

DESIGNING LOGIC SYSTEMS USING STATE MACHINES

DESIGNING LOGIC SYSTEMS
USING STATE MACHINES

Christopher R. Clare
Laboratory Project Manager

Electronics Research Laboratory
Hewlett-Packard Laboratories

McGraw-Hill Book Company

New York San Francisco St. Louis Diisseldorf Johannesburg Kuala Lumpur London
Mexico Montreal New Delhi Panama Rio de Janeiro Singapore Sydney Toronto

Camera copy for this book was supplied by the author.
The sponsoring editor was Charles R. Wade, and
editing coordination was managed by Ronald Q. Lewton.
The cover was designed by Judith L. McCarty,
based on materials supplied by the author.
Michael A. Ungersma supervised production.

The book was printed and bound by Shepard's Citations.

DESIGNING LOGIC SYSTEMS
USING STATE MACHINES

Copyright© 1973 by McGraw-Hill, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America.

2 3 4 5 6 7 8 9 0 EBEB 9 8 7 6 5 4 3

07-011120-0

FOREWORD

You will find that the material in this book is considerably different
from material in previous books discussing logical design. However, it
has been around long enough to have been well tested. A dozen years
have passed since I discovered the basic design process. Five years
ago Christopher Clare began to formalize and expand upon the initial
concepts by writing this book. For the past two years a draft of his
book has been available within Hewlett-Packard Company and has been
used extensively by more than a hundred practicing engineers. The
material Chris presents has been used in the design of many successful
products including the pocket calculator shown on the cover of this book.

This book introduces an extra step into the logic design process. It is
an intermediate notation called an ASM (Algorithms State Machine) chart.
The ASM chart separates the conceptual phase of a design from the
actual circuit implementation. It gives the designer the freedom of
expressing very complex algorithms without worrying about the circuit
implementation. Having once created a satisfactory ASM chart for
his algorithm, he has the choice of reducing the chart directly into
any logic family or implementing it in a read-only-memory.

Our experience shows that some parts of this book will be challenged.
Initially you may be bewildered when you see that an ASM looks like a
conventional flow chart but is used differently. In an ASM chart the
operations described within a box and all branching associated with the
box are executed simultaneously, not sequentially as in a flow chart.
The reasons for this convention will become evident as you read the
book.

I have been told that the entire concept wouldn't work (don't worry,
it does) and that it is almost a Mealy representation and that it is
almost like a Moore representation and that it is almost like a flow
chart. I agree, it is almost many things--but it really isn't any of
them. What it is is what this book is about.

Thomas E. Osborne

November 1972

ACKNOWLEDGMENTS

I would like to acknowledge the people who contributed to the development
of this book. I would like to thank Kitty Peters for preparing the final
copy, Betty Downs and Whitey Pollock for preparing the hundreds of
illustrations, and Helen Azadkhanian and Mary Jane Robbins for typing
the rough draft.

My special thanks go to Dr. James Duley of HPL/ERL for his careful
reading and thoughtful criticisms of all parts of the book. Many sections
went through numerous versions to pass his critical eye bent on finding
ambiguities.

My thanks to Dr. Paul Stoft, Director of HPL/ERL, for having the con­
fidence in me to provide the time and the atmosphere in which this
book was created.

Finally, I would like to acknowledge Tom Osborne for his initial con­
tribution and continued support of the key ideas behind the design
process described in this book. The ideas have been employed in
HPL/ERL for the past four years with remarkable success. I have
only collected these ideas, organized them and expanded them into a
general design approach.

Chris Clare

TABLE OF CONTENTS

I INTRODUCTORY CONCEPTS 1

1. 0 Where to Begin . 1
1. 1 Basic Design Concepts in Logic . . . • . 1
1. 2 Functional Partitioning . 1
1. 3 Describing a Task with an Algorithm • • . . • . 2

II THE MODULE DEFINITION . • . 7

III

2.0
2.1
2.2
2.3
2.4

The Definition Phase
The state Machine .
Terminal Definition • .
A Sample Definition .. .
Definition Documentation

7
7
8
9

. • . . . • . 11

MACHINE CLASS DESCRIPTIONS 13

3. 0 The Description Phase . 13
3. 1 The Three Classic Description Languages of Logic. 13

Logic and Boolean Expressions . 13
Tabular Descriptions . 14
The Karnaugh Map Description . . • . 14

3.2 The ASM Chart Description of Logic 16
3. 3 Machine Classes•..•................... 20
3. 4 Class 0 - Combinatorial Logic • . • • • . • . 20
3. 5 Class 1 - Delay Machines. 22
3. 6 Class 2 - Direct State Transition and state Output . 26
3. 7 Class 3 - Conditional State Transition and State Output . 2 9
3,, 8 Class 4 - Conditional State Transition and Conditional State Output 30
3. 9 Summary of Machine Classes . 33

IV SYNTHESIS FOR GATE-ORIENTED DESIGN 35

4. 0 The Fourth Phase . 35
4. 1 Symbolic Logic Circuits . 35
4. 2 The Synthesis Process. 36
4. 3 Equation-To-Gate Conversions . 36
4. 4 Using Maps to Simplify Boolean Functions. 39

Map Subcubes and Reading Maps . 39
Reducing the Required Map Size with Map-Entered Variables 41
A Map-Reading Algorithm . 42

4. 5 Output Function Synthesis . 43
4. 6 Multi-Output Simplification . 43
4. 7 Next-State Function Synthesis . 44

Synthesizing Flip-Flops (Unclocked State Machines) . 44
Use of the Excitation Table for Flip-Flop Inputs. 50

4. 8 State Assignment . 56
Minimum State Locus . 56
Reduced Dependency . 57
Transition Races . • • . • • • . . . 59
Output Races • . 62
state Assignment Simplifications . • 64

4. 9 Hazards. 65
4. 10 Sample Implementation . . . • . • . 66

V SYNTHESIS FOR ROM-CENTERED DESIGN•...•...... ; 75

5. 0 The Read Only Memory • . 75
5.1 A ROM Structure as Combinatorial Logic . 75
5. 2 Sequential Logic in ROMs . 76

Link-Path Addressable . 77
state-Qualifier Pair Addressable. 80
Assumed Addresses .80
Variable Format Addressable . 80

V SYNTHESIS FOR ROM-CENTERED DESIGN (Cont'd.)

5. 3 Information Storage Reduction••...•••..•...••.•.......•...•..•.... 84
Coding Efficiency ...•..•....••.....••...••.••••...•...•.•....•.. 84
Bit Packing • • . . . • . • . • • . • • • • . . • . . . • . . • . • . . 86
Function Extraction . 87
Changeability and Compaction •.........•..•.•...••...••........•... 87

5. 4 Comparative Implementations ..•...••.••.....•.....••........•....•... 87

VI LINKED STATE MACHINES ..••.•.•.....•..•.....•••••..•..•...•........•.•. 97

6. 0 Linked state Machines .. 97
6. 1 Interface Linking •......•......••.......••.•.••...•................ 97
6. 2 Iteratively Linked Machines ..•••..........••...•.....•...............• 98

Adders ..•............. 98
Ripple Counters. • • • . 100
Shift Registers. • . • . . . • • • • . • . • 101

6. 3 Interpretively Linked Machines . 101
Levels and Total State . 101
Interpreted Outputs • . • . 103
Computer Structures • . 105

6. 4 Software Linked Machines • • • . 107
6. 5 Conclusion ..•.......... 107

VII INTRODUCTION TO PERFORMANCE EVALUATION•..•...•.................. 109

7. 0 Performance Evaluation • . 109
7. 1 Simulation . • . . . • 109
7.2 Test•..........•.............•.........•.•........•...... 111
7. 3 Design for Test • • . 113

INDEX•......••..•................... 115

CHAPTER I

INTRODUCTORY CONCEPTS

1.0 WHERE TO BEGIN

Deciding where to begin must plague every person
who decides to describe anything, and this author
for one is no exception. In this chapter, the starting
point is the BLACK BOX of a logic system. A
black box is found by the FUNCTIONAL PARTI­
TIONING of a task which is most suitably described
by an ALGORITHM.

1.1 BASIC DESIGN CONCEPTS IN LOGIC

This section introduces the ideas of a logic BLOCK
DIAGRAM, of SYSTEM DESIGN andofLOGICDESIGN.
It also introduces three phases in design which are
DEFINITION, DESCRIPTION and SYNTHESIS.

An essential concept in logic systems is that the
function of a logic machine can be described in­
dependently from the details of that machine. This
concept leads to the representation of the machine
as a black box which behaves in a predictable manner
and is represented by a drawing called a BLOCK
DIAGRAM. The "behavior" of a machine refers to
the relationship between INPUTS and OUTPUTS-shown
on the block diagram as TERMINALS-and TIME,
which is only implied. Such a basic black box is
shown in Figure 1.1.

INPUTS I BLACK

----~-.. ~ s.o_x :--~~~ OUTPUTS

Figure 1. 1 A Basic Black Box of a Block Diagram.

The black boxes that are used in logic systems refer
to tasks that can be described by Boolean Algebra.
The inputs and the outputs are two-valued; that is,
any given input or output can be either TRUE or
FALSE. This fact makes possible an exact specifi­
cation of the black box behavior because there can
be no ambiguous inputs or outputs. A logic system
is of interest in electronics because the advantages
of exact specifications are achieved with simple,
reliable circuits.

Two kinds of design, called SYSTEM DESIGN and
LOGIC DESIGN, are important in logic systems. The
system design defines the black boxes to be used
in accomplishing a desired task by specifying the
behavior and terminals for each black box which are
then called FUNCTIONAL MODULES. Creating a
system design in turn depends upon an understanding
of logic design, which is the formation of the details
in the functional modules.

There are three design areas involved in the process
of synthesizing (building) a module, and they are
called DEFINITION, DESCRIPTION AND SYNTHESIS.

- 1 -

Definition is concerned with the system design and
the terminals, description with the details of the
logical operations in the modules, and synthesis
with the design of actual hardware (circuits) which
will execute the description. The discussion of these
three design areas constitutes most of this book.

1.2 FUNCTIONAL PARTITIONING

Some system design basics are discussed in this
section covering the partitioning of systems into
modules and the interconnection of modules with
BUSES.

The partitioning of a logic system involves the identi­
fication of the basic operational requirements of the
desired task and the representation of each by a
functional module. In such a way a complex task is
divided into smaller constituent tasks that are easy
to define. These well-defined tasks become modules
which fall into one of three categories, either
MEMORY, TRANSFORM or CONTROL. An under­
standing of these three areas is the first step in
partitioning a system into modules.

Module Types

MEMORY modules carry information from one period
of time to another. The information STORED in the
memory consists of logic values (true or false, 1 or O)
which may be arranged singly, called BITS, or in
groups, called BYTES or WORDS. A single memory
may hold many bits or words, but for any module there
is a limittothememory,calledtheSTORAGE CAPAC­
ITY or more often just capacity for short. Each word
of information in a memory is located in a position
described by an ADDRESS so that the same information
can be found repeatedly.

Memory modules usually handle one address at a
time. The address is the input to the memory module,
and the corresponding word is the output. A word is
said to be READ from memory by such a process.
Reading several words takes separate read cycles.

Memory modules may contain fixed or changeable
information. Fixed memories store information which
may describe the operation of a machine or may
represent number tables. These memories are called
READ ONLY MEMORIES (ROM) or READ ONLY
STORAGE (ROS). Other memories are changeable in
that a word found in a particular address can be
changed by the inputs and replaced by a new word.
The new word is WRITTEN or STORED into the
address location. There are two types of changeable
memories: REGISTERS and READ-WRITE MEM­
ORIES. Registers can be read and written at the
same time while Read-Write memories must be
read and written at separate times. Generally, the
information read from a memory should be the same
as the information written.

TRANSFORM modules produce one set of outputs for
each set of inputs, where the important consideration
is the logical relationship between the inputs and
outputs rather than the time involved in the translation.
Some common transform tasks are given special
module names. For example, an ENCODER or MULTI­
PLEXER takes a large number of inputs and converts
them to few outputs. A DECODER or DEMULTIPLEX­
ER takes a few inputs and converts them to many
outputs. An ADDER takes two coded numbers and
produces a sum. A COMPLEMENTER changes all
input l's to O's and all O's to l's. Transform modules
can also change the definition of logic levels. A very
simple example is a light bulb which changes an
electric signal to a visual signal. Such a module
(light bulb) is called an INTERFACE from the logic
to the operator. It should be clear that the transform
modules do most of the work in a logic machine.

CONTROL modules produce outputs which direct the
operations of both memory and transform modules.
Control outputs depend on the present and the past
inputs. Later in this chapter both transform and
memory modules are shown to be submachines of
a control module.

Functional Division

Modules may be grouped together to simplify the
explanation or description of a logic system. For
example, it may be reasonable to designate a group
of modules collectively as a memory module, even
though control and transform modules may be in­
cluded, if the primary purpose of these modules
is to make the memory function in the system.
Figure 1.2 shows a group of modules, collectively
called a memory but composed of other more basic
modules as indicated by the enclosed boxes.

MEMORY
Storage

LJ
Address

TRANSFORM

MEMORY

CONTROL

TRANSFORM

Figure 1.2 A Collective Grouping of Modules
Demonstrating Functional Division.

Module Interconnections

A partioned group of modules is connected together
by logic-carrying wires called LOGIC LINES. A group
of logic lines used in parallel to carry a word of
information is called a BUS. The use of interconnection
busses is important to the operation of the system.

- 2 -

The BUS STRUCTURE describes the interconnecting
logic lines between a group of modules. Figure 1.3
illustrates a basic structure based on a single data
bus and one control module. In this structure the
communication of data between modules is limited
to one word at a time. Additional buses add alternative

Figure 1. 3 A Single Bus Structure.

data paths. In Figure 1.4 all possible bus connections
are made. Although this structure is flexible, it is also
complicated and expensive. Usually a bus structure is
made with as few buses as possible while still pro­
viding sufficient speed and flexibility.

A D

B E

Figure 1.4 A Maximal Interconnect Structure.

Thus functional partioning provides a division of tasks
into interconnected modules. What is needed is a
concise way of specifying the task and identifying the
terminals for each module or the whole system.

1.3 DESCRIBING A TASK WITH AN ALGORITHM

This section describes the algorithm as a process
for defining a task. The concepts introduced are the
VERBAL ALGORITHM, the OPERATIONAL FLOW
CHART and the DESIGN PROCESS.

The fundamental description of the operation of any
logic system is called the ALGORITHM. The algorithm
is much like a cookbook recipe for producing a result,
but is more carefully defined. The following algorithm
was given by Euclid in his book, The Elements, and
is a means for finding the greatest common divisor of
two numbers. It is one of the first historical math
algorithms. The algorithm is written in a free form,
called a VERBAL ALGORITHM, which consists of the
algorithm name, a brief description of its purpose and
a listing of its numbered steps. The execution of the
steps as described performs the desired task.

ALGORITHM E (Euclid's Algorithm).1 Given two
positive integers m and n, find their greatest
common divisor.

El. (FIND THE REMAINDER) Divide m by n and
let r be the remainder (O,,r<n).

E2. (TEST FOR ZERO) Terminate the algorithm
if r=O and let n be the answer.

E3. (INTERCHANGE) Replace m with n, and
n with rand go to step El.

Algorithm E could also be represented by an OPERA­
TIONAL FLOW CHART which represents the flow of
thought through the algorithm steps as shown in
Figure 1.5.

The operational flow chart and the verbal algorithm
contain equivalent information. The essential dif­
ference in the operational flow chart is that the
information describing the operations is separated
from the information describing the sequence. Both
forms, however, clearly show that the first step is to
divide m by n and end the algorithm if the remainder
is equal to zero. For a nonzero remainder, m is
replaced by n and n is replaced by r. Note that the
relative value of m and n is unimportant. If n>m,then
the first division will have m as the remainder. The
next step replaces n with m and r with n, which re­
verses m and n so that in the next division m>n.

1

Figure 1. 5 Operational Flow Chart for
Euclid's Algorithm.

Taken from Don Knuth, "The Art of Computer
Programming." See references at end of chapter.

Thus the Algorithm E is a little recipe for finding the
answer. Although it could be called a process, a
method, a technique or a routine, the word "algorithm"
denotes more than just a set of rules which gives a
sequence of operations for solving a specific type of
problem. An algorithm has five additional important
characteristic features:

1. Finiteness. An Algorithm must always terminate
after a finite number of steps; that is, the number
of steps is countable. In Algorithm E, m is
reduced for each loop, so E must eventually
terminate.

2. Definiteness. Each step of algorithm must be
precisely defined; the actions to be carried out
must be rigorously and unambiguously specified.
Algorithm E requires positive integers because
step El, divide m by n, is not defined, for
example with 5/ir or 3/0.

3. Input(s). An Algorithm may or may not require
inputs, which are initial quantities given to it
before the algorithm begins. In Algorithm E,
for example, m and n are inputs.

4. Output(s). An algorithm has one or more outputs
specified in the description which are quantities
related to the inputs or characteristic to the
algorithm. Algorithm E has one output in step E2,
which is the greatest common divisor or the
two inputs.

5. Effectiveness. An algorithm is expected to pro­
duce a useful result. That is, the outcome of the
algorithm yields a predictable result which has an
application. Algorithm E satisfies this re­
quirement.

The process of designing logic may be described by
the flow chart in Figure 1. 6 containing the following
five phases of design.

- 3 -

1. Definition. Select a set of well defined hardware
functions which should do the job.

2. Description. Describe an algorithm for using
the hardware defined in phase one to perform the
desired task.

3. Evaluation. Evaluate the operation of the defini­
tion and description. If the performance is
unsatisfactory, change the definition of descrip­
tion until satisfactory performance is achieved.

4. Synthesis. Translate the algorithm description
into hardware.

5. Test. Perform checks on the hardware to
verify operation as described in the algorithm.

The first loop in the flow chart represents the area
of greatest probable activity. Once the evaluation
phase has been passed, the design is well on its way
to completion. The description phase produces the
details of the machine algorithm and depends mostly
upon the spark of invention. The quality of a logical
design relies on the cleverness of the algorithm used
to describe the task.

PHASE 1
DEFINITION

PHASE 2 DESCRIPTION

SATISFACTORY

PHASE 4 SYNTHESIS

PHASE 5

In later chapters, each of the five phases of the
logical design process is developed in terms of a
set of practical procedures based on a firm algorith­
mic machine structure. In the next chapter the details
of defination are introduced. The description languages
are covered in Chapter 3, synthesis in Chapters 4
through 6, and evaluation and test in Chapter 7.

UHSATI SFACTORY

FAIL

Figure 1.6 Flow Chart of The Five Phases of the Design Process.

- 4 -

MACHINE ORGANIZATION

REFERENCES

CHAPTER I

Flores, Ivan: Computer Organization (Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1969).

Hellerman, Herbert: Di ital Com ter S stem Princi les
(New York: McGraw-Hill Book Company, 1967 , Chapter 5.

Wegner, Peter: Programing Languages, Information Structures
and Machine Organization (New York: McGraw-Hill
Book Company, 1968). Chapter 1.

ALGORITHM

Knuth, Donald E.: The Art of Computer Programming, Vol. 1:
Fundamental Algorithms (Menlo Park, California:
Addison-Wesley Publishing Company, Inc., 1968),
Chapter 1.

- 5 -

CHAPTER 11

THE MODULE DEFINITION

2.0 THE DEFINITION PHASE

Modules can be defined in terms of the terminals
used as inputs and outputs. This chapter clarifies
the definition of these terminals by proposing a
general STATE MACHINE model for all the modules
and a system of MNEMONICS to use on the terminals.
A number of useful concepts are brought together
in a sample definition developed in the last section.

2.1 THE STATE MACHINE

Every module of a logic system can be represented
by a general model called the STATE MACHINE.
This model contains the elements required to de­
scribe the module behavior in terms of its inputs,
outputs and time. Figure 2.1 shows three elements
in the general model: the NEXT-STATE FUNCTION,
the STATE and the OUTPUT FUNCTION. The inputs
and the outputs, which pass through the module to the
outside world and to other modules, are also called
QUALIFIERS and INSTRUCTIONS as indicated. These
elements are explained further.

The ST A TE of a machine is the memory of sufficient
past history to determine future behavior. In terms
of the state machine, this means sufficient information
to determine both an output and a next state if the
present inputs are known. In the machine, such a
memory is usually made from bistable circuits
called FLIP-FLOPS. A group of flip-flops forming
the state is called the STATE REGISTER. A different
state is defined for each combination of stored bits,
which means that there are 2n possible states for
n state register flip-flops.

1The words "next-state" form a compound adjective,
as opposed to "next state'', which is an adjective
modifying a noun.

GENERAL

STATE

The flip-flops of the state are called STATE VARIA­
BLES and are defined by a STATE DECLARATION.
Each variable is given a name such as A, B or FF6.
The group of variables making up the state is then
tied together by a CONCATENATION OPERATION,
,......__, between each variable of the state. For example,
if A, B, C, and D are the variable names, then
STATE = D,.....__C,.....__B,.....__A would be a form of the state
declaration. If A = 1, B = 0, C = 1 and D = 1 the
particular state can be represented by the code 1101,
which places the logic value for each variable in the
position corresponding to the state declaration. Other
registers can be defined in this same way.

Each state of a machine has a next state determined
by the NEXT-STATE FUNCTION. The STATE TIME
is normally determined by a periodic input to the state
register. At the end of each state time the next state
becomes the present state. The next-state function,
g, depends upon the present state, X, and the inputs
or qualifiers, Q. If the basic state time is represented
by T, andk is a counting integer, then X(kT) represents
the state at the discrete time kT. Using this terminol­
ogy, the next-state function, g, can be defined as
follows:

x((k + 1) T)= g[X(kT), Q(kT)]

The notation for the next-state operation is simplified
by using the DELAY OPERATOR which is an arrow
-+or , pointing in the direction of the next-state
replacement. The next-state function is now written
X+- g[X, Q] which means that the value of X is
changed at the end of a state time and the new value
is given by g [X, Q] where X and Q are values
during the present state time. Since the changing
of the state is delayed from the determination of
the next state, the operator is called the delay
operator.

MODULE

MACHINE

Next - Stole Function Stole Output Function

ts lnpu

Qualifie
(Q)

rs r-1

TRANSFORM MEMORY TRANSFORM

~ ~

(g) T (X) (f)
State Time

Figure 2.1 The General State Machine Module.

- 7 -

Ou!.g!t ts

Instr uctions
(I)

The OUTPUT FUNCTION generates a set of outputs
or INSTRUCTIONS, I, from the state and input informa­
tion for each state. Like the next-state function, it
consists of a transform operation, called f, which has
the following expression:

l(kT) = f[X(kT), Q(kT)J

The k and Tare the counting integer and basic time,
respectively, as in the next-state function. The notation
for the output function may also be simplified by
defining the equal sign, =, as an IMMEDIATE OPERA­
TOR which represents an operation in the present
state time. Accordingly, the terminology for the output
function is simplified to

l=f[X,QJ

The operation of a state machine cycles in an orderly
manner, reaching a stable condition during every state
time, kT. The state and, consequently, the next state
and the outputs are defined only during the stable
period of the state time. Figure 2.2 illustrates the
division of the state time into a transition period
followed by a stable period. The transition period
is determined by circuit delays.1 The length of the
stable period is the difference between the state
time and the transition time, and this length of time
must be greater than zero for the state machine
to be defined. Therefore, the state time must be
greater than the transition time. The operation of the
state machine can be visualized as a series of steps
consisting of the outputs in each stable time. For
example, in Figure 2.3 the kT time notation is used
to represent the changes and relationships in the
operations during the stable period for three suc­
cessive state times.

STATE TIME

TRANSITION PERIOD STABLE PERIOD

Figure 2.2 The Two Periods in a State Time.

STATE X(O) [/~(T) v~(2T)
INPUTS

g[X(~~~)Q(O)] /
Q(T) Q(2T)

NEXT STATE g[X(T), Q(T)] ~ g[X(2T), Q(2T)]

OUTPUT f[X(O), Q(O)] f[X(T), Q(T).] f[X(2T), Q(2T)]

0 lT 2T 3T time

Figure 2. 3 Time-Line Representation
of the State Machine Functions.

1circuit delays correspond to the "settling time"
of gates. See Section 3. 5 for further discussion
of these times.

- 8 -

In the next chapter, specific methods for describing
the next-state function and the output function are
covered. This chapter continues with the definition
of terminals.

2.2 TERMINAL DEFINITION

This section describes a system of MNEMONICS for
defining input and output terminals and some seman­
tics for defining the meaning associated with each
terminal.

A System of Mnemonics

The terminals forming the inputs and outputs of the
state machine are given names, called MNEMONICS,
consisting of letters and numbers, which are used as
memory aids in recalling the functions of operations
associated with the logic levels on the terminals.
These names are short, making them easy to manipu­
late in the design process. Although the choice of a
naming system is personal, the system chosen for
this book is recommended. This system fulfills four
objectives, which are to provide (1) a single name for
each common logic line, (2) a consistent logic level
throughout the machine, (3) an indication of the
terminal type (input, output), and (4) a means of
identifying the logic interpretation.

The basic mnemonic is a group of three or four
letters which is usually formed from the first letters
of the words describing the operation or function of
the related terminal. For example, a terminal used
to reset a register might be called RST. The symbols
used are chosen from an ordinary typewriter set to
ease the job of documentation.

An initial letter is used to signify the logic level and
the type (input or output) of terminal. For example,
RST is an output which may reset the register when
RST is a 1 or when it is a O. A prefix of L (LRST)
signifies that the reset occurs on a 0 (LOW) signal,
while a prefix of H (HRST) signifies that the reset
occurs on a 1 (HIGH) signal. The logic level of 0 is
the less positive or LOW level. The inputs are des­
ignated by the prefix Y (YES) if the test is true on
logic level 1 or N (NO) if the test is true on the
logic level 0, An input terminal testing the count
of 10 in a counter, with the basic mnemonic of CET
(Count Equal Ten), can be named YCET or NCET,
depending on the logic level when the count equals
ten.

While H, L, Y and N all involve the logic level of
the terminals and are therefore inportant in the
synthesis phase of design, another prefix, I, is useful
in the interpretation of the output or instruction
terminals. I stands for immediate function, which
means a task that is completed in the present state
time. H or L without a prefix indicates a delay
function, which means a task that is completed in the
next state time. The use of I, then, is related to the
operations in another module which become important
to the understanding of the module being designed.
Figure 2.4 summarizes the interpretation of the
basic prefix letters.

TYPE OF jMNEMONIC MEANING FOR LOGIC TERMINAL
LOGIC INITIAL E;Q_UA TO

TERMINAL LETTER 1 0

OUTPUT H operation perfonned inactive
OR

INSTRUCTION L inactive operation performed

INPUTS y statement is true statement is false
OR

QUALIFIERS
N statement is false statement is true

IMMEDIATE
I precedes either H or L to designate an

immediate function

Figure 2.4 Summary of Prefix Letters.

Terminal Interpretation

The terminal definition is completed by specifying
the exact meaning of each type of terminal, using
some simple semantics. The outputs are always
immediate functions as far as the module being de­
signed; however, the output may produce an immediate
or a delayed response in another module. The external
response is indicated in a statement defining the
terminal by enclosing it in square brackets. For
example, if IHRST is an immediate reset instruction
which sets a register R to O, then the definition would
look like

IHRST = [Reg. R = 0]

If HRST is a delay instruction to do the same function
in the next state, its definition would look like

HRST = [0 ... Reg. R]

where the bracketed operation is a delay function.
It may seem that the use of I is redundant but, later
on, the mnemonics are used alone and the I is then
useful. The inputs are defined by a simple equiva­
lence between the mnemonic and the meaning. For
example, a test for overflow of a memory might be

YOFL = memory overflow

2.3 A SAMPLE DEFINITION

This section ties together the ideas of functional
partitioning and terminal definition by defining a
simple machine to act as the dealer for the Black
Jack or "21" card game. The complexity of this
machine is suitable for illustrating the definition
process while being neither trivial nor overwhelming.
In later chapters, the Black Jack machine is again
used to demonstrate other design phases.

The Black Jack machine is described by Algorithm B,
which summarizes the basic rules involved in the game
and describes the process as seen by the game dealer
rather than the player.

ALGORITHM B (Black Jack Dealer). Given that
cards are valued 2 through 10 and aces are valued
1 or 11, play the "dealer's" logic to produce a
"stand" or "broke" game completion.

- 9 -

Bl. (START A NEW GAME) Set score to zero and
reset the 11-point ace flag.

B2. (MAKE A HIT) Accept a card andaddits face
value to score.

B3. (CHECK FOR AN ACE) Add 10 more to score
if the card entered is an ace and the 11-point
ace flag is reset. Set the 11-point ace flag.

B4. (CHECK FOR A HIT) Go to B2 if score is
16 or less.

B5. (CHECK FOR A STAND) Indicate a stand and
go to Bl if the score is 21 or less.

B6. (SUBTRACT AN ACE) Subtract 10 from score,
reset the 11-point ace flag and go to B4 if the
11-point ace flag is set.

B7. (INDICATE A BROKE) Indicate a broke and
go to Bl.

The machine might look something like Figure 2. 5.
The machine has a card reader to read the value of
the card. Three lights indicate "stand," "broke" or
"hit." A new game is begun with the card following
the broke or stand light, which corresponds to return­
ing to step Bl in Algorithm B.

DEALER
Stondl I Hit I I Broke I

Co rd Slot

Figure 2. 5 Black Jack Dealer

Algorithm B can also be described with the flow chart
given in Figure 2. 6. At this point in the design, when the
algorithm is expressed as a verbal description of
operations performed, the flow chart will be calledan
OPERATIONAL FLOW CHART. Each box will cor­
respond to some operation which may not correspond
to any particular hardware.

The operational flow chart or the verbal algorithm
points out specific operations which must be accom­
P lished by a logic machine implementing the algorithm.
These operations can be divided into several dis­
tinguishable modules. There will be memory modules
to remember the score and the 11-point ace. There
will be several transform modules, one to read the
card, one to light the lights, and one to add new cards
to the score. The adder module can also subtract
the 10 points in step B6 by adding a -10. There must
be some means to sequence these operations to per­
form the desired job, and this function is provided by
the control module. Lastly, there must be some bus
structure to handle the card value as it goes from the
reader to the adder and then to the score register.
In this design definition phase, each module is
identified and a set of mnemonics is chosen for all
the functions and terminals required.

In the following discussion, signals are named for
each module of the Black Jack machine. Assume
that the card value read by the card reader is
transferred to a register called the CARD REG­
ISTER. An instruction to transfer this value will
be called:

HTVC = [Card register+- card value]

Assume also that the two values required to handle
the additional conditions imposed by an ace are also
transferred into this register by two more operations,
which will be called:

HTlO [Card register +-decimal 10]

HT22 [Card register +-decimal -10]

A qualifier is required to detect an ace in the card
register. This qualifier will be called:

YACE = an ace is in the card register

An additional signal will be required to prevent more
than one card value from being added after each card
entry. This entry process may be described by
Algorithm A as follows:

ALGORITHM A (accept a card). Using the card's
presence, read a single value from each card.

Al. (WAIT) Wait until the card is present.

A2. (READ) Read the card and put its face
value into the card register.

A3. (WAIT) Wait until the card is removed then,
go to Al.

accept one

add 10 to
SCORE and

remember
that an 11

point ace is
present

subtract 10
from SCORE
and forget the
11 point ace

ca rd and add 82
to SCORE

NO

NO------;~

NO 11 STAND 11

II BROKE II -B7

II NEW GAME II

B1- 0-SCORE
no 11 int ace

Figure 2.6 Operational Flow Chart for the Black Jack Dealer Machine.

- 10 -

An additional terminal to tell when the card is
present will be called:

YCRD = a card is present

The adder has only one control, which will be

HADD = [sum register card register
(+) sum register]

(Note: The symbol (+) means arithmetic sum, as
opposed to the logic cross, +.)

The sum register has one control to clear the
register, that is, initialize it to zero. This terminal
will be called:

HCLS = [sum register<-0 J

Two qualifiers are required to determine the game
status. These terminals will be called:

YG21 the sum is greater than 21

YG16 the sum is greater than 16

The flag to remember the 11-point ace requires two
signals to set and reset it. These terminals will be
called:

HJ50 [11-point flag<-1 J

HK50 = [11-poirtt flag<- 0 J

YF50 = an 11-point ace has been counted

The lights require one terminal per indication. These
terminals will be called:

IHHIT = [HIT light= ON]

CARD READER

READER

TRANSFORM

TRANSFORM

w.---HTVC

W--- HT10

""--- HT22

'---- YCRD
1---- YACE

HADD

IHSTD

IHBRK

[STAND light = ON]

[BROKE light =ON]

All the terminals are drawn with the modules to
form a block diagram summary of the terminals
and their connections as shown in Figure 2. 7.

This diagram, along with the definitions for each
mnemonic, serves to demonstrate that a set of
operations can be defined to perform a verbal algo­
rithm without the specification of any circuit details.
This definition of the basic system forms the first
of the five major design phases, which are definition,
description, analysis, synthesis and test. As the
design progresses, some of the original definitions
may be changed or eliminated. However, most of
the terminals will appear in the final design. Thus,
the definition is an initial foundation for design.

2.4 DEFINITION DOCUMENTATION

The set of terminal definitions forms the first part
of a complete set of design documentation which will
eventually describe the design philosophy for each
logic module. The ultimate goal in a logic design
is to produce both a circuit which does the job and
a set of documentation which fully describes its
logic operation. No logic design is complete without
this documentation. Its absence can only mean that
the design is incomplete or misunderstood. Logic
design is primarily a symbolic manipulation process.
It can be done without a systematic approach no
easier than two 10-digit numbers can be multiplied
in the head. There is entirely too much information
to be remembered for an undocumented job to be
totally successful.

CONTROL

IHHIT
IHSTD
IHBRK

HJ50

HK50

LIGHTS

TRANSFORM

SUM

REGISTER

HCLS----1

YG21-----' YFSO

FLAG
MEMORY
1 - BIT Y G16 ------'

Figure 2. 7 A Block Diagram Definition for the Black Jack Machine.

- 11 -

CONCEPI' OF STATE

REFERENCES

CHAPTER II

Bertram, J.E.: 'The Concept of state in the Analysis of Discrete Time
Control Systems," 1962 Joint Autom. Control Conf.
New York University (June 27-29), Paper No. 11-1.

Derusso, Roy, and Close: state Variables for Engineers
(New York: John Wiley and Sons, Inc., 1967),
Chapter 6.

Moore, E. F.: Gedanken-Experiments on Sequential Machines
(Princeton, New Jersey: Automata studies,
Princeton University Press, 1956), pp. 129-153.

- 12 -

CHAPTER 111

MACHINE CLASS DESCRIPTIONS

3.0 THE DESCRIPTION PHASE

The four basic languages for describing the logical
operation of state machine modules are introduced
in this chapter. These four languages are the BOOLEAN
EXPRESSION, the TRUTH TABLE, the MAP and the
ASM CHART. ASM is shortforALGORITHMICSTATE
MACHINE. The ASM chart is important because it
describes both an algorithm and a state machine simul­
taneously. These description languages are elaborated
upon in the course of describing five classes of state
machines, all of which are portions of the state machine
model described in Chapter 2.

3.1 THE THREE CLASSIC DESCRIPTION
LANGUAGES OF LOGIC

This section introduces BOOLEAN EXPRESSIONS,
TRUTH TABLES and MAPS as languages for describ­
ing a logic expression. A more complete discussion
is given in reference at the end of Chapter 4.

Logic and Boolean Expressions

Logic is an everyday reality in the world around us.
The concepts of collective groups denoted by the
word "and," or conditional statements beginning with
the words "if," "while," "for:• and "when~' or
alternative statements using the words "then,"
"else," and "or," or negative statements using
the word "not" are all examples of words in our
everyday language that relate to logic just like this
sentence which is itself a list of alternatives sep­
arated by the word "or." Logic statements are
characterized by a forcefulness and clarity as demon­
strated by these well-known phrases: "To be or not
to be," "Do or die," "Don't shoot until you see the
whites of theireyes," "If I've said it once, I've said
it a thousand times." -

In a more positive sense, logic can be used as a tool
in the study of deductive reasoning, also known as
propositional logic. One of the most significant
advances in logic was made in 1854 when Boole
postulated that symbols could represent the structure
of logical thought. His symbolic logic language made
possible great advances in the clarity, understanding
and documentation of the process of logical thought.
The basic symbols are a 1 for TRUE and a 0 for
FALSE. There are also many symbols used to repre­
sent the relationships between the facts of an ex­
pression. The assertions or facts are represented
by letters or symbol groups. For example, the
statement "When the runners are ready and the gun
is fired, the race is started," can be divided into
three assertions represented by the following letters:

A = runners are ready

B = gun is fired

C = race is started

- 13 -

Using a raised dot · , for the relationship AND, the
statement may be represented by the expressions:

A AND B EQUALS C
or A B c

From this statement it can be seen that C is only true
when both A and Bare true, which can be said in sym­
bols, 1 • 1 = 1. Basic relationships, such as this one,
are called POSTULATES. The other basic relation­
ships in logic are the OR, represented by a cross, +,
~nd the COMPLEMENT, represented by an overbar,
A, which means NOT A. The set of symbols used in
this book is shown in Figure 3. 1, and the basic
postulates for both AND and OR are shown in Figure
3.2. These relationships form the basis for BOOLEAN
ALGEBRA, which is the study of the relationships of
two-valued variables such as the assertions discussed
above. The use of Boolean algebra is fully described
in Chapter 4. Here the primary concern is the repre­
sentation of a task with symbols.

OPERATION SYMBOL EXAMPLE RESULT

LOGIC OR + A+B 1or0

LOGIC AND • A•B 1or0

EQUAL = A=B Equal

LOGIC
COMPLEMENT

x 7\,s 1or0

MATH ADD (+) A(t)B Number

MATH MUL TJPL Y (•) A(•)B Number

DELAY OPERATOR ;! A~B A takes
B~A value of B

MATH SUBTRACT (-) A(-)B Number

Figure 3.1 The Set of Logic Symbols Used.1

X=OifX;f 1 X=lifX;f 0

0 = 1 I =0

0 0=0 1 + 1=1

1 1 = 1 0 +0=0

1 0 = 0. 1 = 0 0 +1=1+0=1

Figure 3. 2 Basic Postulates
for Boolean Expressions.

1 A variety of other symbols are also in common use.
For instance, the logic OR is often U or V; the logic
AND is often n, A or no symbol; and the logic negation
for A is often -A or A'.

Tabular Descriptions

A table is a convenient language for describing all the
relationships and outcomes in an expression.
Figure 3. 3 gives a table to describe the A · B = C
expression which was previously used to describe the
start of a running race. This table describes the AND
function between any two variables, A and B. Figure
3.4 gives tables describing the OR function and the
COMPLEMENT function. In each example, C is the
result of the operation. Thus, the truth table forms
a second language to describe logic relations.

1 =TRUE, 0 =FALSE

LOGIC VALUE LOGIC VALUE LOGIC VALUE
OF A OF B OF C

0 0 0

0 1 (}

1 0 0

1 1 1

Figure 3.3 Truth Table Describing A· B = C.

A

0

0

1

1

LOGIC OR COMPLEMENT

B c

0 0

1 1

0 1 C=A
1 1

C=A+B

Figure 3.4 Truth Tables for the OR
and Complement Functions.

The Karnaugh Map Description

The KARNA UGH MAP description is a special form
of a table arranged in such a way that the entries
representing binary codes (made from two-valued
variables) that differ in only one variable are clearly
shown by their position. The map is derived from
visualizing the code as a vector with n variables
representing a point in n-space. The map is a two­
dimensional representation of this space. The ad­
jacent codes are called UNIT DISTANCE codes.
The Karnaugh map, hereafter called a map, has
particular significance in visualizing the simplest
expressions, a subject which is covered in Chapter 4.
The formation of maps; however, requires further
explanation here.

A map can be drawn using an unfolding process which
lays out then-dimensional space into a well-described
two-dimensional plot. Each square on the plot will
correspond to one code or vector, and, information
written in that square will correspond to some
characteristic value or quality associated with that
vector. Figure 3.5 describes the translation of a
three-dimensional_c!!!,>e, formed by a three-dimen­
sional vector [C B A], into a map with labeled
fields A, B and C. The three-dimensional cube is
called a 3-cube for short. In the map, all the squares
lying within a field designated by one variable have
a code with that variable equal to 1. Outside of the
chosen field, the same variable is equal to 0. For
example, the three-variable map for the 3-cube has
C designating the field of the four lower squares.
In each of these squares C = 1. On the other hand,
in the upper four squares, C = 0. A designates the
center 4 squares. All the squares in this field have
A = 1. Because of the way in which the 3-cube is
unfolded, the codes for the squares above, below, to
the left, or to the right of any square are a unit

VECTOR = C~Ef"'A
/B

/ L_Oll (000 001 Oil 00)

000 OOI ~ A

~
110 c)

IOOV
lc.'111 100 101 Ill 110

IOI

~
UNFOLDED SPACE

t VECTOR SPACE c

c e'''A oo 01 II 10 I A I
0 000 001 011 010

c::::;> -
I 100 IOI Ill 110 c

-
MAP SQUARES I B I

FOR EACH POINT FINAL MAP

Figure 3.5 The Formation of a Three-Variable Map from a Three-Variable Cube (3-Cube).

-14 -

distance from the code in that square including
all the squares on the ends because the map repre­
sents a cube unfolded such that the leftmost column
is a unit distance from the rightmost column. Figure
3.6 summarizes the map representations of the

0-CUBE 1-CUBE 2-CUBE

A

c

D

4-busE8

remaining n-cubes up to a 6-cube. The 5-cube and the
6-cube are a little different from the smaller maps in
that they are really two and four copies, respectively,
of a 4- cube map. This choice is primarily for
convenience.

I A

c
D

=i
C F

D =-1
B I I B I

6-CUBE

Figure 3.6 Example Map Representations of Various n-Cubes.

I I !bl 11 rn
5- CUBE 5-CUBE MAP

(\ 2

Adjacent

Figure 3. 7 The 5-Cube and 6-Cube Map Relationships.

- 15 -

To understand the unit distance or adjacency struc­
ture in five and six variable maps, they are viewed as
stacked 4-cubes in Figure 3. 7. In the 5-cube map,
the left and right halves are adjacent. The six-variable
half map such that the upper right corners of the
left and right halves are adjacent as indicated. In
a similar manner all the corresponding squares on
the left and right halves are adjacent. The six-variable
map adjacency is a simple extension of a five­
variable map adjacency as indicated in Figure 3. 7
for typical corresponding squares.

Sample map descriptions for the AND, NOT and OR
functions are given in Figure 3.8. Thus, maps are yet
another way to describe relationships between logic
variables.

ITT ITT
~~~~ 

I A I 

~ 
A+B 

Figure 3.8 Maps for the Three Basic Functions. 

3.2 THE ASM CHART DESCRIPTION OF LOGIC 

This section describes the basic symbols used in 
forming an ASM (Algorithmic state Machine) chart. 
The ASM chart is a diagrammatic description of the 
output function and the next-state function of a state 
machine. It is used as an aid in designing a state 
machine to implement an algorithm and becomes part 
of the design documentation when completed. The 
symbols covered are the STATE BOX, the DECISION 
BOX, the CONDITIONAL OUTPUT BOX and the 
ASM BLOCK. 

The ASM chart has three basic elements: the state, 
the qualifier and the conditional output. A single 
state is indicated by a STATE BOX which contains 
a list of state outputs as shown in Figure 3.9. The 
state has a name, letter or number, encircled on 
the left or right of the state box. The state code can 
be placed along the upper edge of the state box. The 
state name can be used for referencing the state 
without knowing the exact state code. The code 
refers to a particular solution and is probably 
unknown when first drawing the ASM charl2 

STATE NAME 

). ,...... __ .....__*-*-*-~ STATE CODE 

© STATE OUTPUT 
LIST 

...--___ STATE EXIT PATH 

Figure 3.9 The State Box for a Single State. 

2The state code is given to the state during state 
assignment, (see Section 4.8). 

- 16 -

The OUTPUT L1ST consists of mnemonics selected 
from a defined set of operations. The mnemonics . 
name outputs which are given during the state time. 
The effects of these outputs are divided into immedi­
ate operations, which are defined by an expression 
using the = symbol, and delay operations, which 
are defined by expressions using the 1- or-+ symbol. 
In interpreting an ASM chart, it is important to 
know which operations are immediate and which 
are delayed. Usually fewer of the operations are 
immediate; consequently, to save writing, the 
immediate instructions are marked with an initial 
letter I for Immediate, while the delay operations 
are unmarked as was introduced in Chapter 2. 
For example, in an output list the immediate in­
struction, LRST, would be written ILRST while 
the delay instruction, HJ50, would have no I prefix. 
The immediate and delay operations are further 
clarified in Section 3. 5. The exit path of the state 
box leads to other state boxes, decision boxes or 
conditional output boxes. 

The DECISION BOX describes inputs to the state 
machine. The structure of a decision box is given 
in Figure 3.10. Each decision box has two exit 
paths. One path is taken when the enclosed con­
dition is true and the other when the condition is 
false. These two paths are usually indicated by 1 
for true and 0 for false. The inputs are also called 
qualifiers in the sense that they qualify an output 
or a transition. It should be stressed at this point 
that the exit paths in no way describe time depend­
ence. They only represent logic relationships. The 
state box is the only element representing time. 

Figure 3.10 The Decision Box for a Single Decision. 

The CONDITIONAL OUTPUT BOX describes other 
outputs which are dependent on one or more inputs 
in addition to the state of the machine. The structure 
of a conditional output box is given in Figure 3.11. 
The rounded corners of a conditional output box 
differentiate it from a state box. The output list in 
a conditional output box can also have immediate and 
delay operations. 

conditional exit 

CONDITIONAL OUTPUT 
LIST 

~EXIT PATH 

Figure 3.11 The Conditional Output Box. 

An ASM BLOCK is a structure consisting of one 
state box and a network of decision boxes and 
conditional output boxes. An ASM block has one 
entrance and any number of exit paths represented 
by the structure of the decision boxes as shown 



in Figure 3.12. An ASM Chart consists of one or 
more interconnected ASM blocks. Each ASM block 
exit path must connect to a state. Each possible 
path from one state to the next is called a LINK 
PA TH. There are one or more link paths per exit 
path depending on the decision box structure. 

One ASM block describes the state machine operation 
during one state time. Each ASM block represents 
the present state, X, the state outputs, f[X], the 
conditional outputs, f[X,Q], and the next state, g( X,Q] , 
for a set of inputs, Q, of the general state machine. 
Thus, the total f and g functions are described by 
the ASM chart on a state-by-state basis. 

r- - - - - - - - - - - - - - - - - - - - - - -, 
ONE 

STATE 

Figure 3.12 The ASM Block. Each ASM describes 
the state machine operation during one state time. 

One almost obvious restriction is placed upon the 
interconnection of blocks in an ASM chart. This 
restriction is that there must be only one next 
state for each state and stable set of inputs. For 
example, Figure 3.13 shows a state transition that 
is undefined for a single state vector because two 
simultaneous next states are specified. A single 
machine cannot be in two states simultaneously as 
this chart would seem to imply. Similarly, if the 
decision boxes are structured so that two simul­
taneous next states are indicated for any single 
state and set of inputs, then this structure is also 
undefined. For example, Figure 3.14 shows an ASM 
block of a state,@, and two inputs, YQl and YQ2, 
where two simultaneous next states are specified 

r------ -------1 
® I 

I 
I 

I I 
L. _ - ----------- __ .J 

@ © ,__ __ _. 

Figure 3.13 An Undefined State Transition. 

- 17 -

when YQ2 = 1. Both states (y) and © are indicated 
as the next state regardleYS of tile value of YQl. 
As before, this structure is meaningless. The re­
striction of a single next state is really a logical 
extension of the desire to express an algorithm 
which has each step well defined. In this sense, two 
simultaneous activities are undefined when specified 
in a single algorithm. 

Figure 3.15 shows two state descriptions which are 
similar to figure 3.14 but are each properly defined 
to allow only one possible next state. 

r------------ ------------, 
I 

I © 
I '----r-~ 

0 

Both exit paths 
indicated when 

Q=I 

L--------------~ ~ 
© © ___ __, 

Figure 3.14 An Undefined Link-Path Condition. 

Parallel and series connection of multiple qualifiers 
in an ASM block emerge as two equivalent forms of 
description. Figure 3.16 shows an example ASM block 
description using each form. Both descriptions produce 
the same machine operation. The choice of form is 
based on the ease of interpretation in a particular 
application. However, should there be any doubt con­
cerning the existence of a single next state when using 
a parallel form, always revert to the series form to 
verify the description. A strict series form never 
leads to more than one next state for any condition of 
qualifiers. 

Care should be taken to avoid some confusing 
structures. For example, Figure 3.17 describes an 
ASM block which has one condition box which loops 
on itself. Although the intent of this description is 
clear, that is, the transition to state G) is made when 
YQl = 1, the literal description of the next state is 
confusing when YQl = O. The condition box points to 
itself which is not a state. An equivalent and correct 
representation of the same state is given in 
Figure 3.18. This example points to one more re­
striction on an ASM chart, which can be stated as: 
every path depicted by a set of condition boxes must 
lead to a state. Otherwise the arrangement of condition 
boxes and conditional outputs in an ASM block is quite 
flexible. 



~------ ----------, 
® 

0 

:re 

r---- ------------~ 
I I 

:@ IA : 
I 

I 
I 

L _________________ J L-----~---------------

© © © © 

Figure 3. 15 Two Possible Link-Path Structures . 

r---------- - -
I 

: ® 
I 
I 
I 
I 
I 

I 
I 
L-----------

----------------, 
I 
. ----- -----------, 
I 

:® I ,__ __ _. 

I 
I 
I 

Figure 3.16 Two Equivalent Descriptions of an ASM Block. 

--------., 

0 

1--------~--- ___ , 

©L_J 

Figure 3.17 A Confusing 
Representation of the Next State. 

- 18 -

Figure 3.18 A Clear Representation 
of the Next State. 



0 

© 

Figure 3.19 Shared Condition Boxes. 

In actual practice, a couple of shortcuts are taken in 
drawing the ASM chart. First, the dotted lines out­
lining an ASM block are usually omitted because the 
block is clearly defined to be all the conditional boxes 
between one state and the next. Second, some of the 
condition boxes from one block may be shared by 
another as illustrated in Figure 3.19. This sharing 
does nothing to simplify the algorithm. It just saves 
writing. 

The ASM chart fits in with the three classical descrip­
tion languages as shown in Figure 3.20. The chart 
shows the order of conversion ease which will be 
described in following sections. The ASM chart, the 
table, the map and the equation are each capable of 
describing algorithmic state machines. Even though 
the information described is the same in each of these 
languages, each emphasizes a particular aspect of the 

machine which is capitalized upon for synthesis in 
Chapters 4 and 5. 

Shortcut for the 
experienced 

Figure 3. 20 The Conversion Order for the 
Four Description Languages. 

STATE MACHINE 

NEXT-STATE 
INPUTS LOGIC STATE OUTPUT LOGIC 0 UTPUTS 

TRANSFORM MEMORY 
~ 

TRANSFORM 
~ x 

._,_ 
f .. g t t 

Q g [x,o] kT x f [x.~ I 

Figure 3.21 The General State Machine. 

- 19 -



3.3 MACHINE CLASSES 

The general state machine model, introduced in 
Chapter 2, is divided into five classes, which are 
desirable to unify the various types of logic and to 
organize the explanation of their operation. Each 
machine class is made from a portion of the general 
state machine model shown in Figure 3.21. For 
example, class 0 has no next-state function or 
state memory. The machine is thus fully described 
by the output logic alone. In a similar manner, 
additional elements are included for higher class 
machines until class 4 includes all the elements in 
the general model. The five classes are chosen to 
define particular types of machine behavior. Briefly, 
they are called: 

Class 0 - Combinatorial 

Class 1 - Delay 

Class 2 - Direct state transition and 
state output 

Class 3 - Conditional state transition 
and state output 

Class 4 - Conditional state transition 
and conditional state output 

Any module can be identified as one of these classes 
and have connected with that identification a particular 
set of characteristics which proves valuable in re­
lating one module to another. In the following sections, 
the description of each machine class is considered in 
detail using Boolean expressions, tables, maps and 
ASM charts. 

3.4 CLASS 0 - COMBINATORIAL 3 LOGIC 

Class 0 state machines have outputs which are a 
function of the inputs alone, I = f[Q]. The portion of 
the general state machine included in class 0 is 
shown by the solid lines in Figure 3.22. 

3The words "combinatorial" and "combinational" 
are used interchangeably in logic design. 

Description by ASM Chart 

Any class 0 machine can be described by an ASM 
chart by one ASM block. The single state of this 
block has no particular significance other than rep­
resenting that the next-state function is g [X,QJ = 1. 
The condition boxes describe the useful function. 
The usable outputs are always conditional outputs 
because with a single state any state output would 
never change. A simple example machine is given 
in Figure 3.23. In Figure 3.24 the single decision 
box contains the complete function for this machine, 
while Figure 3.25 is an equivalent representation in 
which each input variable is given a separate decision 
box. In either representation, IH is given when 
B + (E • C) is true. 

{B~RANSFORM } r;,l Q E IH I =f LQJ 
c f 

Figure 3. 23 An Example Class 0 Machine. 

Although the ASM chart description of a Boolean 
function may be unconventional, its pictorial usefulness 
will be valuable as the more complex machines are 
discussed. 

Figure 3. 24 A Single Decision Box Description. 

INPU TS 
r------1 r------, 

I I I TRANSFORM o~ PUTS 

[Q] 
- t- -~ 1----1 1--r-

.J g I I X I I f r L------J L _____ ...J I 
I I 
I I 

~-----------------~ 

Figure 3.22 The State Machine Model for Class O. 

- 20 -

. 
I= f 



IH 

Figure 3. 25 A Multiple Decision Box 
Description of Figure 3.24. 

Description by Table 

The ASM chart of a class 0 machine may be con­
verted to a table by listing the conditional outputs 
resulting from all the possible input combinations. 
Figure 3.26 gives such a table for the simple ex­
ample described previously. This table can be gen­
erated by tracing the ASM chart link paths for 
each combination of inputs. 

Q f[Q] 

o-C'B~ a_b_c_d_e_f_g 

0 0 0 0 1 1 1 1 1 1 0 

0 0 0 1 0 1 1 0 0 0 0 

0 0 1 0 1 1 0 1 1 0 1 

0 0 1 1 1 1 1 1 0 0 1 

0 1 0 0 0 1 1 0 0 1 1 

0 1 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 1 1 1 1 1 

0 1 1 1 1 1 1 0 0 0 0 

1 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 1 1 0 0 1 1 

1 0 1 0 - - - - - - -
1 0 1 1 - - - - - - -
1 1 0 0 - - - - - - -
1 1 0 1 - - - - - - -
1 1 1 0 - - - - - - -
1 1 1 1 - - - - - - -

-- -INPUT = B E C OUTPUT 

000 0 
001 0 
010 0 
011 1 
100 1 
101 1 
110 1 
111 1 

Figure 3. 26 A Simple Tabular Description. 

Sometimes the function description is unknown. In these 
situations, the table can still be used to describe the 
function. For example, in Figure 3.27 a multiple 
output function is described to generate 10 different 
seven-segment characters for a display device where 
each output, a through g, corresponds to one of seven 
lights, and an output of 1 indicates that the segment 
indicated on the right of Figure 3. 27 is to be lit. The 
outputs are not designated for the inputs which are 
never to occur. These are unused input combinations. 
The table adequately describes the character formation 
even though no other description may be known. 

Number 

D 
c 
B 
A Displayed 

abcdefg 

0 

1 

2 

3 

4 

~ OUTPUTS TO I I LIGHTED 
f b SEGMENTS ·C:l_. _ _J 

5 d 

6 

7 0123Y5518CJ 
8 

NUMBERS 

9 TO BE DISPLAYED 

+---- UNUSED INPUT COMBINATIONS 

Figure 3.27 A Function to Generate Seven-Segment Characters. 

- 21 -



Description by Maps 

In Chapter 4 the map description is valuable for 
finding equations for transform operations. The map 
is valuable in going between a table and equations. 
The seven outputs from Figure 3.27 can be described 
by seven maps, one for each output, as shown in 
Figure 3.28. The maps are formed by entering the 
output corresponding to each input combination. Each 
square of the map corresponds to one input combina­
tion. These maps are another way to describe the 
seven-segment transform. 

Description by Equation 

There is a set of methods for going from the map 
to the equation which are described in Chapter 4. 
These methods yield one equation for each map de­
scription. In the seven-segment display transform, 
seven equations can describe the outputs in terms 
of the inputs. These equations are: 

a = D + B + (A • C) + (C • A) 

b = C + (A • B) + (A • B) 

c=A+B+C 

d = (A • C) + (C • A • B) + (C • B) + (A· B) 

e = X · (B+ C) 

f = D + (A • B) + (C • B) + (C · A) 

g = D + (A· B) + (C • B) + (B. C) 

A map of the decimal 
equivalent for each input 
code. -, 

I A I 

D 

D 

0 1 3 2 

4 5 7 6 

- - - -
8 9 - -

I B 

(State Map) 

l 

0 

-
1 

A I 
0 1 

1 0 

- -
0 -

B 

Output d 

1 

1 

-
-

c 

c 

D 

D 

I A 

1 0 1 

0 1 1 

- - -
1 1 -

I B 

Output a 

Al 
1 

0 

-
1 

0 0 

0 0 

- -
0 -

B 

Output e 

1 

1 
c -

-

1 

1 c 
-
-

These equations again describe the same transform 
specified by the table and the maps. 

A Boolean expression for the link paths can be read 
directly from any ASM block by forming the AND of 
all the decisions along the length of the link path. 
For example, in Figure 3.25 there are four possible 
link paths as shown in Figure 3.29. Link paths (1) 
and (2) produce an output Ill. Since these are the 
only possible link paths which produce this output, 
the equation for Ill must be the logical OR of the 
two link-path expressions. The sum of the decisions 
along link path (1) is B and along link path (2) is 
B ·E •C. An equation for Ill, then, must be the OR 
(logical sum) of these two expressions, which is 
IH= B+ (I3·E·C). This equation is equivalent to 
IH = B+ (E· C), as will be proven in Chapter 4. 
Similarly, an equation for Ill can be produced by 
the OR of link paths (3) and (4), which is iH = 
(B·E)+(B·E·C). 

3.5 CLASS 1 - DELAY MACHINES 

The delay, Class 1, machine is discussed here 
as a combinatorial circuit with added state time 
delay. The PARTIAL NEXT-STATE EQUATION is 
used to describe the next-state behavior. The con­
cept of synchronizing is covered along with the 
concepts of SYNCHRONOUS and ASYNCHRONOUS 
machines. 

1 

1 

D -
1 

1 

1 

D -
1 

Corresponding maps for each output. 

I A 

1 1 

0 1 

- -
1 -

B 

Output b 

A I 
0 0 

1 0 

- -
1 -

I B 
Outputf 

1 

0 
c - D 

-

0 

1 c 
- D 
-

1 

1 

-
1 

A I 
1 1 

1 1 

- -
1 -

I B 
Output c 

Aj 

0 0 1 

1 

-
1 

1 0 

- -
1 -

B 

Output g 

0 

1 

-
-

1 

1 

-
-

c 

c 

Figure 3.28 A Map Description of a Seven-Segment Character Generator also Described in Figure 3.26. 

- 22 -



:--0-1 
~i... ... ... 

<, ;>-- "i r--- -
' ,,,, ........ I 

'("' , ' I ;---< >--1 IH 
I ,....,,..,.. 

t 
(I) 

$&-1 
I I 

I 
1 I 
I JI 
r---
1 
I 

t ( 2) 

·&1 I 
I 
I 

, I 
I I 

0--0--1 
I -1~ ! 

0 

~ 

........ "-..... : 
---<-.... ..,..-;---1 

....... . 
(3) 

,-- -~--, 
I I ' ... --.- __ ,. 

t 

r: 0 <$:~_-J ___ , 
' ' 

{4) ~--~---' 

' 

LINK PATH 

(1) = IH = B 

(2) =IH = B·E·C 

.'. IH = B + (B·E·C) 

LINK PATH 

(3) = IH = B • E 

(4) = IH = B · E • C 

.'. IH = (B·E) + (B·E·C) 

Figure 3. 29 Obtaining a Boolean Equation from the Link Paths of an ASM Block. 

r---------------, 
I l 

INPUTS I i _ I TRANSFORM MEMORY L -1 TRANSFORM 

Q--t--1 g ~ x ~ f r~ T I ..._ ________ _. 

: g [Q] STATEJ : 

L_ - - - - - - - - - - .I~~ - - _ J 
f [X] 

Figure 3.30 The General Class 1 Machine. 

OUTPUTS 

I 

A Simplified Representation 

Figure 3. 30 describes the portion of a general state 
machine which is called a class 1 machine. It 
consists of one memory and two transform elements. 
Because the machine has no internal feedback, an 
equation can be written to describe the behavior 
involving only the inputs and the outputs. 

or as a state delay on the inputs followed by the 
transform. These representations are an aid to 
visualizing a delay machine function. 

This equation is I+- fg[Q] and does not involve the 
internal state, X. Therefore, the class 1 machine 
can be thought of as a combinatorial function, fg, 
which produces an output delayed by one state time, 
as compared to a class 0 machine which produces 
an output in the present state time. If X' represents 
the state of the combined function machine, then 
Figure 3.31 describes two ways to visualize the 
equivalent of the class 1 machine, either as a 
transform followed by a state delay on the outputs 

- 23 -

INPUTS TRANSFORM 

Q 

INPUTS 

Q 

fg 

MEMORY 

x' 

MEMORY 

x' 

TRANSFORM 
fg 

OUTPUTS 

I 

OUTPUTS 

I 

Figure 3. 31 Two Representations for a Class 1 
Machine Described by I+-fgLQJ Which Are 
Functionally Equivalent to the Class 1 Machine 
in Figure 3. 30. 



YE~LASS1 IA 
YF IB 

IC 

BLOCK 
DIAGRAM 

SHARED 
rDECISIONJ 

Ji BOXES I 

1<2:>0 
@ IA (] IB c IC 

Figure 3.32 An ASM Chart Description of a Class 1 Machine. 

Description by ASM Chart 

In the ASM chart representation of the class 1 ma­
chine, the two functions f and g are described to show 
that the next state depends on· the inputs alone and the 
output depends on the state alone. There is one 
ASM block for each state of X. The transform of 
the inputs to the next state is described by the 
condition box structure. Since there is only one 
next-state function and it depends on the inputs 
alone, the condition box structure is shared by 
every state. The ·outputs are indicated by the 
output list in each state. The ASM chart is rarely 
used to describe a class 1 machine. 

A simple three-state class 1 machine is described 
by Figure 3. 32. The shared decision box structure 
is shown above the states to emphasize the next­
state behavior. Three outputs are generated; one 
for each state. 

Description by Table 

The delay machine table description is identical to 
the description of the combinatorial (class O) machine 
except that the outputs occur in the next state. For 
example, Figure 3.33 describes a delay function 
having one output, IH, which may be compared to 
the combinatorial description in Figure 3. 26. Figure 
3.34 describes the three state <lelay function from 
Figure 3.32. 

INPUT NEXT-STATE 
Bi(C OUTPUT, IH 

000 0 
001 0 
010 0 
011 1 
100 1 
101 1 
110 1 
111 1 

Figure 3.33 A Simple Delay Machine. 

- 24 -

INPUT NEXT-STATE OUTPUT 
YEYF IA-rn--1c 

0 0 001 
0 1 010 
1 0 100 
1 1 100 

Figure 3. 34 A Tabular 
Description of Figure 3. 32. 

Description by Map 

The delay machine may also be described by a group 
of maps which relate the present set of inputs to 
the next-state output. A map of the three state 
delay machine described by the table in Figure 3.34 
may be described by the maps in Figure 3.35. One 
map is drawn for each output. 

Figure 3.35 A Map Description of Figure 3.34. 

Description by Equation 

The delay operator is used in equations to denote 
outputs occurring in the next state. The equations 
for the three delay outputs described by the maps 
in Figure 3.35 may also be described by three delay 
functions as follows: 

YE -+ IA 

YF• YE-+ IB 

YF ·YE -+ IC 



The equation provides a convenient means for de­
scribing the most common of the delay machines, 
the register. The register is a collection of single 
delay elements that store an input vector. In a 
simple register, the output is the same as the 
input delayed by one state time. If Q represents 
the input vector (a parallel set of inputs) and I 
represents the output vector (a parallel set of outputs), 
then a register holding Q can be described by Q-+I. 
Usually additional description is required to include 
the effects of other control inputs which may reset 
the register, 00 •.• 0-+ I set the register to l's, 
111 · · · 1-+ I, or complement the register (invert 
all l's and O's). 

Using the register as a simple example, the ter­
minology for the PARTIAL NEXT-STATE EQUATION 
can be described. The partial next-state equation 
is a notation used for describing the next-state 
behavior of single state variables in a more complex 
machine. In this notation, each state variable is 
given a name (letter or number) and this name is 
used as a subscript to identify that particular portion 
of the next-state function. The complete next-state 
function, g [X,Q], is described by the concatenation of 
the partial next-state functions. In a similar manner 
the complete output function, f[X,Q], can be described 
by the concatenation of the PARTIAL OUTPUT EQUA­
TIONS. For examp~ if a five-variable re~ster has 
STATE = R5°R4R3 R2Rl, INPUT= Q5Q4"Q3Q2'Q1 
and OUTPUT = 15141:31211, the description of the 
delay machine would consist of the next-state de­
scription and the output description as follows: 

~1 [Q] = Ql 

gR2 [Q] = Q2 

g [Q] = gR3 [Q] = Q3 

gR4 [Q] = Q4 

~S [Q] = QS 

fJS [X] = RS 

£14 [X] = R4 

f[x] = t 13 [x] = R3 

£12 [X] = R2 

fll [X] = Rl 

These expressions can be simplified to 

,[QJ. :: : :] 
R4 +- Q4 

RS+- QS 

IS = RS 

l4 = R4 

f(]{]= 13 = R3 

12 = R2 

11 = Rl 

which is the same as the vector forms, 

g[Q] = [X ... Q] and f[X] =[I= X] 

In these descriptions, the brackets are used to 
indicate a concatenation operation for compactness, 
rather than using the - defined- in Section 2.1. 

An example of the use of partial next-state equa­
tions is made by describing the next-state behavior 
of particular state variables assigned to the three 
state delay machine shown in the first part of this 
section (Figure 3.32). The description of this machine 
is duplicated in Figure 3. 36, which includes the state 

- 25 -

codes for the state variables G and H. 

.... 
STATE=GH 

,~. 
00 01 

@ @ © 

Figure 3. 36 A Three state Delay 
Machine Including state Codes. 

II 

Figure 3. 37 gives a tabular description of the machine 
including the state codes. The next state can be 
described with two maps, one for each variable as 
shown in Figure 3.38. Accordingly, the outputs can be 
described by maps in terms of the state variables 
as shown in Figure 3.39. These maps are partial 
functions as indicated. 

INPUTS 
NEXT NEXT OUTPUT 

STATE YEYF G-H --IA IB 

0 0 
0 1 
1 0 
1 1 

1 1 0 0 
0 1 0 1 
0 0 1 0 
0 0 1 0 

Figure 3. 37 A Tabular Description 
Including the state Codes. 

IC 

1 
0 
0 
0 

Figure 3.38 The Partial Next States Described 
in Terms of the Inputs. 

I GI 

iBE 
IIA [X] 

Figure 3. 39 The Partial Outputs Described 
in Terms of the state Variables. 



Again, each map is equivalent to equations as 
follows: 

~~ [Q] = YE . YF] 
g[Q]= 

l!ii [Q] = YE 

I [X] = 

rG .. YE .VF] 
g[QJ= I. -

LH .. YE 

[

IA = H 

I [X] = IB = H · G 
IC = G 

Therefore, the single description given by Figure 3.35 
has been divided into a next-state function and an 
output function using the state variables in between. 
However, the two-part description still describes the 
same behavior between the inputs and the outputs. In 
the next sections, the two-part description will be 
the only way to describe the machine behavior since 
the internal state will affect the next-state behavior. 

Before higher class machines are considered, the 
meaning of state time will be further explored. 

Implications of a State Time 

The delay and all higher class machines are charac­
terized by an ability to hold the information existing 
during a short stable period for the entire state time 
following. For example, Figure 3.40 gives the time­
line representation of the logic on two terminals of 
a delay machine described by YIN-+ HOUT. The 
darkened regions before each state time indicate 

YIN 

HOUT+YIN 

HOUT 
oi.----

the required stable period4 in the state time. Usually 
the stable period may represent a larger portion of 
the state time than shown. Whenever an input such 
as (a) in Figure 3.40 is a 1 in the stable region, 
the next-state output is a 1 as indicated by the arrow 
(b). Also, short pulses such as (c) are ignored when 
they occur in the transition period. The transition 
(d) occurs during the required stable period and this 
makes the next state undefined (either 1 or 0) until 
the next stable period, ( e). Such a signal, which may be 
changing during the stable period, is called ASYN­
CHRONOUS in respect to the state-time system. 
The opposite definition is a SYNCHRONOUS signal. 
A machine which is based on an equal state time or a 
state time defined by external means (such as a 
clock) is called a SYNCHRONOUS machine. A machine 
whose state time depends solely upon the internal 
logic circuit delays is called an ASYNCHRONOUS 
machine. 

3.6 CLASS 2 - DIRECT STATE TRANSITION 
AND STATE OUTPUT 

A class 2 machine is a portion of a general state 
machine having its next state determined by the 
present state alone, x .. g[ X], and outputs determined 
by the present state alone, I = f[X]. The portion of 
the general state machine forming a class 2 machine 
is indicated by the solid lines in Figure 3.41. Syn­
chronous counters are an example of class 2 machines. 
The important concept introduced in this section is 
the idea of a SEQUENCE of states. 

4The required stable period is often called the setup 
time in flip-flops. 

PERIODS 
r=:r~~---1-. 

time STATE 
TIME i----.....;,.o1---2---.--3--.i---4-----5---

Figure 3.40 An Interpretation of the state Time as a "Snapshot" 
of Logic Behavior During stable Periods. 

- 26 -



~-----------------, 
I I 

1 TRANSFORM MEMORY L - TRANSFORM OUTPUTS 

r- L ~f ~ 1-j-+---,... g X f I 

g [X] STATE J f [X] 
TIME X 

Figure 3. 41 The State Machine Model for Class 2 Machines. 

A Next-State Description Using 
an ASM Chart 

Figure 3.42 shows an ASM chart description of the 
decade counter. It is easy to see that each state 
has only one next state and that the states are in 
a SEQUENCE. The state code is placed on the upper 
portion of the state box. A transition from one state 
to the next is made for each clock time which 
defines the state time. A decade counter counts in 
the sense that the number of clock inputs is remem­
bered by the state. But, after 10 counts the states 
repeat. These repeating sequences of states are 
called CYCLES. The count of the counter can be 
determined by looking at the state variables which 
usually form the counter outputs. The absence of 
any condition boxes in the ASM chart results from 
the class 2 requirement that the next state be a 
function of the present state alone. 

STATE = cfc"'e"A 

0000 0101 

@ @ 
0001 0110 

CD ® 

® (?) 

@ ® 
0100 

@) ® 

Figure 3.42 An ASM Chart Description 
of a Decade Counter. 

A Tabular Description of the Next State 

In forming a tabular description of the next-state 
function, it is essential to realize that in class 2 
machines each present state has only one next 
state. Figure 3.43 gives a tabular description of 

- 27 -

the decade counter. For each present state, one 
next state is listed. In this counter, the outputs 
equal the present state; therefore, I = f(X] = X. 

PRESENT STATE NEXT STATE 

DECIMAL x g[XJ 
STATE STATE VECTOR STATE VECTOR 
TIME D_C_B_A D_C_B_A 

0 0 0 0 0 0 0 0 1 

1 0 0 0 1 0 0 1 0 

2 0 0 1 0 0 0 1 1 

3 0 0 1 1 0 1 0 0 

4 0 1 0 0 0 1 0 1 

5 0 1 0 1 0 1 1 0 

6 0 1 l 0 0 1 1 1 

7 0 1 1 1 1 0 0 0 

8 1 0 0 0 1 0 0 1 

9 1 0 0 1 0 0 0 0 

Figure 3. 43 A Tabular Description of the 
Next-state Equation for a Decade Counter. 

Next-State Description by Maps 

Maps of the partial next state for each of the state 
variables may be made from the table in Figure 3.43. 
These four maps are shown in Figure 3.44. 

A Next-State Description by Equation 

A decade counter can also be described by a set of 
partial next-state equations. Although these equations 
are not readily evident at first glance, in Chapter 4 
techniques will be described to obtain these equations 
from the map descriptions. The equations are: 

A .., A 

B 4-(A' B)+(B. A. D) 

gCXJ c ._. (B • C)+(A • C)+(C • A· B) 

D ._.(A. D)+ (A· B· C) 



Al A I A I Al 
1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 

1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 
c c c c - - - - - - - - - - - - - - - -D D D D 

1 0 - - 0 0 - - 0 0 - - 1 0 - -
B B B B 

Figure 3.44 The Partial Next-state Maps of the Four State Variables 
of the Decade Counter from Figure 3.42 or 3.43. 

Output Description 

In a class 2 machine, state outputs (I = f[XJ) can 
also be added. Figure 3.45 describes the decade 
counter with three added outputs: IllLOW for counts 
less than 5, IHHI for counts greater than or equal 
to 5 and IllZRO for zero counts. They are immediate 
instructions and are therefore preceded by an "I. " 
The tabular description of the outputs is given in 
Figure 3.46. A map is made for each output by indica­
ting in which states the output is desired, and the 
equations can be written as will be described in 
Chapter 4. These descriptions appear in Figure 3.47. 
All these descriptions are different ways of describing 
the same three outputs. 

@ 

CD 

® 

@ 

~ 

0000 

IHLOW, IHZRO ® IHHI 

0001 

IHLOW ® IHHI 

0010 

IHLOW (J) IHHI 

00 II 
lHLOW ® IHHI 

0100 

IHLOW ® IHHI 

AN ASM CHART WITH 
STATE OUTPUTS 

0101 

0110 

0 Ill 

1000 

1001 

Figure 3.45 An ASM Chart Description of 
the Decade Counter with Three Outputs. 

- 28 -

1 
0 

-
D 0 

STATE OUTPUTS 

DC~BA IHZRO IHLOW IHHI 

0 0 0 0 1 1 0 

0 0 0 1 0 1 0 

0 0 1 0 0 1 0 

0 0 1 1 0 1 0 

0 1 0 0 0 1 0 

0 1 0 1 0 0 1 

0 1 1 0 0 0 1 

0 1 1 1 0 0 1 

1 0 0 0 0 0 1 

1 0 0 1 0 0 1 

Figure 3. 46 Tabular Description 
of State Outputs 

I A I 
0 0 
0 0 

- -
0 -

I B 
IHZRO 

0 
0 c 
-

- D 

I A I 
1 1 1 
1 0 0 

- - -
0 0 -

I B 
IHLOW 

1 0 
0 0 c 
- -

- 1 D 

I A I 
0 0 
1 1 

- -
1 -

I B 
IHHI 

lHZRO =A • B · c · D IHLOW = (C · i5) + IHHI =IHLOW 

(A .8. 15) 

Figure 3.47 The Map and Equation 
Description of state Outputs. 

0 
1 c 
-

-



i-------------------. 
I I 

INPUT4.l+ TRANSFORM f--:--1 MEMORY ~TRANSFORM 
Q ~ g t x f 

OUTPUTS _,,, 

I= f[X] 

g [x,Ql STATEJ 
TIME X 

Figure 3.48 A State Machine Model for Class 3 Machines. 

3.7 CLASS 3 - CONDITIONAL STATE 
TRANSITION AND STATE OUTPUT 

Class 3 state machines have the next state de­
termined by both the present state and the inputs, 
g[X,Q], and the outputs determined by the present 
state alone, f[X]. The class 3 state machine is 
indicated by the solid line portion of the general 
state machine in Figure 3.48. Class 3 machines are 
capable of choosing between alternative state se­
quences. They can perform all algorithms. Class 4 
machines can only provide some simplifications. 

A Description by ASM Charts and Tables 

The conditional transition machine can be described 
by any of the four description languages already 
discussed (truth table, ASM chart, map or equation). 
This discussion starts with the ASM chart. Figure 3.49 
is an example ASM chart of a simple class 3 machine 
which counts in a cycle of 5 or 8, depending on the 
input YC8. In a class 2 macnine, there is no means 
for altering a sequence as done in this example. 

© 

@ 

© 

STATE= Ce"A 

100 

© "---..---
IOI 

0 CD 

001 110 

@ 

010 
Ill 

@ 
011 

Figure 3.49 An ASM Chart of a 
Changeable Counter 

- 29 -

There is a conditional transition from state @to{b) 
or ©. All other transitions are direct. The tr¥h 
table description in Figure 3. 50 has an input column 
in addition to the present state and the next-state 
columns. Normally, there would be an output column 
as well, but in this example no outputs are described. 
Each state must be assigned a state code before a map 
description of the changeable counter can be made. 
This important step is called STATE ASSIGNMENT. 
Some assignments result in more efficient circuitry 
than others. The process of selecting efficient state 
assignments will be covered in Chapters 4 and 5. 

One possible state assignment for the changeable 
counter is indicated by the placement of the state 
letters on a map of three state variables C, B, and 
A, as shown in Figure 3. 51. This map is called a 
STATE MAP. The same information is given by a 
STATE TABLE, in Figure 3.52, and the ASM chart, 
in Figure 3.49. Using this state assignment, the next­
state table is as shown in Figure 3. 53. 

NEXT STATE, 
INPUT, Q STATE, X g[X, Q] 

YC8 a b 

YC8 a e 

--- b c 

--- c d 

--- d e 

--- e f 

--- f g 

--- g h 

--- h a 

Figure 3. 50 Next State for the Changeable Counter. 

I A I 

I: I : I : I : b 
B 

Figure 3. 51 The State Map. 



CODE 
STATE csA. 

a 000 
b 001 
c 010 
d 011 
e 100 
f 101 
g 110 
h 111 

Figure 3. 52 The State Table. 

CURRENT STATE NEXT STATE 

INPUT STATE g[X,Q] 

YC8 

1 
0 
-
-
-
-
-
-
-

CBA C-B-A 

0 0 0 0 0 1 
0 0 0 1 0 0 
0 0 1 0 1 0 
0 1 0 0 1 1 
0 1 1 1 0 0 
1 0 0 1 0 1 
1 0 1 1 1 0 
1 1 0 1 1 1 
1 1 1 0 0 0 

Figure 3. 53 The Next-state Table 
Using the state Assignments. 

3.7.2 A Description by Maps 

The next-state equations may be described by using 
maps for the partial next states of each of the state 
variables. Therefore, three maps can describe the 
partial next-state equations of the changeable counter. 
These three maps are drawn in Figure 3.54. The 
partial next-state map for the state variable B is 
constructed exactly in the same way as described 
in Section 3.5. The next-state maps for the state 
variables A and C, however, are slightly different 
in that one of the map entries is the input YC8. The 
implication is that the next state of A and C depends 
on, or is conditional on, the input YC8. It is these 
two entries, YC8 and YCB, that make this counter 
have an alterable sequence. If YCB is a 0 and the 
counter is in state (a), then the next state of the 
A variable is a 0 and the next state of the C variable 
is 1. Since the next state of the B variable is always O, 
the next state of the counter will be 100 or state©· 
If YCB had been a 1 in state(a), C would have a next 
state of o,and A a next state oi'1' making the next state 

AJ I A I I Ai 
YC8 0 1 0 l~l~l~l~lc vcs 0 0 1 

1 1 0 1 c 1 0 0 1 c 
I B ,I I B I I Bl 

NEXT STATE OF C NEXT STATE OF B NEXT STATE OF A 
gC[X,Q] gB[X,Q] gA[X,Q] 

Figure 3. 54 The Partial Next-State Maps for the 
Three State Variables of the Changeable Counter, 

- 30 -

001 or state (b) . Thus, the entry of input variables 
on the next slate map is a method of describing in 
detail how the input affects the next state transitions 
of each variable. In Chapter 4, the entry of inputs 
on the map will be described as a method of SEL­
DOML Y USED VARIABLES. 

The Black Jack Machine Description 

In Section 2.3 a set of operations was defined for a 
machine called the Black Jack Dealer, which can be 
described as a class 3 machine. The operations 
were divided into the immediate and the delayed 
types, as follows: 

Immediate 

IHHIT 

IHSTND 

IHBRK 

Delayed 

HTVC,HK50 

HTlO, HJ50 

HT22 

HCLS 

Using these operations and the qualifier defined in 
Section 2.3, an ASM chart can be constructed to 
describe the control algorithm as shown in Figure 
3. 55. The operation of the Black Jack control can be 
understood by tracing through the ASM chart using 
the definitions from Section 2.3 and the operational 
flow chart in Figure 2. 6. 

There are eight states in the ASM chart. The dotted 
lines indicate each ASM block although these lines are 
usually implied by the chart itself. State@has five 
exit and link paths (possible paths from one state to 
the next). Four other states have two link paths, and 
three states only have one link path. Thus, the total 
number of link paths is the sum of these links, which 
is 16. 

A tabular description of the Black Jack controlis given 
in Figure 3. 56. This table was constructed by listing 
the next states and the conditions for each of the 16 
link paths and the outputs for each state. Although 
both the table and the ASM chart contain the same 
information, it is usually easier to understand the 
operation of a machine from the ASM chart than 
from the table, while the table is a convenient first 
step in going to the circuitry which is discussed in 
Chapter 4. 

3.8 CLASS 4 - CONDITIONAL STATE 
TRANSITION AND CONDITIONAL 
STATE OUTPUT 

This section covers the last and most general type 
of machine, the class 4 machine, which has internal 
states with both the next state and the outputs 
determined by the inputs and the present state. 
This type of machine is the same as a general state 
machine which is described by a block diagram in 
Figure 3. 57. Since the next-state function in this 
machine has the same form as a class 3 machine, 
the only part which has to be covered is the con­
ditional state output. 



'r'""-----
1 
I 
I 

- - --, 

!@ HTVC 

I 
I 
I 
I 
I 

I I 

'-------- -------' 
r-------- ------· 
: I 

I 
I 

® : 
I 
I 
I 
I 

r-~~~~~~~~~~~~.,;ii....~~~~....r... 0 1: 
r----- -----, 

HADD 

I 
I 

I 
I 
I 

L------------.J I 
I 
I 
I 
I 
I 
I NEW CARD INSERTED......,_,,.. 
,o 
I 
I. L ___________ J ,-- ----, --- --: 

I I 

I HT10, I 

: @ HJ50 : 
I : L _______ . ___ .J 

( 
I 

" " " ,, I 

" " " 

,, 
,, 

" ,, 

L--------------

r------ ----., 
: (f) HT22, 1 

I HK50 
I I 
L _ - ----- --- _J 

r------ ----, 
1 

11 "" IHBRK, 
\:JI HCLS, HK50 

I 

I 
I 
I 
I 
I 

I 
I 
I 
I 

0 
I I 
I I 

I I I L ___________ .J 

,------ ------1 
I IHSTND, I 
I~ I 
I \:,,V HCLS, HK50 I 

I 
I 
I 
I 
I 
I 
I 

I 

I 

0 
I 

I I 
L - - - - - - - -- - - _J 

Figure 3. 55 The Black Jack Control Algorithm Described as a 
State Output, Conditional Transition (Class 3) Machine. 

- 31 -

I 
I 
I 

0 



Q I g[x,Q] 
x INPUTS INSTRUCTION NEXT 

STATE YCRD YFSO YACE YG16 YG21 OUTPUTS STATE 

a 1 - - - - 0 a 

a 0 - - - - 0 c 

b - - - - - HTVC a 

c - 0 1 - - HADD e 

- 1 - - - HADD d c 
0 - - - -

d 0 - - 0 - IHHIT d 

d 1 - - 0 - IHHIT b 

d - - - 1 0 IHHIT h 

d - 0 - 1 1 IHHIT g 

d - 1 - 1 1 IHHIT f 

e - - - - - HTlO, HJSO c 

f - - - - - HT22, HKSO c 

g 0 - - - - IHBRK, 
HCLS, HKSO g 

g 1 - - - - IHBRK, 
HCLS, HKSO b 

h 0 - - - - IHSTD, 
HCLS, HKSO h 

h 1 - - - - IHSTD, 
HCLS, HKSO b 

Figure 3. 56 Tabular Description of the Black Jack 
Machine from the ASM Chart in Figure 3. 55. 

The Use and Description of 
Conditional State Outputs 

An ASM chart description of a class 4 machine is very 
similar to that of a class 3 machine with the addition 
of conditional outputs in the ASM block link structure. 
This means that one state may produce several 
different outputs as a function of the inputs, I = f[ X,Q]; 
and this ability often enables an algorithm to be 
described with fewer states than with state outputs 
alone. 

Figure 3. 58 provides a comparison of the effects of 
a conditional and a state output. In Figure 3. 58 (a), the 
instruction HINC is executed in state @ regardless 
of the condition YTEN, while in Figure 3.58 (b), HINC 
is executed only when YTEN = O. The difference in 

TS INPU 

Q 

TRANSFORM MEMORY 
~ 

r- g x 

these two descriptions is that the counter is set to 11 
(the counter counts higher than 10) when entering 
state (y) in Figure 3. 58 (a) and is only set to 10 
when entering state QT) in Figure 3.58 (b). It is clear 
that the conditional output allows modification of 
instructions on the basis of inputs. This ability greatly 
expands the flexibility of issuing instructions, which 
explains why a design can often be realized in 
fewer states when using conditional outputs. 

The tabular description of a class 4 machine is changed 
very little from that of a class 3 machine. There is 
still one table row for each link path. The map 
descriptions follow from the table and the equations 
from the maps as before. 

Conditional Outputs in the 
Black Jack Description 

In the Black Jack control (Figure 3. 55), states CV 
and © can be made conditional outputs on states 
@ and @) , respectively, as shown in Figure 3.59. 
This change eliminates two link paths and two states. 
The operation of the Black Jack control is the same. 
States © and © were not really required to sepa­
rate any operations since HTlO and HADD and J50 
may be performed simultaneously in state @, as may 
IHHIT and IT22 and K50 in state @ . These opera­
tions may be represented as follows: 

In state @)when E50 • YACE = 1: 

SUM +- SUM(+) CARD 
CARD +-Decimal 10 

F50 .. 1 

STATE .. (LJ 

simultaneously at 
the end of the state 
time 

In state@) when YG16 • YG21 · F50 = 1: 

IHIT = 1 

CARD +- Decimal -10 

F50 .. 0 

STATE .. @) 

TRANSFORM OUT 
1-f+ f 

I= 

During state@) 

simultaneously at 
the end of the state 
time 

PUTS rr 
g [x,a] STATEj 

t [x,a] 

TIME 

Figure 3. 57 The General State Machine for Class 4 Machines. 

- 32 -



~--+COUNTER 

®~ 
(0) 

Figure 3.58 A Conditional Output Comparison. 

3.9 SUMMARY OF MA.CHINE CLASSES 

Four languages for the description of state machines 
have been introduced. The languages are the Boolean 
expression, the table, the map and the ASM chart. 
For each of the five classes of state machines, these 
languages were used to describe the machine's 

operations and state sequence. The ASM chart was 
particularly useful in the description of class 2, 3, 
and 4 machines. 

The five machine classes were given a name cor­
responding to the equations representing the next­
state function and the output function. These relation­
ships are summarized by Figure 3.60. 

CLASS 
STATE MACHINE 

NAME OF MACHINE CLASS 
FUNCTIONS 

Class 0 I = f[Q] Combinatorial output 
x ... 1 

Class 1 I = f[X] Delay 
x ... g[QJ 

Class 2 I = f[X] State output, 
X +- g[X] direct state transition 

Class 3 I = f[X] State output, 
X+- g[X,Q] conditional state transition 

Class 4 I = f[X,Q] Conditional state output, 
X +- g[X.Q] conditional state transition 

Figure 3.60 A Summary of Machine Classes. 

r----------------- -----, I 

' I 

Figure 3. 59 The Black Jack Machine 
Described Using Conditional Outputs 
to Replace states @ and @ 
in Figure 3. 55. 

I 
I 
I 
I 
I 
I 
I 
I 
l------

- 33 -

I J_ ____________ j 

© : 
I 

NEW CARD INSERTED 

0 -......;-.----------.. 

I --.....--.... : 
I 
I 

0 
I 
I 

I 
I 
I 

·~\ 
I : 

I 
---- _________ .J 

r------- -----., 
I lHSTND, : 
: @ HCL.S, HK50 : 

I I 
I I 
I I 

: q 
I I 
I I 
L ______ , _____ _: 





CHAPTER IV 

SYNTHESIS FOR GATE-ORIENTED DESIGN 

4.0 THE FOURTH PHASE 

After definition, description and evaluation comes 
synthesis, the fourth phase of logic design. Synthesis 
is a broad study of translating carefully prepared 
logic descriptions into physical machines to perform 
the desired LOGIC FUNCTIONS. In this chapter the 
basic element in the realization is the GATE. A 
collection of gates is represented by a group of 
symbols making up a SYMBOLIC LOGIC CIRCUIT. 
A set of translations is described for converting 
descriptions into logic circuits. The basic areas 
covered are equation-to-gate conversions, map sim­
plifications, output function synthesis, next-state 
function synthesis, flip-flops, STATE ASSIGNMENT 
and HAZARDS. 

4.1 SYMBOLIC LOGIC CIRCUITS 

A set of symbols is given in this section for describing 
circuits to perform logic. The symbols are inter­
connected by lines indicating wires at one of two 
potentials. These wires are called LOGIC LINES. 
A group of interconnected symbols is called a LOGIC 
CIRCUIT. 

Specific symbols represent circuits that perform a 
given Boolean function as determined from a given 
definition of the logic levels for the circuits inputs 
and outputs. The standard used here is that the more 
positive level is the logical 1 level for all logic lines.1 

Figure 4.1 shows an electrical circuit to illustrate the 
process. The circuit need not be understood but is 
given for those who might be interested. The table be­
low the circuit describes the behavior of the input and 
the output logic lines as determined from the definition 
for the O and 1 given above it. The Boolean equation 
for this table is C = A · B. This circuit is known as 
a NAND (NOT AND) circuit. Three other basic 
types of circuits used in logic are called the AND, 
the OR and the NOR (NOT OR). Each of these circuit 
types is called a GATE. 

The symbols for the AND, NAND, NOR and OR circuits 
are given in Figure 4.2. Each symbol has a 
characteristic shape describing its logic function. 
Information may be written into the symbol to reference 
different circuit implementations of the same gate 
function or to refer to the physical location of the 
circuit. This designation will be called the TAG. 

1 
When the more positive level is used as logic 1, 
it is called "positive logic", and when the more 
negative level is used as logic 1 it is called "negative 
logic". A consistent use of either convention will 
yield equivalent logic. This book uses positive 
logic throughout. 

The tag is defined for each set of logic circuits. 
Many circuits used for logic functions do not fall 
into one of the four types mentioned. These cir­
cuits are referenced by a rectangular symbol and 
a tag, as also shown in Figure 4.2. The inputs 
are denoted by small arrows, and the outputs are 
unmarked except where reference to some special 
explanatory note is required. The logic function of 
these circuits is explained by Boolean equations, 
tables, maps, ASM charts or other logic circuits. 
In this manner, very complex electrical circuits 
may be reduced to a much simpler representation 
as a logic circuit while still maintaining adequate 
references to suitable logic function descriptions. 

+5 VOITS 

B 
INPUT 

4.7K 

ELECTRICAL 
CIRCUIT 

logic 1 

logic 0 

INPUT 
A B 

1 1 
1 0 
0 1 
0 0 

= 2.5 - 5 volts 

= 0 - 0.4 volt 

OUTPUT 
c 
0 
1 
1 
1 

LOGIC TABLE 

OUTPUT 
c 

Figure 4.1 A Basic Integrated Circuit Logic 
Element Circuit Diagram with a Logic 
Table Description. 

Mnemonics, used to name a logic line, will be 
drawn along the logic line to identify it. Mnemonics, 
drawn inside of a logic element adjacent to the inputs 
or outputs, refer only to the designation of the logic 
line internal to the logic element. These variables 
are called INTERNAL RESERVED VARIABLES. This 
convention allows the definition of a logic element 
independent of the definition of the interconnecting 
logic lines external to the logic element. For example, 

- 35 -



a logic element having three inputs, designated by 
the manufacturer as A, B and C and one output Q', 
is to be renamed for consistency with other terminol­
ogy by replacing A with B, B with C, C with HOLD 
and Q' with HOUT. The manufacturer's circuit is 
called µ. LOG 6605 and is to be renamed HLDl to 
specify that the basic function is a HOLD of an 
operation on B and C and it is of type 1 in the system. 

n inputs ~ O_!!e 
~ut 

OR oate 

~e ..:.c..r output 

NANO gate 

~e 
~put 

NOR gate 

m 
n outputs CT inputs 

Any other 
logic function 

Figure 4.2 Logic Circuit Symbols. 

The logic circuit symbol and the definition are given 
in Figure 4.3 to illustrate one use of the internal 
reserved variables to describe this renaming. 

HLD1 

B 
HOUT 

c 
HOLD 

The logic circuit 
uses this symbol 

HLD1 

t.JLOG 6605 

B A 

c B Q' HOUT 

HOLD c 

The HLDI symbol defined in terms 
of the manufacturer's nomenclotur e 

Figure 4. 3 An Illustration of the Use of 
Internal Reserved Variables. 

4.2 THE SYNTHESIS PROCESS 

The synthesis of a logic circuit, in the form of logic 
gates, is achieved by a sequence of conversions be­
tween the machine description languages, as described 
in Figure 4.4. The arrows indicate the direction of 
the easiest conversion, and the words in parentheses 
characterize each description's advantage. These 
conversions, only briefly described in Chapter 3, 
are described in greater detail in this chapter. The 
guiding concept in the synthesis process is that the 
cost of a logic circuit is related to its complexity 
and reasonable steps to reduce that complexity should 
be included. A general reduction procedure, however, 

- 36 -

is insufficient because cost in integrated circuits may 
depend on particular restrictions involving the number 
of inputs to a gate or the number of gates in a single 
package. Therefore, the conversion and reduction 
procedures covered are described with flexibility in 
mind. 

ASM CHARTS 

TABL~ 
MAPS 

EQUATIONS 

GA~S 

(algorithm) 

(storage representation) 

(simplification) 

(manipulation) 

(circuits) 

Figure 4.4 Conversion Ease and Advantages 
for Machine Descriptions. 

4.3 EQUATION-TO-GATE CONVERSIONS 

In this section the gate symbols are used to represent 
Boolean functions. The conversion from equation to 
gates is described by simple examples which demon­
strate the flexibility in the process. 

The gates required to synthesize an equation are 
determined by dividing the equation into groups of 
commo;i functions where each group is all AND, 
NAND, NOR or OR. For example, the equations in 
Figure 4.5 have only one type of function. 

A+B+C=D 

A·B·C=D 

A+B+C=D 

A·B·C=D 

Figure 4. 5 Single-Function Examples. 

The equations in Figure 4.6, however, have morethan 
one type of function and therefore must be divided into 
groups of common functions as indicated by the paren­
thesis. The resultant gate equivalents are then shown 
for each example. In this manner any equation can be 
represented by an appropriate string of gates. How­
ever, some of the four types of gates may be unavail­
able. The equation must then be changed to an equiva­
lent equation which uses the gates available by employ­
ing some Boolean equivalence relations. 



D =(A· B)+C 

E =A +(C • B) +D 

~~D 
c 
B 

Figure 4. 6 Multiple-Function Examples. 

E 

Figure 4. 7 lists all the Boolean equations which are 
relevant to the general manipulation and understand­
ing of Boolean equations. The postulates and single­
variable theorems are almost obvious. The remaining 
theorems are not obvious but can be proven.2 There 
are three relations which are the most useful for gate 
manipulations; distribution, involution and DeMorgan's 
theorem. Distribution is essentially equivalent to 
factoring. Involution and DeMorgan's theorem work 
together to interchange AND and OR functions. In 
applying these laws to Boolean equations where the 
number of gate levels is unimportant, the least 
complex gate realization is found by factoring out 
all the common terms and working from the outer­
most level down to the innermost level when con­
verting each level to the desired logic form. The 
application of these three rules to gate synthesis 
is demonstrated by the following examples: 

Example 1. Synthesize (A+B) • (C+D) with NAND 
gates only. 

(A+B) · (C+D) = (A+B) · (C+D) 

A 
8 

c 
D 

=A·B · c·D 

by involution 

by DeMorgan's 
law (2 times) 

(A+ Bl . cc+ Dl 

Example 2. Synthesize A+ (B· (C+D)) with NAND 
gates. 

2 

A + (B· (C+D)) =A· B C· D 

c 
D 

by DeMorgan's 
law (2 times) 

A+ IB· IC+Dl) 

See references at the end of this chapter for 
proofs of theorems. 

- 37 -

Example 3. Synthesize A + (B· (C· D)) with 2 input 
NOR gates. 

A + (B· (C· D)) =A + (B· (C· D)) = A+B + C+D 

c 
D 

A+IB·IC·Dll 

Example 4. Synthesize A + (B · (C+D)) with two levels 
of NAND logic. 

A + (B· (C+D) =A + ((B· C)+(B· D)) by distributive 
law 

=A + (B · C)+(B · D) by associa­
tive law 

=A· B·C · B·D by DeMorgan's 
law 

A+(B· (C+Dll 

Example 5. Synthesize (A· B · C · D • E)+F-tG+H+I 
with 2 input NOR gates and no more 
than 4 input NAND gates. 

D 

E 

by DeMorgan's law 

A . B . c . (D· E) . F . G . (H· I) 

H 
I 

by associative law 

by DeMorgan's law 

(A·B·C·D ·El+F+G+H+l 



POSTULATES 

x = OifXtl x = lifXIO 
-
0 1 1 0 

0 0 = 0 1 + 1 1 

1 1 1 0 + 0 0 

1 0 0 1 0 0 + 1 1 + 0 1 

SINGLE-VARIABLE THEOREMS 

x + 0 = x X· 1 = x (Identities) 

x + 1 = 1 X· 0 = 0 (Null element) 

x + x = x X· X= x (ldempotency) 

x + x = 1 X· x = 0 (Complements) 

X=X (Involution) 

TWO THREE-VARIABLE THEOREMS 

X+Y=Y+X 

X +(X · Y)= X 

(X+Y)·Y=X·Y 

X + Y + Z = (X + Y) + Z = X + (Y + Z) 

(X . Y) + (X . Z) = X · (Y + Z) 

(X + Y)•(:X + Z)·(Y + Z) = (X + Y)·(X +Z) 

(X + Y)·(X + Z) = (X · Z)+(X · Y) 

X Y = Y . X (Commutative) 

X (X + Y) = X (Absorption) 

(X Y)+ Y = X + Y 

X Y · Z = (X · Y) . Z = X · (Y · Z) 
(Associative) 

(X + Y) • (X + Z) = X + (Y . Z) (Distributive) 

(x. Y)+(X. Z)+(Y. Z)=(X. Y)+(x. Z) 
(Consensus) 

n-VARIABLE THEOREMS 

= X + Y + Z + . . (DeMorgan's 
Theorem) 

(X + Y + Z + ... ) = X · Y · Z · ... X·Y·Z· 

, Xn)) (Expansion Theorem) 

Figure 4. 7 Summary of Boolean Equivalence Relations. 

- 38 -



The desirability of one gate solution over another 
involves the cost of the gates; there is really no 
general way to determine the cost without trying 
some solutions. As these examples have shown, a 
problem may be subject to a variety of constraints 
which greatly affect the cost of the solution. 

4.4 USING MAPS TO SIMPLIFY 

BOOLEAN FUNCTIONS 

This section describes the use of the map description 
for recognizing simplified forms of Boolean equations 
by means of READING map SUBCUBES. Complex 
maps can be reducedbyMAP-ENTEREDVARIABLES. 
Reading a map is summarized by a general algorithm. 

A very important theorem, thus far not covered, is 
absorption. Absorption summarizes the process called 
SIMPLIFICATION, which means the removal of re­
dundant terms from an equation. Although the absorp­
tion rule is effective in practice, it is often difficult 
to identify the best way to absorb redundant vari­
ables to reach the simplest ex:pression. This 
process becomes very difficult when some variable 
combinations are unimportant. For the job of reduc­
tion, the map turns out to be a more useful description 
than the equation. For example, the map makes it 
easy to see that the equation (I>-C) + (A·D·B) + (D·C::A) 
with (D·C) + (D·B·A) as don't care combinations is 
really equivalent to A + C. This example will be 
demonstrated later. 

Map Subcubes and Reading Maps 

Map descriptions lend themselves to identifying min­
imum-literal expressions3 for Boolean functions. The 
technique involves recognizing certain patterns, called 
SUBCUBES, in the map. In Chapter 3, a map was 
described as a two-dimensional representation of an 
n-cube. A subcube is any smaller cube contained in 
the n-cube. Any single point in an n-cube is a 0-cube 
and is represented by n variables. Each successively 

3 Minimum-literal ex:pressions have the fewest pos­
sible number of occurrences of each variable. 

1-DIMENSIONAL 
SUBCUBE, A=O,C=l 

B 

higher order subcube is represented by one less 
variable until the complete n-cube is reached with no 
variables required. For example, in Figure 4.8, a 
3-cube with several subcubes, indicated by shading, 
has three variables for a 0-cube, two variables for a 
1-cube, one variable for a 2-cube and zero variables 
for the 3-cube. Just as with any n-cube, the number of 
vertices in a k-subcube will be zk; and consequently, 
the number of squares in the map will be zk. Any com­
bination of subcubes which when combined form a 
higher order subcube may be expressed with fewer 
variables. Thus, a simplified expression is formed 
by the smallest number of highest order subcubes 
that include the desired points. This technique is 
the basis for map reduction. 

Figure 4. 9 shows several map representations for 
some typical subcubes. For obvious reasons, the 
subcubes are often called MAP ENCIRCLEMENTS. 

To see how the maps are used to simplify equations, 
consider the equation Z = (A·B) + (HoC·A) + C, which 
may be described by one map as in Figure 4.10. 
Blank entries are assumed to mean O. It is easy to 
see from the complete map in Figure4. lOthat two 
subcubes are sufficient to cover all the l's; that is, 
Z will be a 1 for any point in the two subcuoes. Of 
course, the same result could be obtained by the use 
of an absorption equivalence relation; maps are just 
a little easier. Translating the map into Boolean 
equations is called READING THE MAP. 

The same map as shown in Figure 4.10 may be read 
in another way by encircling the maximum subcubes 
to cover all the 0' s. The function Z is then the comple­
ment of this function and equivalent to the previous 
solution as shown in Figure 4.11. Reading the O's 
of a map will often produce a simplified ex:pression 
of an equation in less time than reading l's if there 
are fewer O's than l's in the map. As shown, there 
is really no more information obtained by reading 
O's (although it is sometimes useful when working 
with OR gates) and therefore reading O's is seldomly 
used. 

MAP 
REPRESENTATION 

Figure 4. 8 Map Subcube Representations. 

- 39 -



B 

a 1 -subcube 
in a 2-cube 

I B 
a 2-subcube 
in a 3-cube 

A A 

c 
t---+---+-__,t---t- D 

B \. __ _ 
different 2-subcubes in a 4-cube 

B I_) 

Figure 4. 9 Several Subcube Representations. 

Z=(A·B)+(B·C·A)+C -6 literal terms 

A 

111 I lc-A·B~ 
I B I 

I A I 

ma~-Bcj 
I A I 

am~--c 
I B I 

I A I 

~h 
I B I 

Map for 

Z= (A:B) + (B·C·A) +C 

simplifies to 

Z=C+(A·B) 

with 3 I it era I terms 

Figure 4.10 The Use of a Map to Identify the Simplified Equation. 

Fl jc'. !~~ Z= CB ·C)+(A·Cl 

Z= (B·C)+(A·C) 

A 

0 I 3 2 

4 5 7 6 
c A I B I 

Prove that (B · C) +(A· C) = C +(A· B) = Z 

Z = (B +A)· C 

= B+A+C 

= (B · A)+ c 

= c +(A· B) 

by distributive law 

by DeMorgan's law 

by DeMorgan's law 

by communicative law 

QED 

D 
- - - -

8 9 - -

B I 
STATE ASSIGNMENT 

9=D·A 

D 

0 0 0 0 

0 0 0 0 

.--I--. - ~ - -1 -
a I~ -J -

I B 
COUNT OF NINE 

OUTPUT MAP 

c 

Figure 4.11 Reading the O's of a Map. 
Figure 4.12 Using Don't Care states to Reduce 

the Literals in a 9 Detector. 

- 40 -



Often in combinatorial logic certain input combinations 
either never occur or are not important in the final 
solution. These inputs are called DON'T CAREs and 
may be chosen as a 1 or a O, whichever helps to 
produce the largest covering subcubes. For example, 
a decade counter, as described in the last chapter, 
uses only 10 of the 16 possible combinations of the 
four variables. The remaining six states are don't care 
states for decoding of various count outputs. In 
Figure 4.12, dashes show the position of the don't 
cares in a map of the counter states. The largest 
cover using the don't cares to decode the count 
of 9 has the equation D· A. 

In the introduction to this section, another problem 
was mentioned using don't care entries which had 
a very simple solution, A + C. Using maps and 
don't cares, this solution is obvious. The problem is 

(D·C) + (A·D·B) + (D·C·A) 

with don't care = (I'.i-C) + (D· B· A) 

The map for this function is s!.!.9wn in Figure 4.13 
from which the solution A + C is easily read. 

A 

\! r-'I" J I 

- - - -

C =A+~ 
I -

D 
l[1 ~ i--=.-- 1_} 

I 
B 

Figure 4.13 Example Reduction. 

Reducing the Required Map Size 
with Map-Entered Variables 

Maps provide a convenient display of an equation for 
identifying the simplified terms. However, for more 
than six variables in one problem, the map itself 
becomes very unwieldy to handle manually. This 
section describes an addition to the map description 
which reduces the map size required in complex 
problems. This addition makes maps useful in most 
practical problems. 

The number of map dimensions required to represent 
a problem can be less than the number of problem 
variables. Normally, the number of map dimensions 
in a complete map equals the number of problem 
variables. A smaller map can contain the same 
information as the complete map when the additional 
information is provided by map-entered variables. 
MAP-ENTERED VARIABLES are other symbols on 
the map in addition to the 1, 0 and don't care so far 
mentioned. The map in Figure 4.14 illustrates the 
meaning of map-entered variables. The complete 
map on the left describes afunctionX = (B·C) + (C·A). 
The reduced map on the right also describes 
X = (B·C) + (C·A), but it uses A as the map-entered 
variable. 

complete 

~EE 
I 11 

map 

I B 

I I 

,reduced map 

I B I 

-
c A I 

1: A I 
map-entered variable J 

Figure 4.14 A Reduced Map Example. 

The A in the reduced map means that a 1 occurs in 
the same location in the A field of the complete map 
and a 0 occurs in the corresponding location in the A 
field. The 1 in the reduced map means that a 1 occurs 
in both fields of A in the complete map, which makes 
the variable A a don't care in this position of the 
reduced map. In any example, the number of map­
entered variables plus the number of map variables 
will equal the number of problem variables. Thus, 
the map dimension can be reduced by the number 
of map-entered variables. 

It is more important to be able to read a reduced 
map than it is to be able to reduce a map. The last 
example demonstrated a simple reduction from three 
to two dimensions. Continued reductions can reduce 
the map to a 0-cube which contains a single equation. 
The reduction process becomes more complicated 
when symbols appear in the maps to be reduced. 
Furthermore, it can be shown that it is difficult to 
obtain the simplest equation by this method. For 
these reasons, the reduction process is best suited 
for compacting a description rather than obtaining 
an equation. The remainder of this chapter describes 
ways to form maps with map-entered variables, using 
the ASM chart. The skill to be learned is how to 
read such a map using map encirclements. 

A map containing map-entered variables is read in 
two steps. Step one is to read all the l's counting all 
map-entered variables as O. Step two is to take each 
map-entered variable separately and find an encircle­
ment using previously circled l's as don't cares. These 
steps can be completed on a single map by mentally 
changing the variables. In example 1, the first step is 
to let the map-entered variable A be 0 when encircling 
l's, which yields C. The second step is to let the l's be 
don't cares when finding the largest encirclement 
including A, which is B. This encirclement is ANDed 
with the map-entered variable A. Thus, the encircle­
ment of A would be read A·B· The OR of all encircle­
ments gives the final solution Z=C+(A·B). Additional 
examples follow. 

Example 1. Read the following map for Z with the 
map-entered variable A. 

z = c + (A·Bl 
B 

j ) 

- 41 -



Example 2. Read the following map which has two 
map-entered variables, YZ and YX. 
The map describes a logic signal HRT. 

A 

YZ If I YU 

c H -
I... 

B 

HRT = (A·B) + (YZ ·A)+ (YX ·C ·B) 

Example 3. The following map has three map-entered 
variables, X, Y and Z. The encirclements 
are left out as an exercise for the reader. 

A 

x I 

- I 

z I 

D 

I y I 

B 

MAP= ,(A·Bl + CA·C·D),+ 
t' s alone 

-

c 

I 

(X·A·C) + (Z·C·A)+ (Y·C·D) 

map-entered terms 

Example 4. The following map can be read two ways: 

A 

CD ® 
c (o -) 

B 

(A·B·Cl + CD·C·Al + (D·A·C·Bl 

I A 

~ 
OR 

c D 

® 
-

B 

(A·B·Cl +(D·A·Bl+ CD·A·C·Bl 

A map-entered variable may be a single term or a 
Boolean expression. Whenever two adjacent squares 
contain expressions with a common variable, or a 
variable and its complement, some additional simpli­
fication might be realized if the variable in question 
is made a map variable. Of course, this choice doubles 
the map size and, unless minimization is essential, 

such an expansion may not be warranted. Reading a map 
with map-entered variables always yields a valid 
solution and, observing the above caution, it also yields 
as minimum a solution as any size map. The value 
of map-entered variables is seen when complex 
sequential machines can be minimized using simple 
maps. More complex minimization techniques are 
rarely needed. In the rest of this book, various 
examples will show that map-entered variables are 
a natural consequence of logic design using ASM 
charts. 

A Map-Reading Algorithm 

All the map-reduction techniques for single outputs may 
may be summarized by Algorithm M for obtaining the 
minimum number of maximum size subcubes. 

ALGORITHM M. Find the minimum-literal ex­
pression from a map which may include seldomly 
used variables and don't care entries. The map 
dimension is n, and k is a counting integer. 

Ml. Consider all seldomly used variables as O's 
and set k =0. 

M2. Encircle all the uncircled l's which can be 
included in only one k-subcube and cannot be 
included in any (k+l)-subcubes. These are 
the ESSENTIAL TERMS. Encircle the re­
maining l's which cannot be included in a 
(k+l)-subcube. Use don't cares where helpful. 

M3. Set k = k + 1. If all 1 's are circled, then go 
to M4; otherwise, go to M2. 

M4. Set one uncircled seldomly used variable to 1 
and consider all other seldomly used vari­
ables as 0 and all other circled 1 's as 
don't cares. If all seldomly used variables 
are circled, go to M5; otherwise, set k = 0 
and go to M2. 

M5. Read each subcube, including any circled 
seldomly used variable in the expression. 

M6. For maps with no seldomly used variables, 
read the O's and compare with M5. 

Other Methods of Finding Gate Solutions 

There has been considerable study in switching theory 
concerning better methods to find the best gate solution 
for a given equation set. All of these techniques, how­
ever, are extensions of the methods described in this 
section and consist of two major operations: (1) 
identifying all the possible subcubes, often called 
MINTERMS, and (2) selecting the minimum set of 
subcubes that cover the desired function. The Quine­
McClusky table technique is one well-known method 
but is quite lengthy. The algorithms by Roth, as 
reported in Miller, are also very powerful but are 
more mathematical. Roth's sharp (#) operation finds 
all the subcubes in one algorithm. Roth's algorithms 
are TOPOLOGICAL (based on the state space), while 
McClusky's algorithms are TABULAR (based on 
Boolean equations). References to works by these 

- 42 -



authors and others are given at the end of the chapter. 
Further discussion is not required for the purposes 
of this book because these techniques are generally 
computer oriented rather than concept oriented. 

4.5 OUTPUT FUNCTION SYNTHESIS 

In this section, it is shown by a simple example that the 
ASM chart outputs result in combinatorial output maps 
with map-entered variables which can be synthesized 
as in the preceding section. Figure 4.15 describes a 
four-state machine, with several state and conditional 
outputs. The state-assignment map gives the location 
of the states on the map of the state variables, A and B. 
The qualifiers are the map-entered variables. 
IHZQ is a state output which occurs in state@and 
state@. The map for IHZQ, then, has a 1 entered 
in these states to represent the output during these 
states. IHQT occurs in state@only. HR and HMF 
are both conditional outputs from one state and 
state outputs from another. The condition required 
for HMF in state@is YZ = 1; therefore, a YZ is 
entered into state@'> of the HMF map. The condition 
for HR in state@ is YT = O; therefore, a YT is 
entered into state@ of the HR map. The output 
equations for HMF and HR are read from the maps 
using the techniques of map-entered variables, 
yielding HMF = A·(B+ YZ) and HR= A· (YT+ B). 
States which are not used on the map are don't care 
states in every output map. If an output is of the L­
type, as defined in Section 2.2, the output equation 
is complemented. 

4.6 MULTI-OUTPUT SIMPLIFICATION 

In this section, some additional gate simplifications 
are described for multiple outputs from a common 
set of variables, such as the state variables. The 
basic concept is to isolate common terms shared by 
several outputs and use these terms to save gate inputs. 

HMF 

Common terms are often easy to identify in the Boolean 
equations. For example, the Boolean equations 

H1 • [{A ·C~+(B · ~) + { C·B) 

H2 = (A·C) +(C·Bl+ (B·D) 

Common Terms 

obviously have A· C as a common term. The gate 
implementation for Hl and H2 can share this common 
term, as shown in Figure 4.16. 

Figure 4.16 A Common OR Term 
Saving Gate Inputs. 

Another example of common terms in two equations 
is found in the following output equations: 

H1 = 

H2 = 

STATE= B"A 

{At·C·1ilJ• {il·Bl 
(A· B·C·Dl t (C·Dl 

Common Terms 

0IJ 
~~ 

STATE ASSIGNMENT 

~ 
~[}IG] 
IHZQ =A 

-~ 
s[_TI 

IHQT = A·B 

rn 
~~ 

HMF=A·(B+YZ) 

I A I 

~IB 
HR= A. (YT+B) 

Figure 4.15 The Synthesis of Several Outputs of a Conditional Output State Machine. 

- 43 -



These common terms are in an AND function; and 
when isolated in a common gate, they can also save 
gate inputs, as illustrated in Figure 4.1 7. 

H1 

H2 

A 
Figure 4. 17 A Common AND Term Saving Gate Inputs. 

Common OR or common AND terms can be recognized 
from the map representations as well as from the 
equations. The OR terms appear as common 1 outputs 
in two or more maps, as in Figure 4.18. Sometimes 
redundant covers are made just to form common OR 
terms. The common AND terms are a little less 
obvious. They appear on the map as subcubes, cover­
ing groups of outputs in both maps but requiring 
additional restrictions by indicated map variables 
as illustrated in Figure 4.19. Common AND and OR 
terms can be utilized to save a great many gates 
in complex multi-output functions. The exact solu­
tion used may depend on many factors which are hard 
to express in a simple rule. This section has just 
introduced the techniques for recognizing common 
terms. 

A c N 

4.7 NEXT-STA TE FUNCTION SYNTHESIS 

In this section the process for finding the gate imple­
mentation for the next-state equation is discussed for 
any ASM chart or tabular description of a state 
sequence with a given set of state codes. The process 
first covers state machines using no state storage 
elements; then it covers forming the input function 
for various kinds of flip-flops used as the state storage 
elements. The basic concepts introduced include the 
RS, T, D and JK FLIP-FLOPS, the CLOCK INPUT, the 
PARTIAL NEXT-STATE EQUATION and the TRAN­
SITION TABLE. 

Synthesizing Flip-Flops 

(Unclocked State Machines) 

Flip-Flops are excellent examples for discussing 
unclocked state machines. 4 The RS flip-flop is the 
simplest flip-flop and may be described by the 
ASM chart in Figure 4.20, which shows that there 
are two essential states,@ and@. In this example, 
as in all unclocked state machines, the state time 
is determined by the qualifier inputs. If one or the 
other of the two inputs is equal to 1, the state machine 
is forced into one of the two states. The set input 
causes the IHFX output to equal 1. If, however, both 

4Even though flip-flops often have clock inputs, they 
are still unclocked in the sense that the state time 
is determined by inputs alone. A clocked system 
uses these flip-flops with clock inputs. See Section 3. 5 
and the discussion of JK flip-flops in this section. 

A 

I I ~ ...., 
OMMO 

OR 
TERM 

----..... 
I I ..... , I I I 

c - c 

D 
.!..._ µ I I J_ ~ I 

D 
I I 

B B 

H1 = (A·C) + (B·D) + (C· B) H2 ! (A·C) +(C·B)+(B·D) 

I 

I 

I 
D 

I 

Hl 

Figure 4.18 Recognizing a Common OR Term. 

A v COMMON~_.---;1--~Ar---+---. AND 
TERM 

~ ····~ ~A NDED 
ITH A ...... · c w 

D i-----<1-----t---1 

B B 

- ANDED_ 
WITH A 

(A·B· C· D)+ (A ·B) H2 = (A·B·C·D)+(C·D) 

Figure 4.19 Rec.ognizing Common AND Terms. 

- 44 -



YS and YR equal 1, the machine races between states 
making the present state uncertain until one of the 
two inputs goes to 0. For this reason, the state of an 
RS flip-flop is generally undefined when both Rand S 
are equal to 1. 

The RS flip-flop is the easiest of the flip-flops to 
synthesize. The simplified next-state equation can 
be found by constructing a next-state map for the 
ASM chart description in Figure 4. 20. The map can 
be made from the table description of the ASM chart 
or directly from the ASM chart by reading it as a 
kind of table. Figure 4.21 gives a tabular description, 
the map and the next-state equation for the ASM 
chart given in Figure 4.20. 

0 

YS~IHFX 
YR~IHEX 

BLOCK 
DIAGRAM 

IHEX = [E OUTPUT = 1] 

IHFX = [F OUTPUT= 1] 

YS = set input 

YR = reset input 

0 

Figure 4.20 The ASM Chart for an RS Flip-Flop. 

PRESENT STATE NEXT 

INPUT STATE OUTPUT STATE 

YR"Ys x " x 
IHEX IHFX 

- 0 0 I 0 0 
- 1 0 I 0 I 

0 - I 0 I I 
I - I 0 I 0 

TABLE 

I YS I 

0 (1 1) 0 
-
·x (t ') 0 0 

- I YR I 
X-(YS·X)+(YR·X) 

NEXT-STATE MAP 

Figure 4. 21 Table, Map and Equation Description 
of the Next State of an RS Flip-Flop. 

- 45 -

The key step in synthesizing the next-state equation 
is making the delay function an immediate function. 
Initially, the delay function was used to indicate 
the next-state behavior of the function described. In 
this example and other unclocked machines the state 
time becomes negligible compared to any input time, 
and thus the delay function becomes an immediate 
function. The next-state equation in Figure 4.21 can 
be made an immediate function by replacing the delay 
operator, .... , with an equal sign, =. The resulting 
Boolean equation can be converted to gates as shown 
in Figure 4.22. 

x = (YS . X) + (YR . X) 

X=YS·X · YR·X 

IHFX =X 

IHEX =X 

X =IHFX 

Figure 4. 22 A Direct Implementation of the 
Next-State Equations fortheRSFlip-Flop. 

The RS flip-flop is further simplified by assuming the 
simultaneous input of YS and YR = 1 will never 
occur. This choice is prompted because the rapid 
changing of state indicated by the ASM chart in 
Figure 4.20 for these same conditions is a useless 
behavior for a circuit in a logic system. Figure 4.23 
gives the next-state map and equation for the RS 
flip-flop when the input condition YS and YR = 1 is 
called a don't care. Several possible implementations 
are given in Figure 4. 24. 

YR 
NEXT-STATE MAP 

x-YS+(X·YR) • x~YR+ (X·YS) 

Figure 4. 23 The Next-State Map and Equation 
for the RS Flip-Flop Using YR and YS = 1 as 
a Don't Care. 



YR~IHFX 
x 

YS IHFX 

YS~IHFX 

YR~IHEX 

X = YS + X +YR 

X= YR+ X+YS 

X = YR - X YS 

Figure 4. 24 The Implementations of an RS 
Flip-Flop Using YR and YS = 1 as a 
Don't Care Input. 

Each of these examples is an RS flip-flop. The symbol 
for the RS flip-flop, to represent one of the circuits 
in the E!evious_ discussion, is a box with the tag FF, 
inputs R and S and outputs F and E, 5 as shown in 
Figure 4.25. For the purposes of this book, a more 
specific tag is not required. 

FF FF 

s F -s~ F-
means 

R E for example 
-'R" E-

Logic Symbol Possible Logic Circuit 

Figure 4. 25 An RS Flip-Flop Symbol. 

The D, T and JK flip-flops are three similar state 
machines which often are elements of more complex 
machines. Unlike the RSflip-flop, these flip-flops have 
an input called clock, which is used to establish the 
state time, and a next state which is specified for all 
input combinations. Figures 4.27, 4.28 and 4.29 show 
the ASM charts for these three flip-flops. The simi­
larity is evident. In all three the outputs are the same 
in states (a) and @, and in states& and @. 
When any r'irP-flop is in state CE) or d , the clock 
input, YC will cause a change in the ou ut when it 
goes to a 0. Each flip-flop has a single qualifier 
~ting u~the transition from (a) to ®• or from 
\£} to d . It is the small Crlff erences in these 
qualifiers at separate the behavior of the flip-flops. 

The delay flip-flop, or D flip-flop, has a clock input 
and a D input. At each 1 to 0 transition of the clock, the 
D flip-flop takes the input during the 1 level of the clock 
and holds this level on the output until the next 1 to 0 

5The use of F and E flip-flop outputs rather than 
the sometimes more conventional Q and Q was chosen 
because the two flip-flop outputs are two separate 
outputs rather than one s_!gnal and its complement 
as implied by Q and Q. A _£_ase in_point _!.s the 
RS flip-flop in Figure 4. 24; E -/: F when Sand R = O. 

A 

B 

c 

TRANSFORM 

(COMBINATORIAL 
CIRCUIT) 

' SYNCHRONIZED 
OUTPUTS 

FF __) 
1-----1---10 F 

The state time is 
defined by o clock 

lo flip-flop symbol 

Figure 4. 2 6 D Flip-Flop as a Delay Synchronizer. 

@ 

BE 
STATE 

ASSIGNMENT 

0 

STATE= EfA 

IHEX = [OUTPUT E =1] 
IHFX = [OUTPUT F =1] 

YC =CLOCK 

YD = D INPUT 

Figure 4.27 An ASM Chart for a Possible 
Clocked Delay Flip-Flop. 

clock transition. In this manner, it delays a change at 
the input until the end of a state time, which is defined 
by the clock. Figure 4. 26 shows the use of D flip-flops 
to synchronize the outputs of a combinatorial circuit 
with the state times of a clock. The ASM chart in 
Figure 4.27 shows that the D input, called YD, and its 
complement, called YD, are used to set up the D 
flip-flop for the proper transition while the clock is 
set to 1. Once states @ and @ are reached in the 
setup, the next state is determined by the clock alone. 
This behavior means the Dinputmustbe correct while 
the clock is set to 1. Even very short pulses on the 
D input during this time might change the flip-flaps's 
state. Flip-flops with this behavior are often called 
"one's catchers" and are quite useful in a system 
when used with proper care. 

- 46 -



The toggle flip-flop, or the T flip-flop for short, has 
an ASM chart as shown in Figure 4.28. Both states 
(a} and @) have the same qualifier, YC·YT. While 
YT=l, the output will change state, or toggle, on each 
clock. While YT=O, the output will remain unchanged. 
This flip-flop is a one's catcher. 

@ 

0 

IHEX = [OUTPUT E= 1] 

IHFX = [OUTPUT F =1 J 
YC = Clock 

YT = T input 

Figure 4.28 The ASM Chart for a T Flip-Flop. 

The JK flip-flop, shown in Figure 4.29, has separate 
inputs, J and K, to set up the next state from states 
(a) and @). This feature makes the JK more general 
tmln either the Dor T. The JKflip-flop can be viewed 
as a clocked RS with its behavior defined for all 
input combinations. When both J and K are equal to 1, 
the flip-flop toggles on each clock; otherwise, the J 
input acts like a clocked SET, and the K input acts 
like a clocked RESET. This JK is also a one's catcher. 

The syntheses of a D, T or JK flip-flop as just de­
scribed can proceed directly from the ASM chart. The 
two functions to synthesize are the next-state function 
and the output function. A complete design will be done 
for the JK fkip-flop using the state assignment shown 
in Figure 4. 29. (State assignment is covered in Section 
4.8.) 

First, the output function is found by making a map 
using the state variables as map variables and enter­
ing a 1 for each state giving the desired output. A 
separate map is made for each output. Looking at 
Figure 4.29, there are two output~ IHEX and IHFX. 
The output IHEX occures in states ~and QV, there­
fore, a 1 is entered in these state positions as shown 
in Figure 4.30. Reading this map yields IHEX=B. 
Repeating this process for output IHFX yields IHFX=B, 
as shown in Figure 4.30. 

Second, the next-state function is synthesized by 
deriving the partial next-state function for each state 
variable. These two functions can be found in the same 

- 47 -

manner as the next-state function for the RS flip-flop, 
or the functions can be found directly from the ASM 
chart by using maps and map-entered variables. The 
direct method will be taken. Starting with a map of the 
states using the state variables as map variables, an 
entry is made for each state by looking at the behavior 
of a single state variable for every link path out of the 
state. The conditions for all link paths that lead to a 
next state of 1 are entered as map-entered variables. 
When every state is completed for a single state 
variable, the resultant map is read to yield the 
partial next-state equation for that state variable. 

STATE = Ef'A 

@ 

0 

0 

8±] 
~rn 

STATE 
ASSIGNMENT 

!HEX = [E OUTPUT = 1] 

IHFX = [ F OUTPUT = 1] 
YC =CLOCK 

YK = K-input 

YJ = J-input 

Figure 4. 29 An ASM Chart Description 
of a Clocked JK Flip-Flop. 

STATE= B,...A 

Bffi B~ 
IHEX= B IHFX=B 

Figure 4.30 The Output Functions 
for the JK Flip-Flop. 



All the link paths leading to the next state of 1 for 
variable A are highlighted in Figure 4. 31. The con­
ditions for each of these paths are entered into the 
next-state map for A shown in Figure 4.32. In state 
(a) enter YC·YJ. In state @enter 1, since the sum 
oY both path conditions is 1. In state (C) enter 
YC· YK, since the path is the 0 exit of the ~dition 
box. In state @) enter 0, since all paths lead to 0 for 
the next state of variable A. 

STATE: B"A 

0 

IHFX 

0 

YC + YC = I 

Figure 4. 31 All the Link Paths Leading to the Next 
state of A = 1 Are Darkened. The Conditions for 
These Paths Are Entered Into the Next-State Map 
for Variable A. 

STATE= BA 

IA I A I 

GB YC·YJ I 

B 0 YC.YK 
~ 

gA(X,Q) g8[X,O) 

Figure 4. 32 The Next state Maps for 
Variables A and B in the JK Flip-Flop. 

All the link paths leading to the next state of 1 for 
variable B are highlighted in Figure 4.33. The con­
dition for each of these paths are entered into the 
next-state map of B shown in Figure 4.32. In state (a) 
enter O, since neither link path leads to next st::rte 
of 1 for B. In state ® enter YC, since the link path 
from @ exists on tlie 0 of the condition box for the 
next state of 1 for B. In state (cl enter 1, since all 
link paths lead to 1 for the next st'a{e of B; and finally, 
enter YC in state @). 

The two next-state maps are read using the rules of 
map-entered variables. First, circle all the l's count­
ing the map-entered variables as O's. Second, circle 
the map-entered variables one at a time counting 
all 1' s as don't cares and all other unlike variables as 
O's. The results of the encirclements and map reading 
are shown in Figure 4.34. These two equations form 
the next-state function for the JK flip-flop. 

Normal Boolean algebra is used to manipulate the 
next-state equations into a form directly imple­
mentable in gates, after the delay operator is re­
placed by an equal sign as was done in the RS 
example. Suppose that NAND gates are available. The 
two equations can be worked into the following forms 

A= A-(B• YC· YK) • B•YC• YJ 

B = YC·A · B·A-YC 

STATE= B"A 

® 

0 

01 0 

® IHEX IHFX 

0 

YC YC 

Figure 4. 33 All the Link Paths Leading to the 
Next state of B = 1 Are Darkened. 

- 48 -



STATE= B"'A 

~~ ~~ 
Next state of A Next state of B 

A- (A·B)+(YC · YJ · B) + ( YC· YK ·A) 

B+ {A·B)•{ YC·A)+(YC·B) 

Figure 4. 34 The Map Reading of the Next state 
Functions for the state Variables in the JK 
Flip-Flop. 

To draw the gates for these equations, assume the 
existence of A and B as two points on the paper. 
Work from these two points to form A and B, and then, 
using these terms and the inputs, form all the gates 
required to generate A and B, which were assumed at 
the start. Finally, add the required gating for the output 
function, which in this example amounts to a connection 
to B and to B. The final combined circuit for both 
partial next-state functions and the output function 
yields a design as shown in Figure 4.35. Note that this 
design was a direct implementation of the next-state 
function and no attention was paid to hazzards, which 
will be covered in Section 4. 9. Each partial next-state 
function of an asynchronous machine, such as this one, 
must be free of hazzards. It turns out that this 
design is free of such problems; therefore it is 
finished. This example has demonstrated the pro­
cedure of going directly from the ASM chart to maps, 
to equations and then to gates using the next-state 
function and the output function. 

YK 

YJ 

YC >--<1,__-----1 

The JK flip- flop can be made into the D or the T 
flip flop by minor changes in the JK inputs. As was 
discussed, the D flip-flop has an ASM chart where 
J = D and K = D, and the T flip-flop has an ASM 
chart where T = J = K. The symbols for the JK, 
D and T flip-flops are summarized in Figure 4. 36. 

FF FF 

D 

c 

D flip-flop JK flip-flop T flip-flop 

Figure 4. 36 The JK, D and T Symbols. 

Before leaving the subject of designing flip-flops, 
consider the design of a flip-flop which is not a one's 
catcher. Such a flip-flop could recover when the input 
changes back to 0 before the clock. Figure 4. 37 
shows the ASM chart for a flip-flop with this feature. 
Notice that the J and K inputs can return the flip-flop 
to states ® or © after the flip-flop reaches states 
(J)) or @) • Sufficient time should be allowed for the 
sYate to settle before the clock goes to O. This time 
depends on the internal gate delays and not the clock. 
This flip-flop is called edge-triggered. The design of 
this flip-flop follows the same procedure as used in 
the last example, but the resulting gate circuit is 
more complex. A suggested map uses YC, YK, A, 
and B as the map variables and leaves YJ as a map­
entered variable. The details of this design are left 
as an exercise. 

Another useful logic element is a GATE LATCH. 
This circuit can be confused with a clocked D flip­
flop because it behaves somewhat the same for storing 
data but differs in that the data passes through when 
the gate input is 1. Figure 4. 38 shows the ASM chart 
for this device and points out there are only two states 
as in an RS flip-flop. Neither the RS flip-flop nor the 
gated latch can be used alone as delay elements in 
synchronous machines; although the gated latch is 
often used as a temporary memory in logic systems. 
The design of this machine is left as an exercise. 

Figure 4. 35 ANAND Gate Implementation of the Next-State Equation for a 
JK Flip-Flop. Gates 10 and 11 are eliminated in the RS Implementation 
of the JK Flip-Flop in Figure 4.42. 

- 49 -



STATE= B""A 

® © 

0 0 

@ © 

0 0 

I I 

-<!J>-o o-<fY-1 

® 

0 

Figure 4. 37 The ASM Chart of an 
Edge Triggered JK Flip-Flop. 

YIN 

YG 

GATED 
LATCH 

IOUT 

0 

Figure 4.38 The Description of a Gated Latch 

Use of the Excitation Table 

for Flip Flop Inputs 

It would be possible to continue designing state 
machines as just described; however, the design 
is easier if flip-flops are used for the state variables. 
Flip-flops are themselves large building blocks re­
placing many gates. Flip-flops are incorporated in the 
design by translating the next-state information into 
flip-flop input equations by using an EXCITATION 
TABLE. 

A flip-flop has two possible responses to a set of 
inputs, either it changes state or it does not. Since 
the flip-flop can be in one of two states when the 
inputs are applied, there are four possible TRANSI­
TIONS described by an arrow between the two states, 
i.e., 0 ... 0, 0 ... 1, 1 ... 0, and 1 ... 1. (The arrow used to 
describe transitions is different in meaning than the 
arrow used for the delay operator.) 

An excitation table consists of a listing of the inputs 
required to produce a given transition in a flip-flop. 
One way to generate such a list is to read the ASM 
chart description of the flip-flop. Figure 4.39 gives 
the excitation table for an RS flip-flop. Notice the 
inputs required for the four basic transitions include 
some don't care entries. There are two other transi­
tions entries which are used to directly form the in­
put equations from the ASM chart whenever a condi­
tional transition produces two different variable 
transitions. 

The excitation table is used to translate the ASM 
chart description of a state machine into maps for 
the inputs of the state variable flip-flops. Each 
state should have a state assignment, and each state 
variable is synthesized with a flip-flop. For example, 
a design using three state variables and being imple­
mented with flip-flops would require six maps for the 
flip-flops inputs. The procedure for filling in the maps 
is similar to generating the next-state equations. 
First, fill in all unused states with don't cares. 
Second, identify the type of transition for each 
variable in each state of the ASM chart, and enter 
the corresponding value from the excitation table 
into the correct map. When the transition depends 
upon a qualifier, use map-entered variables to enter 
the conditions specified in the excitation table. The 
resulting maps can be read to yield the input equations 
for the state-variable flip-flops. 

- 50 -

InQ_uts 
Transition R s 

0 ... 0 - 0 
0 ... 1 0 1 
1 ... 0 1 0 
1 ... 1 0 -

Conditional 

0 ... 0 Cond. 
or 0 for 

0 ... 1 0 ... 1 

Conditional 

1 ... 0 Cond. 
or for 0 

1 ... 1 1 ... 0 

Figure 4. 39 The Excitation Table 
for an RS Flip-Flop. 
"Cond." Stands for "Condition". 



STATE= B"A 

0 0 

Figure 4. 40 The JK Flip-Flop With All 
Transitions Indicated for State Variable A. 

To illustrate the ease with which the input equations 
are derived, the JK flip-flop,Figure 4.29, will be 
designed using RS flip-flops for the state variables. 
Since all four states are used, each map square must 
be filled from the excitation table. Figure 4.40 
illustrates how the transitions are identified for 
va.riable A. In state ® variable A has a transition 
which is either 0-+0 or 0-+1 depending on the con­
dition YC·YJ. According to the excitation table, such 

a transition has the R input set to 0 and the S input 
set to the condition for the 0-+1 transition, which is 
YC·YJ. These entries are seen in Figure 4.41, state 
@ of maps RA and SA respectively. The remaining 
map squares are filled in a similar manner. The 
equations are seen below each map as read using map­
e ntered variables. 

From the earlier discussion of the RS flip-flop, a 
very simple implementatio~sing two NAND gates 
had negated inputs YS and YR. The input equations 
for A and B can be changed to this form to produce 

SA YC. YJ • B 

YC • YK • B 

SB = YC ·A 

RB = YC ·A 

These equations can be combined with the RS flip flops 
to produce the logic circuit in Figure 4. 42. The 
two flip-flops are sometimes called the MASTER and 
SLAVE, as indicated. 

When the JK flip -flop using RS flip -flops, in Figure 
4.42, is compared with the JK flip-flop using no RS 
flip-flops, in Figure 4.35, very little difference is 
seen. The only real difference is the absence of 
gate 10 and 11 in the RS version. These two gates 
are apparently eliminated by the assumption made 
in using the RS flip-flops, which is that R and S will 
never occur at the same time. As long as this assump­
tion is correct, the RS version will work the same as 
the first version of the JK flip-flop. 

flip-flop A 

~ 
.m -~ B~ 

~[l0 
State 

Assignment 

flip-flop B 

R input 

RA= YC ·YK· B 

R input 

RB=YC· A 

S input 

SA= YC ·YJ·B 

S input 

SB= YC ·A 

Figure 4.41 The Input Maps for RS Flin-Flops to Synthesize the JK Flip-Flop. 

- 51 -



Figure 4.42 ANAND Gate Implementation of the Next-state 
Equations for a JK Flip-Flop Using RS Flip-Flops. 
(Also known as a Master-Slave Flip-Flop) 

The D, T and JK flip -flops . can be also used as 
state memory elements. Figure 4. 43 gives the excita­
tion table for these three flip-flops. 

Flip-Flop Inputs 

Transition 
D T J K 

0 ... 0 0 0 0 -
0 ... 1 1 1 1 -
1 ... 0 0 1 - 1 
1 ... 1 1 0 - 0 

Conditional 

1 ... 0 Cond. Cond. Cond. 
or for for - for 

1 ... 1 1 ... 1 1 ... 0 1 ... 0 

Conditional 

0 ... 1 Cond. Cond. Cond: 
or for for for 

0 ... 0 0 ... 1 0 ... 1 0 ... 1 

Figure 4. 43 The Excitation Table for 
the D, T and JK Flip-Flops. 
"Cond." stands for "Condition". 

-

The advantage of using a D, T,or JK flip-flop is that 
the state time can be defined by an external reference 
signal, usually called the CLOCK. 

Figure 4. 43 reveals some simplifications for develop­
ing the input maps for these flip-fl.ops, which are as 
follows: 

1. The D flip-flop-input equals the next state of 
the flip flop. 

2. The T flip-flop input equals 1 for any change in 
the flip-flop state and is 0 otherwise. 

3. The J input is don't care when the flip-flop = 1, 
and the K input is don't care when the flip-flop = 0, A 1 

- 52 -

is entered in the remaining states only when there is 
a change in the flip-flop state. 

In Chapter 3, a decade counter was described as an 
example of a class 2, direct transition, state machine. 
It will serve as a good comparison for an implemen­
tation with D, T, and JK flip-flops. To achieve the 
comparison, the four input equations are developed 
side by side for each flip-flop serving as a state 
variable of the counter. Figure 4.44 gives a tabular 
description of the decade counter. It then lists the 
maps for the D, T, J, and K inputs determined by 
using the simplified rules above. 

Each set of maps provides a solution for the decade 
counter, using one of the flip-flop types and additional 
gates. The input equations, read from the maps, are 
summarized as follows: 

DA=A 

DB =<5· A· B)+(B· A) 

DC =CB· C}f-(A· C}f-(C· A· B) 

DD =(A·D)+(A· B· C) 

JA = 1 

JB=A·D 

JC =A·B 

JD =A·B·C 

TA= 1 

TB= A-D 

TC =A·B 

TD =(A·D) +(A· B· C) 

KA= 1 

KB =A 

KC= A·B 

KD =A 

From these equations, it is clear that the D input 
equations are the most complex and the J and K the 
simplest. This difference is also evident in the gates 
required to synthesize the counter from these equa­
tions. Figure 4. 45 shows the D flip-flop counter imple­
mented with AND-OR gates, Figure 4.46 shows the 
T flip-flop counter implemented with NAND-NOR 
gates, and Figure 4.47 shows the JK counter imple­
mented with AND gates. 



NAME x g(XJ 

o""c""B ..... A o"c"B"A 

0 0 0 0 0 0 0 0 I 
I 0 0 0 I 0 0 I 0 
2 0 0 I 0 0 0 I I 
3 0 0 I I 0 I 0 0 
4 0 I 0 0 0 I 0 I 
5 0 I 0 I 0 I I 0 
6 0 I I 0 0 I I I 
7 0 I I I I 0 0 0 
8 I 0 0 0 I 0 0 I 
9 I 0 0 I 0 0 0 0 

NEXT-STATE TABLE 

D 

I A I 
0 I 3 2 
4 5 7 6 

- - - -
B 9 - -

I B I 
STATE 

ASSIGNMENT 

c 

oil mops below 
have the some 
assignment 

STATE 
VARIABLE 

l D inputs 

or Partial Next State 

A 1N33B ~ -
T inputs K inputs J inputs 

till1il ~ ~ 
DA TA KA JA 

B 

•••• DB TB KB JB 

c •••• 
DC TC KC JC 

oEfliiE~~~ 
~~~~ 

DD TD KO JD

Figure 4.44 D, T, and JK Input Maps for a Decade Counter.

- 53 -

FF

A
F A

D

c E A

FF
B

D F B
IT

8 8 A g[X] x
c FF

F c
c

c
FF

D
D

F D

D

Figure 4. 45 A Synchronous Decade Counter Using Delay Flip-Flops.

FF
T F

Figure 4. 46 A Decade Counter Implemented with T Flip-Flops.

Figure 4.47 A Synchronous Decade Counter Using JK Flip-Flops.

- 54 -

While counters are fine for comparative implementa­
tions, a more interesting problem is converting an ASM
chart directly to JK flip-flops. Figure 4.48 describes
a simple 3-state machine to be used as an example.
The two state variables, A and B, are to be implement­
ed using JK flip-flops. For illustration, each step will
be explained. First, draw a state assignment map as
shown in Figure 4.49(a). There is one unused state
which is called don't care. Second, draw a map for
each flip-flop input, in this example four maps, and
fill in the unused states with don't cares, Figure
4.49(b). Third, from the observation of the JK flip­
flop excitation table that the J input is don't care when
the flip-flop is 0, put don't cares in squares where a
variable A is 0 in KA, a 1 in JA; and where variable B
is a 0 in KB and a 1 in JB, Figure 4.49(c). Fourth,
fill in the remaining squares by reading the ASM chart
to find what conditions cause a change in the state
variable being considered. In the KA map, state (bJ
is filled with a 1 by observing that the A varia!J(e
always changes when leaving state @. In the JA map,
state @is filled with YPON because the A variable
changes only when YPON=l. In the state map, state G).
is filled with 0 because the A variable does not change
when leaving state G). fa the KB map, state G) is
filled with a 1 because the B variable always changes
when leavin~ate G). In the JB map, state @ is
filled with NSNK because the B variable changes only
when NSNK=O. Finally, in the same map state @ is
filled with 0 because the B variable does not change
when leaving state @. The maps can be read as shown
in Figure 4.49(d). The final circuit diagram is shown

0

State
Assignment

STATE= B"A

0

©

!HOT= [OUT= 1]
IHSNK= [SYNC OUT=I]
YPON = pulse on
NSNK =sync out

Figure 4. 48 Example of a 3 -State Conditional
Transition ASM Chart.

in Figure 4. 50 along with the simple output maps and
gate reductions. This simple procedure can be repeated
for more complex designs to find the input equations
for JK flip-flops to implement the next-state function.
A more complex example is worked outin Section 4.10.

I A I

(a ~-_[~I"bJ Brn STATE
ASSIGNMENT

(b) rn rn rn EE

- 55 -

KA JA KB J B

K A J A K B J B

KA=I JA= YPON·B KB= I JB=NSNK·A

Figure 4. 49 Successive Solution Steps
for the 3 -State Machine.

JA=YPON·B
JB= NSNK ·A= NSNK+ A

IHOT=A IHSNK= B

CLOCK --!>------------'

Figi.:.re 4. 50 The Final Gate Reduction
and Solution for the 3 -State Machine.

IHOT

4.8 STA TE ASSIGNMENT

This section describes the factors in a state machine
implementation that affect the choice of state codes.
The concepts covered are MINIMUM STATE LOCUS,
REDUCED DEPENDENCY, TRANSITION RACES,and
OUTPUT RACES.

The process of giving codes to each state of a state
machine is called ASSIGNING STATES. The set of
codes is called the STATE ASSIGNMENT. In the state
machines described previously in this chapter, the
state assignments were given and the synthesis process
proceeded from this point. Thus, state assignment is
one of the first steps in synthesis.

The discussion of state assignment has been reserved
until last because it depends upon understanding the
rest of the synthesis process. For example, the choice
of states greatly affects the gate complexity of both the
output function and the next-state function; and the
details of choosing states to reduce complexity in­
volves knowing how these two functions are formed.
However, the complexity of the gating does not affect
whether the state machine works or not. There are
many workable assignments.

State assignment can be approached in two ways. One
way is to consider the entire machine, including the
possibilities of races, and find the one best assign­
ment that requires the fewest number of gates for
fault-free operation. Although a great deal of work
has been done to solve this general problem, the
indications are that the general problem is too com­
plex to consider solving without a lengthy computer
search. Another way to approach state assignment
is to consider each state separately, minimizing the
probable contribution to the gate complexity made by
each state. This problem is far easier than the general
one and, from experience, proves to be extremely
practical while yielding optimum or near-optimum
results. In this section, the state-by-state approach
will be considered, the resultant solution being called
a REASONABLE MINIMUM.

Minimum State Locus

The concept of minimum state locus is based on
minimizing the probable contribution to the gate
complexity of the next-state function on a state­
by-state basis. Basically, the complexity of gating
in the next-state function depends on the number of
state variables involved in the transition from one
state to the next. The number of variables involved
in a transition is called the BIT DISTANCE between
the two states. For every ASM block there is a bit
distance associated with every exit path. The sum
of all the bit distances of all the exit paths in a state
machine is called the STATE LOCUS. The state locus
is dependent upon the state assignment as well as the
algorithm. The probable gate complexity is reduced
for a state assignment with a smaller state locus.

The state locus is only an approximation which pro­
duces the most useful results in the most complicated
link structures where other combining factors are

less likely to be effective. A decade counter demon­
strates how the state locus can be misleading in a
simple problem. Figure 4. 51 gives two state assign­
ments for a 10-state direct transition machine.
The first assignment is based on a single bit change
or a UNIT DISTANCE between successive states and
is called a GRAY CODE. The gray code has the mini­
mum state locus for any even number of states in a
counter chain, such as in this example. A gray code
cannot be found for an odd number of states in a
chain. The state locus for the gray code counter is 10,
one bit change for each count. The other assignment
is based on a binary weighted coding of the bits to
represent the count. The state locus for this assign­
ment is 18. ----STATE= D C B A

GRAY CODE ASSIGNMENT BINARY WEIGHTED ASSIGNMENT

roo6o
0001
0011
0010
0110
0111
0101
0100
1100
1000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

STATE LOCUS = 10 STATE LOCUS = 18

Figure 4. 51 Two Assignments for a 10-state Counter.

The relative complexity of the next-state functions for
these two assignments is seen by comparing the partial
next-state equations for the state variables, as follows:

g [XJ with the

GRAY CODE

ASSIGNMENT

g [x] with the

WEIGHTED

BINARY

ASSIGNMENT

gA [xJ = (B . c . D) + cc. BJ

g8 [xJ = (C · A) + (A· B)

gc [xJ =cc· DJ +(A · BJ

gD [X] = c . A . B

gA [XJ =A

gB [X] = (D· A. Il) + (B ·A)

gc [X]=(B. C) +(A· C) +(c. A· B)

gD [X] =(A . D) + (A . B • C)

16 literal
terms

18

literal

terms

As suspected, the unit distance code with the smaller
state locus is slightly simpler than the binary code.
The surprise is that when implemented with JK flip­
flops, the binary code solution is simpler, which can
be seen by the following comparison of the flip-flop
input equations:

GRAY CODE BINARY CODE

J A = KA = D ((B • C) + (C • B)) JA KA

JB = A • C KB = A • C JB A·D KB A

JC =A· B KC = D JC A·B KC AB

JD = A. B. c KC = A JD = A. B · C KD = A

- 56 -

In this simple problem, the particular binary assign­
ment produces a simpler JK implementation because
there is a JK-like symmetry in the count sequence.
In more complex problems, with conditional branching
and asymmetric structures typical of most algorithms,
the state locus is a more reliable indicator. However,
the state locus does not include the contribution to
the next-state function by the inputs. These effects are
covered next by reduced dependency.

Reduced Dependency

A state assignment for a conditional transition made
according to the concept of REDUCED DEPENDENCY
makes a smaller probable contribution to the next-state
function gating than an assignment by minimum state
locus. Figure 4. 52 illustrates a sample conditional
transition with two proposed assignments. The first
assignment is based on the minimum state locus, that
is, one bit change from stateQ) to state @and one bit
change from state<T>to state(Il). For this assignment,
the partial next-stife equations are:

~ g[f,Q] - (

? with STATE= B A '
[

gA [f,Q] = YQ]

gB [J'.,Q] = YQ

and both variables depend on YQ.

For the second assignment, the partial next-state
equations are:

g[i, QJ = .[gA [J'., QJ = 1 ~ (chan~e~ for both
gB U, Q] = YQ J transitions)

and only the B variable depends on YQ. The A variable
always changes, saving a gate input. Thus, the second
assignment is called a reduced dependency assign­
ment, compared to the minimum state locus assign­
ment. A reduced dependency assignment saves gate

inputs iri the next-state function and therefore is an
improvement on the minimum state locus approach.
The reduced dependency concept can be understood for
more complex problems by considering the transitions
between states as CHANGE VECTORS. The transition
fromQ)to (m) andQ)to0 could then be represented in
two ways. USing a minimum state locus assignment,
the transition would be represented by Figure 4. 53,

Figure 4. 53 Minimum State Locus
Change Vectors.

indicating a one-bit change to @and@by an arrow
for each vector. The reduced dependency assignment
would be represented by Figure 4. 54. From this

m 1 n

common p
vector......-z..-- I,/ '2

.l ,

Figure 4. 54 Reduced Dependency
Change Vectors.

diagram, the change vector@ to C!!Y is common to both
transitions. The dotted line indicates the two-variable
transition from© to@, which is really the sum of two
single-variable change vectors. A state with five next
states labeled (a),@ , (C) ,@), and G) could also be
given a reducea' dependency assignment according to
Figure 4. 55. This assignment has many common
change vectors to reduce the gate complexity. The
dotted lines indicate the bit distance for each transi-­
tion. From this discussion, finding a reduced depend­
ency assignment is really equivalent to finding common
change vectors, and finding common change vectors
is aided by a new use of a map.

STATE= B~A

0 0

QI 10 01
r---''---

II

@) ® @) ®
Mini mum Locus Reduced Dependency

Figure 4. 52 Two State Assignments.

- 57 -

-- --------- -----

Figure 4. 55 Reduced Dependency
Change Vectors.

e

The choice of a reduced dependency state assignment
for complex link paths is aided by a maplike diagram
called a DEPENDENCY MAP. The diagram is made
by drawing a map using all of the conditional variables
as map variables and entering the next state resulting
from each input combination. The map, then, describes
the relationship between the next states and the condi­
tional variables. The dependency map, drawn for the
assignment problem in Figure 4. 52, is shown in
Figure 4. 56. From the map it can be seen that when
YQ = O, the next state is@; and when YQ = 1, the
next state is@. Thus, the map describes the next­
state dependency for state(D.

i :a I :a I · '[I ,a]
Figure 4. 56 A Dependency Map.

The dependency map is used to find equations for the
change vectors. Each change vector is indicated on the
dependency map by encirclements of the common next
states for the change vector. Eachchangevectorpoints
to a specific next state, which is used as the name of
the change vector. The equation for the change vector
is read from the corresponding dependency map
encirclement. The function for the change vectors
is called "v" for vector. The function, v, is a function
of the state and the qualifiers, and thus has the form
v(X,Q]. The change vector function is described by
listing all the equations for the change vectors. Using

change vector m
is common to m and n

I m

~¢=~-,(~n
change vector n

v[.t, q] [
m = 1]

= n = YQ

Figure 4. 57 The Change Vector Function
for Reduced Dependency.

- 58 -

the same dependency map as before, the change vector
function for the reduced dependency assignment is
obtained as shown in Figure 4. 57. This dependency
map may be compared to the dependency map for the
minimum locus assignment, which is shown in Figure
4.58.

change vector m

change vector n

v[.0.,Q] [m=YQJ
n = YQ

Figure 4. 58 A Minimum State Locus
Change Vector Equation.

A state assignment utilizing the common change
vectors is made by assigning a particular state
variable change to each change vector. The simplest
assignment changes one state variable for each change
vector. This assignment requires at least as many state
variables as there are change vectors. In the previous
example, the reduced dependency assignment was
made by letting the transition of the A variable from
0 to 1 be the m transition vector, and the letting the
transition of the B variable from 0 to 1 be the n bansi­
tion of the B variable from 0 to 1 be the n transition
transition vector, the partial next-state equation is
the true or complement of the corresponding transi­
tion vector equation, depending on the next state of
the state variable. The assignment for both minimum
state locus and reduced dependency are summarized
in Figure 4. 59.

Figure 4. 60 shows a more comJ!!ex link structure for
a state<l) going to state @ , ® ,@, and ©, along
with the dependency map made by using YX, YY, and
YZ as the map variables. A possible assignment is
also given. In this state the dependency map transition
vectors indicated may be compared with independent
transition vectors as follows:

m=YX m = 1

v [l', Q]= n =YX. YY v[l', Q]= n =YX
independent

r =YX. YY. YZ
common

=YX. VY
vectors vectors

r

p =YX. YY. YZ p =YX. YY. YZ

Three terms are saved by the common change vectors.

MINIMUM STATE
LOCUS ASSIGNMENT

REDUCED DEPENDENCY
ASSIGNMENT

Figure 4. 59 A Dependency Map Comparison for
the Two Assignments of Variables to Change
Vectors in Figure 4. 52.

Sometimes a reduced dependency assignment using
common change vectors involves more complexequa­
tions than some other assignment. For example, in
Figure 4. 61 the next state of~is itself, and thus no
change vector is desired for some of the input condi­
tions. Rather than listing the present state in the
dependency map, a 0 is entered to indicate no change
vector. The minimum encirclements for states@and
@indicate that the change vectors are not common
and that there is no simpler representation in finding
common change vectors.

In a summary of a reduced dependency state assign­
ment, the following rule applies:

A state assignment using single-variable
transition vectors, which are described by
simple nested encirclements in the depend­
ency map, is the most desirable reduced
dependency assignment for the minimum
probable contribution to the next-state func­
tion.

- 59 -

Transition Races

Although state locus and reduced dependency tend to
simplify the next-state gating, some restrictions are
imposed on the choice of states which may cause
additional complexity. These restrictions are im­
posed to insure that the output function and the next­
s tate function are error-free. An error in the output
function is an output which occurs at unspecified
times. An error in the next-state function is a
transition to the wrong state. Both of these errors
can be caused by the wrong choice of state vectors.
The following section discusses the process of finding
the right state vectors to avoid these problems.

The next-state function is based on the values of
logic signals during the stable portion of the state
time. When the state time is defined by the inputs,
as in the implementation of the clocked JK flip-flop
with gates, the stable period briefly follows the input
until one of the state variables begins to change.
This change may alter the outputs of the next-state
gating in preparation for the next transition. The
stable period, then, is defined only for the brief
instant between the input transition and the change
of the first variable. With this short time, only one
variable can be depended upon to reliably assume
the next state, and that variable is the one which
detects the input first. This situation is called a
RACE. Thus, in this type of state machine, the
assignment of successive states in which two vari­
ables change may result in any of three next states
having one or the other, or both, of the variables
changed. This new state, in turn, may have a next­
state change defined, causing a new transition, and
so on until a state is finally reached for which the
next state is defined as itself. This state is called
the STABLE STATE. It is possible to account for
all the intermediate states between stable states,
but intermediate states are just wasteful where
not required. The number of possible next states
where the bit distance equals n is 2n-1 states. If
all states can be assigned unit distance codes, then
there is only one next state. This assignment makes
the best use of available states. The JK flip-flop has
such an assignment.

ASM Chart for State (!)

yy
,........
r n m m

(p) n m m
:"=-'

YX

Dependency Map

POSSIBLE STATE ASSIGNMENT
STATE = o'"'c"B'"'A

i =00 00

m = 0 0 O
n = O

0

p = I

Figure 4. 60 Using the Dependency Map to Determine a Reduced Dependency
Assignment with a State with Four Next States.

STATE= B~A

@

STATE =BA I yx I
------- ~ no change

_ desired

yy

DEPENDENCY MAP

No common transition
vectors

gA [a,Q]= YX · YY

gB[a,O]=YY

Figure 4. 61 A State Linkage for Which Common Transition
Vectors Would Complicate the Next-State Function.

- 60 -

The difficulty in assigning states to guarantee the
correct transitions between stable states is partially
overcome when the state variables are implemented
with clocked flip-flops. Since the state time is
defined by the clock, adequate time can be allowed for
the gates generating the next-state function to reach
a stable condition with stable inputs. Inputs which
are stable during the stable part of the state time
are called SYNCHRONOUS. Inputs which can change
at any time independent of the state time are called
ASYNCHRONOUS. Asynchronous inputs or qualifiers
cause the same trouble in clocked machines as any
input does in an unclocked machine. If more than one
variable is dependent on the asynchronous qualifier,
there is uncertainty in the next state. The following
discussion assumes that any uncertainty in the next
state is an error.

A criterion for a race-free state assignment in any
state having asynchronous qualifiers can be stated
as follows:

To find a race-free state assignment, no
more than one variable can depend on an
asynchronous input for any combination of
synchronous inputs in any state.

The variable dependency is represented by the next­
state dependency map and partial next-state equations,
as was discussed in finding a reduced dependency
assignment. The best way to explore assigning states
using the dependency map is to consider several
examples. Figure 4. 62 describes a state, (V , with
next states@,@, and ©·There is one asynchron­
ous qualifier, *YX, and one synchronous qualifier,
YY. The star(*) signifies asynchronous qualifiers.

@

STATE = c"e"A

001

Figure 4. 62 A State with Both Synchronous
and Asynchronous Qualifiers which is
given a Race-Free Reduced Dependency
State Assignment.

The assignment given in Figure 4. 62 was chosen
to reduce dependency. The dependency map for the
transition vectors and the partial next-state equations
for this assignment are shown in Figure 4. 63. Only
the variable C is dependent on the asynchronous
qualifier, *YX; therefore, the assignmentis race-free.

Had a different selection for the state assignment
been made, there might have been a race. Suppose
that the transition vectors are chosen to minimize the
state locus. The resulting dependency map andpartial
next-state equations would then be as shown in

- 61 -

Figure 4. 64. Variables B and C both now depend
on *YX, so this assignment is not race-free.

variable B

yy b
[

gA [r, Q] = 1 J
g [r, Q] = !Is [r, Q] = yy

Ile [r, Q] = YY . *YX

Figure 4. 63 Reduced Dependency.

variable B

[

gA [r, Q] =YY ~
!Is [r, Q] = YY . *YX

Ile [r, Q] = YY . *YX

Figure 4. 64 Minimum State Locus.

Figure 4. 65 shows another example with one syn­
chronous and one asynchronous qualifier on state@).

®
001

000 STATE= CB"A
®

r:~ yy -ll 101

@O @O
Figure 4. 65 A State with a Race-Free

State Assignment.

Assume the assignment for@, @,and ©is unknown.

The next-state dependency map for state@., assuming
independent change vectors, and the partial next-state
equations for a possible assignment, with one variable
per change vector, are shown in Figure 4. 66, This
assignment is race prone because two variables depend
on the asynchronous qualifier for a given synchronous
input. If YY = 1, then variables A and C are dependent
on *YX; and if YY = O, then variables A and B are
dependent on *YX. The reduced dependency assignment
which solved the race in the previous problem is
represented for this problem by Figure 4. 67. This
assignment is also race-prone because variables B
and C both depend on *YX when YY = 1. There is
a race-free assignment possible for this state, which
is found as shown in Figure4. 68.With this assignment,
either variable B or C depends on *YX for a given
input YY, but never both. Thus, this assignment, also
shown in Figure 4. 59, is race-free.

The criterion for a race-free assignment can be
expressed in terms of the change vector equations

to eliminate the necessity of assigning variables and
forming the partial next-state equations as was done in
the previous example. It is sufficient to look at the
change vector equations, because it does not matter
which direction a variable changes; it only matters
that it changes. If one variable is assumed to represent
each change vector, then the criterion for a race­
free assignment can be stated:

An ASM state has a race-free assignment if
only one of its associated partial change
vector equations is dependent on an asyn­
chronous qualifier for any combination of
~nchronous il!l2._uts.

This criterion serves as a quick check on a proposed
ASM chart block to test for the possibility of a race­
free assignment.

The partial next-state equations, developed for a
race-free assignment, become map-entered variables
in the formation of the complete next-state function.
The process of state assignment has already done
some of the synthesis work.

variable A lir*YXI variable B

a b

YY a c
- g[s, Q] =

variable C

[

gA [s, Q] = *YX ~
93 [s, Q] = YY . *YX

~ [s, Q] =YY. *YX

Figure 4. 66 Independent Change Vectors,

variable C

[
gA [s, Q] = 1 J

g [s, Q] = 93 [s, Q] = *YX

"c [s, Q] = YY . *YX

yy

Figure 4.67 Race Prone Vectors.

variable A
variable B

a

[

gA [s, QJ = 1 ~
g[s, Q] = gB [s, QJ=YY. *YX

gc [s, Q] = YY . *YX

YY a

variable C

Figure 4. 68 Race-Free Vectors.

Output Races

The last factor to affect the selection of a state
assignment are the output races. Output races are
generally caused by an output function which has
more than one variable changing at a time and take
the form of short pulses on outputs which are supposed

- 62 -

to be stable. The pulses usually occur during the
transition period when the synchronous variables are
changing; they can be caused at other times by
asynchronous inputs.

Output races during the transition period are signifi­
cant only when the output is an immediate function,
since an immediate function begins to respond as soon
as any output occurs. The delay function ignores such
races because it only responds to the stable portion
of the state time. Both types of outputs may respond
to races caused by asynchronous inputs, and for
that reason asynchronous inputs should not be used
to generate conditional outputs in a class 4 machine.
The races remaining on immediate outputs occur
during the transition period. When these races are
intolerable for proper machine operation, they are
called CRITICAL OUTPUT RACES. The process
for determining output races and the means of
avoiding the races centers on the output equations
and the states involved in transitions. For every
state transition which involves more than one state
variable, the number of state codes possible during
the transition period is 2n, where n is the number
of variables changing. This expression describes all
the possible combinations of n things. For example, if
two variables change in going from one state to the
next, any of the four combinations may exist for a
short time during the transition period, depending
on which variable changes first. One of the four
combinations is the previous state and another is the
next state. The remaining two combinations may
correspond to other states in the machine or don't
care states. These two combinations can cause
race outputs if they are included in an output function
encirclement. In general, for n-variable changes,
2n-2 states have to be checked for the possibility of
producing critical race outputs; and any state in the
machine may produce such outputs.

Output maps are the easiest description of the output
function to use when checking for critical race outputs.
For example, the ASM chart in Figure 4. 69 describes
a simple 3 - state machine. A proposed reduced
dependency state assignment is described by the state
assignment map, and the output function for IH02 is
described by an output map. Transitions from @to
@and from@to@involve two variables; therefore,
two states for each transition have to be checked
for the possibility of race outputs. In the transition
from state(a')to state@, the possible intermediate
state paths to be checked are indicated by arrows
on the state assignment map shown in Figure 4. 70.

As indicated, there may be an unwanted output caused
by the intermediate transition from@ to @)to@,
because state @produces the IH02 output. Tlie same
arguments hold for the transition from@to@ which
may also cause a race output on IH02. Figure 4. 71
shows the same state machine with a race-free state
assignment. There are no states to check because all
transitions are single-variable transitions.

Figure 4. 72 compares the implementation of this
example for both assignments. In this simple situation,
the race-free assignment yields a marginally more
complex implementation. Generally speaking, the

©

@

ct]
~w

STATE
ASSIGNMENT

STATE= B"A
~------

II

ASM CHART

Figure 4. 69 A state Assignment with an
Output Race on IH02.

A
lH02 OUTPUT MAP

I A I

B

may cause an unwanted output

on lH02)

Figure 4. 70 state Assignment Races.

©

STATE = B"A

GB
~~

State
Assignment

@ IHOI

Figure 4. 71 A Race-Free state Assignment.

- 63 -

A

B

A

B

J K

mm
[ml m

JB =I KB= I

rn rn
~m ~m

JA=B ·YX KA=I

rn [FlB\] w [0lill]
JB =I KB= A+ YX

YX

RACE PRONE

CLOCK GOES TO .ALL
CLOCK INPUTS

IHOI

1H02

IHOI

'--------IH02

YX

RACE FREE

Figure 4. 72 Implementation of Figure 4. 69
and Figure 4. 71.

race-free restrictions usually complicate the machine.
The state assignment for race-free outputs sometimes
involves adding extra state variables or extra states.
Figure 4. 73 describes a state machine which requires
more than two variables to achieve a race-free
assignment for three states. One possible assignment
is given. Figure 4. 74 describes the same state machine
with one added state, which also has race-free outputs.

Again, both of these implementations are complicated
by restrictions to avoid output races.

With all the complications of avoiding output races,
it is usually best to avoid critical immediate outputs.
In Chapter 6 on linked machines, some methods are
described which allow immediate outputs to be isolated
to small machines.

State
Assignment

0

@ IH02

B

@ IHOI

STATE = C"B"A

100

Figure 4. 73 A Race-Free Assignment Using
Extra State Variables.

©
II

@

~8E
State

Assignment

Extra
State

(@ IHOI

STATE= BA

01

Figure 4. 74 A Race.-Free Assignment Using
Extra State Variables and One Added state.

State Assignment Simplifications

The complete study of state assignment is a complex
field beyond the scope of this book. This section has
provided some practical guidelines without being
overly mathematical. In most practical applications,
however, the process can be reduced even further.
The following suggestions can be verified by careful
thought regarding the state assignment discussion.

States with asynchronous qualifiers must be assigned
race free codes at the expense of all other simplifica­
tions. With due respect for rigorous methods, a race
free assignment can be found by trial and error if the
observation is made that two states reached by link
paths separated by one asynchronous qualifier must
have adjacent state codes. This condition is both
necessary and sufficient for a race free assignment
regardless of any other variables which may change.
For example, consider an assignment for Figure 4.61
if YX is asynchronous. If YY=l, the transitionof state
© to state @ does not depend on YX and is a non
critical assignment. However, when YY=O, YX sepa­
rates two link paths leading to state ® and to state
@ . These two states must ha".e adjacer,. ::::d::::: t::
be race free. No other restrictions are imposed on the
assignment. With a little practice this simple rule is
quite effective. An ASM chart must be constructed
such that a race free assignment is possible. For
example, any odd number of states linked in a loop
by asynchronous qualifiers can not be made race free
because they can not be made adjacent.

To simplify gating, direct state transitions should
be given adjacent codes and conditional state tran­
sitions should be given reduced dependency assign­
ments.

Conditional outputs should not be a function of asyn­
chronous qualifiers because their time duration will
be unknown.

Check for critical output races after a first try at an
assignment and then converge on a final assignment
by successive trials. It should only take a few tries.
Better yet, avoid critical output functions by making
all functions clocked.

A good state assignment is a key factor in good logic
design. Since so much of the design work depends on
the assignment, be sure that as much as possible is
anticipated before proceeding with the gate implemen­
tation. In Chapter 5, some of the worries over gate
minimization can be ignored; but, asynchronous quali­
fiers can still cause races.

- 64 -

4.9 HAZARDS

This section describes false outputs, called HAZARDS,
that are caused by the gate configuration alone. A
technique for avoiding hazards is described

Even though the states ofanASMchartare given codes
to properly avoid races, there still remains a possibil­
ity that the gate implementation of immediate outputs
may produce false outputs. Such false outputs, which
are characteristic of the gate configuration rather than
the logic function itself, are called HAZARDS. Figure
4. 69 describes a very simple circuit which has a
hazard caused by a delay through the inverter, gate 4.
This hazard occurs even though only a single input
changes and in spite of the fact there may be no delay
at all in gates 1, 2 and 3. The map of the function in
Figure 4. 75 indicates that the hazard occurs during
the transition between two input states which should
both produce a 1 output on IHO. The generation of
the hazard output is seen by observing the gate
implementation. When Yl, Y2 and Y3 are equal to 1,
the output of gate 1 is 0 and the output of gate 2 is 1,
producing a steady 1 output for IHO. When Y2 goes
to O, there is some delay before the output of the
inverter can change to 1. During this short time,
the 0 output of gate 4 makes the output of gate 1
equal to 0, and the 0 input from Y2 makes the output
of gate 2 equal to 0. Thus, both inputs to gate 3 are 0;
and the output of gate 3 goes to zero until the output
of gate 4 goes to a 1, allowing gate 1 to go to a 1 and
returning the output of gate 3 to its proper stable state.
The hazard output is shownonatime-linepresentation
below the map.

!HO= (Y2·YI)+ (Y2·Y3)

I YI I

~~· I Y2 I

The arrow indicates the
hazard-producing transition

!HO

~1 _____ \I ________ ~ timo

Hazard output during transition

Figure 4. 75 A Simple Output Circuit with a Hazard.

- 65 -

A hazard can occur during any of the four possible
transitions of a single output. Figure 4. 76 sum­
marizes these hazards by giving a simple time­
line example of each transition hazard.

TRANSITION EXAMPLE HAZARD OUTPUT
I

0--+- 0 : n
0-+- I '=JV 0 I

1-+0 ~ iV' ,_, :--iv-
I

Figure 4. 76 An Example of a Hazard.

Since the hazard outputs are much like the race out­
puts covered previously, in that they both occur
during a transition, they can only cause problems
in a critical immediate output. Hopefully, there are
only a few such outputs. The hazards which may exist
in these outputs may be far more obscure than in
the previous example. It would be desirable to have
a convenient means to detect the hazards and also to
avoid them. So far only one general proof has been
made which allows detection and correction of hazard
outputs. However, the proof requires that the gate
implementation be restricted to two-level gating
ignoring input inverters. If such a restriction is a
suitable alternative to careful checking of the possi­
ble gate delays, it may be used with complete success.

The theorem for a hazard-free design states that a
two-level circuit implemented as a sum of products
(the OR of AND gates) will be free of all transition
hazards if it is free of hazards for the 1-to-l
transitions. This theorem simplifies the problem to
one situation for which the hazards are recognizable
and correctable.

A 1-to-l transition occurs in an output map for any
pair of a set of inputs which both produce a 1 output.
Normally the pair which produce no race outputs
have only one variable changing. As shown, even
a single variable transition can produce a hazard
where a delay through an inverter makes the com­
plement of an input incorrect for a short period of
time. Such situations occurring in two-level gating
are easily recognized by 1 output states, which are
a unit distance apart and encircled separately on a
map of the output function. The change from one
encircled area to another then indicates the change
of gates selected by the true and the complement
of an input.

The procedure for eliminating hazards in two-level
gating consists of including all l-to-1 transitions which
are a unit distance apart in at least one encirclement.
For example, in the previous illustration of a circuit
with a hazard, the map had two encirclements with
two l's a unit distance apart. The hazard appeared
during the transition between these two l's, just as
would be predicted. Figure 4. 77 illustrates the elim­
ination of the hazard by including these two l's in a

third encirclement. The added gate 5 serves to define
the output during the transition. By simple extensions
of this procedure, the hazards may be eliminated
from any two-level gate implementation.

When the next-state function is constructed from
immediate outputs, such as was done in unclocked
state machines, the problems caused by hazards
become extensive and even the simple procedure
for two-level gating cannot adequately handle some
of the erroneous behavior which results. Each un­
clocked state machine must be handled individually
with great care to avoid delay-generated errors.
This problem is not discussed because it tends to
be specialized and because clocked state machines
avoid the problem. In addition, it is not essential
to the study of algorithmic state machines.

Y2

JHO= (Y2 ·Yl)+(YI · Y3)+ (Y2·Y3)
I YI I

B~fa
I Y2 I

ADDED TERM TO ELIMI­
NATE THE HAZARD

IHO

Figure 4. 77 The Application of Additional Gating to
Eliminate the Hazard in a Simple Output Circuit.

4.10 SAMPLE IMPLEMENTATION

The Black Jack machine described in the end of
Chapter 3 is implemented in this section as a class 4
conditional output machine. The design is discussed
from the level of the ASM chart description up to
the level of the gate implementation. There are
three areas in the design process:

1. State assignment

2. Next-state function

3. Output Function

State Assignment

Figure 4. 80 is an ASM chart description of the machine
to be designed. The state assignment which is shown in
this chart is determined by applying the steps in the
procedure described in Section 4. 8. Accordingly,
each state with asynchronous qualifiers is checked
for the existence of a race-free assignment. Thus
state @ must be a unit distance from state ©•
and state@ and state@ must be a unit distance from
state@. The consideration of state@)is assisted by
constructing a next-state dependency map, because

- 66 -

the exsistence of a race-free assignment is not as
evident as in the last three states. Figure 4. 72
shows the dependency map for state @) , assuming
separate change vectors for each next state. Only
the change vector b listed in Figure 4. 72 is a function
of *YCRD, meaning that a race-free assignment for
state@)is possible. However, the change vectors are
formed on the basis of four variables and only three
are really required to code the six states in the ASM
chart. A three-variable race-free assignment for state
@ would still have only one change vector dependent
on the asynchronous qualifier. Since YG16 separates
change vector b from the three other change vec­
tors, as long as one variable changes for vector b
any combinations of variables can change for the
remaining three change vectors; and a race-free
state assignment having only three variables should
be possible. At this point, a race-free assignment
using three state variables is attempted.

c h

b b c h

b b

-~=YG16·*YCRD ~
g=YG16· YF50· YG21

v[d, Q]= .c=YG16· YF50• YG21

h=YG16· YG21

YG21

Figure 4. 78 The Next-State Dependency Assuming
Independent Change Vectors.

The ASM chart states are given state assignments to
follow the restrictions imposed by races. The first
state code is given to state@). For convenience,
let@= 101. A single variable change to state@is
required. Let@= 111. States(g)and~must also be
a si~le-variable change from ':§fate . Let@= 011
and(!!)= 110. Since a reduced depen ency assignment
is not likely for state@, let state©= 001 to reduce
the state locus from@to(c)and (£)to@). This choice
forces state@ to equal OOOin order for it to be a unit
distance from state @. The last transition, from
@to@, involves all three variables, but this seems
to be a penalty for having restrictions elsewhere.
The proposed state assignment is summarized by the
map in Figure 4. 73.

A

a c g - STATE = c"s"A

c - d b h

B

Figure 4. 79 The Proposed State Assignment.

STATE = c"s"A

HTIO,
HJ50

HT22
HK50

©

Card removed

?
001

HADD

()

@

0 II
lHBRK,

HCLS,HK50

0

111

@ HTVC

000

@

0

New card inserted -z......

IOI

IHHIT

0

0

110
lSTND,

HCLS,HK50
@'-------

0

0

Figure 4. 80 The Black Jack Control Algorithm Described as a Conditional Output,
Conditional Transition (Class 4) Machine.

- 67 -

The partial next-state equations can be found for
state@)to show that the state assignment is race-free.
Figure 4. 81 shows the dependency map and the
transition vector encirclements to generate the partial
next-state equations shown.

For the purpose of this example, only IHHIT, IHBRK
and IHSTD are immediate instructions; and, since
they only drive indicator lights, no problems are
created by possible erroneous outputs during transi­
tions. If there were critical immediate outputs, races
might be caused by the three-bit transition from
@to®.

Next-State Function

variable B

b

b

c

b c

b g

YG21

h

h

h

variables
A and B

The input functions to generate the next states using
JK flip-flops are constructed as follows:

[

gA [d, Q] = YG16 • YG21 j
gB [d, Q] = (YG16 • *YCRD) + YG16 (YF50 + YG21)

gC [d, QJ = YG16 • YG21

A

YCRD - -
_,

c - - - YCRD c

B

No race since only variable B
depends on *YCRD.

Figure 4. 81 Checking State @ for Races.

A

- 0 0 -

(- YCl6 • (1 ?J YC21

B

JA = (YCRD·B)+ (YCRD·B) KA= (C·B)+ (YGl6·YG21·C)

A

0 0

c

B B

JB = C·((YGl6·YCRD) + KB= C·A
YGl6(YF50 + YG21))

A A

0 ~ YCRD -YACE ' {'"\
- - - -

- - - -
""---../

- YCl6· I 0 YC21 '--J
c c

B B

JC= ((YF50+ YACE) ·A ·B)+(B·YCRD) KC= (B·YGl6 ·YG21) + (A·B)

- 68 -

Output Function

The output function::; are determined by the following
maps. Notice that in forming output equations some
outputs are natural extensions of other outputs as
indicated by those used in the right hand side of the
equations. This observation saves redundant gating.

c

c

c

c

c

-

-

A

I
HTVC = B

A

./

I

0

IHBRK = C· B

A

IC- 0

B

B

I B
IHHIT = C·B

A

[mrJ E

-

' -

417
don't care

outputs

-)

-

-

I B I
HTIO = HADD·E50· YACE

-

I A

Gm) E

I B
HJ50 = HTIO

-

- 69 -

c

A

G)
-

I
HADD =A·B·C

-

B

B
IHSTD = A·B

A -IC I -j'

c - I
\.........-

I B I
HCLS = IHBRK + IHSTD

A

-

c 1(- YGl6J YG21 ·
YF50

I B I
HT22 =IHHIT ·YGl6 · YG2 I· F50

c

A

(1 -)

(- m~J I
YFSO \.....J

B
HK50=HT22+ HCLS

Gate Realizations

The equations for the state variable inputs and the
outputs have to be converted into gate realizations.
For this problem, assume that the following gates
are available:

2-, 3- and 4-input NAND gates,

JA = (YCRD•B) + (YCRD•B) = (YCRD•B) • (YCRD•B)

JA

KA= (C· B) + (YG16· YG21· C) = C· B · YG16• YG21· C

KA
YGl6 >----:=,.--!:~7°"'
YG21

JB = C · ((YG16· YCRD) + YG16• (YF50+YG21))

= C + (YG16· YCRD) + YG16+(YF50· YG21)

YF50
YG21

KB= C·A

JC :((YF50+YACE)· (A· B))+ (B• YCRD))

= YF50 • YACE • A- B • B· YCRD

YF55-.-----..
YACE-,__~

JB

JC

- 70 -

2-input NOR gates, and

2-input AND gates.

An inverter is made from a 2-inputNORor NAND gat.e.

The next-state variable inputs are first converted to
gate implementations as follows:

KC= (B·YG16·YG21)+(A·B)=(B·YG16·YG21)·(A·B)

KC

The output functions are converted to gates in a simi­
lar manner, as follows:

HADD = A- B· c = A + B· c
HTlO = HADD· YF50• YACE = YF50 + HADD· YACE

8 c

IHBRK = C'B

IHSTD =A·B

HTIO

HJ50

HCLS = IHBRK + IHSTD = IHBRK + IHSTD

IHHIT = C·B

HT22 = IHHIT· YG16· YG21· YF50

HK50 = HT22 + HCLS = HT22 · HCLS

c
8

31 YG21 YGl6
YF50---...--

HT22

HK50

I

-.:i

YACE
fFF

c
K E

31

tHHIT

~HTIO

B

8

K El 'YF's'o

PF~
C A
K E

HCLS

NOTE : CLOCK GOES

TO EACH FLIP-FLOP

Figure 4.82 Complete Logic Circuit for the Black Jack control Module Including the 11-Point Flag.

tl:l >:j
~~
;:o;' >;
c:.... ('D

Pl "" n •
;:o;' 00
0 NI
0 = rn :t Pl
on
!""' 0

~
0
rn
('D

.....
0 aq
n
n
>; a
::i=
0
>;
.....
::;J'
('D

REFERENCES

CHAPTER IV

BOOLEAN ALGEBRA

Boole, George: An Investigation of the Laws of Thought (New York: Dover Publications, Inc., 1951
1st ed., 1854).

McCluskey, E. J.: Introduction to the Theory of Switching Circuits
(New York: McGraw-Hill Book Company, 1965), Chapter 3.

OPTIMIZATION

Gucker, G. R.: stochastic Gradient Algorithms for Searching Multidimensional Multimodal Surfaces
(Dissertation: stanford University, 1969).

Wilde, D. J. and C. S. Beightler: Foundations of Optimization (Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1967).

QUINE-McCLUSKEY SIMPLIFICATION

McCluskey, E. J.: Introduction to the Theory of Switching Circuits (New York: McGraw-Hill
Book Company, 1965).

McCluskey, E. J.: ''Minimization of Boolean Functions," Bell System Tech. J.
Vol. 35 (November 1956), pp. 1417-1444.

Quine, W. V.: "The Problem of Simplifying Truth Functions, " Am. Math Monthly,
Vol. 59 (October 1952), pp. 521-531.

MAP SIMPLIFICATION

Karnaugh, G.: "The Map Method for Synthesis of Combinatorial Logic Circuits, "
AIEE Trans. Commun. Electron., Part I, Vol. 72 (November 1953),
pp. 593-599.

Maley, Gerald and John Earle: The Logic Design of Transistor Digital Computers
(Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963).

Wickes, William E.: Logic Design with Integrated Circuits (New York: John Wiley & Sons, Inc., 1968).

TOPOLOGICAL SIMPLIFICATIONS

Miller, Raymond E.: Switching Theory, Vol. 1: Combinatorial Circuits (New York: John Wiley
& Sons, Inc., 1965).

Roth, J.P.: "Algebraic Topological Methods for the Synthesis of Switching Systems,"
Trans. Am. Math. Soc., Vol. 88 (July 1958), pp. 301-326.

- 72 -

MISCELLANEOUS SThlIPLIFICATIONS

Slagle, James R.: "A New Algorithm for Generating Prime Implicants,"
IEEE Trans. Electron. Comput., Vol. C-19 (April 1970), pp. 304-310.

Tison, P., "Generalization of Consensus Theory and Application to Minimization
of Boolean Functions, "IEEE Trans. Electron. Comput., Vol. EC-16
(August 1967), pp. 446-456.

SEQUENTIAL MAC HINES

Dietmeyer: Logic Design of Digital Systems (Boston: Allyn and Bacon, 1971).

Miller, Raymond E.: Switching Theory, Vol. 2: Sequential Circuits and Machines
(New York: John Wiley & Sons, Inc., 1965).

Phister, Montgomery, Jr. Logical Design of Digital Computers (New York: John Wiley & Sons, Inc.,
1966), Chapters 5, 6.

- 73 -

CHAPTER V

SYNTHESIS FOR ROM-CENTERED DESIGN

5.0 THE READ-ONLY MEMORY

The advent of large scale integrated arrays has
brought to the forefront an old and basic idea of
using complete arrays to execute combinatorial logic
functions. Heretofore these arrays were considered
highly inefficient solutions even though the design was
simple, primarily because of the great waste of
circuits. Now as the cost per function and the s1za
decrease, the ease of design has again become ap­
pealing. The arrays, most often called READ-ONLY
MEMORIES or ROMs for short, have almost become
a panacea for logic design problems. However, the
reader should not be misled. The choice of using
ROMs must be made carefully because it may not
always be the best solution. This chapter will attempt
to cover the basic ROM considerations building upon
the results in the last chapter.

5.1 A ROM STRUCTURE AS
COMBINATORIAL LOGIC

The basic ROM is a combinatorial circuit producing
a number of outputs for each set of inputs. Logic
circuits which were implemented with individual
gates can be PROGRAMMED in a ROM by a process
comparable to listing the desired outputs. The new
concepts introduced in this section are the ADDRESS,
the WORD, the OR-TIE array and ADDRESSING EF­
FICIENCY.

The Address and the Word

The read-only memory consists of two sections,
the address decoder part and the memory part as
shown in Figure 5.1. The address part provides a
means of selecting a portion of the memory part called
a WORD. The input to select a given word is called
the ADDRESS of the word. An address usually consists
of an n-bit code which can select a maximum of 2n
words. Words consists of fixed-length bit strings from
the memory part and are characteristic of the par­
ticular ROM. The information (bit pattern) stored in
the ROM is fixed in respect to the logic environment
being placed there during manufacture or by a process
external to the normal operation of the logic. Thus, the
memory is READ ONLY with respect to the logic
around it.

ADDRESS
ADDRESS

PART
MEMORY

PART

Figure 5.1 The Two Parts of a ROM.

SELECTED
WORD

- 75 -

To demonstrate how a ROM might be implemented, a
pair of simple three-variable Boolean functions are
generated by, first, forming eight address lines from
the three input variables and then ORing the desired
outputs into 2 bit output word. Two functions and the
resulting circuit are shown in Figure 5.2.

IHI = (A·B)t(C·B·A)

IH2 = (A·Cl+ (B·A·C)

c"sA
0 0 0

0 0 I

0 I 0

0 I I

I 0 0

I 0 I

I 0

I I

MEMORY

IHI IH2

Figure 5. 2 An Example Implementation of Two
Simple Functions in a ROM Structure.

The OR-TIE Array

Rather than drawing all the inputs to the OR gates
in the memory section, a simplified representation
is adopted as shown in Figure 5. 3. In this repre­
sentation the OR inputs are indicated as one line

ADDRESS LINE(

000

001
010

011
ADDRESS=CB~A 100

I 0 I
110

111

MEMORY
OR-TIE

BIT LINE~
OR OUTPUT L IHI l IH2 JS

16-BIT
CAPACITY

ROM
WORD

Figure 5.3 A Simplified Representation of a ROM.

called the BIT LINE, which is tied to the address lines
by dots to indicate an input to the OR gates. The
OR function is indicated by the internal reserved word
OR-TIE. Each intersection of the bit and address
lines is a possible location for a bit and thus the bit
capacity of a ROM is the total number of intersections
whether or not they are used. The OR output is indi­
cated by arrows on the output lines.

Addressing Efficiency

The number of address lines required for a given
number of bits stored depends upon the organization
of the addressing. In the previous example the 8
possible bits for each bit output were selected by eight
separate address lines. This organization is called
one-dimensional. In Figure 5.4 the number of address
lines is decreased to 4 and the number of bit lines
increased to 4 in the process of forming a two dimen­
sional organization. In one dimension, the C variable
selects between two sets of bit lines to generate
the desired output word. In the other dimension,
variables A and B select one of four groups of bits for
the bit lines. For each bit of an output word the
addressing is four lines by two lines or six lines
total compared to eight lines used previously.

MEMORY
OR-TIE

16-BIT
CAPACITY

Figure 5.4 Two-Dimensional Addressing.

20.

oJ 0.2 o.s o.4 o.s o.& 0.1 o.a os

SYMMETRY= S • ~ or ~
M, (+) Mz M11+1 M2

Figure 5. 5 The Efficiency of a Two Dimensional
Memory Word Addressing.

- 76 -

The relationship of the address lines to the bits
stored may be expressed in terms of the percentage
of the maximum number of bits addressable with a
given number of address lines in two dimensions.
If M1 and M2 represent the number of address lines
in two dimensions, then Mi (·) M2 represents the
total number of bits addressed. The maximum number
of bits addressed for a given sum of Mi (+) M2 is

[Ml (;) M2 r or the number of bits when both address

dimensions are equal. 1

The number of bits addressed expressed as a per­
centage of the maximum number of bits addressable
with a given number of address lines is called the
ADDRESS EFFICIENCY (A.E.).

Ml(·) M2

[]
2<·) 100%

Ml(+) M2

2

A.E. = (1)

In terms of the normalized quantity s, called the
SYMMETRY of the addressing, the equation is

Ml
A.E. = 400S(l(-)S) where S = Ml (+) M2 (2)

This equation is plotted in Figure 5. 5. From this graph
a 10 by 10 selection is 100% efficient, while a 5 by 20
selection is only 64% efficient.

In summary of combinatorial logic in ROMs, the in­
formation stored is analogous to a tabular descrip­
tion and symmetry in the address dimensions sets
the efficiency in selecting this information. A ROM
is most useful for very complex functions rather than
for simple ones. Code conversions and character
generation are good examples of complextransform­
type functions suitable for ROM implementation. A
ROM is described by specifying the exact bit pattern
contained in the memory section and the address
required for the selection of a specific word. In the
next section, the structure of a ROM-centered al­
gorithmic state machine is described in terms of the
information storage in the ROM.

5.2 SEQUENTIAL LOGIC IN ROMS

A combinatorial ROM is used to implement class 2, 3,
and 4 state machines by storingthenext-state function
and the output function in the ROM array and provid­
ing some small portion of external logic to execute
the stored information. The storage is characterized
by the WORD STRUCTURE. Three ROM machine word
structures are described in this section and are
called LINK-PATH ADDRESSABLE, STATE-QUALI-

1c = M1 (')M2; L =Ml (+)M2; :; = L-2~ = 0
2

L Ml(+) M2
M2=f= 2 ; Ml =M2

• _ (L) (L\ -[Ml (+)M2] 2
.. cmax- 2 (·) 21 - 2

FIER PAIR ADDRESSABLE and VARIABLE FORMAT
ADDRESSABLE. New concepts introduced in this
section are LINK, TEST, and INSTRUCTION word
parts, AND-TIE array, DIRECT and ALTERNATE
ADDRESSES, ASSUMED ADDRESSES, X-LINKS, LINK
STRINGS, FIXED and VARIABLE FORMATS.

5.2.1 Link-Path Addressable

The link-path addressable word structure is based
on storing the next state and the output for each

link path in the ASM charts. The next-state portion
of the ROM word is called the LINK PART, while the
output portion of the ROM word is called the IN­
STRUCTION PART. Each address is a function of
the present state and the qualifier inputs and is
called a LINK-PATH address. In general any machine
described by an ASM chart can be implementad with
this structure, called a LINK-PATH ADDRESSABLE
ROM. Figure 5.6 describes a link-path addressable
ROM and illustrates a possible link path on an
ASM chart.

SELECTED
LINK-PATH ADDRESSES

ADDRESS ~ MEMORY

QUALIFIERS

STATE
VARIABLES

DECODER

NEXT STATE

ASM CHART
INTERPRETATION

LINK PATH

ONE ROM WORD

PER LINK PATH

INSTRUCTION

LINK (NEXT STATE)

Figure 5.6 A Represem:ation of a Link-Path Addressable ROM.

NORMAL
ASM CHART

THE SAME DESCRIPTION
USING LINK-PATH OUTPUTS

Figure 5. 7 A Comparison of Normal and Link-Path Output Descriptions in an ASM Chart.

- 77 -

The outputs in a link-path addressable ROM are link­
path outputs rather than state outputs. The outputs
correspond to conditional outputs on the exit paths
from each ASM chart block. Any output in an ASM
block can be expressed as an exit output as illus­
trated by Figure 5. 7. The normal description is
given on the left. The equivalent link-path outputs
shown on the right are obtained by moving all the
outputs through all the link paths toward the exits
and taking the sum of the outputs resulting for each
exit as the new link-path outputs. Each link-path
exit will be indicated by an additional subscript on
the state name as shown.

This state can be implemented with the ROM as
shown in Figure 5. 8, which shows1 only a portion
of the link-path address lines for the entire machine.
The entire machine consists of the words for all the
states.

DOR MM Y
DECODER a, OR-TIE

a

OTHER LINK POTHS..--~,....-~~--. ROM
FOR THE REST WORD
OF THE MACHINE

5. 8 An Implementation of One State
with a Link-Path Addressable ROM.

The address decoder can be implemented with ordin­
ary combinatorial reduction and gates. For example
the portion of the link-path decoder described in
Figure 5. 7 might be implemented as shown in Figure
5.9. However, this implementationprovidesnogeneral
solution to the decoder. Figure 5.10 gives another
implementation of the decoder using an array for the
AND gate inputs. The state and inputs for each
link -path address are determined by simply connecting
the appropriate AND inputs. As with the memory
portion this decoder may be represented as shown by
an array called AND-TIE, which has single lines for
the collective AND inputs, and by arrows to indicate
the AND gate outputs as shown in Figure 5.11.
The link-path addressable ROM may then be con­
s ider0d as two arrays: an AND-TIE array for the
addresses and an OR-TIE array for the memory.
These two arrays are shown together with the state
flip-flop in Figure 5.12.

The problem with a link-path addressable ROM is that
the information to describe the operation of an algo -
' rithmic ·state machine is ·stored in two different types
of arrays, and if there are very many qualifiers, the
size of the AND-TIE array can easily be as large as
the OR-TIE array. In addition, only a few of the pos­
sible combinations for link paths are used. It is
desirable to find a word structure which allows

description of the ASM chart in one type of array.
Such structures are described next.

c
8
A

a4 al al a3

a4 a2 a2 a3

DEPENDENCY MAP

FOR LINK PATHS
FROM STATE @

Q,---t+-1
03.----++-t.-~

Q3;----H-~
01 - --...a-r--.....,
Q2::;----IH-1-__.I

Q2-----I

al=@· QI - <J'3
a2=@- 01 - 03

Q3 a3=@- a; -02
a4=@- Qj - Q2

STATE = c"B"A

@= 000

@

al

a2 LINK-PATH

a3
ADDRESS LINES

a4

Figure 5. 9 A Portion of the Address
Decoder Implemented in Gates.

D-
D-
....---

-

al

a2

a3

a4

Figure 5.10 A General Decoder Implementation.

Afl_DRfil
ANO- TIE

al

-- a2

a3

a4

- - - - - -C C B B A A 01 01 02 02 03 03

Figure 5.11 The AND-TIE Simplified
Representation for an Address Decoder.

- 78 -

ADDRESS MEMORY

AND-TIE OR -TIE

QI Ql 02020303 • 11 NSTRUCTIO~
+D rrr~

LINK

c TIT 'FF F F F 11 12 I4 D rlD rD
._11--' .--1 ._l

5.12 The Link-Path Addressable ROM as Two Interconnected Arrays.

State Qualifier P~air Addresses

ADDRESS MEMORY
~~~~~~~~~~---. 

OR-TIE 

DECODER 

STATE 

REGISTER CLOCK 

QUALIFIERS 

Next State 

STATE 

INSTRUCTIONS One ROM word is 
represented in the 
ASM chart as a 
State-Qualifier Pair 

Figure 5.13 State-Qualifier Pair ROM Address Structure. 

- 79. 



State-Qualifier Pair Addressable 

One way to store information in the OR-TIE array only 
is to restrict the ASM chart description to a class 3 
machine with one qualifier per state. A new portion 
of the ROM word names the qualifier chosen for each 
state. This portion is called the TEST part. The link 
part now has two next states chosen on the basis of 
the outcome of the qualifier selected by the test part. 
The instruction part of the ROM word selects the 
desired state outputs as was done before for conditional 
outputs. Conditional outputs are not allowed. Each 
address of this ROM selects a word describing a 
STATE-QUALIFIER PAIR and thus this ROM is 
called a state-qualifier pair addressable ROM. Figure 
5.13 shows the basic blocks for this type of ROM 
machine along with a typical state described by one 
ROM word. The state-qualifier pair ROM has some 
additional hardware called the SELECTOR and the 
SWITCH. The selector takes the test part of the 
ROM word and selects the corresponding qualifier 
as its output. The switch in turn selects one of the 
two link states on the basis of the logic level of 
the qualifier selected and presents this state as 
the next state for the state address register. The 
address corresponding to a test of 0 is called the 
DIRECT or FALSF. (F) address, while the address 
corresponding to a test of 1 is called the ALTER­
NATE or TRUE (T) address. These two designations 
are also shown in Figure 5.13 by subscripts F and T 
on the link parts of the ROM word. 

The address portion of a state-qualifier ROM is a 
simple complete decode of the n-input lines. The 
decoder is independent of the ASM chart description 
except for providing enough possible states. The 
entire description of the ASM chart is stored in the 
memory portion of the ROM in a state-by-state basis. 

The ASM chart meeting the requirements for the 
state-qualifier ROM is stored in the ROM by a 
direct conversion from chart to word structure. 
For example, Figure 5.14 describes a portion of 
an ASM chart and the corresponding ROM word 
coding. 

Assumed Addresses 

Another ROM word structure uses only one link field 
while still using the state qualifier pair. The alternate 
address is stored in this field. The direct address 
is called an ASSUMED ADDRESS and is provided by 
adding 1 to the present address. This addition is 
usually accomplished by incrementing the address 
register although in Figure 5.15 this increment 
is indicated by a state (+) 1 selection by the switch 
portion of the circuitry external to the ROM. Figure 
5.15 also shows a sample ASM chart state with 
two next states and a notation using a qualifier QX 
with only one next state. The second terminology 
represents a qualifier which is always 1 to force 
the state sequence to the true address stored in the 
ROM. 

The assumed address ROM requires a forced true 
address to complete extra links caused by the lim-

- 80 -

ited scope of the assumed address. The extra links 
are called X- LINKS and are a characteristic of the 
ASM chart. For example, in Figure 5.16 heavy lines 
are drawn on the ASM chart to indicate assumed 
address transitions even before states are assigned. 
A group of assumed address transitions in a row 
form a LINK STRING. One link string begins in 
state © and goes to state ® , state @ , state 
© , and finally to state ® . The jump from 

state @ to state ® must oe an X-link address 
because each successive state in a link string has 
successive addresses, and since an assumed address 
is always an increment, it is never possible to jump 
to a previous state in the link string with an assumed 
jump. Therefore, there is a simple procedure for 
finding X-links in an ASM chart. First, find ~e 
smallest· set of nonintersecting link-path strings that 
covers all the elements of the ASM chart description. 
(A decision box is covered when one of its link paths 
is included in a string.) Then, add an X-link at every 
point where, in order to cover an element, a jump 
is made to the middle of a link string. In Figure 5.16 
there are two link strings and two X-links. In both 
of these X-links there is no qualifier on the state 
so no additional states are required. More often 
than not, additional states have to be added to 
the ASM chart to provide an X-link state. X-links 
are a penalty paid for saving a link field, and in 
algorithms which have many strings of operations, 
the penalty is small compared to the savings. Later 
in this chapter an example will demonstrate the 
assumed address more extensively. 

Variable Format Addressable 

A third basic word structure is called VARIABLE 
FORMAT. The link-path addressable ROM and the 
two-address ROM are FIXED FORMAT incomparison 
in that every bit of the ROM word has a single fixed 
function. In a variable format word the same bit 
may have several different functions depending on the 
position, address or other bits in the word. The basic 
variable format word has two formats determined by 
a single bit of the ROM word as shown in Figure 5.17. 
The first format is the instruction part of the ROM 
information. The second format is the link and the 
test part of the ROM information. A set of instruction, 
test and link parts takes two ROM words. The same 
information could have been stored in a single ROM 
word of twice as many bits, but often it is less 
expensive to limit the width of the ROM word. As in 
the previous ROM, the link part can be a two-address 
or an assumed address format. Figure 5.17 shows 
the block diagram for the variable format ROM and 
the ASM chart representation for the two formats. 
Format 1, selected by a 1 in the left most bit posi­
tion of the ROM word, selects state output instruc­
tions, but since there is no link part an assumed 
address is used to select the next ROM word. The 
next ROM word may be either a format 1 or a 
format 2. A format 2 can make a test and jump to 
one of two next states. An assumed address requires 
that one of these next states be a successive state 
as shown.- The penalty for a variable format ROM 
is that more state times are required to execute an 
algorithm than are required in a two-address fixed 
format ROM. 



@d=J 
O~I 

STATE= C~BA' 

011 

I---<~ 100 

© '----~ 

011 
100 
101 
110 
111 

MEMORY 
( OR-TIE '\ 

I 
I 

l TEST l LINKJ LINKJINSTRUCTION J 
tTI T 11 ! ! .1 J J J .I 

Figure 5.14 A Sample ROM Pattern for Two States. 

ADDRESS MEMORY 

OR-TIE 

DECODER 

STATE 

REGISTER INSTRUCTION 

STATE­
QUALIFIER 

PAIR 

.--------__:::-~---.,,-'---'------) 

QUALIFIERS SELECTOR 

NEXT STATE 

STATE(+) 1 

TEST 

~RUE tj 

O -RESS' 
l A~~UMED 

-ATE(+)l 

SWITCH 

OR 

LINK 
STATE 

One ROM word per 
State-Qualifier Pair 

Figure 5.15 A ROM Structure Based on One Assumed Address, Fixed Format. 

- 81 -



LINK STRING 1 

LINK STRING 2 

Figure 5.16 Determining the Number of X-Links by 
Forming Link-Path strings in the ASM Chart. 

ADDRESS 

DECODER 

STATE 

REGISTER 

QUALIFIERS 

FORMAT 1 

STATE 

INSTRUCTION 

ASSUMED 
STATE(+)! 

MEMORY 

OR-TIE 

INSTRUCTION 

TEST 

NEXT STATE 

STATE(+) 1 

ASM CHART 
REPRESENTATION FOR 

ONE ROM WORD 

LINK T 

SWITCH 

FORMAT 2 

0 
t 

STATE(+ll 

FORMAT 1 

FORMAT 2 

LINKT 

TRUE 
ADDRESS 

Figure 5.17 A Variable Format ROM Structure with an Assumed Address. 

- 82 -



11 ROM STATES 
5 INSTRUCTION FORMATS 
6 TEST AND LINK FORMATS 

(al VARIABLE FORMAT, 
ASSUMED ADDRESS 

7 STATE-QUALIFIER 
ROM STATES 

(b) FIXED FORMAT, TWO ADDRESS 

Figure 5.18 The Effect of Fixed and Variable Format ROM Word Structures on an Algorithm Description. 

The comparison of state times and memory require­
ments for the variable and fixed ROM can be introduced 
by a comparison of the same algorithm done with both 
formats. The left ASM chart has two X-links and 
a total of 11 ROM states, while the right ASM chart 
has seven ROM states. The variable format ROM 
on the left, however, has a narrower word than the 
fixed format ROM on the right. If LI is the bit length 
of the instruction part and LL and LT are the corre­
sponding lengths of the link and test parts, then if 
LL (+) LT >LI, 11 (LL (+) LT) is the number of bits 
required for the variable format ROM, while 
7 (LI (+) LL (+) LT) is the number of bits required 
for the fixed format ROM. It is not clear which of 
these ROMs is smaller because it depends on the 
lengths of the particular parts of the ROM word. 
The next section is a detailed study of determining 
the required bit lengths for each ROM word part, 
but first several other word structures shall be 
briefly mentioned. 

Other ROM Structures 
The word structures discussed thus far are by no 
means all that are possible. Using the three basic 
elements of a word structure, the link part, the test 
part and the instruction part, a wide variety of 
structures can be created which will change the 
restrictions on the f and g functions in one way or 
another. For example, suppose in each state time 
two qualifiers were to be checked and four possible 
next states allowed. A word structure could be formed 
as follows which chooses one of four links on the 
basis of A and Bas shown in Figure 5.19. 

- 83 -

Test A Test B Link 1 Link 2 Link 3 Link 4 Instruction 

- -
A· B A·B A·B A·B 

Figure 5.19 A Four-Link Structure. 

Suppose two possible instruction sets could be chosen 
by a test and each set had a different link. A corre­
sponding variable format word structure might look 
like Figure 5.20. 

Format 1 Test (True or False) 

Instruction 1 Link 

Instruction 2 Link 

2 

)XTRUE 

~~E 
3 

Figure 5.20 A Three-Format Structure. 

Suppose the ROM was made very narrow and time could 
be used. Then the three parts could be split as shown 
in Figure 5.21. 

Format 1 Instruction 

2 Test TRUE 

3 Link A 

FALSE 
4 Link B 

Figure 5.21 A Completely Separated Word Structure. 



This particular word structure is used by many small 
computers. The test part in this structure is more 
commonly known as "skip if test" and in the example 
shown is a "skip if testfalse." Some variations on the 
structure shown are possible because any format may 
be used in any position. For example, a string of tests 
can be made or a wait loop can be made by combina­
tions of word formats as shown in Figures 5.22 and 
5.23. 

TEST Ql 

TEST Q2 

INSTRUCTION 

LINK 

WORD SEQUENCE 

:figure 5. 22 A Multiple Test Sequence. 

TEST 

LINK (-1) 

INSTRUCTION 0 

WORD SEQUENCE 

Figure 5. 23 A Wait Loop Sequence. 

5.3 INFORMATION STORAGE REDUCTION 

The information stored in tne OR-TIE array of a 
ROM machine may require fewer bits of storage 
than at first seems required. A ROM pattern may 
be reduced if the coding efficiency is low. Some 
methods of reducing ROM storage are described 
in this section. The new concepts introduced are 
the measurement of CODING EFFICIENCY, the use 
of BIT PACKING, and the use of FUNCTION EXTRAC­
TION. 

Coding Efficiency 

The value of coding efficiency (CE) used in ROM 

- 84 -

design is a simple upper limit on the amount of 
information stored in the ROM expressed as a 
percentage of the maximum amount of information 
storable in the same number of bits. The percentage 
is plotted in Figure 5.24 as a function of the fraction­
al bit content. (This curve is derived shortly but 
first the application of the value of CE(max) is 
discussed.) The fractional bit content is obtained for 
any given ROM by counting the smaller number of 
l's or O's in each bit line and dividing the sum of 
these counts by the bit capacity of the ROM. When 
each bit line has fewer l's than O's, the fractional 
bit content is just the fraction of l's in the ROM. 

CE(max) is used as a necessary but not sufficient 
condition for a good ROM coding. It is necessary to 
have a high CE(max) (80% or greater) to have a 
reasonable ROM coding; however, a high CE(max) 
does not insure that this ROM coding has been achieved. 
For example, Figure 5.26 shows an OR-TIE array 
for which the smaller number of l's or O's is listed 
opposite each output. The sum of these numbers 
divided by the total number of bits (bit positions) 
in the ROM is 0.321 as shown. This number is the 
fractional bit content which corresponds to a CE 
(max) of about 91%. This means that as little as 9% of 
the ROM bits may not convey information. Probably 
CE is less than the maximum but it is not clear 
how much. Figure 5. 25 shows another OR-TIE array 
where it is clear thatCE(max)gives a false indication 
of the actual amount of information contained. 

The factor which is left out of'CE(max)is the degree 
of randomness of the bit pattern in the array. If 
randomness is high then the~ actual CE approaches 
CE(max). Although it is difficult to mathematically 
determine the randomness of an array, the eye 
does a fair job. A random array of bits will have 
a lack of any pattern in the bits somewhat like the 
array in Figure 5.26 as compared to Figure 5.25 
which has a simple, clear pattern. 

The derivation ofCE(max) is based upon the equation 
from information theory which describes the number of 
bits of information, N, contained in a bit string n bits 
long given the probability of finding a O, Po, and the 
probability of finding a 1, P1, as follows. 

(3) 

The coding efficiency is defined as: 

The probability of Po = 1-P1 so CE may be ex­
pressed in terms of Po or P1. The maximum of CE 
occurs when Po = P1 = 0.5 as follows: 

CE =[0.51og2 2+0.5log2 2]100%=100% 
Po= 0.5 

pl= 0.5 



The value of P 1 can be estimated by the number of 
l's in the string if the l's are randomly distributed 
taken as a fraction of the total bit string. This value 
will be the maximum value for P 1 and therefore 
provides a convenient means of calculating CE(max). 
Since any output may be complimented without chang­
ing the essential nature of the information stored 

in the ROM and since CE is symmetrical about 
Po = P1 = O. 5 then the sum of the lowest count of 
l's or O's in each output line is a measure of Po or 
P 1 in terms of giving a value of CE(max). This 
number is called the FRACTIONAL BIT COUNT. 
The equation for CE(max) is plotted in Figure 5.24 
for one half of the total probability range. 

20%v 
o-..~--11--~-1-~--1~~..._~-i.~~-1--~_..~~1--~-1-~--1 

0 .05 .l .2 .3 .4 

FRACTIONAL BIT CONTENT 

Figure 5. 24 Maximum Coding Efficiency for Memories. 

OR-TIE 

t 

1 
l 

~ 

64 BITS 
CAPACITY 

4+ 4+4+ 4+4+ 4+4+4 = 32 

CE(max)= 100% 

Actual CE= 6.3% because 

the entire array could ~ -fffl 4 BITS 

replaced by___- ~ 

OR-TIE 

J • 
2+3+4+1+2+4+4+4+2 = 26 

.5 

81 Total 
Bit 

Positions 

li=o 321 81 • 
FRACTIONAL BIT 

CONTENT 

Which from Figure 5.24 
Corresponds to 

CE (max)=91% 

Figure 5. 25 An Example Illustratmg the Large 
Discrepancies That Can Exist between the 
Actual and the Maximum Coding Efficiency. 

Figure 5. 26 An Example Calculation of CE(max). 

I 2 3 4 5 6 7 8 9 10 11 

I x I I I I 
2 x 
3 x 
4 I x I 

5 x 
6 x 
7 x 
8 I I x I 

9 x 
10 I x I 
II I I I x 

CONFLICT MATRIX 5 7 9 II 
2 4 6 8 10 ...._._ ___ ~v~-----.J 

II-OUTPUTS 

CE (max}=48% with 143 BITS 

Figure 5.27 Formation of the Conflict Matrix. 

- 85 -



Bit Packing 

When CE(max) is very low the bits in the ROM may 
be condensed into a smaller ROM. The techniques 
covered here involve reducing the width of the ROM 
word by combining or eliminating output lines. EQUIV­
ALENT output lines may always be combined by elim­
inating all but one. Two outputs are equivalent if they 
both produce the same outputs for every address. 
COMPLEMENT outputs may always be combined 
by eliminating one line and complementing the other. 
Two outputs are complements iftheyproducedifferent 
outputs for every address. Exclusive groups of outputs 
may be replaced by fewer lines by coding the outputs. 
Exclusive outputs are never 1 at the same time. 
Such outputs warrant further discussion. 

Although many exclusive groups of outputs can be 
determined by the nature of the problem, i.e., arith­
metic functions, input-output buses, etc., the task 
of identifying the remaining exclusive groups of 
outputs is aided by the formation of the CONFLICT 
MATRIX. The conflict matrix lists all the outputs that 
conflict in pairs. For example, Figure 5.27 gives an 
OR-TIE array with a low value of CE(max). The 
conflict matrix is formed by comparing the outputs 
two at a time. An output compared to itself is indi-
cated by X's along the diagonal. The conflict matrix 
is symmetrical about this diagonal. In row 1 of 
the conflict matrix, output 1 conflicts with outputs 
4, 8, 10, and 11 as entered by l's under the corre­
sponding column. These same entries appear along the 
l's column opposite the appropriate row. Output 4 
conflicts with output 8, 8 with output 11, and 10 
with 11. There are no other conflicts in the OR-TIE 
OUTPUTS. From the table a CONFLICT DIAGRAM is 
constructed by a special representation of the outputs 
with interconnecting lines representing each conflict 
as shown in Figure 5.28. In this array a choice of an 
exclusive group of outputs corresponds to a group with 
no conflicts. If output 8 were chosen for the group, then 
output 4, 11, and 1 could not be chosen but output 10 
could be. However, if output 1 were chosen for the 
group, then neither 4, 8, 10, nor 11 could be chosen. The 
largest exclusive group for this array is found by 
choosing the outputs with the fewest conflicts first, 
which leads to the following group: 

j 2, 3, 5, 6, 7, 9, 4, 11} 

This group has eight elements. At first it may appear 
that these elements could be encoded in 3 bits. However, 
one code must be reserved to indicate no outputs. 
Therefore, an n-bit code can only code 2n -1 outputs. 
It is most desirable to find groups of 2n -1 outputs so 
that all the codes can be used. In the above group, 
output 2 will be left out of the exclusive group. The 
remaining outputs have a conflict diagram as shown 
in Figure 5. 29 and may be grouped into three outputs 
and one output as is shown. The net result of finding the 
exclusive groups in the ROM outputs is the packed 
ROM shown with decoders in Figure 5.30. The ROM 
and decoders produce the same outputs as before, 
but now the value of CE(max) is almost doubled and 
the number of ROM bits required is almost halved. 
The manual use of the conflict matrix and the conflict 
diagram is useful for small problems. On larger 

problems this same procedure has been computerized 
with gratifying results. A problem using a ROM of 43 
addresses and 29 outputs was reduced to 19 outputs in 
less than 2 minutes. This example leaves out many 
details in the full algorithm for searching to find the 
best set of exclusive groups, but it should serve to 
indicate the procedure and the effectiveness. 

Figure 5.28 A Conflict Diagram. 

{z,a,10} 

{1} 

Figure 5. 29 The Remaining Outputs after 
the First Reduction of Figure 5. 28 

OUTPUT CODING 

group I { 3,4, 5, 6, 7, 9, II, none} 

none = 000 
3-:: 001 
4 = 010 
5 = 01 I 
6 = I 00 
7 = I 01 
9 = I I 0 

DECODERS y t II = I I I 

IOFS EIOF4] 
1234567 123 

+rri lll iii group 2 {2, 8, 10, none} 

34567911 2810 

CE (max)=89%with 78 BITS 

none= 00 
2 = 0 I 
8 =I 0 
10 =I I 

group 3 {1} 

Figure 5.30 The Compacted Version of the 
ROM Shown in Figure 5.27. 

- 86 -



Function Extraction 

Common functions between several ROM bits may be 
used to reduce the number of required ROM bits. 
Two or more outputs may contain the information to 
generate an output by forming simple AND or OR com­
binations between them. Some of these relationships 
may be established when the instruction set is formed. 
A common example is two outputs which generate a 
third output when neither of the first two are present. 
Only two ROM lines are required, with a NOR genera­
ting the third output. 

Although function extraction can reduce the number 
of lines, it is only most effective when don't care 
outputs are used to increase the chances of finding 
common functions. Don't care outputs occur for any 
state where the output does not affect the validity 
of the algorithm. Finding don't care outputs involves 
considerable work since each output must be checked 
in each state. Where reducing the ROM is very 
important, however, the extra work required to isolate 
the don't care outputs may be rewarded by some 
additional reduction by common functions once the 
exclusive groups are extracted by bit packing. The 
reduction in ROM, of course, is accompanied by the 
addition of external gating. 

Changeability and Compaction 

The basic ROM with one output per ROM bit has 
complete flexibi:ity in choice of outputs in each state. 
The storage reduction by coding exclusive output 
groups places restrictions on which instructions can 
be given simultaneously in any state. The reduction 
by common functions places the particular function 
restrictions on the simultaneous issuing of certain 
instructions, which tends to be more confusing than 
the simple exclusive; groups. The result is that the 
more a ROM is compacted the more restrictive it 
becomes in allowing a change without completely 
reorganizing the ROM packing. 

Even though common functions can reduce a ROM, 
the extraction of exclusive groups does not involve 
finding don't cares and only restricts the instruc­
tions into simple exclusive groups. Also, the search 
for exclusive groups can be executed with enough 
ease that even conflicting changes can probably be 
reworked into another possible grouping without 
undue time spent in the process. 

5.4 COMPARATIVE IMPLEMENTATIONS 

This section implements the Black Jack control 
described in Sections 3. 7 and 3.8 with a two-address, 
fixed format ROM and with an assumed address, 
variable format ROM. Some general guidelines for 
choosing a ROM word are given in conclusion. 

Two-Address, Fixed Format 

The basic Black Jack control algorithm written in 
terms of state qualifier pairs is given in Figure 5.31. 
It is assumed that the ROM implementation must be 

fully synchronous because there are unknown race­
producing delays possible in the ROM decoding. For 
this simple example, *YCRD is transformed to a 
synchronous qualifier by running it through a clocked 
delay flip-flop. (See Section 4. 7.) There are better 
ways to handle many asynchronous qualifiers which 
are described in Chapter 6. The additional states 
required to handle the multiple qualifier in state 
@ make a total of 11 state-qualifier pairs. 

A ROM word is determined by finding the number 
of bits required for the link, test and instruction 
parts of the ROM. There are 11 state-qualifier 
pairs so 4 bits are required to code the ROM states. 
There are five qualifiers plus one for no qualifiers 
making a total of six test conditions so 3 bits will 
code the test part. There are 11 instructions but 
seven of them can be· grouped into an exclusive 
set requiring only 3 bits. These bits when added to 
the 2 bits required for the remaining three instructions 
make a total of 5 bits for the instruction part. The 
formation and coding of the ROM word chosen are 
summarized in Figure 5. 32. 

An even better compaction of ROM bits for the 
instruction part is possible by the extraction of 
common functions, which requires only 3 bits of coding 
as shown in Figure 5. 33. 

This new instruction coding makes a total ROM word of 
14 bits. Now, since the state assignment is completely 
flexible, the last 3 bits of the state can be made 
the same as the codes in Figure 5.33. Using a 1 out 
of 10 decoder with an inhibit or 4th bit line which 
ignores all codes greater than 10, the other states 
will generate no output at all if used as the input 
directly. This simplification eliminates the instruc­
tion part of the ROM completely making only 11 bits 
in the ROM word. A possible state assignment for 
this simplification is given in Figure 5.31. 

Using this assignment and the codes for the test part, 
a tabular description of the ROM information may be 
constructed as shown in Figure 5.34, with the logic 
circuit results as shown in Figure 5.35. 

Assumed Address, Variable Format 

The ASM chart for a variable format ROM implemen­
tation with the Lest and link parts in one format and the 
instruction part in another involves adding extra states 
to define the additional formats. A modified ASM chart 
of the Black Jack control with X-links added where 
required to meet the sequence requirements is shown 
in Figure 5. 36. 

The instructions IllBRK, IHSTND and IHHIT must be 
modified because with this type of ROM it is only pos­
sible to give an instruction intermittently while 
checking a qualifier. As shown by states ® , @ , 
and ® the instruction IllBRK is issued once every 
three clock times while YCRD = 0. The same is true 
of IHSTD in state@ and IHHIT in state @ . 
The restrictions imposed by an assumed address 
have raised the total number of states to 20. 

- 87 -



© 

@ 

0011 
HTIO 'i' 
HJ50 ~ 

<D 

HT22 
HK50 

0100 

1110 

0 

(ID lHBRK 
HCLS,HK50 

0 

11 STATE-QUALIFIER PAI RS 

STATE= o"c"a"'A 

o---

0110 
~ IHSTO 
\!!/ HCLS. HK50 

0 

Figure 5.31 State-Qualifier Pair Notation for the Black Jack Control. 

- 88 -



One 
ROM 
Word 

r• :-i 
t .. 

\ /\ 

' '-~} 

-Blank 
; ~ir, 

r-1 
-HJSO 

f 1\.if) 
J-HKSO 

•I, 
1-HKSO. 

G HCLS 

Figure 5. 32 Structure and Partial Coding 
for a Two-Address ROM Word. 

SYMBOLIC TABLE 

State Test False True 

a YCRD c a 

b FALSE a -
--
YF50· 

d c YACE e 

d YG16 k i 

e FALSE c -

f FALSE c -

g YCRD g b 

h YCRD h b 

i YG21 h j 

j YF50 g f 

k YCRD k b 

000 - BLANK 

001 - HTVC 

010 - HADD 

011 - HTIO ·HJ50 

100 - HT22·(HK50) 
HK50 

IOI - IHHIT 

110 - IHSTND · (HCLS·HK50) 

HCLS 
111 -IHBRK·(HCLS·HK50) 

Figure 5. 33 An Improved Coding 
for the ROM Word. 

ROM CODE TABLE 

Test False True -- --- ---T3T2Tl DCBA DCBA 

001 0010 1010 

000 1010 -

010 1011 0011 

011 0101 1101 

000 0010 -
000 0010 -

001 0111 0001 

001 0110 0001 

100 0110 1110 

101 0111 o·oo 

001 0101 0001 

Figure 5. 34 A Table Describing the ROM Code Pattern for a Two-Address Organization. 

- 89 -



ADDRESS MEMORY 

STATE a OR-TIE 

REG. b 
,........., c 

~D~I .d 
1----

~ 
e 

r---1 D DECODE f 
1--

~ 
g 

r-- D h 
1--

J2._ i 
~ D 

.......,.... k • 
~ lo , 

CLOCK 
TEST T LINKF LINKT 

$ - T J T 
T3l T2t T1f 

I OF 8 
ls ELECTOR ~ ~ 

o~o - 4 - POLE 
I c LOGIC SWITCH 

YACE·W-50--tol 2 
YGl6--+ 3 D c B A 
YG21 __,, 4 
YF50--9! 5 6 7 

I OFIO O 
D 
c 
B 
A 

DECODER 21 H TVC 
HADD 

3 HTIO, HJ50 
4t----------+------l~ 

5 
6 

] 

10 9 8 7 t-------+------IHSTND 

,_.----~ HCLS 

...._ __ ...... __________ __,..,IHBRK 

121 BITS 

C E lmax)= 90°/o 

II STATES 
II BIT WORDS 

Figure 5. 35 ROM Implementation of the Black Jack Control Using a Two-Address ROM. 

- 90 -



STATE = E"'o"c"s"A 

© 

® 

Figure 5. 36 Assumed Address, Variable Format ASM Chart Description of the Black Jack Control. 

- 91 -



The seven states that do issue instructions could be 
coded as before to eliminate the. output portion but 
first the outputs will be included to illustrate ROM 
coding. The test and link parts take 8 bits since 5 bits 
are required for the link. One additional bit required 
for the format indicator makes a total of 9 bits in 
the ROM word. The 8 bits of the ROM are available 
for the outputs so one bit will be used for each of the 
8 output states and HCLS is given a separate bit. 

The two ROM formats appear asshowninFigure 5.37. 

Format I o I T 3 1 T 2 j r1 j E j o j c j e j A I 

lndic~~ 

'=ormat 2 7 6 3 2 

HTVC 

HSTND 

HT22 HADD 

HCLS 

Figure 5. 37 The Two ROM Formats 
for a Variable Format ROM. 

The logic to choose the assumed address is: 

YAA = choose assumed address 

YAA FM Tl • TEST+ FMT2 

YAA INDICATOR· TEST+ INDICATOR 
= TEST + INDICATOR 

0 

HK50 

This logic implies that the test for an X-link should 
always be 0, which is easily chosen by the TEST 
selector. 

A state assignment is made by choosing link strings 
of states. Figure 5.36 is given a possible assignment 
which is shown on a map in Figure 5.38. 

r 
c r-r---::1:==:::::1::--tt----r----r--r---1 T 
L D 

L---.l.--~-LL---'---!-~1 
l-B--1 r-e--1 

Figure 5. 38 A Possible State Assignment 
for the Assumed Address ROM. 
(Arrows show assumed transitions.) 

- 92 -

The 20 ROM states are described by the table in 
Figure 5.39, and the logic circuit to execute this 
ROM structure is given in Figure 5.40. 

The variable format implementation is more complex 
than the fixed format implementation. The added com­
plexity is due to states added to complete the X-links 
and additional hardware required to decode the two­
word formats. 

Neither ROM implementation would be a particularly 
good replacement for the gate implementation in 
Chapter 4 because the ROM is so small that the 
penalties in added circuits cancel the advantages 
of the symmetrical array. This problem illustrates 
the cost problem with ROMs. The cost per bit 
increases with a decrease in ROM size until at some 
point, about 50 states, gates generally become more 
economical than ROMs. 

There is a generalization concerning ROM capacity and 
word width which aids in the choice of the ROM word 
width for any machine. A ROM organized with one state 
per algorithm state has the fewest number of states 
possible for that algortihm and, for a given clock, will 
be the fastest machine. To improve upon this time, 
the instruction set must be changed to allow reducing 
the number of states. But, if the ROM word width is 
restricted, the number of ROM states will increase, 
which corresponds to a slower execution time. How­
ever, the ROM capacity measured by the number of 
words times the word width has a minimum for a given 
restriction on ROM word width; and since the cost of 
the ROM in general corresponds to the capacity, this 
minimum corresponds to a minimum cost. This rela­
tionship may be illustrated by considering the Black 
Jack control as described in Chapter 4. This descrip­
tion has a minimum number of states for the instruc­
tion set. A ROM with the same number of states would 
have to have the capacity to store five next-state links 
in order to handle the links from state@. This ROM 
would require a 196-bit capacity. By restricting the 
word width to include only two next states as was done 
in this section for the fixed format ROM, five states 
were added to cover the transition and state output 
restrictions. The resultant 11- state ROM has a 
capacity of 121 bits. The word restriction to decrease 
the width to 9 bits adds nine more states to the ROM 
and the capacity of the ROM increased again to 180 
bits. The relationship between ROM word width and the 
ROM capacity is generalized as shown in Figure 5.41. 

This graph indicates that a word width can be chosen 
which minimizes the ROM capacity at some sacrifice 
to the machine speed. 

The best word width can be estimated by finding the 
lengthofthelink, test, and instruction parts. The link 
part consists of a number of addresses which may be 
estimated by the average number of links per state in 
the reduced algorithm description. The test part and 
instruction part are determined by the coding required 
for these sections. For example, in the Black Jack 
machine described in Chapter 4, the average number 
of links per state is 2.2, which indicates that the two­
address ROM is a good word choice as is observed 
by its small capacity. 



SYMBOLIC TABLE ROM CODE ROM CODE 
FORMAT 1 FORMAT2 

STATE TEST LINK OUTPUT TEST LINK ~ T;'T;-'rl ED~ 

a YCRD a 001 00 001 

b HTVC 00000010 

c HADD 00000100 

d YG16 i 011 01100 

e HTlO 
00001000 HJ50 

f 
HT22 

00010001 HK50 

g IHBRK 
10000001 HCLS,HK50 

h 
IHSTND 

01000001 HCLS,HK50 

i YG21 j -- 100 01 000 

j YF50 f -- 101 10 010 

k IHHIT 00100000 

1 YCRD b 001 00 000 --
m X-L k -- 000 00 101 

n X-L h -- 000 01 111 ---
0 YCRD b -- 001 00 000 ---
p X-L g -- 000 01 011 ---
q YCRD b -- 001 00 000 ---
r X-L c 000 00 010 -- ---

YF50• 
010 s 

YACE e -- 10 000 ---
t X-L c -- 000 00 010 ---

5. 39 Tabular Description of the Assumed Address, Variable Format ROM. 

- 93 -



ADDRESS MEMORY 

a OR- IE 

b 
c 
d 
e .---

D 
A__,,, f 

1--
g 

D 
B h 

i 

..---- D 
C_,,,,, 

DECODER 
j 
k 

t--
D __.,,, 

r-- D 1 

1---
m 

....- D E n ...... 

'--r- 0 
p 
q 
r 

L--- s 
t 

CLOCK-+ . ~ ~ ~ 

Yc;D 
T3JT2J Tu 

D I OF 8 
0-i 0 SELECT 

I 

YACE·YF50-., T 2 1---i 
i 

YGIG- 3 

YG21- 4 

YF50- 5 

6 7 

~ STATE(+ll 

_.._ 
11 I 7 I i' LJ )-c 5-POLE 

- LOGIC SWITCH 

E D c B A 

~ 

180 BITS 

r 

C E (max): B I 0/ 0 

20 STATES 
9 BIT WORDS 

~HK50 
~ 

0)-HTVC 
~ 

~HADD 
HTIO 

~ HJ50 

IHHIT B 
~ '= ~ 

D 

HCLS 

u-HT22 

5. 40 An Assumed Address, Variable Format Implementation of the Black Jack Control. 

- 94 -



It is seldom possible in complex machines where 
ROMs are often used to construct the reduced algorithm 
to determine the average number of links per state. In 
these situations, the ROM structure must be based 
upon an estimation of the algorithm. The number of 
links per state will in general be close to 1 for arith­
metic algorithms, close to 2 for control operations 
and possibly but rarely as high as 3 or 4 in very com­
plex decision logic. 

In many designs the controwng factor in word width is 
that the ROMs come with 2 words and 1, 2, 4 or 8 bit 
widths. This fact alone may make a narrower word 
more optimum than the ideal because the additional 
words may be available, or a wider word may be used 
because extra bits are left after the required number 
are provided. 

ROM 
CAPACITY 
(COST) 

SOME ROM WIDTH 
GIVES THE MINIMUM 

ROM CAPACITY 
OR MINIMUM COST 

ROM WORD WIDTH 

THE NUMBER OF ROM 
STATES IS A CONSTANT 

MINIMUM IN THIS REGION 

~ 
ONE ROM WORD 

PER NONREDUCIBLE 

ALGORITHM STATE 

Figure 5. 41 The Generalized Relationship between the ROM Word Width 
and the ROM Capacity or Cost for a Given Algorithm. 

- 95 -



MEMORY STRUCTURES 

REFERENCES 

CHAPTER V 

Hellerman, H.: Digital Computer Systems Principles (New York: McGraw-Hill Book Company, 1967), 
Chapters 3, 8. 

Phister, Montgomery, Jr.: Logical Design of Digital Computer (New York: John Wiley & Sons, Inc., 
1966), Chapter 7. 

INFORMATION STORAGE 

Schwartz, Misha: Information Transmission, Modulation and Noise (New York: McGraw-Hill Book 
Company, 1959), Chapter 1. 

INFORMATION STRUCTURES 

Knuth, Donald E.: The Art of Computer Programming, Vol. 1: Fundamental Algorithms 
(Menlo Park, California: Addison-Wesley Publishing Company, Inc., 1968), 
Chapter 2. 

- 96 -



CHAPTER VI 
LINKED STATE MACHINES 

6.0 LINKED STATE MACHINES 

The previous two chapters have described the design of 
algorithmic state machines. This chapter discusses 
the effects of several state machines working to­
gether. These state machines are said to be LINKED. 
The general linking of many machines is called 
ARRAY LINKING, but the coverage of this topic is 
bevond the scope of this book. Instead, four special 
facets of linking are discussed: INTERFACE LINKING, 
ITERATIVE LINKING, INTERPRETIVE LINKING and 
SOFTWARE LINKING. The significance of this chapter 
lies in specifying the relationship between logic 
systems, machine organization and software. 

6.1 INTERFACE LINKING 

Machines that are linked by only a few states are 
called INTERFACE LINKED. Examples of such link­
ages are the connections to computers of such instru­
ments as line printers, teletypes, digital counters 
or A/D converters. Each of these instruments has a 
number of states just as the computer has a large 
number of states. The computer interfaces with the 
device in a relatively few number of these total states. 

Serial Linking 

Two machines that are interface linked in time, such 
that one or the other is primarily active at any one 
time, are called SERIALLY LINKED to describe their 
time-serial behavior. An example of two serially 
linked machines is given in Figure 6.1. Just the states 
of each machine relevant to the linking process are 
shown. States @ and @ are named the CALLING 
STATES in the sense· that one machine calls on the 
other to perform. The IB instruction from state @ 
causes machine B to leave state @ while machine A 
waits in state Q) for the IA call from machine B. 
This example assumes that both machines use the 
same clock. 

If machine B had a shorter state time than machine 
A, the linking states would have to be arranged as in 
Figure 6.2. The additional complexity is required to 
ensure that the IA instruction is detected by machine A 
during its stable period. Machine A waits for IA. 

When the relative state times are unknown, the ASM 
chart solution for serially linking two machines is 
given in Figure 6.3. Both machines are now logically 
protected against one machine outrunning the other 
in the same way that machine B waits in Figure 6.2. 

- 97 -

MACHINE A 
IA =[YIA=I] 
IB=[YIB=I] 

MACHINE B 

CD @ 

0 ------ YIB 

// l 
i / ~ 

OTHER / / OTHER 
STATES~STATES 

Describing the task 

IA= Initiate A 
I B = Initiate B 

Figure 6.1 All ASM Chart Description of 
Two Serially Linked state Machines Using 
the Same Clock. 

MACHINE B MACHINE A 

- - -....-'? 
Q) 

-_,>'~ I 
I 

0 I I 

® I 
IA=[YIA=l] I I 
IB=[YIB=l] 

0 
OTHER 

1 STATES 

OTHER 
STATES 

Figure 6. 2 An ASM Chart Description of Two 
Serially Linked state Machines Where the B 
Clock Is Faster Than the A Clock. 



MACHINE B 

CD 

0 

OTHER 
STATES 

IA=(YIA=l] 
IB=(YIB=l] 

MACHINE A 

© 

OTHER 
STATES 

0 

Figure 6. 3 An ASM Chart Description of the 
Serial Linking of Two Machines of Unknown 
Relative Clock Times. 

Parallel Linking 

Two machines may also be linked parallel in time to 
provide parallel processing of information or deci­
sions. Such machines are calledPARALLELLINKED. 
Figure 6.4 shows two machines, A and B, which work 
in parallel using the same clock. Both machines will 
start together because of the cross-linked qualifiers 
regardless of which machine finishes its cycle first. 
Again, when the B clock is faster than the A clock, the 
two machines must follow the description in Figure 6. 5 
to ensure correct operation. Figure 6.6 demonstrates 
how a third machine, C, must be added to act as the 
independent controlling element which enables two 
machines of unknown relative clock time to run in 
time parallel. This example completes the problems 
of interfacing two state machines with different clock 
rates in both parallel and serial linking. Each ex­
ample demonstrates that a minimum number of states 
is required to accomplish certain types of interface. 
In each situation, these states must be designed into 
the instruments for the interface to work. 

6.2 ITERATIVELY LINKED MACHINES 

Machines that are linked but are in themselves a 
part of a chain of similar machines are called 
!TERA TIVEL Y LINKED machines. Such configurations 
exist in a number of areas where the algorithm for 
the task is also iterative. Some of the common itera­
tively linked structures to be covered are adders, 
ripple counters and shift registers. Iterative linking 
is a special case of interface linking. 

Adders 

Many mathematic algorithms can be reduced to an 
iterative form which operates on each bit of some 

- 98 -

- ----------- -------

coded representation of a number in an identical 
manner. Binary addition is a typical example. A 
familiar representation of the sum of two numbers 
is the addition table. In Figure 6. 7, two tables are 
shown, one for conventional decimal numbers and 
another for binary numbers. Below the diagonal 
stepped line in each table, the sum of the A and B 
digits is expressed with two digits. The additional 
1 digit is called a CARRY because it represents a 
digit to be added to the next significant location. 
Obviously, binary addition is simple compared to 
decimal addition. An algorithm for adding two binary 
numbers involves the application of the addition table 
over and over again for each digit position. However, 
because the previous digit addition may have pro­
duced a carry, up to three digits need to be added in 
each position. Figure 6.8 gives a table for this 
addition and shows a circuit symbol to represent the 
combinatorial circuit performing this task. The circuit 
is called a FULL ADDER. The gate realization of a 
full adder can be found using Chapter 4. 

MACHINE B 
IA= (YIA=l] 
18= (YIB=l] 

MACHINE A 

CD .......... ........ --- ,.,,,.,-
-.>--"""' -- ---

I 

' OTHER 
STATES 

Figure 6. 4 An ASM Chart Description of Two 
Parallel Linked State Machines Using the 
Same Clock. 

CD 

0 

MACHINE B 

0 
I 

OTHER 
ST TES 

MACHINE A 

/ 
/; _...,.... I 

/ 

I 
./ 
I / 

;,,,./ I 
t 

,,,.1 OTHER 
STATES I 

I 

IA= (YIA = 1] 
IB= (YIB=l] 

0 

Figure 6. 5 An ASM Chart Description of Two 
Parallel Linked State Machines Where the 
B Clock Is Faster Than the A Clock. 



0 

1 

2 

3 

4 
A 5 

6 

7 

8 

9 

Figure 6. 7 

CD 

0 

MACHINE B 

..--_.....-....,I 
I 

I 
I 

I 

I 

IA=[vrA=1], 1e=[vre=1],rAe=[v1Ae=1] 

0 

Figure 6 .• 6 An ASM Chart Description of the Use of a Third Machine, C, to Define the 
Parallel Operation of Two Machines, A and B, of Unknown Relative Clock Times. 

B 
0 1 

'[IJP A 
A 1 1 10 co CI 

FA 
BINARY ADDITION 

s 
B 

B 

0 2 3 4 5 6 7 8 9 FULL ADDER 

0 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 

,,-.......,,--.... CARRY SUM A B CI co s 
3 4 5 6 7 0 0 0 0 0 
4 5 6 7 12 13 0 0 l 0 1 
5 6 7 12 13 14 0 1 0 0 1 
6 7 12 13 14 15 0 1 l 1 0 

13 14 15 16 1 0 0 0 1 
14 15 16 17 1 0 I 1 0 

12 13 14 15 16 17 18 1 1 0 1 0 

I I 1 1 1 
DECIMAL ADDITION 

Decimal and Binary Addition Tables. Figure 6.8 Table Description of a Full Adder. 

- 99 -



A group of full adders tied in a string as shown in 
Figure 6. 9 forms an adder for as many bits as there 
are full adders, in this example 4 bits. The iterative 
character of the linking is evident. 

ao 

A A 
co;A CI CO A CI COFA CI COFA er FA s B S B s B s B 

0 

b3 b2 b1 bo 

S4S3 S2 s1 So 

Figure 6. 9 A 4-Bit Adder Made from Four Full 
Adders Showing the Iterative Structure of Linking. 

Since the hardware for each bit of an iteratively 
linked structure is the same, a great hardware 
saving may be made at the expense of time by 
serially performing the operation on each bit using 
the gates for one bit and remembering the information 
for the next bit. The ASM chart for the adder described 
in Figure 6. 8 could be represented by a 2 -state 
machine which would remember the carry bit for 
each successive bit as shown in Figure 6.10. The 
gate implementation for this machine is also shown 
in Figure 6.11 to demonstrate the relative simplicity 
of the machine. Of course the equivalent machine 
could be made from one full adder and a delay flip_:­
flop, as in Figure 6.12; but this solution is in reality 
more complicated in total gate count. 

STATE=C 

JC= A+ B ' KC= A+B 
ISUM=E·C· E·C where E=A+B+A+B 

Figure 6.10 An ASM Chart of a FU!l Adder. 

The other basic algorithms for subtract, multiply 
and divide also can be reduced to iterative linked 
structures. Some special adder functions can be 
implemented as an iteratively linked machine. For 
example, a counter is really an adder which always 

adds 1 to itself on each count: but since a sum of 
1 with a carry of 1 can never occur in any bit when 
1 is added, the counter is simpler than an adder, l 

In previous chapters, counters were discussed as state 
machines, but now they will be considered as separate 
state machines linked together. 

A 
8 

A 
B 

CLOCK 

ISUM 

Figure 6.11 An Implementation of A Serial 
Adder and a D Flip-Flop. 

c 
A 
B 

CI FF 

A FA C01------1 D F 

C E B 
s 

CLOCK 

Figure 6.12 A Serial Adder Using a Full 
Adder and a D Flip-Flop. 

Ripple Counters 

A simple incrementing counter element will respond 
to a car]:'y from a previous counter element. The 
least significant bit will always have a carry input 
to simulate the addition of a 1. Figure 6.13 describes 
an element of the counter under these simplifying 
conditions, assuming that the state time must be 
defined by the inputs alone. This ASM chart is 
similar to the description of a T flip-flop with 
T = 1 or a JK flip-flop with both J and K = 1. The 
carry input is analogous to the clock input, and a 
carry is indicated whenever the previous bit goes to 
a O. Figure 6.14 then shows some typical elements 
of such a counter connected to count to 16. This type 
of counter is often called a RIPPLE COUNTER, which 
describes the progress of the carry propagation down 
the length of the counter. Since a carry may propagate 
down the entire length of the counter, going throug,. the 

1 In binary addition, adding a 1 to a sum can produce 
a sum of 1 and no carry, or a sum of 0 and a carry 
but never both. In each bit position of the counter 
the situation is the same, caused either by the initial 
1 to be added to the first bit or by the carry for the 
remaining bits. 

- 100 -



delays in each stage, such a counter will not, in 
general, come to a stable count as fast as a counter 
designed as a single-state machine; butithas a simple 
circuit for binary counting. 

0 

STATE=BA 
OUTPUT=B 

0 

0 

Figure 6. 13 A Counter Element under the 
Assumption That the Input Controls the 
state Time. 

Shift Regilters 

Another popular iteratively linked structure is the 
SHIFT REGISTER. The shift register is made from 
a string of delay elements using a common clock 
as described in Figure 6.15. The JK flip-flop could 
also be used to implement the shift register since a 
JK can be made to look like a D flip-flop with an 
additional inverted input from each previous stage. 

Iteratively linked strucW,res are generally slow in 
comparison with single-state machines. There are 
some modifications to such structures to speed them 
up that involve such features in an adder as LOOK­
AHEAD CARRY to reduce carry propagation time. 
A look-ahead carry refers to additional combinatorial 
logic used to generate a carry more rapidly than it 
would be propagated through the adder.2 However, 
for the most part, the significant characteristics of 
iteratively linked machines are their simple structure 
and their ability to be converted to a serial operator. 

2For additional information see Herbert Hellerman, 
"Digital Computer System Principles," Section 7. 9, 
McGraw-Hill Book Company, New York, 1967. 

IN 

CLOCK 

COUNTER OUTPUT 

ADD ONE ON THE 
NEGATIVE TRANSITION 

Figure 6.14 A 4-Bit Ripple Counter as 
an Example of a Special Add Circuit. 

6.3 INTERPRETIVELY LINKED MACHINES 

This section discusses a valuable concept useful in 
constructing machines to perform complex algorithms. 
This concept allows the design of machines that use 
other machines to become more powerful. The concept 
is called INTERPRETIVE LINKING and refers to the 
algorithmic relationship between the linked machines. 

Two machines are called INTERPRETIVELYLINKED 
if each state of one machine can be described by the 
ASM chart of the other machine. In this way, one ma­
chine interprets the meaning of the other. The process 
of defining a particular array of machines was in­
troduced in Chapter 2. This array or system is made 
from a number of functional modules linked together 
through a control module. The functional modules are 
described as immediate functions, class 0 machines, 
or as delayed functions, class 1 machines. The control 
module is usually a class 2 or higher machine. Each 
instruction of the control module, then, is interpreted 
by the other modules it controls. In a similar manner, 
the control just described may interpret another 
machine, and so on. 

Levels and Total State 

The relationship of one machine in a string of in­
terpretive linkings is called the LEVEL of interpre­
tation. A level 0 machine is either a class 0 or a class 
1 state machine. Levels 1 and above are usually 
class 2, 3 or 4 state machines. The machines described 
in Chapter 4 and Chapter 5 were handled as level 0 
and level 1 machines; however, the design techniques 
described in those chapters apply to all higher levels, 

c 

Figure 6.15 A Delay FliP-Flop Shift Register. 

- 101 -



as will be seen. Figure 6.16 represents several 
modules in a system. The level 1 machine has 
IM MEDIA TE outputs referring to class 0 interpre­
tations and DELAYED outputs referring to class 1 
interpretations, as shown. A level 2 machine has its 
state time determined by a level 1 machine and some 
outputs which are inputs to a level 1 machine. These 
outputs are called INTERPRETED outputs. Figure 6.17 
describes several interpretively linked machines 
demonstrating how each machine links to a lower level 
machine by interpreted outputs and to a higher level 
machine by a state time output. 

Figure 6.18 describes three interpretively linkedma-

chines to demonstrate the operation of levels and the 
concepts of total state. The TOTAL STA TE is the -..;On­
catenation of the states of all the levels. In an inter­
pretively linked group of machines the total state 
establishes sufficient information to determine the 
next-state behavior just as the state does in a single 
machine. In fact, the only difference between total 
state and state is that total state implies a concept 
that spans several state machines. The attribute which 
makes these state machines separate is that they 
are designed separately. Note that in this example 
the output corresponds to the state so that the output 
behavior can be seen by looking only at the state 
behavior. 

LEVEL I { INPUTS 
CONTROL 

CLASS 2 ,3 OR 4 

CLOCK 

Immediate 
~ 

Delayed 
~ 

CLASS 0 CLASS 0 CLASS 1 CLASS 1 

Figure 6.16 The Level Notation Applied to a Simple Two-Level System. 

~State Time for Level 4 (etc.) 

Interpreted Outputs 

State Time for Level 3 

Interpreted Outputs 

State Time for Level 2 

STATE MACHINE : } Outputs to 

Inputs l--~-L-E_v_E,.L_l _ __.--·--- Hardware 

CLOCK 
(BASIC STATE TIME) 

Figure 6.17 An Interpretively Linked Group of State Machines. 

- 102 -



® © 

® ® CD 

LEVEL 3 LEVEL 2 LEVEL 1 

HNS3 = [Next state of Level 3 -+ State of Level 3 ] 

HNS2 = [Next State of Level 2 -+ State of Level 2 ] 

IPA - IPF are simple outputs 

Figure 6.18 Three Interpretively Linked Machines. 

Given that the initial total state of Figure 6.18 is 
given by (state of level 3)(state of level 2)(state of 
level 1) and is equal to ACE, the operation of the three 
machines proceeds as follows: 

1. The level 1 machine, with a state time determined 
by a clock, steps to state®. The new total state 
is ACF and the three outp'Ut'S are IPA, IPC, and 
IPF. 

2. At the end of state ® , HNS2 indexes level 2 
to state@ and the new total state is ADE and the 
three outputs are IPA, IPD and IPE. 

3. The clock advances level 1 to state®making 
the new total state ADF. 

4. At the end of state ® , HNS2 indexes level 2 
back to state (c) ; however, HNS3 simultaneously 
indexes level 3to state @ making the new total 
state equal to BCE. 

5. In a similar manner the three machines continue 
through a sequence of total states which can be 
summarized from the initial state by the follow­
ing list: 

ACE 

ACF 

ADE 

ADF 

BCE 

BCF 

BDE 

BDF 

ACE 

- 103 -

In terms of the state time of the level 1 machine, 
the outputs IPA, IPC and IPE can be traced in time 
as shown in Figure 6.19. The primary purpose of this 
example is to demonstrate the meaning of total state 
and the relationship of state outputs between levels. 
The highest level always has outputs of the longest 
duration as shown in Figure 6.19. The real power of 
interpretively linked machines comes in interpreted 
outputs to be discussed next. 

I PA 1-t--------. 
( LEVEL 3) 0 

IPC 1-t-----. 
(LEVEL 2) o 

IPE 1 
(LEVEL 1) o 

2 3 4 5 6 7 8 9 TIME 

TIME (STATE TIMES OF LEVEL 1) 

Figure 6.19 The Time Trace of Three Outputs 
from the Linked Machines Described in 
Figure 6.18. 

6.3.2 Interpreted Outputs 

Any instructions issued from a machine which are 
interpreted by a level 1 or greater machine are in­
dicated by a star, *, preceding the mnemonic in the 
ASM chart. For purposes of simplicity, these in­
structions are called INTERPRETED INSTRUCTIONS. 
In the situation where all or many instructions are 
starred, an alternate, SPLIT, notation can be adopted, 
as shown in Figure 6.20. 

MIXED SPLIT 
NOTATION NOTATION 

Interpreted by a 
LEVEL 1 or higher 
machine 

Interpreted by a 
LEVEL o machine 

Figure 6.20 Notation for Interpreted Instructions 
in a State of an ASM Chart. 

Instructions which are interpreted by a level 1 or 
higher machine may not be executed at the same time. 
This difference may cause some confusion in reading 
an ASM chart; therefore, where possible, the list of 
instructions is separated by slashes to indicate the 
order of execution. 

For example, *JMP/*TDT means that JMP is ex­
ecuted, then TOT is executed. The prefix I is never 
used on an interpreted instruction, and the use of 
the prefix H or L is optional. The logic level is 
assumed to be H if H or L is absent. 



The star, *, notation is used in Chapters 4 and 5 to 
denote an asynchronous qualifier. Actually, the star 
means that the qualifier is not defined in the time 
reference for the machine and that it is subject to 
further interpretation elsewhere. Thus, the star 
notation in general means that the definition of a 
signal is external to the machine being considered. 

To illustrate the application of an interpreted linked 
pair of machines, a simple example of a serial 
machine will be used. This machine adds three 
numbers shifted in as an input and stores the sum 
in a register. Figure 6.21 describes a machine 

16 BITS 
~ 

IROTO = [ROO=ROI]} 

IZRTO = [ROI =O] exclusive 

IADTO = [ROI= S] 

ISRO = [ROO =RI] } 
exclusive 

ISIN = (RI= INPUT) 

IIRX = [RX!= Rij } 

!!RX= [RXI=RXO) X= 1,2,3 

ISRX = [RXO = AJ 

C is included in the adder 

which will do this job assuming that there are no 
overflows and that the input numbers are fixed 
point, binary codes of simple integers. This assump­
tion eliminates many special cases which would 
otherwise confuse the example. 

Figure 6.21 describes four shift registers, labeled 
RO through R3, each 16 bits long, a serial adder with 
a reset on the carry flip-flop similar to Figure 6.11, 
a 4 -bit binary counter labeled CR, plus a number of 
terminals referred to by the labels on the block 
diagram. The two ASM charts describe two machines 
labeled Ml and M2. 

RlO HICR CR CL 

R20 YCRl5 

R30 

AADD 5 

ROO~~~~--iB CL 

® 

LEVEL 2 @) 
ASM '--~-_, 

CHART @) 
L......:~..:...::......J 

® 

s 

IHRS 

HSFT = [Shifted registers-. register, carry-.C] 

HICR = 
!HRS= 

(CR(+)l-.CR] 1 
[CR+-O,c-o] LEVEL 1 

YCR15 = counter is 15 Ml 

~ 
HNS2 = [NEXT STATE OF M2 - STATE 

ASM 
CHART 

OF M2] 

0 

Figure 6. 21 A Simple Machine to Demonstrate the Use of Interpretive Linking 
in Determining the state Time of a Level 2 Machine. 

- 104 -



Machine Ml is level 1 and has three functions, which 
are: to shift the registers 16 positions to the right, to 
reset the counter and carry flip-flop, and to increment 
the state of the level 2 machine, M2. Machine M2 
establishes the proper data paths in the machine in 
the proper sequence to perform the required job of 
adding three numbers from the input. 

Ml starts in state(r)and M2 starts in state(a). 
M2 issues ISIN and Ym1 which connect the INPUT 
up to the input of RI. Ml shifts RI and increments 
the counter, CR, 16 times, ending up in state (cl). 
The state of M2 is changed to ®at the end of'tfie 
16th count by HNS2. State@ resets CR and the 
flip-flop C. State® issues !SIN and IIR2 which 
connect the inputs to the input of R2. Meanwhile, 
Ml has gone to state@ and starts shifting the next 
number into R2. Agam, when 16 shifts have been 
made, M2 is set to state @ . It is easy to see that 
Ml makes every state of M2 perform an operation 
on one register length. Therefore, M2 can be con­
sidered separately as operating on registers. State 
(c) loads a number into R3 and loads 0 into RO. 
sYate @) shifts Rl and RO through the adder and puts 
the sum in RO. State @)adds R2 and RO and puts the 
sum in RO. State (f) aads R3 and RO and puts the 
sum in RO. Finally, state (g) shifts RO into R3. 
At the end of state @ , the s'l:rfu of three successive 
numbers from the mput is in register R3. Al­
though this example has a lot of extra moves, it 
serves to demonstrate the interpretation of state 
time in machine M2 and the basic power of inter­
pretive linking. 

The previous exa111ple can be made more useful if 
the start of the acceptance of input data is controlled. 
An interpreted instruction, *ADD, can be used to start 
the process if a decision box and state are added 
after state (g) in M2, and an additional condition is 
added to Mt=io interpret a wait instruction from M2. 

0 

Figure 6. 22 shows the changes in the ASM charts 
to describe the interpretation of the instruction *ADD 
from a level 3 machine, M3, which will cause M2 to 
enter three numbers and add them as before and 
continue doing this sequence until ADD = 0. When 
*ADD = 0, M2 will wait in state @ which issues 
*WAIT to Ml causing Ml to wait in state (cl'\ • 
Thus, with some simple ASM chart additWns, 
a single logic signal, *ADD, has been defined as a 
series of shifts and adds that total 127 separate clock 
times of the Ml machine. The HADD in the BLACK 
JACK machine could be an interpreted instruction 
similar to *ADD. 

The synthesis of interpretively linked machines is 
carried on in exactly the same manner as described 
in Chapters 4 and 5. Each level machine is a separate 
design. An interpreted instruction is another output 
that is the same as all other outputs of the state 
machine. Each level can be synthesized with gates 
or with ROMs just as before. The only difference 
is that the notation has been detailed to help explain 
the interpretive linking defining mnemonics which 
are outputs from one machine and inputs to another. 

Computer Structures 

It is instructive at this point to review briefly how 
the interpretive link structure pertains to three 
computer machine structures. It will become evident 
that the historical development of computers has 
merely followed a course of adding a new machine 
level for each new machine and, therefore, the 
structure of future machines may be extrapolated. 

The most basic machine structure, the TURING 
MACHINE, is used extensively in automata theory 
to prove basic principles but is not really a practical 
computing machine. The Turing machine consists 
of an infinite tape, a head capable of marking and 

ISIN 
I!Rl @ 

: same 
• $ 

A Stato of) 
Level 3 Machine 

Ml -*WAIT--M2----*ADD---M3 

\__Interpreted Instructions) 

Figure 6.22 An ASM Chart Description of Two Interpreted Instructions *ADD and *WAIT. 

- 105 -



reading the tape and a finite state control. The 
tape is divided into squares and the head can read 
and mark a finite number of symbols in this square. 3 
The control can move the tape forward or backward 
one square at a time based on a decision made from 
the state of the control and the symbols read from the 
tape. The control may be represented by a level 
1 ASM chart. The decision box structure has con­
ditional immediate outputs to mark the tape and 
conditional delayed outputs to move the tape one 
way or the other. Figure 6.23 represents a possible 
ASM state from such a control and shows examples 
of mark outputs and move outputs. 

Tape symbols Si 

IMSi = mark Si 

IESi = erase Si 

HLM = [Left square-+ square] 

HRM = [Right square -+ square] 

0 

Erase symbol S7 
and move to the 
left square 

I 
I 
I 
I 

TURING MACHINE 
STATE 

I IMS3,HRM 
I 
t Mark symbol S3 

and move to the 
right square 

A finite number 
of exit paths 

Figure 6. 23 An Example ASM Block to Represent 
One Turing Machine Control State as a Level 1 
Machine. 

The second machine is the VON NEUMAN structure. 
This machine consists of a control, a memory and an 
arithmetic unit. The control is responsive to codes 
stored in the memory called the PROGRAM. Figure 
6. 24 describes a block diagram of these elements. 

3In its most primitive sense one head writes one 
symbol on one tape square, but there is no loss in 
generality by placing a finite number of tapes in 
parallel and thus allowing a finite number of symbols 
per square. 

CONTROL 

MEMORY 

ARITHMETIC 
LOGIC UNIT 

Figure 6.24 The Basic Von Neuman Machine. 

The Von Neuman machine may be described as a 
level 2 machine. The arithmetic logic unit (ALU) and 
all the addressing of the memory are controlled by the 
control unit, which is a level 1 machine since the 
previous functions are immediate and delayed type. 
The control interprets portions of the code from 
the stored program, which therefore is a level 2 
machine. As was seen in Chapter 5, a state machine 
can be implemented in a memory. Two ASM charts 
in principle, then, can describe any program stored 
in a Von Neuman m::ichine. 

The third type of machine is rather recent and is 
often called a MICROPROGRAMMED MACHINE. Fig­
ure 6.25 gives a block diagram impression of this ma­
chine showing that it is basically the same as a 
Von Neuman machine with one extra levelofinterpre­
tation, called the MICROPROGRAM, between the stored 
program and the control. This machine is, therefore, 
a level 3 machine in the stored program, a level 2 
machine in the microprogram, and a level 1 machine 
in the control. From these examples, it is easy to ex­
trapolate that a machine could be built with any number 
of levels, each level being described by anASM chart. 

MEMORY 

DATA 

CONTROL ALU 

Figure 6.25 A Basic Microprogrammed Machine. 

Interpretive linking has the potential for making 
machines perform far more complex operations than 
might be indicated by the sum of their individual 
states. The actual effectiveness is closer to the product 
of the state counts in the interpretive machines since 
each state of one level machine is defined by the states 
of the lower level machine. In reference to the dis­
cussion on memory addressing in Chapter 5, this 
statement indicates that all the levels should have 
approximately the same number of states for maxi­
mum utilization of a given number of states. Although 
this statement is only a guideline, it is interesting to 
look at the state count in the HP 9100A calculator: 
level 1 has 64 states, level 2 has 512 states, level 3 
has 256 states and level 4 has 196 states. The three 
highest levels are very close in count and the first 

- 106 -



level is not really that far away. On the other hand 
consider a basic general purpose computer having 
two levels, such as the Von Neuman machine which may 
have seven states in the first level and 16,000 states 
in the second. 

6.4 SOFTWARE LINKED MACHINES 

The coding of a general purpose computer memory 
such that the computer performs a specific task is 
called PROGRAMMING the computer. The description 
of the coding is called SOFTWARE, primarily because 
it is on paper rather than in circuits. However, soft­
ware and hardware are really implementations of 
the same type of logical task; both can be described 
by an ASM chart. The implication is that any soft­
ware program can be implemented in hardware. 

To illustrate the translation of some software state­
ments into hardware, consider the ALGOL statement: 

FOR I = 1 STEP 1 UNTIL 10 DO s1 ; 

The symbol s1 stands for a statement to be inter­
preted. Figure 6.26 gives the ASM chart description 
of this same statement which may be converted to 
hardware by following Chapter 4 or 5. An inter­
pretively linked machine can operate on S1, telling 
the main program when to move to the next statement. 
The extension of this example to an entire software 
program could yield a complex machine. Still, the 
essential concept of ASM charts and algorithmic state 
machines is that once the task is adequately described, 
it can be implemented. A computer program is just 
another description of an algorithmic task. 

- 107 -

0 

IIEl = [I= 1] 

HI!= [l(+)I-+I] 

*S1 = interpreted 
instruction 

YIElO = I equals 10 

Figure 6. 26 Implementation of the ALGOL 
Statement, FOR I = 1 STEP 1 UNTIL 10 DO s1. 

6.5 CONCLUSION 

The linking of machines provides the power andflexi­
bility to perform complex algorithmic tasks. From the 
early discussions of functionalpartioning in Chapter 1, 
the discussion of algorithmic state machines has 
been carried through description and design and 
finally back to the problems of partitioning a struc­
ture of linked machines. Interface linking defines the 
operation of two simply linked machines. Iterative 
linking introduces some basic types of iterative 
algorithm implementation. Interpretive linking in­
troduces the concepts of interpretively defined outputs. 
Interpretively linked ASM charts can be used to 
describe complex machine structures, such as a 
microprogrammed computer, almost as easily as an 
ASM chart can describe a JK flip-flop. Finally, the 
computer programming languages maybe represented 
as an interpretively linked group of algorithmic state 
machines. 



REFERENCES 

CHAPTER VI 

Bell, G. et. al.: "A New Architecture for Mini-Computers -- THE DEC PDP-11," 
AFIPS Conf. Proc., Vol. 36 (Montvale, New Jersey: AFIPS Press, 1970), 
pp. 657-675. 

Hellerman, Herbert: Digital Computer Systems Principles (New York: McGraw-Hill 
Book Company, 1967). 

Husson, Samir S. : Microprogramming Principles and Practice (Englewood Cliffs, 
New Jersey: Prentice-Hall, Inc., 1970). 

Ramamoorthy, C. V.: A Study of User-Microprogrammable Computers," 
AFIPS Conf. Proc., Vol. 36 (Montvale, New Jersey: AFIPS Press, 1970), 
pp. 165-182. 

-108 -



CHAPTER VII 

INTRODUCTION TO PERFORMANCE EVALUATION 

7.0 PERFORMANCE EVALUATION 

Simulation and test are introduced in this chapter 
as two means for evaluation of a logic design before 
and after hardware is constructed. Specific discussion 
covers some design considerations to make a state 
machine testable. 

7.1 SIMULATION 

The simulation process is described in this section. 
The use of a SIMULATION LANGUAGE is introduced 
as part of a system called the SIMULA TOR. The 
details of such a language are omitted. A parallel 
is drawn between the INTERPRETER and hardware 
test. 

The process of SIMULATION involves creating a make­
believe machine which operates according to the rules 
established by the description, such as an ASM chart, 
and by the definitions, such as terminal definitions. The 
most common simulation is done manually, on paper 
or in the mind. This process necessarily accompanies 
the development of an algorithm from the kernel of an 
idea. Manual simulation suffers from slowness and 
inaccuracy. Since the designer knows what he wants 
to do, he often smooths over little errors while 
simulating a machine. Later, these errors cause 
problems in the hardware. The less common but 
more effective simulation is done with the aid of 
a computer. The computer does exactly what it is 
told and therefore checks the complete accuracy 
of the description and the definitions. While a suc­
cessful simulation guarantees that the algorithmic 
process is correct, it does not check the electrical 
circuits which form the machine and implement the 
task. It only checks their logic definitions. The study 
of electrical circuits is a separate design problem. 

ORIGINAL 
DOCUMENTATION 
- DEFINITIONS 
- DESCRIPTIONS 

DESIGNER 

The computer simulates an algorithmic state machine 
by copying the performance of each state in the 
description. As in the model, the state time is divided 
into a stable and a transition period, and the state 
is defined during the stable part. In this way, the 
computer processes the state description according 
to the appropriate definitions in any manner that is 
convenient to produce the correct result in the next 
stable period. The actual time of the simulation is 
unimportant for a logical check, although a time 
reference tally can be maintained to accumulate 
the time used by the make-believe machine. Just 
as in the real machine, the contents of the memory 
elements during the stable portion of the state time 
determine the operation in the next state. 

The simulation on the computer requires changing 
the machine description and definitions into a form 
acceptable to the computer. The computer accepts 
character strings. This change is achieved by trans­
lating the definition statements, the block diagram 
connections, the equations, the tables, the maps and 
the ASM charts into one language called the SIMU­
LA TOR LANGUAGE. The simulator language is con­
structed to make this transition easy and represents 
all descriptions as character strings. 

The simulator language is fed into a computer which 
is programmed to read and organize the information 
into a listing of codes which represent interpreting 
instructions and symbol definitions. This listing is 
then interpreted once again by another program, called 
the INTERPRETER, which provides the actual means 
to execute the information in the listing and update 
the memory elements for each new state of the make­
believe machine. The interpreter has features which 
provide the means for evaluation of the performance 
of the make-believe machine through outputs to a 

SIMULATOR 
LISTING 

PROCESSES COMPLETED 
BY THE COMPUTER 

INTERPRETING 
LISTING 

Figure 7.1 The Computer Simulation Process. 

- 109 -



printer or visual display. The designer can alter, 
at will, the type of information he wants to see during 
the course of the simulation. Figure 7.1 describes 
the processes involved in using a computer to simu­
late a state machine. In this diagram, the circles 
represent a process and the rectangles represent 
a result 

The interpreter provides access to the make-believe 
machine being simulated in a number of ways. 

1. Selected memory elements may be viewed at 
each state time. These elements are selected by 
PRINT commands. 

2. The make-believe machine can be made to 
execute one state at a time· or run until some preset 
condition is met. Stopping at each state is called 
ABSOLUTE HALT. Stopping only on a condition is 
called CONDITIONAL HALT. Absolute and conditional 
halts can be set up for each level of an interpreted 
machine. This feature allows checking the output 
against the desired output for each state time. 

3. Inputs can be selected by the designer to test 
alternate paths based on the inputs. This feature 
allows checking interface responses. 

By using these three features, the make-believe 
machine can be run and logically checked against the 
desired responses. 

Figure 7.2 shows a possible computer output for a 
portion of a machine, showing the results of several 
machine states by the printouts of the state code and 

0 

1111 

® © 

the registers R, s, T and B. At each state, the con­
tents of the registers are printed as they would 
appear during the stable portion of the state time. 
Comparing the printout with the ASM chart demon­
strates the usefulness of the checkout simulation. 

The simulation process provides a simplification 
when modules of the logic machine have been designed 
or are only defined. For example, a serialprocessing 
module may produce an arithmetic result upon two 
parallel inputs. To check out a system which uses this 
module, the transform equivalent to the module can be 
used so that the details of the serial arithmetic 
process need not be simulated or described. This 
replacement can be made for any module which can 
be defined over some time interval as a class 0 or 
a class 1 machine. The simulator can also provide 
simulation with states identified by symbolic notation 
rather than codes. The states can be simulated under 
these conditions because the state sequence is still 
well described. State assignments can be made and 
the equations for the next-state function can be 
checked after the algorithm has been verified using 
symbolic states. In this way, a partial separation 
of the state sequence simulation and the output 
function simulation is achieved. Thus, simulation 
is possible at several levels involving block opera­
tions and state assignments. 

Simulation makes changes easy to check. The change 
is made in the simulator listing, and the computer 
makes the appropriate changes in the interpreting 
listing. The interpreter then allows convenient access 
to check the validity of the change. 

S,R,T and Bare 8-bit registers 

IRST= (R=O,S=O,B=O) 

HRDM= [ mem-s] 
HTTR=[T-R] 

HINP = [INPUT-.T] 

1110 
ASM CHART 

SIMULATOR OUTPUT 

STATE=A, CODE= 11001 1<=000000001 5=000000001 1=000011111 
8•00000000 

STATE•B1 CODE= l 1''111 k=00001lI11 S-000000001 1=000011111 
8=00101011 

Y kl.N= I 
INPUT= 01010011 

STATE=C1 CODE=lll01 1<=000011111 S=000000001 1=010100111 
8=00101011 

Figure 7. 2 An Example Simulator Output 

- 110 -



Simulation can provide other outputs for testing the 
hardware. Since the simulator creates a make-believe 
machine which behaves like the real one as far as the 
logic is concerned, the interpreter could generate 
some test routines for the real machine. Now, the 
test phase is considered. 

7.2 TEST 

The process of test involves the logical and electrical 
check of a real machine. Much in the same way as in 
simulation, the test process uses a TESTER which 
provides the same access to the real machine that 
the interpreter provided to the make-believe machine. 
This section describes such a test system. 

The TESTER is a device consisting of an octopus-like 
set of input-output lines, a control interpreter and an 
operator display console. Figure 7.3 describes such 
a general logic tester. The display provides meaningful 
data to the operator. The data is in the form of logic 
definitions. The analog information has to be obtained 
by direct connection to the devices or system under 
test. The control-interpreter takes the logical inputs 
from the operator console and makes the correct 
connections to the logic under test. A control 
interpreter may be very simple when inputs have to 
be provided. For example, one switch can be used for 
each input line and one light for each output line. The 
interpretation takes place in the labels on the switches 
and lights. These labels tell the operator the meaning 
of the controls. The control interpreter must also 

OPERATOR 
DISPLAY 
CONSOLE 

provide a means for single stepping each level of 
the machine. Figure 7.4 shows what a tester panel 
might look like when made specifically for the Black 
Jack machine. There are three major areas on a 
tester panel display: the input-output controls and 
display, the internal states display and the state 
time controls. These three areas are outlined in 
Figure 7.4. 

The tester can be custom-built for each device tested, 
or a general tester can be programmed to accept the 
device and interpret the controls correctly. This 
general tester may be programmed by the simulator 
when it simulates the machine. The program would 
include a listing of which input-output wires would be 
tied to which logical terminals. 

Extending the testing process a little further, the tester 
and the simulator may be combined. The simulation 
process can be compared to the response of the real 
machine and any differences noted on an output. 
Eventually, it might be possible to let the computer 
do some initial troubleshooting to isolate the problem 
of making correction easier. This is the real power of 
computer testing of real machines. 

Some real machine problems may be caused by 
linear circuit problems. In these situations, the tester 
could be used to repeat the troublesome period over 
and over so that an oscilloscope could be used to 
study the linear signals. 

Figure 7.3 Basic Logic Tester. 

~ u '' I ::p 
BROKE HIT STAND 

~= <#; <#; <#; <#; @ 
CARD VALUE ENTER 

CARD 

-d-~~UP-
FC FB FA 

,P-0-:0:-
CARD REGISTER STATE REGISTER 

-0PO¢¢-
F50 

-\)-
SUM REGISTER 11-POINT 

FLAG 

INTERNAL STATES 

INPUT-0 

RUN 

(I; 
HALT 

@ 
SINGLE 

STEP 

STATE 
TIME 

UT PUT 

Figure 7. 4 A Possible Tester Control Display for the Black Jack Machine. 

- 111 -



@ 

@ 

® 

© 

0 

r-----1 
BREAK­
BEFORE­
MAKE 

Jsk~i~l 

J1 

01 
IHCL 

0 
00 

0 
10 

NSST 

~~~ 

l

STATE = B'"' A

FF
J F
c

y __ H_A_LT-) >--Y_R_U_N ______ ___.

L _____ .J

TEST FUNCTIONS
CIRCUIT

I A I

~ ~

~ - ~ 0

JA= NSST·B KA=YRUN· B

=NSST+B =YRUN+B

t:io I ~

JB = YSST•A KB=A
=YSST+A

IHCL =poss clock= A· B

DESIGN

FF A
J F
c A
K E

BASIC CLOCK

Figure 7. 5 A Circuit Demonstrating the Use of Run, Halt, and Single step
in the Design of a Testable Clock Generator.

- 112 -

Thus, analogies can be drawn between simulation and
test in that they are both performance evaluations of
a real algorithm. The test is made on a real machine
rather than a make-believe one. The tester provides
the means to interpret the logical significance of the
signals in the machine. Accordingly, a tester may be
simple or complex, depending on the amount of
interpretation required by the operator.

7.3 DESIGN FOR TEST

In order to provide a meaningful test of a system, cer­
tain design features must be included into the design
of a system. Other features are also useful for self­
test but are not required for the initial test. Both of
these areas are touched upon in this section.

Each level of a logic system should be designed to
be single stepped. This feature requires that states
and qualifiers be added to the state machine specifi­
cally for this purpose. For example, Figure 7. 5
describes a portion of a state machine interpreting
a higher level machine. This machine, in fact, is the
clock generator for a level 1 machine which can be
logically controlled for RUN and SINGLE STEP by
simple switch connections to the circuit. No altera­
tions to the circuit or special pulse generators are
required. Figure 7. 6 shows a very similar ASM
chart description of the single step and run feature
designed into a more complicated machine. This
feature should be included in each level of an
interpretively linked structure of modules. Both
of these examples use a single line, called YRUN,
to determine if the state machine is to run normally
or if it is to be single stepped. The single step button
generates YSST and NSST. Two signals are used to
prevent races caused by contact bounce on the switch.
The switch is a break-before-make, which means

OTHER
STATES

0

Figure 7. 6 Run and Single step
Appended to a state Machine
Description.

@

- 113 -

that during the process of pushing the single step
button, NSST first goes to a 1, then YSST goes to a 0.
This progression prevents the machine from pasising
states@) and@ more than once for each push of the
button.

Self-test features can also be designed into the logic.
For example, the ASM chart in Figure 7. 7 describes
a possible test sequence for checking a read-write
memory. The test sequence provides arepeatedread­
write on a single memory location with a test for com­
parison of read and write and optional incrementing ot
an address counter. If the comparison fails, the test
halts with the address of the failing location. Such
a test is applicable to core memories, which require
a separate read and write signal. Self-test routines
should be included in interpretively linked machines
to provide a minimum cycle for the next level. In this
way, a portion of the system can be cnecked relatively
independently from the rest of the system.

The philosophy behind machines with self-test is to
provide convenient logical isolation between major
modules of a system and to support the isolation with
rudimentary test sequences which exercise the isolated
module. This philosophy of self-test depends upon a
design founded on a sound logical organization of the
machine. Such organizations are studied in the field
of computer architecture. The study of machine
organization is supported by the study of algorithmic
state machines, which this book has attempted to
describe in detail. Algorithmic state machines, there­
fore, aid in the broad concepts of organization,
implementation and evaluation.

Comparisons are ignored when
Load = 1. Test exits to stop for
any non-compare.

o-----
I ROM = read memory

IWRT = write memory

YCMP =compare memory
with switch register

LOAD = load memory with
the switch register

YINC = increment switch on

HINC=[address+ 1-address]

Figure 7. 7 A Memory Test Sequence.

REFERENCES

CHAPTER VII

Bartow, Neil, and McGuire, Robert: "System/360 Model 85 Microdiagnostics,"
AFIPS Conf. Proc., Vol. 36 (Montvale, New Jersey: AFIPS Press, 1970)
pp. 191-196.

- 114 -

Absolute halt
Absorption law
Adders
Address
Address efficiency
Address symmetry
Algorithm
Alternate address
AND
AND-TIE array
Array linking
ASM chart
ASM block
Associative law
Assumed address ROM
Asynchronous

Binary addition
Binary codes
Bit
Bit distance
Bit line
Bit packing
Black box
Black Jack machine

definition
description
gate synthesis
ROM synthesis

Block diagram
Boolean algebra
Boolean equations
Boolean expression
Bus

Calling state
Carry digit
Change vectors
Clocked
Class O
Class 1
Class 2
Class 3
Class 4
Code

binary
gray
unit distance

Coding efficiency
derivation

Combinational logic
Combinatorial logic
Common terms
Communicative law
Complement
Complement outputs
Computer
Computer architecture
Computer structures
Concatenation operator
Conditional halt
Conditional output
Conditional output box
Conditional transition synthesis
Conflict diagram

110
38, 39
98-100

75
76
76

2, 3
80

35, 36
78
97

16-19
17
38

80-82
22, 26, 58

99
56

75, 76
56
76
86

1
9

11
30-33
66-71
87-94

1, 2
13

37, 38
13
2

97
98

57,58
46

20-22, 33
22-26, 33
26-28, 33
29-30, 33

30-33
56
56
56

14, 56
84, 85

84
20

20-22, 36-43
43-44

38
13, 14, 38

86
105-107

113
105-107

7
110

32, 43
16

47, 48, 55
85, 86

INDEX

Conflict matrix
Consensus law
Contact bounce
Control module
Conversions

equation -to-gate
maps -to -equations
tables -to-maps
ASM chart-to -tables
ASM chart-to -maps

Critical race

Decoding
Decision box
D flip-flop
Definition documentation
Definition phase
Delayed outputs
Delay operator
DeMorgan's law
Dependency map
Description phase
Design algorithm
Direct address
Distributive law
Don't cares

Edge-triggered
Equivalence relation
Equivalent output
Excitation table
Exclusive outputs
Expansion theorem

Fixed format ROM
example

Flip-flops
RS
JK
D
T

Format indicator
Fractional bit content
Functional division
Functional extraction
Functional module
Functional partitioning
Fundamental mode -- See Unclocked

Gate
Gate symbols
Gray code

Hazards

Idempotency law
Immediate operator
Immediate output
Information storage reduction
Instruction
Instruction part
Interface linking
Internal reserved variable
Interpreted output
Interpreter

- 115 -

47,

1,

85, 86
38

113
1, 2

36
36, 37
39-43

22, 25
27-32

48, 55
62

75, 76
16

46, 49
11

4, 7-12
102

8
38, 39

58
13-33

3-4
80
38
41

46
38
86

50, 52
86
38

80
76, 79
44-52
44-46
47-48

46
47
82
85
1

87
1

1, 2

35
36
56

65-66

38
8

102
84-87

7, 8
77

97-98
35

102-105
109

Interpretive linking
Involution law
Iterative linking

JK flip-flop

Karnaugh map

Levels
Linked state machine
Link part
Link path
Link path address
Link path addressable ROM
Link state
Link string
Literal
Logic circuit
Logic design
Logic functions
Logic lines
Look-ahead carry

Machine classes
Manipulation
Map, n-cube

reading of
adjacency
dimensions
encirclements

Map-entered variable
Memory module
Microprogram
Minimum-literal expression
Minimum state locus
Minterm
Mnemonic
Module definition
Module interconnection
Multi-output simplification
Multiple next states

N-cube
NAND
Next-state function

synthesis
Next-state map
NOR
Null element

Operational flow chart
OR
OR-TIE array
Output function
Output list

Parallel linking
Parallel qualifiers
Partial next-state equations
Partial output equations
Postulates

Qualifier
Quine-McClusky method

Race
Transition
Output
Critical

INDEX (Cont'd)

101-107
38

98-101

47, 52

14-16

101
97-106

77
77
77

77-80
81
80
39
35

1
35

2, 35
101

33
37
39
42

14-15
14
39

41, 42
1-2
106

39
54
42

7' 8-9, 35
7-11

97-107
43-44

17

14, 15, 39
35, 36

7, 8
44-53

25, 28, 45, 48-49
36, 38

38

3, 4, 9
13, 14, 36, 38

75, 76
8

16

98
17

25-26, 47
25

13, 38

7
42

57
59
62
62

Race -free assignment
rule

Read only memory (ROM)
Reduced dependency

rule
Reduced map
Ripple counter
RS flip-flop

Secondary - - see State Assignment
Seldomly used variables
Selector
Serial linking
Sequence
Sequential logic in ROMs
Shift register
Single step
Simplification
Simulation
Simulator language
Software linking
Stable period
Stable state
State
State assignment

State box
State declaration
State machine

unclocked
clocked

State map
State-qualifier pair ROM
State space
State table
State time
State variable
Sub cubes
Synchronous
Synthesis
System design
Symbolic logic circuit
Symbol set

Tabular description
Tag
Terminal definition
Test
Tester
T flip flop,
Total state
Transform module
Transition period
Truth table
Turing machine
Two -dimensional addressing

Variable format ROM
example

Verbal algorithm
Von Neuman machine

Word
Word structure

X-links

- 116 -

61, 64
61, 64

75
57-59

59
41, 42

100-101
44-46

41-42
80
97
27

76-84
101
113

39-42
108-111

109
107

26
59

7
29, 56-64

16
7

7-8
44
48
29

80, 87
7

30
8, 26

7
39
26

35, 36
1

35
13

14
36

8-9
111-113
111-113

47
102

1, 2
26
14

105
72

80, 82
91-94

3
106

75
76-84

80, 82

