be increased by 4096 if bit 7 is a 1 in INX commands.
In model 412B systems, Y is limited to values less than 8191 for all instructions except SPB. If the
SPB instruction is in a location greater than 8191, Y will be increased by 8192 when the instruction is
executed.
o]l 123|455 |67 |8s|o9o|wo]lu]i2|w]|14]15]16]17]18]19
Memory Access Opce::;?on X 7Y
t } 1 t $ t t { } } t } t t t } }
X-Location Opzration X 1,6 K
ode
} } t t } } m—
< < < 4 = <
Right Shift 1 o1 o0 o0 b (o3 I Y N N O N W Y I K
Z = |l]| <] <] <
+ —t t = —t—t—
< <! 3|4
Left Shift 1 0 1 0o 0 X 1|10 o f 0 f 5 g K
< <1 3] 5
1 i i i z 1 1 1 'l
T T T T] U 1 U
Operation Sub-Code
Special Device 1 o1 o 1 X o ofo]o 2.
3
1 } L i l L L L $ L +
T T T |l T Ll T T 1 1 T
Controller-Selector 1 o1 o 1 X o oJo]1]o D (s)fffag:
t t } } t } —t +—t—
Operation
Data Transfer 1 0 1 0 1 X 0 1 Sub-Code
t } t } } } t——t+—+—1 +—t ——
T T T T T 4D J
External Effect 1 0 1 0 1 X 1 0 Operation Sub-Code
3 3
: b : : AR I S
Operation Sub-Code
Conditional Branch 1 o1 o 1 X 1 1 J¢f0
3
1] 1 1 1] [l [l K’ s' Il Il
T T T T L] L} T L} 1 T
Controller-Selector Branch | 1 0 | 1t 0 1 X 1 1| Jj1}]o D o o o E
: — : : — —t
oy
516 K Branch 11111 | Y
Ay
1 1 1 1 L 1 1 1 1 | i 1 1 1 1 1

PROGRAMMING
MANUAL

GE412
115

wi
T
S
=
S
a
g
Gz
a.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	xBack

