HP 3000

MULTIPROGRAMMING
EXECUTIVE

OPERATING SYSTEM

HEWLETT fhﬁ', PACKARD

0000000000000000000

HP 3000

MULTIPROGRAMMING
EXECUTIVE
OPERATING SYSTEM

HP MANUAL PART NO. 03000-90005
MICROFICHE PART NO. 03000-90088 September 1973

© Copyright, 1973, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California, 95014.
All rights reserved. Printed in the U.S.A.

List of Effective Pages

Pages

Title .
Copyright.
iii to xvii .,

Part 1 Divider .

1-1 to 1-10 .
2-1 to 2-28

Part 2 Divider .

3-1to 3-26 .
4-1 to 4-27 .
5-1to 5-53 .
6-1 to 6-52 .
7-1to 7-30 .
8-1 to 8-73 .
9-1 to 9-11

10-1 to 10-33 .
Part 3 Divider .

11-1 to 11-28
12-1 to 12-7
13-1 to 13-2
14-1 to 14-9

Part 4 Divider .

A-1to A-5
B-1 to B-6
C-1to C-83 .
D-1 to D-2
E-1 to E-2
F-1 to F-2
G-1 .

Effective Date

Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973
Sep. 1973

Printing History

First Edition Nov. 1972
Second Edition Sep. 1973

Preface

This manual explains how to compile and execute programs, manipulate files, request utility
functions, and perform other standard programming operations under the Multiprogramming
Executive Operating System (MPE/3000, Release B) for the HP 3000 Computer. In addition, it
shows how to use the various optional capabilities of the system. Subjects are arranged in
functional order, beginning with the simplest, most commonly-used operations and proceeding
toward more difficult, sophisticated functions. Once the user has familiarized himself with this
book, he can use the extensive index in the back to quickly and easily find any information

he needs.

This manual is a reference book rather than a tutorial text for new programmers. The reader should
understand the fundamental techniques of programming and the operating principles of the HP
3000 Computer. He should also examine the following manual for an overview of the inter-
relationships between the main hardware and software features offered:

Title Part No.

HP 3000 Software General Information Manual 03000-90001

The user may also want to read the following manuals for additional information, depending upon
the applications he plans:

Title Part No.
HP 3000 Systems Programming Language 03000-90002
HP 3000 Systems Programming Language Textbook 03000-90003
HP 3000 Multiprogramming Executive Console 03000-90006
Operator’s Guide
HP 3000 Multiprogramming Executive System 03000-90038

Manager/Supervisor Capabilities

iii

Guide for Readers

The following guide shows the sections of the manual that should be read to perform particular tasks:

To: Read Section: Prerequisite Sections:
Initiate and terminate batch jobs or 11 None
interactive sessions.
Compile, prepare, and execute programs. v I1I
Call MPE/3000 subsystems. v II1
Create and manage files through MPE/3000 A% I, Iv
commands.
Read, write, and update files. VI I, IV
Manipulate files and obtain file-access and VI I, IV
error information.
Alter user subprogram libraries. VII L, v
Maintain external library procedures. Vil I, v
List system information. VIII 111
Request binary/ASCII code conversion. VIII I
Return system information to the user’s VIII 11
program.
Enable or disable traps. VIII I1I
Manage interprocess communication through VIII II1
the job control word.
Reserve and allocate user resources. X I1I

To: Read Section: Prerequisite Sections:

Diagnose errors. X None

Handle processes. (Optional Capability.) XI I, III, IV
Manage Data Segments. (Optional Capability.) XII II, 111, IV
Manage multiple RIN’s. (Optional Capability.) XIII II, IIL, IV, IX
Execute programs in privileged mode. X1V II, IT1, IV

(Optional Capability.)

vi

Preface
Guide for Readers

PART 1 System Overview

SECTION 1 Introduction to MPE/3000
FEATURES
Multiprogramming
General-Purpose Versatility
Choice of Programming Languages
Operating Simplicity
Input/Output Conveniences
Processing Efficiency
Accounting Facility
Logging Facility
System-to-System Compatibility
Program and File Security
System Manager and System Supervisor Capabilities
SOFTWARE
HARDWARE

SECTION II How MPE/3000 Operates
MPE/3000 RESIDENCE
PROCESSES
PROCEDURES
SYSTEM LIBRARY

vii

CONTENTS

iii

1-6

USER INTERFACE
Commands
Intrinsic Calls
INPUT/OUTPUT
File Management
Scheduling
COMPILATION
PROGRAM PREPARATION
ALLOCATION/EXECUTION
PCB/CODE SEGMENT/STACK INTERACTION
MEMORY MANAGEMENT
Main-Memory Linkages
Main-Memory Use
USER JOB PROCESSING
Batch Programs (Jobs)
Interactive Programs (Sessions)
ACCOUNT/GROUP/USER ORGANIZATION
CAPABILITY SETS
User Attributes
File Access Attributes
Capability-Class Attributes
Local Attributes
Program Capability Sets

PART 2 Standard Capabilities

SECTION.III Communicating with MPE/3000
COMMANDS
Positional Parameters
Keyword Parameters
Continuation Characters
Command Description Format
Command Errors
INTRINSIC CALLS
Intrinsic Description Format

Intrinsic Call Errors

viii

2-6

2-6

2-8

2-8

2-9

2-9
2-11
2-13
2-13
2-14
2-19
2-19
2-20
2-20
2-20
2-22
2-23
2-24
2-26
2-27
2-27
2-28
2-28

3-9

BATCH JOBS
Initiating Batch Jobs
Terminating Batch Jobs
Typical Job Structures
INTERACTIVE SESSIONS
Initiating Sessions
Interrupting Program Execution Within Sessions
Terminating Sessions
Typical Session Structure
READING DATA FROM OUTSIDE STANDARD INPUT STREAM
PREMATURE JOB OR SESSION TERMINATION

SECTION IV Compiling, Interpreting, Preparing, and Executing Programs
REFERENCING FILES
Specifying Files as Command Parameters
Specifying Files by Default
USING THE BASIC/3000 INTERPRETER
COMPILING/PREPARING/EXECUTING PROGRAMS
Compilation Only
Compilation/Preparation
Compilation/Preparation/Execution
Preparation Only
Preparation/Execution
Execution
CALLING MPE/3000 SUBSYSTEMS
EDIT/3000
STAR/3000
SORT/3000
SDM/3000
MPE/3000 Segmenter
SAMPLE PROGRAMS

SECTION V Managing Files
FILE CHARACTERISTICS
FILE/DEVICE RELATIONSHIPS
FILE DOMAINS
FILE LABELS

ix

3-10
3-10
3-15
3-15
3-18
3-18
3-21
3-22
3-23
3-24
3-25

5-1
5-1
5-3
5-3
5-4

FILE ACCESSING
System-Defined Files
User Pre-Defined Files
New Files
Old Files
Filereference Formats
Lockwords
File System Accounting
Input/Output Sets
SPECIFYING FILE CHARACTERISTICS
Command Parameters
Accessing Files Already in Use
Re-Specifying File Names
Passing Files
Issuing Detailed File Specifications
Implicit File Commands
Command File Parameters
RESETTING A FORMAL FILE DESIGNATOR
CREATING A NEW FILE
SAVING A FILE
DELETING A FILE
LISTING FILE SETS
DUMPING FILES OFF-LINE
RETRIEVING DUMPED FILES
RENAMING A FILE
SPECIFYING FILE SECURITY
Account-Level Security
Group-Level Security
File-Level Security
Changing File-Level Provisions
Suspending Security Provisions
LOCKING FILES
FILE MANAGEMENT COMMAND FILE-TYPE SUMMARY

5-4

SECTION VI Accessing and Altering Files 6-1

OPENING FILES 6-3
Files On Non-Sharable Devices 6-4
Record Formats 6-5
Foptions Parameter 6-9
Aoptions Parameter 6-13

CLOSING FILES 6-18

READING SEQUENTIAL FILES 6-20

READING DIRECT-ACCESS FILES 6-22

OPTIMIZING DIRECT-ACCESS FILE-READING 6-24

WRITING ON SEQUENTIAL FILES 6-25

WRITING ON DIRECT-ACCESS FILES 6-29

READING LABELS 6-31

WRITING LABELS 6-32

UPDATING FILES 6-33

SPACING ON SEQUENTIAL FILES 6-34

RESETTING LOGICAL RECORD POINTER 6-35

OBTAINING FILE ACCESS INFORMATION 6-36

OBTAINING FILE-ERROR INFORMATION 6-40

DIRECTING FILE CONTROL OPERATIONS 6-44

DECLARING ACCESS-MODE OPTIONS 6-47

LOCKING AND UNLOCKING FILES 6-49

RENAMING A FILE 6-49

DETERMINING INTERACTIVE AND DUPLICATIVE FILE PAIRS 6-50

FILE INTRINSIC FILE-TYPE SUMMARY 6-52

SECTION VII Managing Program Libraries 7-1

MANAGING USER SUBPROGRAM LIBRARIES (USL’) 7-1
Creating New USL’s 7-3
Designating USL’s For Management By The User 7-3
Activating Entry Points 7-5
Deactivating Entry points 7-6
Deleting RBM’s -7
Assigning New Segment Names to RBM’s 7-8
Transferring RBM’s 7-9
Listing RBM’s 7-10

Preparing Program Files 7-12

xi

USING EXTERNAL PROCEDURE LIBRARIES
Relocatable Libraries
Segmented Libraries
CREATING AND MAINTAINING RELOCATABLE LIBRARIES (RL’)
Creating a Relocatable Procedure Library (RL) File
Designating RL’s for Management by the User
Adding a Procedure to an RL
Deleting an Entry-Point or Procedure from an RL
Listing Procedures in an RL
Examples of Relocatable Library Management Commands
CREATING AND MAINTAINING SEGMENTED LIBRARIES (SL’s)
Creating a Segmented Procedure Library (SL) File
Designating SL’s for Management by the User
Adding a Procedure to an SL
Deleting an Entry-Point or Segment From an SL
Listing Procedures in an SL
SETTING RBM INTERNAL FLAGS
DYNAMIC LOADING OF LIBRARY PROCEDURES
Dynamic Loading

Dynamic Unloading

SECTION VIII Requesting Utility Operations

LISTING DATE, TIME, AND ACCOUNTING INFORMATION
Date and Time
Accounting Charges

DETERMINING JOB STATUS

TRANSMITTING MESSAGES

REQUESTING ASCII/BINARY NUMBER CONVERSION
Converting Numbers from ASCII to Binary Code
Converting Numbers from Binary to ASCII Code

TRANSMITTING PROGRAM INPUT/OUTPUT (FROM JOB/SESSION
INPUT/LIST DEVICES)

Reading Input
Writing Output to the Listing Device
Writing Output to the Operator’s Console

. xii

7-15
7-15
7-16
7-18
7-18
7-19
7-19
7-19
7-20
7-22
7-23
7-23
7-23
7-24
7-24
7-24
1-27
7-27
7-28
7-29

8-1
8-1
8-2
8-2
8-2
8-5
8-6
8-7
8-8

8-10
8-10
8-12
8-13

OBTAINING SYSTEM TIMER INFORMATION
System Timer Bit Count
Current Time

OBTAINING PROCESS RUN-TIME (USE OF THE CENTRAL
PROCESSOR)

DETERMINING THE USER’S ACCESS MODE AND ATTRIBUTES
SEARCHING ARRAYS
FORMATTING COMMAND PARAMETERS
EXECUTING MPE/3000 COMMANDS PROGRAMMATICALLY
ENABLING AND DISABLING TRAPS
Arithmetic Trap
Library Trap
System Trap
CONTROL-Y Traps
Trap Procedure Execution
CHANGING STACK SIZES
Changing the DL/DB Area Size
Changing the Z-DB Area Size
REQUESTING A PROCESS BREAK
TERMINATING A PROCESS
Termination

Abort

SETTING BREAKPOINTS AND DISPLAYING/MODIFYING STACK

OR REGISTER DATA
Invoking DEBUG
DEBUG Command Format
Setting Breakpoints
Clearing Breakpoints
Resuming Program Execution
Displaying Register Contents
Displaying Stack Contents
Modifying Register Contents
Modifying Stack Contents
Requesting Trace of Stack Markers
INTERPROCESS COMMUNICATION
VERIFYING DIAGNOSTIC DEVICE ASSIGNMENT

xiii

8-13
8-13
8-14

8-14
8-15
8-18
8-21
8-24
8-26
8-26
8-29
8-30
8-31
8-32
8-39
8-39
8-40
8-41
8-42
8-42
8-42

8-43
8-43
8-44
8-45
8-46
8-46
8-47
8-47
8-49
8-49
8-61
8-51
8-53

INTRINSICS FOR COMPILER WRITERS 8-54

Initializing Buffers for USL Files 8-54
Changing the Directory Block/Information Block Size on a
USL File 8-55
Changing the Size of USL File 8-55
USL File Intrinsic Error Numbers 8-56
CHANGING TERMINAL CHARACTERISTICS 8-57
Types of Terminals 8-57
IBM 2741 Communication Terminal Interface 8-60
Changing Terminal Speed ‘ 8-60
Changing Input Echo Facility 8-63
Enabling and Disabling System Break Function 8-64
Enabling and Disabling Subsystem Break Function 8-66
Enabling and Disabling Parity-Checking 8-67
Enabling and Disabling Tape-Mode Option 8-68
Reading Paper Tapes Without X-OFF Control 8-69
Enabling and Disabling the Terminal Input Timer 8-70
Reading the Terminal Input Timer 8-71
Defining Line-Termination Characters For Terminal Input 8-72
SECTION IX Resource Management 9-1
INTERJOB LEVEL 9-2
Acquiring Global RIN’s 9-2
Locking and Unlocking Global RIN’s 9-2
Freeing Global RIN’s 9-6
INTER-PROCESS LEVEL , 9-6
Acquiring Local RIN’s 9-7
Locking and Unlocking Local RIN’s 9-7
Freeing Local RIN’s 9-9
LOCKING AND UNLOCKING FILES 9-9
SECTION X MPE/3000 Messages 10-1
COMMAND INTERPRETER ERROR MESSAGES 10-2

COMMAND INTERPRETER WARNING MESSAGES 10-14

xiv

RUN-TIME MESSAGES 10-16

Type 1 Error Messages 10-16
Type 2 Error Messages 10-18
Type 3 Error Messages 10-19
Type 4 Error Messages 10-19
USER MESSAGES 10-29
OPERATOR MESSAGES 10-29
SYSTEM MESSAGES 10-30
FILE INFORMATION DISPLAY 10-31

PART 3 Optional Capabilities

SECTION XI Process-handling Optional Capability 111
PROCESS LIFE-CYCLE 111
PROCESS-HANDLING 11-7

Creating Processes 11-7
Activating Processes 11-11
Suspending Processes 11-12
Deleting Processes 11-13
Interprocess Communication 11-15
Testing Mailbox Status 11-16
Sending Mail 11-17
Receiving (Collecting) Mail 11-19
Avoiding Deadlocks 11-21
Rescheduling Processes 11-21
Determining Source of Activation 11-24
Determining Father Process 11-24
Determining Son Process 11-25
Determining Process Priority and State 11-26

SECTION XII Data-segment Management Optional Capability 12-1
CREATING AN EXTRA DATA SEGMENT 12-1
DELETING AN EXTRA DATA SEGMENT 12-3
TRANSFERRING DATA FROM AN EXTRA DATA SEGMENT
TO STACK 124
TRANSFERRING DATA FROM STACK TO EXTRA DATA
SEGMENT 12-5

CHANGING SIZE OF DATA SEGMENT 12-7

XV

SECTION XIII Multiple Resource Identification Number Optional
Capability

SECTION XIV Privileged Mode Optional Capability
PERMANENTLY PRIVILEGED PROGRAMS
TEMPORARILY PRIVILEGED PROGRAMS
ENTERING PRIVILEGED MODE
ENTERING NON-PRIVILEGED MODE
MOVING THE DB-POINTER
OTHER DATA-SEGMENT INTRINSICS
SCHEDULING PROCESSES

PART 4 Appendices
APPENDIX A ASCII Character Set
APPENDIX B Summary of Commands
APPENDIX C Summary of Intrinsic Calls
APPENDIX D Intrinsic Error Numbers
APPENDIX E Disc File Labels
APPENDIX F :STORE Tape Format
APPENDIX G End-of-File Indication

INDEX
INDEX OF COMMANDS
INDEX OF INTRINSICS
FIGURES

Figure 1-1. Small Batch System

Figure 1-2. Small Interactive System

Figure 1-3. Combined Batch and Interactive System »
Figure 1-4. Large Processing System

Figure 2-1. Code-Sharing and Data Privacy

Figure 2-2. Process Organization

Figure 2-3. User/Software/Hardware Interface
Figure 2-4. Scheduling Queues

xvi

13-1

14-1
14-2
14-2
14-3
14-4
14-4
14-6
14-6

A-1
B-1
C-1
D1
E-1
F-1
G-1

1-8
19
1-9

1-10
2.3
2-4

2-10

Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 4-1.
Figure 4-2.
Figure 5-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 8-1.
Figure 8-2.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.

Figure 10-5A.
Figure 10-5B.
Figure 10-5C.
Figure 10-5D.
Figure 10-5E.
Figure 10-5F.
Figure 10-5G.
Figure 10-5H.

Figure 10-6.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 14-1.

Program Management

Code Segment and Associated Registers
Data (Stack) Segment and Associated Registers
Stack Operation

Batch Job History

Account/User/Group Organization
Listing of Prepared Program

Listing of Loaded Program

Actions Resulting From Multi-Access of Files
Foptions Bit Summary

Aoptions Bit Summary
Carriage-Control Directives
Carriage-Control Summary

-LISTUSL Command Output

-LISTRL Command Output

-LISTSL Command Output

ASCII vs 2741 Character Representation
Echo Facility vs Duplex Mode
Command Interpreter Exrror Messages
Command Interpreter Warning Messages
Type 1 Error Messages

Intrinsic Numbers vs Intrinsics

Message Block A

Message Block B

Message Block C

Message Block D

Message Block E

Message Block F

Message Block G

Message Block H

System Messages

Process Life Cycle

Process Components and Tables

Process Linking
Process Deletion
MPE/3000 Master Queue Structure

xvii

2-12
2-14
2-16
2-18
2-21
225
4-16
4-20
5-19
6-12
6-16
6-27
6-28
7-13
7-21
7-26
8-61
8-64
10-3

10-15

10-18

10-21

10-23

10-24

10-26

10-28

10-28

10-28

10-28

10-29

10-30
11-2
11-4
11-6

11-14
14-7

PART 1
System Overview

SECTION /
Introduction to MPE/3000

The Multiprogramming Executive Operating System (MPE/3000) is a general-purpose, disc-based
software system that supervises the processing of user programs submitted to the HP 3000 Computer.
MPE/3000 relieves the user from many program control, input/output, and other housekeeping
responsibilities by monitoring and controlling the input, compilation, run preparation, loading,
execution and output of user programs. MPE/3000 also controls the order in which programs are
executed, and allocates the hardware and software resources they require.

FEATURES

MPE/3000 offers the user many important features; some of these are found elsewhere only
in medium to large-scale computers.

Multiprogramming

Through multiprogramming (interleaved processing), MPE/3000 allows numerous users to
execute many different programs concurrently. The number of programs that can be processed
concurrently depends on such factors as the hardware configuration, program operating modes
(batch or interactive), and applications involved. Each programmer, however, uses the com-
puter as if it were his own private machine — in other words, he need not depend on, nor even
be aware of, others using the machine.

General-Purpose Versatility

MPE/3000 allows users to run batch and interactive programs concurrently.

BATCH PROCESSING. Batch processing lets programmers submit to the computer, as a single
unit, commands that request various MPE/3000 operations such as program compilation and
execution, file manipulation, or utility functions. Such a unit is called a job. Jobs contain all
instructions to MPE/3000 and references to programs and data required for their execution;
once a job is running, no further information is needed from the programmer. (Frequently, new
programs and data are submitted as part of the job.)

11

Jobs are input through batch input devices such as card readers. In fact, several jobs can be
submitted from multiple batch input devices concurrently. MPE/3000 schedules each job
according to its priority. When a job enters execution, the commands within it are sequentially
executed on a multiprogramming basis. MPE/3000 generates the job output on a local device
such as a line printer, tape unit, or disc unit, or on a local or remote terminal. When one job is
temporarily suspended, perhaps to await input of data, another (if available) immediately enters
execution. Thus, when many jobs are active in the system, continuous processing and high
throughput can be maintained.

INTERACTIVE PROCESSING. In interactive processing, the programmer interacts conver-
sationally with the computer, receiving immediate responses to his input. Many users at differ-
ent remote or local terminals can program on-line in this fashion. This type of interaction,
called a session, can be used for program development, information retrieval, computer-
assisted education, and many more applications where the user at a remote terminal must
access the system directly.

MPE/3000 can continue to execute batch jobs at the same time it handles sessions. The

basic difference between a session and a batch job is that a session is interactive, but a job

is not. Thus, during a session, the user maintains a dialogue with the system to control input
and monitor output; in a batch job, however, the command stream is entered into the system
without a user/system dialogue.

Choice of Programming Languages
Under MPE/3000, the user can submit programs written in the following languages:

) FORTRAN/3000
° BASIC/3000
e COBOL/3000
® SPL/3000 (Systems Programming Language)
In addition, MPE/3000 supports subsystems for editing program files, performing statistical

operations, aiding in debugging programs, running on-line diagnostic programs, and various
other applications. ’

Each language translator and subsystem is accessed by a unique MPE/3000 command. The
programmer need learn only one set of conventions for using these programs, because they
all use the same general command formats, special characters, and error-diagnostic methods.
Command coding is based upon the American Standard Code for Information Interchange
(ASCII) Character Set, shown in Appendix A.

Operating Simplicity

MPE/3000 is easy to initialize, operate, monitor, and shut down. Its operation is overseen by
a user with the MPE/3000 system manager capability, who assigns programming capabilities of
various levels to each user. Standard capabilities allow the typical ‘“general applications’

1-2

programmer to interact with the computer through a batch input device or a terminal. If this
programmer is planning only to compile and execute a batch job, or to run an on-line inter-
active program, he may need to know only a few simple MPE/3000 commands. As his needs
become more extensive, however, so must his knowledge of MPE/3000. A user planning more
complex operations can be assigned various optional capabilities. These allow him to access
more sophisticated system resources for such tasks as executing privileged instructions. Sets
of capabilities are also used to protect the system and its users by limiting access to special
system capabilities only to those who understand their correct use. Capability sets greatly
simplify use of the system from the stand-point of each individual user — they define the
extent to which he must understand and interrelate with MPE/3000, and permit a user to
ignore aspects of MPE/3000 that do not apply to him.

Input/Output Conveniences

Because MPE /3000 treats all input/output devices as files (or groups of files in the case of
mass storage devices), the programmer may access these devices by file names rather than
by device types or logical unit numbers. The file names used in programs are independent
of the devices used for file input and output, and need only be associated with these devices
at the time the programs are run. This means that the user can write programs without im-
mediate concern for the physical source of input or destination of output. This independence
also means that programs can be run in either batch or interactive mode without changing

the names of the files they reference.

Files on disc can be structured for either direct or sequential access, on an exclusive or shared
basis. Direct-access files contain fixed-length records; sequential files, however, can contain
either fixed- or variable-length records. For files on disc, storage space is automatically allo-
cated as it is needed. MPE/3000 permits simultaneous access of sharable disc files by many
programmers.

Processing Efficiency

MPE/3000 offers the user increased throughput by taking best advantage of the HP 3000
Computer architecture and the rapid speed of the central processor. This, in turn, permits
the rapid changes between user environments that make multiprogramming in batch and
interactive modes possible.

RE-ENTRANT CODE AND PRIVATE DATA. Within MPE/3000, many user and system
functions can be active simultaneously without mutual interference. This is because the
hardware provides protection of programs and guarantees the privacy of user data areas. MPE/
3000 keeps code and data logically separate by organizing them into re-entrant code segments
(which can be shared among users but not altered) and data segments (which cannot be shared
but which can be altered by the creating user). Code-sharing means that only one copy of each
program, accessible to many users concurrently, need exist in memory at any time. Code seg-
mentation allows code to be moved from disc into main memory only when needed and
dynamically relocated in main memory to accommodate other programs and routines. Code
re-entrancy means that when a program is interrupted during execution of a code segment,
and another program uses that same segment, the segment is completely protected from modi-
fication and will be returned, intact, to the previous program.

1-3

STACK ARCHITECTURE. Many powerful operating system features are made possible by
the computer’s use of stacks (linear storage areas for data) where the last item stored in is
always the first item taken out. Some of these features are

® Kase of compilation and parameter passing

® Fast execution

® Highly-efficient subroutine linkage

® Minimum overhead

® Dynamic allocation of temporary storage

® Rapid interruption and restoration of user environments
® Code compression

® Recursion (where a procedure calls itself)

MICROPROGRAMMING AND THE CENTRAL PROCESSOR. Additional economy has been
provided by microprogramming many system operations normally provided by software. These
operations are requested by machine instructions that each, in turn, execute many micro-
instructions built into the central processor hardware. Microprogramming eliminates the
repetitive coding and main memory requirements otherwise needed for recurring operations
(such as moving character strings from one location to another, or scanning strings for a
particular character), thereby placing the operating burden on the highly-efficient micro-
processor rather than on MPE/3000 software.

VIRTUAL MEMORY. The MPE/3000 virtual memory offers users a total memory space that
far exceeds the maximum main-memory size of 131,072 bytes. Virtual memory consists of
both main memory and an extensive, flexible storage area on disc. User programs and informa-
tion in the disc area are subdivided into units (segments) of code or data that are dynamically
moved, through overlays, into main-memory (core) for execution.

HIGH DATA THROUGHPUT. High throughput of data is facilitated by high-speed channels,
double-buffering, many input/output devices, and input/output program execution (through
an input/output processor) in parallel with regular program execution (by the central
processor).

AUTOMATIC SCHEDULING. MPE/3000 automatically schedules all jobs and sessions
according to their priorities. When execution of a running program is interrupted for any
reason (such as input/output or an internal interrupt), MPE/3000 passes control to the pro-
gram of highest priority awaiting execution.

Accounting Facility

MPE/3000 keeps track of various system resources used by each job/session, group, and
account; these resources include permanent file space, central-processor time, and (for
sessions) terminal connect time. Limits can be set for the maximum use of these resources
at the group or account level. As each job/session is logged off, the resource-use counters
are updated. When another job/session attempts to log-on, and the central processor or
(for sessions) terminal connect time limits have previously been exceeded, access is
refused. When a request is made to save a file, and this action would result in exceeding
the permanent file space limit at either the account or group level, the request is denied.

The accounting information for each group and account can be extracted and displayed,
showing counts and limits for permanent file space (in disc sectors), central processor time
(in seconds), and connect-time (in minutes).

Logging Facility

MPE/3000 enables a user with System Supervisor Capability to control the recording (on disc)
of information about overall system activity. This log can be displayed through user-created
analysis routines. The user can specify the information to be recorded on the log file, making
his selection from the following areas: job/session and program initiation and termination,
file closing, and system start-up and shut-down.

System-to-System Compatibility

All HP 3000 Computers operate under a single operating system — MPE/3000. This means
that programs prepared on one HP 3000 can be run on any other without modification (pro-
vided that all devices required by those programs are connected on-line). It also means that
users moving from one installation to another need not undergo additional training or read
additional documentation to prepare themselves for the new environment.

Program and File Security

Each user operates in an environment protected from interference by other users. Program
protection is provided by the hardware; file security is provided by a software facility based
upon a series of lockwords and hierarchical access restrictions that allow the programmer to
specify the degree of security desired.

System Manager and System Supervisor Capabilities

MPE/3000 provides many tools for overall management and control of the system to persons
with the System Manager and System Supervisor Capabilities. These features are discussed in
detail in HP 3000 Multiprogramming Executive System Manager/Supervisor Capabilities
(03000-00038).

1-5

The System Manager Capability allows a user to have final control of overall use of the system
by defining the accounts under which users access MPE/3000, and the resource-use limits (it
any) that apply to these accounts.

The System Supervisor Capability allows a user to supervise and control the general operation
of the system by:

Creating tapes for backing-up and modifying the system.
Displaying certain system information.
Permanently allocating/deallocating programs in virtual memory.

Exercising greater scheduling control over processes than that allowed
other users.

Managing the system log file.

It is important to bear in mind that the above capabilities are granted to users through the
assignment of special attributes, and in no way imply formal responsibilities or duties. Thus,
a regular programmer may have the System Manager Capability or the System Supervisor
Capability, or both capabilities — in addition to several others discussed later. For this
reason, it is best to speak of “a user with System Manager Capability’’ rather than a formal
“System Manager.”

SOFTWARE

MPE/3000 is furnished to the customer on a reel of magnetic tape. As part of the operating
system software, these major components are provided:

System Configurator, for configuring and making a back-up copy of MPE/3000.
System Initiator, for installing and starting MPE/3000.

Command Interpreter, for handling the commands that allow the user to interact
with MPE/3000 through a terminal or batch input device.

File Management System, for providing uniform access to disc files and standard
input/output devices, and maintaining file security.

Memory Management System, for dynamically allocating main-memory among
contending users.

Dispatcher, for allocating central-processor time among programs in execution.
Input/Output System and Drivers, for scheduling, initializing, monitoring, and
completing input/output requests for standard devices (accessed through the

File Management System).

System Library, for storage of frequently-used routines sharable among many users.

1-6

Segmenter Subsystem, for segmenting and loading programs, and resolving references
to external code.

Accounting System, for maintaining and displaying resource usage counts.

Logging System, for maintaining the system log file.

No additional or auxiliary software is required to install, operate, or maintain MPE/3000.

HARDWARE

The minimum hardware configuration required by MPE/3000 is

Mainframe and Accessory Equipment Supplied, including HP 3000 Central
Processor and 65,536 Bytes of Main Memory (Core), SIO Multiplexer Channel,
System Control Desk (with System Console), and Asynchronous Terminal
Controller

Disc

Magnetic Tape Unit

The disc is used to contain portions of MPE/3000 and user programs and data. The magnetic
tape unit is used for cold-loading MPE/3000, loading subsystems (such as compilers), and
storing user programs and data. (MPE/3000 is initialized and maintained through the console,
which can also be used for input/output of user programs.)

The following optional hardware can be added to the system:

Main Memory (for a total of up to 131,072 bytes)
Discs (Fixed-Head or Moving-Head)

Magnetic Tape Units

Card Readers

Line Printers

Card Punches

On-Line Terminals

Paper Tape Readers

Paper Tape Punches

Selector Channels

1-7

With this optional equipment, many hardware configurations are possible. For example, a
small system used for batch processing might appear as shown in Figure 1-1. In this system
the card reader is used for input and the line printer for output, while the disc is used for
storing system and user programs and data. The magnetic tape unit is used for cold-loading
MPE/3000 and for storing user programs and data. The console is used to initialize and
maintain MPE/3000.

b

Disc

MAINFRAME

Card Reader AND Line Printer
ACCS. EQUIP. \—/—J

QOO0O0O0

Console Magnetic Tape Unit

1

Figure 1-1. Small Batch System

A small interactive system might be configured as shown in Figure 1-2. In this system, up to
seven terminals are used for input and output.

Disc

@)
O
MAINFRAME O
AND ~ O

ACCS. EQUIP.
// ©

Terminals
00000
Console Magnetic Tape Unit

Figure 1-2. Small Interactive System

A combined batch and interactive system is illustrated in Figure 1-3. Here, batch and
terminal operations can occur separately or concurrently.

Disc

Line Printer ') @)

‘\/\
MAINFRAME
/

AND 'e)
(.

ACCS. EQUIP.
Card Reader /

Q0000

Console Magnetic Tape Unit

Terminals

Figure 1-3. Combined Batch and Interactive System

19

A large processing system is shown in Figure 1-4. This system incorporates a large central
memory, fixed-head and moving-head discs, many input/output devices for multiple-job
batching, and eight terminals for remote processing.

S

Fixed-head
Disc

>

Moving-head Moving-head
Disc Disc

0

Line Printer

Selector
J Channel

/ |
Line Printer
MAINFRAME - —0
Multiple Batch Devices AND
ACCS. EQUIP. O
/ | o
O
O

Card Reader

—

Terminals
Card Reader
OO000O0
Console Magnetic Tape Units

Figure 1-4. Large Processing System

1-10

SECTION Il
How MPE/3000 Operates

In supervising the compilation and execution of user programs, MPE/3000 performs the following
tasks:

° Controls all input/output.

e Allocates memory to user programs and the system routines required for their
support.

® Schedules batch programs for access to the central processor.
® Allocates central processor time to programs.

® Swaps portions of programs to and from main memory as required during execution.

NOTE: For programmers using the standard capabilities of MPE/3000 to
compile and run general application programs, MPE/3000 auto-
matically performs these tasks. Such users normally are not con-
cerned with the internal aspects of MPE/3000 discussed in this
section, and can proceed directly to Part 2 for directions on how
to log-on to MPE/3000, and how to compile and run programs.
But as a programmer’s needs become more complex, perhaps
involving calls to higher-level MPE/3000 system procedures
(intrinsics), he may want to scan this section for a general system
orientation, or refer to parts of it to clarify terms and concepts.
Those programmers using MPE/3000 on very sophisticated levels
(involving the optional capabilities discussed in Part 3), will find
the information in this section essential; they should read it
thoroughly.

MPE/3000 RESIDENCE
MPE/3000 resides in three general areas:

1. Those routines most frequently used reside in main memory, all of which is part of
virtual memory. (Routines not residing in main memory are moved there only when
required. This ensures that as much main memory as possible remains available for
the execution of user programs.)

2. Frequently-used routines reside on portions of disc within virtual memory; these
disc areas are treated as logical extensions of main memory.

3. All remaining routines (including a permanent copy of each compiler) are stored in
areas of disc outside of virtual memory; these areas are treated as conventional
secondary storage.

PROCESSES

In MPE/3000, programs are run on the basis of processes created and handled by the system.
A process is not a program itself, but the unique execution of a program by a particular user
at a particular time. Therefore, if the same program is run by several users, or more than once
by the same user, it is used in several distinct processes.

The process is the basic executable entity in MPE/3000. A process consists of a process con-
trol block that defines and monitors the state of the process, a dynamically-changing set of
code segments, and a data area (stack) upon which these segments operate. (Thus, while a
program consists of instructions (not yet executable) and data in a file, a process is an execut-
ing program with a data stack assigned.) The code segments used by a process can be shared
with other processes, but its data stack is private (Figure 2-1). For example, each user working
on-line through the BASIC language is running his program under a separate process; all use the
same code (the only copy of the BASIC interpreter in the system), but each has his own stack.
(The interrelationship of the process control block, code segments, and data stack is discussed
in detail under “PCB/Code Segment/Stack Interaction.”)

Processes, and the elements that comprise them, are invisible to the programmer accessing
MPE/3000 through standard capabilities; in other words, this programmer has no control over
processes or their structure. For this user, MPE/3000 automatically creates, handles and deletes
all processes. The user with certain optional capabilities, however, can create and manipulate
processes directly.

The entire MPE/3000 system is a collection of processes that are either active or dormant.
These processes are logically organized in a tree structure (see Figure 2-2); each process has
only one immediate ancestor (father) but could have several immediate descendants (sons).
The root process that controls all other processes in MPE/3000 (Figure 2-2) is the only process
that has no ancestor. It is the first process established, and is created during system initiali-
zation. During system configuration, the root process uses the data specified to create various
system processes, including the input/output and user controller processes; the user controller

process creates its own descendent processes. (A system process is a process that executes on
behalf of MPE/3000.)

2-2

PROCESS A

PROCESS B PROCESS C

Figure 2-1. Code-Sharing and Data Privacy

2-3

a4

ROOT
PROCESS

MAKE- DEVICE
1/0 PRESENT RECOGNITION
AOCESS PROCESS / PROCESS

System
Code

System

Code Stack

Stack

System I :
Code Stack

Command Stack
Int

S.PL l Stack
Compiler

~
SESSIONS Code | [Stack

Command Stack
Int

Basic Stack
Interp

Code Stack

4

JOBS

Figure 2-2. Process Organization

SYSTEM
PROCESSES

USER
PROCESSES

The user controller process (UCOP) is the ancestor of all existing user processes. (A user
process is a process that runs on behalf of the user.) When the user first accesses MPE/3000,
the UCOP creates a main process that oversees the execution of his program. If the user is
running a batch program (called a job), a job main process (JMP) is created. If he is executing
an interactive program (session), a session main process (SMP) is created.

All JMP’s and SMP’s use system code, the MPE/3000 Command Interpreter, interfacing directly
with the user. They may create descendants that use system code, such as the BASIC/3000
Interpreter or FORTRAN/3000 or SPL/3000 compilers when translating source programs;
when executing user programs, of course, the descendant processes use the user’s code.

PROCEDURES

In MPE/3000 most individual programming operations are handled by unique sets of code
known as procedures. (Others are handled by special programs or interrupt routines.) In
SPL/3000, the language in which MPE/3000 is coded, a procedure is defined by a procedure
declaration consisting of

® A procedure head, containing the procedure name and type, parameter definitions,
and other information about the procedure

® A procedure body, containing executable statements and data declarations local to
this procedure

As part of their function, many procedures also return parameter values to the processes that
invoke them.

In SPL/3000, each procedure is executed by a corresponding procedure call. When a procedure
call is encountered, control is transferred to the procedure, which runs until an exit is encountered.

Control is then returned to the statement following the call for that procedure.

While a procedure in SPL/3000 is similar to a subroutine in many respects, there are major
differences between the two:

® When referencing a logical set of code, a subroutine call is significantly faster and
more efficient than a procedure call, while a procedure call has more powerful

(and general) applications.

® A subroutine declaration may be used within a procedure declaration, but a pro-
cedure declaration may not appear in a subroutine.

® A procedure allows dynamic storage allocation, permitting local variables.

® A subroutine can contain non-local references to variables declared within the scope
of the procedure in which it occurs.

® A subroutine can be invoked only within the procedure of which it is a part.

Unlike procedures, subroutines are not suitable for solving complex problems that require
explicit stack manipulation or many temporary storage locations. They are useful, however,
for various utility and arithmetic-function routines.

In addition to the procedures provided by MPE/3000, SPL/3000 allows the user to write pro-
cedures to suit his own purposes. To distinguish MPE/3000 system procedures (which are
always available to the user, directly or indirectly) from any other procedures, the term
intrinsics is applied to MPE/3000 procedures. Similarly, the term intrinsic calls is used to
denote the procedure calls that reference MPE/3000 procedures. From this point on, these
terms will carry these respective meanings throughout this manual.

Each large functional unit of MPE/3000, such as the Command Interpreter, File Management
System, or Input/Output System, consists of many intrinsics. The creation, handling, and
deletion of processes is performed exclusively through intrinsics not directly accessible by
users with the standard MPE/3000 capabilities. (However, these intrinsics can be accessed
directly by users having certain optional capabilities described in Part 3.)

SYSTEM LIBRARY

The MPE/3000 system library is a collection of frequently-used routines that can be readily
shared among many users. A library code segment consists of one or more procedures. Some
of these segments reside permanently in virtual memory, while others are stored elsewhere
on disc and called into virtual memory as needed.

USER INTERFACE

In requesting system functions, the programmer never interacts directly with the computer
hardware. Instead, he interacts with a dual-level software interface that accepts commands
(for general functions external to his program) and intrinsic calls (for specific functions within
his program). In general, the commands and intrinsic calls themselves access uncallable
intrinsics that reference machine instructions. These, in turn, execute micro-instructions from
the microcode hardwired into read-only memory (Figure 2-3). It is this microcode only that
operates directly on the computer hardware.

Commands

Commands are used to initiate and terminate jobs, re-specify file characteristics, compile and
execute programs, call various utility subsystems, and perform other broad functions external
to user programs. Commands are entered through any standard input device, typically the card
reader (for jobs) or the terminal (for sessions). When the input device is connected on-line

to MPE/3000, a main process is automatically initiated that uses the MPE/3000 Command
Interpreter program to read and translate the commands. The first command entered must
always be one that initiates a job or session.

HP 3000
Hardware

N
Microcode in Read-only

HP 3000 Machine Instruction Set

Uncallable Intrinsics

MPE/3000 Command and Callable Intrinsic
Set

Figure 2-3. User/Software/Hardware Interface

2-7

Each command invokes an intrinsic that implements the function desired. (Such intrinsics
are called command executors.) When a command is entered, the Command Interpreter
checks it against the names in the MPE/3000 command dictionary. If the command is valid,
the Command Interpreter passes the command parameter list image to the appropriate
executor for execution. When the action requested by the command is satisfactorily com-
pleted, control returns to the Command Interpreter.

Intrinsic Calls

Intrinsic calls implement MPE/3000 functions requested programmatically (within a user’s
program), such as reading, writing on, and updating files; skipping forward and backward

on files, or returning system table information to the user’s program. In an SPL/3000 program,
the user writes the intrinsic calls explicitly, but in FORTRAN, COBOL, or BASIC programs, in
most general applications, the compiler generates any necessary intrinsic calls automatically —
they are invisible to the user. (Provisions are also available in FORTRAN, COBOL, and BASIC
that allow the user himself to call intrinsics, at his option.) All MPE/3000 intrinsics are treated
as external procedures by user programs. External linkages from user programs to intrinsics are
satisfied when the user programs are segmented and allocated residence in virtual memory.

The set of intrinsics available for a user depend upon the capabilities assigned to him by the
user who is managing the account under which he accesses MPE/3000. For example, only the
user with the Process-Handling Optional Capability can directly access intrinsics that create
and manipulate processes. The set of intrinsics available for a user defines the computer for
that user. The user calls callable intrinsics appropriate for a particular application, and these
intrinsics check the validity of the requests. Callable intrinsics, in general, invoke uncallable
intrinsics to actually perform the necessary operations. (Uncallable intrinsics are those not
available to standard users because their mis-use can be hazardous to the system; they can be
accessed, however, by users with a special MPE/3000 optional capability.)

Certain programs that may be executed by all users sometimes require special capabilities. In
this case, the program (not the user) is assigned these capabilities by the user who creates the
program, as discussed later.

INPUT/OUTPUT

The MPE/3000 Input/Output System schedules, initiates, and completes all input/output
requests for all HP-supported devices connected to the system. Normally, the input/output
system remains invisible to the user, since he accesses it indirectly through the MPE/3000
File Management System.

The Input/Output System includes an independent controller for each type of hardware
device connected to the computer. Each controller is associated with an input/output
monitor process. This process services the requests for the controller and calls input/output
initiator and completion driver routines as required. Requests to the Input/Output System
are issued by the File Management and Memory Management Systems.

2-8

File Management System

The File Management System provides a uniform method of directing input and output of
information. It handles various input/output applications, such as the transfer of information
to and from user processes, compilers, and data management subsystems.

MPE/3000 treats each set of input or output information as a set of logical records called a
file. When a file is created, MPE/3000 allocates (or requests the operator to allocate) a device
for its storage. Input read from a hardware device such as a card reader is accepted directly
from that device. Similarly, output from an executing process is transmitted directly to the
required device (such as a line printer).

Information is moved between a file and main memory in physical records; a physical record
is the basic unit that can be transferred to or from the device on which the file resides. In files
on disc or magnetic tape, physical records are organized as blocks of logical records; the block
size is specified by the user, but input/output and blocking are performed by MPE/3000,
freeing the user from the actual record-handling details. On unit record devices, however, the
physical record size is determined by the device itself, and logical records are not blocked.

The user references a file by the file name assigned to the file when it is created. When he does
this for an existing file, MPE/3000 determines the device or disc address where the file is stored
and accesses the file for him. Throughout its existence, the file remains device-independent.

The MPE/3000 File Management System allocates devices for the storage of files on the basis
of specifications from the user. For example, the user can request a device by generic type
name (such as any magnetic tape unit or line printer), or by the logical device number that
refers to a specific device. Logical device numbers are related to all devices when MPE/3000
is configured.

Scheduling

The MPE/3000 Scheduling System ensures that all processes competing for the central processor
access it in an orderly manner. All processes are placed in a master scheduling queue in order

of their priority. (This queue is actually a linked list of PCB’s — process control blocks — for
the processes scheduled.) When a process in execution is completed, terminated, or interrupted,
the MPE/3000 Dispatcher program searches the master queue for the process of highest priority
awaiting execution and transfers control to that process.

Within the master queue, five standard subqueues are used for scheduling processes created by
user programs (Figure 2-4). Since MPE/3000 schedules each process independently, not all
processes for a job are necessarily entered in the same subqueue.

High Priority

\

Low Priority

Figure 2-4. Scheduling Queues

2-10

Low Priority
‘ £ 3 Very High-priority
AS je—y Y { Processes
High-Priority ‘
BS |s- S ng @ { Processes
[Interactive
Y / 1/0-bound and Batch
e < — Compute-bound J processes
3¢S | o7 -7
Ef S\ T -
a
g
:E‘G g 1/0-bound General-Purpose
N\ Subqueue for
‘ ‘/_g. ————————— — Compute-bound
o8 l/ P Processes.
[N [N\ Y
N Y N\
ES |-s @ S S Idle Processes
— v
-V
Subqueues

Three of the standard subqueues are linear in structure; two of these (AS and BS) are high-
priority subqueues that are presently available for general purposes, but in subsequent releases
of MPE/3000 will be used for processes with new MPE/3000 optional capabilities; the third
linear subqueue (ES) is available for idle processes with low priority. In a linear subqueue, the
process with highest priority accesses the central processor first and maintains this access until
the process either is completed or suspended to await input/output. (The master queue itself
is a linear queue.)

The other two standard subqueues are circular subqueues. One (CS) is used for interactive
sessions and multiprogramming batch jobs. The other (DS) is available for general use at a
lower priority than the CS subqueue. In these subqueues, each process accesses the central
processor for an interval (time-slice) of limited duration. At the end of each time-slice, or

when the currently-running process enters a waiting state, control is transferred to the next
process in the subqueue, continuing in a round-robin fashion. This time-slicing is controlled by
a system timer. Each of the two circular subqueues is composed of two sub-subqueues. In both
subqueues, the lower-priority sub-subqueue services compute-bound processes while the higher-
priority one services input/output-bound processes (those that require excessive time for input/
output). When a compute-bound process in one of these subqueues is repeatedly suspended for
input/output rather than exceeding its time-slice, the scheduling system moves it into the
slightly higher-priority input/output-bound sub-subqueue. This ensures that the process

obtains adequate central processor time. When the process is no longer input/output-bound,

it is returned to the compute-bound sub-subqueue.

COMPILATION

User programs are entered into the computer in a source-language, translated into binary form
by a process executing a compiler, and stored on disc (Figure 2-5A). Because the code making
up a compiler is re-entrant, it can be shared by many users. Therefore, only one copy of a
compiler is required in memory no matter how many programmers need it at one time to
compile their programs.

MPE/3000 regards user source-language programs as consisting of program units. A program

unit is the smallest divisible part of any program or subprogram. For example, in SPL/3000,

this is an outer block program unit or a procedure; in FORTRAN/3000, this is a main program,
subroutine, function, or block data unit. In COBOL/3000, this is a main program or section.
Thus, a program consists of one or more program units, one of which must be an outer block
(SPL/3000), or main program (FORTRAN/3000 or COBOL/3000) program unit. A subprogram,
which is the smallest individually-compilable entry, in turn, consists of one or more program
units.

When a source-language program is compiled, each program unit is transformed into a relocat-

able binary module (RBM) that contains user code plus header information that labels and
describes this code.

2-11

¢1-g

Source Program

Card Images

Source File

| |
| |
I |
COMPILATION | PREPARATION | ALLOCATION | EXECUTION
| | !
[! ;
I | J
| J ;
| |
Code and Code and Stack
»| Compiler RBM’s : :::::2:; Data (Stack) ! Loader Segments Linked to -:—-> P:':::ss
| Segments E External Segments I
| I |
USL (object) File | Program File j |
on Disc ! | i
! ! |
A ; B : ¢ I °
! I

Figure 2-5. Program Management

PROGRAM PREPARATION

The RBM’s that result from compilation of a user’s program onto disc make up a user sub-
program library (USL) file. For each program unit compiled, there is one RBM in the USL.

The USL is not executable, however. Instead, it must be prepared for running by MPE/3000.
During preparation, a process running the MPE/3000 Segmenter binds the RBM’s from the
USL (object file) into linked code segments arranged in a program file (Figure 2-5B). Each
segment contains machine instructions produced from the user’s program, plus linkages to
other segments. The code in a segment cannot be altered because it is treated as read-only
information; thus, it remains re-entrant and can be executed repeatedly by many users.
When a program is segmented, a special segment for the input of user data is also initially
defined; this contains the stack.

ALLOCATION/EXECUTION

When a program is run, it is allocated and executed. In allocation, a process running the
MPE/3000 loader binds the segments from the program file to referenced external segments
from a library (Figure 2-C). MPE/3000 then creates a process to run the program (Figure 2-D).

Execution now begins. As it progresses, many new processes may be created, run, and deleted.
For each process in execution, one or more code segments and one stack, operating under
control of a process control block (PCB), typically exist in main memory. Not all code segments
belonging to a process in execution need exist in main memory simultaneously. Typically, a
process operates on a set of segments that are dynamically swapped between main memory and
disc. MPE/3000 maintains records of the frequency each segment is used, so that those used
least frequently in main memory become the most eligible for swapping out. The user never
needs to determine whether a segment is in main memory or on disc at any given time — this

is always done for him automatically by MPE/3000.

During allocation/execution, MPE/3000 keeps track of each code segment by maintaining
information about its nature and current location in the code segment table (CST). Similarly,
information about the stack is dynamically recorded in the data segment table (DST).

A particular program can be run by many user processes simultaneously, with all processes
accessing the same copy of code. But unlike the program code segments, the data segment
containing the stack is private to each user’s process and cannot be shared among others. As
execution progresses, data enters and leaves the stack dynamically. Within the stack, data is
arranged as a linear group of items accessed from one end (called the top-of-stack). When the
last instruction in a process is executed, MPE/3000 releases those segments associated only
with that process, including the stack segment, and deletes their related entries in the CST
and DST. (However, shared code segments are not released until the last process using them
is deleted.) All descendants of this process are deleted, and all files opened by it are closed.
(CST and DST entries assigned to the released segments can be re-assigned.)

2-13

PCB/CODE SEGMENT/STACK INTERACTION

Each PCB coﬁtains all information needed to control a process. This information includes the
priority of the process, and pointers to queues and ancestor and descendent processes.

Each code segment executed by a process can contain one or more program units that include
calls to procedures elsewhere in this segment or in another segment. Within a program unit,
there are generally many executable machine instructions. Each procedure call also references
machine instructions that handle the procedure requested.

When a code segment is executing in main memory, it is defined by pointers in three hardware
registers: the Program Base (PB), Program Counter (P), and Program Limit (PL) registers
(Figure 2-6). (There is only one set of these registers; at any particular instant, their contents
refer to the code segment currently in execution.) The PB register contains the absolute
address of the starting location of the segment in main memory. The P register holds the
absolute address of the instruction currently being executed. The PL register indicates the
absolute address of the last location of the code segment. Execution can only be transferred
from this segment by an interrupt or by a call or exit instruction referencing a procedure in
another segment, in which case the PB, P, and PL registers are re-set to reflect the character-
istics of the new segment. Whenever an instruction is executed, the PL and PB registers are
checked to ensure that referenced addresses fall within the proper segment boundaries. This
bounds check guarantees that other programs and the system itself are protected against
improper access. Since all addresses within a code segment are relative to the contents of the
three program registers, a segment can be relocated anywhere in main memory and only the
register contents need be changed to reflect this transfer.

T

Low-Numbered Addresses

PB First Address
P Current Instruction
PL Last Address

High-Numbered Addresses

Figure 2-6. Code Segment and Associated Registers

2-14

As with code segments, there are normally several stacks resident in memory. (One stack exists
for each process.) But since the execution of any process is interleaved with that of others,
only one stack is active at any particular instant. Most dynamic computational operations take
place on the stack. The last element added to the stack is placed in the word at the top-of-the-
stack. In this position, it will be the first element removed when the process associated with
the stack requests data from the stack. (In other words, the last element in is the first one out.)
Each time data is added to the stack, the previous top element becomes the second element
from the top; each time the topmost element is removed, the second element returns to the

top of the stack.

Programmers operate directly on elements in the stack only when using the SPL/3000
language. However, any program in any other language references the stack implicitly when
it manipulates data, although the user need not be aware of this.

The stack data segment consists of two general areas: a process control block extension (PCBX)
area and a stack area. The PCBX contains certain frequently-needed information for process
control that need not reside in main memory, such as register settings and file pointers; it is
always contiguous with the stack segment. (In general, the PCB is used when the process is not
running in main memory; the PCBX is used when it is.) The stack area is the most significant
part of the stack data segment; this is the area where the user’s data is stored and manipulated.
The boundaries of this area, and its logical subdivisions, are delimited by pointers in registers
(Figure 2-7). (At any instant, these registers always apply to the stack belonging to the
currently-executing process.)

The Data Limit (DL) register contains the absolute address of the first word of the stack area
in main memory. The area between this address and that stored in the Data Base (DB) register
is an SPL/3000 user-managed area that can be accessed and used only through SPL/3000 pro-
grams, such as compilers. These programs sometimes require this space for SPL/3000 own-
arrays. (A part of this user-managed area, that between the addresses DB-10 and DB-1, is

the subsystem data area reserved for data used during subsystem operation.)

The DB register points to the beginning of the global area within the stack area. This area is
used for global variables (those declared within the data group of an SPL/3000 main program,
and thus usable by any procedure within that program). This area also contains global arrays
and pointers to those arrays. The end of the global area is initially indicated by the Stack
Marker (Q) register, which also denotes the beginning of the local area. (As will be illustrated
later, the Q-register pointer changes whenever the running process calls or exits from a procedure.)
At any given time, the local area contains data local (relating only) to the procedure currently
in execution. The end of the local area is delimited by the Top-of-Stack (S) register, which
points to the last item in the stack. All storage between the addresses in the S register and the
Stack Limit (Z) register, is unused space that remains available for additional data. The Z
register indicates the last main memory location that can be used by user data in the stack area.
Beyond the address in the Z register, a special zone is available for stack overflow — a condition
that occurs when the S-register pointer must be moved beyond the Z-register pointer and space
must be provided for certain end-of-stack information.

2-15

T

r——————= Low-Numbered Addresses

| PCBX Area l
~ DL First Address (in Stack Area)
User-Managed Area
Subsystem Data Area gg}o
DB fp—— —— — — — ’
} Global Area
Q N
Local Area
(Used by Current
Computation)
Stack Area <
S
> Working Stack
Unused Area
(Available for
New Data)
. Z J Last Address (in Stack Area)
Stack Overflow

Area
L.. —— ——— — —--| High-Numbered Addresses

|

Figure 2-7. Data (Stack) Segment and Associated Registers

2-16

The contents of the DL and Z registers delimit the boundaries of the stack area. Through
bounds checks that reference these registers, MPE/3000 (and certain hardware provisions)
ensure that the user’s data remains within these limits, and that no other user accesses this

area. Thus, the privacy of the user’s stack is guaranteed. All locations in the stack are addressed
relative to the DB, Q, or S addresses.

Although the top-of-stack is logically indicated by the S register, up to four of the topmost
elements of the stack can actually exist in central processor registers (the TR registers) rather
than in main memory — in effect, the stack “spills over” from memory into these registers.
These conditions greatly enhance processing speed. The number of TR registers currently in
use is indicated by the SR register. The absolute address of the last item of the stack actually
residing in main memory is stored in the SM register. The contents of the S register are
actually denoted by

S =SM + SR

Thus, the S register is said to contain the logical top-of-stack rather than the actual top-of-stack
in memory.

Before a process begins execution, stack space is first reserved for global data, beginning at

the DB-address and terminating at the Q-address, which denotes the beginning of the dynamic
working stack (Figure 2-8A). At this time, no data is stored beyond the Q-address, and so the
the S register also points to the same address as the Q register — that is, the bottom and top of
the working stack coincide. But, as the process begins execution, data is added to the stack, and
the S-pointer (top-of-stack) moves away from the Q-pointer (Figure 2-8B). If, at some point,
the process encounters a procedure call, a new area for data local to that procedure must be
defined. To do this, the system hardware places a group of four words called the stack marker
on top of the stack to save information necessary to re-create the currently-defined local area
later. The Q and S registers are then pointed to the top word of the stack marker, which also
delimits the beginning of a new, fresh and unique local area for the procedure just called
(Figure 2-8C).

The words in the stack marker preserve the state of the machine at the time of the procedure
call. These words contain the following information, (shown in order ascending toward the
Q-address):

Word Contents

Q-3 Current contents of the Index (X) register.

Q-2 The return address for the code segment, denoted by P+1 (relative to
the PB register).

Q-1 The current contents of the Status register (which includes the number

of the code segment containing the calling procedure).

Q-0 The delta-Q value, which is the number of words between the new and
previous Q-locations, enabling the later re-setting of Q to its old value.

2-17

DL

DB

Qs

User-Managed
Area

Global Area

Main Program
Local Area

DL
User-Managed
Area
DB
Global Area
Q
S
2
A
DL
User-Managed
Area
DB
Global Area
~Qold) p —— — — — —
[Main Program
| Local Area
| S(old)
| | Stack
| | Marker
L~ Q(new)
Procedure’s
Local Data
S(new)
Z

|

DL

DB

DL
DB
— = Q(old)
S(old)

|
|
|
|
|
|
Q

(new),S —»

User-Managed
Area

Global Area

Main Program
L.ocal Area

Stack
L Marker

User-Managed
Area

Global Area

Main Program
Local Area

New Data

Figure 2-8. Stack Operation

2-18

As data is added to the stack during execution of the new procedure, the S-pointer moves away
from the new Q-pointer, reflecting the latest data added (Figure 2-8D). When the procedure
exits back to the main program, the new local data area is deleted from the stack, the stack
marker is used to restore the Q-pointer to its previous setting, any value returned by the
procedure is left at the new top of the stack, and the S-pointer is set to indicate the new top-
of-stack (Figure 2-8E). This results in a “clean’’ stack from which temporary data local to the
called procedure is eliminated because it is no longer needed.

Whenever a procedure is called, the Q and S registers are manipulated in this manner. The

Q register changes with each procedure call and exit; the S register may change when an
instruction references data. Thus, when a process executes a main program (outer block) that
calls three procedures, there will be a maximum of four local areas (one for the main program
and three for the procedures called by it) on the stack. Each procedure’s local area will be
delimited at its base by its own stack marker. Within these stack markers, the delta-Q words
will form a logical chain that links the present Q register setting back to its initial value.

MEMORY MANAGEMENT

The MPE/3000 virtual memory, which frees the user from the restrictions of a physical memory
of constant size, consists of main memory and portions of disc. Both the dynamic swapping of
segments from disc to main memory, and their dynamic relocation within main memory, are
controlled by the Memory Management System through segment descriptors in the CST and
DST. When additional memory is required during execution of a process, executed code
segments are overlayed by incoming segments rather than actually being swapped out; this

saves considerable memory overhead. (If needed later, re-entrant copies of these code segments
can be brought in again from disc.) Because the content of a data segment changes continually,
however, it is sometimes necessary to swap such a segment both to and from disc to preserve
and maintain it until the process completes execution.

Since code can be shared between programs, both the need for multiple copies of programs or
routines, and time devoted to swapping between disc and main memory, are reduced.

The user’s stack is not the only data area handled as a segment in MPE/3000. In addition,
extra data segments (auxiliary to user stacks) and input/output buffers are also managed in
this way by the Memory Management System.

Main-Memory Linkages

Main memory is organized into a sequence of variable-length, linked areas that facilitate the
insertion or deletion of segments. The memory linkages contain the following information
about each area:

® Availability (in use or available)

® Size

® Type (code or data)

® Table pointer (to the CST or DST entry relating to the area)

2-19

Those areas that are available are linked together through an Available-Space List; as areas in
use are released, they are added to this list. Adjacent available areas are combined to form one
contiguous area. Requests for memory can be implicit (through a CST presence-trap) or
explicit (through calls from the system or user). To allocate memory, a space-allocation routine
interrogates the Available-Space List to find the first area large enough to satisfy the request.

If the search succeeds, all or a portion of that area is allocated. If the search fails, one or more
overlays is performed to free an area of adequate length.

Assigned storage is linked according to the priority and frequency of its access. Frequently-
accessed segments with high priority are located at or near the end of the Assigned-Storage
List; infrequently-accessed segments with low priority are located near the head of this list.
When an overlay is required, the list is searched, beginning with the head entry. Segments
declared main-memory resident, of course, are not overlayed. If a data segment is selected for
overlay, and it has been modified in memory, it is copied to a reserved overlay-storage area on
disc. (Code segments are overlayed without being copied, since copies already exist on disc.)
Each process is assigned such a reserved area when it is initialized; it may contain either code
or data segments.

Main;Memory Use

When MPE/3000 is initialized, part of main-memory (usually in the low-address area) is pre-
allocated to MPE/3000 or to the hardware for resident routines and tables; this area is not
available for swapping. The remaining portion of main memory is established as the linked
areas described above. During MPE/3000 initialization, some of this space is allocated for the
CST, DST, and PCB tables, and the remainder is available for overlays (and so described in
the Available-Space List).

USER JOB PROCESSING

The following paragraphs discuss how MPE/3000 concepts interrelate, from the standpoint of
the user’s program.

Batch Programs (Jobs)

To illustrate how a typical batch program (a job) is processed, consider a small FORTRAN
source program punched on cards. The user arranges the deck so that the MPE/3000 commands,
the FORTRAN program, and any input data are presented in the proper order, and submits

this deck to the computer operator to run.

The operator enters the job through a card reader. MPE/3000 assigns the job a unique system
job number, and schedules it for access to the central processor. When the central processor is
available, a special system process determines whether the attempted access is valid (by checking
the user’s identity and passwords) and requests the user controller process (UCOP) to create a
job main process (JMP) that uses Command Interpreter code to run the job (Figure 2-9A, B).
The JMP completes the job initialization and becomes the process responsible for handling
interactions (commands) between the user and MPE/3000 (Figure 2-9B).

2-20

Batch Job Access Validated

Jos
A MAIN
PROCESS
Comma'r:g Stack

User Enters Commands
B

Jos JoB

MAIN MAIN

P ROCESS
Comm

Command

Listing File

'SON OF JOB
MAIN
ROCESS

Source
Deck Images

Segmenter| [Stack

Object Program

Compilation (USL) in RBM
c Form
Jos
MAIN
PROCESS

Command :
Int Stack

Program
Preparation File
D (Segments)

SON OF JOB
MAIN

Loader

Program \
Allocation File With

E Externals [Execution

F
JOB
MAIN
Command H
User Process Deleted G

Figure 2-9, Batch Job History

2-21

When this process encounters a user request to compile, prepare, and execute the user’s program,
it creates another process that calls the FORTRAN/3000 compiler into virtual memory and
executes the compiler code. (Figure 2-9C). This process translates the FORTRAN program
from source to object code and organizes this code into RBM’s stored as a USL on disc. In
this process, the compiler interacts with the Input/Output and File Management Systems to
read input and write output. Next, the main process creates a process that runs the segmenter
subsystem, which reads the program from the USL and prepares it for execution by arranging
it as a set of linked segments on a program file (Figure 2-9D). Then, the loader allocates the
segments in virtual memory on disc, and satisfies external references to library routines
(Figure 2-9E). The initial stack area is also defined at this time. Then, the code segment con-
taining the entry point of the user’s program, and the stack segment, are moved into main
memory and execution of the user’s process begins. (Figure 2-9F). Files needed by the job,
and their associated devices are assigned as requested.

As processes are created by and for the job, they are entered into queues and scheduled for
access to the central processor. Each process may create many descendent processes as the

job progresses. Various processes share the central processor through multiprogramming, and
in this way are run concurrently. The code segments belonging to each process obtain and
operate on data from the stack associated with that process. As each process proceeds,
segments are swapped into main memory, as they are needed, by the Memory Management
System, which calls the Input/Output System to handle this function. Data enters and leaves
the stack area dynamically, handled by the File Management System. Program output is trans-
mitted to a line printer and printed by an input/output process as the job is run.

As the job progresses, the operator receives any pertinent messages. He can terminate the job
at any time. When any process (including the main process) is completed, it and its descendants
are deleted from the system; all files opened by this process are closed (Figure 2-9G, H). As the
job is completed, system information related to the job is printed, including the time and date,
and central processor time used.

Interactive Programs (Sessions)

As an example of how an on-line, interactive program is handled, consider a BASIC-language
program run by a user at a remote terminal. '

The user contacts the system by turning the terminal on (if the terminal is connected directly)
or by dialing the system (if the terminal is connected by switched telephone lines). In response,
a special system process determines the validity of the access and requests the UCOP to create
a session main process (SMP) that uses the Command Interpreter code. The SMP completes

the session initialization and becomes the process responsible for MPE/3000 interactions
(commands) between the user and the system. The user next enters a command to access

the BASIC/3000 Interpreter. A process is now created that handles input in the BASIC
language. (Only one copy of the BASIC/3000 Interpreter is needed in main memory no

matter how many users are programming simultaneously in BASIC; however, each user
accesses the interpreter through a separate process.)

2-22

Many independent user processes share the central processor through time-slicing. Some com-
mands create processes that may, in turn, create descendant processes. When required by each
process, data segments are swapped to and from main memory. The Memory Management
System interacts with the Input/Output System to accomplish this. The File Management
System is invoked to allocate devices for files whenever the files are opened. The user can
direct output to the terminal, or he can have it transmitted to a printer.

The user can terminate the session at any time. When he does this, the SMP prints the time
and date, central processor time, and terminal connect time.

ACCOUNT/GROUP/USER ORGANIZATION

When a user logs on to MPE/3000, two basic elements must be defined: an identifiable unit to
which system resources (such as disc file space and central processor time) are allocated and
charged, and a local set (domain) of disc files accessible by the user. The basic unit to which
resources are assigned is the account; this is the major “billable unit” in MPE/3000. Associated
with each account is a unique file domain, a set of users who can access MPE/3000 through
this account, and a set of groups which partitions the account’s accumulated resources and
divides its file domain into private sub-domains.

Each account is defined, modified, and deleted by commands issued by a user with the MPE/
3000 System Manager Capability, who has ultimate control over access to the system and
allocation of its resources. Each account is identified by a name. Optionally, a password can
be associated with the account to validate a user’s ability to access MPE/3000 under this
account at log-on time. A maximum priority also is associated with the account; this desig-
nates the highest priority at which any process run under this account can be scheduled.

Limits are assigned for maximum disc file space, central processor time, and on-line connect-
time permitted each account; running counts of the use of these resources are maintained for
billing purposes. To maintain an account, the user acting as System Manager grants a user the
Account-Manager Capability. This account-managing user may in turn, assign the same capa-
bility to other users in his account.

The users and groups associated with each account are defined by commands issued by the ac-
count-managing user. Each user is identified by a name (unique to this account) and optional
log-on password. He is assigned a maximum allowable priority for his processes, which cannot
exceed the priority allowed to his account. Each account possesses a public group (to which
all of its users have read and program-execution access) in addition to other groups that may
be covered by various security provisions. Each group is identified by a name unique within
its account, and optionally, by a password used to validate access to the group and its files at
log-on time.

As with an account, limits are assigned for the maximum disc file space, central processor time
and on-line connect time usable by a group; and running counts of resources used by the group

2-23

are maintained. (File space is always charged to the group containing the file, rather than the
group to which the user who created the file was logged on.)

Any MPE/3000 installation can contain several accounts; each account can have several users
and groups associated with it; each group can possess several files (see Figure 2-10) which con-
stitute a subset of the file domain. When the user logs on, he specifies the account, user, and
group names (and, if required, the account, user, and group passwords). Furthermore, any
file in a group may also be protected by a lockword required at any time the user accesses the
file during the course of his job or session (in addition to standard file security mechanisms
described later.)

Each user can be associated with a home group by the user managing his account. If the user
does not specify a group when he logs on, he is given the home group by default.

Once the standard user has established communication with MPE/ 3000, if the normal
(default) system security provisions are in force, the user has unlimited access to all files in
his log-on group and home group. Furthermore, he can read, and execute programs residing
in, files in the public group of his account or in the public group of the system account. He
cannot, however, access other files in the system in any way.

The normal MPE/3000 security provisions can be overridden at the account, group, or file
level, (by System Manager, Account Manager, or standard users, respectively) to provide
more or less restriction to users. Furthermore, users with special capabilities (discussed
next in this section) are generally subject to fewer restrictions.

CAPABILITY SETS

The HP 3000 Computer is used by a large variety of programmers, ranging from those who
want to run simple applications programs in BASIC to system programmers who are actually
modifying MPE/3000. To protect the system and its users in general, users with System and
Account Manager Capabilities can limit access to special system capabilities only to those who
fully understand their correct use. This is done through capability sets. Specifically, when a
System-Manager User creates an account, he defines for it a capability set that determines
whether or not users communicating with MPE/3000 through this account can be allowed
certain functions. When an Account-Manager User defines the users of his account, he
associates with each user an individual capability set that may allow the user some or all of
the general account capabilities. Each capability set contains three types of attributes: user,
file-access, and capability-class. A fourth attribute, the local attribute, may also be defined.
The combination of these attributes determines the set of commands and intrinsics available
to the user. This division of commands and intrinsics greatly simplifies use of the system from
the standpoint of each individual user — it defines the extent to which he must understand
and interrelate with MPE/3000, and permits a user to ignore aspects of MPE/3000 that do
not apply to him.

Capability sets are also defined for groups by the Account-Manager User. Group capability sets
contain only one type of attribute — the capability-class attributes. The capability set for a
group may allow that group some or all of the capability-class attributes defined for the account
to which the group belongs. The group capabilities relate to the user’s capabilities as noted at
the end of this section under Program Capability Sets.

2-24

G¢¢

MPE/3000

ACCOUNT 1 ACCOUNT 27
/ N\
/ \
/ \
User 1 User 2 User 3 Group A Account'’s
Pub Group

l
()

Group
Library File

Figure 2-10. Account/User/Group Organization

SYSTEM
ACCOUNT 105 ACCOUNT
/ \
/ \
/ \
System
MANAGER User Pub Group
/ AN
4 AN
¥

Pub Library

System
Library

As noted at the end of this section, capability-class attributes are also associated with each
program on a program file, passed as parameters (in the command that prepares the program)
to the MPE/3000 Segmenter.

User Attributes

The user attributes designate the general level at which the user interfaces with MPE/3000.
These attributes can be assigned in any combination, and define capabilities in addition to
those of a standard user.

SYSTEM MANAGER ATTRIBUTE. Grants the user the capability to manage the overall
system and create the accounts within it. The first user with the System Manager Attribute
is designated on the system tape furnished the customer. He, in turn, can designate other
users having the same or different capabilities.

ACCOUNT MANAGER ATTRIBUTE. Allows the user to manage all users and groups within
an account. The first manager for each account is designated by a user with the System
Manager Attribute when the account is created. A user with the Account-Manager Attribute,
in turn, can assign this attribute to other users in his account.

SYSTEM SUPERVISOR ATTRIBUTE. Allows the user to have day-to-day external control
of this system. It allows him to manage scheduling subqueues, alter the system configuration,
maintain the system library, and display various items of system information. This attribute
may be assigned by a user with the System Manager Attribute.

ACCOUNT LIBRARIAN ATTRIBUTE. Can be assigned to grant a user special file-access
modes for maintenance of files within his account. For example, an Account Librarian
Attribute may be used to designate users who can purge (but not create or alter) files within
the account. (File-access modes such as read-access or write-access, are discussed in Section V.)
This attribute is assigned by users with the Account Manager Attribute.

GROUP LIBRARIAN ATTRIBUTE. Similar to the Account Librarian Attribute, but limits
the special file-access modes allowed the user to his home group. This attribute is assigned by
users with the Account Manager Attribute. It could be used, for example, where it is desired
that only one user can have the capability to alter files within a particular group. This user
could be assigned the Group Librarian Attribute and his access modes (as defined in Section V)
could be made greater than those of other users.

DIAGNOSTICTIAN ATTRIBUTE. Permits the user to run diagnostic programs for on-line
check-out of hardware under the System Diagnostic Monitor (SDM/3000). This attribute
is assigned by users with the Account Manager Attribute.

2-26

File Access Attributes
The file-access attributes determine whether the user has the capability to
® Save user files permanently

® Access card-readers, line printers, and other non-sharable input/ output devices
(other than the standard job/session input and listing devices which are available
to all users)

These attributes can be assigned in any combination.

Capability-Class Attributes

These attributes define the general MPE/3000 resources available to a user. They allow the
user to

® Access MPE/3000 in an inter- W

- : Most users have only these MPE/3000
active on-line mode &

Standard Capabilities; all users except
console operators must have one of

® Access MPE/3000 in local, these capabilities at least.

batch processing mode

® (Create, handle, and delete
processes directly

® Manage data segments
(by creating extra data
segments)

® Have exclusive use of more > MPE/3000 Optional Capabilities
than one system resource
simultaneously

® Operate in privileged mode
(which permits a user to access
all MPE/3000 resources, in-
cluding uncallable intrinsics)

2-27

Either the Interactive or Batch-Access Attribute is required to communicate with MPE/3000;
most users are assigned both as standard capabilities. The remaining capability-class attributes
are optional capabilities. They are independent and can be assigned in any combination. In
Part 3 of this manual, the optional capabilities are discussed in the order of the increasing
power they give the user. Programmers should be aware, however, that the more powerful
the optional capability, the more hazardous its misuse is to the system. Thus, they should

use optional capabilities with caution.

Local Attributes

The local attribute is a two-word quantity used only for special applications that require
further unique classification of users. MPE/3000 does not reference or make use of this
attribute in any way; rather, it is defined arbitrarily by System or Account Managers, and
used by accounts or groups for whatever purpose they require.

Program Capability Sets
Capability sets are always associated with prepared programs as well as users.

Each time someone runs a program, MPE/3000 automatically assigns that program the user
and file-access attributes of that user. But the capability-class attributes assigned to the pro-
gram are designated by the user who originally prepares the program; they are passed to the
MPE/3000 Segmenter as parameters of the command that prepares the program. If the pre-
paring user does not designate capability-class attributes for his program, MPE/3000 assigns,
by default, the standard capabilities possessed by that user — interactive access, batch access,
or both. (When programs prepared from passed files or job temporary files (explained in
Section V) are run, they are assigned the standard capabilities (interactive and/or batch access)
possessed by the user who runs them.)

If the program resides on a permanent file, the program’s capability-class attributes should
not exceed those defined for the group to which the program file belongs. If they do, the
user will not be able to run the program when he attempts to do so.

Because the capability set is associated with the entire set of code segments being run (and
hence with the process running them), all procedures, subprograms, and subroutines on those
code segments have the same capability. For the same reason, a user need not have the same
capabilities as the programs he runs.

2-28

PART 2
Standard Capabilities

SECTION 1l
Communicating with MPE/3000

To communicate with MPE/3000, the user issues commands and intrinsic calls.

Commands are requests issued to MPE/3000 to perform various broad functions external to the
user’s program. For example, they are used to initiate and terminate jobs and sessions, create and
maintain files, compile and execute programs, call various utility subsystems, and obtain job status
information. Commands can be entered through any standard input device, typically the card reader
(for jobs) or the terminal (for sessions). Each command is accepted by the MPE/3000 Command
Interpreter, which passes it to the appropriate procedure for execution. Following this execution,
control returns to the Command Interpreter.

Intrinsic calls are used to invoke MPE/3000 functions requested within a user’s program, such as
reading, writing on, and updating files, skipping forward and backward on files, or returning system
table information to the user’s program. In an SPL/3000 program, the user writes the intrinsic calls
explicitly. In FORTRAN/3000, BASIC/3000, or COBOL/3000 programs, for most applications,
the compiler generates any necessary intrinsic calls automatically—they are invisible to the user. At
their option, however, FORTRAN/3000, COBOL/3000, and BASIC/3000 users can also directly

call intrinsics as their needs require, providing added power and flexibility to these standard pro-
gramming languages.

The programmer can use intrinsic calls to invoke the Command Interpreter from within his program,
and pass to it command images that will be interpreted and executed as the corresponding system
commands.

The commands and intrinsic calls discussed in this part of the manual (Part 2) allow the user to
initiate batch jobs and interactive sessions, access the file system, compile and execute programs,
and use other standard capabilities of MPE/3000. They do not, however, permit him to handle
processes, directly access the computer hardware, or use other optional capabilities; the commands
and intrinsic calls for these capabilities are explained in Part 3.

COMMANDS
Each command entered by the user, whether in a batch job or interactive session, consists of

® A colon (used as a command identifier)
® A command name

® A parameter list (in most cases)
31

The end of each command is delimited by the end of the record on which it appears—for
example, a carriage return for terminal input or the end of the card on which it is punched
for card input. But, if the last non-blank character of the record is a continuation character,
as defined later in this section, the end-of-record does not terminate the command. (Users
running programs in batch mode should bear in mind that all 80 columns on each card image
are scanned by MPE/3000, and thus no characters are ignored.)

The colon identifies a statement as an MPE/3000 command. In a batch job, the user begins
each MPE/3000 command with this colon in column 1 of the source card (or card image). In
an interactive session, however, MPE/3000 prints the colon on the terminal whenever it is
ready to accept a command; the user responds by entering the command after the colon.
(Interactive subsystems of MPE/3000 also use unique prompt characters; in a session, the
prompt character output tells the user that a subsystem is ready.)

The command name requests a specific operation, and appears immediately after the colon.
Imbedded blanks are not permitted within the command name. The end of the command name
is delimited by any non-alphabetic character, normally a blank.

The parameter list contains one or more parameters that denote operands for the command. It
is required in some commands but optional or prohibited in others. Parameter lists can include
positional parameters and/or keyword parameter groups. Within the parameter list, delimiters
(commas, semicolons, equal signs, or other punctuation marks) are used to separate parameters
or parameter groups from each other, as described below.

Normally, the parameter list itself is separated from the command name by one or more blanks.
However, when the first optional parameter in a positional list (as defined below) is omitted,
the command name can be followed immediately by any other delimiter. (At the user’s option,
he can include one or more blanks between the command name and this delimiter.) Any de-
limiter can be optionally surrounded by any number of blanks, permitting a free and flexible
command format.

EXAMPLE:

The following command (RUN) is preceded by a colon and includes a parameter list with
two parameters:

$RUN PROG» ENTRYX

Both decimal and octal numbers are permitted as command parameters. Octal numbers, how-
ever, are always preceded by a percent sign (%).

Positional Parameters

With positional parameters, the meaning of the parameter is designated by its position in the
list. For example, in the MPE/3000 command to compile a FORTRAN/3000 program, the
parameter specifying an input file always precedes the one that specifies an output file. Posi-
tional parameters are mutually-separated by commas or semi-colons. The omission of an
optional positional parameter from within a list is indicated by two adjacent delimiters; the

3-2

omission of a positional parameter that would otherwise immediately follow a command name
is indicated by a comma or semi-colon as the first character in the parameter list. When param-
eters are omitted from the end of a list, however, no adjacent delimiters need be included to
signify this — the terminating return or end-of-card is sufficient.

EXAMPLE:

The first command below has its first parameter omitted; the second command has its second
(embedded) parameter omitted; the third command has its last two (trailing) parameters
omitted; the fourth command has all parameters omitted. (In the second and third commands,
the asterisk (*) is not a delimiter, but a special character used to denote a back-reference to a
previously-defined file, as described in Section V. In each case, the asterisk is considered part
of the following parameter.)

¢tFORTRAN »USFL,LISTFL,MFL,NFL
tFORTRAN *SOURCEFLssLISTFLsMFL,NFL
tFORTRAN SOURCEFL,USFL,*LISTFL
tFORTRAN

A further example illustrates the relationship between the positions of parameters in a list and
their meanings:

EXAMPLE:

In the following command (:FORTRAN), three positional parameters appear: INP refers to an
input source file, OUT indicates an object (USL) output file, and LST indicates the listing out-
put file. For the :FORTRAN command, these three fields always have the same meanings.
(Note that the second delimiting comma in the parameter list is followed by an optional blank.
In future examples, for clarity, delimiters will always be followed by blanks.)

tFORTRAN INP,OUT», *LSET

Keyword Parameters

When a parameter list is so long that use of positional parameters becomes difficult, keyword
parameter groups are often used. The meaning of such a group is independent of its position

in the list. A keyword parameter group is designated by a keyword that denotes its meaning,
and optionally an equal sign and one or more sub-parameters. (Each keyword group is pre-
ceded by a semi-colon. When more than one sub-parameter appears in a group, they are usually
separated from each other by commas. Like other delimiters, semi-colons and commas can be
optionally preceded or followed by blanks.) With respect to each other, keyword groups can
appear in any order. When keyword groups and positional parameters both appear in a list,
however, the positional parameters always precede the keyword groups; when this occurs, and

3-3

trailing parameters are omitted from the positional group, their omission need not be noted
by adjacent delimiters; instead, the occurrence of the first keyword indicates this omission.

EXAMPLE:

In this example, DL and CAP designate keyword parameter groups. PH, DS, and MR are sub-
parameters of the keyword CAP.

$PREP INPT, OUTP3 DL=50803 CAP=PH, DS, MR

Continuation Characters

When the length of a command exceeds one record (source card or entry-line), the user enters
an ampersand (&) as the last non-blank character of this record and continues the command on
the next record. In this case, the next record must begin with a colon (entered by the user in
batch processing, but prompted by the terminal in interactive processing). Optionally, blanks
can be embedded between the colon that begins a continuation record, and the rest of the
information on that record. Commands can be continued up to 255 characters, including
prompting colons and continuation ampersands.

EXAMPLE:

The following command image contains a continuation character at the end of the first line:

$RUN PROGB3 NOPR1V3 LMAP3 STACK=S003 PARM=S3 &
t DL=600s LIB=G

In continuing a command onto another line, the user cannot divide a primary command element
(a command name, keyword, positional parameter, or keyword sub-parameter) — no primary
element is allowed to span more than one line.

MPE/3000 does not begin interpretation of a command until the last record of the command
isread. For interpretation, all records within the command are concatenated, and all prompt
characters and continuation ampersands are replaced by one or two blanks.

Command Description Format

To help clarify the command descriptions that appear throughout this manual, system output
is underlined. Input information is not underlined. (In cases where differences in output
occur between batch and interactive processing, interactive output is assumed unles otherwise
noted.) For both input and output, literal information that always appears exactly as shown
is designated by CAPITAL LETTERS AND SPECIAL CHARACTERS IN ITALICS; on the
other hand, symbols that represent variable information are indicated by. lower-case italics.

3-4

Optional information is indicated by surrounding [brackets]. (However, the user does not
enter these brackets as part of the command.) {Braces} indicate that one of the items
included is required and must be entered by the user.

EXAMPLE:

The colon is output by the terminal during interactive sessions (as shown by the underline);
BASIC is a literal command name entered by the user, (as indicated by capital letters); and
commandyfile, inputfile, and listfile are variable parameters input by the user (as shown by
lower-case letters). All three parameters are optional (as indicated by brackets).

_BASIC [commandYfile] [,[inputfile] [, [listfile]]]

When more than one item is enclosed vertically in brackets, this indicates that exactly one of
these items may be specified.

EXAMPLE:

#
_:SHOWJOB jsnumber
jsname

When more than one item is enclosed vertically in braces, this means one item must be speci-
fied.

EXAMPLE:

_:SAVE $OLDP ASS, newfilereference
tempfilereference

If items are shown within vertical and disjoint brackets, this signifies that they are all optional
and that those specified by the user can appear in any order.

EXAMPLE:

RUN progfile [,entrypoint]
[,NOPRIV]
[,.LMAP]
[(MAXDATA = segsize]

Command Errors

All MPE/3000 commands issued, and any system messages for the user, are copied to the job/
session listing device. ‘

When MPE/3000 detects an error in a command, it suppresses execution of that command
and prints an error message. If this occurs during a batch job, (and no :CONTINUE com-

mand precedes the erroneous command, as discussed later) all information between the erro-
neous command and the end of the job is ignored, and the job is aborted. If an error occurs
during an interactive session, an indication is printed and control returns to the user; he may
then re-enter this command correctly, or enter any other command he desires simply by
pressing the carriage-return key and entering the command. Alternatively, if he desires a fuller
explanation of the error, he can request it by entering any character directly after the error-
number shown in the error message. In response, the explanation appears on the next line.
Error messages and on-line error recovery are discussed in Section X.

INTRINSIC CALLS

A major advantage of MPE/3000 intrinsics is that they can be called directly from programs
written in standard, higher-level programming languages (FORTRAN/ 3000, COBOL/3000,
and BASIC/3000) as well as from SPL/3000 programs. The rules for invoking intrinsics from
programs written in standard languages are presented in the manuals covering those languages.
However, because intrinsic calls are issued primarily by users programming in SPL/3000, the
rules for issuing these calls from SPL/3000 programs are summarized below.

Before an intrinsic can be called from an SPL/3000 program, it must be declared within the
declaration portion of the program, following all data declarations, like any other SPL/3000
procedure. This can be done by writing the standard PROCEDURGE declaration. Normally,
such a declaration would contain both the procedure head and the procedure body (code). But,
since an intrinsic is an external procedure, the user follows the normal SPL/3000 conventions
for such procedures by writing only the intrinsic head and including within it the OPTION
EXTERNAL notation. (EXTERNAL signifies that the body code will be supplied from a
library and linked to the user’s program during program allocation.) In this manual, the com-
plete head format for each intrinsic is presented with the discussion of that intrinsic. (Note
that in SPL/3000, each statement is delimited by semi-colons.)

EXAMPLE:

The format for the head of the FREAD (file read) intrinsic is presented in Section VI. Using
this format, the user could write a declaration that will enable him to call the FREAD
intrinsic later in his program. The declaration could appear as follows. Note that the user
must include the OPTION EXTERNAL notation.

INTEGER PROCEDURE FREAD (FNs»TAR,TC)}
VALUE FN,TC3
INTEGER FN»TCs
ARRAY TAR3
’ OPTION EXTERNAL}

3-6

Because some intrinsic heads are rather long, the SPL/3000 programmer can save time and
effort by using an alternative method of declaring intrinsics; the INTRINSIC declaration. This
is written in the following format

INTRINSIC intrinsicname, intrinsicname, . . ., intrinsicname;
In the intrinsicname list, the user names all intrinsics he intends to call within his program.

(When more than one is named, the names are separated by commas.) He then need not
write the heads for these intrinsics.

EXAMPLE:

To use the INTRINSIC declaration to declare the FOPEN, FREAD, FWRITE, and FCLOSE
intrinsics, the user could write:

INTRINSIC FOPEN,FREAD,FWRITE,FCLOSES
Regardless of whether the programmer declares an intrinsic with a PROCEDURE declaration
or an INTRINSIC declaration, he must know the formal head format for each intrinsic, since
this tells him the number and type of parameters that are used in calling that intrinsic.
The user calls an intrinsic in his program exactly as he calls any SPL/3000 procedure: he
writes the intrinsic name and a parameter list, enclosed in parentheses. These elements follow
the positional format shown in the intrinsic head; parameters are separated from each other
by commas.
EXAMPLE:
A call to the FREAD intrinsic could be written as

FREAD (INFILE,BUFFER,-80)3

If the OPTION VARIABLE notation appears in the intrinsic head, some of the intrinsic param-
eters are optional. In this manual, these optional parameters are indicated as bold face in the
intrinsic head formats.
Since all intrinsic parameters are positional, the user indicates a missing parameter within a
list by following the previous delimiting comma with another comma by itself.
EXAMPLE:
The second parameter is missing:
FOPEN (FILENAME»»3))
If the first parameter is omitted from a list, this is indicated by following the left parenthesis

with a comma. If one or more parameters are omitted from the end of a list, this is indicated
by simply writing the terminating right parenthesis after the last parameter included.

3-7

NOTE: In some intrinsic calls, input parameters are passed to the intrinsic
as words whose individual bits or fields of bits signify certain functions
or options. In cases where some of the bits within a word are described
in this manual as “‘not used by MPE/3000,” the user is advised to set
such bits to zero. This will help ensure the compatibility of his current
programs with future releases of MPE/3000.

In cases where output parameters are passed by an intrinsic to words
referenced by a users’ program, bits within such words that are
described as ‘“‘not used by MPE/3000” are set as noted in the dis-
cussion of the particular parameter.

Intrinsic Description Format
In this manual, the complete intrinsic declaration head is shown with the discussion of each

intrinsic; included within this is the intrinsic call format, distinguished from the remainder of
the head by a box. This format appears as follows:

procedure type PROCEDURE | intrinsic name (parameter list)
declaration elements

The procedure type applies only to type intrinsics—those that return a value to the user’s
program in response to the intrinsic call. This describes the type of data returned, such as
integer, real, or byte values. The data is returned through the intrinsic name, as demonstrated
in later examples. Additionally, type intrinsics can be directly related to functions called in
FORTRAN/3000 programs, as noted in the manual HP 3000 FORTRAN (03000-90007).

The declaration elements describe each parameter (variable, pointer, label, and array) in the
parameter list, and its characteristics. If the VALUE notation is present in the declaration,
either a numeric value (expression) or a symbolic identifier may be specified for the parameters
indicated by this notation. If VALUE is not present, only symbolic identifiers may be used

for parameters.

EXAMPLE:

This is the intrinsic description format for the FREAD intrinsic:

(intrinsic name)

(Procedure Type) —— INTEGER PROCEDURE FRE;&D (filenum,target,tcount);

(intrinsic parameters)

(Declaration ————— VALUE filenum, tcount
Elements) —~_—— INTEGER filenum, tcount;
" iRRAY target;
OPTION EXTERNAL;

3-8

Intrinsic Call Errors

Some intrinsics alter the condition code, made available to the user’s FORTRAN/3000 and
SPL/3000 programs through the Status register. Since the contents of this register change
continually, the user should check this register for condition codes immediately upon return
from an intrinsic. A condition code is always one of the following, and has the general
meaning indicated. The specific meaning, of course, depends upon the intrinsic called.

Condition Code General Meaning

CCE Condition code is zero. This generally indicates that the user’s
request was granted.

CCG Condition code is greater than zero. A special condition occurred
but may not have affected the execution of the user’s request.
(For example, the request was executed, but default values were
assumed as intrinsic call parameters.)

CCL Condition code is less than zero. The user’s request was not
granted, but the error condition may be recoverable. Beyond
this condition code, some intrinsics return further error inform-
ation to the user’s program through their return values.

Two types of errors may be encountered when an intrinsic is executed. The first, denoted by
the CCG or CCL condition codes, is generally recoverable and is known as a condition-code
error. The second type is an abort error, which occurs when a calling program passes illegal
parameters to an intrinsic, or does not have the capability class demanded by the intrinsic. The
user’s program may recover from this error or take some other appropriate action if an appropri-
ate error-trap procedure has been defined (as discussed in Section VIII). Otherwise, his program
terminates, and an abort-error message appears on his output device. If the program was entered
in a batch job, MPE/3000 removes the job from the system (unless a :CONTINUE command,
defined later in this section, precedes the error); if it was entered in an interactive session,
MPE/3000 returns control to the user at the terminal. Abort-error messages are described

in Section X.

NOTE: - Whenever a callable intrinsic is invoked by a process running in either
the non-privileged mode, or the privileged mode with the DB register
pointing to the DB area in the user’s stack, a bounds check takes place
to ensure that all parameters in the intrinsic call reference addresses that
lie between the DL and S addresses in the stack (prior to the intrinsic call);
if an address outside of these boundaries is referenced, an abort-error occurs.

When a callable intrinsic is invoked by a process running in the
privileged mode, and the DB register points to a data segment other
than the user’s stack segment, the results depend on the particular
intrinsic. Most intrinsics immediately abort in this case. Others
(indicated in Appendix C) are allowed to execute following a

bounds-check that ensures that all parameters in the intrinsic
call reference addresses that lie within the data segment; any
boundary-violation results in an abort-error. Any additional
special actions taken by a particular intrinsic are described in
the discussion of that intrinsic.

BATCH JOBS

The user can initiate and terminate batch jobs through any device that accepts serial input
(such as a card reader, tape unit, or terminal used non-interactively) located at the computer
site, or through a terminal used non-interactively and located remotely, as discussed below.

Initiating Batch Jobs

A batch job consists of a set of cards (or card images) that begins with a :JOB command, con-
tains additional MPE/3000 commands, user programs, and optional data, and terminates with
an :EOJ command. The :JOB command initiates the job by establishing contact with MPE/
3000. If it accepts this command, MPE/3000 begins job processing. When processing begins,
commands are sequentially accepted from the job until an :EOQJ command is encountered or
until the job is halted by one of the abnormal events described under “Premature Job or
Session Termination.”

A job can be entered through any device configured to accept jobs. The user (or computer
operator) first requests an interrupt on the job input device as follows:

1. For card readers or magnetic tape units, the user turns the device on-line.

2. For terminals, the user turns the terminal on, dials MPE/3000 (if the
terminal is connected over switched telephone lines), and presses the
return key (to generate a carriage return).

NOTE: The device through which a job/session is entered is called the job/
session input device, and is recognized as the standard input file for
the job/session. Each potential job/session input device is related,
during system configuration, to a corresponding job/session listing
device that is recognized as the standard output file for the job/
session (unless another device is designated by the user for this
purpose). There is one job/session input device and one correspond-
ing job/session listing device for each job/session.

3-10

The user writes the :JOB command in the following format. (The keyword parameter groups,
of course, can be specified in any order.)

:JOB [jobname,] username[/upass].acctname[/apass] [,groupname[/gpass]]
[;TERM=termtype]
[;TIME=cpulimit]
[;PRI=executionpriority]
[:INPRI=selectionpriority]
[;:OUTCLASS=outputclass]

The parameters have the meanings noted below.

NOTE:

jobname

NOTE:

username

upass

acctname

apass

groupname

In MPE/3000, names (such as the jobname, username, upass,
acctname, apass, groupname, and gpass parameters noted

below) consist of from one to eight alphanumeric characters,
beginning with a letter, unless otherwise specifically indicated.
Embedded blanks are not permitted within username.accountname
specifications.

An arbitrary name used in conjunction with the username and acctname
parameters to reference this job in other commands. If omitted, a null
jobname is assigned. (Optional parameter.)

A fully-qualified jobname consists of [jobname,] username.acctname.

The user’s name, as established in MPE/ 3000 by the user with Account
Manager Capability. This name is unique within the account. (Required
parameter.)

The user’s password. (Required if the user has been assigned a password
by the user with Account Manager Capability.)

The name of the user’s account, as established by the user with System
Manager Capability. Note that this parameter is preceded by a period
as a delimiter. (Required parameter.)

The account password. (Required if the account has been assigned a
password by the user with System Manager Capability.)

The name of the group (established by the user with Account Manager
Capability) that the user wishes to use, during his job, for his local file
domain and for central processor time accumulation charges. If omitted,
MPE/3000 assigns the user’s home group. (Optional parameter for users
with a home group; Required parameters for users without a home group.)

3-11

gpass

termtype

The group password. When a user logs on under his home group, no pass-
word is needed. (Required parameter for some groups.)

The type of terminal used for input.

(MPE/3000 uses the termtype parameter to determine device-dependent
characteristics such as delay factors for carriage returns.) This parameter
is indicated by one of the numbers 0 through 8, with the meanings shown
below:

0 = ASR 33 EIA-compatible HP 2749B (10-characters per second (cps)).
0 = ASR 35 EIA-compatible (10 cps).

1 = ASR 37 EIA-compatible (15 cps).

3 = Execuport 300 Data Communication Transceiver Terminal (10, 15,
30 cps).

4 = HP 2600A or DATAPOINT 3300 (10-240 cps).
5 = Memorex 1240 (10, 30, 60 cps).

6 = GE Terminet 300 Data Communication Terminal Model B (10, 15,
30 cps).

7 = Selectric (IBM 2741) CALL 360 Correspondence Code (14.8 cps).
8 = Selectric (IBM 2741) (PTTC/EBCD Code) (14.8 cps).
NOTE: Users at IBM Selectric terminals are directed to the NOTE

under the discussion ‘“Initiating Sessions,’ later in this
section.

(Additional information on terminals appears in Section VIII.)

If the termtype parameter is omitted, and a terminal is used, a default of
0 is assigned. (Optional parameter for ASR 33 or ASR 35 terminals;
Required parameter for all others, to ensure correct listings.)

3-12

cpulimit Maximum central-processor time permitted for the job, entered
in seconds. If this limit is reached during the job, the job is
aborted. If a question mark is entered, no limit applies. The maxi-
mum limit entry is 32767. If omitted, an installation-defined
limit applies. (Optional Parameter.)

NOTE: The cpulimit parameter should not be confused with
the central-processor time limit defined for groups and
accounts. The cpulimit parameter (or its default value)
applies to each individual job, and aborts the job as
soon as it is exceeded. The central-processor time limit
for groups and accounts, however, limits the total
central-processor time used by all jobs that have run
under the particular group and account--it is checked
only at log-on time, and can only terminate access at
that time; it will never cause a job in process to abort.

executionpriority The priority (subqueue) desired for MPE/3000 command interpre-
tation, and also the default priority for all programs within the job.
For users with standard capabilities, this may be CS, DS, or ES,
indicating the priorities (subqueues) described in Section II. For
users with optional capabilities, this may be any of the priorities
described in Part 3 (depending on the maximum subqueue priority
permitted this user). If the priority specified exceeds that per-
mitted for this user, the highest priority possible below BS applies.
If this parameter is omitted, CS is assigned by default. (Optional
Parameter.)

selectionpriority The relative priority to be used for selecting this job when several
jobs of equal executionpriority are ready to begin processing. This
parameter is one or two digits, ranging from 0 (lowest priority) to
15 (highest priority). The default value is 8. Note that this param-
eter merely supplements other criteria used to determine final
selection. Additionally, other factors being equal, candidates of
equal priority are serviced on a first-in, first-out basis. (Optional
Parameter.)

outputclass A particular device (such as a specific line printer) to be used for
listing output. This parameter is a device class name or a logical
device number (as defined in Section V), and may only be entered
by users who have the non-sharable input/output device file-access
attribute. If this parameter is omitted, the device assigned is the
one defined (during system configuration) as the default job/
session listing device that always corresponds to the user’s current
input device. (Optional Parameter.)

The upass, apass, and gpass parameters, when included, must be separated from their preceding
parameters with a slash. (The slash should not be preceded nor followed by blanks.) When
the job list device is not the job input device, passwords are not printed on the job listing.

3-13

EXAMPLE:

This job is named ALPH22, and is entered under the user name RJOHNSON, account name
ACCT1003, and the group GPA2. The group password MG03 is used. A central processor
time limit of 300 seconds is entered. An execution priority of DS is requested. For all other
parameters, default values apply. Notice the continuation character (&) at the end of the
first line.

:JOB ALPH22,RJOHNSON.ACCT1003, GPA2/MGP33 TIME=3903 &
¢PRI=DS

If the central-processor time already accumulated by previous jobs exceeds the total time
allotted for the user’s account or group, the job is rejected upon submission. (Note that
these account/group limits are checked only at the start of a job.) Otherwise, the job runs
until completed or until aborted because of an error or because the limit designated by the
cpulimit parameter in the :JOB command is reached.

All MPE/3000 commands encountered during job processing are listed on the job listing
device (typically, a printer). Acceptance of the job is indicated by information output in
the following format, immediately after the listing of the :JOB command.

JOB NUMBER = #Jnnnnn
date, time
HP32000v.uu.ff

nnnnn Job number assigned by MPE/3000 to uniquely identify the job to the
system. This may range from one to five digits long. The user can
reference the job in subsequent commands by this number or by the
job identification specified through the :JOB command:

[jobname,] username.acctname

date Current date (day-of-week, month and day, year)
time Current time (hours:minutes am/pm)
v MPE/3000 version level.
uu MPE/3000 update level.
ff MPE/3000 fix level.
EXAMPLE:

If the job in the previous example had been assigned the job number 7, and had been sub-
mitted at 3:23 p.m. on January 31, 1972, the job output listing would appear as follows (with
the beginning of the acceptance message shown here by an arrow):

tJOB ALPH22,RJOHNSON.ACCT1003, GPA2/MGA3; TIME=300; &
$PRI=DS
JOB NUMBER = #J7
’ MONs JAN 31, 1972, 3:23 PM
HP32000B«. 2. 28

3-14

Terminating Batch Jobs

The :EOQJ command terminates the batch job. This command has no parameters and is
written simply as

:EOJ

When this command is encountered, MPE/3000 acknowledges job termination by printing
the following information on the job listing

CPU(SEC) = cputime
ELAPSED (MIN) = elapsedtime

date, time

END OF JOB

cputime Total central processor time used by job, in seconds, charged to
account and group.

elapsedtime Total wall-clock time between the beginning and end-of-job, in
minutes. This value is not charged to the account and group.

date Current date (day-of-week, month and day, year)

time Current time (hours:minutes am/pm)

If no :EOQJ command is included to terminate the current job, the next :JOB command will
have one of the following effects:

1. If read by the MPE/3000 Command Interpreter, it will terminate the current job
and start a new one.

2. If read by a user’s program, it will signal an end-of-file to the program but will be
ignored by MPE/3000. (Because this can occur, the user should be sure that he
terminates his job with an :EOJ command.)

Typical Job Structures

All batch jobs must begin with a :JOB command and terminate with an :EOJ command.
Additionally, the end of each program input within a job should be indicated with an :EOD
command, (written simply as :EOD). Beyond this, job structures can vary considerably from
application to application.

3-15

EXAMPLE:

A job submitted through the card reader to compile and execute a program might appear as
follows. (Note that an :EOD card denoting the end of the program must precede the :EQJ
card.)

=
= 1
L =

(User Source Program in Compiler Language)

/Compiler Call/Program Execute Command

B
:JOB Command “

When data is included within a job, its end must also be indicated with an :EOD command.
(Users writing language processors and other subsystems should be aware that MPE/3000, when
reading input from the standard input stream, interprets any record beginning with a colon as
the end-of-data, whether or not this record contains an :EOD command. The :EOD command
is used as a data delimiter in general applications because it executes no additional functions.)

EXAMPLE:

The job shown below includes data to be processed during program execution:

=1
[(User Source Program in Compiler Language)

v
(Compiler Call/Program E xecute Command

It
:JOB Command ’ l JJ

3-16

Of course, jobs with much more elahorate structures are possible. Such jobs may contain
several user programs, input to different compilers, obtaining input data from various sources,
and transmitting output data to several devices:

EXAMPLE:
The following job contains: a FORTRAN/3000 program to be compiled and executed; data

for that program; and an SPL/3000 program to be compiled and executed, with data input
from a disc file.

s
L=

((Users SPL Program) 1'

//:SPL Call/Program Execute Command

(EOD J’UJI

/
pa
/
/
/
— |
71l

r User Data for FORTRAN Program

= |

i
=

= .ﬂﬂlm

ﬂUser's FORTRAN Program)

r :FORTRAN CaII/Prograrr!n Execute Command

W

:JOB Command

3-17

INTERACTIVE SESSIONS

The user initiates and terminates interactive sessions from a terminal. (Non-interactive devices
cannot be used for this purpose.)

Initiating Sessions

The user initiates a session by turning the terminal on, dialing MPE/3000 (if the terminal is
connected over switched telephone lines), pressing the return key to generate a carriage return
and produce the first prompt character (colon), and entering the :HELLO command described
below. This logging-on establishes contact with MPE/3000 and allows the user to enter com-
mands to compile and run programs or request other MPE/3000 standard capabilities. From
this point on, the user is automatically prompted for each command (and thus does not type
the colon). The session exists until the user issues a command to terminate it, or until one of
the conditions described under ‘‘Premature Job or Session Termination” occurs.

NOTE:

Users at IBM 2741 Selectric Terminals (PTTC/EBCD Code
or Call 360 Correspondence Code) must always type H or
h as the first character of their input following the initial
prompt character; this enables MPE/3000 to determine
(from this character’s bit pattern) the type of Selectric
being used.

Users at IBM 2741 Selectric Terminals (CALL/360 or
PTTC/EBCD code) should note that any CALL/360 or
PTTC/EBCD character that does not have an equivalent
ASCII character is ignored on input.

Users at IBM 2741 Selectric Terminals (Call 360 Corre-
spondence Code) will receive a not-equals sign (#) as
the first prompt character.

The user enters the :HELLO command in the following format

_HELLO [sessionname,] username[/upass] .acctname[/apass] [,groupname/,gpassj]
[;TERM = termtype]
[, TIME = cpulimit]
[;PRI = executionpriority]
[;INPRI = selectionpriority]

The parameters have the meanings noted below.

NOTE:

The sessionname, username, upass, acctname, apass,
groupname and gpass parameters are all names that
can contain up to eight alphanumeric characters,
beginning with a letter.

3-18

sessionname An arbitrary name used in conjunction with the username and
acctname parameters to reference this session in other commands.
If omitted, a null sessionname is assigned. (Optional parameter.)

username
upass
acctname
apass

groupname The same definitions noted under the corresponding parameters

8pass in the :JOB command, applying to sessions rather than jobs.
termtype

executionpriority
selectionpriority

cpulimit The same definition noted for cpulimit in the :JOB command,
applying to sessions, and with this exception: if the cpulimit
parameter is omitted, no limit applies.

The upass, apass, and gpass parameters, when included, must always be separated from their
preceding parameters by a slash. (This slash should not be bounded by blanks.)

EXAMPLE:

In the following command, the user establishes a session named INTERS3, under the user name
JONES, account name ACT20, and GROUP 3. The account password of PASS is also entered.

$HELLO INTER3,JONES.ACT28/PASS, GROUP3

When a user is beginning a session through a terminal connected over switched telephone lines
(a dial-up terminal), he must specifically log on within a period defined during system configu-
ration. Otherwise, his terminal is disconnected and he must dial MPE/3000 again.

When entering a session through certain full duplex terminals, the user can suppress the printing
(echoing) of passwords at his terminal by temporarily requesting half-duplex mode (by pressing
the ESC and ; keys). (The user returns to full-duplex mode by pressing the ESC and : keys.)
Where the terminal does not permit dynamic half-duplex operation, the user can conceal the
passwords simply by omitting them from the command; in this case, after the :HELLO com-
mand is echoed, MPE/3000 outputs a corresponding request for each required password, directs
the carriage to skip one line, prints an eight-character mask, and returns the carriage to the
beginning of the line, as shown:

USER
ACCOUNT PASSWORD?
GROUP

NNNNNNNN <—— (mask)

! (carriage return)

3-19

The user then enters the password. The password is echoed on the input/listing device, but is
printed on top of the mask to ensure privacy.

EXAMPLE:

Suppose that a group password of ORG was required, but not entered, in the command
shown in the previous example. The user would be prompted for the password, and would
enter it (over the mask) as follows:

S$HELLO INTER3,JONES.ACT20/PASS, GROUP3
GROUP PASSWORD?

| JECTTUTLND

For sessions in which input and listing output are generated on separate devices, MPE/3000
omits the password entered.

Upon initiation of the session, the following information is transmitted to the terminal:

SESSION NUMBER = #Snnnnn
date, time
HP32000v.uu. ff

nnnnn Session number assigned by MPE/3000 to uniquely identify the session. This
may range from one to five digits long.

date Current date (day-of-week, month and day, year)
time Current time (hours:minutes am/pm)

v MPE/3000 version level.

uu MPE/3000 update level.

ff MPE/3000 fix level.

3-20

EXAMPLE:

Suppose that the session in the previous example is accepted by MPE/3000 under the session
number 512 at 12:37 p.m. on May 5, 1972, The following information would be output.
(Remember, the mask is printed before the password may be entered,)

+HELLO INTER3,JONES.ACT20/PASS, GROUP3
GROUP PASSWORD?
DO DI04 D4 DU DI

. SESSION NUMBER = #8512
FRI,MAY 5, 1972, 12:37 PM
HP32000B. 22« N8

If the connect time or the central processor time limit allotted to the account or group speci-
fied by the :HELLO command has been exceeded by previous sessions or jobs, the current
session is rejected at log-on. If these limits expire during the session, however, the session is
allowed to continue until terminated by the user; the next session under this account or
group, however, will be rejected at log-on.

If the user enters an illegitimate :HELLO command, the following error message appears:
:ERR 8
At this point, a request to re-enter the :HELLO command appears. (The erroneous element

in the previous :HELLO command is not identified.)

NOTE: A system power or line failure automatically results in the permanent
termination of sessions; the sessions must be reinitiated from the
beginning.

Interrupting Program Execution Within Sessions

The user can interrupt execution of a program or subsystem at any point in a session by
striking the BREAK key. (However, the BREAK key does not interrupt execution of
MPE/3000 commands.)

This returns control to the MPE/3000 Command Interpreter, allowing the user to issue

commands to abort the program (without disrupting the session), perform various file or
utility operations, or resume the program.

3-21

To abort the program, the user enters this command:

:ABORT

To request an operation (such as creating or deleting a file), the user enters the command for
that operation. File and utility commands are executed immediately. Some commands,
however, require aborting of the user’s program before they can be executed. When the user
enters such a command during a program break, MPE/3000 prints:

ABORT?

The user responds by entering YES (to abort the current program and execute the command)
or NO (to return control to the Command Interpreter).

To resume a program at the point where it was interrupted, the user enters:

:RESUME

If a read operation was pending for the program on the terminal when the break occurred,
the following message is output:

READ PENDING

The user must satisfy the pending read before program execution can resume. (All characters
entered before the break are retained.)

NOTE: The :ABORT and :RESUME commands are legitimate only during a break.

Terminating Sessions
To terminate a session, the user enters the following command:

:BYE

MPE/ 3000 acknowledges termination by printing the following information:

CPU (SEC) = cputime
CONNECT (MIN) = connecttime
date, time

END OF SESSION

cputime = Total central-processor time used by the session, in seconds, logged
against group and account.

connecttime Total wall clock time between log-on and log-off, in minutes,
logged against group and account.

date Current date (day-of-week, month and day, year)

time Current time (hours:minutes am/pm)

3-22

EXAMPLE:

Typical terminal output resulting from logging off:
$BYE

CPU _(SEC)=4

CONNECT (MIN)=2

THULMAY 7, 1973, 12:56 PM
END OF SESSION

For accounting purposes, the connect time is rounded upward to the nearest minute, and
the central processor time is shown in seconds. Both sums are added to the usage counters
for the session’s account and group.

If the user hangs up the receiver at a dial-up terminal, an implicit :BYE command is issued and
the session terminates.

Typical Session Structure

All sessions must begin with a :HELLO command. They typically terminate with a :BYE
command. The end of data within a session must be indicated with the : EOD command.

If a user issues a second :HELLO command within his current session, this results in an im-
plicit :BYE and :HELLO sequence - that is, it terminates the current session and starts
another one,

The structure of sessions varies with the application. One example follows.

EXAMPLE:

_:HELLO (Session, user, and account identification.)

SESSION NUMBER = #Snnn
(date) (time)
HP3200v.uu.ff

_(MPE/3000 Command to call BASIC Interpreter.)

(User Program in BASIC.)
(User Command to exit from BASIC Interpreter.)
:BYE

CPU (SEC) = cputime
CONNECT(MIN) = connecttime
date, time

END OF SESSION

3-23

READING DATA FROM OUTSIDE STANDARD INPUT STREAM

Users can designate, for a job or session, input consisting only of data to be read from a non-
sharable, auto-recognizing device that is not the standard input device for that job or session.
(An auto-recognizing device is one that automatically accepts the :JOB, :HELLO, or :DATA
commands.) This designation is typically made to read a deck from a card reader while in
session mode. Indeed, it is required for every data deck not imbedded in the standard input
stream ($STDIN).

To designate the data for the job or session, the user must precede the data with the :DATA
command and terminate it with the :EOD command. The :DATA command implicitly
initiates communication with MPE/3000 and thus is the only command that is not entered
within a formally-initiated job or session. (Note that the :DATA command does not apply to
data from non-auto recognizing devices, or data imbedded in the job or session input stream.)

The :DATA command format is
DATA [jobname,] username[/upass] .acctname[/apass] [;filename]

jobname The name of the job or session that is to read the data.
(Optional parameter.)

username The user’s name, as established in MPE/3000 by the user

3 p—— g
(A complete job with Account Manager Capability. (Required parameter.)

or session identi-
fication.) upass The user password.(Required if user has a password.)

acctname The name of the account, as established by the user with
System Manager Capability. (Required parameter.)

apass The account password.(Required if account has a password.)

filename An additional qualifying name for the data that can be used by the job or
session to access the data. It may be used, for example, to distinguish two
separate data decks from different card readers read by the same program.
If filename is omitted, no such distinguishing name is assigned. (Optional
parameters.)

The data can only be read by a job or session that has the same identity:
[jobname,] username.acctname
The data exists in the system until read by the job/session.

If the filename parameter is omitted from the :DATA command, then the data can be read by
any access from the job with the corresponding identity.

If the job attempts to read data but omits the file formaldesignator when opening the data
file, any file preceded by a :DATA command referencing that job’s identity will satisfy the
request.

The jobname, username, acctname, and filename parameters are all names that can contain up
to eight alphanumeric characters, beginning with a letter.

3-24

EXAMPLE:

To designate a card data file for a session identified as JOBSP, BLACK.ACTSP, the user
submits the following :DATA command on a card preceding the data deck:

. tDATA JOBSPsBLACK.ACTSP3s FILESP

CUSER DATA)

tEOD

The session can access the data in the card file by specifying the card reader (either by
device class name or logical device number, as shown in Section V), and the filename
FILESP.

PREMATURE JOB OR SESSION TERMINATION

A job is terminated before an :EOJ command is encountered, if any of the following events
occur:

1. The Console Operator issues a command to terminate the job.

2. MPE/3000 aborts the job because an error occurred in the interpretation or execution
of an MPE/3000 command.

3. MPE/3000 aborts the job because a subsystem error was encountered.
4, A program within the job is aborted.

5. A second :JOB command or a :DATA command is encountered. It will be executed,
resulting in job termination (unless it is read as part of a program’s data input from a
file/device, in which case it signals an end-of-file to the program but is ignored by
MPE/3000).

6. The central processor time limit specified in the cpulimit parameter of the :JOB com-
mand (or its default value) was exceeded.

Events 2 through 4 (above) place the job in an error state (by setting the error state flag).
Normally, this results in job termination. But, if the user anticipates an error as a result of
a specific command, he can override premature termination by using the : CONTINUE
command before that command. The :CONTINUE command format is

:CONTINUE

The :CONTINUE command permits the job to continue even though the following command
results in an error (in which case the error state indication is re-set).

3-25

EXAMPLE:

Suppose the user submits a job to execute three programs (with the :RUN command),
but anticipates a probable terminating error in the first program. To continue the job
and execute the second and third programs, he uses the :CONTINUE command as
follows:

$1JOB JUNAM» UNAM« ACCTNAM
$CONTINUE

tRUN PROG!

$RUN PROG2

tRUN PROG3

1EO0J

A session may be terminated before a :BYE command is encountered, if any of the following
events occur:

1. The Console Operator issues a command to terminate the session.
2. A second :HELLO command, or a :JOB or :DATA command, is encountered in the
session input stream. This will implicitly result in a :BYE command, terminating the

current session.

3. The central processor time limit specified in the cpulimit parameter of the :HELLO
command was exceeded.

3-26

SECTION IV

Compiling, Interpreting,
Preparing, and Executing Programs

After a user initiates a batch job or session, he can enter commands to compile, prepare, and

execute user programs or to access various MPE/3000 subsystems. Most of these commands

require references to files used for input and output. For instance, a command to compile a

program references a file that contains source program input, another used for program listing
output, and a third used for object program output. Because of the importance of file references

as command parameters, some of the rules for specifying files are introduced before the compilation,
preparation, and execution commands themselves. The complete rules concerning files are dis-
cussed in Sections V and VI.

REFERENCING FILES

When compiling, preparing, or executing programs, the user can designate the files to be used
for input and output in either of two ways:

1. By naming the files as positional parameters (called actual file designators) in the
compilation, preparation, or execution command.

2. By omitting optional parameters from the compilation, preparation, or execution
command, allowing MPE/3000 to assign standard default files.

Specifying Files as Command Parameters

The user can name the following types of files as parameters in a compilation, preparation,
or execution command.

® System-Defined Files
] User Pre-Defined Files
° New Files

® Old Files

4-1

SYSTEM-DEFINED FILES. System-defined file designators indicate those files that MPE/3000
uniquely identifies as standard input/output devices for a job/session. They are referenced by
the following actual file designators:

Actual File Designator Device/File Referenced

$STDIN A filename indicating the standard job or session input
device (that from which the job or session is initiated).
For a job, this is typically a card reader. For a session,
this is typically a terminal. Input data images in the
$STDIN file should not contain a colon in Column 1,
since this indicates the end-of-data. (When data is to
be delimited, this is properly done through the :EOD
command, which executes no other functions.)

$STDINX Equivalent to $STDIN, except that MPE/3000 command
images (those with a colon in Column 1) encountered in
a data file, are read without indicating the end of data.
(However, the commands :JOB, :DATA, :EQJ, and
:EOD are exceptions that always indicate the end-of-data
and are never read as data.) Furthermore, any requests
with a byte count less than 5 indicate the end-of-data in
this file, if there is a colon in Column 1.

$STDLIST A filename indicating the standard job or session listing
device. The job or session listing device is customarily
a printer for a batch job and a terminal for a session.

$NULL The name of a non-existent ‘“ghost” file that is always
treated as an empty file. When referenced as an input
file by a program, that program receives an end-of-data
indication upon each access. When referenced as an
output file, the associated write request is accepted by
MPE/3000 but no physical output is actually performed.
Thus, $NULL can be used to discard unneeded output
from a running program.

USER PRE-DEFINED FILES. A user pre-defined file is any file that was previously defined
or redefined in a :FILE command, as discussed in Section V. In other words, it is a back-
reference to that :FILE command. In compilation, preparation, or execution commands,
the actual file designator of this file is written as

*formaldesignator
formaldesignator = The name used in the formaldesignator

parameter of the :FILE command
(Section V).

NEW FILES. New files are files that have not yet been created, and are being created/opened
for the first time by the current batch job or interactive session. New files can have the
following actual file designators:

Actual File Designator File Referenced

$NEWPASS A temporary disc file that can be automatically passed
to any succeeding MPE/3000 command within the same
job/session, which references it by the filename $OLDPASS.
(Passing is explained in later examples.) Only one such file
with this designation can exist in the job/session at any
one time. (When $NEWPASS is closed, its name is auto-
matically changed to $OLDPASS, and any previous file
named $OLDPASS in the job/session is deleted.)

filereference Any other new file to which the user has access. Unless
the user specifies otherwise, this is a temporary file,
residing on disc, that is destroyed upon termination of
the program. If closed as a job/session temporary file, as
shown in Section V, it is saved until the end of the
job/session, when it is purged. If closed as a permanent
file, it is saved until purged by the user. Typically, this
format consists of a file name containing up to eight
alphanumeric characters, beginning with a letter. In
addition, other elements (such as a group name, account
name or lockword) can be specified. The complete rules
governing the filereference format are presented in
Section V.

OLD FILES. Old files are existing files currently-resident in the system. They may be named
by the following designators:

Actual File Designator File Referenced
$OLDPASS The name of the temporary file last closed as NEWPASS.
filereference Any other old file to which the user has access. It may

be a job/session temporary file created in this or a previous
program in the current job/session, a permanent file

saved by any program in any job/session, or a permanent
file built (with the :BUILD command) in any job/session.
The format is the same as filereference, noted above and
defined in Section V.

INPUT/OUTPUT SETS. All of the preceding actual file designators can be classified as those
used as input parameters (Input Set) and those used as output parameters (Output Set). These
sets, referred to frequently throughout this manual, are defined as follows:

Input Set
$STDIN
$STDINX
$OLDPASS

$NULL

*formaldesignator
filereference
Output Set
$STDLIST
S$OLDPASS
$NEWPASS
$NULL
*formaldesignator

filereference

The job/session input device.
The job/session input device with commands allowed.
The last SNEWPASS file closed.

A constantly-empty file that will produce an end-of-file
indication whenever it is read.

A back-reference to a previously-defined file,

A file name, and perhaps account and group names and a
lockword.

The job/session listing device.

The last file passed.

A new temporary file to be passed.

A constantly-empty file.

Ay back-reference to a previously-defined file.

A file name, and perhaps account and group names and a
lockword. :

Further information on how these files are specified is presented under “Implicit :FILE

Commands” in Section V.

Specifying Files By Default

When a user omits an optional file parameter from a compilation, preparation, or execution
command, the subsystem invoked uses one of the members of the input or output set by

default. The file designator assigned depends on the specific command, parameter, and operating
mode, as noted later in this section.

4-4

USING THE BASIC/3000 INTERPRETER

The BASIC/3000 Interpreter is generally used for on-line programming during sessions.
However, it can also be used to interpret BASIC/3000 programs submitted in the batch-job
mode. In either case, the user calls the BASIC/3000 Interpreter with a command of the
following format.

_BASIC [commandfile] [, [inputfile] [,listfile]]

commandfile Source file (device) from which BASIC commands and statements
are input. This can be any ASCII file from the input set. (The
designator BASCOM, however, must not be used.) If omitted, the
default file $STDINX is assigned; (in sessions, this is typically the
terminal; in batch jobs, it is usually the card reader). (Optional
parameter.)

inputfile Source file containing data input to BASIC program. This can be any
ASCII file from the input set. (The designator BASIN, however, must
not be used.) If omitted, the default file $STDINX is assigned;
(for sessions, this is typically the terminal; in jobs, it is typically the
card reader). (Optional parameter.)

listfile Destination file for BASIC program listing and output. Can be any
ASCII file from output set. (The designator BASLIST, however, must
not be used.) If omitted, the default value $STDLIST (typically, the
terminal for sessions or the printer for jobs) is assigned. (Optional
parameter.)

EXAMPLES:

The following :BASIC command, entered during a session, specifies (by default) a terminal
as the source for BASIC commands and input data, and the destination of output data
generated by the user’s program. (This is the application of the :BASIC command used most
commonly.)

$BASIC

In special cases, the programmer may not use the terminal for input/output. The next
:BASIC command, encountered during a batch job input through the card reader specifies

the card reader (default input device) as the source of BASIC commands, the user-created

disc file DATABANK as the source of input data, and the line printer (default list device)

as the destination of output data. (Notice that the omission of the first parameter is indicated
by beginning the parameter list with a comma.)

tBASIC » DATABANK

When the BASIC/3000 Interpreter has been entered, a greater-than sign (>) is used as the
prompt character. This is returned by the terminal during sessions or entered by the user
during jobs.

4-5

COMPILING/PREPARING/EXECUTING PROGRAMS

User source programs written in compiler languages undergo the operational steps outlined
below. In most cases, the details of these steps will be invisible to the user during normal
compilation and execution. When necessary, however, the user can advance through each of
these steps independently, completely controlling the specifics of each event along the way.

1. The source language program is compiled (translated by a compiler) into binary
form and stored as one or more relocatable binary modules (RBM’s) in a specially-
formatted disc file called a user subprogram library (USL). There is one RBM for
each program unit. (A program unit is a self-contained set of statements that is the
smallest divisible part of a program or subprogram. In FORTRAN/3000, this can be
a main program, subroutine, function, or block data unit. In SPL/3000, it can be an
outer block, or procedure. In COBOL/3000, it can be a main program, subroutine,
or section.) In USL form, however, the program is not yet executable.

2. The USL is then prepared for execution by the MPE/3000 Segmenter. The Segmenter
binds the RBM’s from the USL into linked, re-entrant code segments organized on a
program file. (In preparation, only one USL can be used for RBM input to the pro-
gram file.) At this point, the special segment for the input of user data (the stack)
is also initially defined.

3. The program file is allocated and executed. In allocation, the segments from the
program file are bound to referenced external segments from segmented libraries
(SL’s). Then the first code segment to be executed, and the stack are moved into
main memory and execution begins. '

Over a period of time, the user can produce RBM’s on the same USL through several compi-
lations. If there is only one main program or outer block RBM containing active entry points,
this USL can be prepared onto a program file and run. This allows the user to compile his
main program and procedures separately.

During compilation, if a program unit is designated as privileged, the corresponding RBM is
flagged as privileged in the USL.

During preparation, the USL and program files are opened as job temporary files. For both
files, the Segmenter first searches for a file of the proper name that exists as a job temporary
file; if such a file cannot be found, the Segmenter searches for a permanent file of the
appropriate name. If no program file of the referenced name exists, the Segmenter creates a
new program file that is saved in the job temporary file domain, and prepares into this. If any
RBM from the USL is flagged as privileged, the user must have the privileged mode (PM)
optional capability to prepare it; once prepared, the entire segment containing the privileged
RBM is flagged as privileged. During preparation, the capability-class attributes of the program
are also determined (by the user or by the default option).

A particular program can be run by many user processes at the same time, because code in a
program is inherently sharable.

4-6

Before allocation/execution is initiated, MPE/3000 checks to verify the following points:

a.

For program files that are permanent files, the capabilities assigned to the program
must not exceed those assigned to the group to which the program file belongs;
otherwise, an error occurs.

For program files that are temporary files in the job/session domain, the capabilities
assigned to the program must not exceed those of the user running the program;
otherwise, an error occurs.

For privileged segments, when the NOPRIV parameter is omitted from the :RUN
(program execution) command, the capabilities assigned to the program must
include the privileged mode capability for the segment to be loaded in privileged
mode; otherwise, an error occurs.

The compilation, preparation, and execution of a program can be requested by individual com-
mands or by a single command that performs all three operations. In the following pages, all
of these commands are described.

Compilation Only

To compile a source-language program, the user enters a command of the following format:

_.compiler [textfile] [, [uslfile] [,[listfile] [,[masterfile] [,newfile]] |]

compiler

textfile

uslfile

FORTRAN for the FORTRAN/3000 compiler; SPL for the
SPL/3000 compiler; or COBOL for the COBOL/3000 compiler.

Input file (device) from which the source program is to be read.
This can be any ASCII file from the input set. (The following
designators, however, must not be used: SPLTEXT (SPL/3000),
FTNTEXT (FORTRAN/3000), or COBTEXT (COBOL/3000).)
If omitted, the default file $STDIN (the current input device) is
used. (Optional parameter.)

The name of the USL file on which the object program is written.
This can be any binary file from the output set. (The following
designators, however, must not be used: SPLUSL (SPL/3000),
FTNUSL (FORTRAN/3000), or COBUSL (COBOL/3000).) If
the uslfile parameter is entered, it must indicate a file previously
created by the user in one of three ways:

1. By saving a USL file (through the :SAVE command,
discussed in Section V) created by a previous compi-
lation where the default value was used for the
uslfile parameter.

4-7

2. By building the USL (through the segmenter subsystem
command — BUILDUSL, discussed in Section VII.)

3. By creating a new file of USL type (through the :BUILD
command discussed in Section V, with the decimal code
of 1024 or the mnemonic USL used for the filecode
parameter).

If the uslifile parameter is omitted, the default file SOLDPASS is
assigned, unless there is no passed file (in which case, SNEWPASS
is used). (Optional parameter.)

listfile The name of the file to which the program listing is to be generated.
, This can be any ASCII file from the output set. (The following
designators, however, must not be used: SPLLIST (SPL/3000),
FTNLIST (FORTRAN/3000), or COBLIST (COBOL/3000).) If
omitted, the default file $STDLIST (typically the terminal in a
session or the printer in a batch job) is assigned. (Optional parameter.)

masterfile The name of a file to be optionally merged with textfile and written
onto a file named newfile, as discussed in the manuals covering com-
pilers. (The following designators, however, must not be used:
SPLMAST (SPL/3000), FTNMAST (FORTRAN/3000), or COBMAST
(COBOL/3000).) If masterfile is omitted, no merging takes place.
(Optional parameter.)

newfile The file on which the (re-sequenced) records from textfile (and
masterfile) are placed. (The following designators, however, must
not be used: SPLNEW (SPL/3000), FTNNEW (FORTRAN/3000),
or COBNEW (COBOL/3000).) When neuwfile is omitted, no new
file is created. (Optional parameter.)

EXAMPLES:

The following command compiles a FORTRAN/3000 source program entered by a user through
the job/session input device, into an object program in the USL file $NEWPASS. It also
transmits listing output to the job/session list device. (If the next command is one to brepare
an object program, SNEWPASS can be passed to it as an input file. Note that a file can only

be passed between commands or programs within the same job or session.)

3FORTRAN

The following example illustrates the passing of a file between two successive compilations. In
this example, the :FORTRAN command compiles a program into the USL file $NEWPASS
(because the default value for uslfile is taken, and no passed file presently exists). The :SPL
command compiles another program into the same USL, passed to this command under the
redesignation $OLDPASS. (When no passed file exists, SNEWPASS is used,; when a passed file
exists, that file (SOLDPASS) is used.) After the second compilation, $OLDPASS contains
RBM'’s from both compilations:

tJOB MYNAME.MYACCT
+FORTRAN

(FORTRAN SOURCE PROGRAM)

sEOD
sSPL

(SPL SOURCE PROGRAM)
sEOD

sEQJ

The following command compiles a COBOL/3000 source program residing on the disc file
SOURCE into an object program on the USL file OBJECT, with a program listing generated
on the disc file LISTFL.

$COBOL SOURCE, OBJECT, LISTFL

Compilation/Preparation
To compile and prepare for execution a source-language program, the user enters a command
in the following format. (The USL file created during compilation is a temporary file passed
directly to the preparation mechanism; it is accessible to the user as $OLDPASS only if the
progfile is not SNEWPASS.)
_:compiler [textfile] [, [progfile] [,[listfile] [,[masterfile] [,newfile]]]]

compiler FORTPREP for the FORTRAN/3000 compiler; SPLPREP for the
SPL/3000 compiler; or :COBOLPREP for the COBOL/3000 compiler.

4-9

textfile

progfile

listfile

masterfile
newfile

NOTE:

Input file (device) from which the source program is read. This can be

any ASCII file from the input set. (The following designators, however,
must not be used: SPLTEXT (SPL/3000), FTNTEXT (FORTRAN/3000),
or COBTEXT (COBOL/3000).) If omitted, the default file $STDIN

(the current input device) is used. (Optional parameter.)

The name of the program file onto which the prepared program seg-
ments are to be written. This can be any binary file from the output

set. The user must create this program file (unless the default NEWPASS
is taken). He does this in one of two ways:

1. By creating a new file of program-file type (through the
:BUILD command discussed in Section V, with the decimal
code of 1029 or the mnemonic PROG used for the
filecode parameter).

2. By specifying a non-existent file in the progfile parameter of the
:FORTPREP, :SPLPREP, or :COBOLPREP command, in which
case a file of the correct size and type is created.

If omitted, the default file $NEWPASS is assigned. (Optional
parameter.)

The name of the file to which the program listing is written. This can
by any ASCII file from the output set. (The following designators,
however, must not be used: SPLLIST (SPL/3000), FTNLIST
(FORTRAN/3000), or COBLIST (COBOL/3000).) If omitted, the
default file assigned is $STDLIST (usually the terminal in a session
or the printer in a batch job). (Optional parameter.)

The same meanings described under compilation.

This command is equivalent to a compilation command followed by a :PREP
command (as described later in this section). Thus, for FORTRAN/3000,
the command
_FORTPREP [textfile]
[, [progfile]
[, [listfile]
[, [masterfile]
[,newfile]]]]

is equivalent to

_FORTRAN [textfile]
L SNEWPASS
Llistfile
,masterfile
,hewfile
_PREP S$OLDPASS
,progfile

-4-10

EXAMPLES:

The following command compiles and prepares an SPL/3000 program entered through the
Job/session input device. The resulting program file is named $NEWPASS, and the program
listing is printed on the job/session list device. (If the next command is one to execute the
program, the file SNEWPASS is referenced in the execute command under the name
SOLDPASS.)

$SPLPREP

The next command compiles and prepares a FORTRAN/3000 source program input from a
source file named SFILE into a program file named $NEWPASS. The resulting program listing
is printed on the job/session listing device.

sFORTPREP SFILE

Compilation/Preparation/Execution

To compile, prepare, and execute a program, a command of the following format is entered.
(This command creates a temporary USL file that is not accessible by the user, and a program
file available to the user as $§OLDPASS.)

:compiler [textfile] [, [listfile] [, [masterfile] [,newfile]]]]

compiler FORTGO for the FORTRAN/3000 compiler; SPLGO for the SPL/3000
compiler; or :COBOLGO for the COBOL/3000 compiler.

textfile Input file (device) from which source program is read. This can be any
ASCII file from the input set. (The following designators, however,
must not be used: SPLTEXT (SPL/3000), FTNTEXT (FORTRAN/3000),
or COBTEXT (COBOL/3000).) If omitted, the default file $STDIN
(the current input device) is assigned. (Optional parameter.)

listfile The name of the file to which the program listing is transmitted. This can
be any ASCII file from the output set. (The following designators,
however, must not be used: SPLLIST (SPL/3000), FTNLIST
(FORTRAN/3000), or COBLIST (COBOL/3000).) If omitted, the
default file assigned is $STDLIST (normally the terminal for sessions
or printer for batch jobs). (Optional parameter.)

The same meanings described under compilation.

masterfile
newfile

4-11

NOTE: This command is equivalent to a compilation command, followed by a
:PREP command, followed by a :RUN command (as described later in this
section). Thus, for FORTRAN/3000, the command

_FORTGO [textfile]
[, [listfile]
[, [masterfile]
[,newfile]]]]

is equivalent to

_~FORTRAN textfile,
$NEWPASS
Jlistfile
,masterfile
,hewfile

_:PREP $OLDPASS, $NEWPASS
_RUN $OLDPASS

EXAMPLES:

The command shown below compiles, prepares, and executes a COBOL/3000 program entered
through the job/session input device. The program listing is printed on the job/session list
device.

$COBOLGO

The following command compiles, prepares, and executes an SPL/3000 program residing in
the disc file SOURCE and transmits the program listing to the job/session list device.

3$SPLGO SOURCE

Preparation Only

If a user’s source program has been compiled onto a USL file, he can prepare it for execution
with the :PREP command. (When writing this command, recall that keyword parameters can
appear in any order after the positional parameters.)

_PREP uslfile,progfile

[;ZERODB]

[;,PMAP]
[;MAXDATA=segsize]
[;STACK=stacksize]
[;:DL=dlsize]
[;CAP=caplist]
[;RL=filename]

4-12

uslfile

progfile

ZERODB

PMAP

segsize

stacksize

dlisize

The name of the USL file (from the input set) on which the program
has been compiled. (Required parameter.)

The name of the program file onto which the prepared program segments
are to be written. This can be any binary file from the output set. The
user must create this program file. He does this in one of two ways:

1. By creating a new file of program-file type (through the :BUILD
command discussed in Section V, with the decimal code of
1029 or the mnemonic PROG used for the filecode parameter).

2. By specifying a non-existent file in the progfile parameter of
the :PREP command (or in the progfile parameter of the
segmenter subsystem command — PREPARE , discussed in
Section VII), in which case a file of the correct size and type
is created. (Required parameter.)

An indication that the initially-defined user-managed (DL-DB) area, and
uninitialized portions of the DB-Q (initial) area, will be initialized to
zero. If this parameter is omitted, these areas are not affected.
(Optional parameter.)

An indication that a descriptive listing of the prepared program will be
produced on the file whose formal designator is SEGLIST; if no :FILE
command referencing SEGLIST is encountered, the listing is produced on
the job/session listing device. If this parameter is omitted, the listing is
not produced. (Optional parameter.)

Maximum stack area (Z-DL) size permitted, in words. This parameter
is included if the user expects to change the size of the DL-DB or
Z-DB areas during process execution. If omitted, MPE/3000 assumes
that he will not change these areas. (Optional parameter.)

The size of the user’s initial local data area (Z-Q (initial)) in the stack,
in words. (This value must exceed 511 words.) This overrides the
stacksize estimated by the segmenter, which applies if the stacksize
parameter is omitted. (The default is a function of estimated stack
requirements for each program unit in the program. Since it is difficult
for the system to predict the behavior of the stack at run time, the user
may want to override the default by supplying his own estimate with
stacksize.) (Optional parameter.)

The DL-DB area to be initially assigned to the stack. This area is mainly
of interest only in programmatic applications, and is discussed in detail
in Section II. If the dlsize parameter is omitted, a value estimated by
the segmenter applies. (Optional parameter.)

4-13

caplist The capability-class attributes associated with the user’s program;
specified as two character mnemonics. If more than one mnemonic
is specified, each must be separated from its neighbor by a comma.
The mnemonics are

g; - in(;cce;? Zt:tlshazziseis Standard Capabilities
PH = Process Handling

DS = Data Segment Management

MR = Multiple resource management

PM = Privileged-mode operation

The user who issues the :PREP command can only specify capabilities
that he himself possesses (through assignment by the System or Account
Manager). If the user does not specify any capabilities, the IA and BA
capabilities (if possessed by the user) will be assigned to this program.
(Optional parameter.)

filename The name of a relocatable procedure library (RL) file to be searched to
satisfy external references during preparation as defined in Section VII.
This can be any binary permanent file of type RL, as described in
Section VII. It need not belong to the log-on group, nor does it have a
reserved, local name. This file yields a single segment that is incorporated
into the segments of the program file. If filename is omitted, no library
is searched. (Optional parameter.)

For the stacksize, disize, and maxdata parameters, a value of -1 indicates that the Segmenter is to
assign the default value; it is equivalent to omitting the parameter.

EXAMPLES:

The following command prepares a program from the USL file named USEFILE and stores
it in a program file named PROGFILE. The optional parameters will be those assigned by
default. The program’s capability-class attributes will be the standard capabilities of the
preparing user.

S$PREP USEFILE, PROGFILE

The next command will accomplish the same function as the previous command, except that
the prepared program will be listed, a stacksize of 500 words will be established, and the
program will be assigned only the batch-access capability.

SPREP USEFILE, PROGFILE3S PMAP3 STACK=5003 CAP=BA

4-14

An example of the listing of the prepared program, requested by the PMAP parameter of the
:PREP (and :PREPRUN) command, is shown in Figure 4-1. On this listing, significant entries
are indicated with arrows, keyed to the discussion below.

NOTE:

Item No.

00 3 & O b W N

10
11
12
13
14
15
16
17
18
19
20

All numbers in the listing except Item 13 (elapsed time) and Item 20
(central processor time) are octal values.

Meaning

The name of the program file (filename.groupname.accountname).
The segment name.

The (logical) segment number.

The program unit entry-point name or external procedure name.
The assigned entry number in the Segment Transfer Table (STT).
The beginning location of the procedure code in the segment.

The location of the entry point in this segment.

The (logical) segment number of the segment containing this external
procedure. If this entry is a number, then the procedure is external to
the segment but internal to the program file; if it contains a question
mark (?), then the procedure is external to the segment and external
to the program file.

The segment length (in words).

The primary DB area size.

The secondary DB area size.

The total DB area size.

The time elapsed during preparation process.
The initial stack size.

The initial DL size.

The maximum area available for data (maximum Z-DL size).
Capability of program file.

Total code in file,

Total records in file.

Total central processor time used during preparation process.

4-15

55040‘(:>

PROGRAM FILE,SCR4.MPE,.SYS,

OFRE,

NAME STICODE ENTRY SEG
LISTRL 1 o
MAKEROOMINDL 30 o“
FGETINFO 31
FREADMR ## 32 10
NTOA 33 10
BLANKL INE 34 10
TESTBIT 35 10
DNTOA 36 10

r:’v E
OPENRL 27 2523 2523
FOPEN 70 ?
FLOCK 71 ?
FREADMR” 72 10
SEGMENT LENGTH 3130-9)

SEG30 1

NAME STT CODE ENTRY SEG
LISTSL” i 0 106
FGETINFO 33 2
NTOA 34 10
BLANKL INE 35 10
TESTBIT 36 10
DNTOA 37 10
PRINTLINE 40 10
EJECTPAGE Y 10
CLEANUPRTBUF 2 545 545
FHRITEDIR” 42 10
GETREFTABENTRY 3 556 556
FEOF 43 10
FPOINT 46 ?
FCLOSE 47 2
NTOA 50 10
EJECTPAGE 51 10
SEGUENT LENGTH 2030

—

H

PRIMARY DB
SECONDARY DB
IOTAL DB
ELAPSED TIME 00

»‘I,‘SSO

1216
1566

INITIAL STACK
INITIAL DL
MAXIMUS DATA

=|4822.887

40000

l44O CAPABILITY

fOTAL CODE
PROCESSOR TIME

IOTAL RECORDS

lOl

2732;)/.

00324. 15620

Figure 4-1. Listing of Prepared Program

4-16

Preparation/Execution

Programs compiled in USL files can be prepared and executed with the :PREPRUN command.
This prepares a temporary program file and then executes the program in that file. (The
Segmenter creates SNEWPASS and prepares into it, and the Loader then executes $OLDPASS.
The program file is available to the user as §OLDPASS.) The command format is:

_PREPRUN uslfile[,entrypoint]

[;NOPRIV]

[;PMAP]

[;LMAP]

[;ZERODB]
[:MAXDATA=segsize]
[;PARM=parameternum]
[;STACK=stacksize]

[; DL=dlsize]

[; LIB=library]

[; CAP=caplist]
[;RL=filename]

uslfile The name of the USL file (from the input set) on which the program
has been compiled. (Required parameter.)

entrypoint The program entry-point where execution is to begin. This may be the
primary entry point of the program, or any secondary entry point in
the program’s outer block. If the parameter is omitted, the primary
entry point is assigned by default. (Optional parameter.)

NOPRIV A declaration that the program segments will be placed in non-privileged
(user) mode. This parameter is intended for programs prepared with
the privileged-mode capability. Normally, program segments containing
privileged instructions are executed (run) in privileged mode only if
the program was prepared with the privileged-mode (PM) capability-class.
(A program containing legally-compiled privileged code, placed in non-
privileged mode, may abort when an attempt is made to execute it.)

If NOPRIV is specified in the :PREPRUN command, all program
segments are placed in non-privileged mode. (Library segments are not
affected since their mode is determined independently.) 4
(Optional parameter.)

PMAP An indication that a listing describing the prepared program will be
produced on the file whose formal designator is SEGLIST; if no
:FILE command referencing SEGLIST is encountered, the listing is
produced on the job/session listing device. If this parameter is omitted,
the listing is not produced. (Optional parameter.)

4-17

LMAP An indication that a descriptive listing of the allocated (loaded) program
will be produced on the file whose formal designator is LOADLIST;
if no :FILE command referencing LOADLIST is encountered, the listing
is produced on the job/session listing device. If LMAP is omitted, the
listing is not produced. (Optional parameter.)

ZERODB An indication that the initially-defined user-managed (DL-DB) area,
and uninitialized portions of the DB-Q (initial) area, will be initialized
to zero. If this parameter is omitted, these areas are not affected.
(Optional parameter.)

segsize Maximum stack area (Z-DL) size permitted. This parameter is included
if the user expects to change the size of the DL-DB or Z-DB areas
during process execution. If omitted, MPE/3000 assumes that he will
not change these areas. (Optional parameter.)

parameternum A value that can be passed to the user’s program as a general parameter
for control or other purposes; when the program is executed, this value
can be retrieved from the address Q (initial)-4, where Q (initial) is the
Q-address for the outer block of the program. The value can be an octal
number or a signed or unsigned decimal number. If parameternum is
omitted, the Q (initial)-4 address is filled with zeros. (Optional parameter.)

stacksize The initial size of the user’s initial local data area (Z-Q (initial)) in the
stack, in words, as described in the discussion of the :PREP command.
(This value must exceed 511 words.) (Optional parameter.)

disize The initial DL-DB area size, as described in the discussion of the
:PREP command. (Optional parameter.)

library The order in which applicable segmented procedure libraries are searched
to satisfy external references during allocation, where:

G = Group library, followed by account public library, followed
by system library. (These libraries are defined in Section VII.)

P

Account public library, followed by system library.

S

System library.
If no parameter is specified, S is assumed. (Optional Parameter.)

caplist The capability-class attributes associated with the user’s program, as
described in the discussion of the :PREP command. (Optional parameter.)

filename The name of a relocatable procedure library (RL) file to be searched
to satisfy external references during preparation, as described in the
discussion of the :PREP command. (Optional parameter.)

For stacksize, dlsize, and maxdata, a value of -1 indicates the default value; it is equivalent to
omitting the parameter.

4-18

EXAMPLES:

The following command prepares and executes a program on the USL file USEF, with no
special parameters declared. (All default values apply.)

$PREPRUN USEF

The next command prepares and executes a program on the USL file UBASE, beginning
execution at the entry-point RESTART, declaring a stacksize of 800 words, and specifying
that the library LIBA will be searched to satisfy external references:

SPREPRUN UBASE, RESTART; STACK=8@003 RL:=LIBA

An example of the listing of the loaded program, requested by the LMAP parameter of the
:PREPRUN (and :RUN) command, is shown in Figure 4-2. This listing shows the externals
referenced by the program and the segments from segmented libraries to which they were
bound. On this listing, significant entries are indicated with arrows, keyed to the discussion
below.

Item No. Meaning

The name of the program file (filename.groupname.accountname).
The name of the external procedure.
The type of the segment referencing the external procedure, where:

PROG = program segment.
GSL group segmented library segment.
PSL public segmented library segment.

External parameter checking level.

External segment transfer table (STT) number.

External (logical) segment number.

L I = >) BTN

Entry point segment type, where:

GSL = group segmented library segment.
PSL public segmented library segment.
SSL system segmented library segment.

]

Entry point parameter checking level.
Entry point segment transfer table (STT) number.
10 Entry point (logical) segment number

11 A list of the code segment table (CST) numbers to which the program
file segments were assigned. The list is ordered by logical segment
number.

4-19

PROGRAM FILE SCR4.MPE.SYS,

TERMINATE’A’@ PROG 0 50

11 SSL 0
SENDMAIL PROG O 46 11 SSL 0 2 40
DEBUG PROG O 44 11 SSL 0 | 52
RECEIVEMAIL PROGO 6 11 SSL 0 1 40
AWAKE PROGO 5 11 SSL 0 4 33
WHO PROG O 4 11 SSL 0 4 45
FREADDIR PROG O 45 10SSL 0 1 O
FNRITEDIR PROGO 44 10SSL 0 2 0O
FNRITE PROG O 43 10SSL 0 3 0O
DLSIZE PROG O 41 10 SSL 0 5 42
PRINT PROG O 15 7 SSL 0 11 45
SETJCH PROG O 13 7 SSL 0 1 45
GETJCW PROG O 12 7 SSL O 2 45
ADJUSTUSLF PROG O 42 6 SSL 0 11 46
FPOINT PROG O 46 2 SSL 0 &5 |
RESETDNSB PROG 0 34 4 SSL 0 7 33

26 2
SETSYSDB PROG O 33 4 SSL 0 11 33

25 2
FCONTROL PROG O 14 2 8$SL 0 3 |
PROCT IME PROGO 4 25SSL 0 15 44
TIMER PROG O 3 2 SSL 0 23 33
GETUSERMODE PROG O 10 11 SSL 0 4 44

3% 4

27 2

| 55 |
LOADEDSLSEG PROG 0 53 1 SSL 0 2 47
GETPRIVMODE PROG O 45 11 SSL 0 5 44

32 4

24 2

52 |
QUIT PROG O 7 11 SSL 0O 11 31

52 10

25 5

50 |
FGETINFO PROG O 14 11 8SL 0 4 2

A6 10

32 5

56 3

52

33

3t 0

131 132 133 134 135 155 156 177 200

Figure 4-2. Listing of Loaded Program

4-20

Execution

Programs that have been compiled and prepared, and that therefore exist on program files,
can be executed by the :RUN command, entered as follows:

_RUN progfile[,entrypoint]
[;NOPRIV]

[;LMAP]

[;MAXDATA=segsize]
[;PARM=parameternum]
[;STACK=stacksize]

[; DL=dlsize]

[; LIB=library]

progfile

entrypoint

NOPRIV

LMAP

segsize

parameternum

The name of the program file (from the input set) that contains the
prepared program. (Required parameter.)

The program entry-point where execution is to begin. This may be the
primary entry-point of the program or any secondary entry-point in the
program’s outer block. If this parameter is omitted, the primary entry-
point (where (execution normally begins) is assigned by default.
(Optional parameter.)

A declaration that the program segments will be placed in non-privileged
mode; this parameter is intended for programs prepared with the privileged-
mode capability. Normally, program segments containing privileged
instructions are executed (run) in privileged mode only if the program was
prepared with the privileged-mode (PM) capability-class. (A program con-
taining legally-compiled privileged code, placed in non-privileged mode,

may abort when an attempt is made to execute it.) If NOPRIV is specified

in the :RUN command, all program segments are placed in the non-privileged
mode. (Library segments are not affected since their mode is determined
independently.) (Optional parameter.)

An indication that a listing of the allocated (loaded) program will be pro-
duced on the file whose formal designator is LOADLIST; if no :FILE com-
mand referencing LOADLIST is encountered, the listing is produced on
the job/session listing device. If LM AP is omitted, the listing is not
produced. (Optional parameter.)

Maximum stack area (Z-DL) size permitted, as described in the discussion
of the :PREP command. (Optional parameter.)

A decimal or octal value that can be passed to the user’s program as a
general parameter for control or other purposes; when the program is
executed, this value can be retrieved from the address Q (initial) -4, where
Q (initial) is the Q-address for the outer block of the program. The value
can be an octal number or a signed or unsigned decimal number. If
parameternum is omitted, the Q (initial) -4 address is filled with zeros.
(Optional parameter.)

4-21

stacksize The initial size of the user’s initial local data area (Z-Q (initial)) in the
stack, in words, as described in the discussion of the :PREP command.
(This value must exceed 511 words.) (Optional parameter.)

disize - The initial DL-DB area size, as described in the discussion of the :PREP
command. (Optional parameter.)

library The order in which applicable segmented procedure libraries are searched
to satisfy external references during allocation, where:

G = Group library, followed by account public library, followed
by system library. (These libraries are defined in Section VII.)

P

Account public library, followed by system library.
S

System library.

If no parameter is specified, S is assumed. (Optional parameter.)

If values for segsize, stacksize, and dlisize are explicitly specified in the :RUN command, they
override such values assigned at preparation time (which are recorded in the program file). If
any of these parameters are omitted, the corresponding values recorded in the program file
take effect.

EXAMPLES:

The following command executes a program existing on the program file PROGS3, with no
special parameters specified. (All default values are used.)

$RUN PROG3

The next command executes a program existing on the program file PROG4, beginning at the
entry-point SECLAB. All segments in the program will run in non-privileged mode.

3RUN PROGA, SECLAB3 NOPRIV

CALLING MPE/3000 SUBSYSTEMS

In addition to the BASIC/3000 interpreter and the SPL/3000, COBOL/3000, and FORTRAN/
3000 compilers, various other programs are available that run as subsystems of MPE/3000.
These programs, and the way in which they are accessed, are described below.

EDIT/3000

EDIT/3000, described in the manual HP 3000 Text Editor (03000-90012), is used to create and
modify files of upper and lower-case ASCII characters. To call EDIT/3000, the user enters:

_EDITOR [listfile]

4-22

listfile The name of a file that receives any output resulting from the EDIT/3000
command LIST specifying the OFFLINE option. (The designator EDTLIST
must not be used.) If listfile is omitted, such output is transmitted to the
job/session list device ($STDLIST). (The file to be edited is specified after
EDIT/3000 has been called.) (Optional parameter.)

STAR/3000

The Statistical Analysis Routines (STAR/3000), described in HP 3000 Statistical Analysis
Routines (03000-90011), allows the user to access the statistical functions of the HP 3000
Scientific Library. STAR/3000 is called by this command:

_:STAR [listfile] [NOLIST]

listfile File on which output from STAR/3000 is to be written. (Its formal
designator is STRLIST.) If omitted, $STDLIST (typically, the terminal
for sessions and the printer for jobs) is used. (All commands are input
from the job/session input device and results are output to listfile.)
(Optional parameter.)

NOLIST A specification that STAR/3000 command input will not be listed
on listfile when STAR/3000 is run in batch mode. (Optional
parameter.)

TRACE/3000

TRACE/3000 allows the user to monitor program execution, checking the status of the pro-
gram whenever a variable is changed or a label is passed. TRACE/3000 is invoked through
compiler subsystem command records, as noted in HP 3000 Symbol Trace (03000-90015).

SORT/3000

SORT/3000, described in HP 3000 SORT/MERGE (03000-90053), allows the user to sort
records in a file into prescribed order, or to merge pre-sorted records in multiple files into one
sorted file. SORT/3000 can be invoked directly through MPE/3000 commands, or called, in
phases, from user programs or procedures.

When invoking SORT/3000 through MPE/3000, the user first specifies the appropriate input/
output files through MPE/3000 :FILE commands, or allows the default file designators to

take effect (as described in HP 3000 SORT/MERGE (03000-90053).) He then invokes either
the Sort program or the Merge program by entering one of the following commands.

For Sort:

_RUN SORT [;STACK = size]

4-23

For Merge:
_RUN MERGE [;STACK = size]
size The amount of main-memory storage to be used by the Sort or Merge

program, in words. If size is omitted, the default value assigned is 1000
words. (Optional parameter.)

SDM/3000

The execution of on-line diagnostic programs, run by a person with the Diagnostician user
attribute, is controlled by the HP/3000 Diagnostic Monitor (SDM/ 3000), described in

HP 3000 System Diagnostic Monitor (03000-90016). This program allows the operator to
invoke, execute, and modify diagnostic programs. It is called by entering:

:RUN SDM

HP/3000 Stand-Alone Diagnostic Utility Program

Magnetic tapes containing stand-alone diagnostic programs are prepared through the HP/3000
Stand-alone Diagnostic Utility Program, described in HP 3000 Stand-alone Diagnostic Utility
Program (03000-90017). These programs can then be loaded and executed without any other
supporting software. The Utility Program is invoked through this command:

_RUN SDUP; NOPRIV

MPE/3000 Segmenter

The MPE/3000 Segmenter can be accessed directly by the user, allowing him to enter commands
that

o Create, delete, activate, and deactivate RBM’s within a USL.
L] Manage procedure libraries used to resolve external program references
The user accesses the segmenter by entering:
_SEGMENTER [listfile]
listfile An ASCII file from the output set, to which any listable output is written.
(The formal file designator is SEGLIST.) If listfile is omitted, the standard

job/session list device ($STDLIST) is assumed. (Optional parameter.)

He then enters commands relating to the USL’s or procedure libraries. These commands are
explained in Section VII.

4-24

SAMPLE PROGRAMS

The following sample programs illustrate, in context, some of the commands introduced in
this and the previous section.

The following program shows the listing from a session where the programmer accessed and
used the BASIC/3000 Interpreter:

¢HELLO MATH ,BOBBIE.ACMATH, GPMATH
USER PASSWORD? (LOG-ON)

O wumpen =523

%HU,MARCH 23, 1972, 2335 PN
]] 22.0

BASIC (COMMAND TO ACCESS BASIC)
(BASIC PROMPT CHARACTER,
FOLLOWED BY A BASIC COMMAND)

(BASIC COMMANDS AND

o @& o0 o o o lvli

STATEMENTS)
2EXIT (EXIT FROM BASIC)
$BYE
CPU(CSEC):=14 (LOG-OFF)

CONNECT(MIN) =2
THU,MARCH 23, 1572, 2337 PM

END OF SESSION

4-25

The next program illustrates the use of EDIT/3000 and BASIC/3000 within a job. The
input, in card form, appears as

/ RUN PROG 67

[:BASIC , FDATA

(/EXIT (Exit from Editolr)

= nﬂ”l ’_——

{Commands to create and edit a data file
called FDATA, for BASIC)

f(Ednor Commands) JUI“”
(:EDITOR

:JOB MATH, BOBBIE. ACMATH

4-26

The output listing from this batch job would appear as

tJOB MATH ,BOBBIE.ACMATH

JOB NUMBER=#J23

THU,MARCH 23, 1972, 2:35 PM
HP32000B .02 .88

¢tEDITOR

(EDITED OUTPUT)

BASIC ,FDATA

(OUTPUT FROM BASIC PROGRAM)

L] * e o L

sEO0J

CPU(SEC)>=112
ELAPSED(MIN)=15

THU,MARCH 23,1972, 2:58 PM
END OF JOB

4-27

SECTION V
Managing Files

MPE/3000 organizes and handles as files all information input to and output from the computer,
relieving the user of the software-writing effort normally involved when interacting directly with
physical peripheral devices. Input and output are generally performed by sharable system code that
translates file names specified by the user into actual hardware addresses, allowing the user to remain
virtually unaware of detailed file specifications and hardware characteristics.

FILE CHARACTERISTICS

A file can contain MPE/3000 commands, programs, or data, or any combination of these
elements, written in ASCII or binary code. For example, a file input from the card reader

might contain MPE/3000 commands, a user program, and user data, all in ASCII code. Compi-
lation of the user program would produce a USL file containing object output in binary code
and another file containing a listable copy of the user’s source program in ASCII code. Prepa-
ration of the object program produces a binary-coded program file containing the user’s program
in segmented form.

Within a file, information is organized as a set of logical records — fields of data input, processed,
and output as a unit. A logical record is the smallest data grouping directly addressable by the
user. Its length is specified by the user when he creates or defines the file.

Information is moved between a file and main memory in physical records; a physical record

is the basic unit that can be transferred to or from the device on which the file resides. Physical
records can be longer, shorter, or the same size as the logical records in the file. In files on
disc or magnetic tape, physical records are organized as blocks that always contain an inte-
gral number of logical records; thus, on these devices, physical records are either longer than,
or the same size as, logical records. (The block size is specified implicitly by the user in the
command or intrinsic call that creates the file. But input/output and blocking are performed
automatically by MPE/3000, freeing the user of responsibility for the actual record-handling
details.)

On unit-record devices, however, the size of the physical records in a file is determined by the
device itself. Thus, each physical record read from a card reader consists of one punched card;
each physical record written to a line printer consists of one line of print. On unit record-
devices in multi-record mode, logical records are not blocked. For example, on punched cards,
each logical record is assumed to begin at the first column of the card; a single 100-character
logical record is read as 80 characters from one card (physical record) and 20 characters from
the next card. The next logical record is assumed to begin in the first column of the third

card encountered. Similarly, when a file is transmitted to a printer, each logical record appears
as one line of print (physical record), left-justified; if the logical record is longer than the print
line, the remaining information is continued on the next line, also left-justified.

On disc, files can be organized to permit either sequential or direct access. Direct-access files
contain logical records of fixed or undefined length. But sequential-access files contain logical
records of fixed or varying length.

MPE/3000 manages each file on disc as a set of extents; each extent is an integral number of
contiguously-located disc sectors. All extents (except possibly the last) are of equal size. When
a file is opened, the first extent (containing at least one sector for file label information) is
allocated immediately; other extents, up to a maximum of 16, are allocated as needed.
Alternatively, the user can request immediate allocation of more than one extent when the
file is opened. (The size of each extent is determined as noted in the discussion of the :FILE
command parameter numextents, later in this section. All extents are allocated on the same
disc drive.)

When a file contains only fixed length records, the user can calculate the effective disc space
(in sectors) required by the file, with the following formula. (This formula applies to every
type of disc drive supported by MPE/3000.)

. P\HB-I_] l'(LxB)+127‘|
B |* 128

The number of disc sectors required by the file.
The number of fixed-length logical records in the file.

The number of logical records in a block (blocking factor).

N k= @

The length of each logical record, in 16-bit words.

The constant 128 is the number of words in a sector. Each expression within brackets is
evaluated separately and rounded upward before the final multiplication takes place. (A
notation in the form ["x 1 means “ceiling (x)”” — the smallest integer greater than or equal
to x.)

EXAMPLE:

The effective disc space for a file containing 100 records of 50 words each, with a blocking
factor of 8, would be calculated as follows:

s - |(100+3)-1| l50x3)+127l
= e X
3 128

[34] x [3]

102 sectors

FILE/DEVICE RELATIONSHIPS

Devices required by files are allocated automatically by MPE/3000. The user can specify these
devices by type (such as any card reader or line printer), or by a logical device number related
to a particular device (such as a specific line printer). (A unique logical device number is
assigned to each device when the system is configured.) Regardless of what device a particular
file resides on, when the user’s program asks to read that file, it references the file by its formal
file designator. MPE/3000 then determines the device on which the file resides, or its disc
address if applicable, and accesses it for the user. When the user’s program writes information
to a particular file to be output on a device such as a line printer, again the program refers to
the file by its formal file designator; MPE/3000 then automatically allocates the required
device to that file. Throughout its existence, every file remains device-independent; that is,

it is always referenced by the same formal file designator regardless of where it currently
resides. The user’s program always deals with logical records.

FILE DOMAINS

The set of all permanent disc files in MPE/3000 is known as the system file domain. Within
this domain, files are assigned to accounts and organized into groups under those accounts.
The log-on process associates the user with an account and group which provides the basis
for his local file references. The user may be required to supply passwords for the account
and group to log-on, but thereafter (if the normal (default) MPE/3000 file security pro-
visions are in effect) he can:

® Have unlimited access to any file within his log-on or home group. (If, however,
the file is protected by a lockword, the user must know this lockword.)

® Read, and execute programs residing in, any file in the public group of his account,
and in the public group of the system account.

As noted later, the default MPE/3000 file security provisions can be overridden at the account,
group, and/or file level to provide greater or lesser file access restrictions.

Potentially, if the MPE/3000 file security provisions at the account, group, and file levels were
all suspended, and the user knew all account and group names and file lockwords, he could

5-3

access any permanent file in the system once he logged-on. (Notice that once a user logs-on to
an account and is associated with a group, he does not need to know the passwords for other
accounts and groups to access files assigned to them — he only requires their account and
group names. But, if any of these files are protected by a file lockword, the user must know
that lockword.)

For every job or session running in the system, MPE/3000 recognizes another file domain,
called the job or session file domain. This domain contains all temporary files opened and
closed within the job or session without being saved (declared permanent). Files in these
domains are deleted when the job or session terminates (if they are job/session temporary
files), or when the creating program ends (if they are regular temporary files).

FILE LABELS

MPE/3000 reads and writes file labels for files on disc during allocation of the devices on which
the files reside. The format and content of file labels is presented in Appendix F.

FILE ACCESSING

The user accesses files through commands and intrinsic calls. Commands, described in this
section, are issued external to the user’s program and perform general functions, such as
creating, deleting, or listing a file. Intrinsic calls, described in the next section, are issued
programmatically (within a user’s program). Generally, files are opened (through the FOPEN
intrinsic); operated on through various intrinsics that read information from them, write
information to them, update them, or manipulate them; and finally, they are closed (through
the FCLOSE intrinsic).

Within a user program, an MPE/3000 system program such as a compiler, or a command exe-
cutor, a file is accessed by its formal file designator — the name by which the particular pro-
gram recognizes the file. (In SPL/3000, this is the name associated with it by the FOPEN
intrinsic.) At program execution time, this formal file designator is always associated or
equated with an actual file designator — the name of the actual file to be used and the physical
device upon which it resides, as recognized throughout the system by MPE/3000. Thus, the
actual file designator is an execute-time re-definition of the file specified in the program by
the formal file designator. If the user does not specify an actual file designator for a formal
file designator, MPE/3000 uses the formal file designator for the actual file designator.

MPE/3000 recognizes actual file designators for four types of files:

® System-Defined Files
° User Pre-Defined Files
® New Files

® Old Files

The programmer can specify any of these designators programmatically.

54

System-Defined Files

System-defined file designators indicate those files that MPE/3000 uniquely identifies as
standard input/output devices for a job/session. They are referenced as follows:

Actual File Designator

$STDIN

$STDINX

$STDLIST

$NULL

User Pre-Defined Files

Device/File Referenced

A file name indicating the standard job or session input
device (that from which the job or session is initiated).
For a job, this is typically a card reader. For a session,
this is typically a terminal. Input data images in the
$STDIN file should not contain a colon in column 1,
since this indicates the end-of-data. (When data is to
be delimited, this should be done through the :EOD
command, which performs no other function.)

Equivalent to $STDIN, except that MPE/3000 command
images (those with a colon in column 1) encountered in

a data file, are read without indicating the end of data.
(However, the commands :JOB, :DATA, :EOJ, and :EOD
are exceptions that always indicate the end-of-data but are
otherwise ignored in this context; they are never read as
data.)

A file name indicating the standard job or session listing
device (customarily a printer for a batch job and a terminal
for a session).

The name of a non-existent ‘“‘ghost’’ file that is always
treated as an empty file. When referenced as an input
file by a program, that program receives an end-of-

data indication upon each access. When referenced as an
output file, the associated write request is accepted by
MPE/3000 but no physical output is actually performed.
Thus, $NULL can be used to discard unneeded output
from a running program.

A user pre-defined file is any file that was previously defined or re-defined in a :FILE command,
as discussed later in this section. In other words, it is a back-reference to that :FILE command.
It is referenced by the following file designator format:

*formaldesignator

formaldesignator

The name used in the formaldesignator parameter of the :FILE
command.

5-5

New Files

New files are files that have not yet been created, and are being created/opened for the first
time by the current program. New files can have the following actual file designators:

Actual File Designator File Referenced

$NEWPASS A temporary disc file that can be automatically passed to any
succeeding MPE/3000 command within the same job/session,
which references it by the file name $OLDPASS. Only one
such file with this designation can exist in the job/session at
any one time. (When $NEWPASS is closed, its name is auto-
matically changed to $OLDPASS, and any previous file
named $OLDPASS in the job/session is deleted. (Passing
is explained in later examples.))

filereference Unless the user specifies otherwise, this is a temporary file,
residing on disc, that is destroyed on termination of the
creating program. If closed as a job/session temporary file,
as shown later in this section, it is purged at the end of the
job/session. If closed as a permanent file, it is saved until
purged by the user. Typically, this format consists of a
file name containing up to eight alphanumeric characters,
beginning with a letter, as discussed below. In addition,
other elements (such as a group name, account name or
lockword) can be specified.

Old Files
Old files are existing named files presently in the system. They may be named by the following
designators:
Actual File Designator File Referenced
$OLDPASS The name of the temporary file last closed as SNEWPASS.
filereference Any other old file to which the user has access. (The

filereference format is discussed below.) It may be a
job/session temporary file created in this or a previous
program in the current job/session, a permanent file
saved by any program, or a permanent file built (with
the :BUILD command) in any job/session.

5-6

Filereference Formats

When the user references a file by the filereference designator, he writes filereference in any
of three formats. (In no case, however, can filereference exceed a total of 35 characters.)

The format most commonly used applies to files contained in the user’s log-on group:

filename [/lockword]

In this format, filename is the name of the file. It is written as a string of up to eight alpha-
numeric characters, beginning with a letter. (Because a file reference is always qualified by
the group and account to which the file belongs, individual file names must be unique only
within the file’s group.) The lockword need only be specified when referencing an existing
(old) disc file protected by a lockword assigned by the user who created the file. Neither
the filename nor lockword should contain embedded blanks. Additionally, the slash mark
(/) that separates these two elements should not be preceded nor followed by blanks.

NOTE: Whenever a file is referenced in any command, or in the
FOPEN intrinsic that opens the file (described in Section VI),
the lockword (if any) must always be supplied — even if the
accessor is the creator of the file,

EXAMPLE:

The following three examples illustrate this filereference format:
OUTPUT
AL 126797

PAYROLL/X229AD

The format used when the programmer references a file in his log-on account but within an-
other group is:

filename [/lockword] .groupname !
Embedded blanks are not permitted. The group to which the file belongs is designated by
groupname. As an example, if a user logs-on under a group other than his home group, but
wants to reference a file in the home group, he must enter the name of the home group as

the groupname specifier.

Remember that the file lockword relates only to the ability to access files, and not to the
account and group passwords used during log-on.

5-7

EXAMPLES:

These file references include groupname specifiers:

FILEB«GRP2
X3.PUB

GOFILE/Z22.GR@7

The third filereference format is

filename [/lockword] .groupname.accountname

Embedded blanks are not permitted. This format is used to reference a file assigned to a
group that belongs to an account that is not the user’s log-on account. The account is
specified by accountname.

EXAMPLE:

The foﬂowing file references contain accountname specifiers:
SMITH«GRP7.ACCTA47
FILLER«PUB.SYS

NB3/X23DG+GRP5«ACCTO?2

Lockwords

As noted earlier, the creator of a disc file can assign to it a lockword which must thereafter be
supplied to access the file in any way. This lockword is independent of, and serves in addition
to, the other basic security provisions governing the file. The lockword is assigned by including
it in the filereference parameter used when the file is created. It can be subsequently changed
by the :RENAME command or the FRENAME intrinsic, discussed later. (:RENAME and
FRENAME are also used to initially assign a lockword to an existing file.) At any time, a file
can have only one lockword. Only the creator of a file can change a lockword for that file.

EXAMPLE:
To assign the lockword SESAME to a new file named FILEA, the user enters the following

:BUILD command. (A complete discussion of the :BUILD command, used to create new
disc files, appears later in this section.)

:BUILD FILEA/SESAME

5-8

When initially requesting access to an old disc file protected by a lockword, the user must
supply the lockword in the following manner:

® In batch mode, as part of a file name specified in the :FILE command or FOPEN
intrinsic call that establishes file access. If a file is protected by a lockword, but
no lockword is supplied, access is not granted.

® In session mode, as part of a file name specified in the :FILE command, or FOPEN
intrinsic call. If a file is protected by a lockword but no lockword is supplied when
the file is opened, MPE/3000 interactively requests the user to supply the lockword,
as follows:

LOCKWORD: filename.groupname.accountname?

EXAMPLE:

In the following :FILE command, the old file XREF (protected by lockword OKAY) is
referenced.

¢:FILE INPUT=XREF/O0KAY, OLD

Remember that the lockword is always separated from the filename by a slash.

On terminals with the ESC (Escape) key facility, the user can inhibit the echo facility (and thus
suppress printing of the lockword) prior to entering the lockword by pressing the ESC and ; keys.

After he enters the lockword, he can restore echoing by pressing the ESC and : keys.

Where the terminal does not support dynamic half-duplex operation, the user can conceal a
lockword simply by omitting it from the file reference. In this case, MPE/3000 outputs a
request for the lockword, directs the carriage to skip a line, prints an eight-character mask, and
returns the carriage to the beginning of the mask. The user then enters the lockword, which is
echoed on top of the mask to ensure privacy.

File System Accounting

When the MPE/3000 default accounting provisions are in effect at the account and group level,
the amount of permanent disc file space accumulated by users is monitored by MPE/3000 but
is not limited. (The default provisions are described fully in HP 3000 Multiprogramming
Executive System Manager/Supervisor Capabilities (03000-90038).) However, limits on the
amount of permanent file space allotted can be established at the account level (by System
Manager Users) and the group level (by Account Manager Users). The limits are established in
terms of disc sectors. When an attempt is made to save a new disc file or to create, rename, or
add extents to a permanent file,if either the account or group disc file space count exceeds the
current limit, the file request is denied. Otherwise, the account and group disc file space counts
are updated.

5-9

Input/Output Sets

All file designators described above can be classified as those used for input files (Input Set)
and those used for output files (Output Set). These sets, referred to frequently throughout
this manual, are defined as follows:

Input Set
$STDIN
$STDINX
$OLDPASS

$SNULL

*formaldesignator

filereference

Output Set
$STDLIST
$OLDPASS
$NEWPASS
$NULL

*formaldesignator

filereference

The job/session input device.
The job/session input device with commands allowed.
The last SNEWPASS file closed.

A constantly-empty file that will return an end-of-file
indication whenever it is read.

A back-reference to a previously-defined file.

A file name, and perhaps account and group names
and a lockword.

The job/session listing device.
The last file passed.
A new temporary file to be passed.

A constantly-empty file that returns a successful
indication whenever information is written to it.

A back-reference to a previously-defined file.

A file name, and perhaps account and group names and
a lockword.

SPECIFYING FILE CHARACTERISTICS

Formal (programmatic) file designators can be equated with actual file designators through
the :FILE command. This command enables the user to

® Write programs that reference files whose actual names and characteristics he may
not yet know. This allows him to remain uncommitted to specific disc files or
devices until run-time, when their names are equated with the user’s programmatic

references.

5-10

® Issue detailed file specifications at run-time that override any corresponding specifi-
cations declared within the user’s program (through an FOPEN intrinsic call) or in
a previous MPE/3000 :FILE command.

The specifications in a :FILE command do not take effect until the user’s program is running
and opens the file referenced. The :FILE command specifications hold throughout the entire
job/session, unless superceded (by another :FILE command) or revoked by the user (through
the :RESET command). At job or session termination, however, all :FILE commands are
cancelled.

If the user does not include in the job stream any file command referencing a particular formal
file designator named in his program, that formal file designator will be used as the actual file
designator, and any file characteristics specified (explicitly or by default) within the program
will apply. '

When two (or more) :FILE commands referencing the same formal designator appear in a
job/session, the second command replaces the first one.

The :FILE command can be written in any of the following formats, depending on the type
of file referenced, and applies to files on disc, tape, or any other device.

For new files:

:FILE formaldesignator |: = 8NEWPASS

[= filereference][NEW]

,BINARY
VASCIT

|:,'REC = [recsize] l:, l:blockfactor] ,

[;CCTL]
:NOCCTL

[;ACC = accesstype]

<c™

—

[,NOBUF
_,BUF [= num buffers]]

EXC
,EAR
| ,SHR

- MR :|
| ,JNOMR

5-11

[;DEV = device]
[,CODE = filecode]

[;DISC = [filesize] [,[numextents] [,initalloc]]]

For old files:
= $OLDPASS
. ; — ,OLD
<FILE formaldesignator ,: leereference] l: 0 LDTEMP]
[F
,REC = |:recsizejl [, [blockfactor] U s BINARY
- 174 VASCII
-
,CCTL
,NOCCTL

[JACC = accesstype]

:NOBUF]
;BUF [= numbuffers]

—

,EXC
,EAR
,SHR

MR
;NOMR

[.DEL
SAVE
;TEMP

[;DEV = device]

[;CODE = filecode]

5-12

[;:DISC = [filesize] [, [numextents] [,initalloc]]]

NOTE:

The parameter group [;DISC = [filesize] [,[numextents]

[,initalloc]]] cannot be included if the parameter group

[= filereference] lzgégTEMP] is specified.

For user pre-defined files:

. FILE formaldesignator = *formaldesignator;
For system-defined files:
_FILE formaldesignator = $NULL
$STDIN
_FILE formaldesignator = {8STDINX
$STDLIST

[

, I:blockfactor:l R

,REC = [recizejl

[.ccTL
LNOCCTL

[;ACC = accesstype]

[;NOBUF
_,‘BUF [= numbuffers]

,EXC
,EAR
;'SHR

(MR
:NOMR

5-13

F
U
\4

,BINARY
LASCII

Command Parameters

The variable parameters for the :FILE command are

formaldesignator

filereference

NEW

OLD

OLDTEMP

recsize

blockfactor

The programmatic formal file designator, as referenced in the user’s
program. (Required parameter.)

A file name (and perhaps account and group names and a lockword)
in the filereference format. If a new file is referenced, but the file-
reference parameter is omitted from the :FILE command, the name
is equated to the formal designator. (Optional parameter.)

A specification that the file is a new file. (Required parameter if
filereference is used in the new file format.)

A previously-existing permanent file saved in the system file domain.
The file continues to exist after the current job/session terminates.
(Optional parameter.)

A previously-existing temporary file in the job/session file domain.
This file is deleted at the end of the current job/session. (Optional
parameter.)

The size of the logical records in the file. If a positive number, this
represents words. If a negative number, this represents bytes. (If the
records are undefined-length, this represents their maximum size. For
variable-length records, the maximum size is recsize x blockfactor.)
The default value is a value supplied at configuration time.

The values generally specified by HP are

Disc 128
Tape = 128
Printer = =132
Card Reader = -80
Card Punch = -80
Terminal = =72

(Optional parameter.)

The size of each buffer to be established for the file, specified as an
integer equal to the number of logical records per block. (For fixed-
length records, blockfactor is the actual number of records in a block.
For variable-length records, blockfactor is interpreted as a multiplier
used to compute the block size (maximum recsize x blockfactor).

For undefined-length records, blockfactor is always one logical record
per block; any unused portion of the block is filled with ASCII blanks
or binary zeros.) The blockfactor value specified may be overridden
by MPE/3000. The default value is calculated by dividing the speci-
fied recsize into the configured physical record size; this value is
rounded downward to an integer that is never less than 1. (Optional
parameter.)

5-14

BINARY

ASCII

CCTL

NOCCTL

accesstype

Specifies fixed-length records. (Optional parameter.)

Specifies records of undefined length (no blocking). (Optional
parameter.)

Specifies variable-length records. (No blocking on unit-record
devices.) (Optional parameter.)

Specifies binary-coded records, always odd-parity. (Optional
parameter.)

Specifies ASCII-coded records, always even parity. (Optional
parameter.)

Indicates that the user is supplying carriage-control characters with
his write requests, valid for any ASCII list file. (Optional parameter.)

Indicates that no carriage-control characters are supplied with
write requests. (Optional parameter.)

The type of access allowed users of this file:

IN = Read-access only. (The FWRITE,
FUPDATE and FWRITEDIR in-
trinsic calls cannot reference this file.)

ouT = Write-access only. Any data on the
file prior to the current FOPEN
request is deleted. (The FREAD,
FREADSEEK and FREADDIR in-
trinsic calls cannot reference this file.)

OUTKEEP

1]

Write-access only, but previous data
in the file is not deleted. (The
FREAD, FREADSEEK and
FREADDIR intrinsics cannot
reference this file.)

APPEND

Append-access only. The FREAD,
FREADSEEK, FREADDIR, FPOINT,
FSPACE, and FWRITEDIR intrinsic
calls cannot be issued for this file.

INOUT

Input/output access. Any file intrinsic
except FUPDATE can be issued against
this file.

UPDATE

Update access. All file intrinsics, includ-
ing FUPDATE, can be issued for this file.

5-15

If accesstype is omitted in the :FILE command (and in the FOPEN
intrinsic call that opens the file), the default values assigned are IN

for input devices such as card readers, OUT for output devices such

as printers, and INOUT for input/output devices such as discs, magnetic
tapes, and terminals.

If a process attempts to violate the accesstype of a file, an error is
returned. (Optional parameter.)

NOBUF Specifies that no input/output buffering is to take place, and no
buffers are allocated for the file, (Optional parameter.)

numbuffers The number of buffers to be allocated to the file. This must be an
integer value. The maximum value is 16. If omitted or set to 0, a
default value of 2 is assigned. This parameter is not used for files
representing interactive terminals, since a system-managed buffering
method is always used in such cases. (Optional parameter.)

EXC After the file is opened, prohibits concurrent access (in any mode),
to this file through another FOPEN request, whether issued by this
or another process, until this process issues an FCLOSE request or
terminates. (Optional parameter.)

EAR After the file is opened, prohibits concurrent write-access to this
file through another FOPEN request within this or another process,
until this process issues an FCLOSE request or terminates. (Optional
parameter.)

SHR After the file is opened, permits concurrent access to this file
through another FOPEN request issued by this or another process.
(Optional parameter.)

MR Specifies that individual read or write requests are not confined to
record boundaries, as explained under the FOPEN request discus-
sion in Section VI. (Restricted to NOBUF files.) (Optional
parameter.)

NOMR Specifies that individual read or write requests are confined to
record boundaries. (Optional parameter.)

DEL Specifies that the file is to have regular temporary file disposition;
it will be deleted when the user’s program closes it.

SAVE Specifies that the file is to have permanent file disposition; when
the user’s program closes it, the file remains in the system file
domain, potentially available to other users. (Optional parameter.)

TEMP Specifies that the file is to have job/session temporary file disposi-
tion. When the user’s program closes the file, it remains in the job/
session file domain. But when the job/session terminates, the file
is deleted. (Optional parameter.)

5-16

NOTE: IfDEL, SAVE, or TEMP is not specified in this :FILE
command, or the disposition is not specified in the
FCLOSE intrinsic that closes the file, the file is returned
to the disposition it had when opened. For example, a
new file (other than $NEWPASS) is deleted; an old file
is returned to the domain in which it was found.

device A device class name designating the type of device, or a logical
device number indicating the specific device, on which the file
resides.

The device class name is used to make a non-specific, generic refer-
ence to a type of device (such as any disc drive or magnetic tape
unit). (These names are defined and related to specific sets of
devices when the system is configured. All must contain from one
to eight alphanumeric characters, begin with a letter, and terminate
with any non-alphanumeric character such as a blank. Examples
are CARD, LP, TTY, and TAPEZ2.) The default is DISC.

The logical device number refers to a specific device. Thisis a
number assigned to each device when the system is generated.

This specification is only used when assignment of a particular
device is truly necessary. For example, a user would specify the
logical device number of a specific device when running a hardware
diagnostic program for checking that device. Note that the device
specification is not used if the file is an old disc file or if the actual
file designator used is $STDIN, $STDINX, $STDLIST, $NEWPASS,
$OLDPASS, or $NULL (since these names are already assigned to
devices by the system). (Optional parameter.)

filecode An integer or mnemonic recorded in the file label and made avail-
able to processes accessing the file through the FGETINFO intrinsic
(Section VI). If an integer is used, it must be a positive value ranging
from 0 to 1023, or one of the HP-defined integers shown below.
These HP-defined integers also have corresponding mnemonics that
can be used in their place:

HP-defined Defines the

Mnemonic Integer File as:

USL 1024 A USL file.

BASD 1025 A BASIC/3000 data file.

BASP 1026 A BASIC/3000 program file.

BASFP 1027 A BASIC/3000 fast program file,

RL 1028 A relocatable library (RL) file.

PROG 1029 A program file.

5-17

HP-defined Defines the

Mnemonic Integer File as:
STAR 1030 A STAR/3000 file.
SL 1031 A segmented library (SL) file.

If this parameter is omitted from the :FILE command, and from
the FOPEN intrinsic call that opens the file, the default value is O.
(Optional parameter.)

filesize The total maximum file capacity, specified only for a NEW file,
in terms of physical records (for files containing variable-length
and undefined-length records), and logical records (for files con-
taining fixed-length records). Must be a double-word integer. The
default value is 1023. The maximum capacity allowed is 184,000
sectors. (The number of sectors in a file is found by the formula
shown earlier under FILE CHARACTERISTICS.) (Optional
parameter.)

numextents The number of extents (integral number of contiguously-located
disc sectors) that can be dynamically allocated to the file as logical
records are written to it. The size of each extent (in terms of records)
is determined by the filesize parameter value divided by the num-
extents parameter value. If specified, numextents must be an
integer value from 1 to 16. The default is 8. (Optional parameter.)

initalloc The number of extents to be allocated to the file at the time it is

opened. This must be an integer from 1 to 16. The default value
is 1. If an attempt to allocate the requested space fails, the FOPEN
intrinsic that opens the file returns an error condition code to the
user’s program when that program runs. (Optional parameter.)

*formaldesignator The name of a file defined in a previous :FILE command, preceded
by an asterisk.

Accessing Files Already in Use

When a user’s process attempts to access a file already being accessed by another process, the
action taken by MPE/3000 depends on the current use of the file, as shown in Figure 5-1.

5-18

61-G

REQUESTED ACCESS GRANTED, UNLESS NOTED

Current

FOPENed for

FOPENed for

FOPENed for

Use Input Output Input/Output Pul):gi;:m Being Being
Requested Loaded :STOREd :RESTOREd
Access SHR EAR SHR EAR SHR EAR
Requested Requested Requested Requested Requested Requested
SHR Access Access Access Access Access Access
Granted Granted Granted Granted Granted Granted Requested Requested
FOPEN for A E 91
Input Access ccess rror
Requested Requested Granted Granted
EAR Access Access Error 90 Error 90 Error 90 Error 90
Granted Granted
Requested Requested Requested
SHR Access Error 91 Access Error 91 Access Error 91
Granted Granted Granted
gg:i’;‘ for Error 91 Error 91 Error 91
p Requested .
EAR Access Error 91 Error 90 Error 90 Error 90 Error 90
Granted
Requested Requested Requested
SHR Access Input Access Input Access Input
Granted Granted Granted
Granted Granted Granted
FOPEN for Input Input Error 91
Input/Output Requested Granted Granted
EAR Access Input Error 90 Error 90 Error 90 Error 90
Granted
Granted
Requested Requested .
:RUN,CREATE Access Error Message Error Message Access Enly it Error
oaded Message
Granted Granted
Requested Requested
:STORE Access Error Message Error Message Access I\Ellr;sos; e “En::s; e
Granted Granted 9 g
:RESTORE Error Message Error Message Error Message Error Error Error
’ g 9 9 Message Message Message

NOTES: 1. SHR = Share; EAR = Exclusive, allow reading.

2. Fully exclusive accesses cause any succeeding access (except :STORE) to fail.

3. Append access treated like output; Update treated like input/output.

Figure 5-1. Actions Resulting From Multi-access of Files

process has access.

exclusive access.

. Error 90 = Calling process requested exclusive access to a file to which another

. Error 91 = Calling process requested access to a file to which another process has

Re-Specifying File Names

One common application of the :FILE command is to allow the user to reference, within his
program, files whose names and characteristics he may not know at the time he writes his
program.

EXAMPLE:

Suppose, for example, that the user is writing a generalized program that reads input from a
different file each time it is executed. Within the program, the user could reference the input
file by the formal designator INPUT, and an output file by the formal designator OUTPUT.
After the program is compiled and prepared on disc, the user could issue :FILE commands
to equate INPUT and OUTPUT with the corresponding actual file designators of the files to
be used on this run. Then, he could issue the command to execute the program. Suppose
that the user wanted to execute such a program (called PROG1) with an actual file named
MYFILE used as input. He also wants to designate a disc file actually named TEMP for
output. To do this, he could enter the following:

L]
SFILE INPUT=MYFILE
IFILE OUTPUT=TEMP
TRUN PROG1

[]

5-20

Passing Files

Another example illustrates how the :FILE command can be used to pass files between
programs.

EXAMPLE:

In this example, two programs, PROG1 and PROG2, are executed. PROGI1 receives input
from the actual disc file DSFIL (through the programmatic name SOURCE1) and writes
output to an actual file NEWPASS, to be passed to PROG2. ($NEWPASS is referenced
programmatically in PROG1 by the name INTERFIL.) When PROG?2 is run, it receives
SNEWPASS (now known by the actual designator §OLDPASS), referencing that file
programmatically as SOURCE2. (Note that only one file can be designated for passing.)

SFILE SOURCE I=DSFIL
IFILE INTERFILSSNEWPASS
3RUN PROG |

IFILE SOURCE2=SOLDPASS
3RUN PROGE

5-21

Issuing Detailed File Specifications

The user can use the :FILE command to designate, for a file, various detailed specifications
(such as device type, file type, code, or access mode). This command overrides any existing
specifications defined for the file in the user’s program.

EXAMPLE:

Suppose a BASIC/3000 user is accessing MPE/3000 from a terminal. He knows that during
the course of his session, he will want to list his program and its output on a line printer.
Before calling the BASIC/3000 Interpreter, he uses the :FILE command to specify a file
for printout as follows:

' S$FILE PRINTER: DEUV=LP
_S_BASIC 2+ %PRINTER

-
*

>12 FOR 1 =1 TO 19

>LIST, 19-509

The :FILE command will direct the BASIC/3000 program listing and output to a line printer
file. (Once the user has entered BASIC, he may transmit output from his program to the line
printer by entering the LIST command.)

All :FILE commands must precede the :RUN or subsystem execution commands to which
they apply. Each :FILE command remains active throughout the entire job or session unless
that command is revoked or superceded. For this reason, the same program cannot be ex-
ecuted twice within the same job if that program references different files each time — unless
anew :FILE command or a :RESET command is issued prior to the second execution.

5-22

As another example of this techhique:

EXAMPLE:

Two FORTRAN/3000 programs are to be executed within one job. Before the first program
is executed, a new file must be created with the following specifications: a binary disc file,
direct access, with fixed-length records of 100 words each. Maximum size is 5000 records,
divided into 10 extents, but only one extent (500 records) is to be allocated initially. The
initial FORTRAN/3000 program expects this file to be accessed as logical unit number 8. The
user wishes to save the file under the name FDATA1. To specify this file, the user enters:

tFILE FTN@B=FDATAl, NEWs SAVE3 REC=100,, F, BINARYs DISC=5020, 10,

This file will be created when opened by the :FORTRAN program; it will be permanently
saved under the user’s log-on group when closed by the FORTRAN program.

The first FORTRAN program may now be executed, accessing this file for disc input/output.
Before the second program is executed, however, the :FILE command must be used again
since the second program expects to access this file through logical unit numbers 20 and 21.
Rather than re-enter the above specification, which is quite lengthy, the user simply enters
these references and then executes his program:

tFILE FTN2O=FDATAI
SFILE FTN21=*FTN20O COR» SFILE FTN21sFDATA1)

5-23

Implicit :FILE Commands

As mentioned earlier, compilers and other subsystems that run under MPE/3000 accept actual
file designators as parameters in the commands that call these programs. Although the user is
not generally aware of this fact, when an actual file designator appears as a command param-
eter, it is automatically equated to a formal file designator, used within the subsystem, by an
implicit :FILE command issued by the command executor. For instance, within the
FORTRAN/3000 compiler, the formal file designator for the textfile input is FTNTEXT.

In the :FORTRAN command, this is related to the textfile parameter shown below:

:FORTRAN [textfile] [,[uslfile] [,[listfile] [,[masterfile] [,newfile]]]]

When the user specifies:

+FORTRAN ALSFILE
MPE/3000 implicitly issues the following :FILE command, invisible to the user:

tFILE FTNTEXTsALSFILE
When calling a compiler or subsystem, any valid actual file designators (except the formal desig-
nator used by the subsystem) can be used as command parameters, including those of the
*formaldesignator (back-reference) format.

EXAMPLE:

In the following code, the user specifies a file on magnetic tape used as a source file during a
FORTRAN compilation:

$FILE SOURCE=TAPE1,0LDs DEVs=TAPES REC=80
$FORTRAN *SOURCE

When these commands are encountered, the compiler executor issues the following implicit
:FILE command, back-referencing the user’s previous :FILE command:

SFILE FTINTEXT=*SOURCE

When a compiler or subsystem terminates, MPE/3000 implicitely resets each formal designator
previously set by an implicit :FILE command issued as a result of the compiler/subsystem
call. This minimizes confusion between the subsystem’s designator and the user’s.

5-24

Command File Parameters

The programmer can avoid issuing :FILE commands that conflict with certain pre-defined
:FILE commands, if he knows the formal file designators used by MPE/3000 subsystems and
commands. The formal file designators for compilers, interpreter, and other subsystem com-

mands are:

Command

:BASIC

:FORTRAN

:SPL

:COBOL

:FORTPREP

:SPLPREP

:COBOLPREP

Parameters

commandfile
inputfile
listfile

textfile
uslfile
listfile
masterfile
newfile

textfile
uslfile
listfile
masterfile
newfile

textfile
uslfile
listfile
masterfile
newfile

textfile
progfile
listfile
masterfile
newfile

textfile
progfile
listfile
masterfile
newfile

textfile
progfile
listfile
masterfile
newfile

5-25

Formal File Designator

BASCOM
BASIN
BASLIST

FTNTEXT
FTNUSL
FTNLIST
FTNMAST
FTNNEW

SPLTEST
SPLUSL
SPLLIST
SPLMAST
SPLNEW

COBTEXT
COBUSL
COBLIST
COBMAST
COBNEW

FTNTEXT
FTNPROG
FTNLIST
FTNMAST
FTNNEW

SPLTEXT
SPLPROG
SPLLIST
SPLMAST
SPLNEW

COBTEXT
COBPROG
COBLIST
COBMAST
COBNEW

Command

:FORTGO

:SPLGO

:COBOLGO

:EDITOR

:SEGMENTER

:STAR

Parameters

textfile
listfile
masterfile
newfile

textfile
listfile
masterfile
newfile

textfile
listfile
masterfile
newfile
listfile
listfile

listfile

Formal File Designator

FTNTEXT
FTNLIST
FTNMAST
FTNNEW

SPLTEXT
SPLLIST
SPLMAST
SPLNEW

COBTEXT
COBLIST
COBMAST
COBNEW
EDTLIST
SEGLIST

STRLIST

The formal file designators for optional parameters in the commands that prepare and run
programs are as follows. Implicit :FILE commands are not issued for these designators.
Rather, the formal designator specifies the destination of listings generated by the command
executor if the user does not re-specify the destination by issuing an explicit file command.
(This :FILE command remains in effect throughout the job/session, unless an applicable
:RESET command or another :FILE command is issued.)

Command Parameters Formal File Designator
i?gggRUN } PMAP - SEGLIST
ZE%‘?\IPRUN } LMAP LOADLIST
ESRESEERE] SHOW SYSLIST

5-26

RESETTING A FORMAL FILE DESIGNATOR

A formal file designator referenced in a prior :FILE command can be reset to the meaning
defined by its original actual file designator. This is requested by issuing the :RESET command.
The :RESET command effectively nullifies any previous explicit or implicit :FILE command
referencing that formal designator, and applies to files on disc, tape, or any other device. The
format of the :RESET command is

:RESET { formaldesignator }
@
formaldesignator The formal file designator to be reset.

@ An indication that the formal file designators referenced in all
prior :FILE commands in the job/session are to be reset.

(Either the formaldesignator or @ parameter must be entered.)

EXAMPLE:

Suppose that a user runs two programs, both referencing a file defined within these programs
by the designator DFILE, a new, temporary file on disc. Before he runs the first program, the
user wants to redefine the file so that it is output to the standard list device. To do this, he
issues a :FILE command equating DFILE with $STDLIST. In the second program, the file

is again to be a temporary file on disc. The user issues a :RESET command to re-establish
the programmatic specifications:

tJOB JNAME, UNAME .ANAME
[
L]

]

SFILE DFILEs=SSTDLIST
$RUN PROG!

$RESET DFILE

tRUN PROG2

v 9

$EO0J

5-27

CREATING A NEW FILE

The programmer can create a new disc file and specify its characteristics by issuing the
:BUILD command. This command, when encountered, results in the immediate allocation
of an empty file having the specifications supplied by the user as command parameters.

(This is unlike the :FILE command, which does not take effect until the file is opened by
the user’s program and whose specifications override those supplied by the FOPEN intrinsic.)
The user can specify the new file as a job/session temporary file, or as a permanent file.

To issue the :BUILD command, the user must have SAVE access (as defined later in this
section) to the group to which the new file is to belong (unless the TEMP parameter is
specified). The :BUILD command is written in this format:

:BUILD filereference

F
BINARY
,REC = } , | blockfact UL
[[recszze] [[ockfac or] o 1 ASCII

[,CCTL]

[,JNOCCTL]

[;TEMP]

[;DEV = device]

[;CODE = filecode]

[,DISC = [filesize] [,[numextents] [,initalloc]]]

filereference The filename in the filereference format, optionally including the
account and group identifiers, and lockword. If specified, the
account name must be that of the log-on account. (Required
parameter.)

recsize
blockfactor
F

U

\%
BINARY
ASCII i The same meanings and default values as the corresponding
CCTL q parameters described in the :FILE command discussion.
NOCCTL (Optional parameters.)

device
filesize
numextents
initalloc
filecode)

5-28

TEMP A specification that the file is a job temporary file, entered in
the job/session temporary file directory; when job/session
terminates, the file is deleted. If TEMP is omitted, the file is
declared permanent; it is saved in the system file domain.
(Optional Parameter.)

EXAMPLE:

To create a new job/session temporary file named NFILE, containing 5600 records of 160
words each, the user enters:

$BUILD NFILEs DISC=50083 REC=160) TEMP

SAVING A FILE
A temporary disc file can be changed to a permanent file by issuing the :SAVE command,
immediately following execution of the program that opens the file. (To use this command,

the user must have SAVE access to the group to which the referenced file is to belong.)

SOLDPASS,newfilereference

:SAVE
tempfilereference

$OLDPASS The file currently being passed, used only if this is the file to be
made permanent. (After it is saved, no file is in the pass condition.)
(Optional parameter.)

newfilereference The new file name to be assigned to $OLDPASS when it is made
permanent. (Required if $SOLDPASS is used.)

tempfilereference The name of the temporary file to be made permanent under

the same filename. This file is deleted from the temporary file
domain. (Optional parameter.)

If no account and group identifiers are entered as part of the newfilereference or tempfile-

reference parameters, the file will be assigned to the log-on account and group. (If the
account name is specified, it must be the name of the log-on account.)

EXAMPLES:

The following command assigns the mos recently $PASSed file to permanent status under the
name PERMFILE: (Now, $OLDPASS can no longer be referenced.)

$SAVE SOLDPASS, PERMFILE

The next command changes the temporary file DATAFILE.GROUPX to permanent status.

$SAVE DATAFILE +GROUPX
5-29

DELETING A FILE
To delete a disc file from the system, the user enters the :PURGE command:

:PURGE filereference{,TEMP]

filereference The name (and, if required, the group, account and lockword)
of the file to be deleted. This must be a file to which the user
has write (W) access, as defined in the MPE/3000 security pro-
visions. (Required parameter.)

TEMP An indication that the file is a temporary job file. (Required
parameter for temporary files.)

EXAMPLE:

The following command deletes the temporary file TFILE:

3PURGE TFILE, TEMP

LISTING FILE SETS

The user can obtain descriptions of one or more disc files in the system by issuing the :LISTF
command. This command provides a listing that shows, for each file referenced, various items
requested at the user’s option. Among these items are: the file name, the type, size, number
of records it contains, and other information found in the file label. To obtain this information
for a file, the user need not have access to the file. Therefore, when a user issues a command to
list descriptions of several files, the resulting listing may contain information about some files
that are not accessible to him.

The :LISTF command is issued in this format:

:LISTF [fileset] [,detail] [;listfile]

fileset One or more files, referenced by filename, group, and account, as described
below. If this parameter is omitted, all files in the user’s log-on group are
listed. (Optional parameter.)

detail A number indicating the amount and type of information to be listed, as
follows:
0 = The filename. (An asterisk (*) denotes that the file is open.)

1

The above, plus the file code, record size (bytes), record type
(F, U, or V), whether ASCII or binary records (A or B), whether

5-30

carriage control option is taken (C, if so), the current end-of-file
pointer, and the maximum number of records allowed in the file.

2 = The above, plus the blocking factor, number of disc sectors in use
(including the file label and user headers), the number of extents
currently allocated, the maximum number of extents allowed.

-1 = An octal listing of the file label (if the user has System Manager
or Account Manager Capability). Account-Manager Users can
issue only :LISTF, -1 for files in their account; they cannot
specify an account in fileset for this detail. (The format of file
labels is shown in Appendix F.)

A detail specification greater than 2 defaults to 2; a detail specification less
than -1 defaults to -1.

The default parameter is 0. (Optional parameter.)

listfile The file on which the listing is to be written. This must be an ASCII file from
the output set. It is automatically specified as a new, ASCII file with variable-
length records, user-supplied carriage control characters (CCTL), OUT access
type, and the EXC option; all other specifications are the same as the :FILE
command default specifications. If omitted, $STDLIST is assigned by default.
(Optional parameter.)

The fileset parameter allows the user to request descriptions of one file alone, or various sets
of files. It contains three positional-fields separated by periods: the file, group, and account
fields. The file field permits the user to indicate a specific file or all files within the units
designated by the other fields. The group field denotes the group to which the files belong.
This can be the user’s log-on group, any other group, or all groups within the accounts
specified by the account field. The account field indicates the account or accounts to
which the groups belong. This can be the log-on account, any other account, or all
accounts in the system. (To specify all files, groups, or accounts, the user enters the
character @ in the appropriate field. The omission of an entry in the group or account

field denotes the log-on group or account.) For the fileset parameter, the following
combinations of entries are possible.

5-31

File Field

filename

filename

filename

Group Field

groupname

groupname

groupname

groupname

Account Field

accountname

accountname

accountname

Entry
Example

FILE.GROUP.ACCT

FILE.GROUP

FILE

@.GROUP.ACCT

@.GROUP

@.@.ACCT

@@

@.e.@

5-32

Meaning

The file named, in
the group and account
designated.

The file named, in
the group designated
under the log-on
account.

The file named,
under the log-on

group.

All files in the group
named, under the
designated account.

All files in the group
named, under the log-
on account.

All files in the log-on
group.

All files in all groups
under the account
named.

All files in all groups
under the log-on

account.

All files in the system.

The following example shows how the complete :LISTF command is used:

EXAMPLE:

To list the file name, file code, size, type of records, ASCII vs. binary code, carriage-control
option, end-of-file pointer, and maximum number of records for the file named BASE

in the group USERGP under the programmer’s log-on account, the following command

is issued:

$L1STF BASE.USERGP, 1

To list the filename of all files in all groups the user’s log-on account, this command is entered.

sLISTF 0.0

DUMPING FILES OFF-LINE

To obtain a back-up copy of a particular user disc file or fileset, the user can copy the fileset
off-line to a magnetic tape unit by issuing the :STORE command. The files are copied in a
special format, along with all descriptive information (such as account name, group name, and
lockword), permitting them to be read back into the system later (by the :RESTORE command).

Multi-file reels and multi-reel files are both supported by :STORE and :RESTORE.

NOTE: The :STORE and :RESTORE commands are used primarily as
a back-up for files. They can be used to interchange files be-
tween installations if the accounts, groups, and creators of the
files to be restored are defined in the destination system.
Furthermore, if no destination device is specified in the
:RESTORE command, MPE/3000 does not guarantee which
devices will actually receive the files — if a device of the same
type as the original device with sufficient storage space can-
not be found, the file is restored to any device that is a
member of the device class DISC,

The :STORE command is written as follows:

:STORE [filesetlist] ;tapefile{;SHOW]

filesetlist A list of one or more files or filesets to be copied, written in this format:

[fileset[fileset]...]

5-33

In this list, fileset must be written as one of the combinations noted for
fileset in the discussion of the :LISTF command. If the entire filesetlist
parameter is omitted, the default value is @ (all files of the log-on group
are copied). If any file requires a lockword, the user may supply that
lockword. If he fails to supply it (while in batch mode), the file will not
be stored. If he fails to supply it (in interactive mode), he is prompted
for the lockword. (Optional parameter.)

tapefile The name of the destination tape file onto which the stored files are
written. This can be any magnetic tape file from the output set. This
file must be referenced in the *formaldesignator format described
earlier. (Required parameter.)

SHOW A request that the names of the stored files, plus the total number of
files stored, the names of the files not stored, and the number of files
not stored, be listed. If SHOW is omitted, only the total number of files
stored, the names of the files not stored, and the number of files not
stored, are listed. (Optional parameter.)

NOTE: Before issuing a :STORE command, the user must identify
tapefile as a magnetic tape file. He does this through the
FILE command. In this case, the :FILE command should
be written in the following format, including no parameters
other than those shown: :

:FILE formaldesignator [=filereference] ;DEV=device

The device parameter must be the device class name or logical
unit number of a magnetic tape unit.

All other parameters for tapefile are supplied by the :STORE
command executor; if the user attempts to supply any of these
himself, the :STORE command is rejected.

A typical user can dump any file to which he has read-access. If a file has a negative file code,
however, the user must have the Privileged Mode Optional Capability. A user with the System
Manager or System Supervisor Capability can dump any user file in the system. An Account-
Manager User can dump any file in his account (but cannot dump those with negative file
codes unless he also has the privileged mode capability).

Files currently open for output, input/output, update, or append access cannot be acted upon
by a :STORE command. Files currently being stored or restored cannot be acted upon by a
:STORE command. However, files loaded into memory (currently running programs) and
files open for input only can be stored, since their contents cannot be altered.

While a file is being dumped, it is locked by MPE/3000 so that it cannot be altered or deleted
until safely copied to tape. If the job performing the :STORE function is aborted (through
the =ABORTJOB console command), some of the files being stored may remain locked until
the next cold-load.

5-34

The flow chart below shows the checks performed against a file to ensure its eligibility
for dumping:

Does user

have System Manager Yes

\

or System Supervisor
Capability ?

No

Does user
have Account Manager Capa- Yes
bility and is this
file in this
Account?

\ 4

No

Is Yes
File Secured
?

File cannot be dumped.
Checking terminates for No Read
this file, an error r 7y Access Avail-
is printed, and command able?
execution continues.

5

Yes

A

r'y

Does File
have Lockword

No

No

interactive Mode

Lockword

Supplied

H
: Prompt User

»
P

]

(A <
2
I

77

Does
Lockword
Match

?

No

A

Does
File have Nega-
tive File
Code?

Privileged
Mode
?

is

File Busy Store File
?

Off-Line

5-35

After the tape is written, data showing the results of the :STORE command is printed. By
default, this output is sent to the standard list device ($STDLIST). However, the user can
override this default and transmit the output to another file by issuing a :FILE command
equating SYSLIST (the formal file designator by which the :STORE command executor
references this list file) to another file. For example, a user at a terminal might transmit this
output to a line printer by entering

tFILE SYSLIST=MYFILE; DEV=LP
If the SHOW parameter is omitted from the :STORE command, only the total number of

files actually stored, a list of files not stored, and a count of files not stored, are printed.
But if SHOW is included, the listing of files appears, in the following format:

FILES STORED = xxx

FILE .GROUP ACCOUNT LDN ADDRESS
filenamel .groupnamel .acctnamel ldnl addrl
filename2 .groupname2 .acctname?2 ldn2 addr2
filenamen .groupnamen .acctnamen ldnn addrn

FILES NOT STORED = yyy

FILE .GROUP .ACCOUNT FILESET CONDITION
filenamel .groupnamel .acctnamel fileset# msg
filename2 .groupname2 .acctname?2 fileset# msg
filenamen .groupnamen .acctnamen fileset# msg

In this format, xxx is a value denoting the total number of files dumped onto tape; yyy denotes
the number of files requested that were not dumped. The notations filename, groupname, and
acctname under the FILES STORED heading name the individual files dumped, and their
groups and accounts, respectively. The notation ldn indicates the logical device number (in
decimal) of the device on which the file resides, and addr is the absolute address (in octal) of
the file label. The notations filename, groupname, and acctname under the FILES NOT
STORED heading, indicate the individual files not dumped, and their groups and accounts.
The notation fileset# shows the number of the fileset to which the particular file belongs
(relative to its position in the filesetlist parameter). The notation msg is a message denoting
the reason that the file was not dumped, as follows. (These errors do not abort the file storing
operation, which continues.)

5-36

Message Meaning

ACCOUNT NOT IN DIRECTORY Specified account does not exist.

GROUP NOT IN DIRECTORY Specified group does not exist.

FILE NOT IN DIRECTORY Specified file does not exist.

BUSY File is open for output, or is currently being

stored or restored.

FILE CODE <0 AND NO PRIVMODE A user without Privileged Mode Capability is
attempting to STORE a file with a negative
file code.

LOCKWORD WRONG The file lockword either was not provided or
was specified incorrectly.

READ ACCESS FAILURE The user does not have read access to the
specified file.

The following catastrophic errors abort the :STORE command:
Command system error.
Disc input/output error (in system).
File directory error.

File system error on the tape file, list file, or temporary disc files used by the :STORE
command executor.

The following example illustrates the use of the :STORE command.

EXAMPLE:

To copy all files in the group GR4X (in the user’s log-on account) to a tape file named
BACKUP, the user enters the following commands. A listing of the files copied appears
on the standard list device.

tFILE BACKUP; DEV=TAPE
1 STORE @.GP4X3 *BACKUP; SHOW

Explicit or implicit redundancies are permitted in filesetlist, but once a file has been locked
down, any subsequent reference to it in filesetlist results in the message BUSY even though
execution of the :STORE command continues.

EXAMPLE:

Suppose the file identified as FN.GN.AN is a member of the fileset referenced by @ in the
following command.

$ STORE @,FN.GN.AN3 *DUMPTAPE; SHOW

5-37

The command is executed successfully, but the fileset# and msg notations under FILES NOT
STORED on the listing will show:

filename groupname acctname fileset# msg

FN GN AN 2 BUSY

This same file will also be noted under FILES STORED.

RETRIEVING DUMPED FILES

The user can read back into the system, onto disc, any file, fileset, or filesetlist that has been
stored off-line (on tape) by :STORE. The files referenced are attached to the appropriate
groups and accounts, with previous account and group names, and lockwords all re-instated.
File retrieval is requested with the :RESTORE command. This command does not create any
new accounts or groups. Any tape file to be restored will only be restored if the account
name and group name exist on disc (in the system directory).

_RESTORE tapefile [;[filesetlist] [,KEEP] [.DEV=device] [[SHOW] ...]

tapefile The name of the tape file on which the filesetlist to be retrieved
now resides. This file must be referenced in the *formaldesignator
format described earlier. A message is output to the console
operator telling him which tape to mount, and the device it
should be mounted on. (Required parameter.)

filesetlist The file, fileset, or filesetlist to be restored from tape. Each file
is restored as a permanent file in the system file domain. The
parameter is written in the same format, and subject to the same
constraints as the filesetlist parameter of the :STORE command.
The number of filesets specified is limited as follows: up to 10
by account name; up to 15 by account name and group name;
up to 20 by account name, group name, and file name. If the
filesetlist parameter is omitted, the default value is @.@.@,
(all files on the tape). (Optional parameter.)

KEEP A specification that if a file referenced in filesetlist currently exists
on disc, the file on disc is kept and the corresponding tape file is not
copied into the system. If KEEP is omitted, and an identically-
named file exists in the system, that file is replaced. If KEEP is
omitted, AND a file on tape is eligible for restoring AND a file
of the same name exists on disc AND this disc file is busy, the
disc file is kept and the tape file is not restored. (Optional
parameter.)

device The device class name or logical device number of the device on
which all files are to be restored. If omitted, an attempt is made
to replace the files on the same device type (and subtype) on which

5-38

they were originally stored in the system; if this cannot be done,
an attempt is made to restore the files to the same device type
(ignoring sub-type); if this fails, an attempt is made to restore

it to the device class DISC; if this fails, the file is not restored.
(Optional parameter.)

SHOW A request that the names of the restored files, the total number of
files restored, the names of the files not restored, and the total
number of files not restored be listed. If SHOW is omitted, only
the total number of files restored, a list of the files not restored,
and a count of the files not restored, are listed. (Optional
parameter.)

A user with System Manager or System Supervisor Capability can restore any file from a
:STORE tape, assuming the account and group to which the file belongs, and the user who
created the file exist in the system. A user with Account-Manager Capability can restore any
file in his account (but cannot restore those with negative file codes unless he also has the
privileged mode capability). Any other user can restore any tape file in his log-on account if
he has save-access to the group to which the file belongs (but cannot restore those with
negative file codes unless he also has the privileged mode capability). If the file on tape is
protected by a lockword, the lockword must be supplied in the :RESTORE command.
(Users logged-on interactively are prompted for omitted lockwords.)

If a copy of a file to be restored already exists on disc, the user must have write access to the
disc file (since it will be purged by :RESTORE). If this disc copy has a negative file code,
the user must have privileged mode capability to restore it.

Files currently open, loaded into memory, or being stored or restored, cannot be acted upon
by a :RESTORE command.

The :RESTORE command performs the same checking performed by the :STORE command,
to ensure a file’s eligibility for retrieval. If the SHOW parameter is included in the :RESTORE
command, a listing is produced showing the names of the files restored, a count of files
restored, a list of files not restored, and a count of files not restored. Otherwise, a count of
files restored, a list of files not restored, and a count of files not restored, are supplied. As
with the listing produced by :STORE, the listing output by :RESTORE is transmitted to a
file whose formal designator is SYSLIST; if the user does not specify otherwise, this file is
equated, by default, to the standard list device ($STDLIST). The listing appears in the

format shown below.

FILES RESTORED = xxx

FILE .GROUP ACCOUNT LDN ADDRESS
filenamel .groupnamel .acctnamel ldnl addrl
filename2 .groupname?2 .acctname?2 ldn2 addr?2
filenamen .groupnamen .acctnamen ldnn addrn

5-39

FILES NOT RESTORED = yyy

FILE .GROUP ACCOUNT FILESET CONDITION
filenamel .groupnamel .acctnamel fileset# msg
filename2 .groupname2 .acctname?2 fileset# msg
filenamen .groupnamen .acctnamen fileset# msg

In this format, xxx denotes the total number of files restored; yyy denotes the number of files
requested that were not restored. The notations filename, groupname, and acctname under the
FILES RESTORED heading name the individual files restored, and their groups and accounts,
respectively. The notation ldn indicates the logical device number (in decimal) of the device
on which the file now resides, and addr is the absolute address (in octal) of the file label. The
notations filename, groupname, and acctname under the FILES NOT RESTORED heading,
indicate the individual files not restored, and their groups and accounts. The notation fileset#
shows the number of the fileset to which the particular file belongs (relative to its position in
the filesetlist parameter.) The notation msg is an error message denoting the reason that the
file was not restored, as follows. (These errors do not abort the file-restoring operation.)

Message | Meaning

ACCOUNT DIFFERENT FROM LOGON The file’s account name is different from the
name of the user’s log-on account. (Users do
not have save-access to groups outside of their
log-on accounts.)

ACCOUNT DISC SPACE EXCEEDED The account’s disc space limit would be ex-
ceeded by restoring this file.

ACCOUNT NOT IN DIRECTORY The account specified does not exist in the
system.

ALREADY EXISTS A copy of the file specified already exists on

disc, and KEEP was also specified. The file
was not replaced.

BUSY The disc file is open, loaded, or being stored
or restored at present.

CATASTROPHIC ERROR A catastrophic error occurred while the system
was restoring either this file or one previous to
it on the tape, and the :RESTORE command
was aborted. (Examples of such catastrophic
errors are listed below.)

5-40

Message Meaning

CREATOR NOT IN DIRECTORY The creator of the file is not defined in the
system.

DISC FILE CODE <0 AND NO PRIV One of the files (on disc) to be replaced has a

MODE negative file code, and the user does not have

Privileged Mode Capability.

DISC FILE LOCKWORD WRONG The disc file has a lockword that does not
match the lockword for the file on tape.

GROUP DISC SPACE EXCEEDED The group’s disc space limit would be ex-
ceeded by restoring this file.

GROUP NOT IN DIRECTORY The group specified does not exist in the
system.

NOT ON TAPE The file specified is not on the tape.

OUT OF DISC SPACE There is insufficient disc space to restore this
file.

SAVE ACCESS FAILURE The user does not have save-access to the group
to which the file belongs.

TAPE FILE CODE <0 AND NO PRIV One of the files (on tape) to be restored has a

MODE negative file code, and the user does not have

Privileged Mode Capability.

TAPE FILE LOCKWORD WRONG The tape file has a lockword that was not sup-
plied by the user, or was specified incorrectly.

WRITE ACCESS FAILURE The user does not have write-access to the copy
of the file on disc.
The following catastrophic errors abort the :RESTORE command:
Command syntax error.
Disc input/output error (in system).
File directory error.
File system error on the tape file (TAPE), list file (SYSLIST), or any of the three
temporary files (GOOD, ERROR, and CANDIDAT) used by the :RESTORE

command executor.

Improper tape; the tape used for input was not written in :STORE/:RESTORE format.

5-41

No continuation reel; the computer operator could not find a continuation reel for a
multi-reel tape set.

Device reference error; the specification for the device parameter is illegal, or the device
requested is not available.

Too many filesets specified.

EXAMPLE:

To retrieve from the file named BACKUP all files formerly belonging to the user’s log-on
group, the user enters:

$FILE BACKUP; DEV=TAPE
:RESTORE *BACKUP: @3 KXEEP3 DEV=MDISC; SHOVW

If a tape file satisfying the @ specification already exists in the system, it is not restored.

NOTE: Tapescreated by the :STORE command and :SYSDUMP
command (discussed in HP 3000 System Manager/System
Supervisor Capabilities (03000-90038)), are compatible.
Thus, a tape dumped through :SYSDUMP can be used as
input for the :RESTORE command.

RENAMING A FILE

The user can change the name (filereference-format identity) of any disc file which he has
created. When he does this, he effectively removes the file with the old name from the system
and creates another file with identical contents and a new name. This command can be used
also to move a file from one group to another by specifying different group names in the first
two parameters, or to change the lockword of a file. Renaming is accomplished with the
:RENAME command:

~RENAME oldfilereference,newfilereference [, TEMP]

oldfilereference The current name of the file including optional group and
account identifiers, and lockwords. (If an account is speci-
tied, it must be the log-on account.) (Required parameter.)

newfilereference The new name to be assigned to the file, including optional
group and account identifiers, and lockwords. If an account
identifier is specified, it must be that of the log-on account.

5-42

If a group identifier is used, it must be one to which the user has
save access, as defined under the discussion of file security. If the
group and account identifiers are omitted, the log-on group and
account are assumed. (Required parameter.)

TEMP Indicates that the old file was, and the new file will be, a temporary

file local to the job or session. (Optional parameter.)

NOTE: The user can apply the :RENAME command only to files
that he himself has created.

EXAMPLES:

To change the name of a temporary job file from OLDFILE to NEWFILE. ORGB, the user
enters:

t RENAME OLDFILE, NEWFILE.ORGBs TEMP

To change the lockword of the permanent file XFILE from LKD to BARX, the user enters:

t RENAME XFILE/LKDs XFILE/BARX

SPECIFYING FILE SECURITY

As previously noted, when a user logs onto the system (or submits a job to it through the
computer operator), he is related to an account and to a group of files owned by that account.
Associated with each account, group, and individual file, there is a set of security provisions
that specifies any restrictions on access to the files in that account or group, or to that partic-
ular file. (Notice that these provisions apply to disc files only.) These restrictions are based
upon two factors:

1. Modes of Access (reading, writing, or saving, for example).

2. Types of Users (users with Account Librarian or Group Librarian Capability, or
creating users, for instance) to whom the access modes specified are permitted.

The security provisions for any file describe what modes of access are permitted to which
users of that file.

5-43

The access modes possible, the mnemonic codes used to reference them in MPE/3000 com-
mands relating to file security, and the complete meanings of these modes are listed below:

Access Mode
Reading

Locking

Appending

Writing

Saving

Executing

Mnemonic
Code

R

L

Meaning
Allows users to read files.

Permits a user to prevent concurrent access
to a file by himself and another user. Specif-
ically, it permits use of the FLOCK and FUN-
LOCK intrinsics, and the exclusive-access
option of the FOPEN intrinsic, all described
in the next section.

Allows users to add information and disc ex-
tents to files, but prohibits them from alter-
ing or deleting information already written.
This access mode implicitly allows the locking
(L) access mode described above.

Allows users general writing access, permitting
them to add to, delete, or change any infor-
mation on files. This includes removing entire
files from the system with the :PURGE com-
mand. Writing access also implicitly allows
the locking (L) and appending (A) access
modes described above.

Allows users to declare files within their group
permanent, and to rename such files. This
ability includes the creation of a new perman-
ent file with the :BUILD command.

Allows users to run programs stored on files,
with the :RUN command or CREATE intrinsic.

The types of users recognized by the MPE/3000 security system, the mnemonic codes used to
reference them, and their complete definitions are listed below.

User Type

Any User

Account Librarian
User

Mnemonic
Code

ANY

AL

Meaning

Any user defined in the system; this includes
all categories defined below.

User with Account Librarian Capability, who can
manage certain files within his account that
may or may not all belong to one group.

5-44

Mnemonic

User Type Code Meaning
Group Librarian GL User with Group Librarian Capability, who can
User manage certain files within his home group.
Creating User CR The user who created this file.
Group User GU Any user allowed to access this group as his

log-on or home group, including all GL users
applicable to this group.

Account Member AC Any user authorized access to the system
under this account; this includes all AL,
GU, GL, and CR users under this account.

Users with System or Account Manager Capability bypass the standard security mechanism; a
System Manager User always has R, A, W, L, X access to any file in the system, and S access
to any group in his account; an Account Manager User always has unlimited (R, A, W, L, X)
access to any file in his account, and S access to any group in his account.

The user-type categories that a user satisfies depend on the file he is trying to access. For
example, a user accessing a file that is not in his home group is not considered a group
librarian for this access even if he has the Group Librarian User Attribute.

Notice that in order to extend a file, either W or A access to that file is required.

NOTE: In addition to the above restrictions, in force at the account,
group, and file level, a file lockword can be specified for each
file. Users must then specify the lockword as part of the file-
name to access this file. The way in which lockwords are
assigned to files is discussed earlier in this section.

The security provisions for the account and group levels are managed only by users with the
System Manager and the Account Manager Capabilities respectively, and can only be changed
by those individuals. The manner in which they are implemented is described in HP 3000
System Manager/Supervisor Capabilities. Because they also relate to the security provisions
at the file level (which are the responsibility of the standard user), the account and group
level provisions are also summarized in this section.

Account-Level Security
The security provisions that broadly apply to all files within an account are set by a System

Manager User when he creates the account. The initial provisions can be changed at any time,
but only by that user.

5-45

At the account level, five access modes are recognized:

Reading (R)
Appending (A)
Writing (W)
Locking (L)

Executing (X)
Also, at the account level, two user types are recognized:

Any User (ANY)
Account Member (AC)

If no security provisions are explicitly specified for the account, the following provisions are
assigned by default:

® For the system account (named SYS), through which the System Manager User
initially accesses the system, reading and executing access are permitted to all
users; appending, writing, and locking access are limited to account members.
(Symbolically, these provisions are expressed as follows:

R,X:ANY; A,W,L:AC

In this format, colons are interpreted to mean “: . . . is permitted only to . ..”, or
“...is limited to . ..”. Commas are used to separate access modes or user types
from each other. Semicolons are used to separate entire access mode/user type
groups from each other.)

(] For all other accounts, the reading, appending, writing, locking, and executing
access are limited to account members. (R,A,W,L,X: AC).

Group-Level Security

The security provisions that apply to all files within a group are initially set by an Account
Manager User when he creates the group. They can be equal to or more restrictive than the
provisions specified at the account level. (The group’s security provisions also can be less
restrictive than those of the account — but this effectively results in equating the group
restrictions with the account restrictions, since a user failing security checking at the account

level is denied access at that point, and is not checked at the group level.) The initial group
provisions can be changed at any time, but only by an Account-Managing User for that group’s
account.

At the group level, six access modes are recognized:

Reading (R)

5-46

Appending (A)
Writing (W)
Locking (L)
Executing (X)
Saving (S)

Also, at the group level, five user types are recognized:

Any User (ANY)

Account Librarian User (AL)
Group Librarian User (GL)
Group User (GU)

Account Member (AC)

If no security provisions are explicitly specified, the following provisions apply by default.

® For a public group (named PUB), whose files are normally accessible in some
way to all users within the account, reading and executing access are permitted
to all users; appending, writing, saving, and locking access are limited to Account
Librarian Users and Group Users (including Group Librarian Users). (R,X:ANY;
AW,L,S:AL,GU).

L For all other groups in the account, reading, appending, writing, saving, locking,
and executing access are limited to group users. (R,A,W,L.,X,S:GU).

File-Level Security

When a file is created, the security provisions that apply to it are the default provisions
assigned by MPE/3000 at the file level, coupled with the user-specified or default provisions
assigned to the account and group to which the file belongs. At any time, however, the
creator of the file (and only this individual) can change the file-level security provisions.
Thus, the total security provisions for any file depend upon specifications made at all

three levels — the account, group, and file levels. A user must pass tests at all three

levels — account, group, and file security, in that order — to successfully access a file in

the requested mode.

If no security provisions are explicitly specified by the user, the following provisions are
assigned at the file level by default:

® For all files, reading, appending, writing, locking, and executing access are
permitted to all users. (R,A,W,L,X:ANY).

5-47

Because the total security for a file always depends on security at all three levels, a file not
explicitly protected from a certain access mode at the file level may benefit from the default
protection at the group level. For example, the default provisions at the file level allow the
file to be read by any user — but the default provisions at the group level allow access only
to group users. Thus, the file can only be read by a group user.

In summary, the default security provisions at the account, group, and file levels combine to
result in these overall default security provisions:

Save Access

Filereference File Access Permitted to Group
filename . PUB.SYS Any file in Public (R, X:ANY; W:AL,GU) AL,GU
Group of System
Account.
filename.group- Any file in any (R,W,X:GU) GU
name.SYS group in System
Account.
filename.PUB.ac- Any file in Public (R,X:AC; W:AL,GU) AL,GU
countname Group of any
account.
filename.group- Any file in any (R,W,X:GU) GU
name.accountname group in any
account.

Stated another way, when the default security provisions are in force at all levels, the standard
user (without any other user attributes) has:

® Unlimited access (in all modes) to all files in his log-on group and home group.

® Reading and executing access (only) to all files in the public group of his account
and the public group of the System Account.

The user cannot access any other file in the system (in any mode).
A user can only create files within his own account.

The legitimacy of a request to access a file is determined by checking the access mode requested
by the user against the final access mode authorized for users of this type by the file security
provisions. For various intrinsics, the functions requested versus the access mode necessary

for the functions to be honored, are shown below. (The intrinsics are described in detail in
Section VI.)

5-48

Access Mode Required

Intrinsic Function Requested to Honor Function
FOPEN Reading R

Writing w

Appending (only) A (or W)

Input/output Rand W

Updating R and W

Exclusive accessing L (or Wor A)

Semi-exclusive accessing L (orWor A)
FLOCK File locking L (orWor A)
FUNLOCK File unlocking L (or Wor A)
FCLOSE Saving S (relative to desired group)

Any access beyond the AorW

current end-of-file.
Additionally, any attempt to access a file beyond the current end-of-file indicator requires
permission for A or W access mode.

When a file is closed, with permanent file disposition, by the FCLOSE intrinsic with a seccode
parameter of O for normal MPE/3000 security, the security provisions assigned are:

R,AW,LX: ANY

But when this is done with a seccode parameter of 1 for private user file security, the security
provisions assigned are:

R,AWLX: CR

Then, if the user desires, he can assign more or less restrictive security provisions with the
:ALTSEC Command, described next.

Changing File-Level Provisions
To change the security provisions assigned to any individual disc file, the creating user can enter
the :ALTSEC command. This command permanently deletes all previous provisions specified
for this file, and replaces them with those defined as the command parameters. The security
provided by any lockword, however, is not affected. The :ALTSEC command format is:

ALTSEC filereference [;([modelist:userlist[;modelist:userlist] . ..])]

5-49

where:

filereference

modelist

userlist

The name of the file whose security provisions are to be altered.
This is any legal filename (including account and group names, if
required.) The lockword, if any, must also be specified. (Re-
quired parameter.)

The modes of access that are permitted to the users specified in
the immediately following userlist parameter. If two or more
modes are specified, they must be separated from each other by
commas. The modes are denoted by letters, as follows:

= Reading
= Locking
Appending (implicitly specifies L, also)

= Writing (implicitly specifies A and L, also)

X = » B
fl

= Executing

If any mode is omitted from this list, this implies (at the file level)
that no one is permitted access in this mode. If no mode at all is
specified, however, this implies (at the file level) completely un-
restricted access to the file. Of course, access can also be limited
by provisions specified at the account and group levels. (Optional
parameter.)

NOTE: Even though the creator of a file may be barred
from accessing the file by the modelist:userlist
restrictions, he can still issue an :ALTSEC com-
mand against that file, and thus change the
security provisions to allow him access.

The types of users to whom the access modes defined by the
immediately-preceding modelist parameter apply. If two or more
user types are specified, they should be separated by commas.
The user types are specified as follows:

ANY = Any User.

AC = Account Member.

AL = Account Librarian User
GU = Group User

GL = Group Librarian User
CR = Creating User

(Required parameter if modelist is included.)

5-50

Note that more than one modelist:userlist parameter combination can be used, to permit ex-
tremely versatile file-security specifications.

If no modelist: userlist parameter combination is specified, the following default security provi-
sions are assigned: (R,A,W L,X: ANY).

EXAMPLES:

The following command alters the security provisions for the file named FILEX. This com-
mand permits the ability to read, execute, and append information to the file only to the
creating user and the log-on or home-group users. (Notice that in the modelist:userlist
parameter group, the separating colon can be interpreted as indicating *'. . . is permitted
only to...". Thus, the parameter group in this command implies ‘“The Appending,
Reading, and Executing Modes are permitted only to the Creating User and Log-On and
Home Group Users.”)

$ALTSEC FILEX (A,R,Xt CR, GU)

To restore the default security provisions to this file, the user would enter:

tALTSEC FILEX

The following :ALTSEC command changes the security provisions of :FILEX so that any
group user can execute the file, but only the group librarian can read and write on it.

$ALTSEC FILEX (X:GUs R, W:GL)

Suspending Security Provisions

From time to time, the creating user may wish to temporarily suspend all account, group, and
file-level security provisions governing a disc file, to allow it to be accessed in any fashion by
any user. (Note that this temporary suspension does not require the user to have the System
or Account Manager Capability.) This is done with the : RELEASE command. (File lockword
protection, however, is not removed by this command.) The command format is:

~RELEASE filereference
where:
filereference The name of the file whose security provisions are to be

suspended. (As part of filereference, the lockword, account,
and group may be specified.) (Required parameter.)

5-51

EXAMPLE:

The following command releases the security provisions for the file FILEX in the user’s log-on
group,

¢ RELEASE FILEX

Restoring Security Provisions

To restore the security provisions suspended by the :RELEASE command, the creating user
enters the :SECURE command:

:SECURE filereference

where:

filereference The name of the disc file whose security provisions are to be
restored. (The filereference can include the lockword, account,
and group, as needed.) (Required parameter.)

EXAMPLE:

To restore the security provisions of FILEX, the user enters:

¢ SECURE FILEX

LOCKING FILES

MPE/3000 allows several users to concurrently access a file. But occasionally, a programmer
may want to prevent others from accessing such a file while he is performing some critical
operation (such as updating) upon that file. To satisfy this need, MPE/3000 permits a user
to lock out other users while he is accessing a file, on a continuous or a dynamic basis, by
specifying certain parameters in the :FILE command or FOPEN intrinsic call that initiates
file access. (These parameters and their use are described in the discussion of the FOPEN
intrinsic call, in the next section.) To use these parameters, the programmer must be allowed
the locking access mode noted earlier in this section.

5-52

FILE MANAGEMENT COMMAND FILE-TYPE SUMMARY

The file commands described in this section and the types of files/devices to which they apply
are summarized below:

All Disc Disc Input, Tape Input,
Devices Only Tape Output Disc Output

:FILE :BUILD :STORE :RESTORE
:RESET :SAVE

:PURGE

:LISTF

:RENAME

:ALTSEC

:RELEASE

:SECURE

5-53

SECTION VI
Accessing and Altering Files

Within a user’s program, the accessing and modification of files is requested through intrinsic calls.
Each file referenced is first opened through the FOPEN intrinsic call. Then, other operations such
as reading, writing, updating, and spacing forward or backward can be performed upon the file with
other intrinsic calls. Finally, the file is closed through the FCLOSE intrinsic call, issued by the user’s
process or by MPE/3000 when the user’s process terminates.

If the user is programming in SPL/3000, he declares the intrinsics and writes the intrinsic calls as he
does other statements within his program, as illustrated in the examples throughout this section. If
he is programming in another language, such as FORTRAN/3000 or BASIC/3000, any intrinsics
required are called automatically by the commands in that language, or are invoked through other
provisions described in the manuals covering those languages.

In the FOPEN intrinsic call, the user references a particular file by its formal file designator,
described in the preceding section. When the FOPEN intrinsic is executed, it returns to the user’s
process a file number by which the system uniquely identifies the file. The file number, rather than
the file designator, is used by subsequent intrinsics in referencing the file. In an SPL/3000 program,
the user obtains this number through the normal conventions of that language. One such convention
employs an SPL/3000 assignment statement to store the file number into a location specified by an
identifier (name) which can then be used as an intrinsic call parameter to reference the file. The
format of the assignment statement is discussed in the manual covering SPL/3000. An example is
shown below:

EXAMPLE:

Suppose that a user issues an FOPEN call for a file designated FILLER. He could then store the
file number assigned to FILLER in a location denoted by an identifier called F1 by writing an
assignment statement. In this statement, the identifier appears in the left part and the FOPEN
call appears in the right part. (FILLER is the identifier of a byte-array containing “FILLER.”’)

F13=FOPENCFILLER);

In subsequent intrinsic calls, the user refers to the file as F1. For example:

FCLOSE(F1,0,0)3

6-1

Each intrinsic is declared and called as described in Section III. In this manual, each intrinsic call
is shown within the context of its complete declaration head format; the call is distinguished from
the remainder of the format by a box. The notation OPTION VARIABLE in the intrinsic head
format indicates that certain parameters are optional; the optional parameters are shown in
bold-face type. The absence of this notation means that all parameters are required.

The condition codes returned to the user’s program by the file system intrinsics have the following
general meanings. The specific meanings, of course, depend on the intrinsic:

Condition Code , Meaning
CCE The function requested by the intrinsic call was completed
successfully.
CCG While servicing the request, MPE/3000 encountered the end of
the file.
CCL MPE/3000 could not service the request because an error occurred;

corrective action may, in some cases, be taken. (By issuing an
FCHECK intrinsic call, the user can have a more detailed error
description transmitted to his process.) If, however, the error resulted
from invalid parameters supplied by the user in the intrinsic call, the
error is fatal and the user’s process is aborted (or a software error
trap, if previously enabled by the user, is activated).

When a file is accessed by a process running a program written in a language other than SPL/3000,
the file is generally (but not always) referenced by a file name. All intrinsic calls needed for open-
ing, accessing, and closing the file are generated automatically by the user’s process, and the file
name is equated with the file number used by the intrinsics to reference the file.

When a new file is opened but not yet closed, it is always part of the job/session domain. At this
time, the designator (SPL/3000 programs) or file name (programs in other languages) assigned by
the user need not be unique. But when the file is saved, or closed without being deleted, MPE/3000
determines whether another file with the same designator name exists. If a name conflict occurs, a
CCL condition code is returned to the user’s process, and the specific error is made available through
the FCHECK intrinsic. When a program aborts, old files are returned to the domain in which they
were found when opened; new files are deleted.

NOTE: Allintrinsics discussed in this section, with the exception of
FOPEN, FGETINFO, and FRENAME, can be called (in
privileged mode) with the DB register pointing to a data segment
other than the calling process’ stack. All parameters referenced
in any calls to these intrinsics are always accessed using the current
DB-register setting.

6-2

'‘OPENING FILES

Before a user’s process can read, write on, or otherwise manipulate a file, the process must
initiate access to that file by opening it with the FOPEN intrinsic call. (This call applies to
files on all devices.) When the FOPEN intrinsic is executed, it returns to the user’s process
the file number used to identify the file in subsequent intrinsic calls.

If the file is opened successfully (and the CCE condition code results), the file number re-
turned is a positive integer ranging from 1 to 255. If the file cannot be opened (resulting in
the CCL condition code), the file number returned is zero.

If a process issues more than one FOPEN call for the same file before it is closed, this results
in multiple, logically-separate accesses of that file, and MPE/3000 returns a unique file number
for each such access. Also, MPE/3000 maintains a separate logical record pomter (indicating
the next sequential record to be accessed) for each such access.

In opening a file, FOPEN establishes a communication link between the file and the user’s
program by

° Allocating to the user’s program the device on which the file resides. If the file
resides on magnetic tape, FOPEN determines whether it is present in the system.
(If it is not, FOPEN requests the system operator to supply the tape. Cataloging
of tapes, however, is not done.) Generally, disc files can be shared concurrently
among jobs and sessions. But magnetic tape and unit-record devices are allocated
exclusively to the requesting job or session. For example, different processes
within the same job may open and have concurrent access to files on the same
magnetic tape or unit-record device; but this device cannot be accessed by another
job until all accessing processes in this job have issued corresponding close requests
(FCLOSE calls).

e Verifying the user’s right to access the file under the security provisions existing
at the account, group, and file levels.

. Determining that the file has not been allocated exclusively to another process
(by the exclusive option in an FOPEN call issued by that process).

e Processing file labels (for files on disc). For new files on disc, FOPEN specifies
the number of labels to be written.

o Allocating to the file the number of extents initially requested (for new disc
files).

. Constructing the control blocks required by MPE/3000 for this particular access
of the file. The information in these blocks is derived by merging specifications
from four sources, listed below in descending order of precedence:

1. The file label, obtainable only if the file is an old file on disc. This inform-
ation overrides that from any other source. (Label formats are presented
in Appendix F.)

2. The parameter list of a previous : FILE command referencing the same formal
file designator named in this FOPEN call, if such a command was issued in
this job or session. This information overrides that from the two sources listed
next.

6-3

3. The parameter list of this FOPEN intrinsic call.

4. System default values provided by MPE/3000 (when values are not obtainable
from the above three sources).

When information in one of these four sources conflicts with that in another, pre-
empting takes place according to the order of precedence shown above. To deter-
mine the specifications actually taking effect, the user can call the FGETINFO
intrinsic, described later in this section. Notice that certain sources do not always
apply or convey all types of information. (For instance, no file label exists when a
new file is opened and so all information must come from the last three sources
above.)

Files On Non-sharable Devices

When a process opens a disc file, the user specifies whether the file is an old or new file; an
old file is an existing, labeled file, and a new file implies that the file is to be created. When a
process accesses a file that resides on a non-sharable device, the device’s attributes may over-
ride the user’s old/new specification. Specifically, devices used for input only (such as card
readers) automatically imply old files; devices used for output only (such as line printers)
automatically imply new files; serial input/output devices (such as teletype terminals and
magnetic tape units) follow the user’s old/new specifications.

When a job attempts to open an old file on a non-sharable device, MPE/3000 searches for
the file in the Virtual Device Directory (VDD). If the file is not found, a message is trans-
mitted to the console operator, asking him to locate the file by taking one of the following
steps:

1. Indicate that the file resides on a device that is not in auto-recognition mode. No
:DATA command is required—the operator simply allocates the device.

2. Make the file available on an auto-recognizing device, and allocate that device.

3. Indicate that the file does not exist on any device; the user’s FOPEN request
will be rejected.

When a job opens a new file on a non-sharable device (other than magnetic tape), the operator
is not required to intervene. In these cases, the first available device is used. (A non-sharable
device is considered directly available if it is not being used, or if it is being used by the re-
questing job and is requested by its logical device number.)

When a job opens a new file on a magnetic tape unit, operator intervention is always required;
the operator must make the tape available,

6-4

Record Formats

A file can contain records written in one of three formats: fixed-length, variable-length, and
undefined length. These formats are described below:

For fixed-length records, physical records are blocks containing one or more logical records.
The block size is determined by multiplying the block factor by the logical record size. (The
block factor and logical record size are specified in the blockfactor and recsize parameters of
the FOPEN intrinsic.) On any one file, fixed-length records are all the same size. A 128-word
physical record (block) containing three 80-byte, fixed-length logical records is illustrated
below:

Physical Record
(blockfactor x recsize)

-

Logical Logical Logical %
Record O Record 1 Record 2 /A

. — N—
recsize= -80 recsize= -80 recsize= -80

Disc Sector

For variable-length records (as for fixed-length records), physical records are blocks containing
one or more logical records--but, on any one file, the record size may vary from record to
record. The block size is determined by multiplying the blockfactor by the recsize parameter
specified by the user, and adding two words (reserved for file-system use).

Actual Blocksize = (blockfactor x recsize) +2
(in words)

In a block containing variable-length records, each logical record is preceded by a one-word
byte-count showing the length of that record in bytes. The last record in the block is fol-
lowed by a word containing “-1”°, acting as the block terminator; the next logical record
encountered will be the first record in the next block. The block format is:

Physical Record
[(blockfactor x recsize)+2]

Byte Logical Byte Logical Byte Logical

Count| Record0 |Count| Recordl |Count| Record 2 -1

For undefined-length records, physical records and logical records are synonymous--that is,
Physical Record A is the same as Logical Record A. For records of this type, the recsize
parameter specified by the user denotes the size of the longest record to be transferred.
The format of undefined records written to disc, with respect to the disc sectors occupied,
can be illustrated by three cases in which the user-specified recsize is 256.

6-5

Case 1:

Case 2:

Case 3:

The user writes a record 256 words long. The full record completely fills
two disc sectors.

recsize = 256

Sectior A Sechr B

p— S p— —

]
record i

words written = 256

The user writes a record 129 words long. The record written occupies all
of Sector A and the first word of Sector B; the last word written is propa-
gated throughout the remainder of Sector B. (The rule is: if (reclength)
modulo 128 is not zero, then the last word written is propagated through
the current sector.)

recsize = 256

A

Sectpr A Secgor B

l«—— record

Content of word 129
propagated through
Sector B

words written = 129

The user writes a record 127 words long. The record written occupies 127
words of Sector A; the last word of the record is propagated throughout
the remainder (word 128) of Sector A. Sector B contains uninitialized
data. (The rule is: any sector not written into will remain uninitialized to
0 (binary files) or blanks (ASCII files).)

recsize = 256

A

Secgor A SecE)r B

L]
|
fe———— record — :

e -
Content of word 127/ Uninitialized
propagated throughout
Sector A

6-6

The FOPEN intrinsic call is written in this format:

INTEGER PROCEDURE FOPEN (formaldesignator,foptions,aoptions,recsize,

VALUE

BYTE ARRAY

LOGICAL

INTEGER

DOUBLE

device,formmsg,userlabels,blockfactor,
numbuffers,filesize,numextents,initalloc,
filecode) '

foptions,aoptions,recsize,userlabels,blockfactor,numbuffers,
filesize,numextents,initalloc,filecode;

formaldesignator,device,formmsg;
foptions,aoptions;

recsize,userlabels,blockfactor,numbuffers,numextents,initalloc,
filecode;

¥

filesize;

OPTION VARIABLE,PRIVILEGED,EXTERNAL;

This intrinsic returns (as the value of FOPEN) an integer file number used to identify the
opened file in other intrinsic calls, (and changes the condition code in the status register as
noted later in this discussion). '

The FOPEN intrinsic parameters specify the elements shown below.

formaldesignator

foptionsb

aoptions

A byte-array containing a string of ASCII characters, interpreted as a
formal file designator (as defined in Section V). This string must
begin with a letter, contain alphanumeric characters, slashes, or
periods and terminate with any non-alphanumeric character except a
slash or a period. (If the string names a system-defined file, it can
begin with a dollar sign ($); if it names a user-predefined file, it can
begin with an asterisk (*).) This parameter can be omitted if foptions
is present; the default value assigned is a temporary nameless file that
can be read or written on, but not saved.

A 16-bit value that denotes a combination of file characteristics,
including the type, recording code, and record format of the file.
The meaning of the bit groups, and the way the user sets them are
illustrated later. This parameter can be omitted if formaldesignator
is present; as a default value, all bits are set to zero.

A 16-bit value that denotes a combination of access options
associated with the file. These options include restrictions on reading
or writing on the file, or exclusive access provisions. The meaning of
the bit groups and the way the user sets them are illustrated later.

If this parameter is omitted, all bits are set to zero.

6-7

recsize

device

formmsg

userlabels

blockfactor

numbuffers

filesize

An integer indicating the size of the logical records in the file. If a
positive number, this represents words; if a negative number, this
indicates bytes. If the file is a new file, this value is permanently re-
corded in the file label. (If the records in the file are of undefined
length, this value indicates the maximum size. For variable-length
records, the maximum size is recsize x blockfactor.) The default value
is the configured record width of the associated device. (The record
size is always adjusted to a word unit.)

A byte array containing a string of ASCII characters terminating with
any non-alphanumeric character except a slash or period, designating
the device on which the file is to reside. The string may represent a
device class name (up to eight alphanumeric characters beginning
with a letter) or a logical device number (a three-byte numeric string)
as described under the device parameter for the :FILE command.
The default value is a byte-array containing the string DISC. (Device
class names and logical device numbers are defined and assigned to
devices during system configuration.)

A byte array containing a forms message that can be used for purposes
such as telling the console operator what type of paper to use in the
line printer. This message must be displayed to the operator and veri-
fied before this file can be printed on a line printer. The message it-
self is a string of ASCII characters terminated by a period. If this
parameter is omitted, no forms message is available.

An integer specifying the number of user-label records to be written
for this file. The default number is 0.

The size of each buffer to be established for the file, specified as an
integer equal to the number of logical records per block. (For fixed-
length records, blockfactor is the actual number of records in a block.
For variable-length records, blockfactor is interpreted as a multiplier
used to compute the block size (maximum recsize x blockfactor). For
undefined-length records, blockfactor is always one logical record per
block. The blockfactor value specified by the user may be overridden
by MPE/3000. The default value is calculated by dividing the specified
recsize into the configured physical record size; this value is rounded
downward to an integer, but is never less than 1. Specification of a
negative or zero value results in the default blockfactor setting.

An integer specifying the number of buffers to be allocated to the
file. This parameter is not used for files representing interactive
terminals, since a system-managed buffering method is always used

in such cases. If omitted, or set to zero or a negative number, the
default value is 2.

A double-word integer (as defined in SPL/3000) specifying the
maximum file capacity in terms of physical records (for files con-
taining variable-length and undefined-length records) and logical
records (for files containing fixed-length records). The default value
is 1023. A zero or negative value results in the default filesize setting.
The maximum capacity allowed is 184,000 sectors. (The number of
sectors in a file is found by the formula shown under FILE
CHARACTERISTICS in Section V.)

6-8

numextents An integer specifying the number of extents (integral number of
contiguously-located disc sectors) that can be dynamically allocated
to the file as logical records are written to it. The size of each extent
is determined by the filesize parameter value divided by the num-
extents parameter value. If specified, numextents must be an integer
from 1 to 16. The default is 8. A zero or negative value results in the
default numextents setting.

initalloc An integer specifying the number of extents to be allocated to the
file when it is opened (rather than dynamically, as needed). This
must be an integer from 1 to 16. The default value is one. If an
attempt to allocate the requested space fails, the FOPEN intrinsic
returns an error condition code to the user’s program.

filecode An integer recorded in the file label and made available for general
use to anyone accessing the file through the FGETINFO intrinsic
call, described later. This parameter is used for new files only. For
this parameter, any user can specify a positive integer ranging from
0 to 1023. (The default value is 0.) If a user’s process is running in
privileged mode, the user can specify a negative integer for
filecode upon initially opening a file. Then, any future accesses of
the file must be requested in privileged mode and must also specify
the correct filecode. Certain positive integers beyond 1023 have
particular HP-defined meanings

These special integers are:

Integer Meaning
1024 A USL file.
1025 A BASIC/3000 data file.
1026 A BASIC/3000 program file.
1027 A BASIC/3000 fast program file.
1028 A relocatable library (RL) file.
1029 A program file.
1030 A STAR/3000 file.
1031 A segmented library (SL) file.

Foptions Parameter

The foptions parameter allows the user to specify six different file characteristics, by setting
corresponding bit groupings in a 16-bit word. The correspondence is from right to left, begin-
ning with Bit 15. If this parameter is omitted, all bits are set to zero. These characteristics are
as follows, proceeding from the rightmost bit groups to the leftmost bit groups in the word.
(The bit settings are also summarized, for the convenience of the user, in Figure 6-1.)

NOTE: Bits groups are denoted using the standard SPL/3000 notation. Thus
Bits (14:2) indicates Bits 14 and 15; Bits (10:3) indicates Bits 10, 11,
and 12,

6-9

Bits

(14:2)

(13:1)

(10:3)

Characteristics

Domain Foption. The file domain to be searched by MPE/3000 to locate the
file, indicated by these bit settings:

00 = The file is a new file, created at this point. No search is necessary.
01 = The file is an old permanent file, and the system file domain should be
searched.

10 = Thefile is an old temporary file, and the job file domain should be
searched.

11 = The file is an old file that is to be ‘located by first searching the job
file domain and then, if the file is not found, by searching the system
file domain.

ASCII/BINARY Foption. The code (ASCII or binary) in which a new file is

to be recorded when it is written to a device that supports both codes. In the
case of disc files, this also effects padding that can occur when a direct-write

intrinsic call (FWRITEDIR) is issued to a record that lies beyond the current
logical end-of-file indicator. In ASCII files, any dummy records between the

previous end-of-file and the newly-written record are padded with blanks; in

binary files, such records are padded with binary zeros. (All files not on disc

or tape are treated as ASCII files.) For ASCII, this bit is 1; for binary, it is 0.
The default value is 0.

Default File Designator Foption. The actual file designator equated with the
formal file designator specified in FOPEN, if

1. No explicit or implicit :FILE command equating the formal file

designator to a different actual file designator is encountered in
the job or session; or

2. The Disallow File Equation Foption (below) is specified.
The bit settings are

000 = The actual file designator is the same as the formal file

designator.
001 = The actual file designator is $STDLIST.
010 = The actual file designator is SNEWPASS.
011 = The actual file designator is §OLDPASS.
100 = The actual file designator is $STDIN.
101 = The actual file designator is $STDINX.
110 = The actual file designator is $NULL,

6-10

Bits

(8:2)

(7:1)

(6:1)

(5:1)

(0:5)

Characteristics

Record Format Foption. The format in which the records in the file are
recorded, indicated by these bits:

00 = Fixed length records; the file is composed of logical records of
uniform length.

01 = Variable-length records; the file contains logical records of
varying length. This format is restricted to sequential access
only. The records are written sequentially and the size of each
is recorded internally. (The actual record size used is determined
by multiplying the recsize (specified or default) by the blockfactor,
and adding two words reserved for system use. This option is not
allowed when NOBUTF is specified. In such a case, the record
format used is undefined-length records, discussed below.)

10 = Undefined-length records. The file contains records of varying
length that were not written using the variable-length foption (01)
just described. The undefined-length foption is typically used when
reading a magnetic tape written under another operating system.
All files not on disc or tape are treated as containing undefined-
length records.

Carriage Control Foption. If selected, this specifies that the user will supply a
carriage-control character in the calling sequence of each FWRITE call that
writes records onto the file. (If not selected this specifies that the contro!
parameter of the FWRITE intrinsic is ineffective and single-spacing prevails by
default. In such a case, the user can embed control characters in his data.)

This foption prefixes each record written with the right control byte in the
FWRITE control word. This prefix is interpreted and stripped when the data
is sent to an output device, and thus remains invisible to the user unless he
saves the file on disc or tape and subsequently reads it. In such a case, the pre-
fix is included in the data read, and the effective recsize of the file is one

word larger than the recsize originally specified. The bit settings for the
carriage control foption are ‘

1 = Carriage-control character expected.
0 = No carriage control-character expected.

Whenever an old file containing a carriage-control specification in its label is
opened, MPE/3000 checks to ensure that the user also specified the
carriage-control foption in his FOPEN intrinsic call.

Further information on carriage-control is presented in the discussion of the
FREAD and FWRITE intrinsics later in this section.

This bit is reserved for system use.

Disallow File Equation. This option ignores any corresponding :FILE command,
so that the specifications in the FOPEN call take effect (unless pre-empted by
those in the file label.) For disallowing :FILE, the bit is set to 1; for allowing
:FILE, the bit is set to 0. The default value is 0.

These bits are reserved for system use.

6-11

¢1-9

BITS (0:5) (5:1) (6:1) (7:1) (8:2) (10:3) (13:1) (14:2)
Disallow Carriage Record Default ASCIll/ .
FIELD (Unused) :FILE (Unused) Control Format Designator Binary Domain
MEANING 1 = No:FILE 0 = NOCCTL |00 = Fixed 000 = filename 0 = Binary |00 = New file
0 = :FILE 1 = CCTL 01 = Variable 001 = $STDLIST 1 = ASCIl |01 = Old System File
10 = Undefined | 010 = $NEWPASS 10 = Temporary File
011 = $OLDPASS 11 = Old User File
100 = $STDIN
101 = $STDINX
110 = $NULL

Figure 6-1. Foptions Bit Summary

The programmer can establish the bit settings desired through various SPL/3000 conventions.
In one such convention, he enters the octal equivalents of the bit settings as the foptions
parameter in the FOPEN call (unless he wishes the default foptions assigned). As with all octal
values entered in SPL/3000, this parameter must be preceded by a percent sign to denote the
octal base,

EXAMPLE:

Suppose that the user wants to specify, for foptions, that the system file domain is to be
searched for the referenced file (Bits 14-15 = 01), and that the default actual file designator
is to be $STDIN (Bits 10-12 = 100), he would first determine the following complete bit
setting, calculate its octal equivalent, and write this (preceded by %) as the foptions
parameter in the FOPEN intrinsic call.

Bit No. 0(1|2|3(4|5|6]|7|8]9]|10{11|12]|13|14/15

(Reserved for system
use—always Z€eros.)

Bit Setting 0 0 0J]1 0 00 0 1

Octal Equivalent 0 0 0 4 1
Sign Bit ——*

The value used for the foptions parameter is %000041. (The leading zeros are optional.)

Aoptions Parameter

The aoptions parameter permits the user to specify up to five different access options
established by bit groupings in a 16-bit word. If this parameter is omitted, all bits are set to
zero. These access options are as follows. (The bit settings are also summarized in figure 6-2.)

Bits Characteristics
(12:4) Access Type Aoptions. The type of access allowed users of this file:
0000 = Read-access only. (The FWRITE, FUPDATE, and

FWRITEDIR intrinsic calls cannot reference this file.)

0001 = Write-access only. Any data written on the file prior to the
current FOPEN request is deleted. (The FREAD, FREADSEEK,
FUPDATE, and FREADDIR intrinsic calls cannot reference
this file.)

0010 = Write-access only, but previous data in the file is not deleted.

(The FREAD, FREEDSEEK, FUPDATE, and FREADDIR
intrinsics cannot reference this file.)

6-13

Bits

(11:1)

(10:1)

(8:2)

Characteristics

0011 = Append-access only. The FREAD, FREADDIR, FREAD-
SEEK, FUPDATE, FSPACE, FPOINT and FWRITEDIR
intrinsic calls cannot be issued for this file.

0100 = Input/Output access. Any file intrinsic except FUPDATE
can be issued against this file.
0101 = Update access. All file intrinsics, including FUPDATE, can

be issued for this file.

0110 = Execute access. Allows users with Privileged Mode Capability
Input/Output access to any loaded file.

Multirecord Aoption. Signifies that individual read or write requests are not
confined to record boundaries. Thus, if the number of words or bytes to be
transferred (specified in the tcount parameter of the read or write request)
exceeds the size of the record referenced, the remaining words or bytes are
taken from subsequent successive records until the number specified by tcount
have been transferred. This option is available only if the Inhibit-Buffering
Aoption (below) is also selected. For multirecord mode, this bit is set to 1; for
non-multirecord mode, it is set to 0. The default value is 0.

Dynamic Locking Aoption. Indicates that the user wants to use the FLOCK
and FUNLOCK intrinsics to dynamically permit or restrict concurrent access
to the file by other processes at certain times. The user’s process can continue
this temporary locking/unlocking until it closes the file. Dynamic locking/
unlocking is made possible through a resource identification number (RIN)
assigned to the file and temporarily acquired by the FOPEN intrinsic. The
calling process must use the RIN in cooperation with other processes also
using it to guarantee the integrity of the file, as discussed in Section IX. Non-
cooperating processes are allowed concurrent access at all times (unless other
provisions prohibit this). The bit settings are

1

Allow dynamic locking/unlocking.

0

Disallow dynamic locking/unlocking.

A file may be multiply-accessed only if all FOPEN requests for the file specify
dynamic locking, or if none of them do. An FOPEN request that disagrees
with the current access (if any) will fail.

Exclusive Aoption. This aoption specifies whether a user has continuous
exclusive access to this file, from the time it is opened to the time it is closed.
This option is often used when performing some critical operation, such as
updating the file. The bit settings allow these choices:

01 = Exclusive Access. After the file is opened, prohibits another
FOPEN request, whether issued by this or another process,
until this process issues the FCLOSE request or terminates. If
any process is already accessing this file when this FOPEN call
is issued, a CCL error code is returned to the calling process.
If another FOPEN call to this file is issued while the exclusive
aoption is in force, an error code is returned to that calling
process. The exclusive access can only be requested by users
allowed the file-locking access mode by the security provisions
for the file.

6-14

Bits

(7:1)

Characteristics

10 = Semi-Exclusive Access. After the file is opened, prohibits con-
current output access to this file through another FOPEN
request, whether issued by this or another process, until this
process issues the FCLOSE request or terminates. A subsequent
request for the input/output or update access-type aoption will
obtain read-only access. Other read-accesses, however, are
allowed. If any process already has output access to the file
when this FOPEN call is issued, a CCL error code is returned to
the calling process. If another FOPEN call that violates the read-
only restriction is issued while the semi-exclusive aoption is in
effect, that call fails and an error code is returned to the calling
process. The semi-exclusive access can only be requested by
users allowed the file-locking access mode by the security pro-
visions for the file.

11 = Share Access. After the file is opened, permits concurrent ac-
cess to this file by any process, in any access mode (subject to
other basic MPE/3000 security provisions in effect.)

00 = Default Value, relating to Access-Type Aoption. If the
read-access only access-type aoption is selected, share-access
(11) takes effect. Otherwise, exclusive access (01) takes effect.

Inhibit-Buffering Aoption. When selected, this option inhibits automatic
buffering by MPE/3000 and allows input/output to take place directly between
the user’s stack and the applicable hardware device. This method is used in
applications such as creation of large physical records on magnetic tape; it
always applies to terminal input/output.

The inhibit-buffering aoption implies the following:

1. Record blocking is inhibited, so that logical records are treated as
physical records.

2. Fixed-length or undefined-length records are treated as specified;
variable-length records are treated as undefined-length records.

3. A request for the carriage-control foption is overridden (equivalent
to specifying NOCCTL in the :FILE command).

Selection of this option equates the logical record size to the physical record
(block) size until this process closes the file. In sequential accessing, the logical
record pointer that indicates the position of the file, is incremented in terms
of blocks rather than logical records. Additionally if the recnum parameter is
specified in another intrinsic call (such as FREADDIR or FWRITEDIR), it is
interpreted as a relative block number rather than a relative logical record
number. When accessing this file through intrinsics containing recsize and
tcount parameters, the user must specify each of their parameters as an even
number of bytes (an integral number of words); if he specifies an odd number
of bytes, the CCL error code is returned.

6-15

919

BITS

(0:7)

(7:1)

(8:2) (10:1) (11:1) (12:4)
Inhibit Exclusive Dynamic Multi-record Access
FIELD (Unused) Buffering Access Locking Access Type
MEANING 1 = NOBUF |01 = Exclusive 0 = No Dynamic 1 = Multi-record 0000 = Read only
0 = BUF 10 = Semi-exclusive Lock 0 = No multi-record 0001 = Write only
11 = Share 1 = Dynamic 0010 = Write (save) only
00 = Default Lock 0011 = Append only
0100 = Read/write
0101 = Update
0110 = Execute

Figure 6-2. Aoptions Bit Summary

Bits

(0:7)

Characteristics

Since logical record requests issued when buffering is inhibited imply physical
record requests, and since the logical record pointer is incremented in terms

of physical records, the relationship of the user’s file blocking to his input/
output requests is very important. For example, for a file that is blocked three
records per block, each read request transfers only every third logical record.
Thus, the inhibit aoption should be used with caution since it can prevent cer-
tain data transfers, where records may be blocked in a manner unknown to the
program accessing this file.

The bit setting is

1

To inhibit buffering.

1l

0 To allow normal buffering.
These bits are reserved for system use.

The bits in the aoptions parameter are set in the same manner as those in the
foptions parameter.

The FOPEN intrinsic can return the following condition codes:

CCE
CCG
CCL

EXAMPLE:

Request granted; the file was opened.
(Not returned by this intrinsic.)

Request denied. Another process already has exclusive or semi-exclusive
access to the file, or an odd number of bytes was specified in the
inhibit-buffering aoption. When the condition code CCL occurs, a file
number of 0 is returned to the user’s process.

To open a particular file, the user issues the following intrinsic call.

FILEA t= FOPEN (F1,%41,>REC>sDVs555570088D);5 -

The filenumber is returned to the word FILEA, and the condition code CCE results. The file
characteristics are

formaldesignator = FX22 (contained in the byte-array F1)

foptions

= Domain: system domain
ASCII/Binary: Binary
Default designator: $STDIN
Record format: Fixed-length
Carriage control: None
Disallow :FILE: Not active

6-17

aoptions

recsize
device
formmsg
userlabels
blockfactor
numbuffers
filesize
numextents
initalloc

filecode

CLOSING FILES

To terminate access to a file, the user issues the FCLOSE intrinsic call. (This intrinsic applies
to files on all devices.) This intrinsic deletes the buffers and control blocks through which the
user’s process accessed the file. It also deallocates the device on which the file resides. Addi-
tionally, it may change the disposition of the file. If the programmer does not issue FCLOSE
calls for all files opened by his process, such calls are automatically issued by MPE/3000 when
the process terminates. (When a file on tape is saved, the tape is rewound. N ew, saved tape

(Default Values)
Access type: Read access only

Multirecord: Non-multirecord mode
Dynamic locking: Disallowed

Exclusive: Share-access specified
Inhibit-buffering: Not selected

As specified by the value of REC.
DISKA, as specified in the byte-array DV
None (default)

None (default)

128/recsize (default)

1 (default)

7000 logical records

System default (8)

1 (default)

0 (default)

files are not loaded, and remain off-line.)

The FCLOSE intrinsic call is written in this format:

PROCEDURE

FCLOSE (filenum, disposition, seccode);

VALUE filenum,disposition,seccode;

INTEGER filenum,disposition,seccode;

OPTION, EXTERNAL;

6-18

The FCLOSE call parameters are shown below:

filenum

disposition

Bit Nos,
(13:3)

(12:1)

A word identifier supplying the file number of the file to be closed,

. through SPL/3000 conventions.

An integer indicating the disposition of the file, significant only for files
on disc and magnetic tape. (This disposition can be overridden by a corre-
sponding parameter in a :FILE command entered prior to program exe-
cution.) The disposition options are defined by two bit-fields, as follows:

Option

Domain Disposition
0

No change. The disposition code remains as it was before the
file was opened. Thus, if the file is new, it is deleted by
FCLOSE; otherwise, the file is assigned to the domain to which
it previously belonged.

1 = Permanent File. The file is saved in the system domain. If the
file is a new or old temporary file on disc, an entry is created
for it in the system file directory. (An error code is returned if
a file of the same name already exists in the directory.) If it is
an old permanent file on disc, this disposition value has no
effect. If the file is stored on magnetic tape, that tape is re-
wound and unloaded.

2 = Temporary Job File (Rewound). The file is retained in the
user’s temporary (job/session) file domain and can thus be re-
opened by any process within the job/session. The uniqueness
of the file name is checked; if a file of this name already exists,
an error code is returned. If the file resides on magnetic tape,
the tape is rewound but not unloaded.

3 = Temporary Job File (Not Rewound). This option has the same
effect as Disposition Code 2, except that tape files are not
rewound.

4 = Released File. The file is deleted from the system.
The default value for this field is code 0 (no change).

Disc Space Disposition

1 = Returns to the system any disc space allocated beyond the
end-of-file indicator.
0 = Does not return any disc space allocated beyond the end-of-file

indicator.
The default value for this field is code 0 (no return).
If more than one access is in effect for the file, its disposition is not
affected until the last access terminates (with an FCLOSE call). Then,

the effective disposition is the smallest non-zero disposition parameter
specified among all FCLOSE calls issued against the file.

6-19

seccode An integer denoting the type of security initially applied to the file,
significant only for new permanent files. The options are:

0 Unrestricted access--the file can be accessed by any user, un-
less prohibited by current MPE/3000 security provisions.

1 Private file-creator security--the file can be accessed only by
its creator. :

The default seccode value is 0.

The following condition codes can be returned:

CCE The file was closed successfully.
CCG (This code is not returned.)
CCL The file was not closed, perhaps because an incorrect filenum parameter

was specified; or because another file with the same name and dis-
position exists in the system.

When a process is ended within a job, FCLOSE (0,0) is issued against all open files in the job
temporary file domain. When a job is terminated, all job temporary files are purged.
EXAMPLE

The following intrinsic call closes a file whose filenumber is supplied through the iden tifier
FILEX. The file is to be saved as a permanent file (Disposition Code 1), having private creator
file security.

FCLOSE (FILEXs1s1)3

The CCE condition code is returned to the user’s process.

READING SEQUENTIAL FILES

To read a logical record (or a portion of such a record) from a sequential file (on any device)
to the user’s data stack, the user issues the FREAD intrinsic call, The format of this call is

INTEGER PROCEDURE FREAD (filenum,target,tcount)

VALUE filenum,tcount;
INTEGER filenum, tcount;
ARRAY target;
OPTION EXTERNAL;

The FREAD intrinsic returns (as the value of FREAD) an integer showing the length of the
information read.

6-20

The FREAD call parameters are

filenum A word identifier supplying the filenumber of the file to be read,
through SPL/3000 conventions.

target The array to which the record is to be transferred.

tcount An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies the length in words; if it is negative,
it signifies the length in bytes; if it is zero, no transfer occurs. If tcount
is less than the size of the record, only the first tcount bytes or words
are read from the record.

If tcount is larger than the size of the logical record, and the multirecord
aoption was not specified in FOPEN, transfer is limited to the length of
the logical record. (But if the multirecord aoption was specified, the
remaining words in tcount will be read from the next successive records.)

When a record is read, the FREAD intrinsic returns to the user’s program a positive value
showing the length of the information transferred. If the tcount parameter in the FREAD call
was positive, the value returned represents a word count; if the tcount parameter was negative,
the value returned is a byte count. The logical record pointer is now set at the beginning of the
next logical record in the file.

When the logical end-of-data is encountered during reading, the CCG condition code is returned
to the user’s process. On magnetic tape, the end-of-data can be denoted by a physical indicator
such as a tape mark; on disc, it occurs when the last logical record written to the file is passed.

If the file is imbedded in an input source containing MPE/3000 commands, the end-of-data is
indicated when an :EOD command is encountered (but that command itself is not returned to
the user). (The end-of-data is indicated, on $STDIN by any MPE/3000 command; on $STDINX,
it is indicated by :JOB, :EQJ, :EOD, and :DATA.)

When an old file containing carriage-control characters (supplied through the control param-
eter of the FWRITE intrinsic) is read, and the carriage-control foption (FOPEN intrinsic) or
CCTL parameter (:FILE command) is specified, the carriage-control byte is read:

Data Read

Carri
Czl;ﬁ;?cg,f recsize specified

Byte— N
) unused byte
In any other case, the data read is only that requested by the user:

Data Read

recsize specified

6-21

The condition codes possible are

CCE The information was read.
CCG The logical end-of-data was encountered during reading.
CCL The information was not read because an error occurred; a terminal read

was terminated by a special character (as specified in the FCONTROL
intrinsic); or a tape error was recovered and the FSETMODE option was
enabled.

EXAMPLES:

To read a 20-word logical record from a sequential file whose filenumber is supplied through
the identifier F1 to the array R1 in the stack, the user enters the following intrinsic call. The
length of the information to be transferred is 10 words. The length of the information
actually transferred is stored in the word COUNT.

COUNT t= FREAD (F1,R1,20)3

To read the first ten words from the next record in this file to the array R2, the user enters
the following call. The length of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>