HP Computer Systems

HP 98821A
BASIC Numerical Analysis Library

for the HP 9826 and 9836 Computers

[/ cackaro

HEWLETT
[ﬁﬁ] PACKARD
Warranty Statement

Hewlett-Packard makes no expressed or implied warranty of
any kind, including, but not limited to, the implied warranties
of merchantibility and fitness for a particular purpose, with
regard to the program material contained herein.
Hewlett-Packard shall not be liable for incidental or
consequential damages in connection with, or arising out of,
the furnishing, performance or use of this program material.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

Use of this manual and tape cartridge (or flexible disc)
supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security
and back-up purposes only. Resale of the programs in their
present form, or with alterations, is expressly prohibited.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in paragraph (b)(3)(B)
of the Rights in Technical Data and Software clause in
DAR 7-104.9(a).

HP 98821A
BASIC Numerical Analysis Library
for the HP 9826 and 9836 Computers

Manual Part No. 98821-13111

Flexible Disc No. 98821-13114
98821-13115

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett-Packard Company 1982

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorporated
at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated.

April 1982.. First Edition

Table of Contents

Introduction
Description e v
System Configuration v
Using the Numerical Analysis Routines v
Using the Numerical Analysis Drivers v
Redefining User Functions. vi
Chapter 1: Root Finders
Bisection Method 1-2
Modified Secant Method 1-6
Muller’s Method 1-16
Polynomial Root Finder 1-23
Chapter 2: Integration
Simpson’s Rule. 2-2
Filon’s Method (Trigonometric functions) 2-6
Cautious Adaptive Romberg Extrapolation. 2-10
Integration with Equally Spaced Points., 2-15
Integration with Unequally Spaced Points 2-18
Chapter 3: Ordinary Differential Equations
Runge-Kutta Method 3-2
Adams-Bashford-Moulton Method. 3-12
Chapter 4: Linear Algebraic Systems ,
Linear Equation Solver 4.2
Triangular Decomposition of a Matrix 4-6
Solution of a Linear System (using Triangular Decomposition) 4-9
Positive Definite Matrices 4-11
Cholesky Decomposition of a Matrix. i 4-15
Solution of a Linear System (using Cholesky Decomposition).................... 4-17
Inverse of a Positive Definite Matrix. 4-18
Lower Triangular Matrices i 4-22
Inverse of a Lower Triangular Matrix. 4-23
Symmetric Storage of a Matrix. 4-24

iii

Chapter 5: Eigen Analysis

Eigenvalues and Eigenvectorofa Real Matrix 5-2
Complex Eigenvectors of a Real Upper-Hessenberg Matrix 5-8
Real Eigenvectors of a Real Upper-Hessenberg Matrix 5-10
Eigenvalues of aReal Matrix. 5-12
Scaling of a General Matrix. 5-14
Eigenvalues and Eigenvectors of a Real Symmetric Matrix............. 5-15

Chapter 6: Interpolation

Confluent Divided Differences i 6-2
Newton Interpolation with Backward Differences. 6-5
Newton Interpolation with Forward Differences. 6-6
Cubic Spline Interpolation 6-9
Chebyschev Polynomial Interpolation. 6-14

Chapter 7: Functions

Hyperbolic Cosine o 7-2
Hyperbolic Sine 7-3
Hyperbolic Tangent. 7-4
Gamma Function 7-5
Log Gamma Function 7-7
Complex Functions: Addition 7-8
Complex Functions: Multiplication i 7-9
Complex Functions: Division. 7-10
Complex Functions: Square Root.......... 7-11
Complex Functions: Exponential i 7-12
Complex Functions: Natural Log i i 7-13
Complex Functions: Absolute Value. 7-14
Complex Functions: Inverse i 7-15
Complex Functions: Cosine. i 7-16
Complex Functions: Sine............ ... 7-17
Complex Functions: Tangent 7-18
Complex Functions: Hyperbolic Cosine. 7-19
Complex Functions: HyperbolicSine............ 7-20
Complex Functions: Hyperbolic Tangent. 7-21
Rectangular to Polar Conversion i 7-22
Polar to Rectangular Conversion i 7-23
Evaluation of a Complex Polynomial 7-24

Chapter 8: Fourier Analysis
Fourier Series Coefficients (Equal Spacing) 8-2
Fourier Series Coefficients (Unequal Spacing) 8-6
Fast Fourier Transform e 8-13

Introduction

Description

The Numerical Analysis Library provides you with quick access to 57 commonly used numer-
ical analysis routines. These routines are in subprogram form. They can be called up from the
library as you need them and appended to your program in memory. Except for error mes-
sages, these subprograms contain no input or output operations. Drivers are provided with
each subprogram to illustrate some of the techniques for calling the subprogram.

Each section of this manual contains several techniques, giving you the flexibility to choose
the most appropriate routine for your specific need.

System Configuration
To use the Numerical Analysis Library, you need:

® a 9826 or 9836 computer with a BASIC language system.

® Numerical Analysis software—part number 98821A. This includes a user’s manual and
two flexible discs containing the programs.

Using the Numerical Analysis Routines

Drivers and subprograms are contained in mass storage files with the same names. Driver file
names have all capital letters and subprogram file names are initially capped followed by
lower case letters. For example, “MULLER” contains the driver for subprogram Muller con-
tained in file ‘‘Muller”.

To get a particular numerical analysis routine, insert the appropriate Numerical Analysis flexi-
ble disc into the disc drive with the machine turned on and the BASIC language system
loaded. Either select a suitable routine, turn to its user instructions in this manual, and follow
them, or write your own ‘‘driver’’ program, including the statement LOADSUB ALL FROM
“<filename>"" where <filename> is the appropriate numerical analysis subprogram to be
used by your program and execute it. If you accidently “loadsub’ the wrong file and if that
file has any subprograms (either SUB or DEF FN segments), those subprograms will be
loaded, right or wrong. If you ‘‘loadsub” a file that has been ““SAVE’'d” (or “RE-SAVE'd”) as
opposed to “STORE’d” (or “RE-STORE’d”’) you will get an error 58. If you “loadsub’ a file
that contains no subprograms, no error will appear and nothing will be loaded.

Using the Numerical Analysis Drivers

The driver programs allow you to use the routines without writing a main program. To use
those drivers, type: LOAD ‘“‘<file name containing driver>"", press EXECUTE and RUN.
Necessary subprograms will be automatically ‘‘loaded”’, and the program will ask you for your
entries.

Redefining User Functions

Some programs (Root Finders, Integration, Differential Equations) need a user function (con-
tained in files “KRYWEN” or “FUNC”.) You have to STORE those files before “loading”’
and “running” the driver. However, if you want to check or redefine your function after you
have LOADed the driver and started to RUN it:

1. PAUSE the current program.

Type EDIT F and press EXECUTE.

EDIT mode displays the program line containing your function.
Press ENTER after modifying the program line.

o W

Press RUN to restart the program.

1-1

Chapter 1
Root Finders

Introduction

Description

This section contains four different algorithms for finding roots of equations. Unfortunately,
solving nonlinear equations is very difficult in practice. The methods given here are local
methods. In the presence of good starting guesses, these work quite well. However, in the
absence of good estimates, these techniques range from wild divergence to rapid convergence
depending upon the particular user-defined function.

Hence, a word of caution. There is no such thing as a fool-proof nonlinear technique. When
possible, graphic or analytic means should be used to get a rough estimate of the roots. In
terms of speed, stability and precision, each of the above methods has its own advantages
and disadvantages. With a number of different techniques to choose from, you may find one
that will most adequately meet your needs.

Routines
e Bisect - an iterative rootfinder using the bisection method.
e Roota - a general rootfinder using a modified secant method.

e Work - finds the root of a user-defined real-valued continuous function by a modified
secant method; contained in file ‘‘Roota’.

e Chkit - checks if a root has been found or bracketed; contained in file ‘‘Roota’.

e Monton - checks the three points, (X1, y1), (X2, y2) and (x3, y3), to see that y = f(x) is
strictly increasing or decreasing; contained in file “‘Roota”.

e FN Incres - used to check if too many marching steps have been taken in searching for a
change of sign; contained in file ‘‘Roota”.

® Muller - a general rootfinder using a quadratic method.
e Siljak - a polynomial rootfinder with complex coefficients.

1-2 Root Finders

Bisection Method

Description

This subprogram will search for solutions of f(x) = 0 over an interval [a,b] where you define
the continuous real-valued function f(x). The function may be algebraic of the form
(@g + a;x* + apx®™ + --- +a,x*) with a; real and e, rational (e.g., x> + 3x*2 + x) or tran-
scendental (e.g., sin(x) + cos (x)).

You must specify the initial domain value, search increment, error tolerance, and maximum
interval-halvings to be used.

Program Usage
Driver Utilization
o File Name - “BISECT”, disc 1

The driver “BISECT” sets up the necessary input parameters for the subprogram Bisect and
prints out the resulting outputs.

Subprogram Utilization
® File Name - “Bisect’’, disc 1
¢ Calling Syntax
CALL Biset (A, B, Maxbi, Tol, Deltax,Root(x), F_(*), Err(x), Nroots)
® [nput Parameters

A Lower bound of search interval.
B Upper bound of search interval.

Maxbi Maximum number of bisections for each subinterval.

Tol Error tolerance for a root; a root x is accepted if
[f(x)| < Tol*(1 MAX x).

Deltax Search increment; the subprogram begins at the lower
bound and compares functional values at the ends of each
subinterval, [a + iAx, a + (i + 1)Ax], for a change of sign.

Nroots Number of roots to be found.

e Output Parameters

Root(x) Vector containing the roots of the function:; the value
9.999999E99 is supplied for any roots not located.

F_(%) Vector containing the functional evaluations of the roots;
again, the value 9.999999E99 is supplied for any roots not
found.

Err(*) Vector containing the estimated accuracy of the roots; the

value 9.999999E99 is supplied for any roots not found.

Root Finders

® Subprograms Required

FN F(X) Given a domain value x, this function subprogram should
return the range value of the function you supply.

Special Considerations and Programming Hints

@ Because the number of roots located cannot be computed ahead of time, all roots are
initialized to 9.999999E99 at the beginning of the subprogram. Thus, on output, any
roots not found will contain the value 9.999999E99.

e One of the advantages of this method is that whenever a root is found, both the accuracy
of the root (contained in array Err(x)) and the accuracy of the functional evaluation of
the root (contained in array F(x)) are known precisely.

e Clearly, with enough effort, one can always locate a root to any desired accuracy with
this subprogram. But compared with some of the other methods contained in this sec-
tion, the bisection method converges rather slowly since it does not make full use of the
information about f(x) available at each step. So, when possible, this method should not
be used if there are a large number of roots to be found or if the rootfinder subprogram
is to be called a number of times.

e To define the function f(x):

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the following function subprogram pressing ENTER after
each line:

10 DEF FNF(X)

20 F: F = <user-defined function of the form (X—3)*(X+4)>
30 RETURN F

40 FNEND

4. RE-STORE the function subprogram on file “KRYWEN"".
5. LOAD file “BISECT"” and press RUN.

(See “‘Redefining User Functions’ in the Introduction, following the Table of Contents, for
another way to modify the function (x).)

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Bisect.”
A= B = Maxbi =
Tol = Deltax = Nroots =

You may correct the data from the keyboard (e.g., Tol = 1E-6, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

1-3

1-4 Root Finders

e If, in a particular subinterval, the maximum number of iterations is exceeded, the sub-
program will print the following warning message and the approximate root and accu-
racies so far obtained:

“MAX # OF BISECTIONS REACHED ON ROOT #<n>"".

“X BETWEEN <left endpoint> AND <right endpoint>"’

“F(X) — <y>”

“ACCURACY TO (<right endpoint> — <left endpoint>)"
“AVERAGE VALUE STORED IN Root(x) AS APPROXIMATE X

The subprogram will then move to the next search interval.

Methods and Formulae

The subprogram Bisect will search for solutions of f(x) = 0 over an interval [a,b] where you
define the real-valued continuous function f(x). The function may be algebraic of the form
ao + a;x® + agx® + --- + a,x* with a; real and e, rational (e.g., x®> + 3x*2 + x) or tran-
scendental (e.qg., sin(x) + cos(x)).

You must specify the search increment Ax and the error tolerance for f(x). The program then
begins at the left of the interval and compares functional values at the ends of the subinterval
[a, a + Ax]. If the functional values are of opposite sign then the bisection method is used to
locate the root. Each subinterval [a + iAx, a + (i + 1)Ax]is examined for a possible root. At
most, one root per interval will be located and if there are multiple roots per interval, none
will be located. You must also specify a maximum number of interval-halvings or bisections
(Maxbi), so that an error tolerance that is not satisfied will result in the root localized to an

interval of size 2 ~M3*®\(b —a). The subprogram will examine N = INT b — a intervals.
Ax

Reference

1. Stark, Peter A., Introduction to Numerical Methods, London: MacMillan Company,
Collier-MacMillan Limited, 1970, pp. 95-96.

Root Finders

User Instructions

1. If you have not already defined the function you wish to solve, you should do so at this
time.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “BISECT’ and press RUN.

3. You will be asked to supply entries for the following items:

- number of roots to be found
- lower bound of search interval
- upper bound of search interval
- maximum number of bisections for searching for any one root in a subinterval
- error tolerance where |f(x)|<Tolx(1 MAX x) is the tolerance criterion
- search increment or Ax.

Press CONTINUE after each entry.

4. The roots x, their functional values f(x), and the accuracy to which the root is found will
be printed for all roots found over the interval. The value 9.999999E99 is inserted for
any roots not found.

Example

User-defined function:
F = SIN(X) — COS(X)/(1 + XxX)

User entries:; e 1 oo e g et
0 OF ROOTS TO BE FOUND= 4

BOUMD= 1

OROUND= 40

AATMUM # OF BISECTIC
ERROR TOLERANC]
SEARCH THOREMENT= 3

Resuilts: N
ROOT FURMCTION VAl UE ALCURACY

C)7
e)7
IL - 17
A 0(..

1-5

1-6 Root Finders

Modified Secant Method

Description

Given a first guess, this subprogram will search for a solution of f(x) = 0 where you define the
continuous real-valued function f(x).

Roots are found by marching along at a given step size until a change of sign is encountered.
Then a modified secant method is employed to determine the zero of the function.

You are required to specify the error tolerances for the root and for the function evaluation, as
well as the step size and the maximum number of steps and iterations allowed.

Program Usage
Driver Utilization
e File Name - “ROOTA”’, disc 1

The driver “ROOTA” sets up the necessary input parameters for the subprogram Roota and
prints out the resulting outputs.

Subprogram Utilization
¢ File Name - “‘Roota’”’, disc 1
e Calling Syntax
CALL Roota (Root, Err, Frsges, Step, Istpmx, Itrmx, Tola, Tolf)
® Input Parameters

Frsges Initial guess for the root.

Step Step size for marching when looking for an interval in which
the function changes sign; step size must be positive.

Istpmx Maximum number of allowed steps in marching to find an
interval in which the function changes sign.

Itrmx Maximum number of iterations allowed in subprogram work
after an interval has been found in which the function
changes sign.

Tola Tolerance for the root; i.e., if x; and x, are two consecutive
approximations for the root, the average of x; and x, is
accepted as a root if [x; — x| = (1 MAX (|x;| MAX [x5])) *
Tola.

Tolf Tolerance for the function; i.e., an approximation x is
accepted as a root if |f(x)| < Tolf.

e Output Parameters

Root Root of f(x)
Err f(Root)

Root Finders

® Subprograms Required

Chkit Checks if a root is found or bracketed.
FN F(X) User-defined function which, when given a domain value x,
returns the value f(x).
FN Incres Checks if too many marching steps have been taken in sub-
program Roota.
Monton Checks that the function is well-behaved in the search in-
terval.
Work Finds the root of the user-defined real-valued continuous

function f by a modified secant method; requires that the
functional values of the endpoints of the interval be of
opposite sign.

Further explanation of these subprograms is given on pages 1-8 and 1-10 through 1-15.

Special Considerations and Programming Hints

e Upon entry into subprogram Roota, there is a bad data check. If the check detects any
“nonsense’’ data, an error message will be printed and the program pauses:

“ERROR IN SUBPROGRAM Roota.”
Step = Istpmx = [trmx =
Tola = Tolf =

The data may be corrected from the keyboard (e.g., Tola = 1E -6, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

® This method is slower than subprogram Muller, but has the advantage of having less
trouble with functions that have somewhat unusual behavior, or functions that have
periodic oscillations.

® Subprogram Monton is used to check that the function is monotonic in the interval under
consideration. If a change in direction is encountered, the following error message is
printed and the program pauses:

“ERROR IN SUBPROGRAM Monton.”

“Y = F(X) IS NOT MONOTONIC OR IS VERY FLAT.”

“SUGGEST TRYING SMALLER STEP SIZE OR DIFFERENT FIRST GUESS.”
X1 = X2 = X3 =

Y1l = Y2 = Y3 =

There are many possible causes of this error, the most common being that (X2, Y2) is a
relative minimum or maximum. Choosing X1 or X3 as the first guess and a step size less
than |X1 — X2| may solve this problem. You may want to restart the program and make
these changes.

If the data indicates that the function is very flat in the interval, an initial guess on either
side of the interval may help.

1-7

1-8 Root Finders

e To define the function f(x):

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the following function subprogram pressing ENTER after
each line:

10 DEF FNF(X)
20 F: F = <user-defined function of the form (X —3)*(X+4)>

30 RETURN F
40 FNEND

4. RE-STORE the function subprogram on file “KRYWEN"".
5. LOAD file “ROOTA" and press RUN.

(See ‘‘Redefining User Functions” in the Introduction, following the Table of Contents, for
another way to modify the function f(x).)

Methods and Formulae

Subprogram Roota begins by initializing X2 = Frsges. Then subprogram Chkit is called. In
Chkit a new x is generated and [f(x)| < Tolf is tested. If it is true, then x is accepted as the
root. Otherwise a step to the left and a step to the right are tested. If a root is not found and if
f(x) does not change sign, then a test is made to see which way to march:

(yo = yq)* y; < 0, then march right
(yo — y1)* y;> 0, then march left.

If a root or a change of sign is not found after Istpmx steps, an error message is printed and
the program pauses.

If a change of sign is found, then Chkit calls subprogram Work, where Root is found by a
modified secant method which requires 2 ordinates to be of opposite sign.
X = (y3* X1 — Y1 * x3)/(y3 — y1)

A root is accepted if
f(x2)| < Tolf
or
X, — Xp| < (1 MAX (|x;] MAX |x5|)) * Tola
where x4, X, are consecutive attempts at finding a root.

Subprogram Monton is invoked repeatedly to test that f(x) is strictly increasing or decreasing
and that x5, xp, X3 are in ascending order.

Root Finders 1-9

User Instructions

1. If you have not already defined the function you wish to solve, you should do so at this
time.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “ROOTA”’ and press RUN.

3. You will be asked to supply entries for the following items:

- first guess for the root

- step size (a positive value) for marching when looking for an interval in which the
function changes sign

- maximum number of steps allowed in marching to find an interval in which the
function changes sign

- maximum number of iterations allowed after an interval has been found in which the
function changes sign

- tolerance for root; i.e., if x; and x, are two consecutive approximations for the root,
the average of x; and x,is accepted as a root if
Ix; — Xo| < (1 MAX (|x;] MAX |x,|)) * <tolerance for root>

- tolerance for function evaluation where an approximation x is accepted as a root if
lf(x)] < <tolerance for the function>.

Press CONTINUE after each entry.

4. The root x as well as the functional value f(x) will be printed.

Example
User-defined function:

F=X*LOG(X) -1

User entries:

STEP S18k= 20

A LML NUMY OF STEPS= 30
MaX THMUM NMUMBER OF TTERATIONS= 30
TOLERSNCE FOR ROOT= 4 . E-8
TOLERAMCE FOR FUNCTYION= {1 &

Results:
ROUT= 4 PEX283F+00 FUINCTION VAL UE=-% 034 96 7F-08

1-10 Root Finders

Subprogram Work

This subprogram is used by subprogram Roota, a root finder subprogram. Work finds the root
of a user-defined real-valued continuous function by a modified secant method. It requires
that the functional values of the endpoints of the search interval be of opposite sign.

Subprogram Utilization

o File Name - contained in file “‘Roota’’, disc 1

® Calling Syntax

CALL Work (Root, Err, T1, Z1, T3, Z3, ltrmx, Tola, Tolf)

® Input Parameters

T1, T3
21,73
[trmx

Tola

Tolf

e QOutput Parameters

Root
Err

® Subprograms Required

FN F(X)

Endpoints of search interval.
f(T1), {(T3)

Maximum number of iterations allowed in searching for a
root.

Tolerance for the root; i.e., if x; and x, are two consecutive
approximations for the root, the average of x; and x; is
accepted as a root if

Ix; — %g| =< (1 MAX (|x;] MAX [xo])) * Tola.

Tolerance for the function; i.e., an approximation x is
accepted as a root if |{(x)| = Tolf.

Root of f(x)
f(Root)

User-defined function which, when given a domain value x,
returns the value f(x).

Root Finders

Special Considerations and Programming Hints

e Upon entry into the subprogram, Z1 and Z3 must be of opposite sign. If not, an error
message is printed and the program pauses.

“ERROR IN SUBPROGRAM Work.”
“Z1 and Z3 ARE NOT OF OPPOSITE SIGN.”
Z1 = 3 =

You may want to restart the program and correct the data.

e If subprogram Roota is being used, Work is called only in subprogram Chkit. Chkit speci-
fically checks that Z1 and Z3 are opposite sign. So this error will not occur.

If subprogram Work is being used independently, then you should check both the logic
in the calling program and the specific behavior of the function in the interval [T1, T3].

o If Itrmx, the maximum number of iterations is exceeded, an error message is also printed.

“ERROR IN SUBPROGRAM Work.”
“MAXIMUM # OF ITERATIONS EXCEEDED.”
Kounti = [trmx =

The maximum number of iterations may be corrected from the keyboard (e.g.,
[trmx = <new maximum>, EXECUTE). When CONTINUE is pressed, the program will
resume, incorporating the new value of Itrmx. There is a reasonable limit here, though.
Itrmx greater than 50 would probably not make sense. If convergence is not obtained
after 50 iterations, there is some other problem. You should check to see if f(x) is exhibit-
ing some unusual behavior in the vicinity of the looked-for root. It might even be neces-
sary to switch to a simple bisection method, subprogram Bisect, in this subinterval to find
the root.

e In general, the modified secant method will be faster and obtain greater accuracy than
the bisection method. If a large number of roots needs to be located, subprogram Roota
or Muller should be used.

Methods and Formulae
See ‘“Methods and Formulae” section for subprogram Roota on page 1-8.

1-11

1-12 Root Finders

Subprogram Chkit

This subprogram is used in subprogram Roota. Chkit checks if a root has been found or

bracketed.

Subprogram Utilization

o File Name - contained in file “‘Roota’, disc 1

® Calling Syntax

CALL Chkit (Root, Err, T1, Z1, Step, T2, Z2, Itrmx, Tola, Tolf, Rtn)

® Input Parameters

T1, T2
21,2722
Step

[trmx

Tola

Tolf

Rtn

® Output Parameters

Root
Err

® Subprograms Required

FN F(X)

Work

Endpoints of search interval.
f(T1), {(T2).

Step size for marching when looking for an interval in which
the function changes sign; step size must be a positive
value.

Maximum number of iterations allowed in subprogram
Work after an interval has been found in which the function
changes sign.

Tolerance for the root; i.e., if x; and x, are two consecutive
approximations for the root, the average of x; and x, is
accepted as a root if

X1 — xo| = (1 MAX (]x;] MAX [x,|)) * Tola.

Tolerance for the function; i.e., an approximation x is
accepted as a root if |f(x)| < Tolf.

Rtn = 1 implies a root was located.

Rtn = — 1 implies a root was not yet located.
Root of f(x)
f(Root)

User-defined function which, when given a domain value x,
returns the value f(x).

Finds the root of the user-defined real-valued continuous
function f by a modified secant method.

Root Finders

Special Considerations and Programming Hints
See subprogram Roota (page 1-7 through 1-8).

Methods and Formulae :

Upon entry into Chkit, the search interval is incremented one step size. A check is performed
to see if the function value of the new endpoints satisfies the error tolerance, Tolf. If so, the
root has been located and the subporgram is exited. If not, a check is made to see if the root
has been bracketed. If so, subprogram Work is called. If not, the subprogram is exited.

Subprogram Monton

This subprogram is used in subprogram Roota, a root finder. Monton checks the three points
(X1, V1), (X2, Vo), (X3, y3) to see that y = f(x) is strictly increasing or decreasing. If not, then an
error message is printed.

This subprogram insures that the function is well-behaved in the search interval.

Subprogram Utilization
o File Name - contained in file ‘‘Roota”, disc 1
e Calling Syntax
CALL Monton (Tolf, X1, X2, X3, Y1, Y2, Y3)

® Input Parameters

Tolf Provides tolerance for flatness; also used as tolerance for
function evaluation in other subprograms.
X1, X2, X3 Three current values of search interval.
Y1, Y2Y3 1(X1), 1(X2), {(X3)

The input parameters are all left unchanged and there are no output parameters for this
subprogram.

1-13

1-14

Root Finders

Special Considerations and Programming Hints

® Upon entering this subprogram, a check is made to see that X1<X2<X3. If not, an error
message is printed and the program pauses.

“ERROR IN SUBPROGRAM Monton.”
“ORDINATES X1, X2, X3 ARE NOT IN INCREASING ORDER.”
X1 = X2 = X3 =

If this error occurs, it suggests that the user-defined function is extremely ill-behaved.
You may want to redefine the function (see page 1-8).

® Monton’s primary purpose is to check that the function is monotonic in the interval under
consideration: i.e. x; < Xy < X3 0r y; < y, < ys.

There is also cause for alarm if the function is almost flat in the interval; i.e., Y1, Yo and y;
are extremely close in value. If this is the case, then an error message is printed and the
program pauses.

“ERROR IN SUBPROGRAM Monton.”

“Y = F(X) IS NOT MONOTONIC OR IS VERY FLAT.”

“SUGGEST TRYING SMALLER STEP SIZE OR DIFFERENT FIRST GUESS.”
X1 = X2 = X3 =

X1 = Y2 = Y3 =

There are many possible causes of this error, the most common being that (X2, Y2) is a
relative minimum or maximum. Choosing X1 or X3 as the first guess may solve this
problem. Another possibility is to choose a smaller step size. You may want to restart the
program and make these changes.

Methods and Formulae
Monton performs two checks:
1. thatx; < xp, < x5
and

2. that (y3 — yy) * (yp — y;) = Tolf

This second inequality tests that f(x) is strictly increasing or decreasing in the interval [x1, x3]
and that the values y;, y,, y5 are not too close in value. The tolerance for the function, Tolf, is
used for that purpose here.

Root Finders

Subprogram FN Incres
This subprogram is used in subprogram Roota, a root finder, and is used to check if too many
marching steps have been taken in searching for a change of sign.

Subprogram Utilization
o File Name - contained in file ‘‘Roota”, disc 1

e Calling Syntax
FN Incres (I, Istpmx, X1, X2, X3, Y1, Y2, Y3)

® [nput Parameters

I Number of steps taken upon entering subprogram.
Istpmx Maximum number of steps allowed in marching to find an
interval in which the function changes sign.
X1, X2, X3 Three points in the interval [x;, x3]
Y1,Y2, Y3 Y1 = {(X1), Y2 = {(X2), Y3 = {(X3)
e QOutput
FN Incres [+ 1

Special Considerations and Programming Hints
o [f the maximum number of steps, Istpmx, has been exceeded, an error message is
printed and the program pauses.

“ERROR IN SUBPROGRAM Incres.”
“NO CHANGE OF SIGN AFTER <i> STEPS”

X1l = Y1l =
X2 = Y2 =
X3 = Y3 =

If you wish to continue with a larger maximum number of steps, Istpmx may be changed
from the keyboard (e.g., Istpmx = <new maximum>, EXECUTE). Press CONTINUE
and the program will resume with the new maximum number of steps. If Istpmx = 20
does not work, you may want to attempt Istpmx = 50. If this is not effective, it would not
make sense to try Istpmx = 100 or Istpmx = 1000. There is some other difficulty.

1-15

1-16 Root Finders

Muller’s Method

Description

Given a vector of initial guesses, this subprogram will search for solutions of f(x) = 0 where
you define the continuous real-valued function f(x). Roots are found by Muller's method, a
real, quadratic root solver.

You are required to specify the number of roots to be found, the error tolerance for the
function evaluations and the number of significant digits desired in the roots, as well as the
spread criteria for multiple roots and the maximum number of iterations per root.

Program Usage
Driver Utilization
e File Name - “MULLER”, disc 1

The driver “MULLER” sets up the necessary input parameters for the subprogram Muller and
prints out the resulting outputs.

Subprogram Utilization
® File Name - “‘Muller”’, disc 1
¢ Calling Syntax
CALL Muller (Root(x*), Nroots, Itmax, Tolf, Eps, Eta, Digits)
® [nput Paramters

Root(x)! Vector containing initial guesses of roots.
Nroots Number of roots to be found.
Itmax' Maximum number of iterations per root.
Tolf Function tolerance; i.e., x is accepted as a root if
f(x)| < Tolf.
Eps Spread tolerance for multiple roots.
Eta Restart value for multiple roots.
Note

If the Ith root (Root(l)) has been computed and it is found that
|Root(l) — Root(J)| < Eps where Root(J) is a previously computed
root, then the computation is restarted with a guess equal to
Root(l) + Eta.

Digits Number of significant digits desired in root.

1 Itmax and Root() are both input and output parameters.

Root Finders 1-17

e Qutput Parameters

Root(x*)! Vector containing roots of the function.
Itmax* Number of iterations required to find final root.

e Subprograms Required

FN F(X) User-defined function which, when given a domain value x
returns the value f(x).

Special Considerations and Programming Hints

e Upon entry into subprogram Muller, there is a bad data check. If the check detects any
“nonsense’’ data, an error message will be printed and the program pauses.

“ERROR IN SUBPROGRAM Muller.”
Nroots = [tmax =
Tolf = Digits =

The data may be corrected from the keyboard (e.g., Tolf = 1E — 8, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

o [f the maximum number of iterations, Itmax, is exceeded in searching for any one root, I,
an error message will be printed.

“ERROR IN SUBPROGRAM Muller.”
“MAXIMUM # OF ITERATIONS EXCEEDED ON Root <i>"

Root(]) is assigned the value 9.999999E99. The subprogram continues execution with a
search for the next root.

o To define the function f(x):

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the following function subprogram pressing ENTER after
each line:

10 DEF FNF(X)
20 F: F= <user-defined function of the form (X—3)*(X+4)>
30 RETURN F

40 FNEND
4. RE-STORE the function subprogram on file “KRYWEN"".
5. LOAD file “MULLER” and press RUN.

(See ‘‘Redefining User Functions’ in the Introduction, following the Table of Contents, for
another way to modify the function f(x).)

1-18 Root Finders

e Muller’s technique has the quickest rate of convergence of all the methods contained in
this section. If you have good initial estimates of the roots, this method is the one to use.

However, there are times this method gives misleading results. For example, if the first
fifty positive roots of a particular function are desired and you do not have good initial
estimates, Muller may not generate the desired results. Some roots may be skipped over

or some negative roots may be generated.

For example, assume we want to locate the first 6 positive roots of f = sin(x) and we

have poor initial estimates:

Example

User-defined function:

User entries: &

Results:

F = SIN(X)

G MULLT
FLULT LR LE

B RN
DLGEITS TH

THIT

LAl
Tl

HO00000E 1

. L { 4 000000500
] G { Lonngaooieen
FRETIAL G CoGHYs G Q0000000

FOOTE:

rd

s
Roopti A=
Foet{ %

’ L e by
Foogt ¢ fHym-3 1415935 +01

Root Finders

On the other hand, assume that our initial guesses are good:

User-defined function:
F = SIN(X)

User entries:
$OOF RODTS TO OBE FOUNDS

MAXIMUM & OF TTERATIONG= 20

TOLERANGE FOR FUNCTION= 1 E-é

GPREAD TOLERANCE FOR MULTIPLE ROOTEs 4 E-8
REGTART VALUE FOR MULTIPLE ROOTH= 0004
§OOF SIGHNIFICANT DIGITS IN RDOT= &

Z.000000E00
= & (00000E+DQ
s 9 000000E+00
SRR+
1500000+
L.800000E+04

THETEAL
THITIAL
THTT LA
THITIAL
THITIAL
THTTTAL

PN

-
ut
PRV — -
feey

.
o
-

Results: o
BOOTE

Roaotl 4=

Fapt{ D2im
Hoaotd

AR

R

1-19

1-20 Root Finders

Methods and Formulae

Given a vector of initial guesses, subprogram Muller will search for solutions of flx) =0
where you define the continuous real-valued function f(x).

The algorithm is based on an extension of Muller's method by Werner L. Frank. This proce-
dure does not depend on any prior knowledge of the location of the roots nor on any special
starting process. All that is required is the ability to evaluate f(x) for any desired value of x.
Multiple roots can also be obtained.

Given that you supply an initial guess, Root(l),
P = .9 % Root(l)
P, = 1.1 = Root(I)
P, = Root(l) if Root(I) #0.

lf Root(I) = 0,P = — 1, P; = 1, and P, = 0. From these three starting values, you choose
Rt, the next approximation to the root, as one of the zeros of the second degree polynomial
which passes through the functional values f(P), f(P;) and f(P,). Successive approximations
are obtained by repeating the quadratic fit:

Rt , 3 =Rt o+ (R, o = Rt;, 1) = d; , 3

— 2+ FRtj o) = (1 +d.»)

where d;, 3 =
birz + b%.y — 4« F(R o) x diunx (1 + diuo)«{ F(Rt) x divp — F(Rb,) = (1 + di.o) + F(RY, ,)}"2

andb; , » = F(Rt) * d%.» — F(Rt;,) « (1 + di.2)? + F(Rt.0) # (1 + 2xd; 1 0)

The sign in the denominator is chosen to give d; , 5 the smaller magnitude.

Having found (R - 1) roots, you determine the Rth root by solving the equation fr(x) =0
where:

The process halts when successive iterants pass one of the two convergence tests:

[H| < |Rt| 10~ P¢"s where H = Rt — previous Rt
Digits = number of significant digits
desired in root
or

f(Rt)| < Tolf and |{(Rt)| < Tolf where Tolf is the desired function tolerance.

If the maximum number of iterations is exceeded on any root, an error message will be
printed and the root will default to the value 9.999999E99.

Root Finders

References
1. D.E. Muller, “A Method for Solving Algebraic Equations Using an Automatic Compu-

ter’”,

MTAC 10 (1956).

2. W.L. Frank, “Finding Zeros of Arbitrary Functions”, J.ACM 5 (1958).

3. B. Leavenworth, “‘Algorithm 25: Real Zeros of an Arbitrary Function”, Comm. of ACM
3 (11) (1960), p.602.

User Instructions

1. If you have not already defined the function you wish to solve, you should do so at this
time.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “MULLER” and press RUN.

3. You will be asked to supply entries for the following items:

number of roots to be found _

maximum number of iterations permitted per root

tolerance for functional evaluation where x is accepted as a root of |f(x)| < <this
tolerance>

spread tolerance for multiple roots. If the Ith root, Root(I), has been computed and it
is found that |Root(I) — Root(d)| < <this tolerance> where Root(J) is a
previously computed root, then the computation is restarted with a guess equal
to Root(I) + <restart value>.

restart value for multiple roots

number of significant digits in root for it to be acceptable

- initial guesses for the number of roots expected.

Press CONTINUE after each entry.

4. Values will be printed for all roots found. The value 9.999999E99 is inserted for any
roots not found.

1-22 Root Finders

Example
User-defined function:

F = SIN(X)

FOLIR e 4
TTERATTONG= 20
COFURETTOMs 4

WILTTPLE BOOT

TH RO

et

Tor= 000000
e D0 0R00NEEN0
Jrwmo 4 DO0000E+00

Ada H GOODO0T0

Results:

BT

Roaov O Sy Q0 0000005

Root Finders

Siljak’s Method

Description
This subprogram will find all roots, Z, of polynomials of the form

ap + ibg + (a; + iby)Z + (ap + iby)Z2 + --- +(a, + ib,)Z" = 0.

Roots are found by expressing the polynomials in terms of Siljak functions and using the
method of steepest descent to determine the zeros.

You are required to enter the complex coefficients of the polynomial as well as its degree.
Tolerances for the root and for function evaluations and the maximum number of iterations
also need to be entered.

Program Usage
Driver Utilization
e File Name - “SILJAK”, disc 1

The driver “SILJAK’ sets up the necessary input parameters for the subprogram Siljak and
prints out the resulting outputs.

Subprogram Utilization
@ File Name - ““Siljak”’, disc 1
e Calling Syntax
CALL Siljak (N, Rcoef(x), Icoef(x), Tola, Tolf, Itmax, Rroot(x), Iroot(x))
® Input Parameters

N Degree of polynomial; number of roots to be found.

Rcoef(x) Vector containing the real parts of the coefficients of the
polynomial where the subscript corresponds to the expo-
nent of the variable; subscripted from 0 to N; e.g., for
ap + iby +(a; + ib;)Z + (ap + iby)Z% + ---

+(a, + ib,)Z" = 0, Rcoef(3) would be the real part of the
coefficient of the Z> term, as.

Icoef(x) Vector containing the imaginary parts of the coefficients of
the polynomial where the subscript corresponds to the ex-
ponent of the variable; subscripted from O to N.

Tola Tolerance for the root.
Tolf Tolerance for the function evaluation.
[tmax Maximum number of iterations permitted in searching for

any one root.

e QOutput Parameters

Rroot () Vector containing the real parts of the roots of the polyno-
mial; subscripted from 1 to N.
Iroot(x) Vector containing the imaginary parts of the roots of the

polynomial; subscripted from 1 to N.

1-23

1-24 Root Finders

Special Considerations and Programming Hints

e Upon entry into subprogram Siljak, there is a bad data check. If the check detects ‘“‘non-
sense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Siljak.”
N = Tola =
Tolf = [tmax =

The data may be corrected from the keyboard (e.g., Tola = 1E — 6, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

® The subprogram has been set to quarter the interval size at most 20 times. If this max-
imum is exceeded, an error message is printed:

“ERROR IN SUBPROGRAM Siljak.”

“THE INTERVAL SIZE HAS BEEN QUARTERED 20 TIMES AND THE TOLER-
ANCE FOR FUNCTIONAL EVALUATIONS IS STILL NOT MET.*

Tolf = U= V=

When CONTINUE is pressed the subprogram is exited with all known information. All
roots not found will contain the value 9.999999E99.

If more than 20 quarterings are required, there is probably some unusual behavior in the
function.

e [f the maximum number of iterations has been exceeded, the following error message
will be printed and Siljak will pause:

“ERROR IN SUBPROGRAM Siljak.”
“MAXIMUM # OF ITERATIONS HAS BEEN EXCEEDED.”
L = [tmax =

When CONTINUE is pressed, the subprogram will be exited. Again, all roots not located
will contain the value 9.999999E99.

There are two possible solutions here. First, increase Itmax, the maximum number of
iterations allowed; or second, allow larger error tolerances, Tola and Tolf. The iteration
counter, L, is reset after each root is located, so attempting to solve a polynomial of large
degree should not cause this error.

Root Finders

Methods and Formulae

Roots are found by expressing the polynomial in terms of Siljak functions and using the
method of steepest descent to determine the zeros. Once a root is found, the polynomial is
reduced by synthetic division and the process is repeated. The last root is computed alge-
braically. The algorithm is very accurate and stable; it will virtually always find the roots and
you are not required to provide an initial value. Multiple roots are found at some slightly
reduced accuracy, and higher order polynomials may show some loss of accuracy as more
roots are found. In general, the program will find ‘“‘normally’ spaced roots accurate to better
than 6 decimal places. Newton’s method could find the roots faster but convergence is not
guaranteed and with Siljak’s method, no a priori information such as the derivative is neces-
sary.

f(Z) = é’o (ak + lbk)Zk = O

Siljak functions x,, and y, are defined by Z* = x, + iy, and may be calculated recursively
where x + iy are the root approximations.

Xo=1,%x=.1y,=0,y; =1
Xgi2 = 2X Xygp1 — (X2 + yz)xk

Yir2 = 2X Ys1 — (X% + VO,

= k§0 (arxi — buyi)

oL §
X = 121 k(awxk—1— byyk-1)

>

av
ax = 151 k(@i — 1+ bixk-1)

1-25

1-26 Root Finders

Reference

1. Moore, J.B., “A Convergent Algorithm for Solving Polynomial Equations”’, Journal of
the Association for Computing Machinery, Vol. 14, No. 2 (April, 1967), pp. 311-315.

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “‘SILJAK” and press RUN.

2. You will be asked to supply entries for the following items:

- degree of polynomial (this is also the number of roots that will be found)
maximum number of iterations allowed per root
tolerance for roots where a root is accepted if the difference in value of the root
approximations of two successive iterations is less than this tolerance
tolerance for functional evaluations where the root x is accepted if |f(x)| < <this
tolerance>
the real part and the imaginary part for each coefficient of the polynomial (the array
subscript shown corresponds to the exponent of the variable).
Press CONTINUE after each entry.

3. The real and imaginary parts of the roots will be printed. Any roots not found will
contain the value 9.999999E99.

Example

Us tries:
Crentes: e v OF FOLYNOMTA

SY 4 OF TTERATION

TOLERAHCE

FORROOTH= { @
TOLERGMEE FOR FUNCTTONAL EVALUATIONG= § E-f

[(RcopFf i)+ loaefi0yEl e
(Bocoef(id+lcoef {4kl okd~ix . 1]

COEFFICTENTS:

RE&L

THAGTHNARY

A R IR RS () B.o00000E+00
noagnoaek+a0 foa0oaonE+0e
poonoaiei+0n o ao0aenE+Qnn
0. 000000FE+0f(. 0000n0E+0Q
Lo0naonnE--Q0Q Qo aonE-s

Results:

RO

g i

‘ o q] !‘ o

THmGTHARY

i TATAGTE R4
2 000000E 00
2o000000F+400

2-1

Chapter 2

Integration

Introduction

Description

This section contains routines for numerically evaluating integrals. There are many possible
reasons for using numerical integration, three of which are:

1. the analytical form of a simple integral can be quite complicated. For example,

fdx/V (x3(x? + 25)%) = — 1/(50x2V (2 + 25)) — 3/ (2(6%)V x® + 25) +
(3/(2(5%)) log (5 + V x® + 25/x)

The evaluation of this expression may involve more calculations than evaluation by
numerical methods.

2. many integrals cannot be expressed in finite form. For example, [e~ “dx.

3. the integrand may not be known explicitly, but may be expressed as a set of collocation
points.

Routines

e Simp - the easiest method to use for well-behaved functions.

e Filon - for functions of the form f(x)sin(x) or f(x)cos(x).

e Cadre - used for a great many functions when other methods fail.
e Inteq - numerical integration with equally-spaced data points.

2-2 Integration

Simpson’s Rule

Description

This subprogram approximates ff(x)dx for the user-defined continuous function f(x) on the
interval [a,b]. You are required to specify the maximum number of iterations permitted and
the error tolerance between successive calculations of the integral.

Program Usage
Driver Utilization
e File Name - “SIMP”’ disc 1

The driver ““SIMP” sets up the necessary input parameters for the subprogram Simp and
prints out the resulting value of the integral. Intermediate integral values may also be printed if
you wish.

Subprogram Utilization
® File Name - “‘Simp”’, disc 1
® Calling Syntax
CALL Simp (Low, Up, Int, Flg, Itmax, Tol)
® [nput Parameters

Low Lower bound of interval of integration.
Up Upper bound of interval of integration.
Flg Should intermediate results be printed?
Flg = 1 implies yes
Flg = — 1 implies no
[tmax Maximum number of interval halvings.
Tol Error tolerance between successive calculations of integral.

e Output Parameters
Int Value of integral.
® Subprograms Required

FN F(X) Function to be integrated must be defined in function sub-
program FN F(X).

Integration 2-3

Special Considerations and Programming Hints

e Upon entry into the subprogram, a bad data check is performed. If the program detects
“nonsense’’ data, the program will pause and the following error message will be

printed:
“ERROR IN SUBPROGRAM Simp.”’
Up = Low = Fig =
[tmax = Tol =

The data may be corrected from the keyboard (e.g., Tol = 1E — 4, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

e If the maximum number of iterations is exceeded, the following error message will be
printed:

“ERROR IN SUBPROGRAM Simp.”’
“MAXIMUM # OF ITERATIONS EXCEEDED.”
Int = Intold =

Tol = [tmax =

At this point, the tolerance or the maximum number of iterations may be increased from
the keyboard (e.g., Itmax = 30, EXECUTE) or the value of the integral may be accepted
as is. If the data is corrected from the keyboard, pressing CONTINUE will cause execu-
tion to resume.

e To define the function f(x):

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the following function subprogram pressing ENTER after
each line.

10 DEF FNF(X)

20 F: F=<user-defined function of the form (X —3) = (X+4)>
30 RETURN F

40 FNEND

4. RE-STORE the function subprogram on file “KRYWEN"".
5. LOAD file “SIMP” and press RUN.

(See “Redefining User Functions’ in the Introduction, following the Table of Contents, for
another way to modify the function f(x).)

2-4

Integration

Methods and Formulae

This subprogram will approximate [f(x)dx for the user-defined function f(x) which is defined
in a function subprogram. The function must be continuous over the interval [a,b].

Simpson’s one-third rule:
lbf(x)dx =~ h§ [f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + -+ 4f(a + (n — 1)h) + fla + nh)}

where n = number of intervals,

h= =2 _ ierval size

n

Reference

1. Beckett, Royce and Hurt, James, Numerical Calculations and Algorithms, New York:
McGraw Hill, 1967, pp. 166-169.

User Instructions

1. If you have not already defined the function you wish to solve, you should do so at this
time.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “SIMP”’ and press RUN.

3. You will be asked to supply entries for the following items:
- lower bound of the interval
- upper bound of the interval
- maximum number of interval halvings
- error tolerance where the value of the integral is accepted if the difference

in value of two successive approximations is less than this tolerance.
Press CONTINUE after each entry.

4. The program will print the value of the integral as well as intermediate data points if
they were requested.

Integration

Example
User-defined function:

F = XxX*SIN(3xX)

User entries:

ARG
HAL T NG F
o0

Intermediate data points:

Results:

Fe g

2-6

Integration

Filon’s Method

Description

This subprogram approximates Lbf(x)sin(tx)dx or fabf(x)cos(tx)dx for the user-defined con-
tinuous function f(x) on the interval [a,b]. Both integrals are found using Filon’s method, a
special case of Simpson’s rule for oscillating functions.

You are required to specify an array of function values, the number of points of evaluation,
the number of oscillations (t), and the endpoints of the interval.

Program Usage
Driver Utilization
® File Name - “FILON”’, disc 1

The driver “FILON” sets up the necessary input parameters for the subprogram Filon and
prints out the resulting value of the integral.

Subprogram Utilization
® File Name - “‘Filon”, disc 1
® Calling Syntax
CALL Filon (F(%), T, A, B, Nb, Key, Int)
® [nput Parameters

F(x) Vector containing table of functional values calculated at Nb
equidistant points from A to B; subscripted from 1 to Nb.

T Number of oscillations of the trigonometric function; i.e.,
sin(tx) or cos(tx).

A B Endpoints of interval.

Nb Number of equidistant points from A to B; Nb must be odd
and Nb > T + 1.

Key Key = 1 implies cosine integral is evaluated.
Key = — 1 implies sine integral is evaluated.

® Output Parameter
Int Value of the integral.
® Subprograms Required
Cnsts (Alpha,

Beta, Gamma, Theta) Subprogram which computes the three constants for use in
the Filon integration formula.

Integration 2-7

Special Considerations and Programming Hints

° Upon entry into the subprogram, a bad data check is performed. If the program detects
“nonsense”’ data, the program execution will pause and the following error message will

be printed:
“ERROR IN SUBPROGRAM Filon.”
T = A= B =
Nb = Key =

The data may be corrected from the keyboard (e.g., Nb = 71, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e In order to use Filon’s formula, an odd number of points, Nb, is required. If the subpro-
gram detects an even number of points, an error message is printed and execution
pauses.

“ERROR IN SUBPROGRAM Filon.”
“ODD # OF POINTS REQUIRED.”
Nb =

Again, the data may be corrected from the keyboard. When CONTINUE is pressed, the
program will resume execution at the next line.

e For a good approximation of the integral, Theta values (Theta = t«h) should be kept less
than 1. So, for example, if you want to integrate Lx sin(10x)dx, t = 10. Nb should be
chosen greater than 11 since:

0h<1 h< L b=-a 1 1 1 Npb>1L
10 Nb—1 10 Nb—1 10

Care should also be taken not to choose too large an Nb since this increases the running
time of the program.

e The vector F(*) must be dimensioned in the calling program: DIM F(1:Nb) where Nb is
the number of equidistant points of the interval of integration.

o To define the function f(x) where f(x)sin tx or f(x)cos tx is to be integrated:

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the following function subprogram pressing ENTER after
each line.
10 DEF FNF(X)
20 F: F= <user-defined function of the form (X—3) x (X+4)>
30 RETURN F
40 FNEND
4. RE-STORE the function subprogram on file “KRYWEN"".

5. LOAD file “FILON" and press RUN.

(See “‘Redefining User Functions’ in the Introduction, following the Table of Contents, for
another way to modify the function f(x).)

2-8

Integration

Methods and Formulae

This subprogram computes f bf(x)cos(tx)dx or f b1‘(><)sin(tx)dx. Both integrals are found using
Filon’s method, a special case of Simpson’s rule.

It is assumed that F(x) is an array of functional values calculated at Nb (odd) equidistant
points from a to b and h is the interval size,

_b-a

Nb — 1
[f(x)sin(tx)dx = h[aS, + BSs + ¥S,]

ff(x)cos(tx)dx ~ h[aC, + BCs + vC,]

where o= [t?h? + th sin(th)cos(th) — 2 sin(th)?]/ (th)3
B= 2[th(1 + cos(th)?— 2 sin(th)cos(th)] / (th)3
v= 4[sin(th) — th cos(th)]/ (th)3
S.= — [f(b)cos(bt) — f(a)cos(at)]
Ni;l

S = .5[f(a)sin(at) — f(b)sin(bt)] + X (2, + 1)sin[(a + 2ih)t]

i=1

Nb-1
2

S,= X f(2i)sin[(a + (2i — 1)h)t]
i=1
C, = f(b)sin(bt) — f(a)sin(at) Nb-1

2

Cp = .5[f(a)cos(at) — f(b)cos(bt)] + S (2 + 1)cos[(a + 2ih)t]

i=1
Nb-1

2
C,= 2 f(2i)cos[(a + (2i — 1)h)t]
i=1

User Instructions

1. If you have not already defined the function you wish to solve, you should do so at this
time.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “FILON" and press RUN.

3. You will be asked to supply entries for the following items:
- number of points of integration (odd number required)
- form of integrand, whether f(x)sin(tx) or f(x)cos(tx)
- lower bound of the interval
- upper bound of the interval
- frequency or number of oscillations of the trigonometric function
(must be greater than 0)
Press CONTINUE after each entry.

4. The program will print the value of the integral.

Integration 2-9

Examples
User-defined function:

F = X«X

User entries:
OF POTHNTS OF INTEGRATION= 34
Keys i
LOWER BQURMD= (O -
LPPER ROUND= 1 8707943260
FREQUEMGY= 4

1t:
Resu THTEGRAL= 4. 674054E-01

User-defined function:
F = LOG(1 + X)

Userentries: =~ . . L e vrErD AT T AN
#OF POINTES OF IHTEGRATION= 31

LOWER BOUND= (
UFPER BOUND= & 28318%3072
FREGUENCY= 10

Result:
THTEGRAL =1 2766040

Using the same function (F = LOG(1 + X)):

User entries: . e y
oo OF POIMTS OF THTEGRATION= 74
ey g
LOWER RO NDe
VP PER BOUND= & 2BEALESEQYR2
FREQUENDY= 10

Results:

PRHTEGRAL =4 97 E2EAE-01

2-10

Integration

Cautious Adaptive Romberg Extrapolation

Description

This subprogram uses cautious adaptive Romberg extrapolation to approximate [¥(x)dx for
the user-defined function f(x) on the interval [a,b].

You are required to specify the lower and upper bounds, the relative and absolute error
tolerances and the user-defined function subprogram.

Program Usage
Driver Utilization
® File Name - ““CADRE"’, disc 1

The driver “CADRE” sets up the necessary input parameters for the subprogram Cadre and
prints out the resulting value of the integral, the estimated error term, and the suggested
reliability of the results.

Subprogram Utilization
® File Name - ““Cadre”’, disc 1

e Calling Syntax
CALL Cadre (A, B, Aerr, Rerr, Err, Flg, Cadre)

® Input Parameters

A Lower bound of interval of integration.
B Upper bound of interval of integration.
Aerr Desired absolute error in the answer.
Rerr Desired relative error in the answer; Rerr must be in the

range (0,0.1); e.g., Rerr = 0.1 indicates that the estimate of
the integral is to be correct to one digit, whereas
Rerr = 1E ~ 4 calls for four digits of accuracy.

e Qutput Parameters

Err
Flg

Cadre
e Subprograms Required

FN F(X)

Integration

Estimated bound on the absolute error of the integral.

An integer between 1 and 5 indicating what difficulties were
met with specifically.

Flg = 1, all is well

Flg = 2, one or more singularities were successfully
handled

Flg = 3, in some subintervals, the estimate Vint was
accepted merely because Err was small even though no reg-
ular behavior could be recognized.

Flg = 4, failure, overflow of stack Ts.

Flg = 5, failure, too small a subinterval is required. This
may be due to too much noise in the function (relative to
the given error requirements) or due to a poorly behaved
integrand.

Value of the integral.

Function to be integrated must be defined in the function
subprogram FN F(X).

2-11

2-12 Integration

Special Considerations and Programming Hints

® Upon entry into the subprogram, a bad data check is performed. If the subprogram
detects “‘nonsense’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Cadre.”
A= B = Aerr = Rerr =

The data may be corrected from the keyboard (e.g., Aerr = 1E — 6, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

® Cadre can, in many cases, handle jump discontinuities and certain algebraic discon-
tinuities. See reference 1 for full details.

® The relative error parameter Rerr must be in the interval [0,0.1]. For example,
Rerr = 0.1 indicates that the estimate of the integral is to be correct to one digit, whereas
Rerr = 1E - 4 calls for four digits of accuracy.

¢ The absolute error parameter, Aerr, should be nonnegative. In order to give a reasonable
value for Aerr, you must know the approximate magnitude of the integral being com-
puted. In many cases, it is satisfactory to use Aerr = 0. In this case, only the relative
error requirement is satisfied in the computation.

® DeBoor’s original program has been modified in a number of places. Most error mes-
sages have been deleted and the size of some of the arrays was shortened. Reference 1
contains the original version of the algorithm.

® The variable Flg indicates the suggested reliability of the solution. To quote DeBoor:

“A very cautious man would accept Int only if Flgis 1 or 2. The
merely reasonable man would keep the faith even if Flg is 3. The
adventurous man is quite often right in accepting Int even if Flg is 4
or5.”

® To define the function f(x):

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the following function subprogram pressing ENTER after
each line:

10 DEF FNF(X)

20 F: F=<user-defined function of the form (X—3) = (X +4)>
30 RETURN F

40 FNEND

4. RE-STORE the function on subprogram on file* KRYWEN"".
5. LOAD file ““CADRE” and press RUN.

(See ‘‘Redefining User Functions” in the Introduction, following the Table of Contents,
for another way to modify the function f(x).)

Integration

Methods and Formulae

The subprogram Cadre attempts to solve the following problem: Given the real function f, two
real numbers a and b, and two nonnegative numbers Aerr and Rerr, find a number Int such
that

| [f(x)dx — Int| < = MAX(Aerr, Rerr « | [(x)dx |).

For this, the subprogram employs an adaptive scheme, whereby Int is found as the sum of
estimates for the integral of f(x) over suitably small subintervals of the given interval of in-
tegration. Starting with the interval of integration itself as the first such subinterval, Cadre
attempts to find an acceptable estimate on a given subinterval by cautious Romberg extrap-
olation. If this attempt fails, the subinterval is divided into two subintervals of equal length,
each of which is now considered separately. For the sake of economy, values of f(x), once
calculated, are saved until they are successfully used in estimating the integral over some
subinterval to which they belong. For a more detailed description of this algorithm, see refer-
ence 1.

Reference

1. DeBoor, Carl, “CADRE: An Algorithm for Numerical Quadrature’’. Mathematical Soft-
ware (John R. Rice, Ed.), New York: Academic Press, 1971, Chapter 7.

User Instruction

1. If you have not already defined the function you wish to solve, you should do so at this
time.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “CADRE” and press RUN.

3. You will be asked to supply entries for the following items:
- lower bound of the interval of integration
- upper bound of the interval of integration
- absolute error tolerance

- relative error tolerance.
Press CONTINUE after each entry.

4. The program will print the integral value, the estimated error term, and the suggested
reliability of the results.

2-13

2-14

Integration

Examples
User-defined function:

F = X«X«SIN(3%X)

User entries:

LENER BT i1

Results:

User-defined function:
F = LOG(EXP(1)/X)

User entries: .

Integration 2-15

Numerical Integration
with Equally-Spaced Data Points

Description

This subprogram approximates [*H(x)dx where f(x) is represented by discrete function values
f(x;) at equally-spaced points x;.

You are required to supply the increment between intervals, the number of data points (which
must be odd), and the functional value at each of the data points.

Program Usage

Driver Utilization
e File Name - “INTEQ"’, disc 1

The driver “INTEQ” sets up the necessary input parameters for the subprogram Inteq and
prints out the resulting value of the integral.

Subprogram Utilization
o File Name - “Inteq’”’, disc 1

e Calling Syntax
CALL Inteq (N, Inc, F(x), Int)

® Input Paramters

N Number of data points; this must be odd.
Inc The increment between equally-spaced data points.
F(*) Vector containing the functional values in increasing order

of domain value; subscripted from 1 to N.
e QOutput Parameters

Int The integral over the interval [F(1), F(N)].

2-16 Integration

Special Considerations and Programming Hints

e Upon entry into the subprogram, there are two error checks. If there are not at least
three data points, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Inteq.”
“AT LEAST THREE DATA POINTS ARE REQUIRED.”
N =

If there is not an odd number of data points, the following error message is printed and
the program pauses:

“ERROR IN SUBPROGRAM Inteq.”
“ODD # OF DATA POINTS IS REQUIRED.”
N =

The number of data points can be corrected from the keyboard (e.g., N = <new num-
ber of data points>, EXECUTE). When CONTINUE is pressed, the program will con-
tinue execution at the next line.

® Vector F(*) must be dimensioned in the calling program: DIM F(1:N) where N is the
number of data points being entered.

Methods and Formulae
This subprogram approximates [f(x)dx where discrete values of f(x) are known at equally-

spaced points over the interval [a,b]. Simpson’s one-third rule is used to approximate the
integral.

ff(x)dx =~ % {f(a) + 4f(a+ h) + 2f(a + 2h) + 4f(a + 3h)+ ... + 4f(a + (n— 1)h) + f(a + nh)}

where: n = number of intervals (number of data points minus one)

h=_b-a
n

Reference

1. Beckett, Royce and Hunt, James, Numerical Calculations and Algorithms, New York:
McGraw-Hill, 1967, pp. 166-169.

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “INTEQ” and press RUN.

2. You will be asked to supply entries to the following items:
- number of data points (odd number required)
- increment between data points
- appropriate function value of each data point.
Press CONTINUE after each entry.

3. The program will print the value of the integral.

Examples
User entries:

Result:

User entries:

Result:

£

OF

DATA POINTS= 44

THOREMENT =

FUNCTTON

T3

TT T T T

P . Y

T

TV T Ty T

fr= 7

P e

ir
it

L= 0
LR
Fymo 2
Aym A

R

F.0000008

A

UALUES

000000E+00
LO00000E T
QO00O0E-~01
-{1 4
U000 00E-014
LQoooE-01

6. 00B000E-01
000 00E-04
5w g
7 LO0000E-04
1.000000E+00

ooeoeE-01

THTEGRAL =

TR E

FUNCTLOM
i
b

f

i
B
[
;
P
i::‘

L TR GR Al

CooudonoE-ai

POTM TR Y

o
\

NS

Ll LRS-

G 000600
#0110

DoAnnoang-

LS00 oo

L ROONNNE
NIV RTRERY

00T
GROLOeE

AN NOE 0
iR 0600
40

LA

BEED L

Integration 2-17

2-18 Integration

Numerical Integration
with Unequally-Spaced Data Points

Description

This subprogram approximates [hf(x)dx where f(x) is represented by discrete functional values
for unequally-spaced domain values x over the interval [a,b]. You are required to input the
data points and the tolerance desired.

Program Usage

Driver Utilization
® File Name - “INTUN”, disc 1

The driver “INTUN"" sets up the necessary input parameters for the subprogram Intun and
prints out the resulting outputs.

Subprogram Utilization
® File Name - “Intun”, disc 1

o Calling Syntax
CALL Intun (N, Eps, X(*), Y(%), Int)

® Input Parameters

N Number of data points; N must be at least 3.

Eps Epsilon tolerance for the solution of the simultaneous equa-
tions used in the calculation of the integral.

X(*) Vector containing the domain values of the data points sub-
scripted from 1 to N; domain values must be in increasing
order.

Y (%) Vector containing the range values of the data points sub-

scripted from 1 to N.
® Output Parameters

Int Value of the integral.

Integration

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Intun.”
N = Esp =
X (1)= X_(N)=

The data may be corrected from the keyboard (e.g., N = 21, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e For a derivation of the equations and the flow chart upon which this program is based,
see Greville’s article in reference 1. Reference 2 explains the theory of spline functions in
general with applications in various other areas.

e Vectors X(*) and Y(*) must be dimensioned in the calling program:
DIM X(1:N), Y(1:N) where N is the number of data points to be used.

e The number of data points must be greater than 2, otherwise an error will occur in the
dimension statement in line XXX DIM B(2:N — 1), S(N), G(2:N — 1) of the subprogram.

Methods and Formulae

This subprogram approximates [f(x)dx where f(x) is represented by discrete functional values
for unequally-spaced domain values x over the interval [a,b].

The method implemented involves fitting a curve through the data points and integrating that
curve. The curve used is the cubic natural spline function which derives its name from a
draftsman’s mechanical spline. If the spline is considered as a function represented by s(x),
the second derivative s'’(x) approximates the curvature. For the curve through data points
(X1,91), (X2,92), ..., (Xn,y,) we want fx',‘ (s''(x))?dx to be minimized in order to achieve the
“smoothest” curve.

The spline function with minimum curvature has cubic polynomials between adjacent data
points. Adjacent polynomials are joined continuously with continuous first and second deriva-
tives as well as s''(x;) = s"'(x,) = 0.

The procedure to determine s(x) involves the iterative solution of a set of simultaneous linear
equations by the method of successive overrelaxation. You can specify accuracy to which
these equations are solved. For a detailed discussion of the algorithm, see reference 2.

n-1

[stdx =~ % 2ty — x)ly + yoa) = pp K’ S 060 S)
x i=1

2-19

2-20 Integration

References

1.

2.

Ralston and Wilf, Mathematical Methods for Digital Computers, Vol. I, New York: John
Wiley and Sons, 1967, pp. 156-158.

Greville, T.N.E., Ed., “Proceedings of An Advanced Seminar Conducted by the
Mathematics Research Center”’, U.S. Army, University of Wisconsin, Madison, October

7-9, 1968, Theory and Application of Spline Functions, New York, London: Academic
Press, 1969, pp. 156-167.

User Instructions

1.

2.

Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “INTUN”" and press RUN.

You will be asked to supply entries to the following items:

- number of data points to be used in the computation

- error tolerance desired in solving the system of equations

- x (in increasing order) and y coordinate of each data point.
Press CONTINUE after each entry.

The program will then print the endpoints of the interval of integration and the value of
the integral.

Integration 2-21

Examples

U tries:
ser entries: ...
FREOR

DATA POINTSG= G
TOLERANCE= 1 . E-&

DATA POINTE: [DOMATH VALUES

N TNCREABING

MUET BE
ORDER T

R
&y
Xi Ry
A{ 4
X¢ Sy

L
Ak

%

Result: i
ITHTEGR &L

User entries: b OF
EEREQR

DA

Result:

IMTEGRAL

KU S B

FROM

POTNTS:

FR O

SR IRIRURIRIRY
v QODOD -

00000 0E+G0
L0000 0E+00
La0an0aE+0d
DOgoa0E+00
QU000 0ELQD

g.000

DaTa POAINTS= 4

T

00O a0eE+00

GoonooE+an

A G000 0E 0
(AR ER IR TRTRENGIE S RE
io&000n
GO0 oEenn

AF 00

f.nog

T

T

YA
Y§
Yo
Yo
Y

4. 000

i 0,
L000000E+00
2.000000E+00
3. 000000E+00
LQ0000DE+00

= d

s

[OOMATN VALUES musT

ki)
o
i

4000

THCREASTNG ORDERT

I

Spanan

GRo000E-+R0

g.000000E+040

COH0RQUE+00
0060 0E--0E

HGUOOD

innan

SEQDDGESTR

A 000000E+00

POEYRTEED

2-22 Integration

3-1

Chapter 3

Ordinary Differential Equations

Introduction

Description

A differential equation is a relation among an independent variable and a dependent variable
and its derivatives. For example, y* + xy? = 0. The solution is a function y of x satisfying this
equation and passing through a given point, (xo,Yo).

This section contains two methods for solving systems of first order differential equations.
(Higher order equations may be solved by reducing to a system of first order equations.)

Routines
e Kutta - a good, stable method when accuracy requirements are not high or when the
equation does not involve a large number of calculations.

e Adams - a method which is more accurate and requires fewer computations but may not
be as stable in some cases.

3-2 Ordinary Differential Equations

Runge-Kutta Method

Description

This subprogram is a locally fifth-order Runge-Kutta procedure for solving systems of first-
order ordinary differential equations.

You must supply the dimension of the system of differential equations, the beginning and end
points of integration, the initial value vector and the maximum number of integration steps.

Note

Before running this subprogram, you must also supply the subpro-
gram Func containing the user-defined system of equations to be
solved. If the included driver is used, subprogram Func must be
stored on the default mass storage device in file “‘Func’’.

Program Usage
Driver Utilization
® File Name - “KUTTA”, disc 1

The driver “KUTTA” sets up the necessary input parameters for the subprogram Kutta and
prints out the resulting outputs.

Note
The driver prints every tenth value of the computed vectors. If a
different number of values is required, line 420 may be changed,
replacing the 10 by an appropriate number.

Subprogram Utilization
o File Name - “‘Kutta”, disc 1

® Calling Syntax
CALL Kutta (Idm, A, H, B, Maxstp, Ynt(x), Y(x))

® Input Parameters

Idm Dimension of the system of differential equations.
A Integration starting point.
H Integration step size.
B Integration end point.
Maxstp Maximum number of integration steps.

Ynt(x) Initial value vector subscripted from 1 to Idm.

Ordinary Differential Equations 3-3

¢ Output Parameters

Y (%) Y(I,N) is the solution of Ith component evaluated at
X = A + (N — 1)xH; Y(*) needs to be dimensioned DIM
Y(Idm, Nb) where Nb is the number of points of integration.

e Subprograms Required

Func(Ysv(x), X, Idm, F(x)) Contains user-defined system of equations; used to gener-
ate new function values, F(*), from old function values,
Ysv(x); see the Special Considerations section for further
details.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a check for bad data. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Kutta.”
A= B =
H = Maxstp =

The data may be corrected from the keyboard (e.g., H = .01, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e Kutta is a good choice when accuracy requirements are not too high and function eval-
uations are simple. Kutta requires four function evaluations per integration step, com-
pared with only two using the Adams predictor-corrector method.

e The step size, H must be chosen with some care. On the one hand, a small H keeps the
error due to the Runge-Kutta formulae small. On the other hand, the smaller H is taken,
the more integration steps we shall have to perform, and the greater the round off error
is likely to be.

e Since there may be some cumulative round off error in stepping from end points, A to B
(i.e., X = A + (N — 1)H), B may not be reached exactly. So, the subprogram is exited
if X > B — Eps where Eps = 1E — 6. If X does not satisfy this condition, the subpro-
gram will exit when the maximum number of steps have been performed.

e To define the system of equations to be solved:

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the subprogram Func, pressing ENTER after each line. The
Subprogram Utilization section explains the parameters used and the examples fol-
lowing explain how to set up a system of equations in the subprogram.

4. RE-STORE the subprogram on file “Func’.
5. LOAD file “KUTTA” and press RUN.

(See “‘Redefining User Functions” in the Introduction, following the Table of Contents,
for another way to modify the system of equations.)

3-4 Ordinary Differential Equations

® A higher order differential equation may be replaced by a system of 1st order equations.
Assume the equation is of the form:

dmy dy C12y dm - 1y
—=f(x, y, —— ...,
dx™ dx dx? dxm~1!

)

d dm-!
with the given initial conditions y(xo),—y(xo), e _f(xo)
X X

We may write the system as follows:

v1' = 11X, Y1, Yo -, Yrm)

Vo' = f2(X, Y1, Y2 -, Ym)

Ym = fm(xa Vi, Yo---, ym)
Example 1.
Compute the solution of van der Pol’s equation y'" —(.1){1 — y?)y’ + y = 0
with initial conditions y(0) = 1, y’(0) = 0.
LetZ =y’ thenZ =y" = (1)(1 — y?)y' — v.

In terms of our subprogram Func, y = Ysv(1) andy’ = Ysv(2).
So, we would code Func as follows:

SUB Func (Ysv(x*),X,Idm,F(x))

F: F(1) = Ysv(2)

F(2) = ((1)%(1 — Ysv(1)*xYsv(1))*Ysv(2) — Ysv(1)
SUBEND

Example 2.

Compute the solution of y'' + xy2 = 0 with initial conditions y(0) = 0, y'(0) = 1.

LetZ = y' thenZ = y'' = —xy?

In terms of our subprogram Func, y = Ysv(1) andy’ = Ysv(2).

So, we would code Func as follows:
SUB Func (Ysv(x),X,Idm,F(x))
F: F(1) = Ysv(2)
F(2) = XxYsv(1)xYsv(1)
SUBEND

Ordinary Differential Equations 3-5

Example 3.
Compute the solution of

y''" + 17y"" — 10y’ + y = 0 with initial conditions y(0) = y'(0) = y''(0) = 0.

LetZ = y’, thenZ' = y"".
LetW =2 =y',then W =2Z" =y = —-17y"" + 10y’ —v.

In terms of our subprogram Func, y = Ysv(1), y’ = Ysv(2) and y"" = Ysv(3).
So, we would code Func as follows:

SUB Func (Ysv(x),X,Idm,F(x))

F: F(1) = Ysv(2)

F(2) = Ysv(3)

F(3) = 17xYsv(3) + 10xYsv(2) + Ysv(1)
SUBEND

3-6 Ordinary Differential Equations

Methods and Formulae

This subprogram solves the following system of simultaneous first-order ordinary differential
equations:

dy,
—=fi(x v1, v2, ..., Yp)
dx

dys
T = f2(X, Y1, Yo, ..y yn)
dx

dy
7“=fn(x, Y1, Y2, oy Yn)

with you specifying the initial conditions, x¢, y;(xo), y2(Xo), ..., Yn(Xo).

The program may also be used to solve an equation of the form:

dmy dy dZy dm—ly
—=f(x, y, ——= ..,)
dx™ dx dx* dx™!
s ” . dy dm "y
with given initial conditions y(x,), —(xo), ..., (x0)
dx dx™ !

by rewriting the equation as a system of first-order equations as above. A method for doing
this is provided in the Special Considerations and Programming Hints section.

Runge-Kutta methods attempt to obtain greater accuracy, and at the same time avoid the
need for higher derivatives, by evaluating the function f at selected points on each subinterval.

For the equation y’ = (x,y), y(xo) = y, and step size h, approximations v, to y(xg + nh) for
n = 0,1, 2, ... are generated using the recursion formula

1
Ynt1 = Yn T 3 (k1 + 2ky + 2ks + ky)
where
kl = hf(xn7 yn)
h
ko = hf(x,, + > Y, +
h
k3 = hf(Xn + §, yn + ékz)
kg = hf(x, + h, y, + kg)

The local truncation error is O(h®).

Ordinary Differential Equations

This is a single step method. It requires only the value of y at a point x = x, to find y and y’ at
X = Xn+1

The above formulae may be generalized to any system of 1st order differential equations.
Further details may be obtained from the references.

References

1. Ralston and Wilf, Mathematical Methods for Digital Computers, Vol. 1, New York: John
Wiley and Sons, Inc., 1960, p. 115.

2. Carnahan, Luther, Wilkes, Applied Numerical Methods, New York: John Wiley and
Sons, Inc., 1969, pp. 363-366.

User Instructions

1. If you have not already defined the system of equations you wish to solve, you should do
so at this time and save on file “‘Func’’.

2. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “KUTTA” and press RUN.

3. You will be asked to supply entries for the following items:
- dimension of the system of differential equations

lower bound of the integral

upper bound of the integral

step size for integrating

maximum number of iteration steps permitted

- initial values for y for each dimension of the system.

4. The program will print the domain values x as well as the values of the integrated
function at x.

3-8 Ordinary Differential Equations

Examples

e Solve y' — xy'® = 0 for 1< x < 3, step size = 0.01 subject to the initial condition
y(1) = 1. Print every tenth value. With y = y,,(1), subprogram Func is set up as

10 SUB Func(Ysv(x),X,Idm,F(x))
20 F: F(1)=XxYsv(1)A(1/3)
30 SUBEND

User entries: 0

DR rial Uallus.

A A I T CR A R N R TR Y

Results:

Sosnnonny
AORDICO0r
SoAN0D00E
SBONOOEsnn

e Solve y'' + 2yy’ = 0 for 0 < x < 2, step size

y(0) = 0,y"(0) = 1.

Ordinary Differential Equations

= .01, subject to the initial conditions

The solution may be obtained by first reducing the equation to a set of simultaneous
equations using the following substitutions:

LetZ =

y',thenZ' = y'"' = —2yy’.

Withy = Ysv(1) and y' = Ysv(2), the subprogram Func is set up as follows:

User entries:

Results:

SUB Func(Ysv(x*),X,Idm,F(x))
F(1)=Ysv(2)
F(2)= —2%Ysv(1)*Ysv(2)
SUBEND

10
20 F:
30
40

ODIFENSTON OF SYSTEM OF DB =

LOWER BOUND=
WPPER BOUND
HTER

Mk

fi

IRITIAL Valllis:

g.ouindoE+00
io00anonE+a0

G ganneor
oonnegnd
2o
EoODGonoE
NI RIRIR I Y
IR LN IRIRIRT

THTEGRAT TOMN STEP G

HE

I
i

204

3-10 Ordinary Differential Equations

® Solve yy'' + 3(y')® = 0 for 0 < x < .2, step size = .01, subject to the initial conditions
v(0) = 1,y'(0) = Va.

The solution may be obtained by first reducing the equation to a set of simultaneous
equations using the following substitutions:

LetZ =y',thenZ = y'’ = —3(y')%.
Withy = Ysv(1) andy’ = Ysv(2), the subprogram Func is set up as follows:

10 SUB Func(Ysv(x),X,Idm,F(x))

20 F: F(1)=Ysv(2)

30 F(2)= —3+Ysv(2)*Ysv(2)/Ysv(1)
40 SUBEND

User entries: B

PREDT Ll Wit s

YA L Q00000F 400
VOO@re 2 OR00LONE-0]

Results:

AARIRERIRIRINY
AN ERERVRIE

IR IR
SonannanE
D00 anGE-01
o000 a0E-0
PoanaoooE+en
PoAnananEson
L2000 00E+010
LOAG0000E
AQGHO0E-+0D

i
i
i
i
i
1
i
i
i

L S00000E+00
ILos00Da0E+00
i 700000E+00
1.800000E+00
70000 0E+00
2. 000000E+00

PN

1. 316074 +00

eSolvey'' — ((1)(1 — y?)y' +y = 0for 0 < x =< .2, step size

conditions y(0) = 1, y'(0) = 0.

Ordinary Differential Equations

.01, subject to the initial

The solution may be obtained by first reducing the equation to a set of simultaneous
equations using the following substitutions:

LetZ =vy',thenZ' =y = (1)(1 — vy’ — y. Withy = Ysvu(l) and y’' = Ysv(2),
the subprogram Func is set up as follows:

User entries:

Results:

10

20 F

30
40

DBTMENSTON
L CIWER
LI PER

SUB Func(Ysv(*),X,Idm,F(*))
F(1)=Ysv(2)

F(2)=.1%(1 =Ysv(1)*Ysv(1))xYsv(Z2) — Ysv(1)

SUBEND

OF GYSTEM
BOUND= 0
M= 2

AT LON

EBTE P S

fl WALUE S

Pre 4 000000E+00
Pre Q00000800

IR RN
S g
SRR LR

IRIRTRERY

OF Dok =

3-11

3-12 Ordinary Differential Equations

Adams-Bashford-Moulton Method

Description

This subprogram is a locally fifth-order Adams-Bashford procedure for solving systems of
first-order ordinary differential equations. Kutta, a Runge-Kutta procedure, is used as a start-
er. An optional Adams-Moulton corrector is also included.

You are required to supply the dimension of the system of differential equations, the begin-
ning and end points of the integration, the initial value vector and the maximum number of
integration steps.

Note

Before running this subprogram, you must also supply the subpro-
gram Func containing the user-defined system of equations to be
solved. If the included driver is used, subprogram Func must be
stored on the default mass storage device in file “‘Func’’.

Program Usage
Driver Utilization
o File Name - “ADAMS”’, disc 1

The driver “ADAMS”’ sets up the necessary input parameters for the subprogram Adams and
prints out the resulting outputs.

Subprogram Utilization
® File Name - ““Adams”’, disc 1

¢ Calling Syntax
CALL Adams (Idm, A, H, B, Maxstp, Crktr, Ynt(x), Y(x), Er(x))

® Input Parameters

Idm Dimension of the system of differential equations.
A Integration starting point.
H Integration step size.
B Integration end point.
Maxstp Maximum number of integration steps.
Crktr Corrector flag:
Crktr = 1 implies use corrector.
Crktr = — 1 implies do not use corrector.
Ynt(x) Initial value vector, subscripted from 1 to Idm.

® Output Parameters

Y(*) Y(I,N) is the solution of Ith component evaluated at
X =A + (N — 1)xH; Y(*) needs to be dimensioned DIM
Y(Idm, Nb) where Nb is the number of points of integration.

Er(*) Error estimate for Y(I,N); Er(*) is subscripted from 1 to Nb
where Nb is the number of points.

Ordinary Differential Equations

e Subprograms Required

Kutta (Idm, A, H, B,
Maxstp (Ynt(x), Y(x)) Used as a starter for subprogram Adams.
Func (Ysv(*), X, Idm, F(x)) Contains user-defined system of equations; used to gener-

ate new function values F(x), from old function values,
Ysv(*).

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Adams.”
A= B =
H= Crktr = Maxstp =

The data may be corrected from the keyboard (e.g., H = .01, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e When functional evaluations are costly, Adams is a good choice since only two evalua-
tions are made per integration step.

e The step size, H, must be chosen with some care. On the one hand, a small H keeps the
error due to the Adams-Bashford formulae small. On the other hand, the smaller H is
taken, the more integration steps we shall have to perform, and the greater the rounding
error is likely to be.

e Since there may be some cumulative round off error in stepping from end points A to B
(i.e., X = A + (N — 1)xH), B may not be reached exactly. So, the subprogram is exited
if X >B-1E-8.

e The Moulton corrector term is an available option. In most of the test cases tried, one or
two digits of accuracy were gained. The cost is an additional 50 — 75% in running time.

e To define the system of equations to be solved:

1. PAUSE the current program (if one is running).
2. Type SCRATCH and press EXECUTE.

3. In EDIT mode, type in the subprogram Func, pressing ENTER after each line. The
Subprogram Utilization section explains the parameters used and the examples on
pages 3-8 through 3-11 explain how to set up a system of equations in the sub-
program.

4. RE-STORE the subprogram on file “‘Func”.
5. LOAD file “ADAMS” and press RUN.

(See “Redefining User Functions” in the Introduction, following the Table of Contents, for
another way to modify the system of equations.)

3-13

3-14 Ordinary Differential Equations

Methods and Formulae

This subprogram solves the following system of simultaneous first-order ordinary differential
equations:

Y1 =£(x, vy, Vo, 0y)
dx

g& = fz(x, Y1, Y2, ..y yn)
dx

gh: fn(x~ Vi, y27 ey yn)
dx

with you specifying the initial conditions, x¢, y;(Xg), y2(Xo), ..., Vo(Xo).

The program may also be used to solve an equation of the form:

dmy dy d2y dm—ly
—=f{x, y, —— ..,)
dx™ dx dx? dx™~!

with given initial conditions

dmfly

(Xo)

m—1

dy
Y(xo), ——(x0), ...
dx dx

by rewriting the equation as a system of first-order equations as above. A method for doing
this is provided in the Special Considerations and Programming Hints section.

For the equation y' = f(x,y), y(xo) = y, and step size, h, approximations y,, to y(x, + nh) for
n = 0,1, 2, .. are generated using the recursion formula

Une1 = yo + a5 (55f, — 59, — 1 + 37f, — 2 — 9, — 3)

where f; = f(x;, y;).
The local truncation error is O(h®).

This is a multistep method; thus, it is not self-starting. We must have four successive values of
f(x, y) at equally-spaced points before this formula can be used. The subprogram Kutta, a
Runge-Kutta procedure, is used in Adams to generate these points.

The above formulae may be generalized to any system of first-order differential equations.
Further details may be obtained from the references given on page 3-7.

Ordinary Differential Equations 3-15

User Instructions

1.

2.

If you have not already defined the function you wish to solve, you should do so at this
time.

Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “‘ADAMS’”’ and press RUN.

You will be asked to supply entries for the following items:
- dimension of the system of differential equations
- lower bound of the interval under consideration
upper bound of the interval under consideration
step size or distance between each point of integration
maximum number of integration steps permitted
initial values for y for each dimension of the system.

You may also choose to use the Moulton corrector.
Press CONTINUE after each entry.

The program will print the domain values x, as well as the values of the integrated
function at x.

Examples

® See example on p. 3-8 for a statement of the problem. Subprogram Func is set up as

follows:

10

20 F:

30

User entries:

Results:

DIMENSTON OF

L OWE R
LUPPER
LHTEP

M g

ITHITIAL

Y <

LR SN I N I S N B T T

s I S B
HES IR KV IR R}

O T3 TS

IR =

INTEGRATTON

3-16 Ordinary Differential Equations

F(1)=X«Ysv(1)A (1/3)

SUBEND

ROWIND= §
BOUND= 3
04
OF

Val UES

i 3m

X

LO00000E4+00
SA00000E+00
L200000E+00
S300000E+00
CAG0000E+00
CB00000E+0Q
C600000E+00
LZ00000E+00
.8000001EE+00
CP200000E+00

L000000E+00

S100000E+00
L200000E+00
C300000E+00D
CA00000E+00
CS500000E+00
CHO00000E+00
C700000E400
CBO0000E+0D
C200000E+00
L000000E+0D

SYSTEM OF

STEP G

L.000000E+00

.....

NP UT ST D S D GG MRS e

SUB Func(Ysv(x*),X,Idm,F(x))

DR

201

Y

L000000E+00
CL06BITVEADQ

227880460

CBEH4L3EE400D

CSLASENRE+00

LHBL6LTLIESDD

LB73982E+00

081 04%E+00

L30BAZ24E4+00

LETLETE+00

LEB28427E 400

423239400

CAART725E 400
787995400
CLE0166E400

CH603%9E+00

L PBPEOBE 00

CA49FAR2E+00

L940333E+00

CABIBPAE+0 D

021 132E+00

e See example on p. 3-9 for a statement of the problem. Subprogram Func is set up as

follows:

10 SUB Func(Ysv(x),X,IdmF(x))

20 F: F(1)=Ysv(2)
30 F(2) = — 2xYsv(1)*Ysv(2)
40 SUBEND

User entries:

Results:

DIMENSION OF SYSTEM OF D.E.= 2
L.OWER BOUND= 0
WPPER BOUND= 2
STEP SIZE= .04
MAaX # OF INTEGRATION STEPS= 201

INITIAL VALUES:

YO 4= 0.000000E+00
YO 2= 4.000000E+00

Ordinary Differential Equations

X Y
G.000000E+00 0.000000E+00
i.000000E-04 Q. .966799E-02
2.000000E~01 1. 97378301
F.000000E-04 2.943426E-01
4.000000E-014 3. 70949004
5.000000E~04 4 6H24172E~01
& 000000E~04 5370496504
7.000000E-01 &.043678E~01
§.000000E-014 . 6HA0368E 01
?.000000E~-01 7 162979E-01
1.000000E+00 7. 6159428014
i.400000E+00 8. 004794E-014
1.200000E+00 8. 33654701
L.300000E+00 B 647232E-01
1.400000E+00 8. a%35i7E~01
L.500000E+00 2055148301
1.4600000E+00 9. 216686101
L.700000E+00 ?.354095E-04
1.800000E+00 9. 46806104
1.900000E4+00 9. .56237%E~-04
2.000000E+00 . 640276504

3-17

3-18 Ordinary Differential Equations

® See example on p. 3-10 for a statement of the problem. Subprogram Func is set up as

follows:

10

20 F:

User entries:

Results:

30
40

F(1)=Ysv(2)
F(2)

SUBEND

SUB Func(Ysv(*),X,Idm,F(x))

—3xYsv(2)xYsv(2)/Ysv(1)

DIMENSION OF SYSTEM OF D.E. = 2

LOWER
LIPPER

STEP S17E=
INTEGRATION STEPS= 204

MAY &

INITIAL

Yo
Y

Hd Lo o

il

o

P B R 2 e BN RS R L g

BOUND= 0
BOUND:= 2
Q4
QF

Val.UES
Bk

5N
R

%

.000000E+00
.000000E-01
L000000E-014
L000000E~04
L000000E-04
L000000E~-014
.000000E~01
L000000E~014
C000000E~014
.000000E~01
.000000E+00
C100000E+00
.200000E+00
.300000E+00
.400000E+00
CH00000E+00
600000400
.700000E+00
.B800000E+00
CP00000E+00
LQ00000E+00

1.000000E+00

04

Y

O00000E+00
0244448 +00
C0A663SE+00
Q87790400

CQ87757E+00

A06682E+00

CL24683E 00

AALBSBE+Y0Q
A5BR9RE+00
A7405SE+00
L AB9RO7E+00
L 203804E+00
217883400
L 23LA93E+00
RABEEEE +00
L 257433E+00

. 269823E+00

C2848B6IE+00
C29356PE 400
3049678 +00
356074 +00

@ See example on p. 3-11 for a statement of the problem. Subprogram Func is set up as

follows:

User entries:

Results:

10 SUB Func(Ysv(*),X,Idm,F(*))

F(2)=.1%(1 —Ysv(1)xYsv(1))*Ysv(2) —Ysv(1)

20 F F(1)=Ysv(2)
30
40 SUBEND

Ordinary Differential Equations

DIMENSION OF SYSTEM OF D.E.= 2
LOWER BOUND= 0

UPPER
STEP

ROLIND= 2

SIZE= .04

MAX ¥ OF INTEGRATION STEPS= 2014

INITIAL VALUES:

Y¢
Y(

-
-

T DT

1
e

PO P RN e e e e B p M e WO 00 N O

1= 4.000000E+00
2)= 0.000000E+00

X

.000000E+00
.000000E~01
L000000E-04
L000000E-01
.000000E-04
L000000E-01
L000000E~014
.000000E-01
LO00000E-014
LQ00000E-01
.000000E+00
CA00000E400
L200000E+00
L300000E+00
.A400000E+00
C500000E+400
L600000E400
L700000E+00
LBO0000E+00
C900000E+00
L000000E+00

i

UTD =i dUTTG N0

1.
9.
g.
C553246E-014
L 210149014
L774360E-01
L249809E 04
641 003E-01
LHB3L3VE-04
LAP2045%E-014

3

i
PN

Y

000000E+0G
950041E-01
BO006S0E~-01

LA76L00E-04
LG3H993E-014
C553644E-014
CG35432E 04
L918325E-02
CAH71498E 02
635 025E-01
L H8B94L2E-01
L7292650E-014
L7A1948E 01

3-19

3-20 Ordinary Differential Equations

4-1

Chapter 4

Linear Algebraic Systems

Introduction

Description

This section contains a wide variety of routines dealing with matrices and systems of simul-
taneous linear equations. Significant savings in storage are obtained in the matrix inversion
routines by taking advantage of special types of matrices, such as positive definite. An addi-
tional digit or two of accuracy may also be obtained in many cases. There are also routines for
storing symmetric matrices using minimal memory and for transposing a matrix in place, that
is, replacing a matrix by its transpose.

Routines

e Ludsht - solves the system of equations Ax = b using triangular decomposition.

e Decomp - computes the triangular decomposition of nonsingular matrix A; contained in
file “‘Ludsht.”.

e Solve - finds an approximate solution to a single system of equations, Ax = b; contained
in file “Ludsht”.

® Posdef - given a symmetric, positive definite matrix, A, stored in symmetric storage
mode, will solve the system of equations Ax = b using Cholesky’s Method.

e Choles - performs Cholesky decomposition on a symmetric, positive definite matrix
stored in symmetric storage mode; contained in file “‘Posdet”.

e Solcho - solves a Cholesky system in symmetric storage mode; contained in file
“Posdef”.

e Pinver - finds the inverse of a positive definite matrix stored in symmetric storage mode
in vector S(x).

e Triang - given a lower triangular matrix stored in symmetric storage mode vector S(x),
this routine will multiply S'S; contained in file ‘‘Pinver’.

e Invers - finds the inverse of a lower triangular matrix stored in symmetric storage mode
vector S(x); contained in file ‘“‘Pinver’.

e Storag - will store a symmetric matrix, A, in a vector, S, in symmetric storage mode, or a
vector, S, into a symmetric matrix, A.

4-2 Linear Algebraic Systems

Linear Equation Solver-Minimum Storage

Description

This subprogram solves the system of equations AX = B using triangular decomposition. The
triangular matrices L and U overwrite A and the solution matrix X overwrites B. This saves a
significant amount of memory, but in the process, the values contained in matrices A and B

are destroyed.

Program Usage
Driver Utilization

e File Name - “LUDSHT”, disc 1

The driver “LUDSHT” sets up the necessary input parameters for the subprogram Ludsht
and prints out the resulting outputs.

Subprogram Utilization

e File Name - “‘Ludsht”, disc 1

¢ Calling Syntax

Call Ludsht (A(x), B(x), N, M)

® Input Parameters

® Subprograms Required

Decomp

Solve

Array containing the nonsingular matrix A; dimensioned
A(L:N, 1:N).

Array containing the coefficient matrix B; dimensioned
B(1:N, 1:M).

Number of rows in B(x).
Number of columns in B(x).

Array containing the Lu decomposition of A(x).

Array containing the solution matrix X to the system
AX = B.

Computes the triangular decomposition of A() using Gaus-
sian Elimination.
Given the triangular decomposition of A(x), Solve finds an

approximate solution to a single system of equations
AX = B.

Further explanation of these subprograms is given on pages 4-6 through 4-10.

1 A(x) and B(x) are both input and output parameters.

Linear Algebraic Systems 4-3

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Ludsht.”
M= N =

The data may be corrected from the keyboard (e.g., N = 5, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e One way to solve the system of linear equations AX = B is to compute the inverse of A
and then multiply A by B. This method may appear especially attractive if several right-
hand sides B, are involved since the inverse need be computed only once. However, a
set of linear equation solving procedures - such as Decomp and Solve - can accomplish
this task with fewer operations and with greater accuracy. Once L and U have been
computed, the solution of LUX = B requires n? —n multiplications and n divisions or a
total of n? multiplicative operations. Moreover, once A has been computed, the evalua-
tion of A'B requires n? multiplicative operations also. Thus both methods require appro-
ximately the same number of operations at this point. But the initial calculations of

LU and A™! require about lgnS and n® multiplicative operations, respectively.

e This subprogram is designed to save as much storage as possible. But care must be taken
since both matrix A and matrix B are destroyed in the subprogram.

Methods and Formulae

Subprogram Ludsht begins by finding the triangular decomposition of A using subprogram
Decomp. The decomposition Lu(x) is stored in A(x).

AX = B is then solved one column at a time using subprogram Solve. The solution vector is
then restored in B(x).

Reference

1. Forsythe, G. and Moler, C., Computer Solution of Linear Algebraic Systems, Engle-
wood Cliffs, N.J.: Prentice Hall, Inc., Ch. 9, 11.

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “LUDSHT”’ and press RUN.

2. You will be asked to supply entries for the following items:
- dimensions of the coefficient matrix B (row and column)
- elements of nonsingular matrix A
- elements of coefficient matrix B
Press CONTINUE after each entry.

3. The program will then print the solution matrix X.

4-4 Linear Algebraic Systems

Examples

User entries:

O IR IR VRN

Results:

R0

. =

HOOnodLe 00
AN

User entries:

Results:

DIMENSTONS

MATRIX &

O IIZ'

ZOR00000E 0

a4 000naEs

U000 00E +!

MaTRIX B

EORGO000E

MOTRIX X

goon0oanaE

g

=00

el

ane

e

%

4
>

CAHQODDOE:
Lpuaoo : (-
CQQaa00E+00 -4 200000404

LBL0000E 0

[N

DLa000E-

Linear Algebraic Systems

114
+0

e
—
=
P
o~
o

AORO0000E+0Y

00 -5 QE0000E 00

4-6 Linear Algebraic Systems

Subprogram Decomp

Given a nonsingular matrix A, subprogram Decomp computes the triangular decomposition of
A using Gaussian Elimination. The triangular matrices L. and U are calculated as well as the
permutation matrix P such that LU = PA.

Subprogram Utilization
¢ FileName - contained in file ‘‘Ludsht”’, disc 1
o Calling Syntax
CALL Decomp (N, A(x), Lu(x), Ips(x))
e Input Parameters

N Size of matrix A.
A(*) Array containing nonsingular matrix A; dimensioned A(1:N,
1:N).

e QOutput Parameters

Lu(x) Array storing (L—1) and U, the triangular matrices in the
triangular decomposition; dimensioned Lu(1:N, 1:N).

Ips(*) Vector containing the permuted indices; subscripted from 1
to N.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Decomp.”
N =

The data may be corrected from the keyboard (e.g., N = 10, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

o [f the subprogram detects a row of zeros, the following error message will be printed and
the program will pause:

“ERROR IN SUBPROGRAM Decomp.”
“MATRIX WITH ZERO ROW.”

This test is made at the beginning of the subprogram before any changes are made in
any of the matrices. It indicates some problem in the calling program. You may want to
restart the program to correct this.

Linear Algebraic Systems

e In the Gaussian Elimination section, there are two tests performed to check that A(*) is
not a machine singular matrix. If either test fails, the following error message is printed
and the program pauses:

“ERROR IN SUBPROGRAM Decomp.”
“MATRIX IS MACHINE SINGULAR.”

The difficulty here is more complex. Certain nonsingular matrices may be made singular
as a result of the perturbations introduced by round-off error. If this is the case, a more
specific algorithm may be required to solve the system of equations. See the references
to Golub and to Golub and Kahan for further details.

More likely, a truly singular input matrix will be perturbed into a neighboring nonsingular
matrix by the round-off since normally round-off modifies some element of the pivotal
column to a non-zero value.

Methods and Formulae

Given a nonsingular matrix A, subprogram Decomp computes the triangular decomposition
using Gaussian Elimination. The triangular matrices L and U are calculated as well as the
permutation matrix P such that LU = PA.

Temporarily ignoring scaling and pivoting, the central calculation, the elimination, can be
expressed by

FORJ=K+1toN
A(1,d) =A(Ld) — (A(LK)/A(K K))*A(K,J)
NEXT J

This operation is carried out by the innermost FOR-NEXT statement. The multipliers, (A(I,K)/
A(K,K)), are saved in the lower triangular matrix L.

In Decomp, the element of largest absolute value in each row of the matrix is found and its
reciprocal is recorded in vector Scales(x). But no actual scaling is carried out. Instead, these
scale factors are used for choosing the pivot element only. This technique has two favorable
consequences: exact powers of the machine base are not needed for scaling, and the scale
factors do not have to be applied to the right-hand sides.

The same type of consideration is involved in pivoting. The array Ips(x) is initialized so that
Ips(l) = L.

During the elimination, the largest element in the column is chosen as the pivot element, but
the rows are not actually interchanged. The corresponding elements of Ips(x) are inter-
changed instead. We then refer to A(Ips(1),d) instead of A(Ld). This involves no great loss of
time as long as all inner loops are on the column subscript . We gain the time that would be
required to carry out the interchange.

Finally, L — I and U are stored in matrix Lu.

4-7

4-8 Linear Algebraic Systems

References

1. Golub, G., “Numerical Methods for Solving Linear Least Squares Problems”’, Numer.
Math., Vol. 7 (1965) pp. 206-216.

2. Golub, G. and Kahan, W., “Calculating the Singular Values and Pseudo-inverse of a
Matrix”, J. SIAM Numerical Analysis Series B, Vol. 2 (1965) pp. 205-224.

Linear Algebraic Systems 4-9

Subprogram Solve

Given the triangular decomposition of a nonsingular matrix A, stored in matrix Lu, this sub-
program will find an approximate solution to a single system of equations, AX = B.

Subprogram Utilization
o File Name - contained in file “‘Ludsht”, disc 1
e Calling Syntax
CALL Solve (N, Lu(x), B(*), X(*), Ips(x))

e Input Parameters

N Order of matrix Lu(x).
Lu(x) Array containing the triangular decomposition of the non-
singular matrix A; dimensioned Lu(1:N, 1:N).
B(x) Vector containing the coefficients B of AX = B; subscripted
from 1 to N.
Ips(x*) Vector containing the permuted indices from subprogram

Decomp; subscripted from 1 to N.
e Output Parameters

X(*) Vector containing the solution to AX = B; subscripted from
1toN.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Solve.”
N =

The data may be corrected from the keyboard (e.g., N = 10, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e If the subprogram detects a division by zero, the following error message is printed and
the program will pause:

“ERROR IN SUBPROGRAM Solve.”
“DIVISION BY ZERO DETECTED.”

This indicates that the matrix is machine singular. Certain nonsingular matrices may be
made singular as a result of the perturbation introduced by round-off error. If this is the
case, a more specific algorithm may be required to solve the system of equations. See
the references to Golub and to Golub and Kahan (page 4-8) for further details.

4-10 Linear Algebraic Systems

Methods and Formulae
Solve uses the Lu factorization from Decomp to find an approximate solution to a single
system of equations, AX = B.

Solve consists of two steps. The first solves the lower triangular system LY = B. The second is
the back solution, i.e., the solution of the upper triangular system UX = Y. The intermediate
vector Y is stored in X, and the right-hand side B is not altered.

Linear Algebraic Systems

Positive Definite Matrices

Description

Given a symmetric, positive definite matrix, A, stored in symmetric storage mode, Posdef will
solve the system of equations AX = B using Cholesky’s Method. The value of A is over-
written.

Program Usage
Driver Utilization
o File Name - “POSDEF”’, disc 1

The driver “POSDEF** sets up the necessary input parameters for the subprogram Posdef and
prints out the resulting outputs.

Subprogram Utilization
o File Name - “‘Posdef’’, disc 1
e Calling Syntax
CALL Posdef (S(*), B(x), R, C)
e Input Parameters

S(x)! Vector containing symmetric, positive-definite matrix, stored
in symmetric storage mode; subscripted from 1 to
(R + 1)R/2.
B(*)! Array containing coefficient matrix B; dimensioned B(1:R,
1:C).
R Number of rows of B(x).
C Number of columns of B(x).

e Output Parameters

S(x)* Array containing Cholesky decomposition, S = GGT where
G is a lower triangular matrix; subscripted from 1 to
(R + 1)R/2.

B(x)! Array containing solution matrix X to AX = B; dimensioned
B(1:R, 1:C).

e Subprograms Required

Choles Performs Cholesky decomposition on S(x).
Solcho Solves Cholesky system in symmetric storage mode.

Further explanation of these subprograms is given on pages 4-15 through 4-17.

1 S(«) and B(«) are both input and output parameters.

4-11

4-12 Linear Algebraic Systems

Special Considerations and Programming Hints

. Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Posdef.”
R = C=

The data may be corrected from the keyboard (e.g.,, R = 5, EXECUTE.) When CON-
TINUE is pressed, the program will resume execution at the next line.

® Because of the symmetry of the positive definite matrix, it is necessary to store only
,(n + 1), or slightly over half, of its elements, resulting in an important saving of storage

for large matrices. Since some additional multiplications and additions are required to
manipulate the vector, there is an increase in execution time.

® Given a symmetric matrix A, the symmetric storage mode vector is formed as follows:

A(1,1) A(1,2) A(1,3) ... A(1,n)
A2, 1) A(2,2) A(2,3) .. A2, n)
3,3) ... A3, n)

A(3,1) A(3,2) A(3,

A, 1) AN 2) An3) .. Al n)

e, A(l, 1), A(2, 1), A2, 2), A(3, 1), A(3, 2), A(3, 3), ..., A(n, 1), A(n, n). Subprogram
Storag may be used to convert a full storage matrix to symmetrlc storage mode and vice
versa.

Methods and Formulae
Any positive definite matrix A has a unique decomposition in the form A = GGT, where G is
a lower triangular matrix with positive diagonal elements. The algorithm is:

FORJ = 1toN

J
G(J,d) = SQR(AWJ.J) - = (G, K))*)
FORI=J + 1TON

J-1
G(I, J) = (AL, J) - Kgl G(1, K)=*G(dJ, K))/G(d, J)

NEXT I
NEXT J

The algorithm is Cholesky’s method or the square-root method for factoring a positive definite
matrix. It is stored in subprogram Choles.

Given a linear system AX = B, where A is a positive definite matrix, subprogram Posdef first
calls Choles to factor A into GGT Then subprogram Solcho is called to forward eliminate and
back substitute to find the solution matrix X.

Linear Algebraic Systems

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “POSDEF”’ and press RUN.

2. You will be asked to supply entries for the following items:
- dimensions of coefficient matrix B (row and column)
- elements of the symmetric storage vector S
- elements of coefficient matrix B.
Press CONTINUE after each entry.

3. The program will then print the solution matrix X where columns of X are the solutions
to corresponding columns of B.

Examples
4 2 -2
Given the positive definite Matrix A = 2 10 5
-2

5 6
-6

and B = (33) , solve AX = B.
30

User entries:
GIMEMNSTONS OF Blkr= 3 ¥ 1

VERTOR &

400000000 2 000000E+00 4. 000000E+04
SHDRQOO0E+00 B 00000000 6. 003000 +00

s

MATRIX &

=& G00000E+00

Ll

CEOGOO0E+0S Z 00000004

Results:
S MaTrIX X

=3 000000E+00 2.000000E4+00 3.000000E+00

4-13

4-14 Linear Algebraic Systems

1
o Given the positive definite matrix A = (1/2
1/3

1 0 0
andB=(0 1 0),solveAX=B.
0 0 1

User entries:
DIMENSLOMS

VELTOR %

‘

§oO00InnE

LOERN0E-00 0 GORODIE

U U R R R LN S VR B R R IR (AR Y

ooanadoeE+0d 0 6a0ooer

Results:

MaTRIY X

S0
KRR

Gonnnng

e -4 8000

R IRIRIRIRIRES
IR RIRIRINES

el -3 &00032E
U A St S R B

R

p— g

1/2
1/3
1/4

fi
fl
i

1/3
1/4
1/5

ROOOGE GG
OEIGOE S

Sannfadrenn

A O000RGE+0S

CEOOGLSE 0
SEO0Lak

5
-4
.§<

Linear Algebraic Systems

Subprogram Choles

This subprogram performs Cholesky decomposition on a symmetric, positive definite matrix
stored in symmetric storage mode.

Subprogram Utilization
e File Name - contained in file “‘Posdef’’, disc 1
o Calling Syntax
CALL Choles (G(x), R)

® Input Parameters

G(x)! Vector containing the symmetric, positive definite matrix
stored in symmetric storage mode; subscripted from 1 to
(R + 1)R/2.
R Order of positive definite matrix.

e Output Parameters

G(*)! Vector containing the lower triangular matrix G where GG’
is the decomposition of the positive definite matrix.

Special Considerations and Programming Hints
e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Choles.”
R =

The data may be corrected from the keyboard (e.g., R = 7, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e If the subprogram detects a nonpositive diagonal element, the following error message
will be printed and the program pauses:

“ERROR IN SUBPROGRAM Choles.”
“MATRIX IS NOT MACHINE POSITIVE DEFINITE.

This is a fatal error. There is no recovery. The PAUSE was inserted to enable you to
check values of the variables in the subprogram.

® Given a symmetric matrix A, the symmetric storage mode vector is formed as follows:

A(1, 1), A(2, 1), A2, 2), A(3, 1), A(3, 2), A(3, 3), ..., A(n, 1), ..., A(n, n)

1 G(x) is both an input and output parameter.

4-15

4-16 Linear Algebraic Systems

Methods and Formulae
Any positive definite matrix A has a unique decomposition in the form A = GG', where G is
a lower triangular matrix with positive diagonal elements. The algorithm is:

FORJ = 1toN
G(J, d) = SQR(A(, J) -
FOR1=J + 1TON
J-1
G(I, J) = (A(L,d) — K§=:1 G(I, K)=G(dJ, K))/G(d, J)

(G{J, K))*)

1

=
M=

NEXT [

NEXT J
This algorithm is Cholesky’s method or the square-root method for factoring a positive defi-

nite matrix.

Linear Algebraic Systems

Subprogram Solcho

This subprogram solves a Cholesky system in symmetric storage mode; i.e., given a symmet-
ric, positive definite matrix, A = GG/, stored in symmetric storage mode, solve AX = B.

Subprogram Utilization
o File Name - contained in file ‘‘Posdef”, disc 1
e Calling Syntax
CALL Solcho (G(%), B(), R, C)
e Input Parameters

G(x) Vector containing the lower triangular matrix G stored in
symmetric storage mode, where GG is the Cholesky de-
composition of the matrix; subscripted from 1 to (R + 1)R/

2.
B(*)* Array containing the coefficient matrix B; dimensioned
B(1:R, 1:C).
R Number of rows in B(*).
C Number of columns in B(x).
e Output Parameters
B(*)! Array containing the solution matrix X of AX = B.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Solcho.”
R = C=

The data may be corrected from the keyboard (e.g., R =7, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e The data stored in the coefficient matrix B is destroyed and replaced by the solution
matrix X.

e Given a symmetric matrix A, the symmetric storage mode vector is formed as follows:

A(1, 1), A(2, 1), A2, 2), A(3, 1), A(3, 2), A(3, 3), ..., A(n, 1), ..., A(n, n).

Methods and Formulae

Solcho uses the GG factorization from subprogram Choles to find an approximate solution to
the system of equations, AX = B. Both A, stored in symmetric storage mode, and B, the
coefficient matrix, are destroyed.

Solcho consists of two steps. The first solves the lower triangular system GY = B. The second
is the back substitution, i.e., the solution of the upper triangular system G'X =Y.

1 B(+) is both an input and output parameter.

4-17

4-18 Linear Algebraic Systems

Positive Definite Matrix
Description '

Pinver finds the inverse of a positive definite matrix stored in symmetric storage mode in
vector S(x). The inverse overwrites the values contained in S(x).

This subprogram uses Cholesky’s method to decompose the positive definite matrix.

The advantage of using this algorithm to fiad the inverse of a positive definite matrix is two-
fold:

1. Significant memory is saved.

2. Since pivoting is not required in the Gaussian elimination, there is less roundoff effect
on the computed inverse.

Program Usage
Driver Utilization
o File Name - “PINVER”, disc 1

The driver “PINVER” sets up the necessary input parameters for the subprogram Pinver and
prints out the resulting outputs.

Subprogram Utilization
o File Name - “‘Pinver”’, disc 1

e Calling Syntax
CALL Pinver (S(x), R)
® [nput Parameters

S(x)! Vector containing positive definite matrix stored in symmet-
ric storage mode, subscripted from 1 to (R + 1)R/2.

R Order of positive definite matrix; i.e., number of rows or
number of columns.

® Output Parameters

S(x)? Vector containing the inverse of the initial positive definite
matrix stored in symmetric storage mode.

L S(«) is both an input and output parameter.

® Subprograms Required

Choles
Invers

Triang

Linear Algebraic Systems

Performs Cholesky decomposition on S(x).

Finds the inverse of the lower triangular matrix S(x) stored
in symmetric storage mode. The inverse, also a lower
triangular matrix, is again stored in S(x).

Multiplies STS where S is a lower triangular matrix stored in
symmetric storage mode. The result is restored in S(x).

Further explanation of these subprograms is given on pages 4-15 through 4-16 and 4-22

through 4-23.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
‘“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Pinver.”

R =

The data may be corrected from the keyboard (e.g., R =

4, EXECUTE). When CON-

TINUE is pressed, the program will resume execution at the next line.

e This subprogram takes specific advantage of the nature of the matrix. As a result, a
minimum number of operations are used. Hence, you may expect better accuracy than
the more general matrix routines.

e This subprogram also attempts to minimize the storage requirements. The symmetric
storage vector S(x), containing the positive definite matrix, is repeatedly overwritten.

® Given a symmetric matrix A, the symmetric storage mode vector is formed as follows:

A(l1,1) A(1,2) A,
A2, 1) A(2,2) A2
A@3,1) A(3,2) A,

A1) A2 A 3) .

i.e., A(1, 1), A2, 1), A(Z, 2), A(3, 1),

A(T,
A2,
A(3,

n)
n)
n)

A(n, n)

A(3, 2), A3, 3), .

A(n, 1), ..., A(n,

n). Subprog-

ram Storag (p. 4-24) may be used to convert a full storage matrix to symmetric storage

mode and vice versa.

1 S(x) is both an input and output parameter.

4-19

4-20 Linear Algebraic Systems

Methods and Formulae

Any positive definite matrix A, has a unique decomposition in the form A = SST where Sis a
lower triangular matrix with positive diagonal elements. This algorithm is Cholesky’s method
or the square-root method for factoring a positive definite matrix. Subprogram Choles is
based on this algorithm.

Subprogram Invers is then called to find the inverse of the lower triangular matrix S(x) stored
in symmetric storage mode. (The symmetric storage mode is used even though the matrix is
lower triangular and not symmetric.) The inverse, also a lower triangular matrix, is again
stored in S(x).

Finally subprogram Triang multiplies S'S to get the inverse of the original matrix:
A + SSTimpliesA ' = (SST) ! = (ST)"1s ! = (S H)TS !

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “PINVER” and press RUN.

2. You will be asked to supply entries for the following items:
- order of positive definite matrix A (number of rows or number of columns)

- elements of vector S in symmetric storage mode.
Press CONTINUE after each entry.

3. The program will print the inverse stored in symmetric storage mode vector S.

Linear Algebraic Systems 4-21

Examples

¢ Find the inverse of the following symmetric positive definite matrix:

1 1/2 1/3
A=1(12 113 1/4
1/3 14 1/5

Userentries: o bER OF acxr= 3

VECTOR &: [IN SYMMETRIC STORAGE MODE?]

1.000000E+00 S.000000E-04 3.333333E~041
3.333333E-04 2.500000E~04 2.000000E~014

Results: INVERSE §: [IN SYMMETRIC STORAGE MODE]

?.000000E+00 ~3.600000E+01 4 .920000E+02
3.000000E+0% -1 .800000E+02 4 .800000E+02

e Find the inverse of the following symmetric positive definite matrix:

1 172 13 14 1/5
172 13 14 15 1/6
A= 173 14 15 16 177
174 15 16 17 18
15 16 17 18 19

tries:
Userentries: \upER OF A()= 8

VECTOR S: [IN SYMMETRIC STORAGE MODE]

1. 000000E+00 S.000000E~04 3. 333333E-014

F.OZIIBIZE-04 2. S00000E~04 2.000000E~04
2 S00000E-04 2.000000E-01 1. 666667E-01
1. 4285 74E-04 2.000000E~01 4§ 466466L7E-041
i 428%74E-04 1.2%0000F-04 4. 444444E-04
Results: i . i .

TNVERSE & [IN SYMMETRIC STORAGE MODE
2 S00000E+01 ~3.000000E+02 4 .800000E+032
1. 05%0000E+03 ~1 G90000E+04 7 .938000E+04
~4 . 400000FE+03 2. 688000E+04 ~41.176000E+0%
L. 792000E+0% 6. .300000E+02 ~1.260000E+04
% 670000E+04 ~8. 8P0000E4+04 4. 450000E+04

4-22 Linear Algebraic Systems

Subprogram Triang
Given a lower triangular matrix stored in symmetric storage mode vector S(*), this subpro-

gram will multiply STS. The result, a symmetric matrix, will again be restored in vector S(x).

Subprogram Utilization
® File Name - contained in file “‘Pinver”’, disc 1
e Calling Syntax
CALL Triang (S(x), R)
e Input Parameters
S(x)! Vector containing lower triangular matrix stored in symmet-
ric storage mode.
R Order of full storage mode matrix.
e Qutput Parameters

S(*)! Product of STS stored in symmetric storage mode.

Special Considerations and Programming Hints
e Upon entry into the subprogram, there is a bad data check. If the subprogram detects

“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Triang.”

R =
The data may be corrected from the keyboard (e.g., R = 5, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

Methods and Formulae
Given a lower triangular matrix stored in symmetric storage mode vector S(x), Triang multi-

plies STS. The result is restored inS(,).

FORI =1TOR
FORJ =ITOR
R
SU+(d - 1)/2 + 1) = LE::J S(L=(L — 1)/2 + D)*S(L*(L — 1)/2 + J)
NEXT J
NEXT I

1 5(+) is both an input and output parameter.

Linear Algebraic Systems

Subprogram Invers

Invers finds the inverse of a lower triangular matrix stored in symmetric storage mode vector
S(x). The inverse, also a lower triangular matrix, is restored in vector S(x).

e File Name - contained in file “‘Pinver”, disc 1
e Calling Syntax

CALL Invers (S(x), R)
e Input Parameters

S(x)! Vector containing a lower triangular matrix stored in sym-
metric storage mode; subscripted from 1 to (R + 1)R/2.

R Order of full storage mode matrix.
e Output Parameters

S(*)! Vector containing the inverse of the input matrix. The in-
verse is also a lower triangular matrix and is stored in sym-
metric storage mode.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Invers.”
R =

The data may be corrected from the keyboard (e.g., R = 5, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

Methods and Formulae

Invers finds the inverse of a lower triangular matrix stored in symmetric storage mode vector
S(x). The inverse, also a lower triangular matrix, is restored in S(x). (The lower triangular
matrix, of course, is not symmetric. The symmetric storage mode is used solely to save space.)

First, the diagonal elements of the inverse are found:

FORI =1TOR
S(Ix(I — 1)/2 + 1) = 1/S(Ix(1 — 1)/2 + 1)
NEXT |

Then, the off-diagonal elements are calculated:

FORI = 2TOR
FORJ =1TO1 -1
S(Ix(I — 1)/2 + J) = — S(Ix(I — 1)/2 + D)=
1-1

L_§J S = 1)/2 + L)*S(L — 1)/2 + J)

NEXT J
NEXT I

1 (4) is both an input and output parameter.

4-23

4-24 Linear Algebraic Systems

Symmetric Storage Mode

Description

Given a symmetric matrix, A, this subprogram will store A in a vector, S, in symmetric storage
mode. If A is an n x n matrix, S is a vector with n(n + 1)/2 elements. Likewise, given S, this
subprogram will convert to the symmetric matrix A.

Program Usage
Driver Utilization
o File Name - “STORAG”’, disc 1

The driver “STORAG” sets up the necessary input parameters for the subprogram Storag
and prints out the resulting outputs.

Subprogram Utilization
® File Name - “‘Storag”, disc 1
e Calling Syntax
CALL Storag (A(*), S(x), N, Flg)
® [nput Parameters

A(*) Array containing symmetric matrix in full storage mode;
dimensioned A(1:N, 1:N).
or

S(x) Array containing vector in symmetric storage mode; dimen-
sioned S(1:(N + 1)N/2).

N Dimension of symmetric matrix in full storage mode.

Flg Flg = 1, convert from symmetric to full storage mode.

Flg = -1, convert from full to symmetric storage mode.

A(x) Array containing symmetric matrix in full storage mode.

or
S(x) Array containing vector in symmetric storage mode.

Special Considerations and Programming Hints

Linear Algebraic Systems

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Storag”
N = Flg =

The data may be corrected from the keyboard (e.g., N = 6, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e This subprogram saves a significant amount of storage when dealing with large arrays.
An n x n matrix A requires storage for n? elements while vector S contains only
n(n + 1)/2 elements. A large matrix could be stored on a mass storage device in sym-
metric storage mode and then accessed in particular programs. The cost for the savings
in storage is time — additional operations are required to convert a particular element in

the vector S to an element in matrix A.

Methods and Formulae

Given the symmetric matrix A and the symmetric storage mode vector S, the A(l, J) element

of A is stored in S(T) where

T=1x(I-1)2 +Jifl=Jd
T=4JdxJ - 1)/2 + lifI<J

For example,

LetA =

OO W
O \O 00 H

/I T I | R |

B wnN -
o Oy U N

1)

5(2)

, then S(3)
S(4)

5)

User Instructions

AAWOTN —
w
=0 000
1 | |
O 0B

1. Make sure Numerical Analysis flexible disc 1 is inserted cotrectly into the disc drive. Load

file “STORAG” and press RUN.

2. You will be asked to supply entries for the following items:
- order of the symmetric matrix in full storage mode

- elements of the symmetric storage mode vector if conversion is from symmetric to

full storage mode

- elements of the full storage matrix if the conversion is from full to symmetric storage

mode.
Press CONTINUE after each entry.

3. The program will print the inverted matrix.

4-25

4-26 Linear Algebraic Systems

Examples
e Full to symmetric storage mode

User entries: e O
OEDER OF MATETY T8 FULL STORAGE MODE= o

FLdl STORAGE MATRTX:

gonondE+on % 000000614
RURURRERI ‘

SUSONORNE- s Foaenaag
B 0E 000 nonE-0y
3 S HnnaonE - 04

DoanoE
LUARERTIE-01

MATREIN ITW BYMMETETD STORGGE MODE .

e 0060041 AT
2o B00000E-01]
OGO GO0E -0 PobsnhaTE

el
Fefi]

® Symmetric to full storage mode

User entries: _— .
CIRDER DF MATRIX T UL STORAGE MODE = 4

SUYMAETRIC BTORAGE MATRIX.

MOEaE+00 5 00000061
SEZE-04 2 B00060E-0
‘ DOQDGE-Y

g 2

R : . e
esults MATRTY TH FULL STORAGE MODE .

L0000 0E-+00 o onaooeE--01 0 333

BOS00000F-04 % 000000E-04 3.3 §
2OSH0000E-0F 2. 000000804 3.0 i
AOBONO00E-04 2. 000000E-01 1. 666¢ §
POSOD000E-0F 2 000000E-01 1. 666¢ f

1AZESYAE- 01

5-1

Chapter 5
Eigen Analysis

Introduction
Description

This section contains several routines for computing the eigenvalues and eigenvectors of real
variables. Suppose A is a square matrix, and consider the equation Ax = Ax, where x is a
vector and \ is a constant. A number \ for which this equation has a non-zero solution vector

x is called an eigenvalue of the matrix A. The solution x is called an eigenvector of the matrix
A.

Routines
e Figen - finds all the eigenvalues and eigenvectors of a real general matrix.

e Compve - finds the complex eigenvector of the real upper-Hessenberg matrix of order n;
contained in file “‘Eigen”’.

® Realve - finds the real eigenvector of the real upper-Hessenberg matrix in the array A;
contained in file “‘Eigen”.

e Scale - scales a general matrix so that the quotient of the absolute sum of the off-
diagonal elements of column i and the absolute sum of the off-diagonal elements of row i
lies within certain values; contained in file “‘Eigen”’.

® Symgqr - finds the eigenvalues and eigenvectors of a real symmetric matrix.

5-2 Eigen Analysis

Eigenvalues and Eigenvectors
of a Real General Matrix

Description

This subprogram finds all the eigenvalues and eigenvectors of a real general matrix. The eigen-
values are computed by the QR double-step method and the eigenvectors by inverse itera-
tion.

Program Usage
Driver Utilization
o File Name - “EIGEN"", disc 1

The driver “EIGEN” sets up the necessary input parameters for the subprogram Eigen and
prints out the resulting outputs.

Subprogram Utilization
o File Name - “‘Eigen”’, disc 1

¢ Calling Syntax
CALL Eigen (N, A(*), Evr (), Evi(x), Vecr(x), Veci(*), Indic(x))

e [nput Parameters

N Order of matrix A.

A(*) Array containing matrix for which eigenvalues and eigen-
vectors are to be found; dimensioned A(1:N, 1:N).

e Output Parameters

A(x) The original matrix A is destroyed.
Evr(x) Vector containing the real parts of the n computed eigenval-
ues; dimensioned Evr(1:N).
Evi(*) Vector containing the imaginary parts of the n computed
eigenvalues; dimensioned Evi(1:N).
Vecr(*) Array containing the real components of the normalized
eigenvector i (fori = 1 to n), corresponding to the eigenval-

ue stored in Evr(I) and Evi(l); the ith eigenvector is stored in
column i; dimensioned Vecr(1:N, 1:N).

Veci(x) Array containing the imaginary components of the normal-
ized eigenvector i (for i = 1 to n), corresponding to the
eigenvalue stored in Evr(I) and Evi(l); the ith eigenvector is
stored in column i; dimensioned Veci(1:N, 1:N).

Indic(x) Array indicating the success of the subprogram as follows:
Value of Indic(I) Eigenvaluei Eigenvector i
0 not found not found
1 found not found
2 found found;

dimensioned Indic(1:N).

Eigen Analysis 5-3

e Subprograms Required

Scale This subprogram scales matrix A so that the quotient of the
absolute sum of the off-diagonal elements of column i and
the absolute sum of the off-diagonal elements of row i lies
within certain bounds.

Hesqr This subprogram finds all the eigenvalues of a real general
matrix.
Realve This subprogram finds the real eigenvector of the real up-

per-Hessenberg matrix in the array A, corresponding to the
real eigenvalue stored in Evr(lvec). The inverse iteration
method is used.

Compve This subprogram finds the complex eigenvector of the real
upper-Hessenberg matrix of order n corresponding to the
complex eigenvalue with the real part in Evr(lvec) and the
corresponding imaginary part in Evi(lvec). The inverse itera-
tion method is used in a modified manner to avoid the use
of complex arithmetic.

Further explanation of these subprograms is given on pages 5-8 through 5-14.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Eigen.”
N =

The data may be corrected from the keyboard (e.g., N = 7, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

® The Fortran program from which this subprogram has been adapted (Ref. 1), has been
extensively tested (Ref. 2). Here is a quote from their conclusions:

“Conclusions. The algorithm is capable of successfully computing
eigenvalues and eigenvectors of real general matrices even under
conditions considered unstable. It has the advantage of being com-
putationally fast, and has the capability of yielding results with as
much precision as the hardware will permit. The algorithm does not
break down when presented with a matrix which is not diagonaliza-
ble; that is, a set of eigenvectors satisfying the eigenequation is com-
puted regardless of the existence of linearly independent eigenvec-
tors. However, when a matrix is diagonalizable and degenerate, the
algorithm does not yield well separated eigenvectors corresponding
to non-distinct eigenvalues. Another apparent disadvantage is the
possible indication of completely successful computation (INDIC),
even in clearly ill-conditioned situations where computational difficul-
ties are inevitable. This latter property, however, is a common fault
of other algorithms as well.”

5-4 Eigen Analysis

Methods and Formulae

This subprogram finds all the eigenvalues and the eigenvectors of a real general matrix of
order n.

First, in the subprogram Scale the matrix is scaled so that the corresponding rows and col-
umns are approximately balanced and then the matrix is normalized so that the value of the
Euclidian norm of the matrix is equal to one.

The eigenvalues are computed by the QR double-step method in the subprogram Hesqr. The
eigenvectors are computed by inverse iteration in the subprogram Realve, for the real eigen-
values, or in the subprogram Compve, for the complex eigenvalues.

The elements of the matrix are stored in the two-dimensional array A. The original matrix is
destroyed by the subprogram.

Upon output from the subprogram, the real parts of the n computed eigenvalues will be found
in the first n places of the array Evr and the imaginary parts in the first n places of the array
Evi. The real components of the normalized eigenvector i (fori = 1, 2, ..., n) corresponding
to the eigenvalue stored in Evr(I) and Evi(l) will be found in the first n places of the column i
of the two-dimensional array Vecr and the imaginary components in the first n places of the
column i of the two-dimensional array Veci.

The real eigenvector is normalized so that the sum of the squares of the components is equal
to one. The complex eigenvector is normalized so that the component with the largest value
in modulus has its real part equal to one and the imaginary part equal to zero.

The array Indic indicates the success of the subprogram Eigen as follows:

Value of Indic(I) Eigenvaluei Eigenvector i

0 not found not found
1 found not found
2 found found

References

1. Grad, J., and Brebner, M.A., “Algorithm 343: Eigenvalues and Eigenvectors of a Real
General Matrix.”” Comm. ACM, 11 (Dec. 1968), pp. 820-826.

2. Knoble, H.D., “Certification of Algorithm 343: Eigenvalues and Eigenvectors of a Real
General Matrix.” Comm. ACM, 13 (Feb. 1970), pp. 122-124.

3. Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford: Clarendon Press, 1965,
pp. 86-93.

Eigen Analysis 5-5

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “EIGEN"’ and press RUN.

2. You will be asked to supply entries for the following items:
- order of real general matrix A
- elements of matrix A.
Press CONTINUE after each entry.

3. The real and imaginary parts of the eigenvalues are then printed as well as the corre-
sponding real and imaginary parts of the eigenvectors in the following manner:

a. Vector Evr contains the real parts of the n computed eigenvalues.

b. Vector Evi contains the corresponding imaginary parts of the n computed eigenval-
ues.

¢. Matrix Vecr contains the real components of the normalized eigenvector i (fori = 1
to n), corresponding to the elgenvalue stored in Evr(l) and Evi(l); the ith eigenvec-
tor is stored in column i.

d. Matrix Veci contains the imaginary components of the normalized eigenvector i (for

i = 1 to n), corresponding to the eigenvalue stored in Evr(I) and Evi(l); the ith
eigenvector is stored in column i.

5-6 Eigen Analysis

Examples

User entries:

ORDER OF MATRIX

MATRIX &:

8.000000E+00
-4 000000E+00
L.800000E+0L

Results:

FEAL COMPONENTS

Q. 00006G0E+00

ITMAGINARY COMPO

A.000006E+00

REAL COMPONENTS
FCONTAINED

04
JL0SE4L4L3E~16
L.000000E+00

IMAGINARY COMPO
[CONTATINED

5.000000E~04
1.000000E+00
0.000000E+00

=1 . 000000E+00

ACK)= 3

=S 000000E+00
=2, 000000E+00
=7 000000E+00

4.000000E+00

OF EIGENVALUES:

2000000400 £.000000E+00

MENTS OF THE ETGENVALUES:

4.000000E+00 0.00CGR00E+00

OF EIGENVECTORS
IN COLUNMNS I :

-4 0R2483E-04
=8 164966 014
04

S.000000E~01
0531 83E~16
1.000000E+00

NENTS OF ETGENVECTORS
IN COLUMNST:
-

5

0.000000E+00
0.000000E+00
0.000000FE+00

.000000E-014
L000000E+00

0.000000E+00

User entries:

Results:

ORDER OF MATRIX A(X)= 4

MATRIX A:

D OIWGGED

.000000E+0D
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00

O g

e BN

L000000E+00

0

-5
4.
0.

REAL COMPONENTS

i

)

.200000E+04
.000000E+00

i

OF

000000E+00

000000E+00
000000E+00
000000E+00

L000000E+00

Mol o

ETGENVALUES :

i

000000400
.000000E+00
L000000E+00
.000060E+0Q
.000000E+00

000000E+00

IMAGINARY COMPONENTS OF THE EIGENVALUES:

0.
0.

REAL

000000k~
.000000E
L777483E~46
2 47593%E-46
L000000E-04

000000E+0D
000000E+00

S.000000E+00

LCONTAINED IN COLUMNS] -

04
-04

.000000E-014

-1

o

N
-3

1.

goooo0oE+00 -

000000E~04
000000~
47%593%E~16
000000E+D0

COMPONENTS OF EIGENVECTORS

[l ta R I Ts N oy

GO00000E+DQ

L000000E+00
777 L83E -
L000000E-01
.O000000E~014
L000000E+00

ié

ITMAGINARY COMPONENTS OF EIGENVECTORS
[CONTAINED

L000000E+00
.000000E+00
.O000000E+00
i.000000E+
.000000E+00

0.000000E+00

0o -

oo D

IN COLUMNS] :

L253448E~17
.000000E+00
L000000E+00
L000000E+00
L000000E+00

-8
1.
0.
0.
0.

253148E~47
000000E+00
000000E+QD
O0O0CO00E+0Q0
000000E+0Q

Eigen Analysis

5-8 Eigen Analysis

Subprogram Compve

This subprogram finds the complex eigenvector of the real upper-Hessenberg matrix of order
n corresponding to the complex eigenvalue with real part in Evr(lvec) and imaginary part in
Evi(lvec). The inverse iteration method is used in a modified manner to avoid the use of
complex arithmetic.

Compve is used in subprogram Eigen which finds the eigenvalues and eigenvectors of a real
general matrix.

Subprogram Utilization
o File Name - contained in file “‘Eigen”’, disc 1

e Calling Syntax
CALL Compve (N, M, lvec, A(x), Vecr(x), H(x), Evr(x), Evi(), Indic(x), Subdia(x),
Work(x), Eps, Ex)

® Input Parameters

N Order of matrix A.

M Order of the submatrix obtained by a suitable decomposi-
tion of the upper-Hessenberg matrix if some subdiagonal
elements are equal to zero; the value of M is chosen so that
the last N —M components of the eigenvector are zero.

Ivec Gives the position of the eigenvalues in the arrays Evr and
Evi for which the corresponding eigenvector is computed.
A(x) Array used for work space.

Vecr(x) Array containing the real components of the normalized
eigenvector i (fori = 1 to n), corresponding to the eigenval-
ue stored in Evr(I) and Evi(]); the ith eigenvector is stored in
column i.

H(x)! Array containing upper-Hessenberg matrix from subpro-
gram Eigen.

Evr(x) Vector containing the real parts of the eigenvalues.

Evi(x) Vector containing the imaginary parts of the eigenvalues.

Subdia(x) Vector containing part of upper-Hessenberg matrix from
subprogram Eigen.

Work () Array used for work space in inverse iteration process.

Eps Small positive number that numerically represents zero;

from subprogram Hesqr.
Ex 239

Eigen Analysis

e Output Parameters

A(x) The contents of array A are destroyed.
Indic(x) Vector indicating the success of the subprogram as follows:

Value of Indic(l) Eigenvector i

1 not found
2 found
H(*)! Array containing computed eigenvectors; the real parts of

the first m components of the computed complex eigenvec-
tor will be found in the first m places of the column whose
element is Vecr(1, lvec) and the corresponding imaginary
parts of the first m components of the complex eigenvector
will be found in the first m places of the column whose top
element is Vecr(1, lvec —1).

Methods and Formulae

This subprogram finds the complex eigenvector of the real upper-Hessenberg matrix of order
n corresponding to the complex eigenvalue with real part in Evr(lvec) and imaginary part in
Evi(lvec). The inverse iteration method is used in a modified manner to avoid the use of
complex arithmetic.

First, a small perturbation of equal eigenvalues is made if necessary, to obtain a full set of
eigenvectors. Then Gaussian elimination of the upper-Hessenberg matrix

((H — FksixI)«(H — FksixI) + (EtaxEta)*I) in the array A. The row interchanges that occur are
indicated in the array Iwork. All the multipliers are stored in the first and second subdiagonal
of array A.

The inverse iteration is performed on the matrix until the infinite norm of the right-hand side
vector is greater than the bound defined as 0.01/(NxEx). Then the residuals are computed
and the residuals of the two successive steps of the inverse iteration are compared. If the
infinite norm of the residual vector is greater than the infinite norm of the previous residual
vector, then the computed eigenvector of the previous step is taken as the final eigenvector.

1 H(«) is both an input and output parameter.

5-9

5-10 Eigen Analysis

Subprogram Realve

This subprogram finds the real eigenvector of the real upper-Hessenberg matrix in the array
A, corresponding to the real eigenvalue stored in Evr(lvec). The inverse iteration method is

used.

Realve is used in subprogram Eigen which finds the eigenvalues and eigenvectors of a real

general matrix.

Subprogram Utilization

e File Name - contained in file “‘Eigen’’, disc 1

e Calling Syntax

CALL Realve(N, M, lvec, A(x), Vecr(x), Evr(x), Evi(x), Work(x), Indic(x), Eps, Ex)

® Input Parameters

N

Evr(x)
Evi(*)
Work(x)
Eps

Ex

e Output Parameters

Vecr(x)

Indic(x*)

Order of matrix A.

Order of the submatrix obtained by a suitable decomposi-
tion of the upper-Hessenberg matrix if some subdiagonal
elements are equal to zero; the value of M is chosen so that
the last N — M components of the eigenvector are zero.

Gives the position of the eigenvalue in the array Evr for
which the corresponding eigenvector is computed.

Array containing values for which real eigenvalues of the
real upper-Hessenberg matrix are to be found.

Vector containing the real parts of the eigenvalues.
Vector containing the imaginary parts of the eigenvalues.
Array used for work space.

Small positive number that numerically represents zero;
from subprogram Hesqr.

27739

Array containing the real components of the normalized
eigenvector i (fori = 1 to n), corresponding to the eigenval-
ue stored in Evr(l) and Evi(l); the ith eigenvector is stored in
column i.

Vector indicating the success of the subprogram as follows:

Value of Indic(I) Eigenvector i

1 not found
2 found

Eigen Analysis

Methods and Formulae

This subprogram finds the real eigenvector of the real upper-Hessenberg matrix in the array
A, corresponding to the real eigenvalue stored in Evr(lvec). The inverse iteration method is
used.

First, a small perturbation of equal eigenvalues is made if necessary, to obtain a full set of
eigenvectors. Then Gaussian elimination of the upper-Hessenberg matrix A is employed. All
row interchanges are indicated in the array Iwork. All the multipliers are stored as the subdi-
agonal elements of A.

The inverse iteration is performed on the matrix until the infinite norm of the right-hand side
vector is greater than the bound defined as 0.01/(NxEx). Then the residuals are computed
and the residuals of the two successive steps of the inverse iteration are compared. If the
infinite norm of the residual vector is greater than the infinite norm of the previous residual
vector, then the computed eigenvector of the previous step is taken as the final eigenvector.

5-11

5-12 Eigen Analysis

Subprogram Hesqr

This subprogram finds the eigenvalues of a real general matrix. The original matrix A of order
n is reduced to upper-Hessenberg form H by means of similarity transformations (Househol-

der’s Method).

Hesqr is used in subprogram Eigen which finds the eigenvalues and eigenvectors of a real

general matrix.

Subprogram Utilization

e File Name - contained in file “‘Eigen’’, disc 1

® Calling Syntax

CALL Hesqr(N, A(x), H(x), Evr(*), Evi(x), Subdia(x), Indic(x), Eps, Ex)

¢ [nput Parameters

N
A(x)'

Ex

e Output Parameters

Evr(x)
Evi(*)
Subdia(x)

Indic(*)

Eps

Order of matrix A.

Array containing.general matrix A; if used as part of sub-
program Eigen, A(x) contains the scaled and normalized

matrix A outputted from subprogram Scale; dimensioned
A(1:N, 1:N).

Array containing original matrix A; dimensioned H(1:N,
1:N).

27739

The input array is destroyed.

Array containing original upper half of matrix H; the special
vectors used in the definition of the Householder trans-
formation matrices are stored in the lower part of array H.

Vector containing the real parts of the n eigenvalues to be
found; dimensioned Evr(1:N).

Vector containing the imaginary parts of the n eigenvalues
to be found; dimensioned Evi(1:N).

Vector containing parts of input matrix H; dimensioned
Subdia(1:N).

Vector indicating the success of the subprogram as follows:

Value of Indic(I) Eigenvalue i

0 not found
1 found;

dimensioned Indic(1:N).

Small positive number that numerically represents zero in
the subprogram; Eps = <Euclidian norm of H>x*Ex.

1 A(+) and H (*) are both input and output parameters.

Eigen Analysis 5-13

Methods and Formulae

This subprogram finds all the eigenvalues of a real general matrix. The original matrix A of
order n is reduced to the upper-Hessenberg form H by means of similarity transformations
(Householder Method). The matrix H is preserved in the upper half of the array H and in the
array Subdia. The special vectors used in the definition of the Householder transformation
matrices are stored in the lower part of the array H.

The real parts of the n eigenvalues will be found in the first n places of the array Evr, and the
imaginary parts in the first n places of the array Evi. The array Indic indicates the success of
the routine as follows:

Value of Indic(I) Eigenvalue i

0 not found
1 found

Eps is a small positive number that numerically represents zero in the program.
Eps = <Euclidian norm of H>=Ex.

1 A(x) and H(x) are both input and output parameters.

5-14 Eigen Analysis

Subprogram Scale

This subprogram scales a general matrix so that the quotient of the absolute sum of the
off-diagonal elements of column i and the absolute sum of the off-diagonal elements of row i
lies within certain values.

Scale is used in subprogram Eigen which finds the eigenvalues and eigenvectors of a real
general matrix.

Subprogram Utilization
® File Name - contained in file “‘Eigen’’, disc 1

e Calling Syntax
CALL Scale (N, A(x), H(*), Prfact(x), Enorm)

® Input Parameters

N Order of matrix A.

A(x)! Array containing matrix to be scaled and normalized so that
the Euclidian norm is equal to one; dimensioned A(1:N).

e QOutput Parameters

A(x)! Array containing the scaled matrix.
H(x) Array containing temporary storage for original A(x).
Prfact(x) Vector containing the scaling factor; the component i of the

eigenvector obtained by using the scaled matrix must be
divided by the value found in ith position of Prfact(x). In
this way, the eigenvector of the non-scaled matrix is
obtained.

Enorm Scaling factor; the eigenvalues of the normalized matrix
must be multiplied by Enorm in order that they become the
eigenvalues of the non-normalized matrix.

Methods and Formulae

This subprogram stores the matrix of the order n from the array A into the array H. Afterward
the matrix in the array A is scaled so that the quotient of the absolute sum of the off-diagonal
elements of column i and the absolute sum of the off-diagonal elements of row i lies within the
values of Boundl and Bound2. The component i of the eigenvector obtained by using the
scaled matrix must be divided by the value found in Prfact(I) of the array Prfact. In this way
the eigenvector of the non-scaled matrix is obtained.

After the matrix is scaled it is normalized so that the value of the Euclidian norm is equal to
one. If the process of scaling was not successful the original matrix from the array H would be
stored back into A and the eigenproblem would be solved by using this matrix. The eigenval-
ues of the normalized matrix must be multiplied by the scalar Enorm in order that they be-
come the eigenvalues of the non-normalized matrix.

For more general information, see subprogram Eigen.

1 A(4) is both an input and output parameter.

Eigen Analysis

Eigenvalues and Eigenvectors
of a Real Symmetric Matrix

Description

This subprogram finds the eigenvalues and, upon your request, the eigenvectors of a real
symmetric matrix. If the matrix is not initially tridiagonal, it is reduced to tridiagonal form by
Householder’'s Method. The eigenvalues of the tridiagonal matrix are then calculated by a
variant of the QR algorithm with origin shifts.

Program Usage
Driver Utilization
o File Name - “SYMQR”’, disc 1

The driver “SYMQR” sets up the necessary input parameters for the subprogram Symqr and
prints out the resulting outputs.

Subprogram Utilization
e File Name - “‘Symqr”’, disc 1

e Calling Syntax
CALL Symgqr (A(*), D(x), E(x), KO, N, Eps, Abscnv, Vec, Trd)

e Input Parameters

A(x)! Array containing the following: if the matrix is not initially
tridiagonal, it is contained in the lower triangle of A(x); if the
matrix is initially tridiagonal, input from A(x) is not used;
dimensioned A(1:N, 1:N).

D(x)* Vector containing the diagonal elements if the matrix is
initially tridiagonal; subscripted from 1 to N.

E(x)! Vector containing the off-diagonal elements if the matrix is
initially tridiagonal; subscripted from 1 to N—1.
KO An initial origin shift to be used until the computed shifts
settle down.
N Order of the matrix, i.e., number of rows or number of col-
umns in the matrix.
Eps Convergence tolerance.
Abscnv Abscnv = 1 if absolute convergence criterion is to be used.

Abscnv = 0 if relative convergence criterion is to be used.
See Special Considerations and Programming Hints for
further details.

Vec Vec = 1 if eigenvectors are to be computed.
Vec = 0 if eigenvectors are not to be computed.

Trd Trd = 1 if matrix is tridiagonal.
Trd = 0 if matrix is not tridiagonal.

1 A(x), D(x), and E(x) are both input and output parameters.

5-15

5-16 Eigen Analysis

® QOutput Parameters

A(x)? If eigenvectors are not requested, the lower triangle of A(x)
is destroyed while the elements above the diagonal are left
undisturbed; if eigenvectors are requested, they are re-
turned in the columns of A(x).

D(x)! Vector containing the eigenvalues of the matrix.

E(x)! E(I) contains the number of iterations required to compute
the approximate eigenvalue D(I).

Special Considerations and Programming Hints

® Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Symqr.”
N = Eps =

You may correct the data from the keyboard (e.g., N = 10, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

® The maximum number of iterations allowed per eigenvalue is set at 50. If this is ex-
ceeded, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Symar.”
“MAX # OF ITERATIONS EXCEEDED ON EIGENVALUE <n>.”

This is a fatal error. (The program may not be continued from this point, but must be
restarted.) The program pause allows you to query other variables in the subprogram
environment.

® To avoid an excessive number of QR steps, an important consideration when eigenvec-
tors are computed, the following guidelines should be followed. The convergence toler-
ance should not be smaller than the data warrants (reference 1, p.xxx). The relative
convergence criterion should be used only when there are eigenvalues, small compared
to the elements of the matrix, that are nonetheless determined to high relative accuracy.

® For best results when there is a wide disparity in the sizes of the elements of the matrix,
the matrix should be arranged so that the smaller elements appear in the lower right-
hand corner.

1 A(+), D(x), and E() are both input and output parameters.

Eigen Analysis

Methods and Formulae

Symaqr finds the eigenvalues and, if desired, the eigenvectors of a real symmetric matrix. If the
matrix is not initially tridiagonal, it is reduced to tridiagonal form by Householder’s Method.
The eigenvalues of the tridiagonal matrix are calculated by a variant of the QR algorithm with
origin shifts (see reference 2).

Eigenvectors are calculated by accumulating the products of the transformations used in the
Householder transformations and the QR steps, a procedure which guarantees a nearly ortho-
normal set of approximate eigenvectors.

At each QR step, the eigenvalues of the 2x2 submatrix in the lower right-hand corner are
computed, and the one nearest the last diagonal element is distinguished. When these num-
bers settle down, they are used as origin shifts.

You may choose between absolute and relative convergence criteria. The former accepts the
last diagonal element as an approximate eigenvalue when the last off-diagonal element be
small compared to the last two diagonal elements.

References

1. Stewart, G.W., “Eigenvalues and Eigenvectors of a Real Symmetric Matrix’’, Comm.
ACM (June 1970), pp. 384-386.

2. Stewart, G.W., “Incorporating Origin Shifts into the Symmetric QR Algorithm for Sym-
metric Tridiagonal Matrices”’, Comm. ACM (June 1970), pp. 365-367.

3. Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford: Clarendon Press, 1965.

User Instructions

1. Make sure Numerical Analysis flexible disc 1 is inserted correctly into the disc drive. Load
file “SYMQR” and press RUN.

2. You will be asked to supply entries for the following items:
- order of real symmetric matrix A (number of rows or number of columns)
- elements of matrix A if matrix is not initially tridiagonal
- elements of vector D if the matrix A is initially tridiagonal where the ith element of D
is the element (i, i) of matrix A.
- elements of vector E if the matrix A is initially tridiagonal where the ith element of E
is the element (i + 1, i) of matrix A.
- initial origin shift
- absolute or relative convergence criterion usage
- convergence tolerance.
Press CONTINUE after each entry.

3. The eigenvalues, as well as the eigenvectors, if desired, will be printed. Eigenvector i
corresponding to eigenvalue i is contained in column i of the eigenvector matrix.

5-17

5-18 Eigen Analysis

Example

User entries:)
L OER OF Adkrs 4

METRLE &

A 00
L 00000 nE+Qf

Results:

A 0d S 00N oEs00 4 00000+ 00

O

ioonunaiGo
Gt

oL GE VDT S POONTATHED TH COLUMNSG!

i
o]

6-1

Chapter 6

Interpolation

Introduction

Description
This section has three interpolation programs.

Routines
e Dvdfc - computes a table of confluent divided differences.

e Bnewt - performs Newton interpolation with backward divided differences; used in con-
junction with Dvdfc.

e Fnewt - performs a Newton interpolation with forward divided differences; used in con-
junction with Dvdfc.

e Spline - computes a curve s(x) that passes through n data points (x;, y;).
e Cheby - fits the tabular function Y(X) (given as m points (X, Y)) by a polynomial
P=2 AX

i=0

6-2 Interpolation

Confluent Divided Differences

Description
Given a set of real numbers, {X;, X,, ..., X,}, and a corresponding set of function values, {V;,
Vs, ..., Vi}, the forward divided differences are defined as follows:

Zero order differences are

.....

First order differences are

Af(xnv Xn+1) = vn+l - Vn)/(Xn+1 - Xn)~ n = lv sy k-1

Higher order differences are defined in terms of lower order differences:

AHX, Xivq, ooy Xn) = (A(X g, oy X)) = AKX, o X oKX, = X)), n=i+2 ...k

The differences may be displayed in the form of a table:

Af(Xy, X2)
X2 V2 Af(le X2a XS)
Af(X,, Xs) Af(Xy, Xo, Xs, X4)
X3 Vs Af(X5, X3,X,)
Af(X3, X4)
X4 V4
For example:
X f(X)
2.0 1.11
0.15
2.2 1.14 3.33E - 2
0.17 — 8.08E - 2
2.5 1.19 — 556E - 2
0.12
3.1 1.26

This program calculates (X, Xy, ..., X,,) for any integral value of n in the interval [2, k].

Program Usage
Driver Utilization
e File Name - “DVDFC”’, disc 2

The driver “DVDFC” sets up the necessary input parameters for the subprogram Dvdfc and
prints out the resulting outputs. Either subprogram Bnewt, a Newton interpolator with back-
ward divided differences, or subprogram Fnewt, a Newton interpolator with forward divided
differences, may be called to locate points of interpolation.

Interpolation 6-3

Subprogram Utilization
e File Name - “‘Dvdfc”’, disc 2

e Calling Syntax
FN Dvdfc (N, X(*), V(x), B(x))

e [nput Parameters

N The number of data points to be used in the calculation.

X(*) Vector containing the initial x-values; the values x; need not
be distinct or in any special order, but once the vector X is
chosen it will determine the interpretation of B(x) and V(x);
subscripted from 1 to at least N.

V(%) Vector containing the values of the functions f(X); sub-
scripted from 1 to at least N.

B(*)! Vector containing backward differences. When N = 1, the
state of B(*) is irrelevant. When N is greater than 1, B; must
contain Af(X;, ..., X,_1) fori = 1,2, ..., n — 1 before Dvdfc
is called.

o Output Parameters

B(x)! Vector containing backward divided differences. After Dvdfc
is called, you will find B, = Af(X;, X, 1, ..., X -1, X,) for
i=1,2,..,n—1n.

FN Dvdfc Value of the forward divided difference Af(X;, X, ..., X,).

Special Considerations and Programming Hints

® The values X; need not be distinct or in any special order, but once the array X is chosen,
it will fix the interpretation of B(x) and V(x). If X;, X,, ..., X, are in monotonic order,
then the effect of roundoff upon any nth divided difference is not more than would be
caused by perturbing each f(X;)) by n units at most in its last significant place. But if the
X’s are not in monotonic order, the error can be catastrophic if some of the divided
differences are relatively large.

e The following program segment is an example of how Dvdfc can be used to construct a
table of forward or backward differences:

FORI =1TON

X(I) =

V() =

F(I) = FNDvdfc(I, X(x), V(x), B(x))
NEXT I

The array F can be used in subprogram Fnewt or the array B in Bnewt which are also
contained in the NUMERICAL ANALYSIS package.

1 B(,) is both an input and output parameter.

6-4 Interpolation

Methods and Formulae
A full explanation of the algorithm employed may be found in reference 1.

References

1. Kahan, W. and Farras, I., “Algorithm 167: Calculation of Confluent Divided Differ-
ences’’, Comm. ACM (April 1963).

2. Thacher, H., ““Certification of Algorithm 167: Calculation of Confluent Divided Differ-
ences’’, Collected Algorithms from ACM, pp. 167-168.

User Instructions

1. Make sure Numerical Analysis flexible disc 2 is inserted correctly into the disc drive. Load
file “DVDFC” and press RUN.

2. You will be asked to supply entries for the following items:
- number of data points to be used in the calculation
- initial x-value for each data point (matrix X)
- initial value of f(x) for each data point (matrix V)
- choice of backward or forward divided differences
- domain value (z) of the point to be interpolated.
Press CONTINUE after each entry.

3. The value of the interpolated point and its derivative, as well as an error estimate is
printed.

Interpolation 6-5

Subprogram Bnewt

This subprogram performs Newton interpolation with backward divided differences. Bnewt
may be used in conjunction with subprogram Dvdfc, a routine for calculating confluent di-
vided differences.

Subprogram Utilization
o File Name - “‘Bnewt’’, disc 2

e Calling Syntax
CALL Bnewt (Z, N, X(*), B(x), P, D, E)

e [Input Parameters

Z Domain value of the point to be interpolated.
N Number of data points used.
X(*) Vector containing the initial x-values; the values X; need not

be distinct nor in any special order, but the components
must correspond to the values in B(x); subscripted from 1 to
at least N.

B(x*) Vector containing the backward divided differences
B, = Af(X;, Xi,1, ..., X,) fori = 1 to n; subscripted from 1
to at least N.

e Output Parameters

P Value of the following polynomial in Z of degree N — 1 at
most:

B(N)+(Z — X(N))«{B(N — 1)+(Z — X(N = I){B(N = 2)+ ... +{(Z — X(2))B(1)}...}
This polynomial is an interpolation polynomial which
would, but for rounding errors, match the values of the
function f(X) and any of its derivatives that subprogram
Dvdfc might have been given.

D Value of the derivative of P.

E Estimated maximum error in P caused by roundoff during
the execution of Bnewt.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Bnewt.”
N =

You may correct the data from the keyboard (e.g., N = 20, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.
Methods and Formulae

A full explanation of the algorithm employed may be found in reference 1, page 6-4.

6-6 Interpolation

Subprogram Fnewt

This subprogram performs a Newton interpolation with forward divided differences. Fnewt
may be used in conjunction with subprogram Dvdfc, a routine for calculating confluent di-
vided differences.

Subprogram Utilization
o File Name - “Fnewt”’, disc 2

o Calling Syntax
CALL Fnewt (Z, N, X(*), F(x), R, D, E)

® Input Parameters

z Domain value of the point to be interpolated.
N Number of data points used.
X(x) Vector containing the initial x-values; the values X; need not

be distinct nor in. any special order, but the components
must correspond to the values in B(x); subscripted from 1 to

at least N.
F(x) Vector containing the forward divided differences
Fi = Af(X;, Xi, 1, ..., X,) fori = 1 to n; subscripted from 1
to at least N.
® QOutput Parameters
R Value of the following polynomial in Z of degree N — 1 at
most:

F(1)+(Z = X(INH{F(@2) +(Z - X(2){F(3)+ ... +(Z = X(N — 1)F(N)}...}

This polynomial is an interpolation polynomial which
would, except for rounding errors, match the values of the
function f(X) and any of its derivatives that subprogram
Dvdfc might have been given.

D Value of the derivative of R.

E Estimated maximum error in R caused by roundoff during
the execution of Fnewt.

Special Considerations and Programming Hints

¢ Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Fnewt.”
N =

You may correct the data from the keyboard (e.q., N = 5, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

Methods and Formulae

Interpolation 6-7

A full explanation of the algorithm employed may be found in reference 1, page 6-4.

Examples
User entries:

Results:

NUMBER OF DATA POTNTSE= |
I XKD

i R LR R R AR S] -5
o =3 000000E+00 &
L.000000E+00 -4
& .000000E+00 i
B Fo000000E+00 X

é S 000000E+0D %
7 7 O00000E+00

ey
e.

CRN00anE+0Y i
SAEO0900E+0 1 i
CEO0GO0E+01 !

I Bk

- (1 -t
il =S 000000E+00 i
5 L DR D0E+ 00 .
4 i an0an0E-0q .
4 SongaangEsan i,
£ LoNQGoooEean {i.
7 SoN0Oaanre0q .
o o400 00QE+00 0
el PoA0naoEe08 .
PoodanionaiEeal 0.
i (AR IRVET I ia.

1 U AN E

THTERPOLATION WIT
WERD DLIVIDED DIV

P e 0000
BRI R IR RIN B S 1R1
HoAnG000E-0%

CEO0OROE+Q0]
CS00000E+0]

g
Yk
0OD000E+TD

poaaooE+an
BOooB0E+0D

00000 0E+00

poooooE+Go
GanaaoE+Qa

Z.o000000E+00
L0000 nE+00 So000000E+

Fodd

GOGDODE+00
poanoong
Qo000
O0000E+}0
Oo0naoE+

QOOGGOE+0
HEIRURIRIR TGS

OauoooE-+010
G00ugE+00
GOnaONE+GH
noanaoE-+a0

ERENDCE S

Q00

Lobninnag e
GO0

I A A LT

IRERER S

6-8

Interpolation

You enter the value of Z, Fnewt computes the rest:

User entrie:

Results:

U RER O DATS

i LD

i 0D 0RGE 0D
o 00000000
DRie
A Aopaagog
g A 0B0G00E+00
ey LU Qonnie
EoDDODGOE+G
i EEE RN IR AR TN

4 BOopaapon
i GoOoaQnenn
1 R e

L0000 0E+ns
LoE00n0akE+0s

I Bi#:

PLOOGOGOGE 00
o .\ (\I} l”l”
A Lognnoon

4 R I R 1
L]

e e

i

(] Do

1,3 + 3 E

"l" 86610

FO0VA0E
id Qg
1 SRRt SR AT i
0 onnape-+00

MEWTON TNTERPO
FUORWARD I

LATION

T THETD

(RS

RERARY]

r BN
PO Y]

GQOOF+0n
SLPOE-0

w1
= i1

0

:':i I
Mo 0 d
-
e
e [
IROE A1

IR RETIR RN
. n & "f."%;.

& ’l ;': ﬂ 141 l:;.)

WITH
DIFFERENCE S

Description
This subprogram computes a curve s(x) that passes through n data points (x;, y;) that you
supply.

Interpolation

Cubic Spline Interpolator

The integral f:f s(t)dt is calculated, as well as s(x) and s'(x) for any point x in the interval [x,
Xnl-

Program Usage
Driver Utilization
e File Name - “‘SPLINE”, disc 2

The driver “SPLINE” sets up the necessary input parameters for the subprogram Spline and

prints out the resulting outputs.

Subprogram Utilization

e File Name - ““Spline”’, disc 2

e Calling Syntax

CALL Spline (N, Narg, X(x), Y(*), Domain (), Func(x), Deriv(x), Int, Eps)

¢ Input Parameters

N
Narg

X(*)

Y ()

Domain(x)

Eps

e Output Parameters

Func(x)
Deriv(*)

Int

Number of data points.

Number of arguments for which the derivative or functional
value is to be computed; Narg = 0 means that only the in-
tegral is to be calculated.

Vector containing domain values of the data points; sub-
scripted from 1 to N; values should be entered in increasing
order.

Vector containing range values of the data points; sub-
scripted from 1 to N.

Vector containing the domain values for which the deriva-
tive or functional value is to be computed; subscripted from
1 to Narg; arguments may be entered in any order, but
these values must be contained in the interval [xq, x,,].

Error tolerance in iterative solution of simultaneous equa-
tions.

Vector containing the interpolated function values for out-
put arguments in Domain(x); subscripted from 1 to Narg.

Vector containing the derivative values for output argu-
ments in Domain (*); subscripted from 1 to Narg.

Integral f:l" s(x)dx.

6-9

6-10 Interpolation

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Spline.”
Eps = N =

The data may be corrected from the keyboard (e.g., Eps = 1E — 6, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

e The arguments for which the derivative or functional values are to be computed must lie
in the interval [x;, x,]. If an argument is found outside this range, the following error
message is printed and the program pauses:

“ERROR IN SUBPROGRAM Spline.”
“ARGUMENT OUT OF BOUNDS.”
X (1) = X_(N) = Domain (<i>) =

The program may be saved in the following way:

a. Type: Domain (<i>) = <a permissible value>

b. Press: EXECUTE

c. Type: CONT Corrector (Type each letter. Do not use the CONTINUE key.)
d. Press: EXECUTE

e The data points (x;, y;), for i = 1 to n should be entered in increasing order of the x;,
where the x; are discrete and x; < x;,; fori = 1 to n — 1. The output arguments t;, for
j = 1 to Narg may be entered in any order.

e The error factor of the solutions is approximately equal to h* for the integral, h> for the
functional values and h? for the derivative, where h is the average interval size.

® X(x), Y(x), Domain(x), Deriv(*) and Func(x) must be dimensioned in the calling
program.

Interpolation 6-11

Methods and Formulae

This subprogram computes a curve s(x) that passes through the n data points (x;, y;) that you
supply and computes certain information at any point t; on the curve as long as t; is in the
interval [x;, x,]. The information that can be computed is the integral over the interval and
the derivative or functional value at any point on the interval.

The method implemented fits a curve through the points and integrates, differentiates and
interpolates that curve. The curve used is the cubic natural spline which derives its name from
a draftsman’s mechanical spline. If the spline is considered as a function represented by s(x),
then the second derivative s'’(x) approximates the curvature. For the curve through data
points (x1, vi), (X2, Vo), ..., (Xn, Yn) We want f:l" (s''(x))?dx to be minimized in order to
achieve the ‘‘smoothest’’ curve.

The spline function with minimum curvature has cubic polynomials between adjacent data
points. Adjacent polynomials are joined continuously with continuous first and second deriva-
tives as well as s''(x;) = s''(x,) = 0.

The procedure to determine s(x) involves the iterative solution of a set of simultaneous linear
equations by Young’s method of successive overrelaxation. You can specify the accuracy to
which these equations are solved.

The formulae employed are:

£ stodx = § & e -0 6 v - 5 G - 0 B0 + 5 0] |

Vit1— Vi

1
RAm I)) = xe) g [0+ 8) + 5]

s(t) = vy + (— x) (

Vi1 = Vi 1 1

s'(f) = Xa1 — X S [— x) + (5 — x1)] (s"'(x) + () + 5

s"{x;41) — 8" (x;))

Xit1 — X

(tj - %) (t,' - X41) (

6-12 Interpolation

References

1.

2.

Ralston and Wilf, Mathematical Methods for Digital Computers, Vol. II. New York: John
Wiley and Sons, 1967, pp. 156-158.

Greville, T.N.E., Ed., “Proceedings of An Advanced Seminar Conducted by the
Mathematics Research Center”, U.S. Army, University of Wisconsin, Madison, October

7-9, 1968, Theory and Applications of Spline Functions, New York, London: Academic
Press, 1969, pp. 156-167.

User Instructions

1.

2.

Make sure Numerical Analysis flexible disc 2 is inserted correctly into the disc drive. Load
file “SPLINE” and press RUN.

You will be asked to supply entries for the following items:
- number of data points to be used in the calculation
- number of domain points or number of arguments for which the derivative or in-
terpolated functional value is to be computed. If only the value of the integral is de-
sired, enter 0.
- error tolerance for the iterative solution of the simultaneous equations
- x-value (in increasing order) and y-value for each data point
- domain values to be evaluated in the cubic spline.
Press CONTINUE after each entry.

The program will print the resulting interpolated functional values, the values of the
derivative and the value of the integral over the interval [x;, x,].

Interpolation 6-13

Example
User entries: U,
§ OF DATA POTNTS:=
FOF DOMATN POINTS= -
ERROR TOLERANCE= i E-é

LaTa POINTS:

L QoanonE+0G YO o drs Zo000000E+00
. 0000aGE+an ¥4 HoQDononE+00
doanoaooE+ao A = @ 000000E+010
A 000000E+00 YO 4= 2 000000E+00
Sonn0onaE+aQ YO %= % 0000008400

GBMalN VALUES:

Doemaind &r=-2 S00000E+00
Domain(&ry= 0 G00000E+00
Gomaind Fd= 2 B00000E+00
Domaint 4r= % (00000E+00

Results:
THTFGRAL FROM -3 000000E+00 TO

FoO00000ELQ0 = 4 9849201

GUFAIN VALUES FUMCTTOM VAl UES

SENNOROOEnG

G.o00000E+00
S n0nonE+a0
S 00000 0E+Q0

DERIVATIVE WAl Es
AQE0N
()
+00
SOOANANLE 01

6-14

Interpolation

Chebyschev Polynomial

Description
This subprogram fits the tabular function Y(X) (given as m points (X, Y)) by a polynomial

This polynomial is the best polynomial approximation of Y(X) in the Chebyschev sense.

Program Usage
Driver Utilization
o File Name - “CHEBY"’, disc 2

The driver “CHEBY” sets up the necessary input parameters for the subprogram Cheby and
prints out the coefficients of the resulting polynomial.

Subprogram Utilization
e File Name

® Calling Syntax
CALL Cheby (M, N, X(x), Y(x), A())

® Input Parameters

M Number of data points to be used in the computation.
N Degree of the approximating polynomial; for valid results,
M> (N + 1).

X(x) Vector containing the x-values of the data points; sub-
scripted from 1 to M; the x; must be entered in increasing
order.

Y(*) Vector containing the y-values of the data points; sub-

scripted from 1 to M.
® Qutput Parameters
Alx) Vector containing the coefficients of the polynomial approx-

imation; subscripted from O to N;
P(X) = Ag + A/ X + AX% +...+ A X"

Interpolation

Special Considerations and Programming Hints

e Although this procedure is an implementation of a finite algorithm, roundoff errors may
give rise to cyclic changes of the reference set causing the procedure to fail to terminate.

® X(x), Y(*) and A(x) must be dimensioned in the calling program: DIM X(1:M), Y(1:M),
A(O:N)

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Cheby.”
“# OF DATA POINTS MUST BE GREATER THAN DEG. OF POLY. + 1.”
M = N =

The data may be corrected from the keyboard (e.g., M = 6, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

Methods and Formulae

See the two references for a complete description of the methods and formulae employed in
subprogram Cheby.

References
1. Newhouse, Albert, ‘““Chebyschev Curve Fit”’, Comm. ACM 5 (May 1962), p. 281.

2. Stiefel, E., Numerical Methods of Tchebysheff Approximation, U. of Wisconsin Press,
1959, pp. 217-232.

User Instructions

1. Make sure Numerical Analysis flexible disc 2 is inserted correctly into the disc drive. Load
file “CHEBY” and press RUN.

2. You will be asked to supply entries for the following items:
- number of data points to be used in the calculation
- degree of the polynomial desired for the approximation (for reasonable results,
(<degree of polynomial>) < (<number of data points> — 1)
— x and y values for each data point.
Press CONTINUE after each entry.

3. The coefficients of the Chebyschev Polynomial will be printed where
P(X) = Ay + A;X + AX2 +...+ A X"

6-15

6-16

Interpolation

Examples

User entries:

f 0 DATA POINTE: &

DEGREE OF POLYMOM T O

PaTd POINTS

GO
SR
Ly d (0000
a4 GO0
5y ek (10

KO 6y 3 O0006G0E+00
KO P hsmeE GO0OD00E 00
KO @ 2

PORU QOO 0EAD

Results:

bofungnoi+an
G 000000 +00
000000+

G a0annoE+0a

User entries: "

OF DT

POTNTS: f
PUL Y HOM T AL

DEGREEE O

LDaTa POLMNTE:

Al ddmed 00000
A @y 00000

L0000 00E+00
AR IRV ERVEE

Xl Sda 3 000000E+00
AL GHr= B o000000E+D0

COEFFTCTENTS OF ©
LR R E

Results:

e
i«
1 €
5 ¢

(P PR

CRYSOHEY
POoxXrs=ncii-+a 0l PR+ 203X 2+ 03 kX 2+]

L TIOR3

-

CA (RE BRI N

FP P ROETMAT T

oo ond

Lonenoo)

Loanataot
POLYNOMIAL

GO0 nE
o On O o
RN RN

2 LO0000EY

AoN0NnaoE 01
PO
i POOOE +0d
TooainguaiE

SRRt

AL H000 0008
12355 00E

+00
AR

R

7-1

Chapter 7

Functions

Introduction

Description

This section contains several mathematical function subprograms that may be used occa-
sionally. Since the use of these functions may be frequent and well-embedded in a main
program, no drivers have been supplied with these subprograms. Their usage is explained in
the following pages. You must supply the calling program.

Reference 1 below was used as the “‘cookbook’ for these functions. Reference 2 may also be
useful as a programming reference.

Routines
e FN Cosh - hyperbolic cosine
e FN Sinh - hyperbolic sine
e FN Tanh - hyperbolic tangent
e FN Gamma - gamma function
e FN Lgamma - log gamma function
e Cadd - addition of complex numbers
e Cmult - multiplication of complex numbers
e Cdivid - division of complex numbers
e Csqrt - square root of a complex number
e Cexp - exponential value of a complex number
e Clog - natural logarithm of a complex number
e Cabs - absolute value of a complex number
e Cinv - inverse of a complex number
® Ccos - cosine of a complex number
® Csin - sine of a complex number
e Ctan - Tangent of a complex number
@ Ccosh - Hyperbolic cosine of a complex number
e Csinh - Hyperbolic sine of a complex number
e Ctanh - Hyperbolic tangent of a complex number
® Rec_pol - rectangular to polar conversion
® Pol_rec - polar to rectangular conversion

e Polyev - evaluation of a complex polynomial

7-2 Functions

References
1. Hart, J., et.al. Computer Approximations, New York: John Wiley and Sons, Inc., 1968.

2. Cody, William J., Jr. and Waite, William. Software Manual for the Elementary Func-
tions, Englewood Cliffs, N.J.: Prentice Hall, Inc., 1980.

Hyperbolic Cosine

Description
This subprogram calculates the value of the hyperbolic cosine function.

Program Usage
Subprogram Utilization
® File Name - “Cosh”, disc 2
® Calling Syntax
FN Cosh(X)
® [nput Parameter

X Domain value of the function.
® Qutput Parameter
FN Cosh(X) Value of the hyperbolic cosine at x.
Method and Formula

The standard formula used is:
Cosh(x) = (e* + e ¥)/2

Functions

Hyperbolic Sine

Description
This subprogram calculates the value of the hyperbolic sine function.

Program Usage
Subprogram Utilization
o File Name - “‘Sinh”’, disc 2
e Calling Syntax
FN Sinh(X)
¢ Input Parameter

X Domain value of the function
e Output Parameter
FN Sinh(X) Value of hyperbolic sine at x.

Methods and Formulae
The hyperbolic sine function may be defined as follows:

Sinh(x) = (e* — e ¥)/2

However, this formula is not appropriate for a computer approximation. Instead, the positive
domain has been segmented into four sections:

1. x = 0.5: Here significance would be lost in the subtraction if the above standard formu-
la was used. Instead, the following polynomial approximation is employed:
Sinh(x) ~ .008420538263%x> + .166656747807+x> + 1.00000034157

2. .5 < x =< 1: Sinh(x) = }[D(x) + D(x)/(D(x) + 1)]where D(x) = e* — 1
3. 1 < x = 10: Here, the standard formula is used.
4. x> 10: Here, e * has lost all significance compared with e*, so we use: Sinh(x) =~ ¢%/2

The identity Sinh(—x) = — Sinh(x) is used for negative domain values.

7-3

7-4 Functions

Hyperbolic Tangent

Description
This subprogram calculates the value of the hyperbolic tangent function.

Program Usage
Subprogram Utilization
e File Name - ““Tanh”, disc 2
o Calling Syntax
FN Tanh(X)
¢ Input Parameter

X Domain value of the function.
e Output Parameter
FN Tanh(X) Value of the hyperbolic tangent function.

Methods and Formulae
The hyperbolic tangent function may be defined as follows:

Tanh(x) = (e* — e ¥)/(e* + e ¥)
But this formula, by itself, is not appropriate for a computer approximation.
Instead, the positive domain has been segmented into three sections:

1. x| < 1: Here significance would be lost in the subtraction if the above standard formula
was used, so Tanh(x) = D(2x)/(2 + D(2x)) where D(x) = e* — 1.

2. 1 =<|x| < 10: Here, the standard formula is used.

3. |x| > 10: Here, e * has lost all significance compared with e*, so Tanh(x) ~ 1.

The identity Tanh(—x) = — Tanh(x) allows for the absolute values used above.

Functions

Gamma Function

Description

For a given argument x, (x = 0, — 1, — 2, ...) function subprogram FN Gamma computes
the value of the gamma function. For an argument x > 70.957, the log gamma function, FN
Lgamma, should be used to avoid machine overflow.

Program Usage

Subprogram Utilization
e File Name - ““Gamma’’, disc 2
e Calling Syntax - FN Gamma(X)
e Input Parameter

X Function argument; X #0, — 1, — 2, — 3, ...; arguments
must be in the range [— 69, 70.957] to avoid machine over-
flow.

e Output Parameter
FN Gamma(X) Value of the gamma function evaluated at x.

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects an
argument equal to zero or a negative integer, the following error message is printed and
the program pauses:

“ERROR IN FUNCTION Gamma.”’
“ARGUMENT VALUE IS EITHER 0 OR A NEGATIVE INTEGER.”

Unless you are willing to change your argument value, there is no recovery from this
error since the function is not able to handle zero or negative integer arguments.

o [f the subprogram detects an argument which will cause machine overflow, the following
error message is printed and the program pauses:

“ERROR IN FUNCTION Gamma.”
“ARGUMENT VALUE OUT OF RANGE.”
ARGUMENT =

Again, unless you are willing to change your argument value, there is no recovery from
this error. The argument must be between —69 and 70.957.

7-6 Functions

Methods and Formulae
For a given argument x, (x #0, — 1, — 2, ...) this function subprogram computes the value

n—-1

of the gamma function of x, I'(x). The recurrence 1'(Z + n) = kf_IO (Z + k)I'(Z) allows the

computation of I'(x) to be reduced to the computation of I'(2 + x), with 0 <= x<1. 2 is
chosen because of the poles at zero and the negative integers.

Then

n—1

I'(x) = (x+ 2+ kI'x +2) forn > 0,
k=0

T x+2) forn < 0.

'n|

IM(x +2 - k)

k=1

For large x (in absolute value), the above computation is time consuming, and it is more
economical to use the log gamma function.

Functions

Log Gamma Function

Description

For a given real, non-negative argument x, function subprogram FN Lgamma computes the
value of the natural logarithm of the absolute value of the gamma function.

Program Usage
Subprogram Utilization
o File Name - “‘Lgamma”, disc 2

e Calling Syntax
FN Lgamma(X)

® Input Parameter

X Domain value of the function; X must be a real, non-
negative number.

e Output Parameter

FN Lgamma(X) Value of the log gamma function evaluated at x.

Method and Formula

For a given real, non-negative x, this function subprogram computes the value of the log
gamma function of x.

We use the Stirling form:
LOG(I'(x)) = (x — ¥2)LOG(x) — x + LOG(V2%w) + $(x)
where $(x) is a rational approximation of the form:

d(x) = %Rn,m(l/xiz)

7-8 Functions

Addition with Complex Numbers

Description
Subprogram Cadd adds a set of complex numbers.

Program Usage
Subprogram Utilization
e File Name - contained in file “Complx’’, disc 2

¢ Calling Syntax
CALL Cadd (N, A(x), B(x), Real, Imag)

e [Input Parameters

N Number of complex numbers to be added.
A(x) Vector containing the real components of the complex num-
bers to be added; subscripted from 1 to N.
B(x) Vector containing the imaginary components of the com-

plex numbers to be added; subscripted from 1 to N.
e Output Parameters

Real Real component of the sum of the complex numbers.
Imag Imaginary component of the sum of the complex numbers.

Special Considerations and Programming Hints

o [f there is a wide range in the magnitude of the numbers to be added, smaller quantities
should be stored first in the arrays A(x) and B(x) to avoid roundoff error.

Functions

Multiplication with Complex Numbers

Description
Subprogram Cmult multiplies two complex numbers.

Program Usage
Subprogram Utilization
e File Name - contained in file “‘Complx”, disc 2
e Calling Syntax
CALL Cmult (A1, B1, A2, B2, R,])
® Input Parameters

Al, A2 Real components of the two complex numbers to be multi-
plied.

B1, B2 Imaginary components of the two complex numbers to be
multiplied.

e Qutput Parameters

R Real component of the product.
| Imaginary component of the product.

7-9

7-10 Functions

Division with Complex Numbers

Description
Subprogram Cdivid divides one complex number by another.

Program Usage
Subprogram Utilization
o File Name - contained in file “Complx”’, disc 2
e Calling Syntax
CALL Cdivid (A1, B1, A2, B2, R, I)
® [Input Parameters

Al Real component of the dividend.

B1 Imaginary component of the dividend.
A2 Real component of the divisor.

B2 Imaginary component of the divisor.

® Output Parameters

R Real component of the quotient.
| Imaginary component of the quotient.

Functions

Square Root of a Complex Number

Description
Subprogram Csqrt finds the square root of a complex number.

Program Usage
Subprogram Utilization
o File Name - contained in file “Complx”’, disc 2
e Calling Syntax
CALL Csqrt(A, B, R, I)
e Input Parameters

A Real component of the complex number.
B Imaginary component of the complex number.

e QOutput Parameters

R Real component of the square root.
[Imaginary component of the square root.

Method and Formula

_ A +Byt A A+ By A

R 2 ’ 2

Special Considerations
o To keep the radical real, the positive sign will always be used with the |a + ib|.

7-11

7-12 Functions

Exponential Value of a Complex Number

Description
Subprogram Cexp finds the exponential value of a complex number.

Program Usage
Subprogram Utilization
e File Name - contained in file ““Complx’’, disc 2
e Calling Syntax
CALL Cexp(A, B, R,)
® Input Parameters

A Real component of the complex number.
B Imaginary component of the complex number.

e Output Parameters

R Real component of the exponential.
1 Imaginary component of the exponential.

Method and Formula

R = efxcos(B); | = e?xsin(B)

Special Considerations
e All of the trigonometric functions require that the argument of the function be given in
radians.

Functions 7-13

Natural Logarithm of a Complex Number

Description
Subprogram Clog finds the natural logarithm of a complex number.

Program Usage
Subprogram Utilization
e File Name - contained in file “Complx’”’, disc 2
e Calling Syntax
CALL Clog (A, B, R, I)
e Input Parameters

A Real component of the complex number.
B Imaginary component of the complex number.

e Output Parameters

R Real component of the natural logarithm.
I Imaginary component of the natural logarithm.

Method and Formula

R = LOG(VA?Z + B?); 1 = atn (B/A)ifA>0
atn (B/A) + acs (— 1)ifA<0andB =0
atn (B/A) — acs (— 1)ifA<0O0and B <0

asn (SGN (B))ifA =0

o

Special Considerations

e All the trigonometric functions require that the argument of the function be given in
radians.

® The logarithm function is a multivalued function. When this function is used, the princi-
pal value of the function is the calculated result. Thus, the function LOG(EXP(Z)) will not
necessarily return the value Z. Returned phase [is defined on the interval [— =, +).

7-14 Functions

Absolute Value of a Complex Number

Description
Subprogram Cabs finds the absolute value of a complex number.

Program Usage
Subprogram Utilization
¢ File Name - contained in file “Complx’’, disc 2

¢ Calling Syntax
CALL Cabs (X, Y, Cabs)

® Input Parameters

X Real component of the complex number.
Y Imaginary component of the complex number.

® QOutput Parameter

Cabs Absolute value of the complex number x + iy.

Functions

Inverse of a Complex Number

Description

Subprogram Cinv finds the inverse of a complex number.

Program Usage
Subprogram Utilization

e File Name - contained in “Complx’’, disc 2

e Calling Syntax
CALL Cinv (X, Y, R,])

® Input Parameters

X
Y

e Output Parameters

R
I

Method and Formula

Real component of the complex number.
Imaginary component of the complex number.

Real component of the inverse.
Imaginary component of the inverse.

R=X/(X%+Y% I=—-Y/(X?+Y?

7-15

7-16 Functions

Cosine of a Complex Number

Description
Subprogram Ccos finds the cosine of a complex number.

Program Usage
Subprogram Utilization
o File Name - contained in file “Complx”, disc 2

e Calling Syntax
CALL Ccos (X, Y, R, I)

® Input Parameters

X Real component of the complex number
Y Imaginary component of the complex number

® Qutput Parameters

R Real component of the cosine.
[Imaginary component of the cosine.

Method and Formula
R = cos (X) cosh (Y); I = — sin (X) sinh (Y)

Special Considerations
® All of the trigonometric functions require that the argument of the function be given in
radians.
® The cosecant function (R + i I)= csc (X + i * Y) can be computed by using
CALL Ccos (X, Y, R, I)
CALL Cinv (R, L R, I)

Functions 7-17

Sine of a Complex Number

Description
Subprogram Csin finds the sine of a complex number.

Program Usage
Subprogram Utilization
e File Name - contained in file ‘“‘Complx”’, disc 2

® Calling Syntax
CALLGsin (X, Y, R,])

o Input Parameters

X Real component of the complex number.
Y Imaginary component of the complex number.

e Output Parameters

R Real component of the sine.
[Imaginary component of the sine.

Method and Formula
R = sin (X) cosh (Y); [= cos (X) sinh (Y)

Special Considerations
e All of the trigonometric functions require that the argument of the function be given in
radians.
® The secant function (R + i *) = sec(X + i* Y) can be computed by using
CALL Gsin (X, Y, R,)
CALL Cinv (R, [R,)

7-18 Functions

Tangent of a Complex Number

Description
Subprogram Ctan finds the tangent of a complex number.

Program Usage
Subprogram Utilization
e File Name - contained in file “‘Complx”, disc 2

e Calling Syntax
CALL Ctan (X, Y, R, I)

® Input parameters

X Real component of the complex number
Y Imaginary component of the complex number.

e Qutput Parameters

R Real component of the tangent.
| Imaginary component of the tangent

Method and Formula
Z=R+ix]) =sin(X +i*xY)/cos(X+ixY)

Special Considerations

o All of the trigonometric functions require that the argument of the function be given in
radians.

® The cotangent function (R + i *I) = cot (X + i Y) can be computed by using
CALL Ctan (X, Y, R,])
CALL Cinv (R, I, R,])

Functions 7-19

Hyperbolic Cosine of a Complex Number

Description
Subprogram Ccosh finds the hyperbolic cosine of'a complex number.

Program Usage
Subprogram Utilization
o File Name - contained in file “‘Complx”, disc 2

e Calling Syntax
CALL Ccosh (X, Y, R,)

e Input Parameters

X Real component of the complex number
Y Imaginary component of the complex number

e Output Parameters

R Real component of the hyperbolic cosine
| Imaginary component of the hyperbolic cosine

Method and Formula
R = cosh (X) * cos (Y); = sinh (X) * sin (Y)

Special Consideration
e All of the trigonometric functions require that the argument of the function be given in
radians.
@ The hyperbolic cosecant (R + i 1) = csch (X + i*Y) can be computed by using
CALL Ccosh (X, Y, R, I)
CALL Cinv (R, R,)

7-20 Functions

Hyperbolic Sine of a Complex Number

Description
Subprogram Csinh finds the hyperbolic sine of a complex number.

Program Usage
Subprogram Utilization
¢ File Name - contained in file “Complx’’, disc 2

o Calling Syntax
CALL GCsinh (X, Y, R,])

® Input Parameters

X Real component of the complex number.
Y Imaginary component of the complex number.

® QOutput Parameters

R Real component of the hyperbolic sine
| Imaginary component of the hyperbolic sine

Method and Formula
R = sinh (X) % cos (Y); R = cosh (X) * sin (Y)

Special Consideration
e All of the trigonometric functions require that the argument of the function be given in
radians.
® The hyperbolic secant (R + i*Y) = sech (X + i*Y) can be computed by using
CALL GCsinh (X, Y, R, I)
CALL Cinv (R, I, R, I)

Functions

Hyperbolic Tangent of a Complex Number

Description
Subprogram Ctanh finds the hyperbolic tangent of a complex number.

Program Usage
Subprogram Utilization
e File Name - contained in ‘‘Complx’’, disc 2

e Calling Syntax
CALL Ctanh (X, Y, R,])

¢ Input Parameters

X Real component of the complex number.
Y Imaginary component of the complex number.

e Output Parameters

R Real component of the hyperbolic tangent.
I Imaginary component of the hyperbolic tangent.

Method and Formula
Z=((R+ix*]) =sinh (X + i*Y)cosh(X +ixY)

Special Considerations
e All of the trigonometric functions require that the argument of the function be given in
radians.
e The hyperbolic cotangent (R + i * I) = coth (X + i * Y) can be computed by using
CALL Ctanh (X, Y, R,)
CALL Cinv (R, [R, I)

7-21

7-22 Functions

Rectangular to Polar Conversion

Description

Subprogram Rec_pol finds the magnitude and the phase (in the angular unit of the calling
context) of a complex number or point in rectangular coordinates.

Program Usage
Subprogram Utilization
¢ File Name - contained in file ““Complx’’, disc 2

® Calling Syntax
CALL (A, B, Magn, Phase)

e Input Parameters

A Real component of the complex number, or X-coordinate of
the point.
B Imaginary component of the complex number, or Y-

coordinate of the point.
e Output Parameters

Magn Magnitude (orAbsolute Value) of the complex number, or
p-coordinate of the point.

Phase Phase of the complex number, or 0-coordinate of the point,
in angular unit of the calling context.

Method and Formula
Magn = VA? + B?, Phase*

I

atn (B/A) ifA>0

atn (B/A) + acs (—1) ifA <O
asn (SGN (B)) ifA =0

(* module 2 * m definition)

Special Considerations
® Unlike other complex functions, the angular unit mode can be chosen.
® Returned phase is defined on the interval [+ 180°, + 180°] or [— =, + 7]

Functions 7-23

Polar to Rectangular Conversion

Description

Subprogram Pol_rec finds the complex number (or the rectangular coordinates) of a point
defined by its magnitude and phase (or polar coordinates) in the angular unit of the calling
context.

Program Usage
Subprogram Utilization
o File Name - contained in file “Complx”’, disc 2

e Calling Syntax
CALL Pol_rec (A, B, Magn, Phase)

e [nput Parameters

Magn Magnitude of the complex number, or p-coordinate of the
point.
Phase Phase of the complex number, or 6-coordinate of the point

in angular unit of the calling context.

e Output Parameters

A Real component of the complex number, or X coordinate of
the point.
B Imaginary component of the complex number or Y coordin-

ate of the point.

Method and Formula
A = Magn * cos (Phase); B = Magn * sin (Phase)

Special Considerations
@ Unlike other complex functions, the angular unit mode can be chosen.

7-24 Functions

Evaluation of a Complex Polynomial

Description

Subprogram Polyev evaluates the complex polynomial
(ag + bei) + (a7 + byi)Z + ... +(a, + b,i)Z" at a complex point.

Program Usage
Subprogram Utilization
® File Name - contained in file “Complx’’, disc 2
e Calling Syntax _
CALL Polyev (N, A, B, Rcoef(x), Icoef(x), Rval, Ival)
® Input Parameters

N Degree of the complex polynomial.

A Real component of the complex number at which the
polynomial is to be evaluated.

B Imaginary component of the complex number at which the
polynomial is to be evaluated.

Rcoef(x) Vector containing the real components of the coefficients of
the polynomial (Rcoef(0) + Icoef(0)+]) + (Rcoef(1)
+Icoef(1)«[)*Z + ... + (Rcoef(N) + Icoef(N)=I)+Z 1 N;
subscripted from O to N.

Icoef(x) Vector containing the real components of the coefficients of
the polynomial (Rcoef(0) + [coef(0)*]) + (Rcoef(1)
+lcoef(1)+1)+Z + ... + (Rcoef(N) + Icoef(N)«[)+Z 1 N;
subscripted from 0 to N.

o Output Parameters

Rval Real component of the evaluated polynomial.
Ival Imaginary component of the evaluated polynomial.

8-1

Chapter 8

Fourier Analysis

Introduction

Description

This section contains routines for computing Fourier series coefficients using equally or une-
qually spaced data, as well as a fast Fourier transform routine.

Routines
e Foureq - calculates the Fourier series coefficients using equally-spaced data points.
@ Fourun - calculates the Fourier series coefficients using unequally-spaced data points.

o Fft - calculates a Fast Fourier Transform from a set of time domain points to a set of
frequency domain points or vice versa.

8-2 Fourier Analysis

Fourier Series Coefficients
for Equally-spaced Data Points
Description

This subprogram calculates the Fourier Series Coefficients a; and b, of the Fourier Series
corresponding to a function f(x) which is specified by n discrete equally-spaced data points
(x.v),i=1,.. n

Program Usage
Driver Utilization
o File Name - “FOUREQ”’, disc 2

The driver “FOUREQ” sets up the necessary input parameters for the subprogram Foureq
and prints out the resulting outputs.

Subprogram Utilization
® File Name - “‘Foureq”, disc 2

e Calling Syntax
CALL Foureq (N, Npts, Init, Incre, Y(x), A(x), B(*))

® [nput Parameters

N Highest numbered Fourier Series coefficient.
Npts Number of data points (must be odd).
Init Initial domain value X;.
Incre Increment between domain values; Ax = x,,; — X,
Y (%) Vector containing range values for data points; subscripted

from 1 to Npts.
® Output Parameters

A(x) Vector containing the Ag Fourier Series coefficients; sub-
scripted from O to N.

B(x) Vector containing the Bg Fourier Series coefficients; sub-
scripted from 1 to N.

Fourier Analysis

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Foureq.”
N = Npts = Incre =

The data may be corrected from the keyboard (e.g., N = 5, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e Since a Simpson’s Method is used in the computation of the coefficients, an odd number
of data points must be provided. If this is not the case, the following error message is
printed and the program pauses:

“ERROR IN SUBPROGRAM Foureq.”
“ODD NUMBER OF DATA POINTS REQUIRED.”
Npts =

The data may be corrected from the keyboard (e.g., Npts = 15, EXECUTE). When
CONTINUE is pressed, the program will resume execution at the next line.

e For valid results, you should provide at least n data points to compute n coefficients.
® Y(x), A(x) and B(*) must all be dimensioned in the calling program.

Methods and Formulae

If g(x) = f(x) cos (2’}“‘) and h(x) = f(x) sin (ZT.lr.ix)then:

a = 28X {g(x)) + 4glx) + 2g(xa) + dglxa) + ... + 4g(xa 1) + glxa)}

b, ~ 23ATX {h(x;) + 4h(xp) + 2h(x3) + 4h(x4) + ... + 4h(x,_1) + h{x,)}

Sine and cosine functional values are computed recursively with the following formula:

sin(M(J + 1) = sin(zwxi)cos(zﬁ'TXi J) + cos(zqTXi)sin(ZTrxi J)
Ax Ax Ax Ax Ax

27x; _ (21'rxi) (21'rxi) o (21-rxi) . (2’1TXi)
cos(———A (J + 1)) = cos A cos . J sin A sin Ax dJ

X X X X

8-3

8-4 Fourier Analysis

References
1. Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw-Hill, 1962,
pp. 67-80.
2. Acton, Forman S., Numerical Methods that Work, Harper and Row, 1970, pp. 221-
257.

User Instructions

1. Make sure Numerical Analysis flexible disc 2 is inserted correctly into the disc drive. Load
file “FOUREQ” and press RUN.

2. You will be asked to supply entries for the following items:
- number of data points to be used in the calculation (must be an odd number)
- highest coefficient desired in the Fourier Series (For valid results this should be less
than or equal to the number of data points.)
- initial domain value (first x-value)
- increment between x-values

- range values (y-values) for each data point.
Press CONTINUE after each entry.

3. The program will calculate and print the Fourier Series Coefficients using the given data
points.

Fourier Analysis 8-5

Example
User entries:

3|
LIES COEFFICTENT= &

#OOF DAaTh PUOINTS
HESET FOURTER
THTTEEL DOMATHN VALL
SRHOREMEMT= 1

w4

R GE Wal UES -

Yioodds 3 SG0000E
YO @r= X 00000

O Ers X 00000000

(Lir= 6 BO000OCE
0. 000000E+
0000000
0 600000
0.no06n
4o
0. 0000008

A
YO Ar= Z 000000E+00
YOSy A oO0000E+00
VO b F 00000000
O F e 3 } Q0
{8y 3 ()
O I 1]
Cq0am 3 Sl
+ 00

-

Lo aoone
GonannonE
i

VR4 e 2 o000000E+T
“ GoOnoog

2onopoear
FoOnoNEo
ZONOLOGIE-+0D
2OG0A000E»0

=S
— T

Results:

DLENTG

8-6 Fourier Analysis

Fourier Series Coefficients
for Unequally-spaced Data Points

Description

This subprogram calculates the Fourier Series Coefficients for a function defined by discrete
data points (x;, v;), i = 1,...,n. The data pairs must be entered such that the x, are discrete, but
not necessarily equally-spaced, and x;, < x; ., ; fori = 1,...,n—1.

Program Usage
Driver Utilization
¢ File Name - “FOURUN"’, disc 2

The driver “FOURUN"’ sets up the necessary input parameters for the subprogram Fourun
and prints out the resulting outputs.

Subprogram Utilization
o File Name - “Fourun”’, disc 2

¢ Calling Syntax
CALL Fourun (N, Npts, X(x), Y(x), A(), B(x))

® Input Parameters

N Highest numbered Fourier Series coefficient.
Npts Number of data points.
X(*) Vector containing domain values for data points; sub-

scripted from 1 to Npts.

Y (%) Vector containing range values for data points; subscripted
from 1 to Npts.

® Output Parameters

A(x) Vector containing the A, Fourier Series coefficients; sub-
scripted from 0 to N.

B(x) Vector containing the B, Fourier Series coefficients; sub-
scripted from 1 to N.

Fourier Analysis

Special Considerations and Programming Hints

e Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Fourun.”

N = Npts =
X(1) = X(Npts) =

The data may be corrected from the keyboard (e.g., N = 5, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

e For valid results, you should provide at least n data points to compute n coefficients.
® X(x), Y(x), A(x), B(x) must all be dimensioned in the calling subprogram.

e The data points (x;, v;) should be entered so that the x; are discrete and x; < x; , ; for
i = 1 ton—1. The points need not be equally spaced.

Methods and Formulae

This subprogram calculates the Fourier Series coefficients a; and b; of the Fourier Series cor-
responding to a function f(x) which is specified by n discrete data points (x;, y;),i = 1 to n.

The finite Fourier Series is given by the formula:

n
320 + 3 (aicos —”TT—X + bisinli_[_>£) where the Fourier coefficients a; and b; are:
i=1

a; = 2 f:‘”f(x)cos Z7ix dx fori = 0 ton, and
T 1 T
b, = % F H(x)sin ZTT”X dx fori = 1ton.

T specifies the period equivalent to (x; — x;) and n indicates the number of coefficients de-
sired. The coefficients are evaluated by numerically integrating a parabola passing through
three successive points. Execution time depends on the number of coefficients calculated.

Formulae:

A= 2 S forj = 1ton

>
i
M
-
)
=
Il

l1ton

8-7

8-8 Fourier Analysis

where:

(X1 =X 2 Vi (X=X 2) Vi1 H (X — x4) Yii2
(X1 = X2) (Xi—=X22) (X=X 1)

Qi:

A= 2 (@Q+Q 1

= (X 12 =% 27 Ui = (X =X 28 Vi (XX 17) Vit2

) |

Ri= (%1% 2) % %12) (%% 1)
B = 1 (R, + R, _1)
- 2 i i—1
i 1d i d
(%m4+&mﬂ%(%f;ﬁ—@mﬁﬂmmmw@ix)]
S - K 1 k 1
i J 2
(Xk_xl)
J 2
Y1 (Xk" X1)_ 2A (2 (X1+1J)
2wd \?® sin [2m Xg—X 1-
(Xk_ Xl)
J 2
i (Xk“Xl) _ZA. (X d)
(27d)3 sin [2m Xk = X]
X — X4
Xi+1J XiJ
(2AXi+1 + B)sin[ZTrfrc (——)]—(2/\){i + B) sin[2wfrc (—
T = Xk — Xg Xk — X

()
Xk — X1

Fourier Analysis

Alx .3 — x3 B(x. .2 — i2
Ui _ (XH-I X|)+ (x1+1 X) n C(Xi+1 _ Xi)

where A, B are defined above and:

C

1
72 (P, + Pi_y)

(Xiv1 = Xis2)Xie1 X422V — (X — Xip2)XiXis2Viv1 + (X — X01)X X401 Viso
(Xie1 = Xiz2) (% — Xiz2) (% — X+ 1)

P, =

Sine and cosine functional values are computed recursively with the following formulae:

27x; 27x; 27y, 27y,) 27x;
sin((J+1)) sin(xk_Xl cos Xk—X1J +COS(Xk—X1) sm(xk_x

Xk — X1
(2mx;) (27X,) (27x;)] (27X;)) (2mx;
cos\ 3= x, (J + 1)) cos\ i —x, cos Ay J)] — sin X — X sin —

where i is the data point number and J is the coefficient number.

))
)

8-9

8-10 Fourier Analysis

References

1.
2.

Hewlett-Packard 9820A Math Pac, pp. 43-50.

Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw-Hill, 1962,
pp. 67-80.

Acton, Forman S., Numerical Methods that Work, Harper and Row, 1970, pp. 221-
257.

User Instructions
1. Make sure Numerical Analysis flexible disc 2 is inserted correctly into the disc drive. Load

file “FOURUN"’ and press RUN.

You will be asked to supply entries for the following items:
- number of data points to be used in the calculation
- highest Fourier Series Coefficient desired (For valid results, this should be less
than or equal to the number of data points provided.)
- discrete x-values (in increasing order) and y-values for each data point.
Press CONTINUE after each entry.

The program will print the resulting A, and B, Fourier Series Coefficients.

Example

User entries:

HEGHEST

Gin T POTMTE
FOWRTER & R

L

CORFFTOIEMT =

DfsTa WalUES:

fad n

ios000ad
2.oannaal
BLonn0na
RRIRRIRIRIRY

i

PN
g
o
2 P 1
LAE e s A

5.000000E-01
G 00000001
Fo0g00ang

30000008

—
hedne
-

WG3OTT W T &
it X i
R .
=

IRV
A0

ALY
TGO UE
AGANn0nE
4 00000NE+TC

046 040

SRR ARSI NI R
w0000k
AOOONOGOE

AQQ0anE
Fono00u0k

Lnnooa
BERURER R IR

Pohnanogr
o

Poanaoan

in

CJEQUooaEeQn
OO afE-s

LOaaongE-
Spoaoooe:
Sanonaak:
+ 10
+010
+00
+0 0
+00
+{0
(00
400
{0
+ {10
4010
A1
00
0
+ 00
+ 014
+
4 {141

Lno0ooE

CA0aoooE

RRIRIRIRtR (23S
BCRERIRIRTRACS
R RURIRIRIN IR
RR(N R (RIS
RRRURUN R RIS
BRIRURR IR0
BRI R R V{0
RRINRIRRER 1)
CDOanaone
CEOGnanE
BNIRERIRERIN NG
SO OnnaE
PRonaE

G0 OE
BRI IRERIE
BRURIRRIR 1N

ApaGong
gannaae

Saannon

gl

Fourier Analysis

i
+ 00
00
+00

4 {1
{0
11
{0
4
R anaote

8-11

8-12 Fourier Analysis

Results:

Fourier Analysis

Fast Fourier Transform

Description

This subprogram calculates a Fast Fourier Transform from a set of time domain points to a set
of frequency domain points or the inverse Fast Fourier Transform, calculating the set of time
domain points from a set of frequency domain points.

Program Usage
Driver Utilization

o File Name - “FFT”’, disc 2

The driver “FFT” sets up the necessary input parameters for the subprogram Fft and prints

out the resulting outputs.

Subprogram Utilization
e File Name - “‘Fft”, disc 2
e Calling Syntax

CALL Fft(N, Power, Flg, R(x), 1(x))

® Input Parameters

N

Power
Flg

(number of time domain points)/2; or (number of frequency
coefficient pairs)/2 + 1.
N — 2(Power -1)

If Flg = 1, calculate Fast Fourier Transform from a set of
time domain points to a set of frequency domain points.

If Fig = — 1, calculate Inverse Fast Fourier Transform from
a set of frequency domain points to a set of time domain
points.

Vector subscripted from 1 to N; as time domain data, R(*)
contains the odd-numbered data points, i.e., R; = time do-
main in data for i = 1 to n; as frequency domain data, R,
contains the DC term, and R; = real component of data
(j — 1) forj = 2ton.

Vector subscripted from 1 to N; as time domain data, I(x)
contains the even-numbered data points, i.e., |, = time do-
main data (2x%j) forj = 1 to n; as frequency domain data, I,
contains the maximum frequency term, and I, = imaginary
component of data (j — 1) forj = 2 ton.

Vector subscripted from 1 to N (see R(#) as an input param-
eter).

Vector subscripted from 1 to N (see [(x) as an input param-
eter).

1 R(x) and I(+) are both input and output parameters.

8-13

8-14 Fourier Analysis

Special Considerations and Programming Hints

¢ Upon entry into the subprogram, there is a bad data check. If the subprogram detects
“nonsense’’ data, the following error message is printed and the program pauses:

“ERROR IN SUBPROGRAM Fit.”
N = Flg = Power =

The data may be corrected from the keyboard (e.g., Flg = 1, EXECUTE). When CON-
TINUE is pressed, the program will resume execution at the next line.

Data Points

(Full Precision Arrays) FFT IFT
256 4.3 sec 4.0 sec
512 9.1 sec 8.7 sec

1024 19.6 sec 18.6 sec

Fourier Analysis 8-15

Methods and Formulae

This method uses a modification of the basic FFT algorithm. The modified algorithm takes
advantage of the fact that series data will be real and the space normally reserved for the
imaginary part of the complex sequence can be used to calculate a double-length real trans-
form. This is represented for two N length transforms as:

Z{n) = X(n) + iY(n) 0 = n < N data points
The transform is:

Z(m) = X(m) + iY(m)

where
X(m) = Z(m) + 22*(N — m)
Y(m) = Zm) — Z+(N — m) Zx is the complex conjugate of Z.

2

The time series F(n) is given by:

F(n) = X(2n) + Y (2n + 1)
The advantage gained from this adaptation of the general FFT algorithm for time series data
are:

1. A transform of twice the length can be handled with no increase in storage for input
data.

2. Since the calculation of the transform is treated as an interactive process, intermediate
and final results are stored in the same locations used for input.

The transform of this is:

N-1 N-1
F(m) = 2 X@n)w™ + 3 Y(2n + 1)w™
n=0 n=0

N-1 N-1

= 2 X(pw*™ + Z Y(p)wmPw"

p=0 p=0

8-16 Fourier Analysis

FIN — m) = X«(m) — [w™ Y(m)]* (2)
Similarly the inverse transform may be obtained from (1) and (2):

Z(m) = F(m) + FZ*(N — m) fiw ™ F(m) — FZ*(N — m)

ZN - m) = [F(m) SHUE m)]*) iw_m[F(m> S PN - m)]*

This is simply an interchange of Z(m) and F(m) in (1) and (2), and substitution of (— w ™) for

w,

Note;

1. Since F(0) and F(N) are real only, F(N) can be stored in the imaginary location of F(0),
ie., F(1).

2. w™ = ¢ ?mm2N This is half the minimum value of rotation normally used in an N point
transform.

3. * = complex conjugate.

References
1. Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, N.J.: Prentice Hall, Inc.,
1974, Chapter 10.

2. Cooley, J.W., and Tukey, . W., “An Algorithm for Machine Calculation of Complex
Fourier Series,”” Math. Computation, Vol. 19 (April 1965), pp. 297-301.

Fourier Analysis

User Instructions

1.

2.

Make sure Numerical Analysis flexible disc 2 is inserted correctly into the disc drive. Load
file “FFT” and press RUN.

You can append subprogram Fft by answering “no” (“N”’) when asked, “HAS Fft
ALREADY BEEN APPENDED (Y/N)?”’ This will cause file ‘‘Fft” to be linked to the end
of the driver program.This only needs to be done when the driver program (FFT) is
initially loaded or reloaded.

You will be asked to supply entries for the following items:
If time data is to be entered:
- number of time domain points (power of 2 from 4 to 1024) to be used
in the calculations
- time domain data points.
The program will print the DC term, the maximum frequency, and the real and imagin-
ary components of the resulting frequency data.
or
If frequency data is to be entered:
- value of the number of coefficient pairs times 2 plus 2 (power of 2
between 4 and 1024)
- DC term
- maximum frequency term
- real and imaginary coefficients for the frequency domain data points.
The program will print the time domain data points obtained from the inverse Fast
Fourier Transform.

8-17

8-18 Fourier Analysis

Examples

® Time to frequency domain

® Time domain data was generated using the following formula:

User entries:

WO

M

POINT(I) = SIN((I - 1)%m/8),

DT

PO T

b

Results:

|
MAY

SORK

R SR

-+

{i

DT

CREQUERNTC Y= 0

DOMM LM

P

1

THm

BRIRIRIRIRIRY

GTERYTE - 05

CRABLLIE-
COOG0Q0E-E0D

CFBEZLLE 08

forI=1 to 16.

DRy

£
goaong

e Time to frequency domain

User entries: .

GF DaTa POIMTE= 14

TIME DOMATN DATA -

POTHTC
POTRTC
POTHT
POTNTC
FOTNT ¢
POTNTY
BOTNT ¢
PO ¢
POTHT
POTMT
POTHT
POTRTS
POTMT
POTRT
FOTHT
BOTNT

Results:

0N oE+00
CEREEOGEOD
peo L 41AZ00E+00
Ar= 3 ANGEOOE-+TD
: L.000000E+00
Hre G AL2006E--04
D.000Rd0E+Dn
GoALE000E 0]
COU00nHE+00

~

i

DOMS TN

FE AL TNaRY

PAGEE
GO0E+00
Pl

Fourier Analysis 8-19

8-20 Fourier Analysis

® Frequency to time domain

User entries: .
G OF COEFFICTENT PAIRGKD Y +2= 16

DO TERM= 0
M FREQUENCY TERM= 0

FREGUENCY DOMATN D&TA

ioeoaoaoE+00
g.000000E+00
K SO0E -0
= VEOO00E 00
Srem b LRAN00E -0

ye L GUODBOE+G0
Syeed BAPEO0E 0%

TraG L0000 noE+0D
: 0. 0G0QDDE+0D

O00GR0E+00
Y A AAGODT

Results:

[bﬁ HEWLETT

PACKARD

Part No. 98821-13111 Printed in U.S.A.
E0482 First Edition, April 82

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	xBack

