HP Users

& Conference

August

¥ 5-8, 1991

San Diego

s — e T\

RETURN TO:

HPL/RESEARCH LIBRARY
BUILDING #2L
P.0. BOX 10490

PALO ALTO, CA. 94303-0971
PHONE # 415-857-3092

Sponsored by

INTEREX

The International

Association of

Hewlett-Packard

Computer Users

PROCEEDINGS

RTE, HP-UX,
Workstations

INTEREX

The International Association of Hewlett-Packard Computer Users

IPROCEEDINGS

of the

1991 INTEREX HP Users Conference

RTE, HP-UX, Workstations

HPL/DT BRARY
e

[398

Ea

Pii , CASHIU5-857

San Diego, California
August 5-8, 1991

Introduction

This volume of the Proceedings of the INTEREX 1991 North American
Conference was printed from camera-ready copy prepared by the authors. It
contains papers dealing with RTE and with the HP1000 in general and all papers
dealing with HP-UX and the HP9000 computers. It also contains papers dealing
with the migration of applications from one type of computer or operating system
to another.

Because HP-UX has been growing in popularity amongst business users, there
are many papers reflecting such use. All papers related to HP-UX have been
included here for convenient reference by the reader. This system may not be
followed in the future. Papers relating to workstations are included here, since
these are small Unix-based systems. At the time of this conference HP’s Apollo
division produced the Apollo line of workstations and papers relating to those
systems are also included in this volume.

Papers were numbered as they were received and in order to present them at
the conference in logical groupings the numbers are not necessarily consecutive.
The numbers should be considered to be simply reference numbers.

Because the tutorials represent up-to-the-minute information and require much
more work than a paper to prepare, it is not always possible for them to be included
in the Proceedings.

Thanks go to the authors who met the submission requirements and had their
papers in by the deadlines. Thanks also to the members of the paper review
committee who read the abstracts and offered criticism and advice to both the
authors and the editor.

F. Stephen Gauss R Arthur Gentry
U. S. Naval Observatory Gentry and Associates
Washington, D.C. Excelsior Springs, Missouri

10 June 1991

Index by Paper Number

1003 T: A Package For Programming Across Systems
J. Sansdrap, J. Matton - Universite Catholique de Louvain

1007 Adding an X-window User Interface to an HP 1000 Application
Robert Combs - Combs International

1008 Using RTE System Library Routines To Control A d Program E:
Wendy King - US Naval Observatory

1009 HP 1000 DS and NS Over MUX Ports
Don Wright - Interactive Computer Technology

1010 DownLoading From The HP 1000 To Factory Floor Machines
Bill Donze - Reliance Electric

1011 DISKMAIL Interprocess Message System
Don Wright - Interactive Computer Technology

1012 HP Softbench-Link/1000: A State of the Art CASE Environment For The HP 1000
Hilary Feier - Hewlett-Packard Co.

1013 The A990 Virtual Control Panel "VCP", Why and What
Alan Tibbetts - Hewlett-Packard Co.\Consultant

1014 Using and Controlling Dialup Modems for Remote Data Acquisition
Wendy King - US Naval Observatory

1021 HP 1000 Networking Strategy and Future Directions
Lynn Rodoni - Hewlett-Packard Co.

1022 BSD IPC on the HP 1000
Ramesh Radhakrishnan - Hewlett-Packard Co.

2001 Distributed Computing GUI's and the OSF/MOTIF
Mark Brown - Workstation Systems Group

2003 Identifying CIM Opportunities Using Str d Analysis Model
Wayne Asp - Hewlett-Packard Co.
2004 Beyond Interprocess C ications: Strategies for Linking MPE-XL and HP-UX
Frank Leong - Hewlett-Packard Co. Applications
2005 SCSI: The Disk Interface of Choice on HP Workstations
Scott May - Hewlett-Packard Co.

2007 Referential Integrity in ALLBASE/SQL
Amelia Carlson - Hewlett-Packard Co.

2009 LAN Manag t: New Challenges and Choices
Russ McBrien - Hewlett-Packard Co.

2010 Troubleshooting LANs
Sam Sudaranam - Hewlett-Packard Co.

2011 Overview of Capacity Planning UX/VE/XL Systems
Rick Bowers, et al - Hewlett-Packard Co.
2014 The Impact of Emerging Fast Networking Standards on Dc Image Management
Maura McNulty - Hewlett-Packard Co. & Distribution
2015 Enterprise-Wide Messaging in Open Systems
Debra Thompson -

2016 HP VUE, Intellig in a Graphical User Interface
Charlie Fernandez - Hewlett-Packard Co.

2017 Core Dump Analysis
Mark DiPasquale - Hewlett-Packard Co.

2018 Network and System Management Effectiveness: The Graphical Edge

Reid Shay - Hewlett-Packard Co.

In Paper Number

2019 FORTRAN 90: The New Standard
Maureen Hoffert - Hewlett-Packard Co.

2020 Multivendor Terminal Connectivity with HP's Family of DTCs
Jean-Luc Meyer - Hewlett-Packard Co.

2022 SNMP, Open Systems, and Open Networks: The State of the Union
Joe Grim - Hewlett-Packard Co.

2024 Business Intelligence
Garry Orsolini - Hewlett-Packard

2026 Using a RDBMS To Represent Engineering Designs
Phil Walden - Hewlett-Packard Co.

2027 Making Data Integration Easy
John Hall - Hewlett-Packard Co.

2028 Backup Strategy For HP-UX Systems
Reiner Lomb - Hewlett-Packard Co.

2029 Open Systems Customer Projects
Wolfram Fischer - Hewlett-Packard Co.

2030 Providing Low-Priced X-Windows Networking Environments
Mark Teter - Hewlett-Packard Co.

2031 Developing Client-Server Applications
Scott Safe - Hewlett-Packard Co.

2032 Integrating NetWare and HP Systems
Dan Williams - Hewlett-Packard Co.

2033 Distributed Fault Tolerance
Joe Eyre, Dave Bromley - Hewlett-Packard Co.

2034 Tutorial Structured Software Project Management
Gottfried Bertram - Hewlett-Packard Co.

2035 Improving HP-UX for OLTP
Roland Luk - Hewlett-Packard Co.

2036 Troubleshooting FORTRAN on Multiple Platforms
Helen Morimoto - Hewlett-Packard Co.

2037 Integration and Analysis of Manufacturing Data
John Williams, Jerry Akers - Hewlett-Packard Co.

2038 Tutorial Publishing For Paper and OnLine
Wesley Cheng - Hewlett-Packard Co.

2040 OSF: Open Systems Through an Open Process
Rod Johnson - OSF

2041 OSF/1: The HP Perspective
To be announced -

2043 OSF: Distributed Computing Environment "DCE": The HP Perspective
To be announced -

2044 OSF: Distributed Management Environment "DME": The HP Perspective
To be announced -

2045 OSF's/Architecture Neutral Distribution Format
Rod Johnson - OSF

2053 What is a Systems Administrator, Anyway?
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc.

2055 A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000

Dennis Harvey - Applied Biosystems, Inc.

Index Paper Number

2057 Rapid Development of Client/Server Applications
Stephan Stephansen - GenGold

2059 Magnetic Media Certification System-MMCS
Warren Webber, Cheteyl Dodd - AGS Genasys Corp.
2062 The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
Thomas Treadway - Lawrence Livermore National Labs System
2067 Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
Najib Nadi, Thomas Savarese - Department of Mathematical Sciences

2068 ENGINFO - The Data Management Solution
K. Kannikeswaran, et al - College of Engineering

2070 Introduction to Unix Part 1
To be announced -

2071 Introduction to Unix Part 2
To be announced -

2072 WA-6 The Multi-Language Approach to UNIX Cc ial Application Develop
Colin Bodell - Micro Focus

2074 Performance Management in a Distributed Computing Environment
Dave Glover - Hewlett-Packard

2075 A Talking Computer That Monitors Remote Comp
Tony Jones - Hewlett-Packard Co.

2077 Client/Server Cookbook: A Recipe For Success
Debra Thompson - Hewlett-Packard Co.

2078 Integration of the Telephony and Data Processing Industries
John Pickett - Hewlett-Packard Co.

2079 Tutorial Open Systems Networking In a Multi-Vendor Environment
Steve Oppenheim - Hewlett-Packard Co.
2080 UNIX Productivity Software and Support for Business Teams: Using the Power of
Robert Brosseau - Applix, Inc. Groupware
2082 Networking LaserROM fcr Multiple Users
Bill Hassell - Hewlett-Packard Co.

2083 The Real Story About HP PowerPatch!
To be announced -

8021 Migrating To Client/Server
George Ferguson - Hewlett-Packard Co.
8052 Migrating A Tumn-Key, Real-Time Test System From An HP 1000 (RTE) To An
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc. HP 9000 (HP-UX) Platform
8058 Making A Square Peg Fit Into A Round Hole
Robert Hersh, Warren Weber - AGS Genasys Corp.

8064 UNIX For The MPE Programmer
Michael Barrat - Eldec Corp.

8065 Migrating From HP 260 to HP 9000 Migraine or Not?
Pasi Riihilahti, Olli Lammi - Raha-automaathyhdistys (Ray)

8066 MPE to UNIX - Will I Need an RDBMS
Gloria Weld - Software Explained

8073 From MPE to UNIX and Back Again: Life with Open Systems
Gary Lowell - Allegro Consultants, Inc.

8081 Applications Migration Between UNIX Platforms

Andy Feibus - need company & address info. for Art

iii

Asp, Wayne

2003, Hewlett-Packard Co
Barrat, Michael

8064, Eldec Corp.
Bertram, Gottfried

2034, Hewlett-Packard Co.
Bodell, Colin

2072, Micro Focus
Bowers, Rick, et al

2011, Hewlett-Packard Co
Brosseau, Robert

2080, Applix, Inc.
Brown, Mark

WA-6 The Multi-Language Approach to UNIX Cc

Index by Author

Identifying CIM Opportunities Using Structured Analysis Models

UNIX For The MPE Programmer

Tutorial Structured Software Project Management

ial Ap

ion Devel

(

Overview of Capacity Planning UX/VE/XL Systems

UNIX Productivity Software and Support for Business Teams: Using the Power of
Groupware
Distributed Computing GUI’s and the OSF/MOTIF

2001, Workstation Systems Group

Carlson, Amelia

Referential Integrity in ALLBASE/SQL

2007, Hewlett-Packard Co.

Cheng, Wesley

Tutorial Publishing For Paper and OnLine

2038, Hewlett-Packard Co.

Combs, Robert
1007, Combs International
DiPasquale, Mark

Adding an X-window User Interface to an HP 1000 Application

Core Dump Analysis

2017, Hewlett-Packard Co.

Donze, Bill
1010, Reliance Electric
Eyre, Joe, Bromley, Dave

DownLoading From The HP 1000 To Factory Floor Machines

Distributed Fault Tolerance

2033, Hewlett-Packard Co.

Feibus, Andy
8081
Feier, Hilary

1012, Hewlett-Packard Co.

Ferguson, George

Applications Migration Between UNIX Platforms

HP Softbench-Link/1000: A State of the Art CASE Environment For
The HP 1000
Migrating To Client/Server

8021, Hewlett-Packard Co.

Fernandez, Charlie

..

HP VUE, Int | User Interface

in a Grap

2016, Hewlett-Packard Co.

Fischer, Wolfram

Open Systems Customer Projects

2029, Hewlett-Packard Co.

Glover, Dave
2074, Hewlett-Packard
Grim, Joe

Performance Management in a Distributed Computing Environment

SNMP, Open Systems, and Open Networks: The State of the Union

2022, Hewlett-Packard Co.

Hall, John
2027, Hewlett-Packard Co.
Harvey, Dennis

Making Data Integration Easy

A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000

2055, Applied Biosystems, Inc.

Hassell, Bill
2076, Hewlett-Packard Co

Hersh, Robert, Weber, Warren

8058, AGS Genasys Corp.

Getting The Most Out Of LaserRom

Making A Square Peg Fit Into A Round Hole

Index by Author

Hoffert, Maureen FORTRAN 90: The New Standard
2019, Hewlett-Packard Co.

Johnson, Rod OSF’s/Architecture Neutral Distribution Format
2045, OSF

Johnson, Rod OSF: Open Systems Through an Open Process
2040, OSF

Jones, Tony A Talking Comp That Moni Remote Comp
2075, Hewlett-Packard Co.

Kannikeswaran, K., et al ENGINFO - The Data Management Solution
2068, College of Engineering

King, Weady Using RTE System Library Routines To Control A d Program E
1008, US Naval Observatory

King, Wendy Using and Controlling Dialup Modems for Remote Data Acquisition

1014, US Naval Observatory
Langan, James, Sagunsky, Kathleen Migrating A Turn-Key, Real-Time Test System From An HP 1000 To An

8052, J.B. Langan & Associates, Inc. HP 9000 Platform
Langan, James, Sagunsky, Kathleen What is a8 Systems Administrator, Anyway?
2053, J.B. Langan & Associates, Inc.
Leong, Frank Beyond Interprocess C: ications: Strategies for Linking MPE-XL and HP-UX
2004, Hewlett-Packard Co. Applications
Lomb, Reiner Backup Strategy For HP-UX Systems
2028, Hewlett-Packard Co.

Lowell, Gary From MPE to UNIX and Back Again: Life with Open Systems
8073, Allegro Consultants, Inc.

Luk, Roland Improving HP-UX for OLTP
2035, Hewlett-Packard Co.

May, Scott SCSI: The Disk Interface of Choice on HP Workstations
2005, Hewlett-Packard Co.

McBrien, Russ LAN Manag New Challenges and Choices
2009, Hewlett-Packard Co.
McNulty, Maura The Impact of Emerging Fast Networking Standards on Document Image Management
2014, Hewlett-Packard Co. & Distribution
Meyer, Jean-Luc Multivendor Terminal Connectivity with HP’s Family of DTCs
2020, Hewlett-Packard Co.

Morimoto, Helen Troubleshooting FORTRAN on Multiple Platforms
2036, Hewlett-Packard Co.

Nadi, Najib, Savarese, Thomas Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
2067, Department of Mathematical Sciences

Oppenheim, Steve Tutorial Open Systems Networking In a Multi-Vendor Environment
2079, Hewlett-Packard Co.

Orsolini, Garry Business Intelligence
2024, Hewlett-Packard

Pickett, John Integration of the Telephony and Data Processing Industries
2078, Hewlett-Packard Co.

Radhakrishnan, Ramesh BSD IPC on the HP 1000
1022, Hewlett-Packard Co.

Riihilahti, Pasi, Lammi, Olli Migrating From HP 260 to HP 9000 Migraine or Not?

8065, Raha-automaathyhdistys (Ray)

n hor

Rodoni, Lynn HP 1000 Networking Strategy and Future Directions
1021, Hewlett-Packard Co.

Safe, Scott Developing Client-Server Applications
2031, Hewlett-Packard Co.

Sansdrap, J., Matton, J. T: A Package For Programming Across Systems
1003, Universite Catholique de Louvain

Shay, Reid Network and System Management Effectiveness: The Graphical Edge
2018, Hewlett-Packard Co.

Stephansen, Stephan Rapid Development of Client/Server Applications
2057, GenGold

Sudaranam, Sam Troubleshooting LANs
2010, Hewlett-Packard Co.

Teter, Mark Providing Low-Priced X-Windows Networking Environmeats
2030, Hewlett-Packard Co.

Thompson, Debra Enterprise-Wide Messaging in Open Systems
2015, Hewlett-Packard Co.

Thompson, Debra Client/Server Cookbook: A Recipe For Success
2077, Hewlett-Packard Co.

Tibbetts, Alan The A990 Virtual Control Panel "VCP", Why and What
1013, Hewlett-Packard Co.\Consultant

Treadway, Thomas The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
2062, Lawrence Livermore National Labs System

Walden, Phil Using a RDBMS To Rep Engineering Desig
2026, Hewlett-Packard Co.

Webber, Warren, Dodd, Cheteyl Magnetic Media Certification System-MMCS
2059, AGS Genasys Corp.

Weld, Gloria MPE to UNIX - Will I Need an RDBMS
8066, Software Explained

Williams, Dan Integrating NetWare and HP Systems
2032, Hewlett-Packard Co.

Williams, John, Akers, Jerry Integration and Analysis of Manufacturing Data
2037, Hewlett-Packard Co.

Wright, Don HP 1000 DS and NS Over MUX Ports
1009, Interactive Computer Technology

Wright, Don DISKMAIL Interprocess Message System
1011, Interactive Computer Technology

announced, To be Introduction to Unix Part 1
2070

announced, To be Introduction to Unix Part 2
2071

announced, To be OSF/1: The HP Perspective
2041

announced, To be OSF: Distributed Computing Environment "DCE": The HP Perspective
2043

announced, To be OSF: Distributed Management Environment "DME": The HP Perspective
2044

announced, To be The Real Story About HP PowerPatch!

2083

vi

Index by Category

RTE

1003 T: A Package For Programming Across Systems
J. Sansdrap, J. Matton - Universite Catholique de Louvain

1007 Adding an X-window User Interface to an HP 1000 Application
Robert Combs - Combs International

1008 Using RTE System Library Routines To Control Automated Program Execution
‘Weandy King - US Naval Observatory

1009 HP 1000 DS and NS Over MUX Ports
Don Wright - Interactive Computer Technology

1010 DownLoading From The HP 1000 To Factory Floor Machines
Bill Donze - Reliance Electric

1011 DISKMAIL Interprocess Message System
Don Wright - Interactive Computer Technology

1012 HP Softbench-Link/1000: A State of the Art CASE Environment For The HP 1000
Hilary Feier - Hewlett-Packard Co.

1013 The A990 Virtual Control Panel "VCP*®, Why and What
Alan Tibbetts - Hewlett-Packard Co.\Consultant

1014 Using and Controlling Dialup Modems for Remote Data Acquisition
Weady King - US Naval Observatory

1021 HP 1000 Networking Strategy and Future Directions
Lynn Rodoni - Hewlett-Packard Co.

1022 BSD IPC on the HP 1000
Ramesh Radhakrishnan - Hewlett-Packard Co.

HP-UX

2001 Distributed Computing GUI's and the OSF/MOTIF
Mark Brown - Workstation Systems Group

2003 Identifying CIM Opportunities Using Str d Analysis Model
Wayne Asp - Hewlett-Packard Co.

2004 Beyond Interprocess Cc ications: St ies for Linking MPE-XL and HP-UX
Frank Leong - Hewlett-Packard Co. Applications

2005 SCSI: The Disk Interface of Choice on HP Workstations
Scott May - Hewlett-Packard Co.

2007 Referential Integrity in ALLBASE/SQL
Amelia Carlson - Hewlett-Packard Co.

2009 LAN Manag : New Challenges and Choices
Russ McBrien - Hewlett-Packard Co.

2010 Troubleshooting LANs
Sam Sudaranam - Hewlett-Packard Co.

2011 Overview of Capacity Planning UX/VE/XL Systems
Rick Bowers, et al - Hewlett-Packard Co.

2014 The Impact of Emerging Fast Networking Standards on Document Image Management
Maura McNulty - Hewlett-Packard Co. & Distribution

2015 Enterprise-Wide Messaging in Open Systems

Debra Thompson - Hewlett-Packard Co.

Index by Category

2016 HP VUE, Intellig in a Graphical User Interface
Charlie Fernandez - Hewlett-Packard Co.

2017 Core Dump Analysis
Mark DiPasquale - Hewlett-Packard Co.

2018 Network and System M. Effecti The Graphical Edge
Reid Shay - Hewlett-Packard Co.

2019 FORTRAN 90: The New Standard
Maureen Hoffert - Hewlett-Packard Co.

2020 Multivendor Terminal Connectivity with HP’s Family of DTCs
Jean-Luc Meyer - Hewlett-Packard Co.

2022 SNMP, Open Systems, and Open Networks: The State of the Union
Joe Grim - Hewlett-Packard Co.

2024 Business Intelligence
Garry Orsolini - Hewlett-Packard

2026 Using a RDBMS To Represent Engineering Designs
Phil Walden - Hewlett-Packard Co.

2027 Making Data Integration Easy
John Hall - Hewlett-Packard Co.

2028 Backup Strategy For HP-UX Systems
Reiner Lomb - Hewlett-Packard Co.

2029 Open Systems Customer Projects
Wolfram Fischer - Hewlett-Packard Co.

2030 Providing Low-Priced X-Windows Networking Environments
Mark Teter - Hewlett-Packard Co.

2031 Developing Client-Server Applications
Scott Safe - Hewlett-Packard Co.

2032 Integrating NetWare and HP Systems
Dan Williams - Hewlett-Packard Co.

2033 Distributed Fault Tolerance
Joe Eyre, Dave Bromley - Hewlett-Packard Co.

2035 . Improving HP-UX for OLTP
Roland Luk - Hewlett-Packard Co.

2036 Troubleshooting FORTRAN on Multiple Platforms
Helen Morimoto - Hewlett-Packard Co.

2037 Integration and Analysis of Manufacturing Data
John Williams, Jerry Akers - Hewlett-Packard Co.

2040 OSF: Open Systems Through an Open Process
Rod Johnson - OSF

2041 OSF/1: The HP Perspective
To be announced

2043 OSF: Distributed Computing Environment "DCE": The HP Perspective
To be announced

2044 OSF: Distributed Management Environment "DME®: The HP Perspective
To be announced

2045 OSF's/Architecture Neutral Distribution Format
Rod Johnson - OSF

2053 What is a Systems Administrator, Anyway?

James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc.

viii

Index by Category

2055 A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000
Dennis Harvey - Applied Biosystems, Inc.

2057 Rapid Development of Client/Server Applications
Stephan Stephansen - GenGold

2059 Magnetic Media Certification System-MMCS
Warren Webber, Cheteyl Dodd - AGS Genasys Corp.

2062 The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
Thomas Treadway - Lawrence Livermore National Labs System

2067 Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
Najib Nadi, Thomas Savarese - Department of Mathematical Sciences

2068 ENGINFO - The Data Management Solution
K. Kannikeswaran, et al - College of Engineering

2072 WA-6 The Multi-Language Approach to UNIX C ial Application Develop
Colin Bodell - Micro Focus

2074 Performance Management in a Distributed Computing Environment
Dave Glover - Hewlett-Packard

2075 A Talking Computer That Monitors Remote Computers
Tony Jones - Hewlett-Packard Co.

2076 Getting The Most Out Of LaserRom
Bill Hassell - Hewlett-Packard Co.

2077 Client/Server Cookbook: A Recipe For Success
Debra Thompson - Hewlett-Packard Co.

2078 Integration of the Telephony and Data Processing Industries
John Pickett - Hewlett-Packard Co.

2080 UNIX Productivity Software and Support for Business Teams: Using the Power of
Robert Brosseau - Applix, Inc. Groupware
2082 Networking LaserROM for Multiple Users

Bill Hassell - Hewlett-Packard Co.
2083 The Real Story About HP PowerPatch!
To be announced
MIGRATION
8021 Migrating To Client/Server
George Ferguson - Hewlett-Packard Co.
8052 Migrating A Tum-Key, Real-Time Test System From An HP 1000 (RTE) To An
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc. HP 9000 (HP-UX) Platform
8058 Making A Square Peg Fit Into A Round Hole
Robert Hersh, Warren Weber - AGS Genasys Corp.

8064 UNIX For The MPE Programmer
Michael Barrat - Eldec Corp.

8065 Migrating From HP 260 to HP 9000 Migraine or Not?
Pasi Riihilahti, Olli Lammi - Raha-automaathyhdistys (Ray)

8066 MPE to UNIX - Will I Need an RDBMS
Gloria Weld - Software Explained

8073 From MPE to UNIX and Back Again: Life with Open Systems
Gary Lowell - Allegro Consultants, Inc.

8081 Applications Migration Between UNIX Platforms

Andy Feibus - need company & address info. for Art

2034

Gottfried Bertram - Hewlett-Packard Co.

2038
Wesley Cheng - Hewlett-Packard Co.
2070
To be announced -
2071
To be announced -
2079

Steve Oppenheim - Hewlett-Packard Co.

Index by Category

TUTORIALS
Tutorial Structured Software Project Management
Tutorial Publishing For Paper and OnLine
Introduction to Unix Part 1
Introduction to Unix Part 2

Tutorial Open Systems Networking In a Multi-Vendor Environment

Paper Number : 1003
T : A PACKAGE FOR PROGRAMMING ACROSS SYSTEMS
Jacques Sansdrap, Jean-Louis Matton

University of Louvain, Avenue Hippocrate 55/5560, 1200 Brussels, Belgium
Phone: 32/2/7645561 Fax: 32/27645569

ABSTRACT

"T" is an original package allowing the easy writing and running of "super programs"
composed of several programs distributed on a networked system. Thanks to the "T"
package, each of these programs, which may provide high level function (such as editing
the content of a data base, conducting a dialogue with a user, producing a report,
managing a graphic system, etc...) can be seen as equivalent to subroutines of a classical
program. These programs, working on different computers, are linked through
parameters given to the "T" package and thus could be relocated from a system to
another as required for efficiency with local availability of data and resources.

Another key feature of T is its implementation on the RTE-A and on HP-UX. Other
systems (MS-DOS, ...) could also be involved. The modularity of these programs
promotes the team working. The T package will be available as contributed software.

INTRODUCTION

The hardware that money can buy is now a hundred times more powerful than 20 years
ago. By contrast there as been at most a tenfold bettering of the productivity of the
software building people and the cost of manpower has increased.

Of course a lot of computer cycles and "core" memory words can now be wasted without
any appreciable degradation for the user.

Of course there are now a lot of "off the shelf" software for many common use like text
editing or spreadsheet computation.

But often this is not the best fit possible and often it means that the users have to learn
the computer ways rather than do their primary job. It also means that often a computer

T: A Package For Programming Across Systems
1003-1

“"just happens" to be there without any plan for the future and much work is needed later
to integrate this system in a more general and more efficient system. Thus there is a
need to augment the productivity of the programmers to cope with new fields of
application and to have a faster response to the user’s requests and to the evolving
technology. It is also important to avoid being drowned in the maintenance of mature
applications.

These goals could be achieved by merging the works of several programmers in a tool-
kit of re-usable software modules.

Most components of a new application would be found already made in the tool-kit. If
a tool is updated the effect of this update is immediately applicable to all applications
using it.

This type of method already exists: it is implemented in the fourth-generation languages
(4GL) and in the applications of the software engineering (SE).

The 4GL however lacks some flexibility: basically it always produce the same program
with varying options. The SE products are probably efficient in the context of a
software house where the job environment of the programmers can be controlled.

The environment in a medical research institution coupled to an university hospital is
quite different. There, you will find a number of small highly independent teams.
Nearly all teams have at least one PC but there are also powerful computer systems.
Often there is only a small number of persons that are programming as a professional
activity or as a side activity. The need to integrate all these installations is easy enough
to understand, but the means and ways are hard to come by.

This is why we have devised the T package to be able to mix the work of different
programmers on different machines.

EXAMPLE
Here follows an example to help to understand what T really is. To fully develop this

example we have to use some terms that are going to be defined later: so you may wish
to come back here after reading the end of the paper.

T: A Package For Programming Across Systems
1003-2

An application running on a RTE-A let a user select from a file directory some file
containing digitized signals. The terminal could show alternatively a list of file name or
a graphic representation of the signals in a selected file. The user could ask for a
printout of the graphics if a peculiarity of the signals is observed.

Once the user has make his/her choice, some computation is done on the file and the
results are displayed on the terminal.

The user accepts or rejects these results. If they are accepted, they are stored in a data-
base for later statistical analysis.

The following programs are used on the RTE-A for this application:

- the T server,

- the main client (APPLIC) that implements this application by scheduling all other
clients and performing the computation,

- the terminal manager subcontractor (TERM),

- a client (DIR) that scans a directory for files matching some mask and reports the
file names through a window of the terminal by TERM,

- a client (VSIG) that draws the signals contained in a file with a graphic library
which end point is usually TERM; the set-up of the graphic could be modified
through parameters entered in windows managed by the alphanumeric side of
TERM,

- a subcontractor client (PLOT) that could temporarily replace the graphic side of
TERM so that the output of VSIG is on a plotter,

- a data-base manager client (DB) that is an interface to an IMAGE-II data-base,

- a storage subcontractor client (STORE) that adapts the results produced by
APPLIC to the structure requested by DB.

The user does not perceive that this number of programs are at work for him/her.

Only APPLIC is specific to this application (it is a rather small program); all other

programs have some use in other applications.

Now there is a second RTE-A system used for data acquisition. Let us name the first
system HARYV and the new one LUC. There is a NS-1000 connection between the two
systems.

A user of HARV could need the same application for signals stored on LUC. A simple
change of configuration is needed and no new software:

T: A Package For Programming Across Systems
1003-3

- on HARV (where the user is):
- T server,
- TERM,
- PLOT,
- DB,
- STORE;
- on LUC (where the data is):
- T server (used in slave mode),
- APPLIC,
- DIR,
- VSIG.

Later an HP-UX (9000/835) system named CARD is connected to the LAN. The SQL
data-base and a statistical package on this system are preferred to the IMAGE-II data-
base and to home-made statistical programs.
There is also a new LaserJet-III on this system that is faster for graphic production than
the old plotter on HARV.
The configuration is then:
- on HARYV (where the user still is):

- T server,

- TERM,

- STORE;
- on LUC (where the data is):

- APPLIC,

- DIR,

- VSIG;
- on CARD (all programs are new):

- T server (used in slave mode),

- DB (to SQL),

- PLOT (to LaserJet).

Now the user is tired of the graphic terminal and wants a PC as everybody else. There
is a LAN card on this PC and it runs with MS-DOS and WINDOWS 3.0. It is
connected to the LAN. More users are now fluent in UNIX than in RTE: CARD

T: A Package For Programming Across Systems
1003-4

becomes the usual logon machine.
The configuration is then:
- HARYV is only used when the data is stored there;
- on LUC (where the data is in this case):
- T server (used in slave mode),
- APPLIC,
- DIR,
- VSIG,
- STORE;
- on CARD (no new program):
- T server,
- DB,
- PLOT,
on the PC (new program):
- TERM (alphanumeric and graphic interface to WINDOWS).

How would it be realized without T? That is difficult to say. The current RTE-A user
is more knowledgeable that the user of another system so the "point and click” interface
implemented by DIR and TERM would not initially be seen as required. This would
have discouraged some potential users.

When the data from LUC would need to be accessed one would have to use one of the
tools offered by the network system: TELNET for remote terminal connection, TRFAS
for remote access to data files or RDBA for remote data-base access. All these tools
suffer from a discouraging slow performance and from other limitations as well (no
block mode for TELNET in the current software release). One would probably have to
re-write the application to circumvent these problems. This application would probably
be implemented as a monolithic program designed by one programmer with few parts
easily re-usable for other applications. The user could probably not be isolated from the
idiosyncrasies of each system and of the tools that move the data from place to place.
The arrival of the HP-UX system would probably mean a complete porting of the
application to the HP-9000, the RTE-A would be discarded and the users would have to
be re-trained.

The application would once more have to be re-designed to use a GUI (PC or
workstation) rather than a graphic terminal.

T: A Package For Programming Across Systems
1003-5

A programmer would have to spend most of his/her work time to follow the evolution
for this application in this short time. Any change that the user should ask would be
hard to accommodate. A new application, even looking very similar to the previous one,
would benefit only from the experience accumulated by the programmer and not from
modules shared with the programmer’s colleagues.

The user should have to learn as many ways to interact with the system as there are
applications.

GUIDELINES

Data and the modules that process it should preferably be encapsulated together so that
a change in the structure of the data only needs a localized software modification.

An application written with this tool-kit should be able to get the data or other resources
on several systems if needs be.

The access, low-level processing and management of resources like data files or
peripherals

should be done by local modules on its system of origin.

An application should need a minimum of modification if one of the computer is replaced
by another type of machine or if the data is moved.

The communication between processors should not be fixed on one defined standard: at
the present time there are so many standards and variations of them that it would not
have been possible to find a common ground for all computers of various make, age and
size we have.

The protocol of communication should be simple to implement over any networking
standard available between each pair of machines.

The amount of data that has to transit through the networks should be minimized so that
the time penalty should not be too visible to the user.

The modules should be independent programs rather than relocatable libraries. It is
easier to assure that any required housekeeping is performed. The program could be
more easily debugged than a relocatable module that has to be embedded in a program.
When some maintenance has been done on a relocatable module all the programs using
it have to be re-compiled or at least re-linked; there are tools to automate this task but

T: A Package For Programming Across Systems
1003-6

it could not be convenient to disturb too many applications at the same time.
A module under the form of an independent program could be easier to replace. It also
give more freedom to its designer.

T: A SOCIETY OF PROGRAMS

A working T society is composed of several client programs distributed over various
systems and of a "go-between" T server program. A client politely waits for the answer
when it has sent a query to another client. Thus the T server listens only to one client
at a time and there is a stack of dialogues.

The messages are strings of up to 200 ASCII characters. Each client designer has to
define and publish the form and content of messages that his/her program accept and
send back. There is no problem of variable data representation with this type of
transmission. There are other mechanisms to send greater amounts of structured data
to some special clients (explained later): the subcontractors.

A client program can send to T requests other than the transmission of messages. Each
client of T is usually scheduled on request from another client. A client to schedule is
referred to by a symbolic name. T finds in its environment (following some search path)
a client description file for this name. This file supplies the method of communication
to use with the new client and its localization.

The nature of a request that a client sends to T is identified by the first 16 bits word of
the request (each request has a minimum length of two 16 bits words).

There are some number of categories of request: a category is identified by the quotient
of the code word divided by 100. The requests in the category O concern the basic
working of T and of its link with the client: closing, scheduling another client, sending
a query or an answer to another client...

The other categories are of a more general nature and very few of them are actually
implemented by T (writing or reading on the terminal,...). A client can elect to be a
subcontractor for one or more of these categories of request: it stops then to be
addressed like an ordinary client but receives from T all requests of these categories
coming from any client. A subcontract for a category can be overlaid by a later

T: A Package For Programming Across Systems
1003-7

subcontract from another client: the first subcontract will be re-instated at the closing of
the last subcontractor.

T LINKS

The links between T and its clients could all be of a different type: the routing and
translation are done by T. When a client and T are on the same machine, a local method
of program-to-program communication is used (class I/O on RTE; bidirectional pipe on
HP-UX). Any applicable networking method could be used when a client is on another
machine than its T server (TCP/IP, NS-1000, BSD sockets). It would even be possible
to link two computers by their serial ports if no other means were available.

Each link is a stream of 16 bits words: this is easily supported on the byte stream that
is transmitted by network protocols and is more efficient on machines (like HP-1000)
that have a penalty for byte addressing.

There are subroutines to put or get any type of data on this stream. The communication
is of the half-duplex type with buffered or immediate transmission at the choice of the
sender: a message of any length could be build element by element in the communication
buffer before it is sent. There are subroutines to transmit to T any of the requests it
accepts so that the programmer has not to care for the protocol. Some of theses
subroutines are in a library that could be adapted as fit for the language and the
processor but does not depend on the type of the link. In contrast, the other subroutines
are specific to some link. This last group does not represent an extensive programming
effort: the subroutines needed to implement the link by bidirectional pipes for HP-UX
is contained in a C source module of 400 lines; for the class I/O link of RTE-A it is a
500 lines FORTRAN module.

CLIENT-TO-CLIENT DIALOGUE

At the very beginning of the life of each client there should be an "Open T" call to
initialize the communication link. This returns also a run-string received from T: it is
the first message. A client should never try to retrieve its arguments in another way.

Just before ending its life the client should call a "Close T" subroutine that sends a
parting message to whoever launched it and close the communication link. These two

T: A Package For Programming Across Systems
1003-8

calls in the program and the presence of a client descriptor file pointing to this program
are all that is needed to qualify a program as a T client. A set of subroutines will have
to be selected at the link-editing time as appropriate for the method of communication
with T.

If a client program is aborted, T detects that its link is down and abort itself ; each client
detecting that its server has disappeared has the opportunity to do an orderly shut-down.

A client that is open for T is referred to by a client number. One could ask to T the
number of a client with a known name, if it is open and free for a dialogue (not in the
client stack or a subcontractor).

T-TO-SUBCONTRACTOR DIALOGUE

A subcontractor client starts its life as any other client and could take part in a dialogue
while setting-up its environment.

When it is ready to enter its role, it sends to T an array containing the number of the
categories of request it is ready to take charge of and an answer message to send back
to its scheduler. Its life as client able to take part in a dialogue is then ended.

What the subcontractor receives then from T are no more messages but the raw request
codes sent by some client. T is just a relay and does not knows anything about the
structure of the request. The subcontractor has to compute the length of the data
associated with the request and asks to T for this amount of data. This could be as long
as needed and could be buffered by the transmission mechanism. The structure of the
data is specific to the request and is known to the requester and to the subcontractor.
There could be in the request an indication of the data representation in use where the
client is: the subcontractor could have to do some translation.

The subcontractor could send back as much data as needed to the client but first the
amount of data has to be indicated to T.

When a request has been fully processed, the subcontractor send a "cut” command to T
to let it take back the control of the communication with the client.

T: A Package For Programming Across Systems
1003-9

There is some specific request type that has to be reserved to mean an order for the
subcontractor to leave the scene.

The subcontractor then performs its last duties and sends T a request to close the link
before termination.

This re-instate any subcontractor previously defined for the affected categories.

An ordinary client could ask T the name of the client (if any) that is registered as
subcontractor for a request type.

LIBRARY IMPLEMENTATION THROUGH T

A subcontractor usually manages some complex functions like driving a display or
accessing a data-base. The designer of the subcontractor writes a library of stub routines
that package the parameters they are called with into requests to T and indirectly to the
subcontractor. Several subcontractors could be prepared for the same stub routines. A
client may select some working mode by scheduling one or the other subcontractor.
This is typically how a graphic workstation system is configured.

T is still in development and at the moment this paper is written (April 1991) only 3
subcontracting client programs with the matching stub libraries have been written: a
printout manager, a terminal manager with form library and graphics library and a
storage manager.

The printout manager is implemented for the RTE-A in FORTRAN and for the HP-UX
in C. Itis elementary because it has been mainly used for tests but is routinely used for
remote printing.

The terminal manager is written in FORTRAN for the RTE-A only and put the terminal
in block mode. The question is still open if it will be implemented for HP-UX by using
curses(3x) or blmode(3c).

The form library is nearly identical to the X-FORM package (IUG meeting, Brussels
1989).

The graphic library is modeled on the DGL of Graphics/1000-II. This is sufficient for
the type of applications we are developing and should be simple to emulate with Starbase

T: A Package For Programming Across Systems
1003-10

graphics on HP-UX and with any graphic library on a PC under MS-DOS.

The storage manager implements a structured billboard where a client could store some

data that could be retrieved in full or by extract by other clients.

The main use will be for data-base access:

- a client is responsible for any access to a data-base. It does any referential
constraint check that is needed and perform any processing attached to some data.
It gives a declaration of the structure of its data to the storage manager and
updates the content of this structure.

- all other clients that need this data gets it from the storage manager. Some
clients could ask to the data-base client to update this data before getting it.
Others clients could be designed to process simply what is currently in storage.

- a client could put a mask or model of data in the structure before sending a
selection request message to the data-base client.

The stub library sends to the storage manager an indication of the data coding in usage

where the client is. The storage manager translates data as required.

The storage manager is currently implemented on the RTE-A, converts the floating point

data between HP-1000 representation and IEEE representation and takes care of the word

alignment limitations of HP-PA. Its stub library exists for RTE-A and HP-UX.

ENSLAVED T

If several clients of T are on the same remote system it could be wasteful to open several
communication links through a network. T could then be configured to schedule an
enslaved copy of itself on the remote system. The remote clients would then in fact be
local clients of the enslaved T.

The enslaved T and its clients would be running in a session and with an environment
appropriate to the user.

Here is how it is done:

- A T program could schedule another remote T as another client with the
appropriate link method. Currently this method is through an Ethernet LAN and
the Internet daemon INETD that is available with HP-UX and NS-1000 on the
RTE-A.

T: A Package For Programming Across Systems
1003-11

- The remote T starts a session on the logon account and with the password
specified by the master T. An appropriate environment is built from the
indications in a special session initialization file.

- The master T gives then a slaving request to the remote T.

- Thereafter the slave T receives only requests to open and close local links to
clients, to relay the transmission of data to/from these clients and to stop to be
a slave (immediately followed by an order to close the link with the master which
terminates the session).

When T has a slave T, any scheduling of a client using the enslaved T type of link to
a host with the same name is transformed into a request to the slave for scheduling a
local client.

The enslaved T is released when the last of its clients is closed. T could have several
simultaneously active slaves.

IMPLEMENTATION

The first implementation of T has been done on RTE-A in FORTRAN and has been used
for a few applications on a single system or on two systems linked by a LAN and
NS-1000.

The basic client library and the link subroutines for NS-9000 (NetIPC) have then been

written in FORTRAN for HP-UX. There has been two uses of this software:

- an HP-UX client to test the access to an RTE-A data-base through the storage
manager;

- an HP-UX client for printing on a LaserJet connected to an HP-1000.

A two man-week work has been needed for these tasks.

Then the link subroutines for bidirectional pipes and the T server have been written in
C for HP-UX. The T server uses the BSD socket for LAN access rather than NetIPC
so it should be directly portable to other UNIX machines. About one man-month has
been needed.

T: A Package For Programming Across Systems
1003-12

The client link subroutines are currently developed for a PC under MS-DOS. This
software is written in C with the NetIPC subroutines of HP OfficeShare. As MS-DOS
does not do multi-tasking there will never be a T server for this type of machine
(excepted with add-on software like MS-WINDOWS).

As a client can use a remote T server to talk with remote clients, there is no need to wait
until the whole of the T package is implemented on a machine to start developing
software using T on this machine. In some cases a T client could also be used as an
interface to commercial software.

So we are confident that T could be quickly ported to other machines as needed if the
tools for software development and some connection hardware are available.

CONCLUSION

At the moment this paper is written, we do not yet know if T will be successful in its
function of teaming the work of the programmers. But we have received some
encouraging support.

There is a general trend in the computer world toward standards and heavy systems.
At some time in the future, all computers should use the same operating system (UNIX-
like), any program could communicate with any other thanks to systems like HP’s
NewWave or HP Sockets, each programming language would have compatible extensions
for object oriented programming (OOP), all data-base management systems (DBMS)
would be SQL compatible with OOP extensions, each user would be able to use a
graphical user interface (GUI) and distributed computing would be the norm. While
waiting for all theses promises to be realized, T is a light, viable, alternative.

T: A Package For Programming Across Systems
1003-13

A REANI I

i

i

Paper # 1007
Adding an X-window User Interface to an HP1000 Application

Bob Combs
Combs International, Inc.
886 Belmont Avenue, Suite 3
North Haledon, NJ 07508
(201) 427-9292

Abstract

Users are now expecting applications to be run from X servers. A windowed
terminal does provide some nice benefits, but what about true real-time
applications? They can’t just be ported to UNIX. There is a reason why RTE is still
around! This paper reviews the design of a real-time application and how it has
been restructured to take advantage of networks and an X interface, while still
retaining its real-time (RTE) components.

1. Intreduction

We have a package which performs data acquisition and control named MAXS+.
This product has been around for about seven years, running exclusively on the
HP1000 series of computers. MAXS + is a real-time software package which is used
in factory automation, facility management, laboratory automation, and pilot plant
control.

The typical system scans analog and digital points using various data acquisition
boxes, and processes this data each scan. The scan processing must take priority
over background functions such as reports and user requests. This real-time
demand is what the HP1000 was designed to handle.

The draw back of using the HP1000 is that it lacks windows and has a limited
graphical capability by today’s standards. Enter UNIX and X-windows. Fortunately
the HP1000 does have an Ethernet interface and can communicate with a UNIX
system.

UNIX does not currently have true real-time response. After several years of
propaganda to the contrary, HP is finally willing to sheepishly admit that HP-UX
isn’t really real-time. X’'s priority scheduling algorithm, lack of a preemptable
kernel, and non-deterministic context switching leave it quite lacking in the real-
time department.

Keeping these points in mind, how do provide a system with a Graphical User
Interface (GUI) (i.e. X-windows) and still be able to process data in real-time? The
answer we came up with was a hybrid a}()f)roach. That is, keep the real-time
scanning and processing on the HP1000, and connect a UNIX box via Ethernet to
provide the X-window user interface.

Adding an X-window User Interface to an HP1000 Application 1007-1

2. Original HP1000 System Layout

The standard version of MAXS+ uses an HP1000 for all tasks: real-time scan
processing and user interface. The real-time scan processing consists of modules
which perform input/output with the data acquisition box (often called the front
end), a master scan processor, and a trend buffer management module. Refer to
figure 1. for the original module layout.

The user interface consists of many modules, each of which is a screen application
command. The screen modules are called from a command shell module which
regulates the CRT screen.

The heart of all information in the MAXS+ system is a collection of tables which
are memory resident in Shared Extended Memory Array (SHEMA). The SHEMA
tables contain all of the current real-time values of the various variables in the
system, and all configuration information. Memory resident tables allow the system
to be much faster than if this information were kept on disc or other secondary
storage.

One of the great benefits MAXS+ has is the ability to change virtually any portion
of its configuration while on-line, having no effect on the other portions of the
MAXS+ system. This flexibility allows real-time processes to continue while
portions are being configured "on the fly".

USER
FITTINIY
User Modul
!
Table to file ——@
Backup Module Shared
Memory
(SHEMA) ﬁl Long-term |
Tables
SHEMA AN
Backup File
History
Log Files
Process Front End
vo >| Data Acquisition RealTime
Signals Module Scan
Processor

figure 1. Stand-alone system module layout

Adding an X-window User Interface to an HP1000 Application 1007-2

2.1. Real-Time Modules

There may be multiple front end modules on the system which gather input
readings, placing them in SHEMA tables, and take outputs from the tables and
send them to the front end. Many front end devices work directly in engineering
units these days. Either way, the front ends are responsible for all analog/digital
input/out%ut with the real world. The communication with the various front
ends may be RS-232, HP-IB, or even LAN.

The master scan processor processes the signals after all front ends have
performed their I/ (g There are nine different variable types, but each signal has
certain stages it must go through: conversion, type dependent processing,
discrimination, clamping, and alarm checking. After the processing is complete,
trend updating is initiated, and finally data logging.

2.2. History Logging

The data logging is kept in three file types; short-term, hourly, and daily results.
The short-term is perhaps a misnomer since it really means all data and events;
which may or may not be wanted for long term archiving. The prime reason for
keeping the data in these three file types is to allow users to quickly access
different picture sizes of data. For example, a user may look at short-term data
to see the last 8 hours worth of data, but may access the daily file to get a picture
of the last year’s worth of values. A year’s worth of short-term data would take a
much longer time to scan, even with today’s faster discs, than daily values.
Therefore these three history file types allow a user to select the detail level
desired and spent less time waiting for results.

The short-term data is written to disc by SHLOG. Both the hourly and daily
results are written by LOLOG.

2.3. User Interface

The user interface utilizes the HP1000 CRT screen as if it were three separate
windows. They aren’t true windows, but are treated as separate areas by the
various user modules. As you can imagine, this was quite a trick since the
HP1000 is really only a half-duplex connection.

The top line of the screen is reserved for the exclusive use of an alarm banner
module which displays various status states of different components of the
system, such as alarms or stalled front ends. The alarm banner line (top line) is
written to the terminal’s graphic plane to alleviate some screen interactions.

The bottorn two lines of the screen are reserved for the command window. All
command prompts and error messages are displayed in this window.

The middle screen area (lines 2-22) is utilized for forms with unprotected fields,
periodically refreshing data displays, or graphic displays. All of the screen form
displays were created with our own screen prodll)xct, QFORM. We tailored
certain aspects of QFORM to allow easier integration into this window-like
environment.

The segregation of these three areas has resulted in a very usable interface, but
was somewhat difficult to program.

Adding an X-window User Interface to an HP1000 Application 1007-3

3. Identification of Areas of Change

There were several pieces of information that lead to the decision to distribute
MAXS+. One of the critical ones was that HP had begun to remove the preemption
points in HP-UX and would be eliminating all of them by HP-UX 8.0. Add this to
the fact that HP was no longer touting 9 (800’5 as a real-time replacement for
RTE. It was obvious to everyone that was not an RTE system. If MAXS+
were to have a X user interface, the solution would have to be a hybrid one, with
both an RTE and a UNIX system.

Once the decision had been made to break apart the functions of MAXS +, we had
to determine how to do it easily yet retain the features we wanted. The HP1000
should remain virtually hidden from the user, and require minimal support to keep
it running. We had decided the end goal system should have the following features:
s Real-time scanning should remain on the RTE system.

All user interactions should be moved to the UNIX X terminal.

History log files should be written to the UNIX system.

Real-time conﬁﬁuration information should remain on RTE.

Report setups should be moved to UNIX.

An X terminal should be able to redirect to different RTE systems.

An RTE system should be capable of handling multiple X users from different
UNIX systems.

Therefore, all user interface modules were moved to UNIX, and given an X look
and feel. A linkage between the RTE SHEMA tables and programs, to the X
programs was developed. The table backup and real-time scan processing would
remain untouched. History logging (SHL(gG and LOLOG) must transmit their
records to a UNIX system designated for history storage.

Note that while it was useful to allow multiple MAXS+ /RTE systems to talk to
multiple MAXS+ /UNIX X users, each RTE would have to send its history to a
specitic UNIX system. Also, the history system should eventually allow multiple
MAXS+ /RTE systems to send their history data to the same MAXS+/UNIX
system.

USER
= [O]
SEEEEIIIIE

HP1000 e
RTE

Process Data

110 —)| Acquisition

Signals Unit

figure 2. Stand-alone system

Adding an X-window User Interface to an HP1000 Application 1007-4

4. Distributed System Layout

Fortunately, MAXS+ had been written using a high degree of subroutines, with
lower level functions focused into few routines. While there were a few exceptions
to this, for the most part it allowed functions such as table data access, variable
searching, and history writing to be broken and "piped" over to the HP-UX system.
Refer to figure 3. for the new system layout.

X
USER X Clients
333333b0w / History
H MAXS_COM Log Files
————————————— lan —— —
RTE I COM
) X
Table to file
Backup Module
Shared
Memory
{SHEMA)
Tables
Backup File 9
Process Front End
110 i Data Acquisition Real-Time
Signals Module Scan
Processor

figure 3. Distributed system module layout

4.1. Overview of Distributed System

As figure 3. shows, the SHEMA tables and real-time functions were left
untouched on the RTE system. The user interface and history logging functions
were moved to the HP-UX system by writing communication modules that
carried requests from one system to the other and returned with the data or a
response check. The conﬁfuration is based upon NS/ARPA services on TCP/IP
using Ethernet for the local area network (LAN).

Im'tiallﬁ the communication functions were written using NetIPC calls, which
locks the UNIX system into being an HP-UX system only. However, we were
able to obtain a Beta Release copy of Berkeley (BSD) Sockets for the HP1000
and have since upgraded the communications programs on the two ends to BSD.
This means that a user can now use any standard%NIX system that supports X,
Motif, and BSD Sockets.

There are two sets of communications I_Igl)srograms due to the directions of initial
requests between the two machines. tory is sent to the UNIX machine, but
user module data requests are sent to RTE.

Adding an X-window User Interface to an HP1000 Application 1007-5

User interface programs initiate requests to read tables and place records back
in them from the UNIX system to the RTE system. The RTE user
communications module (COM) is the receiver who waits on the socket for a
connection request from an X user UNIX system. Requests from the UNIX user
interface modules are sent via messages to the UNIX communication module
(MAXS_COM) which connects with COM on the RTE system and then honors
the requests, sending the responses back to the calling module, again via
messages. Each request opens a connection, performs its business, and then
closes the connection so that another module or system can access the RTE
COM module.

History is written from the RTE system to a _sipeciﬁc UNIX system which is
waiting for the connection requests. The HIST COM module on the UNIX
system waits on a socket looking for history records to relay to the history
modules. The RTE module (HSEND) transfers the short-term or long file
requests to HIST COM. Again each rgﬂluest opens the connection, performs its
business, and then closes the request. The history functions did not break quite
as easily as the user interface modules did; some of the processing must remain
on the RTE system, while the file writing functions had to transfer to the UNIX
system. The RTE side of the short-term and long-term history modules had to
account for possible link trouble. Therefore a certain amount of buffering or
spooling was designed into HSEND. However, the amount of spooling is limited
and is only intended to give the operator time to correct the problem.

4.2, Interoperability

Interoperability is a buzz word these days for an application that is distributed
over multiple computers on the same network. The user is able to perform any
of the functions from virtually any point in the network. This is basically what
the X window system has provided the MAXS+ application. There are a few
points that need to be underscored here, to understand how this was achieved.

First, the RTE node name the X window user interface talks to is set in an
environment variable. Commands are available to reset the environment
variable to another RTE node. This directs all user communication to a specific
MAXS+ /1000 node. Also, since the node is in an environment variable, each
user on a UNIX system may direct their command requests to different MAXS +
nodes. Record locking is handled at the RTE node so that full resource sharing
between multiple X users may take place.

Second, history archiving is directed to a UNIX node by setting that node’s name
on the RTE system side. X users may access the history files on the UNIX
system using the X client/server arrangement. That is, the history clients are run
on the UNIX sgstem that actually contains the history files. It isn’t just
interoperability that we gain here; its speed of execution too, since history access
is generally disc intensive. Note that an added benefit is that UNIX, with its disc
caching, is inherently designed to efficiently process transactions like history
access.

Finally, the X user interface module COM has been added to the system in such
a way that it does not preclude using the stand-alone RTE MAXS+ user
intertace. A user may still work from an RTE RS-232 terminal if they desire.
One interesting item here is that with HP’s new 2627 emulator window, GFoX,
one could open a telnet window under GFoX onto the RTE system and run the

Adding an X-window User Interface to an HP1000 Application 1007-6

MAXS+ interface, if desired. While this would limit some of the X user
interface features, such as multiple windows simultaneously, it would allow a
user to open a window onto older MAXS+ systems that have not yet been
upgraded to handle the X user interface communications.

The target system is represented simply in figure 4. and a more typical extended

system in figure 5.

HP-UX i History
33333333% Files
LAN
Process Data
HP1000
0 —)| Acquisition e
Signals Unit
figure 4. A simple X system
) [f |
Files
p}3333331Y 2232243
® HP-UX HP-UX
333IIINNYE /
LAN
Process Data Data
40 =) Acquisition HF;#IEBIJ)| Acquisition HF;II_JSIJ
Signals Unit Unit

figure 5. A typical X system

Adding an X-window User Interface to an HP1000 Application

1007-7

4.3. User X forms

The MAXS+ application has a user interface with several dozen screen form
programs. This code accounts for at least 70% of the code written for MAXS +.
It would have been unrealistic to rewrite all of that code in X calls; not to
mention that X is much more complex to program than serial HP-CRT calls
require. Recall that we used our own screen forms library subroutines, QFORM,
for the screen form manipulation. We developed a new product which has
exactly the same subroutines and calling sequences, but performs these functions
in X. We call this new product Xfrm (X-form). Xfrm allowed us to quickly and
easily move the RTE screen application modules to UNIX with virtually no
modifications. This saved many man-months of coding and debugging. Plus, we
had a new software tool to offer for sale.

5. Communications Modules

While the communications modules were initially written using HP’s NetIPC calls,
we quickly converted the communications modules to using Berkeley (BSD) sockets.
The prime benefit to using BSD sockets is that the X user interface could reside on
virtually any UNIX platform, whereas using NetIPC calls would limit the interface
to using only an HP platform. We felt that our customers would be happier knowing
they could connect their non-HP systems into their HP systems and still access the
MAXS+ functionality on the HP1000. Note that they would still be restricted to
using the RTE system for their real-time functions, but this is not so much a
restriction as it is a feature set they are provided.

The communication modules were written in FORTRAN on the RTE system and in
C on the HP-UX system. These are, of course, the natural languages used on the
two machines by most of us. The BSD socket routines were written for C
programmers originally, and HP kept their call seguences on the HP1000 identical
to the call sequences in UNIX. This was a good decision, but it does create some
interesting stumbling blocks for the FOR’ rogrammer, particularly on the
HP1000. The basic problems arise out of FOR attempting to address C
structures in BSD utility routines.

5.1. A FORTRAN BSD socket module.
The Ivfollowing FORTRAN excerpt is from the HP1000 BSD socket program
COM:

FIN77

$CDS ON

PROGRAM COM(3,60)

],C11 MAXs+ <910531,2030>

tom - process received LAN requests from UNIX

This program processes requests from the X user interface
modules. Requests come across the LAN with the 1st word
indicating the command type. Additional words are data
for the specific r st. The 1st word of each returned
buffer is reserved for error returns.
910514 - switch from HP sockets to BSD sockets
startup sequence:

RP,COM

XQ,COoM

IEEEEREERERENRJE:ES:]

IMPLICIT NONE
INCLUDE /NS1000/INCLUDE/SOCKET.FTNI

INTEGER*2 BUFLEN
PARAMETER (BUFLEN=512)

Adding an X-window User Interface to an HP1000 Application 1007-8

INTEGER*2 ADDRLEN
AF

INTEGER*2
INTEGER*2 BACKLOG
CHARACTER*80 CERRMSG
INTEGER*2 DLEN
INTEGER*4 FLAGS
INTEGER*2 IBUFR(BUFLEN)
INTEGER*2 1ERR
INTEGER*2 1ERRMSG(40)
INTEGER*2 INDEX
INTEGER*4 10 _RESULT
INTEGER*2 IRESULT(2)
INTEGER*4 JLEN
INTEGER*2
INTEGER*2 LEN
INTEGER*2 MAXS_COM(5)
INTEGER*2 MSG
INTEGER*2 OFFSET
INTEGER*2 PROTO
INTEGER*2 R
INTEGER*2 REQUEST
INTEGER*4 RTN_LENGTH
INTEGER*2 S
INTEGER*2 SO
INTEGER*2 SERVPTR
INTEGER*2 SH
INTEGER*2
INTEGER*2 SO_TYPE
INTEGER*2 TRTMLEN

* -- functions
INTEGER*2 1FBRK

‘ -- tr!ck buffer for indirect resolution of pointers
(since the BSD socket routines are C compatible)
$ALlAS /HEH/ =0
COMMON /HEH/HEM(O 1)
INTEGER*2

EQUIVALENCE (CERRMSG, IERRMSG)
EQUIVALENCE (RESULT, IRESULT)

EQUIVALENCE (IBUFR(1),REQUEST)

* -- service name (note termination by NULL byte)
DATA MAXS_COM/'maxs_com',0/

CALL DTACH

* .- c;gate a cal% socket
SO_TYPE = SOCK smm
PROTO = IPPROTD_T
SD = SOCKET(AF §o TYPE ,PROTO)
IF (SD .EQ. -1) THEN

CERRMSG='COM: Unable to create a call socket.'

GOTO
ENDIF

*-- bind the socket to the service name
SERVPIR=GetServﬂEHame(ByteAdrOf(NAXS_COH,O),0)
IF(SERVPTR .EQ. U) THEN

CERRMSG='COM: service name not found'

ENDIF
SIN_FAMILY = AF_INET
SIN"PORT = MEM(SERVPTR+2)

ADDRLEN = 16 | note: IP adrs is ignored

B = BIND(SD, AddressOf(SOCKADDR_IN), ADDRLEN)
IF(B .EQ. -1) THE

CERRMSG='COM: Unable to bind socket!
T0 999

GO
ENDIF

* -- set up listen queue
BACK LOG =
= LISTEN(SD,BACKLOG)
IF(L LEQ. -1) ' THEN
CERRMSG = 'COM: listen rejected'
TO 999

Adding an X-window User Interface to an HP1000 Application

1007-9

* -- await remote connection request
100 CONTINUE
ADDRLEN = 16
A = ACCEPT(SD, AddressOf(SOCKADDR_IN), AddressOf(ADDRLEN))
IFC(A .EQ. -1) THEN
SH = SHUTDOWN(SD, 2)
CERRMSG='COM: accept failed'

* -- fetch input message
200 IF(IFBRK().NE.O) THEN
SH = SHUTDOWN(A, 2)
SH = SHUTDOWN(SD, 2)
CERRMSG='COM: break detected, shutdown'

GO TO
ENDIF

LEN = BUFLEN * 2
FLAGS = 0
R = RECV(A, ByteAdrOf(1BUFR,0), LEN, FLAGS)
IF(R .EQ. -1) THEN
SH = SHUTDOWN(A, 2)
0 100

* -- Now ?rocess the command request
GO T0(1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900,
2000,2100,2200,2300,2400,2500,2600,2700,2800,2900,
3000,3100,3200,33005, 1BUFR(1)

*--1llegal request code
IBUFR(1) = -1_
RTN_LENGTH. = 2]
GO To 9000

* -- 1st R st
1000 CONTINUE
60 10 9000
* -- 2nd Request
1100 “CONTINUE
60 10 9000

* -- etc.

* -- Send reply to caller
* -- RTN_LENGTH is number of return bytes
9000 CONTINUE
DLEN = RTN_LENGTH
FLAGS = 0
OFFSET = 0
S = SEND(A, ByteAdrOf(I1BUFR,OFFSET), DLEN, FLAGS)
IF(S .EQ. -1) THEN
CERRMSG = 'COM: Unable to send packet to 9000’
GO TO 999

ENDIF

*--go await_another request
GOTO 200

*--ERROR TERMINATION
999 IF(CERRMSG.NE.' ') THEN
ENDI(F:ALL SYCON(IERRMSG, - TRIMLEN(CERRMSG))

CERRMSG = 'COM terminated'
CALL SYCON(IERRMSG,-11)
D

Note that the common buffer MEM, in the above listing, is referenced against
address 0, and starts with index zero. This is because its sole purpose is to allow
the resolution of addresses from pointers. FORTRAN programmers aren’t used
to dealing with the concept of pointers; its a C concept. But since BSD socket
routines are C compatible, they include pointers.

Adding an X-window User Interface to an HP1000 Application 1007-10

Resolving pointers is further complicated by the fact that the HP1000 is a word
addressing machine, whereas C is generally used on byte addressing machines.
The C on the HP1000 uses word addresses, except for character variables for
which it uses character addressing. Character addresses must be divided by 2
before using as a word address in memory. Fortunately, we can assume that C
aligns character strings on a word boundary.

Examine these pieces of HP’s BSD include files:
/* excerpt from HP's /NS1000/INCLUDE/NETDB.H file */

struct servent (

char *s_name; /* official service name */
char **5_aliases; /* alias list */

int s_port; /* port # */

char *S_proto; /* protocol to use */

C excerpt from HP's /NS1000/INCLUDE/SOCKET.FTNI file

INTEGER SERVENT(4)

INTEGER S_NAME,S ALIASES,S PORT,S_PROTO
EQUIVALENCE (SERVENT(1),S_NANE)
EQUIVALENCE (SERVENT(2),S”ALIASES)
EQUIVALENCE (SERVENT(3),S_PORT)
EQUIVALENCE (SERVENT(4),S_PROTO)

These are both definitions of the same service structure; one for C and one for
FORTRAN. The service pointer and the contents of its array are all integers.
Some of the values are pointers to character arrays or arrays of character
pointers. However, to see this, you must compare the C version of the structure
to the FORTRAN array.

A pointer to an integer value, such as the port number, is resolved by

I = MEM (SERVPTR + k)
where ’k’ is some constant offset beyond the pointer, where the value is sitting.
Therefore, fetching SIN PORT becomes

PORT = MEM (SERVPTR + 2)

If we use the service pointer to fetch the first two characters of the protocol
name,

PROTO = MEM (MEM (SERVPTR + 3) / 2)
This is because the pointer plus 3 points to the S PROTO value, which is a
character address of the protocol name.

Fetching the first two characters of the first alias name,
NAME = MEM (MEM (MEM (SERVPTR + 1)) / 2)

6. Summary

The project to distribute the MAXS+ application between RTE systems and UNIX
systems provided our customers with the X interface they desired, and with the level
of distribution that all the industry is talking about. Tge salient features provided
are:

= Standard X-Window user interface

w Full interoperability (multiple hardware platform)
= BSD Sockets

= History on UNIX

w Xfrm product

Adding an X-window User Interface to an HP1000 Application 1007-11

The standard X interface allows users to open multiple windows for greater
functionality. Interoperability means a wider access to real-time information. Due
to the Berkeley sockets, intercommunication is able to span multiple vendors’
platforms.

Placing the history files on a UNIX system opens up history access for some easy
data pipelines into current data bases available under UNIX.

The Xfrm product didn’t just make the project easier, it provides a tool to allow

users to create their own custom application programs and incorporate them into
the total environment, as if they were an original part of the system.

Adding an X-window User Interface to an HP1000 Application 1007-12

1008
USING RTE SYSTEM LIBRARY ROUTINES TO
CONTROL AUTOMATED PROGRAM EXECUTION

Wendy King

U.S. Naval Observatory
Time Service Department
34th & Massachusetts Avenue, NW
Washington, DC 20392-5100
(202) 653-0486

INTRODUCTION

The U.S. Naval Observatory (USNO) Time Service generates, maintains, and
improves the USNO reference time scale which is used to monitor and
control U.S. Air Force, Coast Guard, and Navy time-based navigation and
communication systems. It is also used by scientific personnel in
laboratories world-wide for time synchronization.

To accomplish this mission, two HP1000 A900s continuously collect data
from directly connected satellite receivers; take hourly time interval
measurements from 20 to 30 atomic clocks; collect timing data from 20
remote USNO data acquisition systems installed in Hawaii, Alaska, Norway,
and various points in between; and acquire data from several Earth
Stations. These data are processed and transferred to other systems on
the USNO LAN which either process the data further or disseminate it to
other users, outside agencies and organizations.

THE PROBLEM

For 11 years, we used an HP1000 F system running RTE IVB to collect and
process the data. Eventually, the application requirements exceeded the
capabilities of the F, and, in 1988, we installed the first HP1000 A900
and began the process of migration.

In the beginning, the new A900 ran quietly, doing what was asked with a
minimum of fuss. The collection and processing programs were slowly
migrated from the HP1000 F (RTE IVB) to the A900. Programs which needed
to be run automatically were scheduled at boot up from the welcome file
by a program which calculated their next run time based on the required
start and interval time. This was necessary to enable programs which ran
more often than once a day to survive an unscheduled re-boot. All the
programs ran in system session. However, as the list of automatic, time-
scheduled events grew, this strategy began to disintegrate. Six specific
problems emerged.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 1

First, there were silent, unobtrusive, and mysterious failures. A
scheduled printout did not appear. There was no indication of problems
with the process which produced it; it simply did not get to the printer.
Then, an automatic taping process failed. There were no clues as to why
TF hadn’'t run; it just did not make the tape. This was getting more
serious because that was a critical automated archive which was very
difficult to recover. Several weeks passed, during which users complained
that random pieces of time scheduled processes were mysteriously failing
to run. I was scrolling back the system console buffer one morning and
saw the following message:

Program already exists in another session: PRIN1

I called the Response Center. "This is the way it is supposed to be. The
system will not execute a program in system session if the same program
is already running in another session." The mystery was solved but the
failures were increasing as system usage increased:

Program already exists in another session: CIX
Program already exists in another session: TF
Program already exists in another session: EDIT

Clearly, I needed to revise the strategy for running time-scheduled
processes if I wanted automated processes to co-exist with users on the
system.

Second, as more hourly automatic processes were added, some began to
overlap each other. When program #2 kicked in before program #1 was
finished, and program #2 changed the current working directory, program
#1 failed to find its files. Many of our automatic processes ran a copy
of CI and executed a command file. I did not want to begin a list of
things users could not use in their processes, such as the WD command.
Also, maintenance would be more complicated if the full path name for
every program and every file had to be used instead of switching the
working directory.

Third, the application programs themselves were in the system time list.
When users modified their automatic programs, they had to "off" them
before recompiling and relinking. General users do not have write
privilege to the /PROGRAMS directory. Therefore, they also had to ask the
system manager to install the revised program(s) in the /PROGRAMS
directory. The system manager had to re-schedule the program(s) to be
sure it was done correctly. During this software development stage, users
revised the code almost daily.

Fourth, if one application failed and went interactive to the system
console, the pending read could cause a pile-up of programs that were 1/0
suspended. One such failure could multiply into many, and recovery could
take hours to accomplish. Even though running in batch mode, some RTE
utilities (including CI) insist on issuing a pending read to the log lu
when they fail to find a file or encounter some other problem. Setting
a short time out on the log terminal did not solve this problem
sufficiently.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 2

Fifth, after installing NS/ARPA, the "WH" output for system session
contained so many programs it was very difficult to find the user
applications to do a status check when there was a problem.

Sixth, the volume of output from the automatic applications filled the
system console buffer very quickly. Significant error messages mixed in
with normal application status messages disappeared from the terminal
before I knew there was a problem.

I needed to develop a strategy that would control and monitor the
automatic execution of application programs and processes in the following
way:

1) remove the automatic applications from the system session

2) separate automatic applications from each other

3) allow application programs to be run automatically without putting
the application programs themselves in the time list

4) redirect application output away from the system console

5) provide the capability to automatically kill them when necessary

6) provide control and maintenance tools that anyone could use to alter
the schedule in the absence of the system manager.

THE SOLUTION

The strategy which solves all the above problems includes the following
tools:

1) An ASCII file with the list of programs, start times, and intervals.

2) The programs in the list which schedule the actual applications.

3) A program which uses the list to schedule the programs.

4) A program which uses the list to re-schedule one or all of the
programs.

5) A program which uses the list to "off" one or all the of programs.

6) A command file which compiles, links, and schedules a "list"
program.

1) - The List of What and When

The starting point is an ASCII (type 4) file called /SYSTEM/TIMLST.CMD
which contains the list of what should be run, how often and when. To
change the schedule, all that’s needed is to edit the file and run the
program which re-schedules the specified program. An example of the file
appears in Appendix A. I kept the RTE format for the AT command for the
sake of user friendliness and simplicity. The file also includes editing

instructions to maintain the required format accepted by the programs
which use it.

2) - The Application Scheduler Programs

These are the programs specified in the What-When list. They are all
cloned from the template program in Appendix B. They all run in
programmatic session 260 with the system console as their log lu. When
executed, each one does the following:

Using RTE Sys Lib Routines to Control Program Execution
1008 - 3

- gets a unique session number from the system

- logs on a new programmatic session

- attaches itself to that session

- switches the log lu from the system console to another terminal

- schedules its application program without wait (XQ)

- attaches back to the main scheduler session 260

- switches the log lu back to the system console

- monitors the session it just created to log it off when all active
programs have completed, or when the time limit defined for that
process has been exceeded.

- returns the application’s session number to the system.

These are the programs which actually schedule the applications to runm,
and monitor their sessions to be sure they are terminated and logged off
in a timely manner. This ensures that problems with one application do
not interfere with applications which follow.

3) - The Time List Controller/Monitor Program

The third part of the strategy is a program called SCHED. This program
is executed in background at boot-up from the welcome file. The source
listing for this program appears in Appendix C. SCHED logs on session 260
(I selected this number arbitrarily) if it does not already exist, then
attaches itself to session 260 and reads the What-When list. For each
program in the What-When list, SCHED checks for an ID segment.

If there is no ID segment, SCHED RP’s the program, calculates the next run
time based on the start and interval time specified, and schedules the
program to run at the correct time.

If there is an ID segment for the program, SCHED checks the ID segment
time list bit. If it is set, the program is in the system time list and
nothing is done. If not, SCHED calculates the next run time for this
program based on the start and interval time, and restores the program to
the system time list by scheduling it to run at the correct time.

SCHED repeats the process hourly, restoring any programs which may have
accidentally been "off’d" or re-scheduling any programs which have been
removed from the system time list.

4 - The Re-scheduler: RESCHED

RESCHED, which re-schedules one specific program, is a clone of SCHED
which has been modified to accept a program name in the runstring, read
through the What-When list until that program is found, remove it from the
time list, re-calculate the next run time, and schedule it to run at the
new time. This program is used to change the time a process should be
run, or to add a new one to the system time list. The What-When list must
first be edited to include the new time or to add the new process. The
only routine used by RESCHED not used by the other programs is the Exec
12 call to remove a program from the time list by setting the time
interval parameter to zero. For example, "call exec(12,IRpName,0)".
This is used before re-scheduling the program at its new time.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 4

5 - The Time List Killer: OFSCHED

When the equipment delivering data to the A900 fails or is shutdown, it
is necessary to "turn off" either the automatic collection and/or
processing of that data until it is restored. OFSCHED is a clone of
RESCHED which removes a program from the time list. OFSCHED accepts from
the runstring a specific program name or the key word "ALL". It uses Exec
12 to remove a program from the timelist, leaving it dormant in session
260. When this is done, the What-When list must be edited to put a "*"
in column 1 of the line for that program to prevent SCHED from restoring
the program on its next hourly time list check. If turning off all the
programs, it is easier to "OF SCHED" rather than edit every line in the
What-When file to prevent premature re-instatement of the time list.

For emergency termination, the easiest way to stop the execution of the
time list completely is to kill session 260. I created a command file
called "KillTimeList.cmd" which simply issues the KILLSES command. This
makes it easier for users to use as they almost never have to use the
KILLSES command and are unlikely to remember it. The file contains the
session 260 number so they don't even have to remember that. This file
also issues the "OF SCHED ID" command.

6 - The Scheduler Program Installer: INSTALL.CMD

This command file ensures that each scheduler program is linked as a
system utility and resides in the /PROGRAMS directory. It takes care of

removing the current version if this is not a new program. The file looks
like this:

if ftn7x $1.ftn O -
then
link $1.rel +su
of $1/260 id
co $l.run /programs/ DP
pu $l.rel
resched $1
fi

All scheduler programs are linked as system utilities so they can not

be cloned. This ensures that there can never be two copies running
at the same time.

THE RTE ROUTINES

All the routines are listed in Appendix D along with the location of their
manual documentation.

Solution requirements 1, 2, and 3:

- remove the automatic applications from the system session

- separate automatic applications from each other

- allow application programs to be run automatically without putting
the application programs themselves in the time list

W =

Using RTE Sys Lib Routines to Control Program Execution
1008 - 5

These three requirements are met by the application scheduler programs
(Appendix B) using the following routines:

GetSn - allocates a unique session number

Clgon - logs on a programmatic session

Atach - attaches the caller to the specified session
Dtach - attaches the caller to system session

IdClr - sets a flag to kill the id segment on termination

To logon a programmatic session requires a valid account. I created an
account specifically for the automatic programs. The main time list
session 260 and all the temporary sessions for the applications use this
account.

The first three functions, GetSn, Clgon, and Atach, are simple and have
never failed me. If you look at how these routines are used in Appendix
B, you will note that I included provision to display the error if one
should occur, but do not terminate the process of scheduling the
application. The error display will allow me to trouble shoot if
necessary but the occurrence of an error with these routines should not
be allowed to prevent the execution of the automatic application.

Each separate application has its own scheduler. This allows each
application to run in its own unique session number, thus satisfying the
requirement that the applications be separated from each other.

The application scheduler first gets a unique session number with GetSn,
uses Clgon to log on a session using this number, then uses the Atach
routine to move itself into the new session just created. Neither
FmpRpProgram nor FmpRunProgram allow you to specify a session other than
the one in which you are currently executing. To get the application to
run in its own separate and unique session, the scheduler itself must be
running in the new session when it schedules the application. Once the
scheduler has kicked off the application(s), it uses Atach to move back
to its original session, leaving the application running by itself in the
new programmatic session. It then monitors the new session to log it off
as soon as the application is finished. This requires that the scheduler
always use "XQ" to run the application in the background.

Sometimes, while the scheduler program is running in the application
session, the time list monitor runs its hourly check of the time list, and
finding the scheduler missing from session 260, re-schedules it in 260.
To accommodate this occurrence, the scheduler checks the error after
attempting to attach back to session 260, and if an error has occurred,
it will use Dtach to move to system session, Exec 12 to remove itself from
the system time list, then IdClr to set a flag to kill its id segment when
it terminates. This enables the scheduler to remove itself from the
application session so it can still monitor and kill it appropriately
while avoiding the possibility that two scheduled copies of itself will
continue to exist. The fact that these programs are linked as system
utilities should prevent this, but I did not want to leave anything to
chance!

Using RTE Sys Lib Routines to Control Program Execution
1008 - 6

Solution Requirements 4 and 5:

4 - redirect application output away from the system console
5 - provide the capability to automatically kill them when necessary

These requirements are met by the following routines:

AtCrt - attaches a crt to a session

LuSes - returns the user table address
IxGet - returns the contents of an address
Clgof - logs off a session

RtnSn - deallocates a session number

The AtCrt routine puts the lu of a crt into word 29 of the caller's ID
segment. The manual implies that the program must first use the Atach
routine and must be a system utility. I did not find this to be true as
it worked for all my programs regardless of whether they were system
utilities or had used the Atach call. Anyway, the effect of using AtCrt
is that all output directed to "1" now goes to the system lu specified in
the AtCrt call. This satisfies the requirement to redirect all
application output to a terminal other than the system console. All
application programs scheduled with FmpRunProgram inherit the father's
output lu, so the AtCrt is called before scheduling the application
program. The application program then uses the new lu for all its output.
The scheduler then resets its own output lu with a second call to AtCrt
so that any subsequent output from the scheduler program will appear on
the system console. This allows all users to write their status messages
to "1", and enables the system manager to control the actual location for
the output. Because each application has its own scheduler, different
applications can have their output directed to different locations.

LuSes, IxGet and Clgof satisfy the 5th solution requirement to be able to
kill the application session. Although the documentation for Clgof
implied that if I used the Option 0, it would logoff the session when
there were no "active" programs, I found that in this case the term
"active" really meant RP'd. Any program used by the application which
terminates but remains dormant in the session is considered an "active"
program. So if you use Clgof with option 0, the logoff fails if any
program’s ID segment is not released when the program is finished.

LuSes and IxGet allows the scheduler to determine when no programs are
running so the log off can be accomplished as soon as the application has
truly finished. LuSes returns the address of the User Table for that
session, and IxGet returns the contents of an address, in this case word
13. Word 13 of the User Table contains a "Number of User Programs
Counter" which is incremented when programs are scheduled, and decremented
when they become dormant. Bit 15 is set only if there is a logoff program
or command file defined for this user. As this is not the case for the
automatic application account, I need only check for the value of this
word to be 0. As soon as this occurs, the scheduler logs off the session.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 7

Each of the applications can be expected to terminate within a specified
time limit. The MaxTime variable in the scheduler program represents the
maximum number of minutes allowed for the application. The scheduler uses
this predefined time limit to determine when to log off the session even
though programs are still running. In this way, an interactive CI prompt,
or a user program which has entered an infinite loop, can be terminated
so that subsequent programs can not get "piled" up behind it. If the
session does exceed the time limit, a message is displayed to the system
console so that corrective action can be taken. The application scheduler
ends with the RtnSn routine which releases the session number back to the
system.

Solution requirement 6:

6 - provide control and maintenance tools that anyone can use to alter
the schedule in the absence of the system manager.

This last requirement is met by the SCHED, RESCHED, and OFSCHED programs
using Clgon, Atach, Dtach, IdGet, IxGet, FmpRpProgram, Exec 12 and ChngPr
(See Appendix C).

The first three have already been described as they are used in the
application scheduler programs. IdGet returns the address of the Id
segment of a specified program in a specified session. To verify the
existence of an Id segment for a scheduler program, SCHED uses IdGet with
the program name and the session number 260. If IdGet returns a 0, there
is no Id Segment for. the program and it must be RP'd and re-scheduled.
If IdGet returns an address (anything other than 0), then I need to verify
that the program is actually in the system time list.

IdGet has a companion routine called IdInfo which returns information from
the Id Segment. However, on the A900, IdInfo does not differentiate
between the three possible dormant states. Therefore, SCHED uses IxGet
to return the contents of word 18 of the Id segment. Bit 12 of word 18
is the timelist bit. If it is set, the program is in the time list. If
not, SCHED re-schedules the program after calculating the next run time.

RESCHED is a clone of SCHED which accepts a program name from the
runstring, and after removing the specified program from the time list
with an EXEC 12, calculates the next run time and re-schedules the
program. This is used to change. the time when something should be run.
Because it is run manually, and the system could be very busy, this
program increases its priority with a call to ChnPr. This ensures that
the re-scheduling of the program is done immediately. The Exec 12 routine
removes a program from the time list if the time interval parameter is set
to 0 (e.g., call Exec(12,ProgName,0). ProgName must be the Rp name in a
3-word integer array.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 8

OFSCHED is the last of the three controller programs. This program
removes one or all the programs from the time list. This also uses the
Exec 12 to remove the program(s) from the time list. This has been very
useful during system restoration after a re-gen, when I needed to inhibit
the automatic processes. I can run it manually after boot-up, or put it
in the welcome file. To re-start everything, I just "XQ SCHED" to restore
the What-When programs to the system time list.

PITFALLS

System release 5.1 and 5.2.both have problems relating to what happens
when a CI command file terminates with "EX" if it was originally scheduled
with "XQ". When running in background, the EX command to CI results in
the total destruction of the session, even if other programs are still
running. Thus, a command file which issues a PRINT command and followed
by an EX will result in the session being terminated before the file
completes printing. The rule I use for ending CI command files is to
always specify "EX,B". The application scheduler always takes care of
logging off the session.

CONCLUSIONS

In the beginning, I wrote status messages from the scheduler programs to
the system console. I could see at a glance what had been run, at what
time, for how long, and in what sequence for the past several hours. Once
I was confident that the strategy and the code were working as intended,
I turned off the system console status displays. Now, the only output
sent to the system console is error messages. All the ongoing application
status messages are displayed on a second terminal reserved for that
purpose. Now, all system errors are immediately obvious. Output to the
system console is controlled by a logical flag in the scheduler programs.
If I need to turn it on again, I just edit the source file, changing the

flag to TRUE, and use the INSTALL.CMD file to install the new version in
the time list.

Now that our system is in place, and has been tested numerous times in
different situations, I can not imagine keeping this pair of A900s under
control without it. It is just one more example of the HP1000 RTE
flexibility and easy adaptability to user control requirements. I am sure
that I will continue to refine the system as new requirements occur. Any
new discoveries will be included in the paper presentation.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 9

APPENDIX A

THE WHAT-WHEN LIST: /SYSTEM/TIMLST.CMD

*

This file
The first

is used by SCHED, RESCHED & OFSCHED to control the time list
four fields must conform to a specific format. Everything

to the right of the 4th field is ignored so you can put anything there
Specific format instructions are at the end of this file.

AT 00:00:01

% % % % ok % % % % % % % % % % ok % % Ok % ¥ *

24H SCSAT ru cicopy /gps/gpsat.cmd MORE GPS PROCES
24H SCXPT ru cicopy /export/export.cmd FTP ->MATSAKIS

Int What Run String executed: Application:
1H SCCLD ! ru /timesc/cldat.run CLOCK SCAN
1H SCDAS ! ru cicopy /das/calldas.cmd DIALOUT CALLS
1H SCMIR ! ru cicopy /dey/monitor.cmd FTP DATA TO 835
1H SCWDG ! ru /timesc/wchdg.run CLOCK WATCH DOG
24H SCCYR ! ru /sysprogs/chkyr.run CHECK YEAR
24H SCGPM ! ru cicopy /gps/gps_midnite.cmd MIDNITE GPS
24H SCHKP ! ru cicopy /hskp/hskp.cmd HOUSEKEEPING
24H SCBKP ! ru /mgr/backup/backup.run BACKUP
24H SCHLT ! ru /sysprogs/rboot.run BOOT SYSTEM
24H SCWMS ! ru cicopy /snoopy/ms.cmd PREPARE DATA
12H SCGPS ! ru cicopy /gps/gps_process.cmd PROCESS GPS
24H SCMCS ! ru cicopy /cksteer/ckstr.cmd CLOCK STEER
24H SCDAM ! ru cicopy /scham/scdam.cmd PROCESS DAS
24H SCLOP ! ru cicopy /hc/rdctn.cmd REDUCE LORAN
24H SCITG ! ru cicopy /hc/wttg/udtv.cmd TV TIME UPDT
12H SCGPS ! ru cicopy /gps/gps_process.cmd PROCESS GPS
24H SCSID ! ru /sysprogs/iontr.run BREAK SID FILES
!
!

Required format: **THERE MUST BE AT LEAST ONE SPACE BETWEEN FIELDS**

column 1:

First
field

Second
field

Third
field
Fourth
field

* for comment lines OR

blank if the whole line is blank OR

blank if the next four fields are correct (accidental
whole line shift to the right will be tolerated) OR
first character of the first field.

MUST be at least 1 ascii character; this is really a place
holder since the "AT" is used for user friendliness so the
line makes sense. You could put ZZ there and the program
will not care. The character must be printable.

NO spaces; the hour, minute, and second values MUST be
separated (delimited) by a ":"; the first number will be
interpreted as hour, the second as minute, the third as
second. Leading Os are not necessary for the program to
work. There must be at least one numeric digit; Omitted
fields default to O but do not omit minute if seconds is
not also 0.

NO SPACE BETWEEN THE INTERVAL NUMBER AND UNIT CHARACTER!
Lower case will be accepted

The name of the program; if no directory path is specified,
it will default to the /programs directory. The .RUN
extension is also not required.

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix A

APPENDIX B

APPLICATION SCHEDULER PROGRAM TEMPLATE

FIN7X,L
PROGRAM SC<prog name>(), schedule <application description>
Ko m i mm i mmm i m e m e m e e e e e e eeeeeeeeeeeeee—mem—eeee—eeemonoaa-
* Programmer: Wendy King
* Created: August 31,1990
* Revised: <910528.1758>
* Purpose: Template program; customize to fit application
* Create a unique programmatic session, attach to that
* session and run a program, then return to original
* session and log off the auto programmatic session when
* all active programs have completed.
K e m e m e e e e e e e e e e e e e e e eeeeem e meemmme—eon
implicit none
character*5 Progld ! name of this program
character*72 msg0(0:2) ! getsn errors
character*72 msgl(0:7) ! clgon errors
character*72 msg2(0:5) ! atach errors
character*72 msg3(0:2) ! clgof errors
character*5 RpName ! true program name
character*80 RunString(l) ! to schedule program
integer#*2 StdOut, StartLu, SystemConsole,NProgs, I
integer*2 ITime(15),SesNum,error,Opt,Count,MaxTime
integer*2 BufLen,buffer(4),Parms(5), FmpRunProgram, StrLen
integer*2 Clgon,Clgof,GetSn,Atach,RtnSn,UsNum, TrimLen
integer#*2 LuSes, IXGet,Active Progs,UsrIdTblAddr
logical Continue,ConsoleDisplay
K e m i mmmm e mmm e e e e e e e e meemeeeae o mmem—mmem—men

* CUSTOMIZE THIS SECTION
* Replace the 5 x's with the 5-char name of this program

data Progld /'XxXxxx'/

Replace "prog.run::dir" with the full path and program name to be run
Duplicate this line for each program to be scheduled; for run w/wait
use RU instead of XQ. Set NProgs to the number of programs to be run.
For additional runstrings, increase the array value in the declaration
and increment the aray value for each data statement.

* % % % %

data RunString(l) /'XQ,prog.run::dir,parameters if any'’/
data NProgs / 1/

* Replace n with a number which represents the Maximum number of
* minutes the process should take.
data MaxTime /n/

* replace n with the lu of the terminal where you want the
* application program output(s) to be displayed.

data StdOut /n/

Using RTE Sys Lib Routines to Control Program Execution
1008 Appendix B-1

* set ConsoleDisplay to false if you want only error messages on the

* *

data

ConsoleDisplay /.false./

*
8
=
5]
H
:
8
£
E
2
a
=
2
=
(<2}
&
e
=

data
data
data
data
data
data

buffer /
BufLen /
opt /
Count /
SystemConsole /
Continue /.true./

* Error messages for getsn

data
data
data

msg0(0)(1:)/’ 0, No error.'/

system console; set it to true if you want progress/status messages
on the system console.

account & password
chars in buffer
clgof option

count log off trys
System Console lu
flag for logoff loop

msg0(1)(1:)/’'-1, Cannot get a session number.’/
msg0(2)(1:)/’'-2, No more session numbers available.'’/

* Error messages for clgon

data
data

data
data
data
data
data
data

msgl(0)(1:)/’ 0, No error.'/

msgl(l)(l:)/'-1, Internal error, such as no class numbers,
> or logon not performed.’/
msgl(2)(1:)/'-2, No -2 error documented in the manual.'/
msgl(3)(1:)/’'-3, Too many sessions active.’/

msgl(4)(1:)/'-4, No such user.'/

msgl(5)(1:)/'-5, Bad or missing password.'/
msgl(6)(1:)/’'-6, File is not valid user file.'/
msgl(7)(1:)/'-7, User configuration file already open.'/

* Error messages for atach

data
data
data
data
data
data

msg2(0)/' 0, No error.'/

msg2(1)/'-1, session number does not exist.’'/
msg2(2)/'-2, specified program does not exist.’/
msg2(3)/'-3, current session number coes not exist.'/
msg2(4)/' -4, must be superuser for action requested.’/
msg2(5)/'-5, program with same name already exists.’/

* Error messages for clgof
data msg3(0)(1:)/’ (0) Log off completed: no error.'/
data msg3(1)(1:)/' (-1) There are active programs; Option was 0.'/
data msg3(2)(1:)/' (-2) Session already logged off.’/

% Identify program and revision number; display time.

if(ConsoleDisplay) then

write(l,’(/a)’)’

call Ftime(ITime)
write(l,’(a5,1x,15a2)')Progld,ITime
endif

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix B-2

save the initial output log lu
call loglu(StartLu)

get a unique session #
error = GetSN(SesNum)
if(error.1t.0) then
Strlen = trimlen(msg0(-(error)))
write(l,*)Progld,’ GetSn: ',msg0(-(error))(l:StrLen)
sesnum = 999
endif

logon TS/AUTO programmatic session to new session number

error = clgon(buffer,Buflen,SesNum,error)
if(error.1t.0) then

StrLen = trimlen(msgl(-(error)))

write(l,*)Progld,’ Clgon: ’‘,msgl(-(error))(l:StrLen)
endif

atach to new AT/TIME session
error = atach(sesnum,error)
if(error.1t.0) then
StrLlen = trimlen(msg2(-(error)))
write(l,*)Progld,’ Atach: ’',msg2(-(error))(l:StrLen)
endif

announce output destination

if(ConsoleDisplay) then
write(l,*)Proglid,’ Running in session number ’,UsNum()
do i = 1,NProgs
StrLen = trimlen(RunString(i))
write(l,*)Progld,’ ',RunString(i)(l:StrLen)
enddo
write(l,*)Progld,’ Look for output on lu ’,StdOut
endif

change the output lu to stdout
call AtCrt(StdOut)

display status message if standard output device is to be the
system console for this application and console display is turned
off, or if the standard output device is not the system console.

do i = 1,NProgs
StrLen = TrimLen(RunString(i))
if((StdOut.ne.SystemConsole).or.
> (StdOut.eq.SystemConsole).and. (.not. ConsoleDisplay)) then

write(l, (/@) ') cccccmc e eceiiecaaeaas
call FTime(ITime)
write(l,’(a5,1x,15a2)')Progld,ITime
write(l,*)Progld,’ ',RunString(i)(l:StrLen)

endif

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-3

error = FmpRunProgram(RunString(i)(1l:StrLen),Parms,RpName)
if(error.1t.0) then
write(l,*)Progld,’ FmpRunProgram ’',RunString(i)(l:StrLen)
write(l,*)Progld,’ FmpRunProgram Error: ', Error

write(l,*)Progld,’ FmpRunProgram Errors: ', Parms
endif

enddo

* re-atach (return) to AT/TIME session 260

error = atach(260,error) ! try to Atach back to 260
call AtCrt(StartLu) ! switch output back to original
if(error.1t.0) then ! if error dtach to system session

Strlen = trimlen(msg2(-(error)))

write(l,*)Progld,’ atach: ’,msg2(-(error))(l:StrLen)
call Dtach(error)

if(error.1t.0)write(1,*)Progld,’ Dtach Error: ’,error

call exec(12,0,0) ! remove me from the time list
call IdClr() ! set flag to kill my ID seg
else

if(ConsoleDisplay) then
write(l,*)Progld,’ Returned to session ’',UsNum()

write(l,*)Progld,’ Waiting to logoff session ’,sesnum
endif

endif

* terminate the session after active programs have completed;
* if programs remain active past the Max time expected, logoff and

% kill all active programs (assume there is a problem with the
* application).

do while(continue)

UsrIdTblAddr = LuSes(SesNum) 1Get User Table address

if(UsrIdTblAddr.le.0) then 1Session already logged off
continue = .false. Iset flag to quit

else

Active_Progs = IXGet(UsrIdTblAddr + 12)! active progs count

if(Active_Progs.eq.0) then 1Progs finished; logoff now
continue = .false. tset flag to quit

else |Programs not finished;

if(count.eq.MaxTime) then
write(l,*)Progld,’' Exceeded ',MaxTime,’ minute time limit.’
write(1l,*)Progld,’ Killing session ', SesNum
write(1l,*)Progld,’ Check for errors or adjust time limit.’

ConsoleDisplay = .true. ! I do want the console to
continue = .false. ! display clgof result

else
count = count + 1 ! increment counter;
call exec(12,0,3,0,-1) ! wait 1 minute; try again.

endif

endif
endif

enddo

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-4

error = clgof(SesNum,Opt,error) ! log off session

if(ConsoleDisplay) then
Strlen = trimlen(msg3(-(error)))
write(l,*)Progld,msg3(-(error))(l:StrLen)
call FTime(ITime)
write(1l,'(a5,1x,15a2)’)Progld,ITime
endif

* return the session number to the system

error = RtnSn(SesNum)
if(error.eq.-1)write(l,*)Progld,’ RtnSn: -1’

end

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-5

APPENDIX C

TIMELIST MONITOR/CONTROLLER PROGRAM - SCHED

FIN7X,L

$FILES(0,1,25)

K e m e e e e e e e e e e ececmmesmeeesmemeeeeeeeeeeeememmem—a——a-o
* Programmer: Wendy King

* Site: US Naval Observatory, Washington DC

* System: HP1000 A900 RTE 5.2

* Externals: RTE System and Fortran 77 intrinsics

* Purpose: Schedule and/or re-schedule Time Service programs

* which must be run automatically at certain intervals

* Last Revision <910530.1949>

PROGRAM SCHED(3,30), Restore programs to time list
implicit none

integer*2 NextHr,NextMin,NextSec,TmUnit,TmInt

integer*2 time(5),parms(5),IRpName(3),IMyName(3),TSLogon(4)
integer*2 IdSegAddr,TimeListBit,Mask,IdSegWordl8,IXGet,IdGet
integer*2 TrimLen,Session,Error,FileLu,BufLen,ios

integer*2 FmpRpProgram,UsNum,LogonLen,Clgon,SuperUser

character At*2,Frequency*4,CRpName*5,CMyName*6,Start+*8
character ProgramName*64,InputFile*64
character CBuffer*80

equivalence (IMyName,CMyName)
equivalence (ProgramName(1l:5),IRpName,CRpName)

data parms / 5%0 /
data mask / 010000B /
data Session / 260 /
data TSLogon / 'AT','/T','IM','E ' /
data LogonLen /7 /
data InputFile / '/SYSTEM/TIMLST.CMD' /
data FileLu / 101 /
data BufLlen / 80 /
if (SuperUser(UsNum()).eq.0) then
Write(l,*)'Sorry; You MUST be Super User.'’
call exec(6,0,3)
endif
DO WHILE (.TRUE.) fcontinue indefinitely

*%% if not running in system session, go there;
**% atach to TS session; create session first if necessary

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-1

if(UsNum() .ne.0)Call dtach() ! sets loglu to system console
Call atach(Session,error) ! try attach to 260
if (error.ne.0) then !t if it fails, logon 260

error = clgon(TSLogon,LogonlLen,Session,error)

if (error.eq.0) call atach(Session,error) ! attach to 260
endif

*%% Open the list of time scheduled programs
ios = -1 file could be in

!

do while (ios.ne.0) ! use; keep trying

Open(FileLu,File=InputFile,Iostat=ios,Err=1) ! to open the file
!

1 if(ios.ne.0) call exec(12,0,2,0,-30) every 30 seconds
enddo
DO WHILE (Ios.ne.-1) ! while not EOF
Read(FileLu,Fmt='(a)’,lostat=Ilos,Err=998,End=20)
> CBuffer(l:)
if(trimlen(CBuffer).eq.0) goto 20 { if blank read again
If(CBuffer(l:1).eq.’'*’) goto 20 ! comment; read again
READ(CBuffer(1l:),Fmt=%, 6 Err=20,End=20) !
> At,Start,Frequency, ProgramName
. S S
* Check for current ID segment; if none, RpProgram and put in timelist;
* if RP fails, write error msg and go to next program; if there is an
* ID segment, check that it is in the timelist; if not, put it there,
* if it is, go do next program.
S
IdSegAddr = IdGet(IRpName,Session) ! get ID Seg
if(IdSegAddr.eq.0) then ! if no ID seg
Error=FmpRpProgram(ProgramName,CRpName, ‘P’ ,Exror) ! try RP
if(Error.ne.0) then ! if error
Write(l,*)’'Sched: RP ',ProgramName(l:5) ! write msg
Write(l,%*)’Sched: Error returned was ',Error
goto 20 ! do next prog
endif
else
IdSegWordl8 = IXGet(IdSegAddr + 17) ! get Id Seg Word 18
TimeListBit = iand(mask,IdSegWordl8) ! mask off bit 12
if(TimeListBit.ne.0) goto 20 ! if bit 12 set ok
endif ! if not re-schedule
*kk Calculate the next runtime based on the interval (how often)
*kk and start time.

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-2

*%

20

998
999

Time schedule the program.
call exec(12,IRpName,TmUnit,TmInt,NextHr,NextMin,NextSec,0)

ENDDO
goto 999

Write(l,*)'SCHED: TIMLST.CMD::SYSTEM READ FAILURE!!!’
close(FileLu)
call PName (IMyName)

if (CMyName(1:5).ne.'SCHED') then ! if true I am a clone;
call exec(6,0,3) ! kill me completely

endif

call dtach(error) ! move to system session

if(error.eq.-5) then ! if already exists in system
call exec(6,0,3) ! session, kill me completely

else

call exec(1ll,time) ! get time now

if(Time(3).gt.40)Time(4)=Time(4)+1 ! if min>40 inc hour
Time(4) = mod(Time(4),HpD) ! mod hour/24
!

call exec(12,0,4,1,Time(4),45,0,0) sched next run
endif
ENDDO
END

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-3

APPENDIX D

REFERENCE MANUAL DOCUMENTATION FOR RTE ROUTINES

HP1000 RELOCATABLE LIBRARIES MANUAL:

CHAPTER 5

IxGet returns the contents of an address
CHAPTER 6

UsNum returns the session number
SuperUser checks if user is super user
GetSn returns a unique session number
RtnSn releases a session number

Dtach moves caller into system session
AtCrt attaches a crt

Atach moves caller into a session
Clgon logs on a session

Clgof logs off a session

LuSes returns the user table address

HP1000 PROGRAMMERS REFERENCE MANUAL:

CHAPTER 5

IdClr sets flag to kill callers ID segment
ChngPr change the priority of a program
Exec 6 terminate a program

CHAPTER 6

Exec 11 returns the system time

Exec 12 schedules a program now or later
CHAPTER 7

IdGet returns the caller’s id segment address
PName returns the caller’s actual name
LogLu returns the lu of invoking terminal
CHAPTER 8

FmpRunProgram schedules a program (no RP needed)
FmpRpProgram restores a program ID segment

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix D

HP 1000 DS and NS
over
MUX Ports

Donald A. Wright
Interactive Computer Technolo
2069 Lake EImo Avenue No
Lake Elmo, MN 55042 USA
612/770-3728

Abstract:

DS and NS on the HP 1000 are excellent network services. Many people do
not realize how robust these services are. They provide far more than NS
services on other systems, with such functions as transparent remote image
Data Base access, and complete file transparency. But they can be
expensive.

In many applications, the cost of HP’s networking hardware is higher than the
cost of the DS or NS software to go with it. But every HP 1000 has MUXes,
and most have a sa‘:are port or two. MUXLINK is a collection of software
components which allow full DS and NS services between HP 1000’s, using a
single MUX port on each computer in a connected pair.

The software emulates the HP HDLC cards and their drivers, so nearly all of the
functionality of DS and NS is supportable. Data transfer speeds are limited to
the speed of the MUX, so this mechanism is of value where DS/NS functions
are desirable but the highest performance is not required. MUXLINK is a
commercial product, but the author provides detailed design and internals
information. The paper discusses pseudo drivers working in close cooperation
wilth %rotoool programs, the protocol itself, integration with HP’s DS/NS, and
related issues.

Requirements:

The need is for a software mechanism providin_tr;E DS/1000 and NS/1000
services over B, C, and D-MUX ports on both RTE-A and RTE-6/VM. The
drivers must appear to HP's software to be HDLC drivers, so that DS/NS will
allow the full range of services supported by the HDLC: cards. The system
should support all normal ND/DS re% ests, including those from the utili

programs DINIT, NSINIT, DSINF, NSINF, and DSMOD. A communications lin

should require only one MUX or OBIO port at each end, and network traffic
should not interfere with the use of other ports on the MUX. It should include a

HP 1000 DS and NS over MUX ports
Page 1009-1

complete error-detection and retry protocol.

The software should, if possible, include data compression. It would be
desirable to allow the use of the MUX ports as terminal ports when not in use
for DS/NS, and it will be helpful if normal DSINF and NSINF reports show
coherent information when used to query these special links.

Eventually, the software should support all of the special features of the HDLC
cards, such as Remote VCP, Remote Program Download, and Forced Cold
Load. Autodial and inactivity disconnect will also be useful features.

Design Approaches:
Two different approaches to this problem were considered:

1) Write a special device driver for each type of MUX in both RTE-A and
RTE-6/VM, for a total of four drivers.

2) Write a pseudo driver for each operating system, closely linked with a
protocol program which communicates through normal MUX ports.

These approaches have very different sets of problems to face:
Four Drivers:

a; Large drivers are required, with lots of programmln? at the driver level.

b) There is a danger of being privieged too long while doing protocol

manipulations.

c) Data buffers must be outside the driver while the protocol work is done,
and there is no convenient place to put it.

Pseudo Driver and Protocol Program:

a; This approach cannot be as efficient as the other.
b aI.I!tr;sohcited remote messages and message collisions are harder to
itrate.

Design Choice:

The pseudo driver approach was chosen. While efficiency will be somewhat
reduced, it was felt that this will not affect DS/NS speed at the relatively low
MUX data rates. It was also thought that this approach might actually be less
intrusive and have less impact on other applications, because most of the
protocol work can be done in a normal interruhrtiblvrogram. The drivers will
definitely be much smaller, and in RTE-6/VM it will normally be installable
without a system generation, using driver replacement. But the biggest
advantage is that most of the code can be written and debugged at the
program level rather than the driver level. This also improves the liklihood that
patch:z and updates can be installed at the program level without a system
generation.

HP 1000 DS and NS over MUX ports
Page 1009-2

This is a schematic diagram of the resulting design:

Schedule
MUXLINK —— MUXQUEUE
Pseudo I
Driver
Write LU Protocol
MUXIO Remote
— 66 T System
DS/NS LU 1 1 U=
MUX MUX
LU -/ / LU
LU 2 HP
Read LU Driver

tocol i

The protocol used between HP 1000 systems cannot actually be HDLC,
because that protocol is very compute intensive, requiring a dedicated
microprocessor. Instead, we must design a protocol which is much less
compute intensive but allows use of a wide variety of connections, at least
including direct connection or any lookalike (e.g. shorthaul modems), dialup
modems, commercial services such as DunsNet, Tymnet, and Telenet, plus
data switches and LANSs.

It should support all baud rates available on the MUXes, and must allow for
XON/XOFF data pacing. It need not support ENQ/ACK. It must be able to
use a 7-bit channel if necessary, and should provide at least run-length
encoding as a method of data compression. It must allow for the translation of
special characters which may be disallowed by one connection or another.

Norm n f

When the link is idle, the four major components of the system are in the
following states: The Type-66 LU’s are idle, MUXIO is waiting on a class GET,
MUXQUEUE is dormant saving resources, and the MUX LU is in typeahead
mode with a class read on it (B, C-MUX) or enabled to schedule MUXQUEUE
when a character comes in (D-MUX).

Here is the sequence of events for a normal write:

1) The driver is entered by RTE with the directive to initiate a DS/NS write
to the remote system.

2) The driver makes some cursory checks on the request and then
schedules MUXQUEUE, setting a retry if MUXQUEUE is busy, and passes
an initiation sequence number along with its own DVT/EQT address.

3) MUXQUEUE determines where the schedule came from, validates it,

HP 1000 DS and NS over MUX ports
Page 1009-3

and passes it to MUXIO in a class write.

4) MUXIO wakes up from its GET, examines the re$uest for Iegalit&, and
tells the driver it is complete by setting bits in the Type-66 LU’'s EQT/IFT
and forcing an immediate driver timeout.

5) The driver is entered with a timeout directive, determines that the

request is complete, and takes a completion exit.
Note: In this case the driver actually completes the request before the data
is transmitted to the remote system. is is unusual, but higher-level
DS/NS protocols protect against a lost message, and in fact this is exactly
how the HDLC drivers work as well.

6) MUXIO then converts the message's raw data into one or more
encoded ‘frames’, complete with headers and checksums and in-stream
special characters to implement the protocol.

7) MUXIO flushes the pending read on the MUX port and begins writing the
messagle to the remote computer, handshaking it over according to the
protocol.

A read follows this sequence:
1) The first incoming frame completes MUXIO’s pending read on the MUX

port.

2) MUXIO wakes up from its GET and handshakes the rest of the message
across. :

3; MUXIO converts the incoming frames back into a DS/NS message.

4) MUXIO schedules QUEUE (HP's DS/NS incoming-message program) with
detaitl)s about the incoming message, giving it the Type-66 Pseudo LU
number. :

5) QUEUE places a class read on the Type-66 LU.

6) The Type-66.driver schedules MUXQUEUE.

7) MUXQUEUE informs MUXIO by way of a class write.

8) MUXIO goes privileged, finds the location of QUEUE’s class buffer in
SAM, and cross-stores it right in. Then MUXIO sets flag bits in the LU’s
IFT/EQT and forces an immediate driver timeout.

9) The driver detects the completion by MUXIO and takes a completion
exit.

The sequences described above apply to all normal DS/NS requests.
However, there are some unusual requests that must be handled as well. The
most difficult of these is the Special Status Read. In this case, a program such
as DSINF issues a normal I/O request (not class 1/O) to the driver, and
exp%cts to get 10 or 12 words of status or statistics information back from the
“card".

The drivers pass this request to MUXIO in the same fashion as all other
requests. MUXIO then locks itself in memory, sets status bits in the IFT/EQT
to tell the driver that special action is required, and also places there the
absolute page address and the relative word offset of the gﬁecial Data in its
local map. The driver then mags the data directly into an alternate map and
cross-stores it to the requester’s buffer.

HP 1000 DS and NS over MUX ports
Page 1009-4

Efficiency:

While the sequences described above do seem complex compared with the
notion of performing all of the protocol and 1/O directly in the driver, they take
advantage of the very facilities that the HP 1000 was designed to do well. In an
actual test, the Special Status Read, described above, was executed
repeatedly on a Type-66 Pseudo Driver LU from a test program, with a
1024-word buffer rather than 10 or 12 words. In both RTE-A and RTE-6/VM,
the test program was able to perform 100 reads per second, which is the
maximum possible number when timeouts are u to pace an event in the
sequence.

Protocol:

The following is an overview of the lgro'tm:ol which MUXLINK uses to encode
data, form packets, and transmit it on RS-232 circuits.

Port-to-Port:

1) An initialization negotiation tells each side the important properties of the
other, e.9. max read size.

2) When a channel is idle, C-MUX ports have a read posted and D-MUX
ports have program scheduling enabled. When one side wishes to initiate
transmission it just sends a packet to the other side.

3) Channel contention is always resolved in favor of the same side,
determined by the initialization negotiation.

4) A single message may be broken into two or more frames.

5) After the first frame, channel contention is resolved before additional
frames are sent.

6) Errors are detected by checksums and other protocol checks, and are
corrected by retries.

7) DS/NS messages are currently limited to 4086 words. The programs
written to implement this protocol may have such a limitation, but the
protocol itself can handle at least 1 megabyte in a single frame.

8) Multiple unacknowledged frames are also supported by the protocol,
though not necessarily by program implementations.
Encoding/Decoding:

1) Run-length data compression for 8-bit data is performed as an integral
part of encoding, if enabled.

HP 1000 DS and NS over MUX ports
Page 1009-5

2) For transmission on the maximum number of possible services, the
allowable encoded character set is configurable at startup. At the
minimum, it may be reduced to the 64 most common characters plus up to
8 reserved management ("special”) characters plus the carriage-return or
other EOL character.

3) The encoded data must fit on a 7-bit channel if necessary. This will be
indicated in the initialization negotiation.

4) Message frames are sent as variable-length character strings terminated
by a hardware-recognizable EOL such as CR.

Initialization:

1) There are four message frames exchanged in the channel initialization
process, in this order:

1) Initialization Request

J) Initialization Response Data

K) Initialization Request Data

L) Round-Trip Time Interval message

2) Basic assumption: it doesn't matter which side is prim: and which is
se<“>_opdary. That distinction is used later only to itrate channel
collisions.

3) When | start up | declare my side to be in an uninitialized state and begin
sending primary initialization request messages or invalid frames to the
other side at predetermined intervals.

4) When in the uninitialized state, | can recognize only two things: 1) Prcéf)er
responses to my initialization sequence messages, or 2) The other side’s
primary initialization request. If an unexpected message is received before
the full 4-message exchange is complete, | will execute a random delay
and then read to see if a primary initialization request is present from the
other side. If so | will respond to that request; if not | will send another
primary initialization request myself.

5) Reception of a primary initialization request at any time will invalidate

%rfvious initializations and will cause an initialization response to be sent.

e only exception is the first message received after sending my own
initialization request.

6) | keep track of the time | sent an initialization response and the time |

received the acknowledgement. The length of that interval is sent back to
the grimary side in the round-trip time interval message. This information
will be used later to appropriately adjust timeout and retry intervals and
may be sanity checked in actual channel use.

7) The side which sends the primary initialization request which actually
succeeds is called the primary side.

HP 1000 DS and NS over MUX ports
Page 1009-6

Encoding Method 1:

This method employs bytewise run-length encoding, high-bit prefixing,
translation-table prefixing, and special-character translation. Except for special
handling of the high bit, it does not do any bitwise manipulation of the data. It
is used to encode the data in C or D frames.

Reserved ‘special) characters are defined in the startup file. If they appear in
the original data with or without the high bit set they are translated to different
characters, so they never appear in the encoded output unless they really are
special characters. Allowable special characters are as follows: (mnemonics
represent single ASCII characters):

TTE - Translation Table Escape (single byte state change).

TTT - Translation Table Toggle. Change state and remain until another
TTTor TTE.

RLO - Precedes the data character for a run of minimum length.
RL1 - Precedes the data character for a run of minimum length +1.
RL2 - Precedes the data character for a run of minimum length +2.

RLC - Precedes the count character(s) for a counted run. The count
character(s) are Basic Digits, where the 4 LSB’s of each digit indicate
the count (0-15) and the MSB indicates whether additional count digits
follow. The data character follows the last count character. There is
no limit to the number of count characters, so the length of a run is
limited only by the message or frame size.

HBE - High Bit Escape (single byte state change).

HBT - High bit Toggle. Change state and remain until another HBT or
HBE. If HBT and HBE are not defined, an 8-bit channel must exist and
the high bit will never be prefixed but will be sent along with the data,
whether translated or not.

EOL - Reserved hardware-recognizable End of Line character, such as
Carriage Return. Must be translated to another character so that it
never appears in the data stream either with or without High Bit set.
Must be the same for both sides.

A minimum length run is defined as a run of three identical characters if any of
RLO - RL2 are specified, otherwise four characters.

In addition to EOL, at least ONE special character must be specified, either
TTE or TTT. All others are optional, but their use may improve encoding
efficiency. HBE and/or HBT are required for transmitting data over a 7-bit
cfhfaljnel, and should not be used otherwise because they will reduce
efficiency.

HP 1000 DS and NS over MUX ports
Page 1009-7

Encoding/D ing M :

7-BIT MODE: If either HBE or HBT is defined in the initialization data from the
transmitting side, the receiver uses the channel as if it were a 7-bit channel.
The high bit of all received characters is set to the current value of the High Bit
Mode, and changes in that mode will be allowed when HBE or HBT is seen.

8-BIT MODE: Neither HBE nor HBT has been defined. The 8th bit (bit 7) in
each character is taken literally. If the received character with high bit forced to
0 is a translated one of any kind, its actual received high bit is merged in with
the character resulting from the translation.

The transmitted byte stream is encoded so that the following two modes are
switched on and off in the receiver (decoder) by special characters found in the
pyée streag\. Both modes are initialized OFF before the first byte of each frame
is decoded:

TRANSLATION TABLE MODE: When off, received characters (except special
characters) are taken literally. When on, received characters are translated via
a 128-character lookup table provided by the neighbor side as part of
initialization. As an example, that table may translate ASCIl control characters,
the EOL, and all special characters to something else. Translation Table Mode
is toggled by TTT and switched for one character only by TTE.

HIGH BIT MODE: If High Bit Mode is on, the 8th bit is ignored in received
characters and set true on all resulting characters whether translated or not.
High Bit Mode is toggled by HBT and switched for one character only by HBE.

Frames:

DS/NS messages are wrapped into one or more Protocol Frames, which
contain checksums and other protocol validation mechanisms. The design of
the frames themselves is beyond the scope of this paper.

Frame Types:

A = Ack

C = Continuation (preceded by D or C)
D = Data frame

H = Hang-up (disconnect physical line)
| = Initialization request

J = Initialization response data

K = Initialization request data

L = Round-Trip time interval

N = Nak
P = Poll message
S = Stop

HP 1000 DS and NS over MUX ports
Page 1009-8

Pseudo Drivers:

The Type-66 Pseudo Drivers IDI66 and DVP66 are the key to the process.
Type-66 LU’'s are generated in pairs, exactly as HP's 1D*66 and DVAG6 drivers
are used. The first LU is normally used for writes, and the second for reads,
although there are some exceptions.

In RTE-A there is one IFT for each DVT pair, with a 20-word extension, and the
key information for both LU’s is kept in that IFT extension. In RTE-6/VM, one
EQT is generated with a 12-word extension and the other with none. The key
information for both is kept in the first EQT's extension. This is important
because some DS/NS programs actually check the IFT/EQT extension length
of the drivers in order to confirm that the LU’s are DS/NS LU’s.

As described above, most normal driver entry directives are handled by
ga_ssing the request on to MUXIO. These directives are handies right in the
river:

1) Abort. Several situations are handled. In RTE-6 this is important, but in
RTE-A the driver is unlikely to be entered with an abort directive because it
always exits with the HOLD bit set unless it completes the request.

2) CN 22B. Set timeout. This is the only user request that the driver
handles directly.

33 Continue. lllegal, treated the same as a timeout.

4) Timeout. This is handled differently depending upon the state of affairs.
In one case we may be retrying the schedule of MUXQUEUE. In another
MUXIO may have set completion bits and forced an immediate timeout. In
a third case, an actual timeout may have occurred and a timeout status is
reported by the driver.

5) Power Fail. The driver treats this the same as a timeout.

MUXQUEUE Program Design:

MUXQUEUE is a 3-page program which has a normal state of dormant, saving
resources. It has no need for and no access to the formatter or the file system.
It operates at a reasonably high priority (29) and performs all tasks
immediately, so it spends very little time executing. Its job is to sit and wait to
be scheduled by one of the following:

1) MUXQUEUE, which initially passes its own class number by way of a
schedule. In some circumstances MUXIO may also ask MUXQUEUE to be
its alarm clock to wake up MUXIO at a particular time.

2) MUXLINK, a management program, which may request MUXIO’s class
number or tell MUXQUEUE to shut down.

3; A Type-66 LU driver with a new request initiation.

4) A D-MUX driver with an unsolicited incoming message.

HP 1000 DS and NS over MUX ports
Page 10099

MUXIO Program Design:

MUXIO communicates almost exclusively through class 1/O, with no need for
or access to the file system. It operates at a modest priority of 50 and does all
of the protocol conversion. MUXIO rarely puts itself in the timelist. While it can
spend significant time executing, it still spends most of its time waiting on a
class GET. It canreceive class | 70 messages from the following sources:

1) MUXLINK initializes MUXIO’s table of LU’s and protocol specifications
through class writes.

2) MUXQUEUE reflects its schedule requests from MUX LU's and from
Type-66 Pseudo Driver LU’s.

3) MUX LU’s complete 1/O requests.

HP 1000 DS and NS over MUX ports
Page 1009-10

MUXLINK Program Design:

MUXLINK is used to control the MUXLINK system. It issues startup messages
to MUXIO based upon a startup command file, and allows other manipulations
of the system including shutdown. Here is a list of its commands:

MUXLINK Action Commands:

? keéword] Request help for keyword

CN u CW [pram] Issue control request to specified lu

DI Display local LU66 and TABL tables

ECHO on/off TRansfer-file echo on or off

EX Exit MUXLINK program

HE [keyword] HEIp, same as ?

LUBE Iue6 * Becr;in Defining Type-66 MUXLINK LU

MAXR maxwords * Define maximum MUXIO class-read size
* Shut Down MUXIO and MUXQUEUE now
*

SD
SEND [LU/TA/MR/AL] [#/AL] * Send LUE6, TABL, or MAXR to MUXIO
SHOW [LU/TA/ST/AL] [#/AL] Display MUXIO's internal tables

SS Suspend Self (use GO to resume)

ST Display current STatus (brief)

SuU * Start Up MUXLINK progs & send tables
TABL tbl * Begin Defining Encode Table

TR [flename/1] TRansfer to command file

TABLES

LU66 Table Commands (need at least LU66, MUX, and TBL):

LU66 |u66 * Begin Defining Type-66 MUXLINK LU
BAUD baudrate MUX port baudrate

BRG 0/1 C-MUX port baud rate gen

MUX lu MUX LU for pending LUBE

PORT 0-7 MUX Port number

TBL 14 Encode TABL used with pending LUG6
TOM ticks Reset timeout for specified MUX port
XON on/off Specify XON/XOFF for pending MUX
TABL Encode Table Commands:

TABL tbl * Begin Defining Encode Table

Ival itran #pairs Numeric Translation (? Numeric)

EOL ival itran EOL Character (default CR)

HBE ival itran High-Bit Escape character

HBT ival itran High-Bit Toggle character

RLO ival itran Runlength char, minimum runlength

RLA1 ival itran Runlength char, minimum runlength + 1
RL2 ival itran Runlength char, minimum runlength + 2
RLC ival itran Runlength char, counted length

TTE ival itran Translation Table Escape character
TIT ival itran Translation Table Toggle character

HP 1000 DS and NS over MUX ports
Page 1009-11

All numeric values entered in MUXLINK commands are interpreted as octal
values if they have a trailing 'B’, otherwise they are assumed to be decimal in all
cases.

Commands with an asterisk (*) before the description require superuser
capability. This includes any commands which are capable of modifying
MUXIO’s operating parameters.

Performance:

Extensive testing was done between an A400 running RTE-A 5.2 with DS/1000

and an E-Series running RTE-6/VM 5.2, also with DS/1000. Both systems had

C-MUXes, D-MUXes, and HDLC cards. In all tests there was no significant

gifflerence between Cand D-MUX test results, so those have been combined
elow.

9600 Baud: Effective rate in characters per second:

MUX HDIC
Uncompressible file 427
Type-6 file 648
Large relocatable ($BIGLB.LIB) 736
Large text file (CONNECT Manual) 770
19,200 Baud: Effective rate in characters per second:
MUX HDLC
Uncompressible file 585 725
Type-6 file 795 718
Large relocatable ($BIGLB.LIB) 1213 1823
Large text file (CONNECT Manual) 1252 1471
38,400 Baud: Effective rate in characters per second:
MUX HDLC
Uncompressible file 641
Type-6 file 846
Large relocatable ($BIGLB.LIB) 1347
Large text file (CONNECT Manual) 1400
230,000 Baud: Effective rate in characters per second:
_MUX HDLC
Uncompressible file 1823
Type-6 file 1737
Large relocatable ($BIGLB.LIB) 8442
Large text file (CONNECT Manual) 7930

Summary:

The system described can handle DS/NS messages over MUX ports,
providing most DS/NS services at the full speed of the MUX.

HP 1000 DS and NS over MUX ports
Page 1009-12

DOWNLOADING FROM THE HP-1000
TO FACTORY FLOOR MACHINES

PAPER# 1010

Bill Donze
Reliance Electric Company
6065 Parkland Boulevard
Cleveland, Ohio 44124-8020
(216) 266-7619

1. ABSTRACT

The automated machine tools of today's factory are directed
by Computer Numerical Controls (CNC's) which accept ASCII
instructions to produce the desired machine motion. In the
past, most CNC's were equipped with punched paper tape read-
ers to input these instructions. The instructions were
generated by a remote computer connected via a modem to a
terminal and a tape punch located in the programmer's of-
fice. Although this method worked, it was subject to tele-
phone transmission problems, mechanical failures, and was
very time consuming. Reliance is installing HP-1000 A-Series
Systems and custom software at its plants to implement local
control of the shop. This paper describes the MACRO program
that downloads machine instructions from the local HP-1000
to the shop floor CNC's. Although this software is propri-
etary, the paper's in-depth discussion of the process will
provide sufficient information for implementation.

2. BACKGROUND

The instructions for a CNC must be created by a Parts
Programmer based on an engineering drawing of the part to be
produced. The task of conveying these instructions to the
CNC has evolved from a manual operation, through a remote
computer-assisted solution, to an efficient local computer-
assisted process.

In the original manual process, a Parts Programmer would
interpret an engineering drawing and write the needed CNC
instructions on paper. This can be likened to programming in
assembly language without the aid of a computer. The
instructions from the hand-written paper would then be typed
into a Tape Preparation machine producing a listing and a
punched paper tape. The paper tape and the listing then had
to be hand-carried to the CNC on the shop floor where the
paper tape would be read into the CNC's memory by a
mechanical tape reader. This process could take anywhere

Downloading From The HP-1000 To Factory Floor Machines
1010-1

from 4 to 40 hours for one part! Any problems such as human
error, tape punch failure, or tape reader failure could even
lengthen the process. Notice also that the Parts Programmer
had to walk to three different locations to complete the job
and considerable storage facilities were required to
maintain the 1listings and paper tapes for possible future
use.

In the next step in the evolution, several major changes
were introduced to the process in an effort to ease the
programming task. The addition of a mainframe computer, the
APT Processor (Automatically Programmed Tools) program and
machine-dependent Post Processor programs provide valuable
tools for the Parts Programmer. The APT Processor can be
thought of as a compiler which accepts a high level language
from the Parts Programmer to produce an intermediate meta-
language. The Post Processor then converts the meta-language
to CNC instructions. With this approach a part could be
programmed in 30 minutes to 8 hours. However, the problems
of tape storage, listing storage, and reader/punch failure
are still present. Furthermore, with the addition of a 300
baud modem and telephone 1line transmission, some new
problems have been added.

Note that in this approach there is a single host computer
which supports, in addition to factory floor operations,
other tasks such as payroll, work-in-process, inventory,
etc. The parts programmers f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>