
HEWLETT iP PACKARD

HP 2000/Access BASIC
Reference Manual

PART NO. 22687·90001
PRODUCT NO. 22687A

UP 2000 I Access BASIC
Reference Manual

HEWLETT WN PACKARD

HEWLETT·PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 9/75

LIST OF EFFECTIVE PAGES

Pages Effective Date

Title Sep 1975
ii to xi Sep 1975
1-0 to 1-11 Sep 1975
2-1 to 2-26 Sep 1975
3-1 to 3-17 Sep 1975
4-1 to 4-11 Sep 1975
5-1 to 5-17 Sep 1975
6-1 to 6-9 Sep 1975
7-1 to 7-4 Sep 1975
8-1 to 8-7 Sep 1975
9-1 to 9-17 Sep 1975
10-1 to 10-29 Sep 1975
11-1 to 11-92 Sep 1975
A-I to A-4 Sep 1975
B-1 ... Sep 1975
C-l to C-7 Sep 1975
D-l to D-3 Sep 1975
E-l to E-2 Sep 1975
F-l to F-I0 Sep 1975

ii

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING,BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1975 by HEWLETI-PACKARD COMPANY

ACKNOWLEDGEMENT

Hewlett-Packard wishes to acknowledge the substantial contribution to the
development of the 2000 Access System made by members of the professional staff of
the University Computer Center of the University of Iowa. HP feels that this has
been an unusually productive and cordial relationship between an industrial firm
and an institution of higher education.

iii

PREFACE

This publication is the user's reference manual for the HP 2000 Access System. It provides
information for logging on and developing and executing BASIC language programs. Included
are instructions for using the system's Remote Job Entry facility. Other manuals which may
provide useful information when using this manual are:

• Learning Timeshare BASIC (22687-90009) - An introduction to the BASIC language
and a tutorial explanation of statements and commands.

• HP 2000 Access Operator's Manual (22687-90005) - A guide to operating the 2000
Access System on a daily basis including administrative procedures.

• Pocket Guides (22687-90003, 22687-90007) - Summaries of system capabilities for
user's and the system ope~ator.

• TSPI2000-HASP User's Manual (20240-90002) - A guide to using the Telecommunica­
tions Supervisory applications Package (TSP) with the Remote Job Entry facility.

• TSPI2000-HASP Application Manager's Manual (20240-90001) - A manger's guide to
administering the Telecommunications Supervisory applications Package (TSP).

This manual is organized into eleven sections, six appendices, and an index.

• Section I - Introducing 2000/Access BASIC. This section is a description of the system,
its capabilities, and how to use it.

• Section II - Introduction to BASIC Programming. This section describes key elements of
programming in BASIC on the 2000 Access System.

• Section III - Programming With Arrays. This section describes statements and
techniques for using arrays in programs.

• Section IV - Programming With Strings. This section describes statements and
techniques for using strings in programs.

• Section V - Files. This section describes the types of files used on the system, file read
and write operation, and techniques of file organization.

• Section VI - Formatted Output. This section describes techniques of creating formatted
output for applications such as report generation.

• Section VII - System Facilities. This section describes techniques for linking programs
and passing data from one program to another.

• Section VIII - Security and the Library Hierarchy. This section describes the levels of
program and file security available on the system. Techniques for using the security and
library structure are discussed.

iv

Preface

• Section IX - Using the Remote Job Entry Facility. This section describes the Remote Job
Entry capability of the 2000 Access System and provides instructions for its use.

• Section X - Commands. This section provides the syntax and definition of all the user
commands available.

• Section XI - BASIC Language Reference. This section provides a definition of the
BASIC language. A rigorous definition of the terminology precedes the syntax and
definition of the BASIC statements. Experienced programmers can use this section as a
detailed reference for the BASIC language as implemented on the 2000 Access system.
Less experienced programmers should first read the introductory sections of the manual,
and if you are a beginning programmer, Learning Timeshare BASIC is recommended.

• Appendix A - Using the ASCII Character Set. This appendix provides a description of
the ASCII character set and its use in BASIC language statements.

• Appendix B - How to Prepare A Paper Tape Off-Line. This appendix describes the
preparation of paper tapes for input to the system.

• Appendix C - Error Messages. This appendix lists the error messages that you could
receive when using the system.

• Appendix D - Terminal Interface. This appendix provides some of the operating charac­
teristics of terminals used with the system.

• Appendix E - Additional Library Features. This appendix describes some of the special
functions available through the system operator.

• Appendix F - Formal Syntax for 2000lAccess BASIC. This appendix presents the BASIC
language syntax in Backus Naur form (BNF).

The text in this manual is primarily for reference and has been written as a definition rather
than an explanation of the BASIC language. Experienced programmers can use the detailed
reference material given in Sections X and XI to look up the syntax of commands and
statements. Less experienced programmers should read the entire manual.

Simple programming examples are used throughout the manual. The examples have been
selected to demonstrate how the language is used and are not intended to be examples of
efficient programming

v/vi

CONTENTS

Section I Page
INTRODUCING 2000/ACCESS BASIC IF Statement 2-8
What is 200 Access 1-1 PRINT Statement 2-8

BASIC Language 1-1 Printing Expressions 2-9
Operating System Software 1-1 Printing Literal Strings 2-10
System Hardware ; 1-1 Print Functions 2-10
System Resources 1-3 READ/DATAIRESTORE Statements 2-11

Input/Output Devices 1-3 FOR and NEXT Statements 2-13
File Supervisor. 1-3 INPUT Statement 2-14
Security 1-3 ENTER Statement 2-15
Remote Job Entry (RJE) 1-3 REM Statement 2-15
Terminal Time 1-3 GOSUB and RETURN Statements 2-16

What Does the System Do? 1-3 DEF Statement 2-17
How Do You Use the System? 1-5 Commands 2-17

Account and Library System 1-5 Programming and Utility Commands 2-18
System Master Account 1-5 NAME Command 2-18
Group Master Accounts 1-5 RENUMBER Command 2-18
Individual Accounts 1-6 DELETE Command 2-19

Operating the Equipment 1-6 SCRATCH Command 2-19
Connecting to the System 1-6 Modifying the Account Library 2-19
LINEILOCAL Switch 1-6 SAVE Command 2-19
DUPLEXIHALF DUPLES Switch 1-6 CSA VE Command 2-20
Terminal Speed 1-6 PURGE Command 2-20

Logging On and Off the System 1-6 Loading the Work Space 2-21
HELLO Command 1-6 GET Command 2-21
Terminal Type 1-8 APPEND Command 2-21
Errors During Logging On 1-8 TAPE Command 2-22
Prompt and Special Characters 1-9 KEY Command 2-22
ECHO Command 1-10 Executing and Reproducing Programs 2-22
TIME Command 1-10 RUN Command 2-23
MESSAGE Command 1-10 EXECUTE Command 2-23
BYE Command , 1-10 LIST Command 2-23

You and the System Operator 1-10 PUNCH Command 2-24
Status Commands 2-25

LENGTH Command 2-25
CATALOG, GROUP, and LIBRARY Commands 2-25

Section II Page
INTRODUCTION TO BASIC PROGRAMMING
Your Work Space 2-1 Section III Page
Your Library 2-1 PROGRAMMING WITH ARRAYS
Numbers, Logical Values, and What Are Arrays? 3-1
Expressions 2-1 Referencing Arrays 3-1

Numbers 2-2 Referencing Array Elements 3-1
Logical Values 2-2 Dimensioning Arrays 3-2
Expressions 2-2 Redimensioning Arrays 3-2

Operands 2-2 Placing Values into Arrays 3-3
Constants 2-2 Initializing Arrays 3-6
Variables 2-3 Printing Data from Arrays 3-8
Functions 2-4 MAT PRINT Statement 3-9
Operators 2-4 Array Operations 3-10
Evaluating Expressions 2-5 Array Addition/Subtraction 3-10

Programming 2-6 Array Multiplication 3-12
Assignment Statement 2-7 Array Inversion 3-15
GO TO Statement 2-7 Array Transposition 3-16
END and STOP Statements 2-8 Array Scalar Multiplication 3-17

vii

CONTENTS (continued)

Section IV Page
PROGRAMMING WITH STRINGS
What Are Strings? 4-1

String Character Set 4-1
Numeric Equivalents of Characters
(An Alternate Form) 4-2
Upper and Lower Case Letters 4-2

How Do You Reference Strings? 4-3
Naming Strings 4-3
Dimensioning Strings 4-3
Substrings 4-4

How Do You Use Strings? 4-4
Placing Values in Strings 4-5

Simple Assignment 4-5
String Data 4-5
Setting Strings Equal to String
Valued Functions 4-6

Using Strings In Relational Operations 4-6
String Statements and Functions 4-6

String Valued Statements and Functions 4-6
Numeric Valued Statement and Functions 4-8

Outputting Strings 4-10

Section V Page
FILES
BASIC Formatted Files 5-1

Creating and Purging a BASIC Formatted File .. 5-2
Opening and Closing a BASIC Formatted File ... 5-4
Multiple Access 5-12
ReadIWrite Restrictions 5-14

ASCII Files 5-15
Characteristics of ASCII Files 5-15
Creating and Purging ASCII Files 5-16
Opening ASCII Files 5-17
Printing to an ASCII File 5-17
Reading from an ASCII File 5-18

Section VI
FORMATTED OUTPUT

Page

What is Formatted Output? 6-1
How Do You Indicate Formatted Output? 6-1

Using List 6-1
Format String 6-2

Using Formatted Output 6-4
Number Representation 6-4
Carriage Control 6-6
Literal String 6-6
Delimiters 6-6
Print Functions 6-7
String Representation 6-7
Report Generation 6-9

viii

Section VII Page
SYSTEM FACILITIES
Linking Programs 7-1
Passing Parameters 7-2
Executing Program Commands 7-3

Section VIII Page
SECURITY AND THE LIBRARY HIERARCHY
User Idcode Organization 8-1

Private Library - Private User 8-3
Group Library - Group Master 8-3
System Library - System Master 8-4

Account Accessing Capabilities 8-5
User Imposed Restrictions for Programs 8-6
User Imposed Restrictions for Files 8-7

Section IX Page
REMOTE JOB ENTRY FACILITY
What Is Remote Job Entry? 9-1
What Host Systems Can You
Communicate With? 9-1

Multileaving RJE Workstation
(MRJEIWS) 9-3
USER 200 Terminal 9-3

How Does RJE Work? 9-4
How Do You Use Remote Job Entry? 9-8

Sending Jobs Through the Card Reader 9-9
Retrieving Output On the Line Printer 9-9
Sending Jobs and Retrieving Output from
Your Terminal 9-11
Communicating With a Host System from
Your Terminal 9-15
How to Get Your Output 9-16

Section X
COMMANDS

Page

What Is a Command? 10-1
Terms Used in This Section 10-1

ASCII File 10-2
BASIC Formatted File 10-2
Block ... 10-2
Device Designator 10-3
End-of-File Mark (EOF) 10-3
File Length 10-3
File Name 10-4
Full Duplex 10-4
General Device Designator 10-4

CONTENTS (continued)

Section XI Page
Group Library 10-4 BASIC LANGUAGE REFERENCE
Half Duplex 10-4 Introduction 11-1
Idcode .. 10-5 BASIC Language Terms , 11-1
Job Function Designator 10-5 Array .. ' 11-1
Library 10-5 Array Element 11-2
Library Name 10-5 Array Name , 11-2
Non-Sharable Device 10-5 Character 11-3
OUT = FILE NAME 10-6 Constant 11-3
Program Name 10-6 Destination String 11-3
Program Reference 10-6 File Name 11-5
Record .. 10-6 File Number 11-5
Record Length 10-7 Function Refgerence 11-5
Specific Device Designator 10-7 Literal String 11-6
Statement Number 10-7 Logical Length 11-6
System Library 10-7 Logical Size 11-7
Work Space 10-7 New Dimensions 11-7

Command Descriptions , 10-8 Number 11-7
APPEND Command 10-9 Numeric Constant 11-8
BYE Command 10-9 Numeric Expression 11-8
CATALOG, GROUP, and LIBRARY Numeric Simple Variable 11-11
Commands 10-10 Numeric Variable 11-11
CREATE Command 10-12 Physical Length 11-11
CSA VE Command 10-12 Physical Size 11-11
DELETE Command 10-12 Primary 11-12
DEVICE Command 10-13 Program Name 11-12
ECHO Command 10-14 Record Number 11-12
EXECUTE Command 10-14 Relational Operator 11-12
File Command , 10-15 Return Variable 11-13
GET Command 10-16 Source String . 11-13
GROUP Command 10-16 Statement Number 11-14
HELLO Command 10-17 String 11-14
KEY Command 10-18 String Expression 11-14
LENGTH Command 10-18 String Length 11-14
LIBRARY Command 10-18 String Simple Variable 11-14
LIST Command 10-19 String Value , 11-15
LOCK Command 10-20 String Variable 11-15
MESSAGE Command 10-20 Subscripted Variable 11-15
MWA Command 10-21 Substring Designator 11-15
NAME Command 10-21 ABS Function 11-16
PRIV ATE Command 10-22 ADVANCE Statement 11-16
PROTECT Command 10-22 ASSIGN Statement 11-17
PUNCH Command 10-23 ATN Function 11-20
PURGE Command 10-24 BRK Function .. " , 11-20
RENUMBER Command 10-25 CHAIN Statement , 11-22
RUN Command 10-26 CHR$ Function 11-24
SAVE and CSA VE Commands 10-27 COM Statement 11-25
SCRATCH Command 10-27 CON Function 11-25
SWA Command 10-28 CONVERT Statement 11-26
TAPE Command 10-28 COS Function 11-26
TIME Command 10-29 CREATE Statement 11-27
UNRESTRICT Command 10-29 CTL Function 11-28

ix

CONTENTS (continued)

DATA Statement 11-30 SIN Function 11-84
DEF Statement 11-31 SPA Function " 11-85
DIM Statement 11-32 SQR Function 11-85
END Statement 11-32 STOP Statement 11-85
ENTER Statement 11-33 SYSTEM Statement 11-86
EXP Function " 11-34 TAB Function " 11-87
FILES Statement " 11-34 TAN Function 11-87
FOR and NEXT Statements 11-36 TIM Function 11-88
GOSUB and RETURN Statements 11-38 TRN Function 11-88
GO TO Statements 11-40 TYP Function 11-89
IF ... THEN Statement 11-41 UNLOCK Statement 11-90
IF END Statement 11-42 UPDATE Statement 11-91
IMAGE Statement " 11-42 UPS$ Function " 11-92
INPUT Statement 11-43 ZER Function " 11-92
INT Function 11-44
INV Function , .11-44
ITM Function " 11-45
LEN Function " 11-45
LET Statement 11-46
LIN Function 11-47 Appendix A Page
LINPUT Statement 11-48 USING THE ASCII CHARACTER SET A-I
LINPUT # Statement 11-48
LOCK Statement 11-49
LOG Function 11-50 Appendix B Page
MAT Addition and Subtraction Statements 11-50 HOW TO PREPARE A PAPER TAPE
MAT Assignment Statement 11-51 OFF ·LINE B-1
MAT ... CON Statement 11-51
MAT ... IDN Statement 11-51
MAT INPUT Statements 11-52 Appendix C Page
MAT ... INV Statement 11-52 ERROR MESSAGES C-l
MAT Multiplication Statement 11-53 User Command Error Messages C-l
MAT PRINT Statement 11-54 APPEND C-l
MAT PRINT # Statement 11-56 CREATE C-l
MAT PRINT USING Statement 11-57 CSAVE C-l
MAT READ Statement 11-58 DELETE C-2
MAT READ # Statement 11-58 EXECUTE C-2
MAT Scalar Multiplication Statement 11-59 FILE .. C-2
MAT ... TRN Statement 11-59 GET .. C-2
MAT ... ZER Statement 11-60 HELLO ' ... C-2
NEXT Statement 11-61 LIST .. C-2
NUM Function 11-61 LOCK ... C-3
POS Function 11-61 MESSAGE C-3
PRINT Statement 11-62 MWA ... C-3
PRINT # Statement 11-66 NAME .. C-3

BASIC Formatted File Prints 11-66 PRIV ATE C-3
ASCII File Prints 11-68 PROTECT C-3

PRINT USING Statement 11-71 PUNCH C-3
PRINT # Statement 11-75 PURGE C-3
PURGE Statement 11-76 RENUMBER C-4
READ Statement 11-77 RUN .. C-4
READ # Statement 11-78 SAVE ... C-4
ASCII File Read Operations 11-80 SWA .. C-4
REC Function 11-81 UNRESTRICT C-4
REM Statement " 11-81 Language Processor Error Messages C-5
RESTORE Statement 11-82 Syntax Errors C-5
RND Function 11-83 Execution Errors C-6
SGN Function " 11-84 Execu tion Warnings C-7

x

Appendix D Page
TERMINAL INTERFACE D-l
IBM Communications 2741 Communications

Terminal Interface D-2

Appendix E Page
ADDITIONAL LIBRARY FEATURES E-l
Bestow ... E-l

Figure Page

Typical HP 2000 Access System 1-0
System Block Diagram ... , 1-2
Example of Program Access and Execution 1-4
Sample Account Structure 1-5
PRINT USING Statement Structure , 6-3
ID Code/Group Account Structure 8-2

Table Page

Remote Terminal Connection Procedures 1-7
Selected System Operator Commands ... , 1-11
RJE Compatible Host Systems 9-3
IBM HASP Workstation Host Functions 9-3
Job Function Designators 9-4
Summary of 360 HASP Remote Commands 9-6

CONTENTS (continued)

Copy , E-l
Load ... , ' E-2
Restore .. E-2
Dump .. E-2

Appendix F Page
FORMAL SYNTAX FOR 2000/ACCESS BASIC. F-l

ILLUSTRATIONS

Elements of the 2000 Access Remote Job
Entry Facility 9-2

Typical RJE Configuration for an IBM
Host System 9-5

Example of an RJE Job Deck 9-9
Example of Forms Assignment Used to

Route Output 9-10

TABLES

Summary of CDC EXPORT/IMPORT
Remote Commands 9-7

Summary of Some IBM ASP Remote Commands 9-8
Some Useful Host System Manuals 9-8
ASCII Character Set A-2
EBCDIC Character Set for Use with RJE , . A-3
IBM 2741 ASCII Character Simulation D-3

xi

Figure 1-1. Typical HP 2000 Access System

INTRODUCING 2000/ACCESS BASIC IrB:iW,

WHAT IS 2000 ACCESS?
2000 Access is a terminal-oriented computer system using a powerful version of the BASIC
language. Up to 32 users may access the system simultaneously through hardwired terminals
or over ordinary telephone lines using modems. The system may also use a variety ofperipher­
als such as card readers, paper tape punches, magnetic tape drives, paper tape readers and line
printers. A typical system is shown in figure 1-1.

In addition to system users there is a system manager and a system operator. The system
manager is responsible for establishing the initial system configuration and setting operating
policies. The system operator is responsible for daily system operation and the granting of
system resources such as storage space and terminal time. In the remainder of this manual
there will be additional references to the system manager and system operator functions.
Detailed descriptions of their duties are contained in 2000 Access System Operator's Manual
(22687 -90005).

The remainder of this section describes briefly major system components, capabilities, and how
to use the system. This manual assumes that you have programming experience in a language
similar to BASIC and are familiar with the type of terminal used on your system.

The system is made up of three major components, the BASIC language, the operating system
software, and the system hardware. The components allow you to make use of a variety of
system resources.

BASIC LANGUAGE

Hewlett-Packard 2000/Access BASIC contains additional programming features beyond those
in most versions of the BASIC language. These features, in the form of an extended set of
statements, give you powerful tools for applications concerned with on-line data management
and computation.

OPERATING SYSTEM SOFTWARE

The operating system software controls the overall system operation, supervises file activities,
controls all input/output operations, and provides utility functions. System operation is discus­
sed in detail in the HP 2000 Access System Operator's Manual (22687-90005).

SYSTEM HARDWARE

The system uses two computers, one for handling input/output operations (lIO processor) and
another for executing BASIC programs (main processor). In addition it uses high speed disc
drives for program and file storage, magnetic tape units for system backup and offline storage,
and various terminals, printers, card readers, and other input/output devices. The peripheral
devices available will vary depending on your system configuration. The organization of a

1-1

Introducing 20001 Access Basic

typical system is shown in figure 1-2. Information on individual system hardware units is
contained in the installation, maintenance, and operator manuals for the specific device.

REMOTE JOB ENTRY FACILITY SYSTEM
STORAGE

(Disc Units) lliiiiiiiiiiiiiiiiilil

MAIN PROCESSOR ----.

PAPER TAPE READER

SYSTEM CONSOLE

I/O PROCESSOR

Ii

11

SYSTEM BACKUP
(Magnetic Tape Units)

Figure 1-2. System Block Diagram

1-2

• •
•

UP TO 32 USER
TERMINAL/MODEM LINES

•
•
•

CARD READERS. LINE PRINTERS.

AND OTHER PERIPHERAL DEVICES

Introducing 2000/ Access Basic

SYSTEM RESOURCES

The system resources consist of input/output devices, file supervision, terminal time, security,
and remote job entry capabilities. These resources are available either directly through your
terminal or on request from the system operator. The system operator accesses the system
through the system console and performs privileged operations affecting system resources.

INPUT/OUTPUT DEVICES. Your terminal is the best example of a system input/output
device. In addition to your terminal, a variety of input/output units are available for use as
Hnon-sharable devices". These devices are peripherals such as line printers and magnetic tape
drives. They are non-sharable in the sense that once you begin using a device it remains under
your control and may not be used by others. The device is released by program or command
termination. They may also be assigned for exclusive use from time to time by the system
operator to a specific user. Once assigned to you, a line printer, for example, may not be used
by other users. Devices are deassigned by the system operator and may be immediately
reassigned to another user.

FILE SUPERVISION. The system controls access to files. You are given a limit to the
amount offile space you may use at the time your account is opened by the system operator. Up
to 65,535 records of file storage can be allocated to anyone user account. This amount may be
less depending on your system's configuration and operational policies. The amount of file
space can be increased or decreased at any time by the system operator. This allows you to
begin programming with a relatively small file space and increase it later as your storage
needs grow.

SECURITY. When your account is opened by the system operator you will be assigned an
account number and a security code (password). This password is used to limit the access to
your account. Several people may share an account; or accounts may be assigned one to a user.
Additional information on user accounts is contained in the description of the system account
structure. Each program and file on the system may be assigned one of four levels of security.

REMOTE JOB ENTRY (RJE). The system may be used to provide a remote work station for
a larger computer system concurrent with normal system operation. The RJE facilities are
available directly through peripheral devices or from your program. You can then enter jobs,
programs, or data in any language (FORTRAN, ALGOL, COBOL, etc.) available on the second
system. A complete discussion of the RJE capabilities of the system and operating procedures
is contained in Section IX of this manual.

TERMINAL TIME. When your account is opened by the system operator you are given a
limit to the amount of terminal time you may use. Time up to a maximum of 65,535 minutes
can be given. The system logs all terminal time used against the appropriate account. The time
accrued may be reset to 0 by the system operator.

WHAT DOES THE SYSTEM DO?

The primary function of the system is to allow up to 32 concurrent users to develop and execute
programs in the BASIC language. In addition the system provides you with resources for
input/output, file maintenance, operator utility functions, system, program, and file security,
and Remote Job Entry (RJE).

1-3

Introducing 2000/ Access Basic

The BASIC language used on the system consists of statements for writing programs and
commands for controlling both program execution and input/output operations. This manual
assumes that you are familiar with a language similar to BASIC and that you know how to use
the terminals available on your system.

The sample program in figure 1-3 illustrates some of the statements and commands available
on the system for program access and execution. Program statements are numbered, com­
mands are not. Special terminal keys are circled, and system responses are shaded.

Figure 1-3 illustrates logging on from a terminal, creating a data file, accessing, listing, and
running a program. (The program is assumed to have been previously written and stored in
your account library.) The program outputs a message, inputs string data, and stores the data
on the file. A simple test for a H/" is made to terminate the program. A description of key
program statements is provided.

OPERATION/STATEMENT

(return) (linefeed)

HELLO-B105,PASWRD (return)
.. ::: ':: :: ::

?TEST2 (return)

?/ (return)

BYE (return)
System Message

: .:
:" .

DESCRIPTION

System log in procedure

User enters account number and password

Message varies with system

Create empty file FIL1 with 10 records

Get PROG1 from your library

List program

Remark (not executed)

Dimension a string

Specify file to be used

Output prompt messages

Accept input data

Test for exit and branch to END

Write data sequentially to file

Branch to statement 50

End of program

Execute program

Figure 1-3. Example of Program Access and Execution

1-4

Introducing 20001 Access Basic

HOW DO YOU USE THE SYSTEM?
The 2000 Access system is designed to be extremely easy to use. It requires no complicated job
control language; program entry is free field; and there is no separate compile operation. Using
the system consists of obtaining an account number and password from the system operator,
logging on, entering or retrieving a program, and running the program. In addition you can
send messages to the computer operator requesting a number of auxiliary operations.

ACCOUNT AND LIBRARY SYSTEM

The accounts used on the system are made up of three types, system, group, and user. Each
type of account has slightly different capabilities and performs a different function in the
typical system. Each account has its own library for storage of programs and files. The
following paragraphs discuss briefly each of the account types and their capabilities.

SYSTEM MASTER ACCOUNT. The system master account is numbered AOOO and is
used only by the system master or system operator. This account is used to hold the system
library containing programs and files that can normally be accessed by all system users. A
listing of the accessible contents of the system library can be obtained using the LIBRARY
command.

The AOOO account possesses additional capabilities. The AOOO user has the ability to execute
some system operator commands such as DIRECTORY, DUMP, and REPORT. A complete
discussion of system master capabilities is given in the HP 2000 Access System Operator's
Manual (22687-90005).

GROUP MASTER ACCOUNTS. The group master or group librarian account has an
account number made up of a letter and a digit followed by two zeros. For example, AOOO
(System Master), Z900, JI00, and K700 are all group master accounts. The group account
contains programs and files which may be accessed by any account within the group. For
example, CI00 is a group master account and all accounts from CI00 through C199 are
members of the group. Figure 1-4 shows the account structure in a small system.

Group library programs and files can be accessed by members of the group in a similar manner
to system library entries.

8201

8250

A093

8503 A061

o Gwup M",,, A,,,ou",

All accounts have access to selected programs 0
and files in the AOOO library. Group Member Account

Figure 1-4. Sample Account Structure

C410

1-5

Introducing 2000/ Access Basic

INDIVIDUAL ACCOUNTS. The individual account has access to its own files and prog­
rams, its group library, and the system library. Note that the system library is the library
belonging to account AOOO and that each group library is the library belonging to the group
master account. The individual account owner has control over his own library through the
various commands and statements used to store, delete, or retrieve programs and files. In
addition the owner may change the level of security for programs and files in his library.

OPERATING THE EQUIPMENT

You can use any of several terminal types with the system. The terminal used must generate
characters using ASCII code. (An exception is the IBM 2741 terminal.) It is not necessary that
the terminal be capable of generating the entire ASCII character set. If your terminal does not
use the entire set, you may not be able to use the full capabilities of the system. For example,
you can use all 128 ASCII characters but some terminals do not print the lower case alphabet.
This is important in such applications as text editing and report generation, but is not
necessary for some data processing or analytical applications.

CONNECTING TO THE SYSTEM. To log onto the system, connection must be established
between your terminal and the system. The way that this connection is made varies depending
on the type of terminal used. If your terminal is wired directly to the system (hardwired) all
that is required is to set the terminal mode to ON-LINE and the power switch to ON. If your
terminal is remote from the system it must use a modem or Data Set to link your terminal to
the system. Table 1-1 contains procedures for using most remote terminals.

LINE/LOCAL SWITCH. Nearly all terminals will have a LINE/LOCAL or REMOTE/
LOCAL switch. This switch should always be set to the LINE or REMOTE position.,

DUPLEXIHALF DUPLEX SWITCH. Some terminals have a FULL DUPLEXIHALF DUP­
LEX or ECHO/NO ECHO switch or jumper strapping. This should usually be set to the FULL
DUPLEX or NO ECHO position. If this setting is improperly made, either the terminal will
not print the characters that you type or the characters will be duplicated.

TERMINAL SPEED. Terminals and modems vary in the speed with which they send and
receive characters. The system will automatically detect the speed of your terminal and adjust
its transmission speed accordingly. The system will accept terminal speeds of 10, 15, 30, 60,
120, and 240 characters per second (14.8 for the IBM 2741). When using a modem with a
remote terminal you must use the same speed setting for both the terminal and the modem.

LOGGING ON AND OFF THE SYSTEM

Once connection has been made you must type ('!etur7y Qine feed) . This allows the system to
determine the speed and parity of your terminal. The system should respond by typing the
following message:

PLEASE LOG IN

HELLO COMMAND. The HELLO command is used to log onto the system. The command is
followed by your account number, password, and terminal type parameter.

HELLO-H200,JOHN,1

1-6

Introducing 2000/ Access Basic

Table 1-1. Remote Terminal Connection Procedures

ACOUSTIC COUPLER MODEM AND TELEPHONE:

COUPLER/MODEM

1. Set terminal mode to ON-LI NE and power swich to ON.
2. Set coupler power switch to ON.
3. If coupler has a duplex switch, set to FULL or FULL UP
4. If coupler has a line switch, set to ON-LINE.
5. Remove telephone handset and dial the computer telephone number.
6. When the computer responds with a high pitched tone, place

the handset into the coupler receptacle (the correct handset
position should be marked on the coupler).

7. Type (return) (Iinefeed) and log on.

DATA SET

TERMINAL

DATASET TERMINAL

1. Set terminal mode to ON-LINE and power switch to ON.
2. Press the TAL K button on the Data Set.
3. Remove the handset and dial the computer telephone number.
4. When the computer responds with a high pitched tone, press the

DATA button on the Data Set; replace the handset in its cradle.
5. Type (return) (Iinefeed) and log on.

Note: When connection is via telephone lines, the user must log on
within a period determined by the system operator
(nominally two minutes).

1-7

Introducing 2000/ Access Basic

H200 is the account number, JOHN is the account password, and 1 is the terminal type. Note
that a comma is used to separate parameters. An account number is assigned to you by the
system operator. It consists of a single letter followed by a three-digit number. Your password
is linked to your account at the time your account is created by the system operator and can be
modified at any time. The password can be from one to six characters. The password may be
kept confidential by using non-printing control characters. Control characters are entered by
holding the Control key (control)or @)) down and then pressing the associated character.
Control A is shown as AC, control Z as zc, etc. For example, on a terminal the password
SEcCcRcEcT would appear as ST. Note that certain characters (XC, HC, JC, MC, and Null) are not
allowed as part of a password.

TERMINAL TYPE. The terminal type parameter tells the system what type of terminal you
have. This information is used to modify the transmission of data to suit your terminal's
requirements. Failure to specify the correct parameter may result in the loss of characters at
your terminal or at the system. A list of commonly used terminals and their terminal type
parameter is as follows:

o HP 2600A, HP 2640A, HP 2749B, or IBM 2741

1 Execuport 300 or Texas Instruments Silent 700

2 ASR-37

3 TermiNet 300, TermiNet 1200, or HP 2762A/B

4 Memorex 1240

Ifno value is given for the terminal parameter the system assigns 0 as the default value. If you
are unsure of the parameter value for your terminal, consult your system operator.

ERRORS DURING LOGGING ON. If you make a mistake when logging on, the system
responds with an appropriate error message. For example, if you forget to type the hyphen
while entering the HELLO command:

HELLOH200,JOHN,1

the system responds with the message:

ILLEGAL FORMAT

Re-enter the command in the correct form.

If the wrong password is entered:

HELLO-H200,JHN,1

the system responds:

ILLEGAL ACCESS

Re-enter the command with the correct password.

The messages ILLEGAL ACCESS and ILLEGAL FORMAT indicate that some or all of the
current input is not acceptable to the system.

1-8

Introducing 2000/ Access Basic

Spelling mistakes, format errors and incorrect parameters can be corrected while the line is
being entered if the error is noticed before return is pressed. The control-H character (HC) can
be used to correct a few characters just typed, or the control-X character (XC) can be used to
cancel the entire line and start over.

Suppose the command HELLO is misspelled during entry. The control-H (HC) will delete the
last character. Depending on the type of terminal you are using, the HC character may cause an
underscore (_) or backarrow (+-) to be printed. You can retype the character and finish the
line. When you press (return) , the line is entered correctly.

HELO_LO-H200,JOHN,1

If several characters have been typed after the error, the HC character must be typed for each
character to be deleted. In the following example, four characters are deleted:

HELO-H2 ____ LO-H200,JOHN, 1

Another method is to use Xc to cancel the entire line. If you type XC before you press return, the
system responds with a backslash ("") at the end of the line and then produces a return and
linefeed. The correct command can be entered on the new line:

HELO-'
HELLO-H200,JOHN,1

All commands including HELLO can be abbreviated to the first three characters.

PROMPT AND SPECIAL CHARACTERS. The system uses prompting and special
characters to signal to the user that certain input is expected or that a specific action is
completed.

Character

?

??

???

\

_ or +-

STOP

Meaning

User input is expected during execution of an INPUT state­
ment.

Further input is expected during execution of an INPUT
statement.

A BASIC command was mistyped; re-enter it correctly.

Issued in response to the control character XC. Indicates that
the line being typed just prior to entry of XC has been de­
leted.

Issued in response to the control character Hc. Indicates that
the character typed just prior to entry of Hc has been de­
leted.

Issued in response to the BREAK key. The current operation
will be halted.

1-9

Introducing 20001 Access Basic

ECHO COMMAND. The ECHO command can be used to adjust the data transmission to
your terminal. If your terminal automatically prints characters that it sends, you can type:

ECHO-OFF(return)

to prevent the system from sending out duplicate characters. You can enter

ECHO·ON (return)

to cause the system to return data it receives to your terminal. This command is normally only
used when your terminal does not have a DUPLEXIHALF DUPLEX switch.

TIME COMMAND. The TIME command can be used to find ou t how much terminal time has
been charged to your account.

TIME{ return)
C100 ON PORT #05 FOR 00025 MIN. 00125 MIN USED OF 65000 PERMITTED.

MESSAGE COMMAND. The MESSAGE command allows you to enter a line of text at your
terminal and have it sent to the system operator. An example of this would be:

MES·PLEASE ASSIGN A CARD READER TO C901 (return)

This message will appear on the system console along with a number identifying your port.

BYE COMMAND. When you have completed a session at your terminal, log off the system
using the BYE command. For example:

BYE (return)

The system will respond by printing the total number of minu tes that you were logged on.

0014 MINUTES OF TERMINAL TIME

You may also log on at the same terminal using the same or another account. This will result
in the first account being logged off.

YOU AND THE SYSTEM OPERATOR

There are several procedures available to you as a user which must be performed by the system
operator. Table 1-2 contains a partial list of these operations. Depending on the operating
policies at your site, you may request the operator to perform certain of these operations. You
may use the MESSAGE command to inform the operator of your request or your site may use
special request forms. A complete description of each operation available and the related
operator procedures is contained in the HP 2000 Access System Operator's Manual (22687-
90005).

1-10

Introducing 2000/ Access Basic

You can request the system operator to assign additional capabilities to your account. You
may then give files in your account the capability of allowing multiple write access. In
addition, both your programs and files may be selectively made available to users in other
accounts.

COMMAND

ANNOUNCE

ASSIGN

BESTOW

BREAK

CHANGEID

COpy

KILLID

NEWID

PHONES

PURGE

RESET

Table 1-2. Selected System Operator Commands

THE SYSTEM OPERATOR USES THE COMMAND TO:

Send a one-line message to one or all ports.

Assign a non-sharable device to one user, to all users, or the
RJE facility, or logically remove the device from the system.

Transfer programs and/or files from one user's library to that of
another user.

Allows a user to use the break key capability of his port after it
has been programmatically disabled.

Modify the capabilities of an existing account.

Reproduce a copy of a program or file from one user's library
in that of another user's library.

Remove a specified account from the system.

Enter a new account on the system.

Reset the time permitted users for logging on.

Remove all programs and files from the system library that
have not been accessed since a given date.

Change the total terminal time recorded for a user or all users.

1-11

INTRODUCTION TO BASIC ilBi!.ili
PROGRAMMING I II I

This section provides an overview of programming on the 2000 Access System. It discusses
programs, the user work space and library, and selected commands. Specialized topics such as
arrays, strings, files, formatted output, and system security features are discussed as separate
topics in other sections. The material presented in this section serves as the basis for the
explanations in the following sections. Complete descriptions of each of the commands and
statements discussed in this section are contained in Section X and Section IX respectively.

YOUR WORK SPACE
Each terminal logged on the system is given a work space. This work space is initially empty
and will be used to store programs and data during program preparation and execution. Each
work space is approximately 10,000 words long.

Since programs are entered one statement at a time, the statements in the work space do not
always make up a complete program. The contents of the work space, however, are referred to
as the current program whether or not they actually represent an executable program.

You can control your workspace in a variety of ways. You can change, display, save, delete, or
give a name to whatever is held in the work space. Entering program statements and working
with the contents of the work space are discussed in the following paragraphs.

YOUR LIBRARY
Each account has a private library. This library is used to store your programs and data files.
The size of the library is set by the system operator. You can make programs and files in your
library accessable to other accounts and in addition can access your group and system lib­
raries. (A detailed discussion of libraries and library access is contained in Section VIII.) The
remainder of this section will describe your ability to access and modify entries in your own
library.

NUMBERS, LOGICAL VALUES, AND EXPRESSIONS
Numbers, logical values and expressions are used in the majority of data processing tasks. The
following paragraphs explain how these are defined and used on the 2000 Access system.
(String data and text manipulation are described in Section IV).

2-1

Introduction to Basic Programming.

NUMBERS

Although some real numbers can be represented exactly by the system, others exceed its
capacity. The 2000 Access system accepts and uses numbers with magnitudes of -1038 to
-10-38

, 0, and 10-38 to 1038• The precision of each number is six or seven decimal digits (23
binary bits). Numbers used or produced by BASIC programs which exceed these limits are
converted to the nearest representable number. Numbers that exceed the system's precision
are rounded to the nearest six or seven digits. Numbers whose magnitude is less than 10-38 are
replaced with zero. Overly large numbers are replaced with the maximum magnitude repre­
sentable on the system. Magnitude violations produce a warning message at your terminal.

LOGICAL VALUES

The system uses two logical values, ((1" for true and ((0" for false. When tested, any non-zero
value (positive or negative) will be interpreted as true. Refer to the discussion of logical
operators under Expressions.

EXPRESSIONS

Expressions and in particular numeric expressions are fundamental elements of the BASIC
language. Numeric expressions used in BASIC use forms very similar to those used in normal
algebraic expressions. This allows you to program most arithmetic operations directly, without
changing their form. Even complex calculations can be programmed in a concise manner.
Since logical expressions are an extension of arithmetic operations, logical operators can be
included in numeric expressions.

An expression is a combination of operators and operands which can be evaluated to a number
or logical value. Evaluation consists of applying each of the operators in turn to its associated
operands (each of which is associated with a number or a logical value). The number or logical
value produced by the last operator becomes the value for the entire expression. For example,
the expression 10 - 4 + 2 is evaluated by subtracting 4 from 10 (using the operator ((-") to
produce 6, and then adding 2 (using the operator ((+") to produce the value of the expression 8.

OPERANDS. Operands are the values acted on or tested in an expression. They can be
constants, variables, or functions. They are associated with operators according to strict rules
(refer to Section XI). In most cases you can easily determine which operators will operate on
which operands in an expression. But in cases where you want to ensure that operands will be
associated with operators in a specific order you can override the order of association by using
parentheses or brackets. For example, while there may be some doubt as to the evaluation of
A-B/2, by adding parentheses all doubt is removed, CA-B)/2.

CONSTANTS. A constant has a single numeric value that is retained throughout program
execution. Both positive and negative constants can be used in normal decimal notation, and
can include a decimal fraction. Very large or very small numbers can be represented in
exponential notation. This is a decimal number followed by the letter E and a one or two digit

2-2

Introduction to Basic Programming

exponent. The exponent can be signed. For example, .000000005 can be entered as .5E-8,
50E -10, etc. In all cases the value of the constant is the closest approximation that can be
represented on the system.

Examples:

-25
+0.0

3.1416
1E-38

o 98.6E+3
-0.25 7.7E-07

VARIABLES. A variable is a name used to reference a value. Unlike a constant the value
associated with a variable can be changed during program execution. The new value can be
obtained by evaluating an expression, reading program or file data or requesting direct input
from a user. Initially the values of all variables are undefined. The program must assign a
value to a variable before requesting it in any operation. An error message will be printed and
the program terminated if the program attempts to use an undefined variable. Variables can
be of two types, simple or subscripted.

Simple Variables. Simple variables consist of a single letter (A through Z), optionally
followed by a single digit (0 through 9). Simple variables are not listed in DIM statements.

Examples:

A9 x C2 ZO

Subscripted Variables. It is often convenient to refer to related data together as a set of
values. A single letter (A through Z) can be used to refer to a set of values. The same letter can
be used to reference both a simple and a subscripted variable. The system identifies the
subscripted variable by its following parentheses. Note that you cannot use the same letter for
both a one and a two dimensional array. These sets can be arranged as one or two dimensional
arrays. Section III contains a detailed discussion of arrays and array operations.

Each individual value in the array can be referred to by a subscripted variable. For one
dimensional arrays a subscripted variable is the array name followed by a single integer or
expression in parentheses. When an expression is used it is evaluated and rounded to an
integer. This integer is used to refer to a specific element in the array. Subscripts can contain
subscripted variables.

Examples:

A(3), B(X), R(Z**2 +5), T(T(6))

In two dimensional arrays individual elements are referred to with two subscripts. The first
subscript refers to the row and the second the column position of the element within the array.

Examples:

C(I,J), K(3,6), 8(0-1, R+Z), V(R-8(N), T1 + T2)

2-3

Introduction to Basic Programming

FUNCTIONS. There are two types of functions available on the system, predefined and user
defined. The names ABS, ATN, BRK, COS, EXP, INT, LOG, RND, SGN, SIN, SQR, TAN, and
TIM identify predefined functions. Predefined functions are automatically recognized by the
system and are available to any program. Refer to Section XI for a detailed discussion of their
use. Up to 26 user defined functions can be defined for use in a program. These functions are
referenced by the letters FNA through FNZ. For each user defined function used in a program
you must have a DEF statement defining the function.

A function uses one or more values (parameters), performs a specified calculation, and pro­
duces a single value as a result. A reference to a function consists of the function name
followed by a list of one or more expressions (arguments) enclosed in parentheses. When more
than one expression is used they are separated by commas. These expressions are evaluated
and passed as parameters to the named expression. The result returned by the function is the
value of the function. The number of arguments in a function reference must be the same as
the number of parameters defined for the function. A function can be used as an argument of
another function.

Examples:

FNB(R+ T) ABS(N) FNC(OO-FNO(OO))
SQR(X*X+ y*y) FNZ(ABS(FNZ(Z3))/X)

OPERATORS. An operator performs a mathematical or logical operation on one or two
values, resulting in a single value. Binary operators appear between the two operands whose
values they combine. In the expression A + B -C the operands of (+' are A and B but the
operands of(-' are A+B and C. Unary operators precede their single operand. For example the
expression SQR(-C) negates the value of variable C before taking the square root. TheFe are
three types of operators used on the 2000/Access BASIC system: arithmetic, relational, and
logical.

Arithmetic Operators. All of the usual arithmetic operations are available in BASIC. The
symbols U+" and U_" are used both as unary and binary operators. The context of their
appearance determines which operation is intended. Unlike algebraic notation, implied mul­
tiplication does not exist in BASIC. Thus A x B must be written as A*B rather than just AB.
The operation of raising a number to a power also requires an explicit operator. Thus AB is
written as either A**B or A tB (the two forms are interchangeable). Two special operators,
MIN and MAX, return the minimum or maximum respectively of their two operands. The
table below lists the two unary and seven binary arithmetic operators recognized by BASIC.

Operator Operation Example

+ U nary add (no effect) +A
Unary subtract (negation) -A

* Multiply A*B
I Divide AlB
+ Add A+B

Subtract A-B
** or t Exponentiate A**B or AtB

MIN Minimum A MINB
MAX Maximum AMAXB

2-4

Introduction to Basic Programming

Relational Operators. Relational operators are normally used to make decisions concerning
the flow of control in a program (refer to the IF statement) but are also valid expression
operators. They compare the values of two operands to see if they bear the relationship to each
other signified by the operator. If the relationship is true, the result value is !true'; if not, the
result value is !false'. In most programs it is convenient to think of relational operators as
producing logical values as their result. However, remember that the value !true' is actually
the number 1 and !false' is actually the number O. The table below lists the six binary
relational operators.

Operator Relation Tested Example

Equality A=B
< > or # Inequality A<>B

< Less than A Greater than A>B

<= Less than or equal A<=B
>= Greater than or equal A>=B

Logical Operators. Logical operators are useful in testing multiple relations or performing
Boolean operations on !true' and !false' values. Like the relational operators, the result of a
logical operator is !true' or !false' (lor 0), depending upon the values of its operands. Remember
that an operand is considered to be !false' ifits value is 0 or !true' if its value is not O. The table
below describes the action of the logical operators.

Operator Result Example

NOT !true' if operand is !false'; NOTA
!false' if operand is !true'

AND !true' if both operands are !true'; AANDB
!false' if either operand is !false'

OR !true' if either operand is !true'; AORB
!false' if both operands are !false'

EVALUATING EXPRESSIONS. An expression is evaluated by replacing each variable
with it's value, evaluating any function references, and performing the operations indicated by
the operators. The order in which operations are performed is determined by the order
presented below.

(first)

** t
Unary Unary + NOT

* /

+
MIN MAX
< <= >= > <> #
AND
OR

(last)

2-5

Introduction to Basic Programming

The first operator applied within an expression is the one highest in the above table. Other
operators follow in turn according to their relative priority. When two or more operators of the
same level appear, they are applied in left-to-right order. If this order of evaluation is not the
one desired, parentheses can be used to override it. Any part of the expression enclosed in
parentheses (which must itself be a legal expression) is evaluated completely as an operand of
the surrounding expression. Parentheses can be nested to any desired degree to force an
intended order of evaluation. The following pairs of expressions are identical in their evalua­
tion.

A+B*C**D MAX E/D-F
A < -B*C OR NOT D AND E>F
AlBIC AND D*E*F AND G**H**I

(A+(B*(C**D))) MAX ((E/D)-F)
(A«(-B)*C)) OR ((NOT D) AND (E>F))
(((A/B)/C) AND ((D*E)*F)) AND ((G**H)**I)

The general form of an expression is an alternation of operands and binary operators, where
each operand can be preceded by a single unary operator. The only restriction to this rule is
that the binary operator ** (or t) cannot have a unary operator following it. The same effect
could be accomplished by enclosing the desired unary operator and its operand within
parentheses. For example, A**(-B).

Examples:

-AO/3.2 B**N+B**(N+1) 3.1416*R**2 (C MAX 100)+0
A =0 (CO*C1)' (00/01) SQR(ABS(RS))
T1 ANO T2 OR (NOT T1 OR NOT T2) FNM(K(I)-K(J))/ABS(I-J)

PROGRAMMING
The 2000 Access system is designed for interactive use at a keyboard terminal. Statements,
commands, and data for executing programs are entered without strict format rules. Except
where noted the system ignores blanks. This means that you can use blanks to make state­
ments or input easy to read or leave them out entirely. Each command and statement is tested
for errors in syntax, obvious logical mistakes, and violations of system security. Errors or
violations are rejected and a message is returned to you to aid in isolating and correcting the
problem.

BASIC programs are made up of one or more statements. The statements are used to perform
or define operations on data or to add narrative comments to the program. Each statement
must be preceded by a statement number (an integer between 1 and 9999). The statement
number is used to determine the program's order of execution and to provide a means for one
statement to reference another. Program execution begins with the lowest numbered state­
ment. Since statements are not executed as they are entered you do not have to enter
statements in the order in which they are to be executed. When a program is complete you can
use the RUN command to execute it.

Each statement is entered as a separate line ended with (!-eturn). The system will either
accept the line, responding with a (Jine feed) or reject the line with the message ERROR. A
short description of an error can be obtained by entering any character other than (return)
following the ERROR message. Since rejected statements are not entered into your work space

2-6

Introduction to Basic Programming

correction consists of retyping a correct statement on a new line. If you detect an error in a
statement before you have typed (return) you can use the control-H (HC) or control-X (XC)
characters to alter or cancel the line as described in Section I. Statements already entered can
be replaced by entering a new statement with the same statement number. Entering only a
statement number followed by (return) deletes the numbered statement from the work space.

ASSIGNMENT Statement

The assignment statement (also called the LET statement) assigns the value of an expression
to one or more variables. As the examples show, LET is an optional part of the assignment
statement which can be used for consistency or clarity. When a subscripted variable is to be
assigned a value, its subscript is evaluated first and then the expression. Thus A(I) = I ==

(T+R)/S is equivalent to I = A(I) = (T+R)/S. There is potential confusion between the use of
H=" as an assignment operator and its use as a relational operator. The rule is that, proceeding
from left to right in the statement, an H =" is an assignment operator unless it violates the
format of the assignment operator in which case it and any following are relational operators.
Consult Section XI if a more rigorous explanation is needed.

Examples:

LET A = 1+5
A = 1+5
A(1) = A(2) = A(3) = 0
LET C1 = C2 = A+B=T-R
Q = FNC(CO) MAX FNC(C1)

GO TO Statement

The GO TO statement alters the normal control flow of a program by specifying which
statement is to be executed next. The statement number selected must be a valid statement in
the program. While statements of the form 10 GO TO 10 are legal, once executed they cause
the program to loop endlessly. The GO TO statement can specify a single unconditional
destination or it can contain an expression selecting one of a list of statement numbers. The
statement numbers are numbered sequentially, beginning with 1, in left to right order. The
value of the expression is rounded to an integer and control is transferred to the statement
number in the corresponding position. If the integer is less than 1 or greater than the number
of statement numbers in the list, then the GO TO is ignored and control passes to the next
statement in the program.

Examples:

GO TO 100
GO TO N OF 1000,2000,3000
GO TO (PO-QO)/5 OF 10,20,30,40,50

2-7

Introduction to Basic Programming

END and STOP Statements

The last statement of a program must be an END statement. When an END statement is
reached, the program's execution is terminated and control returns to the user. If other places
within the program are logical points of completion, they can either transfer control to the
END statement with a GO TO statement or execute a STOP statement, which is identical in
effect to an END statement. The STOP statement is preferred in these cases because it
provides a visual reminder of the program logic.

Examples:

200 STOP
1000 END
9999 END

IF Statement

The IF statement provides a means of testing for a specific condition and transferring control
to another statement if the condition is (true'. The expression following the word IF is
evaluated and if (true' (or non-zero) then control passes to the statement number following the
word THEN. This statement number must be a valid statement existing in the program. The
IF statement is a powerful tool for choosing alternative logic paths, controlling program loops
by specifying a completion condition, or making any simple or complex decision needed to
accomplish a program's purpose.

Examples:

10 LET I = 1
20 A(I) = 1*1
30 LET I = 1+1
40 IF 1<=10 THEN 20
50 END

This program computes the squares of the numbers 1 to
10, stores them into the array A, and terminates.

20 IF A<B AND C<D THEN 200

30 IF NOT T1 THEN 45

PRINT Statement

The PRINT statement provides a simple and direct means for BASIC programs to display
values on your terminal. The items to be printed (print list) are evaluated and displayed in
sequential order from left to right in one or more lines. Each item in the print list is separated
from the following one by either a semicolon or a comma. A semicolon serves only to separate
items in the print list; the first character of the following item's value is printed immediately
after the last character of the preceding item's value. A new line is begun whenever the next
value will not fit on the remainder of the current line.

2-8

Introduction to Basic Programming

A comma serves another purpose besides separating print list items.·Each line on the terminal
is divided into four consecutive fields of 15 character positions and a final field of 12 character
positions (72 character positions per line). When a comma follows an item which did not
completely fill the last of the one or more fields its value occupies, blanks are added to complete
that field. Thus the value of an item following a comma always begins at the start of a field. If
the previously completed field was the last one in the current line, the next item's value will be
printed on a new line. Since most values occupy less than fifteen character positions, the usual
effect is a table of five columns per line.

If a comma or semicolon follows the last item in the print list, the print list of the next PRINT
statement executed will be printed as a continuation of the current line. Otherwise, the
current line is completed and the next PRINT statement will begin printing values on the next
line. A PRINT statement with no item list either completes the previous line, ifit ended with a
comma or semicolon, or skips the current line. This is frequently used to produce a blank line.

PRINTING EXPRESSIONS. If a print list item is an expression, its value is displayed as a
number. The first character of a number is either a minus sign (-) if the number is negative or
a space (implied plus sign) if it is positive. Integral values less than 32768 in magnitude are
displayed as integers. For other values the first six decimal digits are printed with a decimal
point in the appropriate position. If the magnitude of the number is less than .09999995 (and
cannot be displayed exactly with six digits including the zeros following the decimal point) or
exceeds 999999.5, six digits of precision are printed as a number greater than 1 but less than
10, followed by an exponent. This notation is interpreted as explained under CONSTANTS.
The exponent always appears as a two-digit signed integer following the letter E. For example,
12345600 is printed as 1.23456E+07 with a preceding blank as the implicit plus sign of the
number.

Each number, when printed, is followed by at least one blank. Additional blanks are appended
if necessary to make the total number of characters (beginning with the sign) either 6, 9, 12, or
15. Thus even when expressions are separated by semicolons, at least one blank will always
appear between the end of one number and the sign character of the next. Leading zeros are
never printed and trailing zeros following a decimal point are printed as blanks unless the
number form includes an exponent (in this case all six digits of precision appear). Refer to
Section XI for a detailed explanation of how numbers are printed.

Examples:

10 PRINT 4.0 J -.02500000 ; -.02500001 ; 999999.4

4 -.025 -2.50000E-02 999999.

10 PRINT 1;-10; 100';-11010£'; 10£00;-100f00~!
20 PRINT 1" - 10" 1010" - 1000" 100e0" - 110010100

1 - 1 10
1

- 1100101010.

1 010 - 1 000
- 10

100e'0 - 10e'000.
100 -10e0

2-9

Introduction to Basic Programming

PRINTING LITERAL STRINGS. It is often desirable to print textual information along
with numbers. This facility can be used to identify values, produce table headings, and
otherwise clarify the results of a program. BASIC provides another type of print list item,
called a literal string, for this purpose. A literal string is simply a sequence of characters
enclosed by double quote marks C~). Blank characters in quotes are not ignored, but are part of
the literal string. The minimum number of characters in a literal string can be as few as zero.
The practical maximum is 72 (refer to Section XI for exceptions to this rule). Note that a
double quote mark itself cannot appear in a literal string. Section IV describes a more general
form of literal string which can contain double quote marks and other special characters.

A literal string is displayed without the delimiting quote marks. Since no leading or trailing
blanks are added, the number of character positions occupied by a literal string is simply the
number of characters in the string. As a result, if a semicolon separates consecutive literal
strings in a print list, the second string will immediately follow the first without any addi­
tional intervening blanks. If a comma follows a literal string then the last of the fields it
occupies will be filled with blanks. Although two expressions in a print list must always be
separated by a comma or semicolon, a literal string need not be separated from either the
preceding or following print item. If the punctuation is omitted, BASIC assumes an implied
semicolon. If during execution of a PRINT statement a literal string will not fit into the
current line, then it begins in the next line.

Example:

1 0 LET A = -1
20 LET B0 = 0
30 LET B 1 = 1
40 PRINT "A="A"B0 AND Bl ARE"B0JBl
50 END

A =-1 B0 AND Bl ARE 0

PRINT FUNCTIONS. Up to this point the comma separator provides the only control over
the format of data displayed by a PRINT statement. Although a method of requesting com­
pletely precise formatting is described in a later section, BASIC also contains some additional
simple control facilities. Three special predefined functions, TAB, SPA, and LIN, are accepted
as special print list items. They are referred to as print functions since they can only appear in
a PRINT statement. As for expressions, they must be separated from any other print list item
(except a literal string) by either a semicolon or comma. Unlike expressions, however, a
following comma does not have any spacing effect; it is equivalent to a following semicolon for
the print functions. All three expect a single expression as their argument. When encountered
in a print list, the expression is evaluated and rounded to an integer value.

2-10

Introduction to Basic Programming

The TAB function provides horizontal tabulation. The 72 character positions in a line are
numbered from 0 to 71. This function generates enough spaces (blank characters) to fill the
current line up to the character position specified by its argument. If the current line is already
at or past that position, no action is taken. If the argument exceeds 71 then the current line is
simply completed and the next print item will begin on the next line. The SPA function
generates the number of spaces indicated by the value of its argument. If the number of spaces
specified is greater than 71 or will not fit on the current line, then the current line is simply
completed. If the value of its argument is positive, the LIN function completes the indicated
number of lines. For example, LIN(3) completes the current line (which could be empty) and
then skips two more lines. If the value of its argument is negative, LIN advances the indicated
number of lines but preserves the current character position. For example, LIN(-1) tabulates
one line vertically (printing continues at the current horizontal position but on the next line).

Example:

10 PRINT "ABC"';LIN(-I);"DEF"';LIN(2);"GHI";SPA{3)';"JKL"
20 PRINT TAB{S);"MNO"
30 END

ABC
DEF

GHI JKL
MNO

READ/DATA/RESTORE Statements

It is sometimes desireable to set a large number of variables to different constant values. This
cannot be done with assignment statements unless you write one statement for each constant.
However, the READ, DATA, and RESTORE statements provide a simple means to accomplish
this and other similar programming tasks. DATA statements contain a list of constants. All
the constants in the collection of DATA statements comprise a data list. The list starts with
the DATA statement having the lowest statement number and continues with successively
higher numbered DATA statements. DATA statements can appear anywhere in the program
and do not need to be consecutive. DATA statements are not executable. If control is passed to
one of them, the next executable statement is executed with no other effect.

A pointer is kept within the program to indicate which constant is next in the list. At the
beginning of a program's execution, the pointer is set to the first constant in the first DATA
statement. When a READ statement is executed, each variable to be read is assigned to a new
value from the constant list. Both simple and subscripted variables can appear in the list of a
READ statement. The pointer advances consecutively through the constant list as each
assignment is made. The RESTORE statement resets the pointer to the first value, allowing
the constant list to be reused. If the RESTORE statement includes a statement number, the
pointer is set to the first constant in the referenced DATA statement. If the specified statement
is not a DATA statement, the pointer is set to the constant list of the first DATA statement
whose statement number is greater than the one given. An error occurs if a READ statement
requests more values than remain in the list. The program terminates with an appropriate
message.

2-11

Introduction to Basic Programming

Note that the ease of modifying a program can be utilized to advantage. Once a general
program has been written to perform a desired task, it can be supplied with different data for
each execution by entering new DATA statements with the same statement numbers used.
before.

Example:

10 I = S = 0.0
20 READ T
30 IF T=999999 THEN 70
40 I = 1+1
50 S = S+ T
60 GO TO 20
70 PRINT" AVERAGE IS"S/I
80 IF I> =3 THEN 1 00
90 STOP

100 RESTORE
110 READ A,B,C
120 PRINT "AVERAGE OF FIRST THREE IS";(A+B+C)/3
500 DATA 5.5, 3.46, 52
510 DATA 77.3, .89
600 DATA 999999
999 END

Assuming that a list of numbers is supplied in DATA statements having statement numbers
greater than 120 and less than 600, this program will compute their average without knowing
how many there are. If at least three exist, it will also compute the average of the first three.

2-12

Introduction to Basic Programming

FOR and NEXT Statements

Frequently, programs need to perform the same set of operations several times, where the data
used in each iteration has a computable relationship to the previous iteration. Although a
combination of the IF and GO TO statements usually solve this problem, the resulting
program is often difficult to understand. The two statements FOR and NEXT allow repetition
of a group of statements in a clearly understandable fashion. The FOR statement precedes a
group of statements to be repeated and specifies the number of iterations desired. The NEXT
statement directly follows the group of statements, acting as an implicit GO TO to the first
statement in the group after each iteration. You can use FOR/NEXT pairs within other
FOR/NEXT pairs to produce loops within loops. No loop, however, can be partially contained
within another. Also, the loop control variables of nested loops should not be the same as the
control variables of outer loops.

When a FOR statement is executed, the variable preceding the assignment operator, called the
control variable (it cannot be a subscripted variable), is assigned the result of evaluating the
expression which follows. At this time the limit value (given by the expression following TO)
and step value (given by the expression following STEP, or assumed 1 if not indicated) are also
evaluated. The statements following the FOR statement, and preceding the closest NEXT
statement referencing the same control variable, are then executed none or more times
according to the steps below.

1. If the value of the control variable exceeds the limit value (or is less when the step value
is negative), control passes to the statement following the associated NEXT statement.
Otherwise proceed to step 2.

2. Control passes to the statement following the FOR statement.

3. When control reaches the NEXT statement, the step value is added to the control
variable's value.

4. Repeat from step 1.

A FOR/NEXT loop terminates normally when the value of the control variable exceeds that of
the limit value. Programs often terminate loops by transferring control out of them with an IF
statement, GO TO statement, etc. This causes no difficulty and the program can later reuse the
loop by transferring control to the FOR statement. However, it is very bad practice to transfer
control into a loop (to any statement following the FOR statement, up to and including the
NEXT statement). When control reaches the NEXT statement unpredictable results can occur.

Example:

100 FOR I :::: 1 TO 5
200 FOR J = I TO 1 STEP -1
300 PRINT J;
400 NEXT J
500 PRINT
600 NEXT 1
700 END

1
2 1
3 2 1
4 3 2 1
5 4 3 2

2-13

Introduction to Basic Programming

INPUT Statement

The INPUT statement allows you to input data to an executing program from your terminal.
An INPUT statement contains a list of variables (simple or subscripted) which are to receive
new values. When the program executes an INPUT statement it prints a question mark (?) at
the terminal to signify readiness for the data and then waits for a response. The response is one
or more constants (in the same form described under CONSTANTS) separated by commas. The
constants are assigned to the variables in the input list in left to right order. Subscripts are not
evaluated until the variable containing them is to receive a value (thus INPUT A(I),I will not
in general produce the same results as INPUT I,A(I) even if you reverse the order of constants
in the response). If an insufficient number of constants is typed, the program responds with a
double question mark (??) to tell you that more data is required for that INPUT statement. If a
constant is not legal, a message informs you that you should reenter part of the list, beginning
with the correct version of the erroneous constant. If too many constants are contained in the
response, you are notified and the extra ones discarded. Rather than respond to a program
waiting for input, you can terminate its execution by pressing the break key.

Example:

10 PRIN T "WHAT ARE YOUR NUMBERS";
20 IN PUT A~ B
30 PRINT "THEIR SUM IS";A+B
40 END
RUN

WHAT ARE YOUR NUMEERS?5~7
THEIR SUM IS 12

DONE

Note that the question mark is printed at the current line position.

2-14

Introduction to Basic Programming

ENTER Statement

The ENTER statement provides the program with more control over the input operation. The
statement can limit the amount of time allowed to respond with data, provide the program
with the actual time taken to respond, indicate whether the data was acceptable, and return
the port number of the user's terminal. The port number can be obtained separately, without
involving the user at all, or together with a single data value. Data can also be requested
without asking for the port number. If a number sign (#) follows the keyword ENTER, then
the variable it precedes is assigned the user port number (an integer in the range 0 to 31).
Otherwise (or following the port return variable) the first expression is evaluated and rounded
to an integer (which must be in the range 1 to 255) specifying the number of seconds permitted
the user to respond. No prompt is printed, the program must notify the user that input is
expected by a message in a preceding PRINT statement. The variable following the expression
is set to the approximate time, in seconds, that the user took to respond. If the constant was not
legal, the time is negated. If the allotted time has elapsed, the value -256 is returned; the
values -257 and -258 indicate a transmission problem occurred and the user should be asked
to respond again. The last variable in the list is assigned the single value which the user is
expected to enter. Unlike the INPUT statement, ENTER does not respond to the (return)
(which completes the user's answer) with a (fine feed) .

Examples:

10 ENTER #P
20 ENTER 255,R,A
30 ENTER #P,T1,R,A(I)

REM Statement

BASIC is designed to simplify the translation of computational tasks into computer programs.
It is not always equally simple to deduce the task performed by examination of a program's
text. External documentation can help, but it is still important to insert explanatory com­
ments at key points of the program itself. The REM statement allows the user to include
remark lines as part of the program. The form of the statement is merely REM followed by any
text. All characters appearing after the REM are considered to be a part of the remark. Blank
characters are not ignored and special characters such as quote marks are permitted. A REM
statement can appear anywhere in the program and does not affect its execution in any way. If
control is passed to a REM statement, it continues to the following statement with no other
effect.

Examples:

10 REM THIS IS AN EXAMPLE
20 REM ANY CHARACTERS, SUCH AS " OR +, ARE ALLOWED.
30 REMARK 'ARK' ARE THE FIRST THREE CHARACTERS OF THIS REMARK

2-15

Introduction to Basic Programming

GOSUB and RETURN Statements

Some programs use subroutines (groups of statements) to perform an action needed at several
locations. It would be inefficient to insert a copy of these statements at each point where their
effect is desired. The GOSUB and RETURN statements together allow you to transfer control
to another portion of the program and remember where the transfer originated. The GOSUB
statement either specifies a single unconditional destination or a list of statement numbers
and an expression whose value is used to select one of them. (Refer to the GO TO statement for
an explanation of the selection process.) In addition the statement number of the statement
following the GOSUB statement is saved. When the sequence of control reaches a RETURN
statement, control returns to the statement whose statement number was saved. Thus a
subroutine can be written as a group of statements followed by a RETURN statement and it
can be called or referenced with the GOSUB statement.

Subroutines can be nested during execution; that is, up to twenty GOSUB statements can be
executed without intervening RETURN statements. However, there is no fixed association of
RETURN statements with GOSUB statements. When a RETURN statement is executed,
control returns to the statement following the most recently executed GOSUB statement.
There is no way to return to the source of a transfer until returns have been made from any
subsequent GOSUB statements. Of course, subroutines are nothing more than collections of
statements and direct transfers using the GO TO or IF statement can be made into or out of
them at any point. However, the user should arrange groups of statements intended to be used
as subroutines, and limit the flow of control to clearly display their purpose. Careless use of
this facility will make programs that are difficult to understand.

Example:

The following program portions use a subroutine to ask the user for the time of day.

2·16

200 L = 23
210 PRINT "HOUR OF DAY";
220 GOSUB 1000
230 H = R
240 L = 59
250 PRINT "MINUTE OF HOUR";
260 GOSUB 1000
270 M = R
280 PRINT "SECOND OF MINUTE";
290 GOSUB 1000
300 S = R

1000 REM BEGIN SUBROUTINE
1010 INPUT R
1020 IF R<O OR R>L THEN 1040
1030 RETURN
1040 PRINT "IMPOSSIBLE, CORRECT VALUE IS";
1050 GO TO 1010
1060 REM END SUBROUTINE

Introduction to Basic Programming

DEF Statement

The DEF statement is the means by which a program creates a user defined function. Up to 26
functions (FNA through FNZ) can be used. A program which includes references to a user
defined function must contain a DEF statement defining it. Failure to do so will result in an
error. DEF statements can appear anywhere in the program. If control is passed to one of them,
it is passed to the following statement with no other effect. Execution occurs only by evalua­
tion of a reference to the function. Defining the same function twice will result in an error.

The result of a function reference is obtained by evaluating the expression following the equals
sign (=) in the appropriate DEF statement. Each user defined function has exactly one
parameter, designated by the simple variable name which appears in parentheses following
the function name in the DEF statement. The value of an argument (the expression appearing
in a function reference) is assigned to the parameter before evaluating the defining expression.
The parameter name can also appear as a simple variable elsewhere in the program.

Any legal expression can be used to define a function. Expressions can include references to
other user defined functions. However, you should exercise caution to avoid circular defini­
tions. The simplest example is a DEF statement whose expression contains a reference to the
function being defined. A more subtle case is where two functions are defined in terms of each
other.

Examples:

DEF FNT(X) = SIN(X)/COS(X)
DEF FNC(R) = 3.1416*R**2

COMMANDS

defines FNT as the tangent function
computes the area of a circle from its radius

Commands instruct the system to perform one of a large number of possible control or utility
tasks. Commands differ from BASIC language statements in form and result. A statement is
always preceded by a statement number and, when entered, becomes a part of the current
program in your work space. A command is not preceded by a statement number and, when
entered, instructs the system to perform its indicated action immediately. Commands can be
entered at any time except when the current program is executing. They are either accepted
and executed or rejected with an appropriate message.

Each command is a single word which can be abbreviated to its first three letters. Some
commands also have optional or required parameters following them. If parameters are used,
they are separated from the command name by a hyphen (-). Multiple parameters are sepa­
rated from each other by commas. The user signals completion of a command's entry by
pressing return . If the command is misspelled or otherwise unrecognized, the system re­
sponds wit tree question marks (???).

Man commands do not produce a response, their completion is announced with a simple
line feed . Others display one or more lines of information. In these cases the user can abort

the command's operation by use of the break key. The message STOP indicates that the
terminal is again available for entering statements or commands.

2-17

Introduction to Basic Programming

PROGRAMMING UTILITY COMMANDS
Several commands are especially useful during program development. They perform various
utility operations on your work space, usually to create required conditions for other
commands.

NAME Command

Your work space can be given a name, consisting of one to six letters and digits. Ifpresent, the
name is printed as a heading for the output of some commands (for example, LIST and RUN).
The work space must have a name in order to save its contents in the account library. If the
work space already has a name, this command replaces it with the one specified. The command
can also be used without a parameter to erase the current work space name. In this case the
hyphen is optional.

Examples:

NAME-PROG1
NAM
NAM-123456

RENUMBER Command

This command is used to renumber all or a portion of the statements in the current program.
Statements containing references to other statements (GOTO, RESTORE, etc.) are automati­
cally changed to reflect the new statement numbers unless they refer to non-existent state­
ments. This command does not alter the logical relationships of the current program or change
the order of statements. Renumbering is particularly useful after substantial editing or to
establish statement number conventions for portions of the current program. It is also fre­
quently necessary to renumber a program in preparation for use of the APPEND command.

The RENUMBER command has four optional parameters. They are interpreted in the follow­
ing order (default values are enclosed in parentheses): initial new statement number (10),
interval between new statement numbers (10), first statement number of the portion to be
renumbered (first statement number of the current program), and last statement number of
the portion to be renumbered (last statement number of the program). If any parameter is
omitted, then all following parameters must also be omitted. The values of the third and fourth
parameters specify a range, all existing statement numbers in the range are renumbered. It is
not required that these values match existing statement numbers in the current program. The
command is rejected if the first value of the range exceeds the second one, if the requested
renumbering would require some statement to be given a statement number greater than
9999, or if renumbering the portion specified would cause the range of its statement numbers
to overlap with those of statements outside the portion specified.

Examples:

2-18

RENUMBER-tOO
REN
REN-500,1 0,301 ,399
REN-1,1

Introduction to Basic Programming

DELETE Command

Groups of one or more statements can be erased from the current program with the DELETE
command. The two parameters specify a range; all statements with statement numbers in that
range are deleted. If the second parameter is not given, it is assumed to be 9999 (all statements
with statement numbers greater than or equal to the first parameter are deleted). If both
parameters have the same value, only the indicated statement is deleted. Note that this can be
done more easily by entering the statement number followed by a (returTi).

Examples:

DELETE-100,199
DEL-8000

SCRATCH Command

The SCRATCH command deletes the entire current program and erases the current name of
the work space. This restores the work space to the state which existed just after logging on.
This command is normally used in preparation for beginning development of a new program.

Examples:

SCRATCH
SCR

MODIFYING THE ACCOUNT LIBRARY
You can alter the contents of your account library at any time. The current program can be
saved (if the library space allotment permits) in either of two forms. Existing library entries
can be deleted when no longer needed. You cannot use these commands to alter the contents of
your group library or the system library.

SAVE Command

A copy of the current program is saved under the current name of the work space. The contents
of the work space are not altered. The current program does not have to be complete (executa­
ble). Thus the SAVE command is useful for preserving a partially developed program prior to
logging off the system. It is also useful for saving intermediate versions of a program. If an
editing mistake or other problem ruins the current program, an earlier version can be
retrieved. The command is rejected if the work space does not have a name, if the name
duplicates that of an entry already in the account library, or if there is insufficient space in the
library to accommodate the current program.

Examples:

SAVE
SAV

2-19

Introduction to Basic Programming

CSA VE Command

Like the SAVE command, the eSA VE command saves a copy of the current program in the
account library. Prior to making the copy, the program is partially (compiled'. That is, the first
stages of execution are performed. A program stored in this form will occupy slightly more
library space than if stored with the SAVE command. However, it will also execute faster
when retrieved since the preliminary processing has already been done (this is useful when
executed as a result of the CHAIN statement, discussed in Section VII). Unlike the SAVE
command, the current program must be complete and executable in order to use the CSAVE
command. The command will be rejected if the pre-execution processing detects an error in the
program or if any of the conditions mentioned under SAVE exist.

Examples:

CSAVE
CSA

PURGE Command

The PURGE command deletes the named program from the account library. It does not affect
the current work space. A purged program cannot be recovered (unless another copy exists).
The amount of space it occupied is returned to the account library. The PURGE command is
frequently used to delete an obsolete version of a program so that a new one can be saved under
the same name.

Examples:

2-20

PURGE-PROG1
PUR-123456

Introduction to Basic Programming

LOADING THE WORK SPACE
Several commands are available for placing entire programs or major portions into the work
space at one time. These rely on the existence of a previously prepared, external version of the
statements to be entered.

GET Command

The GET command retrieves the named program from an account library. The command first
performs an implicit SCRATCH, clearing the work space and its name, and then loads a copy
of the designated program into the work space, setting the name to correspond. The account
library is not altered. The GET command can also obtain programs from account libraries
other than your own. To retrieve a program from your group library, prefix the name with an
asterisk (*). To retrieve a program from the system library, prefix the name with a dollar sign
($). Security provisions may prevent retrieving some programs from these libraries or impose
conditions on the copies obtained, such as prohibiting you from saving your own version. (Refer
to Section VIII for details.) You can always retrieve any program in your own account library.
Once it is in the work space, it is indistinguishable from a program entered by any other
means.

Examples:

GET-MYPROG
GET-*GROUP1
GET-$LlBPRG

APPEND Command

The APPEND command appends a copy of a program from an account library to the current
program. Note that the current program is extended, not altered, and the name of the work
space remains unaffected. Library entries are not restricted to being complete programs. The
APPEND command is frequently useful for incorporating previously prepared utility sub­
routines into a program under development. The first statement number of the retrieved
program must be greater than the last statement number of the current program. The
command is rejected if this is not true. The RENUMBER command may be used in most cases
to achieve this relationship.

Not all programs can be appended. Those stored with the CSAVE command are not acceptable.
A group or system library program can be appended (by prefixing its name with * or $
respectively) unless security provisions prevent it. Security considerations can also impose
conditions of use on the composite program if the source account library is not your own.

Examples:

APPEND-LOCAL
APP-*GSUB
APP-$SYSUTL

2-21

Introduction to Basic Programming

TAPE Command

Groups of statements or complete programs on paper tape can be entered into the work space
from terminals equipped with a paper tape reader. Some terminals provide the equivalent
capability with magnetic tape cassettes. Terminals behave differently when transmitting data
from their tape reader rather than the keyboard. The TAPE command causes the system to
withhold printing of any diagnostic messages and suppresses the (fine feed) response to each
line. Note that statements entered under control of a TAPE command are merged with the
current program just as if they came from the keyboard. Thus the work space should be cleared
with the SCRATCH command if a complete program is to be entered.

A particular sequence of actions must be followed to use this facility. Mount the tape in the
reader and turn it on before typing TAPE and ([eturn). This order of operation is important
since the system responds to receipt of a TAPE command with a special character intended to
initiate reading. The system assumes that receipt of a command implies that the tape has been
completely read. If any errors occurred during entry of the statements, they are printed at the
terminal and the command is ignored.

Examples:

TAPE
TAP

KEY Command

The KEY command is used to terminate the effects of a TAPE command. Upon its receipt, the
system returns to keyboard conventions for terminal interaction. This command also causes
printing of any diagnostic messages withheld while reading the tape. Any other command
received while under the influence of a TAPE command has the same effect. However,
commands substituted for KEY in this way will not be executed if any diagnostic messages are
waiting to be printed.

Example:

KEY

EXECUTING AND REPRODUCING PROGRAMS
As mentioned previously, programs are not executed when entered. Instead, the system
provides a command to initiate execution of the program in the work space. As a convenience,
another command combines the requests for loading and executing a program saved in an
account library. Additional commands allow display or reproduction of the current program.

2-22

Introduction to Basic Programming

RUN Command

The RUN command initiates execution of the current program. Execution normally starts
with the first statement of the program. However, an optional parameter can be supplied to
override this convention. If used, execution begins at the indicated statement number, or the
next greater one if the specified statement number does not exist. An executing program can
be terminated with the break key unless this capability has been disabled. The command is
rejected if the program is incomplete (for example, lacks an END statement). Execution is
usually terminated if an error occurs; however, some questionable conditions merely produce a
warning. A diagnostic message indicates the cause of rejection or abnormal termination. After
execution ceases, independent of the reason, the program remains in the work space.

Examples:

RUN
RUN-100

EXECUTE Command

The EXECUTE command acts as a combination of the GET, RUN, and SCRATCH commands.
It clears the work space, retrieves the specified program, and initiates execution. Execution
always begins at the first statement. Execution of programs from a group or system library is
requested by prefixing the name with an * or $ respectively. After execution ceases, irrespec­
tive of the cause or the source of the program, the work space is again cleared. The EXECUTE
command is provided for reasons other than simple convenience. The system security provi­
sions define programs which can be executed by this command but not loaded by the GET
command. Programs in your account library are never restricted in this manner.

Examples:

EXECUTE-MYPROG
EXE-*GROUP1
EXE-$SYSPRG

LIST Command

The LIST command displays the current program at your terminal. Statements are listed one
per line in ascending order of statement number. The system does not reproduce the textual
form of a program as it was entered. Instead, statements are displayed with the minimum
number of blanks needed for clarity. Within a statement numeric constants appear in one of
several standard forms, similar to those produced by the PRINT statement. To emphasize the
presence of subscripted variables, the system displays their parentheses in the alternative
form of brackets ([and]). The LIST command is most useful during program development. The
ease of editing and adding new statements permits substantial alteration of the current
program over even short spans of time. You can check the cumulative effect of a series of
changes by requesting a listing.

2-23

Introduction to Basic Programming

Normally the LIST command reproduces the entire current program. However, optional
parameters (separated by a comma) can be used to specify the beginning and end of a range of
statement numbers. In this case only statements within the indicated range are listed. If the
first parameter appears alone, listing begins with the indicated statement number and con­
tinues to the end of the program. If the second parameter appears alone, it must be preceded by
a comma to distinguish it from the previous case. Listing begins with the first statement of the
program and continues up to and including the indicated statement number. A third optional
parameter, the letter P, produces six blank lines after every fifty six lines of statements.

If your terminal prints on paper, the resulting listing can be cut into individual pages. A P can
follow the range parameters (preceded by a comma) or, in their absence, follow the hyphen.
This option is useful for preparing archival copies of a completed program.

Examples:

LIST
LlS-P
LlS-,500,P
LlS-100,299
LIS-8000

PUNCH Command

The PUNCH command is a special form of the LIST command. It is useful only for terminals
with an auxiliary paper tape punch. All of the parameters available for the LIST command are
interpreted in the same manner by the PUNCH command. The current program can be
reproduced on the terminal's punch unit by turning on the unit (ensure that the tape is
properly mounted) and issuing the command. The program is listed at the terminal at the
same time as it is punched onto the tape. Note that the program name followed by leading null
characters (called leader) are punched preceding the program and additional null characters
(called trailer) are unched after it. Each statement is terminated with the characters X-OFF,
(return), and line feed . This convention permits the tape to be read by an executing program
(in response to INPUT or ENTER statements) or by the TAPE command. Although it is more
convenient to save programs in your account library, copies made by the PUNCH command
are useful for programs whose infrequent need does not justify their retention in the library
space.

Examples:

2-24

PUNCH
PUN-50
PUN-500, 700, P

Introduction to Basic Programming

STATUS COMMANDS
Several commands display different kinds of status information. One of these, the TIME
command, is discussed in Section I. The others describe the library entries available to the
account and report several resource statistics.

LENGTH Command

The LENGTH command displays the length of the current program, the size of your account
library, and the library space authorized for your account. The length of the current program is
given both in words and records. A record is the basic unit of measurement for library space.
The program length in records indicates how much of the remaining library space would be
used if the current program were saved. The user work space has over 10,000 words. The
program length in words indicates how much of this space is currently occupied. An executing
program requires additional portions of the work space for the values of variables and various
internal tables. The amount needed is difficult to predict and most users will not find it worth
while to attempt to evaluate it.

Examples:

LENGTH
LEN

Example of system response:

01253 WORDS = 05 RECORDS. 00864 RECORDS USED OF 10000 PERMITTED.

CATALOG, GROUP, and LIBRARY Commands

These commands are used to print an alphabetic list of the entries in an account library.
CATALOG lists the contents of your account library, GROUP lists the group master's library,
and LIBRARY lists the system library. An optional parameter can be used to indicate a
starting point. The list will begin with the entry named or, if no corresponding name exists,
with the first name alphabetically greater. For example, CAT-S will display all entries whose
names begin with S through Z. The0reak)key can be used to terminate the listing. When the
GROUP or LIBRARY command is used, only entries accessible to you will appear (refer to the
discussion on security for details).

The list contains the name, appropriate code letters, the length in records, and a record length
in words for each entry. The last of these is only applicable to data files and will not be
discussed here. The length in records is the amount of library space occupied by the entry. It is
the same value which would be given by the LENGTH command if the program were loaded
into the work space with a GET command. Two code letter positions appear between the name
and the length in records. The first of these is a blank for programs stored with the SAVE
command or a C for programs stored with the CSAVE command. The letters A, F, and M are
used to indicate entries which are data files (discussed in later sections). The second code letter
indicates any security restrictions on the entry. It will normally be blank for entries in your
accoun t library.

2-25

Introduction to Basic Programming

In listings of the group or system library, the letter U indicates that you have unrestricted
access to the entry. The program can be loaded with the GET command, appended with the
APPEND command (unless it was stored with CSAVE), or executed with the EXECUTE
command. Refer to Section X for an interpretation of the letters Land P.

Examples:

CATALOG
CAT-PROG1
LIBRARY
LIB
GROUP-A
GRO-222

Examples of system response:

LIB
NAME LENGTH RECORD

AAA FP 2
BAS P 13
BS FU 46
BUDGE 12
CT A 230
GARY2 83
STRING F 1

GRO
NAME LENGTH RECORD

B 30
B LOCK2 F 128
SPI 22

CATAl.OG - UF ILE
NAME LENGTH RECORD

UFILE FU 144
Z ZZZZZ 2

2-26

NAME
AS
SAC
BSB
BUDGEU
0
GARY3
XY

NAME
Bl
CAl.C

NAME
WAVES

LENGTH RECORD NAME LENGTH
MP 230 BAA A LP2

6 BAD C 18
FL 46 128 BFILE FU 128
M 12 CR A CR0
F 100 GARY 1 L 95

P 188 PRNTR A LP
ML 256 64

LENGTH RECORD NAME LENGTH
C 128 B2 F 128
M 4000 MBLOCK FL 1655

LENGTH RECORD NAME LENGTH
l. 13 YNOT l.Pl

RECORD
66

40

66

RECORD

RECORD
66

l'nIMi' PROGRAMMING WITH ARRAYS I III I

WHAT ARE ARRAYS?
An array is a set of variables (or elements) which is known by one name. The individual
elements of an array are specified by the addition of a subscript to the array name. For
example, M(7) is the seventh element of array M.

REFERENCING ARRAYS
Arrays are referenced by an array variable. The variable can be any single alphabetic
character (A through Z). Therefore, you may use up to 26 arrays in a program. The maximum
number of data elements allowed in a single array is 5000.

REFERENCING ·ARRAY ELEMENTS
Arrays have either one or two dimensions. A one-dimensional array consists of a single column
of many rows. Individual elements are specified by a single subscript, indicating the row
desired. Rows and columns are numbered starting with 1. A two-dimensional array consists of
a specified number of rows and a specified number of columns organized into a table. For
example, an array M of five rows and three columns can be represented as follows:

Columns

1 2 3

1 M(1,1) M(1,2) M(1,3)

2 M(2,1) M(2,2) M(2,3)

Rows 3 M(3,1) M(3,2) M(3,3)

4 M(4,1) M(4,2) M(4,3)

5 M(5,1) M(5,2) M(5,3)

Each element of the array is specified by a pair of subscripts separated by commas; the first
indicates the row and the second the column.

The remainder of this section deals with the use of arrays. The manipulation of individual
array elements is not discussed here since they are treated in the same manner as other
numeric variables.

3-1

Programming with Arrays

DIMENSIONING ARRAYS
Arrays whose number of rows or columns exceed 10 must be dimensioned using a DIM or COM
statement. This allows the system to allocate storage space for the array elements. Arrays
whose rows or columns do not exceed 10 do not have to be dimensioned. The system will
automatically allocate space (10 elements for one-dimensional arrays, 100 elements for two­
dimensional arrays) for undimensioned arrays.

The physical size of an array is the total number of elements originally allocated to it. The
logical size of the array is the current number of rows times the current number of columns.
Current row and column numbers can be changed during program execution (refer to RE­
DIMENSIONING ARRAYS).

The DIM and COM statements are used to dimension arrays and to set upper bounds on the
number of array elements. Arrays and strings can occur in the same dimension statement.

Examples:

10 DIM A(10,20),B(30),A$(25),R(30,30)
20 COM D$(255), F(40,1 0),J(90)

REDIMENSIONING ARRAYS
While the physical size of an array cannot be changed during execution, the logical size can be
changed by entering a new dimensions parameter with some statements. Those statements
allowing you to enter new array dimensions are MAT INPUT, MAT READ, MAT ... IDN,
MAT ... ZER, and MAT ... CON. For example, an array with 6 rows and 5 columns (30
elements) could be redimensioned to 10 rows and 3 columns, or to any size so long as the total
number of elements does not exceed the physical size of the array.

3-2

10 DIM A(30,20)

20 MAT READ A(600,1)
30 MAT A = ZER(15,40)

Programming with Arrays

PLACING VALUES INTO ARRAYS
The values of array elements are undefined when a program begins execution. If you attempt
to reference an undefined array element your program will terminate.

There are several methods of assigning values to arrays. Individual elements can be assigned
using the assignment statement:

10 LET A [5]=26
20 B [1,9]=N*4.5

In addition, individual elements can appear in INPUT and READ statements.

10 INPUT A [1],A [2],A [3]
20 READ B [12]

The MAT assignment statement copies one array into another. The array on the right is copied
into the array on the left. The destination array must have as many elements as the source
array and the same number of dimensions.

1 0
20
30
40
50
60
RUN

2.5

o

DONE

DIM
MA.T
MAT
MAT
DATA
END

AC2 .. 3J .. BC2 .. 3J
READ B

A=B
PRINT A
2.5 .. 46.7 .. 75 .. 0 .. 50.1 .. 0 .. 0 .. 0 .. 19.8 .. 0

75

3-3

Programming with Arrays

The MAT READ statement assigns values from DATA statements to entire arrays, row by
row. If the new dimensions parameter is specified, the array is given new logical dimensions.
The MAT INPUT statement is identical to MAT READ except that the values are entered from
your term~nal as in an INPUT statement.

If an array is redimensioned in MAT INPUT or MAT READ, the new logical size (i.e., the total
number of elements) must not be greater than the size originally allocated to the array, nor
may the number of dimensions be altered.

Examples:

In the following example, three elements from each array are printed. Array B is re­
dimensioned by MAT READ in line 30. Note that the DATA statement has the same function
wi th MAT READ as it does with READ.

3-4

10 DIM Ar8J~B[10~4J
20 MAT READ A
30 MAT READ BC8~4J
40 PRINT AtlJIACSJIAC8J
50 PRINT Btl~1]IB[512]IBC8141
60 DATA 1~2~31415~6~71819~10

70 DATA 10~918~7~615~4~31211
80 DATA 30~31~32~33~34135136137~38139
90 DATA 40141142143144145146147~48149
100 END
RUN

1
9

DONE

5
35

8
49

Programming with Arrays

In the next example, the MAT INPUT statement expects input from the user. Both arrays A
and C are printed in their entirety using FOR loops.

(user input is underlined)

10 DIM AC3l~C[3~2l
20 MAT INPUT A
30 FOR N=1 TO 3
40 PRINT ACNl
50 NEXT N
60 MAT INPUT C
7 0 FOR M= 1 TO 3
80 FOR N=l TO 2
90 PRINT CCMINJ
100 NEXT N
1 10 NEXT M
120 END
RUN

?27.,33~56

27
33
56

? 11 ~22.133.,44~55~66
1 1
22
33
44
55
66

DONE

3-5

Programming with Arrays

INITIALIZING ARRAYS
Three special functions (MAT ... ZER, MAT ... CON, and MAT ... IDN) provide the means to
initialize arrays with certain values, and, optionally, to redimension the arrays.

MAT ... ZER sets all elements of the array to zero. MAT ... CON sets all elements of the
array to one. MAT ... IDN assigns an identity array to the array specified. The identity array
is all zeros, except the major diagonal (top left corner to bottom right corner), which is all ones.

If an array is redimensioned by MAT ... ZER, MAT ... CON, or MAT ... IDN, the new size
cannot have more elements than the physical size, nor can the number of dimensions be
altered.

Examples:

Function MAT ... ZER sets each element of array A to zero.

10 DIM A[4,,3J
20 MAT A=ZER
30 MAT PRINT A
40 END
RUN

0 0 0

0 0 0

0 0 0

0 0
'"

DONE

3-6

Programming with Arrays

MAT A = CON(3,4) redimensions array A to have 3 rows and 4 columns, and sets each element
in the newly-dimensioned array to 1.

1 0 DIM AC4,,41
20 MAT A=CONC3,,4J
30 MAT PRINT A
4121 END
RUN

1 1 1

1 1

1 1 1

DONE

3-7

Programming with Arrays

MAT A = IDN(4,4) changes the dimensions of A to 4 rows by 4 columns and sets the major
diagonal to 1, the remaining elements to o.

10 DIM ACS"Sl
20 MAT A=IDN[4.14J
30 MAT PRINT A
40 END
RUN

1 0 0 0

0 0 0

0 0 0

0 0 0 1

DONE

PRINTING DATA FROM ARRAYS
The methods of printing data from arrays are parallel to those used for filling arrays.
Individual elements can be printed using PRINT:

3-8

10 DIM A[2" 3 J
20 MAT READ A.
30 DATA 3.3.1 46" 75" 0" 50" 17
40 PRINT A[1" 3J
50 FO R I = 1 TO 2
60 FO R J= 1 TO 3
70 PRINT A[1.1 JJ
80 NEXT J
90 NEXT I
lee END
RUN

75
3.3
46
75
e
50
17

OONE

Programming with Arrays

MAT PRINT STATEMENT
The MAT PRINT statement allows the printing of one or more complete arrays in a single
statement. The elements are printed row by row and can be spaced out in fields or packed
together, as in the PRINT statement.

Each row of each array is printed separately, with double spacing between rows. If a comma
follows the array, each element starts in one of the five divisions of the line. If a semicolon
follows the array, the elements are printed packed together, as if each element were followed
by a semicolon. If nothing follows the last array in the statement, a comma is assumed. All
formatting is done according to the specifications under the PRINT statement.

Examples:

1 0 DIM A[3]~B[5~5)~C[2~2]
20 MAT READ A~B[3~5l~C
30 MAT PRINT A
40 MAT PRINT B~C
60 MAT PRINT AlB;
70 DATA 2~4~7~0~5~0~0~0~19~0
80 DATA 1~2~3~4~5~6~7~8~9~10
90 DATA 4.4~3.3
1 00 END
RUN

2

4

7

'" 5 0 '" 0

19 0 1 2 3

4 5 6 7 8

9 10

4.4 3.3

2

4

7

0 5 0 0 0
19 0 1 2 3

4 5 6 7 8

DONE

The MAT READ statement in line 20 redimensions array B. Redimensioning is not permitted
in a MAT PRINT statement. Note the effect of the semicolons following A and B in the MAT
PRINT statement, line 60, on the printed output.

:l-9

Programming with Arrays

ARRAY OPERATIONS
The following group of five statements provides functions which operate on one or more entire
arrays:

MAT Addition and Subtraction statement
MAT Multiplication statement
MAT ... INV (Inverse) statement
MAT ... TRN (Transpose) statement
MAT Scalar Multiplication statement

ARRA Y ADDITION/SUBTRACTION

The MAT addition and subtraction statement performs array addition or subtraction (element
by element) upon arrays of identical dimensions and assigns the result to another array.

Examples:

3-10

10 DIM A[2~2J#B[2#2J~C[2~2J
20 MAT READ AlB
30 MAT C=A+8
40 MAT PRINT A~LIN(2)~8~LIN(2)~C
50 DATA 3~3~4~4~2~2~1~1
60 END
RUN

3 3

4 4

2 2

1 1

5 5

5 5

DONE

Programming with Arrays

The values in arrays A and B are added to produce the values printed for array C. Using the
same data, A is subtracted from B to produce the following results in C:

1 0
20
30
40
50
60
RUN

3

4

2

1

3

DONE

DIM
MAT
MAT
MAT
DATA
END

A[2~2]~B[2~2J~C[2~2]

READ A~E
C=A-B

PRINT A~LIN(2)~B~LIN(2)~C
3~3~4~4~2~2~1~1

3

4

2

1

1

3

3-11

Programming with Arrays

ARRAY MULTIPLICATION

The MAT Multiply statement performs an array multiplication on an array of dimension m by
n and an array of dimension n by p; that is, the number of columns in the first array must
equal the number of rows in the second. The result, a new array of dimension m by p, is
assigned to a third array.

Each row of the array to the left of * is multiplied by each column of the array on the right to
produce the new element. The resulting array is assigned to the array to the left of the
assignment operator. This array is redimensioned to dimension m by p. Any or all of these
arrays may be the same array.

Examples:

10 DIM AC213l l BC3121lCC2121
20 MAT READ AlB
30 MAT C=A*B
40 MAT PRINT AJLIN(1)JSJLIN(1)JC;
50 DATA 11213141516
60 DATA 41516171819
70 END
RUN

2 3
} array 1

4 5 6

4 5

} 6 7 array B

6 9

40 46
} array C = A*B

94 109

DONE

The method for performing a matrix multiplication is to multiply each element of the first row
of array A by the corresponding element of the first column of B and to add the products. The
result is the element C(1,l). Then each element in the first row of A is multiplied by the
corresponding element in the second column ofB and these are added to produce C(1,2). C(2,1)
is the sum of the products resulting from the multiplication of row 2 of A and column 1 of B;
C(2,2) is the sum of the products of row 2 of A and column 2 of B. To illustrate:

3-12

1x4 (4) + 2x6 (12) + 3x8 (24) = 40

4x4 (16) + 5x6 (30) + 6x8 (48) = 94

1x5 (5) + 2x7 (14) + 3x9 (27) = 46

4x5 (20) + 5x7 (35) x 6x9 (54) = 109

Programming with Arrays

A second example multiplies the square array C by itself. In this case, the number of columns
al ways equals the numbers of rows.

(user input is underlined)

10
20
30
413
50
60
RUN

DIM
MAT
MAT
MAT
MAT
END

C[3"3J,,DC3,,31
INPUT C
PRINT CJ

D=C*C
PRINT OJ

12,,4,,6,,8,,1,,3,,5,,7,,9
2 4 6

8 1 3

5 7 9

66 54 78

39 54 78

1 1 1 90 132

DONE

To achieve the result MAT D=C*C;

D(l,l) = 2x2 (4) + 4x8 (32) + 6x5 (30) = 66

D(1,2) = 2x4 (8) + 4x1 (4) + 6x7 (42) = 54

D(1,3) = 2 x6 (12) + 4 x3 (12) + 6 x9 (54) = 78

D(2,1) = 8x2 (16) + 1x8 (8) + 3x5 (15) = 39

D(2,2) = 8x4 (32) + 1x1 (1) + 3x7 (21) = 54

D(2,3) = 8 x6 (48) + 1 x3 (3) + 3 x9 (27) = 78

D(3,1) = 5 x2 (10) + 7 x8 (56) + 9 x5 (45) = 111

D(3,2) = 5x4 (20) + 7x1 (7) + 9x7 (63) = 90

D(3,3) = 5 x6 (30) + 7 x3 (21) + 9 x9 (81) = 132

3-13

Programming with Arrays

This next example multiplies a two-dimensional array with three rows and two columns by a
one-dimensional array with two rows. The result is a one-dimensional array with three rows.

10 DIM A[3~2J~B[21~C[3J
20 MAT READ A
30 MAT READ B
40 MAT C=A*B
50 DATA 1~2~3~4~5~6~1~2
60 MAT PRINT A;LIN(I)JB;LIN(l)JC;
70 END
RUN

1 2

3 4

5 6

1

2

5

1 1

17

DONE

To achieve the result MAT C=A*B:

3-14

C(l) = 1 x 1 (1) + 2 x2 (4) = 5

C(2) = 3 x 1 (3) + 4 x2 (8) = 11

C(3) = 5x1 (5) + 6x2 (12) = 17

Programming with Arrays

ARRA Y INVERSION

The MAT ... INV statement assigns th~ inverse ofa square array (i.e., number of rows equals
number of columns) to another array. The inverse of an array is the array which, when
multiplied by the original array, results in the identity array.

The two arrays must be of the same dimensions. The same array may be used on both sides of
the equation.

Example:

1 0
20
30
40
50
RUN

DIM
MAT
MAT
MAT
END

A[5~5]~B[5~5]

INPUT B
A=INV(B)

(user input is underlined)

PRINT B~LIN(2)~A

11~0~010~0~2~1~010~0~3121110~0~413~2~1~01514~31211
1 000

2 1 o

3 2 1 o

4 3 2 1

5 4 3 2

1 0 " "
-2. 1 • 1.78814E-07 "

1 • -2. 'I • "
7.74860E-07 .999999 -2. 1

-1.01328E-06 7.15256E-07 1 • -2

DONE

25 values are input to the square array B, then using INV,array A is set to the inverse ofB.

3-15

"
"
1

"
"
"
"
1

Programming with Arrays

ARRA Y TRANSPOSITION

The MAT ... TRN statement assigns the transposition of an n by m array to an m by n array.
Transposition switches rows and columns.

The array on the left is redimensioned such that the resulting array is the reverse of the
original array. The same array cannot be used on both sides of the equation.

Example:

1 0
20
30
40
50
RUN

DIM
MAT
MAT
MAT
END

At5 .. 3l .. B[3 .. 5l
INPUT B

A=TRNCB)

(user input is underlined)

PRINT B .. LIN(2) .. A

? 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 .. 11 .. 12 .. 13 .. 14 .. 15
123

6 7 8

1 1 12 13

1 6 1 1

2 7 12

3 8 13

4 9 14

5 10 15

DONE

4 5

9 10

14 15

Array A is the result of transposing array B with the TRN function. The columns in B are the
rows in A; the rows in B are the columns in A.

3-16

Programming wi th Arrays

ARRA Y SCALAR MULTIPLICATION

The MAT scalar multiplication statement multiplies all of the elements of an array by a
specified value and assigns the result to another array.

Example:

(user input is underlined)

10
20
30
40
50
60
RUN

N=5
MAT
MAT
MAT
DIM
END

INPUT B
A=(N*2>*B

PRINT AJ
A[3"4],,B[3,,4l

?1,,2,,3,,4,,5,,6,,7,,8,,9,,10,,11,,12
10 20 30 40

50 60 70 80

90 100 110 120

DONE

Scalar multiplication simply multiplies each element of the array by the specified numeric
expression, in this case N*2 or 10 since N =5. Each element of the resulting array A is 10 times
the corresponding element in B. The dimensions of A are copied from B. The numeric expres­
sion must be enclosed in parentheses.

3-17

I
'BMWI

PROGRAMMING WITH STRINGS ~I IV I

WHAT ARE STRINGS?
Strings are groups of characters which can be used to provide program dialog with the user to
facilitate data input or to print comments and headings during report generation. Strings are
the principal type of data used in applications such as text editing and most data base
applications. For example, the following statement could be used to print a heading in a report
generation program:

10 PRINT "QUARTERLY REPORT"
.....

string

STRING CHARACTER SET

The characters used in strings must be from the ASCII (American Standard Code for Informa­
tion Interchange) character set. The full set of characters available is given in Appendix A.
The character set includes upper and lower case letters, numbers, punctuation, and a variety
of non-printing characters (used to control in ut/output devices). This means that commas,
periods, and control characters such as return and (tine feed) are valid string characters.
Strings are normally enclosed in quotes CtTHI IS A STRING"). Examples of strings are:

"ABCDEFGHI"
"12345"
"Bob and Tom"
"March 15, 1970"

(Quotes without an enclosed character define the tnull' string)

Programming with Strings

NUMERIC EQUIVALENTS OF CHARACTERS
(AN ALTERNATE FORM)

Strings can also be represented as the numeric equivalent of a character preceded by an
apostrophe. The numeric equivalent can be any integer from 0 to 255. A complete list of
numeric equivalents of characters is given in Appendix A. The numeric equivalent of UA" for
example, is 65. The character uA" can therefore be represented as '65. In a similar manner, a
line feed is '10. Numeric equivalents exist for all ASCII characters including quotes, HC, and
xc.

Examples:

'23 '64 '49
'65 '66 '67

is equivalent to !!WC@l"
is equivalent to ((ABC"

The numeric equivalent form of string character can be combined with other string characters
to form longer strings.

Example:

'65 "BC" '68 '69 "F" is equivalent to !!ABCDEF"

When assigning values to strings, two quoted strings cannot be adjacent CAB CD" '69 is valid,
!!AB" !!CD" '69 is not). The length of the combined string formed cannot exceed the string
character limit of 255. Note that the numeric equivalent form of string characters cannot be
used in input statements (INPUT, LINPUT, LINPUT#, ENTER, or READ#) or in IMAGE or
FILES statements.

UPPER AND LOWER CASE LETTERS

Lower case letters can be input from or output to terminals having a lower case capability.
When lower case letters are output to a terminal not capable of printing them, the terminal
normally prints the upper case equivalent. Lower case letters are automatically converted to
upper case by the system, except when they occur in strings or REM, IMAGE, or FILES
statements. Lower case letters in file names used in ASSIGN, CREATE, FILES, and PURGE
operations or program names used in CHAIN statements or the exponential !!e" in CONVERT
statements are converted to upper case when used.

Programming with Strings

HOW DO YOU REFERENCE STRINGS?
Strings can be used directly as in the statement 10 PRINT ((ENTER DATA", or they can be
given a name and then the name can be referenced whenever the string of characters is
required.

NAMING STRINGS

String names (variables) are made up of a single alphabetic character (A through Z) followed
by $, 0$, or 1$. This allows up to 78 different string variables to be defined.

Examples:

A$, 80$, C1$

DIMENSIONING STRINGS

String variables are assumed to be one character long by default. If a string will exceed one
character it must appear in a DIM or COM statement with its maximum length. This ensures
that sufficient program space is allocated. Attempts to create a string longer than its dimen­
sioned value will result in an error. Strings of less than the dimensional length are valid.

When a string variable is declared, its ((physical" length is set. The ((physical" length is the
maximum size string that the variable can accommodate.

Examples:

710 DIM A$(72), 8$(20),C$(50),Z1 $(255)
720 COM R$(200),SO$(10)

During execution of a program, the ((logical" length of a string variable may vary. The
((logical" length of the variable is the actual number of characters that the string variable
contains at any point.

Examples:

100 DIM A$(72) (Sets physical length of A$ to 72)
200 A$ = "SAMPLE STRING" (Logical length of A$ is 13)

300 A$ = "LONGER SAMPLE STRING" (Logical length of A$ is now 20)

4-3

Programming with Strings

SUBSTRINGS

Substrings are contiguous subsets of string characters. The subset is defined with subscripts
following the string variable name. Two subscripts, separated by a comma, specify the first
and last characters of the substring. Characters within a string are numbered from the left
starting with one. Subscripts must be positive, non-zero and less than 32,768. (Note that even
though subscripts up to 32,768 are allowed, execution errors result when subscripts exceed the
string size defined in a DIM statement or 255 characters.) Non-integer subscripts are rounded
to the nearest integer.

Example:

100 2$ = "ABCDEFGH"
200 PRINT 2$(2,6)

prints the substring

BCDEF

A single subscript specifies the first character of the substring and implies that all characters
following are part of th~ sUbstring. Continuing the example:

300 PRINT 2$(3)

prints the substring

CDEFGH

Two equal subscripts specify a single character substring.

400 PRINT 2$(2,2)

prints the substring

B

If a substring is specified which is larger than the physical length of the original string, blanks
are appended to the substring in place of the missing characters.

HOW DO YOU USE STRINGS?

Strings may be used in a variety of ways. The first step is to assign a value to the string. Once
this has been done there are a variety of operators and string functions that can be used to test
or modify the string. When string modification is complete, the string can be output in the
same manner as numeric data.

4-4

Programming with Strings

PLACING VALUES IN STRINGS

You assign values to string variables by setting them equal to string data, other strings, or
string valued functions.

SIMPLE ASSIGNMENT. The simplest way to set a string value is to use the LET statement.
Strings can be set equal to literal strings, other string variables, or substrings.

Examples:

10 LET XO$ = "THIS IS A STRING"
20 R$(1,5) = G$(6,1 0)

In the first example, XO$ is assigned the value in quotes. In the second example, the value
contained in the substring G$(6,lO) is assigned to the substring R$(1,5).

STRING DATA. String variables can be set equal to string data using the INPUT, LINPUT,
ENTER, or READ statements. The first three statements are used to set a string or substring
equal to string data entered from your terminal.

Examples:

10 INPUT A$
20 INPUT BO$, C$(1,5)

30 LlNPUT X$
40 ENTER #V, E, A, A$

(Inputs a string value from your terminal and assigns it to A$)
(Inputs a string value and assigns it to BO$ and inputs a second
string value and assigns it to the first five characters in C$)
(Inputs an entire line from your terminal and assigns it to X$)
(Inputs a string value from your terminal and assigns it to A$)

The READ statement can be used to set a string or substring equal to string data contained in
a DATA statement. Strings used in DATA statements are limited to a maximum of 255
characters. (This may be less depending on your system's configuration.)

Example:

10 READ A$,B$,C$,N,D$(6,8)
20 DATA "ABC","8CA","CAB",5,"BA" '67

The example assigns eacl of the values given in the DATA statement to the corresponding
variable in the READ statement. Note that stri.ag and numeric variables can occur in the same
READ statement.

The READ# and LINPUT# statements can be used to obtain values from a file rather than
your terminal. (Refer to Section V for a discussion of file operations.)

Examples:

10 READ# 1 ;A$,B$,C$(1 ,7)
20 LlNPUT# N; G$

4-5

Programming with Strings

SETTING STRINGS EQUAL TO STRING VALUED FUNCTIONS. String valued func­
tions (refer to the discussion following) can be used in place of string data in assignment
operations. The string variable is set equal to the result of the function.

Examples:

10 A$ = UPS$(B$)
20 0$(3,3) = CHR$(N)

USING STRINGS IN RELATIONAL OPERATIONS

Strings and string variables can be used with relational operators in the same manner as
numeric values. The relational operators (=, <, >, >=, <=, < » can be used with strings to
perform branching operations. These operators are also useful for sorting strings.

Example:

1 0 IF A$ > = B$(3,7) THEN 40
20 IF C$ = "ABC" THEN 50

STRING STATEMENTS AND FUNCTIONS

There are several statements and functions that perform special string operations. Some use a
string or numeric argument and return string values, others return numeric values.

STRING V ALUEDSTATEMENTS AND FUNCTIONS. The statements and functions that
return string values are the CONVERT statement and the CHR$, and UPS$ functions.

The CONVERT statement allows you to change numeric data to its ASCII equivalent and an
ASCII number to its numeric equivalent. (Note, this is not the same as the equivalents of
individual characters as in CHR$ or NUM.) In the following example the value of N is
converted to the string of ASCII characters that would be listed (LIST command) at your
terminal by the statement PRINT N.

Example:

10 N = 2*(111)
20 CONVERT N TO A$

A$ now contains the ASCII characters u2", ((2", and ((2". The ASCII string representation can
now be used in alphanumeric sort operations or can be appended to other strings.

4-6

Programming with Strings

For example, if N were used as a counter for labeling files, a new file name (string) could be
created by appending the counter value (number) each time a new file is required.

Example:

10 F$ = "FIL"
20 N = 0
30 GOSUB 100

90 REM FILE CREATOR
100 N = N + 1
110 CONVERT N TO A$
120 F$(4) = A$
130 CREATE R, F$, 100
140 RETURN

The first time the subroutine is entered, a file name FILl containing 100 records would be
created. Additional passes through the subroutine would create the files FIL2, FIL3, FIL4, etc.

The CHR$ function converts a number in the range O:::;n :::;255 into the equivalent ASCII
character. (This is the opposite of the NUM function which returns a numeric equivalent for a
string character.) A complete list of ASCII characters and their numeric equivalents is given
in Appendix A.

Example:

10 FO R N = 1 to 255
20 A$(N) = CHR$(N)
30 NEXT N

This example would create a string (255 characters long) where each character is the ASCII
equivalent of its position in the string. In other words A$(65) = ((A", A$(66) = uB", A$(67) =
((C", etc.

4-7

Programming with Strings

The UPS$ function causes lowercase alphabetic characters (a through z) to be shifted to their
uppercase equivalents (A through Z).

Example:

10 A$ = UPS$(Z$)

The UPS$ function is valuable in alphanumeric sorts. Sorting is normally done according to
the ASCII equivalent value of each character. If the strings to be sorted contain a mix of upper
and lowercase characters it is possible that an Ha" would be set after HZ". To eliminate this
problem you can shift strings to their uppercase equivalent before sorting. Once the sort
position is obtained the lowercase string can be entered in the proper table position.

NUMERIC VALUED STATEMENT AND FUNCTIONS. The statements and functions
that use string arguments and return numeric values are the CONVERT statement and the
LEN, NUM, and POS functions.

The CONVERT statement allows you to change an ASCII number to its numeric data
equivalents and numeric data to its equivalent in ASCII characters. (Note, this is not the same
as the equivalents of individual characters as in CHR$ and NUM.) In the following example
the value of A$ is converted to a numeric data value and assigned to N. This isjust the opposite
of the example used earlier with the CONVERT statement.

Example:

10 A$ = "995.6"
20 CONVERT A$ TO N

The numeric variable N now contains the numeric value 995.6. This numeric value can now be
used in numeric expressions. This conversion is useful when formatting reports involving
arithmetic operations and textual data.

The LEN function returns a numeric value that is the length (number of characters) currently
assigned to a string variable. In the example that follows, N is set to the number of characters
assigned to (not dimensioned for) A$.

Example:

10 DIM A$(72)
20 A$ = "ABC"
30 N = LEN(A$)

This would result in N being set to 3. The LEN function is useful in sorting or searching
strings or in appending or modifying strings. The example given for the NUM function
illustrates how the LEN function can be used to index character by character through a string.

4-8

Programming with Strings

The NUM function converts a single string character to a numeric value that is its ASCII code
equivalent. A complete list of ASCII characters and their numeric code equivalent is given in
Appendix A. In the following example, the numeric variable N is set to the ASCII code
equivalent of the third character in A$.

Example:

10 N = NUM (A$(3,3))

You can obtain the numeric code equivalent of a whole string as follows:

10 FOR 1 = 1 TO LEN (A$)
20 N(I) = NUM (A$(I, I))
30 NEXT 1

The POS function allows you to test to see if one string occurs within another string. This is a
powerful tool in any text editing or other word processing application. The POS function uses
two string arguments, a string to search and a string to look for. If the ((looked for" string is
found, the function is set to the position in the ((searched" string where the first matched
character occurs. If the ((looked for" string does not occur, the function is set to O. In the
following example, S$ is a long string that may contain one or more occurrences of another
string R$.

Example:

1 0 DIM 5 $ (6 0 J " R$ C 1 0 J
20 S$= "TH I SIS THE PO IN T TO IN PUT THE DATA"
25 R$=" THE "
30 REl-1 P IS THE POSITION IN S$ \-lHERE R$ BEGINS
35 P=0
4 0 P 1 = PO S (S $ (P+ 1) " R$)

50 IF Pl=0 THEN 80
55 P=Pl+P
60 PRINT "SEARCH STRING FOUND AT"; P
70 GOTO 40
80 END

RUN

SEARCH STRING FOUND AT 8
SEARCH STRING FOUND AT 27

IXlNE

1-9

Programming with Strings

OUTPUTTING STRINGS

Strings can be printed at your terminal, written to disc files, or output to any of the peripheral
devices available on your system. Output of string data is accomplished in the same manner as
numeric data. String and numeric data can be mixed in the same output statement. Output is
performed using the PRINT and PRINT# statements.

The PRINT statement allows you to output string data to your terminal.

Example:

100 PRINT "THIS IS A STRING"
120 PRINT A$; B$, C$

The PRINT USING statement can be used to output string data according to a predetermined
format. In the following example, the variables A$, I, and T(l) are printed using the format
defined in statement 80. (Quoted strings and string valued functions cannot be used as print
list items in a PRINT USING statement.)

Example:

10 DIM A$(10]"B$(20]
2 0 A$ = " AC CO liN T "
30 B$= "TO TAL REPO RT"
40 PRINT TAB(10)" B$(7" 12]
45 T=0
50 FO R I = 1 TO 1 0
60 READ T(Il
70 PRINT USING 80;A$"I .. TCI]
80 IMAGE 7A"DD,,5X,,6D.D
85 T=T+TCI]
90 NEXT I
95 PRINT
100 PRINT USING 105;B$(1"5],,T
105 IMAGE 2X,,5A,,7X,,6D.D
110 DATA 15" 150"2000,,3000,,600 .. 50,,70,, 19.5"100,, 120
120 END
RUN
OK

REFORT
ACCOUNT 1 15. 0
ACCOUNT 2 150. 0
ACCOUNT 3 2000.0
ACCOUNT 4 3000. 0
ACCOUNT 5 600. 0
ACCOUNT 6 50. 0
ACCOUNT 7 70. 0
ACCOUNT 8 19. 5
ACCOUNT 9 100. 0
ACCOUNT 10 120.0

TOTAL. 6124.5

4-10

Programming with Strings

Refer to Section XI for further information on the PRINT USING and IMAGE statements.

The PRINT# statement can be used to output data to BASIC formatted or ASCII files (refer to
Section V for a discussion of file operation).

Example:

70 PRINT#1 ;A$,N,B$,"QUTPUT"
80 PRINT#N,R+1 ;A$,B$(1,7),H(3),"TEST"

4-11

I 'MiMi. FILES I v I

There are two types of files provided by the system: BASIC formatted files and ASCII files.

BASIC FORMATTED FILES
BASIC formatted files are used primarily to store data for later retrieval and manipulation.
You have already seen how data can be stored within a program using DATA statements. For
example, the following program prints out the months of the year by reading them from two
data statements:

10 DIM A$r 40)
20 PRINT "THE MONTHS OF THE YEAR:"
30 FOR 1=1 TO 12
40 READ AS
50 PRINT A$
60 NEXT I
70 DATA "J ANUARY" ~ 'ttFEBRUARY" ~ "MARCH" ~ "APRI L" ~ "MAY" ~ "JUNE" ~ uJULY"
80 DATA "AUGUST"~"SEPTEMBER"I"OCTOBER"I"NOVEMBER"~"DECEMBER"
90 END

BASIC formatted files are similar to DATA statements. For example, each can store both
numeric and string data; each has associated with it a pointer which is initially set to the first
item of the first data stetement and which advances sequentially through the data as items are
read; each can be read serially (with the READ and READ#; statements, respectively); each
can be read directly with the RESTORE and READ#; statements, respectively); and each can
detect (with the TYP function) whether the next item to be read is a number, a string, or if
there is more data to be read.

DATA statements, although useful in many cases, are not very powerful for two reasons: (1)

The amount of data which can be stored in anyone program is limited to the maximum size of
a program (about ten thousand words of storage, which is the equivalent of about twenty
thousand characters of data). (2) The data stored in DATA statements never changes from one
RUN of the program to the next.

BASIC formatted files fill these deficiencies. They may be used to store large amounts of data
(a BASIC file may contain up to 16.7 million characters of data, depending on the system's
configuration); and, this data may be added to, changed, and deleted by running programs.

5-1

Files

CREATING AND PURGING A BASIC FORMATTED FILE

Before you can store data in a BASIC formatted file, space for that file must be reserved on a
disc using either the CREATE statement or the CREATE command. Each permits you to
specify the three defining characteristics of a file:

name

length in records

size of each record -
(optional)

1 to 6 alphanumeric characters and unique from all other names
in your library

can be up to 32,767 records long depending on system configura­
tion; automatically numbered consecutively from record 1

all records physically occupy 256 words of system storage al­
though for special programming purposes they may be set to a
logical length from 64 to 256 words (default = 256 words)

For example, to create a file to store a list of 1000 employee names with their ID numbers and
salaries, use the command

CRE-SALARY,59

Since no value is indicated for record size, the default value, 256 words, is assumed.

To determine how long the file needs to be, you must first approximate how many words of
record space each of the 1000 entries will need. Every number in a file occupies 2 words; every
string of n characters occupies (n/2 + 1) words - 2 characters per word plus 1 word for the
length of the string. A string with an odd number of characters uses one word for the last
character. Each entry in the file SALARY will be of the form: ID, name, salary. Allowing for a
maximum length of 20 characters per employee name, each entry will occupy at most 15 words
of space in a record (2 words for the ID number, 2 words for the salary, and 11 words for the 20
character name string). Each record (by default) can store 256 words. Data items cannot be
split up (putting part of an item at the end of one record and the rest of the item at the
beginning of the next record). Therefore, each record can hold 17 data items:

256 words -;- 15 words/item = 17 items, with 1 word left over

Since the file SALARY is to hold data for 1000 employees and 17 data items fit in a record, 59
records should be reserved for the file:

1000 items -;- 17 items/record = 59 records

5-2

Files

It is possible that the data will actually occupy less than 59 records of storage. If an employee
name is shorter than 20 characters then that data item will occupy less than 15 words in the
record. It may be possible to fit more than 17 data items in a record, hence 1000 data items
might take fewer than 59 records. However, you should still reserve enough space for the
largest possible case - 1000 items where every name is 20 characters long. Also, if you do not
presently have 1000 employees for the file, but anticipate eventually adding new employees, it
would be wise, when you initially create the file, to reserve sufficient space to extend the list.

When a file is first created and before any data is entered in the file, an End-Of-File (EOF)
mark is automatically written in the first word of each record. When data is entered in a record
it is written over the EOF mark~ eliminating it. You can place EOF marks in a record using
the PRINT statement as will be seen in example 1.

Once created, a file remains on a disc of the system until it is eliminated with a PURGE
statement or command.

This is how the file SALARY, with 1000 data items, all of maximum length (15 words), will be
arranged on the disc:

SALARY

RECORD 1 ----i.~1 ~IRECORD 2 j.-
item 1 item 2

1 D, NAME'11 1 D, NAME,'
SALARY SALARY I

E
o 17 items
R

t

E
o
R

1 word left-over 1 word left-over

r

r ,

E E
0 17 items 0
R R

t
1 word left-over

E
3 items 0

F

t
.211 words

left-over

Each pair of consecutive records is separated oy an ~~End-Of-Record" (EOR) mark, and the last
record of the file is followed by an ~~End-Of-File" (EOF) mark. Empty (left-over) words within a
record are ignored.

5-3

Files

OPENING AND CLOSING A BASIC FORMATTED FILE

In order for a program to access a file it must first open the file with a FILES statement or an
ASSIGN statement. Opening a file causes the file to be associated with an integer file number
from 1 to 16. Once a file is opened, all references to it are through its file number. For example,
if, in a program, 3 files are opened with the statement 10 FILES A,B,C then file A will be
referred to as file #1, file B as #2, and file C as #3. If the statemep.t ASSIGN ((D",l appears
later in the program, file D will become file #1, effectively closing file A. (Of course, files A, B,
C, and D must have been previously created in your library.)

Opening a file also sets its file pointer to the first word of the first record of the file. There is
one file pointer for each opened file in a program and it points to where the next data item to be
printed in the file will go, or where the next data item to be read from the file is located.

All files in a program are automatically closed upon program termination (if they have not
already been closed during program execution with an ASSIGN statement.

The following four examples illustrate the use of most file statements and functions (serial
READ, serial PRINT, IF END statement, UPDATE statement, REC and ITM functions,
ADV ANCE statement) in performing four fundamental types of data manipulations: adding
data to a file, changing data within a file, removing data from a file, and listing the contents of
a file.

EXAMPLE 1. The following program can be used to add new employees to the file SALARY.
It first checks to see if a new entry (ID, name, and salary) is valid - that the ID number is a
new integer between 1 and 1000. It then reads each employee entry sequentially checking for a
duplicate ID number. If a duplicate is found, an error message is printed, the file pointer is
reset to the beginning of the file, and another ID, name, and salary are requested. If the ID is
not a duplicate, the new entry will be added to the file immediately following the last entry in
the file. The last entry is located by looking for an EOF mark on the record. When the first
item is entered in the file, the first EOF mark will be found at the beginning of record 1.
(Remember that when a file is created, EOF marks are automatically put at the beginning of
every record in the file.)

The statement that prints a new item on the record:

150 PRINT #1 ;I,N$,S,END

prints on file #1 (SALARY file) the ID number (I), the employee's name (N$), the salary (S),
and an EOF mark (END). The new entry, which is now the last data item in the file, will write
over the old EOF mark (eliminating it) and be followed by a new EOF mark.

5-4

Files

If the file is full, the message ((FILE FULL" is printed and the new entry is not added.

10 FILES SALARY
20 DIM N$[2eJ~Nl$(20J
30 PRINT "I D~NAME .. SALARY";
40 1 N PU T 1 .. N $.. S
50 IF I >= 1 ANL I <= 1000 AND I=INT(I) THEN 8e'
60 PRINT "ILLEGAL I D"
70 GO TO 30
80 IF END.#~t.Ta£N.l~.0
90 READIl;ll"Nl$;·Sl
100 IF 1<> 11 THEN 90
1 1 0 P R I NT" LU PL I CAT E I D It
120 READ I!.,. 1
130 GO TO 30
140 IF ENDll THtN 170
150 PRiNT 11l1,; ws .. S..;El\JC
160 STO P
170 PRINT "F.ILE FULL"
180 EN D

Statement
Number

10 Specify file to be used.

Dimension strings N$ and N1$.

Ask for and get a new entry.

Meaning

Check to see that ID is an integer between 1 and 1000.

20

30,40

50

80 Set up IF END condition so that when the file pointer hits an EOF mark,
(which will indicate the last entry in the file), the program will branch to
statement 140.

90

100

140

150

Read from file #1 an ID(l1), name(N1$), and salary(Sl).

If the ID from the new entry (statement 40) is the same as the ID just read
from the file (statement 90) then you have tried to enter a duplicate ID
number.

120 Reset the pointer at the first entry of the SALARY file.

130 Go back to statement 30 and ask for a new entry.

If they are not the same, go back to 90 and check the next entry in the file.
Continue checking until there are no more entries in the file (the pointer will
be at an EOF mark).

Reset IF END condition so that if there is not enough space to print the new
entry, the message FILE FULL will be printed.

Print the new entry, followed by an EOF mark, on file #1. (This new entry
will over-write the old EOF mark.)

5-5

Files

EXAMPLE 2. The following program can be used to change the value of an employee's salary
within the file SALARY. The UPDATE statement (160 UPDATE #1; S) replaces the next
sequential data item in file #1 with a new value of S.

110 FILES SALARY
210 DIM N $(20J
310 PRINT "I D";
410 IN PUT I
510 IF I >= 1 AND I <= 11000 AND I=INT(I) THEN 8e
60 PRINT "ILLEGAL I Dtt
70 GO TO 310
810 I FEND # 1 THEN 1810
910 READ 11;11
100 I F I = I 1 THEN 1310
1110 READ #1;N$~S
1210 GOTO 90
1310 PRINT "NEW SALARY";
1410 IN PUT S
1510 READ # 1; N $

16 fa UPDATE 'LIS
170 STO P
1810 PRINT "NO SUCH I D"
1 9 0 READ # 1 ~ 1
21010 GOTO 30
2110 END

Statement
Number Meaning

30

80

Ask for ID number of employee whose salary is to be changed.

90

100

Set up an IF END condition so that if you read through all the items in the
file and do not find the ID, the message NO SUCH ID will be returned.

Read an ID from file # 1.

If it matches the number to be changed (statement 40) then:

130 Ask for the new salary.

150 Read the name (just to move the pointer past the name).

160 Replace the old salary with the new salary.

Ifit does not match, then read past the name and salary for this ID and read
the next ID.

EXAMPLE 3. One way to delete an entry from the file is to replace that employee's entry with
a line of zeros and blanks. Note that this does not actually remove the entry and leave empty
space on the file. It only writes over the entry with zeros and blanks. The following program
introduces two functions, REC and ITM, and the ADVANCE statement. The REC function
returns the current record number being accessed in the file specified. The ITM function
returns the number of data items (numbers and strings) between the beginning of the cur­
rently accessed file record and the position of the file pointer for a file. The ADVANCE
statement advances the file pointer T items within the record.

5-6

10 FILES SALARY
20 DIM N$C20J
3 10 PR IN T " I D"':
410 IN PUT I
50 IF I >= 1 AND I <= 100121 AND I=INTel) THEN 8e
610 PRINT "ILLEGAL I D"
70 GOTO 30
80 I FEND III THEN 210
9.0 R-RECCT)
100T=ITM(1)
1 1 0 READ 111': I 1
120 I F I = I 1 THEN 150
130 READ 1I1':N$~S
1410 GOTO 90
15 0 READ II 1 ~ R
160 110VANCE ••.••.•• ;flJl'~)(
170 UPDATE 111;0
180 UPDATE Ill""
19121 UPDATE 111':121
20121 STO P
210 PRINT "NO SUCH ID"
220 READ 11~ 1
230 GOTD 310
240 END

Statement
Number Meaning

Files

80 Set up IF END condition to print the message NO SUCH ID if the ID number
entered in statement 30 does not match any ID in the file.

90

100

110

120

Set R to the number of the record that the file pointer is in.

Set T to the number of entries between the beginning of the record and the
file pointer. Rand T thus exactly define the location of the ID number abO\!t
to be read.

Read this ID from the file.

See if the ID just read is the one to be deleted. If it is not:

130 Read through the rest of the entry (name and salary) for that ID. The
file pointer is now at the ID number for the next entry.

140 Return to statement 90 and read the next ID from the file.

If the ID to be deleted has been found:

150 Set the file pointer at the beginning of the record in which the matching
ID was found (recall statement 90 R=REC(l)).

160 Advance the file pointer T items from the beginning of record R. It is
now pointing to the ID to be deleted.

170 Replace the old ID number with a zero.

180 Replace the old name with blanks.

190 Replace the old salary with a zero.

5-7

Files

EXAMPLE 4. To obtain a complete listing of employees' salaries without listing deleted items
(i.e. rows of zeros and blanks);

10 FILES SALARY
20 DIM N$C20J
3e IF END III THEN 80
40 READ II 1; 1.1 N $.1 S
50 IF 1= 0 THEN 40
60 PRIN T 1.1 N $" S
70 GOTO 40
80 END

Statement
Number Meaning

30

40

50

60

Set IF END condition to stop reading at the end of the data.

Read an entry from the file.

If the entry's ID is zero then that entry was deleted (see example 3) and
should therefore not be printed.

Print the entry (since its ID is not zero).

The programs prepared thus far to enter, list, and alter entries in the file SALARY have used
serial file accessing. The programs read or write a serial list of data items (either numbers or
strings of characters) without regard to the underlying structure of the file. The program in
example 1 writes data items into the file in serial order. Each write operation begins where the
previous one left off. Then, to retrieve one of these items, the program resets the pointer at the
beginning of the file and reads through the items until it comes to the desired item. There is
only one pointer for each file. When the pointer is positioned by either a READ or a PRINT
statement, it remains pointing to the next item in the file until it is repositioned by another
file operation. To access a specific data item in a file using serial access, all data located in
front of that item in the file must be accessed. If there is a lot of data in the file, serial access
can be very slow. With additional programming effort, any BASIC formatted file can be used
for direct access storage. In this case, the program breaks the file into a series of subfiles that
can be modified independently. A READ or PRINT access of a file is (direct' if it specifies a
particular record within a file.

Serial Access

100 READ #1 ;A,B,C (reads from the current position of the #1 file pointer)

Direct Access

100 READ #1,5;A,B,C (moves the #1 file pointer to record 5 before reading)

The system provides statements that take advantage of record structure. The file pointer can
be moved directly to the beginning of any record. Also, any record can be read or printed
independently of the rest of the file using direct access versions of the READ# and PRINT#
statements.

5-8

Files

The next four examples perform exactly the same operations as the first four examples in this
chapter but use direct file access instead of serial file access. Because we do not need files that
contain duplicate information, we can remove the SALARY file from the disc using the
PURGE command:

PURGE-SALARY

Now create a new BASIC formatted file with the same name:

CRE-SALARY,1000

To use direct access, you must know exactly which entry the record is in. In the following
examples, each entry is stored in its own record (Le. ID number 1 is in record 1, ID #2 is in
record 2, etc.). Therefore, to reserve storage space for 1000 employees, the file SALARY must
be created with 1000 records. Having purged the old file SALARY, we now CREATE­
SALARY,1000 (record size assumes default value of 256 words).

EXAMPLE 5. A new employee entry with ID number I will be printed in the file SALARY at
record I. This record can be accessed directly (that is, without first reading through preceding
records).

10 FILES SALARY
20 LIM N$(20]~Nl$(20]
30 PRINT "1 D"NAME~ SALARY"';
40 INPUT I"N$., S
50 I F I > = 1 AN D I < = 1000 AN D I = IN T (I) THEN 80
60 PRINT "ILLEGAL I D"
70 GOTO 30
8.0 REAf>,lil
90 If/)TY'I?:(•• 1)#iF3 'tHltN.120
100 PRIN T "DUPL I CATE I Dtt
110 GO TO 30
120 PRINT #l;I~N$"S
130 END

Statement
Number Meaning

Inpu t en try (ID, name, salary).

Directly read to record I in file # 1.

30,40

80

90 The TYP function determines the type of data item the file pointer is at. If
TYP(l) = 3 then the file pointer is at an EOF mark so there is no data in that
record.

120 Enter the new data item.

If the file pointer is not at an EOF mark, then there is already data in that
file.

5-9

Files

EXAMPLE 6. The following program uses direct file access to change an employee's salary. In
statement 90 the TYP function tests to see if the file pointer is at a number. Since each record
contains either an EOF mark or a data item which begins with an ID number, if the pointer is
not at a number, there is no data item in that record. Recall that all ID numbers are stored in
corresponding record numbers. We want to change the salary for the employee whose ID
number is I. The old salary for ID number I will be in record I. If no ID number is found in
record I, then no employee has ID number I.

1 10 FILES SALARY
210 DIM N$(210J
310 PRINT "10"':
40 IN PUT I
510 I F I > = 1 AN D I < = 1 10 0 10 AN D I = IN T (I) TH EN 810
610 PRINT "ILLEGAL I D"
70 GOTO 30
810 READ 111.11
90 I.FTYP(1)=1 THEN 120
11010 PRINT HNO SUCH 10"
110 GO TO 310
1210 READ 1I1;I.lN$
1310 PRINT "SALARY";
1410 IN PUT S
1510 UPDATE #l;S
1610 END

Statement
Number Meaning

80

90

Directly read to record I in file #1.

5-10

If TYP(!) = 1, the next data item is a number.

120 Read past the ID number and the name.

130 Input new salary.

150 Replace the old salary with the new salary.

If the next data item is not a number, the message NO SUCH ID is returned
and the program returns to accept another ID number.

Files

EXAMPLE 7. This direct file access program to delete an employee's data entry from the file
is much simpler than the corresponding program using serial file access. Recall that in the
serial access example in order to delete an entry, zeros and blanks were written over the old
information. With direct file access, the item can actually be wiped out of the file without
additional programming by printing an EOF mark in the record.

10 FILES SALARY
20 DIM N$[20J
30 PRINT "ID u

;

40 IN PUT I
50 IF I >= 1 AND I <= 1000 AND I=INT(I) THEN 80
60 PRINT "ILLEGAL I Dff
70 GOTO 30
80 ERINT #<11 11 > END
90 END

Statement
Number

80 Print at record I an EOF mark.

Meaning

EXAMPLE 8. To obtain a listing of file entries in the direct access mode is less efficient than
in serial access. In this case every record, from 1 to 1000, must be read. You must programmat­
ically direct a read to each record by incrementing the record number. Serial reads can be
a~complished simply by looping (record boundaries are ignored).

10 FILES SALARY
20 DIM N$[20J
30 IF END 111 THEN 70
40 FO R 1=1 TO 1000
50 READ I1IIJIIN$IS
60 PRINT II N $1 S
70 NEXT 1
80 END

Statement
Number Meaning

30

40-70

Set IF END condition to go to the next record if an EOF mark is read.

Read every record from 1 to 1000, printing the contents of any record that
contains data. (If a record does not contain data, it contains an EOF mark and
is skipped.)

5-11

Files

MULTIPLE ACCESS

The information contained in the file SALARY may be read by several programs at the same
time. However, only one program at a time may have write access to the file. If more than one
program simultaneously attempts to modify SALARY, a WRITE TRIED ON READ-ONLY
FILE message is returned to all but the first program. This is because the file SALARY is a
Single Write Access file. All files are normally created with Single Write Access (SW A).

It is possible to allow several programs to have concurrent write access to the same file by
using the Multiple Write Access (MWA) command. (Refer to Section X for a complete discus­
sion of the MWA command.) For instance, the programs in example 6 (changing employee
salaries) and example 7 (deleting file entries) both contain statements that write to the
SALARY file. To run the two programs simultaneously you must first specify MW A for the file
by entering the command

MWA-SALARY

The SYSTEM statement (refer to Section XI) can be used within a program to specify MW A:

15 SYSTEM N,"MWA-SALARY"

This statement will return a value of 0 for N if the MWA command is successful and 1 if it is
not.

Now, having entered the MWA command, both programs can simultaneously write to the
SALARY file. To avoid confusion when multiple users are modifying the contents of the same
MW A file, the LOCK and UNLOCK statements should be used. The LOCK statement is used
to test whether or not a file is busy. It does not deny others access to the particular file but it
allows users to cooperate in accessing that file. For instance, programs A and B below
correspond to the programs seen in examples 6 and 7 with LOCK and UNLOCK statements
inserted.

A. Changing Employee Salaries

5-12

10 FILES SALARY
20 DIM NS(20)
30 PRINT "I D";
40 IN PUT I
5 0 I F I > = 1 AN D I < = 1 00'" .AN D I = IN T (I) TH EN 80
60 PRINT "ILLEGAL I DIt
70 GOTO 30
80 READ 11,,1
9 0 IF TYP(1) = 1 THEN 120
100 PRINT "NO SUCH I Dtt
110 GOTO 30
120 READ 11JI"N$
13'" PRIN T "SALARY";
140 IN PUT S
145 LOCK.'!
150 UPDATE 11; S
155 t1N~O CK #1
160 END

Files

B. Deleting File Entries

10 FILES SALARY
20 DIM N$(20)
30 PRINT "1 Dtt;
40 IN PUT I
50 I F I > = 1 AN D I < = 1 000 AN D I = IN T (I) TH EN 75
60 PRINT "ILLEGAL ID"
70 GOTO 30
75 L.QCKIl
80 PRIN Till .. I; EN D
8S UNLiOCJ\ 11
90 END

Ifprogram A attempts to write to the file before program B does, program A will be given write
access to the file. If program B now attempts to write to the file, execution of program B will
pause until program A has unlocked the file. Be sure to match every LOCK statement in a
program with an UNLOCK statement. If the UNLOCK statement had been left out of program
A, the file would have remained locked and program B could not have written on the file until
program A terminated. (Refer to Section XI for a detailed description of the LOCK and
UNLOCK statements.)

A file that has been operating in MW A mode can be changed back to the SW A mode using the
SWA command:

SWA-SALARY

5-13

Files

READIWRITE RESTRICTIONS

The restriction option of the ASSIGN statement can be used to provide additional control of
read/write access to an SW A file. A read and write restriction can be placed on a file to prevent
subsequent users from accessing the file while you are using it. For example, to apply the read
and write restriction to the file SALARY you can use the statement:

5 ASSIGN "SALARY", 1 ,N,RR

If another user has already opened the SALARY file and restricted its use, then the ASSIGN
statement will return a value of 6 or 7 for the return variable N and the file will not be opened.
(Refer to Section XI for a complete discussion of the ASSIGN statement and its return
variables.) Otherwise, the file will be opened and the RR (read/write) restriction set. No other
user may access the file SALARY in any way until your program removes the RR restriction
by closing the file or ASSIGNing it again with no restriction.

Additional file access information can be found in Section VIII.

5-14

Files

ASCII FILES
ASCII files provide the user with programmable access to the following devices: magnetic tape
units, paper tape readers, paper tape punches, card readers, and line printers. In addition,
ASCII disc files complement BASIC formatted files by providing additional means to store and
access information on the system.

CHARACTERISTICS OF ASCII FILES

ASCII files, like BASIC formatted files, consist of a series of consecutive records separated by
end-of-record (EOR) marks and followed by an end-of-file (EOF) mark.

ASCII files can hold only string data. Numeric data is automatically changed to a character
string that represents the numeric data. For instance, in the example shown below, ((N" is set
to the numeric value 176.54. ASCI is an ASCII disc file. The character string U 176.54" would
be printed on the file and not the numeric value of the data.

10 FILES ASC1
20 N = 176.54
30 PRINT #1; N
40 END

Note that only the number 176.54 in a two word format would have been stored in a BASIC
formatted file. The ASCII file ended up with seven characters being stored, and the data
content of the files is different. A BASIC formatted file would have contained the binary
representation of a signed number and an exponent. The ASCII file contains the binary
representation of the ASCII characters that would have been sent to the terminal.

ASCII file access is limited in comparison with BASIC formatted files:

• Except for ASCII files resident on magnetic tape or disc, a given file is read-only or
write-only. An example of a read-only file is a card reader; a line printer is a write-only
file.

• Because of the serial nature of paper tape readers, paper tape punches, card readers, and
line printers, data read from or written to ASCII files associated with these devices
cannot be re-accessed.

• The ability to selectively alter portions of an ASCII file is severely restricted or non­
existent, depending on the device.

• Direct access READs and PRINTs are not allowed.

• For all ASCII file devices multiple user access is prohibited (hence, they are called
(non-sharable devices').

• The ADVANCE, UPDATE and CREATE statements are not permitted with ASCII files.

• The REC and ITM functions cannot be used with ASCII files.

5-15

Files

CREATING AND PURGING ASCII FILES

ASCII files are created via the FILE command or the SYSTEM statement. Each includes
specification of a name (1 to 6 letters or digits) and a device type. For ASCII files on disc, the
number of records must also be specified. Users can be granted access to non-sharable devices
by the system operator. Disc-resident ASCII files, like BASIC formatted files, are available to
all users. The DEVICE command displays a list of devices available to you.

DEV
LEVICE

DES 1 GN ATO P.
CR0
LP0
LPI
PF0
MT0
PR0

MAXIMUM
RECO RD SIZE

4e
66
66
64

256
64

STATUS

BUSY

The items in the first column are mnemonics assigned by the system operator that represent
the various devices available. For instance, CRO, is card reader number 0; LPO and LPI are
line printers 0 and 1.

The numbers in the second column indicate the maximum number of words allowed per record
for each device. The card reader can hold records up to 40 words long (hence a card of 80
columns - 2 columns/word); the line printerb can hold up to 66 words per record; etc ..

The status column shows that LPO is busy. If you were to request that device, your program
would terminate.

An N/A entry in the STATUS column would indicate that the system operator had removed
that device from the system or had given another user exclusive access to that device. (Refer to
Section I for a discussion of system operator capabilities.)

If no record length is specified when creating an ASCII file, the maximum record size is
assigned by default. For ASCII files on disc, the number of records must be designated. (The
default value for disc record length is 63 words.)

FILE - ASC1, CRO
FILE - ASC2, OS, 50
FILE - ASC3, LP1
FILE - ASC4, MT, 80

(Note: These ASCII files will be used in later examples in this section.)

ASCI is an ASCII file equated to the card reader CRO; its record length is 40 words by default.
ASC2 is an ASCII disc file with 50 records of 63 words each. ASC3 is a line printer with the
default record length 66 words. ASC4 is the magnetic tape unit with record length 80 words.

ASCII files can be purged with either the PURGE command or the PURGE statement.

5-16

Files

OPENING ASCII FILES

Once an ASCII file has been created, it can be opened for use in a program by either a FILES
statement or an ASSIGN statement.

10 FILES ASC1, ASC2, ASC3

If the file is disc-resident, the program is given access to it. Otherwise, the associated device is
requested. If a device is not available an error indication is returned to you. Opening a file
causes the file to be associated with an integer file number from 1 to 16, according to its
position in the FILES statement. In the example above, ASCI becomes file #1, ASC2 is file #2,
and ASC3 is file #3. Once a file is opened, all references to it are through its file number. The
ASSIGN statement can be used in a program to re-assign file numbers. For instance, the
following statement will open the file ASC4 and will associate ASC4 with file #2, closing the
file ASC2:

20 ASSIGN ASC4,2,R

PRINTING TO AN ASCII FILE

Data is written to an ASCII file using the file PRINT statement. For example, having created
the files ASCI, ASC2, ASC3, and ASC4, open the ASCII file associated with the line printer
and print the number 1975 on that file:

10 FILES ASC3
20 PRINT #1; 1975
30 END

Recall that in ASCII files numeric data is automatically changed to a character string that
represents the numeric data. The data is formatted on the ASCII file exactly as it would appear
on a terminal. Multiple items in an ASCII file PRINT statement are formatted on the ASCII
file according to the format specifications for the PRINT statement. (Refer to Section XI.)

For example, the PRINT statement

60 PRINT 1975, "HELLO", -127.5

would cause the character string

(1 blank) 1975 (10 blanks) HELLO (10 blanks) -127.5

to be printed as the next line on your terminal.

Correspondingly, for ASCII file PRINT statements, the program

10 FILES ASC3
20 PRINT #1; 1975, "HELLO", -127.5
30 END

would cause the same character string

(1 blank) 1975 (10 blanks) HELLO (10 blanks) -127.5

to be printed as the next line on the line printer.

5-17

Files

READING FROM AN ASCII FILE

Reading from an ASCII file can be done with either a file READ statement or a file LINPUT
statement. The file READ statement reads data as if from an INPUT statement on your
terminal. For example, the following program reads a character string representation of
number, a string, and a number from a card:

10 FILES ASC1
20 READ #1; X, A$, Y
30 END

The data on the card must be separated by commas and the string to be read into A$ must be
enclosed in quotation marks, just as if all three items were being read in from an INPUT
statement:

1975, "HELLO", -127.5

Frequently, data is not organized this way. The file LINPUT statement permits a program to
read an entire record of an ASCII file into a string variable, without regard to internal commas
or quotation marks.

20 LlNPUT #1; A$

This statement would read an entire string, including blanks, commas, and quotation marks,
into the one variable A$.

Note that simply printing data to an ASCII file will not necessarily enable that data to be read
back from the file. The statement

20 PRINT #1; 1975, "HELLO"

will print the string

(1 blank) 1975 (10 blanks) HELLO

on file #1. A file READ statement to that same file

20 READ #1; X, A$

would return an error message because the two items in file #1 are not separated by a comma
and the character string is not delimited by quotation marks.

5-18

Files

EXAMPLE 9. The following program is an example of how ASCII files can be used to read a
deck of cards from a card reader and print their contents on a line printer. First create two
ARf1n files equating the file ASCI with a card reader and the file ASC3 with a line printer.

FI LE- ASe 1 ~ CR~
FILE-ASe3"LP0

10 FILES ASel~ASe3
20 DIM ASC8C?J)
30 IF END #1 THEN 70
40 LINPUT 11': AS
50 PRINT 12':A$
60 GOTO 40
70 END

Statement
Number Meaning

10

20

30

40

50

Open the files ASC 1 and ASC3.

Assign dimension 80 to A$ because A$ will be read from 80 column cards.

Set up an IF END condition to stop the program when the last card (an EOF
card) is read.

Read an entire record from file #1 (e.g. read a card) into the string A$.

Print the string A$ on file #2 (the line printer).

The CONTROL function (CTL) permits additional user control of ASCII devices. It is used in
ASCII file PRINT statements to cause the line printer to skip lines or pages or to suppress
paper advances; it can advance or rewind magnetic tapes; it can be used to reset the pointer in
an ASCII disc file; and it can control parity and record separators when punching a paper tape.
(Refer to the CTL function and ASCII File Print in Section XI for a complete description of the
CTL capabilities.) For example, the function CTL(24) sent to a magnetic tape unit will rewind
the tape currently mounted on the unit. If CTL(24) is sent to an ASCII disc file, it resets the file
pointer to the beginning of the file. CTL(24) is not defined for any other non-sharable device
and will be ignored if it is sent to one.

5-19

Files

EXAMPLE 10. The following program reads a deck of cards printing 25 cards on each line
printer page. The CONTROL function CTL(1) advances the paper to the top of the next page.

10 FILES ASCI~ASC3
20 DIM ASC 8 0)
30 IF END 11 THEN 100
40 Fa R R= 1 TO 25
50 LIN PUT '11 A$
60 PRINT 12; A$
70 NEXT R
80 PRINT 12':CTI..(1)
90 GOTO 40
1£10 END

ASCII file devices can also be accessed using the * OUT = file name* forms of the RUN,
EXECUTE, LIST, and PUNCH commands (refer to Section XI). For instance, to obtain a
listing of employee salaries on the line printer, run the program in example 8 with the
following command:

RUN*OUT = ASC3*

where ASC3 has been equated to LPO. The file must be an ASCII file supporting output (e.g.
line printer, paper tape punch, magnetic tape, disc), defined with prior use of the FILE
command.

5-20

nles

The following table summarizes the major differences between BASIC formatted files and
ASCII files:

BASIC FORMATTED FILES

Always present on-line

Data can only be created or retrieved on­
line through programs

Numbers and strings can be intermixed
without ambiguity

Files can be accessed serially or directly

Individual records can be altered without af­
fecting other records

Always on disc

Read and write access

Multiple access possible

ASCII FILES

Not always present on-line

Data can also be created and retrieved off­
line fairly easily

Numbers and strings may not be distinguish­
able outside of the context of an accessing
program

With few exceptions, files can only be
accessed serially

The ability to selectively alter portions of a
file is restricted or non-existent, depending
on the device being used

Can be on disc, magnetic tape, line printer,
card reader, paper tape punch, or paper
tape reader

Except for ASCII disc and magnetic tape
files, a given file is read-only or write-only

No multiple access possible (hence the
term "non-sharable device")

5-21

I

IUIII.I:.
FORMATTED OUTPUT .1 VI I

WHAT IS FORMATTED OUTPUT?
Formatted output gives you explicit and exact control over the format of your program output.

• Numbers can be printed in three different representations: integer, fixed point, and
floating point.

• The exact position of plus and minus signs can be specified.

• String values can be printed in specified fields and literal strings and blanks can be
inserted wherever needed.

• You can have full control over carriage returns and line feeds.

• Arbitrarily long lines can be printed without the carriage returns and line feeds that
PRINT and MAT PRINT statements normally provide.

HOW DO YOU INDICATE FORMATTED OUTPUT?
There are two key elements in formatted output, the list of items to be printed (the using list)
and the format in which these items are to be printed (the format string).

Example:

10 PRINT USING format string; using list

USING LIST

The using list specifies what items are to be printed. A using list is made up of the same kinds
of items that can be included in the PRINT and MAT PRINT statements. The items are
expressions, numeric constants, string variables, and print functions. Entire arrays can be
formatted using the MAT PRINT USING statement.

Examples of using lists:

10 PRINT USING 100; A,SIN(X),F$
20 MAT PRINT USING 200; G
30 MAT PRINT USING 240; Z,B
40 PRINT USING 150; (L3+N)/R(I),SPA(N4),A4

.,.

Print using list

6-1

Fonnatted Output

FORMAT STRING

As the using list tells which items are to be printed, the format string specifies how the items
are to be printed. A format string can be made up of a carriage control character to control
carriage returns and line feeds; format specifications to indicate the format for each item in the
using list; and delimiters to separate the carriage control character from the format specifica­
tions and the format specifications from each other.

A format string can be in a literal string included in the PRINT or MAT PRINT USING
statement, in a string variable, or in a special statement called the IMAGE statement.

Examples of format strings:

10 PRINT USING
20 MAT PRINT USING
30 PRINT USING
40 MAT PRINT USING
50 IMAGE
60 IMAGE

"-,00.0,3X,2(20A)" ; P4,A$,B$
"4(/5(SOOOO))" ; T
R$; A(I),F2,TAB(3)
F1$(30) ; G,M,X
#,2X,3(4E,2A), "---"
2X,6N2X,6NI

format string

A statement number referencing an IMAGE statement may be used instead of the format
string.

Example:

statement
reference using list

10 PRINT USING 20; A, SIN(X), F$
20 IMAGE #, 30X/, 0.000, 3AX

Figure 6-1 illustrates how the various format and control characters are--used to make up a
PRINT USING statement.

6·2

Fonnatted Output

FORMAT CHARACTERS

& REPETITION FACTORS

FORMAT SPECS

CARRIAGE CONTROL
CHARACTERS

" I FORMAT STRING I

DELIMITERS: / and,

PRINT USING D I EXPRESSION LIST

Examples:

PRINT USING STATEMENT
FORMATTED OUTPUT

PRINT USING "SDDD.DDDE" ; Z1
PRINT USING "2X,3(3D.3D,2X),14A" ; Z1,Z2,Z3,FO$
MAT PRINT USING "40(5(2D.D,3X/))" ; M

Format String U sing List

Figure 6-1. PRINT USING Statement Structure

6-3

Formatted Output

USING FORMATTED OUTPUT
The first step in producing formatted output is to decide what each item in the using list should
look like when it is printed. There are two basic kinds of data that can be formatted, numbers
and strings.

NUMBER REPRESENTATION

A number can be printed as an integer (no decimal point), a fixed-point number (a decimal
point in a fixed position), or a floating point number (either an integer or a fixed-point number
followed by an exponent). The format characters that are used to specify numeric formatting
are ~~D", ~~E", ~~S" and ~~.". Each occurrence of a ~~D" says that one digit should be printed.
Including an ~~E" says that an exponent should follow the number. An ~~S" character says to
print either a plus or minus sign (depending on the sign of the number). A H." specifies that a
decimal point should be printed and also indicates where it should be printed. In addition, an
~~X" may be used to denote blanks in a format specification. A ltD" or ~~X" may be preceded by a
number to indicate repetition.

Integer format examples:

DDDD
4D
2DDD
2D2D

2DX30
SOOD
S40
OX305

} equivalent

Integer output examples:

Format Specification

40
S4D
40S
50
4D
OXOOO
5100
OSDDO
50
40

6-4

Value Format of Output

1234 1234
1234 +1234
1234 1234+
1234 1234
1 234.8 1235
1234 1 234
1 234 +1234
1 234 1 +234
-1234 -1234
1 234.2 1234

Fixed-point format examples:

DDD. DDD I
DDD.3D
3 D. 3 D equivalent

3D.DDD

S 3D. 3D
DXDXOX.DDXD
XD6X4D.8D
DDSDD.3D

Fixed-point output examples:

Format Specification

3D.40
4D.2D
4D.3D
SDD2D.D
S 2D.4D
S.4D
0.40
2D.4D

Floating point format examples:

SO. SDE
DDD.DDDXEX
SD.8DXE
S6DE
S 6D.E
S 6D.XE
S6D.DDDE

Floating point output examples:

Format Specification

Value

465.465
465.465
-465.465
465.465
.465
.465
-.465
-.465

Value

SDXE
DDDD.DDE
S5DX.X5DEX
SD.5DE

21
4.82716 X 10
SAME
SAME
SAME

S .10DE3X SAME

Formatted Output

Format of Output

465.4650
465.47

-465.465
+465.5
+0.4650

+.4650
-.4650
-0.4650

Format of Output

+5 E+21
4827.16E+18

+48 • 27159E +20
+4.82716E+21
+.4827159382E +22

6-5

Formatted Output

CARRIAGE CONTROL

There are three characters which can be used before the first format specification to indicate
carriage control.

• A tt +" character will suppress the line feed which would normally follow a print.

• A H -" character will suppress the normal carriage return.

• A ((#" character will suppress both carriage return and line feed.

Omission of the carriage control character specifies that an X-OFF, carriage return, line feed
sequence will follow the PRINT USING or MAT PRINT USING statement.

Examples:

10 PRINT USING "#,000,2X,AA";A,A$
20 IMAGE -,2A,3X,40

LITERAL STRING

A literal string (any combination of characters not including a quote mark and enclosed by
quote marks) can be included as a format specification and is printed as it appears.

Example:

400 IMAGE "TOTAL = ", X, S30.20

DELIMITERS

A delimiter serves to set off the format specifications and can be either a comma or a slash. A
comma serves no purpose other than to delimit format specifications. A slash can delimit
format specifications and, in addition, generates an X-OFF, carriage return, line feed
sequence.

Example:

500 IMAGE - , 3A / 3D , 3D

6-6

Formatted Output

PRINT FUNCTIONS

Print functions can be used in PRINT USING and MAT PRINT USING statements (and can
also be used in all other PRINT statements). There are four print functions:

TAB(X) - Tabs out to column X before printing next item.

SPA(X) Skips X spaces before printing next item:.

LIN(X) Skips X lines before printing next item. If X is negative, no carriage return is
generated; if X is zero, only a carriage return is generated.

CTL(X) - Sends the argument X to the device specified in the print statement.

The CTL function is only used for ASCII files (an ASCII file can be used to direct output to a
peripheral device). Each ASCII file type interprets its own control codes. Refer to Section XI for
detailed information on the CTL function.

STRING REPRESENTATION

A string can only be printed as a sequence of characters. The format character which is used to
specify string output is an HA". In addition, the format character ((X" can be used to denote
blanks in a format specification. An HX" or ((A" format character may be preceded by an
unsigned integer to indicate repetition.

String format examples:

AAAA
4A
2A2A

4X
AXAXAXA
2X20A

String output examples:

} equivalent

special case (all blanks, so no variable required)
alternate characters and blanks

Format Specification
Contents of

String Variable Format of Output

6A
SA
8A
2X6A
A XAXAXAXAXA

ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF

ABCDEF
ABCDE
ABCDEF

ABCDEF
ABCDEF

6-7

Formatted Output

The following example program prints out a numeric conversion chart. It prints a value in
inches (from 1 to 25) and then prints the equivalent value in metres, centimetres, and
micrometres. Integer, fixed-point, and floating point formats are used.

Program example:

100 REM PRINT THE HEADING
110 PRINT USING 120
120 IMAGE tt INCHES"" 10X,,"METRES" ,,4X,,"CENT IMETRES" ,,4Xl tt MI CROMETRES· t

" / /

130 FOR 1=1 TO 25
140 REM PRINT THE VALUE OF INCHES
150 REM USING CARRIAGE CONTROL TO SUPPRESS CARRIAGE RETURN AND LINE FEED
160 PRINT USING 170;1
170 IMAGE #12X,,2DI13X
180 REM CONVERT TO OTHER UNITS
190 M=I*.0254
200 C=M*100
210 Ml=M*I.E+06
220 REM PRINT VALUES IN FIXED POINT AND FLOATING POINT
230 PRINT USING ".DDDI8X.lDD.2D"8X,,D.3DE";M.lCIMI
240 NEXT I
250 END

RUN

1 NCHES METRES CENTIMETRES MICROMETRES

1 .025 2.54 2.540E+04
2 .051 5.08 5.080E+04
3 .076 7.62 7.620E+04
4 • 102 10. 16 1.016E+05
5 • 127 12.70 1.270E+05
6 • 152 15.24 1.524E+05
7 .178 17.78 1.778E+05
8 .203 20.32 2.032E+05
9 .229 22.86 2.286E+05

10 .254 25.40 2.540E+05
1 1 .279 27.94 2.794E+05
12 .305 30.48 3.048E+05
13 .330 33.02 3.302E+05
14 .356 35.56 3.556E+05
15 .381 38.10 3.810E+05
16 .406 40.64 4.064E+05
17 .432 43.18 4.318E+05
18 .457 45.72 4.572E+05
19 .483 48.26 4.826E+05
20 .508 50.80 5.080E+05
21 .533 53.34 5.334E+05
22 .559 55.88 5.588E+05
23 .584 58.42 5.842E+05
24 .610 60.96 6.096E+05
25 .635 63.50 6.350E+05

DONE

6-8

Formatted Output

REPORT GENERATION

This program is a sample report generator. It first requests a school number from the terminal,
then reads· and prints out information about the school's teachers from a file. Note that a
carriage control character is used to advantage (statement 100), slashes (/) are used (statement
200), string and fixed-point fields are used (statement 210), and an error occurs in the output
for the eighth teacher (number too large for field; therefore, it is printed in E format on a
separate line).

Program:

110 REM THI S PROGRAM GENERATES A REro RT ON TEACHERS
510 DIM A$(25)~B$(19)~C$(19)
6121 FILES SCHl~SCH2~SCH3~SCH4ISCH5
11010 IMAGE Ii~ "EN TER SCHOOL NUMBER:"
1510 IMAGE "TEACHER"" 13X" "SUBJECT't" 13X" "SALARY"~ 4X" "ATTND."
175 IMAGE " _______ tt" 13X" tt _______ tt~ 13X~ "------"~ 4X~ It ______ tl/

21010 IMAGE "CENTR.AL CI TY SCHOOL DI STR! CT"/ "DAILY REro RT 0 F .. ~ 25W I
2110 IMAGE 2e~ 20A" "$"~ ODD. DD" DO. DDDD
2310 PRINT USING 1010
250 IN PUT Z
2610 READ IiZJA$"N
2710 PRINT LIN(6)
51010 PRIN TUSING 2010; A$
5510 PRINT USING 150
555 PRINT USING 175
557 Fa R Al = I TO N
5610 READ 1I1JB$.IC$~~B
61210 PRINT USING 210;B$"C$"A"TAB(50)~B
620 NEXT Al
11000 END

ENTER SCHOOL NUMBER:?l

CENTRAL CITY SCHOOL DISTRICT
DAILY REPORT OF B. BAKER HIGH SCHOOL

TEACHER SUBJECT ------- -------
t-1 ISS BROOKS ENGLISH
t"l ISS CRABTREE REM. READING
MISS GRUNDIE HISTORY
t"lRS. HUMPREY SPELLING
COLONEL MUSTARD CRIMINOLOGY
MISS PEACH LIFE PREPARATION
PROF. PLUM AGRICULTURE
t'1 ISS H. PRYNNE SOCIAL STUDIES
+5.00500E+02

MISS SCARLETT P. E.
MR. SIR HOME ROOM
MR. T. TIM MUSIC
MR. WEATHERBY ECONOMICS

SALARY ATTND. ------ ------

$450.34 12.5000
$400.00 64.3200
$350.00 1.0010
$700.00 99.9900
$700.00 21.4500
$232.00 23.2320
$777.77 65.0050
$100.25

$205.10 25.0000
$890.00 99.9000
$ 10. 99 0.0500
$767.99 10.0400

6-9

I

liiill'i:. SYSTEM FACILITIES .1 VII 1

This section contains an introduction to statements which can be used to control system
operation from an executing program. Program execution can be controlled by the CHAIN
statement and parameter passing by the COM statement. In addition, selected commands can
be used from within a program by using the SYSTEM statement (refer to Section X for a
detailed discussion of commands).

LINKING PROGRAMS
The Access system allows you to link programs so that one program can Hcall" another
program for execution. This allows you to segment one large program into several smaller,
easier to manage programs.

The CHAIN statement when executed causes the current program to terminate and a refer­
enced program to be brought into your work area and start execution.

Example:

1 00 CHAIN "PROG2"

The CHAIN statement allows you to specify a return variable. Iffor any reason the destination
program cannot be executed, the return variable is set to a value indicating the results of the
chaining attempt.

Example:

100 CHAIN R, "PROG2"
110 REM CHAIN FAILED
120 GOTO R+1 OF 130, 150, 170
130 PRINT "BAD LINE NUMBER SPECIFIED"
140 STOP
150 PRINT "NO ACCESS PERMITTED"
160 STOP
170 PRINT "CHAIN NOT PERMITTED"
180 STOP

Normally when a chain operation is performed the destination program begins execution at its
first statement. If you want to start at some other point in the destination program, you can
specify the program entry point following the program name parameter.

Example:

100 CHAIN R, A$, 150

7-1

System Facilities

PASSING PARAMETERS
If you chain from one program to another you may want to transfer data values input or
calculated in the first program. This can be done by specifying the string or numeric variables
as being common to more than one program using the COM statement.

Example:

100 COM A$ (255), 8(10,10), N, AO$(5)

The COM statement sets the dimension of the listed variables (performs the same function as a
DIM statement) and in addition causes the system to retain their values during a chain
operation. The destination program must also contain a COM statement. The variables listed
in the COM statement are then set to the values passed from the previous program. The
variable names in the destination program need not be· the same as those used in the prior
program. Values are assigned in the same order as they are named in the COM statements.
For this reason you must insure that variables are of the correct data type (numeric, string,
array), and of the same dimensions.

Example:

PROG1
10 COM A$(1 0), 8,C(1 0,6)

PROG2
10 COM ZO$(1 0),D,R(6, 10)

In this case the value of A$ is assigned to ZO$, the value ofB is assigned to D, and 60 values for
C are assigned (in a row, column order) to the 60 values of R.

7-2

System Facilities

EXECUTING PROGRAM COMMANDS
It is possible to execute some commands from an executing program using the SYSTEM
statement. Commands which can be used with the SYSTEM statement are:

GROUP 1

BYE

ECHO

MESSAGE

FILE

PROTECT

LOCK

PRIVATE

(logs you off the system)

(adjusts data transmission)

(sends a message to the operator)

(creates an ASCII file)

(sets a file to the PROTECTED state)

(sets a file to the LOCKED state)

(sets a file to the PRIVATE state)

UN RESTRICT (sets a file to the UNRESTRICTED state)

MWA

SWA

(sets a file to the Multiple Write Access state)

(sets a file to the Single Write Access state)

GROUP 2

TIME (retu:t:ns the idcode, port number, amount of current terminal, and total
time used and time permitted for your idcode)

(returns a line of entries in your library)

(returns a line of entries in your group's library)

(returns a line of accessible entries in the system library)

CATALOG

GROUP

LIBRARY

LENGTH (returns the length of the program in your work space, how much space
you are using in your library, and the total space permitted in your
library)

When the SYSTEM statement is used with a command in the first group, it uses a command
string and a numeric return variable as parameters. The command string is the command to
be executed. This may be a string variable containing the command or the command itself. The
form of the command is exactly the same as it would be if you had entered it from your
terminal. The return variable is used to indicate whether or not the command executed
properly. The return variable is set to ~~O" for successful execution or to ~~1" if the command
could not be executed.

Examples:

10 A$="MESSAGE - HELLO OUT THERE"
20 SYSTEM R1,A$
30 IF R1 =0 THEN 50
40 PRINT "MESSAGE WAS NOT SENT"
50 SYSTEM R2, "FILE - LPRTR, LPO"
60 IF R2=0 THEN 80
70 PRINT "FILE NOT CREATED"
80 STOP

7-3

System Facilities

When the SYSTEM statement is used with a command in the second group it uses a return or
destination string instead of a numeric return variable. Each of the commands in the second
group would normally produce one or more lin.es of output at your terminal. When used in the
SYSTEM statement only the first line of output (less any heading) is returned in the destina­
tion string. (*OUT=file name* is not permitted in this context.)

Example:

10 DIM A$(72)
20 SYSTEM AS .. "LEN"
3 0 PRINT A$
40 END
RUN

00019 WORDS = 01 RECORDS. 01551 RECORDS USED OF 65000 PERMITTED.

DONE

When more than one line of ou tpu t is required you can obtain successive lines of ou tpu t by
modifying the command. In the following example, the LIBRARY command is used to obtain a
partial list of system programs and files. Each time a line of output is received, the starting
name used in the command is modified to obtain the next sequential entry.

Example:

10 DIM AS[10J .. BS[72]
20 A$="LIB-"
30 INPUT AS[5 .. 10J
40 IF AS [5 .. 10] >= "TEST09" THEN 170
50 SYSTEM BS .. A$
60 PRINT BS
65 A$[5 .. 10J=BS[49 .. 54J
70 FOR 1=10 TO 5 STEP -1
80 IF ASC1"ll="9 tf THEN 130
90 IF A$[I"IJI"Z" THEN 150
100 A$[I"IJ="0"
1 10 NEXT 1
120 GOTO 40
130 A$(I .. IJ="0 u

140 GOTO 40
150 A$[I .. IJ=CHR$CNUMCAS[I"IJ)+I)
1 60 GOTO 40
170 END
RUN

? PGM4
PP0 AL PP0 64 PRIN U
P Z075 U 4 PZ125 U
RATES CU 2 SCOOP CU
S NLIST FL 100 STATS CU
TESTER U 1 TRADER L

DONE

7-4

1 PTTTY CU
6 PZ325 U
1 SCR FL
8 T FL

13 TRADES L

2
15

100
20
29

SECURITY AND IUIUlh'l
THE LIBRARY HIERARCHY I VIII I

USER IDCODE ORGANIZATION
The system utilizes identification codes (idcodes) to identify every user. A unique password
may be used along with each idcode to insure account security; but the system does not
actually require its use. The idcodes are organized by the system for accounting purposes,
controlling accessing capabilities, data security and account privacy. An idcode is made up of a
single alphabetic character followed by three decimal digits. The range is from AOOO to Z999
(inclusive); making a total of 26,000 distinct idcodes.

The system groups idcodes, 100 to each group. For example, AOOO through A099 constitute the
first group, AlOO through A199 constitute the second group and so on through the last possible
group, Z900 through Z999. There is a total of 260 groups.

8-1

Security and the Library Hierarchy

User organization (by idcode) is illustrated in figure 8-1. The three concentric circles represent
the three types of users as follows:

1. The very first idcode within the system, AOOO, is assigned to the user who will serve as
the system master.

2. The first idcode within each group (for instance AlOO, D300, etc.) is assigned to the user
who will serve as group master.

3. All other idcodes are available for assignment to private users.

Since AOOO is both the first idcode in the system and the first idcode of Group #1, the system
master serves as group master for the first group. (Duties of system and group masters will be
discussed later.)

" / , / , /
..... /

'..... ./
' --- ----."",,-/

!::t::::;m;::::::WM SYSTEM MASTER

Figure 8-1. Idcode/Group Account Structure

8-2

\ -1

Security and the Library Hierarchy

When a user is assigned an idcode, an amount of disc space is allocated for storing programs
and files. This disc space with its stored programs and files is called a library for that idcode.

Just as there are three types of users, so are there three types of libraries associated with those
users.

1. The library assigned to the system master is referred to as the system library.

2. A library assigned to a group master is called a group library.

3. The library of every other user is known as a private library.

In figure 8-1, the outer ring of idcodes represents private libraries, the second ring of idcodes
represents the group libraries, and the inner circle represents the system library. (Note that
the system library is also the group library for Group #1.) Each user can access elements in his
own private library and, to the limit of any restrictions, programs and files in his group library
and in the system library. A user cannot access other private libraries or other group libraries
unless they have the PFA capability (see Account Accessing capabilities).

PRIVATE LIBRARY - PRIVATE USER

A private library is created and maintained by each idcode. This library is completely control­
led by the user assigned that idcode. The user can enter, modify, restrict access to, and delete
programs and files within his private library. When the account has Program/File Access
(PFA) capability, its library can (under certain circumstances) be accessed and altered by the
group master or by other users.

GROUP LIBRARY - GROUP MASTER

A group library is a common library normally accessible only to members of the group.
However, when the account has PFA, all or part of the library can be made accessible to all
other system users. The group master is responsible for creating, maintaining, deleting, and
controlling access to the programs and files within this library. The group master is also able
to create, give MWA status to, read, write, and purge locked BASIC-formatted files in the
accounts of group members having PFA - if he has been given the File Create/Purge (FCP)
capability by the system operator.

8-3

Security and the Library Hierarchy

SYSTEM LIBRARY - SYSTEM MASTER

The system library is a common library normally available to all users of the system. The
system master may, however, place accessing restrictions on individual programs and files
wi thin this library.

Basic functions of the system master are similar to those of a group master, but more
extensive. The system master can enter, modify, restrict access to, and delete programs and
files in the system library. The system master is also the group master for accounts AOOl
through A099 and, as such, can be given File Create/Purge capability over their libraries.

The system master is responsible for creating and maintaining the optional HELLO program
within the system library. This BASIC language program transmits pertinent information to
users at logon time. The logon message might inform users of the following:

• System identification

• Port Number

• Date and time of logon

• System hibernate and sleep schedules

• News for the day

• News about new applications programs

It is possible to use the HELLO program to create a dedicated environment. If an account is to
execute only one particular application program, and not be permitted any other system
activity, the HELLO program can channel the user to the application program immediately
upon logon. This might be accomplished in the following manner:

a. Establish a file that contains (for each account on the system) information about planned
account usage. This file should reside in AOOO and be locked; hence only available to
locked system library programs.

b. Write the HELLO program so that it determines the user's logon idcode, scans the file
previously established, and takes the user to the appropriate program. Or the HELLO
program could CHAIN to some other program that performs this task.

c. The application program should disable the BREAK key at the user's terminal and
execute a BYE command whenever it relinquishes control.

8-4

Security and the Library Hierarchy

ACCOUNT ACCESSING CAPABILITIES
Thus far we have discussed the accessing capabilities the system automatically grants each
idcode. However, there are other types of accessing capability not associated with the idcode/
group structure. One is based on the account Program/File Access (PF A) capability as estab­
lished by the operator via the NEWID or CHANGEID commands. When the system master
assigns an idcode to a user, he may give that account the Program/File Access capability. Thus
the account is considered to have PF A or NOPF A. When an account has PF A, the owner may
make elements in his library accessible to all other users; forming a pseudo system library. In
this way, a user may access private libraries in addition to his own group library and the
sys tern library.

An idcode may also be granted Multiple Write Access (MW A) capability via the NEWID or
CHANGID operator commands. Account MW A capability makes it possible for an owner to
declare his files to have MW A status. When no Multiple Write Access capability has been
granted to an account by the operator, files in the account library always have SWA status.
SW A stands for Single Write Access. When a file has SW A, only one user at a time can write
on the file. When a file has MWA, several users can access and write to the file simultaneously.

When the system master creates a group master idcode, an option exists for granting the
account File Create/Purge (FCP) capability. A group master's account is said to have FCP or
NOFCP. With FCP, the group master has special accessing powers within the libraries of his
own group members. He may create, give MW A status to, read, write, or purge locked
BASIC-formatted files located in libraries of his own group members, so long as those libraries
have the PFA (Program File/Access capability). The FCP capability is only operative from an
executing program which has been saved in the group master's library.

Of course an owner can always limit access to his library by placing restrictions on individual
programs and files.

8-5

Security and the Library Hierarchy

USER IMPOSED RESTRICTIONS FOR PROGRAMS

There are four possible .states for any program saved in a library: unrestricted, protected,
locked, or private. The following only applies to program access by other users. You are always
allowed to access any of your own programs. When a program is saved, its state is private. This
means that no other user may access that program. Maintaining a program private guarantees
its absolute privacy from other users. You are allowed to change the state of a program at any
time.

A locked program may only be executed or chained to (no line number allowed) by other users.
Other users are not allowed to have a local copy of any of your locked programs. Locked
programs are useful in cases where you wish to allow other users to run your program, but not
be able to list or modify it. Locked programs are also useful for file accessing applications. For
example, your locked program may read and write on your locked files, regardless of who is
executing the program. (Your locked files are otherwise unavailable to other users.)

Other users may obtain a local copy of your protected programs; however, they may not list the
program. Other users are allowed to modify their local copy of your protected program. This is
useful in cases where you supply the program and another user supplies his own data in the
form of DATA statements. Another application for protected programs occurs when you have
subroutines for general use in another user's main program. The other user may append your
subroutines to his main program, but may not list them.

An unrestricted program in a library with the PF A capability can be accessed by any other
user. Other users can GET, LIST, SAVE, and modify your unrestricted programs.

8-6

Security and the Library Hierarchy

USER IMPOSED RESTRICTIONS FOR FILES

There are four possible states for any file saved in a library: unrestricted, protected, locked, or
private. You are always allowed to access (both read and write) any of your own files. The
following applies to file access by other users. When a BASIC formatted or ASCII file is created
its state is locked. Only the owner or the owner's locked programs may access locked files.

Note: Non-sharable devices may not be ((loaned" except that a locked pro­
gram saved in AOOO may access locked non-sharable devices belonging
to AOOO.

Making a file private guarantees its absolute privacy. No other user is allowed access. Group
and system library listings do not even show private files (or programs) since no other user
may access them.

Other users may only read a protected file. Protecting a file allows you to set up a data base
which can be read by other users, but only updated by you.

Unrestricted files have no security. They may be read or written to by any other user.

CONTROLLING SIMULTANEOUS WRITING ON FILES

A user with the MWA (Multiple Write Access) capability can specify that a file can be written
to by more than one user concurrently. Obviously, some means of controlling this access is
necessary. There exist two statements to control this type of access: LOCK and UNLOCK.

Cooperating users may use the LOCK and UNLOCK statements to prevent writing on the
same record at the same time, which might otherwise invalidate the write operation. The
LOCK and UNLOCK statements do not actually ~(lock" or ((unlock" a file. They set and clear
((busy flags" associated with the named file. Execution of the LOCK and UNLOCK statements
return the current status of this flag.

When you want to write on a MW A file which may already be in use, you should first LOCK
the file. If another user already has the file LOCKED, your LOCK will not take effect until
that user UNLOCKS the file. Cooperating users can then insure that they are not all trying to
write on the file at the same time. (Do not confuse the statement LOCK with the locked state.
The former is a facility available from a running program to prevent simultaneous writes; the
latter is a state the file may be in which restricts any kind of access to the file.)

Considering idcode/group accessing capabilities together with the PFA, FCP, and MWA
accessing capabilities and the protected, locked, unrestricted, and private states of programs
and files; it is possible to plan elaborate data security and access schemes for your applications.
Remember that the ninety-nine accounts numbered AOOl through A099 are unique on an HP
2000 Access System since they have the system library as their group library. This feature
might be utilized in a number of ways. For example, an applications program can be a locked
program in the system library which in turn has the FCP capability. As such, it can program­
matically create, manipulate, and purge files in the AOxx accounts, even when being run from
some other account on the system.

8-7

I lUMMi REMOTE JOB ENTRY FACILITY I IX I

As an Access user you can use the Remote Job Entry Facility to transmit jobs to another
system. This section will give you an overview of the RJE facility and an explanation of how to
use it.

WHAT IS REMOTE JOB ENTRY?
Remote Job Entry (RJE) is a system facility which allows you to submit a job from the Access
system for processing on another system. In effect, you use the Access system as a remote
terminal for the other system. The other system will be referred to as the host in the following
discussion.

Programs contained in jobs may be written in any language (FORTRAN, COBOL, RPG, etc.)
available on the host system. Programs can be assembled, compiled, or executed on the host
system. The programs ~an be used to retrieve data files on the host system and transmit them
back to the Access system. Data can be entered and formatted on the 2000 Access system and
then sent to the host system for processing. The results of the processing can be returned to the
Access system for post processing, storage, or output.

The RJE facility transfers data over the public telephone network or private leased lines at
rates up to 4800 bits per second (approximately 480 characters per second). A functional
diagram of the system elements used by the RJE facility is given in figure 9-1.

WHAT HOST SYSTEMS CAN YOU COMMUNICATE WITH?
The RJE facility can be used to communicate with selected IBM and CDC computer systems.
The RJE facility functions by emulating a Multileaving Remote Job Entry workstation (IBM)
or a User 200 Terminal (CDC). Table 9-1 contains a list of the host systems that can be
accessed with RJE.

9-1

Remote Job Entry Facility

USER
TERMINALS

r

SYSTEM CONSOLE

2000 ACCESS SYSTEM HOST SYSTEM

L

MODEM

Q
PERIPHERAL DEVICES

Figure 9-1. Elements of the 2000 Access Remote Job Entry Facility

9-2

Remote Job Entry Facility

Table 9-1. RJE Compatible Host Systems

IBM 360/370

OS/M FT / HAS P

OS/MVT/HASP

OS/MVT/ASP

o S/V S 1 / J E S/ R ES

OS/VS2/JES2

OS/VS2/JES3

CDC 3300/6400/6600/Cyber 70

KRONOS/EXPORT/IMPORT

SCOPE/I NTERCOM

MULTILEAVING RJE WORKSTATION (MRJEIWS)

When the RJE facility is used with an IBM host system it emulates an MRJE workstation. An
MRJE workstation is a remote batch input/output port operating under the multileaving
protocol used with HASP. The remote port uses several data streams or functional lines for
simultaneous input, output, and control communication. Table 9-2 contains a list of these
functions. There are seven host reader functions for accepting input; seven host list functions
for producing output; seven host punch functions for producing punched output; a host inquiry
function for entering system requests or commands, and a host message function for receiving
responses to system commands and system messages.

HI1

HM1

HR1-7

HL 1-7

HP1-7

Table 9-2. IBM HASP Workstation Host Functions

Host Inquiry, used to send commands to the host system

Host Message, used to receive messages from the host system

Host Reader, used to enter jobs, normally a card reader

Host Lister, used to output jobs, normally a line printer

Host Punch, used to output jobs, normally a punch

USER 200 TERMINAL

When the RJE facility is used with one of the CDC host systems listed in Table 9-1, it emulates
a User 200 Terminal. The User 200 Terminal is similar to the HASP workstation described
previously but uses only one host reader, one host lister, one host inquiry, and one host
message function (HR1, HL1, HI1, HM1).

9-3

Remote Job Entry Facility

HOW DOES RJE WORK?
When you use the RJE facility, portions of the Access system act as a remote port on the host
system. The various host functions are assigned to various real or virtual devices. The exact
number of host functions assigned by IBM host systems can be varied. Since only one host
function of each type is used with CDC systems, that configuration is fixed. In either case the
host inquiry and host message functions will always be used.

The RJE facility looks like a collection of input and output devices to the host system. A typical
configuration for an IBM host is shown in Figure 9-2. Note that some of the host functions have
been assigned to virtual devices or job function designators. A table of job function designators
is given in Table 9-3. The job functions correspond to the host function types.

JOB FUNCTION
DESIGNATOR

JIO

JMO

JTO-6

JLO-6

JPO-6

Table 9-3. Job Function Designators

DESCRIPTION

Job Inquiry Designator, allows you to send commands and messages
to the Host Inquiry function in an executing program.

Job Message Designator, allows you to read messages from the Host
Message function in an executing program.

Job Transmitter Designator, allows you to send jobs to a Host Reader
function in an executing program.

Job Lister Designator, allows you to read the output of a job from a
Host Lister function in an executing program.

Job Punch Designator, allows you to read the output of a job from a
Host Punch function in an executing program.

These job function designators look like real devices to the host system but in fact merely pass
input and output data to programs executing on the Access system.

When the Access system is configured, each of the host functions allocated to the remote port
must be assigned to either a real device (card reader, line printer, paper tape punch) or to a job
function designator (JT, JL, JP). The host inquiry and host message functions are always
assigned to the Access system console. It is optionally possible to assign the host inquiry
function to a job inquiry function and the host message function to a job message function.
Other than the host inquiry and message functions, the assignments may be changed at any
time by the system operator.

When you are ready to use the RJE facility, the system operator typically dials up the host
system connecting the RJE modem. The operator then enters a signon command at the system
console followed by any special configuration commands that may be required for a given job.
Once this has been done the RJE facility is ready to accept input from card readers or from
BASIC programs via the job transmitter function. Any output ready to be returned from the
host system can be sent to printers, punches, or job list or punch functions.

9-4

2000 ACCESS SYSTEM

--HIO -
HMO ' ~

, , JIO

B
HR1 -

HOST -
HR2 -...

~ t"'- HR3 ""'-8
'.JI' HR4 .. .~

G HOST HR5 ..
FUNCTIONS

Hl1

Hl2

Hl3 -8
Hl4 -G
HP1 ·8
HP2 -8

Remote Job Entry Facility

--

... -

~
SYSTEM

CONSOl E

~CRO

r:===iJCR1

ttJ ... -
lP3

(flLPl

Figure 9-2. Typical RJE Configuration For An IBM Host System

9-5

Remote Job Entry Facility

Once the communications link has been established and the operator has signed on to the host
system, the system console can be used to enter commands to be executed by the host system.
These commands can be used to obtain job status, modify the configuration of the remote port,
change job priority, or change the routing of job output. The commands available vary with
different host systems.

You can also send host commands from an executing program by printing on the job inquiry
file. You can receive any host system responses by reading the job message file. Techniques for
doing this are discussed under HOW DO YOU USE REMOTE JOB ENTRY?

Tables 9-4 through 9-6 contain commands available to you for certain host systems. You
should refer to the appropriate host system manuals for detailed explanations of the com­
mands. A list of host system manuals is given in table 9-7.

9-6

Table 9-4. Summary of 360 HASP Remote Commands

COMMAND

$DA

$DF

$DN

$DQ

$CJn or $C'name'

$DJn or $D'name'

$PJn or $P'name'

$Bdevice

$Cdevice

$Edevice

$Fdevice

$Idevice

$Ndevice

$Pdevice

$Sdevice

$Tdevice

$Zdevice

COMMENTS

Display status of active jobs

Display information on jobs queued for printing with special forms

Display names and status of all jobs

Display number of jobs in each queue type

Cancel job with job number In' or job with job name 'name'

Display status of job with job number In' or with job name 'name'

Cancel specified job after completion of current activity

Backspace device

Cancel current function on device

Restart current function on device

Forward space device

Interrupt current function on device

Repeat current function on device

Stop the device after completion of the current function

Start the device

Set device parameters (to indicate such things as type of forms loaded
in a printer, or type of print character set in use)

Halt the device immediately

Remote Job Entry Facility

Table 9-5. Summary of CDC EXPORTIIMPORT Remote Commands

COMMAND

ON

OFF

DEFINE

WAIT

GO

BSP

END

REP

REW

RTN

SUP

DIVERT

DROP

EVICT

KILL

PRIOR

REVERT

H

COMMENTS

Turns equipment logically on. Card readers are initially on, and output
devices are initially off.

Turns equipment logically off.

Specifies the various attributes of an output device (print train, forms
code, etc.).

Temporarily halts reading or printing.

Resumes operation after a WAIT command.

Backspaces a print file a specified number of sectors.

Terminates current operations on the specified equipment.

Used to specify the number of additional copies of the file in process to
be printed.

Rewinds the print file in progress and turns the equipment logically off.

Returns a print file to the appropriate queue with its present priority or a
newly specified priority.

Suppresses the spacing of a print file, so that the remainder of the file is
single spaced.

Allows the user to divert output files of a remote job to the central site or
another terminal.

Allows a user to drop a job which is currently in execution.

Allows a user to eliminate a job from the input and/or output queues.

Allows a user to kill a job which is currently in execution.

Allows a user to change the priority of a file in the output queue.

Cancels the effect of a DIVERT

Displays the contents of the terminal's input and output queues.

9-7

Remote Job Entry Facility

Table 9-6. Summary of Some IBM ASP Remote Commands

COMMAND COMMENTS

X, name [, message] Specifies to ASP system the name of the support program to
be scheduled for execution.

C,name

I,A

I,B

I,D

I,J=job name

I,J=job number

Z,console name,test

HOST

Terminates currently active support function

Displays active jobs

Displays backlogged jobs

Displays disposition of 1/0 devices

Displays information about specific jobs

Displays information about specific jobs

Sends text message to anoJher console

Table 9-7. Some Useful Host System Manuals

SYSTEM MANUAL DESCRIPTION

IBM HASP Operator's Guide GC27-6993 Description of HASP remote
operator commands

IBM ASP Operator's Guide GH20-1289 Description of ASP remote
operator commands

CDC CDC 200 User Terminal 82128000 Description of terminal oper-
ating procedures

CDC Computer Systems Reference Manual 60100000 General system reference

CDC INTERCOM Reference Manual 60307100 General system reference

CDC SCOPE 3.4 Reference Manual 60307200 General system reference

CDC KRONOS General Information Manual 60407100 General system reference

HOW DO YOU USE REMOTE JOB ENTRY?
The first step in using the RJE facility is to establish the communications link between the
Access System and the IBM or CDC host system. This may be done by requesting the system
operator to make connection or using the RJE facility during a time when RJE is scheduled at
your site. When the communications link is established, the RJE facility is ready to use.

9-8

Remote Job Entry Facility

SENDING JOBS THROUGH THE CARD READER

The easiest method of sending a job to the host system is to send a card deck through a card
reader. The card reader must be connected to the host function HR (Host Reader). In this case
all that is required is to load the card deck in the card reader and start the reader. When the
RJE facility is enabled the reader(s) assigned to RJE is automatically made ready. Your job
will be automatically sent to the host system for processing. Figure 9-3 shows a typical RJE
card deck for a FORTRAN compile and execute on an IBM system. When using the card reader
you must use a card with ((::" in the first two character positions as the last card in the deck to
be read. This indicates the end of the job to the Access system.

II FORT. SYSIN DD *
1/ FORT. SYSPUNCH DD DUMMY

II FORT EXEC FORTGCLG

II RJETST (40916)" CLASS = R

RJE End-Ot-File card
End-Ot-Job card

End ot program card
Program cards

Job control statement cards

These will vary depending on the
host operating system and the
type ot job to be executed.

FiglJre 9-3. Example of an RJE Job Deck

RETRIEVING OUTPUT ON THE LINE PRINTER

When the host system finishes processing a job, the job's output is directed back to the Access
system. If a line printer is connected to the host function HL (Host Lister), the job output is
printed on the line printer. With CDC hosts there is no problem determining which host lister
function the output will return on because CDC systems can have only one host lister function.
IBM systems will normally return job list output to the first available host list function. Job
punch output will be returned to the first available host punch function.

In order to ensure that output is returned to a specific host function you must use forms control
commands. The IBM host systems allow you to designate specific host functions for certain
output formats. This is done using the system operator's RJE command which sends a
command on the host inquiry function.

9-9

Remote Job Entry Facility

The forms command is

$TRMx.PRn, F =f (for list output)

or

$TRMx.PUn, F=f (for punch output)

where

x = your remote station number (assigned by the host system operator)

n = the host function number that you want the forms output returned to

f = the forms number (four digits, x or # may be substituted as a ((don't care" digit)

An example offorms assignment is given in Figure 9-4a. By using an (x' or (#' in place of one or
more digits of the forms number, a group of form types can be routed to the same host function
with a single command.

Once forms assignment has been made, you can specify in your job deck (using job control
statements) that output be printed using a specific form. The output will then be routed to the
host function assigned to that form.

9-10

RJE-RC,$TR18.PR1, F=0005

RJ E-RC,$TR18.PU 1, F=010 #

RJE-DA,H L 1>LP3

RJE-DA,HP1>PP2

Host System

__ HRn
...

The system operator would use this command to cause
all printer output using form 0005 to be returned to
Host Lister 1 (H L1).

This causes all punch output using forms 0100 through
0109 to be output to Host Punch 1 (HP1).

The system operator would use this command to cause
output on Host Lister 1 (HL 1) to be sent to line

printer 3.

This causes output on Host Punch 1 (HP1)
to be sent to Punch 2 (PP2).

job 1
Control staterrwnt to specify
form 5 I ist output

~

job 2
Control statements
to specify punch

I----------:.~ LP 3 ~
H L 1 Job 1

PP2(# job2 HPl ---

Figure 9-4. Example of Forms Assignment Used to Route Output

Remote Job Entry Facility

SENDING JOBS AND RETRIEVING OUTPUT
FROM YOUR TERMINAL

Host reader, list, and punch functions (HR, HL, HP) need not be connected to actual devices.
Instead, they may be connected to job function designators. In turn, a job function designator
may be equated to a file name. A BASIC program manipulates these job functions just as if
they were non-sharable devices. You may print to a job transmitter (JT), or read from a job
lister (JL) or job punch (JP).

Sending a job from your terminal involves two steps. First you must determine what host
functions are connected to which job function designators. Your system operator must provide
this information as it differs from system to system. To make the following discussion easier,
we will assume that you have access to all five types of job function designators and that they
are connected as follows:

JIO~HIl

JMO"'-HMl

JTO --'HRl

JTl HR2

JLO ...-HLl

JL1...-HL2

JPO ...-Hrl

Send messages and commands to host

Receive messages from host

Send jobs to host reader one

Send jobs to host reader two

Receive output from host lister one

Receive output from host lister two

Receive punched output from host punch one

After determining what host functions are connected to which job function designators, you
are ready to transmit jobs from your terminal. As with any other non-sharable device you must
first equate a file name with a job function designator.

Examples:

FILE-SENDER,JTO
FIL-TRANS1,JT1

9-11

Remote Job Entry Facility

You can now write a program to send a job. All that is necessary is to retrieve the lines that
compose the job (from your terminal, data statements, other files, etc.) and to print them on a
file equated to the job transmitter device.

Example:

The following program will send the job in the DATA statements to an IBM host system.

FILE- SEND"JT
LIST

10 FILES SEND
20 DIM ASC 8 0]

30 IF TYpe 0) <> 3 THEN 50
4C3 STOP
50 READ AS
60 PH I N T II': AS
70 GOTO 20

Opens job transmitter file

If no more DATA statements,
Stop
Read a line of the job
Send it to the host
Loop

Actual Job to be sent ,-~ ____ --__________________________ ~A~ ________________________________ ~~

1000
1010
1020
1030
1040
1050
1060
.12170
9999

DATA "II SENDJOB JOB e 1234567"10,,0),, 'JEC'"
DATA "II EXEC PGM-IEBGENER"
DATA It I / SYSIN DO DUMMY"
DATA u//SYSPRINT DO SYSOUT=A"
DATA "/ISYSUTI DD DSN=D09 I 1274.ACCESS.SRCE(D.61),,1t
DATA It DISP = OLD"
DATA ftllSYSUT2 DO SYSQUT=A"DCB=(BLKSIZE=80"LRECL=80"RECFM=F)"
DATA "1*"
END

You may find out what job function designators you are allowed to use through the DEVICE
command. If you attempt to run a program which accesses ajob function designator without an
RJE connection having been established, you will receive the message JTO-DEVICE NOT
READY (substitute for JTO the job function designator used). You may then abort your
program with the BREAK key or ask the operator to establish RJE communications. Once
established, your program will automatically continue (unless you abort it).

9-12

Remote Job Entry Facility

In the last example, only one job was sent. In order to send more than one job from a program,
you must inform the system when there is no more to be sent for a gi ven job. You may do this in
two ways: close and reopen the job transmitter file; or execute a PRINT #n; END statement.
Closing the file or printing an end-of-file tells the system that a job has been completed.

Example:

This program will send any number of jobs to a host system. The jobs are stored in ASCII files
and the program asks the user what job should be sent next. The job name is also the name of
the ASCII file where it is stored.

10 FILES SENDER.I*
20 DIM A$(80)
30 PRINT "JOB NAME";
40 INPUT A$
45 IF A$="STOP" THEN 150
50 ASSIGN .A$.I2.1R
60 IF R<3 THEN 90
70 PRINT "UNABLE TO ASSIGN
80 GOTO 30
90 IF END 62 THEN 130
100 LINPUT 62.:A$
1 10 PR 1 NT 11.: A$
120 GOTO 100
130 PRINT 11JEND
140 GOTO 30
150 END

FILE

Open job transmitter file

Ask for job name

If response is STOP, then stop
Open file where job is

.. .: A$ If unable to open, send a message

When finished sending job, go to line 130
Get a line of the job
Send it to the host system
Loop
Tell system, job is finished
Go ask for another job

Retrieving output from a job on your terminal is just as simple. Again you must determine
what host functions are connected to which job function designators. After that you must
equate an available job function designator (one you have the capability to use) with a file
name.

Examples:

FILE-LlST,JL 1
FIL-PUNCH,JPO
FILE-GET JOB,JLO

9-13

Remote Job Entry Facility

You can now write a program to retrieve job output. All that is necessary is to read the job list
or job punch file and do what you want with the lines of output received.

Example:

The following program will retrieve job output and store the results in a BASIC formatted file.

FILE-GETJOB"JL0
CREATE-JOBOUT,,400
LIST

10 FILES GETJOB¥JOBOUT
2(i!J DIM AS[134]

30
40
50
60

IF END II THEN 70
LINPUT 'I': AS
PRINT 12;AS
GOTO 40

Opens job list file and output file

When no more lines available, stop
Ask for a line
Write it to output file
Loop

70

80
PRINT n JOB SUCCESSFULLY RETRI EVED" Inform user of completion

rnD S~

When a host system returns lines of output to an RJE workstation, it includes information
about spacing of lines. If you retrieve your job output on a line printer, the Access system
automatically formats the lines. If you receive your job output on your terminal, you may wish
to print the output on a line printer at some future time. In order to allow for this, the Access
system includes the line printer control functions as part of each line it passes through the job
list device. The first character of each line is a digit. If you convert this digit to a number and
use it in a CTL function when printing to the line printer, your output will be formatted
exactly as if the Access system were printing it. The second character of each line contains a
null character. Actual print data begins with the third character of the string.

Example:

The following program will retrieve job output from a host system and print it on a line printer
just as if the host system were printing it on a local line printer.

FILE-PRINTR" LP0
FILE-JOBLIS.lJL
LIST

1121
2121
30
40
5121
60
7121
80

9-14

FILES JOBLIS.lPRINTR
DIM ASCI34]

Open job lister and line printer

I FEND 11TH EN 70 Stop when no more ou tpu t
L INPUT 'I': AS Get a line of output from host
PRINT 12;CTLCNUMCASC 1.llJ »':A$C3] Tell line printer to space and print line
GOTO 40 Loop
PRINT "JOB RETRI EVED" Tell user all done
rnD S~

Remote Job Entry Facility

IBM hosts expect a job punch device to select one of two options when punching output. This
control information is not used when the Access system punches output on a local paper tape
punch. However, the system does provide this control information when passing the output
data to a job punch device. The mechanism is the same as with job list devices except that the
first character will only contain a ~~1" or a ~~2". CDC hosts do not send this character since a
User 200 Terminal does not include a punch function.

COMMUNICATING WITH A HOST SYSTEM
FROM YOUR TERMINAL

Just as it is possible to send jobs and retrieve output using a program at your terminal, you
may send messages and commands and receive messages from the host system with your
BASIC program. Printing strings to the job inquiry file causes those strings to be sent to the
host system as if they were typed on the Access system console. Any messages the host system
sends to the Access system can be read from the job message file and printed at your terminal.

Example:

This program allows a user to send status commands to an IBM host system and to retrieve the
returned status.

FI LE- INQUI RI JI
FIL-RESPNDIJM
LIST

10 FI LES INQUI HI RESPND Open job inquiry, message file
20 DIM A$CI20J"BSC20]
30 PRINT LIN(I);"WHICH JOB'S STATUS DO YOU WANT"; Prompt user

for job name
40
45
50

6f2'
70
80
90
RUN

INPUT BS
IF BS="STOP'" THEN 90
PRINT 11;99$O''';B$':''''''
LINPUT 12':A$
PRINT A$
GOTO 30
END

Stop when user types STOP

Send $D~name' command

Ask for response
Print it on user terminal
Loop

WHICH JOB'S STATUS DO YOU WANT10S2001
RJE $*15.11.20 JOB 617 052001 EXECUTING N PRIO 4

WHICH JOB'S STATUS DO YOU WANT1STOP
DONE

Refer to Tables 9-4, 9-5, and 9-6 for a summary of representative HASP, ASP, and EXPORT/
IMPORT commands.

915

Remote Job Entry Facility

Whenever a line is sent to a job inquiry device, the line is also printed on the Access system
console. This informs the system operator what a user is sending on the job inquiry function.
Any messages sent by the host system are always printed on the system console.

Because any message sent to the system console is also sent to the user in control of the job
message file, certain care must be exercised. In our example above, an IBM HASP Display
Job command was sent and the response was then retrieved. If the operator had already sent a
command which produces several lines of output, the user could have gotten one of these lines
rather than the actual status requested.

HOW TO GET YOUR OUTPUT

Previous discussions indicated that retrieving output is simple. There is no problem if only one
host list function is connected to one job list designator. However, for IBM systems only, it is
possible to have several host list functions (up to seven) connected to any combination of real
line printers or job list designators. The same applies to the multiple host punch functions.
When the host is ready to return the output of a job, it generally selects the first available host
list function for list output or the first available punch function for punch output. This means
that if you send your job on job transmitter 3 (JT3), you are not guaranteed that you will
receive the job's output on job lister 3 (JL3). You must use forms control to guarantee what
host list function your output is returned to. You must also specify in your job that it must be
printed (or punched) only on a device loaded with special forms.

9-16

Remote Job Entry Facility

Refer to the previous discussion of forms control for a general overview of how you can select a
specific host list function for job output. You need not use the system console to issue forms
con trol commands, however. The following example provides a program which can be used to
set forms control.

FlLE-INQ"JI
FILE-TRANS"JT3
FILE-OUTPUT"JL4
FILE-PAYROL~DS,,100
LIST

10
20

FILES INQ"TRANS~OUTPUT,PAYROL
DIM AS[134]

30
40
50
60
70
80
85
90

PRINT I1J"STRI8.PR4"
IF TYP(0)=3 THEN 80
READ A$
PRINT ,2JAS
GOTO 40
ASSI GN *,,2
IF END 13 THEN 120
LINPUT 13JAS

F=0005"

IN Q = Job Inquiry
TRANS = Job Transmitter
OUTPUT = Job Lister
P A YROL = ASCII disc file

Open files

Set forms control on Host Printer 4
When out of data, go get output
Send to the host one

line of the job
Loop until job sent
Close transmitter to signal end of job
When ou tpu t done, tell user
Get a line of ou tpu t and

HH'
110
120
130
500
510
520
530
540
550
560
570
9999

PRINT 114J AS[3]

GOTO 90
PRINT "JOB SENT
STOP

write it to ASCII disc file
Go get another line of output

AND RETRI EVED~' Tell user that we are all done

DATA "II PAYROLL JOB (45678912)" 'PROGRAMMER'"
DATA "I*PASSWORD SECRET"
DATA "II PAYUPDAT"
DATA "JOHN SMI TH, 40"
DATA "MARY JONES" 48 "
DATA "HARRY DOAKES" 32"
DATA ··WILLI AM BLOOM,,42"
DATA "1*·'

END

Actual
job to
be sent

Note, in the above example, the procedure PAYUPDAT is assumed to contain the necessary
job control statements to route output to a printer using form 0005.

9-17

I Ii ii !!.!.:' COMMANDS I x I

This section contains a definition of what 2000 Access user commands are and how they are
used. General terms used to discuss the commands are defined early in the section. Following
the term definitions a complete description of each user command is given. (Commands used
by the System Operator are defined in the operator's manual.)

WHAT IS A COMMAND?
Commands instruct the system to perform control or utility functions such as storing and
listing programs or logging on and off the system. Commands differ from the statements used
to write a program in the BASIC language in that a command instructs the system to perform
some action immediately, while a statement is an instruction to perform an action only when
the program is executed or run. A statement is always preceded by a statement number; a
command is not.

Any command can be entered once the logging on procedure has been successfully completed.
Commands can be abbreviated to the first three characters. (Embedded blanks are ignored.) If
a command is misspelled, the system will return three question marks indicating that it did
not recognize the command. If a command is not received properly, the system will print
((TRANSMISSION ERROR.REENTER". You should retype the command. Following entry of
each command, (return) must be pressed to signal that command entry is complete.

Most commands have parameters to further define command operation. For instance, the LIST
command causes a display of your current program. It may have parameters to specify that
only part of the program is to be printed, or that the program is to be listed to a device other
than your terminal. If parameters are used, a hyphen or the ((*OUT= file name*" construct
(refer to specific commands for a discussion of this form) is used to separate the command from
its parameters. If multiple parameters are used, they are usually separated by commas.

Example:

LlS-20, 1 00

This would list the program beginning with statement 20 (or the first statement with a
number greater than 20) and continuing through statement number 100.

TERMS USED IN THIS SECTION
The following pages contain definitions of terms that will be used in the command descriptions
given later in this section. These terms will be used to define in detail the operation of each of
the commands.

10-1

Commands

ASCII File

An ASCII file is an area on the disc or a non-sharable device which can be accessed through file
READ and PRINT statements. ASCII files are created with the FILE command. The FILE
command equates a file name with either an area on the disc (ASCII disc file) or with a
non-sharable device. ASCII files can contain only string data. Note that a number can be
represented by a string (e.g., "123.45" represents the number 123.45).

Examples:

FILE-OFIL, OS, 40
FIL-PUNCH, PP
FIL-REAOER, CR, 40

(creates an ASCII disc file of 40 blocks)
(creates an ASCII file equated to the paper tape punch)
(creates an ASCII file equated to the card reader)

Use of ASCII disc files is granted to every user on the system (provided that their idcode has
been granted the use of sufficient disc space). The system operator grants use of non-sharable
devices to an idcode through the NEWID or CHANGEID commands.

You can access ASCII files as if they were your terminal. Each record of an ASCII file is read
and/or written as if it were a line on a terminal.

BASIC Formatted File

A BASIC formatted file is an area on the disc which can be accessed through file READ and
PRINT statements. BASIC formatted files are created through use of the CREATE command
or the CREATE statement (refer to Section XI for a discussion of the CREATE statement). The
CREATE command associates a file name with an area on the disc. BASIC formatted files can
contain both string and numeric data. In addition, these files contain internal information
about the type of each data item (string or number) in the file ..

Examples:

CREATE-BFIL, 20
CRE-BIGFIL, 2000
CRE-SREC, 100, 64

(creates a BASIC formatted file of 20 blocks)
(creates a BASIC formatted file of 2000 blocks)
(creates a BASIC formatted file of 100 blocks of 64 words each)

Use of BASIC formatted files is granted to all users whose idcode has been granted disc space
through the system operator's NEWID and/or CHANGEID commands.

BLOCK

A block is the physical unit of storage on the disc. All of the discs on a system are organized as a
contiguous set of blocks. Each block contains 256 words (a number occupies two words; a
character occupies one half of a word). When a BASIC formatted file is created, you specify how
many records long it should be. Each record will be stored in one block. When an ASCII disc
file is created, you specify how many blocks long it sh'ould be. One difference between an ASCII
disc file and a BASIC formatted file is that the former can store more than one record per block.

10-2

Commands

DEVICE DESIGNATOR

A device designator is a two or three character mnemonic which specifies either a non-sharable
device or a job function designator. There are two types of device designators, general and
specific.

A general device designator specifies non-sharable devices and job function designators by
class.

NON-SHARABLE DEVICE

magnetic tape
line printer
card reader
paper tape reader
paper tape punch

JOB FUNCTION DESIGNATOR

job transmitter
job lister
job punch
job inquiry
job message

GENERAL DEVICE DESIGNATOR

MT
LP
CR
PR
PP

GENERAL DEVICE DESIGNATOR

JT
JL
JP
JI
JM

A specific device designator names a specific non-sharable device or job function designator.
Specific device designators are formed by appending a digit, 0 through 6, to the general device
designator. A list of all specific device designators available to your idcode can be obtained with
the DEVICE command.

Examples:

LPO, CR3, JM1, PP6, JT4, etc.

END-OF-FILE MARK (EOF)

An end-of-file mark is a logical indication stored in a file which indicates the current end of
data. When created, each record of each file has an end-of-file mark written into it as the first
i tern in the record.

FILE LENGTH

The file length indicates the size of a file. File length is always specified in terms of the number
of blocks the file occupies on the disc. The length of any file must be less than 32,767 blocks.
The file length is also limited by the amount of disc space allocated to an idcode and the
amount of disc space remaining in the system.

10-3

Commands

FILE NAME

A file name is a symbol composed of 1 to 6 characters or digits. It is used to identify a specific
file in a library. In some cases the name can be optionally qualified. A preceding dollar sign ($)

indicates the file is to be found in the system library. A preceding asterisk (*) indicates the file
is to be found in the group library. Following the name with a period (.) and idcode indicates
the file is to be found in the library of that idcode.

Examples:

FILE12, 3A, MYFILE, $SFILE, *GFIL, HERS.A312

FULL DUPLEX

Full duplex is a term used to denote a method of character transmission from your terminal to
the system. Full duplex means that when a character is typed on your terminal, it is sent to the
system, but is not printed (or displayed) at your terminal. When the system receives the
character, it immediately sends it back to your terminal causing it to be printed (or displayed).

GENERAL DEVICE DESIGNATOR

(See device designator)

GROUP LIBRARY

A group library is an area for the storage of programs and files. There are a possible 260 group
libraries on any system. The last two digits of a group library idcode are always zero. You may
access your group library by prefacing a file or program name with an asterisk.

Examples:

A300, Z400, F900, etc.

HALF DUPLEX

Half duplex is a term used to denote a method of character transmission from your terminal to
the system. Half duplex means that when a character is typed on your terminal, it is sent to the
system and is also printed (or displayed) at your terminal. When the system is in half duplex
mode, the system does not send the character back to your terminal. If you operate a half
duplex terminal on a port set for full duplex, every character is displayed twice (once by the
terminal and once by the system). To set your port to half-duplex mode, type ECHO-OFF.

Example:

HHEELL--AA 112233"PPAASS
8-15-75 PORT 23
EECCHH--OOFFFF (characters then cease being displayed twice)

10-4

Commands

IDCODE

An idcode is a letter followed by three digits that serves to identify users of a system. The letter
may be A through Z; the three digits may be 000 through 999.

Examples:

A123, 8400, AOOO, Z999, etc.

Each user of the system has an idcode which is used to log onto the system. Each idcode can
have a password, some number of minu tes allowed for system connection, a number of disc
blocks allowed for storage of programs and files, the capability to access non-sharable devices,
and capabilities for Program/File Access (PFA), File Create/Purge (FCP), and Multiple Write
Access (MW A).

JOB FUNCTION DESIGNATOR

Ajob function designator is a device designator which refers to one of the logical data paths
between the ACCESS system and a host system. There are five job function designators: JM,
JI, JP, JL, and JT (job message, job inquiry, job punch, job lister, and job transmitter). Job
function designators are used as ASe!! files for Remote Job Entry (RJE) data communications.

LIBRARY

A library is an area of storage for programs and files. L~braries are specified by the idcode
which (owns' the entries. There are three levels of libraries on the system: your personal
library, group libraries (one of which is your group library), and the system library. Files and
programs which reside in libraries other than your own may be referenced in several ways.
Your group library can be referenced by preceding names with an asterisk (*). The system
library can be referenced by preceding names with a dollar sign ($). Other libraries can be
accessed by following a name with a period (.) and the idcode which (owns' the library.

LIBRARY NAME

A file name or program name.

NON-SHARABLE DEVICE

A non-sharable device is any peripheral device attached to the system which can only be
utilized by one user at a time. Non-sharable devices include magnetic tape drives, line printers,
card readers, paper tape readers, and paper tape punches. In addition, all of the job function
designators are non-sharable devices.

10-5

Commands

OUT= FILE NAME

The *OUT = file name* construct can be used with certain commands. In commands followed
by parameters, it replaces the hyphen. In commands without parameters, it simply follows the
command. It causes the output of the particular command to be sent to the ASCII file specified
by file name. User commands that can use the *OUT = file name* construct are RUN,
EXECUTE, LIST, PUNCH, CATALOG, GROUP, LIBRARY, and DEVICE. The three special
operator commands used from AOOO (DUMP, DIRECTORY, and REPORT) are also allowed
use of the *OUT = file name* construct.

Examples:

RUN*O UT = LPRTR*50
CAT*OUT=PUNCH*
DIRECTORY*OUT =MAGT*L402

PROGRAM NAME

A program name is a symbol composed of one to six letters or digits. It is used to identify a
specific program in a library.

Examples:

PROG, PR1234, TABLEP, etc.

PROGRAM REFERENCE

Aprogram reference is an optionally qualified ($, *, .idcode) program name used to identify a
specific program in a library. A program reference may refer to a group library program by
using an asterisk (*) prefix. A program reference may refer to a system library program by
using a dollar sign ($) prefix. Following a name with a period (.) and idcode indicates that the
named program is to be found in the library of that idcode.

Examples:

$PROG, *GRPROG, MYPROG, 5HP298.A123

RECORD

A record is the logical unit of storage on the system. All files on the system are made up of one
or more records. The length of a record is its record length.

10-6

Commands

RECORD LENGTH

Record length is the number of words contained in a record. BASIC formatted files have record
lengths of 64 to 256 words and each record occupies one disc block. ASCII disc files have record
lengths of from 1 to 255 words and several records may occupy one disc block. Non-sharable
devices have record lengths of from 1 word to the maximum number of words allowed by the
system. A DEVICE command lists the maximum record length available for non-sharable
devices.

SPECIFIC DEVICE DESIGNATOR

(See device designator.)

STATEMENT NUMBER

A statement number is an integer in the range 1 to 9999 inclusive. Each statement in a
program is preceded by a unique statement number. It is used to indicate the proper order of the
statement relative to other statements in the program.

SYSTEM LIBRARY

The system library is an area for the storage of programs and files. There is one system library
per system and its idcode is AOOO. The system library is the personal library of idcode AOOO,
but entries within it may be referenced by other idcodes by prefacing a name with a dollar sign
($). The system library is also the group library for idcodes AOOO through A099.

WORK SPACE

Your work space is an area where your current program is stored. When statements are
entered at your terminal, they become part of your work space. When you GET a program, it is
brought into your work space. A work space may have a name associated with it through use of
the GET or NAME command. When a program is saved, that name becomes the name of the
program in your library. The SCRATCH command clears your work space and its name.

10-7

Commands

COMMAND DESCRIPTIONS
The following pages describe each of the user commands available on the system. Each
command description gives the general form of the command, a description of command
operation, and any optional parameters.

The description for each command is followed by one or more examples. The descriptions use
the terms defined in the previous pages. Whenever terms appear they are printed in italics.
Terms that are defined locally within the command description itself are emphasized by
printing them in bold italics. Optional parameters are enclosed in square brackets ([optional
parameters]) .

10-8

Commands

APPEND Command

The APPEND command retrieves the named program from the appropriate library and
appends it to the current contents of your work space.

The lowest statement number of the appended program must be greater than the highest
statement number of the current program. You can append any program in your library except
programs that have been saved with the CSAVE command or that contain the COM state­
ment.

You can append UNRESTRICTED or PROTECTED programs from your group library or the
system library or from libraries with the PFA (Program/File Access) capability. If a PRO­
TECTED program is appended from another library, the resulting program in your work space
will also be PROTECTED. Programs that are LOCKED or PRIVATE can be appended only by
their owners.

Examples:

APP-$PUBLIC
APP-HIS.B904
APP-MINE
APP-*GROUP

BYE Command

The BYE command is used to log off of the system.

Entry of the BYE command ends the current session. The system will respond by printing the
number of minutes that you have used in the current session and will also update the total
time used by your idcode. If you are using a modem, telephone connection is broken.

Example:

BYE
0009 MINUTES OF TERMINAL TIME

10-9

Commands

CATALOG, GROUP, and LIBRARY Commands

The CATALOG, GROUP, and LIBRARY commands are used to obtain alphabetical listings of
programs and files stored on the system.

If the library name parameter is used, the listing begins with the first program or file with a
name that is equal to or greater than the parameter.

The CATALOG command lists the names of all programs and files stored in your library. The
GROUP command lists the names of non-private programs and files stored in your group
library. The LIBRARY command lists the names of non-private programs and files in the
system library.

The hyphen in the command may be replaced by the *OUT = file name* construct.

Programs, BASIC formatted files, and ASCII disc files are listed in the following format:

Program or file name; Program or file description; Access restriction; length; record

All other ASCII files are listed in the following format:

File name; A; Access restriction; specific or general device designator; record

A program or file descriptor is one of the following characters:

A -ASCII file

F - BASIC formatted file with SWA (Single Write Access)

M - BASIC formatted file with MW A (Multiple Write Access)

C - CSA VED program

blank - SAVED program

An access restriction is one of the following characters:

U - UNRESTRICTED

P - PROTECTED

L -LOCKED

blank - PRIVATE

10-10

Commands

Length is the number of blocks required to store the program or fi'le. Record is blank for
programs and for BASIC formatted files having a record length of 256 words. For ASCII files,
record is the record length in words.

Examples:

1..1 B- P
NAME

PI
PP0
PZ075
RATES
SNLI ST
TESTER
TSP001
TSP004
TSP007
TSP010
TSPHSP
TSPU02

CAT*OUT=DISC*
CA T*O UT = L PR*T
GRO

L.ENGTH RECORD
AI... 10 63
AI... PP0 64

U 4
CU 2
FL 100

U I
CL 8
CL. 9
CL 15
CL 21

1.. 8
1.. 8

NAME
P2
PRIN
PZ 125
SCOOP
STATS
TRADER
TSP002
TSP005
TSP008
TSP06A
TSFMSG
UYlBSPl

L.ENGTH RECO RD NAME L.ENGTH RECORD
AI... 10 63 PAY CU 2

U I PTTTY CU 2
U 6 PZ325 U 15

CU 1 SCR FL. 100
CU 8 T FL. 20

1.. 13 TRADES L 29
CL 25 TSP003 CL 25
CL 14 TSP006 CL. 23
CL. 17 TSP009 CL. 8
CL. 21 TSP06E CL 10
FL 36 TSPU01 L 17
CU 14 xeo HUN CU 26

10-11

Commands

CREATE Command

The CREATE command builds a BASIC formatted file on disc. End-Of-File (EOF) marks are
written into each record. One disc block per record is used regardless of the record length. The
file length may be limited by the system configuration and the disc space allotted to your
idcode. The file is created in the LOCKED state with SWA (Single Write Access) access. You
can create files in your own library only, so the file name cannot be qualified.

Examples:

CRE-FILEA, 48
CRE-MYFILE, 123, 128

(Refer to SAVE)

CSA VE Command

DELETE Command

The DELETE command erases all statements in your work space between and including the
specified statements.

If both statement numbers are the same then only the specified statement is deleted. If the
ending statement number is given, it must not he less than the beginning statement number. If
no ending statement number is given, the delete operation continues through the end of the
program. DEL-! has the same effect as the SCRATCH command except that your work space
retains the program name.

Examples:

10-12

DEL-27
DEL-27,50
DEL-27,27

Commands

DEVICE Command

The DEVICE command lists the specific device designators for the non-sharable devices that
are available to your idcode in the following format:

DEVICE
DESIGNATOR

MAXIMUM
RECORD SIZE STATUS

Maximum record size is the largest record size, in words, specifiable for the device in a FILE
command. The Status field may be blank, indicating that the device is available for use; may
contain the word BUSY indicating that the device is being used by another user; or may
contain the characters N/A indicating that the system operator has removed the device from
the system or assigned it for exclusive use by another idcode or RJE.

The *OUT= file name* construct may be used with the DEVICE command.

Example:

DEV

DEVICE MAXIMUM
DESIGNATOR RECORD SIZE STATUS

CRO 40
CR1 40
LPO 66 BUSY
LP1 66
JMO 60
JPO 41
JLO 67
JTO 40
PRO 64 N/A

10·13

Commands

ECHO Command

The ECHO command allows use of half-duplex terminals.

Users with a half-duplex terminal must first log on, then type the ECHO-OFF command.

ECHO-ON returns a user to the full-duplex mode.

Examples:

ECH-OFF
ECH-ON

:: ... :; .. : :: :

EXECUTE Command

I;XEOUTE .. pr,gr.m re,ertit1t;e

The EXECUTE command clears your work space of any previous program, brings the specified
program into your work space, and begins executing the program.

Execution always begins at the first program statement. When the program terminates, or any
chained-to programs terminate, the work space is automatically cleared. You can always
execute your own programs. Programs that are UNRESTRICTED, LOCKED, or PROTECTED
and are saved in the system library, your group library, or in any library having the PF A
(Program/File Access) capability can also be executed. You cannot execute PRIVATE pro­
grams saved in libraries other than your own.

The *OUT= file name* construct can be used in place of the hyphen in the EXECUTE
command.

Examples:

10-14

EXE-MYPROG
EXE-HERPRG.B456
EXE*OUT = LPR**GROUP
EXE-$SYSTM

Commands

FILE Command

The FILE command creates an ASCII file.

The first general form creates an ASCII file by merely equating file name with the specific or
general device designator for a non-sharable device; no disc space is allocated in this case. The
device designator must be configured into the system and your idcode must be endowed with
the capability to access the general device class. Additionally, the device (if device designator is
specific) or a member of the device class (if device designator is general) must be currently
available to your idcode. (The system operator can dynamically make specific devices unavail­
able or assign them exclusively to RJE or to a particular idcode). Record length, if specified, is
an integer between 1 and a device dependent maximum determined by the system configura­
tion. A list of the specific devices available to your idcode, with their maximum record length
and current status, can be obtained with the DEVICE command.

If a general device designator is specified and the optional record length parameter is supplied,
there must exist at least one device of that type, with a maximum record length greater than or
equal to that specified, which is currently available to your idcode.

ASCII files built with the FILE command are not opened until they are referenced in a
program. At that time, if a maximum record length was not specified for the ASCII file, the file
will assume the maximum record length of the non-sharable device. If the file is associated
with a general device designator the system will assign the lowest numbered specific device of
that type that has a sufficient record length and is available to your idcode

The second general form builds an ASCII disc file. File length specifies the number of disc
blocks to be allocated and may be limited by the system configuration and the amount of disc
space allotted to your idcode. End-Of-File (EOF) marks are written over the entire allocated
disc area. Record length sets an upper limit on the number of words per record and must be an
integer between 1 and 255 inclusive; 63 words is the default. Records exceeding this maximum
are truncated on the right, shorter records occupy only the space actually required (ASCII data
is packed 2 bytes per word and records must begin on word boundaries, therefore the byte
following an odd-length record is unused). A word indicating the record length precedes each
record. Records cannot cross block boundaries; if the number of words remaining in a block is
less than record length plus 1, the entire record is written in the succeeding block.

All ASCII files are created LOCKED with Single Write Access (SWA).

Examples:

FIL-LlST,LP,120
FILE-FASTLP,LP2
FILE-MYFILE,DS,100
FIL-CDMAST,DS,5000,40

10-15

Commands

GET Command

The GET command clears your work space of any previous program and brings the specified
program into your work space.

Programs that are PRIVATE or LOCKED can only be accessed with the GET command by
their owner. Programs that are PROTECTED or UNRESTRICTED residing in a library with
PFA (ProgramiFile Access) capability or in the system library or your group library can also be
accessed with the GET command.

Examples:

GET-MVPROG
GET-HISPRG.C119
GET-$REC
GET-*ACT

(Refer to CATALOG)

10-16

GROUP Command

Commands

HELLO Command

The HELLO command is used to log on to the system. Your idcode andpassword are assigned
by the system operator. The terminal type tells the system what type of terminal you are
using. Terminal type is specified as one numeric digit as follows:

o HP 2600A, HP 2640A, HP 2749A, or IBM 2741 (default)

1 Execuport 300 or Texas Instruments Silent 700

2 ASR 37

3 HP 2762A/B, TermiNet 300, or TermiNet 1200

4 Memorex 1240

Failure to specify the correct terminal type can result in a loss of data. If terminal type is
omitted the system assumes the terminal is type O.

Your password consists of from 0 to 6 printing or non-printing characters. Entering your
password properly validates access to the system. Use of non-printing characters allows a
degree of security in that other users cannot see your password.

When selecting a password you should be aware that certain non-printing characters cause
undesirable effects on certain terminals. The system strips line feeds (control-J), nulls
(control-@), control-H, carriage return (control-M), rubout (control-_), X-OFF (control-S), and
control-X. Some examples of non-printing characters which have terminal dependent'mean­
ings are ESCAPE (initiates control sequences on 2640's and TermiNets), control-L (effects a
page eject on TermiN ets), control-E (on 2640's echo a control-E with a control-F which the
system accepts as if typed), etc. Note that a BEL (control-G) rings a bell on most terminals.
Since it is audible to others it would not add to the security of your password. You should
consider the effect of control characters on your particular terminal when selecting a
password.

Examples:

HEL-C900,M
HEL-J106,GEO,1

10-17

Commands

KEY Command

The KEY command tells the system that the following input will be from your terminal
keyboard. It is used only after a TAPE (paper tape input) operation is complete. It causes error
messages suppressed by the TAPE command to be output to the terminal.

Any valid command has the same effect as KEY. Commands substituted for KEY in this
manner are not executed if diagnostic messages (indicating syntax errors in BASIC state­
ments) were generated during tape input.

Example:

KEY

LENGTH Command

The LENGTH command prints the number of words in the program currently in your work
space, followed by the number of blocks needed to save the program. The total disc space used
and allocated to your idcode is also printed.

Example:

LEN
00151 WORDS=01 RECORDS. 00201 RECORDS USED OF 65000 PERMITTED.

LIBRARY Command

(Refer to CATALOG)

10-18

Commands

LIST Command

The LIST command produces a listing of statements in your work space, in statement number
order. Beginning and/or ending statement numbers can be specified to obtain a partial listing.
If your work space has a program name, that program name precedes the listing.

The letter HP" may be used to produce page formatted output. Fifty-six lines of output are
generated per ~~page unit" together with blank lines to space the listing for cutting into 11-inch
sheets for binding or filing.

Listings may be terminated with the BREAK key. PROTECTED programs obtained from
other libraries cannot be listed.

The *OUT= file name* construct may be used in place of the hyphen. When *OUT= file name*
is used the P parameter is ignored.

Examples:

LIS
LlS*OUT=PRTR*
LlS*OUT =HOLD*1 00,200
LlS-22,55
LlS-P
LlS-400,P
LlS-50,P
LI S-1 00,400

10-19

Commands

LOCK Command

LO~K-lIb,aryname

The LOCK command places the named program or file in the LOCKED state.

Examples:

LOC-MYPROG
LOC-MYFILE

MESSAGE Command

The MESSAGE command sends a character string preceded by your port number to the system
operator.

The character string can be up to 70 characters long. Longer strings are truncated on the right.
All printing characters (including quotes, commas, blanks, etc.) are accepted; except for BEL
(control-G), non-printing characters are stripped.

If the system operator's message storage area is full, the message:

CONSOLE BUSY

will be printed on your terminal, indicating that the message has not been sent and should be
entered again.

Example:

MES-PLEASE MOUNT TAPE GT476 ON DRIVE 3

10-20

Commands

MWA Command

The MW A command places the file specified by file name in the MW A (multiple write access)
state. Your idcode must be endowed with the MWA capability. See the ASSIGN and FILES
statement discussions in Section XI for a description of Multiple Write Access.

Example:

MWA-MYFILE

NAME Command

The NAME command assigns a name to the program currently in your work space.

If NAME is entered with no program name, no name is assigned to your work space. If a name
was previously assigned, it is deleted.

Examples:

NAME-PROGR1
NAM-ADDER
NAM-MYPROG
NAM

10-21

Commands

PRIVATE Command

Genetru.FoI'nl:

The PRIVATE command places the named program or file in the PRIVATE state. Refer to
Section VIII for a discussion of program and file states.

Examples:

PRI-MYPROG
PRI-MYFILE

PROTECT Command

The PROTECT command places the named program or file in the PROTECTED state. Refer
to Section VIII for a discussion of program and file states.

Examples:

PRO-MYPROG
PRO-MYFILE

10-22

Commands

PUNCH Command

General Form:

or

The PUNCH command punches the current program onto paper tape if your terminal has a
paper tape punch. The program is punched instatement number order. Starting and/or ending
statement numbers can be specified to obtain a tape containing a partial program. In addition,
the program name and leading and trailing feed holes are also punched. The program is listed
on your terminal as it is punched. If your terminal does not have a punch, only a listing will be
generated.

The terminal punch must be turned on after the punch command is typed, but before the
trailing carriage return is typed.

An X-OFF, carriage return, and line feed are added at the end of each line to enable other
BASIC programs to read the paper tape as data or to allow reentry of the program tape. The
X-OFF character gives the system control over reading the tape by turning off the paper tape
reader while the system processes the line just read. The system sends an X-ON character to
the reader when it is ready to read the next line. The X-ON character instructs the reader to
continue reading. (See the TAPE command.)

The letter cCP" may be used to prod~ce page formatted output. Fifty-six lines of output are
punched per Ctpage unit" together with linefeeds to space the output for later listing. This
allows for cutting listings into II-inch sheets for binding or filing. The uP" option will not
affect the tape being punched.

Punching may be terminated with the BREAK key. PROTECTED programs obtained from
other libraries cannot be punched or listed.

The *OUT= file name* form may be used to divert the output to an ASCII file. When *OUT=
file name* is used the CCP" parameter is ignored. If the punching is directed to an ASCII file,
that file must be a PP device.

Examples:

PUN
PUN*OUT = TAPE*
PUT*OUT =OUTBUF*1 00,200
PUN-22,55
PUN-P
PUN-,400,P
PUN-50,P
PUN-,400

10-23

Commands

PURGE Command

The PURGE command deletes the specified program or file from your library. It will not delete
the copy of a program in your work space. A purged program or file is recoverable only if
another copy exists in your work space.

A file may not be purged while it is being accessed by another user. The PURGE command can
be used to dissociate non-sharable devices from the name used in a previous FILE command. If
the file is an ASCII disc file or BASIC formatted file, the file space that it occupied is returned
to the system.

Examples:

10-24

PUR-PROG12
PUR-FILE09

Commands

RENUMBER Command

The RENUMBER command is used to renumber statements in your work space. The initial
statement number specifies what the number of the first affected statement should be. Interval
is the difference between successive statement numbers. Starting and ending statement num­
bers refer to the old statement numbers at which the renumbering is to begin and end.
Statement numbers referenced in GOTO, GOSUB, IF ... THEN, RESTORE, CONVERT, and
PRINT USING statements are automatically replaced with the appropriate new number.

If the initial statement number is not given, the first statement number of the renumbered
program will be 10. If the beginning statement number is not given, the renumbering will
begin with the first statement of the program. If the ending statement number is not given the
renu~bering will continue to the end of the program. If both beginning and ending statement
numbers are absent then the entire program will be renumbered.

If no interval is specified then new numbers will be in increments of 10.

If all parameters are omitted then the entire program is renumbered with the first statement
numbered 10, at intervals of 10. RENUMBER cannot be used to change the order of state­
ments. If any command parameter is omitted then all of the parameters following it must also
be omitted.

Examples:

REN
REN-100
REN-10,1
REN-20,50,100
REN-10, 10,50, 100

10-25

Commands

RUN Command

AUN-statement.humber

The RUN command starts execution of the current program in your work space (do not confuse
it with the EXECUTE command). Execution normally starts with the first statement in a
program. When a statement number is given, execution begins at the specified statement
number or the next highest statement number if that specified statement does not exist.

Note that when the RUN-statement number form of the command is used, all statements before
the specified statement will be skipped. Variables defined in skipped statements will be
undefined and cannot be referenced until they are defined in an assignment, INPUT, ENTER,
READ, or LINPUT statement. FILES and DIM statements are executed before any other
statements regardless of where they appear in a program. They are always executed.

A running program may be terminated with the BREAK key. If you were allowed to GET a
program from another idcode, you are allowed to RUN it.

The *OUT= file name* construct may be used with the RUN command.

10-26

Commands

SAVE and CSA VE Commands

The SAVE command is used to save a copy of the current program. A copy of the program is
transferred from your work space to your library. A program must have a name assigned to it
before it can be saved (see the NAME command).

Example:

SAV

The CSAVE command is also used to save a copy of your current work space. The version saved
by the CSAVE command will begin execution slightly faster than a SAVED program. This is
especially important with large programs that do a lot of chaining.

Example:

eSA

A PROTECTED program from another user's library may not be SAVED nor CSA VED.

SCRATCH Command
.::: ... :: ... : : ..

·::i<:::<:.:·. :::.:::::.::: .. ::
·:·:.:::··:·:::C't;

:: .. :) :: :.

·i
... :.:.: ... ::.:

The SCRATCH command deletes the entire current program including the program name
from your work space. Scratched programs are lost unless they have been saved elsewhere.

Example:

seR

10·27

Commands

SWA Command

General Form:

SWA .. filename

The SWA (Single Write Access) command removes the named file from the MWA (Multiple
Write Access) state. The file may now only be written to by the first user to access it while that
user has the file opened. The single write access state is the default state for files. The SWA
command is ignored if your account does not have the MW A capability or if the file is already
in the SW A state.

Example:

SWA-MYFILE

TAPE Command

Genetal·Form:

TAPE

The TAPE command tells the system that the following input (a group of BASIC statements) is
from the terminal's paper tape reader.

TAPE suppresses any diagnostic messages which are generated by input errors, as well as the
automatic (linefeed) after (return). The KEY command or any other command, causes any
diagnostic messages that have been generated to be output to your terminal, ending the TAPE
mode.

The tape reader on your terminal must be turned on before typing the (return)after the TAPE
command, since the system will respond immediately to this command with an X-ON charac­
ter which turns on the tape reader and initiates reading. Refer to the PUNCH command.

Example:

TAP

10-28

Commands

TIME Command

The TIME command responds with one line containing your idcode, port number, time used
since log-on, total time used for the idcode, and maximum time permitted for that idcode. All
times are expressed in minutes. The output for the TIME command is in the form:

idcode ON PORT # port number FOR time MIN. total time MIN USED OF max time
permitted.

Time used by each idcode is recorded automatically.

Example:

TIM
AOOO ON PORT # 05 FOR 00025 MIN. 00125 MIN USED OF 65000 PERMITTED.

UNRESTRICT Command

The UNRESTRICT command places the named program or file in the UNRESTRICTED state.

Examples:

UNR-MYPROG
UNR-MYFILE

10-29

l
'UiIWI BASIC LANGUAGE REFERENCE I XI I

INTRODUCTION
This section contains descriptions of the statements and functions used in programming on the
2000 Access system. A separate heading is used for each statement and function. The headings
are arranged in alphabetical order. Following each heading will be either the description for
the function or statement or a reference to where the description occurs. Some descriptions
have been grouped together functionally for purposes of discussion. Table 11-1 contains an
alphabetic list of all of the statements and functions together with the page where they are
have been grouped together functionally for purposes of discussion. Note that statement
numbers, while required for all statements are not included in the general form descriptions.

BASIC LANGUAGE TERMS
Each description is made up of the statement or function format, explanatory text, and one or
more examples. The format is made up of the statement or function together with any required
and optional parameters or arguments. The parameters and arguments are described using a
set of global BASIC language constructs or terms. These terms are described in the following
paragraphs. When these terms are used in descriptions they will be printed in italics. Terms
which apply only to specific statements or functions are defined within the statement descrip­
tion. These terms are printed in bold italics.

ARRAY
An array is an ordered collection of numbers referenced either simultaneously by the as­
sociated array name or individually by qualifying the array name. The second form of reference
is called a subscripted variable and the individual value specified is called an array element.
For instance, D(3,8), S(46), and X(101,3) are all subscripted variables referring to values that
are array elements.

An array can be one-dimensional, organized as a column of elements (individually refer­

enced by a subscripted variable with a single subscript, the value of which specifies the
element's position within the column). An array can also be two-dimensional, organized as one
or more rows of one or more columns of elements (individually referenced by a subscripted
variable with two subscripts, the value of the first specifying the row and the value of the
second specifying the column which contains the element). Within a program all references to
elements of a given array must be consistent with that array's dimensionality. Two­
dimensional arrays are rectangular; that is, all rows have the same number of columns.

Array A
(one-dimensional)

where:

A(l) = 4.5
A(2) = 3
A(3) = 102
A(4) = 73

4.5
3
102
73

Array B
(two-dimensional)

where:

B(l,l) = 59
B(1,3) = 96
B(2,2) = 5
B(3,1) = 12
B(3,3) = 2

59
= 1

12

3
5
95

96
32
2

11-1

Basic Language Reference

Each array has a size, defined as the number of elements it contains. The size of a one­
dimensional array is simply the number of elements in its single column. The size of a
two-dimensional array is the product of the number of rows and columns. The size of an array
can be specified in a DIM statement or COM statement; as few as 1 or as many as 5000
elements can be specified in this way.

Example:

DIM M(32), F(20,1 0), X(500)

Array M has 32 elements; Array F has 20 rows and 10 columns or 200 elements; Array X has
500 elements.

If not specified, the system will assign a size of 10 to a one-dimensional array or a size of 100
(10 rows by 10 columns) to a two dimensional array. Each array element occupies 2 words of
user work space. Although the definitions of the language allow each array in a program to
have as many as 5000 elements, the capacity of the Access system imposes lower limits in most
cases. The available user work space can contain slightly more than 5000 array elements.
Thus one array of maximum size is possible. However, this space must be shared with the
program itself, other arrays, numeric simple variables, string simple variables, buffer space for
files, etc. Even a program using only a single array and few or none of the above items must be
restricted to a small number of statements in order to leave enough space for 5000 elements.

In general an array has no attributes beyond those discussed above. A program can treat a
one-dimensional array as the mathematical entity referred to as a column vector and can treat
a two-dimensional array as the mathematical entity referred to as a matrix. The MAT
statement of BASIC includes several forms which operate on arrays according to the rules of
vector and matrix arithmetic. Most forms of the MAT statement perform functions on arrays
which are useful for non-matrix purposes as well.

ARRAY ELEMENT

(Refer to array).

ARRAY NAME

An array name is a single alphabetic character (A through Z) used to reference a collection of
numbers called an array. Within a program a given array name will always refer to the same
unique array. However, the form of an array name is also one of the allowable forms of a
numeric simple variable. It is permissible for the same symbol (letter) to be used both as an
array name and as a numeric simple variable within the same program. In each appearance of
the symbol, its context determines which of the two names it represents.

Example:

110 PRINT K(3,2) , P(201) , K

In this example, there is no confusion between the numeric simple variable K and the array
name K because the array is subscripted.

11-2

Basic Language Reference

CHARACTER

A character is any member of the ASCII character set (refer to Appendix A). Most terminals do
not provide a means to enter all of the 128 characters defined by ASCII. In addition the system
strips the following characters from paper tape reader or terminal input: null, control-H,
linefeed, carriage return, X-OFF, control-X, and rubout. Although within the Access system
each character occupies an 8-bit field (one half of a word), the most significant bit of each
character received from a terminal or paper tape reader is forced to 0, since this bit is used only
for parity-checking rather than character differentiation. However, any of the 256 possible
8-bit configurations can be generated internally if needed. String assignments preserve all 8
bits of each character and string comparisons treat each of the 256 different character values
as unique.

CONSTANT

A constant is either a numeric constant, optionally preceded by a plus sign (+) or minus sign
(-), or a literal string.

Example:

-3.2, 1.59 E3, "ABC", and "ST" '32 '65 are all constants

DESTINATION STRING

A destination string is a string variable used in a context where it is assigned a new value.
BASIC includes a number of constructs which ,assign a value to a string variable (LET
statement, LINPUT statement, etc.) In this discussion the term !!assign string" will refer to an
ordered collection of characters supplied for assignment, independent of the origin of this
string. The adjective !!current" will refer to the value and length of the string referenced by a
string simple variable prior to the assignment of the assign string.

Examples:

10 LET A$ = "ABC"
20 INPUT A$
30 CONVERT N TO A$(3)
40 SYSTEM A$(3,80), "TIM"

In these examples, A$ is always a destination string.

If the destination string is a string simple variable, its entire current value is replaced by the
value of the assign string and its logical length is set to the assign string's length (an error
results if this exceeds the physical length of the string simple variable). This form discards the
current string value and replaces it with the assign string's value.

Example:

If A$ currently has the value !~ABC" and the statement 22 A$= !~EFGH" is executed, A$ will
then have the value !!EFGH" and a logical length of 4.

11-3

Basic Language Reference

If the destination string is a string variable with a single substring designator then an initial
portion of its current value is retained and the remainder is replaced by the value of the assign
string. Replacement begins at the character position specified by the substring designator; an
error results if the specified character position exceeds the current logical length + 1. Other­
wise this would incorporate one or more character positions into the new string value without
defining their contents. The logical length is set to the specified character position + assign
string length - 1. An error results if this exceeds the physical length of the string simple

variable. This form appends the assign string value onto an initial portion of the current string
value.

Example:

If A$ currently has the value cCABC" and the statement 33 A$(3) = HEFGH" is executed, A$ will
then have the value HABEFGH" and a logical length of 6. Attempting to execute the statement
44 A$(8) = cCEFGH" would result in an error because character position 7 does not exist in the
string cCABEFGH".

If the destination string is a string variable with a double substring designator then all of its
current value is retained except the range of character positions specified to be replaced.
Replacement begins at the character position specified by the first value of the substring
designator and continues through the character position specified by the second value. An
error results if the first character position exceeds the current length + 1. The number of
characters replaced is always equal to the second value - first value + 1. If the assign string
value contains more characters than needed, only its initial portion is used (i.e., it is CCtrun­
cated from the right"). If it contains too few characters then enough blanks are appended to
achieve the required length (i.e., the assign string value is cCblank-padded on the right"). In the
special case of a null substring designator the second value - first value + 1 = 0, and no
replacement occurs.

If the last character position specified by the substring designator is greater than the current
logical length, it becomes the new logical length. An error results if the new logical length
exceeds the physical length of the string simple variable of the destination string. Otherwise
the characters of the current value which follow the replaced portion of the current string
value are retained and the logical length is not changed. This form either exactly replaces an
existing portion of the current string value or appends an exact number of characters onto an
initial portion of the current string value. In either case the assign string is modified to obtain
the requested number of characters. This modification does not alter the source of the assign
string, only the copy used during the replacement.

Examples:

Assume A$= cCABCD", then

11-4

11 A$(2,3) = "CB" sets A$ = "ACBD"
12 A$(4,8) = "EF" sets A$ = "ACBEF
13 A$(1, 1) = "GH" sets A$ = "GCBEF
14 A$(1,0) = "I" sets A$ = "GCBEF
15 A$(1 0,11) = "J" results in an error because character position 9 does not exist.

Basic Language Reference

FILE NAME

A file name is a symbol composed of 1 to 6 letters and/or digits. It is used to identify a specific
file in a library. In some contexts the name can be optionally qualified ($, *, or idcode). A
preceding dollar-sign ($) indicates that the named file is to be found in the system library. A
precedng asterisk (*) indicates that the named file is to be found in the group library.
Following the name with a period (.) and account number indicates that the named file is to be
found in the library of that account number.

Example:

Valid File Names

2 FILE
FILE
A
TSPMSG
YRPG1.C302

*GFILE
$LUGHA

Invalid File Names

FILE NUMBER

$$TAR
FILE332
FILE #1

A file number is a numeric expression which evaluates to a number associated with a file in an
executing BASIC program. The numeric expression is evaluated and rounded (if necessary) to
an integer. The result must correspond to a number currently associated with an open file.

FUNCTION REFERENCE

A function reference is a numeric-valued function name followed by a parenthesized list of
arguments. It is used to request evaluation of the named function and obtain a number as the
result. The Access system defines the following numeric-valued functions: ABS, ATN, BRK,
COS, EXP, INT, ITM, LEN, LOG, NUM, POS, REC, RND, SGN, SIN, SQR, TAN, TIM, TYP. A
function name formed by the characters FN followed by a letter (A through Z) references a user
defined function. For each distinct name of this form used in a program there must exist a DEF
statement providing its definition. All user defined functions are numeric-valued and require
exactly one numeric expression as their argument. Their value is the number obtained by
evaluating the argument, assigning the result to the parameter mentioned in the associated
DEF statement, and then evaluating the numeric expression contained in the DEF statement.

Examples:

9000 A3 = ATN(33)
9010 P(45) = POS(A$,"11")
9020 PRINT N UM(B$(31 ,31)), FNA(X)
9030 CONVERT FND (Z+10) TO D$

11-5

Basic Language Reference

LITERAL STRING

A literal string is a textual representation of a string value within a BASIC program. The
usual form consists of a pair of double quote marks enclosing an ordered sequence of characters
(blank characters are significant). However, some characters cannot be represented in this
fashion since most terminals do not use the full ASCII character set, the system uses certain
characters for special control purposes and strips them from paper tape reader or terminal
input, and the double quote mark is used as the delimiter. By convention an apostrophe
followed by a decimal integer (in the range 0 to 255 inclusive) is interpreted as specifying the
equivalent internal8-bit character. Any character can be specified with this convention (some
can only be specified in this manner). A general literal string can be composed of any mixture
of quoted character sequences and individual characters represented with the above conven­
tion as long as no two quoted character strings are adjacent. Note that an apostrophe appear­
ing within a quoted character string is simply the character apostrophe.

A literal string can contain as few as 0 characters or as many as 255. The former is called the
null string and is represented by two adjacent double quote marks (H "). The number of
characters accepted in a line generated by a terminal can be as few as 80 or as many as 256 and
can vary from terminal to terminal on the same Access system. In practice a literal string in a
BASIC statement will always be accepted if the entire statement does not exceed 80 characters
(all blanks are included in the count but the terminating carriage return is not). The length of
a literal string is the number of characters it contains (not the number of characters used to
represent it) and the value is the ordered collection of these characters.

Examples:

"ABC"
"AB" '67 '68
"F" '32 "G"
'10 '13 '72
"HJKL"

"NINE TAILOR'S NEEDLES"

LOGICAL LENGTH

The logical length is the number of characters in the current string value of a string simple
variable.

Example:

If A$ = "BEGIN PROGRAM" then the logical length of A$ is 13.

11-6

Basic Language Reference

LOGICAL SIZE

The logical size is the current working size of an array. The MAT statement permits changing
the size of an array during execution. The logical size can range between 1 and the physical size
of the array. The logical size of a one-dimensional array is simply its current working size. The
logical size of a two-dimensional array is the product of its current row size and its current
column size.

Example:

10 DIM A(32), M(6,8), Z(3000)

Thephysical sizes of arrays A, M, and Z are 32, 48, and 3000 respectively. Initially, the logical
size is set equal to the physical size.

NEW DIMENSIONS

New dimensions can be either the number of rows in a one dimensional array enclosed in
parentheses or the number of rows and columns in a two dimensional array separated by a
comma and enclosed in parentheses. The number of rows or the number of columns may be
numeric expressions which are evaluated and rounded to integers. The optional new dimen­
sions allows you to respecify the number of rows and columns of an array. These new
dimensions must be within the limits specified in the original DIM or COM statement or
within the default limits set by the system for the array.

In addition the total number of elements (rows for a one dimensional array or rows x columns
for a two dimensional array) in the newly dimensioned array cannot exceed the number of
elemen ts dimensioned for in the original array.

Example:

10 DIM A(1 0,15), 8(20,20)

80 MAT A = CON(10,10)
90 MAT READ 8(15,15)

Arrays A and B are originally dimensioned 10x15 and 20x20 respectively. Statement 80
changes the working size of array A to 10 x 10 and sets each element to a one. Statement 90
changes the working size of array B so that only 225 elements will be read from a DATA
statement.

NUMBER

A number is an approximation to a real number. It is used as the value represented by a
numeric constant, referenced by a numeric variable, or resulting from evaluation of a numeric
expression. Real numbers are represented with approximately six (seven in a portion of the
range) decimal digits of precision. The ranges of real numbers in the Access system are -1038

through -10-38, 0, and 10-38 through 1038•

11-7

Basic Language Reference

NUMERIC CONSTANT

A numeric constant is a textual representation of a number. Its value is the closest approxima­
tion possible to the real number specified by the form of the numeric constant. The simplest
forms are an integer (a sequence of one or more digits) and an integer followed by a decimal
point (.), optionally followed by an integer. Either of these forms can be followed by an
exponent (the letter E followed by a one or two-digit integer in the range 0 to 38 inclusive,
which is optionally preceded by a plus sign (+) or minus sign (-». An exponent has the value
of 10 raised to the positive or negative power indicated by the following integer. The number
represented by the complete form is the value of the integer or fraction multiplied by the value
of the exponent, if present.

Examples:

19.796
-6.768 E 23
123

NUMERIC EXPRESSION

A numeric expression is a combination of operators and primaries which can be evaluated to a
number. The general form of a numeric expression is too complex to explain all at once. The
discussion will first describe a simpler form and then proceed to generalize it. The most
common form is the (arithmetic expression', which closely resembles the simple algebraic
expression of mathematics. An arithmetic expression can be a sequence of one or more sums,
where each sum (except the last or only one) is syntactically separated from its successor by
either MIN or MAX. During evaluation these symbols are interpreted as binary operators.
Starting with the first sum, each MIN or MAX compares the value of the preceding portion of
the numeric expression with the value of the following sum and selects the minimum or
maximum respectively as its result. The result of the last MIN or MAX is the value of the
entire arithmetic expression.

A sum is a sequence of one or more (terms', where each term (except the last or only one) is
syntactically separated from its successor by either a (+' or (-'. During evaluation these
symbols are interpreted as binary operators specifying addition or subtraction respectively. A
term is a sequence of one or more (factors', where each factor (except the last or only one) is
syntactically separated from its successor by either a (*, or (/'. During evaluation these symbols
are interpreted as binary operators specifying multiplication or division respectively. Each
factor (including the first or only one) can by option have a preceding (+' or (-'. During
evaluation these symbols in this context are interpreted as unary operators. The unary (-'
specifies negation of the value of its following factor; the unary (+' exists only for syntactic
symmetry and has no effect on evaluation. A factor is a sequence of one or more primaries,
where each primary (except the last or only one) is syntactically separated from its successor
by either (i' or (**'. These symbols are alternative representations of the same binary operator,
called the exponentiation operator. During evaluation they specify that the value of the
primary following the operator is used as a power and the value of the preceding portion of the
factor is used as a base (e.g., A**B is equivalent to the mathematical notation AB).

The use of (+' and (-' as both binary and unary operators is traditional in mathematics.
Unfortunately it can create confusion in some cases. Consider the following three legal
arithmetic expressions:

term - factor term - + factor term + - factor

11-8

Basic Language Reference

By definition any term except the last one must be followed by a t+' or t_" while a factor is only
optionally preceded by a unaryt+' or unary t_,. Thus the proper interpretation of the first case
is as tterm - term', where the second term is a simple factor. The second case is also tterm -
term', where the second term is a factor preceded by a unary t+' and hence is equivalent to the
first case. The third case is tterm + term', where the second term is a factor preceded by a
unary t_'. Under the rules of mathematics, subtraction of a number is equivalent to addition of
its negative value. The result is that all three of the above cases will evaluate to the same
value.

The following diagram can be read from top to bottom as an illustration of how primaries and
operators combine to form an arithmetic expression, or it can be read from bottom to top as an
illustration of how the definition of an arithmetic expression is expanded into its components.

A
(primary)

* - B
(primary)

** C
(primary)

+ D
(primary)

A * - B**C + D

E
(primary)

(factor) (negated factor) (factor)
E

(factor)

A*-B**C + DIE
(term) (term)

A*-B**C+D/E
(arithmetic expression)

In any arithmetic epression which contains two Or more operators, the order of their application
during evaluation is important. In BASIC the order of evaluation is implicitly specified by a
hierarchy of precedence among the operators. This hierarchy, adopted from the conventional
rules of mathematics, is illustrated by the following table:

** i
unary -

* I
+
MIN

(highest level)
unary +

MAX (lowest level)

When contemplating two operators which appear at different levels in this table, the operator
at the higher level is chosen for execution first. In the arithmetic expression A + B*C the
multiplication precedes the addition. When two operators appear at the same level, the
operators are executed from left to right. In A+B-C the addition precedes the subtraction. In
some cases the implicit order of evaluation is not the one desired. Note that one form of a
primary is a parenthesized numeric expression. Any portion of a numeric expression which by
itself is also a legal form of numeric expression can be enclosed in parentheses. The enclosed
portion becomes a primary, forcing its evaluation to precede execution of any operators in the
surrounding numeric expression which might otherwise take precedence. Parentheses can be
nested to any depth required to override the implicit order of evaluation.

Example:

A + B/C MIN - D* + E**F is evaluated in the same order as
(A + (B/C)) MIN ((- D)*(+(E**F)))

11-9

Basic Language Reference

Arithmetic expressions can be combined into a more complex form of numeric expression called
a relational expression'. A relational expression is a sequence of one or more arithmetic
expressions (usually two), where each arithmetic expression (except the last or only one) is
syntactically separated from its successor by a relational operator. During evaluation a rela­
tional operator is interpreted as a binary operator which produces a value of ttrue' or tfalse'.
The most common use for a relational expression is within an IF statement.

Example:

IF A+B <= C+D THEN 300

The most general form of numeric expression is the tlogical expression'. Three logical operators
are available: AND, OR, and NOT. The first two are binary operators used to combine
relational expressions into more complex decisions. The result of executing OR is ttrue' unless
both of its operands have the value tfalse'. The result of executing AND is tfalse' unless both of
its operands have the value ttrue'. NOT is a unary operator and has the same precedence as
unary t_' and unary t+'. NOT performs a logical negation; its result is tfalse' if the value of its
operand is ttrue' and its result is ttrue' if the value of its operand is tfalse'.

Example:

IF (A+B>C AND X=Y) OR NOT 0<= E+2 THEN 45

Although logical operators are described in terms of manipulating ttrue' and tfalse', the values
are actually represented within BASIC as numbers. If the result of a logical operator or
relational operator is ttrue', it produces the number 1. If the result is tfalse' it produces the
number O. The operand of a logical operator will be interpreted as ttrue' ifits value is non-zero;
it will be interpresed as tfalse' if its value is O. Logical operators can use any numeric
expression as their operand and both logical operators and relational operators can appear
within numeric expressions enclosed in parentheses and used as primaries of arithmetic
expressions. The complete operator hierarchy for numeric expressions is the following:

** i
unary +

* /
+ -
MIN

(highest)
unary -

MAX

NOT

<= < = > >= <> #
AND
OR (lowest)

The same rules for order of evaluation given under the discussion of arithmetic expressions
apply to the expanded table. Parentheses can be used to override the implicit order of
evaluation at any level of a numeric expression. Note that A<B<C is not equivalent to A<B
AND B<C. The format evaluates A<B to a 1 or 0 and then compares that result to C. The
latter evaluates A<B to ttrue' or tfalse' (lor 0) and B<C to ttrue' or tfalse' (lor 0) and then
produces the logical AND of the two results.

Example:

A AND B<C+D OR NOT E is evaluated in the same order as
(A AND (B«C+D») OR (NOT E)

11-10

Basic Language Reference

NUMERIC SIMPLE VARIABLE

A numeric simple variable is a single alphabetic character (A through Z) optionally followed by
a single digit (0 through 9). It is used to reference a number, which is also referred to as its
value. The value can be accessed or altered by several BASIC language constructs. Normally a
numeric simple variable is uniquely identified by its name and its value is available to any
statement within a program. However, a special case exists when a name of this form appears
as the parameter of a DEF statement. In this context the value of the name is assigned by a
reference to the associated function name and is accessed by use of the parameter name as a
primary within the numeric expression of the DEF statement. The same name can appear as
the parameter of different DEF statements within the same program and also as a numeric
simple variable in other statements. A parameter is recognized as unique within the context of
its own DEF statement; thus all appearances of its name outside of that statement are
independent. The values associated with these other appearances are maintained separately
and do not interact with the value of the parameter.

Example:

A9, P3, G, C, FO, Z2

NUMERIC VARIABLE

A numeric variable is either a numeric simple variable or a subscripted variable.

Examples:

H2, F(3), M(I,J+2), Z

PHYSICAL LENGTH

The physical length is the maximum number of characters that the string value of a string
simple variable can contain.

Example:

DIM A$(30), P1 $(72) (defines the physical lengths of A$ and Pl$ as 30 and 72,
respectively)

PHYSICAL SIZE

The physical size is the maximum size an array can attain. This is the same as the size
established either explicitly in a DIM statement or COM statement or implicitly in the
absence of an explicit specification.

Examples:

DIM A(45), 8(3,2)

COM M(30)

(defines the physical size of A, B, and M as 45, 6, and 30, respec­
tively)

11-11

Basic Language Reference

PRIMARY

A primary is a numeric constant, a numeric variable, a function reference, or a numeric
expression enclosed within parentheses. Primaries are used to supply the numbers which are
combined and manipulated by the operators of a numeric expression.

PROGRAM NAME

A program name is a symbol composed of 1 to 6 letters and/or digits. It is used to identify a
specific program in a library. In some contexts the name can be optionally qualified ($, *, or
.idcode). A preceding dollar-sign ($) indicates that the named program is to be found in the
system library. A preceding asterisk (*) indicates that the named program is to be found in the
group library. Following the name with a period (.) and idcode indicates that the named
program is to be found in the library of that idcode.

Examples:
Valid Program Names

PROG YRPRG.F932
8 $ORAG
TOE 200 * GPROG

Invalid Program Names

PROGRAM
PROG/2

RECORD NUMBER

A record number is a numeric expression which evaluates to a number specifying a particular
record within a BASIC formatted file. The numeric expression is evaluated and rounded (if
necessary) to an integer. The result must be greater than or equal to 1 and less than or equal to
the number of records in the file.

RELATIONAL OPERATOR

A relational operator is one of the symbols:

< (less than)
< = (less than or equal)

(equal)
> = (greater than or equal)
> (greater than)
<> (unequal)
(alternate for < >)

Each symbol is interpreted as a binary operator during execution. It compares the value of the
operand to its left with the value of the operand to its right and returns the value ttrue' (1) if
they satisfy the relation represented or tfalse' (0) if they do not. Relational operators can be
used either to compare the values of two strings (within an IF statement only) or to compare
two numbers wi thin a numeric expression. Note that the symbol used to test for equality (=) is
the same as the symbol used to specify assignment in a LET statement. If this symbol appears
more than once within a LET statement, there can be confusion as to which meaning it has
(multiple assignment or test for equality). In such cases the rule is that, starting from the
beginning of the statement, all appearances of t =' are assignment operators until one of them
is followed by a construct which is not a numeric variable (parenthesized occurrences are not
counted). Any remaining appearances are the relational operator.

11-12

Basic Language Reference

RETURN VARIABLE

A return variable is a numeric variable used in the context of a statement which returns status
information to a BASIC program. The statement indicates the results of its execution by
assigning a value to the return variable. The program can then test the result of such
statements by accessing the value.

Example:

100 ASSIGN FIL 1, 3, Z (Z is a return variable)

SOURCE STRING

A source string is a literal string or a string variable used in a context where it supplies a string
value. BASIC includes a number of constructs which manipulate a string value (PRINT
statement, UPS$ function, etc.). The rules of interpretation for each of these are appropriate
specific cases of several general rules. In this discussion the term ~~accessed string" will refer to
the ordered collection of characters supplied by the source string. The adjective ~~current" will
refer to the value and length of the string referenced by a string simple variable from which an
accessed string is taken.

If the source string is a literal string then the value and length of the accessed string are simply
those of the string represented textually. If the source string is a string simple variable then
the value and length of the accessed string are the current value and current logical length of
the string referenced by the variable's name. This form returns the entire current str.ing as the
accessed string. If the source string is a string variable with a single substring designator then
the portion of the current value preceding the specified character position is ignored. The value
of the accessed string consists of any remaining characters of the current value and the length
is simply the number of them. If the specified character position exceeds the current logical
length, then the accessed string is the null string. This form discards an initial portion of the
current string and returns the (possibly null) remainder as the accessed string. The current
string is not altered.

If the source string is a string variable with a double substring designator then the specified
portion of the current value is extracted. Extraction begins at the character position specified
by the first value of the substring designator and continues through the character position
specified by the second value. If the last character position is greater than the current logical
length, the non-existent characters are interpreted as blanks. If the first character position is
greater than the logical length of the current value, the value of the accessed string will consist
entirely of blanks. The length of the accessed string is determined by the substring designator
and is equal to the second value - first value + 1. In the special case of a null string
designator, none of the current value is used and the accessed string is a null string. This form
returns a string with a predetermined length and a value composed of characters extracted
from the current value where possible, but having blanks corresponding to character positions
requested beyond the current logical length. The current string is not altered.

Example:

Assume A$ = ~~ABCDE", then the source strings A$, A$(3), A$(1,3), and A$(4,7) equal
~~ABCDE", uCDE", uABC", and ~~DE ", respectively.

11-13

Basic Language Reference

STATEMENT NUMBER

A statement number is an integer in the range 1 to 9999 inclusive. Each statement in a
program is preceded by a unique statement number. It is used both to indicate the proper order
of the statement relative to other statements in the program and as a label by which other
statements can reference its statement during execution.

Example:

100 A=B (100 is the statement number)

STRING

A string is an ordered collection of characters which taken all together comprise the string's
value. The number of characters is the string's length, which can be between 0 and 255
inclusive. The maximum length of a string can be specified in a DIM statement or COM
statement. The minimum length of a string specified in a DIM or COM statement is one
character. If not specified, the system will assign a length of 1 to a string. The actual number of
characters used in a string may be less than the number dimensioned.

STRING EXPRESSION

A string expression is one of several BASIC constructs used to supply a string value. The
specific interpretation and use depends upon the context in which it appears. Any source string
can be used as a string expression. In addition the two string-valued functions CHR$ and UPS$
can be used.

Examples:

"ABC"
"AB" '67
A$
A$(3,6)
CHR$(I)
UPS$(B$)

(Refer to string)

STRING LENGTH

STRING SIMPLE VARIABLE

A string simple variable is a single alphabetic character (A through Z), optionally followed by
either 0 or 1, followed by a dollar-sign ($). It is used to reference a string. The value and length
of the referenced string can be accessed or altered._by several BASIC language constructs.

Examples:

A$, P1$, F$, ZO$

11-14

Basic Language Reference

STRING VALUE

(Refer to string)

STRING VARIABLE

A string variable is either a string simple variable or a string simple variable qualified by a
substring designator.

Examples:

A$(4), 01 $(1 ,LEN(O$)), M$(I,J), GO$, D$

SUBSCRIPTED VARIABLE

A subscripted variable is an array name followed by either one or two subscripts enclosed in
parentheses. It is used to reference the value of an array element. A subscript is a numeric
expression which is evaluated and rounded (if necessary) to an integer. An element of a
one-dimensional array is referenced by following the array name with a single subscript within
the parentheses. It must evaluate to an integer from 1 to the logical size of the array. An
element of a two-dimensional array is referenced by following the array name with two
subscripts, separated by a comma, within the parentheses. The first must evaluate to an
integer from 1 to the current row size; the second must evaluate to an integer from 1 to the
current column size.

Examples:

F(I,J+3), S(M1 *F/2), M(32)

SUBSTRING DESIGNATOR

A substring designator is a modifier which can follow a string simple variable to designate
either an initial character position or a range of character positions. The general form is:

(numeric expression [,numeric expression])

If only one numeric expression appears then the designator is single, specifying an initial
character position. If both numeric expressions appear then the designator is double, the value
of the first numeric expression specifying the first character position and the value of the
second specifying the last character position of a range. Each numeric expression is evaluated
and rounded (if necessary) to an integer before use. The value of the first (or only) one must be
one of the integers 1 through 32767 inclusive (in practice values above 255 have little utility).
The number of character positions in the range specified by a double substring designator is
the second value - first value + 1. Thus the value of the second numeric expression is normally
greater than or equal to the value of the first, but cannot exceed 32767. As a special case the
second value can be 1 less than the first value, specifying a range of 0 character positions
(referred to as the null substring designator). An error results if the values specify a negative
range (second value - first value + 1 < 0) or a range greater than 255. Other than these
restrictions, the legality of a particular substring designator depends upon the context of its
appearance.

11-15

Basic Language Reference

ABS Function

The ABS function is a numeric valued function which returns the absolute value of the
numeric expression.

The absolute value ofa number is that number, irrespective of the sign (positive or negative) of
the number. For example, ABS(33) = 33, and ABS(-33) = 33.

Example:

20 PRINT ABS(N/D*S)

ADVANCE Statement

The ADVANCE statement causes the pointer for the specified file to be advanced past the
number of items specified by the skip count.

The skip count is a numeric expression which, when evaluated and rounded to an integer,
specifies the number of items to be skipped. The number of items to be skipped may not be
negative. If the statement is executed successfully, the return variable is set to o. If the
statement encounters an EOF (End-Of-File mark) before the specified number of data items
have been skipped, the return variable will be set to the number of items yet to be skipped. If
the statement encounters an EOR (End-Of-Record mark) before the specified number of data
items have been skipped, skipping continues into the next record. The ADVANCE statement
cannot be used on an ASCII file; if attempted, the program will be terminated. Specification of
an invalid file number will result in an error. (Refer to the FILES statement for an explanation
of file number.)

Example:

10 ADVANCE #3;5*X+1,Z

11-16

Basic Language Reference

ASSIGN Statement

The ASSIGN statement is used to assign a file designator to a file number reserved by the
FILES statement and to open the specified file. For example, ASSIGN AFILE, 3, V AR assigns
the file name AFILE to the position reserved for the file number 3 in the FILES statement.

If another file is associated with the file number used in an ASSIGN statement, then that file is
closed. The result of the assign operation is returned in the return variable. The file designator
is a source string whose value is a file name. The file name referenced may be a system library
file ($ name), a group library file (*name), or a file resident (saved) in any other user's library
(name.idcode). To reference a file with name. idcode , that idcode must have the PFA
(Program/File Access) capability. The file number can be a numeric expression which evaluates
to the file number (1 - 16).

If an asterisk (*) is used in place of the file designator, the file previously associated with the
file number is closed. If the file has already been closed, the statement is ignored.

Example:

100 ASSIGN *, I, Z

After ASSIGN is executed, a value is returned in the return variable. The return values and
their meanings are given below.

Return Value

o
1

2

3

4

5

6

7

8

Meaning

file is available for read and write

file is available for read only

file is available for read only (it belongs to another user
and is protected)

file does not exist or is not accessible

file number is out of range (it does not correspond to one of
the positions reserved by a FILES statement)

no buffer space is available for the file

file is not available for read or write because of another
user's current access

specified restrictions not possible

file is available for write only

If the value returned is 3, 4, 5, 6, or 7 the file is not opened, any access to the file number causes
the program to be terminated with an error. If the returned value is 1 any attempt to print onto
the file causes a terminal error. If the returned value is 8, any attempt to read the file causes a
terminal error. Other references to the file assigned that file number are legal.

11-17

Basic Language Reference

ASSIGN Statement (Cont)

The optional mask is a source string used to encode or decode BASIC formatted file data (refer
to Section V). When using a mask, all data read or written to the file will be modified by the
mask, making the data unintelligible to programs which use the file without the same mask
used initially. In order to extract data from a file, the same mask must be used to read the data
as was used to print the data to the file. Numeric zeros, data types, EOR (End-Of-Record)
marks, and EOF (End-Of-File) marks are not affected. A mask used with an ASCII file is
ignored.

Example:

100 ASSIGN FIL 1, I, Z, M$

The optional restriction is a two-letter code used to specify any special access restrictions on the
file. Restriction codes are as follows:

Code

RR

WR

NR

Meaning

Read and write restriction; no subsequent user can access the file
while the file is open.

Write restriction; subsequent users can read from, but not write to
the ·file while the file is open.

No restriction; subsequent users can read and write file data while
the file is open. (As long as the file is multiple write access -
MWA.)

If the restriction parameter is omitted, the file is opened with the WR (Write Restriction)
restriction. If this fails because another user has write access, NR (No Restriction) is used.
Note that for MWA (Multiple Write Access) files, the NR code is always used.

The specified restriction remains in effect as long as the file is open. If another program has
opened the file and restricted its use, then the ASSIGN statement will return a value of 6 or 7
in the return variable and the file will not be opened.

For a file located in the user's log-on account that is not currently in use, read/write access is
granted. ASCII Files will be opened with read-only or write-only access if appropriate for the
device. If the file is in use, and it is single write access (SWA), read-only access is granted
unless the other user has applied the RR restriction when assigning the file, in which case no
access is granted. If the file is in use and it is multiple write access (MWA), read/write access is
granted unless the other user has applied the WR restriction when assigning the file, in which
case read-only access is granted. If the other user has applied the RR restriction, no access is
granted.

11-18

Basic Language Reference

ASSIGN Statement (Cont)

For a BASIC formatted or ASCII disc file located in a library other than (outside) the user's
log-on account, that is not currently in use, the access granted is as follows:

File Status

Read/Write

Read only

Static Access

Unrestricted

Protected

Locked No access unless the program accessing the file is saved
in the same account as the file and the program is locked,
in which case Read/Write access is granted.

Private No access

You may not access an ASCII file located in a library other than your log-on account except for
the following two exceptions: 1) ASCII disc files, or 2) Locked ASCII files in the AOOO library
which you access by a locked program also saved in the AOOO library.

For any file currently in use, located in a library other than the account you are using, the
access granted is the same as described above, modified by any dynamic restrictions (NR, WR,
RR) that the other user may have applied.

A locked or private program in a group library account with the FCP (File Create/Purge)
capability which has been executed or chained-to, has static read/write access to locked BASIC
formatted files having the PFA (Program/File Access) capability, located in any of the ac­
counts of that group.

In the example below, files are assigned for each file number associated with an * in the FILES
statements. A write restriction (WR) on XFILE prevents other users from writing on that file.
A read and write restriction (RR) on DFILE prevents other users from having any access to the
file. There are no access restrictions (NR) on FF1. The mask uABZ1" is used to encode the data
in file X. File X is closed in line 90. In line 100, AFILE is closed and file CC is opened as file
number 1. The zeros in the numeric variables indicate that each file was available for reading
and writing when it was opened.

Examples:

10 FILES AFILE,BFILE,*
20 FILES AA,BB,*, *, *
30 ASSIGN "XFILE",3,X1,WR
40 ASSIGN "DFILE",6,D1,RR
50 ASSIGN "FF1",7,N,NR
60 LET X$="X"
70 ASSIGN X$,8,X,"ABZ1"
80 PRINT X1 ,D1 ,N,X
90 ASSIGN *, 8

100 ASSIGN "CC",1 ,C1
110 PRINT C1
120 END
RUN
o
o

o o o

11-19

Basic Language Reference

ATN Function

ATN is a numeric-valued function which returns the arctangent of the numeric expression.

The value of the function is the angle (in radians) whose tangent is the numeric expression.

Example:

100 A = ATN(8)

BRK Function

The BRK function enables or disables the BREAK key capability of a terminal.

The value of numeric expression, when evaluated and rounded to an integer, will have the
following effect:

• Value less than zero returns the status of the BREAK capability.

• Value equal to zero disables the BREAK capability.

• Value greater than zero enables the BREAK capability.

BREAK CAPABILITY. For a program running at a terminal, the BREAK key capability of
the terminal can be disabled or enabled by execution of the BRK function within the program.
At the beginning of program execution, the BREAK capability is enabled (default). Ifdisabled,
it remains disabled until program execution is completed; the program terminates because of
an execution error; the BREAK command is entered by the system operator; or until the BRK
function is executed with an argument greater than zero.

11-20

Basic Language Reference

BRK Function (Cont)

Because program execution may be completed before all output is complete, care should be
taken when re-enabling the BREAK capability to ensure that program output will not be
interrupted and lost. Either an INPUT statement or an ENTER statement can be included in
the program just prior to the statement containing the BRK enable function. This will cause
the program to pause until output is complete before continuing execution. For example, the
following program segment will disable the BREAK capability and print the value of (T'
twenty times. On encountering the ENTER statement, the program will pause until printed
output is complete before execution continues from statement 30.

Examples:

5 Y=BRK(O)
10 FOR 1=1 TO 20
15 PRINT "1=";1

·20 NEXT I
25 ENTER 1 ,A, B
30 Z=BRK(1)
99 END

VALUES RETURNED BY BRK FUNCTION. For arguments equal to or greater than zero,
the value returned depends on the previous condition of the BREAK capability. This value will
be 1 if the capability was previously enabled, or 0 if the capability was previously disabled.

To find the current status of the BREAK capability, enter an argument less than zero. If
currently enabled, a 1 is returned. If currently disabled, a 0 is returned.

If a program is in an infinite loop during execution and the BREAK capability is disabled, the
system operator can enter a BREAK command to enable the BREAK capability. Once the
system operator enables the BREAK capability, the running program may not disable BREAK
until program termination.

For terminals connected to the system through telephone lines, a loss of carrier for longer than
two seconds causes the user to be disconnected and automatically logged off the system.
Similarly, hardwired terminals that drop carrier and/or data set ready signals when turned off
cause the user to be automatically logged off the system. In either case, a disabled BREAK
capability is returned to the enabled condition.

Examples:

935 LET B = BRK(O)
940 Z = BRK(A+M)
945 PRINT BRK(Y)

11-21

Basic Language Reference

CHAIN Statement

The CHAIN statement causes the current program to terminate and the program referenced
by program designator to be executed.

The program designator is a source string whose value is a program name. The program name
may be a system library program ($name), or a program in any other user's library (name.id­
code). To reference a program with name.idcode, that idcode (account) must have the PFA
(ProgramlFile Access) capability. You may always CHAIN to a program located in the account
you are using, regardless of its status (i.e., Locked, Private, Protected, or Unrestricted).

For a program located in a library other than the account you are using, the access granted is
as follows:

Program Status

Unrestricted

Protected

Locked

Private

Static Access

May chain, optionally specifying a statement number.

May chain, optionally specifying a statement number.

May chain, but no statement number may be specified
unless the current program is saved in the same
library as the chained-to-program.

Chain not allowed.

The optional numeric expression following the program designator can be used to define the
statement number in the destination program where execution will begin. If not specified, the
new program will begin execution at the first program statement. The numeric expression is
evaluated and rounded to the nearest integer to obtain the starting statement number.

If the optional return variable is provided and chain operation is successful, the return variable
is set to O. This value is accessable in the destination program (if the return variable is
specified as common).

The CHAIN statement can produce the same errors as the GET command. Ifa chain operation
is unsuccessful, the return variable will be set to a value of 1,2, or 3, depending on the type of
error. A list of return variable meanings is as follows:

11-22

Return Value

o
1

2

3

Meaning

Successful

Bad statement number specified (less than 1 or
greater than 9999)

No access permitted to named program

Chain not permitted

Basic Language Reference

CHAIN Statement (Cont)

When a return variable is used and a chain operation is not successful, execution of the current
program will continue with the statement following the CHAIN statement. Unsuccessful
chain operations without a return variable will cause the current program to be terminated
with an error.

If a chain operation is successful, all files in the chaining program are closed, even if they
appear in FILES or ASSIGN statements in the destination program. No other user, however,
may gain access to files in the chaining program until any FILES statements in the chained-to
program are executed. Also, any variables listed in a COM statement are transferred (see the
COM statement elsewhere in this section).

Before execution of the destination program can begin, it must be compiled. Programs may be
stored in the semi-compiled form to speed execution (see the CSA VE command in Section X).

Examples:

20 CHAIN "PROG2"
50 CHAIN V$
97 CHAIN "ABC",A

150 CHAIN "MELVIN",80
200 CHAIN N$,Q+14
230 CHAIN A$, 11 0
240 CHAIN R,"LlBROC.A001", 10

11-23

Basic Language Reference

CHR$ Function

The CHR$ function returns a single ASCII character that has the value of numeric expression.

Each character in a string is internally represented by one byte consisting of eight bits. These
eight bits allow 256 different characters to be represented. The representation of the first 128
of these characters (0 -127) is in accordance with the ASCII standard. The last 128 characters
have no predetermined meaning (have only a positive value from 128 to 255). All 256
characters can be referred to by a decimal number in the range of 0 to 255. Appendix A
presents the decimal equivalents for each of the representable characters (i.e., A = 65, B = 66,
etc).

The CHR$ function returns a single character (byte) which corresponds to the position in the
ASCII code table (Appendix A) for the argument of the function (the numeric expression). The
numeric expression is evaluated and rounded to an integer which should be in the range of
from 0 to 255. If the integer is not within this range, then the program terminates with an
error. For example, CHR$(65) and CHR$(30 + 35.4) both yield the character ((A".

The CHR$ function may only be used on the right side of a string assignment statement; string
IF statement; or as a print list item.

Examples:

11-24

200 PRINT CHR$(2*(1 +8))
300 A$(1, 1) = CHR$(J)

Basic Language Reference

COM Statement

The COM statement lists variables to be passed between programs linked by the CHAIN
statement.

A common list is one or more common elements separated by commas. A common element is a
numeric simple variable, string simple variable, string simple variable (length), array name
(number of rows), or array name (number of rows, number of columns).

Example:

100 COM A,8(1 0,10),8$(200)

Several programs may be run sequentially, all accessing and possibly changing data in the
common area. Program control must be transferred with the CHAIN statement. Merely
getting and running the next program will not preserve the common area. COM statements
must be the lowest numbered statements in the program. The transfer of data values between
variables in different programs is done according to the order of the variables in the COM
statement. For example, if one program has as its first statement

10 COM A,B1,C$(10)

and a second program has as its first statements
12 COM X
14 COM Y,Z$(10)

and the first program chains to the second, the current values of variables A,B1, and C$ will be
used to initialize the variables X, Y, and Z$ respectively. Note that you are free to use the
variable names A,B1 and C$ for a different purpose in the second program.

Array and string variables used in COM statements must be dimensioned in the COM
statement and may not appear in DIM statements. The corresponding variables in the
chained-to program must also be dimensioned in the COM statement and must be dimensioned
to the same values as those in the first program. In order to access a common variable, all
preceding common variables must correspond in type and dimension to those in the first
program. You need not have the same number of common variables in both programs.

The values of common variables are lost when a program terminates (whether normally due to
an END or STOP statement; to an execution error; or to the use of the BREAK key).

Examples:
100 COM A,QO$ (255)
200 COM C,R1,C3
300 COM F(30,12), 8$(10), Z(14)

CON Function

(Refer to MAT ... CON)

11-25

Basic Language Reference

CONVERT Statement

The CONVERT statement is used to change a numeric expression to a string of characters that
represent the value of the expression. It may also be used to convert a source string to an
equivalent numeric value.

NUMERIC TO STRING. When converting numeric values to string values, the conversion is
the same as that used by the system to list numeric data (using the LIST command). The
output string will not contain embedded blanks.

Example:

150 A=10
170 B=15
200 CONVERT A+B TO A$
220 PRINT A$

This will result in the string!! 25" being printed as three characters as in the normal numeric
format of a listing.

STRING TO NUMERIC. When converting strings to numeric values, the string must
represent a valid numeric constant. If not, the program will be terminated unless an optional
statement number is specified. In this case, an invalid numeric value will transfer control to
that statement. Blanks are permitted in the string.

Examples:

200 CONVERT P1 $(21,30) TO F(7)
300 CONVERT A$ TO X,500
400 CONVERT B$ TO M1

COS Function

The COS function is a numeric valued function which returns the cosine of the numeric
expression. The numeric expression is interpreted as being in radians. If the absolute value of
the numeric expression exceeds approximately 102900, your program will be terminated with
an error.

Example:

500 LET B = COS(3.1415/X)

11-26

Basic Language Reference

CREATE Statement

The CREATE statement is used to create a BASIC formatted file from an executing program.

The CREATE statement can be used only to create a BASIC formatted file and cannot be used
to create an ASCII file. The return variable is set to a value which indicates the result of the
execution of the statement. The values which may be returned and their meanings are as
follows:

Return Value

o
1

2

3

4

Meaning

The file was created successfully

A file already exists with the same name

Bad file name, no such account, invalid access, bad
file length, or bad record size

No space in the account

No space in the system

The file designator is a source string whose value is a file name. The file length is a numeric
expression, which, when evaluated and rounded to an integer, specifies the number of records
to be created in the file. File size may vary from a minimum of one record to a maximum of
32,767 records. (This value may be limited by account and system restrictions.) The optional
record size must be a numeric expression which, when evaluated and rounded to an integer,
gives the file record size in words. The record size, if specified, must be between 64 and 256
words. Ifnot specified, the record size will be set to 256 words. The state of any file created with
the CREATE statement is LOCKED.

A LOCKED or PRIVATE program saved in a group library account having the File Create/
Purge (FCP) capability which has been executed or chained-to may create a BASIC formatted
file in any of the account libraries which are members of that group having the Program/File
Accessibility (PFA) capability.

Note that the CREATE statement does not open a file for access. The file must still be opened
using a FILES or ASSIGN statement.

Examples:

10 CREATE N,"MYFILE",200
20 CREATE M,"HERFIL",500,64
30 CREATE P,A$,100
40 CREATE Q, B$,X**2,J

11-27

Basic Language Reference

CTL Function

The CTL function can be included in print operations to provide hardware control for ASCII
file output devices. For example, PRINT #1; CTL(l) where file number 1 has been equated to a
line printer, would cause the line printer to perform a top of form function.

The CTL function can be used in PRINT, PRINT #, PRINT USING, MAT PRINT, MAT PRINT
#, and MAT PRINT USING statements. The numeric expression is evaluated and rounded to
an integer. This value is used to select a device command to be sent to the ASCII device. The
CTL function is ignored when directed to BASIC formatted files.

The CTL function is intended for use in ASCII file print operations but can also be used with
other print operations by using the * OUT =file name* forms of the RUN and EXECUTE
commands.

Any CTL function can be used in print operations directed to any device. When the particular
command is not defined for that device the CTL function is ignored. All CTL functions directed
at your terminal for example, will be ignored. Defined functions of the CTL function are given
in the following table.

Any pending characters generated by preceding print items are output before the CTL com­
mand. A comma after a CTL function in a print operation is treated as a semicolon (refer to the
discussion of print delimiter under the PRINT statement).

Examples:

11-28

10 PRINT #1; AO$(20,50),CTL(X+1),"END OF DATA"
20 PRINT N,M, CTL(3), A$;B$,CTL(3),W(3,3);X(4,4);

Basic Language Reference

CTL Function (Cont)

Defined Uses of the CTL Function

VALUE OF
CTL ARGUMENT

Line printers use arguments 1 to 13

EFFECT

1 Print and skip to channel 1 (normally top of form)
2 Print and skip to channel 2 (normally bottom of form)
3 Print and skip to channel 3 (normally next line)
4 Print and skip to channel 4 (normally next double line)1
5 Print and skip to channel 5 (normally next triple line)2
6 Print and skip to channel 6 (normally next half page)
7 Print and skip to channel 7 (normally next quarter page)
8 Print and skip to channel 8 (normally next sixth page)
9 Print and skip to channel 9 (installation defined)3

10 Print and skip to channel 10 (installation defined)3
11 Print and skip to channel 11 (installation defined)3
12 Print and skip to channel 12 (installation defined)3
13 Print and suppress spacing (suppresses paper advance)4

Magnetic tapes use arguments 20 to 24
20 Skip forward to tape mark (the tape is positioned just before the next tape

mark)
21 Skip to next file (the tape is positioned just past the next tape mark; the end

of file condition occurs if the end-of-tape mark is read before the next
end-of-file)

22 Skip backward to tape mark (the tape is positioned just past the preceding
tape mark)

23 Skip to preceding file (the tape is positioned just past the second preceaing
tape mark; the end of file condition occurs if the beginning-of-tape mark is
read before the first preceding end-of-file mark)

ASCII disc files use argument 24
24 Logically rewind file (reposition the file pointer to the beginning of the file)

Paper tape punches use arguments 30 to 33
30 Output data with even parity and with the X-OFF, RETURN, and LINE FEED

characters as a record separator (this is the default mode)5
31 Output data with odd parity and with the X-OFF, RETURN, and LINE FEED

characters as a record separator5

32 Output data with no parity and with the X-OFF, RETURN, and LINE FEED
characters as a record separator5

33 Output data with no parity and no record separators (this can be used for
binary output)5

Notes to CTL argument functions:

1Skipping to a double space line is not always equivalent to double-spacing, since the current line
may not be a double space line itself.

2Skipping to a triple space line is not always equivalent to triple-spacing.

3Not all line printers have channels 9-12. The action taken for these devices will be as for CTL(3); i.e.,
single spacing.

4Use of this argument prints any pending characters and suppresses spacing; the next line will
overprint the current line. Not all line printers have this capability; those that do not will single space.

5A 12-inch leader and trailer is automatically punched. Should a program using the tape punch
terminate abnormally (error, BREAK key, or disconnect), no trailer will be punched.

11-29

Basic Language Reference

DATA Statement

The DATA statement specifies data for READ statements.

A constant list is one or more constants separated by commas.

The data is read in sequence from first to last DATA statement, and from left to right within a
given DATA statement.

DATA statements may be placed anywhere in a program. The data items will be read in
sequence as required by READ statements. The RUN and EXECUTE commands and a
successful CHAIN statement reset the data pointer to the first item in the first DATA
statement of the program.

The TYP function may be used to test the type of data items and the RESTORE statement may
be used to move the data pointer without performing a read operation.

Examples:

10 DATA 457,"STRING DATA",2.192
20 DATA "AB" '65 '66 '7'10'13

See also:

11-30

READ
TYP
RESTORE

Basic Language Reference

DEF Statement

The DEF statement allows you to define special functions within a program.

A user defined function is one that is defined within the user program and is called within that
program in the same way that one of the system-defined functions (i.e., SIN, SQR, TAN, etc.) is
called.

The function name is made up of the letters FN followed by one of the letters A through Z (for
example, FNC). Theparameter has the form of a numeric simple variable. The numeric simple
variable is a ((dummy" variable whose purpose is to indicate where the actual argument of the
function will be used when called. For example, in the following sequence, M is a dummy
variable:

10 LET Y = 100
20 DEF FNA(M) = M/10
30 PRINT FNA(Y)
40 END
RUN

10

When FNA(Y) is called for in statement 30, the formula defined for FNA in statement 20 is
used to determine the value printed.

Any operand in the program may be used in the defining expression; however, circular
definitions such as:

10 DEF FNA(Y) = FN8(X)
20 DEF FN8(X) = FNA(Y)

cause infinite looping.

Examples:

60 DEF FNA(82) = A **2 + (82/C)
70 DEF FN8(83) = 7*83**2
80 DEF FNZ(X) = XIS

11-31

Basic Language Reference

DIM Statement

The DIM statement sets the amount of space allocated by the system for arrays and strings.

The dimension list is one or more dimension elements, separated by commas. A dimension
element is a string simple variable followed by the string length in parentheses, an array name
followed by the number of rows (one dimension array) in parentheses, or an array name
followed by the number of rows and columns (two dimensional array) in parentheses.

DIM statements may occur at any point in the program. A variable may appear only once in
DIM statements in a given program. The COM statement may be used instead of the DIM
statement.

Example:

20 DIM A(5),8(12,7),G$(240),C(5,5),RO$(90)

END Statement

The END statement terminates execution of the program and returns control to the system.

The END statement may occur at any point in the program and must be used as the last
statement in all programs.

Example:

1000 END

11-32

Basic Language Reference

ENTER Statement

The ENTER statement allows you to have greater control over data input than that available
wi th the INPUT and LINPUT statements.

The ENTER statement may be used to limit the time allowed for data input, to test the actual
response time of a given input, to determine the user's port number, and to input data for one
read variable.

If the number sign (#) and numeric variable are provided, the system stores the user's port
number in the numeric variable as a value in the range 0 to 31.

The time allowed is a numeric expression which, when evaluated and rounded to an integer,
specifies the time allowed for response in seconds. This expression should evaluate to a number
(1 to 255). Zero is treated as one; numbers less than zero or greater than 255 are treated
modulo 255 (256 = 0, 257 = 1, etc). Timing begins when all previous statements have been
executed and any resultant output to the user terminal has been printed.

The return variable will indicate the precise time in seconds the user took to respond. If the
response is not acceptable, such as wrong data type, the value is the negative of the response
time and the read variable remains unchanged. If the user failed to respond within the time
limit, the value is set to -256. If a parity error occurred in transmission, -257 is returned. If a
character was lost in transmission, -258 is returned.

The read variable is a destination string or a numeric variable. A character string being
entered need not be enclosed in quotes, but may contain quotes and blanks. The extended
literal string form (71, ~23, etc.) is not recognized. A carriage return alone is interpreted as a
null string. If the destination string is not doubly subscripted and the character string entered
is too long to fit in the physical length of the string, the return variable is negated (refer to the
description of destination string). A numeric variable must be satisfied with a numeric con­
stant.

The ENTER statement differs from the INPUT statement in that a H?" prompt is not displayed
on the user terminal following data input and a linefeed is not generated following execution of
the ENTER statement. The next program statement is executed whether or not the input time
limit is exceeded.

Examples:

100 ENTER #V
200 ENTER A,B,C$
300 ENTER #V,K1,K2,K3

400 ENTER 25,L,Q

(your port # is returned in V)
(you have A seconds to input C$; B is the actual time taken)
(you have K1 seconds to input K3; V is set to your port # and
K2 is the actual time taken)
(you have 25 seconds to input Q; L is the actual time taken)

11-33

Basic Language Reference

EXP Function

The EXP function is a numeric-valued function which returns the mathematical constant ((e"
raised to the power of the numeric expression (enumeric expression).

The approximate value of the constant e is 2.718282.

Example:

50 A = 8*EXP(M/10)

FILES Statement

The FILES statement opens files for use in a program.

The FILES statement does not create files (see the CREATE and FILE commands and the
CREATE statement). The file list is made up of file names separated by commas. Up to four
FILES statements can appear in a program, but only 16 files total can be declared (duplicate
entries are allowed). The files are numbered (from 1 to 16) in the order they are declared in the
program. These file numbers are used by READ, PRINT, LINPUT, ADVANCE, UPDATE,
ASSIGN, and IF END statements, and TYP, REC, and ITM functions for file access and
control.

A ((*" may be used in the file list to reserve a position for a file to be named at a later point in
the program using the ASSIGN statement. For example, 10 FILES AFILE, *, BFILE reserves
file position number 2 for a file to be assigned later in the program. Note that a file name must
be assigned to the reserved file number before a read, write, or test using the file number
occurs, otherwise an error will result.

System library files may be accessed by using a U$" in front of the file name ($FRED). Group
library files may be accessed by using a ((*" in front of the file name (*TFILE). Files in other
accounts may be accessed by adding the owner's idcode to the file name (file name.idcode) (HIS
FIL.C901). Access to any files outside your own library are subject to that account's file access
capabilities and restrictions.

If a file cannot be opened (the file does not exist or you are not allowed access), the program
will terminate. If you are granted read-only access to the file because of its status or because it
is in use, you will not be notified of this condition until you attempt to PRINT, which will cause
program termination. Use of the ASSIGN statement (instead of FILES) to open the file will
allow test of a return variable value to determine read/write access.

11-34

Basic Language Reference

FILES Statement (Cont)

The system uses part of the user workspace for control information concerning the file
approximately 18 words per file name position mentioned in the FILES statement. In addition,
an area equal to the record length (1 to 1024 words) of the file is used in the user workspace as
a buffer area for each file that is opened. A ((*" used to reserve a position for a file in the FILES
statement uses 256 words as a potential buffer. An ASCII disc file always uses 256 words
regardless of the record length specification.

The same file name may be mentioned more than once in FILES statements used in a program
to take advantage of the in-memory buffering of the file data described above (10 FILES
AFILE,* ,AFILE). During processing of the FILES statement, the checking the system nor­
mally performs to determine whether a file being opened is already in use is suspended (only
for BASIC formatted files) for each occurrence of the same file name after the first reference to
that file name. (The checking is not suspended if the file is open in another program.)

Files are opened when program execution begins, not when the FILES statement is encoun­
tered by the executing program. Thus, all FILES statements should refer to previously created
files. If you desire to open a file created programatically, use the ASSIGN statement.

Examples:

200 FILES MYFILE,$SYSFL,*GPFL,*,YOURFL.M350
300 FILES KEN,JIM,KEN,*,JIM

11-35

Basic Language Reference

FOR and NEXT Statements

The looping statements FOR and NEXT allow you to repeat a group of statements a specified
number of times.

The FOR statement precedes the statements to be repeated, and the NEXT statement directly
follows them. The number of times the statements are repeated is determined by the value of
the for variable, which is a numeric simple variable. The initial value, final value, and the step
size all are numeric expressions.

When the FOR statement is executed, the for variable is set to the initial value. Then the
following steps occur:

1. The value of the for variable is compared to the final value; if the for variable exceeds the
final value (or if the for variable is less than the final value if the step size is negative),
control skips to the statement following NEXT.

2. Statements between the FOR statement and the NEXT statement are executed in normal
sequence order.

3. The step size (or 1 if the step size was not specified) is added to the value of the for variable.

4. Return to step 1.

Note that round-off errors may increase or decrease the number of steps (times through the
loop) when non-integer step sizes are used. The user should not execute the statements in a
FOR loop except through a FOR statement. Transferring control into the middle of a loop can
produce undesirable results.

Examples:

100 FOR P=1 TO 5

170 NEXT P
200 FOR R2=N TO X STEP -1.5 (where N~X at start)

220 NEXT R2
250 F.OR 8=1 TO (2*8) STEP (Y**2- V)

260 NEXT S

11-36

FOR and NEXT Statements (Cont)

Sample Program with a variable number of loops:

40 PRINT "HOW MANY TIMES DO YOU WANT TO LOOP";
50 INPUT A (where A~IO)
60 FOR J = 1 TO A
70 PRINT "THIS IS LOOP";J
80 READ N1,N2,N3
90 PRINT "THESE DATA ITEMS WERE READ:"N1 ;N2;N3

100 PRINT "SUM = " ;N1 +N2+N3
110 NEXT J
120 DATA 5,6,7,8,9,10,11,12
130 DATA 13,14,15,16,17,18,19,20,21
140 DATA 22,23,24,25,26,27,28,29,30
150 DATA 31,32,33,34
160 END

Basic Language Reference

NESTING FOR ... NEXT LOOPS. FOR ... NEXT loops may be nested (placed inside one
another) as long as the loops do not overlap.

Range of loop Al
Range of loop B2

Range of loop C3

Proper Nesting

....----- 10 FOR A1 = 1 TO 5
20 FOR 82 = N TO P
39 FOR C3 = X TO Y STEP (3*X)

80 NEXT C3
90 NEXT 82

L----100 NEXT A1

Improper Nesting

10 FO R I = 1 TO 5

The range of loops {
I and J overlap.

30 FOR J = 1 TO N

50 NEXT I

90 NEXT J

11-37

Basic Language Reference

GOSUB and RETURN Statements

The GOSUB statement overrides the normal sequential order of statement execution by
transferring program control to the beginning of a subroutine.

A subroutine consists of a collection of statements that may be executed from more than one
location in a program. In a subroutine, there is no explicit indication in the program as to
which statements constitute the subroutine. The statement number to which control is trans­
ferred must be an existing statement in the current program. If the GOSUB transfers control
to a statement that cannot be executed (such as REM, DIM, COM, DEF), control passes to the
next sequential statement after the non-executable statement. A RETURN statement in the
subroutine returns control to the statement following the GOSUB statement. There may be
more than one RETURN statement in a subroutine.

Example:

11-38

50 READ A2
60 IF A2 > 100 THEN 80
70 GOSUB 400

380 STOP (STOP frequently precedes the first statement of a subroutine to pre-
vent accidental entry)

390 REM THIS SUBROUTINE ASKS FOR A 1 OR 0 REPLY
400 PRINT "A2 IS <= 100"
410 PRINT "DO YOU WANT TO CONTINUE?";
420 INPUT N
430 IF N # 0 THEN 450
440 LET A2 = 0
450 RETURN

600 END

Basic Language Reference

GOSUB and RETURN Statements (Cont)

MULTIBRANCHING. Multibranch GOSUB statements use the value of a numeric expres­
sion to select the destination statements. The numeric expression is evaluated and rounded to
an integer ((n". Control is then transferred to the ((nth" statement in the statement number
list. The statement number list is one or more statement numbers separated by commas.
V alues of n less than 1 or greater than the number of branch statements in the statement
number list are ignored.

Examples:

20 GOSUB 3 OF 100,200,300,400,500
60 GOSUB G -1 OF 200,210,220
70 GOSUB R OF 80,180,280,380,480,580

NESTING GOSUB STATEMENTS. Another subroutine can be called from within a sub­
routine. This is known as nesting. GOSUB statements may be nested logically to a level of20.
Nesting more than 20 GOSUB statements without an intervening RETURN statement will
cause an error message. Note, however, that nested subroutines are exited in the reverse of the
order in which they were entered (last in - first out). For example, if subroutine 250 (below) is
entered from subroutine 200, 250 will be exited before subroutine 200.

Examples:

100 GOSUB 200

200 LET A = R2/7
210 IF A THEN 230
220 GOSUB 250

250 IF A > B THEN 270
260 RETURN
270 GOSUB 600

11-39

Basic Language Reference

GO TO Statement

The GO TO statement overrides the normal sequential order of statement execution by
transferring program control to the specified statement number.

The statement number to which control is transferred must be an existing statement in the
current program. If the GO TO statement transfers control to a statement that cannot be
executed (such as REM, DIM, COM, DEF), control passes to the next sequential statement
after the non-executable statement.

When the second form of the GO TO statement is used, the numeric expression is evaluated and
rounded to an integer Hn". Control then is transferred to the ttnth" statement number in the
statement number list, where statement number list is one or more statement numbers
separated by commas. If there is no statement number corresponding to the value of the
numeric expression, the GO TO statement is ignored and the statement following the GO TO
statement is executed.

Extreme caution should be used if a GO TO statement is used to enter a FOR ... NEXT loop.
Doing so may produce an unpredictable result.

Examples:

10 GO TO X - Y OF 400,500,600
50 GOTO 100
80 GOTO 10
90 GOTO N OF 100,200,300

IDN Function

(refer to MAT)

11-40

Basic Language Reference

IF ... THEN Statement

The IF ... THEN statement transfers control to the specified statement number if the numeric
relation or string relation is true. If the specified condition for transfer is not true, the
statement following the IF ... THEN statement will be executed.

A numeric relation is a numeric expression. The numeric expression is evaluated to a number
which is considered ((true" if the value is non-zero, and ((false" if the value is zero. Because
numeric values may be rounded during computation, the ((=" operator should be used carefully
in IF ... THEN statements. It is recommended that the ((<=" or ((> =" operators be used
instead of ((=" whenever practical when arithmetic computation is involved.

Example:

IF A < = BAND Z/2 > = M THEN 120

A string relation is composed of a string variable followed by a relational operator followed by a
string expression (for example, A$ = ((ABC"). Strings are compared character by character
within the two strings on either side of the relational operator. A given character is ((less than"
another character if the given character occurs in a lower position in the ASCII collating
sequence (Appendix A) than the other character.

A character is ((greater" if it occurs in a higher position in the ASCII collating sequence. A
character is equal to another character only if they are the same character. (For example, (~A"
< ((B" and ((Z" > ((1".) Note that all characters have a value (a position in the ASCII collating
sequence) including blanks and non-printing characters.

If strings of unequal lengths are compared, and the characters in the shorter string are
identical with the initial characters in the longer string, the shorter string is ((less than" the
longer string.

Two strings are ((equal" only if they contain identical characters and are both of the same
length.

Examples:

10 LET N=10
20 READ X
30 IF X<N THEN 60
40 PRINT "X IS 10 OR OVER"
50 GOTO 80
60 PRINT "X IS LESS THAN 10"
70 GOTO 30
80 END

10 INPUT A$
20 IF A$="DONE" THEN 50
30 PRINT #1 ;A$
40 GOTO 10
50 END

10 READ#1,R;V
20 IF V>(R**2-1) OR R=3 THEN 50
30 V=V**2
40 GOTO 10
50 END

11-41

Basic Language Reference

IF END Statement

;:':'::':'::::.::-.:: .-:·:"::".:.":": .. :."-:-:··::;-:".:i:·

117:·IiN~ff:.fll' •. l.lumDe'1'HIN.t8tfJt;nent·numP.r

The IF END statement causes a branch to a specified statement when an . End-of-File (EOF)
mark is detected during a file read operation; an attempt is made to write beyond the end of a
file in a write operation; or a direct file write exceeds the record.

Since the IF END statement only sets a flag which stays set until another IF END statement is
executed for the same file, or until the file is closed, it is not necessary to execute the statement
prior to every file read or write.

Note that the branch is not taken if an EOF is encountered during execution of an ADVANCE
statement.

If the IF END statement is not used and an EOF condition occurs during a file read or write
operation, an error will occur terminating the program.

The statement will remain in effect throughout the program until changed by another IF END
statement referencing the same file number. Note that the statement is associated with a file
number and not a file name. The IF END trap is disarmed if the file is de-assigned.

The following example reads strings from a file until an EOF is reached, at which point the
program informs the user that an EOF was encountered.

Example:

10 FILES FIL 1
20 IF END #1 THEN 70
40 READ #1 ;A$
50 PRINT A$
60 GOTO 40
70 PRINT "END OF FILE"
80 END

IMAGE Statement

The IMAGE statement is used to represent the format string for a PRINT USING or MAT
PRINT USING statement. See the PRINT USING statement discussion for a description of the
contents of a format string. Note that a format string in an IMAGE statement is not enclosed
in quotes.

Example:

10 IMAGE # , 2(3DXI),"BOW-WOW",3AX

11-42

Basic Language Reference

INPUT Statement

The INPUT statement allows you to input data from your terminal during program execution.

When the INPUT statement is executed, a ((?" is displayed on the terminal and the program
pauses until the input requirements are satisfied.

A read variable list is one or more read variables separated by commas. A read variable is a
numeric variable or 'a destination string. For example, N, Y(3), A$, and BO$(6,7) are all read
variables.

To respond to the ((?" request for INPUT, you must type a list of numeric constants and/or
strings separated by commas. The input data must be of the same type as the variables in the
read variable list. If the data type does not agree with the variable type, you will receive the
message ((BAD INPUT, RETYPE FROM ITEM n,", where n is the item number that was
mistyped. Note that this item number refers to the line just typed. It does not refer to previous
lines entered already in response to the same INPUT statement. If insufficient items are input,
a U??" will be displayed on your terminal. If more items are inpu t than were requested, you will
receive the message ((EXTRA INPUT - WARNING ONLY" and the additional items will be
discarded. Should the system not properly receive the line typed, you will receive the message
((TRANSMISSION ERROR, REENTER."

When entering a numeric constant, all characters before the first u+", u_", ((.", or digit are
ignored. Otherwise, the form of the number corresponds to the definition given under BASIC
language elements.

When entering a string, leading blanks are ignored unless an opening quote is included.
Trailing blanks are not ignored and a closing quote must be included unless the string is the
last item entered on a line (or only item entered).

The only way to stop a program when input is required is to press the BREAK key. This
assumes that the break function has not been disabled (refer to the BRK function). The
BREAK key terminates the program. The program must be restarted using the RUN or
EXECUTE command.

Examples:

10 INPUT A
20 INPUT A$,B,C(3)
30 INPUT P1$(N,N+20)

11-43

Basic Language Reference

INT Function

The INT function is a numeric-valued function which returns the integer part of the numeric
expression. The integer part of a number is that integer less than or equal to the number. For
example, INT(3.5) = 3 but INT(-3.5) = -4.

Examples:

10 LET A = INT(X**Y)
20 PRINT INT(Z)

(Refer to MAT ... INV)

11-44

INV Function

BasicLanguage Reference

The ITM function returns the number of data items (numbers and strings) between the
beginning of the currently accessed file record and the position of the file pointer for a file.

The numeric expression, when evaluated and rounded to an integer, is used as the file number
to refer to the file (refer to the discussion of files in Section V).

ITM cannot be used with ASCII files; if attempted the program will be terminated with an
error. Specification of an invalid file number will result in an error.

Example:

20 PRINT "I WILL NOW READ ITEM" ITM(6) "FROM FILE"6

LEN Function

The LEN function returns the current (logical) length in characters for the specified string.

The DIM statement specifies a maximum (physical) string length. The LEN function, however,
allows you to check the actual number of characters currently assigned to a string variable. Do
not confuse the LEN function with the LENGTH command.

Examples:

100 A = LEN(B$)
200 X$(LEN(X$)+1) = "ADDITIONAL SUBSTRING"
300 IF LEN(A$)#3 THEN 400
400 GOTO LEN(G$) OF 500,600,700,800

11-45

Basic Language Reference

LET Statement

The LET statement assigns a value to one or more variables (10 LET B = 16.3).

The value assigned by the LET statement may be in the form of a numeric expression or a
string expression. The replacement list is one or more numeric variables separated by replace­
ment (assignment) operators C~="). In the LET statement, the equal sign (H=") is an assign­
ment operator. It does not indicate equality, but is a signal that the value on the right of the
assignment operator is to be assigned to the variable(s) on the left.

If a value is assigned to more than one variable, the assignment is made from right to left. For
example, in the statement A = B = C = 2, first C is assigned the value 2, then B is assigned the
current value ofC, and, finally, A is assigned the value ofB. When a subscripted variable is to
be assigned a value, its subscript is evaluated first and then the expression. Thus A(I) = I =
(T+R)/S is equivalent to I = A(I) = (T+R)/S.

The rule that the equal sign (H =") is an assignment operator only holds as long as numeric
variables occur in the replacement list. If a numeric constant appears, followed by an equal
sign, that equal sign is treated as a relational operator. For example, in A=2=B the first
!~equal sign" (=) is treated as an assignment operator and the second is treated as a relational
operator.

Note that the word LET is an optional part of the assignment statement.

Examples:

11-46

10 LET A = 5.02
20 A = 5.02
30 X = Y7 = Z = Z(X)
40 B$ = "ABC"
50 B4(1,5) = "ABCDE"
60 Z1$ = A1$(3,5)
70 M$(N,M) = A$(N,M)

Basic Language Reference

LIN Function

The LIN function can be included in print operations to perform a carriage return and one or
more line feed operations.

The LIN function can be used in PRINT, PRINT #, PRINT USING, MAT PRINT, MAT PRINT
#, and MAT PRINT USING statements. The numeric expression is evaluated and rounded to
an integer. If the value is positive, the value of the expression specifies the number of line feeds
to be generated. If the value is negative, the absolute value of the numeric expression will be
used to determine the number of line feeds and the initial carriage return is suppressed.

Note that unless there is a trailing comma or semicolon at the end of the PRINT statement, the
normal X-OFF, carriage return, and line feed characters will be generated in addition to those
generated by the LIN function.

The LIN function is ignored in file print (PRINT # and MAT PRINT #) operations to BASIC
formatted files but is allowed in print operations to ASCII files.

A comma following a LIN function in a print statement is treated as a semicolon (refer to the
discussion of print delimiter under the PRINT statement).
Examples:

27 PRINT A, LlN(M*N/C1)
28 MAT PRINT C;LlN(10),D
29 PRINT M3, M(4,5), LlN(- A)

10 PRINT "ABC"JLIN{-I)J"DEF"JLIN(2);"GHI tt

20 END
RUN

ABC
DEF

GHI

DONE

10 PRINT TABCS);" TITLE:PRINT HEADING";SPA(10)J"SUMMARY REPORT";
20 PRINT LIN(3);n DETAIL LINES"
30 END
RUN

TITLE:PRINT HEADING SUMMARY REPORT

DETAIL LINES

DONE

11-47

Basic Language Reference

LIN PUT Statement

The LINPUT statement accepts an entire line of string data from the user terminal and
assigns it to a destination string.

No prompt character is printed when the LINPUT statement is used.

All characters entered (including commas, quote marks, and leading and trailing blanks) are
assigned to the string.

Examples:

30 LlNPUT A$
60 LIN PUT X1 $(1 0,20)

LINPUT # Statement

The LINPUT # statement reads the contents of the next available record into a destination
string. The referenced file must be an ASCII file.

Successive reads of the ASCII file cause successive records to be accessed. It is not possible to
read the remainder of a record partially read by a preceding READ# statement.

Examples:

510 LlNPUT #5;A$
520 LlNPUT #1 ;8$(1,80)

11-48

Basic Language Reference

LOCK Statement

The LOCK statement is used to set or test a file status flag.

A file status flag is associated with each BASIC formatted file (refer to FILES Section V). The
LOCK statement may be used to set the flag for a specific file (using the file number),
indicating that you want exclusive access to the file. By using a return variable and testing its
value, you can determine if the file is already locked. Similarly, once successfully {{locked" by
your program, other programs which check the status of the file will be alerted to the fact that
the file is locked.

If no return variable is supplied, a program may only have one file locked at any given time. If
a return variable is supplied, more than one file may be concurrently locked. If no return
variable is supplied and the file is currently locked by some other program, your program will
not resume execution until the previous program unlocks the file.

The file status flag is cleared by the UNLQCK statement, chaining to another program, or
program termination. All pending write operations (from the locking program) are completed
before the flag is cleared. The LOCK statement should always be used with a matching
UNLOCK statement.

The meaning of the return variable for LOCK is as follows:

Return Value

o
1

2

Meaning

File locked successfully

File already locked (by your program or another program)

Invalid file number

Since the LOCK statement does not deny others access to the locked (lIe, users must cooperate
in its use for it to be effective. Locking is not necessary if more than one person does not access
the file at the same time or if the file is not written to.

Examples:

20 FILE AFILE,BFILE
30 LOCK #1
40 READ #1;N
50 UNLOCK #1
60 LOCK #2,R
70 GOTO R + 1 OF 80,90,100
80 PRINT #2;N
85 UNLOCK #2
86 GOTO 30
90 PRINT "FILE BUSY"
95 GOTO 110

100 PRINT "FILE NUMBER ERROR"
110 STOP

11-49

Basic Language Reference

LOG Function

LOG is a numeric valued function that returns the natural logarithm, i.e., log to the base tte"
(loge(numeric expression».

The numeric expression must evaluate to greater than zero. If the evaluation results in zero, a
warning message will be produced and the value of the log function is set to -1038

• If the
argument is evaluated to a negative value (less than zero), the program terminates with an
error.

Examples:

10 PRINT LOG(X)
20 A = LOG(8)

MAT Addition and Subtraction Statements

The MAT addition statement sets an array equal to the sum of two arrays of the same
dimensions. Addition is element by element (A(I,J) = B(I,J) + C(I,J». The MAT subtraction
statement sets an array equal to the difference of two arrays of the same dimensions. Subtrac­
tion is element by element (A(I,J) = B(I,J) - C(I,J».

The dimensions of the resultant array must be the same as the component arrays. The same
array may appear on both sides of the U =" sign.

Examples:

11-50

1 00 DIM A(20), 8(20), C(20)
200 MAT A = 8 + C
300 MAT A = A + 8
350 MAT A = A + A
400 MAT A = 8 - C
500 MAT A = A - 8

Basic Language Reference

MAT Assignment Statement

The MAT assignment statement is used to set one array equal to another array of the same
dimensions. The transfer is element by element (A(I,J) = B(I,J)).

Example:

1 0 DIM A(10,20), 8(10,20)
20 MAT 8 = A

MAT ... CON Statement

The MAT ... CON statement sets up an array with all elements equal to one. The new
dimensions parameter is optional.

Examples:

205 MAT C = CON
210 MAT A = CON(N,N)
220 MAT Z = CON(5,20)
230 MAT Y = CON(50)

MAT ... IDN Statement

The MAT .. .IDN statement is used to establish an identity matrix (all O's with a diagonal of all
1's).

Note that the array must contain the same number of rows and columns (must be square), or
the optional new dimensions parameter must re-specify the dimensions as equal.

Sample identity matrix:

1
o
o

o
1
o

o
o
1

Examples:

205 MAT A = IDN
210 MAT 8 = IDN(3,3)
215 MAT Z = IDN(Q5,Q5)
220 MAT S = IDN(6,6)

11-51

Basic Language Reference

MAT INPUT Statement

The MAT INPUT statement allows you to input entire arrays from the terminal.

An array read list is one or more array names, separated by commas. Each array name may
optionally be followed by a new dimensions specification. The prompt characters and error
messages used for the INPUT statement are used for the MAT INPUT statement.

Elements entered must be numeric constants (see the INPUT statement for special rules on
entering numeric constants). Elements must be separated by commas and entered row by row,
i.e., all of the elements in row 1 are entered before the elements in row 2, etc.

Note the difference between the MAT INPUT statement and the INPUT statement. For
example, INPUT X(3,5) causes the fifth element of the third row to be input, while MAT
INPUT X(3,5) causes the entire array X to be input, and sets its working size to 3 x 5.

Examples:

27 MAT INPUT A,B
30 MAT INPUT X,Z(15,N)

MAT ... INV Statement

The MAT .. .INV statement is used to invert an array.

If array A is square and non-singular (determinant of A < > 0), there exists a unique array
(invert of A) such that A times the invert of A yields the identity matrix (see the MAT .. .IDN
statement). For additional information on array inversion refer to the discussion of ARRAYS
in Section III.

If you attempt to invert a singular array (determinant = 0), your program will terminate with
an error.

Both arrays used in a MAT .. .INV statement must be square and be of the same dimensions.
The same array may be used on both sides of the equation.

In performing the inversion, the system uses a temporary array requiring storage equal to the
array being inverted. In some cases this may limit the size array that may be inverted.

Examples:

11-52

200 MAT A = INV(A)
300 MAT B = INV(A)

Basic Language Reference

MAT Multiplication Statement

Array multiplication sets an array equal to the product of two arrays.

The array which contains the final value must be large enough to hold the number of elements
resulting from multiplying the number of rows in array name 1 by the number of columns in
array name 2. The number of columns in array name 1 must be equal to the number of rows in
array name 2. If array 1 is A(P,N) and array 2 is B(N,Q) then the resulting array would be
C(P,Q) and would contain P x Q elements. For example, if A is multiplied by B:

MAT C = A * B

where the dimensions are A(3,2) and B(2,4), then C will have dimensions of (3,4). The same
variable cannot appear on both sides of the equation.

Example:

200 MAT C = A * B

11-53

Basic Language Reference

MAT PRINT Statement

General Form;

MAT PRINT array print list [print delimiter]

The MAT PRINT statement is used to print entire arrays in a single statement.

The array print list is any combination of array names and print functions separated by
commas or semicolons (which are print delimiters). The array print list may be followed by an
optional print delimiter (comma or semicolon), which controls output formatting.

A print function is one of the following:

• TAB (numeric expression) - tabs to column position

• LIN (numeric expression) - generates line feeds

• SPA (numeric expression) - spaces

• CTL (numeric expression) - outputs special device control commands

The elements of the array are printed row by row and can be spaced out or packed together
(using commas or semicolons), as in the PRINT statement.

Each row of each array is printed separately, with double spacing between rows. If a comma
follows the array, each element starts in one of the five divisions of the line. The output line is
divided into five consecutive fields: four fields of 15 characters each and one field of 12
characters (starting at columns 0, 15, 30, 45, and 60) for a total of 72 characters. If a semicolon
follows the array, the elements are printed packed together, as if each element were followed
by a semicolon. If nothing follows the last array, a comma is assumed. All formatting is done
according to the specifications under PRINT statement.

A one-dimensional array is printed as a single column.

Note that individual elements of an array can be printed using PRINT. For example,

100 PRINT A(1),A(2),C(50)

Examples:

Note the effect of the semicolons following A and B in the MAT PRINT statement, line 70, on
the printed output. MAT READ in line 20 redimensions array B; redimensioning of arrays is
not permitted in a MAT PRINT statement.

10 DIM AC 10l" BC 5" 5]" CC 2" 2J
20 MAT READ A.. BC 3" 5J" C
30 MAT PRINT A
40 PRINT
50 MAT PRINT B
60 PRINT
70 MAT PRINT AJ BJ
80 DATA 2.5 .. 46. 7" 75" 0" 50. I" 0" 0 .. 0" 19.8" 0
90 DATA 1 .. 2,,3 .. 4 .. 5 .. 6 .. 7,,8,,9 .. 10
100 DATA 11 .. 12 .. 13,., 14 .. 15 .. 16,., 17 .. 18" 19 .. 20
110 END

II-54

RUN

2.5

46.7

75

0

50. 1

0

0

0

19. 8

0

1

6

1 1

2.5

46.7

75

0

50. 1

0

0

e

19.8

0

2

6 7

1 1 12

OONE

MAT PRINT Statement (Cont)

2 3

7 8

12 13

3 4 5

8 9 10

13 14 15

Basic Language Reference

4

9

14

11-55

5

10

15

Basic Language Reference

MAT PRINT # Statement

General Form:

MAT PRINT # file number [, record number]; END

or

MAT PRINT # file number I I recordnumberl ; array write Iisflprl,.,tdfJlimlterl

The MAT PRINT # statement prints arrays specified in the array write list on the specified
file row by row. END which can be the last or only item in the array write list writes an
end-of-file mark on the file.

A serial print (no record number specified) prints an entire array on the file starting at the
current position of the file pointer. A direct print prints the entire array starting at the
beginning of the record specified in record number. An array write list is any combination of
array names and print functions separated by print delimiters. In addition, the last or only
item in the array write list can be END. A print delimiter is either a comma or a semicolon.
Refer to PRINT # for a discussion of writing to files. Note that MAT PRINT # writes an entire
array where PRINT # writes single elements.

Example:

The following example writes two arrays onto file BB. It then reads the array values into two
different arrays with different dimensions.

10

20
30
40
S0
60
70
80
90
100
RUN

10

30

50

70

90

4

DONE

11-56

FILES BB
DIM
MAT
MAT
DATA
MAT
DIM
MAT
MAT

END

AC 2" Sl .. BC 3 .. 2l
READ A
READ B
1 0 .. 20" 3 0 .. 4 0 .. S 0 .. 60 .. 70 .. 8 0 .. 9 0 ..
PRINT 11; At B

CC S .. 2J .. DC 2 .. 3l
READ 11 .. 1; C .. D
PRINT C .. 0

20

40

60

80

100

2

5

3

6

100" 1 .. 2" 3 .. 4 .. 5" 6

Basic Language Reference

MAT PRINT USING Statement

The MAT PRINT USING statement allows you to control the output format of data from
arrays. The format part is either a format string (represented as a literal string or string
variable) or a statement number referencing an IMAGE statement. Refer to the PRINT USING
statement for a description of the contents of a format string, noting that string format
specifications are not allowed with MAT PRINT USING statements.

The optional array print list is any combination of array names andprint functions (TAB, LIN,
SP A, or CTL) separated by commas. Semicolons and trailing punctuation are not allowed. The
commas serve as delimiters only; they have no formatting function. As with the MAT PRINT
statement, the matrices are printed in row order.

Examples:

9 IMAGE 10(DX)/
10 MAT PRINT USING 9; A, LlN(2)
20 MAT PRINT USING "S6D.2DXE/"; B,SPA(3),C
30 A$="3D.D"
40 MAT PRINT USING A$; A,B,C
50 A$='34"RIDICULOUS EXAMPLE" '34
60 MAT PRINT USING A$

11-57

Basic Language Reference

MAT READ Statement

The MAT READ statement reads entire arrays from DATA statements.

An array read list is one or more array names separated by commas. Each array name may
optionally be followed by a new dimensions specification.

Example:

10 MAT READ A,B(10,12)

See also:

DATA

MAT READ # Statement

The MAT READ # statement reads array data from a file.

If the optional record number is provided, reading begins with the data in that record. An
array read list is one or more array names, separated by commas. Each array name may
optionally be followed by a new dimensions specification.

When a file is accessed by record and more items are requested than exist in the record, an
end-of-file (EOF) condition is generated. Serial file reads are limited only by the length of the
file. An ASCII file may be referenced, but data values are read in the same manner as in the
INPUT statement.

Examples:

11-58

10 MAT READ #3;B
20 MAT READ #1,3;A(5,6)
30 MAT READ #5,N;A,B,M,Z

Basic Language Reference

MAT Scalar Multiplication Statement

Scalar multiplication sets an array equal to the product of a number and an array.

Multiplication is element by element (A(I,J) = numeric expression * B(I,J». Both arrays must
have the same working size. The same array may appear on both sides of the U=" sign.

Examples:

1 00 MAT A = (5) * 8
200 MAT A = (N/3) * A
300 MAT A = (Q7 * N5) * C

MAT ... TRN Statement

The MAT ... TRN statement is used to set an array to the transposition of a specified array.

Transposition causes rows and columns to be switched (row 1 becomes column 1, etc). The same
array cannot be used on both sides of the !! =" sign.

Sample transposition:

Original Array

1 2 3 4
5 6 7 8
9 10 11 12

Transposed Array

1 5 9
2 6 10
3 7 11
4 8 12

Note that the dimensions of the resulting array must be the reverse of the original array. For
example, if A has dimensions of 6,5, and MAT C = TRN(A), C must have dimensions of 5,6.

Example:

300 MAT A = TRN(8)

11-59

Basic Language Reference

MAT ... ZER Statement

The MAT ... ZER statement sets all elements of the specified array to zero. The new dimen­
sions parameter is optional.

Examples:

11-60

305 MAT A = ZER
310 MAT Z = ZER(N)
315 MAT X = ZER(30,10)
320 MAT R = ZER(N,P)

Basic Language Reference

NEXT Statement

(Refer to FOR)

NUM Function

The NUM function returns the numeric value (ASCII code value) of the first character in the
specified source string. For example, NUMC{A") would return 65. NUM of a zero length string
returns O.

A list of ASCII character values is given in Appendix A.

Examples:

200 PRINT NUM(A$(J,J))
300 GOTO NUM(X$(LEN(X$))) - 60 OF 400,500,600

See also:

CHR$

POS Function

The pas function returns the character position in source string 1 where the first incidence of
source string 2 occurs. For example, POSC{12ABC34" /{ABC") would return 3.

If source string 2 is not a substring of source string 1, then the value returned is O. If source
string 2 is a null string, then the value returned is 1.

Examples:

200 PRINT POS(A$,B$(3,7))
300 A$(J) = B$(POS(B$,G$),POS(B$,G$) + LEN(G$))

11-61

Basic Language Reference

PRINT Statement

The PRINT statement causes data to be output at the terminal.

The data to be output is specified in a print list. A print list consists of items (numeric
expressions, string expressions, andprint functions) separated by commas or semicolons (which
are print delimiters). The print list may be followed by an optional print delimiter (comma or
semicolon) which controls output formatting. If the print list is omitted, PRINT causes a skip
to the next line.

A print function is one of the following:

• TAB (numeric expression) - tabs to column position

• LIN (numeric expression) - generates line feeds

• SPA (numeric expression) - spaces

• CTL (numeric expression) - outputs special device control commands

The contents of the print list are printed. If there is more than one item in the print list,
commas or semicolons must separate the items. The choice ofa comma or semicolon affects the
output format.

The output line is divided into five consecutive fields: four fields of 15 characters each and one
field of 12 characters, for a total of 72 characters. When a comma separates items, each item is
printed starting at the beginning of a field. When a semicolon separates items, each item is
printed immediately following the preceding item. In either case, if there is not enough room
left in the line to print the entire item, printing of the item begins on the next line.

The separator between items can be omitted if one or both of the items is a literal string. In this
case, a semicolon is inserted automatically. For example PRINT "ABC" "DEF" would be
printed in the same format as PRINT uABC"; uDEF".

An X-OFF, carriage return, and line feed are output after each PRINT has executed, unless
the output list is terminated by a comma or semicolon. In this case, the next PRINT statement
begins on the same line.

If a numeric expression appears in the print list, it is evaluated and the result is printed. Any
variable must have been assigned a value before it is printed. A literal string is output "as is".

Numeric values are left justified in a field whose width is determined by the magnitude of the
number. The smallest field is six characters. Numeric output format is discussed in detail
below.

11-62

Basic Language Reference

PRINT Statement (Cont)
Examples:

When items are separated by commas, they are printed in up to five fields per line; separated
by semicolons, they directly follow one another. In the following example, the items are
numeric, so each item is assigned a minimum of six characters.

10 LET A= B= C= D= E= 15
20 LET Al=Bl=Cl=Dl=El=20
30 PR I N T A~ B~ C 1 ~ C
40 PRINT A; B; C 1; C; DJ E; E; AI; Dl; E 1
50 PRINT A.,B;C"D
60 END
RUN

15
15
15

OONE

15
15

20 15 15
15 15

20
15
15

15
15 20 20 20

In the next example, a DIM statement is used to specify the number of characters in each
string.

10 DIM B$C3]~C$[3]
20 C$="ABC"
25 B$=·'ABC"

30 PRINT BS" CS
40 END
RUN

ABC ABC

OONE

In the example below, the first PRINT statement evaluates and then prints three numeric
expressions. The second PRINT skips a line. The third and fourth PRINT statements combine a
literal string with a numeric expression. No fields are used in the print line for literal string
unless a comma appears as a separator. The fourth PRINT statement prints output on the
same line as the third because the third statement is terminated by a comma.

10 LET A=B=C=D=E= 15
20 LET Al=Bl=Cl=Dl=El=20
30 PR IN T A* B" BI C/ D 1 + 3 0" A+ B
40 PRINT
50 PRINT "A*B ="; A*B
60 PRINT tiTHE SUM OF A AND B IS";A+B
70 END
RUN

225 30.05 30

A*B = 225
THE SUM OF A AND B IS 30

OONE

11-63

Basic Language Reference

PRINT Statement (Cont)

NUMERIC OUTPUT FORMATS

Numeric quantities are left justified in a field whose width is determined by the magnitude of
the item. The width includes a position at the left of the number for a possible sign and at least
one position to the right containing blanks. The width is always a multiple of three; the
minimum width is six characters.

INTEGERS. An integer with a magnitude less than 1000 requires a field width of six
characters:

Sign~ nU1ber 2 o~ more trailing blanks

~1~~lu-P-l-o-3-d-li-9i-ts~I----~1

An integer with a magnitude between 1000 and 32767 inclusive requires a field width of nine
characters:

sign ~ nurber 3 or more railing blanks

~1'--'---u-p-~-o~5-d-,i-gi-ts-, --"--------,1

Examples of integers:

The integers below are less than 1000 and greater than -1000:

10 PRINT 1;999;301-3001+295
20 END
RUN

1 9-99 30 -300 295

OONE

These integers are between 1000 and 32767 or between -1000 and -32767.

11-64

10 PRINT 10001+327511-32767125678
20 END
RUN

1000 32751 -32767 25678

OONE

Basic Language Reference

PRINT Statement (Cont)

If an integer has a negative sign it is printed; a positive sign is not printed.

FIXED-POINT NUMBERS AND ALL OTHER INTEGERS. Fixed-point numbers and all
other integers require a field width of 12 positions. If the magnitude of the number is greater
than or equal to .09999995 and less than 999999.5, or is less than .1 but can be printed with six
significant digits, the number is printed as a fixed-point number with a sign. Trailing zeros are
not printed, but a decimal point is printed. The number is left-justified in the field with
trailing blanks. The sign is printed only if it is negative.

sign number 4 or more trailing blanks

~1~--~lu-p-t-O-6-d-ig-it-S~~--de-C-im-a-l-p-t.~I------t ____ -.

. . I I I I I .

Examples of fixed-point numbers:

10 PRINT 9.99999E+05J. 1;.000044
213 END
RUN

9. 99999E+ 05 • 1 • 000044

OONE

ALL OTHER NUMBERS. Any number, integer or fixed-point, with a magnitude greater
than the magnitude of the numbers presented above, is printed as a floating-point number
using a total field width of 15 positions:

si;n nU1ber E ± e;ponent /3 trailing blanks

1'-~I'--6--di-g-its-&--d-eC-i-m-al-p-t-. -.I-E----------.----=---.I

Examples of floating-point numbers:

10 PRINT 2.34568E+06;4.4E-06
20 END
RUN

2. 34568E+ 06 4. 40000E- 06

10 PRINT 2.34568E+07J4.4E-07
20 END
RUN

2. 34568E+ 07 4. 40000E- 07

10 PRINT 3.943E-0512.57895E-05
20 END
RUN

3. 94300E- 05 2. 57895E- 05

11-65

Basic Language Reference

PRINT # Statement

The PRINT # statement is used to write data and control information to BASIC formatted and
ASCII files.

A write list is any combination of numeric expressions, string expressions and print functions
separated by print delimiters. Aprint delimiter is a comma or a semicolon. In addition the last
or only item in a write list can be the special print function: END.

BASIC FORMATTED FILE PRINTS

Serial (Sequential) Access Printing. Writing data to a file without specifying a record number
causes the file to be filled serially, without respect to record boundaries. Successive prints
cause data items to be stored one after the other beginning at the current position of the file
pointer. A serial file print leaves the file pointer positioned immediately following the last
item in the write list. Data written serially is usually read serially using successive file read
(READ #) operations. Specifying END causes an End-Of-File (EOF) mark to be written on the
file following the last item in the write list. Writing an END leaves the file pointer positioned
before the END.

Examples:

10 PRINT #1; A$,B1 ,N$(1 ,2)
20 PRINT #N+1; "TEXT",B$,X*Y,END

•
Direct (Random) Access Printing. Use of the record number after the file number in a PRINT #
statement allows data to be stored in the record specified by the record number. Each direct file
print causes items in the write list to be written at the beginning of the selected record. A
direct file print leaves the file pointer positioned in the record immediately following the last
item in the write list.

In a direct file print operation, if the data in the write list exceeds the amount of space
available in the record, an End-Of-File (EOF) condition is generated. In both direct and serial
access, if printing beyond the physical end of the file is attempted, an End-Of-File (EOF)
condition will occur. A trailingprint delimiter (comma or semicolon) has no meaning for serial
or direct access to BASIC formatted files. Print functions (TAB, LIN, SPA, and CTL) are
ignored for serial or direct access to BASIC formatted files.

Examples:

10 PRINT #1,3;A$,B$,F2,E(3.4)
20 PRINT #N,R(3); A,B,"TEXT",END

11-66

Basic Language Reference

PRINT # Statement (Cont)

Serial and direct file print statements can be used to write on the same file. A serial print
following a direct print will write data immediately following the previous data.

The first record of a file is record number 1.

Numeric items occupy two words in a file. Strings occupy one word specifying the current
logical length and one word for each two characters in the string. A string with an odd number
of characters uses one word for the last character.

Serial File Print Example:

10 FILES AFILE
20 DIM A$(5)
30 READ A,B,C,D,E,F,G,H,I,J
40 DATA 100,200,300,400,500,600,700,800,900,1000
50 LET A$="ABCDE"
60 PRINT #1 ;"NUMBERS",A,B,C,D,E,F,G,H,I,J,END
80 PRINT #1; A$
90 PRINT #1 ;END

100 END

The string ((NUMBERS" and the numbers 100 through 1000 are written onto the file number 1
(AFILE). An end-of-file mark is written following the last data item. Line 80 overlays the
end-of-file mark previously written on AFILE with the string ((ABCDE". Since the END is
omitted, an end-of-record mark is automatically written after the string. Line 90 writes
another end-of-file mark on the file.

Direct File Print Example:

10 FILES AFILE
20 READ A1 ,B1 ,C1 ,D1 ,E1
30 DATA 1,2,3,4,5
40 LET A$="A"
50 FOR N=1 to 10
60 LET B(N)=N+1
70 NEXT N
80 DIM B(10)
90 PRINT #1,1 ;"START OF AFILE"

100 PRINT #1,2; 10,A1,B(1),B(2),B(3)
110 REM .. TWO RECORDS HAVE BEEN WRITTEN ON AFILE
120 PRINT #1,2; B1,C1,D1,E1
130 PRINT #1,1 ;A$
140 PRINT #1,3;END
150 REM .. THE THIRD RECORD OF AFILE IS AN END-OF-FILE
160 END

The first record of file number 1 contains a string value. The second record has five numeric
items. The program writes four numeric items in the second record (overlaying the previous
five items). A different string is written on record 1 and an end-of-file is written on record 3.
Note that the records do not have to be written in the order they appear in the file.

11-67

Basic Language Reference

PRINT # Statement (Cont)

ASCII FILE PRINTS

Printing to an ASCII file causes the data to be formatted in the same way as a print to your
terminal. Numeric and string data items are written one per field (where a field is 15 print
positions wide) if the items are separated with commas; they are written closely packed if
separated with semicolons. The record length of an ASCII file determines the number of print
fields per record. A print that generates a line longer than the record size of an ASCII file will
result in truncation of the line by removing excess characters from the end of the line. Each
print to an ASCII file results in a new line unless a trailing print delimiter exists in the write
list.

A record number cannot be specified when printing to ASCII files, but all of the prin t functions
(TAB, LIN, SPA, and CTL) can be used and have the same effect as in a normal print to a
terminal. Note that PRINT statements do not automatically print commas between write list
items, and that ASCII file read operations require commas between data items (the same as if
the data was input from your terminal). To meet this requirement, include a comma as a literal
string C\") between items in the write list if the file is to be read later using a file read
statement. Otherwise you can use the LINPUT # and CONVERT statements to read the
records and extract numeric values from them.

Device status messages are sent to both your terminal and the system console to report device
malfunctions or conditions requiring operator action. The messages DEVICE NOT READY,
DEVICE ERROR, and ATTENTION NEEDED report device-specific conditions which cause
suspension of the user operation. In the first two cases the system automatically restarts the
operation after corrective action has been taken. For the ATTENTION NEEDED message the
operator must use the AWAKE command to resume the user operation. The message READ/
WRITE FAILURE is printed for non-recoverable errors. In this case the user operation ,is
terminated in the same manner as a program error.

When using a line printer as an ASCII file, opening the file causes a page eject. Closing the file
or using END in a print list has no effect on the line printer. The message LPn-DEVICE NOT
READY means that someone must put the device on-line, clear a paper jam, insert new paper,
or take other actions to ready the device. Any line whose printing is interrupted by a power
failure will be automatically reprinted.

When using a paper tape punch as an ASCII file, the opening and closing of the file will punch
leading and trailing feed frames respectively. Using END in the print list will cause 20 feed
frames to be punched. Records are terminated with X-OFF, carriage-return, and line-feed
unless the appropriate CTL function is employed to specify otherwise. The message PPn­
DEVICE NOT READY is issued when the tape supply is low or the device is not turned on
when opened. Any line whose punching was interrupted by a power failure will be terminated
by a control-X, carriage-return, line-feed (to allow any later reading to ignore it) and then
repunched.

11-68

Basic Language Reference

PRINT # Statement (Cont)

When using the card reader as an ASCII file, opening it will cause pre-reading of the first two
cards but closing it will have no effect (except to flush the images of any cards pre-read but not
requested by the controlling program). A card beginning with a double colon (::) will be
interpreted as an end-of-file condition. The message CRn-DEVICE NOT READY (device
off-line, pick failure, hopper empty, etc.) requires the appropriate operator response. The
message CRn-DEVICE ERROR signals a read check; the operator must replace the last-read
card into the input hopper and ready the device. The message CRn-ATTENTION NEEDED
indicates an illegal hole pattern detected in the last-read card; recovery requires some
operator-user convention and use of the A WAKE command. A power failure will cause one of
the above messages and need not be distinguished from any other conditions in terms of
recovery action.

When using the paper tape reader as an ASCII file, opening it will cause a search for the first
non-null character. Since this action is timed, it is important for the operator to avoid loading
the tape with an excessive amount of leader (more than a few feed frames). Closing the file has
no physical effect. A record consisting of 10 adjacent feed frames will be interpreted as an
end-of-file condition. The message PRO-DEVICE NOT READY is issued when the device is
opened before it is made ready (i.e., no tape in reader, too much leader, or device turned oft). A
power failure while the reader is in use will cause the message PRO-READ/WRITE FAILURE
and its accompanying fatal error condition. Tape conventions are the same as for a terminal
(i.e., carriage-return ends a record, line-feeds ignored, control-H deletes a character preceding,
etc.).

When using a magnetic tape unit as an ASCII file, opening it causes a check to see if it is
on-line and at load point. MTn-ATTENTION NEEDED will be issued if this is not true; the
user program will be suspended until the operator corrects the problem and uses the AWAKE
command (or the user elects to abort his program with the break key). When the file is closed
an end-of-file mark is written if the last request issued was a write; in all cases the tape is
rewound. It is also unloaded unless a rewind was already in progress when the file was closed.
Including an END in a print list will write an end-of-file mark and then backspace over it,
leaving the tape positioned at the end of the current file. The message MTn-ATTENTION
NEEDED is issued to signal hardware malfunction or an attempt to read blank tape (in the
latter case the tape is backspaced, leaving it positioned prior to the last record preceding the
blank tape). An attempt to write on the file when no write ring is present, the occurrence of a
power failure, the inability to read a record after three retries, or the inability to write a record
after six retries will cause the message MTn-READ/WRITE FAILURE accompanied by a fatal
error condition. Empty lines (null records) are simulated by writing a record containing two
ASCII blanks. Records with an odd number of characters are padded with an ASCII blank
when written (this will not be detected when such a record is read, the blank will be treated as
part of the data). The end-of-file action will be taken (i.e., fatal error unless trapped with the IF
END construct) when a read encounters an end-of-file mark, after a write with no intervening
operation, or after the end-of-tape mark has been passed. The end-of-file action will also be
taken if a write is issued after the end-of-tape mark has been passed. Note that the system will
attempt to rewind and unload any tape belonging to an open file after recovery from a power
failure; however, it will be unable to do so if power was also lost on the magnetic tape unit
itself (in this case the system operator will have to manually rewind and unload the tape).

11-69

Basic Language Reference

PRINT # Statement (Cont)

The control functions for the magnetic tape unit when used as an ASCII file are designed to
facilitate use of both single file and multi-file reels of tape (but not multi-reel files). CTL(20)
spaces forward until just prior to the first end-of-file mark encountered. If the tape was already
so positioned, no action is taken. If the previous request was a write, an end-of-file mark is
written and then backspaced over. Thus this control function always leaves the tape positioned
at the end of the ~~current file", ready to extend it if so desired. Caution: if no end-of-file mark
exists on the tape beyond the current position, no record exists beyond the end-of-tape mark,
and the last request was not a write, then the unit will space over all of the tape and off the
takeup reel. This condition cannot be diagnosed by the system and thus no diagnostic will
appear (this problem can also occur with the next function described). CTL(21) spaces forward
until just past the first end-of-file mark encountered (i.e.,just prior to the first record, if any, of
the next file). If the previous request was a write, an end-of-file mark is written and no further
action is taken (i.e., the current file is completed and a new, empty file begun). If the
end-of-tape mark has been passed when this request is made, the end-of-file action will be
taken without any tape motion. CTL(22) backspaces until it just follows the first end-of-tape
mark encountered (i.e., just prior to the first record of the current file), or to just following the
load point indicator. If the previous request was a write, an end-of-file mark is written before
backspacing. If the tape is already at the first record of a file, no action is taken. Thus this
control function always leaves the tape positioned at the beginning of the current file. CTL(23)
backspaces the tape until it just follows the second end-of-tape mark (or load point indicator)
encountered (i.e., just prior to the first record of the preceding file). If the tape is currently
positioned in the first file on the tape, the tape will be backspaced to the load point indicator
and the end-of-file action is taken. If the previous request was a write, an end-of-file mark is
written before backspacing. CTL(24) rewinds the tape to the load point indicator. If the

. previous request was a write, an end-of-file mark is written before rewinding.

Note that the system always ensures that an end-of-file mark appears after the last record
written (unless that record crossed the end-of-tape mark, in which case the end-of-tape mark is
treated as the end-of-file mark instead).

11-70

Basic Language Reference

PRINT USING Statement

The PRINT USING statement gives you more control over the format of your output data than
the PRINT statement, but requires additional programming effort. The format part is either a
format string (represented as a literal string or string variable) or a statement number referenc­
ing an IMAGE statement.

The optional using list is any combination of numeric expressions, string variables, or print
functions (TAB, LIN, SPA, or CTL) separated by commas. Semicolons and trailing punctua­
tion are not allowed. Commas in the using list serve as delimiters only; they have no
formatting function. Note that string variables, not string expressions, are allowed.

A format string consists of an optional carriage control character and comma followed by one
or more format specifications or groups of format specifications separated by a comma and/or
slashes). Each format specification is either a literal string or an orderly combination offormat
characters. Format strings may be up to 255 characters long. Blanks are ignored and lower­
case characters are upshifted, except within literal strings.

Example:

PRINT USING 100; A$, (2+X), B$

CARRIAGE CONTROL CHARACTERS. One of the following optional carriage control
characters may appear as the first non-blank character of a format string:

+ suppress linefeed

su ppress carriage return

suppress carriage return and linefeed

If supplied, the carriage control character must be followed by a comma and at least one slash,
format specification, or group. The specified action occurs at the completion of the PRINT
USING statement. If the carriage control character is not supplied, the default action is an
X-OFF, carriage return followed by a linefeed.

FORMAT CHARACTERS. Format specifications are comprised of orderly combinations of
the following format characters:

A reserves one character position ina string specification

D reserves one decimal digit position in a numeric specification

S defines the position of the sign character in a numeric specification

defines the position of the decimal point in a numeric specification

E specifies floating point format in a numeric specification

X reserves one blank character position in a numeric, string, or literal specification.

An optional repetition factor (replicator), between 1 and 255 inclusive, may precede an A, X, or
D (e.g. 3A is equivalent to AAA).

11-71

Basic Language Reference

PRINT USING Statement (Cont)

GROUPS. A group of one or more format specifications may be enclosed in parentheses which
must be preceded by a repetition factor between 1 and 255 inclusive (e.g. 2(!AX,D/) is equiva­
lent to IAX,DIIIAX,D/). Within the parentheses, the specifications must be separated by
commas or slashes and the group must be set off from other specifications by a comma or
slashes, just as if it were a single specification. Groups can be nested two levels deep.

REPETITION FACTORS (REPLICA TORS). An unsigned positive integer between 1 and
255 inclusive must precede the left parenthesis (of a group and may optionally precede any X,
D, or A in a format specification. It indicates the number of times the following character or
group is to be repeated. Leading zeros are allowed.

EXECUTION OF THE PRINT USING STATEMENT. Execution of the PRINT USING
statement commences by examining the format string. The carriage control character, if
present, is noted for termination processing, then each format specification is examined.

If the specification is either a string or a numeric specification, the next item from the using
list is printed according to the specification. If the using list has already been exhausted or is
not present, the statement terminates. If the item does not agree with the specification (i.e.
string vs. numeric), an error message is printed and the program execution terminates.

If the specification is literal, the specified number of blanks (or the contents of the literal
string) is simply printed; the using list is not examined.

If the end of the format string is reached before the end of the using list, processing continues
from the beginning of the format string but after the optional carriage control character (if the
format string contains no string or numeric specifications, the statement terminates).

When all items from the using list have been printed the statement terminates (any remaining
literal specifications are processed if the end of the format string has not been reached for the
first time). Termination consists of printing an X-OFF, carriage return, and linefeed, modified
by the carriage control character.

If the format string is empty or contains only blanks, output consists of only an X-OFF,
carriage return, and linefeed.

FORMAT SPECIFICATIONS. There are three catagories of format specifications: those
containing at least one D (numeric), those containing at least one A (string), and those
consisting of either a literal string or all X's (literal); A's and D's may not appear in the same
format specification. Numeric specifications are further classified as integer (no decimal point
or exponent), fixed-point (contain a decimal point but no exponent), and floating-point (con­
tains an exponent and possibly a decimal point). Table 10-4 describes the output formats that
result from each type of format specification.

DELIMITERS. Format specifications must be separated with either a comma or a slash (/). A
comma serves only as a delimiter whereas a slash also causes an X-OFF, ~arriage return, and
linefeed to be ou tpu t. Commas may appear only between format specifications and may not be
adjacent. Slashes may appear before, after, and in place of format specifications as well as
between them, therefore slashes may be adjacent to commas. Multiple slashes (III) are allowed
bu t a slash may not be preceded by a repetition factor.

11-72

Basic Language Reference PRINT USING Statement (Cont)

TYPE

INTEGER

FIXED-PO INT

F'ormat Specification Examples

COMBINATION RULES

Any combination of X's and D's is allowed,
but at least one D must be present and only
one S is allowed. This specification must
match a number in the print list. The num­
ber is rounded to an integer and printed
right-justified. Although the requested num­
ber of digits will be printed, only six are
significant.

If there is not enough room in the field for
the number (i.e. the number of digits is
greater than the number of D's in the
format), then the value is printed on a
separate line in a floating point format
(SD.SDE).

If an S precedes all D's, the sign is printed
immediately preceding the first digit of the
number. If an S appears after the first D, the
sign is printed at the location of the S.

If an S is not included in the format, then
an extra D should be provided if the value
is negative. When the value is negative, the
- sign always precedes the most significant
digit and a space must be provided with an
extra D to prevent overflow.

Blanks may be combined with carriage con­
trol to cause overprinting. For example,
large numbers can be printed with blanks
in the positions reserved for commas
(e.g. $10,937).

Any combination of D's and X's to the left
and right of the decimal point is allowed,
but at least one D must be present and only
one S and one "." are allowed. For this
specification, the next item in the print list
must be a numeric quantity. The digits to
the right of the decimal point are rounded
to fit the field. Leading zeros to the left are
suppressed, but trailing zeros are printed.

If the number to be printed has no digits to
the left of the decimal point but D's are pro­
vided to the left, then a zero will be printed
in the rightmost D on the left side: If an S is
provided to the left, it is moved to the right
through D's and X's until it comes to the
first non-blank character. If an S is not pro­
vided and the number is negative,

1. no D's to the left causes overflow;

2. one D to the left will be used for the
minus sign and the leading zero will be
dropped; or

3. two or more D's to the left will have the
minus sign and zero printed in the two
rightmost D positions.

FORMAT SPEC

~~:: I equivalent
2D2D
2(2D)
4D
S4D
4DS
50
50
OX 3D
DS3D
S10D

EXAMPLES

1234

1234.8
1234
1234
1234
-1234
1234
1234
1234

DDD.4D equivalent
DDD.DDDD}

30.40
30.0000 465.465

4D.2D 465.465
4D.3D -465.465
SDD2D.D 465.465
S2D.4D .465
S.4D .465
D.4D -.465
2D.4D -.465

OUTPUT

1234

1235
+1234
1234+
/\ 1234
-1234
1/\234
1+234
/\/\/\/\/\/\+1234

1\465.4650

1\465.47
-465.465
1\+465.5
1\+0.4650
+.4650
-.4650
-0.4650

11-73

TYPE

FLOATING-POINT

STRINGS

LITERAL

11-74

PRINT USING Statement (Cont)

Format Specification Examples (Continued)

COMBINATION RULES

Any legal INTEGER or FIXED-POINT for­
mat specification may be followed by an E.
The E signifies a four character field con­
sisting of an ~'E" followed by "+" or "-"
and two decimal digits. This format is useful
for numbers that are very large or very small.
For example, .00005 = .5 x 10-4 = .5E4.
When X's follow the E they cause blanks to
be printed between the E and the exponent
sign.

The output value from the print list is multi­
plied or divided by 10, the number of times
necessary to fit the value into the field. It is
then rounded from the right, and the expo­
nent is adjusted to match the number of
mul tiplica tions or divisions.

If the format allows for more digits than
there are significant digits in the output
value, two rules are followed:

1. If there are more than 6 D's on the right
side of the decimal point, the leftmost
digit is printed in the first D (if any) to
the left of the decimal point or the first
D to the right of the decimal point; extra
D's beyond 7 on the right are filled with
non-significant digits. In the following
examples, the arrow indicates the posi­
tion of the leftmost digit printed:

DD.40D XX.DD40D 40DD.40D

t t t
2. If there are less than 7 D's on the right

side of the decimal point, the leftmost
digit is printed in the seventh D position
from the right (or the leftmost if there
are not 7). In the following examples,
the arrow indicates the position of the
leftmost digit printed:

6DDDD.DDDD DD.DD D.6D

t t t

Any combination of A's and X's. Strings are
left-justified in the field. Leftover spaces are
filled with blanks. If the string contains
more characters than the specification
allows, characters are truncated from the
right.

A specification consisting only of X's or any
literal string.

If the format string is represented as a literal
string and contains literal string specifica­
tions, the outer quote marks must be repre­
sented by using the extend string literal
convention (Le. '34).

FORMAT SPEC

SDXE
DDDD.DDE
S5DX.X5DEX
SD.5DE
S.10DE3X

~~~ } equivalent 

4A 
6A 
8A 
2X6A 
AXAXAXAXAXA 

XX4X 

Literalt\string 1 

EXAMPLES 

VALUE 

4.82716X 1 021 

1 

ABCDEF 

I 
none 

none 

Basic Language Reference 

OUTPUT 

+5I\E+21 
4827.16E+18 
1\1\1\+481\.1\27159EI\+20 
+4.82716E+21 
+.4827159382EI\I\I\+22 

ABCD 

ABCDEF 
ABCDEFI\I\ 
I\I\ABCDEF 
AI\BI\CI\DI\E"F 

AAAAAA 

Value of L.iteral String 



Basic Language Reference 

PRINT USING Statement (Cont) 

Print Using Format Errors 

FATAL ERRORS 

These errors cause termination of the program. An error message is printed along with the offending 
specification. 

1. Replicator is outside the range 1 ~n~255. 

2. D, S, E, or . occurs in a string specification. 

3. A occurs in a numeric specification. 

4. Characters other than A, X, D, S, E, I, or . occur in any specification other than a literal. 

5. Adjacent commas. 

6. More than two levels of parentheses. 

7. No D in a numeric specification. 

S. An S in a blank specification. 

9. String expression encountered for a numeric format specification. 

10. Two or more E's, S's, or .'s in a specification. 

11. Replicator not followed by (, D, X, or A. 

12. Literal string not set off by delimiters and enclosed in quotes. 

13. Parentheses used with,out a replicator. 

14. Referenced statement is not IMAGE. 

15. Numeric data encountered by a string format. 

16. Leading or trailing commas in group or format string (i.e. null group or missing format specifica­
tion). 

NON-FATAL ERRORS 

These errors do not terminate the program. 

1. String specification too small for the string data causes the string to be truncated from the' right. 

2. Field too small for number. Causes the number to be printed on the next line using SD.5dE format. 
Printing resumes on the next line. 

11-75 



Basic Language Reference 

PURGE Statement 

The PURGE statement deletes BASIC formatted or ASCII files from the system. 

The return variable returns the status of the purge operation. The values returned and their 
meaning are as follows: 

Return Value 

o 
1 

2 

3 

Meaning 

File successfully purged 

File is busy and cannot be purged 

File is not accessible 

No such file 

The file designator is a source string whose value is a file name. 

The PURGE statement can be used to dissociate nonsharable devices from the name used in a 
FILE command. If the ASCII file is a disc file, the space it occupied is returned to the system. 

A locked or private program saved in a group account library having the FCP (File Cr,eate/ 
Purge) capability can be executed or chained-to in order to purge locked BASIC formatted files 
in group member accounts having the PFA (Program/File Access) capability. These files may 
be specified by appending Ujdcode". 

Examples: 

11-76 

1 0 PURGE N, "MYFILE" 
20 PURGE N, "HERFIL.G707" 
30 PURGE N, A$ 



Basic Language Reference 

READ Statement 

The READ statement reads string and numeric values from DATA statements. 

A read variable list is one or more read variables separated by commas. A read variable can be 
a destination string or a numeric variable. 

Reading begins with the first item in the first DATA statement in the program. Subsequent 
reads continue with the last item not read. The type of read variable must agree with the data 
type in the DATA statement. You can use the TYP function to determine the next data type in 
a DATA statement. 

Examples: 

10 READ A, C(33), F1 $(20,40) 
20 READ G(I,J/2), Z$ 

11-77 



Basic Language Reference 

READ # Statement 

The READ # statement reads data from BASIC formatted or ASCII files. 

A serial file read statement (no record number specified) reads items from a file specified by file 
number into variables specified in the read variable list. A read variable list is one or more 
read variables separated by commas. A read variable is a numeric variable or a destination 
string. The first item read is the item following the current position of the file pointer. Record 
boundaries are ignored and the items read can begin in the middle of one record and end in the 
middle of another. If the read variable list is omitted, no action is taken. 

A direct file read statement (record number specified) reads items from a specific record in a 
file into variables of the read variable list. If a record number is specified that is outside the 
range for the named file, an end-of-file condition occurs. If the read variable list is omitted, a 
direct file read moves the pointer to the beginning of the specified record, but does not read 
data. 

The destination for string data must be a destination string and the destination for numeric 
data must be a numeric variable. If the data does not match the type of the destination 
variable, an error will occur. It is possible to check the type of the next data item with the TYP 
function described elsewhere in this section. 

In both direct and serial file access, an attempt to read beyond a logical or physical end-of-file 
will cause the end-of-file condition to occur. Unless an IF END statement is used to transfer 
control to another statement in the program, an error will occur terminating the program. 

11-78 



RHiic Language Reference 

READ # Statement (Cont) 

Serial File Read Examples: 

ARRAY 
100 
600 

ABCDE 

10 FILES AFILEIBFILE 
20 DIM A$(51IX$CI0l"Y$CI0J"C$[151 
30 DIM 8(10) 
40 MAT READ B 
50 DATA 100,,200,,300,,400150016001700,,7001900,,1000 
60 LET As=nABCDE" 
70 PRINT 11 JttARRAY B" 
74 FOR J=1 TO 10 
7 5 PR I NT II 1 J B C J 1 
76 NEXT J 
80 PRINT 12JASIBC3J,BC6J 
90 PRINT 12; END 
1 00 PRINT 111 J It END OF ARRAY" 
1 1 0 READ # 1 " 1 
1 20 READ # 2 1 1 
130 READ 11JX$"Al"Bl,CIID1"EI 
140 PRINT X$ILIN(1)"Al,Bl"Cl,DIIEI 
150 READ 11JA21B2"C21D21E2 
160 PRINT A2IB2"C2"D2"E2 
170 READ 112;Y$"AIB 
180 PRINT Y$"A"B 
1 90 READ 111 J C$ 
195 PRINT C$ 
2 00 READ II 1 J X 
210 REM •• ATTEMPT TO READ END-OF-FILE CAUSES TERMINATION 
220 END 
RUN 

B 
200 300 400 500 
700 700 900 1000 
300 600 

END OF ARRAY 

E ND-OF-F ILE/END OF RECORD IN LINE 200 

11-79 



Basic Language Reference 

READ # Statement (Cont) 

After data is written on files 1 and 2 with the print statements in lines 70 through 100, and the 
pointer is restored to the start of each file in lines 110 and 120, the data is ready to be read. The 
first six items in file 1 are read in line 130. The next five items are read in line 150. The three 
items written on file 2 are read in line 170. The PRINT statements are inserted to test the 
accuracy of the reads and the previous writes. A string item remains in file 1 and is read in line 
190. Line 200 attempts to read an end-of-file mark causing the message: END OF FILE/END 
OF RECORD IN LINE 200 to be printed. 

Direct File Read Examples: 

5 FILES AFILE 
DIM CCS1"DCSJ 
DIM A$C201"X$C201 
MAT C=CON 
READ A"B"C 
DATA 1,,2,,3 

1 0 
20 
25 
30 
40 
50 
60 
70 
80 
90 
100 
1 10 
120 
130 
140 
1 50 
1 60 
1 70 
1 80 
RUN 

PRINT 11"2JA"B,,C.I"NUMBERS" 
PRINT 1I1,,1;"ARRAY C" 
FOR 1=1 TO 5 
PRINT 61;CCIJ 
NEXT 1 

READ # 1 " 1 ,; X$ 
FOR 1=1 TO 5 
READ II 1 ,; D C I J 
NEXT 1 
PRINT X$ 
MAT PRINT D 
READ 11.12;D.lE.lF.lA$ 
PRINT A$.IDJE1F 
END 

ARRAY C 
1 

1 

1 

NUMBERS 

DONE 

2 3 

ASCII File Read Operations 

Reading from an ASCII file follows the same rules as the INPUT statement. The data is read 
as if it were being input at your terminal. Refer to PRINT # for a discussion of ASCII file 
access. 

11-80 



Basic Language Reference 

REC Function 

The REC function returns the current record number being accessed in the file specified. 

The numeric expression is evaluated and rounded to an integer. This integer is used as the file 
number. The REC function cannot be used with ASCII files. If attempted the program will be 
terminated with an error. Specification of an invalid file number will also result in an error. 

Examples: 

20 PRINT "I AM NOW AT RECORD" REC(N) "IN FILE" N 
30 R=REC(N+1) 

REM Statement 

The REM statement allows you to add comments to your program. 

The optional remark may be any series of characters. The REM statements are not executed. 

Examples: 

200 REM****ITEM SEARCH SUBROUTINE**** 
300 REM This program is used to sort data by value 
400 REM THIS PORTION OF THE PROGRAM IS ONLY 
401 REM EXECUTED IF THE DATA IS INVALID 
402 REM AND THE ERROR DETECT FLAG IS SET 
500 REMARK - "ARK" are the first three characters of this REM statement 

11-81 



Basic Language Reference 

RESTORE Statement 

The RESTORE statement resets the program's data pointer to the first item in a DATA 
statement. 

The optional statement number indicates a specific DATA statement. If no statement number is 
given, the pointer is reset to the first data item in the first DATA statement in the program. 

If the statement number does not reference a DATA statement, the next READ or MAT READ 
statement will cause the pointer to be moved to the first DATA statement following the 
referenced statement. If there is no following DATA statement, the attempted read operation 
will terminate the program with an error. 

Examples: 

11-82 

20 RESTO RE 30 
30 RESTORE 



Basic Language Reference 

RND Function 

The RND function is a numeric valued function which returns a pseudo random number in the 
range 0 :s; R < 1. 

The number is not truly random but is calculated from an initial or ~~seed" number. Each 
succeeding number in the sequence is then calculated from the previous number. An initial 
seed number (based on the date and time of day) is assigned to each port on the system every 
time the system is started. The sequence may be altered by specifying a new seed. This allows 
you to repeat given sequences of random numbers. 

The numeric expression is evaluated and used to obtain the next random number based on the 
last number or to change the last number and begin a new sequence as follows: 

Value of the 
Numeric Expression 

less than 0 

greater than or 
equal to 0 

Result 

A pseudo random number is returned that is 
calculated from the numeric expression. 

A pseudo random number is returned that is 
calculated from the last number generated. 

In order to generate a repeatable sequence of pseudo random numbers, you should first use the 
RND function with a numeric expression that has a value <0, and then continue using the 
function with a numeric expression that has a value> = O. To repeat the sequence, use the 
value from the initial call. 

Examples: 

100 N3= RND( -5.55) 
110 D =RND(F)** 10 

11-83 



Basic Language Reference 

SGN Function 

The SGN function is a numeric valued function which returns a number indicating the sign of 
the numeric expression. If the sign of the numeric expression (after evaluation) is positive, the 
value returned is 1. If the sign is negative, the value returned is -1. If the numeric expression 
evaluates to zero, the value returned is O. For instance, SGN (-3.14) = -1, SGN (943.2) = 1, 
and SGN (0) = O. 

Examples: 

1200 A4 = SGN (P2) 
1210 A(I) = 8GN (A2+A(I-1)) 

SIN Function 

The SIN function is a numeric valued function which returns the sine of the numeric expres­
sion. The numeric expression is interpreted as being in radians. If the absolute value of the 
numeric expression exceeds approximately 102900, your program will be terminated with an 
error. 

Example: 

440 LET 8(1) = 8IN(3.1415/1) 

11-84 



Basic Language Reference 

SPA Function 
.,"''',,,', . 

... ) ... " ..........• 
,'" .. , .. , .. "". .< •• '.'.<""" 

. ,""',i, •....... "" 

.' .• " ••.... , .• ' ... > .iF..,.'·" 
•• >'.<. >,·,.,.··.·'i'· .... ".: ", . 

, .. ': ..... ' .. 

The SPA function is used in a PRINT, PRINT#, PRINT USING, MAT PRINT, MAT PRINT#, 
or MAT PRINT USING statement to print the number of blank characters specified by the 
numeric expression. 

The numeric expression is evaluated and rounded to an integer. The SPA function is ignored 
when the numeric expression is zero or negative. If the number of blanks will not fit on the 
current line, or if numeric expression evaluates to a value greater than 71, an X-OFF, carriage 
return, and line feed are generated. PRINT USING and MAT PRINT USING statements using 
the SPA function do not have a line length limit of 71 characters. (Line printers and other 
ASCII devices can have more than 72 characters.) SPA is ignored for file prints (PRINT#, 
MAT PRINT#) to BASIC formatted files, but is allowed for ASCII files. Note that a comma 
after a SPA function is treated as a semicolon (see print delimiter under PRINT). 

Example: 

10 PRINT A$, SPA(10), 8$, SPA(X+LEN(C$), D$ . 

SQR Function 

The SQR function is a numeric valued function which returns the square root of the numeric 
expression. The numeric expression must evaluate to a number greater than or equal to 0; 
otherwise, your program will terminate with an error. 

Examples: 

932 LET S2 = SQR(2) 
940 PRINT SQR (8**2 + C **2) 

STOP Statement 
..... 

. " . .< " •• ' SeneralForm: . • '., ·".h .... ,F.'".. ~,~ .,.'., 
"".,. .../:, .. ' .... ' . 

....... ",' .. ,.,.', .. ','" ... 

The STOP statement terminates execution of the program and returns control to the system. 
The STOP statement may occur at any point in the program except the last statement which 
must be END. 

Example: 

300 STOP 

11-85 



Basic Language Reference 

SYSTEM Statement 

The SYSTEM statement allows you to execute some operating system commands from a 
running program. 

The command is given in the source string and must be in the same form that would be used to 
enter the command normally. The *OUT=file name* construct allowed in some commands is 
not allowed in the SYSTEM statement. Any lower case letters used in the source string are 
shifted to upper case. 

Commands which can be used with the first form of the SYSTEM statement are BYE, ECHO, 
MESSAGE, FILE, PROTECT, LOCK, PRIVATE, UNRESTRICT, MWA, and SWA. The return 
variable is set to 0 if the command is executed and 1 if it is not. 

A locked or private program saved in a group account library having the FCP (File Create/ 
Purge) capability can be executed or chained to in order to specify a locked BASIC formatted 
file MWA using the SYSTEM statement. The file must belong to a group member having the 
PFA (Program/File Access) capability. The group account library must have the MWA (Multi­
ple Write Access) capability. 

Example: 

SYSTEM R, "MWA - GRTH.C402" 

Commands which can be used with the second form of the SYSTEM statement are TIME, 
CATALOG, GROUP, LIBRARY, and LENGTH. These commands would normally produce 
output on your terminal. Only the first line of this output (less any heading) will be returned in 
the destination string. Note that for the CATALOG, GROUP, and LIBRARY commands you 
can enter start print parameter (refer to the descriptions for these commands in Section 10). 

In the example given in line 30 below, the first line of actual data, starting with the first entry 
equal to or greater than ttT" will be returned as the value of A$. 

Examples: 

11·86 

10 SYSTEM RO, "FILE-LPR,LPO" 
20 SYSTEM A$, B$ 
30 SYSTEM A$, "CAT-T" 
40 SYSTEM PO$(1,4),"TIM" 



Basic Language Reference 

TAB Function 

The TAB function is used in print operations to move the current print position to a specified 
column. 

The TAB function can be used in PRINT, PRINT#, PRINT USING, MAT PRINT, MAT PRINT 
#, and MAT PRINT USING statements. The numeric expression is evaluated and rounded to 
an integer to obtain the destination column. Print columns are numbered ° to 71 (note that 
line printers and other ASCII devices can have more than 72 columns). If the numeric 
expression evaluates to a column position lower than the current print position, the TAB 
function is ignored. If the numeric expression evaluates to more than 71, the print position is 
moved to the beginning of the next line (RETURN) unless this occurs in a PRINT USING or 
MAT PRINT USING statement. In PRINT USING and MAT PRINT USING no X-OFF, 
carriage return, line feed will be generated if the TAB argument exceeds 71. 

The TAB function is ignored for file prints (PRINT # and MAT PRINT #) to BASIC formatted 
files but is allowed for ASCII files. 

Commas following TAB functions in print statements are treated as semicolons (refer to the 
discussion print delimiter under ~he PRINT statement). 

Examples: 

10 PRINT A,B$(1, 10),TAB (40) 
20 PRINT TAB(A+B),N,TAB(C),M 

TAN Function 

The TAN function is a numeric valued function that returns the tangent of the numeric 
expression. 

The numeric expression is interpreted as being in radians. If the absolute value of the numeric 
expression exceeds approximately 51500, your program will be terminated with an error. 

Example: 

14 A3 = TAN(3.1415/P2) 

11-87 



Basic Language Reference 

TIM Function 

GeneralFotm.~ 

The TIM function is a numeric valued function which returns the current second, minute, 
hour, day, or year. 

The numeric expression is evaluated and rounded to an integer. This integer is used to specify 
which of the time values is to be returned as follows: 

Value of Expression Time Returned 

0 current minute (0-59) 

1 current hour (0-23) 

2 current day (1-366) 

3 curren t year (0-99) 

4 current second (0-59) 

Note the difference between the TIM function and the TIME command. The TIME command is 
used outside a program and gives the current console time used for that port, the total time 
used to date for that account, and the total time permitted for that account. The TIM function 
must be used within a program and returns the current time based on the system clock. 

Examples: 

20 IF TIM(O)-A = 15 THEN 9000 
30 A3= TIM(8) 
40 PRINT "SECONO";TIM(4);"MINUTE";TIM(0);"HOUR";TIM(1 );"OAY";TIM(2) 
50 PRINT TIM(2*X/A-2) 

TRN Function 

(Refer to MAT ... TRN) 

11-88 



Basic Language Reference 

TYP Function 

The TYP function is a numeric valued function that returns the data type of the next 
sequential item in a file or data statement. 

The numeric expression is evaluated and rounded to an integer. The absolute value of the 
integer must be a valid file number or O. If it is not, the program will be terminated with an 
error. 

When the TYP function is used to test data in the file indicated by the numeric expression it 
will return a value indicating that the next item in the file is a number, string, End-Of-File 
mark, or End-Of-Record mark. If the numeric expression evaluates positive, End-Of-Record 
marks are ignored. This allows the TYP function to be used with serial files. 

When used to test data contained in a program DATA statement, the numeric expression must 
have a value of O. 

Return values for various values of the numeric expression are as follows: 

Return Expression < 0 Expression > 0 
Value (file test) (file test) 

1 number number 

2 string string 

3 end of file end of file 

4 end of record 

Note that ASCII files will return a value of 2 only. 

Examples: 

10 A = TYP(-1) 
20 GOTO TYP( - X) OF 40,50,6070 
30 PRINT TYP(X*2) 

Expression = 0 
(DATA statement test) 

number 

string 

end of data 

11-89 



Basic Language Reference 

UNLOCK Statement 

VNLQCK .#fllenutnber [, return. varIable] 

The UNLOCK statement clears a file status flag that has been previously set with a LOCK 
statement (refer to the LOCK statement). 

The UNLOCK statement should be used to release a file as soon as the file access operation is 
complete to allow others using the locking technique to access the file. If the optional return 
variable is used you can check the values returned to determine the result of the unlocking 
operation. A list of return values and their meaning is given below. 

Return Value 

o 
1 

2 

Meaning 

File successfully unlocked 

File already unlocked (either by this or another program) 

File number invalid 

The UNLOCK statement does not affect LOCK statements in other programs. Execution of an 
UNLOCK statement leaves the file pointer positioned at the end of the last accessed record in 
the file. 

Examples: 

11-90 

10 UNLOCK #3,ZO 
20 UNLOCK # N 



Basic Language Reference 

UPDATE Statement 

The UPDATE statement replaces the next sequential data item in the file referenced by the 
file number with the value of either the numeric expression or the source string. 

The data type of the new item must match the type (numeric or string) of the item being 
replaced. The file number must refer to a BASIC formatted file. The UPDATE statement 
cannot be used with ASCII files. The source string must be the same size as the file string being 
replaced. If the source string is shorter than the old string, it will be padded on the right with 
blanks. If the source string is longer than the old string it will be truncated from the right to 
fit. 

End-Of-Record (EOR) marks are ignored. The next sequential item after the EOR mark will be 
updated. Attempting to update an End-Of-File (EOF) mark will result in an end of file 
condition. You must h-ave write access to the file to use the UPDATE statement. 

Examples: 

10 UPDATE #3 ; A$ 
20 UPDATE #1 ; "JIM" 
30 UPDATE #7 ; Z1 $(3,20) 
40 UPDATE #2 ; A(N,M) 
50 UPDATE #4 ; X*12/52 

11-91 



Basic Language Reference 

UPS$ Function 

General Form: 

UPS$ (source string) 

The UPS$ function returns a string equivalent of the source string with all characters shifted 
to upper case. 

Only the 26 lower case alphabetic characters (a to z) are effected. For example, 
UPS$C~abc% 12") would return the string HABC% 12". 

Examples: 

200 PRINT UPS$(G$) 
300 Q$= UPS$(R$(j,k)) 

(Refer to MAT ... ZER) 

11-92 

ZER Function 



USING THE ASCII IIUIIh11 CHARACTER SET I A I 

Most terminals used with the 2000 Access System represent characters in ASCII (American 
Standard Code for Information Interchange) code. This code is used to store all string data. The 
ASCII character set is given in table A-l. An alternate code used by the IBM 2741 Communi­
cation terminal is discussed in Appendix D. 

The 128 character set in table A-I is ranked according to the decimal equivalent of the code. 
This decimal value is used in determining the relative value of strings. Comparison of strings 
is done character by character. Note that space (blank) characters actually have a value (32). 
This fact must be taken into consideration when comparing strings of different length. 

The decimal equivalent of a character can be used as an extended string literal if preceded by 
an apostrophe ('). A discussion of literal strings is contained in section XI. 

Note that in table A-I, characters with values 0 through 32 do not have a graphic or printing 
character. They are typically used to perform a variety of terminal and communication 
operations. Characters with values between 0 and 63 can be generated using an alternate 
character combination. A bell code for example can be generated by holding the control key 
and pressing the G key (GC). This technique can be used to produce ASCII characters that may 
not appear as separate keys on your terminal. This is important since the character set 
available on terminal keyboards may vary. 

When using the RJE facility for transmission of data to IBM or CDC host systems you should 
refer to table A-2 for a list of valid data characters. Note that some characters available on the 
2000 Access System are not available on the IBM and CDC systems. In addition some 
character codes generate different graphics on different systems. 

When reading cards using a BASIC program, refer to table A-2 for a list of valid character 
codes. Note that the lower case alphabetic characters cannot be read by a BASIC program. 

A-I 



Using the Ascii Character Set 

Table A·1. ASCII Character Set 

DECIMAL ALTERNATE DECIMAL 
VALUE GRAPHIC COMMENTS CHARACTER VALUE GRAPHIC COMMENTS 

0 Null @e 64 @ Commercial at 
1 Start of heading AC 65 A Uppercase A 
2 Start of text Be 66 B Uppercase B 
3 End of text Ce 67 C Uppercase C 
4 End of transmission De 68 D Uppercase D 
5 Enquiry Ee 69 E Uppercase E 
6 Acknowledge Fe 70 F Uppercase F 
7 Bell Ge 71 G Uppercase G 
8 Backspace He 72 H Uppercase H 
9 Horizontal tabulation Ie 73 I Uppercase I 

10 Line feed Je 74 J Uppercase J 
11 Vertical tabulation Ke 75 K Uppercase K 
12 Form feed Le 76 L Uppercase L 
13 Carriage return Me 77 M Uppercase M 
14 Shift out Ne 78 N Uppercase N 
15 Shift in Oc 79 0 Uppercase 0 
16 Data link escape pe 80 P Uppercase P 
17 Device control 1 (X-ON) Qe 81 Q Uppercase Q 
18 Device control 2 RC 82 R Uppercase R 
19 Device control 3 (X-OFF) SC 83 S Uppercase S 
20 Device control 4 Te 84 T Uppercase T 
21 Negative acknowledge ue 85 U Uppercase U 
22 Synchronous idle Vc 86 V Uppercase V 
23 End of transmission block We 87 W Uppercase W 
24 Cancel Xc 88 X Uppercase X 
25 End of medium yc 89 Y Uppercase Y 
26 Substitute ze 90 Z Uppercase Z 
27 Escape [C 1 91 [ Opening bracket 
28 File separator \C 2 92 \ Reverse slant 
29 Group separator ] C 1 93 ] Closing bracket 
30 Record separator A C 1 94 A Circumflex 
31 Unit separator C 2 95 - Underscore 
32 Space (Blank) , e 96 Grave accent 

133 ! Exclamation point ae 97 a Lowercase a 
34 " Quotation mark be 98 b Lowercase b 
35 # Number sign cC 99 c Lowercase c 
36 $ Dollar sign de 100 d Lowercase d 
37 % Percent sign eC 101 e Lowercase e 
38 & Ampersand f" 102 f Lowercase f 
39 Apostrophe gC 103 g Lowercase g 

40 ( Opening parenthesis h C 104 h Lowercase h 
41 ) Closing parenthesis ie 105 i Lowercase i 
42 '" Asterisk j" 106 j Lowercase j 
43 + Plus kC 107 k Lowercase k 
44 Comma Ie 108 I Lowercase I 
45 Hyphen (Minus) mC 109 m Lowercase m 
46 Period (Decimal) nC 110 n Lowercase n 
47 / Slant oe 111 0 Lowercase 0 

48 0 Zero pc 112 p Lowercase p 
49 1 One qC 113 q Lowercase q 
50 2 Two rC 114 r Lowercase r 
51 3 Three SC 115 s Lowercase s 
52 4 Four tC 116 t Lowercase t 
53 5 Five U C 117 u Lowercase u 
54 6 Six ve 118 v Lowercase v 
55 7 Seven we 119 w Lowercase w 
56 8 Eight XC 120 x Lowercase x 
57 9 Nine ye 121 y Lowercase y 
58 : Colon ZC 122 z Lowercase z 
59 ; Semicolon {C 2123 { Opening (left) brace 
60 < Less than I C 2124 I Vertical line 
61 = Equals }e 2125 } Closing (right) brace 
62 > Greater than _c 2126 - Tilde 
63 ? Question mark deleteC 127 Delete 

Notes: 1. The equivalent EBCDIC character uses a different graphic. 
2. No equivalent character exists in EBCDIC. 

A-2 



Using the Ascii Character Set 

Table A-2. EBCDIC Character Set for Use with RJE 

GRAPHIC PUNCH 
ASCII IBM CDC CODE (029) COMMENTS 

A Same as ASCII Same as ASCII 12-1 
B Same as ASCII Same as ASCII 12-2 
C Same as ASCII Same as ASCII 12-3 
D Same as ASCII Same as ASCII 12-4 
E Same as ASCII Same as ASCII 12-5 
F Same as ASCII Same as ASCII 12-6 
G Same as ASCII Same as ASCII 12-7 
H Same as ASCII Same as ASCII 12-8 
I Same as ASCII Same as ASCII 12-9 
J Same as ASCII Same as ASCII 11-1 
K Same as ASCII Same as ASCII 11-2 
L Same as ASCII Same as ASCII 11-3 
M Same as ASCII Same as ASCII 11-4 
N Same as ASCII Same as ASCII 11-5 
0 Same as ASCII Same as ASCII 11-6 
P Same as ASCII Same as ASCII 11-7 
Q Same as ASCII Same as ASCII 11-8 
R Same as ASCII Same as ASCII 11-9 
S Same as ASCII Same as ASCII 0-2 
T Same as ASCII Same as ASCII 0-3 
U Same as ASCII Same as ASCII 0-4 
V Same as ASCII Same as ASCII 0-5 
W Same as ASCII Same as ASCII 0-6 
X Same as ASCII Same as ASCII 0-7 
Y Same as ASCII Same as ASCII 0-8 
Z Same as ASCII Same as ASCII 0-9 
0 Same as ASCII Same as ASCII 0 
1 Same as ASCII Same as ASCII 1 
2 Same as ASCII Same as ASCII 2 
3 Same as ASCII Same as ASCII 3 
4 Same as ASCII Same as ASCII 4 
5 Same as ASCII Same as ASCII 5 
6 Same as ASCII Same as ASCII 6 
7 Same as ASCII Same as ASCII 7 
8 Same as ASCII Same as ASCII 8 
9 Same as ASCII Same as ASCII 9 

blank Same as ASCII Same as ASCII no punch space 
+ Same as ASCII Same as ASCII 12-8-6 plus 
- Same as ASCII Same as ASCII 11 minus (hyphen) 
* Same as ASCII Same as ASCII 11-8-4 asterisk 
/ Same as ASCII Same as ASCII 0-1 slash 
( Same as ASCII Same as ASCII 12-8-5 left parenthesis 
) Same as ASCII Same as ASCII 11-8-5 right parenthesis 
$ Same as ASCII Same as ASCII 11-8-3 dollar sign 
= Same as ASCII Same as ASCII 8-6 equals 
, Same as ASCII Same as ASCII 0-8-3 comma 

Same as ASCII Same as ASCII 12-8-3 period 
> Same as ASCII Same as ASCII 12-8-4 less than 
< Same as ASCII Same as ASCII 0-8-6 greater than 
; Same as ASCII Same as ASCII 11-8-6 semicolon 

: 1 . 8-2 colon 
% % 1% 0-8-4 percent 
# # - 8-3 number (CDC - identity) 

Note: 1. On CDC systems using a 63-character graphic set, the % character is displayed as a .. : ". 
No separate ''%'' graphic exists. 

A-3 



Using the Ascii Character Set 

Table A-2. EBCDIC Character Set for Use with RJE (Continued) 

GRAPHIC PUNCH 
ASCII IBM CDC CODE (029) COMMENTS 

[ ~ [ 12-8-2 left bracket (IBM - cent) 
] ! ] 11-8-2 right bracket (IBM - exclamation) 
" " f 8-7 quote (CDC not equal) 

- - ~ 0-8-5 underscore (CDC - right arrow) , , 
i 8-5 apostrophe (CDC - up arrow) 

? ? t 0-8-7 question (CDC - down arrow) 
@ @ ~ 8-4 at (CDC - less than or equal) 
& & /\ 12 ampersand (CDC - circumflex) 
/\ -, -, 11-8-7 not (ASCII - circumflex) 
! I v 12-8-7 exclamation, vertical bar, carat 

\ 2 ;::,: 0-8-2 back slash, greater than-equal 

PUNCH 
IBM GRAPHIC CODE (029) COMMENTS 

a 12-0-1 
b 12-0-2 
c 12-0-3 
d 12-0-4 
e 12-0-5 
f 12-0-6 
g 12-0-7 
h 12-0-8 
i 12-0-9 
j 12-11-1 
k 12-11-2 
1 12-11-3 
m 12-11-4 
n 12-11-5 

3 0 12-11-6 
P 12-11-7 
q 12-11-8 
r 12-11-9 
s 11-0-2 
t 11-0-3 
u 11-0-4 
v 11-0-5 
w 11-0-6 
x 11-0-7 
y 11-0-8 
z 11-0-9 

Notes: 2. No graphic exists. 
3. While these characters can be transmitted to a host system via the RJE facility, they cannot be read 

into a BASIC program. 

A-4 



HOW TO PREPARE A PAPER 1;;1"1.11 
TAPE OFF-LINE I B I 

To prepare a BASIC program on paper tape for input: 

1. Set terminal status to ~~LOCAL." 

2. Press the ON button on the paper tape punch. 

3. Press control-@ (or the HERE IS key if available) several times to put leading feed holes 
on the tape. 

4. Type the program as usual, following each line with X-OFF (control-S), return,line 
feed. 

5. Press control-@ (or HERE IS) several times to put trailing feed holes on the tape. 

6. Press the OFF button on the paper tape punch. 

The standard on-line editing features, such as line delete and character delete, may be 
punched on paper tape. 

Pressing the BACKSPACE button on the paper tape punch, then the RUBOUT or DEL key on 
the keyboard, physically deletes the previous character from the paper tape. 

An alternate method of producing a punched paper tape copy of a program is to use the 
PUNCH command. (See the PUNCH command.) 

Programs punched onto paper tape in the above manner, or produced by the PUNCH com­
mand, may be input to the system through the paper tape reader after typing the TAPE 
command. 

The paper tape punch may also be used off-line to prepare a list of data that will be input in a 
BASIC program at INPUT, LINPUT, or ENTER statements. Using the same procedure 
described above for preparing a BASIC program, type each line of data in the following format. 

data item, data item, ... , data item X-OFF ( return) Qine feed) 

Note: When using strings in a line of data, each string must be enclosed in 
quotes, for example: uAAA", uBBB", 98, 95, ~~CCC". (For further discus­
sions of data format, refer to the INPUT, LIN PUT , and ENTER state­
ments.) 

The number of characters permitted in a line of data will vary with 
system configuration. 

To use the data in a BASIC program, insert the data tape in the paper tape reader and set the 
reader to AUTO. The data will then automatically be read in at INPUT, LINPUT, and ENTER 
statements when the program is run. 

B-1 





USER COMMAND ERROR MESSAGES 
Specific command error messages are listed below along with the commands which generate 
them. The message ILLEGAL FORMAT is produced by all commands when their parameter 
string is improperly constructed. The messages listed here usually indicate a syntactically 
correct command which is rejected for the reason indicated. 

ENTRY IS A FILE 
EXECUTE ONLY 
NO COMMON AREA ALLOWED 
NO SUCH PROGRAM 

APPEND 

PROGRAM TOO LARGE 
SEMI·COMPILED PROGRAM 
SEQUENCE NUMBER OVERLAP 
UNABLE TO RETRIEVE FROM LIBRARY 

CREATE 

CONFLICTING ACTION BY OTHER USER 
DUPLICATE ENTRY 
ILLEGAL PARAMETER 
LIBRARY SPACE FULL 
SYSTEM OVERLOAD 
UNSUCCESSFUL, PURGE AND RETRY 

DUPLICATE ENTRY 
LIBRARY SPACE FULL 
NO PROGRAM 
NO PROGRAM NAME 
OUT OF STORAGE 
RUN ONLY 
SYSTEM OVERLOAD 
UNSUCCESSFUL, TRY AGAIN 

CSAVE 

(Since execution of this command requires some of the same processing as the RUN command, 
it- may also produce many of the execution errors listed in a separate section.) 

C-l 



Error Messages 

NOTHING DELETED 

ENTRY IS A FILE 
NO SUCH PROGRAM 
PROGRAM TOO LARGE 

DELETE 

EXECUTE 

UNABLE TO RETRIEVE FROM LIBRARY 

(Since this command includes the processing of a RUN command, it can also produce any of the 
execution errors listed in a separate section.) 

C-2 

FILE 

CONFLICTING ACTION BY OTHER USER 
DEVICE UNAVAILABLE 
DUPLICATE ENTRY 
ILLEGAL PARAMETER 
LIBRARY SPACE FULL 
RECORD SIZE TOO LARGE 
SYSTEM OVERLOAD 
UNSUCCESSFUL, PURGE AND RETRY 

ENTRY IS A FILE 
EXECUTE ONLY 
NO SUCH PROGRAM 
PROGRAM TOO LARGE 

GET 

UNABLE TO RETRIEVE FROM LIBRARY 

ILLEGAL ACCESS 
NO TIME LEFT 

HELLO 

LIST 

CHARACTERS AFTER COMMAND END 
PROGRAM BAD 
RUN ONLY 



NO SUCH ENTRY 

CONSOLE BUSY 

ASCII FILE, NOT ALLOWED 
ENTRY IS A PROGRAM 
INSUFFICIENT CAPABILITY 
NO SUCH ENTRY 
NO SUCH ID 

LOCK 

MESSAGE 

MWA 

NAME 

ONLY 6 CHARACTERS ACCEPTED 

NO SUCH ENTRY 

NO SUCH ENTRY 

ASCII FILE NOT PERMITTED 
ASCII FILE REQUIRED 
RUN ONLY 

PROGRAM BAD 

PRIVATE 

PROTECT 

PUNCH 

CHARACTERS AFTER COMMAND END 

PURGE 

FILE IN USE 
NO SUCH ENTRY 

Error Messages 

C-3 



Error Messages 

RENUMBER 

BAD PARAMETER 
SEQUENCE NUMBER OVERFLOW/OVERLAP 

RUN 

(See the list of execution errors in another section.) 

DUPLICATE ENTRY 
LIBRARY SPACE FULL 
NO PROGRAM 
NO PROGRAM NAME 
OUT OF STORAGE 
RUN ONLY 
SYSTEM OVERLOAD 
UNSUCCESSFUL, TRY AGAIN 

ENTRY IS A PROGRAM 
NO SUCH ENTRY 

NO SUCH ENTRY 

SAVE 

SWA 

UNRESTRICT 

Use of the * OUT =file name* construct in one of the above commands can also produce the 
following messages 

DEVICE UNAVAILABLE 
FILE/DEVICE BUSY OR NOT PRESENT 
FILE READ ONLY OR NOT ASCII 
RECORD SIZE TOO LARGE 
END OF FILE 

If users other than account AOOO attempt to use certain commands reserved for the system 
manager they will receive the message 

PRIVILEGED COMMAND 

If a program entered under control of the TAPE command contained errors, execution of the 
next command entered will be replaced by printing of the error messages followed by 

LAST INPUT IGNORED, RETYPE IT 

C-4 



Error Messages 

LANGUAGE PROCESSOR ERROR MESSAGES 
The following messages are output by the BASIC language processor to indicate errors or 
possible errors in users' BASIC programs. 

SYNTAX ERRORS 

One of the following error messages will be produced after entry of a BASIC statement with 
incorrect syntax. In all cases but the last the line will be rejected rather than added to the 
curren t program. 

OUT OF STORAGE 
ILLEGAL OR MISSING INTEGER 
EXTRANEOUS LIST DELIMITER 
MISSING ASSIGNMENT OPERATOR 
CHARACTERS AFTER STATEMENT END 
MISSING OR ILLEGAL SUBSCRIPT 
MISSING OR BAD LIST DELIMITER 
MISSING OR BAD FUNCTION NAME 
MISSING OR BAD SIMPLE VARIABLE 
MISSING OR ILLEGAL 'OF' 
MISSING OR ILLEGAL 'THEN' 
MISSING OR ILLEGAL 'TO' 
MISSING OR ILLEGAL 'STEP' 
MISSING OR ILLEGAL DATA ITEM 
ILLEGAL EXPONENT 
SIGN WITHOUT NUMBER 
MISSING RELATIONAL OPERATOR 
ILLEGAL READ VARIABLE 
ILLEGAL SYMBOL FOLLOWS 'MAT' 
MATRIX CANNOT BE ON BOTH SIDES 
NO '*' AFTER RIGHT PARENTHESIS 
NO LEGAL BINARY OPERATOR FOUND 
MISSING LEFT PARENTHESIS 
MISSING RIGHT PARENTHESIS 
PARAMETER NOT STRING VARIABLE 
UNDECIPHERABLE OPERAND 
MISSING OR BAD ARRAY VARIABLE 
STRING VARIABLE NOT LEGAL HERE 
MISSING OR BAD STRING OPERAND 
NO CLOSING QUOTE 
255 CHARACTERS MAX FOR STRING 
STATEMENT HAS EXCESSIVE LENGTH 
MISSING OR BAD FILE REFERENCE 
'PRINT' MUST PRECEDE 'USING' 
ILLEGAL OPERAND AFTER 'USING' 
VARIABLE MISSING OR WRONG TYPE 
OVER/UNDERFLOWS - WARNING ONLY 

C-5 



Error Messages 

EXECUTION ERRORS 

Erroneous conditions discovered during execution of a program (Le., following entry of a RUN 
or EXECUTE command) will result in one of the messages below. In addition such errors cause 
termination of execution. 

C-6 

UNDEFINED STATEMENT REFERENCE 
NEXT WITHOUT MATCHING FOR 
SAME FOR-VARIABLE NESTED 
FUNCTION DEFINED TWICE 
VARIABLE DIMENSIONED TWICE 
LAST STATEMENT NOT 'END' 
UNMATCHED FOR 
UNDEFINED FUNCTION 
ARRAY TOO LARGE 
ARRAY OF UNKNOWN DIMENSIONS 
OUT OF STORAGE 
DIMENSIONS NOT COMPATIBLE 
CHARACTERS AFTER COMMAND END 
BAD FORMAT OR ILLEGAL NAME 
MISSING OR PROTECTED FILE 
GOSUBS NESTED TWENTY DEEP 
RETURN WITH NO PRIOR GOSUB 
SUBSCRIPT OUT OF BOUNDS 
NEGATIVE STRING LENGTH 
NON-CONTIGUOUS STRING CREATED 
STRING OVERFLOW 
OUT OF DATA 
DATA OF WRONG TYPE 
UNDEFINED VALUE ACCESSED 
MATRIX NOT SQUARE 
REDIMENSIONED ARRAY TOO LARGE 
NEARLY SINGULAR MATRIX 
LOG OF NEGATIVE ARGUMENT 
SQR OF NEGATIVE ARGUMENT 
ZERO TO ZERO POWER 
NEGATIVE NUMBER TO REAL POWER 
ARGUMENT OF SIN OR TAN TOO BIG 
TOO MANY FILES STATEMENTS 
NON-EXISTENT FILE REQUESTED 
WRITE TRIED ON READ-ONLY FILE 
END-OF-FILE/END OF RECORD 
STATEMENT NOT IMAGE 
NON-EXISTENT PROGRAM REQUESTED 
CHAIN REQUEST IS A FILE 
PROGRAM CHAINED IS TOO LARGE 
COM STATEMENT OUT OF ORDER 
ARGUMENT OUT OF RANGE 



BAD FORMAT STRING SUBSCRIPT 
BAD FILE READ 
BAD FILE WRITE DETECTED 
CAN'T READ PROGRAM CHAINED TO 
NO ACCESS ALLOWED 
PROGRAM BAD 
STATEMENT NUMBER OUT OF BOUNDS 
NO ACCESS AT THIS TIME 
ASCII FILE NOT PERMITTED 
RETURN VARIABLE NEEDED 
ASCII FILE REQUIRED 
MISSING OR INVALID COMMAND 
READ TRIED ON WRITE-ONLY FILE 
MISSING FORMAT SPECIFICATION 
ILLEGAL OR MISSING DELIMITER 
NO CLOSING QUOTE 
BAD CHARACTER AFTER REPLICATOR 
REPLICATOR ZERO OR TOO LARGE 
MULTIPLE SIGNS 
MULTIPLE DECIMAL POINTS 
BAD FLOATING SPECIFICATION 
ILLEGAL CHARACTER IN FORMAT 
ILLEGAL FORMAT FOR STRING 
MISSING RIGHT PARENTHESIS 
MISSING REPLICATOR 
TOO MANY PARENTHESIS LEVELS 
MISSING LEFT PARENTHESIS 
ILLEGAL FORMAT FOR NUMBER 

EXECUTION WARNINGS 

Error Messages 

The following messages occur under the same circumstances as the execution errors above. 
However, they represent recoverable or questionable but allowable conditions and therefore do 
not terminate execution. 

BAD INPUT, RETYPE FROM ITEM xxxx 
LOG OF ZERO - WARNING ONLY 
ZERO TO NEGATIVE POWER-WARNING 
DIVIDE BY ZERO - WARNING ONLY 
EXP OVERFLOW - WARNING ONLY 
OVERFLOW - WARNING ONLY 

\ 

UNDERFLOW - WARNING ONLY 
EXTRA INPUT - WARNING ONLY 
TRANSMISSION ERROR. REENTER 
OVER/UNDERFLOWS - WARNING ONLY 

C-7 





User terminals can be operated in either of two modes, on-line or off-line. In on-line mode, 
connection to the computer is established, a log-on procedure is performed, and the user is in 
contact with the computer through the 2000 Access System. This system accepts and executes 
any legal command entered by the user. Illegal commands are rejected, usually with an 
informative message printed or displayed on the terminal. 

To enter a command, type either the short or full form of the command; if additional param­
eters are required or permitted, type a hyphen, then the parameters. Terminate the command 
by pressing (r~~rn). Some commands cause an obvious response from the system such as a 
listing or punc lng operation. Other commands result in computer operations where the only 
response is the generation of a line feed ,at your terminal indicating that the system has 
accepted the command and is rea y or another entry. 

Terminals with paper tape punching capabilities may be used to prepare paper tape in off-line 
mode. 

Ten types of user terminals can be connected to the 2000 Access System. Nine generate ASCII 
code and one generates CALL 360 or PTTC/EBDC (non-ASCII) code. 

The following user terminals generate ASCII code: 

• HP 2640A Interactive Display Terminal 

• HP 2749A Teleprinter Terminal 

• General Electric TermiNet 300 Data Communications Terminal, Model B (10/15/30 cps 
transfer rates) with Paper Tape Reader/Punch, Option 2 or HP 2762 Terminal 

Note: The terminal must be strapped for !!ECHO-PLEX". 

• General Electric TermiN et 1200 

• Memorex 1240 Communications Terminal (10/15/30 cps transfer rates) 

• Execuport 300 Data Communications Transceiver Terminal 

• ASR-37 Teleprinter Terminal with Paper Tape ReaderlPunch 

Note: If the terminal is equipped with the Shift Out (SO) feature, SO must be 
disabled because the 2000 Access System does not allow use of this 
feature. 

• Texas Instruments Silent 700 

D-1 



Tenninal Interface 

The following user terminal generates non-ASCII code: 

• IBM 2741 Communication Terminal 

Note: The terminal must be connected to the system over telephone lines. In 
addition, the terminal must be equipped with the following features: 

1. Interrupt, Receive (IBM #4708) and Transmit (IBM #7900) as­
sociated with the terminal's ATTN key. 

2. Dial-Up (IBM #3255) to enable system connection through a 103A 
modem or acoustic coupler. 

Any terminal equipped with the automaticQine feed)feature (operator selectable) must be 
operated with this feature OFF. 

Note: Although cursor, form feed, horizontal and vertical tabulation, and 
various special function keys are provided on specific types of user 
terminals, these capabilities are not supported by the 2000 Access 
System. Some of these operations may be requested from the keyboard, 
but results are unpredictable. Features provided by 2000 Access 
BASIC, such as the TAB, SPA, and LIN functions, and the PRINT and 
PRINT USING statements, should be used to control output format. 
However, terminals equipped with automatic line feed after carriage 
return or on end of line may cause unpredictable results. These func­
tions and statements are described in other sections of this manual. 

IBM 2741 COMMUNICATIONS TERMINAL INTERFACE 
Because the IBM 2741 terminal generates non-ASCII code, special consideration must be 
given to the representation of several ASCII characters and functions which are not available 
in the 2741 character set. 

For input from a 2741 terminal, these characters (and some of the functions) are simulated by 
entry of a two-character code. The first character of this code is the cent symbol (4). The cent 
symbol is followed by one of several alphanumeric or special characters to compose a unique 
code representing one ASCII character or function. 

On input from a 2741 terminal, the two-character code is translated into the internal ASCII 
code. On output to a 2741 terminal, ASCII code is translated into the appropriate two­
character representation. 

The IBM 2741 Communications Terminal must be equipped with the interrupt feature as­
sociated with the ATTN key. This key represents the break function; it is used to terminate 
program or command execution. 

Any CALL/360 or PTTC/EBCD characters that do not have an equivalent ASCII character are 
ignored on input. 

Table D-1 shows 2741 terminal representation of ASCII characters and functions. 

D-2 



Tenninal Interface 

Table D-l. IBM· 2741 ASCII Character Simulation 

ASCII IBM 2741 IBM 2741 

Graphic Control Character Representation User Terminal Character Representation 

Character 
Function 

CALLl360 PTTC/EBCD CALLl360 PTTC/EBCD 

[ ¢( ¢( contra/CD ¢C ¢C 

\ ¢/ ¢/ break ATTN key ATTN key 

1 . ¢) ¢) 
A t ¢A 
... ¢' ¢' 

{ ¢O ¢O 

} ¢S ¢S 

--- ¢T ¢T 

- - -
ESC ¢E ¢E 

FS ¢F ¢F 

GS ¢G ¢G 

RS ¢R ¢R 

US ·¢u ¢U 

CD Code must be followed by an appropriate alphabetic character; otherwise, it is ignored. 

Examples: 

Action Code Required 

Input line deletion (control X) ~CX (See Note) 

Character deletion (backspace) 4CH 
(no character will be echoed to confirm the deletion) 

Note: This entry must be followed by return. Otherwise, it is ignored. 

D-3 





The system operator has several program and file movement capabilities of which the user 
should be aware. In addition, there are some commands available to the operator at system 
startup time which allow storage and retrieval of programs and files on magnetic tape. These 
operator commands, and their functions, are listed here. The discussions of operator commands 
that follow assume that you are familiar with the library and security structure of the system 
(refer to Section VIII). 

BESTOW 

This command enables the operator to transfer a program or file or an entire library from one 
account to another. Individual library entries may be transferred any time the system is 
running. Entire libraries may only be transferred when no users are logged on and the system 
is running. Library entries which are PRIVATE or LOCKED will not be transferred. UNRE­
STRICTED or PROTECTED entries remain UNRESTRICTED or PROTECTED. An MW A, 
(Multiple Write Access) file remains MWA only if the new library's idcode has the MW A 
capability. 

COpy 

This command is used to make a duplicate copy of any user program or file in the library of any 
other user (or the same user). The copy may be given a new name at the time it is created. A 
program or a file of fewer than 200 blocks may be transferred any time the system is running. 
Files of greater than 200 blocks may be copied only when no users are logged on and the 
system is running. Entries which are PRIVATE or LOCKED will not be transferred. UNRE­
STRICTED or PROTECTED entries remain UNRESTRICTED or PROTECTED. An MWA 
(Multiple Write Access) file remains MWA only if the new library's idcode has the MWA 
capability. 

E-l 



Additional Library Features 

LOAD 

At system startup time, the system operator may use the LOAD command to load selected 
programs and files, entire user libraries, or all entries from magnetic tape. This tape must 
have been produced by a DUMP, SLEEP, or HIBERNATE. Entries already on the system will 
not be loaded. Program and file states (UNRESTRICTED, LOCKED, PRIVATE, or PRO­
TECTED) will not be altered. An MW A (Multiple Write Access) file will remain MWA only if 
the library into which it is loaded has the MWA capability. 

RESTORE 

At system startup time, the system operator may use the RESTORE command to load selected 
programs and files, entire user libraries, or all entries from magnetic tape. This tape must 
have been produced by a DUMP, SLEEP, or HIBERNATE. The difference between LOAD and 
RESTORE is that LOAD does not replace existing entries; RESTORE does. Program and file 
states (UNRESTRICTED, PROTECTED, LOCKED, or PRIVATE) will not be altered. An 
MWA (Multiple Write Access) file will remain MWA only if the library into which it is loaded 
has the MWA capability. 

DUMP 

The DUMP command can be used by the system operator at system startup time to write 
selected user programs and files, entire user libraries, or all entries on a system to magnetic 
tape. Dump tapes are useful for archival storage, backup, or transferring entries between 
Access systems. The security and access states of programs and files are not altered when they 
are dumped. 

E-2 



FORMAL SYNTAX FOR ClIH'!.!i 
2000/ACCESS BASIC I F I 

This appendix contains a precise definition of the 2000/Access BASIC language. The descrip­
tions listed here can be used to clarify the less formal definitions used in other parts of the 
manual. The syntactical grammar is described in a formal metalanguage derived from the 
Backus-Naur Form (BNF) of syntax definition. 

The BNF notation consists of ((productions" or syntax equations, each of which is in the 
following form: 

<syntactic entity> :: = < syntactic expression> 

This can be read as ((the entity on the left is composed of the ordered collection of one or more of 
the expressions on the right. 

• If the entity has more than one expression, they are separated by a vertical bar (( I". These 
expressions represent choices for any given expansion of the entity. 

• Square brackets (( [ ]" are used to enclose optional portions of expressions. The brackets can 
be nested (i.e., options can have options), and alternative options are expressed as a list of 
expressions separated by vertical bars, all enclosed within the brackets. 

• Expressions will normally contain one or more entities. These can be expanded by sub­
stituting the right-hand side of the definitions for the entities. 

• The syntax equations may be recursive (the entity on the left may appear in an expression 
used to define it. When this occurs there is always at least one alternative which does not 
define the entity in terms of itself. This allows definitions where there are multiple 
occurrences of the same component. 

• In some definitions the right-hand side of the equation will be a textual description rather 
than an expression. 

• Numerals in definitions refer to notes which follow the formal definitions. 

F-l 



Fonnal Syntax for 2000/ Access Basic 

<letter> 

<digit> 

<signop> 

<relational operator> 

<integer> 

<character string> 

<character> 

<constant> 

<numeric constant> 

<significant part> 

<exponent> 

<literal string> 

<quoted string> 

<numeric variable> 

<numeric simple variable> 

<subscripted variable> 

<array id> 

<subscript> 

<return variable> 

<string variable> 

<string simple variable> 

<first character> 

<last character> 

<numeric expression> 

<conjunction> 

F-2 

: := A I B I C I DIE I FIG I H I I I J I K I LIM 1 N I 0 I p 1 Q I R 1 SIT 1 

UIVIWIXIYIZ 

::=0111213141516171819 

: := + 1-

: := < I < = 1 = I > = I > I <> 1 # 

: := <digit> I <integer> <digit> 

: := < character> I <character string> <character> 

: := Any ASCII character l 

: := [<signop >] <numeric constants> <literal string> 

: := <significant part> [<exponent>] 

: := <integer> 1 [<integer>]. [ <integer> ] 

: := E [ <signop> ] <integer> 2 

: := <quoted string> 1 '<integer> 3 [<quoted string> ] I 

<literal string> '<integer>3 [<quoted string>] 

: := " [ <character string> ] ,,4 

: := <numeric simple variable> <subscripted variable> 

: := <letter> [<digit> ] 

: := <array id> «subscript> [,<subscript>] ) 1 7 

: := <letter> 

: := <numeric expression> 

: : = < numeric variable> 

: := <string simple variable> [ «first character> 
[ , <last character> ] ) ] 1 7 

: := <letter> [0 11 ] $ 

: := <numeric expression> 

: := <numeric expression> 

: := <conjunction> 1 <numeric expression> OR <conjunction> 

: := <relation> 1 <conjunction> AND <relation> 



<relation> 

<minmaX> 

<sum> 

<term> 

<Subterm> 

<factor> 

<primary> 

<parameter> 

<functional> 

<function id> 

<pre-defined function> 

<string expression> 

<Source string> 

<file reference> 

<file expression> 

<record expression> 

<program> 

<program statement> 

<statement number> 

<BASIC statement> 

Formal Syntax for 2000/ Access Basic 

: : = <minmaX> I 

<relation><relational operator> <minmax> 

: := <sum> I <minmax> MIN <sum> I 

<minmaX> MAX <sum> 

: : == <term> I <sum> <signop> <term> 

: : = <subterm> I <term> * <subterm> I 

<term> /<subterm> 

: := [<signop>] <factor> I NOT <factor> 

: : =<primary> I <factor> t 18 <primary> I 

<factor> ** <primary> 

: := <numeric constants> I <numeric variable> I <parameter> 5 I 

<functional> I «numeric expression» 

: := <letter> [<digit>] 

: := <function id>. «numeric expression» I 

<pre-defined function> «numeric expression» I 

LEN«source string» I NUM«source string» I 

POS«source string>, <source string» 

: : = FN <letter> 

: := ABSIATNIBRKICOSIEXPIINTIITMILOGIRECIRNDISGNI 

SINISQRITANITIMITYP 

: := <source string> I CHR$«numeric expression» I 

UPS$«source string» 

: := <literal string> I <String variable> 

: := <file expression> [ ,<record expression>] 

: := # <numeric expression> 

: : = <numeric expression> 

: : = <program statement> I 

<program> <program statement> 6 

: := <statement number> <BASIC statement> 

: := <integer> 7 

: := <LET statement> I <IF statement> I 

<trap statement> I <GOTO statement> I 

<GO SUB statement> I <RETURN statement> I 

<FOR statement< I <NEXT statement> I 

<STOP statement> I <END statement> I 

<DATA statement> I <READ statement> I 

F-3 



Formal Syntax for 2000/ Access Basic 

<BASIC statement> 
(Continued) 

<LET statement> 

<left part> 

<destination string> 

<IF statement> 

<decision expression> 

<trap statement> 

<GOTO statement> 

<Statement number list> 

<GOSUB statement> 

<RETURN statement> 

<FOR statement> 

<for variable> 

<initial value> 

F-4 

<INPUT statement> I <ENTER statement> I 

<LINPUT statement> I <RESTORE statement> I 

<PRINT statement> I <PRINT USING statement> I 

<IMAGE statement> I <REM statement> I 

<DIM statement> I <COM statement> I 

<DEF statement> I <FILES statement> I 

<ASSIGN statement> I <CHAIN statement> I 

<CONVERT statement> I <MAT statement> I 

<CREATE statement> I <PURGE statement> I 

<ADVANCE statement> I >UPDATE statement> I 

<LOCK statement> I <UNLOCK statement> I 

<SYSTEM statement> 

: := [LET] <left part> <numeric expression> I 

[LET] <destination string> = <string expression> 

: := <numeric variable> = I <left part> <numeric variable> = 

: : = <string variable> 

: := IF <decision expression> THEN <statement number> 

: := <numeric expression> I <string variable> 

<relational operator> <string expression> 

: := IF END <file expression> THEN <statement number> 

: := GOTO <statement number> I 

GOTO <numeric expression> OF <statement number list> 

: := <statement number> I 

<statement number list> , <statement number> 

: := GOSUB <statement number> I 

GOSUB <numeric expression> OF <statement number list> 

::= RETURN 

: : = FOR <for variable> = <initial value> TO 

<final value> [STEP <step size>] 

: : == <numeric simple variable> 

: : = <numeric expression> 



<final value> 

<step size> 

<NEXT statement> 

<STOP statement> 

<END statement> 

<DATA statement> 

<cons tan t list> 

<READ statement> 

<read variable list> 

<read variable> 

<INPUT statement> 

<ENTER statement> 

<LIN PUT statement> 

<RESTORE statement> 

<PRINT statement> 

<type statement> 

<print list> 

<print expression> 

<print function> 

<print function id> 

<file write statement> 

<write list> 

<PRINT USING statement> 

Formal Syntax for 20001 Access Basic 

: : = <numeric expression> 

: := <numeric expression> 

: : = NEXT <for variable> 

: := STOP 

: :=END 

: := DATA <constant list> 

: := <constant> I <constant list> , <constant> 

: := READ [<file reference> ;] <read variable list> I 

READ <file reference> 

: : = <read variable> I 

<read variable list> , <read variable> 

: : = <numeric variable> I <destination string> 

: : = INPUT <read variable list> 

: := ENTER # <numeric variable> I ENTER [# <numeric variable> , ] 

<numeric expression> , <return variable> , 

<read variable> 

: : = LINPUT [<file expression> ; ] <string variable> 

: := RESTORE [<statement number>] 

: := <type statement> I <file write statement> 

: := PRINT [<print list> [ , I ;] ] 

: := <print expression> I 

<print list> , <print expression> I a 

<print list> ; <print expression> 

: : = <numeric expression> I <string expression> I 

<print function> 

: := <print function id> «numeric expression» 

: := LINISPAITABICTL 9 

: := PRINT <file reference> [ ;<write list> I ; END] 

: := <print list> [ ,[END] I ; [END]] 

: := PRINT USING <format part> [ ; <using list> ] 

F-5 



Formal Syntax for 20001 Access Basic 

<format part> 

<format string> 

<carriage control> 

<format list> 

<format list element> 

<x list> 

<x part> 

<replica tor> 

<String specification> 

<A part> 

<integer specification> 

<num spec> 

<D part> 

<fixed specification> 

<floating specification> 

<using list> 

<using expression> 

F-6 

: := <statement number> I <string variable> I 

"<format string>" 

: :"" [ [<carriage control> ,] <format list>] 10 

::= + 1- 1# 

: :"" <format list element> III 

<replicator> «format list» I 11 

<format list> , <format list element> I 

<format list> I [<format list element> ] 

: := <literal string> 12 I <X li&t> I 

<string specification> I 

<integer specification> I 

<fixed specification> I 

<floating specification> 

: : "" <X part> I <X list> <X part> 

: := [<replicator>] X 

: : .. <integer> 13 

: := [<X list>] <A part> I <string specification> <A part> I 

<string specification> <X list> 

: : = [<replicator>] A 

: := [S] <num spec> 14 

: := [<X list>] <D part> I <num spec> <D part> I 

<num spec> <X list> 

: : "" [<replicator>] D 

: :"" [S] <num spec>. [<num spec>] 114 

[S] . <num spec> 

: : "" <integer specification> E [<X list>] I 

<fixed specification> E [<X list>] 

: : = <using expression> I 

<using list> , <using expression> 

: := <numeric expression> I <string variable> I 

<print function> 



<IMAGE statement> 

<REM statement> 

<DIM statement> 

<dimspec> 

<bound> 

<COM statement> 

<com list element> 

<DEF statement> 

<FILES statement> 

<file name designator> 

<name> 

<account id> 

<ASSIGN statement> 

<file name> 

<file number> 

<protection mask> 

<restriction> 

<CHAIN statement> 

<program name> 

<CONVERT statement> 

Formal Syntax for 2000/ Access Basic 

: := IMAGE <format string> 

: := REM [<character string>] 

: := DIM <dimspec> I <DIM statement> ,<dimspec> 

: := <array id> «bound> [, <bound>] ) 

<string simple variable> «bound» 17 

: := <integer> 15 

: := COM <com list element> I 

<COM statement> , <com list element> 

: := <dimspec> I <numeric simple variable> I 

<string simple variable> 

: := DEF <function id> «parameter» = 

<numeric expression> 

: := FILES <file name designator> 110 

<FILES statement> , <file name designator> 

: := [$1*] <name> L. <account id> ] I * 

: := A string of 1 to 6 letters and/or digits 

: := <letter> <digit> <digit> <digit> 

: : = ASSIGN <file name> , <file number> , 

<return variable> [, <protection mask>] 

[, <restriction>] I 

ASSIGN * , <file number> [, <return variable>] 

: : = <source string> 

: := <numeric expression> 

: : = <source string> 

: := RRINRIWR 

: := CHAIN [<return variable>,] <program name> 

[,<numeric expression>] 

: : = <source string> 

: := CONVERT <numeric expression> TO <string variable> I 

CONVERT <source string> TO <numeric variable> 

[, <statement number>] 

F-7 



Formal Syntax for 2000/ Access Basic 

<MAT statement> 

<MAT READ statement> 

<actual array> 

<dimensions> 

<MAT INPUT statement> 

<MAT PRINT statement> 

<mat type statement> 

<mat print list> 

<mat print expression> 

<mat file write statement> 

<MAT PRINT USING statement> 

<MAT initialization statement> 

<initialization function> 

<MAT assignment statement> 

<CREATE statement> 

<file length> 

F-8 

: := <MAT READ statement> 1 <MAT INPUT statement> 1 

<MAT PRINT statement> 1 

<MAT PRINT USING statement> 1 

<MAT initialization statement> 1 

<MAT assignment statement> 

: := MAT READ [<file reference>;] <actual array> 1 

<MAT READ statement> ,<actual array> 

: := <array id> [<dimensions>] 

: := «numeric expression> [, <numeric expression>]) 

: : = MAT INPUT <actual array> 1 

<MAT INPUT statement> ,<actual array> 

: := <mat type statement> 1 <mat file write statement> 

: := MAT PRINT <mat print list> [, 1 ;] 

: := <mat print expression> 1 

<mat print list> ,<mat print expression> 1 

<mat print list> ; <mat print expression> 

: : = <array id> 1 <print function> 

: : = MAT PRINT <file reference> ; <mat print list> 

[ , [END] 1 ; [END] ] 1 

MAT PRINT <file reference> ; END 

: := MAT PRINT USING <format part> [; <mat print list>] 

: := MAT <array id> = <initialization function> 

[<dimensions> ] 

: := ZERICONIIDN 

: := MAT <array id> [ <signop> <array id> ] 1 

MAT <array id> = <array id> * <array id> 1
16 

MAT <array id> = TRN «array id» 1 16 

MAT <array id> = INV «array id» 1 

MAT <array id> = «numeric expression» * <array id> 

: := CREATE <return variable>, <file name>, 

<file length> [, <record size>] 

: : = <numeric expression> 



Formal Syntax for 20001 Access Basic 

<record size> 

<PURGE statement> 

<ADV ANCE statement> 

<skip count> 

<UPDATE statement> 

<LOCK statement> 

<UNLOCK statement> 

<SYSTEM statement> 

NOTES: 

: : = <numeric expression> 

: : = PURGE <return variable> , <file name> 

: := ADVANCE <file expression> ; <skip count> , 

<return variable> 

: : = <numeric expression> 

: := UPDATE <file expression> ; <numeric expression> I 

UPDATE <file expression> ; <source string> 

: := LOCK <file expression> [, <return variable>] 

: : = UNLOCK <file expression> [, <return variable>] 

: : = SYSTEM <return variable> , <source string> I 9 

SYSTEM <string variable> , <source string> 

1. The following ASCII characters are stripped by the system from terminal input and therefore cannot 
be entered directly: null, control-H, line-feed, carriage-return, X-OFF, control-X, and rubout. 

2. Exponent integers are limited to exactly one or two digits. 

3. The value of an integer used to supply a character within a literal string must lie between 0 and 255 
inclusive. 

4. The double quote character (") cannot appear within a quoted string. 

5. A parameter primary can appear only in the defining expression of a DEF statement. 

6. The last statement of a program must be an END statement. 

7. A sequence number must lie between 1 and 9999 inclusive. 

8. Print expressions which are literal strings need not be separated from preceding or follOWing print 
expressions by semicolons or commas. 

9. The CTL function and SYSTEM statement are requests for operating system services rather than a 
part of the BASIC language proper. They are included here as a convenient reference for their syntax. 
Users are explicitly cautioned that these constructs are not portable to any other Hewlett-Packard 
implementation of the BASIC language. 

10. Any character string is accepted by the language grammar for a format string or a list of file names. 
The syntax of the string is checked when it is used during execution. 

11. Groups in format lists can be nested only two levels deep. 

F-9 



Formal Syntax for 2000/ Access Basic 

12. In order to embed a literal string as a format list element into the quoted form of a format string 
(which itself is a literal string within the language grammar), the delimiting double quote characters of 
the literal string must be represented by means of the apostrophe convention (Le., '34). The apos­
trophe convention is not needed or recognized when the format string occurs within an IMAGE state­
ment or as the contents of a string variable. In no case can a double quote appear as a character 
within a literal string embedded in the format string referenced by a PRINT USING statement. 

13. A replicator must lie between 1 and 255 inclusive. 

14. An S can appear before, after, or between any two parts of a num spec except immediately following 
a replicator. Only one S can appear within one integer specification, fixed specification, or floating 
specification. 

15. An array bound must lie between 1 and 9999 inclusive; a string variable bound must lie between 
1 and 255 inclusive. 

16. An array cannot be transposed into itself nor can it be both an operand and the result of a matrix 
mul ti plication. 

17. Parentheses, ( ), and square brackets, [ ], are accepted interchangeably by the BASIC language. 

18. A circumflex ("J may replace the up arrow (t) on some terminals. 

F-I0 



*ODTFILE=NAME*, 10-6 
ABS function, definition of, 11-16 
account and library system, 1-5 
Account, group master, 1-5 
Account, individual, 1-5 
Account, system master, 1-5 
ADV ANCE statement, definition of, 11-16 
APPEND command, definition of, 10-9 
APPEND command, using the, 2-21 
array addition, 3-10 
array element, 11-2 
array elements, referencing, 3-1 
array inversion, 3-15 
array multiplication, 3-12 
array name, 11-2 
array operations, 3-10 
array printing, 3-8 
array scalar multiplication, 3-17 
array subtraction, 3-10 
array transposition, 3-16 
array, definition of, 11-1 
arrays, dimensioning, 3-2 
arrays, initializing, 3-6 
arrays, placing values in, 3-3 
arrays, redimensioning, 3-2 
arrays, referencing, 3-1 
arrays, use of, 3-1 
ASCII character set, A-2 
ASCII file, 10-2 
ASCII file characteristics, 5-15 
ASCII file print operations, 11-68 
ASCII file, definition of, 10-2 
ASCII files, creating, 5-16 
ASCII files, opening, 5-17 
ASCII files, printing to, 5-17 
ASCII files, purging, 5-16 
ASCII files, reading from, 5-18 
ASCII files, using, 5-15 
ASP, &IE to, 9.,3 
ASSIGN statement, definition of, 11-17 
assignment statement, definition of, 11-46 
assignment statement, definition of MAT, 11-51 
assignment statement, use of, 2-7 
ATN function, definition of, 11-20 

BASIC formatted files, closing, 5-4 
BASIC formatted file, 10-2 
BASIC formatted file print operations, 11-66 
BASIC formatted file, definition of, 10-2 
BASIC formatted files, creating, 5-2 
BASIC formatted files, opening, 5-4 
BASIC formatted files, purging, 5-2 
BASIC formatted files, using, 5-1 
BASIC Language, 1-1 

block, 10-2 
BRK function, definition of, 11-20 
BYE command, definition of, 10-9 

carriage control, 6-4 
CATALOG command, definition of, 10-10 
CATALOG command, using the, 2-25 
CDC, &IE to, 9-3 
CHAIN statement, definition of, 11-22 
character set, IBM 2741, D-3 
character speed, 1-6 
character, definition of, 11-3 
characters, lower case, 4-2 
characters, upper case, 4-2 
characters, prompt, 1-9 
characters, special, 1-9 
CHR$ function, definition of, 11-24 
COM statement, definition of, 11-25 
commands, definition of, 10-1 
commands, program execution of, 7-3 
commands, system operator, E-l 
commands, using, 2-17 
CON function, definition of, 11-25 
connecting to the system, 1-6 
constant, definition of, 11-3 
constant, numeric, 11-8 
constants, 2-2 
CONVERT statement, definition of, 11-26 
COS function, definition of, 11-26 
CREATE command, definition of, 10-12 
CREATE statement, definition of, 11-27 
CSAVE command, definition of, 10-12 
eSA VE command, using the, 2-20 
CTL function, definition of, 11-28 

DATA statement, definition of, 11-30 
DATA statement, use of, 2-11 
DEF statement, definition of, 11-31 
DEF statement, use of, 2-17 
DELETE command, definition of, 10-12 
DELETE command, using the, 2-19 
delimiters, 6-6 
designator, substring, 11-15 
destination string, 11-3 
DEVICE command, definition of, 10-13 
device designator, 10-3 
device designator, general, 10-4 
device,non-sharable, 10-5 
DIM statement, definition of, 11-32 
dimensioning arrays, 3-2 

INDEX 

I-I 



dimensioning strings, 4-3 
dimensions, new, 11-7 
DUPLEX/HALF DUPLEX switch, 1-6 

EBCDIC character set, A-3 
ECHO command, definition of, 10-14 
element, array, 11-2 
END statement, definition of, 11-32 
END statement, use of, 2-8 
end-of-file mark (EOF), 10-3 
end-of-record mark, 5-3 
ENTER statement, definition of, 11-33 
ENTER statement, use of, 2-15 
EOF, 10-3 
EOR,5-3 
equipment, operating the, 1-6 
Errors during logging on, 1-8 
errors, command, C-1 
errors, execution, C-6 
errors, language, C-5 
EXECUTE command, definition of, 10-14 
EXECUTE command, using the, 2-23 
executing programs, 2-22 
EXP function, definition of, 11-34 
expression, numeric, 11-8 
expression, string, 11-14 
expressions, 2-2 
expressions, evaluation of, 2-5 
expressions, printing, 2-9 

FILE command, definition of, 10-15 
file length, 10-3 
file name, 10-4 
file name, definition of, 11-5 
file number, definition of, 11-5 
file prints, ASCII, 11-68 
file prints, BASIC formatted, 11-66 
File supervisor, 1-3 
FILES statement, definition of, 11-34 
files, closing BASIC formatted, 5-4 
files, creating ASCII, 5-16 
files, creating BASIC formatted, 5-2 
files, multiple write access, 5-12 
files, opening ASCII, 5-17 
files, opening BASIC formatted, 5-4 
files, printing to ASCII, 5-17 
files, purging ASCII, 5-16 
files, purging BASIC formatted, 5-2 
files, reading from ASCII, 5-18 
FOR statement, definition of, 11-36 
FOR statement, use of, 2-13 
format string, 6-2 
formatted output, 6-1 
formatted output, indicating, 6-1 
formatted output, using, 6-4 

1-2 

full duplex, 10-4 
function, 2-4 
function reference, 11-5 
functions, print, 2-10 
functions, string valued, 4-6 

general device designator, 10-4 
GET command, definition of, 10-16 
GET command, using the, 2-21 
GO TO statement, definition of, 11-40 
GO TO statement, use of, 2-7 
GOSUB statement, definition of, 11-38 
GOSUB statement, use of, 2-16 
GROUP command, definition of, 10-10 
GROUP command, using the, 2-25 
Group library, 10-4 
Group master account, 1-5 

half duplex, 10-4 
hardware, 1-1 
HASP, RJE to, 9-3 
HELLO command, definition of, 10-17 
HELLO command,use of, 1-6 
host systems, RJE, 9-1 

IBM 2741 terminal, D-1 
idcode, 10-5 
IF END statement, definition of, 11-42 
IF statement, use of, 2-8 
IF ... THEN statement, definition of, 11-41 
IMAGE statement, definition of, 11-42 
Individual Accounts, 1-5 
initializing arrays, 3-6 
INPUT statement, definition of, 11-43 
INPUT statement, use of, 2-14 
Input/output devices, 1-3 
INT function, definition of, 11-44 
INV function, definition of, 11-44 
ITM function, definition of, 11-45 

Job function designator, 10-5 

KEY command, definition of, 10-18 
KEY command, using the, 2-22 



LEN function, definition of, 11-45 
LENGTH command, definition of, 10-18 
LENGTH command, using the, 2-25 
length, logical, 11-11-6 
length, string, 11-14 
length, file, 10-3 
length, record, 10-7 
LET statement, definition of, 11-46 
library, 10-5 
LIBRARY command, definition of, 10-10 
LIBRARY command, using the, 2-25 
library name, 10-5 
Library system, 1-5 
library, your, 2-1 
LIN function, definition of, 11-47 
LINE/LOCAL switch, 1-6 
linking programs, 7-2 
LINPUT statement, definition of, 11-48 
LINPUT# statement, definition of, 11-48 
LIST command, definition of, 10-19 
LIST command, using the, 2-23 
literal string, 11-6 
literal strings in output, 6-6 
literal strings, printing, 2-10 
LOCK command, definition of, 10-20 
LOCK statement, definition of, 11-49 
LOG function, definition of, 11-50 
Logging off, 1-6 
Logging on, 1-6 
Logging on, errors during, 1-8 
logical length, 11-6 
logical size, 11-7 
logical values, 2-2 

MAT addition, definition of, 11-50 
MAT assignment statement, definition of, 11-51 
MAT INPUT statement, definition of, 11-52 
MAT multiplication statement, definition of, 11-53 
MAT PRINT statement, definition of, 11-54 
MAT PRINT USING statement, definition of, 11-57 
MAT PRINT# statement, definition of, 11-56 
MAT READ statement, definition of, 11-58 
MAT READ# statement, definition of, 11-58 
MAT scalar multiplication, definition of, 11-59 
MAT subtraction, definition of, 11-50 
MAT ... CON statement, definition of, 11-51 
MAT .. .IDN statement, definition of, 11-51 
MAT .. .INV statement, definition of, 11-52 
MAT ... TRN statement, definition of, 11-59 
MAT ... ZER statement, definition of, 11-60 
MESSAGE command, definition of, 10-20 
MWA command, definition of, 10-21 

NAME command, definition of, 10-21 
NAME command, using the, 2-18 

name, array, 11-2 
name, definition of program, 11-12 
name, file, 10-4 
name, library, 10-5 
name, program, 10-6 
new dimensions, 11-7 
NEXT statement, definition of, 11-36 
NEXT statement, use of, 2-13 
non-sharable device, 10-5 
NUM function, definition of, 11-61 
number, 11-7 
number representation in output, 6-4 
number, record, 11-12 
number, statement, 11-14 
numbers, 2-2 
numeric constant, 11-8 
numeric equivalents, string character, 4-2 
numeric expression, 11-8 
numeric simple variable, 11-11 
numeric variable, 11-11 

operands, 2-2 
operating system software, 1-1 
operating the equipment, 1-6 
operations, array, 3-10 
operator, 2-4 
operator, relational, 11-12 
outputting strings, 4-10 

paper tape preparation, B-1 
parameter passing, 7-2 
physical size, 11-11 
POS function, definition of, 11-61 
primary, 11-12 
print functions, 2-10 
print functions, using, 6-7 
PRINT statement, definition of, 11-62 
PRINT statement, use of, 2-9 
PRINT USING statement, definition of, 11-71 
PRINT# statement, definition of, 11-66 
printing arrays, 3-8 
printing expressions, 2-9 
printing literal strings, 2-10 
PRIV ATE command, definition of, 10-22 
program linking, 7-2 
program name, 10-6 
program name, definition of, 11-12 
program reference, 10-6 
programming, 2-6 
programs, executing, 2-22 
programs, reproducing, 2-22 
Prompt characters, 1-9 
PROTECT command, definition of, 10-22 
PUNCH command, definition of, 10-23 
PUNCH command, using the, 2-24 

1-3 



PURGE command, definition of, 10-24 
PURGE command, using the, 2-20 
PURGE statement, definition of, 11-76 

READ statement, definition of, 11-77 
READ statement, use of, 2-11 
READ# statement, definition of, 11-78 
read/write restrictions, 5-14 
REC function, definition of, 11-81 
record, 10-6 
record number, 11-12 
redimensioning arrays, 3-2 
referencing array elements, 3-1 
referencing arrays, 3-1 
relational operator, 11-12 
REM statement, definition of, 11-81 
REM statement, use of, 2-15 
Remote Job Entry (RJE), 1-3 
remote job entry (RJE), definition of, 9-1 
remote job entry host systems, 9-1 
RENUMBER command, definition of, 10-25 
RENUMBER command, using the, 2-18 
report generation, 6-9 
reproducing programs, 2-22 
RESTORE statement, definition of, 11-82 
RESTORE statement, use of, 2-11 
RETURN statement, definition of, 11-38 
RETURN statement, use of, 2-16 
return variable, 11-13 
RND function, definition of, 11-83 
RUN command, definition of, 10-26 
RUN command, using the, 2-23 

SAVE command, definition of, 10-27 
SAVE command, using the, 2-19 
SCRATCH command, definition of, 10-27 
SCRATCH command, using the, 2-19 
securi ty, 1-3 
security, account and library, 8-1 
SGN function, definition of, 11-84 
simple string variable, 11-14 
SIN function, definition of, 11-84 
size, logical, 11-7 
size, physical, 11-11 
source string, 11-13 
SPA function, definition of, 11-85 
Speed,terminal, 1-6 
SQR function, definition of, 11-85 
statement number, 11-14 
STOP statement, definition of, 11-85 
STOP statement, use of, 2-8 
string character numeric equivalents, 4-2 
string character set, 4-1 

1-4 

string characters, list of, A-2 
string' expression, 11-14 
string length, 11-14 
string representation, in output, 6-7 
string value, 11-15 
string valued functions, 4-6 
string variable, 11-15 
string, definition of, 11-14 
string, source, 11-13 
strings, assigning values to, 4-5 
strings, dimensioning, 4-3 
strings, naming, 4-3 
strings, outputting, 4-10 
strings, referencing, 4-3 
strings, using, 4-1 
subscripted variable, 11-15 
substring designator, 11-15 
substrings, using, 4-4 
SWA command, definition of, 10-28 
switch, DUPLEXIHALF DUPLEX, 1-6 
switch, LINEILOCAL, 1-6 
syntax, formal, F-l 
system facilities, 7-1 
System hardware, 1-1 
System Master account, 1-5 
system operator commands, E-l 
system resources, 1-3 
SYSTEM statement, definition of, 11-86 

TAB function, definition of, 11-87 
TAN function, definition of, 11-87 
TAPE command, definition of, 10-28 
TAPE command, using the, 2-22 
terminal speed, 1-6 
terminal time, 1-3 
terminal type, 1-8 
terms, BASIC language, 11-1 
terms, command, 10-1 
TIM function, definition of, 11-88 
TIME command, definition of, 10-29 
time, terminal, 1-3 
TRN function, definition of, 11-88 
TYP function, definition of, 11-89 

UNLOCK statement, definition of, 11-90 
UNRESTRICT command, definition of, 10-29 
UPDATE statement, definition of, 11-91 
UPS$ function, definition of, 11-92 
USER 200, RJE to, 9-3 
User account (see individual), 1-5 
using list, definition of, 6-1 
using the system, 1-5 



value, string, 11-15 
values, logical, 2-2 
variable numeric, 11-11 
variable, numeric, 11-11 
variable, return, 11-13 
variable, simple numeric, 11-11 
variable, simple string, 11-14 
variable, string, 11-15 
variable, subscripted, 11-15 
variables, 2-3 

warnings, execution, C-7 
work space, 2-1 
write restrictions, 5-14 

ZER function, definition of, 11-92 

1-5 





READER COMMENT SHEET 

22687-90001 SEP 1975 

HP 2000/Access BASIC 
Reference Manual 

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications. 
Please use additional pages if necessary. 

Is this manual technically accurate? 

Is this manual complete? 

Is this manual easy to read and use? 

Other comments? 

FROM: 

Name 

Company 

Address 



FOLD 

FOLD 

BUSINESS REPLY MAIL 

No Postage Necessary if Mailed In the United States Postage will be paid by 

Manager Customer Engineering 
Hewlett-Packard Company 
Data Systems Division 
11000 Wolfe Road 
Cupertino, California 95014 

FIRST CLASS 
PERMIT NO.141 

CUPERTINO 
CALIFORNIA 

FOLD 

FOLD 



HEWLETT bnf PACKARD 

Sales and service from 172 offices in 65 countries. 
11000 Wolfe Road, Cupertino. CaliluflHa 95014 Printed in U.S.A. 9/75 

PART NO. 22687·90001 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	11-63
	11-64
	11-65
	11-66
	11-67
	11-68
	11-69
	11-70
	11-71
	11-72
	11-73
	11-74
	11-75
	11-76
	11-77
	11-78
	11-79
	11-80
	11-81
	11-82
	11-83
	11-84
	11-85
	11-86
	11-87
	11-88
	11-89
	11-90
	11-91
	11-92
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	D-1
	D-2
	D-3
	D-4
	E-1
	E-2
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB
	xBack

