MULTICS PL/I
Honeywell REFERENCE MANUAL

SERIES 60 (LEVEL 68)

SOFTWARE

Honeywell

SERIES 60 (LEVEL 68)

SUBJECT:

Reference Manual for the Multics PL/I Language.

SPECIAL INSTRUCTIGNS:

MULTICS PL/I
REFERENCE MANUAL

This manual furnishes expanded detail and examples of Multics PL/1I language

usage as defined in the Multics

The reader should also refer to the four manuals that compose the
Programmer's Manual (MPM) listed below:

Reference Guide

Commands and Active Functions

Subroutines
Subsystem Writers' Guide

SOFTWARE SUPPORTED:

Multics Software Release 4.0

DATE:

June

1976

ORDER NUMBER:

AME3,

Rev.

0

Order No.
Order No.
Order No.
Order No.

AGA1
AGa2
AG9?
AK92

PL/I Language Manual, Order No. AGYl.

Multics

—

PREFACE

This manual is a combined tutorial and reference manual for Multics PL{I.
The manual 1is intended for a programmer who is experienced in the use of high
level languages, such as FORTRAN, COBOL, or ALGOL.

The sections of this manual are organized to reflect the main features of
the language. After the introductory section, three aspects of data values are
considered: values as abstractions, values in storage, and the conversion of
values from one storage type to another. The sections that cover this material
are:

II. Values
III. Value Storage
Iv. Value Conversion

Next, the overall syntax of a program is considered, ranging from small
constructs (such as the identifier) to intermediate constructs (the statements)
to large constructs (the blocks). Against this background, the declaration of
identifiers and the management of storage is described. The sections are:

V. Program Structure
VI. Declaration
VII. Storage Management

Next, the features that are used to compute and store values are considered.
The sections are:

VIII. Expressions
IX. Operations
X. Value Assignment

Next, the features that are used to determine the sequence 1in which progran
statements are executed are described. The sections are:

XI. Program Flow

XII. Procedure Invocation

XIII. Condition Handling

Next, the statements for input/output are described. The sections are:

XIvV. Stream Input/Output
XV. Record Input/Output

Finally, the aspects of Multics that are of special interest to the PL/I
programmer are described. The section is:

XVI. PL/I in the Multics System

The manual has an’appendix that gives the syntax of all of the statements of
PL/I, except the “default” statement.

(:) 1976, Honeywell Information Systems Inc. File No.: 1L23

iii AM83

CONTENTS

Section I Introduction. o« .o
Language Features of PL/I .« e
Data Description. . . .
Program Structure .
Computation
Flow of Control . . .
Input/Output.
Applications of PL/I .
Scientific Programming
Business Programming.
System Programming. .
Data
Program Structure. .
Efficiency
Program Validity
Examples of Invalid Programs.

® ¢ e 4 e o e o o o o
® o o 4 e o o e o o

® o o 6 o o e o o o o o

Interpretation of Invalid Progra
Suggestions for the Study of PL/I.

Introductory Texts.
Contents of this Manual . .

Section II Values. . . . « e e e e
Arithmetic Values o« o
String Values.
Address Values . . .
Statement Values. .
Locator Values. . .
File Values
Area Vadlues.
Aggregate Values . .
Classification of Value

e o o o o o
e o o o o o
e o o o o o o

€ o o o o o e o o

.
.
.
.
.
.
.
.
.

Section III Value Storage
Storage Units.
Storage Types. « « « . .
Arithmetic Storage . . .
Arithmetic Data Types
Mode Attribute .
Scale Attribute.
Base Attribute . . .
Precision Attribute. . .
Abbreviations and Defaults

e o o o o o o

.
.
.
.
.
.
.

e o o o o o o o

e o o o o o

.

Examples of Arithmetic Storage Units
Fixed Decimal Storage Units.

Fixed Binary Storage Units
Float Binary Storage Units

Float Decimal Storage Units.

Complex Storage Units.

Guidelines for Using Arithmetic Data

Choice of Mode
Choice of Scale and Base .
Choice of Precision. . . .

iv

e o o o o o
e o e o o o

e o o e o o o o o o
@ o e e o o ¢+ 4 e e e e o

¢ ¢ o o o e o o

e o o o o e o o o o

¢ & o e 2 4+ 4 4 4 e 6 6 6 6 e e 4 e o
e o o o o

® e e e e & 4 4 e 4 ¢ 0 6 6 4 e 6 e o o

@ o e o e o o e e e o 6 4 e o e o

e o o o o o o
e o o o o o

e o o o

e e ¢ o o o
o 6 o o o e o o o o
¢ ¢ o 4 o 4 o o e
e e o o o o o

e e e o o

e e o o o o e o o o
¢ e o o o o

4 o e o o o o o

o o o o

¢ o o o o o
« o e o o o
4 o 6 e o 6 o 6 6 o 4 o o o
e o o o o o
e o o (D e o o o s o 6 o o e o 6 o o o o
¢ o o o o o ¢ o 6 o o o o o
e 6 6 o 4 6 o 6 6 6 6 o 4 s o e e

e o o o o o o

o

n
3

o

e T e G G TGN
1
WOWROOOIVIVINIELZWNDN =

]
—_
o

-
[}
—
N o

1-12

—_
]

—_

n

1-13

NN N NN NN
[|

[}
VMEEEFWWN 2

L N R AN B B |
UOnNEETWLWWN -0

wwwwwwwwwwwt?:wwwwwwww N NN
_ e 0 O M M e L OO NOVVTUITUVNTEN -

AM83

—

CONTENTS (cont)

Ordinary String Storage.
Ordinary String Data Types. .
String-type Attribute. . .
Variability Attribute. . . .
Abbreviations and Defaults .

Examples of Ordinary String Storag

Character Storage Units. . .

S

e o o o o o o o

Bit Storage Units. . . .
Guidelines for Using Ordlnary
TYPES: « o« o o o o s o o o
Pictured String Storage.
Pictured Data Types . . « . .
Picture Attribute.
Classification of Indicators.
Classification of Pictures.
Mode Attribute
Abbreviations and Defaults . .
Interpreting Pictured Storage . .
Character-string Interpretation o
Storage . . e e e e s e e
Related Character Types . . .
Character-string Assignments.
Character-string Fetches. . .
Arithmetic Interpretation of Pict
Storage . . « e
Related Arithmetic Data Types
Arithmetic Assignments. . . .
Arithmetic Fetches.
Fixed-point Pictures. . . .
No-suppression Digit Indlcator .
Decimal-point Indicator.
Sign Indicators. . . « « « o« .«
Dollar Indicator . . « ¢« « « .« .
Zero-suppression Digit Indicators
Drifting-sign Digit Indicators
Drifting-dollar Digit Indicator.
Insertion-character Indicators
Arithmetic Decimal-point Indicato
Scale-factor Indicator
Floating-point Pictures . . .
Floating-point Indicators.
Scale-factor Indicator . .
Complex Pictures. . .« « « .+ &
Non-numeric Pictures.
Non-numeric Indicators . .
Guidelines for Pictured Storage
Address Storage. .« .+ .« « + + o o &
Address Attributes., . . .
Example of Address Storage
Area Storage « e e .« . e
“area Attrlbute. o« e e e
Default Rule.
Example of Area Storage .
Aggregate Storage.
Structures.
Level Numbers. . . .
es

t

(¥

e o o 6 Se o Me o o o o

2]
o

a
r

r

e o o o o

e ¢ o o o o e o o

o« e o o o o
.

e o ¢ e o o o

Structure Storage Typ
Examples . .« « « o+ &
Arrays . e « e e e
dlmen51on Attribute.
Abbreviations and Defaults

.
-
.
.
. .
.

.

-ooooaooocooco.oo;aooao'joonnoaooocoooﬁoooo’-gcocooccto

e o e o o e e e o e e 4 & 6 e e & e o+ o o o

e o o o o e o e o e o o o

Do o o o o o o o
ot

e o o o D e o o a4 a s o e e WMo o o o o o o o

e o o e 6 e e 6 o o e 6 o e e 6 e ¢ o o o e o o & o o o 4 2 06 o o o o o ¢ (De o o o Me o o o o o o o o

[

@ 6 e 6 e 6 e e e e 6 e e e e e e o o o+ 4 6 e o 6 o6 o e o o o o

o o o o o

e o o o o o o o

e o o o o o

e e e 0 S e e o

@ e o o 4 6 e e e e 4 6 & e o o e o e e o & o & o 2 s s o

¢ o e o

e o o o o o e o o o o e o o e e o o o o e o o ¢ (Do o o o o o o o o

e o o o o o

e o o o o o o o

o e o o o o o o o

e o e o e e o o o ¢ ¢ o e o o o o o

¢ o o o o o o o

e o o o o o o o o o

AM83

CONTENTS (cont)

Array Storage Types. .
Examples + + ¢« « « «
Guidelines for Aggregates
Alignment.
Alignment Attribute
Abbreviations and Defaults. . .
Storage Layout Rules for Multiecs. .
Storage Layout for Scalars . . .
Storage Layout for Structures. .
Storage Layout for Arrays. . . .

e o o o

o e s o o

o o o o o
o e o o o o
o e o o o o
¢ o o o o o
e« e o o o o
e o o o o o

e o o o o o

e o o o
e o o
o« o o
e o o o
o« o o o

Section IV Value Conversion. . .« + « o o « o « &
Contexts that Force Conversion . .
General Contexts.
Assignment Statements. . . .
Assignment-Like Constructs .
Arguments and Results. . . .
Built-In Functions and Expres
Special Contexts. .« « « + .« .
Integer Targets.
Character-String Targets .
Bit-String Targets
Locator Targets.

.
.
o

e o o o o o o

ion

« o o o

....m....‘
. e o o o o e e o
.

Data Type Conversion . .
Arithmetic Targets. . .«
Examples of Arithmetic to Arithmeti

.

.......o.....
e e o o o o o e o o o

e o e e o e e e e o o e e o

e o o o

.
.
.
.
.
.
.
.
.
.
.
.
. . . .
.

Conversion. e e
Examples of Strlnv to Arlthmetlc

Conversion. « « o« « o o o o o o o 4 e s s

Character-String Targets. . . « « ¢« « « « o &

Examples of Character-String to
Character-String Conversion+ &
Examples of Bit-String to Character-String
Conversion. « + « + & . e e e e e e
Examples of Arithmetic to Character String
Conversion., . + + « .« .+
Float Decimal Values. .
Fixed Decimal Values. .
Float Binary Values .
Fixed Binary Values .
Complex Values. . . .
Bit-String Targets. . . .
Examples of Bit-String to Blt
Conversion. . . « « .+ =
Examples of Character- Strlng to Blt Strlng
Conversion. + « « « + « « & e e e e e s
Examples of Arithmetic to Bit-String
Conversion., . .+ .« .+ .« .
Fixed Binary Values .
Fixed Decimal Values.
Float Values. . . .
Complex Values. . .
Locator Targets
Aggregate Type Conversion. . . .
Example of Aggregate Conversion
Conditions for Conversions
“size” and ‘fixedoverflow’ Condition.
“overflow’ and ‘underflow’ Conditions
“conversion’ Condition.
‘stringsize” Condition.
Guidelines for Conversion Conditions.

.

.

o o o o o
e o o o o
e o o o o o o

e o o o

. .
. .
. .
. .
. .
-3tri

n

.ﬁ-.....
¢ Qe o o o o

. . . .

o« o o

e o o 4 e
o o e o o o

e e o o o o o o

e o o o e o o

.
.
.
.
.
.
.
.

e e e o 4 o o o o o o o o
o ¢ o e o o o o o o e o o o
e e o o o o o o o o o o o o
e o o o 4 o o 4 o o e s e o

vi

e e o o e e e o o o

e o o o o e e o

e o & o e o o o e e e o o o

Page

3-56
3-57
3-60
3-61
3-62
3-63
3-66
3-66

ww
11
~N O
- o

= Eg e 3 50 I O — i — N — i g g g
[|
O N OO LTI EEFEFWWNN - -

= =
[}
—_
[oNe]

4-12
4-12

4-13
4-13
4-13
41l
4-15
4-15
4-16

4-16
417

417
4-17
4-17
4-18
4-18
4-18
4-18
4-19
4-20
4-20
421
421
4-22
4-22

AM83

CONTENTS (cont)

Section V

Program Syntax. e e e e e e e e e e s
Characters « « « s o o s s o s s o s
Lexemes. « « +
Identifiers « « « « o« o o o o

Keyword vs. Name . « .« « « =«
Guidelines for Identifiers
Literal Constants . . « « + =«
Punctuators
Operators . . « . &
Pictures. . « « + =«
Isubs « ¢ « « o o+
“g4include’ Macro. .
Macro Interpretati
Macro Example.
Guidelines for Macros.
Separators. « « .+ « ¢ o+ &
Separation Rules.
Classification of Lexemes

Statements . . . e e e e

Statement Preflx o e e e
Condition Prefixes . .
Label Prefixes . . .« =

Statement Body.

Classification of Stateme

Program Structures
GroOUPS. + » o s o o o s o .
Blocks. « « .+ « o s .
Summary of the Program Structures

External Procedures and the Program.

.

. . . .

.
.
B
.
.
10

e o o e o o o o o

e o o o o o

n .

.

e o o o o o o o o o o o

e o o e e o o o o o

e« o o o o o o o
e e e o o o o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Section VI Declarations. . . e e e e s e s s s

Establishment of Declaratlons . .

Example of the Establishment of Declaratlons

Containment and Immediate Containmen
‘declare’ Statement . . .« « « « o &
Simple Declarations.
Structure Declarations . . « .«
Short Forms of Declarations. .
Abbreviations and Defaults. .
Combining Declarations. . . .
Factoring Declaratlons. .« o s
Guidelines for ‘declare’ Statemen
Label PrefiXes. « « o« « o o o o o
Label Constant Names . . « « + &
Entry Constant Names
Format Constant Names.
Contextual and Implicit Declarations
Example of Contextual and
Implicit Declarations
Guidelines for Contextual and
Implicit Declarations
Special Facilities for Declaration.
“like” Attribute
Form of the “like’ Attribute.

Interpretation of the “like“ Attribute

e o ¢ o o o e o o o o o o e e o o

e o o e o o o o o o

.

t

.

.
.
.
.
.
.
.
.

.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

-ao.aaoo

Examples of the 11ke Attribute.

Guidelines for the “like” Attribute

‘default” Statement. . . .

e o e o o o o o o o o o o

e« o o o o o

e o o o o o

.

.

e o o o o o o o o o o o o

.

.

.

Examples of the default Statement
Guidelines for the ‘default’ Statement.

Resolution of Name References.

vii

.

« o o o o o

e o o o o o

.
.
-

e o o o e e o o

.

-

.

e @ o o e o o o o o o o o

e o & o o o e o o

e o o o o o

e« o o o o o o o e o o o o o+ o

e o o e o o o o

e o o o o o e o o o o

)

[
03

[¢]

(G EC K K6 RG RO RO R RO RO RO R
! T R L L L
OWoooO—IIJoou Fwwmhn -
nNOo

[GEGRC G G EG; RG,R6, RO RO RV)
[T R N I A | !

PR N G W S S e

VWO OFWWWW

(O RO RO R RO RO
(T T T T R R | [}
N

o X XerXeoaXerXeaXerXerNe Yo No No Ne NN ep N o R o))
]
B0 0OV ELEFWN = =

[T T I |
-
o o

[o)¥e Yo Yo Vo Neo Neo NeorNeorNo Neop) (o))
I

—_—) - - e))) D e D
VTUTEWWWNIN =2 = -

AM83

Section VII

CONTENTS (cont)

Page
Example of the Resolution of Name References. . 6-16
Name-Sequence Set for a Declaration 6-16
Name-Sequence for a Name Reference. o e e e 6-17

Applicability of Declarations . . .

Resolution Rules. : . 6-18

Attributes . . . e v e e e e e e e e e e 6-20
Complete Attrlbute Sets C e e e e e e e e e e 6-20
Variable Names . . + ¢« « v v v v v v v o o . 6-21
Constant Names . . . e e e e e e e e 6-22
Built-in Function Names. v e e e e e e . 6-23
Condition Names. . . e e e e e e e e e e 6-23
Generic Names. . . e e e e . . 6-23
Classification of Attrlbutes . . e e e e e 6-24

Storage Management. o . e
Preliminary Examples of Storage Management o« . e
Fundamentals of Storage Management

Storage Regions ¢ v v v v v v .
Region Diagrams« .
Storage lanagement Operations
Storage Management Example. .
Management Class . « « « ¢ o .+ .
Form of the Management Class.
Abbreviations and Defaults. .
Default Rules.
Usage Categories . .
Variables . . .
Constants . . .
Scopes . . .
Internal Names. e e e e
External Names. . .
Guidelines for the ocope . . .
Correspondence Between Names and otorage .
Storage ClasSes. « « o « ¢ o o o o o 4 e e e e o
Automatic Variables . . . « + ¢« « .« . .
Variable Expressions in Attributes for
“automatic’ Variables e
Saving Variable Extents for 'automatic'
Variables . . « v ¢« ¢ ¢ ¢« ¢ ¢ ¢ o e e e .
Static Variables. e e
Varlable Expre551ons 1n Attrlbutes for
“static” Variables. . . « « ¢ « « 4 4 4 . .
Controlled Variables. . ¢« v ¢ ¢« o o « o« o « o &
“allocate” and “free’ Statements for
‘controlled” Variables
Stacking Controlled Variables
Varlable Expre331ons in Attributes for
“controlled’ Variables. . . .
Saving Variable Extents for 'controlled

e o o o o o
| L |

¢ e e o o
L}

e e e o o o
[}

e e o o o o o o
}

-
.
e e o e o o o o

e o o o & o o o
-

o« o o
.
e e o o o
.
.
¢« o o o o
LR I I I |

.
.

@ o o e o o ¢ & & e o e o
.
0
.

.
.
.
.
.
. .
.

e o o e o o o
.

1
M b A A a0V EWN -

] 1
-
Vel o 0o o N3 (o)) OOUMTEEFFLWWWLWWNON—~AO0O0

]
RN

1
—_ -

N RN EXIEEES B RN P RS IR B P P P T PR I A I G I I R G O e g e
|
-—

1
N

,

Variables . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o e e e o W 7-20
Parameter Variables« e e e T7-20
Varlable Expre331ons in Attrlbutes for
‘parameter” Variables . . . « +« « + « + . 7-20
Based Variables .« ¢« ¢« ¢« ¢« ¢ ¢« ¢ o o o o o o o T-20
Reference in the 'based' Attribute 7-22
'allocate and “free” Statements
for ‘based” Variables o e e e T7-22

Variable Expressions in Attrlbutes

Sav1ng of Variable Extents
‘refer” Option e
Equivalenced Based Varlables .« .

o« e e s 7-23
o« e e 7-23
. T7-24
o« . 7-25

e o o o
.
.

viii AM83

CONTENTS (cont)

Simple Based Variables.« .
String Overlay Based Variables. .
Partial Based Variables . . .+ . =
Defined Variables« v e
Variable Expre331ons 1n Attributes fo
‘defined’ Variables . . .
Saving Variable Extents for defined'
Variables
Uses of Defined Varlables.
Simple Defining . . .
String Overlay Definlng
Isub Defining . . .
Guidelines for the Storage Cl
Automatic Variables. . .
Static Variables
Controlled Variables . .
Parameter Variables. .
Based Variables.
Defined Variables. . . .
initial” Attribute.

o o o o

e S e o o o

. . .

e o o o o o o o

oooocoo

.
.

....m.....
e o o o o o o o
e e o o o o o o o o o o

Initialization Syntax .« o
Use of “initial’ Attribute
Capacity of Storage.
Storage Limits.
Significant Uses of Storage o« o
Conditions for Storage Management.
‘storage’ Condition
“area’ Condition. . . . « « « &

e o o o o
.
e o o o o o o
e o o e e o o o o o o o o o

e e o o o o o o o

« o o o o o o

.
.
.
.
.
.
.
.
.
.
)
.
.
.
.
.
.
.
.
.
.

e o o o o o
e o o o o o
e o o o o o

Section VIII Expressions e e e e e e
General Remarks on Expre331ons . e
Nested Expressions. . . . ¢« « .+ &
Parenthesized Expressions
Storage Types of Expressions. . .
Aggregate Expressions . . .
Ordering and Optimizing the Evalu
of Expressions . . . « « ¢« .+ . .
Variable References. . . .« « « ¢« « + & .
Variable Reference Types. . . « .« .
Major Name in a Variable Reference . . .

e o o o
e o o o o o
e o o o o o

ti

.
.
.
.
.
.
.
.
.

Simple Variable References. . . .« . .
Form of Simple Variable References
Interpretation of Simple Variable

References. e e
Examples of Slmple Variable References .

Subscripted Variable References
Form of Subscripted Variable References.
Interpretation of Subscripted Variable

ReferencesS. « « o« o s o o o o o s o o
Examples of Subscripted Variable
References. . . « e .
Structure-Qualified Varlable References
Form of Structure-Qualified Variable
References. . « e e e
Interpretation of Structure Quallfled
Variable References . . .
Examples of Structure- Qualifled Varlable
References. . . . e e

Locator-Qualified Varlable References . . s

Form of a Locator-Qualified Variable
Reference . « « « o o o s s o o s

ix

e e o o o o o« o o o

e o o o o o o o o

e o o o o o

e o o o

e o o o o o o o o e o o o o e o o o

e o o o o o o

e o o o o o

e o o o o

Page

7-26
T7=27
7-28
7-29

7=-29

7-30
7-30
7-30
7-31
7-31
7-32
7-32
7-33
7-33
7-34
7-34
7-34
7-35
7-35
7-36
7-37
7-38
7-38

OO NI

LI L L I | [}
Fww
[@}Ne 2Ne)

1
e %) cooOII3U UIWWN = =

-_ - O

0o 0o 0o 0o Co OO
1]

—_

[ee] co o Co C:O 0o 0o 0o GO
-
—_

] 1
—_ -
()Y Ul W

(o]
1

—_

3

8-20
8-21

AM83

CONTENTS (cont)

Associated Storage Types for Locator

Values. . . « e e e e e e e e
Interpretation of Locator Quallfied
Variable References

Examples of Locator- Qualifled Variable
References. . . . ¢« v v v v v 4 « o o
Shortened Forms of References
Subscript-List Deletion.
Examples of Subscript List Deletlon .
Guidelines for Subscript List Deletion
Name Deletion. . . . e v e e e e e e s
Examples of Name Deletlon v e e e
Guidelines for Name Deletion. . .
Locator Qualifier Deletion
Guidelines for Locator-Qualifier
Deletion + « ¢ ¢ ¢ v ¢« ¢« ¢« o o o« .
Cost of Variable References
Constant Literals. o v e e e

e o o e o o o o

o o o

.
.
.

.
.

Arithmetic Constant therals. o e e e
Form of Arithmetic Constant Literals
Interpretation of Arithmetic Constant

Literals. e . .
Examples of Arithmetic Constant L1terals .
Guidelines for Arithmetic Constant

Literals. « « « & ¢ o« o o o o o o o o o

String Constant Literals. . « « « ¢« ¢« « « « &
Form of String Constant Literals
Interpretation of String Constant Literals
Examples of String Constant Literals . . .
Escape Conventions for Characters. .

Attributes for Constant Literals. . . .

Constant References. . . + « « ¢ o « o « &

Statement Constant References
Form of Statement Constant References
Interpretation of Statement Constant

References. e e e e
Examples of Statement Constant References.
External “entry’ Constant References . . .

File Constant References. . « « ¢« « « « « + &
Form of File Constant References
Examples of File Constant References . . .

Attributes for Constant Names

Programmed Function References
Form of Programmed Function References. . . .
Interpretation of Programmed Function

References . + « o« v o o o« o o o o o o &

Examples of Programmed Function References

Built-in Function References
Form of Built-in Function References. . .
Interpretation of Built-in Function

References . . « v v ¢ ¢« o ¢ o o« o o o« o o
Examples of Built-in Function References. . .
Differences Between Built-in and Programmed
Function References. . . « + « o « « o« « &

Operator EXpressions . .« « « « o« « o o « o
Form of Operator Expressions. . . . « . .
Interpretation of Operator Expressions. .

e o o o
.

e o o o o

.
. .
.
.

o o o o
o o e o

Operator Priority Rules« . .
Examples of Operator Expressions. . . .

o o o o o
o o o o e

e o o o o o ¢ o o

e o o o

o o o o

e o o o o o

Page

8-21
8-22

8-23
8-25
8-25
8-26
8-26
8-26
8-27
8-28
8-28

8-28
8-29
8-29
8-29
8-30

8-31
8-31

8-32
8-32
8-32
8-33
8-33
8-34
3-34
8-35
8-35
8-35

8-356
8-36
8-37
8-38
86-38
8-38
8-39
8-39
8-39

8-40
8-40
842
8-43

8-43
3-4y4

8-45
8-16
8-u7
8-47
8-48
8-49

AM83

CONTENTS (cont)

Operations. « « « o« o o o o e e e e e s
General Remarks. « « « + «
Argument Evaluation . . .
Non-Standard Operations .
Conventions for Examples.
Arithmetic Operations. . . =«
Conventions for Definition
Arguments.
Common Data Attributes
Elementary Operations . . .
Prefix Sign Operators. . .
Infix Sign Operators . . .
Multiplication Operator. .
Division Operator.
Exponentiation Operator. .
‘add’, ‘subtract’, ‘multiply’
and 'div1de Functions .
Comparison Operations . . .

Section IX

S

.
e o o o o o e o

e o o o o o o o
e o o o o o o o o

e o o o o o

.
.
.
.
.
.
.
’
.
.

h

Relational Operators for Arit metic

Values. « e e e o e e e s
‘min’ and ‘max’ Functions. .
Trunoating Functions. . e e e e
‘trunc’, ‘floor’, and ‘ceil’
‘round” Function
‘mod” Function« . . .
Sign-Manipulation Functions .
'abs’ JFunction

e
un

F
“sign’ Function.
Complex Arithmetic Funotions. .

‘real’ and “imag’ Functions for
i

‘complex’ Function
‘conjg’ Function
Mathematical Operations. . . .
Conventions for Definitions .
Arguments. . « ¢« + + o o
ResultsS. « v o o o o« o o &
Evaluation . « « « « « «
Functions Related to Exponent
exp Funection
log Functlon s e e e e e s
“log10” and “log2” Functions
“sqrt” Function.
Trigonometric Functions o« e e e
“sin’, ‘cos’, and “tan’ Functio

iatio

“sind’, ‘cosd’, and “tand’ Functi

Ordinary “atan’ Function . . .
Ordinary “atand’ Function. .
Cartesian “atan’ Function. . .
Cartesian “atand’ Function . .
Hyperbolic Functions. « e e e e e
sinh’, ‘cosh’, and “tanh’ Fun
atanh Funotion o o e .
Functions for Statistical Ana1y51

[¢]

“erf’ and “erfc’ Functions .

String Operations. . « « « « « &
Conventions for Definitions .
Arguments. + .« .« + .+ o .
Concatenate Operations. .
Concatenate Operator .
“copy’ Function. . . .
Substring Operations. . .

..........cr.....cr;-_v,.....5.......

e« o o o o o o

xi

e o o o o o o o

o o o o o o

i
t

r
o

.
.
.
.

1o
.

.
.
.
.
.
.
.
.
.

it

e o o e o o o

e o e o o o o

.
.

.

.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

e o o o o o

e e o o o o

ions

e o o o e e o o o o6 o o o o o o

e o o o o o

e o o o o o

o o o o o o

e o o o o o o o

e o o o o

e o o o o o o o 6 o o & o o o o o

e o o o o o o o

e o o o

e o o o o o o

e o o o o

e e o 6 o o o e o & e a4 o e o o o o

o« o o o o

e o e o o o o e o o o o

e o o o e o o o o o o

e o o o o o o o o

e e o o 4 e o & e o o o o o o

Page

| I I I B |
W OOJOOUITLTEFWWWMN N =

O WOV WVWOYVOOOOVOOOOO

OO
]

—_

[oNe)

LI L L L I I | !
[T) J R G S S S S S iy
OCOoOWVWVWVWYWOENINIoOOEWNN =0

[VoXVe XVo XVo XVo RV RV Vo Ve RVo EVo RVo Vo Vo Vo RNe RNe RN RN R e R e
!

1
NN
N = =

9-22
9-23
9-24
9-24
9-25
9-25
9-26
9-26
9-27
9-28
9-28
9-29
9-29
9-30
9-30
9-30
9-31
9-32
9-32
9-32
9-33

AM83

CONTENTS (cont)

“substr” Function. . « +
“index” Function
‘before” Function. . « « « v o o « . . .
‘after” Function . . + « + & & .«
“decat” Function . . + & ¢ 4 4
Relational, Length, and Reverse Operations.
Relatlonal Operators for String Values
lenpth Function. e e e e e e e e e
‘reverse’ Function . . .«
Bit-String Operations
Loglcal Operators.
‘bool” Function. . . .
Character Strlng Operations
“search’ Function. . . .
‘verify’ Function. . . .
“translate’ Function . .
Character-Set Operations. .
‘collate’ Function . . .
“low” Function
‘high” Function.
String Functions Defined E1l
Address and Area Operations. .
General Address Functions .

o« o

e o o o o e o

.
.
.
.
.
.
.
.
.
.
.
.

@ o o o o e & e o e o o o o o

Sew .
. .
S

e S e ¢ o e o o 4 o o 4 4 e o o o

e ¢ D e o e o ¢ o o 6 s o o o o
e o o (Do o o o o o ¢ o o o 6 0 4 6 o o @

ere
r

Relational Operations for Address Value
‘addr’ Function.
‘null’ Function.« . .
‘nullo’ Function o« o o

Implementatlon-Dependent Address Functions.
‘baseptr” Function “ e

Nonstandard “ptr” and ‘addrel’ Functions
‘baseno’ and ‘rel’ Functions .

Area Function
‘empty” Function

Array Operations . . « ¢« ¢« « « « « .
Extent Functlons. . e e e e e
“lbound’ and hbound Functions

. « e e

‘dimension’ Function
Special Array Functions
“sum’ and ‘prod’ Function. .
“dot” Function
Conversion Operations.
Fundamental Conver51on Functlon
“convert’ Function . . +
Conver51on to Arithmetic Data Types
‘real’ Functlon for Conversion .
‘complex’ Function for Conversion
“fixed” Function
“float’ Function . . .
‘binary’ Function.
“decimal’ Function .
‘precision’ Function
Conver31on to String Data Types
character Function
‘bit” Function
Conversion between Locative Data T
Standard “pointer” Function.
‘offset’ Function.
Spe01al Conver31on Functions .
“string’ Function.
“unspec’ Function.
‘valid” Function

e o o e o o o o
e o e o o o o

.
.
.
.
.
.
.
.
.
.
. e
.
.
.
.

e o o o o o o

.

@ 6 e o & 4 6 o e ¢ & e e 4 6 o o o o

.

o o o o

.
.
.
.

e o o o o o

¢« o o o o

pes

e e e &L e o e e 4 o
@ 6 o 4 o e o o e o o o 6 6 ¢ 6 4 4 s 4 e e e e e e o

e o ¢ o o o o o

.
.
.
.
.

e o o o o 4 Me o o o o o o o

e o o o o e o o o o o

xii

@ 6 6 o 6 6 4 e s e e e e o o 4 4 6 6 e e o 8 6 e e 6 e e e e

e o o o o e o o o o o o

e ¢ o o o o

e« o o o o

@ e o o e & e o o o e+ e e o

@ e & e e o o e o e o o 4 o e o 6 o o o o

Page

9-33
9-34
9-34
9-35
9-36
9-37
9-38
9-40
9-40
9-141
9-141
9-42
9-43
9-43
9-43
9-4
9-45
9-45
9-47
9-147
9-47
9-48
9-48
9-48
9-49
9-50
9-50
9-51
9-51
9-52
9-52
9-53
9-53
9-53
9-53
9-514
9-54
9-55
9-55
9-56
9-56
9-57
9-57
9-59
9-59
9-60
9-60
9-61
9-62
9-63
9-61
9-64
9-64
9-65
9-66
9-66
9-66
9-66
9-67
9-68
9-69

AM83

Section X

Section XI

CONTENTS (cont)

Guidelines for Conversion Functions
System Variable Operations . .
System Counter Functlons.
and pageno

lineno
“time”

and ‘date’

.

Functions.

Functions.

Storage Management Functions. .

allocation

‘size’

Resource Reservation Function

‘stac”’

“on

’,
onloc

’
4
,
.
4
4
4

Value Assignment

Function. .

Function .

oncode”
onkey’ Function .
onfield’ Function
onchar”’
onfile’

Function .
Function.

and
Function.

.

Function.

Condition Functions.

.

“onsource’

.
.
.
.
.
.

.

Functlo

e o o o o o o o

.

Examples of A331gnment Statements.
Arithmetic Assignment Statements.
String Assignment Statements.

Address Assignment Statements

Area Assignment Statements.

Aggregate Assignment Statements

Form of Assignment Statements.

Targets .

.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

e o o o o o o o o

Interpretation of A331gnment Statements
Special Restrictions.

Overlapping String Targets

Area Assignments

Order of Interpretation

Pseudo Varlables BT

‘real”’ and
. p
substr
4 . ’,
string
’unspec'
4

pageno
onchar”’

’,

Program Flow. .

.

.

.

.

-

.

.
.
.
.
.

“imag”’ Pseudo Varlables

“onsource’

* e . .

Sequential Execution

“if’ Statement

Test in an

Consequences in an

. c . . .

Pseudo- Varlables

‘if”’ Statement

Non-iterative “do’
Consequence . . .

“if’ Statement as a Consequence
Dangling

“do’ Group .
Iterative
Iterative

Index of a “do’

‘else’

. . . .

.

as a Pseudo-Variable
Pseudo-Variable.
Pseudo-Variable.
Pseudo Varlable.
and

Clause.

.

“do” with Index
Single-Value Control
‘repeat’
FORTRAN Control. .

Control .

Non-iterative “do”. .

‘goto”’
“goto”
‘goto”’

“local”’

Statement . . .

Attribute.

xiii

.

Group.

.

.

e o e o o o

.

‘do” without Index.

e o ¢ o o o

e o o o

.

e« o o o

if”’ Statement
Group as a

.

e« o o e o e o o

with a Constant Reference.
with a Non-Constant Referen

.

.

oOoooooco-ccoco

00‘.0000000000000

oooooooaoao-ooooooo

e o o o o

e o o e o o o

.

e o o o o e o @ o o o o o & o+ o o

e o o @ o o o e o o o o o o o o o o

.

e o o o o

e e o e o o o e o e o o e e o

e 6 © o o o @ o e e o o o o o+ o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

e o o o o o

e o o o o o o e e e o o e o o o+ o

e o o o o o o & o o o

e o o o o o o o o o

e o ¢ o o

e o o o o

e o o o o o o o o o o o o o o o o

o o e o o e o o o o o o o

e o o o o o o

e« o o o o

e o o o o

e o o o o & o o o o

e o 6 o o o e 6 e e o o o o 2 o o

€ o e o6 o o6 s 6 e o o o o o o o o

e o o o o

1
R I R B B R B e s e
OO OUT EWW NN

o WO WOV WVWWOVOOOOOOOWO
1

1

|
—_

_ e

]
PRGNV N Bt Kea X)) EEWN =

AM83

CONTENTS (cont)

Restriction on the Destination

Block Execution. e e : : : : : : . }}:18
Guidelines for Flow of Control Ce e e e e e e 11-19
11-19
11-20

Avoidance of Unnecessary ‘goto” Statements. . .
Layout Conventions. . . . « + « v v v « v o . .

Section XII Procedure Invocation. . . « v ¢ + v v v 4 v v 4 . . . 12-1
Arguments and Parameters + 12-2
Argument Classification “ e e e e 12-3
Examples of Argument Class1flcat10n. « e e 12-4
Examples of Connected and Unconnected
Arguments 0 0 0 0 v e e e e e 12-5
Argument Interpretation« e e 12-6
Examples of Argument Interpretatlon. .« e e e 12-6

Effect of an “*° Extent
Example of an “#° Extent
Guldellnes for Arguments. . e e .
‘call” Statement«
Agreement of Call w1th Entry P01nt .
Execution of ‘call” Statements. .

.
.
.
.
.

e o o o o

o o o o o o
—))
NN M

L L I I |
(6]

Interpret Entry Reference. 12-10
Interpret Arguments. . . . N . 12-10
Activate Procedure . e e e e e e e . 12-10
Execute Procedure. « e e e . 12-11

Exit from Procedure. e e 12-11
Examples of “call” Statements . . . + « .« « « . 12-12
Function References. « e e 12-14
Agreement of Reference w1th Entry P01nt o« e e e 12-14
Interpretation of Function References 12-15
Exit from Procedure. . . « « ¢ ¢« « o « o+ o« 12-15

Fetch Result . . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢« « o« o & 12-16
Example of a Function Reference 12-16
Procedures . . . + « ¢« ¢« « « + .« . . 12-17

‘procedure” Statement
Prefix . . . e v e e e e e e e e e
Parameter Llst s e e s e e e e e e e
‘returns’ Attribute.+ . .+ . . .

Example of the ‘returns’ Attribute. . . . 12-20

recur51ve Keyword. .« . « « « + + . 12-20
‘entry’ Statement e e s . . 12-21
Example of a Multiple- Entry Procedure . 12-21
‘return’ Statement. . . . < .« + & .+ 12-22
‘end” Statement . . . ¢ ¢ ¢ 4 4 4 e e e e s . 12-22
Entry References . .« « ¢« « ¢ ¢« ¢ o o o o o o o o 12-22
Constant Entry References . . . v e e 12-23
Entry Points in the Same External Procedure 12-23

Entry Points in Another External Procedure . 12-23

Entry Points Outside the Program 12-24
‘options” Attribute 4 . . . 12-24

Variable Entry References . . e e e e e e 12-25
Example of an Entry Varlable Reference . e e 12-25
Function Entry Reference. . . . v e e e e s 12-26
Example of an Entry Function Reference « e 12-26
Generic Entry Names e e e e 12=27
Example of a Generic Entry Name. . . e . 12-27
Recursive Procedure Execution. 12-28
Example of Recursion without Arpuments . e e 12-29
Example of Recursion with an Argument. . 12-31
Example of Chained Recursion . . . « ¢« « ¢« « « « & 12-32
Recursive Program. . « « ¢« « « o o« o o o« « & o o« 12-33
General Recursion . . « « + « ¢ ¢« o ¢ o« « o o 12-34

xiv AM83

Section XIII

Section XIV

CONTENTS (cont)

General Recursion
Activation Indexes . .
Pointers o s

Example of P01nters . .
Parent Designators . . « « « « « « &
Activation Variable References. .

. . .

.
.
. .
.

.
.
.

e« o o o

. . .

.
.
.
.
.

.

Statement Address Constant References

Setting the Parent Designator. . . .
‘procedure’ Block . . .« . . .
‘begin’ Block .« « « « + + +
‘format’ Statement.
‘on’ Unit « « « 4 o 4 e e .

‘goto” Statement

e« o o o o
.

Condition Handling.
Principal Features of Condltlon Handllng
Conditions « o . o e e s e

Language- Deflned Condltlons . ..
Computational Conditions . . .
Storage Conditions
Termination Conditions . . .
Input/Output Conditions. . . .

Programmer-Defined «Conditions . .

Condition References . . « e e e e s
Language-Defined Condltlon References .
Programmer-Defined Condition References

Declaration of Condition Names

Enabling and Disabling Conditions. .

Condition Prefixes. . . . « « « «

Scope of a Condition Prefix

Default Enabling and Disabling. .

Example of Enabling and Disabling .

Establishing and Reverting ‘on” Units.
“on Statement. e e e e s e e e e s
‘revert® Statement. . . o« .

Occurrence and Signalling of Condltlons.
Occurrenue of Conditions.

e o o o o

e e o o o o

o o o o o

e o o o o o o o

‘signal” Statement. . o e s e
Determining the Established “on’ Unit
‘on” Unit. . . e e e e e e e e

Default 'on’ Units. v v v v e e
‘on’ Condition Built-in Functions . .
Example of Condition Handling. e
Guidelines for Condition Handling .« e s
Debugging o v e
Enabllng Condltlons for Debugglng. .

‘on‘ Units for Debugging
Controlling Exceptional Conditions. . .

e o o e e o o o o o

Controlling File Communication Condltlons

Controlling Error Conditions . . .

Input Data Validation . .- .
Computational Checks.

Resource Management

Large Independent Systems .

General Conditions . . .« « « « « « o+ &
‘error” Condition
‘finish’ Condition. . . « « « « .« .

o o o o o o

e o o & o o o o

Stream Input/Output ¢ « « ¢« «+ «
Stream Data Sets « e
Control Characters in PL/I and Multlcs.

Xv

o o o o o

e o o o o o

e« o o o o

.

.
.
.

o o o o o

e o o o o o o

.

.

e o o o o o

.
.
.
.
.

e o o & o o o

e o o o o

o o o o o

e o o o o

Page

12-34
12-35
12-36
12-36
12-37
12-38
12-39
12-39
12-39
12-10
12-140
12-41
12-142

| LI |
OO0 EFWNHNDND = -

—
Wwwwwwwww
[T A R N N N I N N N A N A N B |

WWwwwwwwwwwuww

[}
MDN-2O0OO

1 LI I B |
[\ P S S S S e e e e g

G G O U G GO G GO QR QRO G GRS T RIS G QI G QT QI W S S O G O g i e i
COWVWWOVWWOVWOVWOVWWOOMWOONINIUTUT&EEWN

J
n

& EE WWWLWWWWWLWWLWLWWLWWLWWWWWLWWWLWWWW
1

—_
11
N — =

AM83

CONTENTS (cont)

Input Streams . . . ¢« . « + « v 4
Output Streams. « . .
Pseudo-Streams.
Multics Files . .
Stream Input/Output Files
File-State Blocks . .
File References
File Attachment.
Attaching a Switch. . .
Attach Description .
Opening a Switch. . . .
Opening a File. . . .
Stream Input/Output Operatlons
Openlng and Closing Files. . . .
open Statement . .
‘close’ Statement . . .
Default Files . . .
Input/Output Statements. . .
‘get’ Statement
‘put” Statement
‘format” Statement.

¢ o o o o o e o

e e o o o o o

e o o o o e o o o
e o o o o o

e o o o
.
e o o o o e o o

e o o o o

e e e o o e o 4 e o o o o o
.

e o o o o
.

e e o o e o o o o

e o o o o o o

.
e o o o

Data-Directed Input/Output .
Examples of Data-Directed Input/Output
Principles and Exceptions
Guidelines for Data- Dlrected Input/Output

List-Directed Input/Output -
Example of List-Directed Input/Output . .
Compound List Items « « . « . . .
Pseudo-Variable List Items.
Principles and Exceptions . .

Guidelines for List-Directed Input/Output

Edit-Directed Input/Output o e e e
Examples of Edit-Directed Input/Output. .
Data Format Items . . . e v e e e e

String Format Items.
String Input.
String Output

Fixed-Point Format Items . . .
Fixed-Point Input
Fixed-Point Output.

Floating-Point Format Items. .
Floating-Point Input. .
Floating-Point Output

Complex Format Items .
Complex Input
Complex Output. . . .

Picture Format Items .
Fixed-Point Pictures. .« o
Floating-Point Pictures . .
Character Pictures.

Control Format Items.

‘x‘° Format Item.

‘column’ Format Item . .

‘skip® Format Item . . .

“line‘ Format Item . . .

‘page’ Format Item . .

e o e o o o o e o
e o e o o e o o o o

e & e o o e e e e o e o o

e o o o o
e o o e o o o e o o e o e o

e o o ¢ o o o
e o o e o o o o
e o o 4 o e e o o o o o o o o
o o o o o o o

e o e e o ¢ o o

u

Format Lists. . . . e e e . .
Remote Format Items. . . . e
Iterated Format Lists.
End-Around Repetitions . .

Guidelines for Edit-Directed Input/o tput

xvi

e o e o o o o o

¢ o o o o o

e o o o o o

e o o o e o o

e o o o o e o

e o o e o o o

Page

14-3

14-3

14-1

14-4

14-4

14-5

14-6

14=7

14-7

14=7

14-8

14-8

14-8

14-9

14-10
1411
14-12
14-13
14-13
1414
14-15
14-16
14-16
14-19
14-20
14-21
14-21
1422
14-24
14-25
14-25
14-26
14-26
14-28
14-29
14-30
14-30
14-30
14-31
14-32
14-32
14-33
14-33
14-34
14-3Y
14-35
14-35
14-36
14-38
14-38
14-39
14-39
14-10
14-140
14-140
14-40
14-141
14-141
14-141
14-141
1442

AM83

—~

Section XV
Y

Section XVI
N\

Record Input/Output

CONTENTS (cont)

String Option. . . . o
Conditions for Stream Input/Output
‘conversion’ Condition.
‘endfile’ Condition
‘endpage ” Condition
‘name‘ Condition. . . « « « &
‘transmit‘ Condition.
“‘undefinedfile’ Condition . .

e o o o o o o o

o o o o o

Record Data Sets . . . e e e e s
Organization of Record Data Sets
Multics Files

Record Files
File-State Blocks . .
File References . .

File Attachment.
Attaching a Switch. .
Attach Description .
Opening a Switch. .
Opening a File.
Record Input/Output Operations .
Opening and Closing Files. . .
‘open’ Statement.
File Descriptions. . . .
‘close” Statement
Keyed Input/Output Operations.
Keyed write Statement .
Keyed ‘read’ Statement.
Keyed “delete’ Statement. . . .
Keyed ‘rewrite” Statement
Example of Keyed Input/Output . .
Sequential Input/Output Operations .
Sequential write Statement. .
Sequential ‘read” Statement . . .
Sequential ‘delete’ Statement .
Sequential ‘rewrite’ Statement.

e o o o o o o
.
e e o o o e o o o o e o o o

o o o o o o o

.

-
e o o o o

Example of Sequential Input/Output

Based Input/Output Operations o« o

Based Input . . .
Examples of Based Input. .
Based Output. . . .

Omission of the from' Option.
‘locate’ Statement
Special Features . . .« o
Environment (Strinavalue) e e e e
Record Stream I/0 Module. . .
Record Output for Printing. .
Conditions for Record Input/Output
endfile Condition . .
‘key” Condition « « « .+ &
‘record” Condition. . . + .+ « . .
“transmit’ Condition.
“undefinedfile” Condition

PL/I in the Multics System. . « . .+ &

Storage System . . .« o o 4 o .
Names
Component Names e e e e e e e
Entry Point Names . . . « « .+ .«
Reference Names . . . « « « « « =«

xvii

e o o o o o o o

e o o o o o o o o o o o o o

e o o e o o o

e o o o e o o o e o e o e o o

e o o o o o o e o o o o o o o

e o o e o o o

e o o o o o o o o o o

e o o o o

e o o o o

e o o o 6 o o & o o o o o o o o e o o o o o o

e o o o o e o o

e o o o o o

e o o e o o o

e o o o o o o o

e o o o o o o o

o o o o o o

e o o o e o o o o o o

e o o o o o o o

e o o6 o6 o o e o o o o6 o o o e o o o e o s o s o

e o o o o o o o o o

e o o o o

e o o o o o o o o o o o e o s o o e o o o o o o o

e o o o o o o o o o

e o o o 6 o o o o6 o o o o o o o o o o o o o o o e o o o o o o o

AM83

Appendix A

Multiecs PL/I Compiler.

Linking.

Initialization and Allocation of Variéb
Attaching Files.

CONTENTS (cont)

Entry Names
Object Segment. .
Listing Segment . .

.

Search Mechanism.
Hidden Dangers of Dynamic Link
Binding . . .

i

I/0 Switeh.
Standard Switches.

io_call Command . .

I/0 Modules
vfile_ I/0 Module.
tty_ I/0 Module . . .
syn_ I/0 Module
record_stream_ I/0 Module.

e o o o o
-
e o o o o o

.
e o o o o o o
-

Running A PL/I Program in Multics

Guide

Preliminary Remarks.

Entering an External Procedure.
Compiling an External Procedure
pl1 Command.
Executing a Program
Program Termination.
Debugging a Program . .
probe Command. .
trace Command.

.

. .

o o o

. .

.

ng

¢ ¢ e o e o o

.

e o o o e o o o

Measuring a Program’s Performances.
Example of Running PL/I.

Entering the Example.

Compiling the Example

Executing the Program

Program Listing

Source Listing
Symbol Listing.

Error Listing

Map Listing

to PL/I Statements. . . .

Syntax Notation
Basic Constructs
List of Items. . e
Choice of Items.
Optional Items . e e
Recursive Diagrams . . .
Parts of a Statement. .
Specific Conventions. . .

e o o o e o

e o o o o o o

.
o o

Allocate « v ¢ ¢ v v v v e e e e
Assign . . .+ . o o ¢ 4 0 e .. .
Begin. « « & 4« ¢ v ¢ 4 4 e e e e
Call v v v v 4 v e e e e e e e e
Clos€. v v v v ¢ o v o o « o

Declare.
Default. . e
Delete

Do

End.
Entry. .
Format

Free .

o o o o o
.
.

e o o e o o e o
.
.

e o o o o
-
-
-

e o o o o

xviii

.

.

-

e e e o o o o

e o o o o o

¢ e e o o o o e e o 4 e o o o

e« o o o

e e o o e o

e ¢ o e o e e o

¢ o e e o o o o o

e o o o o

e 4 4 4 4 e e 4 6 6 6 4 a4 4 e 4 e e o ¢ e o

e e o ¢ e ¢ o o e e o

e o & e o o o

@ e @ o o 4 4 e 4 ¢ e e o o

e o o o o o

e o o o o

e e o o o

e o o o o

e o o o o o

e o o e o o o o o

e ¢ o o e o o o

Page

[} [}
SRR a0 VOOV ETWW

OV O
[|

—l—\—l—l_l_l_l—_l—l_l—\—l—l—-l—d
DO YOVYONONONOY OO
]

16-12
16-12
16-13
16-14
16-14
16-14
16-15
16-16
16-16
16-17
16-18
16-18
16-19
16-19
16-20
16-21
16-21
16-22
16-22
16-23
16-23

ol oo i i B o o R R i
[}

S 20 VOOENINOON VIV EEZTWWNDND 2 o

N-=0O0O

AM83

(

CONTENTS (cont)

Goto

If v o o o o o o s . e e e e e e e e e e e A-15
Locate « + + « . . e e e e e e e e e A-15
Null « « « o o =« S) . e A-16
ON « o o o o o o o o o o o s s s s e e s s e A-16
Open o e e e e e e s e e e e e e e s . A-17
Procedure€. .+ + o+ s« + = . e e e e e e e e e e A-18
Pute « « o o o o & . . e e e e e e e e e e A-19
Read . e e e e e e e) A-20
RELUPT « o o o o s o s o s s s s s s s . e e e A-21
Revert « e e e T S A-21
Rewrite. O T) A-21
Signal . « « « « e e e e e e e e e e s e e A-22
Write. o o o o o o o o o o o o o e e e e e s e e A=22

TABLES

Table 3-1 Boundary and Length for Scalar Variables. . . . « . = 3-67

xix AM83

SECTION I

INTRODUCTION

PL/I is a general-purpose, high-level programming language. It is designed
for use across the entire spectrum of computer applications, including
scientific, business, and system programming; and it is an alternative to
FORTRAN, COBOL, or assembly language. The complete PL/I language is a large and
complicated language that provides an experienced programmer with unusual power
and flexibility. On the other hand, subsets of PL/I can be selected for
specific application areas, and these subsets are easy to learn and use.

PL/I has a wide range of data types and data structures, and these allow
program data to be organized in a clear and convenient way. The program syntax
and the control statements of PL/I allow programs to be written in a modular,
structured, and easy-to-read style.

Multies PL/I is closely related to a draft standard that is being developed
by the American National Standards Institute and the European Computer
Manufacturers Association. When this manual mentions Standard PL/I, the
reference is to the language described in the Draft Proposed Standard,
Programming Language PL/I, American National Standards Institute Committee X3,
Document BSR X3.53. This manual does not specify all differences between
Multies PL/I and Standard PL/I.

This manual covers all of Multics PL/I. Each feature of the language 1is
explained by an example, and the rules of the language are given in definitions
that are informal but complete.

Most of this section is devoted to a general description of PL/I. The
description begins with a 1listing of the main features of the language and
continues with a consideration of the applications of PL/I. After that, the
fundamental notions of program validity and correctness are defined. Finally,
several publications that are useful in the study of PL/I are cited.

1-1 AM83

LANGUAGE FEATURES OF PL/I

PL/I brings together in a single 1language some of the most successful
features of earlier programming languages. The design of the language was a
major undertaking; it took nearly ten years and involved many separate groups
and committees. The final result is a consensus rather than a unified approach
to programming. The strength of the language is in the great variety of its
features; 1its weakness is in the relation of these features to one another. A
description of the main features of the language follows.

Data Description

In PL/I, a variable is described in terms of the set of values it can
accommodate rather than in terms of the hardware storage it occupies. Consider
the following declarations:

del x fixed decimal(7,2);
decl y character(8);
del z pointer;

Each of the three variables just declared occupies two words of Multics memory;
therefore, from the point of view of the hardware, the variables are very
similar. However, from the point of view of PL/I, each variable is entirely
different from the others. The storage designated by °‘x° accommodates a
fixed-point number with seven decimal digits, two of which occur after the
decimal point. The storage designated by “y’ accommodates a string of eight
ASCII characters. The storage designated by "z’ accommodates the address of a
variable.

The handling of data storage in the manner just described is fundamental to
the nature of high level languages. It makes programs less hardware dependent.
In addition, it allows the compiler to detect some errors in a program (such as
an attempt to take the square root of a program address) and to supply
conversions where they are required (as in the assignment of a fixed-point value
to a floating-point variable). [The more information the data descriptions give,
the more efficiently a compi;gﬁfcan manipulate the data.

PL/I is unusual because of the large number of different storage types that
are available in the language. A variable can be declared in any of the
following ways:

° An arithmetic variable can be declared to accommodate a number with
fixed-point or floating-point scale and binary or decimal base. The
length of the number can range from one digit to many digits, and the
binary point or decimal point can be positioned anywhere in the
number. The number can be complex for use in scientific programming.
Therefore a programmer can choose the representation that suits his
needs.

° A string variable can be declared to accommodate a sequence of ASCII
characters or a sequence of bits. It can be stored as a compact,
fixed-length string or a more flexible varying-length string. In
Multics, a string can be very long; in fact, a book of considerable
size can be stored in a single character-string variable.

° A pictured variable can be used to accommodate a value that can be
interpreted either as a number or a character string, as circumstances
require. The wuse of such variables can greatly simplify the

formatting of input/output.

1-2 AM83

° An address variable or an area variable can be used in performing
operations that formerly could be performed only in assembly language.

° An array variable can be declared to accommodate a sequence of_smaller
variables, all of the same type, that are designated by subscripts.

° A structure variable can be declared to accommodate a sequence of
smaller variables that are not necessarily of the same type and that
are designated by subnames.

Each different kind of data is called a storage type. The large number of
storage types in PL/I is the main cause of the size of the language. For each
storage type, both the range of values and the representation of values must be
defined. For arithmetic and string values, the representation of each value as
a character sequence must be defined, so that the value can be read in, printed
out, or used as a constant in a program. Rules for conversion must be given for
any pair of storage types between which conversion is reasonable. The operators
and builtin functions must be defined to operate on many storage types directly,
without a preliminary conversion of operands.

A programmer who is learning PL/I needs a casual acquaintance with the full
range of storage types. Once the programmer begins to write a specific program,
however, he can concentrate on the storage types required by the program. For
example, a program can be written that reads in some numbers, performs some
computations, and then prints out numbers; such a program requires only
arithmetic storage types. Later, a second version might be written that
produces output suitable for immediate publication; this version would require
character string variables as well as numbers. Still later, the program might
be converted to operate on a permanent data base, and address variables and area
variables would be useful. An advantage of PL/I is that a program can become
more complicated without outgrowing the language.

Program Structure

A PL/I program is a set of one or more external procedures. Each external
procedure is compiled separately; nevertheless, any variable can be shared
between all the external procedures of a program by declaring it “external’.
This arrangement makes it practical to develop a large program as a collection

of separate modules; then, when development is complete, the modules can be used
together.

Each external procedure can contain internal procedures. Internal
procedures can be nested, so that a given procedure can be programmed in terms
of smaller procedures. Each procedure can have its own variables, so that the
data as well as the program can be structured by means of nested procedures.
This feature of PL/I makes it suitable for top-down program design.

Storage management is closely related to the procedure structure of a
program. In most applications, storage management requires little attention
from the programmer. When storage management is not specified for a variable,
the variable is automatically allocated and freed as control enters and leaves
the procedure in which it is declared. Occasionally it is necessary to declare
a variable ‘static’ so that it will remain throughout the Multics process.
hdvanced features for storage management are available for use where progranmed
storage management is necessary.

1-3 AM83

Computation

) T@e computa?ional power of PL/I is provided by the more than one hundred
built-in operatloqs’of the language. Each operation is designated either by an
operator, such as “+°, or a built-in function name, such as ‘log’. The
operations are: 7

o The arithmetic operations, which include the basic arithmetic
operatgrs, the relational operators, and built-in functions for
comparison, truncation, sign-manipulation, and complex arithmetic

° The matpematical operations, which are built-in functions for
exponentiation, logarithms, trigonometry, and statistical analysis

° The string operations, which include operations for putting strings
together, taking them apart, comparing them, searching them, and
ordering them

° The address and area operations, which are used for advanced methods
of storage management and list processing

° The array operations, which are especially for the manipulation of
array variables

° The conversion operations, which can be used to perform any reasonable
conversion between storage types

° The special operations, which are used for details of input/output,
interrupt handling, and the determination of the time and date.

The interpretation of an operation depends on the storage types of its
operands; for example, the ’+° operator is interpreted in one way for
fixed-point decimal operands, in a very different way for complex floating-point
operands, and in yet another way for array operands. It is a fundamental
principle of PL/I that if there is a reasonable interpretation for an operator
with given operands, then the operator is defined for those operands. Thus in
PL/I, as in mathematics, a single operator can have many meanings.

The computation of a value 1is specified by an expression. Another
fundamental principle of PL/I is that an expression can often be used almost
anywhere that makes sense. Thus an expression can be used to specify the number
of elements in an array, the increment of a “do” loop, or an output value.

Flow of Control

Generally, the statements of a program are executed in the order in which
they appear; however, this sequence can be modified by flow-of-control
statements, by procedure invocation, or by the occurrence of conditions. Each
of these methods for modifying the sequence of execution is considered briefly
here.

There are three statements that alter the flow of control of a program.
The ’if’ statement causes conditional execution of a statement or a group of
statements; the syntax of the statement allows the logic of a program to be laid
out in a clear and readable way. The ‘do” statement causes the repeated
execution of a group of statements; three different methods are provided for the
control of the repetition. The “goto’ statement causes unconditional transfer
of control.

1-4 AM83

There are two methods for procedure invocation. A procedure can be invoked
by a ‘call’ statement or a function reference. The latter case is of great
importance, because it allows a procedure to be called in the midst of the
evaluation of an expression and to return a result that 1is wused in the
evaluation of the expression.

PL/I has facilities for handling exceptional conditions. Examples of
conditions are division by zero, reading of an end-of-file, and use of an array
subscript that 1is out of range. In most cases, condition handling can be left
to the built-in mechanisms of PL/I. However, condition handling can be
programmed when necessary; for example, a program can be supplied for execution
when an end-of-file for a file is read. Furthermore, conditions can be disabled
to reduce cost; for example, the subscript range condition can be enabled during
debugging of a program but disabled for production.

Input/Output

There are two separate facilities for input/output in PL/I, stream and
record input/output. Each is surrounded by its own special purpose features, so
the language has many operations in this area.

The facilities for stream input/output are Dbased 1largely on those of
FORTRAN. Stream input/output is intended for dealing with hard copy, such as
cards, listings, and print-outs, rather than permanent storage. Statements with
the ‘list’ option can be used for input/output with a minimum programming
effort. Statements with the ‘edit’ option can be used to lay out and label
values in an elaborate way on the pages of a print-out.

The facilities for record input/output are based largely on those of COBOL.
Record input/output can be used for both hard copy input/output and for
communication with permanent storage. The statements for record input/output
are much simpler than those for stream input/output, so formatting is left to
other language features, such as pictured variables.

APPLICATIONS OF PL/I

The use of PL/I in the three major application areas, scientific, business,
and system programming is considered here.

Scientific Programming

Many of the features of PL/I are derived from two earlier languages for
scientific programming, FORTRAN and Algol; in fact, the development of PL/I
began with an effort to develop a new version of FORTRAN. Therefore, many of
the features of PL/I may be familiar to the programmer with a background in
scientific programming.

1-5 AM83

Most scientific programs can be written using a small subset of PL/I. Such
programs are more readable and compact than the corresponding FORTRAN programs
would be; and, in Multies, they are compiled into programs of comparable
efficiency. The following guidelines specify a scientific subset of PL/I:

1. Data. Use only the following data types for variables:

fixed binary(n)

float binary(n)

complex float binary(n)
character(n)

bit (1)

This eliminates a 1large part of the 1language: decimal numbers,
fractional fixed-point numbers, picture variables, and all of the
noncomnputational variables.

2. Aggregates. Use arrays but not structures. This eliminates the
declaration and resolution of structure names.

3. Storage Management. Use only the following storage classes:

automatic
static
parameter

Since the ‘parameter” attribute takes care of itself, the choice is
really the simple one between the default ‘automatic” and the
occasionally wuseful “static”. This eliminates all programmed storage
management.

L, Expressions. Use only scalar expressions, and use only simple or
subscripted references. This eliminates many unfamiliar features of
PL/I.

5. Operations. Use only the following operations:

arithmetic operations
mathematical operations
array operations

This eliminates more than half of the operations.

6. Condition Handling. Allow conditions to be handled by default except
for the ’‘endfile’ condition. This eliminates most uses of the ‘on’
statement.

7. Input/Qutput. Use stream input/output for most input/output. Use the
“list” option for easy programming or the ‘edit’ option when the
format and 1layout 1is elaborate. Use record input/output only for
permanent storage of large arrays as Multics files.

The subset of PL/I just described is a language not much larger than FORTRAN IV.
The advantage of PL/I is that a particular application program can grow in
complexity without exceeding the limits of the full PL/I language. If features
not included in the subset are needed for increasing the efficiency,
reliability, capacity, or interactiveness of a program, the necessary features
are available as part of full PL/I.

1-6 AM83

Business Programming

PL/I is very different from COBOL, especially in 1its program structure,
computational forms, flow of control, and procedure invocation. Furthermore,
certain facilities of COBOL have no counterpart in PL/I; for example, the SORT
and MERGE verbs and the report writer. Therefore, PL/I is not easily accepted
as a programming language for business applications.

Nevertheless, PL/I was designed to accommodate business programming. It
includes generalizations of some of the most successful language features of
COBOL, notably picture clauses, structured records, and record input/output.
Furthermore, many of its facilities, unfamiliar though they may be, are
well-suited to data processing. The success of the method of programming called
structured programming has given new impetus to the use of PL/I for Dbusiness
programming because PL/I is well-suited for structured programming and COBOL is
not.

Many of the features of PL/I are not required for business programming.
The following guidelines specify a business subset of PL/I:

1. Data. Use only the following data types for variables:

fixed bin(n)

fixed decimal(m,n)
character(n) varying
character(n) nonvarying
bit (1)

picture"ps"

This eliminates complex and floating numbers and all of the
noncomputational variables.

2. Aggregates. Use both arrays and structures.
3. Storage Management. Use only the following storage classes:

automatic
static
paraneter

Since the “parameter’ attribute takes care of itself, the choice 1is
really the simple one between the default ‘automatic’ and the
occasionally useful “static’. This eliminates all programmed storage
management.

4, Operations. Use only the following operations:

arithmetic operations
concatenation operator and substring functions
system counter functions (’lineno’, ‘pageno”, “time’, and ‘date”)

The arithmetic operations alone are sufficient except where the
manipulation of text is necessary.

5. Condition Handling. Allow conditions to be handled by default except
for the following:

endfile
endpage

key
undefinedfile

’

This eliminates most uses of the ‘on’ statement.

1-7 An83

6. Input/Output. Use record input/output for all input/output. This
eliminates the complicated facilities for stream input/output.

This subset is intended to be a guide for the study of PL/I. It is not intended
to restrict the use of PL/I; for example, if a programmer already is familiar
with stream input/output he should certainly use it where it is convenient.

System Programming

The most impressive application of PL/I is system programming. PL/I is the
only widely available language that permits efficient system programming in a
high-level 1language context. Examples of the use of PL/I as a system
programming language are close at hand: both the Multics system and the Multics
PL/I compiler are written in PL/I.

In the following paragraphs, the features of PL/I that are important for
system programming are described.

DATA

Any data structure can be described by an appropriate PL/I variable. A
table of data can thus be laid out in a natural and convenient way. The packing
of data within a table 1is completely under the control of the programmer;
consequently, he is able to define any pattern of bits. He is able to control
the size of critical data bases, and can describe such system-dependent data as
page tables, interrupt vectors, input/output channel control words, or machine
instructions in object programs.

PL/I Dbased variables are valuable in system programming. They provide the
programmer with a completely dynamic storage allocation, a powerful form of list
processing, and a mechanism for accessing a data base that occupies any given
storage 1location. Through the wuse of explicitly allocated based structure
variables, the PL/I programmer can dynamically create 1lists, rings, trees,
directed graphs, and so on, whose component nodes are based structure variables
containing pointers to other nodes.

PROGRAM STRUCTURE

The structure of a PL/I program closely parallels the modular structure of
large systems. A PL/I program can consist of several external procedures that
call each other, communicating information through argument lists and external
variables. An external variable is declared within each procedure that wishes
to use it, and all such declarations are equivalent. The variable exists within
the address space of the program but is not owned by any procedure of the
program.

The system designer can precisely define a module’s interface by actually
writing PL/I declarations of external variables and procedure entries. By
appropriate wuse of libraries of these declarations and the %include macro, the
project managers can ensure that all the modules use the same declarations of
their shared data.

1-8 AM83

EFFICIENCY

The Multies PL/I compiler was designed to compile PL/I programs into
efficient code. 1In nearly all cases, storage types can be determined by the
compiler. Therefore, most references, conversions, and operations can be
compiled as optimized in-line code with very little run-time testing.

The handling of string data is a good example of a language feature that is
designed for efficient implementation. A PL/I character string value is a
sequence of characters whose 1length is wunlimited and is determined during
program execution. In contrast, a string variable is allocated with a fixed
length. The language must reconcile this difference, and the use of string data
is somewhat more difficult than it would be if string variables had unlimited
length. However, the PL/I treatment of character strings allows the compiler to
produce efficient, noninterpretive object code for operations on character
strings, by using the string processing hardware.

The storage management mechanisms of the 1language can be implemented
efficiently. Static storage can be allocated before execution. Automatic
storage requires a stack, which can be implemented by means of a base register
at minimal cost. Based storage requires a pair of space management routines
that are used when the program calls for allocation or freeing of storage; these
routines can avoid garbage collection by using threaded lists to keep track of
storage.

The parameter passing mechanism of PL/I was designed to permit compilation
of reasonably efficient object code. The calling program always has a
declaration of the parameters of the called procedure, even when the called
procedure 1is in a separately compiled part of the program. Therefore arguments
can be passed to parameters without any interpretive code.

A major cost of program execution is procedure invocation and the dynamic
binding of external procedures and external variables. However, these features
are essential to good program organization, and they should not be avoided. The
PL/I compiler takes special measures to reduce the cost of procedure
invocations, and Multics permits the programmer to fully bind his program when
it is ready for production use.

1-9 AM83

PROGRAM VALIDITY

A valid program is one which makes sense according to the definition of
PL/I. A program is invalid if the definition of PL/I does not define the result
of executing the program. Validity has little to do with whether program does
what the programmer wants it to do. A valid program can certainly yield
incorrect results; and, sometimes, an invalid program can yield correct results.
However, such an 1invalid program may not produce consistent results in future
versions of the implementation.

Examples of Invalid Programs

The simplest case of an invalid program occurs when the rules of syntax are
violated. Consider the following example:

P: proc;
del sysprint file;
put list("Hello")
end;

This example is not a valid program because the statement on the third line does
not end with a semicolon.

Most of the syntactic rules of PL/I are easy to learn; in fact, a knowledge
of syntax comes automatically from reading examples of valid programs.
Furthermore, when a question of syntax does arise, it can be answered in a
formal and almost mechanical way by the syntactic formulae that appear in the
PL/I Language Manual.

It 1is possible for a sequence of characters to be a syntactically valid
program but not a semantically valid program. Consider, for example, the
syntactically valid program:

Q: proc;
del sysprint file;
del x float;
put list(x*%*3);
end;

In this program, the variable designated by “x” is not set (assigned a value)
before it is used (evaluated). The definition of PL/I says that the value of a
variable 1is wundefined until it is set, either by explicit initialization or by
assignment. Therefore the value output by the “put’ statement is not defined
and it follows that the program is not valid.

The rules of PL/I could have been designed so that any syntactically valid
program would be completely valid. The undefined cases are not oversights;
they were deliberately included to allow more efficient and reasonable
interpretation of programs. Consider the example just given, the program ‘Q°.
If PL/I initialized all variables (say to zero), then “x° would have a value
when it was used in the ‘put’ statement and the program ‘Q° would be valid. But
in most cases, when a variable is used before it 1is set, the program is
incorrect, regardless of whether the definition makes it valid or not. Thus
automatic initialization would be a wasted operation. Certainly the example
program seems to be incorrect, because a program that always prints the same
value (such as zero) is not useful.

1-10 AM83

A program can be invalid when it is used with improper input. Consider,
for example, the following syntactically valid program:

R: proc;
del (sysin,sysprint) file;
del x fixed dec(3);
get list(x);
put list(x*¥2);
end;

This program is invalid unless it is used with input values whose magnitudes are
less than 1000. If a larger value is supplied as input, then the value will not
fit in storage and the value of “x” is not defined.

Observe, once again, that PL/I could have been designed so that the program
just given would always be valid. The size of every value assigned to a
variable could be checked before assignment, and a specific action could be
taken if the value was too large. However, such a check would be costly; and
since most assignments are made within a program where values can be controlled,
it would be wasteful. Instead of checking every value, PL/I allows the
programmer to explicitly call for a check where it is needed. The example just
given can be made valid for all input values as follows:

R: proc;
del (sysin,sysprint) file;
del x fixed dec(3);
(size): get list(x);
put list(x¥*#*2);
end;

The ‘size’ condition prefix on the input statement causes the value assigned to
‘x’ by that statement to Dbe checked. If the value is too large, the system
prints an error message and aborts the program, and this 1is a well-defined

action.

The program just given takes a well-defined action for improper input, but
the action is drastic. The following program is designed to recover fron
improper input:

R: proc;
del (sysin,sysprint) file;
decl size cond;
del x fixed dec(3);

on size
begin;
put list("try again: ");
put skip;
goto L;
end;
(size):
L: get list(x);
put list(x*#*2);
end;

This program responds to improper input by performing a programmed action;
specifically, it prints “try again’ and calls for a new input value.

Each of the three versions of the program ‘R’ are useful under appropriate
circumstances. If the programmer can be sure that improper input will not be
used, the first version is best because it does not entail the extra cost of the
size check. If the programmer considers improper input to be a rare and
unimportant occurrence, then the second version is best because it is safe but
simple. If the programmer considers improper input to be a normal occurrence in
the use of the program, the last version is best because it recovers.

1-11 AU83

Interpretation of Invalid Programs

The interpretation of an invalid program is not defined for PL/I; however,
something happens when an 1invalid program is compiled and executed. The
following cases apply:

° A program that is syntactically invalid is wusually detected by the
compiler. The compiler prints a diagnostic message and usually
declines to produce the object segment.

° Programs that are invalid for nonsyntactic reasons are often not
detected by the PL/I system, because the cost of checking for such
invalid programs is too great. For example, when a variable is used
before it is set, some particular value is used; and unless the value
happens to make something go wrong elsewhere, program execution
proceeds.

The detection of constructs that are invalid for nonsyntactic reasons is a major
part of the debugging of a program.

SUGGESTIONS FOR THE STUDY OF PL/I

The following paragraphs describe various publications that are designed
for the study of PL/I. The description begins with a list of three introductory
texts, continues with remarks on this manual, and concludes with notes on
related Honeywell publications.

Introductory Texts

An introductory text on PL/I provides examples and a framework for further
study. Three useful texts are:

1. PL/I Programming Primer, by Gerald M. Weinberg, HecGraw Hill, 278
pages. This short book provides a smooth and efficient introduction
to PL/I. It keeps strictly to the subject of elementary PL/I, and can
be read in a short time. The use of a single programming problem
throughout most of the book provides continuity; and the example
program can later be run as a Multics PL/I program.

1-12 AM83

2. PL/I for Scientific Programmers, by C. T. Fike, Prentice-Hall, 2i1

pages. This book 1is recommended for the experienced FORTRAN
programmer. Most chapters end with a section called "PL/I and
FORTRAN" and thus emphasize the relationship between the two

languages. The book is organized according to the features of the
language rather than having a narrative form; therefore, it cannot be
read as quickly as Weinberg’s book.

3. An Introduction to Programming, by Richard Conway and David Gries,
Winthrop Publishers, Cambridge, Massachusetts, 460 pages. This book
is a complete course in high-level prograrmming that is based on PL/I.
It is too 1long for a quick reading, but it provides good background
reading because its examples are all in PL/I. Included are
discussions of top-down program development, confirmation of program
correctness, recursive programming, scientific programming, and file
processing.

There are many other introductory texts for PL/I, but most of them have the
disadvantage that they go into details of specific computer hardware and
specific operating systems, topics that do not contribute to the study of
Multics PL/I.

Contents of this Manual

A variety of tutorial techniques are used in this manual. Examples are
given in abundance and are often designed to cover all possible cases of a
feature. Principles of design of PL/I are given to provide a framework for the
details of the language. Guidelines for efficient and clear programming are
given when, as is often the case, the language allows more than one way of
programming a particular operation. Finally, repetition is freely used to avoid
the use of cross references and to emphasize the features of the language that
are most important.

Many of the examples in this manual are complete programs. The use of
complete programs has several advantages. First, such examples provide a guide
for the details of programming style by showing how programs should be laid out
for readability, how abbreviations should be used, and, generally, how
statements should be put together to form a program. Further, an example that
is a complete program does not require a discussion of the context of the
example; it is, by definition, complete. Finally, the complete example programs
can be used by the reader to experiment with the execution of PL/I programs in
the Multics system.

1-13 AM83

However, most of the examples are not realistic applications of PL/I. A
realistiec PL/I program, even a small one, requires several pages of background
and explanation, and such a discussion is beyond the scope of this manual. The
examples in this manual are designed to show how certain statements are
executed, not how they should be used to solve problems. Sometimes the absence
of realism is obvious, as with an example program that does nothing but read two
numbers and print out their sum. In other cases, the examples are complicated;
nevertheless, these examples are usually contrived in order to illustrate an
important feature of PL/I rather than to solve a real problen.

PL/I provides many ways to program the solution of any given problem.
Usually it 1is not sufficient to write a program that produces the correct
results; in addition, the program must be reasonably efficient and fairly
readable. The guidelines given 1in this manual are designed to assist
programmers in choosing among the many options offered on PL/I. When a reader
has guidelines that are better for his own purposes than those given in this
manual, he should ignore those given here.

In some places in this manual, guidelines are given under a special
heading, such as "Guidelines for Arithmetic Data Types"; in other places,
guidelines are mentioned as part of the definition of a feature. Usually, a
guideline 1s distinguished by the use of the word "should" instead of "must";
for example, "when a storage unit is used for an exact integer, it should be
‘fixed binary’."

Related Manuals

Two related Honeywell publications on Multics PL/I are cited in the Preface
of this manual. They are the PL/I Language Manual and the Multics Programmer’s
Manual.

The PL/I Language Manual is the ultimate authority on Multies PL/I. For
the programmer who is beginning a study of PL/I, the manual may be difficult to
use and understand because it 1is designed to be a definition, not an
explanation, of PL/I. To the programmer who has learned Multics PL/I, however,
the Language Manual is the source of all necessary information about Multics
PL/I.

The PL/I Language Manual describes the meaning of any given program, but it
does not explain how to write a program. Therefore, it is essential to approach
the manual with a well-formulated question, a question that is usually in the
form "what does the following PL/I construct mean: ...?" If it is impossible to
come up with such a question, then the appropriate section of this manual should
be used to get the rules, examples, or guidelines necessary to formulate a
question.

1-14 AM83

SECTION II

VALUES

The most important feature of PL/I is the great variety of the values that
are provided. When a PL/I program performs a calculation, whether business or
scientific, it does so in terms of arithmetic values. When a program accepts
input from the wuser or prints out a listing of results, it transmits string
values. When a program refers to the storage for its own data or to the code
for its own statements, it uses address values. When a program needs to control
storage management, it uses an area value. And, when a program needs to treat
several values as a single entity, it groups the values into an aggregate value.

In this section, each kind of value is described and the operations that
can be applied to the value are summarized. The values are described in an
abstract way, without consideration of the way in which they are stored 1in
memory. The purpose of this section is to indicate the computational power of
PL/I.

ARITHMETIC VALUES

Standard PL/I does not specify the range of the arithmetic values; instead,
it leaves this choice to each implementation of PL/I. Multies PL/I provides a
very large range, as follows:

' The greatest magnitude of a Multics PL/I value is about 10**186 (for
decimal floating point) or about 10%%38 (for binary floating point).
These values far exceed any measurement encountered in business or
scientific applications.

° The smallest magnitude of a value is 10%*¥-128 (for decimal floating
point) and about 10%*-38 (for binary floating point). These values
are much samller than any measurement encountered in practice.

° The precision of arithmetic values is such that two values can differ
by as 1little as one part in 10%¥%¥59 (for decimal floating point) or
about one part in 10%¥#19 (for binary floating point). Thus PL/I can
supply a very good approximation to any given number.

The arithmetic values just described are called real values. PL/I also supplies
complex values. Each complex value is composed of a pair of real values, and
thus the range of complex values is determined by the range of the real values.

2-1 AM83

.

A number can be expressed exactly as a PL/I arithmetic value only if it can
be expressed exactly in decimal positional notation. For example, 73/2 can be
expressed exactly as “36.5° and 13/320 can be expressed exactly as
“0.040621875"; so these are PL/I arithmetic values. On the other hand 1/3 and
the square root of two cannot be expressed exactly this way, and so must be
approximated. 1If a good approximation is acceptable, then Multies PL/I can
provide that approximation; otherwise, special techniques must be applied.

PL/I has many operations for the manipulation of arithmetic values. The
familiar arithmetic operators are present; in addition, several dozen built-in
functions for integer arithmetic, trigonometry, logarithms, and statistics are
provided.

STRING VALUES

A string value is a sequence of characters. Standard PL/I does not specify
the set of characters that can appear in a string; 1instead, the choice of
characters 1is 1left to each implementation of PL/I. The character set used in
Multics PL/I is the ASCII character set, given under "The ‘collate’ Function" in
Section IX, "Operations." It is composed of 128 characters, as follows:

° 52 characters that represent the 1letters of the alphabet in both
lowercase and uppercase

° 10 characters that represent the decimal digits

° 18 characters that represent most of the special symbols on a

typewriter keyboard

° 14 characters that represent special symbols not found on an ordinary
typewriter keyboard, many of which are useful in writing mathematical
expressions or non-English text

° 1 character for the blank

° 33 characters that are nonprinting control characters including, for
example, horizontal tab, new line, new page, and carriage return

Because this character set includes characters that control the layout of the
pages, a printed document of many pages can be composed, stored, and edited as a
single PL/I character string value.

The number of characters in a character string value is the length of the
value. The maximum length allowed in Multies is very large; it is limited only
by the capacity of a Multics segment.

Several operators and built-in functions are provided for the manipulation
of string values. String values can be concatenated and a substring of a given
string value can be extracted. The equality operators (‘=" and °“=°) can be
applied to strings. A collating order is defined for the character set, so it
is possible to apply inequality operators (such as °<°) to strings. Other
functions are available for use in such advanced applications as command

interpretation and compiler construction.

2=-2 AM83

A special kind of string value 1is recognized; namely, a string value
composed only of the bits °0° and “1°. Such a string value is a bit-string
value. When a bit-string value contains a single bit, it is a DBoolean valge;
and it represents "true" or "false" depending on whether the single bit is "1
or ‘0°. By extension, a bit-string value of length greater than one can be
treated as a sequence of true/false indicators. The familiar Boolean operators
are provided for use with the bit-string values.

Any arithmetic value can be converted to a string value; the result is a
conventional representation of the arithmetic value. Conversely, a string can
be converted to an arithmetic value, but only if the string value is a valid
representation of an arithmetic value. These conversions are essential because
a value must be expressed as an arithmetic value if an arithmetic operation is
applied to it, but must be expressed as a string value before it can appear in
the output stream. In addition to providing functions that perform these
conversions in a straightforward way, PL/I has pictured character-string
variables, which allow numeric values to be maintained as character-string
values in an automatic and user-controlled way.

ADDRESS VALUES

Every PL/I statement in a program has a unique address, and every data
storage unit also has a unique address. It is common in computing to think of
an address as an integer and thus endow it with arithmetic properties; but as a
value in PL/I, an address has no other property than its association with a
particular program statement or storage unit. For example, the "next" address
is not defined for any address, so addresses are not even ordered.

The manipulation of address values in PL/I is deliberately 1limited. An
address value can be assigned to a variable and can be produced by a reference
to a constant, a variable or a function. The operators ‘=" and “"=" can be used

to determine whether or not two address values are 1identical. The only
conversion that can be applied to address values is that between a pointer value
and an offset value.

There are three kinds of address values: statement, locator, and file
values; and descriptions of these follow.

Statement Values

A statement value designates a statement in a program. The value is
classified as a label, entry, or format value according to the following rules:

° A label value designates a statement to which control can be
transferred by a ‘goto”’ statement. Any statement except a

‘procedure’, ‘entry’, or ‘format’ statement can be designated by a
label value.

° An entry value designates a statement to which control can be
transferred by a “call’ statement or a function reference. There are
two such statements, the ‘procedure’ statement and the ‘entry’
statement.

° A format value designates a statement that can supply a format 1list to
a stream input/output statement. There is one such statement, the
‘format’ statement.

2-3 AM83

Locator Values

A locator value designates a storage unit for program data. There are two
types of locator values, as follows:

° A pointer value is used by itself to access a storage unit.

° An offset value is used in conjunction with an area name to access a
storage unit.

The pointer value 1is similar to the absolute machine address used in assembly
language programming, and the offset value is similar to a relative or based
machine address. Conversion between a pointer value and an offset value can be
performed relative to a given area value.

File Values

In Multics PL/I, a file value designates a collection of stored values
called a file-state block. The values in the file-state block record the status
of a data set that is currently being used for input/output. The file value is
a more specialized kind of address value than either the program address value
or the locator value.

AREA VALUES

An area value is an ordered set of PL/I values. The entire set of values
can be assigned to an area variable, passed as a procedure argument, returned as
a procedure result, or transmitted as input or output. However, the principal
use of an area value is as part of a specialized mechanism for the efficient
management of storage. The most important operations on an area are the
allocation and freeing of storage for new values within the area, and the
details of these operations are not relevant to this description of values. The
area value plays a role in the definition of the ‘offset” value, already
mentioned under "Locator Values".

AGGREGATE VALUES

An aggregate value is an ordered set of PL/I values. Because it is a set
of values, it provides a way of handling a collection of values as a single
computational entity. Because it is ordered, it has a first component, a second
component, and so on. And because it can contain any PL/I values, it can have
another aggregate as a component. Thus an aggregate value can be used to
collect values together and arrange them in a hierarchical manner, with
aggregates within aggregates.

There are two kinds of aggregate, the array and the structure. An array
must contain values that are all of the same kind, whereas a structure is not
restricted in this way. Aside from this, the two kinds of aggregate differ in
the way they are stored and referenced.

o_Y AM83

Most of the operations of PL/I can be applied to aggregate values. Each
operation is not individually redefined for this purpose; instead, a general .
rule is applied: the ith component of the result of the operation is produced by
applying the operation to the ith component of each of the given operands. Thus
the aggregate operation is defined in terms of the conventional, nonaggregate,
operation.

CLASSIFICATION OF VALUES

The previous paragraphs have traced a progression from the mathematical
values of computation to the specialized values required for efficient
programming. The arithmetic values are those universally accepted for wuse in
calculation. The string values are used for objects of universal importance
(printed pages); but their precise and restricted definition is characteristic
of computer programming rather than conventional usage. The address values are
meaningful only in relation to the program statements or stored data, and so are
creatures of computer programming. The area values represent a further descent
into the special techniques of efficient programming. The aggregate values
appear to swing back toward the world of mathematics; but their usage is
oriented toward programming rather than mathematies.

The following 1list is a hierarchy for the PL/I values described in this
section. Some useful supplementary terminology has been introduced.

scalar: any PL/I value that is not an aggregate
computational: a value of interest beyond programming
arithmetic: a number
string: a sequence of ASCII characters
character string: an unrestricted string
bit string: a string of zero’s and one’s
pictured character-string: a specially restricted string
non-computational: a value of interest only for programming
address: a value that designates a statement or a storage unit
statement: the address of a statement
label: the destination of a transfer
entry: a ‘procedure’ or ‘entry’ statement
format: a ‘format’ statement
data: the address of data
locator: the address of storage for a value
pointer: an "absolute" address
offset: a "relative" address based in an area
file: the address of a file-state block
area: values gathered together by storage management
aggregate: an ordered set of values
array: components must have the same data type
structure: components may differ in data type

2-5 AM83

SECTION III

VALUE STORAGE

A principal objective of the designers of PL/I was to provide a language in
which efficient use of the computer hardware was possible. Therefore, PL/I
allows a programmer to give a detailed description of the storage used for each
value that is generated during program execution. Since there are many ways to
store a value in computer memory, there are many types of value descriptions in
PL/I; in fact, the size and complexity of PL/I is largely a consequence of the
many ways in which value storage can be described.

As this section continues, it gives a brief description of storage units,
which are conceptual models for the storage used to hold PL/I values during
program execution. After that, the section gives a long description of the
storage types, which are used to describe the kinds of values accommodated by a
given storage unit. Most of the description of the storage types follows the
same outline as Section II, "Values," dealing with arithmetiec, string, address,
area, and aggregate values; however, a new concept, alignment, is described at
the end of the section.

STORAGE UNITS

Whenever a program refers to a value in any way, that value resides in a
storage unit. A storage unit is a conceptual model for the storage of any PL/I
value used in executing a program. When a constant appears in a program, it
refers to a storage unit that contains an unchanging value. When a variable
name appears, it refers to a storage unit that is wused to store a computed
result for later |use. Even a function reference or an operator expression
designates a storage unit in which its result is stored, briefly, until that
value is used elsewhere. Relative to the actual implementation of Multies PL/I,
the storage wunit is a simplification. 1In the implementation, a constant value
is not actually stored in the same way as a variable value but is instead a part
of the object code. Further, an intermediate result, generated during the
evaluation of an expression, is not stored in the same way as a program variable
but may reside in a high speed register.

Suppose that the variable names ‘alpha’ and ‘beta’ are used in a PL/I
program; then a portion of data storage can be diagrammed as follows:

alpha [7
beta [/

3-1 AM83

This diagram contains two storage units. Each storage unit consists of a
designator, which is the name of a variable, and a box, which can hold a value.
Suppose, next, that the following assignment statements are executed:

alpha = 3.8;

beta = -2%*alpha;
Immediately after these assignments, the storage units become:

alpha

beta -7.6

Each storage unit now has a contents as well as a designator and a box.

STORAGE TYPES

It is possible to design a programming language in which each storage unit
can hold any type of value. Some of the interactive languages for the solution
of simple problems by nonprogrammers are designed in this way. In such a
language, the same variable can accommodate any kind of number or, for that
matter, an array of 50 numbers; and if the language has string values or address
values, then the variable can also accormodate them. Such a language is easy to
learn, but its programs are executed much less efficiently than they could be.

A principal requirement for the efficient execution of a program is the
restriction of the kinds of values that can be assigned to a given storage unit.
In PL/I, this restriction is applied by associating a storage type with each
storage unit. The storage type gives three kinds of information, as follows:

° The data type describes the range and representation of storage for a
single datum, such as a number or a character string or a program
address.

° The aggregate type describes the way storage for a collection of
values 1is arranged in an array or a structure.

° The alignment type describes the way the storage is 1laid out in
hardware memory and thus determines the memory required and the ease
of access.

PL/I provides for efficiency in two ways. First, it requires a storage type so
that the range of the storage unit is known when the program is compiled.
Second, it provides many different storage types so the programmer can choose
the representation best suited to the problem.

Two introductory examples of the interpretation of storage types follow.
The examples depend on rules that are given later in this section, when the
various data types, aggregate types, and alignment types are described.

3-2 AM83

As the basis for the first example, consider the following ’‘declare’
statement:

del gamma fixed bin(8);

This statement gives the storage type for the variable named ‘gamma’; it does so
by means of the scale attribute ‘fixed’ and the precision attribute (8)°. The
statement uses various abbreviations and defaults for the storage type, and
without them the statement would be:

decl gamma real fixed binary precision(8,0) aligned;
According to this declaration, the sﬁorage type for ‘gamma’ is as follows:

° The data type is ‘real fixed binary precision(8,0) . This means that
the contents of the storage unit named “gamma’ must be a number that
can be expressed as a signed eight-digit binary integer.

° The aggregate type is scalar since no aggregate type 1is explicitly

given in the ’declare’ statement. This means that the storage unit
accommodates a single number, not an array or a structure of numbers.

° The alignment type is ‘aligned’. 1In this case, a full word must be
allocated for the variable, so that access to the variable is
efficient.

The details of the data type for this example are -discussed 1later in this
section under "Arithmetic Storage".

Suppose the following assignment statement is executed:

gamma = -15;

The following is a diagram of the storage unit for “gamma’ as just declared:

fixed bin(8)
gamma -15

The storage unit now has the storage type written above it as well as a
designator, a box, and a contents. Observe that the contents is a value that
satisfies the restriction imposed by the storage type.

'As a second example of the declaration of the storage type, consider the
following:

decl 01 customer aligned,
02 name char(18),
02 code(2) fixed dec(4);

This statement gives the storage type for the variable named ‘customer’; it does
so by means of attributes and level numbers. The storage type, by itself, is:

01 aligned, 02 char(18), 02 dim(2) dec(4)
Once again, the statement wuses various abbreviations and defaults for the

storage type, and without them the statement would be:

del 01 customer aligned,
02 name character(18) nonvarying aligned,
02 code dimension(2) real fixed decimal precision(4,0) aligned;

3-3 AM83

According to this declaration, the variable ‘customer’ is a sequence of three
components, and its storage type is as follows:

° The data type is ‘character(18) nonvarying’ for the first component
and ‘real fixed decimal precision(4,0)° for the last two components.
This means that the first component accommodates a string of 18
characters and the second and third components each accommodates a
signed four-digit decimal integer.

° The aggregate type is ‘01, 02, 02 dimension(2)’. This means that the
variable 1is a structure with two members, and the first member is a
scalar while the second is a one-dimensional array with two elements.

° The alignment type is “aligned’ for all three components. This means
that the wvariable should be laid out in memory to permit efficient
access rather than to save space. In Multics, the variable takes nine
words; if it had been “unaligned’, it could have been packed into
seven words.

The details for this storage type are given later in this section; the purpose
of the example is to provide an introduction, not a complete explanation.

The following is a diagram of the storage units for ‘customer’ as just

declared:
char(18) aligned
customer .name

fixed dec(l) aligned

........ .code(1) [/

fixed dec(l4) aligned
............. (2)

In this diagram, the aggregate type is shown by the way the three designators
are arranged. The hyphens are used like ditto marks, so that the designators
for the storage units are:

customer.nanme
customer.code(1)
customer.code(2)

For convenience of discussion, the storage for the entire variable is called a
storage unit. Thus one speaks of a structure storage unit that is made up of
three component storage units just as one speaks of a structure value made up of
three component values.

ARITHMETIC STORAGE

PL/I is designed primarily for operations on arithmetic values. If
differences of scaling and precision are ignored, there are eight different ways
to represent an arithmetic value in storage. The choice of one of these kinds
of storage and the choice of an appropriate precision is a choice between
convenience and efficiency. For example, it is more convenient to use decimal
numbers throughout, but scientific computations can be performed much more
efficiently in binary. For another example, it is more convenient to use a
large number of digits for a variable, but it is more efficient to determine
exactly how many digits are required and use no more. The selection of the type
of storage for an arithmetic variable is an important part of the engineering of
a PL/I program.

3-4 AM83

This discussion begins by defining the arithmetic data types and their
corresponding storage units, continues with abbreviations and defaults that
allow data types to be written more concisely, gives examples of various
arithmetic storage wunits, and concludes with guidelines for the selection of a
data type for a given purpose.

Arithmetic Data Types

The complete data type for an arithmetic storage unit is given as a
sequence of four arithmetic attributes. These attributes are the mode, scale,
base, and precision, as described in the following paragraphs.

MODE ATTRIBUTE

The mode attribute is one of the following keywords:

real
complex

In scientific applications that make use of the theory of complex numbers, the
‘complex’ mode may be specified for a variable. In most other applications, the
‘real’ mode is specified.

A storage unit with the ‘real’ attribute accommodates a number that can be
represented as a signed sequence of digits in which a decimal or binary point
appears. This includes all numbers that are used in business applications,
system programming, and everyday calculation. It also includes most numbers
used in scientific applications.

A storage unit with the “complex’ attribute accommodates a number that can
be represented as a pair of real numbers, called the real part and the imaginary
art, fespectively. Both members of the pair have the same scale, base, and
precision, as specified by the other attributes of the data type.

SCALE ATTRIBUTE

The scale attribute is one of the following keywords:

fixed
float

These attribute keywords refer to the decimal or binary point of the number. 1In
a ‘fixed” storage unit, the point cannot move, whereas in a ‘float’ storage
unit, the point can be thought of as moving to accommodate a wider range of
values in a given number of digits.

3-5 AM83

A storage unit with the ‘fixed’ attribute accommodates a value that can be
represented as a signed sequence of digits in which a decimal or binary point
appears. The point can appear anywhere, but its position is determined when the
storage unit is created and remains fixed throughout the existence of the
storage unit. For a given “fixed’ storage unit, the number of digits and the
position of the point are both specified by the precision attribute, which is
described a little 1later.

A storage unit with the “float’ attribute accommodates a value that can be
represented in one of the following forms:

=]

* (2%%¢g) (if the scale is ‘binary”)

* (10%%e) (if the scale is ‘decimal”’)

1]

where m is the mantissa and ¢ is the exponent. The mantissa 1s a signed
sequence of digits in which a point appears. For ‘binary’ scale, the point
appears to the left of the first digit, so that the mantissa is a fraction. For
‘decimal’ scale, the decimal point appears to the right of the 1last digit, so
that the mantissa is an integer.

The number of digits in the mantissa is determined by the precision
attribute, which is described later. The exponent must lie in the range:

-128 < e < +127

When a value is assigned to a ‘decimal’ storage unit, there is some freedom in
the choice of the mantissa and the exponent. For example, if the mantissa has
four decimal digits, then the value 1.4 can be represented in the following
ways:

+001U.%(10%%_1)
+0140.%(10%%_2)
+1400.%(10%%-3)

However, a representation is never chosen that discards more low-order digits
than necessary, and 1.4 would not be represented as:

+0001.%(10%%0)
Thus the variable exponent not only allows a wide range of values but also

allows the full use of each digit of the mantissa whenever necessary.

When a value is assigned to a ‘binary’ storage unit, the mantissa and
exponent are always chosen so that the first digit of the mantissa 1is a one;
that is, the mantissa is normalized.

The exponent can be thought of as expressing the number of places the
mantissa point should be moved to the right to give the true value of the
storage unit. That point of view is the source of the term "floating point" and
the keyword “float’.

BASE ATTRIBUTE

The base attribute is one of the following keywords:

binary
decimal

3-6 AM83

~/

The attribute keywords refer to the number system that is used in representing
the value.

A storage unit with the ’binary” attribute uses binary digits in
representing its value. Thus a ‘fixed binary’ storage unit that has three
significant digits followed by a binary point can accommodate the integers from
-7 to +7.

A storage unit with the ‘decimal’ attribute uses decimal digits in
representing its value. Thus a ‘fixed decimal” storage unit that has three
significant digits followed by a decimal point can accommodate the integers from
-999 to +999.

PRECISION ATTRIBUTE
The complete precision attribute has one of the following forms:

precision(p,q)
precision(p)

where p and g are the number-of-digits and the scale-factor, respectively. The
first form is used when the scale is “fixed” and the second form is used when
the scale is “float’. The number-of-digits must be given as an unsigned integer
constant and the scale-factor must be given as an optionally-signed integer
constant. They cannot be given as general expressions because their values must
be known to the compiler.

The number-of-digits determines how many digits appear in the storage unit.
The number-of-digits must lie within a certain range, and that range depends on
the scale and base attributes that appear with the precision attribute. The
ranges are:

Scale and Base Minimum Maximum
fixed binary 1 71
float binary 1 63
fixed decimal 1 59
float decimal 1 59

This table shows, for example, that the storage type ‘real fixed binary
precision(70,0)° is valid but ‘real fixed decimal precision(70,0)° is not. The
ranges are not part of Standard PL/I; they are chosen for each implementation,
and the values shown here are those for Multics.

In a “float’ storage unit, the number-of-digits refers to the digits in the
mantissa and does not include digits used in the exponent. In the case of a
‘float binary’ storage unit, the number-of-digits establishes a minimum for the
number of mantissa digits. The purpose of this latitude is to permit efficient
use of floating-point binary hardware.

3-7 AM83

The scale-factor determines the number of significant digits to the right
of the point in a “fixed’ storage unit. The scale-factor is restricted to the
following range:

Scale Minimum Maximum
fixed -128 +127
float (not applicable)
A fixed-point storage unit can have filler zeros. These 2zeros are used to

position the point and are not counted in the determination of the
number-of-digits. Suppose the precision attribute is ‘precision(p,q)’; then
three cases must be considered:

° If p > q > 0, then no filler zeros are required because the point is
adjacent to one of the significant digits. For example, the storage
type ‘real fixed decimal precision(5,2)° accommodates any value that
can be represented by a sign, three significant digits, a decimal
point, and two more significant digits. Thus the value -203.49 or the
value 1.2 can be accommodated.

° If p < q, then g-p filler zeros are assumed between the point and the
first significant digit. For example, the storage type ‘real fixed
decimal precision(5,7) accommodates any value that can be represented
by a sign, a decimal point, two filler zeros, and five significant
digits. Thus the fraction .004424L4 is accommodated by this storage
type but .0144244 is not.

° If q < 0, then -q filler =zeros are assumed between the 1last
significant digit and the point. For example, the storage type ‘real
fixed decimal precision(5,-3) " accommodates any value that can be
represented by a sign, five significant digits, three filler =zeros,
and a decimal point. Thus the integer 55955000 is accommodated by
this storage type, but the integer 55955300 is not (and must be
approximated).

In practice, most programs use only fixed variables whose precision attribute
satisfies p > q > 0; therefore filler zeros are not often used.

ABBREVIATIONS AND DEFAULTS

A typical program uses many variables, and a data type must be given for
each variable; therefore, PL/I permits the wuse of many abbreviations and
defaults in the specification of data type attributes.

From the point of view of the PL/I compiler, any selection of abbreviations
and defaults can be used, and the selection can differ from one place in the
program to another. However, the inconsistent use of abbreviations and defaults
makes a program confusing, and a consistent policy should be adopted. This
manual provides one such policy: every abbreviation or default of PL/I should
be used except for those whose avoidance 1is explicitly recommended in this
manual.

3-8 AM83

~

The following abbreviations are defined for the keywords used in arithmetic
attributes:

Keyword Abbreviation

binary bin

decimal dec

precision prec (rarely used)

precision (omit the entire keyword ‘precision’ if it immedi-

ately follows a mode, scale, or base attribute)
complex eplx (not recommended)

The abbreviation ‘prec’ 1is rarely used because it is customary to write the
precision attribute immediately after some other arithmetic attribute and omit
the entire “precision’ keyword. For example, ‘real fixed decimal
precision(5,2) is abbreviated as ‘real fixed dec(5,2) " so that all that is left
of the precision attribute is “(5,2)". The abbreviation ‘ecplx” is not
recommended because it is difficult to remember and impossible to pronounce.

A default attribute is the attribute that is assumed by the PL/I compiler
when a required attribute is not given in the program. For example, if a
variable is declared ‘fixed dec(5,2)°, then the compiler treats the variable as
if it had been declared ‘real fixed dec(5,2)°; it does so because the default
attribute for the mode 1is ‘real’. The defaults for the arithmetic data type
are:

Omitted Item Default

mode attribute real

scale attribute fixed

base attribute binary

number-of-digits 17 (for “fixed binary”’)

7 (for “fixed decimal”’)
27 (for ‘float binary”’)
10 (for ’‘float decimal’)

scale-factor 0 (for ‘fixed’ scale only)

The table just given shows that the default value for the number-of-digits
depends on the scale and base of the data type; thus there are four possible
default values. The default values for the number-of-digits are not part of
Standard PL/I, and the values given are those for Multics. However, it is
understood that any implementation of PL/I should choose a default for “fixed’
values that 1is appropriate for an index or subscript and a default for “float”’
values that is appropriate for most scientific calculations.

Although defaults are specified for the scale and base attributes, these
defaults may vary from one implementation of PL/I to another. Therefore, it is
recommended that both the scale and base attributes be given explicitly.

3-9 AM83

The abbreviations and defaults are designed to favor the most commonly used
storage types, as shown in the following examples:

Complete Data Type Recommended Form
real fixed binary precision(17,0) fixed bin

real fixed binary precision(30,0) fixed bin(30)
real fixed decimal precision(8,2) fixed dec(8,2)
real float binary precision(27) float bin

real float binary precision(60) float bin(60)
complex float binary precision(27) complex float bin

Examples of Arithmetic Storage Units

As an example of the use of an arithmetic storage unit, consider the
following program:

P: proc;
decl alpha fixed dec(6,2);

alpha = -31.253;

end;

The storage unit for ‘alpha’ can be diagrammed as:

fixed dec(6,2)
alpha -31.25

The data type is written above the box to indicate the restriction on the value
accommodated by the box. Since the scale-factor is two, the storage unit can
accommodate only two fractional digits; therefore, the value -31.253 is
approximated when it is assigned to the storage unit.

A diagram called a data frame is useful in describing the capacity of a
storage unit. A data frame is produced by combining the data type with the box;
the result 1is a diagram that suggests the structure of storage. When a data
frame is used for the variable “alpha’ just discussed, then the result is:

S 9999 9 9
alpha /-/0/0/3/1/./2/5/

3-10 AM83

In this diagram, each of the seven boxes holds a single character. The symbol
above each box determines the kind of character allowed: ‘S’ allows a sign, ‘9°
allows a decimal digit, and other symbols are used for other restrictions. This
diagram makes it clear that the storage unit accommodates any value that can be
represented as a sign followed by four decimal digits followed by a decimal
point followed by two decimal digits. It also makes it clear that the last
digit of -31.253 must be dropped before assignment to the storage unit can
occur.

A data frame provides useful information about the data type as it is
applied to a storage unit. The diagram should be viewed as having three
components:

° The characters written in the boxes are the contents of the storage
unit. They are the only part of the storage unit that can change; but
they do not, by themselves, represent the value of the storage. In
the example above, the contents is -003125° and this sequence of
characters would not, in itself, be interpreted as the value =-31.25.

° The characters in line with the contents but not enclosed in boxes are
the interpretation of the storage unit. In the example above, the
interpretation is the decimal point’.”". The contents and the

interpretation together are a representation of the value of the
storage unit, and the representation is always a valid PL/I constant
expression. In the current example, the representation is ‘-0031.25°
and this is a valid signed constant and could be used in a program to
represent the value -31.25.

° The data frame without contents or interpretation is an indication of
the hardware storage required for the storage unit. In the current
example, the storage unit has one sign box (one byte in a decimal
number) and six decimal-digit boxes (each one byte); therefore the
storage unit requires seven bytes of memory in a Multics segment.

The data frames are not a part of the PL/I language itself; they are introduced
here as a useful way of describing a storage unit. Since a PL/I program cannot
depend on the way in which arithmetic values are represented, the purpose of the
data frames is not to show how the components of a value can be operated upon.

FIXED DECIMAL STORAGE UNITS

A ‘fixed decimal’ storage unit closely approaches everyday notation for a
number. The availability of these storage units make it possible to entirely
avoid fractional fixed-point binary arithmetic and thus eliminates one of the
major problems of computing. Four examples of ‘real fixed decimal’ storage
units follow, each with a different precision attribute. Each example gives the
declaration of a variable and then the storage unit that corresponds to the
declaration.

S 999999
del ul fixed dec(8,2); ul [[/ /.

The complete data type for this storage unit is ‘real fixed decimal
precision(8,2)°. The data type accommodates any number with magnitude less than
one million to the nearest one hundredth. It would be useful for a sum in
dollars and cents and, since it has a sign, it could be used for a credit or a
debit.

3-11 AM83

S 999999
del u2 fixed dec(6); w (/77777

The complete 'data type for this storage unit is ‘real fixed decimal
precision(6,0)”. It accommodates any integer with magnitude less than one
million.

S 9999939
del u3 fixed dec(6,9); w3 [J.o00/ /77777

The complete data type for this storage wunit is ‘real fixed decimal
precision(6,9) . The scale-factor is greater than the number-of-digits and
therefore filler zeros appear between the decimal point and the first
significant digit. The storage unit accommodates a fraction with magnitude less
than one thousandth to the nearest billionth.

S
del u¥ fixed dec(4,-2); ul iﬁ%oo.

’,

The complete data type for this storage unit is ‘real fixed decimal precision
(4,-2)°. The scale-factor is negative and therefore filler zeros appear between
the last significant digit and the decimal point. The storage unit accommodates
an integer with magnitude less than one million to the nearest hundred.

FIXED BINARY STORAGE UNITS

A ‘fixed binary’ storage unit can be declared with the same variety of
precisions as were just illustrated for the ‘fixed decimal’ storage units. 1In
practice, however, a ‘fixed binary’ storage unit is rarely used with a
scale~factor other than zero. Two examples follow.

s 1.1 1
del v1 fixed bin(3); vi [/ 777

The complete data type for this storage unit is ‘real fixed binary
precision(3,0)". The "1’ symbol over a box indicates that it must contain a
binary digit. The ‘b’ at the right end shows that the representation is binary.
The storage unit can accommodate, for example, the value -2; the representation
for that value is “-010.b°.

s 1 1
del v2 fixed bin; ve [T7--(11)==/T] .1
The complete data type is ‘real fixed binary precision(17,0)°. The

parenthesized 17 means that there are seventeen digit positions in the storage
unit. The storage unit accommodates any integer whose magnitude is 1less than
2*¥*17 (which is 131072). It is the recomrended storage unit for most indexes
and subscripts of nonstring data.

3-12 AM83

FLOAT BINARY STORAGE UNITS

A ‘float binary’ storage unit is compatible with the floating-point binary
hardware operations that are part of many computers. Scientific applications
use ‘float binary’ storage units for physical variables. As already stated in
the description of the scale attribute, a ’float binary’ storage unit
accommodates a value of the form:

m* (2%%e)

where m is the mantissa and e is the exponent. The range of a “float binary’
storage unit is determined primarily by the fact that its exponent lies 1in the
range =128 through +127. In Multies, any ‘float binary’ storage unit can
accommodate values whose magnitudes are in the range 10%%¥-38 to 10#%438, Three
examples of ‘float binary’ storage units are given here.

] 1 1 ex
del x1 float bin(8); x1 1:7.1:7-—(8+)--Z:76Z:::E7b

The conplete data type for this storage unit 1is ‘real float binary
precision(8)°. The mantissa is a signed fraction with eight or more digits.
When the representation is written, the exponent 1is written as an
optionally-signed decimal integer, but in the hardware it 1is represented 1in
seven bits. The ‘b° at the end of the representation applies only to the
mantissa. The storage unit can accommodate, for example, the value U4.5; the
representation used for that value is “+.10010000e3b”.

ex
b

s 1 1
del x2 float bin; X2 Z:7-Z:7--(27+)--Z:7e[:::f7

The complete data type for this storage unit is ‘real float binary
precision(27)°. 1In Multics, the mantissa has 27 digits. This data type
(without an explicit precision attribute) is used for most scientific variables.

S 1 1 ex
del x3 float bin(28); x3 Z:7-Z:7--(28+)-—[:7e[:::f7b

The complete data type for this storage unit is ‘real float binary
precision(28) .

FLOAT DECIMAL STORAGE UNITS

A ‘float decimal” storage unit is used only under exceptional
circumstances. It can be wused to get more precision than is available from
“float binary’ since 59 decimal digits of precision is equivalent to about 196
binary digits of precision. It can also be used to avoid binary representation,
but the operations on ‘float decimal’ values are so much more expensive than
those on “float binary’ values that this course is seldom followed. A ‘float
decimal’ storage unit accommodates a value of the form:

m * (10%%g)
where m is the mantissa and e is the exponent. Any °‘float decimal’ storage unit

can accommodate values whose magnitudes are in the range 10%*127 to 10%*-69.
One example is given here.

3-13 AM83

S ex
del y1 float dec(59); y1 1:2%7--(59)—-1%7-91:::57

The complete storage type for this storage unit 1is ‘real float decimal
precision(59) . The mantissa is a signed decimal integer with 59 digits. This
storage unit has greater precision and range than any other in PL/I. It
occupies 16 words of a Multics segment.

COMPLEX STORAGE UNITS

A ‘complex’ storage unit can have any scale, base, or precision attributes.
In practice, however, it 1is always used with the “float binary’ attributes.
Since a complex number is a pair of real numbers, a ‘complex’ storage unit is
formed by placing two ‘real’ storage units together and marking the second as
the imaginary part by suffixing an “i” to it. An example is:

decl z1 complex float bin;

S 1 1 ex S 1 1 ex
21 LT LT =218y o=l Tl T LT [T (2T ==L Tl T

Everything through the first ‘b’ represents the real part of the storage unit
and the remainder is the imaginary part.

Guidelines for Using Arithmetic Data Types

The choice of data types for the numeric variables is a major part of the
design of a program. The first choice that has to be made 1is between the
arithmetic storage types, Jjust described, and the pictured storage types,
described later in this section. The arithmetic storage types can be operated
on efficiently but require conversions when input/output is performed; they are
appropriate when calculations are relatively complicated, as in scientific
programming, or when the packing of data is important, as in system programming.
The pictured storage types are appropriate when a major consideration is the
format of input and output, as in business programming.

Once the general decision has been made, other details must be decided.
For an arithmetic storage wunit, the mode, scale, base, and precision must be
selected. These selections effect the range of the input data accepted by the
program, the accuracy of the results developed by the program, the convenience
of writing and debugging the program, and the cost of executing the program.
The questions of range and accuracy depend on the mathematical analysis of the
algorithm being programmed. The questions of convenience and cost depend on the
human and mechanical factors of the programming system. Guidelines for the
choice of the attributes of an arithmetic storage unit are given here.

CHOICE OF MODE

The choice of mode 1is entirely a question of range. Within a given
scientific program, the requirement for a ‘complex’ mode attribute is determined
by the mathematical formulation of the given program. Except for scientific
applications, the mode is usually ‘real’; and since the default mode is ‘real”,
most programs never make explicit use of a mode attribute.

3-14 AM83

CHOICE OF SCALE AND BASE

The choice of the scale attribute is a choice between the efficiency of the
fixed-point operations and the wide range of floating-point arithmetic. - The
choice of the base attribute is a choice between the efficiency of binary
operations and the convenient familiarity of decimal representation. The
following rules contribute to the selection of the scale and base for a
particular storage unit:

1. When a storage unit is used for an exact integer that remains in a
reasonable range, it should be “fixed binary’. This rule applies to
subscripts, indexes, and counters.

2. When a storage unit is used for a noninteger quantity that must be
approximated with care, it should be ‘fixed decimal’. An example is a
dollars-and-cents quantity.

3. When a storage unit is wused for a quantity that is inherently
approximate, it should be ‘float binary’; however, if an exceptional
requirement for precision exists, the storage unit should be ‘“float
decimal’. Most physical quantities, such as weight, length, speed,
and so on, should be ‘float binary’ or ‘float decimal’.

In some business applications, it is convenient to use the “decimal’ base for
all storage units. This avoids the mixing of ’‘decimal’ and ‘binary’ values;
but it may significantly increase a programs execution time.

CHOICE OF PRECISION

The precision attribute gives the number-of-digits for every arithmetic
storage unit and gives the scale-factor for “fixed” storage units. The choice
of precision for “float’ variables is usually easy because there is no danger of
overflow and a detailed analysis of the accuracy of the calculation 1is often
impossible. The choice of precision for a “fixed” variable is much more
difficult because of the danger of overflow and the possibility that significant
digits will be lost. Some form of analysis is usually required for the choice
of precision for a “fixed’ variable.

The defaults for the number-of-digits depend on a given implementation of
PL/I and can vary from one computer to another. Consider a ’fixed” variable
that is used as a counter. If an analysis has shown that the variable will
never require more than 10 binary digits, then it should be declared
‘fixed(10)°. 1If, on the other hand, a less precise analysis has determined that
a "fairly large" capacity will suffice, then it should be declared ‘fixed’. In
the first case, the programmer makes a specific assertion about the use of the
variable; in the second case, the programmer gives the compiler latitude to
select an efficient representation for the given hardware.

The arrays and strings of Multiecs PL/I are unusually large. An array can
have up to 2%%24 elements and a string can have up to 2%*24 bits. When arrays
and strings that are very large are used, it is necessary to use ‘fixed(24)”
variables for subscripts rather than ‘fixed’ variables since the latter provide
cnly 17 binary digits.

When a large counter is required, the number of digits should be kept less
than 35 if possible. Although a “fixed(35)° variable occupies only one word of
Multics memory, operations on the variable tend to get into double precision.
Thus “fixed(30)° would be a better choice.

3-15 AM83

ORDINARY STRING STORAGE

A string storage unit is either ordinary or pictured. The differences
between the two kinds of string storage are more important than their
similarities, so they are described separately. Ordinary string storage,
described here, is primarily used for text of a general nature, such as column
headings, error messages, or complete documents. Pictured string storage,
described later, is primarily used for numeric values that are represented as
character strings.

Ordinary String Data Types

The complete data type for an ordinary string storage unit is given by a
sequence of two string attributes. These attributes are the string-type and the
variability, as described in the following paragraphs.

STRING-TYPE ATTRIBUTE

The string-type attribute has one of the following forms:
character(ml)
bit(ml)

where ml is the maximum-length of the string. The maximum length mnmust be an
extent: that is, it must have the form:

exp
exp refer (ref)

*

where exp 1is an expression and ref is a reference. The first form is used in
most cases; it must yield a value that can be converted to a “fixed binary(24)°
value. The second two forms are described in Sections VII and XII, "Storage
Management" and "Procedure Invocation", respectively.

A storage unit declared ‘character(ml)’ can accommodate a sequence of n
ASCII characters, where n is the value of ml at the time the storage unit is
allocated. Similarly, a storage unit declared ‘bit(ml)’ can accommodate a
sequence of n bits, where n is the value of ml at the time the storage unit is
allocated. A bit is one of the characters ‘0" or “1°.

The value of the maximum-length can range from zero to a very large number.
If it is zero, then the only value the storage unit can hold is the null string.
The maximum-length must be chosen so that the resulting storage unit fits into
the Multics segment in which it begins. If the string begins near the end of
the segment, this restriction is important; but that happens only when other
large storage wunits are 1in use. If the string begins at the beginning of a
segnent and is ‘nonvarying’, then the maximum-length can be as large as U4*2%%18
for a character string or 36%2%*18 for a bit string.

3-16 AM83

VARIABILITY ATTRIBUTE

The variability attribute is one of the following keywords:

nonvarying
varying

An ordinary string storage unit with the ‘nonvarying’ attribute can accommodate
a string of only one length: the maximum length specified in the string-type
attribute. When a shorter string is assigned to a “nonvarying’ storage unit,
blanks or zeros (for a character or bit string, respectively) are added to the
right end of the string until it has the required maximum length. An ordinary
string unit with the ‘varying’ attribute can accommodate a string of any length
from =zero up to and including the maximum length given in the string-type
attribute.

ABBREVIATIONS AND DEFAULTS

The following abbreviations are accepted for the keywords used in ordinary
string attributes:

Keyword Abbreviation
character char
varying var

The use of the abbreviation ‘var’ for ‘varying’ is not recommended.

The defaults for the string attributes are:

Omitted Item Default
variability attribute nonvarying
maximum-length 1

Some examples of the abplication of these rules are:

Complete Data Type Recommended Form
character(n+1) varying char(n+1) varying
character(1) nonvarying char(1)
bit(1) nonvarying bit (1)

The last case is especially useful because a one-bit string is used as a Boolean
value in PL/I.

3-17 AM83

Examples of Ordinary String Storage

As an example of the use of an ordinary string storage unit, consider the
following program:

P: proc;
del beta char(15);
beta = "John Q. Smith";
end;

The storage unit for ‘beta’ can be diagrammed as:

char(15)
beta / "John Q. Smith " /

Because the variable is ‘nonvarying’ by default, two blanks are added at the
right end of the assigned character string to make it 15 characters long.

A data frame can be used for an ordinary string storage unit. For the
variable ‘beta’, just discussed, the resulting diagram is:

X X X XXX X X X XX X X X
beta "/J/o/h/n/ 7Q7.7 7S7m7i7t7h7 /

The diagram has 15 boxes, one for each character in the stored string. The X
over each box indicates that the box can hold any ASCII character.

CHARACTER STORAGE UNITS

Two examples of ‘character’ storage units are given here; one is
4 . . ’ . . ’
nonvarying’ and the other is ‘varying’.

X X
del s1 char(80); s1 "/ /--(80)-=/ /"

The complete data type for this storage unit is ’‘character(80) nonvarying’. The
storage unit accommodates a character string that is exactly eighty characters
long; it could be used, for example, to store the contents of an eighty-column
card.

cnt X X X X X X
del s2 char(6) varying; s2 [3 /"/s/a/m/&lw/2]"
The complete data type 1is ‘character(6) varying’. The storage unit can
accommodate any character string that has from zero to six characters. The
storage unit is shown with a value in it; that value is "Sam". The ‘ent’ box
gives the current length of the string in the storage unit; the current length
is filled in each time a new value is assigned to the storage unit. The last

three character positions in the storage unit contain characters which,
presumably, are left from previous values of the storage unit.

3-18 AM83

BIT STORAGE UNITS

The ‘bit’ storage units are defined 1in the same general way as the
‘character’ storage units. In practice, however, ‘bit " storage units are used
in rather specialized ways. Two examples are given here.

1
del t1 bit; t1 "/ /"o
The complete data type is ‘bit(1) nonvarying’. The storage type is used when a
Boolean variable is required. It can have only two values, and these are
interpreted as follows:
"1"b means "true"

"o"b means "false"

Such values are used in ‘if’ statements, 1loops, and other statements that
control program flow.

11111
del t2 bit(5); t2 " " b

The complete data type is ‘bit(5) nonvarying’. The storage type could be used
to hold five flags, each of which represented the truth or falsity of some
position. Such bit strings are especially useful in programs for process
control.

Guidelines for Using Ordinary String Data Types

A ‘character’ storage unit can be used in a general way: it is useful for
holding a single character, for holding a proper name or a short phrase, or for
holding a document of considerable size. Further, both the ‘varying® and the
‘nonvarying’” ‘character’ storage unit are useful. In contrast, a ‘bit® storage
unit is specialized: it is usually just one bit in 1length and it is almost
always ‘nonvarying’.

As the diagrams given in the examples suggest, the amount of storage
required for a string depends on the maximum-length, not on the current length.
Thus a ‘character(1000) varying® storage unit occupies the same amount of
storage (251 words) regardless of whether it contains a string value of 1length
one or 1000.

A ‘nonvarying’ string is handled somewhat more efficiently than a ‘varying’
string. Specifically, a ‘varying’ string requires an extra Hultics word to keep
the current-length counter in and the code for accessing the storage unit is
more complicated. Therefore, when efficiency is the only consideration, a
‘nonvarying’ string should be used.

Often the choice of the variability attribute is determined by the nature
of the data. For example, consider the storage for a textbook that 1is being
edited. An individual line might be kept in a ‘nonvarying’ string storage unit,
since lines are of constant length. On the other hand, an individual word drawn
from the text might be stored in a “varying’ storage unit.

3-19 AM83

PICTURED STRING STORAGE

Pictured-string storage units offer an almost complete alternative to
arithmetic and ordinary storage units; that is, many useful programs are written
in a natural and convenient way using only pictured storage units. Pictured
storage 1is most often wused in business applications, but it can be used very
effectively elsewhere.

The pictured storage unit eliminates the use of a special representation
for numbers inside the computer; it uses the same representation inside that
people use on the outside on cards and listings. The representation is a
sequence of characters arranged in a special way: decimal digits, a decimal
point, a properly placed sign, and so on. When pictured storage is used,
input/output does not involve a conversion between an encoded internal
representation and the external text; instead, it simply requires the
transmission of a character string.

A pictured storage unit is thought of as having two values. When it is
referenced in a context that requires a character string (as in an output
statement), then its value is a character string. When it is referenced in a
context that requires an arithmetic value (as in a calculation), then its value
is an arithmetic value.

The use of a character string to store a numeric value is less efficient
than the use of a specially encoded sequence of bits. However, some efficiency
can be achieved if the exact form of the character string in a given storage
unit is known to the compiler. The purpose of the "picture" that is given in
the declaration of a pictured Storage unit is to establish the exact form of the
string accommodated by the storage unit. As an example, consider the following
declaration:

dcl omega picture"s999";

This declaration asserts that the storage unit designated by ‘omega’ will
accommodate a string of four characters. It also specifies that the first
character will be a sign and the remaining characters will be decimal digits.
This allows the compiler to conclude that the value of ‘omega’ can always be
interpreted either as a character-string value of data type ‘char(l)’ or as an
arithmetic value of data type ‘real fixed decimal(3)’.

Pictured Data Types

The complete data type for a pictured storage unit is a picture attribute
followed by an optional mode attribute. These attributes are described in the
following paragraphs.

3-20 AM83

J,

o pr—

PICTURE ATTRIBUTE

The picture attribute has the form:

picture'p"

where p is the picture. The picture 1is a sequence of indicators, each
optionally preceded by a replicator. A replicator is a parenthesized, unsigned,
decimal integer constant. An example of a picture attribute is:

picture"(4)9v.99db"
in this example, the picture is:

$(4)3$9v.99db

The replicator “(4)° means that the following indicator is treated as if it
appeared four times. Thus the equivalent picture attribute is:

picture"$$$$$9v.99db"
The picture contains five different indicators, as follows:
3 9 v . db

Each indicator has a special interpretation, and the order in which the
indicators are given 1is significant. A full description of the permitted
pictures and their interpretations is given later.

Classification of Indicators

A complete list. of the indicators follows. The indicators are classified
under functional headings, and these same headings are used later in this
section when the individual indicators are fully defined.

Classification Indicators

no-suppression digit indicator
decimal-point indicator

sign indicators

dollar indicator

zero-suppression digit indicators
drifting-sign digit indicators
drifting-dollar digit indicator
insertion-character indicator
arithmetic decimal-point indicator
fixed-point scale-factor indicator
floating-point indicators
floating-point scale-factor indicator
nonnumeric indicators

er db

+
]

*
<

~~
=
PR - +
~N]
o

OO < e FDNSBN SO
~~
=

X
In the scale-factor indicators, n 1is an optionally-signed decimal integer

constant. The following distinctions apply:

) The “9° indicator is a no-suppression digit indicator if it appears in
a numeric picture; otherwise, it is a nonnumeric indicator and the
interpretation is slightly different.

3-21 AM83

’

° The ‘s’ indicator is a sign indicator if it is the first s’ in a
fixed-point picture, a mantissa picture, or an exponent picture;

otherwise, it is a drifting-sign digit indicator. Parallel
considerations apply to the classification of “+7, =7, and “$°.
° The “f(n) indicator is a floating-point scale-factor indicator if it

appears in a picture with a floating-point indicator; otherwise, it
is a fixed-point scale-factor indicator.

Observe that eight of the indicators are digit indicators, as follows:
9 z * y s + - ¢

where some of these are digit indicators only in certain contexts, as just
noted.

Classification of Pictures

It is useful to classify pictures in the following way:

° A picture is non-numeric if it contains either of the following
indicatorc:
a x

Otherwise, the picture is numeric.

() A numeric picture is floating-point if it contains either of the
following indicators:

e k

Otherwise, the picture is fixed-point.

Examples are:

Picture Attribute Classification
"99a999" nonnumeric

"999999" numeric

"$9v.99cr" numeric
"s9v.999999es999" floating-point numeric
"sv.999999ks99" floating-point numeric
"s9v.999999" fixed-point numeric

3-22 AM83

MODE ATTRIBUTE

The mode attribute is one of the following keywords:

real
complex

This attribute is the same as the mode attribute for arithmetic storage units.
It is used only with a picture attribute that is numeric (that is, that does not
have an ‘a’ or °x’ indicator). When the ‘real’ attribute is used, the picture
remains as it 1is given; when the ‘complex’ attribute is used, the picture is
doubled to provide for the real and imaginary parts of a complex value. For
example, the data type:

picture"s999" complex
describes a storage unit that has eight character positions, the first four of

which accommodate a signed, three-digit value for the real part and the second
four of which accommodate a signed, three-digit value for the complex part.

ABBREVIATIONS AND DEFAULTS

The following abbreviations are accepted for the keywords used in the
pictured string attributes:

Keyword Abbreviation
picture pic
complex cplx (not recommended)

A default convention for the numeric pictured string data type is:

Omitted Item Default

mode attribute real

Interpreting Pictured Storage

The interpretation of a storage unit determines the way in which a value is
assigned to the storage unit and later fetched. The operations of assignment
and fetch do not include data type conversions that are necessary to adjust the
value of the storage unit to 1its context; the conversions are separate
operations, discussed in Section IV, "Value Conversion." The operations of
assignment and fetch are very simple for arithmetic storage units and
ordinary-string storage units, and require little comment. However, a pictured
storage unit has two interpretations, depending on the context in which it is
used: it can be interpreted as a character-string storage unit or an arithmetic
storage unit. Complications arise 1in keeping these two interpretations
consistent with one another.

3-23 AM83

CHARACTER-STRING INTERPRETATION OF PICTURED STORAGE

The' character-string interpretation of a pictured storage wunit requires a
definition of a related character-string data type. Once the related type 1is

de;ermined, the arithmetic operations for assignment and fetching can be
defined.

Related Character Types

The related character type for a pictured storage unit is defined as:

character(i) nonvarying

where i is obtained by counting all the characters in the picture except for
those that appear in the following indicators:

\' the arithmetic decimal-point indicator
k the nonprinting floating-point indicator
f(n) the scale-factor indicator
These indicators are defined later; they are not counted because they contribute
only to the arithmetic interpretation of a pictured storage unit.
As an example of the determination of the related character type, consider
the picture attribute:
pie"s999v.99f(-12)"
This picture attribute has the related character type:
character(7) nonvarying
The length “7° is determined by counting the four characters “s999°, ignoring
the 1indicator ‘v”, counting the three characters .99°, and ignoring the
indicator “f(-12)°.
The following is an example of a nonnumeric picture attribute:
pic"aaxx9"
This picture attribute has the related character type:

character(5) nonvarying

The length 5" is determined by counting all the characters between the quote
characters.

3-24 AM83

~/

The data frame diagram for a pictured storage unit closely resembles 'that
for a nonvarying character string. For the first example of a picture attribute
just given, the data frame 1is:

s 999 v.99 f(-12)
piec "/ [/ /[/"

For the second example of a picture attribute the data frame is:

a a X X
pic " "

Observe that each data frame has a character position for each indicator that is
counted in the determination of the related character type for the picture.

Character-String Assignments

The character-string assignment operation occurs when any value is assigned
to a nonnumeric pictured storage unit. Before the character-string assignment
operation begins, the given value is converted to the related character-string
data type for the pictured storage unit. The conversion operation is not part
of the assignment operation, and 1is covered later, in Section IV, "Value
Conversion."

Because of the way the related character-string data type is determined,
the converted character-string value has exactly the number of characters that
are required by the picture. Each character in the converted character-string
value is checked against the corresponding indicator. If a character does not
satisfy the requirements of the indicator, the “conversion’ condition occurs.
The ‘conversion’ condition is described 1later, in Section Iv, "Value
Conversion."

As an example of the assignment of a character-string value to a pictured
storage unit, suppose the variable ‘x° has been declared as follows:

del x pic"xx99999";

and suppose the following assignment statement is executed:
x = "0023.15";

The related character-string data type for the given picture is:
char(7)

The character string constant in the assignment statement already has exactly
this data type, so no preliminary conversion is necessary. The assignment
operation can begin. The picture is examined from left to right, and each
indicator is checked against the corresponding character. The “conversion’
condition occurs on the fifth indicator; it is a “9°, which specifies a digit
and the corresponding character is a period. Therefore the assignment cannot be
made.

3-25 AM83

Character-String Fetches

_ The character-string fetch operation occurs when the value of a nuneric
pictured storage unit is fetched in a context that requires a character-string
value or when the value of a nonnumeric pictured storage unit is fetched in any
context.

The character-string fetch operation provides a value whose data type is
the related character-string data type for the picture. It can never be invalid
or cause a condition to occur.

ARITHMETIC INTERPRETATION OF PICTURED STORAGE

The arithmetic interpretation of a pictured storage wunit requires the
definition of a related arithmetic data type. Once the vrelated type is
determined, the arithmetic operations for assignment and fetching can be
defined.

Related Arithmetic Data Types

The related arithmetic data type for a given picture attribute has one of
the forms:

fixed decimal(p,q)
float decimal(p)

where p and g are determined from the given picture attribute. The first forn
is wused for a fixed-point picture and the second, for a floating-point picture.

For a fixed-point picture, the related precision attribute is determined as
follows:

p is the number of digit indicators in the entire picture.

q is the number of digit indicators to the right of the ‘v’ indicator
ninus the value given by the scale-factor indicator. If there is no
‘v’ indicator in the picture, it is assumed to be at the right end of
the picture. If there is no scale-factor indicator in the picture, it

is assumed to be “f£(0)°.
As an example, consider the picture attribute:

pic"s999v.99f(-2)"
This picture has the related arithmetic data type:

fixed decimal(5,U4)
The value p=5 was obtained by ignoring the “s” indicator, counting the three ‘9’
indicators, ignoring the “v.’ indicators, counting the two ‘9 indicators and
ignoring the scale-factor indicator. The value q=4 was obtained by counting the

two ‘9”7 indicators after the v’ indicator and then subtracting the value given
by the scale-factor indicator, “-27.

3-26 AM83

For a floating-point picture, the related precision attribute is determined
as follows:

p _is the number of digit indicators in the mantissa of the picture; that

is, before the ‘e’ or 'k’ indicator.

As an example, consider the picture attribute:
pic"s9v.9999es99"

This picture has the related arithmetic data type:
float decimal(5)

The value p=5 was obtained by ignoring the ‘s’ indicator, counting the “9°
indicator, ignoring the “v.’ indicator, counting the four ‘9’ indicators, and
ignoring the ‘e’ indicator and everything after it.

Arithmetic Assignments

The arithmetic assignment operation occurs when any computational value is
assigned to a numeric pictured storage unit. Before the arithmetic assignment
operation begins, the given value is converted to the related arithmetic data
type for the pictured storage unit. During the conversion, a condition may
occur to report that the assigned value is out of range; also, the rightmost
digits may be truncated or rounded off if the related arithmetic data type
cannot accommodate them. The conversion operation is not part of the assignment
operation, and is covered later, in Section IV, "Value Conversion."

Because of the way the related arithmetic data type is determined, the
converted arithmetic value has exactly the number of digits that are required by
the picture. Other parts of the pictured value are determined by the indicators
in the picture, in accordance with the detailed definitions given later in this
section. The result of the assignment operation is a character sequence that is
placed in the pictured storage unit.

A simple example of the assignment of an arithmetic value to a pictured
storage unit follows. Suppose the variable ‘x” has been declared as follows:
del x pic"$99s";
and suppose the following assignment statement is executed:
X = 3;
The related arithmetic data type for the given picture is:
fixed dec(2)

before the assignment operation can begin, the given value must be converted to
the related arithmetic data type; the result is:

+03.

3=-27 AM83

The value is shown in the representation that is used to store a ‘dec(2)’ value.
Now the assignment operation can begin. The picture is examined from left to
right, and each indicator is processed as follows:

1. The first indicator is “$°. This indicator means that a dollar sign
must appear at this point in the character string. Therefore, the
first character is “$°.

2, The second indicator is “9°. This means that a decimal digit must
appear, and the first digit of the converted given value is used.
Therefore the second character is ‘0°.

3. The third indicator is “9°. This means, again, that a decimal digit
must appear, and the second digit of the converted given value is
used. Therefore the third character is “3°.

’

4, The fourth indicator is “s’. This means that the sign nust appear,
and the sign of the converted given value is used. Therefore the

s

fourth character is “+7.

The resulting character sequence is:

$03+

.

and this is the value that is placed in the pictured storage unit named “x°.

Arithmetic Fetches

The arithmetic fetch operation occurs when the value of a numeric pictured
storage unit 1is fetched in a context that requires an arithmetic or bit-string
value. After the fetch is complete, some conversion of the arithmetic result
may be required; but this conversion is not part of the fetch operation.

The arithmetic fetch operation is the inverse of the assignment operation.
That is, if a given arithmetic value is assigned to a pictured storage unit,
then a subsequent fetch operation will obtain exactly the value that was
assigned.

A simple example of the fetching of an arithmetic value from a pictured
storage unit follows. The example is parallel to the example just given, in the
discussion of assignment. Suppose the variable ‘x° has been declared as
follows:

del x pic"$99s";

and suppose that “x° appears in a context that requires an arithmetic value,
such as the expression:

X+1
The related data type for the given picture is
fixed dec(2)

Let the current value of “x° be the character sequence:

$03+

3-28 ' AM83

-

In order to fetch the arithmetic value of the storage unit, the picture is
examined from left to right, and each indicator is interprneted as follows:

1. The first indicator is °“$°. This indicator makes no contribution to

the arithmetic interpretation and is ignored.

2. The second indicator is “9°. This indicator contributes a digit to

the arithmetic interpretation. Therefore,

arithmetic interpretation is “0°.

the first digit of the

3. The third indicator is ‘9°. This indicator also contributes a digit

to the arithmetic interpretat%on, therefore,
arithmetic interpretation is “3°.

the second digit of the

4, The fourth indicator is “s’. This indicator contributes the sign for
the arithmetic interpretation. Therefore, the|sign of the arithmetic

interpretation is “+°.
The resulting arithmetic value is:

+03.

which is the correct representation for a “fixed dec(2)’

Fixed-Point Pictures

value.

There are many kinds of fixed-point pictures. However, any fixed-point

picture can be constructed in three steps, as follows:

1. Start with a sequence of one or more ‘97

indicators. (The ‘9°

indicator is called the no-suppression digit indicator, and means that

a digit must
character-string value.)

2. Optionally, insert any decimal-point,

appear in the corresponding position of the

sign, dollar, or

insertion-character indicators. Certain restrigtions on the way these
indicators are used must be observed; for example, a dollar indicator
must be at the beginning or end of the sequence, not between two ‘9’

indicators.

3. Optionally, choose a zero-suppression,

drifting-sign, or

drifting-dollar indicator and, proceeding from left to right, replace
one or more of the “9° indicators in the picture. Restrictions on the

choice of the new indicator must be observed;

for example, a drifting

dollar indicator can be used only if the leftmost “9° is immediately

preceded by a dollar indicator.

These three steps could be carried out with pencil and

paper as an exercise;

however, they are presented here as a convenient form of definition for the
fixed-point pictures. The various restrictions mentioned in Steps 2 and 3 are
given later, in the descriptions of each of the indicators.

3-29

AM83

S

) An example of the construction of a picture according to the steps just
given is:

9999
$99v.99
$$3v.99

Here, a sequence of four ‘9° indicators was created by Step 1; than a dollar
indicator and a decimal-point indicator were inserted by Step 2; and finally a
drifting-dollar digit indicator was chosen to replace some leading ‘9°
indicators (two of them). A second example is:

999
999

222

Here, the optional Step 2 was skipped and the “z° zero-suppression indicator was
chosen to replace some leftmost “9° indicators (all three of them).

Once a valid fixed-point picture has been constructed, its interpretation
must be determined; that 1is, the assignment and fetch operations must be
defined. Most of the interpretation can be expressed in terms of the individual
indicators that appear in the picture. However, there is one rule that pertains
to the picture as a whole:

If a 2zero value is assigned to a fixed-point picture that
does not contain a “9° indicator, then the entire character
string becomes a sequence of B (blank) characters (if the
suppression was not by a “*° indicator) or a sequence of ‘¥’
characters (if suppression was by the “*° indicator).

For example, if the picture attribute is:
pic"$zzv.zzs"

and the value is zero, then the character string value is not
"$BB.BB+"

which is the result of suppressing zeros, but rather is

"BBBBBBB"

which is the result of setting all characters to blanks.

NO-SUPPRESSION DIGIT INDICATOR

The most basic of all the indicators is the no-suppression digit indicator,
which is defined as follows:

9 means that a decimal digit must appear in the corresponding position
of the character-string value. 1In the arithmetic interpretation, the
corresponding digit is interpreted as a part of a decimal number.

The name "no-suppression digit indicator" means that this indicator specifies a
digit that is never supressed (replaced by a blank when it is zero).

3-30 AM83

An example of a pictured attribute that uses thel no-suppression digit
indicator is:
Attribute Assigned Char Type and Value Arith Type and Value
pic"999" 180 char(3) "180" fixed dec(3) +180.
2 "oo2" +002.
13.99 "o13" +013.
1000 (undefined) (undefined)
=22 (undefined) (undefined)
For this set of examples, it is assumed that some variable, say ‘x”, has been

declared with the given picture attribute:
del x pic"999";

For

.

X .

each 1line of the example,
For the first line, the assignment is:

X 180;

Each line gives the data type and value for two contexts.
type and value" applies when the variable 1is referenced
requires a character-string value. The entry
applies for any other context; that is, when the variable
context that requires an arithmetic or bit-string value.

The assignment of “2° to the variable shows
three examples illustrate three ways in which a value

modified by assignment to a pictured storage unit:

When the assigned value has more accuracy than
picture (as in the case of 13.99), the low-or
without rounding. Although the absence of
acceptable, this value modification is thought
rather than an error; and no exceptional conditi
assignment is performed.

When the assigned value is too big for the pictu
1000), the value assigned to the storage un
value modification is an error and the ’siz
Usually a “size’” condition terminates program e
from the error is described in Section XIII, "Co

When the assigned value is negative and the pict
sign indicator (as in the case of -22), then the

storage unit is undefined, and the “size’ con
indicate an error. Although the program is in e
not be detected by the Multics PL/I compiler an

may not occur.

3-31

it is assumed that a value

under '

that
preserved in the character string value when ‘9’ indicators are used.

provided

rounding

has been assigned to

The entry under "char
in a context that
arith type and value"
is referenced in a

leading zeros are
The 1last
can be arithmetically

for by the
jer digits are dropped
is not always
of as an approximation
bn occurs when such an

re (as in the case of
it is undefined. This
e’ condition occurs.
xecution, but recovery

ndition Handling."

ure does not have a
value assigned to the
dition should occur to
rror, the error may
d the “size’ condition

AM83

DECIMAL-POINT INDICATOR

. The decimal-point indicator is made up of two characters, and is defined as
ollows:

V. means that if there is no scale-factor in the picture then the decimal
point appears at this position, both in the character-string and the
arithmetic value of the pictured storage unit.

The ‘v.” indicator can appear no more than once and, except for intervening
insertion-character indicators (described later), the indicator must be adjacent
to a digit indicator. For the rare case that there is a scale factor in the

picture, see the definition of the arithmetic decimal-point indicator, given
later. :

An example of a picture that makes use of a decimal-point indicator is:

Attribute Assigned Char Type and Value Arith Type and Value
pic"999v.99" 500.98 char(6) "500.98" fixed dec(5,2) +500.98
16 "016.00" +016.00
0 "000.00" +000.00
6.839 "006.83" +006.83
1500.98 (undefined) (undefined)
-1 (undefined) (undefined)

The last three assignments illustrate again the three kinds of arithmetic value
modification mentioned under "The No-Suppression Digit Indicator". Replicators
could have been used in the picture in any of the following ways:

pie"(3)9v.(2)9" pic"(3)9v.99" pie"999v.(2)9"

A second example of the use of the decimal-point indicator is:

Attribute Assigned Char Type and Value Arith Type and Value
pie"999v." 180 char(4) "180." fixed dec(5) +180.

Here the effect of “v.’ is to make the decimal point in the character string
explicit; it could be omitted without changing the arithmetic value. Compare

this example to the first 1line in the examples for "The No-Suppression
Indicator".

Each of the two characters that make up the decimal-point indicator is, :
itself, an indicator. The ‘v’ is the arithmetic decimal-point indicator and the !
‘.’ is one of the insertion-character indicators. The separate use of ‘v’ and
is rare, but their definitions are included, for completeness, later in this
section.

.

3-32 AM83

~

SIGN INDICATORS

A picture can contain a sign indicator. The sign ind

follows:
s means that a “+” or "=’ nmust appear 1in the <co
position. In the arithmetic interpretation,
‘-’ mean the value is positive or negative, resp
+ means that a "+ or a blank must appear in the ¢

position. In the arithmetic interpretation, th
blank mean the value is positive or negative, re

- means that a blank or a "=’ must appear in the ¢
position. In the arithmetic interpretation,
‘-’ mean the value is positive or negative, resp
cr means that two blanks or
character positions. For the arithmetic
blanks or ‘cr’ mean the value is positive or ne

db means that two blanks or

character positions. For the arithmetic 1in
blanks or ‘db’ means the value is positive or ne
Despite the opposite mnemonic significance of

(debit), both are used to indicate negative aritl

Only one sign indicator can occur in a fixed-point
indicators

s + -

can occur before the first digit indicator in the picture;
is in accord with the common usage of signs.

‘cr’ must appear in the
interpretation,

‘db” must appear in the

picture.

cators are defined as

character
and

responding
he characters “+°
ctively.

rresponding character

characters + or
pectively.

rresponding character

the characters blank or

ctively.

corresponding two
the two
gative, respectively.
corresponding two
terpretation, the two
gative, respectively.
‘er’ (credit) and ‘db"
hmetic values.

of the

Any one

this leading position

Any one of the indicators

s + - c¢cr db
can occur after the last digit indicator; this is in accord with some business
usage.
Examples of the use of a sign indicator at the beginnfing of a picture are:
Attribute Assigned Char Type and Value Arith Type and Value
pic"s99g" 82 char(4) ".082" fixed| dec(3) +082,
0 "+000" +000.
-82 n.Q82" -082.
pic"+999" 82 char(4) ",082" +082.
0 "+000" +000.
-82 "gog82n -082.
pic™-999" 82 char(4) "pog2an fixed| dec(3) +082.
0 "gooo" +000.
-82 n.o8an -082.
Two of these assignments are of particular interest|. The assignment of a
negative value to a variable with a “+° sign indicator gives a blank for the
sign (second picture, third assignment); this is not a |common handling of the
sign, and tHe use of the "+’ indicator is not recommended. In contrast, the
assignment of a number to a variable with the ‘-’ indicator (third picture)

follows the familiar conventions for the sign,
useful alternative to the ‘s’ indicator.

3-33

and the use of

the “=" 1is a

AM83

Examples of the use of a sign indicator at the end of a picture are:

Attribute Assigned Char Type and Value Arith Type and Value
pic"99v.99s" 5 char(6) "05.00+" fixed dec(4,2) +05.00 '
-5 "05.,00-" -05.00
pic"99v.994+" 5 char(6) "05.00+" fixed dec(4,2) +05.00
-5 "05.00B" -05.00
pic"99v.99-" 5 char(6) "05.00B" fixed dec(4,2) +05.00
-5 "05.00-" -05.00
pie"99v.99cr" 5 char(7) "05.00BB" fixed dec(4,2) +05.00
-5 "05.99¢cr" -05.00
pic"99v.99db" 5 char(7) "05.008B" fixed dec(4,2) +05.00
-5 "05.00db" -05.00

As before, the "+’ indicator behaves contrary to familiar conventions. The ‘er’
(credit) and “db” (debit) indicators are designed especially for business
programming and behave in accordance with accounting conventions.

DOLLAR INDICATOR

A picture can contain a dollar indicator, which is defined as follows:

$ means that a “$° must appear in the corresponding position of the
character string value. In the arithmetic interpretation, the
indicator is ignored.

A dollar indicator can occur in either of two ways in a fixed-point picture.

First, it can appear anywhere before the first digit position. Second, it ca

occur anywhere after the last digit position and before a “er’, “db’, “s’, “+7, “f
or ‘-’ indicator (if there is one).

Examples of the use of the dollar indicator are:

Attribute Assigned Char Type and Value Arith Type and Value
pie"$999v.99" 20 char(7) "$020.00" fixed dec(5,2) +020.00
pic"999v.sdb -478 char(7) "478.$db" fixed dec(3) -478.

3-34 AM83

ZERO-SUPPRESSION DIGIT INDICATORS
— A fixed-point picture can contain zero-suppression digit indicators, which
are defined as follows:

Z means that a decimal digit or a blank occurs ([in the corresponding
position of the string value. The blank occurs if the character would
be a leading zero; otherwise, a decimal digit occurs. In the
arithmetic interpretation, a blank that corresponds to the indicator
is interpreted as a zero.

* means that a decimal digit or a '*° occurs jin, the corresponding
position. The definition is parallel to that for "z .

y means that a decimal digit or a blank occurs in the corresponding
position of the string value. The blank occurs if the corresponding
character would be zero (regardless of whether 9r not it would be a
leading zero). In the arithmetic interpretation, a blank that
corresponds to the indicator is interpreted as g zero.

A leading zero is a digit that is a zero, is not preceded by a nonzero digit,
and (less obviously) is to the left of a decimal-point indicator, ‘v.’ or ‘v,
if a decimal-point indicator appears.

Each of these =zero-suppression digit indicator can be used as an
alternative to a no-suppression digit indicator, ‘9", in|a fixed-point picture.
The first two indicators are sgbject to the following restrictions:

) The ‘z° indicators in a picture must not be preceded by any other kind
of digit indicator; similarly, the ‘%’ indicators must not be preceded
by any other kind of digit indicator.

70

° If a “z’ indicator is used to the right of a “v.’~ or ‘v’ indicator,
then all digit indicators in the fixed-point picture must be “z°
indicators. Similarly, if a “*° is used to the| right of a ‘v.” or

v’, then all digit indicators must be ‘#° indipators.
These restrictions can be illustrated by considering the following picture:
pic"s99v.99"
?hg only valid pictures that have the same pattern of digit indicators but use
z’ or "%’ are:
pic"sz9v.99" pic"s¥9v.99"
pic"szzv.99" pichs#**y ., 99o"
pic"szzv.zz" pichs¥#y ¥¥n
o
3-35 AM83

Examples of the suppression of leading zeros by means of the ‘z° indicator

are:

Attribute Assigned Char Type and Value Arith Type and Value

pic"-zzv.zz" -12.18 char(6) "-12,18" fixed dec(4,2) -12.18
-2.18 "-p2.18" -02.18
-0.18 "-PB.18" -00.18
-0.08 "-pB.08" -00.08
-0.00 "BBBBBB" +00.00

pic"-z9v,.99" -0.18 "-$0.18" -00.18
-0.00 "+B0.00" +00.00

Observe that, in the last assignment for the first picture, all of the digits
are suppressed and therefore the entire string value is blank.

Examples of the suppression of leading zeros by means of the “*° indicator

are:
Attribute Assigned Char Type and Value Arith Type and Value
pichg#%y %%n 56.20 char(6) "$56.20" fixed dec(4,2) +56.20
, 0.03 "R _Q3n +00.03
0 EXT YTl +00.00
When the value is not zero, as in the second example, the zeros following the

decimal indicator are not suppressed. When the value is zero, as in the third

example,
asterisks.

all the zeros are suppressed and the entire string is filled with

Examples of the suppression of zeros by means of the ‘y’ indicator are:

Attribute Assigned Char Type and Value Arith Type and Value
pic"99y9ggn qunyy char(5) RRIRIIRIpINY fixed dec(5) +444yy,
4uohy nuupyyn +4un0y,
5 "00BOs5" +00005.
pic"yyy99" 10000 char(5) "1BBOO" +10000.

DRIFTING-SIGN DIGIT INDICATORS

A fixed-point picture can contain drifting-sign digit indicators, which are
defined as follows:

has the same meaning as “z”, except that it indicates that the sign

(“+° or -") nust be moved to the right over a suppressed leading
zZero.

has the same meaning as “z”, except that it indicates that the sign
(‘+” or blank) must be moved to the right over a suppressed leading
zero.

has the same meaning as “z”, except that it indicates that the sign

(blank or ‘-") nust be moved to the right over a suppressed leading
zZero.

3-36 AM83

When a sequence of ‘s’ indicators appears in a picture, the 1ef§most one is
interpreted as a sign indicator and the remaining opes are 1nte?preted as
drifting sign digit indicators. The same interprgtgtlgn s applied tq a
sequence of ‘+ or ‘=’ indicators. Drifting-sign digit indicators are subject

’

to the same restrictions as the “z° zero-suppression indicptor.

Some examples of the use of drifting-sign digit indicjators are:

Attribute Assigned Char Type and Value Arith Type and Value

pic"sss9v.99" -180.39 char(7) "_180.39" fixed dec(5,2) =-180.39
-.39 "BB-0.39" -000.39

pie"-—=-v.-=" -180.39 char(7) "_180.39" fixed dec(5,2) -180.39
-.39 "pBB-.39" -000.39
-.09 "BBB-.09" -000.09
-0 "BYBBBBB" +000.00

The two attributes just given are similar to the following:
pic"szz9v.99"
pic"-zzzv.zz"

The only difference is in the placement of the character | that represents the

sign. When drifting-sign digit indicators are used, the gign character occupies

the position of the rightmost suppressed leading zero. |When the "z’ indicator

is used, the sign character remains at the position specified by the sign
indicator and (in these examples) is the first character.

DRIFTING-DOLLAR DIGIT INDICATOR

A fixed-point picture can contain drifting-dollar digit indicators, defined
as follows:

$ has the same meaning as "z, except that it indicates that the dollar
character must be moved to the right over a suppressed leading zero.

When a sequence of “$° indicators appears in a picture, |the 1leftmost one is
interpreted as a dollar indicator and the remaining ones are interpreted as
drifting-dollar digit indicators. Drifting-dollar digit indicators are subject
to the same restrictions as the "z’ zero suppression indigators.

Some examples of the use of drifting-dollar digit indicators are:

Attribute Assigned Char Type and Value Arith Type and Value

pic"$$$9v.99" 200 char(7) "$200.00" fixed dec(5,2) +200.00
.03 "BB$0.03" +000.03
0 "BB$0.00" +000.00

pic"$$$sv.$$" 200 char(7) "$200.00" fixed dec(5,2) +200.00
.03 "BBB$.03" +003.00
0 "BBBBBBB" +000.00

3-37 AM83

INSERTION-CHARACTER INDICATORS

A picture can contain insertion-character indicators, which are defined as
follows:

neans that a period nmnust appear in the corresponding character
position unless zero suppression applies.

, means that a comma must appear in the corresponding character position
unless zero suppression applies.

/ means that a slash must appear in the corresponding character position
unless zero suppression applies.

b means that a blank must appear in the corresponding character position
unless zero suppression applies. Observe that the indicator is the
letter ‘b’ but it inserts a blank character.

In the arithmetic interpretation of a pictured storage unit, all insertion
characters are ignored. There is no restriction on the way insertion characters
are placed in a picture.

The definitions Jjust given refer to the possibility that zero suppression
applies to an insertion character, and that possibility is now described. An
insertion character is suppressed when it irmmediately follows a suppressed digit
or another suppressed insertion character; however, no suppression occurs to the
right of a “v’ indicator. The effect of suppression is the same as for a digit;
that is, the insertion character is replaced by a “*#’ or a blank, depending on
whether the indicator that caused the neighboring zero suppression was a “*° or
some other indicator.

Some examples of pictures that contain insertion-character indicators
follow:

Attribute Assigned Char Type and Value Arith Type and Value

pic"$9,999v.99" 1529.09 char(9) "$1,529.09" dec(6,2) +1529.09

529.09 "$0,529.09" +0529.09
.09 "$0,000.09" +0000.09
0 "$0,000.00" +0000.00
pie"$z,zzzv.z2" 1529.09 "$1,529.09" +1529.09
529.09 "$BB529.09" +0529.09
.09 "$BBBYYB.09" +0000.09
0 "BBBBBBBBB" +0000.00
pic"$$,8v. $4" 1529.09 "$1,529.09" +1529.09
529.09 "BB$529.09" +0529.09
.09 "BBBBBS.09" +0000.09
0 "BBBBBBBBE" +0000.00

3-38 AM83

Each picture uses two

The examples have the following features:

insertion-character indicators: one ¢

omma and one period.

° Since the only digit indicators in the finst picture are :9'
indicators, no =zero suppression occurs, Singe no zero suppression
occurs, the insertion characters are never suppressed.

° In the second and third pictures, zero suppression occurs. When the
first digit is zero, it is suppressed and, as a result, the comma that
follows is also suppressed.

° The period insertion character is never suppre§sqd because it appears
to the right of the ‘v’ indicator. The “v[indicator stops zero
suppression and therefore also stops suppression of insertion
characters.

° When zero is assigned to the second or third |picture, the entire

character string is suppressed; this occurs be
indicators are zero-suppression indicators.

In this example, the period is discussed as an insertion character;

the discussion of the decimal-point indicator ‘v.”, the pe
be a part of a two-character indicator. These two views a
another, as the discussion of the "Arithmetic
later in this section, will show.

Since there is no restriction on the way insertion-ch

Decimal-Point

rause all of the digit

earlier, in
riod was considered to
re consistent with one
Indicator", given

aracter indicators are

placed in a picture, a considerable variety of effects can be achieved.
Examples are:
Attribute Assigned Char Type and Value Arith Type and Value
piec"99/99/99" 12075 char(8) "01/20/75" dec(p) +012075.
pic”"99.99.99" 12075 char(8) "01.20.75" dec(p) +012075.
p;c"9,999,999" 1234567 char(9) "1,234,567" dec([7) +1234567.
pic"9b999b999" 1234567 char(9) "1B234B567" dec(7) +1234567.
The purpose of the insertion characters is to permit various special notations
for values. Insertion characters should be used conservatively, and tricks
should be avoided.
ARITHMETIC DECIMAL-POINT INDICATOR

A fixed-point picture can contain an arithmetic dec

imal-point indicator,

which is defined as follows:

A\ does not have a corresponding character position
contribute a character to the character st
arithmetic interpretation, the indicator determi
the decimal point.

3-39

not
the
of

thus does
value. In
the position

and
ring
nes

AM83

?he v’ indicator can occur no more than once in a picture and, except for
%ntgrvening insertion-character indicators, it must be adjacent to a digit
indicator. Usually the ‘v° indicator is used in conjunction with the ~.°
insertion-character indicator and the pair is thought of as a single indicator
as described earlier under "The Decimal-Point Indicator".

.The ‘v’ indicator is used separately in order to cause the automatic
scaling of values that are assigned to a pictured storage unit. Examples are:

Attribute Assigned Char Type and Value Arith Type and Value

pic"999vo9" 180.98 char(5) "18098" fixed dec(5,2) +180.98
pie"999.99" 180.98 char(6) "001.80" fixed dec(5,0) +00180.
pie"9.99v9gn 180.98 char(6) "1.8098" fixed dec(5,2) +180.98

In each of these examples, the character string value represents a different
number than the arithmetic value.

SCALE-FACTOR INDICATOR

A fixed-point picture can end with a scale-factor indicator, which is
defined as follows:

f(n) does not have the corresponding character positions and, therefore,
does not affect the related character type of a pictured storage unit.
In the arithmetic interpretation, it adds n to the scale factor
implied by the picture. The arithmetic value of a picture is 10%#%p
times the apparent character string value of the picture.

Some examples of the use of the scale-factor indicator in a fixed-point picture
are:

Attribute Assigned Char Type and Value Arith Type and Value

pic"99v.999f(0)" 23 char(6) "23.000" fixed dec(5,3) +23.000
pic"99v.999f(2)" 700 char(6) "07.000" fixed dec(5,1) +0700.0
pic"99v.999f(-1)" .04 char(6) "00.400" fixed dec(5,4) +0.0400

An interesting feature of these examples is the fact that, for each of the three
examples, the same sequence of digits appear in the character-string value and
the arithmetic value. Once the related arithmetic data type has been correctly
determined, it places the decimal point in the arithmetic value.

3-40 AM83

Floating-Point Pictures

A floating-point picture is composed of a sequence of four parts, as

follows:

1. The mantissa, which can be any fixed-point picture that does not have
a sign indicator after the digit indicators and does not have a dollar
indicator.

2. A floating-point indicator, with ‘e’ or ‘k’, as defined later.

3. The exponent, which is a severely restricted fixed-point picture t@ag
begins with an optional sign indicator and has|from one to three 'z
or ‘9’ digit indicators.

y, An optional scale-factor indicator.

The floating-point indicator distinguishes a floating-point picture; that is,
any picture that contains an ‘e’ or ‘k’ is necessarily a floating-point picture.

Most of the interpretation of a floating-point picture depends on the

interpretation of the fixed-point pictures that are used
exponent. However, there are a few special rules:

° Unless the arithmetic value of the assigned
exponent is chosen so that the first digit
zero.

° Before an arithmetic value is assigned to a pict

does not have enough digits for an exact represe
digits are dropped by rounding. This contrasts
without rounding that is wused for a fixed-po
earlier under "The No-Suppression Indicator".

Examples of the application of these rules are:

Attribute Assigned Char Type and Value Ar
pie"-9v.999es99" char(10) fl
-100 "-1.000e+02"
-.01 "-1.000e-02"
5.0025 "+5.003e+00"

FLOATING-POINT INDICATORS

A floating-point picture must contain one of the foll

e means that an ‘e’ must appear in the correspond
character-string value. In the arithmeti
separates the mantissa and the exponent.

k does not have a corresponding character position

to the character-st
the indicator is equi

contribute a character
arithmetic interpretation,

3-41

3s its mantissa and

value 1is zero, the
of the mantissa is not

ured storage unit that
ntation, the rightmost
with the truncation
int picture, described

ith Type and Value

oat dec(4)
-0001.e+2
-0001.e=2
+5003.e=-3

owing indicators:

ing position of the
c interpretation, it

and thus does not
ring value. In the

,
.

valent to ‘e

AM83

The following examples show the difference between the two kinds of
floating-point indicators:

Attribute Assigned Char Type and Value Arith Type and Value

pic"s9v.9999es99" 15 char(11) float dec(5)
"+1.5000e+01" +00015.e0

pie"s9v.9999ks99" 15 char(10) float dec(5)
"+1.5000+01" +00015.e0

SCALE-FACTOR INDICATOR

A floating-point picture can end with a scale-factor indicator, which is
defined as follows:

f(n) does not have corresponding character positions and therefore does not
affect the related character type of a pictured storage unit. The
arithmetic value of a picture is 10%¥n times the apparent value of the
character string value of the picture.

Some examples of the use of the scale-factor indicator in a floating-point
picture are:

Attribute Assigned Char Type and Value Arith Type and Value
pic"s9v.99es99" 15 char(9) "+1.50e+01" float dec(3) +015.e0
pic"s9v.99es99f(4)" 15 char(9) "+1.50e-03" float dec(3) +015.e0
pie"s9v.99es99f(-3)" 15 char(9) "+1.50e+04" float dec(3) +015.e0

Consider the second example. The arithmetic value “15° 1is assigned to the
storage unit. It must be multiplied by 10%¥%-n to get the character string
representation; then when it is fetched as an arithmetic value and multiplied by
10%¥n its value is the same as it was originally.

Complex Pictures

Pictured storage for a complex value is declared by combining any numeric
picture attribute with the ‘complex’ attribute. The effect of the ‘complex’
attribute is to make the character-string value twice as long as the numeric
picture requires, and to thus provide for the real and imaginary parts. The
resulting character string is different from other PL/I representations of a

’

complex value because it does not have an ‘i’ at the end of the imaginary part.

3-42 AM83

An example of the declaration of a pictured complex storage unit is:

Attributes Assigned
har(20)
pic"s9v.999es99" complex 3-21i char
"4+3.000e+00-2.000e+00"
Arith Type and Nalue
complex float dec(d4)
+0003.e0-0002.€01
Non-numeric Pictures
The design of a nonnumeric picture is much simpler than that of a numeric
picture. The nonnumeric pictures are present so that a programmer can describe
a storage unit that is designed to hold a character string and to have only a
character-string interpretation. A nonnumeric picture is an alternative to the
use of the ‘character’ attribute.
NON-NUMERIC INDICATORS
’ A nonnumeric picture is made up of any number of nonnumeric indicators in
any order; however, at least one ’‘x° or ‘a’ indicator must appear. The
, indicators are defined as follows:
!
| X means any ASCII character can appear in the corresponding character
o position.
a means that a letter (upper or lower case) or a blank nust appear in
the corresponding character position.
9 means that a digit or a blank must appear |in the corresponding
character position.
Observe that in a numeric picture a “9° specifies a digit|only, while here, in a
nonnumeric picture, “9° specifies a digit or a blank.
Some examples of nonnumeric pictures are:
Attribute Assigned Char Type and Value Arith Type and Value
pie"xxxxx" "ab--3" "ab--3" (not| applicable)
pic"aaxx9" "ab--3" "ab--3" (not| applicable)
"BBBBB" "BBBBB"
"Tb--3" (conversion)
The last line shows that an attempt to assign a digit to a position controlled
by an ‘a’ indicator causes the ’‘conversion’ condition to| occur. See Section
XIII, "Condition Handling," later in this manual.
)f\\
3-43 AM83

Guidelines for Pictured Storage

Pictured storage is ideal for programming applications in which the format
and layout of input/output is important and calculations are relatively simple.
Business programs often fit this description. Simple programs for teaching or
one-shot execution also can make good use of pictured storage.

When a 'pictured variable is involved in complicated and repeated arithmetic
calculations, some significant extra costs can accrue. The fetch of the
arithmetic value of a pictured variable can be one or two orders of magnitude
more costly than the fetch of the value of a similar arithmetic variable. 1In
such a situation, there are four options:

° Accept the extra cost and keep the pictured variable. This 1is the
approach often adopted in business programming, where the cost of
input/output overshadows any computational costs.

° Keep the pictured variable, but introduce an arithmetic variable for
use 1in calculation. 1In this case, the pictured variable is used for
input/output, the arithmetic variable is used in calculations, and the
values are assigned back and forth between the two variables when
necessary. This approach is especially useful when input/output is
performed in terms of records, as described later in GSection XV,
"Record Input/Output," rather than in terms of a stream.

° Drop the pictured variable, but use the picture format item 1in
conjunction with edit-directed input/output, as described later in
Section XIV, "Stream Input/Output." This approach is similar to the

previous one, except that the pictured variable is a system temporary
that is controlled by the PL/I processor rather than the program.

° Drop the use of the picture entirely. In this case, input is
controlled by some other mechanism of input/output, usually within the
extensive facilities for stream input/output. This approach is often
used in short scientific programs.

In a large program, all four of these approaches might appear as a result of the
separate consideration of each variable.

ADDRESS STORAGE

PL/I permits an address to be treated as a data value. Although these
values are not subject to calculation in the usual sense, they can be stored,
fetched, compared with one another and, ultimately, used as addresses.

3-44 AM83

Address values are discussed earlier, in Section II,
six types of address values, as follows:

label The address of a statement that can be ¢t
‘goto’ statement

entry The address of a statement that is an entry

format The address of a ’“format’ statement

pointer The address of a storage unit, expressed
address

offset The address of a storage unit, expres
beginning of an area

file The address of a file-state block, which, i

to a Multics file.

"Values." There are

he destination of a

to a procedure

as a full Multies

sed relative to the

n turn, gives access

For each of these types of address value, there is a corresponding type of

storage unit. These storage units are described here.

A label, entry, or format address is a special kind of program address. It
designates not only a certain statement of a program but also a particular
activation of the block in which that statement appears. This feature is
significant only when a program is recursive; it is discuslsed later, in Section

XII, "Procedure Invocation."

Address Attributes

The data type of an address storage unit 1is s
following keywords:

label
entry
format
pointer
offset
file

Sometimes other keywords are used 1in close association

attribute in the declaration of an address variable:

keywords are not a part of the storage type. For example,
decl L1 label local;
decl L2 label;

Here, the storage type of both ‘L1° and ‘L2° is just
local’ is a usage attribute, and is not part of the storas

pecified by one of the

with the data type
however, those other
consider:

1label”. The keyword

ge type; its effect is

described in Section XI, "Program Flow." As a second example, consider:

decl P1 entry(float);

decl P2 entry(char(20), dim(3) fixed) returns(char(20));

Here the storage type of both ‘P1° and ‘P2° is ‘entry’\
declarations is, again, information about the usage of the

3-45

The remainder of the
address variables.

AM83

One of the address data attributes can be abbreviated, as follows:

keyword abbreviation
pointer ptr

Example of Address Storage

As an example, consider the variable ‘start’ whose declaration is:

del start ptr;
The storage type of ‘start’ is
pointer

and its storage can be diagrammed as follows:

X tr
start b

The data frame is shown as a single box, without any division into parts. A
Multics pointer is divided into a segment number, a word offset, and so on; but
these details of structure are irrelevant from the point of view of PL/I.

AREA STORAGE

Area storage is used in connection with the PL/I facilities for storage
nanagement. 1In contrast to all other PL/I variables, a variable storage unit of
type ‘area’ is not used directly to store data; instead, it is a reservoir of
storage that supplies storage for the allocation of other variables. The use of
area storage 1is an advanced and specialized feature of PL/I, and many
applications do not require area storage.

When an ‘area’ variable is defined, the program specifies only the number
of words occupied by the variable. In its initial form, the “area’ variable 1is
empty. As execution of the program proceeds, variables are allocated within the
area, are used, and are eventually freed. At some time after its last use, the
‘area’ variable itself is freed. The allocation and freeing of variables is
discussed in detail later, in Section VII, "Storage Management."

When a variable is allocated within an ‘area’ variable, some words of the
‘area’ variable are occupied by the allocated variable; then, when the variable
is freed, the words become available again. The PL/I processor automatically
keeps data that show which words are occupied at any time; this data is kept in
the ‘area’ variable itself, and thus uses up a portion of the storage occupied
by the “area’ variable. Thus an ‘area’ variable is more than just a block of
storage: it is a complete storage system that is embedded in a larger system.

3-U46 AM83

An important feature of an ‘area’
system of addresses;

an area can be expresse

the Multics addresses
offset addresses relative to the area do not change.
variables is important wherever offset
lists of data objects.

‘area’ Attribute

The data type of an area storage unit has the followin

area(as)

where as is the
have the form:

area size.

exp
exp refer (ref)
*
where exp 1is an expression and ref is a reference. The

most cases; it must yield a value that can be converted to
value. The second two forms are described later, in
"Storage Management" and "Procedure Invocation," respectiv

The value of the area size at the time the area is al
number of words that are allocated for the area. The size
greater than the size of a Multics segment, 2%%#18 words.
not allocated at the beginning of a segment and it must
in the portion of the segment that remains. An ‘area’ v
just like any other variable; details are given later, in
Management."

The capacity of an ‘area’ variable is always somewhat
size; this is because a portion of the storage allocated
is used as the occupation record; that is, the data that s
area are in use and which are free. For example, consider

del A1 area(1000);

the ‘area’ variable “A1° o
Suppose that many variables wit

According to this declaration,
words of Multics storage.

char(40) nonvarying
must be allocated in “A1°7. This character variable

storage; however, it is not possible to allocate 100 suc
because of the storage used by the occupation record.

3-47

variable is th
that is, the address of a variable tha
d as an offset relative to the first
When the contents of one ‘area’ variable is copied into ano
of the variables contained in the
This
variables are u

The area size must be an extent;

ccupies
h the storage type

h

at it defines its own
t is allocated within
word of the area.
ther ‘area’ variable,
area change, but the
feature of ‘area’
sed in forming linked

g form:

that is, it must

first form is used in
a ‘fixed binary(19)°
Sections VII and XII,
ely.

located determines the
of an area cannot be
In general, an area is
be small enough to fit

ariable 1is allocated
Section VII, "3torage
less than the area

for the area variable

how which words of the

the declaration:

exactly 1000

occupies 10 words of
variables in ‘A1’

AM83

Default Rule

The following default rule applies to the ‘area’ attribute:

Omitted item Default
area size 1024

The wuse of this default is not recommended. The area size is an important
parameter, and should be carefully selected and explicitly given.

Example of Area Storage

As an example, consider the following declaration:
del M area(2%n);
Suppose n=4096 when ‘area’ is allocated. Then the storage type of "M’ is:
area(8192)

The area variable occupies 8192 Multics words. As program execution proceeds,
variables can be allocated, used, and freed within "M’. Suppose that, at a
particular time in program execution, three variables with the following storage
types are allocated to "‘M”:

fixed dec(5)
char(6)
float

At this time, ‘M’ can be diagrammed as follows:

1111771717 177777/7777777777777777777777777777777
/1777777777 occupation record /1717177777777
LILLLLILLILILLLL L0100 017001017777

M

S99999
3 LLLL .

L XXXXX
213 w/ 77777 /n

245 L] L T--214)-=/Te/__T7

The number given to the left of each storage unit in the area is the word offset
of the storage unit relative to the beginning of the area. The three variables
shown 1in the diagram do not, of course, exhaust the capacity of the area, which
is 8192 words minus the words used for the occupation record.

3-48 AM83

/\

AGGREGATE STORAGE

A ==

It is often useful to gather together a set of scalar| variables, arrange

them in a sequence, and treat them as a single variable. BHuch a variable is an

aggregate. There are two kinds of aggregate, the structure and the array, and
these types of variables are described here. .

Once aggregates have been introduced, it is necessary to distinguish
between a variable that is contained in another, larger varjiable and one that is
not. A variable that is contained in an aggregate variable| is a minor variable,
and is said to be a component of the aggregate. A variable that is not
contained in another variable is a major variable. Sometimes a major variable
is called a level-one variable; that terminology arose from| the way structures
are declared. Many examples of major and minor variaples are given in "the
discussion that follows.

Structures

A structure variable is a sequence of members. The structure itself has a
name and, in addition, each of the members of the structure has its own name.
When a program operates on the entire structure, the strugture name alone 1is
used as the reference. When a program operates on a member of the structure,
both the structure name and the member name, separated by a period, are used as
the reference. (0Often the member name alone can be used, but that is just an
abbreviation of the complete reference.)

Each member of a structure can have any storage type. For example, a
structure could be declared that has an arithmetic scalar as its first member, a
structure of string variables as its second member, and an array of arithmetic
variables as its third member. An example of such a structure is given in the
following discussion of "Level Numbers".

LEVEL NUMBERS

The structure is the only part of the storage type that is not given by
attributes; instead, it is given in quite a different way by level numbers.
The level number is written just before each name used in the declaration of a
structure, whereas the attributes are written after the name. The level number
of each member of a structure variable must be greater than the level number of
the structure itself; that is how the hierarchy is indicated. It is recommended
that a major variable have level number one, a member of a|major variable have
level number two, a member of a member should have level number three, and so
on, to whatever depth is required.

For purpose of discussion, consider the following declaration of a
structure:

del 01 S1,
02 alpha dec(5),
02 beta,
03 x char(l4),
03 y char(6),
02 gamma(3) float;

3-49 AM83

With the help of the level numbers, ‘017, 702, and ‘03", the PL/I processor can
recognize that this statement is the declaration of nine variables, as follows.
The first variable is designated by:

S1 (designates the major structure variable)

The designators of the three members of °S1° are:

S1.alpha (designates a minor scalar variable)
S1.beta (designates a minor structure variable)
S1.gamna (designates a minor array variable)

The designators of the two members of “S1.beta’ are:

S1.beta.x (designates a minor scalar variable)
S1.beta.y (designates a minor scalar variable)

The designators of the three elements of ‘S1.gamma’ are:

S1.gamma(1) (designates a minor scalar variable)
S1.gamma(2) (designates a minor scalar variable)
S1.gamma(3) (designates a minor scalar variable)

This example shows how a member of a structure can be a scalar, a structure, or
an array. (The use of an array here anticipates the description of arrays that
appears later in this section; however, the array ‘S1.gamma’ is a simple one,
and its treatment should be obvious.)

Two points of programming style arise in connection with the declaration of
structures.

° First, although the PL/I processor relies upon level numbers to
determine the structure, a programmer relies upon the layout of the
declaration. Therefore, the indentation shown in the example

“declare’ statement should be used.
° Second, although the PL/I processor does not require a leading zero on

a level number, the use of such a zero adds emphasis and distinguishes
the level number from a computational constant.

STRUCTURE STORAGE TYPES

The storage type of a structure is obtained from the declaration in three
steps:

1. Omit the name of the structure and the names of its members.

2. Normalize the level numbers.

3. Obtain the storage type of each member, depending on whether the
nember is a scalar, a structure, or an array.

3-50 AM83

The 1levels of a structure are normalized by reducing them until the structure as
a whole has 1level number one, the members of the structure each have level
number two, and so on.

The members of a structure are arranged in storage in|the order in which
they appear in the declaration. Thus the order of the members of the structure
‘S1° is:

S1.alpha
S1.beta
S1.gamma

Similarly, the order of the members of S1.beta is:

S1.beta.x
s1.beta.y

As an example of the determination of the storage type of a structure,
consider ‘Si1.beta’ as declared in the preceding description of level numbers.
The declaration was given as:

02 beta,
03 x char(l4),
03 y char(6)

Omission of the variable names gives:

02,
03 char(4),
03 char(6)

Normalization of the level numbers gives:

01,
02 char(4),
02 char(6)

This is the desired result: the storage type for “Si.beta’l.

EXAMPLES

As a detailed example of storage for a structure, consider once again the
variable °‘S1°, which has been used throughout the discussion of structures. 1Its
declaration is:

del 01 S1,
02 alpha fixed dec(5),
02 beta,
03 x char(4),
03 y char(6),
02 gamma(3) float bin;

3-51 AM83

This statement declares nine variables, and their storage types are as follows:

Designator Storage Type
S1 01, 02 fixed dec(5),
02, 03 char(y),
03 char(6),
02 float bin
S1.alpha fixed dec(5)
S1.beta 01, 02 char(4),
02 char(6)
S1.beta.x char(4)
S1.beta.y char(6)
S1.gamma dim(3) float bin
S1.gamma(1) float bin
S1.gamma(2) float bin
S1.gamma(3) float bin

The storage for “S1° can be diagrammed as follows:

S 99999

S1 .alpha [[/ /77
X XXX

-- .beta.x " "
XXX XXX

....... vy [T T TTTm

S 1 1 ex
—— .gamma(1) 17.17--(27+)--Ue£'7b
S 1 1 ex
........ (2) U.ﬂ--mn--ﬂezpﬂ
S 1 1 ex
________ (3) LT [T 218y T

Thus ‘S1° is made up of six scalar storage units. The arrangement of these
storage units on six separate lines does not imply that they occupy six words of
a Multics segment. The mapping of storage units into segment words is done
according to rules that are given later in this section, when "Alignment" is
discussed. Because unused bits or bytes of storage are sometimes placed between
the storage required for the storage units, the rules are not simple.

3=52 AM83

As a second example, consider the variable ‘account’

del 01 account,
02 nane,
03 last char(30) var,
03 middle char(1),
03 first char(20) var,
03 title char(4) var,
02 number pic™"9999",
02 address,
03 street char(30),
03 loc,
04 city char(20),
04 state char(2),
04 zip pie"99999",
02 balance pic"$,388,$89v.99",
02 credit_limit pic"$,$$3,349v.99";

This example shows how a simple financial record for a men
can be handled. The following observations apply:

° The entire structure of 11 scalar components can
single name, ‘account’. This reference is
example, the structure is written as a record in

° The entire name of the individual who has the ac
to by a single designator, ‘account.name’.
convenient when, for example, a 1list of acco
prepared.

° The title (Mr., Mrs., etc.) and the 1last n
individually by ‘account.name.title” and
reference is convenient when, for example,
must be prepared.

These observations are intended to emphasize the fact th
structure can be handled collectively or separately,
requirements of each operation. A complete descript

structures is given later, in Section VIII, "Expressions."

Arrays

An array variable is a sequence of elements.
name,
list of one or more subscripts. When an array variable
program, general expressions can be given for the subscr

this way, data addresses can be
single array reference can designate different elements at

All elements of a given array have the same storage

type

, declared as follows:

ber of an organization

be referred to by a
convenient when, for
a permanent file.

count can be referred
This reference is
unt holders nust be

“account.name.last’.
the greeting of a

ion of

The variable
and the individual elements are designated by giving the array name and a

ipts,
subscript values are then determined each time the reference is
calculated during program execution,

accessed
This
letter

me can be

t the components of a
according to the
references to

has a single
is referenced in a
and the specific
evaluated. In
and a
different times.

type. That storage

can specify a scalar or structure variable, but not an array variable. In

other words, the storage type of an element of an array can specify any variable

except an array.

3-53

AM83

An array variable is declared by means of a dimension attribute. The
dimension attribute should be inserted Jjust after the name of the variable.
Consider the following declarations:

del n1 float bin;

del 01 m2,
02 a fixed bin,
02 b char(32);

These are declarations of a scalar variable and a structure variable,
respectively. The first can be changed into a declaration of an array of
scalars by the addition of an appropriate ‘dimension’ attribute, and the second
can be changed into an array of structures in the same way; thus:

del m1 dimension(1:20) float bin;
del 01 m2 dimension(1:20),

02 a fixed bin,
02 b char(32);

The discussion of the “dimension’ attribute that follows gives the
interpretation of these declarations and also gives the abbreviations and
defaults that permit them to be written in shorter forms, namely:

del m1(20) float bin;
del 01 m2(20),

02 a fixed bin,
02 b char(32);

‘dimension’ ATTRIBUTE

The ‘dimension’ attribute has the following form:
dimension(bplist)

where bplist is the bound-pair 1list, and is a sequence of one or more
bound-pairs separated by commas. The number of bound-pairs is the
dimensionality of the attribute; it determines how many subscript positions are
associated with the array. For example, consider:

del A dimension(1:8,j-1:2%(n+1)) float;

According to this declaration, °A° has a dimensionality of ¢two

, and 1its
bound-pairs are “1:8° and “j-1:2%(n+1)" .

The purpose of a bound-pair is to specify the range for a given subscript
position. Each bound-pair has the one of the forms:

1b : hb

*

where 1lb and hb are the lower and higher bounds. The second form 1is described
later in Section XII, "Procedure Invocation." The bound-pair specifies that the
subscript has the following sequence of values:

ib, 1b+1, 1b+2, ..., hb

3-54 AM83

Consider, again, the following example:

decl A dimension(1:8,j-1:2%(n+1)) float;

The ‘dimension”’ attribute the

first subscript position:

3, 8

specifies

1, 2, ey
The second bound-pair of “A° depends on variables, and
evaluated when the array variable is allocated or, 1if the
whenever the array variable is referenced. Suppose the var
n=2 at the time of allocation. Then the attribute specifie

for the second subscript position:
3, 6

It follows that the array named “A° is made up of 8%4

4, 5,

32

Each bound in a dimension attribute must be an extent,
following forms:

exp

exp refer (ref)
where exp
most cases;

value.

is an expression and ref is a reference. The
it must yield a value that can be converted to
The second form is described later in Section VII,

ABBREVIATIONS AND DEFAULTS

following rang

e of integers for the

such variables are
variables are based,
*iables are j=4 and
s the following range

elements.

which has one of the

first form is used in
a ‘fixed bary(24)°
"Storage Management."

The keyword ‘dimension’ can be abbreviated in two ways, as follows:

Keyword Abbreviation

dimension dim

dimension (omit the entire keyword ‘dimension’ if it
immediately follows the name of the
variable being declared.)

Since recommended practice is to write the ’‘dimension’ att

variable name, the keyword is wusually onitted. For
declaration:
del C dimension(1:12,-s:1,1:3#¥m-2) fixed;

3-55

ribute just after

the

example, consider the

AM83

This declaration can be abbreviated as follows:

del C(1:12,=-5:1,1:3*%¥m-2) fixed;
there are some circumstances in which the declared name is not given in the
declaration, and then either the abbreviation “dim” must be used or the
dimension must be the first attribute. Consider the following declaration:

dcl P entry(dim(0:5) fixed);
This declaration asserts that ‘P° is the name of a procedure that takes one

argument which must be a one-dimensional array whose subscript runs from zero to
five.

The 1lower bound can be omitted; in that case, its default value is one.
That is, if hb is any valid higher bound, then the bound-pair:
1:hb
can be written as:
hb

By means of this default, the declaration of ‘C° given in the preceding
paragraph can be shortened to:

del C(12,-s:1,3*m-2) fixed;

ARRAY STORAGE TYPES

The bound-pairs of the ‘dimension’ attribute in a storage type are
normalized. A normalized bound-pair is:

1 : hb-1lb+1
where 1lb and hb are the lower and upper bounds of the original, unnormalized,

bound-pair. Observe that normalization of a bound-pair causes the lower extent

to be “1° while leaving the difference between the lower and upper bounds
unchanged.

As examples of the normalization of ‘dimension’ attributes, consider the
arrays ‘D’ and ‘E’, declared as follows:
decl D(5:n+1) float;
decl E(2%i:2%¥i+3) float;

Suppose these arrays are allocated when n=7 and i=-1. Then the dimension
attributes are:

Unnormalized Normalized
din(5:8) dim(1:4)
dim(=-2:1) dim(1:4)

3-56 AM83

The wunnormalized bound-pair determines the designators of the elements of each

variable. The designators are:

D(5) D(6) D(T) D(8)
E(-2) E(-1) E(0) E(1)

The normalized bound-pair determines the storage typ

e of each variable;

therefore, both ‘D’ and “E° have the same storage type, namely:

dim(1:4) float

or, using the default for the lower bound:
dim(4) float

Other examples of normalization are given in the examples

follow the next paragraph.

The elements of an array are arranged in storage i
Given the designators for two elements, the order i
determined by the leftmost subscript for which the elemen
the following declaration:

del B(1:10,0:1,1:3) float;

The order of the elements of ‘B’ in storage is:

“ W W W e e e e e o
L2000 =2 —>2—-2000
“ e e e W W e e e e
SWN—2WN=2WN =
e " e e N e S N N

DWW wmwmww
AN AN AN A A AN AN AN
(NS T NS TN A ST 1O JE N G S T Y

... (and so on for 50 more elements)
Observe that °“B(1,0,1)° precedes °B(1,0,2)° because the fi
the same and “1° comes before “2° Observe that “B(1,1,2

because the designators differ in their first subscript a
27,

EXAMPLES

As a first example of storage for an array, consi
declared as follows:
del A1(0:2) fixed dec(5);
The storage type for “A1° is:

dim(3) fixed dec(5)

3-57

of array storage that

n left major order.
n which they appear is
ts differ. Consider

rst two subscripts are
) ° precedes °“B(2,0,1)°
nd “1° comes before

der the variable “A1°,

AM83

The storage for “A1° can be diagrammed as follows:

S99999
A1 (0) NN NN,

S 99999
- (1) [[T

S 99999
-- (2) LLL LT

Here, as with structures, the components may be separated by unused bits or
bytes of storage, and the amount of unused storage, if any, is determined by
rules given later in this section, when "Alignment" is discussed.

As a second example, consider the following declaration of an array of
structures:

del 01 A2(100),
02 code(2) pie"999",
02 ident char(5);
The storage type for “A2° is:
01 dim(100),
02 dim(2) pic"999",
02 char(5);

The storage for “A2° can be diagrammed as follows:

A2 (1).code(1) pic"ﬁn
---------- o werllE

X X X XX
----- .ident " "

-- (2).code(1) pic"%n
---------- o siolPE

X X XXX
————— .ident " "

(and so on for 98 more elements)

As a third example, suppose an application requires a variable that is
thought of as an array of arrays. Since an array of arrays is not permitted,
the problem must be restated. The usual solution is to express the variable as
a two-dimensional array, thus:

del A3(n,0:2) fixed dec(5);

Suppose n=2 when °“A3° is allocated. Then the storage type is:

dim(2,3) fixed dec(5)

3-58 AMS83

The storage for “A3° can be diagrammed as follows:

S 99999

A3 (1,00 L /LT //
S

""(1’1) /;;;;:;
S99999

-— (1,2 [/ /L)
S 9999

-— (2,00 [/L[// /4/
S

- (291) /;;;;;;
S

- (2,2) /;;;;;;

Observe that the elements of “A3°

As a fourth example consider, once
arrays.
an alternative, as given by the following declaration:

decl 01 A4(n),
02 x(0:2) fixed dec(5);

are arranged in left ma

again, the pro
The use of a two-dimensional array is the usual

blem
solution, but there is

jor order.

of an array of

This declares an array of structures; each structure has | a single member and
that member is an array of scalars. Suppose, again, n=2 when A4’ is allocated.
Then the storage type is:
01 din(2),
02 dim(3) fixed dec(5)
The storage for “Al4° can be diagrammed as follows:
S 9999 9
Ay (N).x(0) LS/ /T
S 99999
------- (VY LLL LSS
S 9 999 9
------- (2) [L/ /[/)
S 9 9 9 9
- (2).x(0) [/L /1 /[/ /
S 9999 9
------- (VY LL LSS LT
S
------- (2) [7777
Observe the similarity of the storage diagrams for ‘7A3” and “A4°; only the

designators differ.

3-59

AM83

As a fifth and final example, consider the variable “list’, declared as
follows:

del 01 1list,
02 count fixed bin,
02 account(1000),
03 name,
O4 last char(30) varying,
04 middle char(1),
O4 first char(20) varying,
O4 title char(4) varying,
03 number pic"9999",
03 address,
04 street char(30),
04 loc,
05 city char(20),
05 state char(2),
05 zip pic"99999",
03 balance pic"$,$$$,$$pv.o9",
03 credit_balance pic"$,$$$,$$9v.99";

This example picks up from the last example, ‘account’, that was given under
"Structures". The variable ‘list’ provides for a maximum of 1000 accounts and
also provides a variable, ‘list.count’, to record the current number of
accounts. Thus this single variable can provide the complete permanent record
of the financial activity of the organization.

Guidelines for Aggregates

The choice between a structure and an array is based primarily on the
following considerations:

° The data type of the members of a structure can differ from one
another, whereas the elements of an array must all have the same data
type.

° The selection of a member of a structure must be made when the

reference 1is written, whereas the selection of an element of an array
can be performed, by the evaluation of subscript expressions, when the
array reference is evaluated.

Often arrays and structures can be combined to provide a good organization for a
complicated data object.

The most important efficiency consideration for aggregates arises 1in
connection with the bounds in the declaration of an array variable. When an
array is declared with bounds that are all constants, references to the array
may be an order of magnitude less expensive than when bounds are variable. When
the programmer has a choice, he should use constant bounds.

3-60 AM83

When an array with a variable bound appears as a menber of a structure, it
ible. The same guideline applie§
to a ‘character’ or ‘bit’ string with a variable maximum length and to an “area

should appear as late in the structure as poss

with a variable area size. Consider the following exanple:

del 01 men,
02 name(maxcnt) char(30),
02 cnt fixed;

This declaration does not conform to the guideline just given: the array with a

variable bound comes first in the structure.
base address of the structure; that creates no problem. I

A reference to “‘name’ uses the

iowever, a reference to

‘cnt” uses the base address of the structure plus the number of words occupied
by ‘name’. Because ‘name’ has a variable bound, the address of “ent’ cannot be
calculated by the compiler; it must be calculated each time ‘cnt” is referenced
during execution of the program. Now consider the following revision of the

declaration:

del 01 men,
02 cnt fixed bin,
02 name(maxent) char(30);

This declaration does conform to the guideline.

base address of the structure and a reference

ALTIGNMENT

A reference to “cnt’ wuses the

to ‘name’ uses the base address of
the structure plus the amount of storage (one word) occupied by “ent’. Thus the
addresses of both members of the structure can be calculated by the compiler.

At the beginning of this section, it was observed that every variable has a

data type, an aggregate type, and an alignment type.

The data type and the

aggregate type determine the values that can be accommodated by a storage unit.

In contrast, the alignment type affects
hardware storage; it has no effect on the
accommodated by the storage unit. The a
attribute, either ‘aligned” or “unaligned’.

As a simple example of alignment, conside
array of structures:

del 01 cell(4096),
02 type fixed bin(2),
02 cdr fixed bin(14),
02 flags bit(3),
02 car fixed bin(14);

Since no alignment attributes are given for
assumed for the array, for each element of the
each element. The effect 1is that (for thi

occupies one word of Multics storage, each element of the

words, and the entire array occupies 4¥*40
occupies more storage than necessary; however,
accessed efficiently.

3-61

the way a v
types of
lignment tyg

r the folloy

the array,
array, and
s particular

96 words. 1
the content

rariable is laid out in
values that can be
e is given as a single

ying declaration of an

various alignments are

for each member of
» example), each member
array occupies four
[n this form, the array
s of the array can be

AM83

Now consider a slightly different declaration of the same array:

del 01 cell(4096) unaligned,
02 type fixed bin(2),
02 cdr fixed bin(14),
02 flags bit(3),
02 car fixed bin(14);

This array has exactly the same capacity as before, but it is laid out in a
different way. According to the default rules, the ‘unaligned’ attribute given
for “cell’ applies not only to the array but also to the elements and the
members of the elements. As a result (for this example), the four members of
each element are packed into a single word, so the entire array occupies just
4096 words. 1In this form, the array occupies much less storage, but references
to its components are slower.

In most cases, the alignment of variables can be ignored. PL/I has default
conventions for alignment that usually provide satisfactory results. However,
there are two circumstances under which alignment must be considered:

° When the amount of storage occupied by a variable must be controlled,
the alignment attribute is used. A change in alignment can cause a
change of more then an order of magnitude in the storage required for
a variable. In Multics, storage is more abundant than in a system
that does not have virtual memory, but for very large arrays
consideration of alignment can be important.

° When the layout of a variable with respect to the words, bytes, and
bits of storage must be controlled, the alignment attribute is used.
The proper use of alignment attributes can place a member of a
structure 1in any given field of a hardware word. Layout is important
when data is prepared for communication with facilities that are
outside of PL/I.

The following discussion gives the information necessary for the use of the
alignment attribute to control the amount and layout of storage for a variable.
The alignment attribute is first described in a way that is independent of the
Multics implementation of PL/I, and the abbreviations and defaults are given.
Then the specific rules for the layout of a variable in Multics storage are
given.

Alignment Attribute

The alignment attribute is one of the following keywords:

aligned
unaligned

When a variable is ‘aligned”’, its storage is laid out in a way that facilitates
access; that 1is, extra storage is used, where necessary, to permit the use of
fast hardware operations to fetch or store the value of the variable. When a
variable is ‘unaligned’, its storage is laid out in a way that uses relatively
little storage.

3-62 AM83

One way to facilitate access is to line up variables
so that each variable occupies one or more full words; and
the keyword ‘aligned’. One way to minimize the use of st
variable just where the last variable left off, so that
variable crosses word boundaries; and that 1is the
‘unaligned’. The exact effect of the alignment att
particular implementation of PL/I, and no more can be s
implementation-independent way than what is said in the

Later in this section, specific rules for the layout of vay
effe

given for Multics, and these rules include the

attribute.

The alignment attribute is given in a ‘declare’ state
as other attributes; however, the alignment attribute
serves a double purpose. Consider the following examples:

del x(100) bit(1) aligned;
del 01 A(3) unal,

02 m1 dec(5) unal,
02 m2 dec(5) unal;

The alignment attribute on the first line of each of

’

ﬁhes

ith word boundaries
that is the source of
rage is to start each
in some cases, a
ource of the keyword
ibute depends on a
id of alignment in an
previous paragraph.
riables in storage are
2ct of the alignment

ment in the same way

for an array variable

e statements applies

both to an array and to each of its elements. Thus “x° is an ‘aligned’ array,
each of whose -elements is an ‘aligned’” scalar variaple; and ‘A is an
‘unaligned’ array, each of whose elements is an ‘unaligned| structure.

Abbreviations and Defaults

The

abbreviation is:

Keyword Abbreviation
unaligned unal
Now consider the default convention. When the alig

not written explicitly in the declaration of the variable,
in two steps, as follows:

If the variable is contained in an aggregate
explicit alignment attribute, then the variab
attribute from the smallest containing aggregate
alignment attribute.

3-63

alignment attribute has just one abbreviation, b
default convention that permits most alignments to be hand

V|

ut it has an elaborate
led by default. The

nment of a wvariable is
then it is determined

ariable that has an
le takes its alignment
that has an explicit

AM83

2. Otherwise, the variable takes its alignment from the following default

rules:

Storage Type Default

scalar
arithmetic aligned
string unaligned
address aligned
area aligned

aggregate
structure unaligned
array (same as its elements)

The irregularity of the defaults in Step 2 reflects the intention of the
designers of PL/I to provide the best choice for each case. For example, the
use of ‘aligned” arithmetic variables greatly increases the speed of
calculations, whereas ‘unaligned’ string variables can save storage without much
affect on the speed of access.

Some examples of this default convention follow. Consider the declaration:
del x fixed bin;

This declaration has no explicit alignment attribute, so one must be supplied.
Step 1 of the default rule does not apply because ‘x° is not contained in an
aggregate. Step 2 supplies the default ‘aligned”’.

As a second example, consider the following declaration of a structure:

del 01 pair1 unal,
02 i fixed bin,
02 j fixed bin;

Step 1 of the default rule applies for both ‘pair1.i’ and “pairi1.j’. The result
is as if the programmer had written:

del 01 pair1 unal,
02 i fixed bin unal,
02 j fixed bin unal;

As a third example, suppose that ‘pair2” is declared in a similar way, but
with no alignment attribute at all, as follows:

del 01 pair2,
02 i fixed bin,
02 j fixed bin;

Step 1 does not apply. According to Step 2, an equivalent declaration is;

del 01 pair2 unal,
02 i fixed bin aligned,
02 j fixed bin aligned;

Compare this example to the preceding example. Because ‘pair2’ is a structure,
it is ‘unaligned” by default; the two examples are the same in this respect.
But the numbers “i” and “j° are handled differently because the alignment
attribute of ‘pair2’ is not explicit and Step 2 applies rather than Step 1.

3-64 AM83

As a final exanmple, consider the following declaration of a structure,
which is chosen to illustrate a wide variety of defaults:

del 01 S,
02 s1 bit(3),
02 s2(500) aligned,
03 a pie"s99v.99",
03 b char(2) unal,
03 ¢,
04 alpha char(60),
04 beta fixed dec(5) unal,
02 s3 fixed;

The application of Rule 1 supplies some of the required alignment attributes,
with a result that is equivalent to the following declarat|ion:

del 01 S,
02 s1 bit(3),
02 s2(500) aligned,
03 a pic"s99v.99" aligned,
03 b char(2) unal,
03 ¢ aligned,
04 alpha char(60) aligned,
04 beta fixed dec(5) unal,
02 s3 fixed;

The application of Rule 2 completes the default alignments, with a result that
is equivalent to:

del 01 S unal,
02 s1 bit(3) unal,
02 s2(500) aligned,
03 a pie"s99v.99" aligned,
03 b char(60) unal,
03 ¢ aligned,
O4 alpha char(2) aligned,
04 beta fixed dec(5) unal,
02 s3 fixed aligned;

3-65 AM83

Storage Lavout Rules for HMultics

Exact rules for the 1layout of a variable in the 36-bit, UY-byte words of
Multics memory are given here. The rules assume that the starting address of
the wvariable 1is given, and define the layout that starts at that result. Thus
the rules do not specify the relative positions of major variables in storage,
but only the layout of the storage within the variable. The rules are given for
scalar variables, then for structure variables, and finally for array variables.

STORAGE LAYOUT FOR SCALARS

To determine the storage layout for a given scalar variable at a given
address, proceed as follows:

‘1. Begin the layout at the given address.
2. Use Table 3-1 to determine the required boundary for the variable. If

the starting address is not at a boundary of the required type, then
lay out filler storage up to the next boundary of the required type.

3. Use Table 3-1 to determine the minimum storage for the variable. Add
the specified amount of storage to the layout.

y, If the layout does not end at a boundary of the required type (as
determined 1in Step 2), then lay out supplementary storage up to the
next boundary of the required type.

Generally, filler storage is not used in any way; in contrast, supplementary
storage 1is wused in conjunction with the minimum storage to permit a larger and
more convenient representation of the stored value.

3-66 AM83

Boundary and Length for Scalar Variabl

Table 3-1

Required Boundary

Data Type - Minimum
aligned unaligned Storage

real fixed binary(p,q)

1 <p <L 35 word bit (p+1) bits

36 < p £T1 even word bit (p+1) bits
real fixed decimal(p,q) word byte (p+1) bytes
real float binary(p)

1 <p <27 word bit (p+9) bits

28 < p £ 63 even word bit (p+9) bits
real float decimal(p) word byte (p+2) bytes
conplex fixed binary(p,q) even word bit 2% (p+1) bits
complex fixed decimal(p,q) word byte 2%(p+1) bytes
complex float binary(p) even word bit 2% (p+9) bits
complex float decimal(p) word byte 2% (p+2) bytes
character (ml)

nonvarying word byte (ml) bytes

varying word word (ml+4) bytes
bit (ml)

nonvarying word bit (ml) bits

varying word word (ml+36) bits
picture"p" (with related word byte (n) bytes

data type ‘char(n)”)
label even word even word 4 words
entry even word even word 4 words
format even word even word 4 words
pointer # even word bit 36 bits
offset word word 4 words
file even word even word 4 words
area(as) even word even word (as) words
¥ Note: an aligned pointer uses two full words.

3-67

AM83

As the basis for an example of the layout of a scalar variable, consider
the following declaration:

del phi fixed bin;
According to the default rules, this declaration is equivalent to:
del phi real fixed binary(17) aligned;

Suppose the last allocated bit is bit 26 of word 103. Then the rules Jjust given
prescribe the following layout for ‘phi’:

27
103 /177711777
0 18 [///////
104 /1777111717 777/7777
phi phi (supplement)

This layout is determined as follows:

1. The layout begins at bit 27 of word 103.

2. According to Table 3-1, the required boundary for the variable is
word. Since the starting address is not at a word boundary, the
layout begins with one byte of filler storage (fully shaded).

3. The layout continues with the minimum storage for the variable, 18
bits.

y, Since the required boundary is word, the layout concludes with 18 bits
of supplementary storage (half shaded).

The storage available for ‘phi’ is a full word, the minimum plus the supplement,
and the full word is used to contain the value of “phi’. Since this eliminates
masking and shifting operations, it is an important contribution to efficiency
of access.

STORAGE LAYOUT FOR STRUCTURES

To determine the storage layout for a given structure variable at a given
address, proceed as follows:

1. Begin the layout at the given address.

2. Determine the prequired boundary type for the structure as follows:

a. Make a list of the required boundaries for the members of the
structure.

b. If the structure itself is “aligned”, then add the boundary word
to the 1list.

c. Find the boundary on the list that refers to the largest unit of
storage and take that to be the required boundary for the
structure.

If the starting address is not a boundary of the required type, then
lay out filler storage up to the next boundary of storage.

3-68 AM83

3. Continue the layout of the structure by laying out storage for each of
its members.

4, If the required boundary is even word or word and the layout does not
end at a word boundary, then lay out supplementdry storage to the next
word boundary.

As the basis for an example of the layout of a structure variable, consider
the following declaration:

del 01 s,
02 alpha fixed dec(6,2),
02 beta bit(12),
02 gamma char(4);

According to the default rules, this declaration is equivalent to:

del 01 s unal,
02 alpha real fixed decimal(6,2) aligned,
02 beta bit(12) nonvarying unaligned,
02 gamma character(4) nonvarying unaligned;

Suppose the starting address for the structure ‘s’ is word 73. Then the rules
prescribe the following layout for “s”:

0 12 18 27
73
alpha
T4 /1717771477
alpha (cont’d) (suppl)
75 /17777
beta ///// gamma
76 /1717777177777 F77
| gamna (cont “d) (struc suppl)
This layout is determined as follows:
1. The layout begins at bit 0 of word T73.
2. The list of required boundaries for the members of ‘s’ is:
word
bit
byte

the maximal boundary from this list is word. Since the layout begins
on a word boundary, no filler storage is required.

3. The layout continues with the layout of the three members of the
structure. Each 1is laid out according to the |rules for a scalar, as
follows:

alpha The required boundary is word and the minimum storage 1is
seven bytes. The layout ends with one byte of supplementary
storage.

3-69 AM83

beta The required boundary is bit and the minimum storage is 12
bits. No filler or supplementary storage is used.

gamma The required boundary is byte and the minimum storage is 4
bytes. The 1layout begins with six bits of filler storage.
Ho supplementary storage is required at the end.

4, Since the layout of the last member ends in the middle of a word and
the required boundary for the structure is word, the layout of the
structure ends with two bytes of supplementary storage.

The order in which the members of a structure are arranged can have a major
effect on the amount of storage required for the layout of a structure. As an
example, consider:

decl 01 A,
02 i bit,
02 cell,
03 ident char(2),
03 link ptr,
02 x bit;

The layout for ‘A’ requires seven full words, as follows:

0 9 18 27

60 1171771777777 777/777/7777777777777

L L1
61 /111777777777 7777777777777777777777]7
(LI
62 11117717777 7777777
ident LLLLLLLLLLI0 07001
63 /1111777777777 777777777/7777777777777
64 LI

65

(=

link

link (cont’d)
66 1777777777777 77/7/7/777/77777777777777
A (supplementary)

This wasteful 1layout arises from the fact that “link’ is an aligned ’pointer’
and specifies an even word boundary not only for its own storage, but also for
the structure “A.cell’ of which it is a member and for the structure “A° which,
in turn, contains ‘A.cell”’.

Consider the following revision of the declaration of the structure “A°

del 01 4,
02 cell,
03 link ptr,
03 ident char(2),
02 i bit,
02 x bit;

3-70 AM83

In most cases, this change in the ordering of the members
affect at all on the usage of the structure, but the
uses four words instead of seven:

of ‘A’ would have no

result is a layout that

0 9 18 27
60
link
61
link (cont’d)
62 1777177/ 177777777
ident cell (suppl.)
63 /1771771777777 /777777/777777777477
i A (supplementary)
There is still some wasted storage here (“ident’, i, and “x’ could all fit in

’
one word), but elimination of that waste would requir

structure of the variable.
Consider a different revision of the declaration of

del 01 A unal,
02 i bit,
02 cell,
03 ident char(2),
03 1link ptr,
02 x bit;

Because of the addition of the attribute ‘unal” for ‘A7,
words instead of seven:

e a change in the level

the structure “A”7:

the layout wuses two

0 9 18 27
60 /17117777
iy/////// ident link
61
link (cont’d) X
For this version, however, the interpretation of the

value will take more time than for the “aligned’ value.

STORAGE LAYOUT FOR ARRAYS

To determine the storage layout for a given array

address, proceed as follows:

1. Begin the layout at the given address.

2. The required boundary for the array is the same
the array. If the starting address is not a b
type, then lay out filler storage up to the
required type.

3. Continue the layout of the array by laying out
elements.

L, If the last element does not end at the requi

array, then lay out supplementary storage to t
required type.

3-71

value of the “pointer’

variable at a given

as for the elements of
oundary of the required
next boundary of the

storage for each of its

red boundary for the
he next boundary of the

AM83

The alignment attribute of an array is especially important, since it is in
the layout of large arrays that the alignment can have a significant effect on
storage requirements. As a simple illustration, consider the following
declarations:

decl pm1(50,50) bit;
decl pm2(50,50) bit aligned;

The array “pm1° requires 70 words, whereas ‘pm2° requires 2500 words.

For a second example of the layout of an array, consider the following
declaration:

del 01 table(1000),
02 link ptr,
02 cont unal,
03 m bit,
03 n bit,
03 k(3) fixed(5),
03 cnt fixed(15);

The layout for “table” is as follows:

0 9
22
link
23
link (cont’d)
24

n k(1) | k(2) k(3) cnt
25 1///77/777/7/7/7/7/7/77/777/777/77777/7777777
table(1) (supplementary)

26
link
27
link (cont’d)
30

n k(1) 1 k(2) k(3) cent
31 /1111777777777 777777777777777777777
table(2) (supplementary)

(and so on for 998 more elenments)

Observe that an element of “table’ has a required boundary of even word (because
a ‘pointer” variable is a part of each element. However, according to the rules
for 1laying out a structure, an element of “table’ occupies only three words.
Thus there is a word of filler storage between one element and the next. In
accordance with Step 4 of the layout rules for an array, a word of filler
storage follows the three words of the last element. Thus the array occupies
4000 words.

3-72 AM83

SECTION IV

VALUE CONVERSION

In some cases, a value cannot be placed in a storage unit
must be represented in a form specified by the storage typ
This adjustment of a value to a specified representatio
the value. The conversion operation is not necessarily si
that the given value be reinterpreted, approximated, trunc
as unsuitable.

There are many storage types in PL/I; and if conversi
type to any other type, many kinds of conversion are
conversion between any types of computational values, incl
that are not entirely obvious, such as that of an arit
character-string value. On the other hand, PL/I does not
that involve non-computational values; in fact, the only c
allowed is that betweer the two types of locator values,

PL/I allows some conversions of aggregate type. For exam

as it is; instead, it
e of the storage unit.
n is the conversion of
mple; it may require
ated, or even rejected

on is allowed from any
required. PL/I allows
uding some conversions
hmetic value into a
allow most conversions
onversion of this kind

pointer” and ‘offset’.

le, if a scalar value

The storage type consists of an aggregate type 38 well as a data type.

is assigned to an array variable, the value is autom
array value before the assignment.

CONTEXTS THAT FORCE CONVERSION

In PL/I, if a conversion from one storage type to ano
is not explicitly indicated, the conversion 1is implij

tically promoted to an

ther is required but
citly performed. This

implicit conversion makes a program look simpler than it really 1is, by

concealing costly conversion operations, and it has
disadvantages. Certainly any means to shorten a prog
unpleasant surprises can occur when a programmer misund
implicit conversion.

both advantages and
ram 1is welcome, but
erstands the rules for

AM83

The conversion of a value is forced when it is assigned to a storage unit.
The storage unit to which a value is assigned is the target, and the storage
type of the target determines the kind of conversion performed. Sometimes the
target 1is a variable name that has been explicitly declared in the program; in
this case, its storage type is easily determined. 1In other cases, the target is
a temporary storage unit provided by PL/I; and, in this case, the storage type
is determined by special rules. In all cases the storage type of the target
depends on the context of the computation. The ways in which context forces
conversion are described at many places in this manual because they occur in
many features of the language. An informal review of these contexts is given in
the following paragraphs in order to show clearly the role of conversion in
PL/I.

General Contexts

There are a variety of contexts in which an expression is used in a general
way, and 1in these contexts, the storage type of the target is virtually
unrestricted. These contexts are discussed in the following paragraphs.

ASSIGNMENT STATEMENTS

The most fundamental context for conversion is the assignment statement.
For example, the statement:

X =Y

can imply any of the possible conversions of PL/I, depending on the storage type
of the variables ‘x” and ‘y’. The conversion can be a simple matter, as in the
case:

decl x fixed decimal(8,2);
del y fixed decimal(7,2);

X =73

Here, the only difference is that the target has one more high-order digit than
the assigned value; and the conversion is always exact conversion. On the other
hand, the conversion can be quite complicated, as in the case:

del x(2,3) fixed decimal(8,2);
decl y float binary(25);

X =Y

Here the scale attribute must be converted from ‘float’ to “fixed’, the base
attribute from ‘binary’ to “decimal’, the precision attribute from “(25)° to
‘(8,2)°, and, most remarkable, the aggregate type from scalar to that for a
two-dimensional array. Thus a small assignment statement can invoke a 1large
conversion effort. A description of the assignment statement is given in
Section X, "Value Assignment."

42 AM83

~/

ASSIGNMENT-LIKE CONSTRUCTS

\

In several important contexts, an assignment statemen

or less obvious way. For example, the "do” group:
doi=1%to j;
Q(i) = R(i);
end;
is equivalent to:
i= 1
loop: if i< = j
then do;
Q(i) = R(1);
i=1i+ 1;
goto loop;
end;

Thus the example “do’ statement has within it the equivale

statement and, therefore, a conversion occurs if the storp
the same as that of “j°. A full description is given in
Flow."

There are a few other constructs that are closely rel

t is implied in a more

nt of an assignment
age type of “i” is not
Section XI, "Program

ated to the assignment

statement. An “initial® attribute assigns a value |to a variable when the
variable is allocated, as described in Section VII, "Storage Management." A
‘refer’ option, which is wused in the declaration of some “based” variables,
assigns a value to a member of a structure in which t appears when that

structure is allocated, as also described in Section VII
Finally a “get’ statement assigns an input value that 1is
an input variable, as described in Section XIV, "Stream In

ARGUMENTS AND RESULTS

There
procedure.

conversions in connection Wit
consider the following procedure:;

are 1implied

For example,
F3: proc(a) returns(fixed binary(20));

del (a,b) float;

b = a¥#¥3;

return(b);

end;

Suppose this procedure is invoked by the function referen
F3(4.58)

literal
is ‘fixed decimal(3,2)°, and so it must be
assigned to the parameter ‘a’ whose storage type is ’fl
returned value ‘b° is ‘float’, and so it must be conv
being assigned to the temporary storage for the value of
whose storage type is ’“fixed binary(20)°. Thus con
argument and result in this case. A description 1is g
"Procedure Invocation."

The argument of this function reference is the
storage type

~
&

o}

e

t
v
i

4-3

"Storage Management."
character string to
put/Output."

h the invocation of a

onstant “4.58° whose
converted before being
at”. Similarly, the
rted to “float’® before
he function reference
ersion occurs for both
ven in Section XII,

AM83

BUILT-IN FUNCTIONS AND EXPRESSIONS

Just as conversion may be required for the invocation of a
programmer-defined procedure, so also may conversion be required for a built-in
function reference. However, the built-in functions do not restrioct an argument
to a single storage type but rather accept any one of a specified set storage
types. Thus the built-in functions are designed to minimize the need for
conversion of values. Details are given in Sections VIII and IX, "Expressions"
and "Operations," respectively.

There are built-in functions whose purpose is the explicit conversion of a
value from one storage type to another. Consider the following program
fragment:

del s char(10);

del i fixed;

s = char(i,10);
Here the built-in function ‘char’ is used to convert the arithmetic value of ‘i~
to a character string for assignment to ‘s”’. Full details on the built-in
conversion functions are given under "Conversion Operations" in Section IX,
"Operations."

Arithmetic operators are similar to built-in functions in their use of
conversion. Although the operator in an expression may require conversion of
its operands, the requirement is reduced in certain ways. For example, if both
of the variables of the expression “a+b’ are ‘real fixed decimal’, then both
values are used without conversion, even though they may not have the same
‘precision’ attribute. Details are given in Sections VIII and IX, "Expressions"
and "Operations," respectively.

Special Contexts

There are many contexts in which the value of an expression is required for
a special purpose, and in these contexts the value is converted to a specific
storage type. For example, consider the assignment statement:

X(2¥i+k) = 0;
In this statement the expression ‘2%i+k’ appears in a context that requires a
subscript; accordingly, its value is converted to a binary integer. As a second
example, consider the output statement:

put list(alpha);
In this statement, the expression ‘alpha”’ appears in a context that requires a

value that can be placed in the output stream; accordingly, it is converted to a
character string.

T AM33

The distinctive characteristic of a special context |is that the storage

type of

the target is implicit; that is, it is implied by the use to which the

given value is put rather than being given by means of a declaration. In order
to provide an overall view, the special contexts are listed here; they are
classified according to the storage types of the implied targets: integer,

character

INTEGER TARGETS

When
converted

string, bit string, and locator.

a special context requires that the value of a given expression be
to an integer, the target storage type is:

real fixed binary(p,0)

The number-of-digits, p, is always sufficiently large to gccommodate any value
that is valid in the given context. The integer contexts are as follows:

CHARACTER-

When,
converted

The maximum-length expression in a ‘character’ or ‘bit” attribute, as
described in Section III, "Value Storage"

The area-size expression in an ‘area’ attribute, as described in
Section III, "Value Storage"

Each of the array-bound expressions in a ‘dimension” attribute, = as
described in Section III, "Value Storage"

The expression in a “position’ attribute, as described in Section VII,
"Storage Management"

Each replication-factor expression in an ‘initial” attribute, as
described in Section VII, "Storage Management"

Each subscript expression in a subscripted variable reference, as
described in Section VIII, "Expressions"

The expression in a ‘pagesize’ or ‘linesize’” |option in an ‘open’
statement for a ’‘stream’ file, as described in Section XIV, "Stream
Input/Output”

The expression in a “skip’” or ‘line’ option n a ‘get’ or ‘put
statement, as described in Section XIV, "Stream Input/Output"

’

Each expression in a format specification 1ist, as described in
Section XIV, "Stream Input/Output"

The expression in an ‘ignore’ option in a |‘read” statement, as
described in Section XV, "Record Input/Output”

The arguments of some built-in functions (for example, the second and
third arguments of “substr’), as described in Section IX, "Operations"

STRING TARGETS

to a character string, the target storage type

character(ml)

a special context requires that the value oi a given expression be
s:
AM83

The maximum-length, ml, is determined from the storage type of the given
expression. The character-string contexts are as follows:

° The expression in a “title” option, as described in Sections XIV and
XV, "Stream Input/Output" and "Record Input/Output," respectively

° Each expression that supplies an output value in a “put’ statement, as
described in Section XIV, "Stream Input/Output"

° The expression in a “string’ option in a “get’ statement, as described
in Section XIV, "Stream Input/Output"

° The expression in a ‘key’ or ‘keyfrom’ option, as described in Section
XV, "Record Input/Output"

BIT-STRING TARGETS
When a special context requires that the value of a given expression be
converted to a bit string, the target storage type is:
bit(ml)
The maximum length, ml, is determined from the storage type of the given
expression. There are two bit-string contexts, as follows:
° The test expression in an “if” statement, as described in Section XI,

"Program Flow"

' The test expression in a ‘while’ option in a ‘do” statement as
described in Section XI, "Program Flow"

LOCATOR TARGETS
In one special context, the value of an expression must be converted to a
locator target. In this case, the target storage type is:
pointer

and the given expression must already be ‘pointer’ or ‘offset’. The 1locator
context is:

° The locator qualifier expression in a locator qualified reference, as
described in Section VIII, "Expressions"

4-6 AM83

DATA TYPE CONVERSION

Rules for
in the following paragraphs. Arithmetic,
locator targets are considered.

character

are not discussed,
the value to be considered. This omission
pictured-string storage wunit 1is accessed,
arithmetic or ordinary character-string value. Section
gives the relation between a pictured storage unit
character string value.

Pictured strings
reflects

When a conversion is attempted that could be an error
conditions
following rules, but a discussion of their significance is
in this section, under the heading "Conditions for Convers

condition occurs. The occurrence of such

Arithmetic Targets

The rules for converting a scalar computational value

all possible conversions of the data type
stri

either as targe
th
it is always
I

of a scalar are given
ng, bit string, and

ts or as the source of
e fact that when a
considered to have an
II, "Value Storage,"
and its arithmetic or

an appropriate PL/I
are mentioned in the
deferred until 1later
ions".

,

to a given arithmetic

data type follow. This is the most important kind of] conversion because it
includes the conversion from one type of arithmetic value to another. The
conversion is performed in four steps, as follows:
1. Reinterpretation. An arithmetic value 1is obtained from the given
value as follows:

a. If the given value is arithmetic, then ng reinterpretation is
required.

b. If the given value 1is a character-stiring, then it is
reinterpreted as an arithmetic value. The string must have one
of the following forms:

sign arithmetic-constant

sign arithmetic-constant sig arithmetic constant i

null-string
The first form represents a real value, the second a complex
value, and the third a zero real value. The initial sign can be
omitted if it is plus. Arithmetic constiants are defined in
Section VIII, "Expressions". Blanks can |occur in the character
string only before or after the entire value representation, not
within it. If the character string does nqt satisfy all of these
conditions, it cannot be interpreted as an arithmetic value and
the ‘conversion’ condition occurs.

c. If the given value is a bit string then it |is reinterpreted as an

arithmetic value by treating the sequence ¢

representation of a positive
taking the units position.

integer,

4-7

f bits as the binary
with the rightmost bhit

AM83

2. Representation. The value is represented according to the scale and
base attributes of the target data type, but with the mode and
precision required by the value itself. The specific rules are as
follows:

a. The mode is ‘complex’ or ‘real’ depending on whether the value \.‘f
does or does not have an imaginary part. If the value has only
an imaginary part, zero is assumed for the real part.

b. The scale and base are those of the target data type.

c. The precision (number of digits and scale factor) is whatever is
necessary to represent the given value. Some values cannot be
represented exactly, and for such values low-order digits that do
not affect the final result (obtained after the "Approximation"
step) are omitted.

3. Approximation. If necessary, the value is approximated. The
operation depends on the mode, scale, and precision of the target data
type, as follows:

a. A “fixed’ value representation is adjusted to have the number of
fractional digits that is specified by the target precision.
This may require the addition of =zeros at the right or the
truncation of low-order digits. MNo rounding occurs.

b. A ‘float’ value representation is adjusted to have the number of
mantissa digits that is specified by the target precision. This
may require the addition of zeros or the truncation of low-order
digits. Rounding occurs in the case of ‘float’ values.

c. A “complex’ value representation is adjusted to the target mode.
If the target mode is ‘real”’, then this requires the truncation
of the imaginary part of the value representation.

y, Range Check. The magnitude of the value is checked to determine
whether or not it can be accommodated by the target data type. The /
following cases apply:

a. A ‘fixed” value representation is adjusted to have the high-order
digits that are specified by the target precision. This may
require the addition of zeros on the left or the truncation of
high-order digits. If truncation of nonzero high-order digits
occurs, then the “size’ or “fixedoverflow’ condition occurs.

b. A “float” value representation has its exponent checked. If the
exponent 1is greater than 127, the ‘overflow’ condition occurs.
If the exponent is less than -128, the ‘underflow’ condition
oceurs.

This concludes the rules for conversion to an arithmetic target. A good
way to learn such a set of rules is to extract from them those features that are
not obvious. What is "not obvious" depends on the reader, but for the rules
just given, the following items might be selected:

° Blanks can appear before or after but not within a character-string
representation of an arithmetic value.

4-8 AM83

° A character string that is all blanks is interpr
value zero.

° When an arithmetic value 1is approximated, rou
target is “float”’.

° When a complex value is converted to ‘real”, th
discarded without the occurrence of a conditio
error.

EXAMPLES OF ARITHMETIC TO ARITHMETIC CONVERSION

As a first example, suppose the given value Iis
"25.971818¥B¥" and the target data type is ‘real float d
step in the conversion is the reinterpretation of the stri
arithmetic value, giving 25.97181. The second step is the
value according to the target scale and base attributes,
‘decimal’, giving “+2597181e-5". The third step is the

eted as the arithmetic

nding occurs if the

e imaginary part is
n to report a possible

the character string
ecimal(5)°. The first
ng value to yield an
representation of the
which are “float” and
approximation of the

value as aspecified by the target precision, which is °5/", giving “+25972e-3".

The fourth step is the range check which, in this case,

determines that the

exponent is in the required range of =128 through +127. The final result of the
conversion, ‘+25972e-3° is a valid value representation for the given data type.

The following examples show the conversion of an a
arithmetic target:

Given Value Exact Representation

Target Type

rithmetic value for an

Result Value

17.876 fixed dec(5) +17.876 +00017.

17.876 fixed dec(5,1) +17.876 +0017.8

17.876 fixed dec(5,3) +17.876 +17.876

17.876 fixed dec(5,4) +17.876 (size)

131 fixed bin(12) +10000011.b +000010000011.b
131 fixed bin(12,2) +10000011.b +0010000011.00b
131 fixed bin(12,5) +10000011.b (size)

-6.9 fixed bin(9,6) -110.1110011...b -110.111001Db
-6.9 fixed bin(9) -110.1...b -000000110.b
5.638 float dec(5) +5638.e-3 +56380.e-4
5.638 float dec(3) +5638.e-3 +564.e=-2

The first group of examples (for the given value 17.876) show the effect of

gradually increasing the scale factor of the target until,

not enough integer digits and the “size’ condition occurs.

finally, there are
The second group is

a similar sequence for a binary target. The third group shows the handling of a
value, -6.9, that cannot be expressed exactly in binary representation; the

.." in the exact representation means "digits that do not affect the final

result". The last group shows a ‘decimal float’ target; and includes the only
example in which rounding occurs when low-order digits are truncated.

4-9

AM83

EXAMPLES OF STRING TO ARITHMETIC CONVERSION

The following examples illustrate the conversion of character-string or
bit-string values to arithmetic targets.

Given Value Target Type Reinterpretation Result Value
"_8.92pBB" fixed dec(5) -8.92 -00008.
"_B8.92BPBPB" fixed dec(5) (conversion)

"BBB" fixed dec(5,2) 0 +000.00

nn fixed dec(5,2) 0 +000.00

231 complex dec float(5) 0+231 +00000.€0+23000.e-31
231 dec float(5) 0+231 +00000.€0

"8, ,23e-2" fixed dec(5,2) .0823 +000.08

ng.23-2" fixed dec(5,2) (conversion)

"8.23e-127" float dec(3) 823e-129 (underflow)

"101"b fixed dec(4,1) 5 +005.0

""p fixed dec(4,1) 0 +000.0

"0000000"Db fixed dec(l4,1) 0 +000.0

The first group of examples shows ways in which blanks can and cannot be used in
a character string that is to be converted into an arithmetic value. The second
group shows how a complex value 1is filled out or truncated as the target
requires. The third group shows how the wrong format for a floating-point value
causes the ‘conversion’ condition to occur and also shows how the conversion of
a number that appears to be in range can cause the ‘underflow’ condition to
occur, The final group shows the conversion of bit-string values to arithmetic
values.

Character-String Targets

The conversion of a scalar computational value to a character-string value
is performed according to one of the following three rules:

1. Given Character-String. Suppose the given value 1is a character
string. Let the string type of the target be ’‘character(n)’, where n
is the maximum length. Then the conversion is as follows:

a. If the length of the given value is not greater than n and the
target is ‘varying’, then the given value (with its given length)
is the result.

b. If the length of the given value 1s not greater than n, as
before, but the target is ‘nonvarying’, then blanks are added at
the right end of the given string until it is n characters 1long.
The extended value is the result.

c. If the length of the given value is greater than n, then the
“stringsize’ condition occurs.

2. Given Bit-String. Suppose the given value is a bit-string. It 1is
reinterpreted as a character-string value by interpreting each bit as
a ‘0" or “1° character. The resulting character-string value is then
adjusted to the correct length by Rule 1, above.

4-10 AM83

Given Arithmetic Value.
value.

a.

C.

Suppose the given
Then the following steps are performed:

valuge 1is an

arithmetic

This step depends on scaling and base of the|l given value (not the

target).
be defined.

A new number-of-digits, pec,

If the given value is ‘dec

conversion is required, and:
bec =p
gc = g
If the given value is “fixed binary(p,q)’,

is converted to ‘fixed decimal(pc,qc)” where

pc = min(ceil(p/3.32)+1,59)
qe = ceil(q/3.32) (for q not negat
qe = -ceil(-q/3.32) (for q negative)

If the given value is “float binary(p)”, the
converted to “float decimal(pc)’ where

pc = min(ceil(p/3.32),59)
Both of these conversions are performed a
for an arithmetic target given earlier in th

conclusion of this step, the given value
“decimal’. The mode of the value is not cha

Next, the value is expressed as a character
the representation is different from that us
it is in a storage unit.

(1) If the value is ‘real float’, it is exp
blank (for plus) or a '-", followed
the mantissa, followed by the decimal p
remaining digits of the mantissa, follo
by a signed, three-digit exponen
number-of-digits specified by the prec
value. Then the mantissa has pc
character string has length pc+7.

(2) If the value is ’‘real fixed’, th
representation as a character-string ar
best given by examples (see below).
number-of-digits and scale factor speci
of the given value.

When pec > gc > 0 (the usual case), the
length pec + 3.
character string has length pc + 3 +k,
of characters required to represent the
without leading zeros.

If the value is ‘complex’,
writing the two parts as ‘real’ values
or (2), just given, and then concaten
imaginary part is positive, the bl

(3)

sign is changed to "+ . An “i” is added
Blanks that occur between the two parts

imaginary part.
renoved and
representation.

are placed at the

representing the real and imaginary pants.

character string has the length lr+li+1

The character string that results from Step
correct length by Rule 1, above.

Otherwise (i.e., ac

and spale-factor, gc, must

imal(p,q)”, then no

then the given value

ive)

n the given value is

ccording to the rules
is section. At the
necessarily has base
nged by this step.

string. Observe that
ed for the value when

ressed as follows: a
by the first digit of
oint, followed by the
wed by ‘e’ followed
t. Let pc be the
ision of the given
digits and the whole

e rules for its
e complicated and are
Let pc and gc be the
fied by the precision

character string has
> pe or ge < 0), the
where k is the number
absolute value of gc¢

its representation is obtained by

according to rule (1)
ting them. If the
nk that indicates its
just after the
are
the

right end of

Let lr and 1i be the lengths of the strings

Then the entire

b is adjusted to the

AM83

This concludes the rules for conversion to a character-string target.
These rules are used chiefly in connection with data-directed and 1list-directed
output, where they determine the format of the values in the listing. The rules
are complicated, especially when the given value is binary. The following table
will be wuseful in determining the precision of a binary value converted to a
decimal value under Step 3.a:

n ceil(n/3.32) n ceil(n/3.32)
1-3 1 37-39 12
4-6 2 40-143 13
7-9 3 44-46 14
10-13 4 47-49 15
14-16 5 50-53 16
17-19 6 54-56 17
20-23 7 57-59 18
24-26 8 60-63 19
27-29 9 64-66 20
30-33 10 67-69 21
34-36 11 70-73 22

This table includes the maximum number-of-digits for a Multies PL/I binary value
(71).

EXAMPLES OF CHARACTER-STRING TO CHARACTER-STRING CONVERSION

The following examples illustrate conversion of character-string values to
character-string targets.

Given Value Target Type Result Value
"ABC" char(6) varying "ABC"

wABC™ char(6) "ABCBBB"
"BABC" char(6) "BABCBB"
"ABCBB" char(6) "ABCBBB"

nn char(6) "BBBYBB"
"ABCDEFG" char (6) (stringsize)

When the ‘varying® attribute is present, the length of the given value is not
changed. When the ‘varying’ attribute is not present, ‘nonvarying’” is assumed
and the given value is extended to the ‘maximum length. The examples show that
blanks that are already in the given string are treated as ordinary characters.
When the 1length of the given string exceeds the maximum length allowed by the
target, the ’“stringsize’ condition occurs.

EXAMPLES OF BIT-STRING TO CHARACTER-STRING CONVERSION

The following examples 1illustrate conversion of bit-string values to
character-string targets.

Given Value Target Type Result Value
"0100"b char(7) varying "o100"
"0100"b char(7) "0100BBB"

Observe that extension of the string occurs after its conversion to a character
string, so the added characters are blanks, not zeros.

4-12 Al83

~/

EXAMPLES OF ARITHMETIC TO CHARACTER-STRING CONVERSION

Many examples are required to adequately

illustrat
arithmetic values to character-string targets.

Groups of

for each of the following types of given arithmetic values:

float decimal
fixed decimal
float binary
fixed binary
conplex

The conversions can be understood in two ways. In many ¢
determine how many characters the character-string form of
requires., In some cases it is necessary to know the exad
is used. The examples illustrate both levels of knowledge

Float Decimal Values

The following examples show the conversion of ‘float

character-string targets.

=)
-3
e
c

cases,

the conversion of
xamples will be given

it is enough to

an arithmetic value

>t representation that

decimal’ values to

esult Value

Given Type Given Value Target Type R
float dec(5) -81993.e6 char(14) !
float dec(5) +81993.e6 char(14) '
float dec(5) +81993.e6 char(10)

In the first two examples,

p=>5 (number-of-digits in given value)
p+7 = 12 (length of the representation)
length = 14 (length required by the target)

Observe that three digits are always provided for the expog
a design policy that assures that the representation always
regardless of the particular given value.

Fixed Decimal Values

The following examples illustrate conversion of ’fix
character-string targets.

-8.1993e+010BB"
B8.1993e+010BB"
stringsize)

nent;
takes

this is part of
p+7 colunns,

ed decimal’ values to

Given Type Given Value Target Type Result Value
fixed dec(4,2) -49.62 char(20) var "p-L49.62"
fixed dec(4,2) -00.02 char(20) var "BY-0.02"
fixed dec(4,2) +00.02 char(20) var "BYBO.02"
fixed dec(4,0) -8200. char(20) var "BH-8200"
fixed dec(4,0) +0000. char(20) var "BBBBBBO"

4-13

AM83

Because the target is ‘varying’, the vresult string 1is not extended to 20
characters. Observe that the length of the result is always p+3 (where p is the
number-of-digits of the given value); that is, although leading zeros, the plus
sign, and a trailing decimal point are all suppressed, blanks are added at the
left to compensate for the suppressed characters. Thus it is easy to calculate
the length of the result.

When a value is ‘fixed decimal(p,q)’ and the scale factor is negative (q<0)
or the scale factor is greater than the number-of-digits (g>p), then the decimal
point is not adjacent to a variable digit of the value; instead it is adjacent
to a sequence of filler zeros, as the examples below show. Such fixed-point
values are given special treatment, as follows:

Given Type Given Value Target Type Result Value
fixed dec(4,-2) +066700. char(20) varying "BBO6TE+2 "
fixed dec(7,11) -.09908131885 char(20) varying "-8131885f-11 "
fixed dec(7,11) -.20290009487 char(20) varying "BBB-QU87£-11 "

The slashed zeros are the filler zeros. In the representation of these values
no attempt is made to place the decimal in the representation of the value;
instead, each value is expressed as an integer with a scaling factor. The

scaling factor in the representation is the negative of the scaling factor in
the precision attribute.

Float Binary Values

The following examples illustrate conversion from “float binary’ values to

character-string targets. The target type ’‘char(20) varying’ is assumed in each
case.

Given Type Given Value Intermediate Value Result Value
float bin(27) +.1011001 ... e7b +890000000.e-7 "B8.90000000e+001"
float bin(20) -.1000000 ... e=9b -9765625.e-10 ".9,765625e-004"

The “...° indicates =zero digits that fill out the required precision of the
binarg value.’ The "intermediate value" is the value after it has been converted
to a “decimal” value but before it has been converted to a character string.

The data type for the intermediate value is calculated according to Rule 3.a.
The calculation is as follows:

First Example Second Example

p = 27 p = 20

p/3.32 = 8.1 ... p/3.32 = 6.02 ...
ceil(p/3.32) = 9 ceil(p/3.32) =7

The(i?termediate data types for the two examples are “float dec(9)” and ‘float
dec (7).

41y AM83

Fixed Binary Values

The following
into character-string targets.

Given Type Given Value Intermediate Value

-0085
-0511.

fixed bin(9,0)
fixed bin(9,0)

-001010101.b
-111111111.b

The "intermediate value" is

data type for the intermediate value is calculated as foll

Number-of-digits Scale-factor

P=9 q:O
p/3.32 = 2.7 . q/3.32 = 0
ceil(p/3.32) = 3 ceil(p/3.32) = 0
ceil(p/3.32)+1 = 4

Thus the intermediate type is ‘fixed dec(4,0)°. The sec

the formulae allowed one more digit (Y4 instead of 3) than
largest possible value of the given data type. Th
paragraph shows the reason for this aspect of the design @

The following is one more example of the conversion
value to a character-string target.

Given Type Given Value Intermediate Value

examples illustrate the conversion of
The target is assumed to b

again the value after it h
‘decimal value’ and before it has been converted to a ch

‘fixed binary’ values
e ‘char(20) varying’.

Result‘Va ue

"BBBYB-85"
"gpB-511"

s been converted to a
racter string. The
OWS:

ond example shows that
were required by the
e exanple in the next
f PL/I.

of a ‘fixed binary’

Result Value

fixed bin(9,1) -11111111.1b -255.5
value 1is ¢
are requir
It thus becomes apparent that although a
decimal digits, a nine-bit number may need fq

Rule 3.a always applies.

Here the data type of the intermediate
dec(4,1)’. The full four digits of precision
value "-127.57.
needs four

any case, the

Complex Values

The following example illustrates the conversion of
character-string targets.

given type:

given value:
intermediate type:
intermediate value:
target type:

result value:

complex float bin(20)

complex float dec(7)
-2500000e-6+1750000e-61
char(32)

llb_255 . 5 "
alculated to be “fixed
ed to represent the

nine-bit integer never
ur decimal digits. 1In

complex values into

-.10000000000000000000e=-1b+.11100000000000000000e1bi

"-.2.500000e-001+1.750000e+00018BB"

AM83

Bit-String Targets

The

conversion of a scalar computational value to a bit-string value is

performed according to one of the following three rules:

1.

Given Bit-String. The rules for adjusting the length of a bit-string
to suit the target are the same as for character-string to
character-string conversion with one exception: whereas a character
string is extended with blank characters, a bit string is extended
with zero-bits.

Given Character-String. Suppose the given value is a
character-string. If every character is a ‘0" or a ‘1’ character,

then the character-string is reinterpreted as a bit-string by
interpreting each character as a bit. The resulting bit-string is
then converted to a bit-string of the required length by Rule 1,
above. If the character string contains a character other than ‘0’ or
“1°, the ‘conversion’ condition occurs.

Given Arithmetic Value. Suppose the given value is arithmetic.
First, the value pc is computed according to the following table:
Attributes of Given Value of ‘pe’
fixed binary(p,q) min(71,max(p-q,0))
fixed decimal(p,q) min(71,max(ceil((p-q)*¥3.32),0))
float binary(p) min(71,p)
float decimal(p) min(71,ceil(p*3.32))

If the value of pec is zero, then the null bit string is immediately
adopted as the result of the conversion. Otherwise, the given value
is converted to an intermediate value of data type ‘real fixed
binary(pe,0)”. The result of this conversion is a ‘binary’ integer
value. This value 1is reinterpreted as a bit-string by ignoring the
sign and treating each binary digit as a bit. The resulting bit
string is adjusted to the correct length by Rule 1, above.

EXAMPLES OF BIT-STRING TO BIT-STRING CONVERSION

The

following examples 1illustrate the conversion of bit-string values to

bit-string targets.

Given Value Target Type Result Value
"11010"Db bit(8) varying "11010"b
"11010"b bit(8) "11010000"Db
"np bit(4) varying "np

nny bit(4) "0000"Db
"11010"b bit (4) (stringsize)

The examples show the difference between conversion to a 'vary%ng' or a
‘nonvarying’ target. The last example shows that the “stringsize’ condition
occurs when the given string is too long for the target.

4-16 AM83

-

EXAMPLES OF CHARACTER-STRING TO BIT-STRING CONVERSION

The following examples illustrate the conversion of ch

to bit-string targets.

Given Value Target Type Result Value

aracter-string values

"11010" bit(8) var "11010"b

"11010" bit(8) "11010000"b

nn bit(4) var ""p

nn bit (4) "0000"b

"11010" bit(4) (stringsize)

"o120" bit (4) (conversion)

"101B" bit (U4) (conversion)
The first five examples parallel the examples given for bit-string to bit-string
conversion in the previous paragraph. The last two examples show that if a
character that is not ‘0° or “1° appears in the given string, then the
‘conversion’ condition occurs.
EXAMPLES OF ARITHMETIC TO BIT-STRING CONVERSION
Fixed Binary Values

The following examples illustrate conversion of ‘fixed binary’” values to
bit-string targets. In each example, the target is assumed to be “bit(20)
varying’.

Given Type Given Value pe Intermediate Value Result Value

fixed bin(5,0) -01011.b 5 -01011.b "01011"b

fixed bin(5,3) +10.111b 2 +10.b "10"b

fixed bin(5,-3) +10111000.b 8 +10111000.b "10111000"b

fixed bin(5,6) +.810111b 0 (not required) nnp
The "intermediate value" is the value after it has been converted to a “fixed
binary(pe,0)° data type. In the last example, pc 1s zero, so the null
bit-string is assumed without resort to an intermediate |value. In all the

examples, the result bit-string is a representation of the
given value.

Fixed Decimal Values

integer digits of the

The following examples illustrate conversion of “fixed decimal’ values to
bit-string targets. In each example, the target is assumed to be “bit(20)
varying’.

Given Type Given Value pe Intermediate Value Result Value

fixed dec(5,2) -034.95 10 -0000100010.b "0000100010"b

fixed dec(5,6) +.0881327 0 (not required) nnp

L7 AM83

The value of pec for the first exanple is calculated from a formula in Rule 3,
above, as follows:

p=5,q=2

p-q = 3

(p-q9)%*3.32 = 3%3.32 = 9.96

ceil((p-q)*¥3.32) = ceil(9.96) = 10
max(ceil(p-q)*3.32,0) = max(10,0) = 10
min(71,max(ceil(p-q)#*¥3.32,0)) = min(71,10) = 10

Tpus the qata type of the intermediate value for the first example 1is “fixed
b}n(10,9) . In the second example, pc comes out to be zero so that the null
bit-string is the result without resort to an intermediate value.

Float Values

The following examples illustrate conversion of ‘float’ values to
bit-string targets. In each example, the target is assumed to be ‘bit(20)
varying”’.

Given Type Given Value pe Intermediate Value Result Value
float bin(10) -.1101100100e+6b 10 -0000110110.b "0000110110"b
float dec(2) +59e-1 7 +0000101.b "0000101"b

Complex Values

An example of a ‘complex’ given value is not included here because the effect of
the conversion of the value to an intermediate “fixed bin(pec,0)” is to discard
its imaginary part and treat it as a ‘real’ value.

Locator Targets

There are two kinds of 1locator values: pointer and offset. Conversion
between the two kinds of locator occurs without any restrictions or special
rules. For example, in the statement

cur->cell = alpha;

the variable ‘cur’ appears as a locator qualifier and must have a locator value.
If ‘cur® is a ‘pointer’ variable, its value is used as is; but if it is an
‘offset” variable, its value is automatically converted to a ‘pointer’ value.

AGGREGATE TYPE CONVERSION

All possible conversions of aggregate types are described in this section.
The target aggregate type 1is always known when a conversion is performed.
Conversion is allowed only in certain simple cases in which the aggregate type
of the given value is the aggregate type of a component of the target. In some
descriptions of PL/I, the conversion of an aggregate type is referred to by a
special word "promotion".

4-18 AM83

The rules

for converting a value to a given aggregate type follow.

There

are only two cases for which aggregate type conversion can occur, as follows:
1. Scalars. A scalar can be converted into any aggregate by taking the
value of the scalar to be the value of each scalar component of the

aggregate.

2. Structures. A structure can be converted into an array whose elements
are structures of the same aggregate type as the given structure. The
value of the given structure is taken to be the value of each element
of the array.

When a given value differs from an aggregate target and|cannot be converted by

the rules just given, the program is invalid.

When the aggregate type of the given value agrees with that of the
then each component of the

(either from the beginning or after conversion),
given aggregate must be converted to the data type
component of the target. The conversion of the component
the rules already given for type conversion. Each such ¢
operation, and the conversions do not occur in any define

Example of Aggregate Conversion

The following example illustrates the complete conve
aggregate type to a target of a different aggregate type.

given type: 01, 02 fixed dec(4), 02 char(10) var
given value: +0132., "HENRY"

target type: 01 dimension(1:2), 02 fixed bin(10),
result value: +0010000100.b, "HENRYBEB", +001000010

There are three distinct actions associated with this con

° The aggregate type is promoted from ‘01,02,02°
scalar components) to ‘01 dim(1:2),02,02° (an
that each have two scalar components).

° A ‘fixed dec(4)” value is converted to a ’fixed

° A ‘char(10) var’ value is converted to a ‘char(

There is no assurance that these steps will occur i
particular order; thus if a condition occurs during th

possible to know exactly how far the conversion has progr

target
of the corresponding
s proceeds according to

onversion is a distinct
d order.

rsion of a value of one

02 char(8)
0.b, "HENRYBBB"
version:

(a structure with two
array of two structures

bin(10)° target.
8) " target.
n this or any other

e conversions it is not

essed.

AM83

CONDITIONS FOR CONVERSIONS

The conditions that can occur during the conversion of values are described
here. They are:

size
fixedoverflow
overflow
underflow
conversion
stringsize

A general discussion of conditions appears later, in Section XIII, "Condition
Handling"; only the relevance of the conditions to the conversion of values is
discussed here.

A program can establish an ‘on’ unit that is executed when a particular
condition occurs. If an appropriate “on’ unit is not established when a given
condition occurs, PL/I supplies a default ‘on’ unit. For some conditions, it is
not valid for an “on’ unit to return control to the point at which the condition
occurred; and such conditions usually abort execution of the program. For other
conditions, a plausible recovery action is taken when execution resumes at the
point at which the condition occurred.

‘size’ and ‘fixedoverflow’ Conditions

Two conditions can occur during the conversion of a value to a fixed-point
arithmetic value; they are as follows:

° The “size’ condition occurs when a value is converted to a fixed-point
value and the target precision does not specify enough digits to the
left of the point to accommodate the magnitude of the given value.

° The ‘fixedoverflow’ condition sometimes occurs when the ‘size’
condition would otherwise occur.

These conditions have the same purpose, but they are implemented in different
ways. If the °‘size’ condition is enabled, PL/I detects every case in which the
magnitude of a converted value exceeds the capacity of the target precision.
For example, an attempt to assign the value 12 to a “fixed binary(3,0)° target
is detected, even though the implementation may have allowed more than three
bits for the value in hardware storage. The checking has a significant cost
because it often must be performed by compiled instructions rather than hardware
circuitry. In contrast, the ‘fixedoverflow’ condition occurs only when the
hardware detects a value which cannot fit in a hardware register.

It is invalid for an ‘on” unit to return control to the point at which
either of these conditions occurred, and so there is no simple recovery method.
PL/I provides a default ‘on’ unit that writes a message on the “error_output’
stream and then signals the “error’ condition. The effect of this default is to
abort the execution of the program, and this is usually the appropriate response
to a value that is too large.

4-20 ANM83

b —

‘overflow’ and ‘underflow’

Conditions

FERSA AR NS4 L SIS - 1T LS LR R e e

Two conditions are

° The ‘overflow’

° The ‘underflow’

associated with the conversio
floating-point arithmetic value; they are as follows:

condition occurs when the ¢
floating-point value whose exponent is greater t

n of a value to a

onversion produces a
han 127.

condition occurs when the conversion produces a
floating-point value whose exponent is less then -128.

Both of these conditions wusually indicate a programming error; however, the

PL/I processor treats the two conditions in different ways.

The ‘overflow’ condition is handled as a fatal
‘size’ and ‘fixedoverflow’ conditions. An “on’” unit cannot return control to

the point of occurrence, and the default “on’ unit writes

‘error’, thus aborting

treat the ‘underflow’ condition as a fatal error.

error, similarly to the

a message and signals

program execution. On the other hand, PL/I does not

Executijon can resume at the

point of occurrence, and in that case PL/I sets the value in question to zero.

The default ‘on’ unit writes a message on the

“error_output”’ stream, but it then

returns control to the point of occurrence with a zero value.

‘conversion’ Condition

When a conversion calls upon a character string to supply an arithmetic or
bit-string value, the character string must have

interpretation. When this requirement is not met,

occurs. Some examples
arithmetic targets follow,

Incorrect

"fifteen"
"+”29 "
n"20%3,.14n
".8.128L422+02"

Corrected

"15"
"+29ll
n62.8n

"-8.128422e+02"

The examples reflect the rules given earlier, in the

for an arithmetic target.

An ‘on’ unit that is

established for the ‘conversion’

’

and modify the character string that caused the
after taking suitable remedial action, the “on” unit

occurrence. The facilities for this action are desc
"Condition Handling." It is rarely possible to make a use
and the PL/I default ‘on’ unit,

"bad" character string,

on the ‘error_output’ stream and signals the ‘error’

appropriate action.

421

the
of character strings that ca
together with their corrected f

conte

defi

conve
can n

condi

nts that allow such an

lconversion’ condition

nnot be converted to
orns:

nition of conversion

condition can examine
rsion’ condition; and,
eturn to the point of
ribed in Section XIII,
ful correction to a
which writes a message
tion, is usually the

AM83

‘stringsize’ Condition

When a character-string or bit-string value is converted for a target whose
length cannot accommodate the value, the ‘stringsize’ condition occurs. PL/I
permits recovery from this condition. If the ‘on’ unit invoked by the condition
returns to the point of occurrence, exactly enough characters or bits are
truncated from the right end of the string value to reduce its length to that of
the target. The default ‘on” wunit does not place a message on the
“error_output ’ stream; it returns directly to the point of occurrence with a
truncated string value.

Guidelines for Conversion Conditions

The simplest policy with respect to the conditions that occur during value
conversion is to treat them all as fatal errors. PL/I partially supports this
policy by providing default ‘on’ units for most of the conditions that abort
program execution. The two conditions that are not handled in this way are
‘underflow’ and ‘stringsize’, and their cases must be discussed separately.

Although PL/I does not abort program execution by default when an underflow
occurs, the underflow message on the “error_output’ should be viewed as an error
report. In most computations, an underflow is just as indicative of an error as
an overflow; both occur when a computation has not been properly planned. When
analysis of a computation shows that an underflow could occur, the wunderflow
should be forestalled by programmed tests that detect the development of
excessively small values.

Under certain circumstances, a more advanced approach to these conditions
may be required. Suppose a system for the interactive performance of
calculations is to be written as a PL/I program. In such a system, the user
enters commands and these commands are interpreted by the PL/I program. Suppose
the wuser gives a command whose interpretation causes an overflow to occur. The
proper response is not to abort the execution of the whole interpretive program
but rather to abort the command that the user entered. For this purpose, the
PL/I program could establish a special ‘on’ unit for the ‘overflow’ condition.

422 AM83

~/

SECTION V

PROGRAM SYNTAX

This manual gives an informal definition of the syntax of PL/I,

of this definition by means of examples. In contrast, the
Manual gives a complete and exact definition of the syntax
definition in a special notation called BNF.

The syntax has two purposes. First, it is used to de
a given sequence of characters is syntactically valid.
programs turn out to be invalid on other grounds, but the
field in a reliable and effective way. Second, the syn
components of a program. That is, the syntax defines prec
sequences are integers, which are expressions, and so onj

take on an exact meaning in the discussion of a PL/I progr

This section does not give a detailed syntax for PL/Ij

the main syntactic features of PL/I. The details of synt

in this manual; for example, the syntax of expression is g

and the syntax of the “do’ statement i
A detailed syntax for each PL/I statement
in Appendix A, "A Guide to PL/I Statements

"Expressions,"
"Program Flow."
reference form,

This section
it considers a program to be a sequence of characters, and
allowed characters without discussing which sequences of c

Second, it considers a program to be a sequence of le
identifiers, constants, operators, and so on. Third, it c
be a sequence of statements, and describes the genera

without entering into the details of individual statement
considers the program structures of PL/I that are used
statements together into single program components. The s

a discussion of the relation between the external procedur

presents four views of the syntax of a

and conveys much
Multics PL/I Language
and expresses the

termine whether or not

Some syntactically valid

syntax does narrow the
tax gives names to the
isely which character
therefore, these words
am.

; instead, it presents
ax are given elsewhere
iven in Section VIII,
s given in Section XI,

is also given, 1in
"
PL/I program. First,
describes the set of

haracters are allowed.
xemes, and defines the
onsiders a program to
1 syntax of statements
syntax. Finally, it
to gather sequences of
ection concludes with
e and a program.

AM83

CHARACTERS

A program can be viewed simply as a sequence of characters. Any of the 128
characters of the ASCII character set can appear in a Multies PL/I program. A

simple classification of those characters as they are used by Multics PL/I \-‘/
follows:

letters: A°AB C ... Z a b c ... z

digits: o1 2 ... 9

special characters: + - * / = > < "~ & |

T D L
spaces: blank tab newline newpage vertical-tab
strings only: (the remaining ASCII characters)

The 1last item in the classification, "strings only", is included because every
ASCII character, even if it has no other significance in Multies PL/I, can
appear in a character-string constant.

The set of characters required for PL/I is relatively small; and all but
four or five of the characters are found on a standard typewriter. Therefore,
it is convenient to type and publish PL/I programs on conventional,
noncomputerized equipment.

LEXEMES

A program can be viewed as a sequence of lexemes. The division of a
program into 1lexemes corresponds to the division of ordinary text into words, v
punctuation marks, and spaces. As an example of the division of PL/I text into e

lexemes, consider the following assignment statement:
alpha=z 5.66;

This statement 1is a sequence of five lexemes, as follows: the identifier
‘alpha’, the operator °“=’, the separator ° (blank), the 1literal constant
‘5.66°, and the punctuator “;°. A long string of terminology can be applied to
a single lexeme; for example, °5.66° is, in fact, a "fixed-point decimal real
arithmetic literal-constant”.

In what follows, each kind of lexeme is described; there are eight kinds of
lexemes, as follows:

identifier
literal constant
punctuator
operator

picture

isub

#include
separator

After the lexemes are described, the separation rule for lexemes is given; it is
the rule that governs blanks, newlines, and so on, to keep the lexemes of a
program from running together. The discussion of 1lexemes concludes with a
detailed classification of the lexemes. :

5=2 AM83

Identifiers

An identifier is either a single letter or a letter
of characters; each character of the sequence must be a
underscore, or a dollar sign.

so its length is, practically speaking, unlimited.

Often identifiers wuse only letters and digits.
identifiers are:
alpha ALPHA ALPha alpha23 alpha23xyz
Upper and lower case characters are distinet, so all

given are interpreted as different from one another.

An underscore character is used where, in English,
The hyphen is not available in PL/I because it cannot
minus sign.

a

account_name intake_manifold_pressure

Most Multics subroutine names end with an underscore char
order to avoid confusion and possible identifier confli
not introduce a name that ends with an underscore charact

A dollar sign should
variable, and it should
"Storage Management." An

be used only in the name of
be used in the manner described
example of such an identifier i

alphag$beta

This identifier refers to the variable ‘beta’ in the segm

KEYWORD VS. NAME

A particular occurrence of an identifier in a PL/I
keyword or a pname. When an identifier is used as a key
meaning that is part of the definition of PL/I; for examp
‘goto” is used as a keyword, it always specifies a tran
contrast, when an identifier 1is wused as a name, its
declaration in the program; for example, the identifier -
‘“fixed dec(8)° variable, a “label’ constant, or any other

In some programming languages, the identifiers that
are reserved for that purpose only. However, in PL/I the
that it would be a considerable disadvantage to reserve a
does not have this restriction. Instead, the interpre
depends on its position in the syntax of a program. Supp
a statement begins with the identifier ‘goto’.
a ‘goto’ statement; for example:

goto LAB;

5-3

Examples of identifiers with underscore chara

The statem

followed by a sequence
letter, a digit, an

An identifier can be up to 256 characters long,

Examples of such

of the identifiers just

hyphen would be wused.
e distinguished from a

>3

cters are:

b

a
(¢]
e

cter. Therefore, in
t, a programmer should
r.

‘static external’
in Section VII,

a
later,
s

ent named ‘alpha’.

program is either a
ord, it has a specific
e, when the identifier
fer of control. In
meaning depends on its
x° can be declared as a
kind of name.

W
1
s

are used as keywords
re are so many keywords
11 of them, and so PL/I
tation of an identifier
ose, for example, that
ent certainly could be

AM83

In this case, the identif%er ‘goto’ is interpreted as a keyword. However, a
statement that begins with goto” could be an assignment statement; for
example:

goto = 1;

In this case, the'idengifier is a name (and it must be properly declared). Thus
the identifier goto can be either a keyword or a name, depending on the
context in which it appears.

It might be thought that there are cases in which it is difficult to
determine whether an identifier is being used as a keyword or a name. This is
not the case. 1In practice, an elementary knowledge of PL/I is sufficient to
determine the interpretation of the identifiers in a program.

As an example of the interpretation of identifiers, consider the following
program, in which keywords are underlined and names are not:

P: roc;
del (sysin,sysprint) file;
decl data float bin;
get data(data);
data = data¥*#*2;
put data(data);
end;

(The underlining in this example is only for the purposes of discussion; in a
true PL/I program, an identifier is never underlined.) In this example, ‘P7,
“sysin’, and “sysprint’ are used as names, ‘data’ is used both as a name and a
keyword, and the other identifiers are used as keywords.

GUIDELINES FOR IDENTIFIERS

A programmer can use as names whatever identifiers are convenient. The
choice of names does not affect the meaning of a program or its efficiency, but
it does affect the readability of the program. The larger the progran, the more
important is the choice of name. The following suggestions apply:

° Where possible, use a long and descriptive name for a variable that is
only referenced a few times. It is not much trouble to write out so
few references, and the reader can understand the meaning of such a
name 1immediately. On the other hand, use a short, abbreviated name
for a variable that is referenced many times. In such a case, the
resulting compactness is worth the trouble of introducing an
abbreviation.

° When abbreviations are used, choose them according to some uniform
rules, so that similar variables have similar names.

5-4 AM83

Literal Constants

There

value.
Section

Observe that an arithmetic constant does not begin with a
constant is required,
arithmetic constant.

The
constants:

Any ASCII

nonprinting characters as tab,
single lexeme,

Avoid using common keywords as names. When name

goto declare decl if then
and so on are used as names, a superficial but 1
introduced. On the other hand, do use uncg
where that is convenient. There is certainly ng
to name a

sort) even though ‘dft” is a keyword.
Where possible, avoid using troublesome letters
example, the

devices do not clearly distinguish between zero
between one and the letter “1°.

is

"Expressions."

Arithmetic Constant Data Type

304 fixed dec(3)

3.04 fixed dec(3,2)
3.04e-5 float dec(3)
3.04e-51 complex float dec(3)
0110001Db fixed bin(7)
011.0001b fixed bin(7,4)

011.0001e-2b
011.0001e-2bi

float bin(7)
complex float(T7)

variable for the "debit final total

2s are given later,
The following is a representative set of examples

s such as

rritating confusion is

mmon kKeywords as names
. 3 d

harm in using ‘dft

" (or something of the

in identifiers. For

digits zero and one are troublesome because some output

and the letter ‘0" or

a literal constant lexeme for each type of arithmetic and string
The full syntax and interpretation of these lexems

VIII,
of arithmetic literal constants:

in

sign. When a negative

it is written as two 1lexemes, a |sign followed by an
following is a representative set of examples of string literal
String Constant Data Type Remark
"abed" char (4)
(3)"abecd" char(12) means "abcdabecdabed"
nn char(0) means the nulll character-string
"mvHello,"" he said."™ char(17) """ counts as " in value
"11101"b bit (5)
(4)"01"b bit(8) means "01010101"b
"p bit (0) means the null bit-string

character can be used in a “character’ string c
newline, and so on. A
and is not considered to contain smaller 1

5-5

onstant,
string
exemes.

including such
constant 1is a

AM83

Punctuators

There are six punctuator lexeme ; each is given, together with its purpose,
in the following table:

Punctuator Purpose
. (period) indicates the decimal or binary point; also,

separates names in a qualified reference

y, (comma) Separates items in a list of arguments, parameters,

subscripts, declarations, options, and so on

(colon) terminates a condition prefix or a 1label prefix,

separates the bounds of an array, and also appears
in the range option of a “default’ statement.

; (semicolon) terminates a statement

((left

) (right

indicates the beginning of a list, an expression, an

parenthesis) iteration factor, and so on

indicates the end of a 1list, an expression, an

parenthesis) iteration factor, and so on

These lexemes are used in most of the features of PL/I.

Operators

There are five kinds of operator lexemes; they are defined as follows:

Classification Operators

arithmetic + -k xx
relational = "= < "< > %> K= o>=
logical T
string i
qualifier ->
Most of the operators are defined in Section IX, "Operations." The only

exception 1is
"Expressions."

the

qualifier operator, which is defined in Section VIII,

5-6 AM83

Pictures

The picture lexeme is a specialized lexeme that is used to specify the
format of a character string. It begins and ends | with a quote, but the
characters that appear between quotes are restricted. An example of a picture
is:

"$9,999.99"
This picture specifies a character-string of length nine that consists of a

fol
WO

dollar sign, followed by a digit, followed by a comma,
followed by a period, followed by two digits. 1In other
six-digit, dollars-and-cents figure.

It
this

A picture lexeme is used in only two contexts.
attribute in the declaration of a pictured variable;
earlier, in Section III, "Value Storage." Second, 1
format item in an edit-directed input/output statement; th
later, in Section XIV, "Stream Input/Output." In both cas
is interpreted in the same way.

Isubs

The isub 1lexeme 1is a very specialized lexeme th
‘defined” attribute. It is composed of an unsigned inte
three letters ‘sub’; for example, ‘5sub’. Consider the fqg
the array ‘B”:

declare B(2,4) defined A(2sub,3%1sub);

The first isub lexeme is “2sub’ and means, "the value of ¢
a reference to ‘B°", The second isub lexeme is “1sub’ an
the first subscript in a reference to ‘B’". Thus, for exd

B(i-1,]) 15

is interpreted as:

A(3,3%*(i-1))

1

.
’

“%include’ Macro

A “%include’ macro is a sequence of three lexemes,
form:
%include psn

where psn is the partial segment name.
an identifier or a character-string constant. The “%inclu

here, under "Lexemes", because it begins with a lexeme t
(it begins with a percent character) and because its effec
lexical content of a program.

The partial segmen

5-7

lowed by three digits,
rds, it describes a

is used in a ‘picture’

usage 1is described
t is used in a picture
is usage is described
es, the picture itself

at is used only in the
ger followed by the
llowing declaration of

he second subscript in
d means, "the value of
mple, the statement:

and has the following

t name can be either
de’ macro is discussed
hat has a special form
t is to modify the

AM83

MACRO INTERPRETATION

A “%include’ macro directs the compiler to obtain an include file; it is
the only construct in the language that is not merely translated by the compiler
for later execution. 1In response to an “%include’ macro, the compiler takes the
following steps:

1. Form a segment name by dropping the quotes from the partial segment
name (if it is a character-string constant) and adding the suffix
“.inecl.pl1’. Locate the Multics segment that is designated by this
name.

2. Compile the given program as if the “%include’ macro were replaced by
a blank, followed by the contents of the segment located in Step 1,
followed by a blank.

This definition of the ’%include” macro requires further explanation, as
follows:

° When the compiler obeys a “%include’ macro, it does not modify any of
the programmer’s files. It behaves as if the given program were
modified.

° The contents of an included segment can, itself, use a ‘%include’

macro, and that macro is interpreted just as if it appeared in the
given progran.

° A character-string constant is permitted for use as a partial segment
name because Multics pathnames are not always identifiers. Thus,

%include "dvp>alphad>test";

can be wused to designate the contents of the segment designated by
‘dvp>alpha>test.incl.pli1”’.

° In Step 2, a blank is inserted before and after the included text to
keep the first and last lexeme from running into neighboring lexemes.

MACRO EXAMPLE

As an example of the expansion of a “%include’ macro, suppose that the
Multics segment named ‘test.pl1” exists and contains a complete procedure, as
follows:

P: proc;
del alpha float bin;
dcl beta(20) char(10);
%include xpool;

end;

Each time this segment is compiled, the compiler finds the segment
‘xpool.incl.pl1” and replaces the ‘%include’ macro by the contents of that
segment. Suppose “xpool.inecl.pl1’ exists and contains the following
declarations:

del 01 x external static,

02 size fixed bin,

02 tab(1000) char(10);
del cnt fixed bin;

5-8 AM83

~

For the particular compilation wunder consideration,
‘test.pll’ contained the following material:

P proc;
del alpha float bin;
decl beta(20) char(10);
decl 01 x external static,
02 size fixed bin,
02 tab(1000) char(10);
del cnt fixed bin;

end;

The actual contents of ‘test.pl1’ not as

compilation.

are changed

GUIDELINES FOR MACROS

The
progran.
which are
execution.
the
This common text can be handled as follows:

Such a program is usually divided into severa
written and compiled separately and then
The external procedures usually have certain t

o

he afféct is as if

the result of the

‘49include’ macro is often used to assist in the organization of a large

1 external procedures,
brought together for
ext in common, such as

declaration of variables and routines that are used throughout the progran.

° Create a common segment, which is a segment whose name ends with
“inel.pl1’ and whose contents is the common textl
° In each external procedure, write a “%include’ macro that references
the common segment.
The important advantage of this approach is that just one copy of the common

text exists, and therefore changes are made in just one place.

This use of common segments can extend through severa
organization. Suppose that a program 1is divided int
subprogram is a set of sub-subprograms. Each sub-s
“¢include’ macro to reference a common segment for the su
segnent can, in turn, use a “%include’ macro to reference
the entire progranm.

“4include’ macro that has jus
important one; however, it is not the only possible use.

by a ‘%include’ macro need not be a sequence of stat
sequence of lexemes that make sense in the context in whic

The application for the

5-9

1 levels of program
o subprograms and each
ubprogram can use a
bprogram. That common
a common segment for

t been described is an
The segment designated
ements; it can be any
h they are used.

AME83

Separators

There are two kinds of separator lexemes: the space and the comment. They
are defined as follows:

° A space lexeme is one of the following characters:

blank

tab

newline
newpage
vertical-tab

Although these characters have different effects, each of them usually
has the effect of 1leaving empty space in the listing of a program;
that is why they are called "spaces".

° A comment lexeme has the following form:
/¥%cs¥*/

where ¢s is the comment string. The comment string is any sequence of
ASCII characters that does not contain “#/°. A comment is used to
insert a message that is directed to the human reader of a program but
that is ignored by the PL/I processor.

Separator 1lexemes are used interchangeably. That is, any sequence of one or
more separator lexemes is equivalent to any other sequence of one or more
separator lexemes. The role of separator 1lexemes in PL/I is given by the
separation rules, which are described in the following paragraphs.

Separation Rules

The subsequent sections of this manual give many informal rules for the
syntax of PL/I. Each rule wultimately specifies that a given construct is a
certain sequence of lexemes., However, the definitions make no mention of
separators. Instead, they assume that the following separation rules are
followed in all cases:

1. One or more separators can appear between any sequence of two lexemes.
This rule permits the use of spaces to control layout and the addition
of comments to provide explanations; thus a program can be made
intelligible to a human reader.

2. One or more separators nust appear between any sequence of two lexemes
if the first is an identifier, 1literal constant, or isub and the
second is also an identifier, literal constant, or isub. This rule
requires the use of a separator where two lexemes might otherwise run
together to form a single lexene.

3. A separator must not appear within a lexene. This rule prevents a
lexeme from being broken up into two lexemes.

5-10 AM83

Consider an example of the application of these rule

s. One version of the

‘allocate’ statement is defined (in Section VII, "Storage Management") as having

the following form:

allocate id

.
,

where id is an identifier. This definition 1is satisf

following four constructs:
allocate beta_5;
allocate beta_5

allocate
beta_5;

allocate beta_5 /*the stress variable¥/;

All of these statements mean exactly the same thing to t
the first separation rule has been applied to produce
important to a human reader.

A violation of the separation rules is quite obvious
that 1is why those rules can be given once here and
throughout the rest of the manual. Consider the following

allocatebeta_5;
This construct is not a valid PL/I statement. It arose fr

the ‘allocate’ statement, but the second separation rule
allocate’ and ‘beta_5 " to run together and form a single

As a second example of the violation of the separatio
following construct:

all ocate beta_5;

This construct

definition of the
violated,

is not a valid PL/I statement. Once ag
‘allocate’ statement, but the third
causing the keyword ‘allocate’ to be broken up

ied by each of the

but
are

he PL/I processor,
differences that

to a human reader, and
then assumed to apply
construct:

definition of
allowing

om the
was violated,
identifier.

n rules, consider the

ain, it arose from the
separation rule was
into two identifiers.

AM83

Classification of Lexemes

The following 1list gives a complete classification for the lexemes of PL/I.
It shows, for example, that there are two kinds of decimal real arithmetic
literal-constant lexemes; namely, fixed-point and floating-point. The complete \.‘/
set of punctuators and operators and representative examples of other lexemes
are given at the right.

lexeme
identifier: x declare rate_of_change table$sum?
literal constant
arithmetic
real
decimal
fixed-point: 59 138. 6.8923 .0030
floating-point: 8.23e+3 1e-5
binary
fixed-point: 1101b 101.b 10011.101b .0001b
floating-point: 101.0001e+2b 1111e-5b
imaginary
decimal
fixed-point: 591 18.i 6.8923i .0030i
floating-point: 8.23e+31i 1e-5i
binary
fixed-point: 1101bi 101.bi 10011.101bi .0001bi
floating-point: 101.0001e+2bi 1111e-5bi
string
charactep_str\ing: "abc" "Say ""NO""-" (5)"x" nn
bit-string: "110"b (36)"1"b ""p
punctuators: e G |
operators
arithmetic: + - ® /%X ~
relational: = "= < K> T> K= >=
logical: R S
string: i
gqualifier: ->
picture: "s999v.99" "$$$$9v.99cr"
isub; 1sub 5sub
%include: %include Table; %include "rd>x>sn";
separator
space: (blank, tab, newline, newpage, and
vertical-tab characters)
comment: /% Ignore this message. #/

5-12 AM83

Y

STATEMENTS

A program can be viewed as a sequence of stateme
statement is one of the important features of the high-le
programmer thinks of the statement as the executable unit
an assembly language programmer thinks of the hard
executable unit of assembly language programming. Yet a
generally corresponds to five or six hardware instruct
often more. Therefore, from a programmer s point of vi
instead of assembly language reduces the number of execut
by a large factor.

Statement Prefix

The following syntax rules apply to all PL/I stateme

° A statement is a
semicolon.

refix,

° The prefix of a statement consists of an
condition prefixes followed by an optional sequ

° A condition prefix is a parenthesized list of condition

separated by commas and followed by a colon.

° A label prefix is an identifier followed by a ¢

CONDITION PREFIXES

The purpose of a condition prefix is to alter the
are enabled during the execution of a statement or a bloc
enabled, the corresponding error checking is performe
enhancement of the debugging process. When a conditio

for the corresponding error condition is not usually performed and

executes at less cost. Consider the statement:

(subscriptrange, nosize): z(i) = alpha;

The ‘subscriptrange’ condition prefix name enables the
and, in effect, forces the processor to check to see if
outside the range of the bounds of the array “z”;
debugging and bad for optimization. On the other hand, t

prefix name disables the size condition and frees

followed by a statemen

nts. The notion of the
vel languages. A PL/I
of programming Jjust as
ware instruction as the
single PL/I statement
ions -- sometimes less,
ew, the use of PL/I
able units in a program

nts:

t body, followed by a

optional sequence of
ence of label prefixes.

prefix names

olon.

set of conditions that
k. When a condition is

d with the resulting
n is disabled, checking
the program

corresponding condition
the value of ‘i’ is
that policy is good for
he ‘nosize’” condition
the processor from the

responsibility for detecting a value of ‘alpha’ whose magnitude is too large for

’

an element of the array “z”; that policy is bad for de
optimization. Further details are given in Section XIII

LABEL PREFIXES
The purpose of a label prefix is to declare a progra
and to specify its value. Three cases apply:

° If a label prefix is in a ’‘procedure’ or ‘entry
identifier is declared as an ‘entry constant’.

pugging but good for
, "Condition Handling."

m address constant name

v

statement, then the

AM83

° If the label prefix is in a ‘format’ statement, then the identifier is
declared as a “format constant’.

° If the label prefix is in the prefix of any statement not mentioned in
the preceding cases, then the identifier is declared as a ‘label
constant’.

The classification just given indicates that, although the terminology "label
prefix" 1s convenient, the identifier in a label prefix is not necessarily a
label constant. Further details are given in Section XI, "Program Flow."

Statement Body

There are about 25 different kinds of statements in Multics PL/I; but the
statements make extensive use of a small repertoire of components and obey some
simple rules. The observations that follow are not recommended for study or
memorization; instead, they are intended to assist the reader in recognizing the
patterns that make the syntax of PL/I relatively easy to read.

° Keywords. Except for the assignment statement and the null statement,
every statement ©body begins with a keyword. The complete syntax for
each statement is given in Appendix A, and the entries in that
appendix are arranged in alphabetical order according to the initial
keyword.

° Options. The main part of most kinds of statement is a sequence of
options. An option is a keyword followed by something in parentheses.
An option specifies a subcommand within a statement, and can often be
omitted from a statement without rendering the statement invalid
(hence the name "option"). For example, consider the statement:

put file(beta) skip(2) list(x,y);

This statement consists of a keyword ‘put’ and a sequence of three
options. When the first two options are omitted, the statement is:

put list(x,y);

In this statement, the missing options are treated in two different
ways. In the absence of the ‘file” option, PL/I assumes
‘file(sysprint)’; but in the absence of the ‘skip” attribute, PL/I
does not perform the “skip’ action.

) Clauses. In a rather small number of cases, a clause is used instead
of an option. A clause is an option without the parentheses. 1In a
‘do” statement, each clause is a keyword followed by an expression.
For example, consider:

do i = 1 to 20 by 2 while(u = v);
In this statement, “to 20" and ‘by 2° are clauses, but ‘while(u=v)’ is

an option. (A common error is to write the ‘while’ option as a clause,
without the parentheses.)

-14 AM83

1921

Attributes. An attribute is a keyword that is s
something in parentheses. It thus resembles an
to give the declaration of an identifier
subcommand. Attributes appear in “declare’ s
restricted way, in several other kinds of statem

declare x real fixed binary precision(8,2);

This statement contains four attributes, th
parenthesized list of two integers.

Spaces. In a sequence of options that describe
as the opening of one file or the allocation of
options are separated by spaces rather than by c
applies to the attributes that describe a single

Commas. Several statements use commas to expre
what would otherwise require several statements;

declare x decimal fixed(8), y float;
is equivalent to

declare x decimal fixed(8);
declare y float;

The punctuation used in such compound statemen
(never the space), and the comma can be thoug
semicolon" when it is wused in this way. A
statement for several does save some writing
change the cost of compiling or executing the st
some disadvantages to the use of a compound
statement makes examination or editing of a prog
and since Multics compiler diagnostics ar
statements (not phrases within statements),
complicated statement may be ambiguous.

followed
but it is used
than to give a
tatements in
For example,

a single action
one storage unit),
A similar rule
identifier.

for example,

statement.
gram more

diagnostic

by

a

last of which has a

(such

the

statement

ts is always the comma
"little
lthough the use of one

not

and there are
A compound
difficult,
complete

for

a

AM83

Classification of Statements

A classification of all
classification is according to the principal function of each statement. There
is a section in this manual for each of the eight kinds of statement given in

the classification.

statement
declaration
declare
default
storage management
allocate
free

assignment
(no keyword)

program flow
begin
end
do
goto
if
(null statement)
procedure invocation
procedure
entry
end
call
return
condition handling
on
revert
signal
stream input/output
open
close
get
put
format
record input/output
open
close
read
write
delete
rewrite
locate

P:
Q:

the Multies PL/I statements is given here. The

del x fixed dec(5,2) static initial(1);
dft (variable & range(c)) character(1);

alloc alpha in(tab) set(ip);
free Q;

x(i-3) = y*(sin(theta)-omega);

begin;

end;

do k = 1 to n+5 while(m<0);

goto LAB;

if beta = -2 then q = r-s; else q = 0;

proc(x,y) returns(float);
entry(atl,a2);

end;

call TCC(a-3%*phi,H3);
return(r-2%z);

on endfile(sysin) goto EXIT2;
revert endpage(report);
signal error;

open file(AWC) print linesize(80);
close file(test2);

get file(ww) edit(x,y)(p"zzz.99bbbbb");
put file(drop) page;
format(a(10),p"bbb--9v.99");

open file(a) keyed sequential update;
close file(insp);

read file(cust) into(tail);

write file(rec) keyfrom(x) from(y);
delete file(employee) key(ssno);
rewrite file(m) key(a3) from(beta);
locate buf set(p3) file(arc);

A single example of each statement is given at the right. The selection of the
example 1is necessarily arbitrary. Every example has a null prefix except for
those statements that require at least one label prefix.

5-16 AM83

o

PROGRAM STRUCTURES

There are three PL/I constructs that group a sequence of statements into a
single program structure: the group, the ‘procedure’ block, and the ‘begin’
block. Each of these structures can be compared to the paragraph of
conventional text; however, they are more powerful than the conventional
paragraph. The additional power comes from the fact that any one of these
program structures can, itself, be regarded as a single statement. Thus a group
or block can be included in the sequence of statements encompassed in a larger
group or block. This arrangement of one program structune within another is
called nesting.

Groups

There is just one kind of group, the “do” group. A ‘do’ group has the
following form:

° A ‘do” statement followed by

° A sequence of constructs, each of which is a statement, a group, or a
block, followed by

° An “end’ statement.

Groups and blocks cannot overlap but must be nested; that is, any ‘do’
statement, ‘procedure’ statement, ‘begin’ statement, ‘entny’ statement, or ‘end’
statement that is contained in a given ‘do’ group must be | part of a complete
group or block that is contained in the given ‘do” group.

The simplest application of a “do’ group does nothing more than gather a
sequence of statements into a single executable unit. Caoansider, for example,
the following “if statement:

if x

o O

then

3 o]
[o 7 [I | O

O N< QA
N =

This statement sets the variables 'y’ and “z” only if “x” is zero. The ‘do’
group is treated as a single construct governed by the “if” statement. If the
‘do” and “end’ statements are omitted, then the example becomes:

if x = 0
then y 1
z

2

e weo

Now the meaning is different; the example consists of two statements, and the
assignment to ‘z° occurs regardless of whether ‘x° is zero or not. Therefore,
the 1layout of the revised example is misleading and it should be written as

follows:
if x =0

then y = 1;

z = 2

This layout makes it clear that only the assignment to ‘y| is governed by the
“if” statement.

5-17 AM83

In the more complicated applications of a ‘do” group, it not only gathers a
sequence of statements into a single executable unit, but also executes the
statements repeatedly. Consider, for example, the following group:

do i = 1 to 20;
a(i) = b(n+1-i);
end;

This statement performs the assignment statement 20 times. For each execution
of the group, the index variable, “i“, assumes the values “1°, ‘2, and so on up
to ‘20°. There are many variations in the repeating group, and these are
described later, in Section XI, "Program Flow."

Blocks

There are two kinds of blocks: the ‘procedure’ block and the ‘begin’ block.
They have the following form:

° A ‘procedure’ statement or ‘begin’ statement, depending on whether the
block is a ‘procedure’ or ‘begin’ block, followed by

° A sequence of constructs, each of which is a statement, a group, or a
block, followed by

° An ‘end’ statement.

An ‘entry’ statement can appear in a ‘procedure’ block. Aside from this, any
‘do” statement, ‘procedure’ statement, ‘begin’ statement, ‘entry’ statement, or
‘end” statement that is contained in a given block must be part of a complete
group or block that is contained in the given block; that is, groups and blocks
must be nested.

The two kinds of block both define a scope for the declaration of
identifiers. Within a given scope, an identifier can have a meaning that is
entirely different from the meaning of the same identifier outside of the given
scope. Thus a programmer can write a procedure that is intended for use within
a large program without concern for conflict between his use of identifiers and
that of other programmers. In addition, he can indicate by his use of scopes
the distinction between a variable that is used just in a small procedure and
one that is used throughout the procedure he is writing. The importance of
scopes 1s so great that ’procedure’ blocks and ‘begin’ blocks are discussed
together here, even though they are quite different in the way they are
executed.

A ‘procedure’ block is executed as a closed subroutine; that is, it is
executed by means of a ‘call’ statement or a function reference, and not when
flow reaches it from the preceding statement. In contrast, a ‘begin’ block is
executed in-line; that is, it 1is executed when flow reaches it from the
preceding statement or by transfer of control to its ‘begin’ statement. (The
‘begin’ block in an ‘on’ statement is handled in a special way.)

5-18 AM83

o

i Of the two kinds of block, the ‘procedure’

\ following example:
P

block is by far the nmnore

important. A PL/I program is a collection of one or more procedures, and every
subroutine within a program is written as a ‘procedure’ block. Consider the

pP: proc;
del (x,y,2z) float bin;
del (sysin, sysprint) file;
get list(x,y);
call DIST(X,y,2z);
put list(z);
DIST: proc(ecl1,c2,r);
del (e1,c2,r) float bin;
del sqrt builting
r = sqrt(c1*#2,c2¥%%2),
end;
end;
This example is a “procedure’ block and it is a complete program. It contains a
smaller ‘procedure’ block that is a subroutine, and that is invoked by the
‘call’ statement. A complete discussion of ‘procedure’ blocks is given later,
under "Procedure Invocation".

A ‘begin’ block is rarely used. It is sometimes essential in an “on’
statement, as described later under "Condition Handling". Usually, however, a
need to gather statements together can be handled better by a ‘do” group or a
‘procedure’ block. It is not unusual for a large program to be written without
the use of any ’‘begin’ blocks.

Summary of the Program Structures
Y

The following table shows various properties of the three kinds of program
structure:

Group ‘begin’ Block Procedure

Gathers statements into yes yes yes

a single executable unit.

Can iterate the yes no no

gathered statements.

Is executed/skipped when executed executed skipped

reached by sequential

flow of control.

Can be called as a no no yes

closed subroutine.

Defines a scope for the no yes | yes

declaration of identifiers.

o

AM83

EXTERNAL PROCEDURES AND THE PROGRAM

Throughout most of this manual, the terms "external procedure" and
"program" are used interchangeably. No harm comes fron that, because a single
external procedure can be executed as a program. In the following paragraphs,
however, the distinction between the two terms is described in detail.

An external procedure is a procedure that is not contained in any larger
PL/I construct. It is called "external" precisely because it is not contained
inside any other PL/I construct. An external procedure can contain other
procedures; and these latter procedures are all internal procedures.

A program is a set of one or more external procedures that are executed in
concert. Each external procedure is written, edited, filed, and compiled
separately. It is possible to bind the external procedures into a single
Multics object segment, but this binding is not required; it is only necessary
that the object segments for the external procedures be available when the
program is executed.

Any program can be written as a single external procedure; and in that
case, the distinction between a program and an external procedure is not very
important. But there are good reasons to divide a program of medium or large
size into several external procedures. The reasons are:

° In a large project involving more than one programmer, it is important
to be able to compile and test parts of a program separately.

) For programs of considerable size, compilation in parts is 1less
expensive than compilation of the whole; this is simply a fact of
compiler technology. Furthermore, when a program becomes very large,
it exceeds the capacity of the compiler and cannot be compiled as a
whole.

° To change a single statement of an external procedure the entire
external procedure must be recompiled. The smaller the external
procedures, the smaller the cost of making an isolated change.

The division of a program into external procedures can be carried to an
undesirable extreme. When the division results in variables being shared
between the two external procedures, these variables must be ‘external’
variables or procedure parameters; and the implementation of such variables is
relatively expensive. 1In the absence of other guidance, external procedures
should be kept between 100 and 1000 lines in length.

5-20 AM83

—

SECTION VI

DECLARATIONS

The use of a name in a program is a name reference and each name reference
has a declaration. The declaration provides two items of information. First,
it gives a set of attributes and (in the case of a structure variable) level
numbers. Second, it associates the name reference with a particular block.
Later sections of this manual describe how declarations are used 1in the
interpretation of the different kinds of name references. This section
describes the mechanism that supplies the declarations.

Each occurrence of a name in a program either supplies a declaration or
uses a declaration. Consider the following fragment of a program:

del x float bin;

x = 5;

In this example, the first occurrence of ‘x’ supplies a declaration, and the
second occurrence of ‘x’ makes use of that declaration. If the declaration of
‘x” were not supplied in this way, then the assignment statement could not be
interpreted.

With one exception, the declaration of a name reference is determined by
the PL/I compiler, once and for all, before a program is executed. The
exception is for a variable extent: a variable array bound, a variable maximum
string length, or a variable area size. To determine the declarations of the
name references in a program, the compiler makes repeated use of two operations:
the establishment of a declaration and the resolution of % name reference.

This section has three main parts. First, the constructs used for the
establishment of declarations are described. Next, the rules for the resolution
of names are presented. Finally, diagrams that show all possible declarations
of names are provided and a complete classification of the attributes is given.

|
ESTABLISHMENT OF DECLARATIONS {
\
\

This discussion begins with an example; then i¢ describes the program
constructs that are used in establishing declarations. i

6-1 AM83

Example of the Establishment of Declarations

The following program contains several examples of the establishment of
declarations:

P: proc;
del x float bin;
del (sysin,sysprint) file;

L2: | get list(x);

call Q;

if x = 0 then goto L2; else return;
Q: proc;

del L2 float bin;
L2 = x%%2 _ 3J%x**p,
put skip list(x,L2);
end;

end;

The program has two blocks, which can be conveniently be called the "outer
block" and the "inner block". The declarations explicitly established in the
program are as follows:

) In the outer block:

‘x” with the attribute ‘float bin’

‘sysin’ with the attribute ‘file’

‘sysprint’ with the attribute ‘file’

‘L2° with the attribute ‘label internal constant’
‘Q” with the attributes ‘entry internal constant’

° In the inner block:
‘L2° with the attribute ‘float bin’
° In an imaginary ‘begin’ block that encloses the entire program:
‘P’ with the attributes ‘entry external constant”’
More is said of the "imaginary" block later in this section.

Observe that two declarations are established for the identifier ‘L2’ and
that the identifier is used in two different ways. Such a double use is not
attractive when the uses are so close together; but in a large program, the
repeated use of a single identifier is difficult to avoid. When the subject of

resolution 1is discussed 1later in this section, the way in which PL/I decides
which declaration applies to a particular use of ‘L2° is given.

6-2 AM83

Containment and Immediate Containment

The establishment of declarations depends on the definitions of containment
and immediate containment. These definitions follow:

° An occurrence of a program construct (such as a statement, a label
prefix, or a name) is contained in a block if it is part of the
‘procedure’ or ‘begin’ statement with which the block begins, part of
the -end’ statement with which the block ends, or part of any
statement in between. However, there are two exceptions. First, any
label prefixes in the “procedure’ or ‘begin’ statement that begins a
given block are not contained in the given block. Second, any label
prefixes in an ‘entry’ statement that is part of a given block but not
part of a smaller block are not contained in the given block.

° An occurrence of a program construct is immediately contained in a
given block if it is contained in the given block but not in any
smaller block.

In the establishment of declarations, these definitions ane used to determine
which block immediately contains a given ‘declare’ statement or label prefix.

As an example of the application of these definitions, consider the
following program:

P: proc;

del (sysin,sysprint) file; |_contained in
del (x,y,2z) float bin; the outer
get list(x,y); procedure

if x=0

then call Q1(x,y,2z);
else call Q2(x,y,2);
put list(x,y,z);

Q1: proc(a,b,c); ‘
del (a,b,c) float bin; ///conta ned in
... (Computation #1) the inner
goto LAB; procedure
Q2: entry(a,b,c);
... (Computation #2) }
LAB: begin; }
del (g1,g2) float bin; ///conta ned in
... (Computation #3) 1 the “begin’
end; block
|
end;
end; |

This program is composed of three blocké; they can be reférred to as the '"outer
proceduye", the "inner procedure", and the "‘begin’ block". The three outlines
show which portions of the program are contained in each of the three blocks.

6-3 AM83

. The following observations are typical of those necessary for the
establishment of declarations:

° ?he }abel prefix ‘P:’ is not contained in any of the three blocks, but
it is contained in an imaginary ‘begin’ block that is considered to
enclose the entire program.

° The first two ‘declare’ statements are immediately contained in the
outer procedure.

. The label prefixes “Q1:° and “Q2:° are immediately contained in the
outer procedure (and are not contained in the inner procedure); this
is true even though “Q2:’ occurs in the midst of the inner procedure.

° The third ‘declare’ statement and the 1label prefix ‘LAB:’ are
contained in both the outer and inner procedures, but they are
immediately contained in the inner procedure only.

° The fourth ‘declare’ statement is contained in all three blocks; but
it is immediately contained in the ‘begin’ block only.

The imaginary ‘begin’ block mentioned in connection with the declaration of
‘P° is a definitional artifice, called the root block; that makes the rules for
the establishment of declarations simpler. The external procedures of a program
are thought of as being enclosed in an imaginary ‘begin’ block. All of the
entry constant names for the external procedures are declared in this ‘begin’
block.

‘declare’ Statement

The principal means for establishing a declaration is the ‘declare’
statement. As the keyword ‘declare’ suggests, the statement is devoted to
supplying information. When a ‘declare’ statement is encountered in the course
of program execution, it produces no action.

A ‘declare’ statement gives one or more declarations. Each declaration
associates a set of attributes with a name. The declarations are established in
the block that immediately contains the “declare’ statement.

The “declare’ statement is available in several forms. In many cases, a
‘declare” statement is a simple declaration of a scalar or array variable name. .
When a structure variable is declared, a special form of the ‘declare’ statement
is required. 1In order to reduce the amount of writing required, declarations
can be combined and factored. These forms of the “declare’ statement are
discussed in the following paragraphs.

SIMPLE DECLARATIONS

The simplest form of a ‘declare’ statement is the keyword ‘declare’, a
name, a sequence of attributes, and a semicolon. Two examples are:

declare alpha_p5 decimal float bin static;

declare x;

614 AM83

The effect of the first statement is to establish in the

block a declaration of ‘alpha_p5° with attributes ‘decimal
second statement establishes in the immediately containi
of ‘x’ with no attributes. In both cases, the attribute
‘declare’ statement are filled in by PL/I according to def

The following statement declares an array variable na
declare beta dimension(3*n-1) float bin controll

When
keyword ‘dimension’ can be omitted.

the ‘dimension’ attribute immediately follows the de
Thus this statement i

declare beta(3%n+1) float bin controlled;

The effect of this statement is to establish in the immedi
a declaration of ‘beta’ with the attributes “dimension(3%*n
The expression “3%*n+1° is not evaluated when the declar
(before program execution); instead it is evaluated when
is allocated (during program execution).

STRUCTURE DECLARATIONS

Most names can be declared by means of the simple for
described. The only exception is the declaration of a st
The declaration of a structure requires the declaration of
for the entire structure, others for its members, yet oth
each of its members, and so on. Each name is declared in
which consists of a level number, the name itself, and a s
All of the names for a given structure must be in the sanm
and the declaration clauses are separated by commas.

Consider,

for example,
’ . ’
subscriber " :

the following declaration of &

declare 01 subscriber external,
02 name,
03 first char(15) varying,
03 initial_of_middle char(1),
03 last char(25) varying,
02 serial_number decimal(9);

This statement contains six declaration clauses.
declarations in the immediately containing block:

It est

immediately containing
float static’. The
g block a declaration

not given in the
ult rules.

d;

lared identifier, the
usually written as

tely containing block
1) float controlled”’.
tion 1is established
storage for the array

m of declaration just
ructure variable name.
several names: one
ers for the members of
a declaration clause,
equence of attributes.
e ‘declare’ statement,

he structure variable

ablishes the following

° “subscriber’, a structure with the attributes ‘external’ and with
members ‘name’ and “serial_number’
° :name’, a structure with no attributes and with members ’first’,
initial_of_middle’, and ‘last’

. “first’, a scalar with attributes ‘char(15) var

° ‘initial_of_middle’, a scalar with attribute “char(1)’

° ‘last’, a scalar with attributes ‘char(25) var’

° ‘serial_number’, a scalar with attributes ‘decimal(9)’

AM83

SHORT FORMS OF DECLARATIONS

A major portion of a PL/I program is devoted to ‘declare”’ statements, so
PL/I has several features designed to shorten declare statements. The sole
purpose of these features is to reduce the size of a program and thus make it
easier to write and to read. The features do not have any effect on the cost of
executifig the program.

Abbreviations and Defaults

A useful feature is the abbreviation of the keyword ‘declare’ to ‘dcl”. A
second feature 1is the provision of many abbreviations and defaults for
attributes. The designers of PL/I selected the defaults to cover the most
commonly required attributes. It follows that when an identifier is used in
some ordinary way not many attributes need be written explicitly. For example,
in the “declare’ statement

del Q72 float bin static;
the programmer has omitted the defaults ‘real binary precision(27) aligned
internal variable’ because these are supplied by default. The defaults for the

storage type attributes are given in Section III, "Value Storage." Other
default rules are given in Section VII, "Storage Management."

Combining Declarations

A sequence of ‘declare’ statements can be combined into a single ‘declare’
statement. Consider the statements:

del x float bin;
decl alpha fixed dec(10);
del Q3 float bin;

A single, equivalent statement is:

del x float, alpha fixed dec(10), Q3 float;

Factoring Declarations

Common attributes can be factored from individual declaratigns in a
combined ‘declare’ statement. Another equivalent form for the declare
statement above is:

del (x,Q3) float bin, alpha fixed dec(10);

This feature 1is called factoring because it is similar to the mathematical
operation of factoring out a common multiplier from a sum.

6-6 AM83

(/“‘:

Factoring can be applied more generally than the preceding example
indicates. Factoring can be applied repeatedly to the same statement. For
exanmple, the statement:

del x float static, y float static, z float;
can be written equivalently as:

del (x static, y static, z) float;
and then as:

del ((x, y) static, z) float;

The result has two attributes in it instead of the original five.

Factoring can also be applied to the level numbers used in the declaration
of a structure name; the only difference is that level numbers are factored to
the left while attributes are factored, as before, to the right. For example,
the statement: :

del 01 position,
02 x float,
02 y float,
02 z float;

can be written as:

del 01 position,
02 (x, y, z) float;

GUIDELINES FOR “declare’ STATEMENTS

A ‘declare’ statement can be placed anywhere in the block in which its
declaration is to be established, provided it is immediately contained in that
block. It is suggested, however, that all ‘declare’ statements be placed
immediately after the ‘procedure’ or ‘begin’ statement that begins the block.
If this convention is followed, a human reader always knows where to look for
the ‘declare’ statements and the “declare’ statements do% not clutter up the

portion of the block which is devoted to executable statements.

|
The extensive use of the combination and factoring df ‘declare’ statements
can make a program difficult to read, debug, and edit. Furthermore, the Multics
PL/I compiler Kkeys its diagnostics to statements, not to individual
declarations; therefore, a diagnostic message about a '4eclare’ statement with
several declarations can be ambiguous. |
The use of the outline layout of the declaration of structures, as shown in
the examples in this section, is recommended. The leading zero in each 1level
number is not required in PL/I; it is a stylistic device carried over from COBOL
by some PL/I programmers. It has the advantage that it istinguishes the level
numbers, which do not partake in the computational activity of PL/I, from the
arithmetic constants. ;

6-7 AM83

Label Prefixes

A second means for establishing a declaration is the label prefix. A label
prefix is an identifier followed by a colon and it always occurs immediately
before a statement body or another label prefix. It is useful to have a common
term, "label prefix" for all uses of this construet; but, in fact, the

identifier in a label prefix can be a label constant name, an entry constant
name or a format constant name.

LABEL CONSTANT NAMES

When a 1label prefix occurs before any statement except a ‘procedure’,
“entry’, or ‘format’ statement, the identifier in the prefix is a label constant
name. An effect of the 1label prefix is to establish in the immediately
containing block a declaration of the identifier as “label internal constant’.
Another, more fundamental effect, is to label the statement so that it can be
the destination of a transfer of control; that effect is described later, in
Section XI, "Program Flow."

A parenthesized, optionally-signed integer can be used in a label prefix as
a subscript to a label constant name. A given identifier can appear in several
label prefixes in a single block provided each appearance has a different
subscript. The effect of the set of label prefixes with the given identifier is
to establish a single declaration of the identifier as ‘label internal constant
dimension(i1:1i2)°, where il is the smallest integer used as a subscript and i2
is the largest.

As an example of the use of label prefixes to declare label constant names,
consider the following procedure:

MES: proc(i);

dcl sysprint file;

del i fixed bin;

goto LAB(i);
LAB(14): put list("x is too big"); goto EXIT;
LAB(-3): put 1list("z3 is negative"); goto EXIT;
LAB(1): put list("a exceeds x"); goto EXIT;
EXIT: end;

The label declarations established in this procedure are:

° ‘LAB", with attributes “label internal constant dimension(-3,14)°

° "EXIT", with attributes ‘label internal constant’

ENTRY CONSTANT NAMES

When a label prefix occurs before a ‘procedure’ statement or an ‘entry”’
statement, the identifier in the prefix is an entry constant name. In the event
that the procedure has neither arguments nor a result, the effect of the label
prefix is to establish in the immediately containing block a declaration of an
identifier with the attributes ‘entry internal constant’ (if the immediately
containing block is not the root block) or “entry external constant’ (if the
immediately containing block is the root block). When the procedure has
arguments or a result, the attributes of the arguments or the result is included
in the declaration of the entry constant name.

6-8 AM83

As an example of the use of label prefixes to de
consider the following procedure, which is assumed
larger block:

to

proc(s,cnt) returns (char(1000) varying);
del s char(1000) varying;
del cnt fixed bin;
del i fixed bin;
i cnt
goto L1;
REP2: entry(s) returns(char(1000) varying);
i 13

REP:

L1: . e
end;
The first
(not shown) that immediately contains this procedure:

clare
b

two label prefixes establish the following deg

entry constant names,
contained in some

e
=

larations in the block

fixed)

° “REP’ with attributes ‘entry(char(1000) varying,
returns (char(1000) var) internal constant’
° ‘REP2° with attributes “entry(char(1000) varying)

returns(char(1000) varying) internal constant’

The attributes for ‘REP’ were obtained by making two changes in the
‘internal constant/

the attributes
by ‘entry’ and the replacement
the declaration of the parameter. The attributes for
similar modification of the ‘entry’ statement. The decla
in the containing block because a procedure block does n
prefixes of ‘procedure’ and ‘entry’ statements in the pro

statement and adding
replacement of “procedure’

The example just given shows that the declaration of
can be 1long. Its purpose is to supply information n
supplied as arguments and to accept the value produced as
said of this later, in Section XII,

Suppose the procedure just given is not contained i
was previously assumed) but is itself an external procedu
two effects. First, the declarations established for bo

changed by replacing “internal’ by ‘external’. Second,
‘REP° and °“REP2’ are established in the imaginary ‘beg
the program.

FORMAT CONSTANT NAMES

When a label prefix occurs before a “format’ stateme

the prefix is a format constant name. An effect of
establish in the immediately containing block a declarat
with the attributes ‘format internal constant’. The role

in PL/I is rather limited and is described under "Stream

6-9

"Procedure Invocation.

‘procedure’
The changes are the
by

of each parameter

‘REP2° were obtained by a

rations are established
ot contain the 1label
cedure block.

an entry constant name
eeded to convert values

a result. More 1is
"

n some larger block (as
re. This change has
th ‘REP’ and “REP2° are
the declarations of
in’ block that encloses

nt, the identifier in
the label prefix is to
ion of an identifier
of ’‘format’ statements
Input/Output.”

AM83

Contextual and Implicit Declarations

A declaration that is established by a ‘declare’ statement or a label
prefix 1is called an explicit declaration. PL/I allows declarations to be
established in other ways, and these declarations are contextual or implicit. A
contextual declaration is one that is indicated by the way 1in which an
identifier is used; an implicit declaration is a last resort used when no other
basis for establishing a declaration can be found.

EXAMPLE OF CONTEXTUAL AND IMPLICIT DECLARATIONS

An example of a program that uses contextual and implicit declarations is:

A: proc;
do i = 0 to 90;
put file(sysprint) skip list(sind(i));
end;
end;

This program fails to give explicit declarations for “sysprint”’, ‘sind’, and
‘i°. The PL/I compiler assumes that declarations for these names should be
established in the outermost block of the external procedure (the only block in
this case) and supplies attributes as follows:

° ‘sysprint’ occurs in a ‘file’ option; since only a ‘file’ value can
ocecur 1in this context, the compiler supplies the attributes ‘file
constant’ as a contextual declaration.

° “sind” occurs as a function or array name; since ‘sind’ is the name of
a built-in function, the compiler supplies the attribute ‘builtin’ as
a contextual declaration.

° "1’ occurs in a context which does not unambiguously indicate its
declaration; therefore the compiler supplies no attributes, and the
declaration is implicit. According to the default rules, a name with
no attributes is assumed to be ‘real fixed binary (17,0)°.

It follows that the example program is equivalent to the following program,
in which all identifiers are explicitly declared:

A: proc;

decl sysprint file;

del sind builtin;

del i fixed bin;

do i = 0 to 90;
put file(sysprint) skip list(sind(i));
end;

end;

6-10 AM83

~

GUIDELINES FOR CONTEXTUAL AND IMPLICIT DECLARATIONS

The example just given shows that contextual and impl

a short PL/I program mnmuch shorter. However, in a
program, the use of contextual or implicit declarations ca
programnm. Contextual and implicit declarations are imple

and mentioned here because they are part of Standard PL/I.
PL/I compiler prints a warning message for each such deg
recommended that every name in a Multics PL/I program be
‘declare’ statement or a label prefix.

Special Facilities for Declaration

PL/I has two facilities that are designed to assist
declaration of names: the ‘like’ attribute and the “de
“like’ attribute is recommended for the rather special sit
applies, and it is fully described here. In contrast, ¢t
is not recommended, and only a few examples are given here
definition.

“like” ATTRIBUTE

The “like’ attribute asserts that the members of a gi
same declarations as the members of some other structure.

laration,
explicitly declared by

programmers
statement.
which

‘default’” statement

the “like’” attribute in the following program:

P: proc;
del 01 alpha(1000) external static,
02 x float bin,
02 y char(16);
del 01 beta like alpha;

EIEIRY

end;
The second ’‘declare’ statement is equivalent to:
del 01 beta,

02 x float bin,
02 y char(16);

icit declarations make
more realistic
n mask errors
mented in

the

Multies PL/I
the Multics
it

is

the
The
it

full

ven structure have the

For example, consider

AM83

Form of the “like’ Attribute
The “like’ attribute has the following form:

like 1lr

where 1lr is the like reference. The like reference must be a name or a sequence

of names separated by periods. A use of the ‘like’ attribute must satisfy the
following restrictions:

° The “like’ attribute can be used only in a ‘declare’ statement.

° The “like” attribute can apply only to a structure name; that is, it
must appear in a declaration clause that begins with a level number.

° A structure declaration with a “like” attribute must not be followed
by a member declaration. That 1is, if the declaration clause that
contains the “like’ attribute has level number n, then the immediately
following declaration clause must not have a level number that is
greater than n.

° It must be possible to resolve the 1like reference in a ‘like’
attribute according to the rules for the resolution of name references
given later in this section.

° The structure designated by the like reference must not contain a
“like” attribute. That is, a “like’ attribute cannot be defined in
terms of some other “like’ attribute.

Interpretation of the “like’ Attribute

A “like’ attribute is interpreted by the compiler. First, the 1like
reference 1is resolved; the result 1is the declaration of a structure. The
designated declaration consists of a declaration clause for the structure name
itself followed by a sequence of declaration clauses for the members of the
structure, the members of the members of the structure, and so on. The compiler
copies the sequence of member declaration clauses into a position immediately
after the declaration clause that contains the given “like’ attribute; then it
deletes the “like’ attribute. The final result is a complete declaration of a
structure,

The designated declaration clauses are copied 1literally, before any
attributes are filled in by the various default mechanisms of PL/I. The 1level
numbers are adjusted, if necessary, to assure that the declaration clause for a
member has a higher number than that for the containing structure. Within a
given block, the result of interpreting one “like” attribute is not used in
interpreting another °‘like’ attribute; such possibilities are ignored when a
like reference is resolved.

6-12 AM83

Examples of the “like” Attribute

The following
attribute:

P: proc;
del 01

del 01
del 01
del 01

..

end;

program contains three examples of the use of the “like’

customer(1000) external controlled,

02 ident,

03 name(3) char(30),

03 number pic"999b99b9999",
02 balance dec(8,2);
current based like customer;

ident_1ist(20) like customer.ident;

ident_pair external static,
02 old like customer.ident,
02 new like customer.ident;

The last three ‘declare’ statements are interpreted as follows:

del 01

del 01

del 01

Guidelines for the

current based,
02 ident,

03 name(3) char(30),

03 number pic"999b99b9999",
02 balance dec(8,2);
ident_1list (20),
02 name(3) char(30),
02 number pic"999b99b9999";
ident_pair external static,
02 old,

03 name(3) char(30),

03 number pie"999b99b9999",
02 new,

03 name(3) char(30),

03 number pic"999b99H9999";

‘like’” Attribute

A “like’ attribute should not be used merely to
used only when there is a close relationship between structure variables.

THE “default’ STATEMENT

save

writing; it should be

A ‘default’ statement is a rule for adding attributes to the declaration of
literal, a parameter, or the returned
The statement applies to every such declaration within its scope.

a name, a constant

result of a procedure.

AM83

S T -y,

A ‘default’ statement is composed of a default test, which examines the
attributes already present in a given declaration, and a sSequence of default
att?ibgtes that are added to the given declaration when the default test is
satisfied. A default’ statement is fully interpreted by the compiler, and it
has no direct action when a program is executed.

The.definition of the “default’ statement is not given in this manual; it
appears in the PL/I Language Manual. A few examples are given here, however, in
order to provide a brief introduction to the statement.

Examples of the “default’ Statement

As an example of the use of a ‘default’ statement, suppose it is necessary
to use double precision for binary floating-point values in a certain block.
The following statement can be used to achieve the desired effect by introducing
a new default for the number-of-digits:

default (float & “dec & “prec) prec(63);

This statement means ‘"wherever a ‘float’ attribute is present and a ‘decimal’
attribute is not present and a ‘precision’ attribute is not present, insert the
‘precision(63) attribute",

The example just given requires some discussion. Why not use ‘bin’ instead
of ““dec’? And why use ““prec’ at all? The answer is that a default test must
be written very carefully to cover all possible cases. Consider the following
statement:

del x float bin;

Even though the system defaults will eventually add 'b%nary’ to this ~
declaration, they are applied after, not before, the ‘default statemqu ig
applied. Therefore, the use of ‘bin’ in the default test instead of dec
would miss this declaration of “x°. Next, consider:
decl y float prec(30);
A ‘default’ statement adds an attribute rather than replacing an attribute. If
the ““prec’ is omitted from the default test, then the ‘default’ statement
applies to this declaration of “y’ and the result is:
del float prec(30) prec(63);
This is an invalid ‘declare’ statement.
A ‘default’ statement can be used to exclude certain declarations; for
example:
default (complex) error;
~’

6-14 AM83

This statement means "wherever a ‘complex’ attribute is gre ent,’the program 13
in error". When the default test is satisfied for this default stateqent, thg
compiler prints a diagnostic message. This example suggests that the default
statement could be used to enforce the use of a subset of L/T. However, the
‘default’ statement is too limited to cover many such casest For example, there
is no way to require that a ‘fixed binary’ value have a zero scale factor.

|
As a third example of a ‘default’ statement, consider the following:

|
default (~(range(i:n)irange(I:N)
& “(constantIbuiltin{condition}generic)
& ‘(character{bit1pointer{offset:area{labewlentrylfile)
& “(fixed!decimal!precision))
|
|
|

float binary prec(27);

This statement is complicated because it must cover all po%sible cases; however,
it means that an arithmetic variable that does not begin with IJKLMN (upper or
lower case) is assumed to be “float binary precision(27) when attributes to the
contrary are not given. When used in conjunction with the system defaults, it
approximates the handling of variable names in FORTRAN. |

Guidelines for the ‘default’ Statement

|
The examples of the ’‘default” statement Jjust g%ven show that it is

difficult to use. The problems with the ‘default’ statement can be summarized
as follows: i

° It is too deep. The ‘default’ statement is applied after certain
special defaults are applied and before the standard system defaults
are applied; furthermore, the order in which several ‘default’
statements are written can affect their results.

. It is too limited. The test in a ’‘default’ statement is not powerful.
Many useful defaults cannot be programmed and others can be programmed
only in an indirect and complicated way.

° It is unnecessary. PL/I already has an elaboréte set of standard
system defaults. A departure from those defaults introduces unwelcomne
complications.

For these reasons, the use of the ‘default’ statement is npt recommended.

RESOLUTION OF NAME REFERENCES

A e e ==

This discussion of the resolution of name refe%ences begins with an
example; then the specific definitions and rules for resolution are given.

6-15 | AM83

Example of the Resolution of Name References

For exgmples of the resolution of names, consider once again the following
progran, which was given at the beginning of this section: '

P: proc;
del x float bin;
del (sysin,sysprint) file;

L2: get list (x);

call Q;

if x = 0 then goto L2; else return;
Q: proc;

del L2 float bin;
L2 = x¥¥2 _ 3%x#%p.
put skip list(x,L2);
end;

end;

Consider the five instances of the name ‘L2° in this program. One instance
is in a label prefix and another is in a ‘declare’ statement; these establish
declarations for ‘L2°. Three instances of ‘L2’ remain, and these instances are
name references that are resolved as follows:

° The name reference in the ‘goto’ statement is resolved to the
declaration of °‘L2° that is established in the outer block; therefore,
this name reference 1is associated with the outer block and has
attributes ‘label internal constant’.

° The name references in the assignment statement and the ‘put’
statement are resolved to the declaration of ‘L2° that is established
in the inner procedure; therefore, each of these name references is
associated with the inner block and has the attribute ‘float”’.

The rules under which this resolution was performed are given later in this
section. First, however, some definitions must be given.

Name-Sequence Set for a Declaration

Each declaration has an associated set of name sequences. If the
declaration describes a structure variable, then the set contains the level-one
name of the structure and also contains each sequence of names that is formed by
starting with the level-one name and proceeding through contained 1level names.
If the declaration does not describe a structure variable, then the set contains
just one name-sequence and that name sequence is the declared nane.

6-16 AM83

Four examples of declarations and their associated sets of name sequences

are given in the following table:
Declaration Set of llame Sequences
del 01 Q(0:5) based,
02 R1 float bin; Q.R1
02 R2 fixed dec(8,2); Q.R2
del 01 S static external, S
02 Wef(2,m=3), S.Wef
03 P float bin, S.Wef.P
03 Q, S.Wef.Q
04 rho(n) fixed dec(4), S.Wef.Q.rho
04 phi fixed bin, S.Wef.Q.phi
03 R float bin, S.Wef.R
02 G(10,10,cnt) float binj; S.G
del alpha(n+2) float bin static; alpha
del sqrt builting sqrt

Name-Sequence for a Name Reference

Each nane reference has an associated name seguence. If the name reference
is a structure-qualified variable reference, then the ass 01ated name sequence
is the sequence of level names in the reference. In al other cases, the name
sequence is just the name itself.

Four examples of name references and their a33001ated name sequences are
given in the following table:
\
|

Name Reference Name Seguence
Q(3*n1+n2).R1 Q.R1
S.Wef(8,m-3).Q S.Wef.Q
alpha(2%*i-beta) alpha

sqrt sqrt

The full definition of structure-qualified variable reférences is given later,
in Section VIII, "Expressions."

Applicability of Declarations
|

A declaration can be applicable to a given name reference in two ways, as
follows:
[The declaration is applicable if it has a name sequence that 1is

identical to the name sequence for the given name reference. In this

case, the name reference is fully-qualified with respect to the
declaration.

6-17 AM83

° The declaration is applicable if it has a name Sequence that, after
the omission of one or more names, becomes identical to the name
Sequence for the given name reference. If only this case applies,

then the name reference is partially-qualified with respect to the
declaration.

As a basis for some examples of applicability, consider the following
declaration of the structure ‘omega ’:

del 01 omega controlled,
02 m,
03 S1 char(30),
03 S2 fixed bin,
02 gamma float bin;

% li:omplete list of the references to which this declaration is applicable
ollows: .

Fully-Qualified Partially-Qualified
omega m
omega.m omega.S1
omega.m.S1 m.S1
omega.m.S2 S1
omnega.gamma omega.S2
m.S2
S2
gamma

Resolution Rules

To resolve a given name reference, begin the search at the block that
contains the given reference and continue the search outward for each containing
block to find a block that has an established declaration that is applicable to
the given use of the name reference. There are three possibilities, as follows:

° No such block is found. In this case, the name reference is
undeclared. The use of an undeclared name reference is not
necessarily an error in Standard PL/I; a declaration is supplied
according to the rules for contextual and impliecit declaration,
mentioned earlier in this section. However, the use of an wundeclared
name reference 1is not recommended in Multics PL/I and the compiler
marks such a use with a warning.

° Exactly one such block is found. 1In this case, that 1is the desired
block and resolution proceeds as in the next paragraph.

° More than one such block is found. In this case, the desired block is
the smallest of the blocks, and resolution proceeds for that block
according to the next paragraph.

When the desired block has been found, there are three possible cases to be
considered, as follows:

° If the block contains exactly one applicable declaration, then that
declaration 1is the declaration of the given name reference and
resolution is complete.

6-18 AM83

If the block contains more than one applicable d$clara§i9n, but only
one for which the given name reference 1is fully-qualified, thgn thgt
one is the declaration of the name reference an the resolution 1is
complete. ‘

|
If the block contains more than one applicable declayation. but the
preceding case does not apply, then the declaration is ambiguous and

the name reference is invalid.

As a basis for examples of name resolution, consider khe following program:

|

proc;
del X float bin;
del Y float bin;

... (Computation #1)

proc;
del 01 S,
02 Y float bin,
02 Z fixed dec(8,2);
del 01 R,

02 alpha char(16),
02 Z(100) float bin;
del alpha fixed bin;
... (Computation #2)
end;
end;

Now consider some of the references that could appear in Computation # or
Computation #2: :

In either Computation, this reference ié a fully-qualified
reference to the ‘X’ declared by the first ‘declare’ statement in
the outer block. ‘

In Computation #1, this reference is a fully=qualified reference to
the ‘Y’ declared in the second ‘declare’ statement in the outer
block. In Computation #2, this reference is a partially-qualified
reference to the first member of °S° declared in the first
‘declare’ statement in the inner block. 1

alpha In Computation #1, this reference is undeclared and, in Multiecs, is

Z2(1i)

Observe

is a partially-qualified reference to the first member of ‘R’ and a
fully-qualified reference to the “alpha’ that is declared in the
last ‘declare’ statement in the inner block. The reference is
resolved to the second possibility, the 'aléha’ declared in the
last ‘declare’ statement. |

contrary to recommended usage. In Computa&ion #2, this reference

In Computation #1, this reference is wundeclared. In Computation
#2, this reference is a partially-qualified %eference to the second
member of both ‘S’ and ‘R, Both “S” and 'R’ are declared in the
inner block; therefore, the reference cannot be resolved and is
invalid. i

that the subscript in the reference “Z(i) does not enter into the

resolution of the reference, even though °R.Z° can have a subseript and °S.Z°

cannot.

6-19 AM83

ATTRIBUTES

PL/I has more than 50 attributes, and many combinations of these can be
used in the declaration of a name. The following paragraphs present two views
of attributes. First, five kinds of names are defined and the sets of
attributes allowed for the declaration of each kind of name are given. Then a
complete classification of the attributes is presented.

Complete Attribute Sets

There are five main kinds of names, as follows:

variable names

constant names

built-in function names
condition names

generic names

The different kinds of names vary widely in their importance. The variable
names have a variety and flexibility that overshadows all other names. Constant
names and built-in function names appear in most programs. Condition names also
occur in most programs, but they are used in a restricted context. Generic
names are extremely specialized and are rarely used.

The following paragraphs give the complete attribute sets for each kind of
name. A set of attributes is a valid complete declaration for a name if and
only if it is included in one of these sets. As an example, consider one of the
complete attribute sets for a variable name:

real float binary precision(27) aligned automatic internal variable

Because of the default rules of the language, this attribute set can be
shortened to:

float

However, the following paragraphs do not mention such shortened forms. They
give only complete attribute sets, before any abbreviations or defaults have
been applied. In practice, once an appropriate attribute set has been
determined, it 1is a relatively routine job to apply abbreviations and defaults
to shorten it.

The complete attribute sets are given by means of diagrams. The diagrams
use two special notations, as follows:

° Curly braces indicate a choice; they enclose two or more lines, any
one of which is chosen in making up a specific attribute set.

) Square brackets indicate an option; they enclose an item that can be
either included or omitted in making up a specific complete attribute
set.

Some of the identifiers in the diagrams are underlined and some are not. The

underlined identifiers are terms that are defined in the text that follows the
diagram. The nonunderlined identifiers are attribute keywords.

6-20 AM83

~/

VARIABLE NAMES

A variable name designates storage for a value obt
calculation. The complete attribute sets for a variable n

aligned
dt [dimension(bpy.--)] sc [initial(
unaligned

ined from input or
me are:

Xyooo)] variable

where dt is the data type, bp,... is a sequence of array-bound pairs separated
by commas, sc¢ is the scope and class, and X,... is a sequence of initial value

expressions separated by commas.

The data type is one of the following sets of attribut

real fixed binary precision(p,q)
complex float decimal precision(p)
real
picture'ps"
complex
character(ee) nonvarying |
bit(ee) varying %

ﬁ label [1ocal] |
entry(d,...) [bptions(variableﬂ [return#(
format [local]

pointer

offset [(a)]

file |
area [(ee)] |

L structure [like g]

where p 1is an unsigned decimal integer constant, g is
decimal integer constant, ps is a picture, ee is an expre*s

es:

4]

)

an optionally signed
ion whose value can

be converted to an integer value, d is a descriptor, a is a reference that

yields an “area’ value, and r is a like-reference. ‘

6-21

AM83

The scope and class is one of the following sets of attributes:

)
(static internal

controlled external

(automatic
based(1lg)
{parameter . 3 internal

defined(br) [position(i)]

‘member

))

\

where 1g is a locator qualifier, br is a based reference, and i is an expression

whose value can be converted to an integer value.

Variable names are described in Section VIII, "Expressions."

CONSTANT NAMES

A constant name designates a statement address or a

address.
execution. The complete attribute sets for a constant name are:

(label internal [dimension(bp ﬂ

internal
entry(d,...)
external

format internal

internal
file fd
external

where bp is a pair of array bounds, d is a descriptor for a
result, and fd is the file description, defined as follows:

Constant names are described in Section VIII, "Expressions."

6-22

[options(variable)] [returns(g)]

input

stream
output print [environment(interactive)]
input sequential

record output sequential environment(stringvalue)
update direct keyed

file-state-block
The address is set by the compiler and does not change during program

L constant

parameter or a

AM83

BUILT-IN FUNCTION NAMES

A built-in function name designates an operatioq that 1is applied to
arguments to produce a result. Each built-in function name designates an
operation whose action is a fixed part of the definition ?f PL/I. The complete

|

attribute set for a built-in function name is:

internal builtin

Built-in function names are described in a general way in Section VIII,
"Expressions," and the individual built-in functions are defined in Section IX,
"Operations.’

CONDITION NAMES

A condition name designates an exceptional situation that can arise during
program execution; it is used in programming a response to the given situation.
The complete attribute set for a condition name is:

external condition

Condition names are described in Section XIII, "Condition Handling."

GENERIC NAMES

A generic name designates a set of rules for selecting a programmed entry
name from a set of programmed entry names. The compiler| follows the rules and
replaces the generic name with one of the programmed entry names. The complete
attribute set for a generic name is:

internal generic(alt,...)

where ‘alt,...” is a sequence of alternatives separated by commas. Generic
names are described in Section XII, "Procedure Invocation."

6-23 ‘ AM83

Classification of Attributes

;t. is. useful to arrange the attributes in a single, hierarchical
clas§1flcat10n and thus establish a complete terminology for the discussion of
attributes. The classification is as follows:

storage description
storage type
data type

computational
arithmetic

mode: real complex
scale: fixed float
base: binary decimal
precision: precision(p,q)
string
string type: character(ee) bit(ee) picture"ps"
variability: varying nonvarying
non-computational
address
statement: 1label entry format
data
locator: pointer offset
file: file
area: area(ee)
aggregate type
array: dimension(bp,...)
structure: structure member
alignment: aligned unaligned

management class

storage class
allocation: automatic static controlled based(lq)

sharing: based(lg) defined(r) position(i) parameter
scope: internal external
category: variable constant
initial: initial(x,...)
usage description
label and format: 1local
entry: entry(d,...) returns(d,...) options(variable)
offset: offset(a)
file constant
operation: input output update
organization
stream: stream print environment(interactive)
record: record sequential direct keyed
environment (string value)

non-valued names

compile-time: 1like r generic(alt,...)
intrinsic names: builtin condition

Definitions for the underlined identifiers, b, g9, ee, and so on, are not given
here Dbecause they were given earlier, 1in the definitions of the complete
attribute sets. Further information about a given attribute or class of
attributes can be located through the index of this manual.

6-24 AM83

- 4

SECTION VII

STORAGE MANAGEMENT

Part of the cost of program execution is expended on}the computing resource
called storage. When the storage requirement can be redu ed, the cost of the
program execution decreases. A programmer cannot do muc to reduce the storage
occupied by a given program, but he can exercise some control over the amount of
storage required for the data on which the program operates. The control of
data storage 1is called storage management. Observe that storage management
concerns storage itself, and not the values contained in qhat storage.

Each variable name in a program must have storage al%ocated for its value
at some time before it is assigned a value and may hav‘ that storage freed at
some time after the last use of its value. Allocation and freeing are the
fundamental operations of storage management. There are ieveral mechanisms that
cause these operations to occur, and the programmer chooses one mechanism for
each variable name by giving a storage class attribute When he declares the
variable name. |

The requirement of a program for storage can be reduced by storage
management; the effect is achieved by using a given portion of storage for more
than one purpose and thus "recycling" the storage resource. However, storage
management has its own cost because it is, in itself, a form of data processing.
In some cases, the saving of storage does not justify the|increase in processing
cost and program complexity. In Multics, small scale storage management is not
recommended. Programmed storage management 1is usually reserved for cases in
which a large saving in storage can be accomplished in a simple way.

Some of the principal innovations of both Multics and PL/I are applied to
the problem of storage managenent. The Multies paging system is a
hardware-based mechanism for storage management that 1is automatic and quite
invisible to the programmer. The block structure of PL/& allows the programmer
to organize programs in a way that implies the desired storage management
without requiring explicitly programmed allocation and freeing of storage. In
addition, PL/I has built-in routines that facilitate storage management under
program control. Taken together, these features of lultics and PL/I allow the
programmer to use very powerful storage management techniques with a small
amount of programming effort.

This section has three main parts. The first part gives examples and the
fundamentals of storage allocation., The second part defines the management
class, which consists of the wusage, scope, storage class, and initial
attributes. The final part discusses the capacity of storage and the
exceptional conditions that apply to storage allocation.

7-1 | AM83

PRELIMINARY EXAMPLES OF STORAGE MANAGEMENT
Semnslnnnnl naprubo OF STORAGE MANAGEMENT

) A few concrete examples are given here to prepare for the detailed
discussion of Storage management. Consider, first, a program that has a minimum
of storage management:

P1: proc;

del (sysin,sysprint) file;

del (a,b,c) float bin static;

get list(a);

b = a+l;

C = b¥¥2.

put list(b,c);

end;
Because the variable names ‘a’, ‘b", and ‘¢’ are declared “static”, their
storage is allocated throughout the process from the first vreference to the
program °‘P1° on. Since there are times when a variable is not in use (that is,
does not contain a useful value), storage is wasted.

One way of introducing storage management is to use ‘controlled’ variables.
Then statements can be inserted that allocate each variable just Dbefore its
first use and free it just after its last use, as in the following revision of
the given example:

P2: proc;
del (sysin,sysprint) file;
del (a,b,c) float bin controlled;
allocate a;
get list(a);
allocate b;
b = a+l;
free a;
allocate c;
C = b¥#2,
put list(b,c);
free b,c;
end;

(SR VLVIHVIESE VI Vi g Y e Xeo N o)

The digit at the end of each line is not part of the program; it is added to
show how many ‘float bin° variables are in storage after each statement.
Instead of using three variables all the time, the program never uses more than
two. On the other hand, the program has more statements, and these statements
add to the cost of executing the program. The version just given could not be
justified to save one or two “float bin°’ variables; but it might be appropriate
if large arrays, for example, were involved.

7-2 AM83

An entirely different approach can be taken toi reducing the storage
required for the given program. The programmer can recognize.that Eh? lasp use
of the variable ‘a’ occurs before the first use of the variable ‘c¢’; this, of
course, is a special property of this particular calculation. The programmer
could then replace each occurrence of ‘c’ by ‘a’ throughout his progran and omit
the declaration of “c¢”; but this would confuse the loglc}of Fhe progran (since
‘a’ and ‘¢’ represent different mathematical quantities). A different approach

is to use a ‘defined’ variable, as follows:

P3: proc;
del (sysin,sysprint) file;
del (a,b) float static;
del ¢ float bin defined(a);
get list(a);
b = a+h;
c = b¥¥2;
put list(b,c);
end;

The ‘defined’” attribute causes ‘¢’ to occupy the same storage as ‘a’, so the
program needs storage only for two ‘float bin’® variables. This storage
managemant technique has virtually no cost in terms of execution; however, it
requires an analysis of the program, and an error in that analysis can easily
lead to costs far in excess of the saving in storage.

Both of these exanmples of programmed storage management have weaknesses:
the first incurs a considerable processing cost for allocation and freeing and
the second is trick programming and is not recommended. Such techniques are
more appropriate when PL/I is used to program a computer with a small storage
capacity. There are occasions when programmed storage management is necessary
in Multics PL/I programs; but most Multies PL/I programs [rely entirely on the
allocation and freeing performed by PL/I in response to the structure of the
program. ‘

FUNDAMENTALS OF STORAGE MANAGEMENT

A Multics PL/I programmer does not deal directly with hardware storage;
instead, he works through several layers of special hardware and software whose
purpose is to simplify the use of storage. These levels begin at the hardware,
continue with the virtual memory, and conclude with the PL/I regions.

° On the hardware level, storage is a small working memory and a large
secondary memory. Such a configuration would beg difficult to progran,
since it requires an almost constant tranﬁmission of data and
instructions between the working storage and the secondary storage.
The Multics paging system controls this transmission and makes all
storage appear to be a homogeneous memory, called virtual memory.

o On the virtual memory level, storage is a set of segments. Each
segment 1is an addressable memory of 36-bit words and can be used like
the working storage of an ordinary processor. However, a segment is
very large (over 200,000 words) and, furthermore, the number of
segments is very large. Thus virtual memory is an idealization of the
actual hardware storage.

7-3 AM83

° On the PL/I language level, storage is thought of as a set of regions
that are mapped in fairly simple ways into the segments of virtual
memory. [Each region has a clearly defined relation to the PL/I
program with which it is associated, and regions are created and
destroyed as an integral part of program execution. Thus PL/I storage
is a specialization of virtual memory.

Usually a PL/I programmer thinks entirely in terms of Storage regions;
that 1is, he considers these regions to be the "real" data storage of a PL/I
program. A concern for the way in which regions are laid out in segments and
distributed between working and secondary storage 1s necessary only for
considerations of cost and debugging of invalid programs.

Storage Regions

Each storage region is a separate entity with a fixed but very large
capacity. A region 1is either internal or external. Each internal region is
associated with a particular block of a program. There are two kinds of
internal regions:

° A permanent internal region is wused for variables with “internal
static” or “internal controlled’ attributes. There is one such region
for each block in a program. The region is created at some time
before program execution begins and is not destroyed until after the
process ends.

° An activation internal region is used for variables with ‘internal
automatic” attributes. There 1is one such region, called the stack
frame, for each activation of each block in a program. The region 1is
created when the block is activated and is destroyed when the block is
deactivated.

An external region is associated with an entire process rather than a
particular block. There is one external region:

° The ordinary external region is used for variables and constants that
have the attribute ‘external’ and that do not have special names. (A
special name is an identifier that contains a “$°.) There is one such
region for an entire process. The region is created at some time
before program execution begins and is not destroyed until after the
process ends.

To summarize, the regions are classified according to the following
hierarchy:

region
internal
permanent: one per block
activation: one per activation of each block
external
ordinary: one per process

7-4 AM83

Region Diagrams

For purposes of discussion, it is wuseful to represent a region .by a
diagram. Suppose the following statements ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>