[19,0 HEWLETT

PACKARD

IMAGE/1000
92069A and 92073A Data Base
Management Systems

Reference Manual

1A 1AN
HY il

. . . s NN S
N s Nt

92069A and 92073 A
IMAGE/1000 Data Base

Management Systems

Reference Manual

[/ packaro

HEWLETT-PACKARD COMPANY

Data Systems Division Update 2 (July 1981)
11000 Wolfe Road MANUAL PART NO. 92069-90001
Cupertino, California 95014 Printed in U.S.A. July 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

Second Edition Jul 1980
Update 1...........ciiiiiiiiiiiinan, Jan 1981
Update 2cvinniiiiiii i Jul 1981

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1981 by HEWLETT-PACKARD COMPANY

ii

Notation

(1

{1

uppercase

lowercase

names

file names

Conventions Used In This Manual

Description

An element inside brackets 1is optional. Several
elements stacked inside a pair of of brackets means
the wuser may select any one or none of these
elements.

Example: A user may select A or B or neither
B

When several elements are stacked within braces the
user must select one of these elements.

A
Example: B user must select A or B or C.
C

Uppercase letters means that the information should
be presented exactly as shown.

Lowercase denotes a parameter which must be replaced
by a user-supplied variable.

All item names, data set names, database names and
level code words consist of one to six ASCII
characters restricted as follows:

o only printable characters, ! through .

o not allowed are: plus (+), minus (=), colon (:)
comma (,), semicolon (;), 1left parenthesis (()
right parenthesis ()), period (.), equal sign (=)
double quotes ("), underscore () or embedde
spaces.

o the first character must not be blank (space) or a

number.

’
’
4
d

References to file names conform to RTE-L FMP
conventions (with the restrictions listed above).
Any file name referred to as an FMP namr consists of
a file namr or a logical unit number. Any file name

Update 2 iii

log 1lu

iv

number. Any file name referred to as an FMP
file namr consists only of a file namr;

a logical unit number is not permitted.

In an FMP file namr, negative lus are not
permitted; only cartridge reference numbers
can be used.

The log lu is LU 1 if the terminal being used

is a Session terminal, the terminal lu if the
terminal is a Multi-Terminal Monitor terminal

and LU 1 if the terminal is neither a Session
nor MTM terminal.

Update 1

Preface

This manual describes the IMAGE/1000 Database Management System.
IMAGE is a complete software package for consolidating individual data
files into a single, interrelated database. Two IMAGE/1000 products,
identified by part numbers 92073A and 92069A, are described in this
manual. The 92069A product contains all the features of 92073A IMAGE,
as well as a BASIC/IMAGE interface and QUERY. QUERY allows a
non-programmer to interact with the database wusing simple,

English-like commands.

The RTE-L operating system supports the 92073A product, while RTE-IVB
and RTE-XL support both the 92073A and 92069A products. Since this
manual is compatible with both products, 92073A IMAGE users should

ignore sections concerning QUERY and BASIC language access,

In addition to being a functional reference manual, this document
provides tutorial aid for inexperienced users through a conceptual

approach to database management. Chapter 1 discusses what a database
is, why it is wused, and how to best make use of database concepts

through IMAGE/1000 features. The remaining chapters describe the use

of IMAGE/1000 software from CREATING THE DATABASE to HOST LANGUAGE
ACCESS to MAINTAINING THE DATABASE. QUERYING THE DATABASE (92069A
users only) fully describes that interactive utility. Experienced
users will appreciate the HOST LANGUAGE EXAMPLES and ADVANCED TOPICS
chapters. ADVANCED TOPICS will aid in optimizing database designs

through knowledge of system internals.

The appendices contain 1listings of the HP character set, IMAGE error
messages, and a comparison of 92069A IMAGE with the 92073A and 92063A
IMAGE products. The error messages of Appendix B will be referred to
by all users, while Appendix C will be of greatest interest to those
who have 92063A databases and desire to upgrade them to 92069A IMAGE.
Appendix D fully describes the differences between the 92069A and
92073A products.

This manual assumes a basic knowledge of RTE Operating Systems and at
least one programming language (FORTRAN, PASCAL, BASIC, or Assembly).
Familiarity with Distributed Systems/1000 is also helpful if Remote
Database Access will be used.

v/vi

1

2

3

DESIGNING THE DATABASE

WHAT IS A DATABASE? . .
OBJECTIVES OF A DATABASE
WHY USE A DATABASE? . .
DATA SET RELATIONSHIPS .
DATABASE STRUCTURE . . .

Database « « « « &
Data Items L] L] L] L3

Compound Data Items

Data Types
Data Entries . . .
Data Sets . . .« .
Database Files . .

MANAGEMENT SYSTEM

.
. 3 . . 3
.

. 3 . .

DEVELOPING A DATABASE SYSTEM . . « .« « « .

CREATING THE DATABASE

LANGUAGE CONVENTIONS . .

DATABASE SCHEMA STRUCTURE

DEFINING LEVELS .
DEFINING ITEMS . .
DEFINING SETS . .
MASTER DATA SETS .
DETAIL DATA SETS .
SPECIFYING CONTROL

RUNNING DBDS . . « . .« .

DBDS MESSAGES . .

SAMPLE DATA SCHEMA . . .
LOADING THE DATABASE . .

DBBLD

.

PREPARING DATA FOR
RUNNING DBBLD . .
SAMPLE DBBLD RUN .

QUERYING THE DATABASE

COMMANDS« « « . &

USING

OPENING A DATABASE
DEFINING A DATABASE
DEFINING A SELECT-FILE

DATA ITEM ELEMENTS

.

.
3
L] 3 . .
.

.

OPTIONS « « « .« .

DBBLD

.

.

.

QUALIFIED DATA ITEM NAMES

QUERY . . .

.

E‘OR USE

.

Contents

L] L]
L] L]
. (]
L] L]
L] L]
L]
il
I I e e e e e S
Ll L L I
QOoOWVWWOWULN N

.

.

L]

L]

L[]

[
[
=
No o

1-18

L]

L]

L]

(]

.

L]
oD N
Ll ol T N B |
NOONUNTEWN N

L]

L]

L]

L]

L]
PERY
=
@ W

2-21
2-21
2-21
2-25
2=-27

vii

4

viii

USING PROCEDURE AND COMMAND FILES . . .

RETRIEVING DATABASE ENTRIES . . « « . &
FIND COMMAND ¢ ¢ « ¢ o ¢ o o o o
RETRIEVE PROCEDURES . ¢« « ¢ o« « &
FIND PROCEDURES =« ¢ ¢ o ¢ o o o« &

MODIFYING THE DATABASE . ¢ ¢ o o o o o o«
ADDING DATA . ¢ & ¢ o ¢ o o o o o«
DELETING DATA . ¢ o ¢ o o o o o =
REPLACING DATA . ¢ ¢ ¢ o ¢ o ¢ o o

GENERATING REPORTS « ¢ o o ¢ o ¢ o o o @
REPORT COMMAND . e o o o o o o
DESIGNING A REPORT e o o o o o o
REPORT FORMATTING . ¢ ¢ ¢ o o o &
HEADER STATEMENTS . « o ¢ « o o
DETAIL STATEMENTS . « ¢ ¢ o ¢ o &
EDIT STATEMENTS . ¢ ¢ ¢ o « o o« o«
SORT STATEMENTS . . « . « .
GROUP STATEMENTS . « .« ¢ « &
TOTAL STATEMENTS . .

STORING AND MAINTAINING PROCEDURES
CREATE COMMAND . . « ¢ o «
DISPLAY COMMAND
EXECUTE COMMAND
DESTROY COMMAND

TERMINATING QUERY . . « « o &

UTILITY COMMANDS . ¢ o o o o o o o o o @

XEQ COMMAND . ¢ ¢ ¢ o o o o o o o
FORM COMMAND . . ¢ ¢ o o o o o
HELP COMMAND . ¢ ¢ ¢ ¢ ¢ o o o o
LIST COMMAND .« ¢ ¢ o o o o o o o

.
L]
.

.
. . L .

HOST LANGUAGE ACCESS

OPENING THE DATABASE . . &+ o o« o o o o &
RUN TABLE ¢ o ¢ o ¢ o ¢ o o o o o o o o
DBCOP ¢ & ¢ o o o o o o o o o o o o o @
SEGMENTED PROGRAMS AND IMAGE
OPEN MODES o o o e o e o
OBTAINING INFORMATION ABOUT THE DATABASE
SPECIAL USES OF DBINF
READING THE DATA . ¢ ¢ ¢ ¢ o o o o o o o
CURRENT PATH ¢ o ¢ o o o o o o o o
READING METHODS . ¢ & ¢ ¢ o o o &
CHAINED READ o ¢ ¢ o o o o o o o o
RE-READING THE CURRENT RECORD . .
SERIAL READ . ¢ ¢ ¢ o o o o o o &
DIRECTED READ o ¢ o o o o o o o
KEYED READ ¢ o ¢ o ¢ o o o o o o o
UPDATING DATA . ¢ ¢« « o o & e o o o
ACCESS LEVEL AND OPEN MODE e e o

e o o o .
* o .

e o o o o
.

e e o o o

L] . . .
L]
.

e o o o

.
.
.
.

STRUCTURE

L] . . .

B D D DD DD DD DD DD S
| [I I I |
OO JIJOATUVUNULTWWWN N -

L] .
NS
|
(R
oo

ENTERING DATA IN THE DATABASE . . .
SEQUENCE FOR ADDING ENTRIES .
ACCESS LEVEL AND OPEN MODE . .

KEY ITEMS . .
DELETING DATA ENTRIE

S . L

ACCESS LEVEL AND OPEN MODE .
LOCKING AND UNLOCKING THE

CLOSING THE DATABASE
CHECKING THE STATUS
CALL PARAMETERS . .
IBASE
ILEVL
ID . . « . &
IMODE
ISTAT
IBUF
ITEM
IARG
LIST . .« .
NAME- LIST o« .
VALUE-LIST.
USING THE IMAGE LIBR
UNUSED PARAMET
IMAGE SUBROUTINE CAL
DBCLS
DBDEL
DBFND

DBGET (FORTRAN AND ASSEMBLY

DBGET (BASIC)
DBINF
DBLCK
DBOPN
DBPUT
DBUNL
DBUPD

5 HOST LANGUAGE EXAMPLES

FORTRAN EXAMPLES . .
OPEN DATABASE

OF AN

ERS L]
LS Ll

DATABASE

OPERATION

ARY PROCEDURES

3 . . 3 3

.

REQUEST DATABASE INFORMATION .
READ ENTRY (FORWARD CHAIN) . .

READ ENTRY (SERIALLY)
READ ENTRY (DIRECTED)

READ ENTRY (KEY
ADD AN ENTRY .

UPDATE AN ENTRY
DELETE AN ENTRY

ED) .

. . . .

. . 3 .

LOCK AND UNLOCK DATABASE o o e

CLOSE A DATA SE

T . .

4-11
4-11
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-17
4-17
4-18
4-18
4-18
4-18
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-22
4-24
4-26
4-29
4-33
4-36
4-44
4-46
4-48
4-52
4-54

| mtnu1$tﬂu1u1m
| |
NN WL WN -

T
L

ix

CLOSE DATABASE . ¢« ¢ ¢ ¢ o &
SAMPLE FORTRAN PROGRAMS . .

PASCAL EXAMPLES « ¢ ¢ o o o o «
ASSEMBLY LANGUAGE . « ¢ o o o o &

BASIC

6 MAINTAINING

DBULD
DBULD
DBLOD

DBSTR
DBRST
DBSPA
RECOV

OPEN DATABASE . ¢« ¢ « o o &
REQUEST DATABASE INFORMATION
LOCATE AN ENTRY
READ AN ENTRY . . . « .« « &
ADD AN ENTRY ¢ ¢ o ¢ o o o
UPDATE AN ENTRY . . « « « &
DELETE AN ENTRY . . o« .
LOCK AND UNLOCK DATABASE .
CLOSE A DATA SET OR DATABASE
EXAMPLES . « ¢ ¢ o o o o o &
OPEN DATABASE . . . ¢ « « =
REQUEST DATABASE INFORMATION
READ ENTRY (FORWARD CHAIN)
READ ENTRY (SERIALLY)
READ ENTRY (DIRECTED)
READ ENTRY (KEYED) . .
ADD AN ENTRY
UPDATE AN ENTRY . . .
DELETE AN ENTRY« &
LOCK AND UNLOCK DATABASE . .
CLOSE A DATABASE . « ¢ « o o
SAMPLE BASIC PROGRAM

e o o o o
. . L] L]
L) L] . L] L] .

THE DATABASE

VS. DBSTR

. L] 3 . 3 o .

RESTRUCTURING THE DATABASE .
RUNNING DBLOD . ¢« « « o o &

. 3
. . 3 . . . 3 3
.

.

7 ADVANCED TOPICS

STRUCTURAL ELEMENTS OF THE DATABASE

SPACE

DETAIL DATA SETS . « « « o &
MASTER DATA SETS . « « « « &
ROOT FILE .« ¢ o« ¢ o o o o &
ALLOCATION ¢ ¢ ¢ o o o o o =«

REMOTE DATABASE ACCESS o o o o
TECHNIQUE FOR KEYED READ o o o o .
MIGRATING SECONDARIES . . . « « &

e o o o o

e o o o

5-49
5-50
5-52
5-53

|
B NOOVIUTUTWN

| YO Yoy OV O
|

c\?\m
=

L]
NN
|

RN P B
|
e

BWNO DN

A

B

C

REDUCING SYNONYMS . « o « o o o o &

QUERY
DBCOP

GENERATION AND LOADING CONSIDERATIONS

REPLACING THE STANDARD HASH ROUTINE

FORMAT OF THE HASH ROUTINE ., .
HASH ROUTINE EXAMPLE
SELECT FILE ¢ ¢ o« o o o o o o

L] 3 -

DS CONSIDERATIONS. &+ & o o o o o o o

HP CHARACTER SET FOR COMPUTER SYSTEMS

IMAGE ERROR MESSAGES

IMAGE

NUMBERED ERROR MESSAGES . . .

DBDS ERROR MESSAGES . . ¢« « « « . &
DBBLD ERROR MESSAGES . « ¢« « ¢ « « &

DBSPA

ERROR MESSAGES . . « « ¢ o o &

RECOV ERROR MESSAGES . . ¢« ¢« ¢ o o &

QUERY

ERROR MESSAGES . « ¢« « o o « o

CONVERTING 92063A TO 92069A

IMAGE

ENHANCEMENTS . « ¢ o o & o o &
CREATING THE DATABASE
QUERYING THE DATABASE
HOST LANGUAGE ACCESS« .
MAINTAINING THE DATABASE o
MISCELLANEOUS ENHANCEMENTS o .

CONVERSION STEPS &+ ¢ ¢ ¢ o o o o o &

LOADING BOTH IMAGE PRODUCTS INTO ONE aYSTEM

92069A VS.

DBUP L] . L] L] L] .
CONVERTING THE SCHEMA e o
CONVERTING APPLICATION PROGRAMS

92073A IMAGE

.

. L]

. . L[] L]

.

.

e o o o

7-14
7-15
7-15
7-16
7-17
7-17
7-18
7-18

ll{JW

L 3K~ S USROS RN By (%]

'CUEFU?UJ
=

Lo
NN S WWN

IOOOO(POOOO

(l)()
(e

x1i

lllustrations

Master and Detail Data Set o« o« o o o o o o o«
Master and Two Detail Data Sets .« « o « «
Two Masters and One Detail Data Set
IMAGE Database Components . .« ¢ « o o o o o
Set Relationships . . . e e e o o o o o o

Master and Detail Data Set

QA Database Structure
Database Design Process

DBDS

Run with Errors .

Sample Schema

Data

Input for DBBLD .

Sample DBBLD Run . . .

Deleting from a Master Data Set

General Report Format

Sample QUERY Report File
Alphanumeric Edit Examples

Numeric Edit Examples
Reading Access Methods
Sample Data Entries from QA Database
Detail Set Media Record
Master Set Media record
Database Control Block

Data
Data
Data
Sort
Free

Item Table

Set Control Block Table

Set Info Table . .
Table . « « « . &
Record Table Entry

.

.

Interaction

.

(DBGET)

Calculation of Space for QA Database

xii

Tables

Real Number EntrieS .+ ¢« o o o ¢ o o o o o o o o o s o o o o o o 2=24
Retrieve Procedure Relational OperatorsS . « « o« « o« o o « « « o« 3-9

REPORT Statements . o ¢ o o o o o ¢ o o o o o o o o o o o o o & 3-23
Numeric Edit Mask Combinations . . ¢« ¢« ¢« ¢ ¢ ¢ ¢ « o o o « o« o« o 3=-31
Edit Mask Characters o« o o o o o o o o s o o o s o o o o o o o o 3=32
Calling an IMAGE Subroutine ¢« « ¢« ¢ o . e o o o 4-21
MODE and ID Values and Results for FORTRAN and Assembly (DBINF). 4-37
MODE and ID Values and Results for BASIC . . . ¢ o o o o o « o » 4-40
Run Table Size Calculation Variables . . ¢« ¢« ¢« ¢« ¢« ¢ o o o o o« o 7-11
Run Table Size Calculations . . o o o o o o o o o o o o o o o o 1-11
Numbered Error MeSSAgeS « o o o o o o o o o o o o o o o o o o o B-1
DBDS Error MeSSageS « o« o o o o o o o o o o o o o s o o o o« o« «» B-6
DBBLD Error MeSSAgeS « « o o o o o o o o o o o o s s o o o s o o« B=12
DBSPA Error MeSSAgeS « o o o o o o o o o o o o s o o o o s o o o« B=12
RECOV Error MeSSAgeS « « o o o o o o o o o o o o o o o o s o o o« B=13
QUERY Messages . « « o « e e e o o o o e o e e s e o o o o » B-13
IMAGE Error Codes and QUERY MeSSagesS . o o o o o o o o o o o o o B=27
O0ld and New Open MOdeS o o o o o o o o s o o o s o s o o o o o o« C=-13

. . . .

XIII/XIV

Chapter 1
Designing The Database

As computer technoloqgy has advanced, methods of controlling data have
become more and more sophisticated. Data handling has progressed from
simple sequential files through random file access to 1integrated

database management. Database management systems offer 1increased
capabilities to the user, but by the nature of the added features,
more planning is necessary for optimal operation. Time 1invested

initially in planning will pay off once the databhase has been
established. This chapter discusses some basic concepts in designing
and implementing a database, as well as a general look at the

structure and features of IMAGE.

What Is A Database?

A database is a collection of 1logically related files containing both
data and structural information. Pointers within the database allow a
user to gain access to related data and to index data across files.
The organization of a database may take one of several forms; two
examples are a hierarchical structure and a network structure.

The hierarchical structure 1is a natural growth from earlier
conventional file management techniques. Data must be accessed
through 1levels of qualifiers. For example, to get to information
about an employee, information about division and department must
first bhe accessed. Cross reference files and linkage files are
extensively used to relate files for logical association and
accessibility. When the number of data files grows and the
interrelationships among them become more complex, the requirement for
Cross reference files and linkage files tends to increase

exponentially. An inherent result is that more overhead is required
to access data.

The network datahase is structured under the premise that only when
one logical group of data (data set or file) is related to another
logical group of data, is a direct linkage <constructed between them.
Thus, separate cross reference files and linkage files are no longer
required. The increase of complexity 1is directly proportional to the
number of direct relationships existing among a number of logical data
sets. When 1logical data sets are considered as nodes with direct
accessing paths connecting them, a network database is formed.

Objectives Of A Database Management System

An effective database organization method essentially involves
maintenance of the database. However, there are many implications and
practical considerations when one considers a database management
system.

Objectives of a database management system are data integrity and
security, convenient management, immunity to external changes, and
readiness of use in different environments. In order to achieve these
objectives, the independence of a data base is most important. Since
data is centralized, it becomes natural to centralize data control.
This centralization provides for the independence of the database from
application programs. Additions and modifications to application
programs should then not affect the data base and additions and
modifications to the database should not affect existing application
programs. The independence of a database provides the foundation for
an information system to meet the demand for dynamic changes and
growth. The database management system must be user-oriented so that
it can be learned quickly, understood easily and used conveniently for
a wide spectrum of applications. Facilities should be provided to the

user for security, database recovery and debugging aids.

These major points should be the objective of any database management
system. IMAGE adopts a network database organization and meets the

criteria of an effective database management systen.

Why Use A Database?

The primary benefit derived from use of the IMAGE database management
system is time savings. These savings are typically manifested in the
following areas:

° File Consolidation

Most information processing systems that service more than one
application area contain duplicate data. For example, a vendor's
name may appear in an inventory file, an accounts payable file and
an address label file. The data stored in these three files
probably varies slightly from file to file, resulting not only in
wasted file space but also inconsistent program output. Redundant
and 1inconsistent information severely dilutes any system's
capacity to deal with large amounts of data.

File consolidation into a database eliminates most data

redundancy. Through the use of pointers, logically related items
of information are chained together, even if they are physically
separated. In the example of vendor names and addresses, only one
set of data would be stored. Through the wuse of 1logical
associations, the data could be used by any program needing it.
Since there 1is only one record to retrieve and modify, the work
required for data maintenance is greatly reduced. Finally, all
reports drawn from that item of information are consistent.

Program File Independence

Conventional file structures tend to he rigid and inflexible. The
nature of conventional file management systems requires that the
logic of application programs be intricately interwoven with file
design. When it becomes necessary to alter the structure of a
file, a program must be written to change the file, and programs
that access the file must be changed to reflect the file change.
Since <change 1is the rule rather than the exception 1in data
processing, a large percentage of total time and manpower is spent

reprogramming.

IMAGE allows the data structure to be independent of the
application program. Data item relationships are independently
defined. Changes in the database structure need only be
incorporated into those programs that manipulate the changed data.
User programs need view only that portion of the database
description that pertains to each program's processing
requirements. Since all references to the database are resolved
at execution time, only those programs affected by changes to the
database description need be changed.

Versatility

Conventional file organization techniques allow limited access to

the data they contain. Most structures allow single key access
with additional relational access available only through the

implementation of extensive application level programming support.

IMAGE allows data to be accessed with nmultiple keys as well as
through a variety of other access methods.

Data Security

Conventional file management systems contain extremely 1limited
data security provisions. Access to computer readable data may be
denied to individuals with system access only by providing
physical protection for the media upon which the file is stored;
for example, the use of a wvault for storage of sensitive data
stored on magnetic tape.

IMAGE provides security at the file and data 1item level. The
implementation of security at the item level allows sensitive data
to be stored on-line under the control of a database manager or
designer, with minimal regard for additional security provisions.
IMAGE security provisions can limit even programmer or operator
access to extremely sensitive information.

While implementing a new application system IMAGE can be expected to
save time in the following ways:

° Program Development

The databhase structure can be defined and built without the use of
special purpose application level programming. Since control of
the 1linkage ©portion of the database 1is under IMAGE software
control, the programmer need not be concerned with testing the
structure and can concentrate on the functional programming task
at hand.

° Program Maintenance

Throughout the life of a system, processing requirements evolve as
the wusefulness of the data 1is explored. As file organization
concepts change with the needs of the application, some data
restructuring can be done with little impact on existing programs.
Changes to the structure of an existing database affects only
those programs that process the changed data; no other programs in
the system need be recompiled to reflect the new database
structure.

The evolution of the database is not limited by the need to
balance the cost of changing an existing systems against the
benefits to be derived from the new structure. It is not
necessary to do a "where-used" evaluation of a data item carried

in multiple files to assess the impact of a data change on
existing systems.

In summary, effective use of IMAGE can remove a large portion of the
overhead associated with integrated system design from the shoulders
of applications analysts and programmers. It affords the opportunity
to channel system design talents 1into functional rather than
structurally-supportive design tasks.

Data Set Relationships

The direct relations among different groups of data is the foundation
of an IMAGE database. When one examines the wvarious day-to-day
applications, abundant examples of one group of data related to
another group of data which relate to still another group of data are
readily found, such as:

Open orders and inventory orders
Finished items and components

Production orders and labor tickets
Labor tickets and employees
Employees and skill classifications
Parts under test and test results

For the purposes of this manual, we will examine the last instance, in
the form of a quality assurance (QA) database. As each assembly is
tested, failures are reported, and the information stored includes the
particular part that failed, its location in the assembly, and some
code to indicate the type of failure.

In the QA example, it is desirable to be able to access information
about any assembly quickly. Since there are failures 1involved with
each assembly, the efficient processing of transactions corresponding
to respective assemblies is important. A logical approach to organize
the two sets of information and their association is:

l. To have the information about each assembly in an entry which is
accessible directly by an assembly number. All the assembly
entries are grouped together to form a data set or file.
Furthermore, such a data set will be considered a master data set
because entries in it may be accessed directly and the entries
will be called master entries.

2. To have the information about each failure in an entry, and all
such entries grouped together to form another type of data set.
Failures of a particular assembly will be 1linked together in a
chain which in turn will be 1linked to the associated assembly
entry in the master data set. The failure entries collectively
comprise a detail data set. A detail data set is attached to one
or more master data sets since a particular entry must be accessed
through a master data set. The entries in a detail data set are
called detail entries.

Figure 1-1 shows the two related data sets and further shows that:

° Information about a particular assembly can appear in an entry
with that assembly number.

° An assembly entry is chained together with a group of failure
entries because of its association with those failure entries.

° An assembly entry can be accessed directly by an assembly number,
which is called the key.

° From an assembly entry, the first associated failure entry 1in a

chain can be accessed through a 1linkage path. From the first
failure record, the second transaction entry in the chain can be

accessed, and so on.

DETAIL DATA SET

f

ASSEMBLY NUMBER
PART NUMBER

DATE
EMPLOYEE NUMBER

MASTER DATA SET

ASSEMBLY FAILURE INFORMATION

ASSEMBLY NO.
NO. OF FAILURES

Q

ASSEMBLY INFORMATION

Figure 1-1. Master and Detail Data Set

It is important to note that the linkage path information 1is stored
within a data record instead of elsewhere.

Now the association can be expanded heyond two data sets. Again, in a
typical situation, it may be desirable to know what parts constitute a
given assembly. If the bill of materials information for each
assembly 1is kept in an entry, another detail data set can be

1-6

established. Each part for a given assembly will be linked to the
corresponding assembly entry in the assembly data set. Now there are
two detail data sets associated with one master data set as shown in
Figure 1-2.

On the other hand, each assembly failure involves a particular part.
If an entry 1is used to describe each part, a master data set can be
established to include all such entries. An association can be made
between the failure data set and the part number data set. Thus,
failures of the same part will be 1linked together to form a chain
which in turn, will be linked to the

DETAIL DATA SET

;

ASSEMBLY NUMBER
PART NUMBER

DATE

EMPLOYEE NUMBEF(%»

IMASTER DATA SET

ASSEMBLY FAILURE INFORMATION
ASSEMBLY NUMBER

NUMBER OF FAILURES
DETAIL DATA SET

% [2
[52

D
ASSEMBLY NUMBER
PART NUMBER
REFERENCE
DESIGNATOR

BILL OF MANUALS INFORMATION

Figure 1-2. Master and Two Detail Data Sets

entry describing that part. In this <case, one detail data set
associates with two master data sets as shown in Fiqure 1-3.

By following the same principle, data sets can be added and
associations established among them as dictated by needs.

Database Structure

Having been introduced to the structure of the IMAGE database, let us
look at an application and design a possible solution to

MASTER DATA SET
DETAIL DATA SETS
ASSEMBLY NO.)
NO. OF FAILURES I / f

Q | ~
ASSEMBLY l QQD
/

INFORMATION h

D
ASSEMBLY NUMBER]

PART NUMBER

R\

DATE
MASTER DATA SET EMPLOYEE NUMBER
PART NUMBER
REFERENCE
DESIGNATOR ASSEMBLY FAILURE INFORMATION

PART INFORMATION

Figure 1-3. Two Masters and One Detail Data Set

the database problems using IMAGE.

An understanding of the database structure 1is necessary before the
database can be designed. The following paragraphs describe the
various data elements and their relationships.

1-8

Database

An IMAGE database consists of one or more data sets which have some

logical relationship to one another. These data sets are stored on
disc as FMP files. A data set consists of one or more fixed length
data entries (logical records). A data entry consists of one or more
data items (fields). Figure 1-4 illustrates the organizational
hierarchy of a typical IMAGE database.

DATA BASE

DATA ENTRY

DATA
ITEM

~_ N

Figure 1-4. IMAGE Databhase Components

Data Items

A data 1item is the smallest accessible data element in a database.
Each data 1item consists of a value referenced by a data item name,
typically selected to describe the data value. 1In general, several
item values are referenced by the same data item name, each value
existing in a different data entry.

Compound Data Items

A compound data item is a named group of identically defined, adjacent
items within the same data entry. Each occurrence of the data item is
called an element and each element may have a value. A compound item
is similar to an array in programming languages such as FORTRAN. A
data entry might contain a compound item named DAILY with 5 elements
in which the total tests for each day are recorded.

Data Types

The database designer defines each data 1item as a particular type
depending on what kind of information is to be stored in the item. It
may be integer, real or ASCII character information. The data types
are described in detail in Chapter 2.

Data Entries

A data entry is an ordered set of data items. The order of data items
in an entry 1is specified when the database is defined. Data entries
may be defined with at most 127 data item names, none of which is
repeated within the entry. The length of the data entry is the sum of
the lengths of the data items it contains. When the entry is stored
in the database, additional structural information will be added to
form the complete record.

Data Sets

A data set is a collection of data entries, called occurrences, where
each entry contains values for the same data items. For example, a
data set containing occurrences of test failures could have items such
as assembly number, part number, date, failure code, failure location,
point values and employee number. Each data set is referenced by a
unique data set name. Each data set 1is stored in one disc file
consisting of storage locations called records. When the database is
described with the database definition language, the capacity or
number of records of each data set 1is specified. Each record is
identified by a record number which is used by IMAGE to retrieve the
entry within. This record number is called a relative record number.
When the capacity of a data set is specified, the file is created with
space for that number of entries. If a record at any given relative
record number does not have an entry in 1it, it is said to be an empty
record.

1-10

Master Data Sets

Master data sets are characterized in the following ways:

° They are wused to keep information relating to a uniquely
identifiable entity; for example, information describing an
assembly, where the key value 1is that which uniquely identifies
the entity.

° They allow for rapid retrieval of a data entry since one of the
data items in the entry, called the key 1item, determines the
location of the data entry. A key 1item may not be a compound
item. The assembly data set could contain a key item of assembly
number. The location of each entry 1is determined by the value of
the assembly number.

° They can be related to detail data sets containing similar key
items and thus serve as indices to the detail data set. The
assembly number key item in the assembly master data set could
point to an assembly number key item in a failure transaction
detail data set.

Figure 1-5 illustrates linkage between data sets. Although there may
be unused storage locations in the assembly data set, IMAGE disallows
any attempt to add another data entry with assembly number 9206018001.
The key item wvalue of each entry must remain unique. The values of
other data 1items in the master data set are not necessarily unique.
This is because they are not key items and are not used to determine

the location of the data entry.
Detail Data Sets

Detail data sets are characterized in the following ways:

° They are used to record information about related events; for
example, information about all failures of the same assembly.

° They allow retrieval of all entries pertaining to a uniquely
identifiable entity. For example, assembly number 9206018001 can
be wused to retrieve information abhout all failures of that

assembly.

The storage location for a detail data set entry has no relation to
its data <content. When a new data entry is added to a detail data
set, it is placed in the first available location.

PROJECT

MASTER

ASSEMBLIES DATES
FAILURE
INFO
9206018001
> 790113
9206060001
781207
—1 9206018001
r_; 781228
¢
9206018001
781207
<
47
FAILURE INFORMATION
940073
940072
940071
-

PROJECT NUMBERS

NUMBERS DATA SETS
DETAIL
DATA SETS
790113
781228
781207
DATES
9206016001
9206060001
ASSEMBLIES
940073
781228 [
—>
940072 |—!
781228 |q
940071
781207 <
>

TIME VOUCHERING

Figure 1-5. Set Relationships

12

Unlike a master data set which contains at most one key item, a detail
data set may be defined with from zero to sixteen key items. The

values of a particular key item need not be unique. Generally, a
number of entries will contain the same value for a specific key item.

IMAGE stores pointer information with each detail entry which links
together all entries with the same key 1item value. Entries linked
together in this way form a chain. A key item is defined for a detail
data set if it is desired to access all entries with a common key item
value, in other words, all entries in a chain.

Sorted Chains

A CHAIN consists of all detail data set entries accessed through the
same key item value. IMAGE contains a SORTED CHAIN feature which
places entries in a <chain in ascending order, sorted by the value of
any other item in the entry.

For example, referring to Figure 1-7 (Database Structure), the detail
data set TIME has a key item PROJECT NUMBER. Entries sharing the same
PROJECT NUMBER could be sorted according to any of the remaining items
in the data set: EMPLOYEE NUMBER, DATE, or HOURS. For the Accounting
Department it would be most useful to view a particular project's time
vouchering data 1in the order in which the work was done - that is,
sorted by DATE. For this reason, PROJECT NUMBER will be sorted by
DATE in the detail data set TIME.

When using the sorted chains feature, IMAGE will take slightly longer
to place an entry in a chain. This is because the entry's position
must be determined by searching the existing chain. The amount of
search time is dependent on the number of entries in the chain. For
this reason, sorted chains should be used only where large amounts of
sorting must be done on a regular basis. In such a case, the extra
time needed to insert each data entry 1in sorted order will be
justified by the time saved when the data is retrieved.

If the SORTED CHAINS feature is not used, entries will be placed in
the chain in the order that they were entered. This chronological

ordering is the default of the SORTED CHAINS feature.

Paths

A master data set may have only one Kkey item and it may be related to
one or more detail data sets. The key items in master and detail sets
must be of the same type and size. This relationship forms a path. A
master set may have paths to up to sixteen different data sets. In
Figure 1-5, the assembly number key item 1in the assembly data set and
the assembly number key item in the failure information data set link
the two data sets together, forming a path.

A detail data set can have up to sixteen key items, 1linking it to up
to sixteen different master data sets. In Fiqure 1-5, the failure
data set is linked to the assembly data set and the date data set. A
detail set may have two or more links to the same master data set.

For each path from a master data set, there is a chain for each key
item value. This chain consists of all detail set entries whose key
item along a path equals the related master set's key item value. The
master entry contains pointer information to the chain. This
information is called a <chain head. The format of the <chain head is
shown in Chapter 7. For example, the date master entries shown in
Figure 1-5 contain two chain heads, one for failure entries and one
for time vouchering entries. Chain heads are maintained automatically
by IMAGE.

Within a detail set, all entries that share a key item value are
chained together. Each detail entry will belong to as many chains as
there are key item values 1in the set. A chain can contain =zero
entries or as many as there are entries in the data set. 1In Figure
1-5, in the failure data set, there are three entries in the chain for
assembly number 9206018001 and one entry for assembly number
9206060001,

Automatic and Manual Masters

A master data set

may be automatic

or manual. These two

masters have the following characteristics:

MANUAL

May be stand-alone. Need not
be related to any detail data
set.

May contain data items in
addition to the key item.

Entries must explicitly be
added or deleted. A related
detail data entry cannot be
added until a master entry
with matching key item value
has been added. When the last
detail entry related to a
master entry is deleted, the
master entry still remains in
the data set. Before a master
entry can be deleted, all
related detail entries must

be deleted.

The key item values of
existing master entries serve
as a table of legitimate key
item values for all related
detail data sets.

AUTOMATIC

Must be related to one or more
detail data sets.

Must contain only one data
item, the key item.

IMAGE automatically adds or
deletes entries when needed
based on the addition or
deletion of related detail data
set entries. When a detail
entry is added with a key item
value different from all
current key item values, a
master entry with matching key
value is automatically added.
Deletions of detail entries
trigger an automatic deletion
of the matching master entry
if it is determined that all
related data chains are empty.

types of

master data set and DATEF is an
for project number 940072 is

In Figure 1-6, PROJ is a manual
automatic master. Before the TIME entry
added to TIME, PROJ must contain an entry with the same project
number. However, a DATEF entry for DATE equal to 780105 is
automatically added by IMAGE when the detail entry is added to TIME,
unless it is already in the DATEF data set.

item, the key item DATE, while
several data items 1in

Note that DATEF contains only one data
PROJ, which 1is a manual master, contains
addition to the key item.

PROJ

PROJ NO = 940071
DEPT NO =5120

OPEN DATE =781013
JCLOSE DATE = 790204

PROJ NO =940072
DEPT NO =5270
OPEN DATE =770912
CLOSE DATE =

PROJECT NUMBER
INFORMATION

DATEF
DATE = 790105

DATE = 780105

DATES

TIME

PROJ NO = 940072
DATE = 780105

¢

EMP NO = 16221
HOURS =3

PROJ NO =940071
DATE = 790105

—» <

EMP NO = 18001
HOURS =2

TIME VOUCHERING

Figure 1-6. Master and Detail Data Set Interaction

If the TIME entry with project number 940071 is deleted

and no other

790105, the DATEF entry with that

TIME entry contains a DATE value of
value is deleted automatically by IMAGE.

Manual vs. Automatic Masters

Database designers may use:

ensure that valid
entries, or

° manual masters to
for related detail

® automatic masters to save time when the
unpredictable or so numerous that

master entries is undesirable.

Update 1

key item values

key

are entered

item values
manual addition and deletion of

Whenever a single data item is sufficient for a master data set, the
database designer must decide between the control of data entry
available through manual masters and the time-savings offered by
automatic masters. In the QA Database (Figure 1-7), DATEF is an
automatic data set, but PART, which also has one item, is a manual
set, so that control over part numbers entered into the database can
be maintained.

A manual master may be defined in the data schema as having zero data
paths. With such a definition, a manual master serves as a special
type of detail data set:

1. one which is randomly organized
2. one which is not linked to any master data sets

3. one in which each data entry contains a unique value for the key
item

4. one whose data entries can be quickly accessed by key wvalue via
the hashing algorithm

Database Files

All database elements are stored in RTE FMP files. The files are
created when the database designer executes the Schema Processor
(DBDS) . The cartridge or cartridges on which the database files
reside are specified in the schema that is the input to the Schema
Processor. The security code of all database files will be equal to
that security code specified as the security code of the database.

Note that although the security code is specified in the schema as a
positive value, DBDS creates the file with read and write protect,

which means that it requires a negative security code to purge the
files using File Manager.

Root File

The root file is created when the database designer executes DBDS. It

is created with a name 1dentical to the name of the database. Thus,
the name of the root file for the QA Database (Figure 1-7) is QA. The
root file serves as the common point of entry to, and source of
information about, the database.

Data Files

There is one data file for each data set of a database. At creation
time, the size of each record and number of records in the file are
determined by information 1in the root file. The data files are
created and 1initialized by DBDS at the same time the root file is
created.

Each data file has the same security code as the root file. The name
of each data file 1is equal to the name of the data set. A data file
may or may not reside on the same cartridge as the root file.

The size of a data file is determined by the characteristics of the
data set it contains, which include the size of the entries, the
number of paths to or from the set and the capacity. When the file is
created, it is <created to account for the total capacity, regardless
of the number of entries the set actually contains. Records which
have no entries assigned to them are called empty records.

Developing A Database System

In developing a viable database system, the following questions should
be asked:

1. Who will use the database?

Many times the database is designed and maintained by one group to
make data available to many other groups. The needs of all of the
users of the database should be considered before the database is
designed to 1insure that these needs can all be met in the most
efficient manner. Having to retrofit features and capabilities
into a database after it has been created will be far less
efficient than having allowed for all users in the bheginning.

2. What application programs need to be written?
Before an application program is written, the programmer needs to
define the input and output to that program. Application programs
interfacing to a database have at 1least part of their input and
output needs met by the database. Defining the application
programs to be written and their input and output needs will allow
the database to have the capability to service those needs.

3. What will the data items and data entries look like?
At this point, all of the database users need to define their data
items and data entries and these definitions should bhe collected
and examined for redundancy and completeness. Conflicting needs
of different users should be resolved at this time.

4., What will the key items be?
Having defined the application programs and the data items, the
key 1items can now be identified. As many key 1items as are
necessary can be defined so that all wusers may able to access the
database in the most efficient manner for them.

5. What are the set relationships?
The set relationships will be determined by the key items needed,
the input and output requirements of the application programs and
the contents of the data entries.

6. What are the back-up requirements?
The back-up requirements of the database will vary according to

usage. If the database is referenced frequently, but data is
entered only periodically, the database may not need to be
backed-up daily. However, 1if the database 1is constantly being

updated, an intermediate back-up should be performed at least once
a day, with a more complete back-up less frequently. It must also
be determined if the standard back-up utilities that are available
are sufficient or if some unique need warrants special application
programs to provide additional security.

Let us wuse these six steps to design a databhase to be used 1in the
Quality Assurance Department of a large manufacturing company. XYZ

Manufacturing produces various products, all using electronic
assemblies as part of their components. XYZ Company produces the
electronic assemblies at their plant. When an assembly fails under

test, it 1is sent to Product Assurance for analysis and repair. The
Product Assurance people are having difficulty keeping track of
failure information, so they propose that a database be set up to aid
them in this area.

Once the decision 1is made to implement a databhase management system,
the first question must be asked. Who will use the database? The
main users will be the Product Assurance group, who would 1like to be
able to access failure information in a number of ways. 1In addition,
the Accounting Department is interested in wusing the same database to
accumulate time vouchering information. Manufacturing also believes
the information will be of use to them to get some idea of the number
and types of failures of different parts.

Having determined the users, the planning group began to examine what

programs were to be written and also what kinds of reports were to be
generated. The program of the highest priority was one which prompted
the technician for failure information and also updated a count of the
number of failures for a given assembly. As time went on, the program
could be enhanced to add additional checks on the information entered.

The Manufacturing people wanted a program which would instantly give
them failure information about a given part or assembly. The
Accounting Department needed the ability to add, delete or close
project numbers and a program to enter time wvouchering information
that would check for an existing but inactive project number.

The Product Assurance people plan reports that will 1list date,
assembly number, part number, failure code and reference code. They
would 1like to access failure information through any one of the
following items: assembly number, part number, date, reference code,
failure code, employee number, or supervisor number.

Each group 1listed the items they felt they needed in the database.
There were some duplications. Product Assurance wanted assembly
number, part number, date, failure <code, reference designator,
employee number, supervisor number, and an array of test wvalues.
Accounting wanted project number, department number, open date, close
date, employee number, date and hours worked. Manufacturing wanted
assembly number, part number and cumulative count of failures for a
given assembly. Based on the requirements for accessing and
reporting, the following items were identified as key items: assembly
number, date, part number, failure code, reference designator,
employee number and project number.

Having defined the key items and the non-key items, the planning group
began to build the set relationships. Since Product Assurance needed
access to the failure data set via a number of different key items,

five master/detail 1links were created. The master sets they needed
were for assembly number, part number, date, reference designator and
failure code. The assembly number set needed to contain additional

information besides just the assembly number, so it had to be a manual
master. It was thought to be desirable to control the entering of
part numbers through a master data set, so the part data set was also
made a manual master set. The other three master data sets, failure
code, reference designator and date were made automatic master data
sets.

Accounting wanted to key into the failure information and the time
vouchering data set by employee number, so that was made an automatic
master. They also needed a project number data set with additional
information, so that data set was made a manual master.

The design of the database that will fit all of the above requirements
is shown 1in Figure 1-7. After designing the database, the planning
group discussed back-up requirements. Based on the daily number of
transactions anticipated, it was felt that a daily back-up would be
necessary. Also, once a week, more extensive maintenance would be
done that would include both back-up and verifying database integrity.

In addition, the planning group left open the possibility of altering
the failure transaction program at some time to include the logging of

each transaction as it is entered for additional back-up.

The database has been designed to meet today's requirements and
hopefully to allow for graceful modification and expansion in the
future.

ASSEMBLY NUMBER DATE EMPLOYEE

DATA SET DATA SET DATA SET

ASMBY DATEF

EMPL

ASSEMBLY NUMBER
NUMBER OF

FAILURES EMPLOYEE
NUMBER
FAILURE TIME VOUCHERING PROJECT NUMBER
DATA SET DATA SET DATA SET
FAIL TIME \ PROJ
D D M
ASSEMBLY NUMBER
DATE EMPLOYEE NUMBER
PART NUMBER PROJECT NUMBER
TE
FAIUJRECODE\\\\\\\\ zguns PROJECT NUMBER
REFERENCE DESIGNATOR DEPARTMENT NUMBER
POINTS OPEN DATE
EMPLOYEE NUMBER CLOSE DATE
PART CODE REFERENCE
DATA SET DATA SET DATA SET
PART CODE REF
M A
REFERENCE
PART NUMBER FAILURE CODE DESIGNATOR

Figure 1-7. QA Database Structure

Chapter 2
Creating The Database

Once the database has been designed, it must be described with the

database description statements and processed by the Schema Process
(DBDS) to create the root file. Figure 2-1 illustrates the steps in

defining the database.

O ' > SCHEMA
PROCESSOR
DATA BASE —
SCHEMA
DATA BASE DESIGN l l \ 4

Si;ﬁxé DATA ROOT
L SETS FILE

Figure 2-1. Database Design Process

DBDS processes a description of the user datahase (called a schema)
and produces an internal system description of the database (called a
root file) and all data sets used by the IMAGE system. The root file

describes the relationship between data items, the 1level of security
associated with each item and the relationships between master and

detail data sets in the database. The root file exists as a RTE disc
file.

Using DBDS consists of four main steps as shown in Figure 2-1:
1. Design of the database by the datahase manager.

2. Describing the design (creating a schema).

3. Processing the schema by DBDS.

4, Creation of the root file and all data sets by DBDS.

Language Conventions

The database description, called a schema, may exist in the RTE system
as a disc file. Regardless of the actual physical record size of the
file, DBDS reads, prints, and processes only the first 72 characters
of each record. Any remaining character positions in the record are
available for comments or collating information.

Comments take the form: <<comment>>. They may contain any characters
and may appear anywhere in the schema except embedded in another
comment. They are included in the schema listing but are otherwise
ignored by the DBDS processor programe. Spaces may not appear between
the two comment indicator characters on either side of the comment.

For information about restrictions on item names, set names and code
words, see CONVENTIONS USED IN THIS MANUAL.

Database Schema Structure

The actual content of a database schema varies for each database

depending upon the needs of the database designer. The structure of
the database schema does not vary. The database schema structure is:

BEGIN DATABASE: database name;
LEVELS:[level part]

ITEMS: item part

SETS: set part

END.

where database name 1is the FMP file namr of the database root file.
It consists of the file name, security code and cartridge reference
number.

The level part, item part and set part are described on the following
pages. Figure 2-3 contains a complete schema for the QA Database that
is used in the examples for this manual.

Defining Levels

The level part of the schema is used to define privacy levels. If the
level part 1is omitted from the schema, then no privacy levels exist
for specific data 1items 1in the database. Each privacy level is
defined by associating one level number with one level code word. The
level number is an integer from 1 through 15. When defining items in
the item part of the schema, a 1level number may be used to restrict
read or write access to the 1item. Each privacy level definition is
terminated by a semicolon; 1level numbers and level code words are
separated from each other by one or more blanks.

If the level part is omitted, LEVELS:; must still be specified.

The form of the level part is:

LEVELS:
level-number level-code-word;

level-number level-code-word;

level—-number level-code-word;

During creation of the 1level part of the database, the database
designer specifies a series of privacy level numbers and associated
code words. The level numbers are integers from 1 through 15. When a
user first enters an IMAGE utility or before the data base can be
accessed with program calls, a privacy level code word must be entered
which corresponds to the highest level number the user 1is allowed to
access. The user cannot read or modify a data item unless his privacy
level is equal to or greater than the level number specified for the
data item in the item part of the schema.

Below is an example of the level part of a schema.

LEVELS:
1 OPER;
5 ACCT;
10 ADMIN;
15 SECUR;

Defining Items

The item part of the schema defines the name, size, type, number of

elements and privacy levels (one for reading and one for writing) for
each data item in a database. Up to 255 data items can be defined in

the item part. The definition sequence for each data 1item takes the
following form:

item name, [element count] type[(read level,write level)];

where:

item name is the name of the data item. Each item name 1in the
item part must be unique to the database.

element count defines the number of elements in a compound data item.
An element count is an 1integer from 1 through 255.
When an element count is not specified, a value of one
is used indicating a simple item. If the element count
is greater than one, the 1item is called a compound
item.

type defines the amount of space in memory that the data
item is to occupy (i.e., the data item type). Three
data types are allowed:

Il Denotes an integer number occupying one word

in memory. The value may be any integer in
the range of -32768 to +32767.

R2 Denotes a real number occupying two words in

memory. The value may be any number in the
range of +1.70 * 10**38 to +1.47 * 10**-39,.
Real numbers should not bhe used as key items
because of their round-off characteristics.

Xinteger Denotes an ASCII character string. The
integer following X (with no intervening
blanks) denotes the numbher of characters in
the string and must not exceed 255. The
number of characters times the number of
elements must be an even number.

(read level,

write level) An ordered pair of integers specifying the privacy
level needed to read the data item and the privacy
level needed to modify the data item. If read and

write levels are omitted, DBDS assigns a read level of
0 and a write 1level of 15 to the data item. The read

level must be less than or equal to the write level
which must be from 1 through 15. A level number cannot
be specified that was not previously defined in the
level part.

The total 1length of a compound item 1is the product of the element
length times the number of elements in the item. If the compound item
is a character type, the length of the element may be an odd number of
characters. However, the total length of the item in characters must
be an even number.

An example of an item part of a schema is:

ITEMS:

ASSY#, X10(1,10); <<ASSEMBLY NUMBER FOR ASSEMBLY MASTER>>

<<AND FAILURE FILE. >>
FAIL#, I1(1,10); <K<NUMBER OF FAILURES - ASSEMBLY >>
PART#, X8(1,10); <<PART NUMBER FOR PART NUMBER MASTER >>

<<AND FAILURE FILE >>
FAILCD, X4(1,10); <<FAIL CODE >>
REFDES, X4(1,10); <<REFERENCE DESIGNATOR >>
DATE, X6(1,1); <<DATE FOR FAILURE FILE, DATE MASTER >>

<<AND PRODUCT TESTED FILE >>

EMP#, X6(1,10); <<EMPLOYEE NUMBER FOR EMPLOYEE MASTER>>
<<FAILURE FILE AND TIME VOUCHER FILE >>
PROJ#, X6(1,5); <<PROJECT NUMBER FOR PROJECT NUMBER >>

<<MASTER AND TIME VOUCHER FILE >>
DEPT#, X4(1,5); <<DEPARTMENT NUMBER >>
OPDAT, X6(1,5); <<OPEN DATE FOR PROJECT NUMBER >>
CLDAT, X6(1,5); <<CLOSE DATE FOR PROJECT NUMBER >>
PNTS,8 X1(1,1); <<FAIL/NO FAIL ARRAY FOR EACH PIN >>
HOURS, R2(1,1); <<HOURS PER PROJECT NUMBER >>

Defining Sets

The set part of the schema names the various data sets within the
database, indicates which items listed in the item part of the schema
belong to which set and links the master data sets to the detail data
sets by describing which of the data items are key items. The data
schema can define at most fifty data sets. No data entry (data record
plus media record) can contain more than 4096 bytes.

Master Data Sets
The form of the set part for defining master data sets is:

NAME : setname, type;
ENTRY:

item name [(path count)],
item name [(path count)],

item name [(path count)];
CAPACITY: capacity;

where:

setname is the FMP file namr of the data set. It consists of
the file name and cartridge reference number. If the
security code is specified, a warning message will be
issued and the security code will be ignored. All data
sets have the security code specified in the database
FMP file namr, which is the security code of the root
file.

type is either MANUAL (M) or AUTOMATIC (A).

item name is the name of a data item belonging to the master data
set. At 1least one item must be defined in each data
set. The name must have previously appeared in the
item part of the schema. One, and exactly one, item
name must be followed by a path count to identify the
item as a key item link to a detail data set.

path count is an integer from 0 through 16 which indicates that
the data item 1is a key 1item. The number itself

indicates how many paths exist from the master data set
to detail data sets through the key item 1link.

capacity is an integer indicating the number of entries allowed
in the data set. On RTE-IVB systems, capacity may be
as great as (2**31)-1. On RTE-L and RTE-XL systems,
capacity may be as great as 32,767.

Item names in the 1list under ENTRY: are stored by IMAGE in the order

they are 1listed and must appear only once in the set part for any
given data set. However, the same item name may appear in more than

one data set description. An automatic master data set must contain
only one item, the key item, which has a non-zero path count.

2-6 Update 1

An item which 1is identified as a key 1item may have the same name in
the master data set and the linked detail data set. If the names are
different in master and detail data sets, the item type and length
must be the same. Key items must be simple items, and cannot be a
compound item. An automatic master key item must have a write level
less than or equal to the write 1level of the linked detail data set
key item.

The path count performs two functions. The first is to identify the
item as a key item and the second to indicate how many detail data set
paths are linked to this master. A path count of two, for example,
would indicate that two separate detail data sets are 1linked to this
master. A path count of zero is allowed for manual master sets only
and indicates that the master data set is used solely for information
and is not linked to any detail set. A key item in an automatic
master data set cannot have a path count of zero.

Generally, a master data set should have capacity equal to a prime
number or to the product of two or three prime numbers. This yields a
more uniform spread of master entries and may increase the speed and

efficiency of access to the data. For more explanation of how
capacity can affect performance, see Chapter 7.

The following is an example of SETS: entries for manual and automatic
master data sets.

NAME: CODE::43,A;

ENTRY: FAILCD(1l);
CAPACITY: 997;

NAME: PROJ::43,M;

ENTRY: PROJ# (1),
DEPT#,
OPDAT,
CLDAT;

CAPACITY: 101;

2-7

Detail Data Sets

Detail sets

are defined

master data sets.

is the FMP

NAME : setname,
ENTRY: 1item name
item name
item name
CAPACITY:capacity;
where:
setname

item name

link

sort item

capacity

the file name
the security code is specified,
the security code will
security code specified in the
which is the

be issued and
data sets will have the

in the

D[ETAIL]

[(link[(sort
[(link[(sort

[(link[(sort

database FMP file
the root file.

schema in

item)]
]

14
item) '

)]
)]

item)1)1,

namr,

almost

the

file namr of the data set.
and the cartridge reference
a warning message will
All

same form

number.

be ignored.

as

It consists of

If

security code of

is the name of a simple or compound data item belonging

to the detail data set.

appeared in the
is a key item, it must be

item part of the schema.
a simple item.

item must be defined for each data set.

is the
follows

set name
the item

indicates that the

16 such key

set.

is an

of a

name 1in

A detail set may have
same master set.

integer,

real,

or

master data

items may be defined for
one or more links

set.
detail data
data item is is a key

The name must have previously

If the item
At least one

When a link
set, this
item. Up to

each detail data

character string item

to the

in the

detail data set whose value is used to order entries in

the chain.

count equal to 1).
key item, but may be sorted on any
in the detail data set.

is

an
allocated
capacity may be as great

integer
to the

Sort items must be simple

items (element

A chain cannot be sorted on its own
other item defined

RTE-XL systems, capacity may be as great as 32,767.

Update 1

indicating the number of entries
data set. On RTE-IVB systems,
as (2**31)-1. On RTE-L and

Item names in the 1list under ENTRY: are stored by IMAGE in the order

they are 1listed, and must appear only once in the set part for any
given data set. However, the same item name may appear in more than
one set description. A data item used as a key item may have the same
name in the detail and the linked master data set. If the names are
different in detail and master data sets, the item types and lengths
must be the same. There must be as many detail data sets linked to a
master as was described in the master's path count.

The link parameter indicates which master data set is linked to the
detail set. All 1links following 1item names must be those of
previously defined masters. For this reason, it is wuseful to define
all master data sets before detail data sets in the set part of the

schema.

The multiple linking feature allows a master data set to be linked to
a detail set by more than one key item in the detail set. Additional
links are defined in the same way as the first (see DETAIL DATA SETS,
link parameter) and have the same restrictions. In the following
example, detail entries EMP# and SUP# are multiply 1linked to the
master set EMPL,

NAME: FAIL::43,D;
ENTRY: ASSY# (ASMBY),
DATE (DATEF),
PART# (PART),
FAILCD (CODE),
REFDES (REF) ,
PNTS,
EMP# (EMPL) ,
SUP# (EMPL) ;
CAPACITY: 1009;

If none of the item names 1in the 1list have a link following, the

detail data set is not linked to any master set, but is used for
information only. A stand-alone detail data set can be accessed only
with a directed or serial read. Generally, it is preferable to define
an information-only data set as a manual master since more efficient
access is available through keyed reads.

Sorted entries are placed in the chain 1in ascending order of the sort
item value. A chain cannot be sorted on its own key item, but may be
sorted on any other item defined in the detail data set. If duplicate
sort item wvalues exist, the new entry is placed in the chain
immediately following the last entry with the same sort item value.

2-9

In the following example, the detail set time linked to the master set
PROJ will have key item PROJ# sorted by DATE.

NAME: TIME::43,D;
ENTRY: EMPL# (EMPL),
PROJ# (PROJ (DATE)),
DATE (DATEF) ,
HOURS;
CAPACITY: 1009;

Specifying Control Options
The schema CONTROL command is an optional command used by the data
base designer to specify control options during processing of the

database schema by DBDS. The command is entered as the first record
of the schema and only one $CONTROL record is allowed. Its form is:

SCONTROL: [parameter,parameter,...,parameter];

where parameter is any of the following:

LIST List each source record on the list device.

NOLIST Suppress the LIST option. When an error occurs, the
offending source record is printed along with an error
message.

ERRORS=nnn Set the maximum numbers of errors allowed to nnn

(0<nnn<999). If this number is reached during
processing, +the schema processor terminates, after
printing the message:

MAX ERRORS - SCHEMA PROCESSING TERMINATED

ROOT Inform the schema processor to create a root file if no
errors are detected in the schema.

NOROOT Prevent the schema processor from creating a root file
or any data sets. The schema 1is merely checked for
errors.

SET Create the data sets if no errors are detected in the
schema.

NOSET Suppress creation of the data sets.

FIELD The schema processor prints a table for each data set

describing the start and end of each data item 1if no
errors are detected in the schema.

TABLE

Heading Definition

SET NAME name of the data set.

SET NO. number of the data set.

ITEM NAME item name.

ITEM NO. item number.

ITEM TYPE defines the item as integer (I), real

(R) or character (X).

START WORD word offset into the data record on
which the value of the data item starts.

END WORD word offset into the data record on
which the value of the data item ends.

PATH? defines whether an item is a path item
by entering "YES".

SORT ITEM name of the SORT ITEM if the item under
ITEM NAME is a key item (PATH? 1is yes)
and the path is sorted.

The schema processor prints a table of summary
information (if no errors were detected) about the data
sets after the schema has been scanned by DBDS. The
data set information printed under the following
heading is:

Heading Definition

DATA SETNAME name of the data set

TYPE A = automatic, D = detail, M = manual

ITEMS number of data items in a data set
entry.

PATHS number of paths defined for the data
set.

DATA combined length (in words) of all data

items in the data entry.

MEDIA media record length. The 1length of the
media record for each entry in the data
set equals 5 + (6*path count) for master
sets and 3 + (4*path count) for detail
data sets.

CAPAC capacity or the number of entries
allowed for each data set as defined in
the schema.

CARTRIDGE disc cartridge reference number on which
the data set resides.

NOTABLE Suppress the printing of the summary table.

Some examples of $CONTROL commands are:

$CONTROL: NOROOT,TABLE;
$CONTROL: ERRORS=2;

The default conditions for a SCONTROL command are:

LIST

ERROR=100
ROOT

SET
NOTABLE

If no SCONTROL record is present, the default conditions will be used.
If two or more conflicting options are present, the last named will be
in effect.

Running DBDS

DBDS can be run to process a database schema and produce a root file
and data sets by first preparing an ASCII file containing the database
schema definition.

Start DBDS execution by entering the directive
:RU,DBDS,input,list,option
where:

input is the FMP file namr of the file containing the database
schema definition. The default value 1is the scheduling 1lu.

list is the FMP namr to which the 1listing is to be written.
Default is LU 6.

option is the characters PU if existing data sets are to be purged
before new ones are created.

DBDS reads and processes the schema according to the control options
specified in the $CONTROL record. If no S$SCONTROL record exists, DBDS
operates under the default conditions specified above.

It is possible to postpone the creation of a root file until the

schema has been processed and is error free. If the $SCONTROL command
includes the parameter NOROOT, the schema is processed but no root

file or data sets are created.

If the ROOT and SET options were specified in the $CONTROL record or
if DBDS is operating under the default conditions, the data sets and
root file are created after DBDS has processed the database schema.
DBDS prints the message

ROOT FILE AND DATA SET FILES CREATED

on the list device upon the successful creation of the data sets and
root file. However, 1if the disc is filled before the files are all
created, the following message will appear:

ROOT FILE AND DATA SET FILES NOT CREATED

When this occurs any data sets created will remain on the disc and
must be purged before reexecuting DBDS unless the PURGE option is to
be used. When purging an IMAGE data set from the File Manager, the
FMP file security code is the negative of the security code specified
in the DBDS schema.

If errors occur during schema processing, DBDS prints error messages
on the 1list device. ©See Appendix B for a description of the error
messages printed. Then correct the schema and rerun DBDS. Note that
the first occurrence of an error may generate other errors, but that
DBDS will recover if possible.

DBDS Messages

DBDS prints two kinds of messages during DBDS execution - error
messages (which occur when DBDS discovers an incorrect schema
statement) and general messages (which DBDS prints after the schema is
processed).

DBDS Error Messages

B e i e e e R RV S S Y

Whenever DBDS encounters an error in a schema statement it prints the
line in error with an arrow pointing to the offending word, followed
by the appropriate error message as listed in Appendix B. If the
SCONTROL LIST option is active, DBDS prints the message following the
offending statement as part of the schema listing. 'If the NOLIST
option is active, DBDS prints the offending statement followed by the
error message. It then attempts to recover from the error and
continue processing statements.

If a statement terminator such as a semi-colon or a 1list separator
such as a comma is missing, DBDS may ignore an entire schema
statement, causing subsequent error messages to occur. For example,
Figure 2-2 shows a schema with a semi-colon missing after the REFDES,
X4(1,10) statement. Omission of the semi-colon causes DBDS to ignore
the following characters up to the next semi-colon which means that
DBDS completely 1ignores the next statement. This causes subsequent

errors to occur.

HEWLETT-PACKARD IMAGE/1000 DATABASE DEFINITION PROCESSOR

SCONTROL: ;
BEGIN DATABASE: QA:100:43;
LEVELS:
1 OPER;
5 ACCT;
10 ADMIN;
15 SECUR;
ITEMS:
ASSY4#, X10(1,10); <<ASSEMBLY NUMBER FOR ASSEMBLY MASTER>>
<<AND FAILURE FILE. >>
FAIL#, 1I1(1,10); <<NUMBER OF FAILURES - ASSEMBLY >>
PARTS#, X8(1,10); <<PART NUMBER FOR PART NUMBER MASTER >>
<<AND FAILURE FILE >>
FAILCD, X4(1,10); <<FAIL CODE >>
REFDES, X4(1,10) <<REFERENCE DESIGNATOR >>
DATE, X6(1,1); <<DATE FOR FAILURE FILE, DATE MASTER >>
BAD TERMINATOR - ';' EXPECTED.
<<AND PRODUCT TESTED FILE >>

EMP#, X6(1,10); <<EMPLOYEE NUMBER FOR EMPLOYEE MASTER>>
<<FAILURE FILE AND TIME VOUCHER FILE >>
SUP#, X6(1,10); <<SUPERVISOR NUMBER FOR FAILURE FILE >>

PROJ#, X6(1,5); <<PROJECT NUMBER FOR PROJECT NUMBER >>
<<MASTER AND TIME VOUCHER FILE >>
DEPT#, X4(1,5); <<KDEPARTMENT NUMBER >>
OPDAT, X6(1,5); <<OPEN DATE FOR PROJECT NUMBER >>
CLDAT, X6(1,5); <<KCLOSE DATE FOR PROJECT NUMBER >>
PNTS,8 X1(1,1); <KFAIL/NO FAIL ARRAY FOR EACH PIN >>
HOURS, R2(1,1); <<HOURS PER PROJECT NUMBER >>
SETS:
<L >>
<< ASSEMBLY FILE >>
<< >>
NAME: ASMBY::43,M; <<ASSEMBLY FILE CONTAINS THE ASSEMBLY>>
<<NUMBER AND TOTAL NUMBER OF FAILURES>>
<<FOR THAT ASSEMBLY >>
ENTRY: ASSY# (1),
FAIL%;
CAPACITY:409;
<< >>
<< PART NUMBER FILE >>
<< >>
NAME: PART::43,M; <<PART FILE CONTAINS ONLY PART NUMBER>>

<<KNOTE THAT ALTHOUGH IT CONTAINS ONLY>>
<<ONE ITEM, IT IS A MANUAL MASTER SO >>

<<ENTRIES CAN BE CONTROLLED. >>
ENTRY: PART#(1);
CAPACITY: 4001;
<< >>

15

<< FPAIL CODE FILE >>

<< >>
NAME: CODE::43,A; <<KFAIL CODE FILE CONTAINS ALL FAILURE>>
<<CODES >>

ENTRY: FAILCD(1);
CAPACITY: 997;

<< >>
<< DATE FILE >>
<< >>
NAME: DATEF::43,A; <<DATE FILE ALLOWS ACCESS BY DAY >>

ENTRY: DATE(2);

UNDEFINED ITEM REFERENCED.
CAPACITY: 367;

MASTER MUST HAVE A PATH.

<< >>
<< REFERENCE DESIGNATOR FILE >>
<< >>
NAME: REF::43,A; <<KREFERENCE DESIGNATOR FILE ALLOWS >>

<<ACCESS BY DESIGNATOR >>

ENTRY: REFDES(1);

UNDEFINED ITEM REFERENCED.
CAPACITY: 997;

MASTER MUST HAVE A PATH.

<< >>
<< EMPLOYEE FILE >>
<< >>
NAME: EMPL::43,A; <<EMPLOYEE FILE ALLOWS ACCESS BY EMP#>>
<<TO FAILURE FILE AND TIME VOUCHER >>
<<LFILE. >>

ENTRY: EMP# (2);
CAPACITY: 263;

<< >>
<< PROJECT NUMBER FILE >>
<< >>
NAME: PROJ::43,M; <KPROJECT NUMBER FILE HAS ASSOCIATED >>
<<KDEPARTMENT NUMBER AND OPENING AND >>
<<KCLOSING DATES OF NUMBER. >>
ENTRY: PROJ# (1),
DEPT#,
OPDAT,
CLDAT;
CAPACITY: 101;
<< >>

<< FAILURE FILE >>
<< >>
NAME: FAIL::43,D; <KFAILURE FILE HAS A TRANSACTION >>
<<ENTERED WHENEVER THE TEST TECH >>
<<KDETECTS A FAILURE >>

ENTRY: ASSY# (ASMBY),

DATE (DATEF),
UNDEFINED ITEM REFERENCED.

PART# (PART),

FAILCD (CODE),

REFDES (REF),
UNDEFINED ITEM REFERENCED.

PNTS,

EMP# (EMPL),

SUP# (EMPL) ;
CAPACITY: 1009;
<< >>
<< TIME VOUCHER FILE >>
<< >
NAME: TIME::43,D; <<KTIME VOUCHER FILE CONTAINS EMPLOYEE>>

ENTRY: EMP# (EMPL),
PROJ# (PROJ (DATE)),

DATE (DATEF) ,

UNDEFINED ITEM REFERENCED.

HOURS;
CAPACITY: 367;
END.

NUMBER OF ERROR MESSAGES:

NUMBER OF ITEMS: 011
NUMBER OF SETS: 05
ROOT FILE: 00269 WORDS,

CARTRIDGE NUMBER
00043

<<NUMBER, DEPARTMENT NUMBER,
<<HOURS.

0008

00005 BLOCKS

NUMBER BLOCKS REQUIRED

0000000686

ROOT FILE NOT CREATED - SCHEMA ERRORS.

END DATABASE DEFINITION

Figure 2-

2. DBDS Run With Errors

DATE AND>>

>>

DBDS General Messages

After DBDS processes a schema, it prints a group of general messages
informing the user about the size of the root file, number of errors

encountered, etc. These messages can be seen in the example above.
The Root File mentioned in the summary 1s the file created by DBDS to
contain structural information. For more information about the

contents of the Root File, see Chapter 7.

Sample Data Schema

Figure 2-3 shows the complete schema for the QA Database.

SCONTROL: ;
BEGIN DATABASE: QA:100:43;

LEVELS:
1 OPER;
5 ACCT;
10 ADMIN;
15 SECUR;
ITEMS:
ASSY#, X10(1,10); <<ASSEMBLY NUMBER FOR ASSEMBLY MASTER>>
<<AND FAILURE FILE. >>
FAIL¥, I1(1,10); <<NUMBER OF FAILURES - ASSEMBLY >>
PART#, X8(1,10); <<PART NUMBER FOR PART NUMBER MASTER >>
<<AND FAILURE FILE >>
FAILCD, X4(1,10); <<KFAIL CODE >>
REFDES, X4(1,10); <<REFERENCE DESIGNATOR >>
DATE, X6(1,1); <<DATE FOR FAILURE FILE, DATE MASTER >>
<<AND PRODUCT TESTED FILE >>

EMP#, X6(1,10); <<EMPLOYEE NUMBER FOR EMPLOYEE MASTER>>

<<KFAILURE FILE AND TIME VOUCHER FILE >>
SUP#, X6(1,10); <<SUPERVISOR NUMBER FOR FAILURE FILE >>
PROJ#, X6(1,5); <<PROJECT NUMBER FOR PROJECT NUMBER >>

<<KMASTER AND TIME VOUCHER FILE >>
DEPT#, X4(1,5); <<DEPARTMENT NUMBER >>
OPDAT, X6(1,5); <<OPEN DATE FOR PROJECT NUMBER >>
CLDAT, X6(1,5); <<CLOSE DATE FOR PROJECT NUMBER >>
PNTS,8 X1(l,l1); <<FAIL/NO FAIL ARRAY FOR EACH PIN >>
HOURS, R2(1,1); <<HOURS PER PROJECT NUMBER >>
SETS:
<< >>
<< ASSEMBLY FILE >>
<< >>
NAME: ASMBY::43,M; <<ASSEMBLY FILE CONTAINS THE ASSEMBLY>>
<<KNUMBER AND TOTAL NUMBER OF FAILURES>>
<<FOR THAT ASSEMBLY >>
ENTRY: ASSY#(1l),
FAIL#;
CAPACITY:409;
<< >>
<< PART NUMBER FILE >>
<< >>
NAME: PART::43,M; <<PART FILE CONTAINS ONLY PART NUMBER>>

<<NOTE THAT ALTHOUGH IT CONTAINS ONLY>>
<<ONE ITEM, IT IS A MANUAL MASTER SO >>

<<ENTRIES CAN BE CONTROLLED. >>
ENTRY: PART#(1);
CAPACITY: 4001;
<< >>
<< FAIL CODE FILE >>
<< >>
NAME: CODE::43,A; <<FAIL CODE FILE CONTAINS ALL FAILURE>>
<<CODES >>

ENTRY: FAILCD(1);
CAPACITY: 997;

<< >>
<< DATE FILE >>
<< >>
NAME: DATEF::43,A; <<DATE FILE ALLOWS ACCESS BY DAY >>

ENTRY: DATE(2);
CAPACITY: 367;

<< >>
<< REFERENCE DESIGNATOR FILE >>
<< >>
NAME: REF::43,A; <<REFERENCE DESIGNATOR FILE ALLOWS >>

<<ACCESS BY DESIGNATOR >>

ENTRY: REFDES(1);
CAPACITY: 997;

<< >>
<< EMPLOYEE FILE >>
<< >>
NAME: EMPL::43,A; <<EMPLOYEE FILE ALLOWS ACCESS BY EMP#>>
<<TO FAILURE FILE AND TIME VOUCHER >>
<<FILE. >>

ENTRY: EMP#(3);
CAPACITY: 263;

<< >>
<< PROJECT NUMBER FILE >>
<< >>
NAME: PROJ::43,M; <<PROJECT NUMBER FILE HAS ASSOCIATED >>
<<DEPARTMENT NUMBER AND OPENING AND >>
<<CLOSING DATES OF NUMBER. >>
ENTRY: PROJ# (1),
DEPT#,
OPDAT,
CLDAT;
CAPACITY: 101;
<< >>
<< FAILURE FILE >>
<< >>
NAME: FAIL::43,D; <KFAILURE FILE HAS A TRANSACTION >>
<<ENTERED WHENEVER THE TEST TECH >>
<<DETECTS A FAILURE >>
ENTRY: ASSY# (ASMBY),
DATE (DATEF) ,
PART# (PART),
FAILCD (CODE),
REFDES (REF) ,
PNTS,
EMP# (EMPL) ,
SUP# (EMPL) ;
CAPACITY: 1009;
<< >>

N
I

20

<< TIME VOUCHER FILE >>

<< >>
NAME: TIME::43,D; <KTIME VOUCHER FILE CONTAINS EMPLOYEE>>
<<NUMBER, DEPARTMENT NUMBER, DATE AND>>
<<HOURS. >>

ENTRY: EMP# (EMPL),
PROJ# (PROJ (DATE)),
DATE (DATEF) ,
HOURS;

CAPACITY: 367;

END.

Figure 2-3. Sample Schema

Loading The Database

Once the database (root file and data sets) is created, it is ready to
be loaded with data. This can bhe done in one of two ways.

e Running a utility program DBBLD, with bulk input

e Writing a FORTRAN, or Assembly Language program to add data
on-line and/or from batch input.

The operation and file format for DBBLD is described below. A
discussion of database access through program calls will be found in
Chapters 4 and 5.

DBBLD

DBBLD loads actual data item values into a database structure from
tape or disc file. Besides storing data, DBBLD confirms that the data
is presented 1in the proper format. DBBLD is useful for initially

storing large amounts of data into a newly-created database or adding
data entries to data already stored in a database. The data can be

prepared in a disc file, checked and edited before being conveniently
loaded by DBBLD.

Preparing Data For DBBLD

DBBLD reads a source file <consisting of physical records. When
running DBBLD, the wuser can specify an integer n, which will be the
number of columns in each source file record containing data. The

remainder of the record is 1ignored by DBBLD and can be used for
sequencing information.

The entire database file is identified by an initial record signifying
the name of the database, its cartridge number and security code, and
if any levels are defined in the 1level part of the database schenma,
some level code word. This 1level code word nmnust be high enough to
allow write access to any item for which the user wishes to add a
value. The record starts 1in column 1 and assumes the following

format:
database name:security code[:cartridge number] [,level word];
For example, the first record might be

QA:100:43,SECUR;

Individual data entries must be grouped according to the data set to
which they belong. Data entries for a specific data set are
identified by a set record. This record takes the format

SSET:setname
where

setname is the name of the data set into which the data is to be
inserted.

The data entries do not have to be in any particular order. However,
data entries for a manual master data set must appear before the data
entries for any detail data sets linked to it.

Columns 1 through n of each data record are divided into fields. Each
one of these fields contains a data item value corresponding to a data
item of the data set specified in the set record. Data item values
must appear in the data entry in the exact order that they are listed
in the ENTRY: statement of the database schema set part for that data
set. For example,

NAME: PROJ::43,M;

ENTRY: PROJ# (1),
DEPT#,
OPDAT,
CLDAT;

CAPACITY: 101;

is the set part for the data set PROJ. A data entry for this data set
must first contain a value for PROJ#, then DEPT#, OPDAT and CLDAT.
All the fields pertaining to a data entry must be joined together
without intervening spaces in the data file records. The field for
the first data item 1in each data entry must start in column one of a
data record. The fields continue through <column n of the record
unless a field extends beyond column n. In that case, the field must
start in column one of the next record. If a field's length is

2-22

greater than the record length,
a record, extend through column
next record. An example of a
shown below.

Assume a record 1length of 60
follows:

ITEM1 X10

ITEM2 X20

ITEM3 X10

ITEM4 X50

ITEMS X80
For each entry to be entered

records must be presented.

the field must start in column one of
n and continue with column one of the
data entry extending over records is

characters. An entry 1is defined as

with DBBLD, the following series of

e +
| I I | I
| ITEM1 | ITEM2 | ITEM3 | no data |
| I I I I
o +
1 10 30 40 60
R e T TR +
I I I
| ITEM 4 | no data |
I I |
- +
1 50 60
e —————— +
| |
| ITEMS (first sixty characters) |
| |
e +
1 60
e +
| I I
| ITEMS | no data |
I (con't) I I
B T +
1 20 60

Not every data item
data base. In this case,

need receive a value when entering
the field can be left blank.

data into the

The field size 1is determined by the data type of the data item. Il
(integer) type data item values must appear 1in a six column field,
while R2 (real) type data item values appear in a thirteen column
field. X (character) type data item values appear in a field exactly
as long as the defined length.

Compound item values must appear in order and there must be a field
for each element in the item.

Type Il data item values must be in the range -32768 to +32767. When
a number is negative, the user must insert a minus sign to the left of
the number. A plus sign or a blank indicates a positive number. Il
data items may appear anywhere within the six column field. To omit
entering a value, simply leave the field blank and DBBLD will enter

the value 0 for that item.

R2 type data item values can be entered either as fixed or floating
point numbers in the range of +1.70 * 10**38 to +1.47 * 10**-39,
Floating point numbers take on the format

nE+m or nE-m
where:

n is a fixed point number with eight digit accuracy.
m is the power of 10 n is to be multiplied by.

Negative real numbers are denoted by a minus sign (-) preceding the
number. A real number may appear anywhere within a thirteen column
field. Table 3-1 shows some examples of real number entries.

Table 2-1. Real Number Entries

Real numbers to be entered DBBLD field contents
3.1416 3.1416
524.67 5.2467E+2
-77.985 -77.985
.00352 3.52E-3
.12364 .12364
-.0075 -7.5E-3

To omit entering a value for a real number, leave the field blank and
DBBLD will enter the value zero for the item.

X type data item values can contain any ASCII characters. Leading and
trailing blanks in a character-valued field are significant and count

as part of the data item value.

For example, ASSY# is a data item defined as X10. The value

92060111°"

is not the same as

~~92060111 (~=ASCII BLANK)

Character

value items can be wused to hold numeric wvalues and

arithmetic operations «can be carried out on these items after they
have been entered into the database.

The last record of the DBBLD input file must be

$END

starting in column one.

Running DBBLD

To execute DBBLD enter the following command:

:RU,DBBLD, input,list,options

where:

input

list

options

where:

ADD

ERRHLT

is the FMP file namr which contains the data to be placed in
the database. The default is the scheduling 1lu.

is the FMP namr to which the list 1is to be written. All
output and errors will be listed to the list file or device.
The default is LU 6.

is a 1list of the following options entered 1in any order
separated by commas: ADD,ERRHLT,NOLIST,n

indicates that entries in the input file are to be added to
already existing entries in the database. Although all
entries are processed only those error free items are added
to the database. When ADD is not specified all the entries
are processed, checking for errors, but none are added to

the database.

indicates that all processing is to halt when an error is
detected. If ERRHLT is not specified, the entire input file
is processed regardless of any errors encountered.

NOLIST indicates that data from the input file is not to be listed
to the list device. When NOLIST is omitted, each input
record is listed.

n is an inteqger from 1 to 512, inclusive, which specifies the
input line length. Default is 72.

DBBLD then proceeds to read the data file. If the user requested a
listing, the data 1is listed as it appears in the file. If an error
occurs, a message is printed under the offending record in the
listing. If no 1listing was requested and an error occurs, DBBLD
prints the the offending record followed by the error message. See
Appendix B for help in interpreting the error messages.

When entering 1large amounts of data into a database, it 1is strongly

suggested that you run a test containing values for only one entry for
each data set in the database. By not including the ADD parameter in

the directive RU,DBBLD, you can confirm that the data fields have been
correctly entered in the DBBLD input file prior to loading data into
the database.

Upon completion, DBBLD prints two messages upon the list device. The
first message

NUMBER OF ERRORS:0000

informs the wuser of the errors encountered during the processing of
the data input file. The second message

DATABASE SUCCESSFULLY BUILT OR UPDATED

informs the user that the creation or update procedure was
successfully completed. This occurs only if there were no errors.
The message

DBBLD STOP: 0000

appears on LU 1 upon completion of DBBLD.

Sample DBBLD Run

Figure 2-4 shows

database

schema

previously shown in Figure 2-3 and Figure 2-5 shows the output listing

created by DBBLD (the default options were used).

QA:100:43,SECUR;
$SET:ASMBY
92060160010
92060180010
92060600010
92060800010
92087160010
92087180010
92087600010
92087800010
92088160010
92088180010
92088600010
92088800010
SSET: PART
59501111
59501134
59501460
59501489
59501550
$SET:PROJ
9400715210781121
9400725210781121
9400735210781121
9400745210781121
9400815230781121
9400825230781121
9400835230781121
9400845230781121
9400855230781121
9400915260781121
9400925260781121
9400945260781121
9401025290781121
9401045290781121
9401055290781121

¢:SET:FAIL
:20601800178122859501111103
920601800178120159501111202
920601800178120159501111
920601800178120159501111
920601800178120159501111
920601800178120159501111
920601600178120759501550102
920601600178120759501550103
920601600178120759501111102
920601800178120759501134109
920601880178120759501134203
920606000178120759501489203
920608000178120759501489105
920601600178122859501489103
920608000178122859501134201
920608000178122859501550307
920606000178120159500001202
920601600178120259501489305
$SEND

K23
L10

K12
K12
K1l2
K41l
J42
K12
Jl4 45003
K9
L17 45003
H12 45003
L10
J13 0000111143221

Figure 2-4. Data Input for DBBLD

Update 1

IMAGE/1000 DATABASE BUILD UTILITY

QA:100:43,SECUR;
$SET:ASMBY

ASSY# 1IN COLUMNS 0001 THROUGH 0010 IS TYPE X
FAIL$ IN COLUMNS 0011 THROUGH 0016 IS TYPE I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
92060160010
92060180010
92060600010
92060800010
92087160010
92087180010
92087600010
92087800010
92088160010
92088180010
92088600010
92088800010
$SSET:PART

PART# IN COLUMNS 0001 THROUGH 0008 IS TYPE X

12345678901234567890123456789012345678901234567890123456789012345678901234567890
59501111
59501134
59501460
59501489
59501550

$SET:PROJ

PROJ# IN COLUMNS 0001 THROUGH 0006 IS TYPE X
DEPT# 1IN COLUMNS 0007 THROUGH 0010 IS TYPE X
OPDAT 1IN COLUMNS 0011 THROUGH 0016 IS TYPE X
CLDAT 1IN COLUMNS 0017 THROUGH 0022 IS TYPE X

12345678901234567890123456789012345678901234567890123456789012345678901234567890
9400715210781121
9400725210781121
9400735210781121
9400745210781121
9400815230781121
9400825230781121
9400835230781121
9400845230781121
9400855230781121
9400915260781121
9400925260781121
9400945260781121
9401025290781121
9401045290781121
9401055290781121

$SET:FAIL
920601800178122859501111
920601800178120159501111
920601800178120159501111
920601800178120159501111
920601800178120159501111
920601800178120159501111
920601600178120759501550102 K12
920601600178120759501550103 K12
920601600178120759501111102 K12
920601800178120759501134109 K41
920601800178120759501134203 J42
920606000178120759501489203 K12

920608000178120759501489105 J14 45003
920601600178122859501489103 K9

920/08000178122859501134201 L17 45003
920608000178122859501550307 H12 45003

920606000178120159501111202 L10
920601600178120259501489305 J13 0000111143221
SEND

NUMBER OF ERRORS:0000

Figure 2-5. Sample DBBLD Run.

Update 1 2-29

Chapter 3
Querying The Database

I

|

| QUERY is only available to 92073A users
| by running remotely from a database on
| an RTE-IVB node. Refer to the DS/1000
| Network Manager's Manual for remote
| access information.

QUERY provides a simple method of accessing an IMAGE database without
programming effort. QUERY may be used to do the following:

e store data

e modify or delete data values on-line

e retrieve data which meets selection criteria
e report on the data retrieved

These operations may be performed by entering simple commands
consisting of English-language words such as FIND and REPORT.

The structure of the disc files need not be known, only the
relationships of the database elements. QUERY finds the data and
performs the operations in response to commands using the data set and

data item names specified.

Commands can be submitted to QUERY either interactively or from a
batch file. If the input to QUERY is a batch file, each record in the
file should be that information expected after an interactive prompt.
QUERY may also be scheduled to run at a remote system if a Distributed
Systems (DS/1000) 1link is available. The remote site would be the
location of the database to be accessed.

QUERY's report formatting capability allows the brilding of reports
with header and column 1labels, page numbers, and group labels. In
addition, entries <can be sorted on multiple fields, and QUERY can
report total and average values or count occurrences of data values.

A frequently used or complex command can be stored as an individual
procedure in an command file (known as a procedure file). The
procedure name can then be used 1in place of the command parameters.

Often repeated sequences of commands can be stored in a batch file and
executed while running QUERY interactively.

Information about the database structure 1is available with the FORM
command and information about QUERY commands, their function, format,

and parameters is available with the HELP command.

All of the tasks described above can be accomplished without

programming. QUERY makes an excellent debugging aid in developing
programs which access IMAGE databases through the IMAGE 1library
subroutines. Data base contents can be altered using a program and
then QUERY can examine the data to determine the results of the
programmed changes.

Commands

QUERY commands are described in detail in the following Chapters.
However, you should understand these characteristics which apply to
all commands:

° Command names must be entered as specified in the command
descriptions.

° Commands consist of English words and parameters (both required

and optional) separated by commas or semi-colons, depending on the
command syntax.

° Each command input must end with a semi-colon or a zero-length
record.

Data Item Elements

In the definition of the database, IMAGE allows the user to specify
compound items which can contain more than one element. Each element
in the item may have a value. QUERY locates and processes only the
first element 1in a compound item with the FIND and REPORT commands.
REPORT ALL and UPDATE will process all elements in a compound item.

Qualified Data Iltem Names

IMAGE allows the database designer to use the same name for two or
more items provided the 1items are not part of the same data set., 1If
you are referring to such an item, you must specify which data set to
access. This is done by qualifying the item name with the data set
name. A qualified data item name is a data set name followed by a
period, followed by a data item name. For example,

LABOR.BADGE

BADGE is the name of a data item in the data set named LABOR. 1If
BADGE is also the name of a data item in a data set named EMPLOYEE,
its qualified name for that data set will be EMPLOYEE.BADGE.

Using Query
To request QUERY from a terminal, the user types the directive
:RU, QUERY,input,list,log,ECHO,node
where:

input is the FMP namr from which the input will come. The default
is the user's terminal in an MTM environment or LU 1.

list is the FMP namr where the list will be written. The default
list is the interactive input device or LU 6 if the input
device is a file or non-interactive. When list is a file
which does not already exist, it will be created.

log specifies the logging device., Errors are always 1logged to
the log device. When specified by the ECHO option, each
command will be 1listed to the 1log device before it is
executed. If ECHO is not specified, the commands are not
listed to the 1log device. The default log unit is the
interactive input device or LU 1 when the input unit 1is a
file or non-interactive.

node allows the wuser to run QUERY remotely using the DS REMAT
program. Node is the user's node number. When a node
number 1is specified, the input device must be either
interactive or an FMP file namr. All lus specified must be
system, rather than session 1lus. All files and databases
referenced by QUERY running remotely must exist on the node
local to the QUERY program. Before requesting a remote copy

Update 1 3-3

of QUERY, the REMAT switch (SW) command must be executed
with the source node as the node at which QUERY is to be
run. The remote copy of QUERY can be invoked using the RW
REMAT command. For information on using REMAT, see the DS
Programmers Reference Manual.

When the input is from an interactive device, QUERY will print its
heading and prompt for user response. For example:

QUERY READY
NEXT?

When the input is from a batch file, the prompting 1is suppressed and
input is expected in the order that it would be entered interactively.
Each batch record must contain only the information that would be
entered after an interactive prompt. An error in the command stream
will cause QUERY to terminate.

Any input to QUERY can be typed on any number of lines. The maximum
length of a line 1is 72 characters. QUERY will not expect another
command until a semi-colon followed by a carriage return is
encountered or until a zero length record is entered. This means when
an interactive user enters only a carriage return, QUERY will assume

the input record is complete. Only 1786 characters may be entered in
one command.

QUERY will respond to the RTE BR[EAK] command during a REPORT FIND or
UPDATE command, unless it is running remotely.

Opening A Database For Use

Immediately after requesting QUERY with a directive, the user must
define the environment to QUERY; which database is to be accessed, and
which files are to be used for retrieving data. This information is
given to QUERY through the DATA-BASE= and SELECT-FILE= commands.

Once the user enters one of these two commands, the file is opened to
the user until another DATA-BASE= or SELECT-FILE= command is entered

or until execution of QUERY is terminated. When the user invokes
QUERY again, new commands to inform QUERY of the data-base and

select—-file must be entered.

3-4 Update 1

Defining A Data-Base

The DATA-BASE= command informs QUERY which database QUERY 1is to
access. The format of the command is

DATA-BASE=database name;

where:

database name is the FMP file namr of an IMAGE database root file
created by DBDS. The FMP file namr must contain the
file name and the security code. The cartridge number

is optional.

When the input is interactive, QUERY will then prompt the user for the
level code word and the open mode. In batch mode, QUERY will expect
the code word followed by a semi-colon and the open mode followed by a

semi-colon, as the next two input records.
QUERY's prompt for the level code word is as follows:

LEVEL=?

The user responds with the 1level word appropriate for the level of
access needed. The 1level words are defined in the schema definition
when creating the database. The level word will determine which items
are accessible by the user.

Finally, QUERY asks for the mode of access to the database by typing
OPEN MODE = ?

The user's response depends upon the intended use of QUERY, as shown
below.

MODE ACCESS
1 Read and write, shared access
3 Read and write, exclusive access
8 Read only, shared access

Defining A Select-File

During FIND, UPDATE and REPORT operations, QUERY uses a scratch file
called a select file to keep relative record numbers. This file must
be defined before any FIND, UPDATE REPLACE, UPDATE DELETE or REPORT
operations can be performed on the database. The FIND command will
cause numbers to be placed in this file. UPDATE and REPORT commands
will use the current contents of the select file to determine what
records to wuse in their operations. The select file may have been
created before entering QUERY. If not previously created, QUERY will
create it.

User programs may also use the select file to access records which had
previously been selected by a QUERY FIND. For more information on the
format of the select file, see Chapter 7.

The format of the command is:
SELECT-FILE=file name;
where:
file name is the FMP file namr of a disc file.

If the file named does not exist, it will be created. If it already
exists, it must be a type 1 file at 1least three blocks 1long. Each
time a FIND command executes, the SELECT-FILE is re-used, allowing the
same file to be used repeatedly.

The user can change the select file any time QUERY prompts for a
command. The SELECT-FILE= command need only be given once in a QUERY
session, unless the user desires to change files in order to save the
contents of the current select file. In the example shown below both

SEL and SELFIL contain record addresses of data entries retrieved by a
QUERY FIND command.

NEXT?DATA-BASE=0A:100:43;

LEVEL = ?ADMIN;

OPEN MODE = ?1;

NEXT?SELECT-FILE=SEL;

NEXT?FIND FAIL.ASSY# IS "9206018001" END;
0000000008 ENTRIES QUALIFIED

NEXT?SELECT-FILE=SELFIL;

NEXT?FIND ASMBY.ASSY# IS "9206080001" END;
0000000001 ENTRIES QUALIFIED

3-6 Update 1

Using Procedure And Command Files

FIND, UPDATE and REPORT commands allow the use of procedure files
which allow the user to store in a disc file procedures for finding,
updating or reporting. There is only one command per procedure file.
When using procedure files to present command information, the syntax
is:

command NAME=procedure nane
where:
command is either REPORT, UPDATE or FIND

procedure name is the FMP file namr of the file containing the
procedure

Procedure files are distinguished from command files, which are used
in conjunction with the XEQ command. Command files can contain many
commands plus the parameters required by those commands. Procedure
files are limited to one command per file.

One of the most important uses of procedure files is with the REPORT
command, since a REPORT command consists of many statements. Rather
than entering each statement every time a particular report Iis
desired, a report procedure file can be <created that can be used
whenever the report is needed.

When QUERY is being executed remotely, all procedure and command files
must be local to the node at which QUERY is executing.

Retrieving Database Entries

A main feature of QUERY is the capability to locate data entries in

the database according to the values of data items in the entry. The
user accomplishes this wusing the FIND command. The FIND command

includes the following features:

° The FIND command can search up to fifty different data items in a
single data set.

° FIND commands can be stored as procedures on the disc (using the
CREATE command) for repeated use without retyping.

) FIND procedures can be created which prompt the wuser for the
desired search values at execution time, allowing the user to
search the same data items for different values each time the
procedure is run.

) The FIND command can be used to search for multiple values of the
same data item.

° The FIND command reports how many data entries were discovered
which fulfill the criteria of the FIND command.

Find Command

The FIND command retrieves data entries from the database by storing
the record addresses of the selected entries 1in the current select
file.

The format of the FIND command is:
FIND retrieve procedure END;

or

FIND NAME=procedure name;

where:

retrieve procedure 1is a group of data item names, data item values,
and relational operators joined together by logical
connectors.

procedure name is the FMP file namr of a file stored on disc
containing a FIND command using a retrieve procedure.

The FIND command is used 1in conjunction with the REPORT and UPDATE
commands. The user locates data entries in the database through the
criteria specified 1in the FIND command, and modifies or reports the

entries through the UPDATE or REPORT commands.

Retrieve Procedures

The retrieve procedure in a FIND command specifies a relation or a
series of relations between a data item and a data item value. QUERY
compares the relation defined 1in the retrieve procedure with the
values of the data items 1in the data entries and stores the record
addresses of those data entries which satisfy the relationship in the
current select file. The form of the relation is:

3-8

[set name.] item name operator "value"

where:

set namne

item name

operator

value

is the name of a data set which contains the item. The set

name is optional when the item is defined in only one set,
or when the data set is specified earlier in the FIND

command. Only one set is searched at a time and the set to
be searched is determined, explicitly or implicitly, by the
membership of the first item named.

is the name of an item. When the item name specifies a
compound item, only the first element is used.

is the relational operator and indicates the type of
comparison to be made. The relational operators are shown
in Table 3-1.

is enclosed in quote marks and consists of a value to be
compared with each of the values of the data items named in
the relationship. The value should be appropriate to the
data item type.

Table 3-1. Retrieve Procedure Relational Operators

RELATIONAL OPERATOR MEANING
IS equals
IE
ISNOT is not equal to
INE
ILT is less than
INLT is not less than
IGT is greater than
INGT is not greater than

For example, if the user wishes to find data entries with a data item
called REFDES whose wvalue is equal to "J1l4", he enters the following
FIND command:

FIND FAIL.REFDES IS "J14" END;

If the user wishes to find data entries with a data item called DATE
whose value is less than 781201, he enters the following FIND command:

FIND FAIL.DATE ILT "781201" END;

To make more than one comparison for each data entry selected, the
user connects two relationships with the 1logical connector AND or OR.
When an AND connector is used, QUERY selects only those data entries
whose data item values satisfy both relationships on either side of
AND. When an OR connector is used, QUERY selects those data entries
that satisfy the conditions on either or both sides of the OR.

For example, the FIND command

FIND ASSY# IS "9206060001" AND DATE IS "781201" END;

instructs QUERY to retrieve only those data entries with the data item
ASSY# equal to "9206060001" and the data item DATE equal to "781201"
at the same time. QUERY does not select a data entry just because the
value of ASSY# is "9206060001"; the value of DATE for that entry must
be "781201" as well.

The command
FIND FAIL.FAILCD IS "202"™ OR DATE IGT "781031" END;

instructs QUERY to retrieve data entries with data item FAILCD equal
to "202" and to retrieve data entries with data item DATE greater than
"781031". Only one of the relationships need be true for QUERY to
select the data entry, although both can be true.

Retrieve procedures can contain both AND and OR connectors. In this
case, QUERY satisfies the AND connector first. For example, the FIND
command

FIND FAIL.FAILCD ILT "100"™ OR FAILCD IGT "500" AND
REFDES IS "L10" END;

retrieves all data entries that simultaneously contain the wvalue of
FAILCD greater than 500 and the value of REFDES equal to L10. QUERY
also retrieves all data entries with the wvalue of FAILCD 1less than
100, regardless of the value of REFDES.

Parentheses cannot appear in a retrieve ©procedure, but it is possible
to construct forms which act as parentheses. For example, if Cn
stands for a relationship such as REFDES IS "K19" then

(Cl1 OR C2) AND C3
is represented as
Cl AND C3 OR C2 AND C3

If a relationship defined in a retrieve procedure uses the relational
operators IS, IE, ISNOT or INE, the user can request that QUERY search
for more that one value for a data item. To do so, the user specifies
the values one after the other separated by commas.

For example, the following FIND command requests that QUERY retrieve
all data entries with the value of data item DATE equal to "781201" or
equal to "790101":

FIND FAIL.DATE IS "781201", "790101" END;

The FIND command above is also equivalent to the FIND command
FIND FAIL.DATE IS "781201" OR DATE IS "790101" END;

Preceding the data item name by a data set name, separated by a
period, qualifies a data item whose name appears in more than one data
set of the database. Qualifying the data item name in this way tells
QUERY which of the data sets is to be used in searching for entries

which satisfy the remainder of the relation.

For example, assume "DATE"™ to be an item 1in both of the two sets
"FAIL" and "TIME", then

FIND FAIL.DATE IS "781201" END;

instructs QUERY to retrieve all entries in the data set "FAIL" with
the data item "DATE" equal to "781201". The command

FIND TIME.DATE IS "781201" END;

instructs QUERY to retrieve all entries in the data set "TIME" which

satisfy the same requirements. It is not possible to search both FAIL
and TIME using only one FIND command.

If the user does not qualify the data item name as shown above and the
item name appears in more than one data set, QUERY will print an error
message.

After the user types a FIND command, QUERY may type the following
message:

SERIAL READ BEING PERFORMED

QUERY types this message whenever a serial search nust be performed of
a data set to retrieve the qualifying data entries. A serial search
must be performed whenever a non-key item is being searched for, or
whenever a relational operator other than IS or 1IE is wused. This
means that QUERY must search each entry 1in the data set without the
benefit of a chained or hashed read.

After a FIND command has been successfully executed, QUERY reports the
number of data entry addresses that are now stored in the select file
by typing the following message.

0000000000 ENTRIES QUALIFIED

The number indicates the number of data entries found which satisfy
the conditions set forth in the FIND command. If no entries qualify,
then the number is equal to zero.

Find Procedures

A FIND procedure stored on the disc can be created so that QUERY
prompts the user for the values to be compared with data entries in
the data set. To do this, the user types null values (quote marks
with no intervening characters) in the place of the data value. When
QUERY executes the FIND procedure (in response to a FIND
NAME=procedure name command) QUERY prompts the user to type in a value
for each set of null values in the FIND procedure. For example, the
FIND procedure:

FIND FAIL.REFDES IS "" END;

causes QUERY to type the following message when the procedure is
executed:

WHAT IS THE VALUE OF REFDES?

The user types the desired value of REFDES enclosed in quotation marks
following the question mark. QUERY then searches the database and
retrieves any data entries which satisfy the relationship in the
retrieve procedure.

If the user wishes to compare multiple values, he writes the retrieve
procedure with multiple null values. QUERY prompts for each set of
quote marks in the retrieve procedure. For example, the FIND
procedure:

FIND FAIL.REFDES IS "","" AND FAILCD IE "",""™ END;

causes QUERY to print the following messages when the FIND procedure
is executed.

WHAT IS THE VALUE OF REFDES?"L10";
WHAT IS THE VALUE OF REFDES?"K11l";
WHAT IS THE VALUE OF FAILCD?"101";
WHAT IS THE VALUE OF FAILCD?"202";

0000000002 ENTRIES QUALIFIED
NEXT?

The user types in the desired values to be used in retrieving data

entries following the question mark. Values typed must not exceed 255
characters and should be appropriate to the data item type. When

input is from a batch file, QUERY will not print the prompt message,
but will expect the item values 1in consecutive records in the input
file.

Modifying The Database

The UPDATE command is used to modify the database. The QUERY user can
modify the database in one of three ways.

° The UPDATE ADD or UPDATE A command adds a data entry to a detail
or manual master data set.

° The UPDATE DELETE or UPDATE D command deletes one or more entries
from a manual master or detail data set.

° The UPDATE REPLACE or UPDATE R command replaces values for a
specific data item 1in one or more data entries with a new value
specified by the user, allowing the user to update data 1in the
database.

When the user specifies an UPDATE A command, QUERY prompts the user by

printing the names of the data items in the data entry. The user
types in the data item value following the data item name.

To use the UPDATE D or UPDATE R command the user must first use the
FIND command. The FIND command stores the record addresses of the
data entries the user desires to delete or modify in the select file.
When UPDATE D or UPDATE R is typed, QUERY operates on all the data
entries specified in the select file.

The UPDATE command can be specified to QUERY in one of two forms: the
user can either type the entire command on the keyboard device, or
specify the name of an UPDATE procedure previously defined and stored
on the disc.

To use the UPDATE command, the user must open the database in mode 1
(shared read/write access) or mode 3 (exclusive read/write access).

Adding Data

The UPDATE A command adds a data entry to a detail or manual master
data set.

The format of the command is:
UPDATE A[DD],data set name;
or
UPDATE NAME=procedure name;
where:

data set name is the name of the data set to which the entry is to be
added.

procedure name is the namr of the UPDATE A command stored as a
procedure on the disc.

When the user types an UPDATE A,data set name; command, QUERY prompts
the user for individual item values by printing the name of each item
in the order the items are defined in the data schema. The user types
the value for the data item following the data item name. The user
must have an access level that allows write access to each item in the
data set.

The value entered must be the same type as the type defined for the
data item in the data schema. If a data item value 1is entered with
invalid characters, QUERY types an error messaqge and prompts the user
again for that item. 1If the data item is defined as a key or sort
item, the user must enter a value, otherwise QUERY reprompts for the
key or sort item until a value is entered. A user can terminate the
UPDATE ADD command by breaking QUERY with the BReak command.

3-14

The user must enter data item values enclosed in quotes (quotes on
each side of the value) or as a null wvalue (if the data item is not a
key item).

Elements of a compound item are entered in a list separated by commas,
and terminated by a semi-colon. When two commas are adjacent a null
value is entered for that element in the item. Each item element must
be enclosed in quotes.

The following example shows an UPDATE command for an item which is a
compound item. The second element of the item is defaulted to zero.

NEXT? UPDATE A,COTEST;
TSTNO=? "3";

CO2TST=? "20",,"60";
ERROR=? "-1.02E-06";
NEXT?

The user enters a null value for a data item by entering a semi-colon,
or blanks followed by a semi-colon. QUERY enters the value zero for
numeric items, and blanks for ASCII items., If a key 1item is given a
null value, QUERY will continue to reprompt for the item value until
it is entered, or until a BReak command is entered. (A user may get
the attention of the operator interface by entering a carriage return
and any spurious character in rapid succession.) When an illegal value
is entered for a data item or element of a compound item, an error
message is printed and the user is prompted for the value again. When
the value is a list, the whole list must be reentered.

Integer values must range between -32768 and +32767. Real values must
range between +1.70 * 10**38 and +1.47 * 10**-39. Real values may be
entered in fixed or floating format. All numeric values may be
preceded by a plus or minus sign. When neither is supplied a positive
value is assumed. For ASCII values, 1leading or trailing blanks are
considered part of the value. When the ASCII value is shorter than
the size of the item, QUERY left justifies the value and blank fills
to the right.

To use the UPDATE NAME=procedure name; command, the user must first
store an UPDATE A command as a procedure on the disc by wusing the
CREATE command or the RTE Editor. Once the procedure is stored on the
disc, the user executes the procedure by typing UPDATE NAME=procedure
name. QUERY searches for the procedure on the disc. If the procedure
does not exist, QUERY informs the wuser and prompts for another
command. If the procedure is found, QUERY proceeds exactly as if the
command were entered at the keyboard. Note that the values which need
to be entered are still prompted for at the user's terminal and thus,
must be entered there.

Update 2 3-15

Deleting Data

The UPDATE D command deletes one or more data entries from a detail or
manual master data set.

The format of the command is:
UPDATE D[ELETE];

or
UPDATE NAME=procedure name;

where:

procedure name is the namr of the UPDATE D command stored as a
procedure on the disc.

The UPDATE D command operates only on data entries whose record
addresses are stored in the select file (through the FIND command).
When the user types an UPDATE D command, all data entries whose record
addresses are stored in the select file are deleted from the database.
For this reason, it 1is recommended that the user do a REPORT ALL
operation on the select file before doing an UPDATE D operation to be

sure that the records to be deleted are those that the user intended.

To use the UPDATE NAME=procedure name command, the user must first
store an UPDATE D command as a procedure on the disc using the CREATE
command or the RTE Editor. Once the procedure is stored, the user
executes the procedure by typing UPDATE NAME=procedure name. QUERY
searches for the procedure and executes it. If the procedure named in
the command does not exist, QUERY informs the user and prompts for
another command.

The user must have access to all data items in the entry in order to
delete a data entry. When attempting to delete a data entry from a
manual master data set, the user must take care that there are no
detail data entries still linked to the master data entry. If the
master key item value being deleted still does exist in the detail
data set, QUERY prints an error message to the user and prompts for
another command.

For example, Figure 3-1 shows part of a database containing a master
and detail data set linked together by key item. If a user enters the
QUERY command

FIND PART.PART# IS "59501111" END;
QUERY places the record address of the master data set entry

containing the value "59501111" for the item name PART# in the select
file.

If the user then types the command
UPDATE D;

QUERY ignores the command and prints an error message to the

I 59501550 |59501489
159501439 D 59501111
[39501234 /f7§9501550

59501111 /{/ 59501234
59501489
59501111

Q ,V 59501234
59501111

PART
MASTER DATA SET

FAIL
DETAIL DATA SET

Figure 3-1. Deleting from a Master Data Set

user because the detail data set still contains data entries with the
key item equal to "59501111". Automatic master data entries are
automatically deleted when all of the detail data entries linked to it
are deleted.

Care must be taken when attempting to delete more than one data entry
from a master data set at one time. After QUERY deletes the first
entry whose address 1is stored 1in the select file, wunder some
circumstances, another data entry may be moved into the location just
vacated by the deleted entry. If the previous address of the
relocated data entry exists in the select file, QUERY finds that the
location is now empty and returns an error message to the user.

To avoid this problem, the user should take one of the following
courses of action: 1) delete only one master data entry at a time by
storing only one entry in the select file (through the FIND command)
2) enter a new FIND command to locate the moved data entry after the
error message is given or 3) retrieve the entries to be deleted by key
item values. Below 1is an example of deletion of detail data entries
from the data base using the UPDATE D command.

NEXT?FIND FAIL.ASSY# IS "9206016001" AND FAILCD IS "305" END;

0000000001 ENTRIES QUALIFIED
NEXT?REPORT ALL;

ASSY# = 9206016001

DATE = 781202

PART# = 59501489

FAILCD = 305

REFDES = J13

PNTS = 0,0,0,0,1,1,1,1
EMP# = 43221

NEXT?UPDATE D;

NEXT?FIND FAIL.ASSY# IS "9206016001" AND FAILCD IS "305" END;
0000000000 ENTRIES QUALIFIED

NEXT?

Replacing Data

The UPDATE R command replaces the value of a data item with another
value in all data entries in the current select file.

The format of the command is:
UPDATE R[EPLACE];
or

UPDATE NAME=procedure name;

QUERY then prompts the user for a data item to replace as follows.

ITEM?

The user must enter the name of a data item and its value as follows.
item name="value";

where

item name is the name of an 1item which is defined in the data set
specified in the FIND command. It must not be a key or sort
item. IMAGE does not allow key or sort items to be
modified. The user must have write access to the item.

value is an appropriate value for the item's type. Compound items
may be entered as a list of values, each wvalue enclosed in
quotes, separated by commas, terminated by a semi-colon.

When all items have been entered, the user enters a semi-colon to the
REPLACE prompt, as follows.

ITEM?;
NEXT?

The UPDATE R command operates only on data entries whose record
addresses are stored in the select file through the wuse of a FIND
command. When a user types an UPDATE R command, the value of the data
item(s) mentioned 1in the command 1is replaced with the new wvalue in
every data entry specified in the select file.

To use the UPDATE=procedure name command, the user must first store an
UPDATE R command as a procedure on the disc by using a CREATE command
or the RTE Editor. This file must contain a data item name and value
for each item that 1is to be replaced. Once the procedure is stored,
the user executes the procedure by typing UPDATE NAME=procedure name;.
QUERY searches for and executes it. If the procedure named 1in the
command does not exist, QUERY informs the user and prompts for another
command by printing NEXT?. A procedure file must contain the item
names and their values. Item name = value must follow the UPDATE R;
command in successive records of the procedure file.

QUERY does not allow the user to update key item values. Any attempt
to do so results in an error message.

The following is an example of modifying data item values in a data
set using the UPDATE R command.

NEXT?FIND ASMBY.ASSY# IS "9206016001" END;
0000000001 ENTRIES QUALIFIED
NEXT?REPORT ALL;

ASSY# 9206016001
FAILy = 3

NEXT?UPDATE R;
ITEM?FAIL#="4";
ITEM?;
NEXT?REPORT ALL;

ASSY# = 9206016001
FAILY = 4
NEXT?

It is advisable to do a verification of the data entries in the select
file before executing an UPDATE R command to be sure that only those
entries to be changed have been selected. This is easily done, as
shown in the above example, by using the REPORT ALL command.

Generating Reports

The REPORT command instructs QUERY to print information (on the list
device or file) about data entries whose record addresses are stored
in the current select file by a FIND command.

The REPORT command can be used on several levels. The user can either
ask QUERY to print the name and value of each data item for all the
data entries specified in the select file or request the data item
values for all of the data entries without printing the data item
names. Finally, the user can create output formats, complete with
page headings, page numbers, subtotals and totals of data item values.

The REPORT command can be stored as a procedure in a file through the
use of the CREATE command or the RTE Editor and can then be used over

again without retyping the report format.

Other features of REPORT include:

° Editing functions which allow the suppression of 1leading zeroes,
insertion of dashes (-), dollar signs ($), commas (,), decimal
points (.) and other characters.

° Counting, averaging and totaling functions which count the number
of data entries reported, average the values of a data item in the
report, or total the value of a data item.

° Spacing and page ejection functions are also controlled by the
REPORT command.

Report Command

The REPORT command prints information about data entries specified in
the select file by means of the FIND command.

The format of the command is:

REPORT ALL [,character];

or
REPORT NAME=procedure name;
or
REPORT [,character];
body
END;
where

character is any ASCII printing character and determines the printing
of certain optional information.

procedure name is the FMP file namr of a file containing REPORT
commands stored as a procedure by the CREATE command or the
RTE Editor in a procedure file.

body consists of header statements, detail statements, edit
statements, sort statements, group statements and total
statements, as outlined in Table 3-2.

A REPORT command operates only on data entries whose record addresses
are stored 1in the current select file. The user must enter a FIND
command prior to wusing the REPORT command to specify which data
entries are used by the REPORT command.

REPORT command output is printed on the list device. The line printer
uses the first character of each output 1line as a carriage control
character, and subsequently prints the character in column 2 of the
output page in column 1 of the printed page. Care must be taken in
assigning print positions for REPORT command output formats so that
the first character of data in each report line is not lost.

REPORT ALL prints the entire data item and all elements of a compound
item. The REPORT command form prints at most 132 characters of an
item and only the first element of a compound item.

To use the REPORT NAME=procedure name form of the command, the user
must first store a series of REPORT commands as a procedure in a file
using a CREATE command or the RTE Editor. Once the procedure Iis
stored, the user executes the procedure by typing REPORT NAME=
procedure name . QUERY searches for the procedure and executes it.
If the procedure named in the command does not exist, QUERY informs
the user and prompts for another command by printing NEXT?. If an
ASCII printing characters preceded by a comma follows the REPORT
command, in the procedure file, QUERY prints a listing of the stored
procedure prior to executing it on the terminal device. If the
command does not contain the ASCII printing character, QUERY executes

the procedure without listing it.

When a REPORT procedure 1is created using the CREATE command, QUERY
does not check the procedure for 1legal format. When the procedure is
requested with REPORT NAME=procedure name QUERY checks the procedure
line by line. If an error 1is discovered, the offending line Iis
printed on the terminal, followed by an error message. Report
generation is terminated at this point. The user should correct the
procedure file using the EXECUTE command and run the report again.

The REPORT ALL form of the command prints the data item names and the
data item values for every entry specified in the select file. If the
user enters REPORT ALL followed by a comma and an ASCII printing
character, QUERY prints only the wvalue of each data item without
printing the data item name associated with that wvalue.

To use the REPORT; body END; form of the command, the user types the
word REPORT followed by a semi-colon. The body of the report should
then follow. Each body statement ends with a semi-colon. When the
user presses return, QUERY prompts for another 1line by typing a
question mark. A sentence can occupy more than one line by pressing
return prior to typing the semi-colon ending the sentence. After the
user types a semi-colon (signifying the end of a sentence) QUERY
checks the sentence for proper form.

The report body itself consists of the following sentence types:
header, detail, edit, sort, group, and total. With these sentences
the user controls each line of output printed by QUERY in response to
a REPORT command.

Table 3-2. REPORT Statements

STATEMENT TYPE FUNCTION

P e R R e e e

Header Prints title, column headings and page
numbers at the top of each report page.

Detail Prints data item values in the column
position specified.

Edit Describes edit masks used to punctuate
Group, Detail or Total fields.

Sort Sorts data entries bhased upon the value
of a specified data item.

Group Prints a data item value or character
string whenever the value of an appropriate
sort item changes.

Total Prints column count, average or totals
for logical groups or entire report.

Designing A Report

Report formats wvary according to their use. However, many reports
assume the general format depicted in Figure 3-2. The HEADERS
describe the report and are printed at the top of each page along with
the page number. HEADERS are also wused to describe the report
columns.

The report body consists of DETAIL 1lines, GROUP titles, and TOTALS,
along with other descriptive 1labels. Normally, each detail 1line
displays information from a single data entry, although information
from a single data entry can appear on more than one line. A DETAIL
field can be edited to include commas, decimal points, dollar signs,
and other punctuation characters.

DETAIL lines can be sorted and grouped according to the values of data
items 1in the entry. For example, a sales report may list sales
results by country, region, sales office, and finally by individual
salesman within each office. A GROUP title can be printed whenever
"sort field" changes value. For example, when the country changes,
the name of the country could be displayed as a GROUP title. The
title can be a series of characters or a data item value.

SUBTOTALS can be printed for logical groups (for example, for each
sales office) and GRANDTOTALS for the entire report. These totals
add, average or count the DETAIL fields 1in each column of the report.
Like DETAIL and GROUP fields, TOTAL fields <can be edited with
puncuation characters.

TITLE OF REPORT PAGE NO.
HEADER HEADER HEADER
GROUP TITLE DETAIL DETAIL DETAIL
DETAIL DETAIL DETAIL
DETAIL DETAIL DETAIL
SUBTOTAL SUBTOTAL SUBTOTAL
GROUP TITLE DETAIL DETAIL DETAIL
DETAIL DETAIL DETAIL
DETAIL DETAIL DETAIL
SUBTOTAL SUBTOTAL SUBTOTAL

GRANDTOTAL GRANDTOTAL GRANDTOTAL

Figure 3-2. General Report Format

In the report statement descriptions which follow, a report is created
by adding one statement type at a time and showing how the added
statements change the report. Figure 3-3 contains the final version
of the report.

FIND FAIL.DATE IGT "781206" AND FAIL.FAILCD IS NOT " " END;
REPORT;

H1,"ASSEMBLY FAILURE REPORT",50;

H1l,"PAGE",62;

H1l,PAGENO, 66,SPACE A3;

H2,"DATE ASSEMBLY PART FAILURE REFERENCE" ,67;
H3,"NUMBER NUMBER CODE DESIGNATOR",67,SPACE A2;
S2,DATE;

S1,ASSY#;

S, PART#;

D1,PART#,44,E1;

D1,FAILCD,52;

D1,REFDES,64;

Gl,ASSY#,32,SPACE B2,E2;

G2,DATE, 18,E3;

T1,"FAILURE COUNT",54;

T1,ASSY#,64,SPACE B2,COUNT;

T2,"FAILURES THIS DAY",54;

T2,ASSY#,64,SPACE B2,COUNT;

TF,"TOTAL FAILURES",54;

TF,ASSY#,64,SPACE B2,COUNT;

E1l,"XXXX-XXXX";

E2, " XXXXX=-XXXXX";

E3,"XX/XX/XX";

END;

Figure 3-3. Sample QUERY Report File

Report Formatting

When defining a report, certain parameters can be used on the REPORT
statements to aid in formatting. The definition of these parameters
is the same no matter where they occur. These parameters are the
print position, SPACE, space-control, SKIP, skip-control and Edit
parameter.

Print position defines the ending column position of a character
string or data item value that is to be printed. The first column on
the left of the report printout is column 1. QUERY does not check for
data item or character string overlap on printout. It is the user's
responsibility to choose correct end print positions for values to be
printed. The number chosen can range from 1 to 132, since each line
in a report can contain a maximum of 132 characters.

SPACE skips 1lines on the report page before or after printing the
lines. The user informs QUERY whether to space before or after and
how many lines to skip by the use of the space-control parameter
following the word SPACE.

Update 1 3-25

Space-control is either A[number] or B[number]. "A" followed by an
integer will cause the number of lines to be spaced after printing the
line. "B"™ followed by an integer causes the number of lines to be
spaced before printing the lines. The number is an integer from 1 to
5. If the number 1is not specified, QUERY spaces one 1line. To space
before and after printing a 1line, use the space option twice. For
example,

H1l,"PAGE",35,SPACE B2,SPACE A3;

SKIP indicates that QUERY is to skip to a new page before or after
printing a detail, group or total 1line. The skip-control will
indicate whether the skip 1is before or after printing a 1line.
Normally, QUERY will print 54 lines per page before skipping to a new

page.

Skip-control consists of the letter A, skip after printing this 1line,
or B, skip before printing this line.

Edit parameter is either EZ or Enumber where number is an integer from
0 to 9. EZ indicates that QUERY 1is to suppress any leading zeroes in
numeric data item values. Enumber corresponds to the number of an
edit statement that is defined after the statement containing the edit
parameter. One edit parameter can be specified on any one report
statement. If no edit mask is specified and a data item wvalue is
negative, the negative sign will appear on the left side of the value.
If an edit mask 1is specified, the negative 1indication will be
suppressed for a negative wvalue unless a CR or minus sign appears in
the mask.

Whenever a character string is specified 1in a report command, it is
bracketed by quotes. QUERY prints the character string (minus the
quotes) ending in the column specified by print position. Any
printing ASCII character (including blanks) can be used in the string.
If quotes are to appear in the string, they must be represented as a
pair of quotes. The pair 1is printed as only one quote in the
character string.

HEADER Statements

The header statement 1is used to print heading information of the
user's choice at the top of each page of the report. A maximum of
five lines of header information can appear at the top of each report
page. The format of the header statement is:

Hnumber,data type,print position[,SPACE space-control];

where:

number is an 1integer from 1 to 5 specifying on which header 1line
(out of five ©possible lines) the information 1is to appear.
Header information in a header statement labeled Hl appears
in the first line, H2 appears in the second line, etc.

data type is either an ASCII character string bracketed by quotes or
the word PAGENO,

If PAGENO appears in the header statement, QUERY prints the
page number of the report in the position specified by print
position. QUERY increments the page number automatically
for each page printed.

print position, SPACE, space-control are as defined in the section on
REPORT FORMATTING.

Example:

REPORT;

H1,"ASSEMBLY FAILURE REPORT",50;
H1l,"PAGE",62;

H1,PAGENO,66,SPACE A3;

H2,"DATE ASSEMBLY PART FAILURE REFERENCE",67;
H3, "NUMBER NUMBER CODE DESIGNATOR", 67,SPACE A2;
END;
ASSEMBLY FAILURE REPORT PAGE 1
DATE ASSEMBLY PART FAILURE REFERENCE
NUMBER NUMBER CODE DESIGNATOR

DETAIL Statements

The detail statement indicates which data items of a data entry
specified in the select file are to be printed in the report. Data
items can be printed on up to 10 different lines. QUERY prints only
the values of data items which do appear in a detail statement. If
the data 1item length exceeds the distance between column 1 and its
print position, it will be truncated.

The format of the detail statement is:

D[n],data type,print position([,SPACE space-control] [,SKIP
skip-control] [,edit];

where:
n is an integer from 1 to 9. Each number specifies a

different line on which the data items are printed. If the
number is omitted, the data type 1is printed on a group line

when any control break occurs. If no group 1lines are
specified, the unnumbered detail item 1is printed on a
separate line above any numbered detail item lines. The

lowest numbered statement is printed first and all others
follow in numeric order. Detail statements with the same

number are printed on the same line.

data type is either an ASCII character string bracketed by quotes or
the name of a data item contained in the data entries
specified in the select file.

print position, SPACE, space-control, SKIP, skip-control and edit are
as defined in the section on REPORT FORMATTING.

Example:

REPORT;

H1,"ASSEMBLY FAILURE REPORT",50;
H1l,"PAGE",62;

Hl,PAGENO,66,SPACE A3;

H2,"DATE ASSEMBLY PART FAILURE REFERENCE" ,67;
H3,"NUMBER NUMBER CODE DESIGNATOR",67,SPACE A2;
D1,PART#,44;

D1,FAILCD,52;
D1,REFDES,64;
END;

ASSEMBLY FAILURE REPORT PAGE 1

DATE ASSEMBLY PART FAILURE REFERENCE
NUMBER NUMBER CODE DESIGNATOR
59501111 102 K12
59501550 103 K12
59501550 201 L12
59501134 109 K41l
59501134 203 Jaz2
59501489 203 K12
59501489 105 Jl4
59501489 103 K9
59501111 103 K23
59501134 201 L17
59501550 307 H12

EDIT Statements

The edit statement is used for punctuating data item values printed in
a report. The statement performs such functions as suppressing
leading zeroes in numeric values, inserting characters such as dollar
signs, dashes, commas, and decimal points, as well as masking
characters to eliminate them from the printed output.

Up to ten edit statements, labeled from E0 to E9, can be used 1in a
report. To edit output from a detail, group, or total statement, the
user includes the label of the desired edit statement. QUERY uses the

specifications of the labeled edit statement to edit the value printed
by the detail, group or total statement. The same edit statement can

be referenced by more than one statement in the same REPORT command.
Each edit statement must be referenced at 1least once in the REPORT

command.

The format of the edit statement is:
Enumber, "edit mask";

where:

number is an integer from 0 to 9, identifying the edit statement.
No two edit masks may be identified by the same integer.

edit mask consists of from 1 to 20 numberic edit characters or from 1
to 132 alphanumeric edit characters, bracketed by quotes.

B R R O I I T S

Alphanumeric edit masks consist of X's (used as place holders) and any
other ASCII printing characters (used as insertion characters). QUERY
examines the data item value in the detail, group or total statement
and the edit mask specified in the referenced edit statement, starting
with the rightmost character of each. If the character in the edit
mask is X, QUERY prints a character from the data item wvalue in the
corresponding postion of the output field. If the character in the
edit mask is any character other than an X, QUERY prints the edit mask
character in the corresponding position of the output field.

If there are fewer X's in the edit mask than there are characters in
the data item value, the leftmost characters of the data item value

are not printed. If there are more X's in the edit mask than there
are characters in the data item value, QUERY prints asterisks in the
extra columns. All insertion characters indicated in the edit mask

are printed in the output field.

Figure 3-4 shows the results of printing data item wvalue characters
strings using edit masks.

Data Item Value Edit Mask Printed Result
ABCD "X=-X-X-X" A-B-C-D
ABCD "XX" CD
ABCD MXXXXX" *ABCD
ABCD "X/ /X=-X=-X-X" *//A-B-C-D
ABCD wo__x" -—=-D

Figure 3-4. Alphanumeric Edit Examples

Numeric Editing

B e e R

A numeric edit mask consists of the placement holders (9,Z,*,$), sign
character (CR,-) and any other ASCII printing characters used as
insertion characters. The numeric edit mask edits integer numeric

values consisting of the digits 0-9.

The edit mask consists of up to 20 <characters in the combinations
outlined in Table 3-3. Total ADD and AVERAGE statements reporting
integer items require ten digits plus a sign character in the edit
mask, while integer items appearing in detail and group statements
require five digits and a sign character.

3-30

The length of the edit mask determines the length of the output field
printed by QUERY. If the number of digits of the data item value is
greater than the number of place holders (9,Z,*,$) in the edit mask,
QUERY prints all asterisks in the output field. However, if the
number of digits is less than the number of place holders in the edit
mask, the value is left-filled with spaces.

Real numbers are reported but they may not be edited. They must have
a 13 column field. Fixed numbers will be reported whenever the field
will permit, otherwise the real number will be reported using
exponential notation. The format will be in a FORTRAN Gl13.5 format.

Table 3-3. Numeric Edit Mask Combinations

Combinations Examples

9's only "9999"

Z's only "ZZ2Z27Z"

Asterisks only "hkkkkkk

Dollar signs only "SSSSSs”

Sign characters and 9's "9999CR"
Il9999_"

Sign characters, 9's, and "$$S$S999CR"

either Z's, asterisks or "Z229999-"

dollar signs "k%**%*%9999999"

9's and either Z's, asterisks "$$$99999"

or dollar signs "ZZZ72999999"
"*x*x99990"

Any of the above combinations "$$999,999.99-"

including insertion characters "999-99-9999"

such as commas, one decimal point, "99/99/99"

slashes, etc., located anywhere "$$9999.99CR"

in the edit mask, except to the

right of sign characters.

Only one decimal point may appear in any numeric edit mask. If a

minus sign appears in the mask in any position other than the
rightmost character of the mask, the minus is treated as an insertion
character.

Each of the place holders and sign characters serves a special purpose
in editing data item values. The characters and their meanings are
specified in Table 3-4.

3-31

Character

32

P e d

CR

Table 3-4. Edit Mask Characters

Explanation

P e Rl

Each 9 in the edit mask is replaced with a decimal
digit from the data item wvalue in the corresponding
position of the output field.

Z is a zero suppression place holder. A Z in the edit
mask is replaced with a decimal digit from the data
item value in the corresponding position of the output
field. If the data item value digit under
consideration is a zero appearing to the 1left of the
leftmost significant digit, QUERY inserts a blank in
the output field, and all other zeroes to the left of
the significant digit are replaced by a blank in the
output field.

* is an asterisk place holder. An * in the edit mask
acts just 1like a Z with the exception that leading

zeroes in the data item wvalue are replaced with
asterisks in the output field.

$ is the dollar sign place holder. A $ in the edit
mask acts just like a Z, except that the first zero in
the data item value to the 1left of the 1leftmost
significant digit is replaced with the dollar sign in
the output field. All zeroes to the left of the first
leading zero are replaced with blanks in the output
field.

CR is a sign character and always appears in the two
rightmost positions of the edit mask. If the data
item wvalue is negative, QUERY prints the two
characters CR in the first two rightmost positions of
the output field. If the data item value is positive,
QUERY prints two blank characters in place of the CR.
No characters from the data item value are ever placed
in the first two rightmost positions of the output
field. If CR 1is put in the two leftmost characters,
QUERY does not print the CR or the minus sign.

- is a sign character and acts the same as the CR
character. If the data item wvalue is negative, QUERY
prints the minus sign (-) in the rightmost position of
the output field. If the data item value is positive,
QUERY prints a blank in place of the minus sign. No
character from the data item value is ever placed in
the rightmost position of the output field.

Insertion
Characters

Insertion characters consists of any ASCII printing
characters not previously mentioned. Insertion
characters are printed in the output field in the same
position they appear in the edit mask. Any insertion
character appearing 1in the edit mask to the 1left of
the leftmost significant digit of the data item value
is replaced with blanks or an asterisk, depending on
which zero suppression character is specified in the
edit mask. Only one decimal point can appear 1in an
edit mask.

Figure 3-5 shows the results of printing numeric data item wvalues
using numeric edit masks.

Data Item Value Edit Mask Edited Result
0059 "$$$,999" $059

1024 “222,2Z2" 1,024
010555 "$$,$$$.99CR" $105.55
-010555 "S,$$$.99CR" $105.55CR
-010555 "$$,$$8.99-" $105.55-
010555 "$$,$$5.99-" $105.55
15039250 "$,$$$,$$5.99CR" $150,392.50
-1399 "k, kk* QQCR" **%]13,99CR
044240474 "999-99-9999" 044-24-0474
-2145 "$,$$$.99" $21.45

Figure 3-5. Numeric Edit Examples

Example:

REPORT;

H1,"ASSEMBLY FAILURE REPORT",50;

H1l,"PAGE",62;

H1,PAGENO,66,SPACE A3;

H2,"DATE
H3,"NUMBER

D1,PART#,44,E1;

D1,FAILCD,52;
D1,REFDES,64;

El,"XXXX-XXXX";

END;

ASSEMBLY PART FAILURE REFERENCE",67;

NUMBER CODE DESIGNATOR",67,SPACE A2;

ASSEMBLY FAILURE REPORT PAGE 1

DATE ASSEMBLY PART FAILURE REFERENCE
NUMBER NUMBER CODE DESIGNATOR
5950-1111 102 K12
5950-1550 103 K12
5950-1550 201 L12
5950-1134 109 K41
5950-1134 203 J4z2
5950-1489 203 K12
5950-1489 105 Jl4
5950-1489 103 K9
5950-1111 103 K23
5950-1134 201 L17
5950-1550 307 H12

SORT Statements
The sort statement serves two purposes in the report.

° Specifies data items (called sort items) whose values are used by
QUERY to sort data entries before they are printed in the report.

° Defines control break levels for use by group and total statements
in the REPORT command.

The format of the sort statement is

S[level],data item name;

where:
level is an integer from 1 to 5

data item name 1is the name of a data 1item contained 1in the data
entries specified in the select file.

Each sort item specified in any level 1is used to create a sort key.
The sort key may not be longer than 80 bytes. The total length of the
sort key is calculated by summing the length of all the specified sort
items. An Il item requires 2 bytes, an R2 item requires 4 bytes and
an Xn item requires n bytes. When a compound item is specified as
part of a sort Kkey, the total length of the item must be used to
calculate the length of the key. However, only the first element is
actually used in the sort.

Under normal conditions, data entries are 1listed in a report 1in the
order in which they occurred 1in the select file as they were
discovered by the FIND command. These data entries are not arranged
in any alphabetic order or numeric sequence. The sort statement
defines a data item belonging to the data entries in the select file
whose value 1s used to sort data entries into order. The data item
defined in the sort statement is called a sort item.

The sort statement:
S1,LNAME;

sorts the entries selected into the order specified by the value of
LNAME.

Data Entries After FIND Data Entries After Sort Executed
LNAME FNAME AGE LNAME FNAME AGE
WHITE DANA 26 BROWN JILL 32
BROWN JILL 32 BROWN CHRIS 17
GREEN DALE 49 BROWN DAN 39
WHITE LAURA 81 GREEN DALE 49
BROWN CHRIS 17 GREEN SALLY 28
GREEN SALLY 28 GREEN BILL 45
GREEN BILL 45 WHITE DANA 26
B ROWN DAN 39 WHITE LAURA 81
WHITE WILL 22 WHITE WILL 22
It |is possible to sort on many different data items. The

higher-numbered sort statement identifies the major sort field, while
the lower-numbered sort statement 1identifies the minor sort field.
The minor sort arranges entries in the order specified, keeping all
major sort items with identical values together. For example, if the
statement 1illustrated above appeared in a report with another
statement:

S1,FNAME;
S2,LNAME;

the result would be as follows:

LNAME FNAME AGE

level 2 (major) BROWN 1level 1 (minor) CHRIS 17
control break BROWN control breaks DAN 39
BROWN JILL 32
level 2 (major) GREEN BILL 45
control break GREEN DALE 49
GREEN SALLY 28
level 2 (major) WHITE DANA 26
control break WHITE LAURA 81
WHITE WILL 22

Control Breaks

LR R e e e

A control break occurs during the printing of a report whenever the
current entry's value for a data item defined in a numbered sort
statement is different from the last entry's value. When the first
entry is printed, a control break occurs since the data 1item value
changes from null (no value) to the first value. Totals are not
printed when the first control break occurs.

In the example above, a control break occurs when the wvalue of LNAME
becomes BROWN and when it changes to GREEN and again when it changes
to WHITE. This is known as a level 2 control break because the data
item name LNAME appears 1in a sort statement labeled S2. The level 1
control break is associated with the data item FNAME and sort

statement labeled Sl.

A control break occurs for all 1lower levels whenever a higher level
control break occurs. This means that whenever a control break occurs
for level 2 (LNAME) a control break occurs for 1level 1 (FNAME) by
definition.

A group or total statement prints only when a control break occurs

that is at the same level as the group or total statement. This means
that a total statement 1labeled T2 prints only when a 1level 2 control
break occurs. Consult the descriptions of group and total statements
below for explanations of their functions.

Sort statements without a level (i.e., no number) are used to sort
entries but do not define <control breaks for wuse by group or total
Statements.

Major to Minor Sort Fields

P e e e e

Numbered and unnumbered sort statements can appear in the same REPORT
command. The order in which unnumbered sort statements appear in the
report body 1is significant. The first unnumbered statement defines
the most minor sort field, while the last unnumbered statement defines
the most major sort field. QUERY defines sort fields in the following
order from most major to most minor:

Most Major Most Minor
S5 S4 S3 S2 S1 S(last in report body)...S(first in report body)

For example, the sort statements below define the order as shown:

Statements Order
S2,0FFICE MONTH major (S3)
S ,PARTNO OFFICE (S2)
S1,SLSMAN SLSMAN (S1)
S ,QUAN QUAN (S last)
S3,MONTH PARTNO (S first)
Example:
REPORT;

H1,"ASSEMBLY FAILURE REPORT",50;

H1,"PAGE",62;

H1l,PAGENO,66,SPACE A3;

H2,"DATE ASSEMBLY PART FAILURE REFERENCE" ,67;
H3,"NUMBER NUMBER CODE DESIGNATOR",67,SPACE A2;
S2,DATE;

S1,ASSY#;

S ,PART#;

D1,PART#,44,E1;

D1,FAILCD,52;

D1,REFDES,64;

El,"XXXX-XXXX";

END;

ASSEMBLY FAILURE REPORT PAGE 1

DATE ASSEMBLY PART FAILURE REFERENCE
NUMBER NUMBER CODE DESIGNATOR
5950-1111 102 K12
5950-1550 103 K12
5950-1550 201 L12
5950-1134 109 K41
5950-1134 203 J42
5950-1489 203 K12
5950-1489 105 Jl4
5950-1489 103 K9
5950-1111 103 K23
5950-1134 201 L17
5950-1550 307 H12

GROUP Statements

The group statement 1is used to print the wvalue of data items or
character strings whenever a control break occurs at a specific
control 1level. Each control break level 1is defined by a sort
statement labheled with an integer from 1 to 5. A group statement is
assigned to a control break level by using the same level number as
the defining sort statement. Whenever a break occurs during the
printing of a report, QUERY prints a data 1item wvalue or literal
character string as defined by the group statement corresponding to

the control break 1level.

A breakpoint occurs not only when the sort item defined in the sort
statement changes value, but also at the very bheginning of the report,
where the sort item value changes from empty to some non-empty value.
When a breakpoint occurs for a major sort item, all minor sort items
(defined by sort statements with levels 1less than the major sort item
control level) are also at breakpoint, by definition. If major and
minor group statements are defined in the REPORT command, QUERY prints
a data item wvalue or characters string for every control break level
equal to or below the major sort item control break level.

The format of a group statement is:

Glevel,data type,print position[,SPACE space-control] [,SKIP
skip-control] [,edit];

where:

level is an integer from 1 to 5, <corresponding to the level
appearing in a sort statement.

data type is either an ASCII character string bracketed by quotes, or
the name of a data item.

print position, SPACE, space-control, SKIP, skip=-control and edit are
as defined in the section on REPORT FORMATTING.

If the data type is an ASCII character string, QUERY prints the string
(minus the quotes) whenever the group statement is executed. If the
character string is to contain quotes, they must appear in the string
as a pair of quotes to distinguish them from the quotes bracketing the
string. QUERY prints the pair of quotes as one quote. If the data
type is a data item name, QUERY prints the new value of the data item
which defines a control breakpoint.

Example:

REPORT;

H1,"ASSEMBLY FAILURE REPORT",50;
H1l,"PAGE",62;

H1l,PAGENO,66,SPACE A3;

H2,"DATE ASSEMBLY PART FAILURE REFERENCE",67;
H3,"NUMBER NUMBER CODE DESIGNATOR",67,SPACE A2;
S2,DATE;

S1,ASSY#;

S ,PART#;

D1,PART#,44,E1;
D1,FAILCD,52;
D1,REFDES,64;
Gl,ASSY#,32,SPACE B2,E2;
G2,DATE,18,E3;
E1l,"XXXX-XXXX";
E2,"XXXXX-XXXXX";
E3,"XX/XX/XX";

END;

ASSEMBLY FAILURE REPORT PAGE 1

DATE ASSEMBLY PART FAILURE REFERENCE
NUMBER NUMBER CODE DESIGNATOR

78/12/07 92060-16001

5950-1111 102 K12
5950-1550 103 K12
5950-1550 201 L12
92060-18001
5950-1134 109 K41
5950-1134 203 Ja2
92060-60001
5950-1489 203 K12
92060-80001
5950-1489 105 Jl4
78/12/28 92060-16001
5950-1489 103 K9
92060-18001
5950-1111 103 K23
92060-80001
5950-1134 201 L17
5950-1550 307 H1l2
Notice that the two data items mentioned in the detail statements do
not print on the same line as the group statements. This is because
the detail statements are numbered. Unnumbered detail statements

print on the same 1line as a group statement whenever a control break
occurs.

TOTAL Statements

The total statement prints a data 1item value, character string, the
total of a group of detail item values, the average of a group of
detail wvalues, and/or the number of detail item values printed,
whenever a control break occurs. Each control break level is defined
by a sort statement 1labeled with an integer from 1 to 5. A total
statement is assigned to a control break level by using the same level
number as the defining sort statement. Whenever a control break
occurs during the printing of a report, QUERY prints the information
as specified in the total statement corresponding to the control break
level. There is a limit of 5 different items being counted, added, or
averaged in any report.

A breakpoint occurs not only when the sort item defined in the sort
statement changes value, but also at the end of the report. Total
statements labeled with the letter F (instead of an integer from 1 to

5) print information after the last detail lines are printed 1in the
report. At the end of the report (or at any level control break) each

differently numbered total is printed on a separate line.
The format of the total statement is:

Tlevel,data type,print position[,SPACE space-control] [,SKIP

s AVERAGE
skip-control] [,edit] ;COUNT :
,ADD
where:
level is an integer from 1 to 5 corresponding to the level

appearing in a sort statement or the letter F. The letter F

indicates that information is printed only at the end of the
report after the last detail line 1in the report is printed.

data type is either an ASCII character string bracketed by quotes or
the name of a data item.

print position, SPACE, space-control, SKIP, skip-control, and edit are
as defined in the section on REPORT FORMATTING.

ADD instructs QUERY to add the values specified in data type.
Accumulators are set up for each control level and, if the
user specifies F as the level, for the final 1level. The
capacity is 10 digits.

AVERAGE instructs QUERY to average the values of the data item
specified in data type.

Update 1 3-41

COUNT instructs QUERY to print the number of data item wvalues
printed after the last control break and before the current
control break.

If data type 1is an ASCII string, QUERY prints the string (minus the
quotes) whenever the total statement 1is executed. 1If the character
string is to contain quotes, they must appear in the string as a pair
of quotes to distinguish them from the quotes bracketing the string.
QUERY prints the pair of quotes as one quote. If the data item name
is used, QUERY prints the current value of the data item at the time
of the control break. This will be the new value of the data item
rather than the old value.

If the ADD option is specified, QUERY adds the value of the specified
data item wuntil a control break occurs. The accumulated value Iis
printed in the report and the accumulator 1is set to zero for the next
control group. The data item to be added must be an integer, real
number, or numeric ASCII string of 20 digits or less in length (DECAR
format) .

If the AVERAGE option was specified, the data item values are added
and then averaged for each group of data 1item values prior to a
control break. When a control break occurs, QUERY prints the average
of the data item values for the data entries printed after the last
control break and prior to the current control break. QUERY then sets
the accumulator to zero and starts a new average the next control
group. The data item to be averaged must be an integer, real number
or valid (DECAR format) ASCII string.

When count is specified, at the occurrence of a control break, QUERY
prints the count of detail item values, then sets the accumulator to
zero for the next control group.

If a total statement 1labeled with the letter F is specified, a total
line is printed after the last detail 1line of the report. If this TF
line contains an ADD, AVERAGE or COUNT option, an accumulation will
have been made for each entry in the select file. A data item can
appear in a TF line even if it has not appeared in any previous total
statement.

One total statement must appear in the REPORT command for each ADD,
COUNT or AVERAGE option desired, as a total statement can specify only
one of the three at a time. The desired information is printed on the
same line in the print position specified in the total statement. It
is the wuser's responsibility when wusing more than one of the three
options to insure that the information printed on the same line does
not overlap.

If the TOTALLED value overflows or underflows, the ADDED or AVERAGED
field is filled with asterisks.

3-42 Update 2

REPORT;

Hl,"ASSEMBLY FAILURE REPORT",50;
H1l,"PAGE",62;

H1,PAGENO,66,SPACE A3;

H2,"DATE ASSEMBLY PART
H3,"NUMBER NUMBER CODE
S2,DATE;

S1,ASSY#;

S,PART#;

D1,PART#,44,E1;
D1,FAILCD,52;

D1,REFDES,64;
Gl,ASSY#,32,SPACE B2,E2;
G2,DATE,18,E3;

T1,"FAILURE COUNT",54;
T1,ASSY#,64,SPACE B2,COUNT;
T2,"FAILURES THIS DAY",54;
T2,ASSY#,64,SPACE B2,COUNT;
TF,"TOTAL FAILURES",54;
TF,ASSY#,64,SPACE B2,COUNT;
E1l,"XXXX=-XXXX";

E2, "XXXXX-XXXXX";
E3,"XX/XX/XX";

END;

And our final report looks like this:

FAILURE REFERENCE", 67;
DESIGNATOR",67,SPACE A2;

DATE

78/12/07

78/12/28

ASSEMBLY FAILURE REPORT

ASSEMBLY
NUMBER

92060-16001

92060-18001

92060-60001

92060-80001

92060-16001

92060-18001

PART FAILURE
NUMBER CODE
5950-1111 102
5950-1550 103
5950-1550 201

FAILURE COUNT

5950-1134 109
5950-1134 203

FAILURE COUNT

5950-1489 203

FAILURE COUNT

5950-1489 105
FAILURE COUNT

FAILURES THIS DAY

5950-1489 103

FAILURE COUNT

5950-1111 103

PAGE 1

REFERENCE
DESIGNATOR

K12
K12
Ll12

00003

K41
Jaz2

00002

K12

00001

Jl4
00001

00007

K9

00001

K23

ASSEMBLY FAILURE REPORT PAGE 2

DATE ASSEMBLY PART FAILURE REFERENCE
NUMBER NUMBER CODE DESIGNATOR
FAILURE COUNT 00001

92060-80001

5950-1134 201 L17
5950-1550 307 H12
FAILURE COUNT 00003
FAILURES THIS DAY 00004
TOTAL FAILURES 00011

Storing And Maintaining Procedures

Procedures provide a convenient way of storing QUERY commands for
repeated use without having to retype them. Three types of procedures
are used within QUERY,.

° FIND procedures retrieve data entries from the database.

° REPORT procedures print reports about data retrieved from the
database by the FIND command.

° UPDATE procedures add, delete ‘or modify data entries 1in the
database located by the FIND command.

3-45

Procedures are stored in an FMP disc file. If running QUERY remotely,
the procedure file must be local to the node at which QUERY is
executing. The QUERY user can manipulate procedures using File
Manager commands or the following QUERY commands.

° CREATE command defines the procedure and stores it in a disc file.
° DISPLAY command lists a procedure stored in a disc file.

° EXECUTE command allows execution of the RTE Editor to modify any
procedure on the disc.

° DESTROY command deletes any procedure on the disc.

The format and use of QUERY procedures are detailed under the
individual descriptions of the FIND, REPORT and UPDATE commands.

CREATE Command

The CREATE command defines FIND, REPORT or UPDATE procedures and
stores them on the disc. The format of the command is:

CREATE NAME=procedure name;

where:

procedure name is the name of the procedure given by the wuser. A
procedure name consists of an FMP file namr.

When a user types a CREATE command, QUERY types a question mark to
prompt the user to enter the procedure. The user enters the procedure
line by line. 1If the user fails to end a line with a semi-colon or a
zero length record, QUERY will concatenate the line with the 1line
following it before placing them in the procedure file.

The user enters the procedure statements according to the format
described under the information for the individual command. QUERY
continues to prompt for lines until the user types "END;" as the last
four characters in a line. A space after END; will cause the line to
be interpreted as other than the end of the procedure file.

After the user types END;, QUERY loads the procedure on the disc and
returns to NEXT?. QUERY does not check the format of the procedure
entered. Format checking for procedures occurs at the time the
procedure is executed.

The following is an example of an UPDATE command stored as a procedure
on the disc through a CREATE command.

NEXT?CREATE NAME=QAPRC:100:43;
? UPDATE A,FAIL;END;
NEXT?

To execute the procedure, the user types:
UPDATE NAME=QAPRC:100:43;

QUERY first 1lists the procedure on the log device and then executes
the procedure. The user types in the values following the question
mark after each data item name, as he would normally do when doing an
UPDATE ADD.

The following is an example of a FIND command stored as a procedure on
the disc through a CREATE command.

NEXT?CREATE NAME=PRC2:100:43;
?FIND ASSY# IS "9206018001" END;
NEXT?

To execute the above procedure, the user types:
FIND NAME=PRC2:100:43;

After searching for data entries in the current data set with the
characteristics defined in the FIND procedure, QUERY reports how many
data entries were discovered with the specified characteristics.

A REPORT file can also be stored as a procedure wusing the CREATE

command. The report statements are not checked for syntax errors at
the time the file is created, but rather at the time the report
procedure is executed.

DISPLAY Command
The DISPLAY command lists a procedure stored on the disc.
The format of the command is:

DISPLAY NAME=procedure name;

where:
procedure name is the FMP file namr of a procedure stored on the disc.

When the wuser types DISPLAY NAME=procedure name;, QUERY prints the
procedure specified on the 1list device. If the procedure does not
exist on the cartridge specified (or on any cartridge, if no cartridge
reference number is specified), QUERY informs the user and prompts for
another commmand.

EXECUTE Command

The EXECUTE command provides access to the RTE Editor for the purpose
of editing 1lines in a procedure file. EXECUTE also allows for the
execution of any other program.

The format of the command is:
EXECUTE [=program name];
where:
program name is the name of any program.

The default is EDITR. When QUERY is executing remotely, the EDITR

will be scheduled wusing remote parameters. When the Editor with
remote capabilities 1is not available at the node, the 1local Editor
will be executed. If a program other than EDITR is specified, it will

be scheduled with the same parameters as were used to schedule QUERY.
The user should be sure to have the remote Editor available if EDITR
is to be executed from remote QUERY. By the same token, any other
program to be executed from remote QUERY that expects interactive

input should be a remote, rather than a local progranm.

DESTROY Command

The DESTROY command deletes files stored on a disc. It can be used to
remove procedure files from disc. The command format is:

DESTROY NAME=procedure name;
where:
procedure name is the FMP file namr of a procedure stored on disc.

When the user enters the DESTROY command and a file exists with the
FMP file namr given in the command, QUERY purges the file. If the
procedure does not exist, QUERY informs the user and prompts for
another command. QUERY does not wverify that the file named in a

DESTROY command does contain a procedure, so the user must wuse this
command with caution.

Terminating QUERY

The EXIT command terminates QUERY execution and returns control to the
operating system. The format of the command is:

EXIT;

EXIT should be wused only in response to NEXT? typed by QUERY. The
user should never terminate QUERY operation in any other way than with
the EXIT command. Using the system break and then "offing" the
program will leave files open and could possibly cause some damage to

the database.

Utility Commands

The XEQ, FORM, HELP and LIST commands supply utility functions to
QUERY users as follows:

° The XEQ command allows the user to enter several commands from a
command file.

° The FORM command documents the database structure, including names
of the data sets, names and 1length of data items, and the
identification of key items defined as links between data sets.

® The HELP command provides a reference to the syntax and function
of the QUERY commands. The user can gain assistance in the use of
QUERY commands from the QUERY terminal.

. The LIST command allows the user to change the logical list device
during a QUERY session.

XEQ Command

The XEQ command allows a user to enter several QUERY commands from a
command file. When the XEQ command 1is entered, the specified file is
read and the commands executed until an end-of-file or another XEQ
command is encountered. Any command parameters are also read from the
batch file. When an end-of-file is reached, control is returned to
the original 1input device. When an error occurs, the error is
reported to the log device and control 1is returned to the original
input file or device. The original input file or device is that file
or device specified in the RU,QUERY command.

When an XEQ command is encountered within a command file, the first
command file 1is closed and the second one is opened. The old XEQ
command file is never reopened.

The format of the command is:
XEQ=file name;

where:

file name is the FMP file namr of an ASCII file containing commands
and parameters. The command parameters must follow the
command in the file. Command parameters are any input
expected by the command.

An example of a command file is:

DATA-BASE=QA:100:43;

ADMIN;

1;

SELECT-FILE=ASEL::43;

FIND PROJ.PROJ# IS "940071"END;
UPDATE R;

OPDAT="790416";

CLDAT="791010";

If the FMP file namr of the above file is TRFL:100:43, then the
following statement would transfer control to that file:

XEQ=TRFL:100:43;

Notice that there is a record in the command file for each 1line of
input expected by QUERY. If executing commands via XEQ that expect
input, the command file must include that input.

Upon reaching the end of file, QUERY will return to interactive mode
by printing NEXT?, if the input device is interactive. If not, QUERY
will resume executing commands in the original input file.

If an error occurs while executing an XEQ command, an error message
reported. If XEQ was entered interactively, QUERY will return the
prompt NEXT?. If the XEQ was in a batch file, QUERY will terminate.

FORM Command

The FORM command prints a description of the database currently open.
The format of the command is:

FORM;

The FORM command provides a description of each data set in a database
on the list device. QUERY 1lists the data set name, type (manual
master, automatic master, detail) and capacity, along with a list of
the elements of each data set and the length in words and type of each
element. QUERY also identifies key item and whether there 1is write
access for the items.

Information is displayed only for those items which have a read level
less than or equal to that at which the database was opened. All
other items are not displayed.

The following is a sample printout resulting from a FORM command:

* % % % TMAGE/1000 SCHEMA * * * *
(USING LEVEL 15)

DATA SET - ASMBY ,M CAPACITY = 0000000053

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

ASSY# X 0010 YES 001 YES
FAIL# I 0001 001 YES

DATA SET - PART ,M CAPACITY = 0000000053

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

PART# X 0008 YES 001 YES

DATA SET - CODE ,A CAPACITY = 0000000053

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

FAILCD X 0004 YES 001 YES

DATA SET - DATEF ,A CAPACITY = 0000000053

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

DATE X 0006 YES 001 YES

0000000053

DATA SET - REF ;A CAPACITY
ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

REFDES X 0004 YES 001 YES

0000000101

DATA SET - EMPL ,A CAPACITY
ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

EMP# X 0006 YES 001 YES

DATA SET - PROJ M CAPACITY 0000000053

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

PROJ# X 0006 YES 001 YES

DEPT# X 0004 001 YES

OPDAT X 0006 001 YES

CLDAT X 0006 001 YES
DATA SET - FAIL ,D CAPACITY = 0000000101

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

ASSY# X 0010 YES 001 YES
DATE X 0006 YES 001 YES
PART# X 0008 YES 001 YES
FAILCD X 0004 YES 001 YES
REFDES X 0004 YES 001 YES
PNTS X 0001 008 YES
EMP# X 0006 YES 001 YES
SUP# X 0006 YES 001 YES

DATA SET - TIME ,D CAPACITY = 0000000101

ITEM NAME TYPE LENGTH KEY ITEM SORT ITEM # ELEMTS WRT ACCE

EMP# X 0006 YES PROJ# 001 YES
PROJ# X 0006 YES DATE 001 YES
DATE X 0006 YES HOURS 001 YES
HOURS R 0002 001 YES

3-52

HELP Command

The HELP command prints messages to the user on the list device
explaining the purpose and form of any QUERY command. The format of
the command is:

HELP[,command] [,FUNCTION][,SYNTAX][,OPERANDS];

where:

command is one of the following commands: CREATE, DATA-BASE,
DESTRQOY, DISPLAY, EXECUTE, EXIT, FIND, FORM, HELP, LIST,
REPORT, SELECT-FILE, UPDATE, or XEQ. If the name of a
command 1is omitted, HELP produces a 1list of all twelve
commands used in the QUERY 1language, along with a brief

description of each command type function. If a command is
given, then a description of only that command is given.

To print only the syntax or operand description or function
description (or any combination of the above), the optional parameters
SYNTAX, OPERANDS or FUNCTION should be included. The keywords must be
separated from the command and each other by at least one blank. Only
the first two characters of the optional parameters need be specified.
They may appear in any order.

LIST Command

The LIST command allows the user to change the logical 1list device.
The format of the command is:

LIST=1ist device;
where:

list device is the FMP namr where the list is to be written.

When a file is specified but does not exist