. INTERCOMM

C OPERATING REFERENCE MANUAL

CoRpoRATION

LICENSE: INTERCOMM TELEPROCESSING MONITOR
Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Operating Reference Manual

Publishing History

Publication Date Remarks

First Edition February 1974 This manual corresponds to Intercomm
Release 6.0. It 1incorporates and
supercedes documentation formerly in
the Intercomm Users Guide, now
obsolete.

Second Edition March 1983 General updates and additions
corresponding to Intercomm Release
9.0.

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system
executing on the IBM System/370 family of computers and operating
under the control of IBM Operating Systems (MVS/370 and MVS/XA).
Intercomm monitors the transmission of messages to and from terminals,
concurrent message processing, centralized access to I/0 files, and
the routine wutility operations of editing input messages and
formatting output messages, as required.

Installing and maintaining an on-line system is a complex task
with many variables ranging from coordination of equipment delivery
and associated environmental planning to scheduling the implementation
of application programs which service users at remote locations. One
phase of this installation is implementing Intercomm, the on-line
system monitor which schedules and controls the operation of the
communications network, as well as the application programs that
process the traffic input from, and produce the output to, the
network.

This document provides guidelines for the 1installation,
maintenance and tuning of Intercomm, including an orderly breakdown of
responsibility for system definition, testing, and production
operation. It serves as a reference manual for systems personnel
responsible for the operation of the on-line system.

In this manual, the term MVS refers to both MVS/370 and MVS/XA.
A distinction (MVS/370 or XA) is made only when applicable. Also, the
terms OS or VS are interchangable with MVS; all imply the IBM
Operating System installed at the user’s site.

The following Intercomm publications are prerequisite and/or
relevant to this document:

° Concepts and Facilities
° Installation Guide

° Basic System Macros

° Messages and Codes

° System Control Commands

e
[
(=]

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts.and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Agssembler .Language Programmers Guide

COBOL Programmers Guide

PL/1 Programmers .Guide

SYSTEM PROGRAMMERS MANUALS

Basic System.Macros

BTAM Terminal Support Guide

Installation:Quide

Messages and.Codes

Operating Reference Manual

System Control Commands

CUSTCMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

LBMS Users Guide

Data Entry Installation Guide

Eacta Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

TABLE OF CONTENTS

Page
Chapter 1 THE INTERCOMM ENVIRONMENTciiiiiiiinnnn. 1-1
1.1 Introductionottt 1-1
1.2 Front End i iiiiiiiiiiiiiiieiminnnnns 1-2
1.3 Subsystem Controllerciiiiiiiiiennnn 1-3
1.4 Queue Management Routines 1-3
1.5 File Handlerc.ttiiiiiiiinnnrennnnnn .. 1-3
1.6 Dispatcheriiiiiiinnnnnnnneennnn e i 1-4
1.7 Resource Management 0.t 1-4
1.8 Utility Programs e e e 1-5
1.9 Region Organization, 1-6
1.9.1 Dynamic Program Loading e S 1-7
1.9.2 Overlay Program Loadingcoouu.. 1-8
1.9.3 Asynchronous Overlay Loader 1-8
1.10 Modes of Execution 1-9
1.11 Intercomm Tablesciiuuiiiinniinnneenn. 1-10
Chapter 2 THE INTERCOMM OPERATIONAL SYSTEM e 2-1
2.1 Installation Overview, 2-1
2.2 Libraries ittt B 25 |
2.2.1 Source Library Concatenation Sequence 2-4
2.3 JCL Proceduresoooo.. e ik aw. 2 .2-5
2.3.1 Step Namesttt ittt it it 2-11
2.3.2 JCL Procedures for Source Updates, Compiles, %~ @ - .
) Assemblies, Linkeditscoiiiiiinennnnn 2-11
2.3.3 JCL Procedures for Utility Executions:i..... :2-16
2.4 System Installation and Maintenance .
Responsibilities e e e 2 2219
2.4.1 The Intercomm System Manager(s) 2-20
2.4.2 The Application Group(s) e e 2-21
2.4.3 Central Location Operations 2-21
2.5 Standards ... e e 2-21
2.6 System Control Functions and Tables 2-23
2.6.1 System Global Tables (INTGLOBE, SETGLOBE) 2-24
2.6.2 System Control Tableso.. 2-28
Chapter 3 MESSAGE MANAGEMENT ittt 3-1
3.1 Introduction i 3-1
3.2 General Message Flowcciiiiiinnennnnnn 3-2
3.2.1 Input Messagescciiiiiinnnnneennn. 3-2
3.2.2 Output MesSSages'ivivnitneerennnennnnnenns 3-3
3.2.3 Message/Subsystem Cancellation Processing....... 3-5
3.2.3.1 Message Cancellation User Exit--USRCANC 3-5
3.2.3.2 Message Cancelled Condition 3-6
3.2.3.3 Subsystem Stopped Condition 3-6
3.3 The Front End Verb Table, 3-7
3.3.1 Entries in The Verb Table 3-7

w
N

w ww w

w
~

WWWLWWWWLWWLWWWLWWWWLWWWW WWwwwww

WWwWwwww

WWWWLWWWWWwWwWwWw

WWWwWwwwWw

BENSSSSSSSSSSUN

[e))

~N S

N OO L

WO WO O OO0 oo

rPrwnR

NounmpHwN

N =

(S RF S VY)

N =

~NooooononutPwN -

E OV S

Short Verbs i,
Priority Verbs
Locked Verb Facility,
Comvetrsational Verbs L.
Separate Assemblies of Verb and Network Tables

Bynemically Loading the Front Znd Verb Table

at: SEATtUD .. i e e e

Back End Table Specifications fer the Utilities...
Station Table
Device Table
Rxoadcast Table il
Message Mapping Utilities Requirements
Ediz Utility RequiremenZscuuuu...
Output Utility Requiremenits
Adding O:utput Format Table Entries
Error Messages from the Output Utility
Output User Exit--USROTEDT
Output User Exit--USROUJTCK
Change/Display Utility Requivements
Message Processing Facilities
Message Switching ...ttt nennn.

Multi-Message Queuing via the Dynamic

Data Queuing Facility
Front End Control Message Facility
Page Facility,
Intermediate Message Data Storage

The System Parameter Area (SPA)
System Parameter List (SPA Csect)

User Extension teo the System Parameter

List (USERSPA)ttt i i

Intarcomm Extensjon to the System

Parameter List (SPAEXT Csect)

Separate Ascembly of the SPA and

the GPAEXT Csectsciiiiiiininnnnnnn.
The Sithsystem Coutrol Table (SCT)

Coding Subhsystem Control Table (SCT) Entries
Coding Subsystem Control Table Indices

(GENINDEX) ..ttt

Coding Overflow Disk Queue Allocations

(PCENSCT) ..ttt it i e e
Adding a Subsystem,
Subsystem Processing Specifications
Subsystem Queue Specifications

Scheduling and Concurrent Processing Limits

Subsystam Residency Considerations
Subsysten: Reentrancycciviiiiiiinnn..
Resident Subsystems iviiininnnn.
Overlay A and Execution Group Subsystems
Dynamically Loaded Subsystems

Subsystems Residing Above the 16 Meg Line .

w W

Chapter 4

wWwwww

WWWwWwwwww

WWWWWWLWWWWW

~rEPEPREEEREEFE
NNMNNMNNNDNNDND -
~NouvPswNn

C
5
5
5
5.
5
5
5
5

Noowvm P wN

~N

5
5.

O O

o W\

N

N

N =

(O

(SRS S W

LVPHwWwWwww

w N -

hapter 5

Dynamic Linkedit Facility
Subsystems Assigned to Overlay Region B,
Cor D ... e
Subsystem Interfaces and Linkedit Considerations
COBOL Subsystem Interfaces
COBOL Subsystem Linkedit Considerations
COBOL Subsystem Initialization/Termination
User EXIts ...ttt iinennnn,
VS COBOL I SUPPOTL . .vvvvrnnnnnnnn.. S
PL/1 Subsystem Interfaces e
PL/1 Subsystem Linkedit Considerations
FORTRAN SubsSyYStemSotiieirnnnnnnneeens
Subroutine Interfaces and Linkedit Considerations.
Resident Subroutines i,
Subroutines Linked with Dynamlcally
Loaded Subsystemsv ..o,
Dynamically Loaded Subroutlnes
Loading Subroutines Above the lémeg Line
Application Programming Conventions
Implementation i,
Transient Subroutine Overlay Region (TRAN)
Subroutine Overlay Region (SUB)
Generalized Subtasking
Special Subtasks e et
Implementationcciiiiiiviiinnennneenn.
Time Controlled Message Processing

TASK MANAGEMENT ittt it ineneennnns
Dispatcher and Related Service Routines
Dispatcher Queues0iiiiiiiinnnennnnennn

Defining the Number of Task Queue Elements
IJKPRINT-Output to SYSPRINTco.un..
IJKTRACE-List Dispatcher Queues
IJKCESD--Initialize Csect/Entry Tables
IJKWHOIT--Find Csect/Entry and Subsystem Names

IJKDELAY- -Request Time Delay
IJKTLOOP--Trace Program Loop

..........

...................

...................

RESOURCE MANAGEMENTottt
Introduction i
Resource Auditing and Purging
User-Defined Storage Poolsc.....
Core-Use Statistics e e e
Storage Cushion e
Resource Management Modules and Globals

Obtaining a Save Area with Resource Management .
Installing Resource Management with Core-Use
Monitoring and Pools cviiienn.n.
SETGLOBE Settingsc..iiiieninenimennnnns
SPALIST Parameters e

....................

vii

[C NG, NC NC NC N RV, NE,
o ' ‘
FPwLwwNoNR P

v
.
N o O

w

(G, G, NV, NV, IV, RV,]

(G, G, IV, G, RV, R, T, RV, R,
O O WO 0 o 0 0o 0o Cc

C
6
6
6
6
6
6
6
6.
6
6
6
6
6
6
6
6
6

AN O
NN NN

AN O
wwWwwww

00 N ~d N N

O

NNNNNPNDMNDNBMNDRRNBNNNMNRPDND NN

s wN

Mmoo SN

Nowv s www

N~

Liapter 6

Defining the Intercomm Pools (ICOMPOOL)

Dynamically Loaded Core Pools

Specifying Core Block Detail Statistics
Linkeditt e e
Execution i
Sample Oulputt ittt

Installing Resource Management with Resource
Audit and Purge i i e
SETGLOBE Settingsciiiiiiiiniinnnnenn.
SPALIST FarametersSvenniennennenneennennns
Macro Speccifications0
Linkedit it e
Enqueue-Dequeue Facility
Thread Hung User Exit--IOEXIT

Debugging Aids--Thread Resocurce and Pool Dumps .
The Thread Resource Dumpc..c.vvunn..
Status of Intercomm Administered Storage

(PoOLl DUMP) .. vt ittt ettt et et e ie et eneeans

Finding the Dynamically Loaded Pools

FILE HANDLER SPECIFICATIONSc.ccitiunuennnn.
Intrcduction
Access Methods i e

QISAM via BISAM ittt iieenennn
VSAM and VSAM/ISAM Compatibility
Y
Exclusive Controlc.ccciiiienn...
Dyrnamic Buffering
Cverlapped GET and READ/WRITE Processing
Creating and Defining ISAM Files
Undefined Record Supportc..cvun..
Variable Length Sequential File Support

Sequential Output Disk File Flip-Flop Facility .
Flip-Flop User Exit--USERB37E
File ReCOVEIy ...ttt ittt
Dynamic File Allocation Facility
On-line File Control Commands

Dynamic Deallocation and Reallocation via

File Commandc.0iiiiriinnnnennen.
Retry of ALLOC or DEALL After Error
Subtasking of DYNALLOC Macro
Status of Files While Deallocated
Deallocation/Rzallocation of SMLOG and
SYSPRINT ... ittt ittt te et

VSAM File SUPPOTLttt ittt inr i nneenns
Using a VSAM Local Shared Resources Pool

Connecting Data Sets to the LSR Pool

Sharing VSAM Files Under Intercomm

Implementation for Sharing VSAM Files
Across Regions i,

viii

oo oo OO OOV OYOVN DY
]
WOV PWWLWLNOND P

[ea 3)

R R N N Ry

e e R Ak R X R eaXea X aXeaXa eal Al AW)
LN

VOWYWwWWOVWOYwWoe~NoOULuuwm

NN OO OO
=

QOO0 O

N

C
7
7
7
7
7.
7
7
7
7
7
7

VWUERERPWWWN -

.11
L1101

w

~Nown

wuPewn -

hapter 7

N =

w N -

(o JEN I WG, I S VI Ul o

File Attribute Records (FAR)

File Handler Statistics Report

EXECUTION OF INTERCOMM
Introduction
Generating Linkedit Control Statements
The Intercomm Linkedit

Execution JCL

System Startup

ISAM/VSAM Compatibility Under Intercomm

File Handler Componentscioieieneneneans

Data Set Control Table (IXFDSCTA)
Defining the Data Set Control Table
File Handler Initialization (IXFMONOO)
File Attribute Record Processing (IXFFAR)
File Handler Processing (IXFMONO1l)
QISAM Scan Mode via BISAM (IXFQISAM)
File Handler Termination (IXFMONO9)
Sequential Output File Abend Control (IXFB37)
VSAM Cross-region Shared Contrcl (IXFVSCRS)

Data Set Specificationst

Required DD Parameterscceveuveuen..
Required DCB Parametersceuvuveunennnn
Read-Only Data Setsc.ciiiiiiiiinnnennnnn
Shareability of Sequential Data Sets

(QSAM/BSAM) .. ittt e
‘Data Set Disposition i
SYSIN/SYSOUT Data Setsc.ciiiiinnnennnn..
Reserved ddnamesc0iiiiiiiinnn.

Coding the FARS i,

File Handler Service Routine Summary
Locate Facilityiiiiiiniiinnennnnennnns
File Handler Options,

Exclusive Control Time-Out
Conditional Assembly of the File Handler
Subtasked GETsc0 iiuiininnnnnnnann
IXFDSCTA Optionso
User-Specified DCBscciiiiinnnnnnnnn.
File Handler LSR Statistics
Creating the File Handler Statistics

File (STATFILE) ...ttt

Using the File Handler Separately from Intercomm .

Using the File Handler in LINKPACK for
Batch Programs

...............................

.............................
.....................................

...........

Linkage Editor External Symbol Table Overflow ..
Linkage Editor Parameters
Global WTO and MCS Routing
STEPLIB or JOBLIB Requirements
DD Statement Requirements

.................
......................
...................................

Preliminary Startup User Exit--USERINIT

.........

ix

TN N NN NN NN NN
- '
MooV DWW

7.5.2 Startup User Exits--USRSTART/USRSTRT1
7.6 System Closedowncoiiiiunnrennnneennnnns
7.6.1 Closedown Statistics
7.6.2 Closedown Time Limitciiiiieunnn..
7.6.3 Closedown User Exits--USRCLOSE/USRCLSELl
7.7 Live Operationciiiiiiiiiininnnnnnnnns
7.7.1 Intercomm Dispatching Priority
7.7.2 Execution JCLttt
7.7.3 Low-Core Condition--SSPOLLc.o....
7.8 Intercomm Quiesceiiiiiiiiiiiiineenn
7.9 MVS Operationc.iii tniiiiiininenennann
7.9.1 Page Preloading i,
7.9.2 Page Fixingot iiin,
7.9.3 MVS Installationc.c.oiiiiiniiinnnnennnnns
7.9.4 MVS/370 Imnstallationc0uiiinnnn.
7.9.5 Linkedit Orderingo iiiiiiiiinnn..
7.9.6 MVS/370 System Tuning Considerations
7.9.7 Subsystem Considerations
7.9.8 MVS SYSGEN Considerations
7.10 XA Installation and Recommendations
7.11 Intercomm Interregion SVC--&MRSVC
7.12 Intercomm Link Pack Feature
7.12.1 Preparation of the Operating System
7.12.2 Preparation of the Link Pack Module (LPM)
7.12.3 Preparation of Intercomm Region (IR)
7.12.4 User Routines in the Link Pack Area
7.12.5 Coding Conventions for User LPM Routines
7.12.6 Entry Point Specifications for User

LPM Routineso iiiiiiiiiiininnn,
7.12.7 Accessing LPM Modules in Batch Mode
Chapter 8 INTERCOMM FACILITIESc.oiiiiineeennnnnnnnns
8.1 Introductiont e
8.2 Terminal Simulator Facility
8.2.1 Terminal Input Data Set(s)ccviiiiunnnn
8.2.2 Input Parameter Data Setc.vov...
8.2.3 Input Operationsiiiiiiiiininnnnn.
8.2.4 Output Operationsc.ciiiiiniinnennnnns
8.2.5 Local 3270 Message Preparation and Processing .
8.2.6 Simulator Closedowniiiiiiinneenann
8.3 Abend Intercept Routines--SPIEEXIT, STAEEXIT
8.3.1 SPIEERIT ... i i e e e
8.3.2 User SPIESNAP Exit--SPSNEXIT
8.3.3 STAEEXIT .. ittt ittt
8.4 Indicative Dump Optiono,
8.4.1 User Snap Exit--SNAPEXITcciiviennen..
8.5 System DCBS i i e e
8.6 Spinoff Smaps i e
8.6.1 Implementationc.iiiiiiiiiiiiiiiinnn
8.6.2 User SPINOFF Snap Exit--SPINEXIT

+ 00 00 CO 0O OO OO 00 00 OO0 OO OO 0O CO OO OO
'

0o 0o o
)
e

[}
MHOOWOWNOOAUVULERPWWNR

8.7 Fast Snap Facilityo iiiiiiiiiiiinnennn 8-13
8.7.1 Restrictions i, 8-13
8.7.2 Prerequisitesuiiiiiiniiiiineentinenann 8-13
8.7.3 Operation ittt 8-14
8.7.4 Printing the Fast Snap--IMDPRDMP 8-14
8.8 System Accounting and Measurement (SAM) Facility . 8-15
8.8.1 Specifying System Resource Usage Categories 8-15
8.8.2 Specifying User Accumulators 8-18
8.8.3 SAM User Exit Routines--USRSAMnn 8-18
8.8.4 Implementationc.coiiiiiivinnns cunveenn 8-19
8.8.5 Reports from System Accounting and Measurement . 8-20
8.9 System Tuning Statistics 8-23
8.9.1 Reports from System Tuning Statistics 8-23
8.9.2 Implementationottt 8-23
8.10 Log Input Facilityiiiiiiminnnnnnnnnnn. 8-25
8.11 Test Mode Operationccniiiiinninnnennn. 8-27
Chapter 9 LOGGING, SYSTEM RESTART, MESSAGE RECOVERY 9-1
9.1 Introductionciiiiiiiiiiiiiiiiiie, 9-1
9.2 System Failure and Recoveryc.ccvvuuunn 9-1
9.3 Message Restart Conceptscceviieennennnn 9-2
9.3.1 Mandatory and Desirable Conditions 9-2
9.3.2 User Responsibility in Restart 9-2
9.4 System Loggingoiiiiiiiininininnaneennnnn 9-3
9.4.1 Logging User Exit--USERLOGE 9-7
9.5 System Checkpoints i iiiineennnnn 9-8
9.5.1 Checkpointing User Exit--USRCHKPT 9-9
9.6 Restart/ReCOVerY ..ttt ittt it et 9-11
9.6.1 The Restart Processc.ccuiv vuuvenneennn 9-11
9.6.2 Message Accountingcciiiiiiiiinnnnn. 9-12
9.6.3 Message Restart Logicc.ciiiiiinnnnnn. 9-12
9.6.4 Message Restart User Exit--USRESTRT 9-14
9.7 Implementationciiiiiiinninnineenennnnn 9-15
9.7.1 Concatenation of Disk Log Files for Restart 9-19
9.8 Serial Restartc.oiiiiiiiiniiinnnennnnan 9-20
9.8.1 Serial Restart User Exit--USRSEREX 9-21
9.9 Automated Restartc.coiiiiiineenneennnn. 9-24
Chapter 10 SYSTEM SECURITY IMPLEMENTATIONc..0.... 10-1
10.1 Introductionciiiiiiininnreiinnnnnnn, 10-1
10.2 Basic Security Processing Options 10-2
10.2.1 Security Processing Logic 10-2
10.3 Sign-on/Sign-off Security, 10-5
10.3.1 Using a Sign-on/Sign-off Terminal 10-5
10.3.2 Sign-on/Sign-off Processing 10-6
10.3.3 SPALIST Macro Parametercecuuueeunn. 10-6
10.3.4 SYCTTBL Macro Parametereeeeeuun.. 10-7
10.3.5 User Exits for Sign-on/Sign-off Security 10-7
10.4 Transaction Security i, 10-8
10.4.1 Using Transaction Securityccccu.... 10-9

xi

10.4.2 SPALIST Macro Parameter 10-9
10.4.3 SYCTTBL Macro Parameterevveeevenn 10-10
10.5 Coding the Station Table, 10-10
10.5.1 Structure of the Station Table with Security

Processing i 10-10
10.5.2 GENSEC MacCIo ...ttt it e i iiiiieennns 10-11
10.5.3 SECVERBS Macro and STATION Macro/VERBS

Parameteriiiiiiiiii i 10-11
10.5.4 STATION Macro/UNIVER and OPER Parameters 10-14
10.5.5 Other STATION Macro Parameters in PMISTATB 10-14
10.5.6 Definition of Range of Verbs per Terminal for

Transaction Securitycccviinnn.. 10-15
10.5.7 Loading Operator Codes on Disk for Station

Security Option, 10-17
10.6 Implementation of User-Written Security Routines . 10-18
10.6.1 Coding Security Subroutines 10-18
10.6.2 SPALIST Macro Parametercovceuunn. 10-19
10.6.3 SYCTTBL Macro Parameterooveevnnn 10-19
10.6.4 Security Table, 10-19
10.6.5 Linkedit Requirementsc0uviiunnn.. 10-20
10.7 Multiregion Intercomm Considerations 10-20
Chapter 11 SYSTEM TUNING TECHNIQUESciiirinreunnnnnnn 11-1
11.1 Introduction i 11-1
11.2 System Tuning and Performance Evaluation 11-1
11.2.1 System Tuning Facilities 11-2
11.2.2 System Performance Evaluation and Statistics

=Y+ 5 ok of 11-2
11.2.13 System Statistics Displays 11-3
11.3 Tracing a Message on the Log 11-3
11.4 Factors Affecting System Performance 11-6
11.4.1 Subsystem Program Logic 11-7
11.4.2 Subsystem Residency and Scheduling Parameters .. 11-7
11.4.3 Subpool Space and Scheduling Criteria 11-10
11.4.4 Subystem Queuing Parameters 11-12
11.4.5 Front End Parametersccciuuuunn. 11-13
11.4.6 Data Set Allocationciviiinnnnnn. 11-14
11.4.7 System Log Specifications 11-14
11.4.8 Additional Execution Considerations 11-15
11.5 The Fine Tuner Commandscccvuuunnnn.. 11-15
11.€ Response Time Considerations 11-17
11.6.1 Execution Considerations 11-17
11.6.2 Transmission Considerations 11-18
11.6.3 Queue and Log Processingo.... 11-18
11.6.4 Dispatching Priority and Subsystem

Considerationscoiiiiiiniiniennnnnn 11-18
11.6.5 Main Storage Usage, Statistics, and Dump

Processing Considerations 11-19
11.7 MVS Tuning Recommendations 11-19
11.8 Debugging and Tracing Facilities 11-23
11.9 SUMMALY ..ottt ittt iiiiiiiiananenseeeeennans 11-24

xii

Chapter 12 OFF-LINE UTILITIESc0ttiiii i ennennnnnnn

12.
12.
12.
12.

wwno

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.10

12.10.
12.10.
12.11

12.12

12.13

12.14

PLOLWLWWLWWLWNDE
PN

voNocLvuunpEPErEPRrEPRrEEEREEREEPS
-

N~

12.15
12.15.1

Appendix
Appendix
Appendix

Appendix
D.1

Introduction ittt enenns
Log Processing Programscccuveueeunennn
Intercomm Log Display (LOGPRINT)0.0..
Description and Function of Control Records
(SYSINY t ettt et e e e
Log Analysis Program (LOGANAL)
Traffic Histogramsccviiiiinnnn.nn
Response Time Reports
Installation of LOGANALccviiunennnnns
LOGANAL Generation Parameters
Changing LOGANAL Generation Parameters
Generating the LOGVRBTBovvn.nn
Creating the LOGANAL Load Module
Execution of LOGANALcitiiiiininennnnnn
The File Load Program (PMIEXLD)
Partial File Loadcciiiiiinnennnnnnnnns
BDAM File Creation (CREATEGF)
OPSCAN -- Scan for Program Operation Codes
PRT1403 -- Print Output Utility Batch Reports
LIBCOMPR -- Symbolic Library Compare
Utility Programs to Create Input Test Data
CREATSIM Programc.oieuiieunennronnnnenn,
SIMCRTA Programoeoeueumeunenenennnensnns
Create Keyed BDAM File (KEYCREAT)
ICOMFEOF - Recover from Missing End of File
CHANGER- -Produce Change Deck from Two PDS Members.
AUTORSET--Initialize Automated Restart
STRTUPSW Filettt ittt it ineinnnnnn
LOGMERGE- -Merge Intercomm Log Data Sets
LOGMERGE User Exit--LOGMERGX

INTERCOMM TABLE SUMMARY¢0iuiiiiiiininnnnnnns
INTERCOMM MESSAGE HEADER0 iiiiiiinnnn.

...............

INTERCOMM USER EXITS
Introduction0ttt
Coding Conventionsciiiiiiineennnnnnn.
List of User Exits

...............................

..

xiii

LIST OF ILLUSTRATIONS

Figure Page
2-1 Intercomm JCL Procedurescoouumununnnnenenn 2-6
2-2 JCL Procedure Parameter SUMMArYeeuueennn.n 2-8
2-3 Intercomm Global Tablesc. .. 2-23
2-4 INTGLOBE ..t ittt ittt it e e i it e et 2-24
2-5 SETGLOBE ..ttt i i i ittt e e e 2-26
2-6 Intercomm Tables with User COPY Members 2-28
3-1 Front End/Back End Communication via Message Queues .. 3-4
3-2 Released BTVRBTButiiiiniiiiniiiiiiinee.. 3-8
3-3 The System Control Componentseuoeeeeeeenen. 3-28
3-4 Creating the System Parameter Area and SCT 3-29
3-5 INTSCT Coding of Intercomm Subsystems 3-30
3-6 » Sample Coding of INTSCT with an Overlay Structure 3-32
3-7 Intercomm-Supplied Subsytems 3-34
3-8 Sample Linkedit Statements for Overlay Region A

SUbSYSEEMS .. it ittt e e e 3-40
3-9 REENTSBS Release Versiono 3-50
3-10 PL/1 Subsystem Interface Options 3-52
3-11 Dynamically Loaded PL/1 Subsystems 3-52
3-12 Illustration of Nested CALLOVLY Coding Conventions ... 3-60

3-13 Using CALLOVLY in an Assembler Language Interface
for a High-Level Language Program 3-60

Xv

Figure
4-1

4-2

5-1
5-2
5-3

5-4

6-1
6-2
6-3
6-4

6-5

7-1

7-2
7-3
7-4
7-5
7-6

7-7

7-8

7-9

7-10

IJKTRACE

- Csect/Module Name Correspondence Table

Sample IJKTRACE Listingco i,

Obtaining a Save Area via the STORAGE Macro

Example of Core-Use Statistics

Sample Thread Resource Dumpc.0vivuunn...

Sample PoOl DUMP .. .viii ittt e e e

File Handler Componentscuuveernnneennnennn

File Handler Service Routine Parameter Summary

IXFDSCTA Options ... iiiiiiin ittt ieertnenenenanns

Sample User-Supplied DCBcciiiiiinnnnennnn.

File Handler Statistics Reportcvuun..

Using LKDEP Procedure to Generate Intercomm Load

Module

Closedown Subsystem Activity Report

Closedown Subroutine Activity Report

Typical Live Execution JCLcciiiinunnnnn..

LINEGRP,

BLINE Sequence and JCL for Remote Terminals

BLINE, BTERM Sequence and JCL for Local Terminals

Link Pack Module Working in Conjunction with Several
Intercomm Regions,

Applicable Intercomm Components for LPSPA/LPINTFC

Macro

Relinkediting Intercomm Region for Link Pack Feature

Frequent

Uses of System Parameter Area and SPA

Extension in User LPM Routines e e e

xvi

5-5
5-13
5-24

5-28

6-20
6-37
6-43
6-45

6-46

7-3
7-14
7-15
7-18
7-19

7-19

7-32

7-33

7-36

7-38

Figure
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8

8-9

9-1

9-2

10-1

10-2

11-1

12-1
12-2
12-3
12-4
12-5
12-6

12-7

Page
Areas Displayed by Indicative Dump 8-8
Listing of PMIDCB (as released) (DELETED)
Sample JCL for Spinoff Smaps 8-12
Resource Usage Categoriesciiiiunnnn.. 8-16
SAM Report Execution PARM Values 8-21
System Accounting and Measurement Report Sample 8-22
Sample Report from System Tuning Statistics 8-24
Test Mode Input Card Formatsccvviieennn. 8-28
Sample Test Mode JCL iiinnrineennenennnennns 8-30
INTERLOG Entriesiiiiiiiiiiininininenennnnns 9-5
Checkpoint Datauiiiiiiiiinn e nnnnennns 9-10
Security Processing Logic i, 10-4
Summary and Use of SECVERBS and BTVERB Macros 10-13
Tracing Messages on INTERLOG0vveuenennn 11-5
Sample Output from LOGPRINT Utility 12-2
JCL for LOGPRINT Executioncciiiiiennnn.. 12-3
Sample Histogram for a Terminal 12-9
Sample Response Time Analysis 12-13
Sample JCL for Execution of LOGANAL 12-23
JCL to Create PMIEXLD ittt iiiienennnn 12-24
Sample File TAble (PMIFILET)civiiiiennnnnnnnnnn 12-25

xXvii

Figure
12-8

12-9

12-10
12-11
12-12
12-13
12-14
12-15

12-16

Cc-1

JCL for File Load Program Execution

Conventions for Disk-Resident Tables for the
Utilities

Example of CREATEGF JCL and Control Cards

...........

JCL to Create Load Module for PRT1403 Utility

.......

JCL to Execute PRT1403 Utility Load Module

..........

Sample JCL to Execute LIBCOMPR

......................

SIMCRTA Linkedit and JCL

............................

KEYCREAT Execution JCL

ICOMFEOF Execution JCL

User-Coded Subsystem Control Table Index Structure

xviii

12-27

12-32

12-33

12-33

12-34

12-38

12-39

12-41

Cc-3

Chapter 1

THE INTERCOMM ENVIRONMENT

1.1 INTRODUCTION

The Intercomm on-line teleprocessing monitor may be utilized on
the IBM System/370 (and compatible) family of computers (including
30xx, 43xx, etc.) and executes under the control of the IBM System/370
Multiple Virtual Storage system (MVS/370 or MVS/XA). With any one of
the operating systems, any number of concurrent independent jobs may be
submitted and executed while the Intercomm system is operating.

Intercomm operates as a job in a multiprogramming, multitasking,
time and event dependent environment. Any number of applications may
be concurrently executed under the control of the Intercomm monitor;
any number of terminals, types of input, application programs, and file
access methods may be used.

Application programs executing under Intercomm may be written in
any of the System/370 compiler languages: Assembler Language, COBOL,
PL/1, or FORTRAN. The user can also convert from a batch processing to
an on-line environment without having to totally rewrite application
programs.

Intercomm is a table-driven system; that 1is, operating
specifications are described to the system in the form of tables.
Thus, Intercomm components are individual routines coded in generalized
form where applicable, wutilizing table entries for execution

requirements. The application programmer is generally not concerned
with these table entries, but is responsible only for the problem
solving logic. All message routing, time-sharing, message mix, and

communication functions within Intercomm are, in general, transparent
to the application programmer.

The prerequisite publication to this document, Intercomm Concepts
and Facilities, describes the general system logic of an Intercomm
environment. In this section, a brief review is provided of the major
system components, region organization, modes of execution, and
user-specified tables.

An Intercomm system consists of user-coded application subsystems
(message processing programs) and the following Intercomm components:

° Front End Teleprocessing Interface
System programs responsible for all operation of the
telecommunications network.

° Subsystem Controller
System programs responsible for all scheduling, loading and
activating of message processing subsystems.

1-1

Chapter 1

The Intercomm Environment

Queue Management
System programs controlling queuing and retrieval of messages
waiting for processing or transmission.

File Handler
System programs exercising centralized control over all
Operating System data management functions.

Dispatcher
The multithreading control routine that schedules use of the
CPU among concurrently executing tasks.

Resource Management

System programs provided to ensure efficient main storage
management and control over system resources in the event of
program failure.

Utility Programs
System programs provided to simplify design and implementa-
tion of application programs and message processing logic.

System Control Routines

Optional system programs providing logging (journaling),
restart/recovery, system control transactions, a
comprehensive dynamically controlled security environment,
debugging and tuning aids, program error interception, system
reliability, etc.

1.2 FRONT END

This component of Intercomm controls all teleprocessing functions
of the system. An on-line installation may optionally utilize one or
more of the following Teleprocessing Interface components:

The Intercomm BTAM Front End, a conditionally assembled,
table-driven series of programs providing efficient interface
to a wide variety of terminals through IBM’s Basic
Telecommunicatons Access Method.

The Intercomm TCAM Interface to a Message Control Program
operating in a separate region where all 1line control
functions are performed according to macro-generated
specifications for IBM’'s Telecommunications Access Method.
The Extended TCAM support provides interface to TCAM process
and destination queues via the BTAM Front End.

The Intercomm VTAM Front End, communicating with a VTAM

control region and interfacing with both SDLC and BSC
devices.

1-2

Chapter 1 The Intercomm Environment

e A user-supplied interface to nonsupported devices implemented
by the Generalized Front End Interface of the BTAM Front End.

1.3 SUBSYSTEM CONTROLLER

The Subsystem Controller interacts with the Teleprocessing
Interface via the queue management routines to control all message
processing within the on-line system. It directs incoming messages to
the proper application programs, schedules and loads nonresident
subsystems as required.

The Subsystem Controller optimizes dynamic loading of subsystems
and/or program swapping (overlay management) to increase throughput,
and diagnoses application program errors to provide an uninterrupted
on-line operation.

Subsystem Controller processing is governed by user-varied tables

specifying the message routing structure and variable processing
factors which can be adjusted to maximize throughput.

1.4 QUEUE MANAGEMENT ROUTINES

Message queues are the prime interface between the Front End (TP
Device Contrel) and Back End (Message Processing Control) components of
Intercomm. Input messages are queued for processing by subsystem;
output messages are queued for transmission by logical unit, terminal,
line, or user-specified discipline. Messages may be queued in main
storage and/or on disk at the user’s option. Disk queues are
wraparound, reuseable BDAM data sets. A queue is a logical entity; one
physical data set may be shared for several queues. The queue
management routines are service routines utilized by both system
programs and application subsystems.

1.5 FILE HANDLER

By processing all on-line files through a single module,
Intercomm eliminates duplication of I/O routines, control blocks and

buffers in application programs. It also eliminates the highly
wasteful opening and closing of data sets for each message
processed--files are opened only once per day (or shift). In concert

with the Dispatcher, tasks that access files are maximally overlapped
with other tasks (processing threads) requiring CPU time.

1-3

Chapter 1 The Intercomm Environment

All data set organizations (sequential, direct, indexed) and
processing techniques (by 1logical record, by physical block, keyed
access, random access) are available to programs written in any
language. Comprehensive diagnostics for on-line security and I/O error
analysis are provided, as well as write-protection of master files.

Exclusive control of individual records or blocks within files,
recommended where simultaneous updating could occur, is also provided
as one of the File Handler'’s functions, and, via an exclusive control
time-out, those records held beyond a specified time 1limit may be
released from exclusive control.

1.6 DISPATCHER

The Intercomm Front End Teleprocessing Interface, the Subsystem
Controller and the File Handler create multiple independent threads
(parallel program paths for parallel message processing) using the
Dispatcher, which allocates and overlaps CPU time among any number of
concurrent work requests, and establishes any number of concurrent
real-time clocks. This 1is achieved within a single Operating System
task, thus obviating the need for a multitasking operating system and
formal dynamic program linkage through the Supervisor. The Dispatcher
also assists in overlay management and dynamic program management under
direction of the Subsystem Controller.

1.7 RESOURCE MANAGEMENT

The Resource Management facilities of Intercomm provide efficient
storage management techniques, unless specifically bypassed by the
user. Additionally, a storage cushion feature is available to serve as
a protection against a temporary shortage of main storage. The cushion
(of user-selected size) is an area gotten from subpool zero at startup
and held, but not used, until a request for dynamic storage cannot be
satisfied. At that point, the cushion is returned to subpool zero and
used to satisfy storage requests for messages currently in progress.
No new message processing is started until reduced storage demands, as
messages are completed and transmitted, allow the cushion to be
reacquired by the monitor. The impact of a noncritical shortage of
dynamic storage is therefore avoided. Resource Management options are
described below and may be used singly or in combination with each
other. '

1-4

Chapter 1 The Intercomm Environment

The resource auditing and purging option provides a chain of
control blocks built for every active program thread. These blocks
correspond on a one-to-one basis with resources acquired by the
program. Resources may be areas of storage, files, or any facility
subject to ownership. Purging is accomplished by freeing unreleased
resources, represented by the control block chain, for a program thread
when the thread normally or abnormally completes. A thread resource
dump (TDUMP) is provided as an audit utility to print out control block
chains, showing which thread is in control of what unreleased
resources, through which module the resources were obtained and in what
order acquisition occurred.

As an adjunct to audit/purge or as an independent option, the
creation of main storage pools, which section a contiguous area of
storage into specified block sizes, is offered with Resource
Management. Storage pools are generated by a macro which defines the
size and number of pools, and the number of blocks within each pool to
be generated to fit user requirements. The pool option not only
manages storage allocation to eliminate fragmentation problems but
furthermore, through indexed access to the pools, provides a
significant increase in the speed with which storage may be obtained
and freed, owing to the elimination of GETMAIN and FREEMAIN SVCs.

The third option consists of two distinct sets of core-use
statistics: global and detail. 1Inclusion of either set may be made
without reference to the other. The global statistics present such
information as the number of requests for storage and requests to free
storage, the average storage request length, and the number of requests
filled from the pools. Detail statistics consist of the breakdown of
storage requests into size ranges. The primary purpose of the detail
statistics report 1is to provide sufficient statistics from actual
system usage so that an effective selection of the number and sizes of
pool blocks may be made at an installation.

1.8 UTILITY PROGRAMS

In addition to the File Handler, a number of on-line utility
functions are provided to ease programming of application subsystems
and to centralize control of such functions. The interface is via
standard call logic in the subsystem. These facilities include:

e Message Mapping Utilities--device-independent message
editing, formatting, and output routing

. Store/Fetch--temporary data string storage and retrieval

e Dynamic Data Queuing--transient queues of data strings, file
records, or messages

° Page Browsing--collections of output messages for paging
access from a CRT device

1-5

Chapter 1 The Intercomm Environment

° Dynamic File Allocation--allocate (SAM) and/or access (SAM or
VSAM) data sets not defined explicitly via JCL.

° In-core Table Sort--via called subroutine described in the
Programmers Guides.

Additionally, the EDIT, OUTPUT, DISPLAY and CHANGE Utilities
provide alternate means of message and file record processing. EDIT
strips the incoming message of TP control characters and provides for
complete field-by-field editing of the input message. It also performs
keyword parameter analysis. OUTPUT supplies device-independent output
capabilities to application programmers. DISPLAY allows a remote
operator to display an individual file record (for BDAM, ISAM or VSAM
files) in a fixed character format on his terminal. CHANGE allows the
operator to modify selected fields in a file record obtained by
DISPLAY.

1.9 REGION ORGANIZATION

At execution time, the Intercomm region (address space) consists
of system programs, tables, and message-processing subsystems.

e Resident Intercomm routines
These routines are required constantly for Intercomm
functions and must be resident. Residing in this required
area is the Intercomm nucleus, that is, such routines as the
Subsystem Controller and Dispatcher.

° Resident tables
Certain tables are necessarily resident in that they specify
actual control functions of Intercomm. For example, the
System Parameter Area (SPA) describes systemwide
characteristics. Resident tables share the Intercomm nucleus
with resident routines.

o Resident subsystems
Frequently used subsystems and subroutines should remain in
main storage. Whether a program is resident is a factor in
good planning and can provide for both maximizing system
throughput and minimizing individual transaction response
time.

e Nonresident subsystems; dynamically loadable

Nonresident subsystems and subroutines can be defined as
dynamically loadable into main storage. These programs are
loaded on an as-required basis. Reuseable subsystems remain
resident until message traffic ceases or prescribed message
processing limits are reached (if storage needed for other
processing), and nonreuseable subsystems are reloaded for
every message processed. Dynamically loaded subsystems
eligible for loading above the 1l6meg line under XA remain
loaded unless a program problem, or reload request, occurs.

1-6

)

<

Chapter 1 The Intercomm Environment

e Nonresident subsystems; planned overlay structure

The Intercomm region may contain one or more overlay regions:
Overlay A,B,C,D. The first region therein, Overlay A, has
special characteristics in that groups of subsystems are
loaded to process messages concurrently. Overlays B,C,D are
utilized for single-thread, noncritical message-processing
subsystems. The sequence of overlay load is based on message
traffic and scheduling criteria.

° Nonresident service routines
Service routines that may be nonresident are those not called
frequently. When required, they are loaded into the
transient overlay area of the Intercomm region. If an
overlay structure is not defined, all Intercomm service
routines must be resident in the Intercomm region, or in the
Intercomm portion of the Link Pack Area.

° Nonresident table entries
Infrequently used table specifications, for example, message
formats for the Message Mapping and Output Utilities, can be
contained on disk and loaded when needed.

e Dynamic Subpool Area
This 1is the areas of main storage that are obtained
dynamically (as needed) for loading Intercomm or user
routines or tables. The subpool area is dynamic in that the
composition wvaries and areas are assigned, or released and
made available for reuse, as soon as the monitor determines
that the area is no longer needed.

1.9.1 Dynamic Program Loading

Nonresident subsystems and subroutines are 1loaded into the
dynamic subpool area during ongoing execution of the Intercomm region
via the dynamic load facility which interfaces with an asynchronous
loader task. Programs are expeditiously loaded on demand, according to
arrival sequence of incoming message traffic. A loaded subsystem
remains resident until a maximum of messages is processed (limit
specified by the Subsystem Control Table), or until message traffic
ceases.

Once loaded, any subsystem defined as reuseable or reentrant is
left resident in the dynamic area and rescheduled as needed, as long as
the storage it occupies is not required for a subsequent subsystem load
during an unscheduled interval. A nonreuseable subsystem will be
reloaded for every message. Within this framework any
reuseable/reentrant subsystem processes more than one message, 1if
queued.

1-7

Chapter 1 The Intercomm Environment

A BLDL, or load list, area may optionally be requested for each
dynamically loaded program. Although load list specification increases
the size of the associated resident Intercomm tables, it provides for
faster loading and is recommended for frequently used programs.

The predefined maximum amount of storage useable for concurrently
loadable subsystems (below the lémeg line under XA) can be varied while
Intercomm is operational via a system control command. The load module
used for a dynamically loaded program may be reloaded via a system
control command to allow replacement of that program during Intercomm
execution. Dynamic Linkedit, an optional feature, resolves external
references between loaded and resident programs at startup and when a
replacement program copy is loaded by command.

1.9.2 Overlay Program Loading

Loading of subsystems may be controlled by the Intercomm Overlay
Management scheduling facility, in which case subsystems are linkedited
as overlay region segments and loaded according to a preplanned
structure and sequence. As with dynamically loadable subsystems, the
sequence of subsystem load is dictated by message traffic.

1.9.3 Asynchronous Overlay loader

The Intercomm Overlay Loader is an asynchronous multiprogramming
interface between Intercomm and the MVS Overlay Supervisor that allows
Intercomm to coordinate the loading of programs asynchronously with the
execution of other Intercomm threads. This prevents Intercomm from
being placed in a wait state by the Overlay Supervisor, while still
allowing full use of overlay facilities.

When multiple messages for subsystems in more than one overlay
area require concurrent 1loading of multiple regions, they are
automatically queued by being dispatched on one of the communications
Event Control Blocks (ECB) between the two tasks. This technique
permits resident subsystems and those active (already loaded) overlay
areas to continue processing.

The Intercomm Overlay Loader allows greater versatility than an

independent loader--due to the power of the MVS Overlay Supervisor, and
at the same time provides full processing overlap.

1-8

Chapter 1 The Intercomm Environment

1.10 MODES OF EXECUTION

Mode of execution in the Intercomm environment pertains to
operation with or without on-line terminals and to operation with or

without consideration for previous execution ("cold" vs. "warm"
start). Further, reference may be made in this document to operation
in the production environment or testing environment. The Intercomm

mode of execution is determined by parameters specified via JCL to
indicate whether or not terminals are operational or whether or not
restart functions are to be performed. The actual application
subsystems executed to process messages are unaffected by the
production or testing status of the system.

Intercomm operates in Test Mode in three ways: via message
processing in a batch mode; or via time-oriented simulation of
terminals whereby disk data sets of input messages exist for each
terminal simulated; or with a combination of 1live and simulated
terminals. These three types of test facilities are provided without
any changes to the user application program(s) being tested.

Batch Test Mode allows for input of transaction data at system
startup time through SYSIN. Those transactions are then queued and
passed 1into the system at the rate of an extremely high volume
environment, with multithreading taking place in the application
programs almost immediately, just as if the messages had come from
on-line terminals. The Batch Mode testing facility allows for pseudo
high volume testing, but in no way represents a projected processing
capability based on random message arrival rates from a simulated
network.

A second type of testing facility is provided with the BTAM
"terminal simulator". Separate message queues are established on
direct access sequential data sets for each simulated terminal.
Intercomm retrieves messages from "terminal queues" based on a unique
time value for each pseudo terminal. The terminal simulator allows the
user to simulate a "live" Intercomm environment by defining a network
of these pseudo terminals. This network could represent the eventual
network a user expects to install, or already has in use. Note that
although definition of a BTAM terminal network is required for the
simulator, input and output processing of messages is essentially the
same no matter which type of Front End (BTAM, TCAM or VTAM) is used for
the live Intercomm system. In addition, the user may request a printed
display of how 3270 terminal messages (formatted and unformatted) will
appear in live mode.

The third type of testing facility allows the user to operate
with all the terminals of his present on-line system and to simulate
those terminals which are not presently operating or which represent

the eventual projected network. This facility allows the testing of
application programs with a combination of both 1live terminals and
pseudo terminals. This combined network can then be operated under

control of Intercomm. This feature merely expands the capabilities of
the Intercomm Front End.

1-9

Chapter 1 The Intercomm Environment

Additionally, Intercomm provides a Multiregion mode of execution,
wherein there is one "control" region containing the Front End
teleprocessing interface and system control routines, and one or more
"satellite" regions containing only Back End facilities and user
application processing programs. Optionally, high-volume application
subsystems may execute in the control region. One of the satellite
regions may be used only for live testing of application programs.
Thus, the separation of application subsystems into several regions
provides file or data base access centralization, additional security
control, and system integrity and storage protection, without impacting
the terminal user or response time.

1.11 INTERCOMM TABLES

Intercomm is a generalized on-line system and, as such, requires
operating specifications for each particular installation. This
information is provided to the system in the form of tables which are
coded using Intercomm macros. An application programmer is usually not
involved in defining the Intercomm tables, except for the application
program requirements. Tables are coded for each of the following

Intercomm functions, by which the wuser specifies his unique
requirements:

. Line Control
-- mnetwork configuration
-- transaction validation
-- terminal queues

e Message Processing Control
-- application subsystem specifications
-- subsystem queues

. System Control
-- storage pool specifications
-- logging requirements .
-- checkpoint/restart/recovery specifications
-- debugging options
-- statistics and tuning facilities

° Application Program Services and Utilities

Thus, Intercomm is a table-driven system. Line control
information, that is, the number of logical units or terminals and
their exact hardware characteristics, is provided to the system,
facilitating such operations as LOGON control, polling and addressing,
process and destination queuing, and rerouting of messages.

1-10

Chapter 1 The Intercomm Environment

Specifications for message processing control functions are
tabular: the type of applications the user has, their scheduling,
whether an application program is capable of processing several
messages concurrently and, if so, the maximum number of messages to be
handled concurrently.

System control functions are table-driven; tables provide
specifications for which logging entries are required, the frequency of
checkpoint and information to be checkpointed, the particular files to
be updated, and specifications relating to restart requirements and
file integrity. In addition, the application program services, such as
Message Mapping, operate according to user-specified table entries and
definitions.

Major functions in Intercomm are controlled by the following
tables:

e System Global Tables (SETENV, SETGLOBE)
Global tables used to control conditional assembly of many
Intercomm system routines, thus tailoring code requirements
to the individual installation.

e Front End Verb Table (BTVRBTB)
A table 1listing all wvalid four-character transaction
identifiers (verbs) and relating them to the subsystem used
for message processing. There is one entry per transaction
or message type. This table may be resident in the Intercomm
linkedit, or dynamically loaded at system startup.

° Front End Network Configuration Tables
Tables describing the terminal network hardware operating
characteristics, queuing specifications, logging/restart
requirements, and relating individual devices to
five-character station identifications.

e Station Table and Device Table
Tables describing terminal device-dependent characteristics
to the Back End utilities.

° System Parameter Area (SPA)
A table describing systemwide operating characteristics.
This table may be extended to include a user area with
installation-defined parameters or tables, accessible to all
subsystems.

e Subsystem Control Table (SCT)
A table 1listing the characteristics (reentrancy, language,
entry point, etc.), queue specifications (main storage and/or
disk queues), scheduling (resident or loadable, concurrent
message processing limits, etc.) and 1logging/restart
specifications for application subsystems. There 1is one
entry per subsystem.

1-11

Chapter 1 The Intercomm Environment

° Data Set Control Table (DSCT)
A table automatically generated by the File Handler
describing on-line data sets. Information in the table is
derived from JCL and File Attribute Record (FAR) statements
at execution time.

. Intercomm Storage Pools
A table of Intercomm-managed storage resource pool blocks, in

ascending order by block size. The pools may be resident in
the Intercomm linkedit, or dynamically loaded at system
startup.

e Message Mapping Definitions
Sets of external and symbolic (Dsect) maps, along with tables
of logical terminal definitions, referenced by application
subsystems when invoking the Message Mapping Utilities to
edit and format messages and data strings. The definitions
are made via MMU macros and stored in prescribed files.

e Edit Control Table (ECT)
A table describing input message editing specifications for
transactions edited by the Edit Utility. There is one entry
per transaction. Entries are optionally disk-resident.

e Output Format Table (OFT)
A table describing output message formatting specifications
for messages formatted by the Output Utility. There is one

entry per output format. Entries are optionally
disk-resident.

Thus, the Intercomm system components are individual routines,
coded in a generalized form, where applicable. Each system component
receives detailed specifications for its program functions via table
entries defined via global SET symbols, coding of Intercomm system

macros, or DC or parameter statements. Table entries may describe a
hardware configuration (for example, the communications network) or
software specification (for example, EDIT control functions). By

adjusting wvariable table entries, the user effectively tailors
Intercomm routines to his installation without modifying any program
logic. Appendix A summarizes all table entries.

This document provides processing features and table entries for
many of the system components. Others are described in manuals
defining installation for the Front End, System Control Commands, and
various Intercomm system and application program facilities.

1-12

Chapter 2

THE INTERCOMM OPERATIONAL SYSTEM

2.1 INSTALLATION OVERVIEW

This chapter describes the major requirements for successful
installation, standardization and maintenance of the Intercomm
teleprocessing system, as follows:

Intercomm Libraries and Naming Conventions

Intercomm JCL Procedures

System Installation and Maintenance Responsibilities
System Standards

System Control Functions and Tables.

The installation of an Intercomm system consists of allocation
and cataloging of standard Intercomm libraries, loading the Intercomm
release tape to disk wvia standard MVS wutilities, copying selected
Intercomm JCL procedures to an installation’'s procedure 1library,
customizing system global tables, and then executing various
preparatory steps prior to performing a linkedit and execution of the
system. This first installation phase ensures the proper functioning
of the system with respect to message processing control functions.
Thus, once installation is complete, testing of application subsystems
may begin immediately, independent of the hardware delivery schedule or
utilization schedule for existing terminals.

Front End installation consists of table specifications and
assembly of the appropriate terminal control programs to satisfy the
specific requirements of a particular hardware configuration and the
teleprocessing access method(s) used.

Instructions for installing the system accompany the release
tape, as the system generation procedures may vary from time to time
with changes in the system programs, quantity of data to be
distributed, and customer equipment to be wused (see Installation
Guide).

2.2 LIBRARIES

At installation time, the Intercomm system is copied from tape to
disk into libraries allocated and cataloged for this specific use.

A library is an Operating System partitioned data set (PDS)

consisting of a directory and individual members. Each library is
identified by a 4- to 8-character name. A source library is named

SYMxxxxx where xxxxx is 1 to 5 characters to complete a unique name.
An object library is named OBJxxxxx. A load library is named MODXXXXX.

A systemwide high-level qualifier for the library data sets may

be defined at installation time. Intercomm JCL procedures provide for
override of the system default (INT) via a P parameter.

2-1

Chapter 2 The Intercomm Operational System

The Intercomm system is released on three libraries:

° SYMREL--system macros, COPY members and Dsects, source
programs, tables and Job Control Procedures.

e MODREL--system load modules

. SYMUCL- -Intercomm User Group contributed programs (see User
Contributed Program Description).

These libraries are not to be used for user programs or user
modifications to Intercomm modules, as new Intercomm releases are
effected by complete replacement of these libraries.

The following libraries must be created at installation time by
the user:

LIB-- to hold user-modified versions of Intercomm global tables defined
via SET statements:

. SYMLIB--updated system source members
° MODLIB--load modules

NOTE: these libraries are used by the ASMF Facility to hold
Intercomm members wupdated by SMs (periodic system
modifications); therefore, they should not contain other
user-modified Intercomm modules.

MDF-- to hold map group definitions for the Intercomm Message Mapping
Utilities:

° SYMMDF- -source map definitions
e MODMDF--load module versions of maps

USR-- to contain installation JCL, user programs, user-modified
versions of, or additions to, Intercomm system tables, or user
modifications to Intercomm modules:

° SYMUSR--modified source modules
° MODUSR- -load modules

NOTE: SYMUSR 1is intended as the common link across Intercomm
system releases in that it should contain user versions
of system tables (or COPY members to be inserted in
system tables; see Section 2.7), change decks for user
modification (UMs) or vendor-supplied Experimental system
modifications (XMs) of Intercomm system modules (in
addition to the changed modules), etc. All changes to
Intercomm system modules and tables must be reexamined
for applicability and sequence numbering whenever SMs are
applied or a new release is installed. The ASMF facility
may also be used to apply and track UMs and XMs.

2-2

C

Chapter 2 The Intercomm Operational System

INCL--to contain Intercomm linkedit control statements (INCLUDE, ENTRY,
etc.) and Intercomm linkedit modifications (to order Csects under
MVS, and to add user modules). Due to the MVS DFP Linkage Editor
SYSIN restriction of a maximum block size of 3200, this data set
must be preallocated to receive the punched output from assembly
of the ICOMLINK macro to generate the system linkedit statements.
(See also Installation Guide.)

° SYMINCL--for linkedit control statements.

REF-- a dummy data set (one track) to set the largest block size for a
SYSLIB concatenation stream (see Section 2.2.1):

e SYMREF--for block size determination
This is the minimal configuration of the Intercomm libraries.

If desired, all user programs may be placed into the common USR
libraries, or: "private" 1libraries may be created for individual
programmers Or groups:

. SYMxxx--private source programs

® MODxxx--private load modules

For testing purposes, a set of "scratch" libraries may be created,
to be scratched and recreated periodically to eliminate unneeded modules
and recover space used during updating:

. SYMSCR--Test source programs

° MODSCR--Test load modules

NOTE: Several Job Control Procedures producing executable load
modules specify data set MODSCR (see LKEDE, LKEDT).

The Intercomm JCL procedures are so arranged that, whenever a
search must be made in a library for a member (such as a macro name,
source code to be copied or updated, or modules to be included in a
linkedit), a concatenation is used to cause a progressive search to be
made for the member in

e The specified private library

e The system modification USR library

e The system update LIB library

. The system release REL library

° Operating System libraries, such as MACLIB, AMODGEN, COBLIB,
TELCMLIB, etc. (where appropriate).

Chapter 2 The Intercomm Operational System

The search for a member ends with the first library (in the above
sequence) containing the member name in its directory, even if another
library also contains the named member. Thus, the user of a private
library can modify any system component for his own use without
affecting the user of any different private library. An installation
may choose to modify or add a component to the system USR library, and
it will automatically become available to all wusers. Components
modified by SMs will be taken from the system update library, while
those not modified/updated by the user will be taken from the library
supplied by Intercomm, and components of the Operating System will be
taken from the appropriate operating system libraries.

2.2.1 Source Library Concatenation Sequence

Due to the existence of macros on SYS1.MACLIB and SYS1.AMODGEN
that have the same name as Intercomm macros, the Intercomm SYMxxx
libraries must be placed before the MVS macro 1libraries. When the
block size of MACLIB or AMODGEN is larger than the Intercomm SYMxxx
libraries, placing them after the SYMxxxs can cause I/0 errors in
reading macros, COPY code, etc. There are three ways around the
problem: either (1) reblock MACLIB and AMODGEN to Intercomm source
libraries block size, or (2) reblock Intercomm source libraries to
MACLIB/AMODGEN block size, or (3) tell the Assembler what the largest
block size on SYSLIB is.

Method 1 can propagate the problem to other assemblies. Method 2
is workable but still requires a reblock, and all libraries must have
the same block size. Method 3 is the one that is provided by Intercomm
installation for all Intercomm JCL procedures using the Assembler
(ASMPC, ASMPCL, LIBEASM, LIBELINK, etc.):

//SYSLIB DD DSN=SYMREF,DISP=SHR

// DD DSN=SYM&Q,DISP=SHR
// DD DSN=SYM&U,DISP=SHR
// DD DSN=SYMLIB,DISP=SHR
// DD DSN=SYMREL,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.AMODGEN,DISP=SHR
where: SYMREF is a dummy PDS with the correct largest block size,

SYM&Q 1is the private library (specified via Q parameter),
SYM&U defaults to SYMUSR.

2-4

Chapter 2 The Intercomm Operational System

2.3 JCL PROCEDURES

To simplify the execution of assemblies, linkage editing, and
utilities in an Intercomm environment, a number of Job Control
Procedures are supplied with the Intercomm system as members on SYMREL.
These procedures provide a straightforward, uniform means to:

® Add and update source programs on source program libraries.

e Assemble or compile programs from source program libraries,
producing either object modules (assembler or compiler
output) or load modules (linkage editor output) on
appropriate libraries.

e Print and punch source programs and object decks.
e Patch load modules on load module libraries.

e Linkedit any combination of object and load modules to
produce executable programs.

Note: for MVS systems, programs must not be linkedited as
RENT (reentrant) unless they really are reentrant. The
Intercomm load modules on MODREL are not linked as either
reentrant or reusable.

. Execute general utility programs.

Figure 2-1 is a list of procedure names and the general function
performed by each procedure. The Intercomm System Manager should
evaluate this 1list carefully to determine which Intercomm procedures
should be utilized as a standard for the installation. Many of these
procedures are used in the Intercomm installation JCL and for specific
feature installation as described in this and other Intercomm manuals.

-

2-5

Chapter 2

The Intercomm Operational System

Name Function

ASMOC Assemble source--produce object module

ASMPC Assemble source--produce printed listing (and punched deck)
ASMPCL Assemble source--produce load module

ASMPCM Assemble a macro--(produce object module or no output)
COBPC COBOL-F source--(produce object module or no output)

COBPCL COBOL-F source--produce load module

COBUPC ANS COBOL source--(produce object module or no output)
COBUPCL ANS COBOL source--produce load module (with NCAL option)
COBUPCLD ANS COBOL source--produce dynamic load module (link INTLOAD)
COMPRESS compress a PDS

COoPY copy PDS or member

DEFSYM see Message Mapping Utilities

FORTLINK compile and link FORTRAN module

INTASMF see ASMF Users Guide

LIBCOBDL update ANS COBOL--produce dynamic load module (link INTLOAD)
LIBE update a source member

LIBEASM update Assembler source--produce printed listing

LIBECOB update ANS COBOL source--produce object module

LIBECOBL update ANS COBOL source--produce load module (NCAL option)
LIBELINK update Assembler source--produce load module

LKEDE object & load module(s)--produce executable load module
LKEDO object & load module(s)--produce executable load module
LKEDP load module(s)--produce executable load module

LKEDPL1 PL/1 object or load modules--produce executable load module
LKEDT load module(s)--produce executable Test Mode module

Figure 2-1.

Intercomm JCL Procedures (Page 1 of 2)

2-6

Chapter 2 The Intercomm Operational System

Name Function

OPSCN Assembler source program scan (OPSCAN utility)
PATCH patch load module(s)

PLIXPC PL/l-optimizer--produce object module

PLIXPCL PL/l-optimizer--produce load module

PMIPCH punch source or object deck

PMIPRT print source member listing

SYMGEN see Message Mapping Utilities

Figure 2-1. Intercomm JCL Procedures (Page 2 of 2)

Unit name SYSDA is used wherever direct access space allocation
is required.

Listings of individual members may be obtained by using the
following JCL:

//PROCLIB DD DSN=INT.SYMREL,DISP=SHR
// EXEC PMIPRT,Q=REL,NAME=procname

A Job Control Procedure is invoked by coding the procedure name
in an EXEC statement, along with appropriate keyword symbolic
parameters to supply the library and member names and other parameters.

Figure 2-2 summarizes the parameters specified for each Intercomm
procedure.

2-7

Chapter 2

The Intercomm Operational System

Except for some of the utilities,

all procedures below also have

symbolic parameters Q, U and P, with Intercomm-supplied default
values Q=XYZ, U=USR, P=INT. Bracketed parameters below are
optional.
Procedure | Parameters Comments/Other Parms
ASMOC NAME= OMOD=
ASMPC NAME= [DECK=]
ASMPCL NAME= IMOD= [RENT=]
ASMPCM NAME= [DECK=] [SYSGO=] [OBJ=]
COBPC NAME=
COBPCL NAME= IMOD=
COBUPC NAME=
COBUPCL NAME= IMOD=
COBUPCLD | NAME= IMOD= Dynamic Linkedit not used
COMPRESS DSN= [S=]
COPY INDSN= OUTDSN=
FORTLINK | NAME= LMOD= [S=] [S1=]
LIBCOBDL | NAME= IMOD= Dynamic Linkedit not used
LIBE
LIBEASM NAME=
LIBECOB NAME= OMOD= [D=]
LIBECOBL NAME= IMOD=
LIBELINK NAME= IMOD= [RENT=]
LKEDE [OMOD=] LMOD= [D=] OMOD optional if INCLUDE
LKEDO [OMOD=] LMOD= statement in input stream
LKEDP LMOD=
LKEDPL1 LMOD= [INPUT=] [OVLY=] [PL1l=]
LKEDT LMOD= [D=]
OPSCN NAME=
PATCH [T=]
PLIXPC NAME= [PARM2=]
PLIXPCL NAME= LMOD= [PARM2=]
PMIPCH NAME= [S=] [T=]
PMIPRT NAME= [S=] [T=]
Figure 2-2. JCL Procedure Parameter Summary

Notes: for

XYZ:

the following procedures the default Q value is other than

LKEDPL1 - (null); OPSCN - REL.

all procedures which execute the Assembler, execute Assembler H

(V2).

2-8

Assembler F versions of these procs are noted under the
detailed descriptions.

Chapter 2 The Intercomm Operational System

The keyword symbolic parameters used are as follows:

Q

NAME

OMOD

IMOD

Common to all Intercomm procedures, this parameter defines the
characters completing various library names used in the procedure.
For example, 1if Q=TST 1is coded for a procedure which uses both
symbolic and load module libraries, the names SYMTST and MODTST are
generated by the procedure. One to five alphanumeric characters
may be specified. The default is XYZ.

Common to all Intercomm source update, compile, assembly, and
linkedit procedures, this parameter defines the characters
completing the library name of the data set placed after the Q data
set in a SYSLIB concatenation stream. One to five alphanumeric
characters may be specified. The default is USR.

Common to all Intercomm Procedures, this parameter specifies a
library name common prefix or high-level qualifier. For example,
if P=INTERCOM, and Q=TESTS is coded for a procedure using a source
library, the name INTERCOM.SYMTESTS is generated by the procedure.
One to eight alphanumeric characters may be specified, the first of
which must be alphabetic. If multiple qualifiers are used, then
the parameter value must be in quotes, that is, P='A.B’, and more
than eight characters may be coded. The default is INT.

For those procedures which use a symbolic library, this parameter
is coded to specify the name of a particular member (source
program) to be assembled, printed, etc. It may be omitted if an
pverride SYSIN DD statement is present in the JCL. The default is
INVALIDNAME.

For those procedures using an object module library, this parameter
is coded to specify a particular name for the input or output
object module. The default is GO.

For those procedures using a load module 1library, this parameter
specifies a particular name for the linkage editor output module.
It may be omitted if a NAME statement is present in the linkedit
input control stream. The default is GO.

For utility procedures (compressing, printing, punching) requiring
control statement input, this parameter specifies the prefix of the
PROCLIB containing the control statements. For example, S=SYS1
specifies the system procedure library SYS1.PROCLIB. The default
is INT.

For certain procedures (printing, punching, patching) applicable to
more than one type of library, T=SYM, OBJ, or MOD may be specified
to indicate the type of library. The default is SYM.

Chapter 2 The Intercomm Operational System

RENT

DECK

SYSGO

PARM?2

PL1

For assembly and 1linkedit procedures, specifies whether the
linkedited 1load module should be 1linked as reentrant (code
RENT=RENT). The default is NORENT.

For assemblies, specifies whether a punched deck output (in addition
to the assembly listing) is desired. If so, code DECK=DECK and add
a SYSPUNCH DD statement. The default is NODECK.

Indicates the disposition of the output library data set as follows:
for procedures which can optionally create a temporary data set,
D=MOD must be coded to specify this processing option; when library
creation procedures are used to add or replace members, D=MOD, OLD,
or SHR may be coded. The default is OLD.

For assemblies only, to provide the name of a temporary partitioned
data set which will receive an output object module from the
assembly. The data set is deleted at end of job. If not specified,
no object output is produced. If a qualified data set name, or a
temporary name (starting with &&), is used, enclose the name in
quotes. The default is NULLFILE.

For PL/1 procedures, this allows specification of additional
compiler parameter (PARM='....’') 1information without changing the
parameter default values specified in the procedure (which would
cause a reversion to installation SYSGENed defaults). Specify as
PARM2=' parm[,...]'.

For the LKEDPL1 procedure to linkedit a dynamically loaded PL/1
subsystem and/or subroutine, this provides the library name to be
used in the linkedit step (LKEDl) execution to resolve all external
PL/1 references (needed when Intercomm’s dynamic linkedit not used).

INPUT

For LKEDPL1l, specifies the prefix of the lowest level name of the
installation load library used to resolve external PL/1 subroutine
references via a LKED1.SYSIN statement such as INCLUDE PL1LIB(name).
The default is MOD. Thus if the defaults are used for the P, INPUT
and Q parameters, the PL/1 subroutine library data set would be
INT.MODXYZ.

The following parameters are explained under examples of the

applicable procedures:

OBJ, DSN, INDSN, OUTDSN, OVLY.

2-10

Chapter 2 The Intercomm Operational System

2.3.1

C

Step Names

The following naming conventions apply to multistep procedures:

Step Name Function

LIB source update

ASM assembly

COB COBOL compile

LKED linkedit

PLI PL/l1-optimizer compile

2.3.2 JCL Procedures for Source Updates, Compiles, Assemblies,
Linkedits

//

//

//

EXEC ASMOC,Q=xxx,NAME=source-member,OMOD=object-member

Assemble the source program on SYMxxx, placing the object module
on OBJxxx using the OMOD name. For Assembler F use ASMFOC.

EXEC ASMOC,Q=xxx,0MOD=object-member
(Source program deck)

Assemble the input stream program (using 1library SYMxxx for
macro, etc., definitions) and store the object module on OBJxxx
using the OMOD name.

EXEC ASMPC,Q=xxx,NAME=source-member[,DECK=punched-output-parm]

Assemble the named source program. No object output is produced.
For Assembler F use ASMFPC.

EXEC ASMPC,Q=xxx,DECK=DECK

//SYSPUNCH DD SYSOUT=B

//

(source program deck)

In this example, an input stream source deck is being assembled,

and the object output is to be punched. The Q=xxx parameter
still defines a library to be used for macro definitions, COPY
members, etc. The punched output may be routed to a text editor

(TSO, CMS, etc.) data set, or may be a member of a PDS.
EXEC ASMPCL,Q=xxx,NAME=source-name,MOD=1oad-name[,RENT=parm]

Assemble and 1linkedit the mnamed source member from SYMxxx,
creating or replacing the named load module on MODxxx. This
statement may be followed by an input stream source deck, in
which case the NAME parameter may be omitted. If linkage editor
control input is required, it must follow a //LKED.SYSIN DD *

statement. If the condition code from the assembly step is
greater than 4, the 1linkedit step 1is bypassed. If the 1load
module 1is to be linked as reentrant, code RENT=RENT. For

Assembler F use ASMFPCL.

2-11

Chapter 2 The Intercomm Operational System

//

//

//

//

//

//

//

EXEC ASMPCM,Q=xxx,NAME=macro-name[,DECK=DECK]
[,SYSGO=data-set-name,0BJ=LOAD]

Assemble a macro, and optionally produce punched output (if
DECK=DECK coded): add a SYSPUNCH DD statement. To produce an
object module, define the receiving data set name via the SYSGO
parameter, and code OBJ=LOAD.

EXEC COBPC,Q=xxx,NAME=COBOL-source-member

Analogous to ASMPC, for COBOL-F compilation.

EXEC COBPCL,Q=xxx,NAME=COBOL-source-member,lMOD=1load-module-name
Analogous to ASMPCL, for COBOL-F compilation and linkedit.

EXEC COBUPC,Q=xxx,NAME=COBOL-source-member

Analogous to COBPC, for ANS COBOL compilation.

EXEC COBUPCL,Q=xxx,NAME=COBOL- source-member,IMOD=1load-module-name

Analogous to COBPCL, for ANS COBOL compilation and linkedit of
resident, overlay, or dynamically loaded (if Dynamic Linkedit
used) programs.

EXEC COBUPCLD,Q=xxx,NAME=COBOL-source-member,IMOD=1oad-module-name

Analogous to COBUPCL, for ANS COBOL compilation and linkedit for
a dynamically loaded program and including all needed COBOL load
modules from SYS1.COBLIB. If Dynamic Linkedit is wused (see
Chapter 3), then use COBUPCL. Linkage editor control cards
should be added to LKED.SYSIN for the subsystem load module name,
and for INTLOAD. For example:

// EXEC COBUPCLD,Q=USR,NAME=COBPROG, LMOD=COBPROG
//LKED.SYSIN DD *

INCLUDE SYSLIB(COBPROG,INTLOAD)

ENTRY COBPROG

NAME COBPROG (R)

EXEC FORTLINK,Q=xxx,NAME=source-member,IMOD=1load-module-name
[,S=PDSprefix,S1=PDSname]

where S and S1 default to SYS1.FORTLIB (the library containing
IEYFORT, the Fortran compiler and Fortran subroutines for the
linkedit). This procedure executes a compile and linkedit of a
Fortran module.

2-12

C

Chapter 2 The Intercomm Operational System

//

//

//

//

EXEC LIBCOBDL,Q=xxx,NAME=COBOL-source-member,IMOD=1oad-module-name

Analogous to LIBECOBL, for ANS COBOL source member wupdate,
compilation, and 1linkedit for a dynamically 1loaded program
including all needed COBOL load modules, when Dynamic Linkedit not
used.

EXEC LIBE,Q=xxx
(control statements and data for program IEBUPDTE)

Execute the IBM utility program IEBUPDTE to change symbolic
library SYMxxx. This program is described in the IBM Utilities
manual, and permits an individual source member to be changed,
added, or replaced. The member named in the wutility control
statement is searched for in the named library and the system user
(USR), update (LIB), and release (REL) libraries, so that it is
possible to update a source program onto a private library without
first copying the program from one library to the other.

Control statement and data examples:

// EXEC LIBE,Q=USR
./ CHANGE NAME=PROG1
* THIS IS A REPLACEMENT FOR THE STATEMENT NUMBERED 00459370

// EXEC LIBE,Q=USR

./ REPL NAME=PROG2,LIST=ALL

./ ~NUMBER NEW1=10000,INCR=1000
(replacement deck for PROG2)

EXEC LIBEASM,Q=xxx,NAME=source-member
(control statements and data for program IEBUPDTE)

Update and assemble the source program. No object module is
produced. The control input is normally an add, replace, or
change for the member to be assembled. If the update 1is not

successful (any IEBUPDTE diagnostic giving a nonzero return code),
the assembly is not performed. For Assembler F use LIBEASMF.

EXEC LIBECOB,Q=xxx,NAME=COBOL-source-member,OMOD=object-module
[,D=disp]

Analogous to LIBEASM, for ANS COBOL source member update and
compilation, and produce an object module. 1If data set OBJxxx is
not cataloged, a temporary data set is created and wused in
subsequent steps of the same job, then is deleted at the end of
the job. D=MOD must also be coded to specify this option.

2-13

Chapter 2 The Intercomm Operational System

//

//

//

//

//

EXEC LIBECOBL,Q=xxx,NAME=COBOL-source-member,IMOD=1load-module

Analogous to LIBELINK, for ANS COBOL source member update,
compilation and 1linkedit of resident, overlay or dynamically
loaded (if Dynamic Linkedit used, see Chapter 3) programs.

EXEC LIBELINK,Q=xxx,NAME=source-name,lMOD=1oad-name[,RENT=parm]
(control statements and data for program IEBUPDTE)

Update, assemble, and linkedit the source program, creating or
replacing the named 1load module. If the wupdate 1is not
successful, the assembly and linkedit are not performed. If the
assembly 1is not successful (return code greater than 4), the
linkedit is not performed. Any linkage editor control input must
be preceded by the statement //LKED.SYSIN DD *., For Assembler F
use LIBFLINK.

EXEC LKEDE,Q=xxx,LMOD=load-module-name[,0MOD=object-module-name]

Linkedit a program for subsequent execution, storing the load
module on library MODSCR. If this library is not cataloged, it
may be created and used in subsequent steps of the same job, then
will be deleted at the end of the job; specify D=MOD in this case
(the default is SHR). Linkage editor control input may follow
this statement; if no control input 1is provided, then
OMOD=object-module must be coded to specify an object module on
OBJxxx as input.

Control statement examples:

INCLUDE OBJLIB(omodl,omod2,...) include object modules
INCLUDE SYSLIB(lmod2,lmod3,...) include load modules
INCLUDE ddname(...) data set defined on added

DD statement

Multiple load modules may be processed in one execution of the
linkage editor by interspersing linkage editor NAME control
statements with input control statements. The IMOD parameter is
not required in this case. If object module library OBJxxx was
created in the same job by an assembly or compilation procedure
(see ASMOC, COBOC, LIBEASM), then, if OMOD parameter is not
specified, precede any control input by: //SYSLIN DD *

EXEC LKEDO,Q=xxx,LMOD=load-module-name[,0MOD=object-module-name]
Linkedit one or more object and/or load modules, placing the load
module on library MODxxx. Refer to procedure LKEDE for the
remainder of the description of this procedure. Override the
SYSIMOD DD statement if MODxxx does not exist.

EXEC LKEDP,Q=xxx,LMOD=load-module-name

This procedure is analogous to procedure LKEDO, but no object
module data sets are defined or made available for inclusion.

2-14

Chapter 2 The Intercomm Operational System

//

A/

EXEC IKEDT,Q=xxx,LMOD=load-module-name

Analogous to procedure LKEDE, but with no object module data sets
defined. The load module is placed in MODSCR.

Procedures LKEDT and LKEDP define concatenations of private
library, USR, LIB, and REL for the call 1library SYSLIB; in
addition, procedures LKEDE and LKEDT specify the system COBOL and
telecommunications libraries (SYS1.COBLIB and SYS1.TELCMLIB), so
that included or called Operating System modules will be
available to the 1linkage editor. For LKEDE and LKEDO, Q
specifies only the object 1library suffix; the SYSLIB
concatenation sequence starts with USR (U parameter).

EXEC LKEDPL1,Q=xxx,LMOD=load-module-name, INPUT=library-type,
PLl=library-name,OVLY=

This procedure will linkedit PL/1 programs including all required
PL/1 library subroutines, and then perform a final linkedit to
include all necessary Intercomm modules. This is necessary, as
during the final linkedit the automatic library mechanism must be
disabled, while during the initial 1linkedit (when PL/1 1library
routines are included) it must be enabled.

There are two steps, LKED1 (the PL/1 library step) and LKED2 (the
Intercomm step). During LKED1l, PL/1 programs are included from
either a load or object 1library (or both if additional user
libraries are specified) wvia the INPUT (INPUT=0BJ for object, MOD
is default) parameter and using the ddname PL1LIB. 1In the LKED2
step, Intercomm modules are included from SYSLIB and the PL/1
program(s) from the library defined by the ddname PL1. To
include the modules from the first step simply code
INCLUDE PL1(PL1). The OVLY parameter, if coded, will nullify the
overlay option in the second 1linkedit (default is OVLY to
generate an overlay structure in the linkedit if OVERLAY control
statements are used).

//
//*

/*

//LKED1.SYSIN DD *

//LKED2 .SYSIN DD *

EXEC LKEDPL1,Q=LIB,LMOD=INTERCOM,OVLY=
OVERLAY NULLIFIED, INPUT=MOD DEFAULT USED

INCLUDE PL1LIB(PROG1)
INCLUDE PL1LIB(PROG2,PROG3)

INCLUDE SYSLIB(Intercomm-modules,...)
INCLUDE PL1(PL1)

2-15

Chapter 2 The Intercomm Operational System

// EXEC PLIXPC,Q=xxx,NAME=PLl-source-name[,PARM2=' options’]

Compile a PL/l-optimizer program from SYMxxx. If the source is
in-line, NAME need not be specified. If additional PARM options
are required, code PARM2=' options’ (for example, PARM2=',LIST').

// EXEC PLIXPCL,Q=xxx,NAME=PLl-source-name,lMOD=1load-module-name
[,PARM2=',options’]

Compile a PL/l-optimizer program and store the load module
(without the PL/1 1library subroutine modules referenced) under
the name specified in LMOD (GO wused if IMOD absent); for
resident, overlay, or dynamically loaded (when Dynamic Linkedit
used) programs. NAME need not be specified if source is
in-line. PARM2 is as in PLIXPC.

2.3.3 JCL Procedures for Utility Executions

The following procedures can be used to perform common utility
operations (data set copy, data set member print/punch/patch/scan,
library creation). The IBM Utilities manual describes the functions of
each program in detail. Some of the procedures must be modified by the
user to specify appropriate volumes for a given installation. The P
and Q override parameters may be used (except where noted), but the U
override parameter does not apply.

// EXEC COMPRESS,DSN='data-set-name’[,S=Proclib-prefixname]

Compress an individual 1library (using wutility program
IEBCOPY), and release any excess space available in the data
set after compressing. Control statement input for this
procedure is contained in the released member COMPSYS which
must be put on the PROCLIB specified by the additional
parameter S=prefix. If the system procedure library is used,
specify S=SYS1 (the default is INT).

// EXEC COPY,INDSN='INT.SYMCHG’,OUTDSN='INT.SYMLIB'
COPY INDD=SYSUT1,O0UTDD=SYSUT2
SELECT MEMBER=((PROGX, ,R))

In this example, a member of a private source library
(SYMCHG) 1is copied into SYMLIB. By supplying additional DD
statements and control statements, more than one operation
may be done in a single step.

Note: the COMPRESS and COPY procedures do not use the Q and P
parameters.

2-16

Chapter 2 The Intercomm Operational System

//

//

//

//

EXEC PMIPCH,Q=xxx,NAME=source-member
Punch the named member of library SYMxxx.
EXEC PMIPCH,Q=xxx,NAME=object-module, T=0BJ
Punch the named member of library OBJxxx.
EXEC PMIPRT,Q=xxx,NAME=source-member

Print the named member of library SYMxxx.

NOTE: PMIPCH and PMIPRT use the IBM utility program IEBPTPCH;
control statements for these procedures are contained in
the released members PMIPCH1 and PMIPRT1 which must be
put on the PROCLIB specified by the additional parameter
S=prefix. If the system procedure library is wused,
specify S=SYS1 (the default is INT).

EXEC PATCH,Q=xxx[,T=library-type]
(control statements for program IMASPZAP)

Print and/or change selected data in load modules or object
modules, using the IBM wutility program IMASPZAP (also called
AMASPZAP, and described fully in the IBM Service Aids manual).

Object modules may be ABSDUMPed and the desired data located
before changes are made. If the IMASPZAP program was not
included 1in the operating system 1link 1library, a JOBLIB or
STEPLIB DD statement is required. A STEPLIB DD statement may be
added to the procedure if necessary. T defaults to MOD.

Control statement examples for IMASPZAP:

DUMP (T) member [csect]
NAME member [csect]
VER hex-location hex-data,hex-data,........
REP hex-location hex-data,hex-data,........

2-17

Chapter 2 The Intercomm Operational System

//

EXEC OPSCN,Q=xxx,NAME=source-member

This procedure executes the Intercomm-supplied utility OPSCAN
which scans an Assembler source library member (or sequential
data set) and selects all statements having a recognizable
operation code field other than standard instructions. The
selected statements may be directed to a printer, and will
include all macro instructions (Intercomm and Assembler), CALLs,
COPY references, conditional assembly statements, entry points,
external references, and control sections, as well as other
significant details.

Standard instructions are comment statements, machine operation
codes (including privileged operations, SPM, TS, and
floating-point feature instructions), selected extended mnemonic
operation codes (BNE, BH, etc.) and selected Assembler operation
codes (DC, EQU, CNOP, USING, EJECT, etc.)

The operation code scan accommodates free-form statements as
specified for the MVS Assembler Language. Continuation lines of

the selected statements are also printed.

Intercomm utilities for log (journal) printing and analysis, data

set creation and loading, BTAM simulator input creation, source member
compares, etc. are described elsewhere in this and other Intercomm
manuals. Additionally, system cross-reference and maintenance
utilities are described in the ASMF Users Guide.

2-18

Chapter 2 The Intercomm Operational System

2.4 SYSTEM INSTALLATION AND MAINTENANCE RESPONSIBILITIES

In any on-line system environment, it is necessary to develop a
distribution of responsibility to installation personnel involved with
the ongoing operation of the system. Three different user categories
of Intercomm personnel are required:

e The System Manager(s) - System programmers responsible for
coordination of all system specifications, system program
maintenance, and operating procedures.

° The Application Group(s) - Project leaders and programmers
responsible for design and implementation of application
subsystems.

e Central Location Operations Staff - Responsible for the

actual scheduling and operation of the central CPU.

Many responsibilities overlap in these functional areas. An
installation must be flexible and above all establish orderly
communications methods between the user personnel. Each Intercomm
installation must develop its own distribution of responsibilities for
its personnel depending on the scope of the on-line system.
Requirements obviously vary from a staff of three to hundreds of
associated programmers, analysts, system programmers, operators,
management, etc.

In general, the responsibility for maintaining the Intercomm
System lies in the areas of:

Intercomm System Program Maintenance via the ASMF Facility
Table Maintenance

Execution Load Module Maintenance

Procedures for Testing and Live Execution

System Tuning

Problem Reporting

Backup and Recovery Procedures

Nounm P wNHH

The following list represents a suggested set of guidelines in
assignment of responsibilities for each category of installation
personnel.

2-19

Chapter 2

The Intercomm Operational System

The Intercomm System Manager(s)

General liaison with vendor

-- Documentation updates and new editions
-- Microfiche 1listings and updates of Intercomm source

modules

-- Early Warnings - periodic publication of outstanding
problem reports and solutions

-- Technical Information Bulletins - non-product problem

resolution suggestions
-- SM (system modification) maintenance of Intercomm system
-- New release distribution
-- Problem reporting, tracking, and resolution

System installation (initial or for new Release)
Production system generation and maintenance

-- Definition of network configuration to Intercomm

-- Definition of subsystems (applications) to Intercomm

-- Ongoing system tuning as production environment changes
-- Application and testing of official and experimental SMs
-- Dump analysis and problem solution

Maintenance of Intercomm libraries and tables (may include
modifications to Intercomm and/or user exit routines for
startup, restart, closedown, etc.)

Control and coordination of terminal test sessions

-- Add new application modules to linkedit

-- Add new table entries to system tables

-- Relinkedit Intercomm test system

-- Distribute test session output (snaps, dumps, log, etc.)

Coordination of 1live (production) system with application
project leaders and operations personnel

-- Installation standards maintenance

-- Update live system with tested modules and tables

-- Develop operational procedures as required

-- Create and maintain a "run book" for operations personnel
-- System expansion planning

Analysis of system messages, log and statistics reports from
live system for system tuning and problem reporting

Development of procedures for system backup and restart

Intercomm education coordination for system and applications
staff

2-20

C

Chapter 2 The Intercomm Operational System

2.4.2 The Application Group(s)

e Maintenance of existing (live) application programs

e Development, coding, and comprehensive testing of new
applications

e Assign specific identifiers following standards provided by
the System Manager(s) for: verbs (transaction identifiers),
subsystem codes and entry point names, mapping names, and
other required table specifications

° Communicate to System Manager(s) when table maintenance is
required for testing: new verbs, new subsystems (program
modules), new utility table entries, etc.

° Communicate to System Manager(s) when a new module is to be

added to the live system (requires a linkedit of production
module)

2.4.3 Central Location Operations

e Start system selection of options (for example, JCL
considerations) under direction of System Manager(s)

e Notify System Manager(s) immediately in the event of hardware
or software failure and prepare "trouble" report stating
cause of failure and corrective action.

° Close down system at direction of System Manager(s)

° Start log printing and analysis procedures, or any related
off-line jobs to be executed after closedown or failure

e Restart system after failure at direction of System
Manager(s)

e Periodically back up disk packs containing system libraries

2.5 STANDARDS

In planning an orderly Intercomm installation, the System
Manager(s) and Application Group(s) may wish to standardize certain
conventions for Intercomm libraries, programs and identifiers for
Intercomm transactions and associated table specifications.

Intercomm library naming conventions are described in full in
this chapter; program naming conventions must be controlled by the
System Manager(s) to avoid duplications. Additionally, control must be
exercised over file DD statement and data set names, terminal names,
Store/Fetch and DDQ key names, etc.

2-21

Chapter 2 The Intercomm Operational System

Several different applications may be operating under the control
of Intercomm and each of these applications may consist of several
different transactions. For example, an order entry application may
have different transactions for shipment, receipts, back order
processing, stock status, etc.

A transaction under Intercomm has the following components:

e Input message from terminal

° Processing program(s) (subsystems and subroutines)

e Output message to terminal

° Data file(s) and/or data base access

The following basic identifiers are required in the Intercomm
system to control (direct) the processing of that transaction:

1. Input message verb (transaction code)
2. Subsystem code and associated program entry point name

3. Message Mapping Utility map group definitions existing as
members in this utility’s related files and referenced by
application subsystems.

4, File DD statement(s) and data set names.

The System Manager(s) may define standards for coding verbs,
subsystem codes, program names, MMU map group names, and file names (if
applicable). Assume an installation has four application areas: A, B,
C, D. The System Manager(s) might define the following standards for
basic identifiers:

(1 to 7 characters)

Application

Identifier A B c , D

Verb

(4 characters) AAxx BBxx CCxx DDxx
Subsystem Code A{x) B(x)} C(x) D({x)}
(2 1-byte values) (nnn}) (nnn) {(nnn) {nnn)
Program Entry AAXXXXXX BBXXXXXX CCxXxXXXXX DDXXXXXX
Point name

(8 characters)

Map Group Name MGAAxxx MGBBxxx MGCCxxx MGDDxxx

where x 1s any character and nnn is any number (from O to 255) selected
%y the application project leader.

2-22

Chapter 2 The Intercomm Operational System

2.6 SYSTEM CONTROL FUNCTIONS AND TABLES

System Control Functions comprise those areas of table
specification and related program 1logic which control the general
operation of the Intercomm environment. The System Parameter List
(SPA), discussed in Chapter 3, "Message Management," includes
specification of many control variables affecting Intercomm execution.
In general, these variables consist of time-delay wvalues (indicating
such things as checkpoint intervals, statistics intervals, etc.),
control wvalues (such as subsystem dispatching, security, message
logging and message volume thresholds, etc.) and indicators controlling
program logic (mode of operation, subtasking, etc.).

Intercomm Dispatcher routines are discussed in Chapter 4. Other
system features connected with Intercomm installation, linkedit and
execution are described in Chapters 3, 7 and 8. Implementation of the
Resource Management functions of Intercomm is discussed in Chapter 5.
The File Handler 1is described in Chapter 6. Edit and Output
specifications are described in Chapter 3 and the Utilities Users
Guide. Logging and restart/recovery specifications are discussed in
Chapters 9 and 12, security options in Chapter 10, and system tuning
recommendations in Chapter 11. Specifications for Front End interfaces
and for special features are described in the applicable manuals.

Figure 2-3 lists the Intercomm global tables and corresponding SET
symbol tables which may be modified by the wuser as the various
Intercomm support features are utilized. Before a new installation, or
a reinstallation, of Intercomm, the SET tables must be moved from
SYMREL to SYMLIB and then modified according to expected user needs, or
the existing installation. For a new installation, it is primarily
necessary to modify SETGLOBE for the operating system in use, the type
of Front End to be used, and the types of file access to be used.
SETENV is described in the BTAM Terminal Support Guide and may
optionally be modified to suppress support for teleprocessing devices
which will not be installed. However, if a VTAM Front End is used
exclusively, SETENV does not need to be modified as it applies
primarily to BTAM/TCAM Front Ends. The DDQ (see Dynamic Data Queuing
Facility) and Log Analysis (see Chapter 12) tables provide recommended
default settings and need only be adjusted to conform to existing
installation specifications, or as the facilities are wused in a
production environment.

GLOBALS SETTINGS FUNCTION

INTGLOBE SETGLOBE Systemwide Support Requirements

ENVIRON SETENV Front End Support Requirements

DDQENV DDQENV DDQ Facility Requirements

LOGDCLGB LOGSETGB Log Analysis Utility Requirements
Figure 2-3. Intercomm Global Tables

2-23

Chapter 2 The Intercomm Operational System

2.6.1 System Global Tables (INTGLOBE, SETGLOBE)

The set of global specifications which control assembly of the
SPA and other system routines are the member INTGLOBE defining globals
indicating requirements for specific Intercomm features, and the member
SETGLOBE which provides user assigned values for the defined globals.
In general, these specifications pertain to the operating system,
interregion communication, resource management options, data base
management system interface requirements, File Handler options, Edit
and Output Utility options, Dispatcher specifications, etc.

Figures 2-4 and 2-5 illustrate the members INTGLOBE and SETGLOBE
as released. As these members vary from release to release, the user's
Intercomm Support Manager should examine a listing of these control
variables prior to effecting any change and subsequent reassembly of
the System Parameter List, and other system programs conditionally
assembled with these members. A global cross-reference program
(IAIMGOCR) 1is available to Intercomm users with Product Maintenance
agreements, to facilitate determination of which modules require
reassembly when a SETGLOBE setting is changed (see ASMF_ Users Guide).
A general list of affected system modules is provided in various jobs
illustrated in the Installation Guide.

B ok S S S e R R R e e ke X
INTGLOBE - GENERAL SYSTEM FEATURES:
GBLB &VSSYSTM ON IF RUNNING UNDER VS1
GBLB &MVS VS2 RELEASE 2 OR MORE.
GBLB &XA MVS EXTENDED (XA)
GBLC &MRSVC INTERCOMM INTERREGION SVC (MRS, ESS, VS, MVS)
GBLC &INTSVC DATA BASE INTERREGION SVC X
FRONT-END CHARACTERISTICS: USED IN BTAM/VTAM MODULES
GBLB &BTAM BTAM (INC. GFE) CONFIGURATION
GBLB &VTAM VTAM CONFIGURATION
GBLB &TIMSTMP TIME-STAMP ON RESPONSES TO F.E. CMD X
RESOURCE MANAGEMENT:
GBLB &RM RESOURCE AUDITING
GBLB &RMSTATS RM STATISTICS GATHERING.
GBLB &RMACCT BUCKET ACCOUNTING SWITCH.
GBLB &RMPOOLS SUPPORT USER POOLS.
GBLB &POOLNM POOLDUMP DEBUG FEATURE
GBLB &RMINTEG RESOURCE MGMNT CORE INTEGRITY CHCK. X
DISPATCHER:
GBLA &NUMWQES NUMBER OF WORK QUEUE ELEMENTS X

Figure 2-4. INTGLOBE (Page 1 of 2)

2-24

Chapter 2

The Intercomm Operational System

GBLB
GBLA
GBLA
GBLB
GBLB
GBLB

GBLB
GBLB
GBLA

GBLB

GBLB
GBLB
GBLB
GBLB
GBLB

GBLB
GBLC
GBLA
GBLC
GBLB
GBLC

GBLA
GBLA

FILE HANDLER:
&IAM
&RPTINTV
&FHSTATS
&ISAM

&VSAM
&VSISAM

EDIT UTILITY:
&DELCHNG
&EDERRS
&EDERMAX

&OPTRPT

OUTPUT UTILITY:

&DDQBACK
&BROAD
&RPTBLE
&ALTRPT
&OUTEXIT
DL/I SUPPORT:
&DLI

TOTAL SUPPORT:
&TOTDESC
&TOTMOD
&TOTSVC

IAM FILES USED

FILE STATISTICS REPORT INTERVAL
NUMBER OF DSCT STATISTICS BUCKETS
ISAM FILES USED

VSAM FILES USED

ISAM/VSAM COMPATIBILITY REQUIRED

NO CORRECT/CHANGE FACILITY USED
NO MAXIMUM FOR EDIT ERRORS SENT
MAXIMUM NUMBER OF EDIT ERRORS
(USED ONLY IF &EDERRS=0)

SEND ERRORS FOR OPTIONAL PARMS

DYNAMIC DATA Q'S - AUTO INPUT
NO BROADCAST GROUPS

NO REPORTS TO TAPE

NO ALTERNATE REPORTS

NO USER OUTPUT EXIT

DL/1
TOTAL DATA BASE DESCRIPTOR

SETTING:1 IF ATTACHED, 2 IF SEP TOT REG
TOTAL INTERREGION SVC NUMBER

MULTIREGION SUPPORT:

&MULTREG

LOGINPUT FACILITY:

&GENTERM
&LOGINTM
&LGINRTD

PEb bbb o bbb e bbb e bbbk

MULTI-REGION SUPPORT REQUESTED

DUMMY TERMINAL-ID
LOGINPUT DISPATCH INTERVAL
LOGINPUT REAL-TIME DIVISOR

R g g g S e e 2

Figure 2-4.

INTGLOBE (Page 2 of 2)

2-25

Chapter 2

The Intercomm Operational System

F PP 3T A A b Ak Ak b B A A A T A S S S e R R e b b e e e e e b e e e e e e e ek e Xk X

SETGLOBE - GENERAL SYSTEM FEATURES:

&VSSYSTM SETB 1 DEFAULT TO VS

&MVS SETB 1 DEFAULT TO MVS

&XA SETB 1 DEFAULT TO MVS-XA

&MRSVC SETC '013’ INTERCOMM INTERREGION SVC NOT USED

&INTSVC SETC '013’ DL1 DATABASE INTERREGION SVC NOT USED

&MVS SETB (&XA OR &MVS) FORCE MVS IF XA

&VSSYSTM SETB (&MVS OR &VSSYSTM) .GLOBAL INTER-DEPENDENCIES X
FRONT-END CHARACTERISTICS:

&BTAM SETB 1 BTAM FRONT-END IS IN USE

&VTAM SETB 1 VTAM FRONT-END IS IN USE

&TIMSTMP SETB O NO TIMSTAMPS ON F.E. CMD RESP X
RESOURCE MANAGEMENT:

&RM SETB 1 RESOURCE MANAGEMENT

&RMSTATS SETB 1 STATISTICS

&RMACCT SETB 1 ACCOUNTING

&RMPOOLS SETB 1 CORE POOLS

&POOLNM SETB 1 USE POOL OWNER'’S NAME IN POOLDUMP

&RMINTEG SETB O NO CORE POOL INTEGRITY CHECK

&RM SETB (&RM OR &RMINTEG) INTEG CHECK REQUIRES RCBS X
DISPATCHER:

&NUMWQES SETA 120 NUMBER OF WORK QUEUE ELEMENTS X
FILE HANDLER:

&RPTINTV SETA 600%*300 600 SECS = 10 mins

&FHSTATS SETA 5 NUMBER OF DSCT STATISTICS BUCKETS

&ISAM SETB 1 ISAM FILES USED

&IAM SETB O DEFAULT - NO IAM SUPPORT

&ISAM SETB (&ISAM OR &IAM) ISAM IF IAM

&VSISAM SETB 1 ISAM/VSAM COMPATIBILITY

&VSAM SETB 1 VSAM FILES USED

&VSAM SETB (&VSAM OR &VSISAM) NEED VSAM FOR COMPATABILITY

&VSSYSTM SETB (&VSSYSTM OR &VSAM) IF VSAM OR VSISAM X
EDIT UTILITY:

&DELCHNG SETB 1 NO CANCEL/CORRECT FACILITY

&EDERRS SETB O SEND NO MORE THAN &EDERMAX ERROR MSGS

&EDERMAX SETA 5 MAXIMUM NUMBER OF ERRORS/MESSAGES

&PTRPT SETB O SUPPRESS ERROR MSG IF PARM IS OPTIONAL X

Figure 2-5. SETGLOBE (Page 1 of 2)

2-26

Chapter 2 The Intercomm Operational System

OUTPUT UTILITY:

&DDQBACK SETB 0 DEFAULT TO NO DDQ AUTO INPUT

&BROAD SETB 0 BROADCAST GROUPS IN USE

&RPTBLE SETB 0 REPORTS TO TAPE IN USE

S&ALTRPT SETB 1 ALTERNATE REPORTS NOT IN USE

&OUTEXIT SETB 1 NO USER OUTPUT EXIT X
DL/I SUPPORT:

&DLI SETB 0 DL/I NOT IN USE X
TOTAL SUPPORT:

&TOTDESC SETC ' XXXXXX' TOTAL DATA BASE DESCRIPTOR

&TOTMOD SETA 1 SETTING: 1 IF ATTACHED, 2 IF SEP TOT REG

&TOTSVC SETC 'NUL' NO INTERREGION COMM NECESSARY X
MULTIREGION SUPPORT:

S&MULTREG SETB 1 MULTIREGION SUPPORT REQUESTED X
LOGINPUT FACILITY:

&GENTERM SETC '$$$$$" M.S.G. OR LOGINPUT TID

&LOGINTM SETA .3 .3 SEC TO DISP LOGINPUT

&LGINRTD SETA 5 LOGINPUT REAL-TIME DIVISOR

o 3 b S b S b S S S b S S bbb B S S b b b A b S ab b b S b b e S b S b b b bbb b bbb b b b e e e e e e v ke

Figure 2-5. SETGLOBE (Page 2 of 2)

2-27

Chapter 2 The Intercomm Operational System

2.6.2 Svstem Control Tables

As described in Chapter 1, there are several tables which are
required for the proper functioning of the Intercomm teleprocessing
monitor. Some of these tables must contain entries for Intercomm
system control and command processing routines. As listed in Figure
2-6, such tables are released with the Intercomm recommended entries
and contain a COPY statement to copy in a user-coded table of

additional installation-dependent entries at assembly time. The user
COPY member for the table should be stored on SYMUSR and may thus be
carried to new releases without affecting system requirements. The

load module may reside on MODUSR or MODLIB.

TABLE USER COPY MEMBER FUNCTION

BTVRBTB USRBTVRB Front End Verb Table

INTSPA USERSPA System Parameter Area

INTSCT USRSCTS Application Subsystems

REENTSBS USRSUBS System and User Subroutines

PMIVERBS USRVERBS Edit Facility Control Table
Figure 2-6. Intercomm Tables with User COPY Members

The tables listed in Figure 2-6 are all described in Chapter 3.
Entries may be deleted (if function not wused) or modified for all
tables except REENTSBS. Subsystem codes for system verbs and
subsystems should not be modified, and are also listed in Chapter 3.

Sample tables are provided on SYMREL for many tables, which may
be replaced or modified as necessary for a specific installation. Such
sample tables include:

These tables

applicable facility manuals.

° BTAMSCTS Front End Terminal Queues (BTAM/TCAM)
° FENETWRK Front End Network Definitions (BTAM)
° VTSAMP Sample VTAM Front End Tables

° DDQDSTBL DDQ Facility Table

° IXFDSCTn Data Set Control Table

° LOGCHARS MMU Device Processing Definitions

° MMUVTBL MMU Vector Table

° MRMCT Multiregion Communication Table

° NEWPOOLS Resource Management Pools Table

° PADDTBLE Edit Utility Pad Characters

° PAGETBLE Page Facility Terminal Table

. PMIBROAD Broadcast Terminal Table

. PMIDEVTB Back End Device Characteristics Table
° PMIFILET File Tables (Change/Display Utility)
° PMIRDTOO Multiregion Description Table

. PMISTATB Back End Terminal Definitions

° PTRNTBL Output Utility Editing Patterns

° RPT..... Output Utility System Reports (1-50)

are further described in this manual or in the
See also Appendix A.

2-28

)

<9

Chapter 3

MESSAGE MANAGEMENT

3.1 INTRODUCTION

This chapter defines table specifications for wuser-written
message processing application programs, which under Intercomm are

called subsystems. Based upon resource requirements and user-coded
table specifications, all subsystems in concurrent execution affect one
another’s throughput and response time. Procedures to optimize system

performance are described, along with techniques for implementing
message processing control facilities.

In particular, this chapter documents the following subjects:
® General message flow and cancellation processing

e The Front End Verb Table

. Back End table specifications for message utilities
® Message processing facilities

e The System Parameter Area

o The Subsystem Control Table

. Subsystem processing specifications

. Subsystem residency considerations

. Subsystem interfaces and linkedit considerations

° Subroutine interfaces and linkedit considerations

e Generalized subtasking

° Time controlled message processing

In addition to other referenced documentation, this chapter is to
be used in conjunction with the following Intercomm manuals:

° Basic System Macros ° BTAM Terminal Support Guide
® COBOL Programmers Guide ° Utilities Users Guide
° PL/1 Programmers Guide ° Message Mapping Utilities

° Assembler Language Programmers Guide

3-1

Chapter 3 Message Management

3.2 GENERAL MESSAGE FLOW

The Intercomm BTAM/VTAM or TCAM Front End interface acts as a
message handler between the terminal network and the Subsystem
Controller in the Intercomm Back End which controls processing by
application programs. The Front End receives messages from terminals,
formats message headers, validates transactions and routes them for
Front End command processing, or to the appropriate subsystem. Once a
response has been generated, the Front End will prefix, insert and/or
append terminal control characters, as required, queue the message for
the proper terminal, and transmit it to the destined device. Intercomm
facilities for editing and formatting messages are the Message Mapping
Utilities for mapping input and output messages, or the Edit Utility
for input messages and the Output Utility for output messages.
Additionally, a Change/Display Utility is provided for display and/or
update of user files, which itself interfaces with the Edit and Output
Utilities.

3.2.1 Input Messages

To allow the Intercomm Front End to process a message from a
terminal, all input messages received by Intercomm must follow the
standard Intercomm format:

verbStext@

verb
represents the transaction code. It must be one to four
alphameric characters, and is defined in the Verb Table used by
the Front End to validate the incoming message. Once the
validity of a verb is established, a standard message header is
prefixed to the message text.
If the subsystem does not use Message Mapping Utilities, then the
Edit Utility may be used to preedit the message text to remove
all terminal/format-dependent characteristics. 1In all cases, the
input message 1is passed to the Back End via Queue Management
routines. Messages not edited prior to queuing for subsystem
processing may be edited prior to transferring control to the
subsystem (COBOL, PL/1l), or on request from the subsystem
(Assembler Language). Alternatively, any subsystem may perform
its own editing, or use the MMU subroutine MAPIN.

$

indicates a separator character. This may be:
° A special graphic character (comma, etc.)
° A New Line character

e A device-dependent carriage-return/line-feed character
(CR/LF)

3-2

J

Chapter 3 Message Management

This systemwide separator character is defined at Intercomm
installation time in the System Parameter List SPALIST macro, SEP
parameter. It must also be defined by the global &SEPCHAR for
the BTAM or TCAM Front End in the member SETENV.

text
indicates optional text data.

indicates End-of-Transmission (EOT, EOB, etc.). The particular
character will depend on the hardware characteristics of the
transmitting terminal.

The message may consist of only a verb with no text data
following. In this case, no separator character is necessary.
Alternate methods for providing the input verb are described in Section
3.3.4, "Locked Verb Facility," and in the BTAM Terminal Support Guide
for certain terminals where special keys can signify a verb request,
such as the 3270 AID key processing and the ATTN key on a 2741.
Support for AID processing is also provided via the TCAM and VTAM
interfaces.

When Intercomm is unable to determine a verb (message routing)
for an input message, that message 1is discarded and the following
message is returned to the transmitting terminal:

NO VERB FOUND IN PREVIOUS MESSAGE STARTING xxxx

- where xxxxX is the first four characters received from the terminal, or
?7??? if no text data received.

3.2.2 Output Messages

Messages for transmission to the network, created by internal
Intercomm processing or by the various subsystems, are passed via
FESEND to the Front End and placed in terminal queues to await
transmission. Figure 3-1 illustrates the relationship between the
Intercomm components and the message queues.

The Intercomm Front End utilizes the Queue Management Routines of
Intercomm to control all message queuing. If a terminal becomes
nonoperational before message transmission is complete, the Intercomm
Front End will either requeue the message or reroute it to an alternate
terminal (if specified). A system control command (TDWN for BTAM/TCAM,
or SPLU for VTAM) 1is available to dynamically assign alternate
devices. When an alternate device assignment exists, all output
messages queued for the down terminal will be transmitted to the
alternate terminal by the Front End until the down terminal is
reactivated.

3-3

Chapter 3 Message Management
Front Subsystem Back
End ’ Core/Disk End
(Telepro- Queues (Message
cessing (Input) Processing
Interface) Interface
Programs)
Terminal
— Core/Disk
Queues
(Output)
FESEND Application
Subsystems
Output
Utility
Figure 3-1. Front End/Back End Communication via Message Queues

3-4

Chapter 3 Message Management

All output messages must have message-ending characters
L (EOT/EOB/ETX, or other value, as appropriate to the device) coded at
the end of the message. This character may be provided via:

e Output/MMU message formatting utilities, based on coding of
the terminal’s Back End DEVICE macro, EOT and/or EOB
parameters

e Coded by the subsystem before passing the message to the
Front End via FESEND (or FESENDC); see Programmers Guides.

e Added/replaced in the BTAM/TCAM Front End via the terminal’s
BDEVICE macro, ENDCHAR and/or LAST parameters

e Automatically suffixed, depending on device type, by the VTAM
Front End, if appropriate.

3.2.3 Message/Subsystem Cancellation Processing

The following subsections describe cancellation processing in
terms of message flow.

3.2.3.1 Message Cancellation User Exit--USRCANC

\. In certain situations, messages must be cancelled by the
Subsystem Controller to prevent slowdown or failure of the entire
system. The USRCANC routine, released as member PMICANC, is used to
inform the terminal operator of this situation. The released USRCANC
Csect may be modified to handle particular cases in a manner suitable
to specific subsystems.

The USRCANC user exit will be called by the Subsystem Controller
(SYCT400) when a message is cancelled for one of the following reasons:

° Program check (system return code is X'FF’')

° Time-out (system return code is X'FE’)

e I/O0 error (subsystem return code is X'12')

e No core available to process message or other unrecoverable
izrﬁfogyfh as an output mapping error (subsystem return code

® Subsystem stopped due to previous message cancellations or
message is flushed by command (return code not applicable)

The error condition return code 1is duplicated into the logged

message header, the address of which is in the fourth parameter passed
to USRCANC (for all but the last reason).

C

3-5

Chapter 3 Message Management

Two types of calls can be issued by the Subsystem Controller to
the USRCANC routine. The first is exercised when the message is
cancelled due to an error condition. The second is issued if the
subsystem assigned to process the message is not allowed to process
further messages. This second condition arises if a message has
previously been cancelled and the user has chosen to exercise the
SYCTTBL macro CANC parameter to stop the subsystem from further message
processing or if a queued message was flushed via the SSFL command.

3.2.3.2 Message Cancelled Condition

USRCANC is called with register 1 pointing to a parameter list
that contains the following four addresses:

1. Address of message which was being processed
2. Address of SPALIST

3. Address of the Subsystem Control Table entry for the
subsystem processing the message

4. Address of the logged message header (MSGHCON+l, that is,
MSGHRETN, contains the Subsystem Controller return code
value)

For a type one call, the first address above may point to an
invalid location, or be zero, because the subsystem, the Edit facility
(if an error occurs), or MMU MAPIN processing may have freed the area
before control was passed to USRCANC. If the subsystem frees the
message area, then the message address in the parameter list must be
set to binary zero. If MMU frees the message, it will set the message
address to zero.

The released USRCANC routine generates and transmits an error
message to advise the operator at the sending terminal that program
processing has been cancelled. This error message will indicate the
reason for cancellation. (See the cancellation reasons above.) For a
program cancelled condition, the USRCANC routine does not free the
input message or any other area. Standard linkage conventions must be
used.

3.2.3.3 Subsystem Stopped Condition

If a message was previously cancelled and the user has coded
CANC=STOP on the associated SYCTTBL macro to stop future subsystem
processing, or 1if a queued message 1is flushed, the parameter 1list
passed via register 1 to the USRCANC routine will contain only the
first three addresses listed above for the message cancelled
condition. Called in this manner, the released USRCANC generates and
transmits an error message to the sending terminal, then frees the
message area and zeros the address in the parameter list, and finally
returns a nonzero return code in register 15.

3-6

Chapter 3 Message Management

If the wuser modifies USRCANC and desires the message to be
processed despite the CANC option, the return code must be F’-1' and
the message may not be freed by USRCANC. This return code is ignored
if the message is to be flushed. Standard linkage conventions must be
used.

3.3 THE FRONT END VERB TABLE

Incoming transactions from a teleprocessing device are identified
by a transaction code, which under Intercomm is called a verb. Verbs
are defined in the Front End Verb Table (BTVRBTB) via coding of a
BTVERB macro for each user transaction code, and each system control
command. Each BTVERB macro relates a verb to the subsystem which is to
process the transaction via user-coded subsystem identifiers, called
receiving subsystem codes. These codes are placed in the Intercomm
message header constructed for the incoming message, and are
subsequently used to search the subsystem table during message routing
processing. See Appendix B for a detailed description of the Intercomm
message header. Although the verbs must be unique, more than one verb
may be processed by a specific subsystem, by specifying the same
subsystem identifier codes.

3.3.1 Entries in The Verb Table

.One BTVERB macro must be coded for each four-character verb to be
accepted by the system. The macro parameters specify the actual verb,
the receiving subsystem code of the message processing subsystem,
message editing requirements, etc. To signify the end of the table,
the last coded BTVERB macro must be followed by a PMISTOP macro. User
verbs should be coded in a copy member USRBTVRB which is copied into
the released BTVRBTB at assembly time, as illustrated in the BTVRBTB in
Figure 3-2, or may be coded after Intercomm verbs, but before the
PMISTOP. Intercomm verbs are called system commands and are all
described in System Control Commands.

Assembly of the Front End Verb Table also produces an index
(Csect BTVRBNDX) to BTVERB entries, providing a binary search
capability via the module BINSRCH. This facility allows verbs to be
grouped in any convenient order, such as by application area.

If more than 1000 BTVERB macros are defined, the global values
(released as 1000) in FEMACGBL must be reset to the higher number
desired to allow sorting of the greater number of verbs for the verb
index. Additionally, use of Assembler H and/or a larger region size
may be required for the assembly step of BTVRBTB.

3-7

Chapter 3

Message Management

BTVRBTB
*

*
*

*

*

CSECT

FRONT END (BTAM/TCAM)

BTVERB VERB=TDWN
BTVERB VERB=TPUP
BTVERB VERB=STLN
BTVERB VERB=SPLN
BTVERB VERB=STLG
BTVERB VERB=SPLG
BTVERB VERB=STPL
BTVERB VERB=SPPL
BTVERB VERB=RVRS
BTVERB VERB=STAT
BTVERB VERB=BTUP
BTVERB VERB=BTDN

BTAM/TCAM/GFE STATUS
GROUP TPUP'S ON PARTIAL NAME
GROUP TDWN’S ON PARTIAL NAME

COMMON FRONT END COMMANDS

BTVERB VERB=LOCK
BTVERB VERB=UNLK
BTVERB VERB=RLSE
BTVERB VERB=FLSH
BTVERB VERB=QHLD
BTVERB VERB=QRLS

BTVERB VERB=WHOI,
BTVERB VERB=WHOU,
BTVERB VERB=COPY,

SYSTEM COMMANDS

BTVERB VERB=NRCD,
BTVERB VERB=IMCD,

BTVERB VERB=SECN
BTVERB VERB=SECF

BTVERB VERB=DSPL,
BTVERB VERB=CHNG,
BTVERB VERB=SWCH,
BTVERB VERB=SNBK,
BTVERB VERB=LOAD,
BTVERB VERB=FHST,

GPSS VERBS

BTVERB VERB=FILE,
BTVERB VERB=TALY,
BTVERB VERB=STRT,
BTVERB VERB=STOP,
BTVERB VERB=SNAP,
BTVERB VERB=ABND,
BTVERB VERB=LTRC,

SSCH=W, SSC=I OPERATOR TERMINAL DISPLAY
SSCH=W, SSC=U REMOTE TERMINAL DISPLAY
SSCH=C, SSC=C COPY SUBSYSTEM - 3270'S

SSC=J NORMAL CLOSEDOWN

SSC=J IMMEDIATE CLOSEDOWN
CONTROL TERM. SECURITY ON
CONTROL TERM. SECURITY OFF

SSC=H,EDIT=YES, CONV=18000 DISPLAY

SSC=H,EDIT=YES,CONV=18000 CHANGE

SSC=B MESSAGE SWITCHING

SSC=W ECHO INPUT MESSAGE

SSC=L,SSCH=L,CONV=36000 LOADSCT SUBSYSTEM

SSC=R,CONV=36000 FILE STATISTICS DISPLAY

SSCH=G, SSC=P, CONV=36000
SSCH=G, SSC=P, CONV=18000

SSCH=G, SSC=P

SSCH=G, SSC=P

SSCH=G, SSC=P, CONV=36000
SSCH=G, SSC=P, CONV=36000

SSCH=G, SSC=P START/STOP LINE TRACE

Figure 3-2.

Released BTVRBTB (Page 1 of 2)

3-8

Chapter 3 Message Management

*
* FINTUNER COMMANDS
*
BTVERB VERB=MNCL, SSC=T CHANGE SUBSYSTEM MNCL
BTVERB VERB=DELY, SSC=T DELAY SUBSYSTEM PROCESSING
BTVERB VERB=BEGN, SSC=T RESTART SUBSYSTEM PROCESSING
BTVERB VERB=TCTV, SSC=T CHANGE SUBSYSTEM TCTV
BTVERB VERB=SPAC, SSC=T CHANGE SUBSYSTEM DWS/ISA SIZE
BTVERB VERB=PRTY, SSC=T CHANGE SUBSYSTEM PRIORITY
BTVERB VERB=SSFL, SSC=T FLUSH ONE/SOME/ALL SS MSGS
BTVERB VERB=FTUN, SSC=F DISPLAY SUBSYSTEM SYCTTBL
BTVERB VERB=SSUP, SSC=F UPDATE SYCTTBL FIELDS
BTVERB VERB=SCTL, SSC=C, CONV=18000 SYSTEM DISPLAY
*
* MMU COMMAND
*
BTVERB VERB=MMUC, SSCH=M, SSC=M, CONV=18000
BTVERB VERB=LMAP, SSCH=L, SSC=M, CONV=18000
*
* PAGE FACILITY COMMANDS
*
BTVERB VERB=PAGE, SSC=P, EDIT=YES , CONV=36000
BTVERB VERB=SAVE, SSC=P , EDIT=YES , CONV=36000
*
* VTAM VERBS
*
BTVERB VERB=STLU
BTVERB VERB=SPLU, LOCKEXE=YES
BTVERB VERB=RSLU
BTVERB VERB=VTCN
BTVERB VERB=VTST, LOCKEXE=YES VTAM STATUS
BTVERB VERB=BRUP GROUP STLU ON PARTIAL ICOMID
BTVERB VERB=VTUP GROUP STLU ON PARTIAL VTAMID
BTVERB VERB=BRDN GROUP SPLU ON PARTIAL ICOMID
BTVERB VERB=VTDN GROUP SPLU ON PARTIAL VTAMID
A A T T o Y S S S T b S e e S T T S A T T Sk S T T S S S T S e R L e e R R e R R ek e ke
* *
* ADD USER VERBS HERE VIA COPY *
* *
27 9% 3 T T o Y S ot S Tk T T T b S e b S T S p S et S e S S S S S T T Y e T e S e e S e R e e e e e e R e ke ek
COPY USRBTVRB
PMISTOP
END

Figure 3-2. Released BTVRBTB (Page 2 of 2)

3-9

Chapter 3 Message Management

The following illustrates a USRBTIVRB (as released on SYMREL for use by ‘-J)
new installations):

* MULTIREGION COMMANDS

BTVERB VERB=COMM, SSC=K, CONV=18000
BTVERB VERB=LOKR , LOCKEXE=YES
BTVERB VERB=ULKR, LOCKEXE=YES

*

EXTENDED SECURITY COMMAND

BTVERB VERB=SECU,SSC=E

TITLE 'APW CLASS WORKSHOP S/S VERBS'’
BTVERB VERB=APW1,SSCH=A, SSC=1
BTVERB VERB=INQ1,SSCH=A,SSC=1
BTVERB VERB=UPT1,SSCH=A, SSC=1
BTVERB VERB=NEW1, SSCH=A, SSC=1
BTVERB VERB=APW2,SSCH=A, SSC=2
BTVERB VERB=INQ2,SSCH=A, SSC=2
BTVERB VERB=UPT2,SSCH=A, SSC=2
BTVERB VERB=NEW2 , SSCH=A, SSC=2

3-10

Chapter 3 Message Management

3.3.2 Short Verbs

Intercomm provides a facility to allow verbs with a length of
one, two or three characters to be accepted, instead of only verbs of
the standard four-character length. These short verbs are padded on
the right with Xs before the verb is validated against the Verb Table.
The BTVERB entry for each short verb must contain the X padding.

3.3.3 Priority Verbs

Certain verbs may be specified as high-priority by coding
HPRTY=YES in the BTVERB macro. The input message header will then be
flagged so that the message will receive high-priority treatment on any
subsystem or Front End queue which specifies the priority-queuing
facility (via the PRYMSGS parameter of the SYCTTBL macro). Any
messages generated in the course of processing these high-priority
input messages will also receive high priority if message processing
program logic is such that input message headers are copied before
altering to create output message headers. The MSGHUSR byte in the
input message header 1is set to a character P to identify priority
verbs; subsystems altering or omitting this value will cause a message
to lose its priority status on transfer to another queue.

3.3.4 Locked Verb Facility

For certain terminals where prefixing a message with a verb may
be impractical, Intercomm provides a facility for locking the terminal
to a verb. The verb is automatically inserted by the Front End for
each message from the designated terminal. This may be accomplished by
one or more of the following:

e Specifying LOCK=verb on the terminal descriptor
(BTERM/LCOMP/LUNIT) in the Front End Network Table.

e Specifying AUTOLOK=YES on the verb descriptor (BTVERB)

e Issuing the LOCK system control command from another terminal
or a subsystem.

Subsequent unlocking of the terminal from a specific verb may be
accomplished dynamically by issuing the UNLK system control command.

When the LOCK parameter is specified via the terminal descriptor,
the terminal is automatically locked to the specified verb at startup;
therefore the first message input from the terminal does not need a

verb. That message, and all subsequent messages, will automatically
have the designated verb (and system separator) inserted between the
Intercomm message header and the message text before queuing. When

AUTOLOK 1is requested via the BTVERB macro, only the first message

3-11

Chapter 3 Message Management

requires a verb; subsequently the terminal is locked. Issuing the
LOCK/UNLK system control commands may be done before terminal input is
begun or to alter subsequent locked verb processing (status). The

latter case applies particularly to restarted messages; the processing
subsystem must issue an internal LOCK command if terminal locking 1is
required for subsequent input.

Certain verbs may be defined as lock-exempt; that is, even if the
terminal 1s locked to another verb, when the exempt verb is entered
from the terminal, it is to be processed instead of the locked verb.
This is designated by coding LOCKEXE=YES for the BTVERB macro, and is
the default for certain system control commands. The LOCKEXE and
AUTOLOK parameters of BTVERB are mutually exclusive. When executing
under Multiregion, LOCKEXE also exempts terminal/region locking.

3.3.5 Conversational Verbs

An installation may optionally define certain terminals as
conversational terminals and certain verbs as conversational verbs. If
a conversational verb arrives from a conversational terminal, the
terminal is quiesced (taken out of the polling list) and further input
is ignored until a message has been written back to the terminal. This
prevents a terminal from having more than one input message begin
processing at one time. A routine is scheduled on a time interval to
issue a time-out message to the terminal in the event that the
subsystem to which the verb was directed does not respond within the
specified time. The time limit for each verb is defined on the BTVERB
macro. The presence of a nonzero time limit indicates a conversational
verb. In normal operation, if a response does come back from the
subsystem before the specified interval expires, the scheduled routine
is cancelled. Conversational mode processing controls input messages
only. Response to a conversational verb from a conversational terminal
could be more than one output message.

This facility is implemented as follows:

1. Set the &CONVER gloﬁal in SETENV to 1 if BTAM/TCAM used, and
reassemble the BTAM Front End modules.

2. Code CONV=YES for all terminal BTERM/LUNIT/LCOMP macros for
which this processing is desired.

3. Code the CONV parameter with the time-out value on the
conversational verb’s BTVERB macro.

If this facility is wused in conjunction with the CONVERSE
facility (described in the Programmers Guides), the time interval on
the conversational verb should be slightly larger than the time
interval passed from the application program to CONVERSE. Use of the
CONVERSE facility is not recommended if message restart is used.

3-12

Chapter 3 Message Management

3.3.6 Separate Assemblies of Verb and Network Tables

Normally, the Front End Verb Table is coded with the Front End

Network Table as one module. In cases where frequent changes of
entries in the Front End Verb Table occur, or either table becomes very
large, it may be coded and assembled as a separate module. The Csect

and member name for the verb table must be BTVRBTB. Internal Csect or
entry point names, generated by the first occurrence of a macro
designating a major component, are used for accessing the Network
Table, which may have any Csect name if assembled separately. When
assembled separately, the load module name for the Network Table must
be specified on the Intercomm linkedit generation ICOMLINK macro via
the FETABLE parameter. The BTVRBTB is automatically included (unless
it is dynamically loaded at startup - see below). In a Multiregion
environment, these tables are included only in the control region.
Sample Front End terminal tables are illustrated in the BTAM/TCAM/VTAM
Terminal Support Guides.

3.3.7 Dynamically loading the Front End Verb Table at Startup

At startup time, the user may dynamically choose a set of

transaction codes (verbs) for the system to use. That is, instead of
choosing a set of verbs at 1linkedit time (by including the member
BTVRBTB), a set of verbs may be chosen at execution time. The set of

verbs chosen is brought into core via a LOAD macro, and for every
Intercomm execution a new set, or the same set, of verbs may be chosen.
With a dynamically loaded verb table, the need for relinking Intercomm
whenever the transaction definitions change is alleviated.

To use a dynamically loaded verb table, the following must be
done:

® Include the module VERBSTRT in the Intercomm linkedit.

. Separate the assemblies of the wverb and network tables as
described in the previous section.

. Do not include BTVRBTB (verb table) in the Intercomm
linkedit. (The ICOMLINK macro will generate the proper
INCLUDE statements if DYNVERB=YES is coded. If DYNVERB=NO
(default), an INCLUDE for BTVRBTB is generated, but not for
VERBSTRT.)

e Assemble and link the verb table into a library which will be
part of the STEPLIB concatenation for INTERCOMM execution.
The member names for the verb table load module names must be
of the form BTVERBxx where xx is a two digit decimal number
in the range 00-99. Ensure that the entry point of the
BTVERBxx load modules is the assembly generated VERBVCON
Csect. (This can be accomplished by either using the "ENTRY
VERBVCON" 1linkage editor control statement explicitly, or by
ORDERing the BTVERBxx load module so that VERBVCON is the
first CSECT in the module.)

3-13

Chapter 3 Message Management

° If the module VERBSTRT is present in the Intercomm load
module, it will be called at startup time and it takes the
following actions:

1. Checks if the Front End Verb Table (BTVRBTB) was
linkedited with the system. If so, no further action is
taken, and the linkedited version of the verb table will
be the one used in the run.

2. 1If BTVRBTB is not linked with the system, a WITOR (MIO8OR)
is issued requesting a reply in the form of a two-digit
number which is the suffix of the name of the desired
verb table load module (the xx in BTVERBxx).

3. A LOAD is attempted for the module BTVERBxx. If found,
the module 1is loaded and the VERBVCON Csect (returned
module address) 1is used to resolve references in the SPA
and SPAEXT to specific verb pointers. The execution of
startup then continues. If the module is not found,
another WTOR (MIO81R) is issued giving the operator the
choice of:

a) retrying the LOAD. (The operator is asked for
another two digit suffix by reissuing WTOR MIO8OR.)

b) cancelling the run. (A return to the operating
system is effected with a step return code of 16. No
dump is taken.)

c) abending Intercomm startup. (The job step is
abnormally terminated with a dump. The abend code is
a User 199.)

3.4 BACK END TABLE SPECIFICATIONS FOR THE UTILITIES

The Intercomm utilities (Edit, Output, Change/Display, and the
Message Mapping Utilities) are documented in the Utilities Users Guide
and Message Mapping Utilities. This section describes specifications
for the wutilities of a nonapplication-oriented nature, that is,
systemwide table specifications controlling the use of the utilities.
In a Multiregion environment, these tables are required in the control
region, and in each satellite region which uses the utilities and/or
Intercomm subsystems. These tables are also required in a simulated or
Test Mode Intercomm system. The following describes tables used by all
the utilities, plus additional tables unique to the individual utility.

3-14

Chapter 3 Message Management

3.4.1 Station Table

The Station Table is core-resident in a Csect named PMISTATB.
The table is created and maintained by the user. Individual entries in
the table are created by use of the STATION macro (one for each device
defined in the Front End Network Table). The end of the table is
indicated by four bytes of hexadecimal 'FF’, generated by the PMISTOP
macro. Assembly of the Station Table produces a binary search index by
terminal names (Csect STATINDX). The location in core of the PMISTATB
Csect is pointed to by a V-type address constant in the field SPASTATB
of the System Parameter Area. The member PMISTATB on SYMREL contains a
sample Station Table which may be updated or replaced by the system
manager to define the network configuration for the utilities.

The Station Table effectively creates five-character 1logical
names for each terminal in the system, and relates that terminal to the
device type characteristics defined in the Device Table. General
device characteristics may be overridden for a specific terminal by
coding a DVMODIFY macro after the PMISTOP in the Station Table, and
specifying the 1label of that DVMODIFY via the corresponding STATION
macro.

The Station Table structure is as follows:

PMISTATB CSECT
STATION .
STATION .
STATION .

PMISTOP
END

To add a new terminal to the system, the Station Table must be
modified by adding a STATION macro entry before the PMISTOP macro. The
Station Table is accessed by all the utilities, and for additional
internal Intercomm functions, and therefore is required in all
regions. If more than 1000 STATION macros are coded, the global table
FEMACGBL must be modified as described for the BTVRBTB in Section
3.3.1.

3.4.2 Device Table

Created and maintained by the user, the Device Table is resident
in a Csect named PMIDEVTB. Individual entries (one per terminal type)
are created by use of the DEVICE macro (specifying message editing and
formatting control characteristics of each device type). The end of
the table is indicated by four bytes of hexadecimal 'FF’', generated by
the PMISTOP macro. The location in core of the PMIDEVIB Csect is
pointed to by a V-type address constant in the field SPADEVIB of the
System Parameter Area.

3-15

Chapter 3 Message Management

The member PMIDEVTB on SYMREL contains a sample Device Table
which may be updated or replaced by the system manager to define the
installation device types. A user-assigned device type (DEVICE macro,
TYPE parameter) is referenced by the STATION macro, IOCODE parameter.
The Device Table structure is as follows:

PMIDEVTB CSECT
DEVICE .
DEVICE .
DEVICE .
PMISTOP
END

To add a new device type to the table, code the necessary DEVICE
macro before the PMISTOP, then reassemble and relinkedit. The Device
Table is accessed by all the utilities, and also by internal Intercomm
functions, and therefore is required in all regions.

3.4.3 Broadcast Table

The Broadcast Table is core-resident in a Csect named BROADCST and
linkedited with the member name PMIBROAD. The table is created and
maintained by the user. [Each entry in the Broadcast Table represents
one broadcast group. The end of this table is indicated by four bytes
of hexadecimal 'FF', generated by the PMISTOP macro.

The member PMIBROAD on SYMREL contains a sample Broadcast Group
Table which may be wupdated or replaced by the system manager. The
Broadcast Group "TOALL" is used by the optional modules USRSTART and
USRCLOSE to send a message to all terminals in the group at startup and
closedown time.

The Broadcast Table is defined by the BCGROUP macro. The
broadcast group name (five bytes) is followed by a specification of the
terminals within the group. A message destined for a broadcast group
(MSGHTID in the header) will cause a message to be passed to the Front
End for each terminal in the group. Therefore, all terminals in a
broadcast group must be of the same device type. The Broadcast Table is
accessed by the Output Utility, Message Mapping Utilities, and the
Intercomm Front End.

In the following sample Broadcast Table (released as member
PMIBROAD), one broadcast group is defined:

BROADCAST CSECT
BCGROUP GROUP=TOALL, TERMS=(CNTO1,TEST1)
PMISTOP
END

3-16

Chapter 3 Message Management

An optional routine, BROADRTIN, will assist in smoothing the
storage requirement peaks when processing broadcast messages. If
included, BROADRTN will generate one message at a time with a small
time delay before generating the next message. If BROADRTN is used,
the module must be in the resident portion of Intercomm, and in the
same region as the Output Utility.

3.4.4 Message Mapping Utilities Requirements

The Message Mapping Utilities provide input message editing and
output data formatting capabilities to Intercomm subsystems through
callable subroutines. MMU allows a unified specification of input and
output formatting requirements, and provides simplified format (screen
template) generation and data insertion. It can be used instead of the
Edit and Output Utilities. :

MMU includes all processing options of the Edit and Output
Utilities, in addition to control and attribute character insertion.
MMU also provides a means of generating symbolic versions of message
data areas which can be copied into the application source module for
ease of definition and reference.

Tables required by MMU include the Device Table and Station Table
and, optionally, the Broadcast Table. General device characteristics
may be overridden for an individual terminal wvia the DVMODIFY macro
coded in the Station Table after the PMISTOP. Additional design and
implementation considerations for MMU are documented in Message Mapping
Utilities.

3.4.5 Edit Utility Requirements

The Edit Control Table (ECT) contains all information necessary
to perform editing of a message by the Edit Utility. The Edit Control
Table is a variable-length table created and maintained by the user, as
described in the Utilities User Guide.

The table resides in core, in a separate Csect labeled VERBTRBL.
The member PMIVERBS on SYMREL contains required ECT entries for the
Intercomm verbs which require Edit Utility processing. User table
entries may be added to this member wvia COPY member USRVERBS, or an
entirely new VERBTBL Csect may be created. In either case, care must
be taken to ensure that each new entry has been thoroughly tested prior
to execution in production mode. Disk-resident table entry references
are coded within the core-resident table. Each disk-resident entry is
assembled and linkedited individually, for loading to the VRBOOO data
set via the File Load Utility (PMIEXLD). A DD statement for VRBOOO
must be included with execution JCL, if disk-resident entries are used.

3-17

Chapter 3 Message Management

The Intercomm system manager must define the systemwide field
separator character used by the Edit Utility in scanning a message text
for field delimiters. This same character is used by the Intercomm
Front End to separate the verb from other message text. The SETENV
global specification for &SEPCHAR in a BTAM/TCAM Front End must
correspond to coding of the SEP parameter of the SPALIST macro to
ensure consistent operation.

User-coded edit subroutines may be added, but must be coded in
Assembler Language. If used, the system manager must code the SPALIST
macro EDITRTN parameter to indicate the highest-numbered edit routine
in use. Coding specifications are in the Utilities Users Guide.

In addition to controlling the table specifications for the Edit
Utility and ensuring their validity in the production environment, the
system manager may control optional edit features via conditional
assembly. The globals listed below control conditional assembly of the
member PMIEDIT. The globals are defined in the member INTGLOBE and
specified in the member SETGLOBE.

Global Default
Definition Specification
(INTGLOBE) Option Defined (SETGLOBE)

&EDERRS &EDERRS code specifies that the maximum SETB O
&EDERMAX | number of error messages per input verb is SETA 5

limited by &EDERMAX. To suppress this
feature, use &EDERRS SETB 1.
&OPTRPT &OPTRPT code specifies that error messages SETB O
for non-required fields are not generated.
To get error messages use &OPTRPT SETB 1.
&DELCHNG | &DELCHNG code controls the CANCEL/CORRECT | SETB 1
feature for keyword input. To activate
this feature, use &DELCHNG SETB 0.

The Edit Control Program (PMIEDIT) must be a resident module, but
the edit subroutines (Intercomm or user-supplied) may be resident,
linkedited as part of an Overlay Region A subsystem group to be
resident only when the subsystem which requires their use is loaded, or
linkedited within the Intercomm Transient Subroutine Overlay Region.
Certain constraints apply in this 1latter case with respect to
situations where one subroutine calls another; all called subroutines
must be linkedited in the same load segment as the calling subroutine.

3-18

Chapter 3 Message Management

3.4.6 Output Utility Requirements

The Output Utility (PMIOUTPT) is defined by three Subsystem
Control Table entries in the member INTSCT. This allows routing of
messages to the Output Utility via three subsystem codes and
corresponding subsystem queues. Subsystem U 1is for standard full
messages; V is only for segmented messages, and N is for messages to
the control terminal.

If segmented messages are processed by the Output Utility, (that
is, a series of messages destined for the same terminal, identified by
message header VMI=X'51’, X'52', X'5C', or X'53' for each segment of
the message text) the System Manager must be aware of three parameters
on the SPALIST macro controlling message processing:

e DTIMS, which is the delay time between attempts to check the
availability of the terminal to assign it to a "segmented
message in progress" condition by the PMIDVASN module.

e NTIMS, which is the maximum number of attempts that are to be
made to assign a terminal to a "segmented message in
progress" condition when a terminal is already busy with
other segmented message processing.

e TIMS, which is the time wvalue (multiplied by two minutes)
which specifies allowable time between processing of the
VMI=X'51' and VMI=X'53' messages; that 1is, the duration
allowed for device assignment to a "segmented message in
progress" condition. If a time-out occurs, an error message
is routed to the destination terminal indicating SEGMENTED
MESSAGE TIMEOUT.

The following globals (defined in INTGLOBE and specified in
SETGLOBE) control conditional assembly options of the Output Utility.

Global Option Defined Default

&DDQBACK DDQ Automatic Subsystem Input not used SETB 0
(SETB to 1 to activate this facility)

&BROAD Broadcast Groups in use SETB O
(SETB to 1 to suppress this facility)

&RPTBLE Batch Report Table Facility SETB 0
(SETB to 1 to suppress this facility)

SALTRPT Alternate Format Table Facility not in use SETB 1
(SETB to O to activate this facility)

&OUTEXIT User Output Exit USROTEDT not used SETB 1
(SETB to O to activate this facility)

3-19

Chapter 3 Message Management

3.4.6.1 Adding OQutput Format Table Entries

User-generated Output Format Table (OFT) entries may be added to
the Intercomm system as either core-resident or disk-resident. Each
user entry 1is identified by the name RPTOnnnn, where nnnn is in the
range 0051 to 9999, Numbers 1-50 are reserved for Intercomm use.
Individual table entries (REPORTs) must be assembled and linkedited
separately. These table entries must not use the Csect name PMIRCNTB
nor include a PMISTOP macro. Generation of OFTs is described in the
Utilities Users Guide.

Two members are contained on SYMREL to facilitate linkedit of OFT
entries for the core-resident table: (1) PMIRCNTB--Table Heading
(Csect name PMIRCNTB); and (2) PMIRCEND--Table End (PMISTOP macro).
In an Intercomm linkedit generated by the ICOMLINK macro, these members
bracket the common system OFT entries which should be resident. Other
Intercomm OFT entries may be made resident, if desired. See also
installation of system command verbs requiring REPORTs, as described in
System Control Commands.

The following linkedit control statements are used to construct
the core-resident OFT (entries do not have to be in numeric sequence):

INCLUDE SYSLIB(PMIRCNTB) Before All Resident Reports
INCLUDE SYSLIB(RPTO00008) Intercomm Reports
INCLUDE SYSLIB(RPT00009)
INCLUDE SYSLIB(RPTO00043)
INCLUDE SYSLIB(RPTO00045)
INCLUDE SYSLIB(RPTOOOnn)
User Reports

INCLUDE SYSLIB(RPTOnnnn)
INCLUDE SYSLIB(PMIRCEND) After All Resident Reports

Disk-resident OFT entries have no entry in the core-resident
table. They are loaded to the BDAM data set RCTO00 via the File Load
Utility (PMIEXLD) for access at execution time. A DD statement for
RCTO00 must be present in the Intercomm execution JCL. Many Intercomm
error and statistical messages are produced via OFT numbers 1-50
released as member names RPT00001 to RPT00050 on SYMREL. These table
entries are loaded to RCTO00 at system installation time. The block
size of RCTO00 must be a minimum of 1800 to accommodate Intercomm OFTs.

3-20

Chapter 3 Message Management

3.4.6.2 Error Messages from the Output Utility

Error messages reflecting problems encountered during message
processing by the Output Utility are generated and queued for
subsequent processing via the Output Utility. The messages are
formatted according to OFT entries which may be disk-resident. Each
error message is prefixed with identifying information:

SEQ NO (Monitor Message Number of message in error)
SscC (Sending Subsystem Code)

RSC (Receiving Subsystem Code: U, N or V)

TID (Destination Terminal of message in error)

Each error message explicitly defines the reason for rejecting
the message being processed, for example:

THE FROM IS GREATER THAN THE TO FIELD.
REPORT NUMBER NOT IN MESSAGE.

RCT nnnn IS INVALID. NOT FOUND. (OFT entry missing for nnnn)

See Messages and Codes for a precise listing of Output Utility
error messages.

3-21

Chapter 3 Message Management

3.4.6.3 OQutput User Exit--USROTEDT

An optional user-coded exit, USROTEDT, is available in PMIOUTPT.
Before sending a message to the Front End, the Output Utility issues a
conditional call (CALLIF) to USROTEDT, if such a routine has been
written and included. USROTEDT is also called by FESEND before (F2)
logging and queuing an output message 1if a subsystem calls FESEND
(FESENDC) directly. In a Multiregion environment, if PMIOUTPT 1is
included in a satellite region, USROTEDT should be included only in the
control region (called by FESEND). This will prevent it from being
called twice. Standard linkage conventions are to be used.

The parameter list passed to USROTEDT via register 1 contains:

1. Address of message

2. Address of System Parameter Area

3. Address of a fullword in which the user-written routine must

place a return code (see FESEND and subsystem return codes
described in Programmer'’s Guides).

Any return code other than 0 will cause PMIOUTPT or FESEND to
stop the message from being queued for the Front End (no error message
issued if called by FESEND); the message is flushed by the caller. 1If
the user wishes to create an entirely new message area, an area of
storage may be obtained (via the STORAGE macro) and a new message may
be created consisting of header and text. Do not free the storage area
occupied by the old message. Change the address of the message in the
parameter list to reflect the address of the new message.

To generate the code to call USROTEDT, make sure the global

&OUTEXIT was set to O in SETGLOBE when FESEND and PMIOUTPT were
assembled for Intercomm installation.

3.4.6.4 OQutput User Exit--USROUTCK

USROUTCK 1is a user-coded user exit conditionally called (via
CALLIF) by PMIOUTPT. 1Its purpose is to allow the user to determine if
PMIOUTPT is to process the unformatted message, based on installation-
dependent criteria.” If the message is to be cancelled, USROUTCK must
free it before returning to PMIOUTPT. 1In this case, the user exit is
responsible for notifying the terminal that the message was cancelled,
if a response is expected.

At entry to USROUTCK, register 8 points to the input message
(header). If PMIOUTPT is not to process the message, a nonzero return
code must be returned by USROUTCK to PMIOUTPT in register 15;
otherwise, a zero return code is required, indicating PMIOUTPT is to
process and/or forward the message to FESEND. If the message is
cancelled, PMIOUTPT returns immediately to the Subsystem Controller
with a zero return code. Standard linkage conventions are to be used.

3-22

Chapter 3 Message Management

3.4.7 Change/Display Utility Requirements

The Subsystem Control Table entry for the Change/Display Utility
is provided in the released member INTSCT. The SCT defines the CHANGE
module as a resident subsystem. The user may redefine the
Change/Display entry as a dynamically loaded subsystem. Other modules
referenced by CHANGE include DISPLAY, FORMAT, CRUNCH, PTRNTBLE, and the
CHNGTB table. The UTILITY parameter of the ICOMLINK macro is used to
generate the include statements.

All file (format) description records (FDRs) for the
Change/Display Utility are disk-resident (ddname DES000) table entries
loaded via the File Load Utility (PMIEXLD). See the Utilities Users
Guide for coding specifications, a description of application subsystem
interface to the CHANGE utility, and the required user-coded CHNGTB
table. The DD statement for DES000 must be specified in the Intercomm
execution JCL if Change/Display 1is wused. The released PMIVERBS
contains required ECT entries for the CHNG and DSPL verbs for this
utility.

User files accessed via the utility are defined via the GENFTBLE
macro in the Intercomm File Table (PMIFILET). Additional
considerations are:

e There must be an entry in the File Table for each Intercomm
disk-resident table data set (RCT000, VRBO0O, DES000, etc.)
as well as files accessed via Change/Display.

e The entry in the File Table defines the block size for data
set access which must be greater than or equal to the
physical block size of the user file data block on disk. If
the optional module PMICKFTB is included, these block sizes
are verified at startup and dynamically corrected if
required.

e The last entry must be followed by a PMISTOP macro.

Following is a sample PMIFILET:

PMIFILET CSECT
ENTRY PMIFILTB

PMIFILTB EQU *
GENFTBLE FNAME=RCT000,BLKSIZE=1800,TYPE=BDAM
GENFTBLE FNAME=DES000,BLKSIZE=750,TYPE=BDAM
GENFTBLE FNAME=VRBOOO,BLKSIZE=750, TYPE=BDAM

* BLKSIZE FOR DES000,RCT000,VRBOOO CORRESPOND TO INTERCOMM RELEASE
* SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE ENTRIES.
* ADD USER FILE DESCRIPTIONS HERE.
*
GENFTBLE FNAME=USERFILE,BLKSIZE=xxxx, TYPE=ISAM,DESNUM=7
PMISTOP
END

3-23

Chapter 3 Message Management

3.5 MESSAGE PROCESSING FACILITIES

The following subsections describe other Intercomm facilities for
queuing and processing messages.

3.5.1 Message Switching

The standard terminal-requested message switching facility is
activated by the SWCH system control command which uses a subsystem for
the switching and allows messages to be switched to one or more
receiving terminals, as well as to Broadcast Groups.

The Intercomm Front End also provides a Fast Message Switch
facility, as it recognizes input messages which contain, in place of
the normal verb, the five-character name of the single terminal to
which the message should be forwarded. For example, terminal NYCOl
sends a message to terminal BOSO7 in the following format:

BOSO07,THIS IS A SWITCHED MESSAGE

The message would be routed, completely within the Front End, to
terminal BOSO7. The receiving terminal name is replaced by the sending
terminal name so that the origin of the message is known. The message
sent to BOS07 would be:

NYCO1,THIS IS A SWITCHED MESSAGE

As with the standard message switching facility, no reformatting
of the message is done. Messages should therefore be switched only to
terminals which have hardware characteristics compatible with the
sending terminal. For example, a multiline message from a terminal
which uses NL (new 1line) characters should not be switched to a
terminal which requires CR/LF (carriage return, line feed) characters.

If the receiving terminal is not active, or is not currently able
to receive an output message, the message remains queued until it can
be transmitted. Fast Message Switch cannot be used for a Broadcast
Group name, use the SWCH command.

3.5.2 Multimessage Queuing via the Dynamic Data Queuing Facility

The Front End Data Queuing feature operates in conjunction with
the Intercomm Dynamic Data Queuing Facility. It enables an application
to send to the Front End a dynamic data queue (DDQ) that contains
messages to be transmitted to a terminal. Thus, instead of sending one
message at a time and having each message queued for Front End
transmission, and then dequeued by the Front End, an entire group of
messages may be placed on a DDQ and treated as one message.

3-24

Chapter 3 Message Management

For implementation of the data queuing feature, refer to the
applicable application programmer guides and the Dynamic Data Queuing
Facility for further details. 1In addition to the Dynamic Data Queuing
Facility, the Front End Control Message Facility (see below) must be
installed in order to use the Front End Data Queuing feature.

The Dynamic Data Queuing Facility is also used for easy, orderly
retrieval of segmented input messages, and may be used for queuing of
output messages to the Change/Display or Output Utilities.

3.5.3 Front End Control Message Facility

This facility allows application subsystems to generate and
transmit control messages to the Front End. Three types are currently
defined. A control message (FECM) may be either a feedback-request, a
release-request, or a DDQ-identifier for a group of messages collected
on a DDQ. For implementation, the module FECMMOD must be included in
the Intercomm linkedit.

Feedback-requests, when sent to a terminal, cause the Front End
to send a message, containing user-specified text, to a user-specified
subsystem. This message, which is sent when all messages in front of
the feedback-request message have been transmitted to the terminal, can
be used, for example, to determine when a report has actually been
printed. The feedback facility also allows synchronization of message
transmission with subsystem processing. A subsystem may issue a
feedback FECM which signals the Front End to mnotify the 1issuing
subsystem or another subsystem when a certain output message has been
transmitted to a destination terminal.

DDQ-identifier control messages designate a DDQ containing
messages to be sent to the terminal. These messages, which must be
preformatted (VMI=X'67' or X'57'), are read from the DDQ and sent to
the terminal. The DDQ, subject to user specification, may be either
freed or retained. By retaining the DDQ, the messages may be
broadcast; therefore it is a convenient facility to send canned reports
or other data. The DDQ may also contain FECMs for other DDQs, or for
feedback, mixed in with real output messages (only at the end of the

DDQ, if VTAM). DDQ FECMs require dedicated queues for the receiving
terminals.

Release-requests, when sent to a terminal, override normal CRT
processing logic, which requires a one-for-one correspondence between
input and output messages. When the release FECM is processed by the
Front End, it causes the next message queued for the CRT terminal to be
transmitted immediately, rather than waiting for input from the
operator. Processing is the same as if a RLSE command was generated
internally. The Front End converts the command to a FECMRLSE. Under a
VTAM Front End, certain protocols (HDFF) may preclude immediate
transmission of the next message; see SNA Terminal Support Guide.

3-25

Chapter 3 Message Management

3.5.4 Page Facility

The Page Facility provides a browsing capability for CRT output
messages that have been collected on a disk data set, rather than being
queued for the terminal. A subsystem may request MMU to pass messages
to the Page Facility which were formatted by MAPOUT processing, or the
subsystem may call the Page Facility directly with messages to be
formatted later by the Change/Display Utility and/or the Output
Utility.

The first message of the series is always returned directly to
the terminal. The terminal operator subsequently uses Page Facility
commands to browse and ultimately save or discard the collected
messages. Further details are described in Page Facility.

3.5.5 Intermediate Message Data Storage

Two facilities are provided for storage of data by a message
processing thread between input messages when an interactive

conversation is in progress. These are the Store/Fetch Facility (see
the manual of that name), and the CONVERSE facility described in the
applicable Programmers Guide. The former provides for storage and

retrieval of saved data as data strings in core or on disk. The saved
data may consist of tables, counters, message data, or file data, as
the strings may be of any length. The CONVERSE facility is used to
save and restore the dynamic working storage of a reentrant COBOL or
Assembler Language subsystem between input messages, that is, while
waiting for a response to the last output message. Installation and
programming considerations for these facilities are described in the
referenced manuals.

3.6 THE SYSTEM PARAMETER AREA (SPA)

The System Parameter Area consists of systemwide variables and
system component addresses controlling all message processing
functions. These elements are defined in the member INTSPA which
contains the following: ‘

e SPA CSECT--the System Parameter List, defined by the
SPALIST macro.

e USERSPA: This 1is an optional user extension to the
System Parameter List, with user-defined variables and
addresses, coded as a separate source module in SYMUSR.

® SPAEXT: This is the Intercomm extension to the System
Parameter List. SPAEXT Csect 1is also generated by the
SPALIST macro, using the EXTONLY=BOTH parameter.

Figure 3-4 illustrates typical JCL which may be used to create
INTSPA, or the released member on SYMREL may be modified to wuser
requirements and placed on SYMUSR.

3-26

Chapter 3 Message Management

3.6.1 System Parameter List (SPA Csect)

The System Parameter List 1is a fixed area of 500 bytes in
length. It contains addresses, control information and statistics for
the entire Intercomm system. When building the SPA Csect, the System
Parameter List is generated by coding the SPALIST macro.

3.6.2 User Extension to the System Parameter List (USERSPA)

The variable-length USERSPA allows definition of user fields or
table areas common to all user subsystems. Since all subsystems are
passed the address of the SPA as an entry parameter, application
subsystems may not alter values within the System Parameter Area.
Users must instead add user fields to the SPA Csect via USERSPA. User
additions to the System Parameter Area are coded as a separate source
module named USERSPA, and labeled SPAUSER. When the SPALIST macro is
assembled, the source module USERSPA will automatically be copied into
the System Parameter Area, at a displacement of 500 bytes from the
beginning of the SPA (plus X'lF4'). The maximum length allowed for
USERSPA is 4095 minus 500, or 3595 bytes (for addressability).

USERSPA should be correctly referenced by application
subsystems. For application programmers’ use in defining this user
extension, source statement library members should be provided in the
appropriate language available for copying into the program.

3.6.3 Intercomm Extension to the System Parameter List (SPAEXT Csect)

The SPAEXT Csect 1is variable in length to allow for continued
flexibility in adding systemwide control variables to the System
Parameter List.

3.6.4 Separate Assembly of the SPA and the SPAEXT Csects

The number of VCONs required by the addition of USERSPA and/or
edit routines may necessitate separate assembly of the SPA Csect and
the Intercomm extension to the System Parameter List. The SPALIST
macro must be assembled twice, once to generate the SPA Csect and once
to generate the SPAEXT Csect. With the exception of the EXTONLY=YES
parameter, denoting generation of the SPAEXT, coding of the SPALIST
macro parameters must, in both cases, be 1identical. Currently,
approximately 250 VCONs are generated by the combined SPA and SPAEXT
Csects, along with VCONs for the Edit Utility routines EDIT000-009, if
specified for the region.

3-27

Chapter 3 Message Management

3.7 THE SUBSYSTEM CONTROL TABLE (SCT)

Each subsystem 1is defined to Intercomm by an entry in the
Subsystem Control Table, generated via the SYCTTBL macro coded in the
member INTSCT which contains the following:

® SCT Csect containing:

-- The Subsystem Control Table (SCT)--individual table entries
defining subsystem characteristics and message processing
scheduling parameters, defined via the SYCTTBL macro.

-- The Subsystem Control Table Overlay and Binary Search
Indices, generated via the GENINDEX macro.

e SCTEXT Csect containing the SCT Extension--automatically
generated SYCTTBL extensions for defining dynamically loadable
subsystems.

Figure 3-3 illustrates the relationship of the SPA, the SCT, and
the Overlay Index.

SYSTEM SUBSYSTEM
PARAMETER LIST CONTROL TABLE
INTSPA INTSCT
SCT CSECT:
SYSTEM RESIDENT AND
PARAMETER DYNAMICALLY
LIST LOADABLE
(SPA CSECT) SUBSYSTEM
--------------- SCT OVERLAY INDEX SCT'S
USERSPA / --------------
(OPTIONAL) HEADER PORTION 1ST OVERLAY
----------------------------------- /’ GROUP
> SCT'S
1ST OVERLAY GROUP | = The-cecccnnoan--
INTERCOMM SPA | = pe=-=c-cemccmacaannn- 2ND OVERLAY
EXTENSION — GROUP
(SPAEXT CSECT) 2ND OVERLAY GROUP SCT'S
——»
NTH OVERLAY GROUP \H NTH OVERLAY
GROUP
SCT'S
Figure 3-3. The System Control Components

3-28

Chapter 3 Message Management

‘ The SYCTTBL macro defines the following for each subsystem:

e Subsystem residency (overlay region, VS execution group,
dynamically loadable, or resident)

e Subsystem characteristics (subsystem code, program language,
reentrancy, entry point name, storage requirements, etc.)

° Processing specifications (queue sizes, queue overflow,
priority, concurrent message processing limits, scheduling,
etc.)

° Control parameters (time-out limit, snaps desired, logging,
cancellation criteria, file recovery, restart, etc.)

If more than 1000 SYCTTBL macros are defined in INTSCT, the
global values (released as 1000) in FEMACGBL must be reset to the
higher number desired to allow sorting of the greater number of
subsystems for the binary search index. Additionally, use of Assembler

H and/or a larger region size may be required for the assembly of
INTSCT.

Figure 3-5 illustrates the released member INTSCT on SYMREL which
provides for most of the Intercomm subsystems and indicates where user
SCT entries may be inserted via a user-coded copy member USRSCTS. 1If
an overlay structure is not used, the order of SCT entries is
immaterial as the Binary Search Index is used by Intercomm to find a
particular entry. Figure 3-4 shows JCL to create a USRSCTS and
‘hr assemble and link the released version of INTSCT which copies USRSCTS.

//SPA EXEC LIBELINK,Q=USR,NAME=INTSPA,LMOD=INTSPA
./ ADD NAME=INTSPA
* SYSTEM PARAMETER LIST
SPA CSECT
SPALIST A=A, EXTONLY=BOTH, CCNID=CNTO1,SEP=6B, X

other operands as desired

END
//*
//SCT EXEC LIBELINK,Q=USR,NAME=INTSCT, LMOD=INTSCT
//LIB.SYSIN DD *
./ ADD NAME=USRSCTS

* USER SUBSYSTEM CONTROL TABLE ENTRIES
SYCTTBL
SYCTTBL
//ASM.SYSIN DD DSN=INT.SYMREL(INTSCT) ,DISP=SHR
//
L Figure 3-4. Creating the System Parameter Area and SCT

3-29

Chapter 3 Message Management

SCT CSECT
DC CL8'SCTENTRY'’ SCTS BEGIN HERE.

33 Tt ST T Sb T T ot S S ot S Sb Sk S e 3 S Y St S S St S T S S St S S S S S b S S S S ot S dE S St sk b b S s b s bt e et b e ke e

* SCT DEFINITIONS (SYCTTBL'S) FOR INTERCOMM S/S *

3T T 3 St S T ST T b S T S T S ot S T b S T S T b S 3 S S S Sh S Y St S S S S S S Sk S o S Sk S S S b S S b e bk e bk

U SYCTTBL ECB=YES, SUBH=000, SUBC=U, LANG=RBAL, TCTV=120 ,MNCL~4, X
DFLN=PMIQUE, PCEN=10,NUMCL~10, SBSP=PMIOUTPT , RESTART=NO

\ SYCTTBL ECB=YES, SUBH=000, SUBC=V, LANG=RBAL, TCTV=120 ,MNCL=4, X
NUMCL~=10, SBSP=PMIOUTPT , RESTART=NO

N SYCTTBL ECB=YES, SUBH=000, SUBC=N, LANG=RBAL, TCTV=120 ,MNCL=4, X
DFLN=PMIQUE, PCEN=10,NUMCL=10, SBSP=PMIOUTPT , RESTART=NO

J SYCTTBL ECB=YES, SUBH=000, SUBC=J, LANG=RBAL, TCTV=0,MNCL=1, X
NUMCL~2 , SBSP=PMICLDWN, PRTY=3,RESTART=NO

LL SYCTTBL ECB=YES,SUBH=L, SUBC=L, LANG=RBAL, TCTV=120,MNCL~4, X
NUMCL=10, SBSP=LOADSCT , RESTART=NO

MM SYCTTBL ECB=YES, SUBH=M, SUBC=M, LANG=RBAL, TCTV=120,MNCL=4, X
NUMCL=10, SBSP=MMUCOMM , RESTART=NO

M SYCTTBL ECB=YES,SUBH=L, SUBC=M, LANG=RBAL, TCTV=120,MNCL~4, X
NUMCL~10, SBSP=LMAP , RESTART=NO

GP SYCTTBL ECB=YES, SUBH=G, SUBC=P, LANG=RBAL, TCTV=120,MNCL=4, X
NUMCL=10, SBSP=GPSS , LOG=NO , RESTART=NO

T SYCTTBL ECB=YES,SUBH=000,SUBC=T,LANG=RBAL,TCTV=120,MNCL=4, X
NUMCL=10, SBSP=FINTUNER , LOG=YES , RESTART=NO

C SYCTTBL ECB=YES,SUBH=000, SUBC=C, LANG=RBAL,TCTV=60,MNCL=3, X
NUMCL=10, SBSP=SYSCNTL, LOG=YES , RESTART=NO

F SYCTTBL ECB=YES, SUBH=000, SUBC=F, LANG=RBAL, TCTV=120 ,MNCL~4, X
NUMCL~10, SBSP=DYNSSUP, LOG=YES ,RESTART=NO

B SYCTTBL ECB=YES, SUBH=000, SUBC=B, LANG=RBAL, TCTV=120 ,MNCL=2, X
NUMCL=2 , SBSP=SWITCH, LOG=NO ,RESTART=NO

P SYCTTBL ECB=YES, SUBH=000, SUBC=P, LANG=RBAL, TCTV=120 ,MNCL=5, X
NUMCL~5 , DFLN=PMIQUE, PCEN=5, SBSP=PAGEMSG , RESTART=NO

W SYCTTBL ECB=YES,SUBH=000, SUBC=W, LANG=RBAL, TCTV=120 ,MNCL=4, X
NUMCL~10, SBSP=SENDBACK , RESTART=NO

R SYCTTBL ECB=YES, SUBH=000, SUBC=R, LANG=RBAL, TCTV=120 ,MNCL=4, X
NUMCL~10 , SBSP=IXFRPTIQ, RESTART=NO

H SYCTTBL ECB=YES, SUBH—=000, SUBC=H , LANG=RBAL , TCTV—120 JMNCL=4, X
DFLN=PMIQUE, PCEN=10 , NUMCL~4 , SBS P=CHANGE , RESTART=NO

HH SYCTTBL ECB=YES,SUBH<H, SUBC=H, LANG=RBAL TCTV=120 ,MNCL~1, X
DFLN=PMIQUE, PCEN=10, NUMCL~4 , SBSP=CHANGE , RESTART=NO

cc SYCTTBL ECB=YES, SUBH=C, SUBC=C, LANG=RBAL, TCTV=120,MNCL~4, X
NUMCL=10, SBSP=COPYSS ,RESTART=NO

wI SYCTTBL ECB=YES, SUBH=W,SUBC=1I, LANG=RBAL, TCTV=120,MNCL=4 X
NUMCL=10, SBSP=FEWHOI ,RESTART=NO

WU SYCTTBL ECB=YES, SUBH=W, SUBC=U, LANG=RBAL, TCTV=120,MNCL=4 , X

NUMCL~10, SBSP=FEWHOU,RESTART=NO
e T T e e e e

* SCT DEFINITIONS (SYCTTBL’S) FOR USER SUB/SYSTEMS *
kTR Tk K kA R R R AR KRR KRR ARk ke Ak Ak kbbb kbbb bk ke ke k
COPY USRSCTS
GENINDEX
PCENSCT
END

Figure 3-5. INTSCT Coding of Intercomm Subsytems
3-30

J

Chapter 3 Message Management

Optionally, control of maximum thread concurrency for a group of
subsystems may be implemented by coding a RESOURCE macro prior to all
the SYCTTBL macros. The RESOURCE macro is used to provide a systemwide
limit on the number of threads that may concurrently access a specific
system resource, or is often used to control concurrent access to a
data base. It is referenced via the SYCTTBL macro RESOURC parameter.

3.7.1 Coding Subsystem Control Table (SCT) Entries

The SCT defines all subsystems executing under Intercomm. The
table entries coded via the SYCTTBL macro must be in the following
sequence:

1. Resident and dynamically loadable subsystem entries

2. Entries for subsystems in each Overlay Region A overlay
segment (OVLY parameter) or in each VS execution group (EXGRP
parameter), if used.

The OVLY parameter defines the subsystem’s residency, and is
coded according to the following conventions:

®¢ OVLY=0--indicates a resident, or dynamically 1loadable
subsystem. Default.

e OVLY=1--indicates an Overlay Region B subsystem, to be
scheduled by MONOVLY (see Section 3.9.6).

e OVLY=2--indicates an Overlay Region C subsystem, to be
scheduled by MONOVLY.

e OVLY=3--indicates an Overlay Region D subsystem, to be
scheduled by MONOVLY.

® OVLY=4--indicates a subsystem within an Overlay Region A, or
VS execution group, subsystem group. It must be coded in
ascending consecutive order: the first number must be 4; the
highest permissable number is 62.

OVLY=62

Figure 3-6 illustrates a sample coding of SCTs, with resident and
Overlay A Intercomm-provided subsystems. More than one subsystem may
belong to the same Overlay A group. Each group is delimited by a
required label: SCTLRES--for resident (dynamically 1loadable)
subsystems; SCTLOVn--for Overlay A subsystem groups, where n is in the
range of 1 to 59 (corresponding to OVLY numbers 4-62).

3-31

Chapter 3

Message Management

SCT
*

SCT

SCTRES
B
W

SCTLRES
*

H
HH

SCTLOV1
*

U
\
N

SCTLOV2
*

J

SCTLOV3
*
LL

SCTLOV4
*

T
SCTLOVS
*

GP

SCTLOV6

CSECT

DSECT DESCRIPTION
COPY SCTLISTC

CSECT
DC C'SCTENTRY' SCTS BEGIN HERE.
DS OF

SYCTTBL SUBC=B,SBSP=SWITCH,OVLY=0,NUMCL=4 , LANG=RBAL,MNCL=2
SYCTTBL SUBC=W,SBSP=SENDBACK,OVLY=0,NUMCL~4, LANG=RBAL
EQU *
OVERLAY A GROUP ONE
SYCTTBL SUBC=H,SBSP=CHANGE,OVLY=4,NUMCL=4 , LANG=RBAL ,MNCL~4, X
DFLN=PMIQUE, PCEN=10

SYCTTBL SUBH=H, SUBC=H, SBSP=CHANGE,NUMCL=4 ,0VLY=4, X
LANG=RBAL,MNCL~=1,DFLN=PMIQUE, PCEN=10
EQU * END OF OVERLAY ONE
OVERLAY A GROUP TWO
SYCTTBL SUBC=U, SBSP=PMIOUTPT,OVLY=5,NUMCL=10, X
LANG=RBAL,MNCL=4 ,DFLN=PMIQUE, PCEN=10
SYCTTBL SUBC=V,SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X
LANG=RBAL,MNCL~1,DFLN=PMIQUE, PCEN=10
SYCTTBL SUBC=N, SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X
LANG=RBAL,MNCL~4 ,DFLN=PMIQUE, PCEN=10
EQU * END OF OVERLAY TWO
OVERLAY A GROUP THREE
SYCTTBL SUBC=J,SBSP=PMICLDWN,OVLY=6,RESTART=NO,NUMCL=2, X
LANG=RBAL, PRTY=3 ,MNCL=1
EQU * END OF OVERLAY THREE

OVERLAY A GROUP FOUR
SYCTTBL SUBC=L, SUBH=L, SBSP=LOADSCT, NUMCL~4 ,OVLY=7 , LANG=RBAL
EQU *

OVERLAY A GROUP FIVE

SYCTTBL SUBC=T,SBSP=FINTUNER,NUMCL=4,0VLY=8,LANG=RBAL, X
RESTART=NO
EQU *

OVERLAY A GROUP STIZX

SYCTTBL SUBH=G,SUBC=P, SBSP=GPSS,LANG=RBAL,OVLY=9,NUMCL=4, X
RESTART=NO

EQU *

GENINDEX

PCENSCT

END

Figure 3-6. Sample Coding of INTSCT with an Overlay Structure

3-32

J

Chapter 3 Message Management

For MVS wusers wishing to code VS execution groups, instead of
‘ Overlay Region A subsystem groups, the OVLY parameter is coded as O,
and the EXGRP parameter is used as follows:

EXGRP=4--indicates a resident subsystem within a VS execution
group. It must be coded in ascending consecutive order: the
first number must be 4; the highest possible number is 62.

EXGRP=62

NOTE: If more than one subsystem code 1is used for the same
subsystem (accessed by multiple verbs), then the OVLY or
EXGRP parameter value must be the same on each SYCTTBL

pointing to that subsystem. Also, subsystem residency
must be the same (either resident, or overlay, or
dynamically 1loadable). Testing for correct coding of

OVLY or EXGRP parameters in ascending consecutive order
is done at assembly time.

VS execution group scheduling is similar to Overlay Region A
scheduling except that, instead of the overlay supervisor, the MVS
paging supervisor is used to invoke loading of the subsystem logic into
main storage. See also Chapter 7 on MVS installation and page
preloading.

Figure 3-7 shows a listing of Intercomm-supplied subsystems and
‘hr’ reserved subsystem codes. If no specific wvalue is listed for SSCH,
then it must be binary zeros (000--default). Additional subsystems for

special feature commands are described in System Control Commands.

3-33

Chapter 3 Message Management
SSCH SSC Function (Member Name)
A G Autogen (ISGEN)
o e | Copy processing for BTAM 3270 terminals (COPYSS)
o e | Data Entry Facility (INTBETA)
e | e | General Purpose Subsystem (GBSS)
W | w | Single-thread Display--segmented messages (CHANGE)
R A Loading dynamically linkedited modules (LOADSCT)
R 'R MMU dynamic map group loading (LMAP) |
| w | MU command processing (MMUCOMM)
w1 | Display entering terminal data (FEWHOL)
v v | Display other terminal data (FEWHOI: entry FEWHOU)
""""" B | Message switching between terminals (SWITCH)
""""""" C | system display and control (SYsoNtL)
""""""" E | Dummy subsystem for ESS processing ($§$§SECU)
""""" F | Dynamic SYCTTBL modification (DWNsSUP)
""""" H | Change/Display Utility (CHANGE)
'''''''' 5| Closedown (CLOSDWN3: entry PMICLDWN)
e k| Multiregion commands--control region only (MRCONSS)
""""" M | Internal processing (Time Zome, ete.)
"""""" P | Page Facility (PAGEMSG)
""""""" Q | Checkpointing (CHcKPTSS)
e R | File Handler Statistics (IXFRPTOL: entry IXFRPTIQ)
""""""" s | Basic Security processing (PMISIGN)
"""""" T | Fine Tuner processing (FINTUNER)
""""" UNV| output Utility (emrovrery
""""" W | Message echoing (SENDBACK) |
"""""" Z | MROTRUT--satellite regions only under MRS |

Figure 3-7.

Intercomm-Supplied Subsystems

3-34

Chapter 3 Message Management

3.7.2 Coding Subsystem Control Table Indices (GENINDEX

The SCT 1Indices consist of two elements: the SCT Overlay
Index--used for scheduling work for resident and dynamically loadable
subsystems, and for overlay or execution groups within the Subsystem
Control Table; and the SCT Binary Search Index--used for finding an
entry in the Subsystem Control Table. Each Overlay Index entry is
three words in length. There is one entry for resident and dynamically
loadable subsystem SCTs (OVLY=0), followed by one entry for each
overlay group, if any.

As illustrated in Figure 3-3, the System Parameter Area points to
the SCT Overlay Index, which in turn is used to locate the individual
SCT groups.

As illustrated in Figure 3-5, the SCT Indices are generated at
assembly time by coding the GENINDEX macro after all the SYCTTBL
entries. However, if multiple overlay group indices for the same
Overlay A group are desired, or if no resident or dynamic load SCTs are
defined, the SCT Overlay Index must be hand-coded, as described in
Appendix C. In this case, the GENINDEX macro must be coded with the
parameter OVLYNDX=NO, and is placed after the user-coded Overlay Index.

3.7.3 Coding Overflow Disk Queue Allocations (PCENSCT)

As illustrated in Figure 3-5, the PCENSCT macro is coded after
the GENINDEX macro. This macro has no parameter and is coded only
once. Its function is described in Section 3.8.1.

3.7.4 Adding a Subsystem

In addition to coding the SYCTTBL for a new subsystem, the entire
Subsystem Control Table structure may have to be reevaluated to
determine the impact of the new subsystem on response time, throughput,
and queue space for all subsystems. Also, other table entries may be
required in order to test the new subsystem or utilize it in the
production environment.

The Front End Verb Table must be updated with the new verb(s) for

the added subsystem. Locking, conversational, and other Front End
processing parameters may have to be considered, depending on the
terminal type(s) being wused. Other Intercomm facilities, such as

ICOMPOOLs, may be affected, and table or disk-resident entries for the
Intercomm utilities may be required.

Chapter 3 Message Management

3.8 SUBSYSTEM PROCESSING SPECIFICATIONS

Subsystem response time and throughput are affected not only by
subsystem residency, but also by queue, scheduling and processing limit
specifications. These specifications are also defined via SYCTTBL
macro parameters for each subsystem.

3.8.1 Subsystem Queue Specifications

A subsystem queue is a list of messages awaiting processing by
the subsystem. These messages may be incoming transactions (from a
terminal), or passed from another subsystem. These queues are also
known as input queues, in contrast to output terminal queues of
messages awaiting transmission. Three types of queues may be defined:
core queues, high-priority core queues, and disk overflow queues.

At least one type of queue should be defined. The queuing method
is FIFO. Normally, a priority queue is defined only if more than one
verb is processed by the subsystem, and certain verbs (such as those
requiring little subsystem processing) should be processed as soon as
possible. A subsystem which is not response time dependent or which is
activated only periodically would have 1little use for a core queue
because a core queue ties up system resources for holding the
message(s) in core. A disk queue is used for overflow from the core
queue at high activity periods, or to hold messages when no core queue
is defined. The SYCTTBL AUXS parameter is coded when no core or disk
queues are defined.

The NUMCL parameter defines the number of elements in a core
queue and creates an entry in the internally generated PMICLZZZ Csect
which defines the core list (queues) for all subsystems operating under
Intercomm. The purpose of the core list is to contain the addresses of
all messages that are destined for a subsystem and are still in core.
When the core 1list 1is full, messages are written to overflow disk
queues that are accessed under the file name (JCL DD statement label)
specified by the SYCTTBL macro, DFLN parameter. If a disk queue is not
defined (DFLN parameter omitted), overflow messages are flushed and an
appropriate message is returned to the terminal named in the message
header.

In addition to the normal core queue, a priority core queue may
be defined (by the PRYMSGS parameter of the SYCTTBL macro) for those
messages requiring priority processing for fast response time. If the
priority queue is full when adding a priority message to a subsystem’s
queue, it will be added to the end of the normal queue (core or disk).
A priority message is recognized by Intercomm when a C'P’ is in the
message header field MSGHUSR. The P is inserted during Front End verb
processing if the BTVERB parameter HPRTY=YES was coded, or if a
subsystem initializes MSGHUSR before queueing a message for another
subsystem.

3-36

Chapter 3 Message Management

The disk queues are contained on BDAM data sets which must be
preformatted with dummy records via the Intercomm utility CREATEGF (see
Chapter 12). 1If a disk queue data set is to be shared among several
subsystems (PCEN parameter in SYCTTBL), assignment of space is
allocated at system startup time by the module CALCRBN, which
calculates the appropriate percentage of the actual number of blocks
(RBNs) on the data set and rounds that down to the nearest multiple of

8; a minimum of eight RBNs are allocated. If the data set referenced
by DFLN is exhausted, an indicative message 1is 1issued and startup
abends with a wuser code 44, Queue and block size considerations

include message lengths and traffic for a given subsystem, as well as
achievement of minimal I/0 activity, since messages with 1lengths
greater than disk queue block size are spanned. A maximum of 63
different disk queue data sets may be defined for the combined
subsystems in the Subsystem Control Table. The PCENSCT macro, coded
after the GENINDEX macro, will print the accumulated percentages per
disk queue data set as part of the assembly of the SCTs; the output
should be checked whenever a SYCTTBL is added. Typical output
generated by the PCENSCT macro is illustrated below.

% ACCUMULATED PERCENTAGES PER DISK QUEUE #*%x*

%% QUEUE NAME PERCENTAGE #%*
*, QUEUEN 40.0
* QUEUEA 100.0
* QUEUEC 100.0
*, QUEUEU 100.0
*, QUEUEH 80.0

3.8.2 Scheduling and Concurrent Processing Limits

SYCTTBL scheduling parameters are SCHED, ECB, and THRSH.
Processing limits are defined by the MNCL and RESOURC parameters, which
are also directly related to the residency and reentrancy of the
subsystem.

3.9 SUBSYSTEM RESIDENCY CONSIDERATIONS

The subsystem identifier, or receiving codes in the Intercomm
message header (MSGHRSCH and MSGHRSC fields), 1is coded for the
subsystem in the SUBH and SUBC parameters of the SYCTTBL macro. Each
SYCTTBL must have a unique set of codes which are used by the Intercomm
subsystem queuing routines to identify the specific subsystem to
process a transaction. Once found, the transaction is queued for later
dispatch of the subsystem. Dispatch considerations are based not only
on systemwide parameters defined for the SPALIST macro, but also on
subsystem residency, reentrancy and processing specifications.

3-37

Chapter 3 Message Management

3.9.1 Subsystem Reentrancy

Reentrancy is defined to Intercomm by the LANG parameter of the
SYCTTBL macro. See the applicable Programmers Guide for criteria for
reentrant subsystems under Intercomm which may process more than one
transaction (message) at a time (more than one thread dispatched), if
permitted by scheduling parameters.

3.9.2 Resident Subsystems

Definition of a subsystem as resident, dynamically loadable, in
an Overlay Region A, or in a VS execution group, 1is a function of
reentrancy, message traffic, message volume and storage requirements.
For efficiency, those reentrant subsystems with high volume and/or
traffic should be made resident. Subsystems with sporadic or single
periods of volume processing could be made dynamically loadable, while
those with lower volume but more constant traffic could be defined for
an overlay or execution group.

In this discussion, volume represents the possible total number
of transactions to be processed during an execution of Intercomm, while
traffic represents the number to be processed within a specific time
span. Storage requirements for processing of a transaction include not
only the program area, but also the dynamic working storage. (pool
areas).

Subsystem residency 1is also affected by the processing time
required, file and data base access, message formatting, etc., and
response time criteria.

Because 1loading delays are avoided, resident subsystems
potentially provide the best response time. They are defined to
Intercomm in the OVLY=0 group, as described above. Throughput is
controlled by scheduling parameters and also depends on external
storage requirements and processing time. Resident subsystems are
linkedited with resident Intercomm modules.

3.9.3 Overlay A and Execution Group Subsystems

Depending on scheduling and concurrent processing limits defined
for each subsystem within the overlay structure, Intercomm controls the
Overlay A processing. An overlay group may consist of one or more
subsystems which may be grouped according to reentrancy, programming
language, processing time, resource requirements, traffic, volume,
etc. Scheduling and concurrent processing limits are relevant, as,
once work 1is dispatched for one group in Overlay A, another group
cannot be overlaid into the area until all the dispatched threads have
completed processing.

3-38

Chapter 3 Message Management

Intercomm controls VS execution group processing, depending on
scheduling and concurrent processing limits defined for each subsystem
within the VS execution group. An execution group may consist of one
or more subsystems which are grouped according to reentrancy,
programming language, processing time, resource requirements, traffic,
volume, etc. Scheduling and concurrent processing limits are relevant,
since once work 1is dispatched for one execution group, no other
execution groups will be scheduled until the current group completes
its processing. This technique is useful in preventing excessive VS
paging overhead when real storage is at a premium; all nonzero EXGRP
subsystems are linked as resident in a contiguous group.

Those subsystems which are to be executed from Overlay Region A
must be linkedited according to the same structure depicted in Figure
3-6. In other words, all subsystems whose SYCTTBL macro OVLY parameter
is coded as 4 must be inserted in the same overlay segment, all OVLY=5
in the same segment, etc. These SYCTTBLs must have OVLY coded in
ascending, sequential order.

The following example illustrates a sample Subsystem Control
Table with two Overlay A groups defined. Linkedit control cards which
relate the OVLY parameter definitions to Overlay A INSERT statements
are illustrated in Figure 3-8.

* RESIDENT and DYNAMICALLY LOADABLE SUBSYSTEMS
SYCTTBL -----
SYCTTBL -----
* OVERLAY A GROUP 1
SYCTTBL SBSP=SUBSYSA,OVLY=4, ---
SYCTTBL SBSP=SUBSYSB,OVLY=4, ---
* OVERLAY A GROUP 2
SYCTTBL SBSP=SUBSYSC,OVLY=5, ---

Within one overlay segment, a substructure may be defined for
subroutines called by, and linked with, a particular subsystem, as
illustrated by OVERLAY AB; SUBX and SUBY in Figure 3-8. The
subroutines may not give up control to the Dispatcher (no calls to the
File Handler, etc.); if such logic is essential, the subsystem of the
called subroutine must be defined as single-thread processing.
Otherwise, calls in different message threads processed concurrently
for that subsystem will cause the overlay substructure to be "overlaid"
by mistake.

3-39

Chapter 3 Message Management

The appropriate control cards for eligible Overlay A Intercomm
routines may be generated via the ICOMLINK parameter OVLYSTR=YES which
also causes inclusion of LOADOVLY in the Intercomm linkedit. For
asynchronous overlay loading, also code ASYNCH=YES on ICOMLINK (causes
an include for ASYNCH), and code ASYNLDR=YES on the SPALIST macro.

//LKED.SYSIN DD *
INCLUDE
required Intercomm modules

INCLUDE SYSLIB(SUBSYSA)
INCLUDE SYSLIB(SUBSYSB)
INCLUDE SYSLIB(SUBSYSC)
OVERLAY A

Intercomm Overlay A modules

OVERLAY A

INSERT SUBSYSA

INSERT SUBSYSB
OVERLAY A

INSERT SUBSYSC
OVERLAY AB

INSERT SUBX
OVERLAY AB

INSERT SUBY

Figure 3-8. Sample Linkedit Statements for Overlay Region A
Subsystems

3.9.4 Dynamically Loaded Subsystems

No special table entries are required for dynamically loadable
subsystems, other than the LOADNAM and REUSE parameters on the SYCTTBL
macro. If the BLDL parameter indicates YES, the Subsystem Controller
searches the STEPLIB or JOBLIB directory only once for the required
member location. Thereafter, loading 1is performed based upon an
internally generated (BLDL) list of actual file locations. The system
control command, LOAD, must be used to indicate a change in location.
Each dynamically loaded subsystem is linkedited independently of the
main Intercomm load module. High-level language subsystems coded and
defined to Intercomm as reentrant may not, however, be linkedited as
reentrant. If linked as reusable, the loaded module will be reused by
the MVS Loader (if space not otherwise used after an Intercomm DELETE
issued) until a new BLDL is forced by use of the Intercomm LOAD
command.

3-40

Chapter 3 Message Management

The subsystem load module consists of the subsystem itself and
any called modules (compiler-oriented routines not loaded dynamically
by compiler-oriented code) which are not standard Intercomm/user
subroutines accessible wvia REENTSBS. Assembler Language subsystems
should load Intercomm facility addresses from the SPA/SPAEXT before
calling an Intercomm routine, and use the MODCNTRL macro to access user
subroutines defined to Intercomm via REENTSBS (SUBMODS macro). Each
dynamically loaded subsystem module is then 1linkedited with the
Intercomm interface INTLOAD (unless dynamic linkedit 1is wused; see
below). INTLOAD resolves references to resident (user-callable)
Intercomm routines. The LKEDP procedure may be used for the subsystem
linkedit, as the following illustrates:

//LINKSUBS EXEC LKEDP, Q=ABC, LMOD=DYNSUBX
//LKED.SYSIN DD *

ENTRY SUBSYSX

INCLUDE SYSLIB(SUBSYSX)

INCLUDE SYSLIB(INTLOAD)

NAME DYNSUBX(R)

The LOADNAM parameter of the SYCTTBL macro describing the
subsystem must then correspond to the IMOD parameter of the LKEDP
procedure (name of the module in the load library). If the subsystem
is defined under more than one SYCTTBL (accessed by multiple verbs),
linkedit with ALIAS names to make each definition unique, but do not
link as either reusable or reentrant. This will result in more than
one copy loaded in core, which cannot be avoided. The subsystem may,
however, be defined to Intercomm as reentrant, if coded as reentrant.

The 1library wused for dynamically loaded subsystems must be
defined at execution time (STEPLIB or JOBLIB). If the region is
executing with the IAM file access method, the library containing the
dynamic load modules must be concatenated with the IAMLIB DD statement,

not STEPLIB. Certain restrictions apply if the Dynamic Linkedit
facility is used (see below).

Use of dynamically loaded subsystems requires an INCLUDE of the
modules LOADSCT, DELOAD, and ASYNCLDR for the resident portion of
Intercomm. Coding DYNLOAD=YES (default) for the ICOMLINK macro
automatically generates these statements. LOADSCT 1is wused in
conjunction with the LOAD command. MAXLOAD is the SPALIST macro system
control parameter used with dynamically loaded subsystems.

3-41

Chapter 3 Message Management

3.9.4.1 Subsystems Residing Above the 16 Meg Line

In a MVS-XA environment, reentrant (according to Intercomm coding
conventions as defined in the Programmers Guides) subsystems can be
loaded above the lémeg line. The following is required:

e The SYCTTBL macro for the subsystem must have the LOADNAM
parameter coded and LANG=RCOB or RPL1 or RBAL, as appropriate

e The subsystem must be independently 1linkedited with the
parameters: AMODE=31,RMODE=ANY.

For COBOL, calls to Intercomm service routines and user
subroutines are done through COBREENT; the only restriction is that all
the passed parameters (to the called program), except the ICOMSBS code,
must be in the subsystem’s 24-Amode Dynamic Working Storage.

For Assembler, the subsystem must be linked with INTLOAD, and
call Intercomm service routines directly (entry points in INTLOAD).
All passed parameters must be in 24-Amode storage (dynamic save/work
area) .

For PL/1, the subsystem must be linked with INTLOAD if Intercomm
service routines are called directly. Otherwise, PMIPL1 will
accomplish mode switching. In either case, all passed parameters,
except the PENTRY code if PMIPL1 used, must be in 24-Amode automatic
storage (DSA).

Additional considerations are described in the appropriate
language Programmers Guide.

3.9.5 Dynamic Linkedit Facility

The Intercomm Dynamic Linkedit facility 1is optionally used in
conjunction with dynamically loaded subsystems to allow these
subsystems to be linkedited with unresolved references to subroutines
and data areas. If these subroutines and data areas are present (and
resident) within the main Intercomm load module, the Dynamic Linkedit
facility will resolve the references at startup time by "zapping" the
load module of each subsystem.

Using this facility, the INTLOAD interface module no longer need
be 1linkedited with each dynamically loaded subsystem to resolve
references to Intercomm resident routines, since they will be
automatically resolved by Intercomm. INTLOAD, however, is still
required for certain subsystems loaded above the 1lémeg 1line as
described above.

The Dynamic Linkedit facility 1is a generalized approach which
permits a single copy of a compiler subroutine which is resident within
the main Intercomm load module to be used by any loaded subsystem,
rather than requiring a separate copy along with each loaded
subsystem. Eliminating duplicate copies of subroutines in this manner
is particularly useful for COBOL or PL/1 loaded subsystems, since a

3-42

Chapter 3 Message Management

single copy of all the standard library routines wused by these
languages can be made resident within Intercomm (if not in the Link
Pack Area), and thus available to be used by all subsystems.

The Dynamic Linkedit facility is implemented by including the
module ICOMDYNL in the main Intercomm linkedit. ICOMDYNL can be placed
in the startup overlay. However, if the LOAD system control command is
implemented, it must be resident. Coding DYNLINK=YES (default) for the
ICOMLINK macro automatically generates the necessary statement. Also,
the ICOMCESD and ICOMVCON modules must be separately linkedited with
these mnames, and as nonreentrant, on one of the load libraries
specified via STEPLIB or JOBLIB (IAMLIB, if using the IAM file access
method in the region) for Intercomm execution.

Additionally, a work file must be provided to Intercomm using the
following format:

//DYNLWORK DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(1,1))

A listing of Dynamic Linkedit processing results, unresolved External
References and WXTRNs will be produced by adding an optional DD
statement to execution JCL:

//DYNLPRNT DD SYSOUT=A

If the LOADSCT routine is used to reload a dynamically loaded
subsystem which has been relinkedited during Intercomm’s execution,
LOADSCT will use the Dynamic Linkedit facility to rezap the subsystem.

The following restrictions apply to the use of dynamic linkedit:

e Assembler Language address constants will not be resolved if
coded as "label+nn" where "nn" 1is nonzero and less than or
equal to 64K. .

e Called programs must be resident in the Intercomm root
segment for resolution to take place. This does not apply to
dynamically loaded subroutines.

e A VCON referencing a module in an overlay segment will not be
resolved. Thus, an Assembler Language program may use
CALLOVLY only if it obtains the VCON of the called program
from the Intercomm root segment, that is, from the System
Parameter Area.

e Load modules on the library which is to be dynamically
linkedited may not be executed by any other concurrent job.
Since VCONs can only be resolved to point to one region, the
load module is therefore executable only in that region.

e¢ All modules to be dynamically 1linkedited during a given
Intercomm execution must reside on one data set defined for
STEPLIB or, if no STEPLIB, then on JOBLIB. This library must

be contained in one extent. A careful watch of this library
space is necessary to ensure that updates do not cause it to
exceed one extent. Frequent off-line compresses may be

necessary. This library may not be concatenated with others.
3-43

Chapter 3 Message Management

° However, if STEPLIB consists of concatenated data sets, the
library containing load modules to be dynamically linkedited
must be defined by a DD statement with the name DYNLLIB.
This library must be a single data set, and must also be
concatenated with STEPLIB (or IAMLIB) for subsequent load
processing. Code DISP=SHR on both DD statements. This
library may not exceed one extent (see above) and may not be
shared with any other Intercomm region.

e A combination of loadable subsystems linkedited with INTLOAD
and dynamically linkedited loadable subsystems may be used.
However, the INTLOAD group may not be on the dynamic 1link
library, but must be on one of the other 1libraries
concatenated to STEPLIB/JOBLIB. The INTLOAD library may be
shared across regions.

e Compress of the dynamic link library may not be done while
Intercomm is executing.

Because the load modules of dynamically loaded subsystems are
modified, they cannot reside on a library shared by another Intercomm
region. For efficiency, each dynamic load library should be on a
different disk pack. To convert a subsystem from dynamically
linkedited and 1loaded to resident or in the overlay region, the
subsystem must be recompiled and relinkedited prior to inserting it
into the Intercomm linkedit.

3.9.6 Subsystems Assigned to Overlay Region B, C or D

Some linkage editors limit the number of overlay regions that can
be defined in a linkedit. Due to the existence of Intercomm Regions
TRAN and SUB, not all of Overlay Regions B, C and D may be usable.

Overlay Regions B, C and/or D are used for subsystems which

require no guaranteed response time. The objective of their use is to
effectively remove some subsystems from contention for use of Overlay
Region A. Subsystems assigned to Overlay Region B, C or D have the

following characteristics:
° Input messages are queued by region, instead of by subsystem.

o Subsystem execution is controlled by the Intercomm program
MONOVLY.

° Subsystem processing is always single-threaded.

e All subsystems in one overlay region should be coded in the
same language.

e A Subsystem Control Table entry (SYCTTBL) is defined for
MONOVLY, not the individual subsystem(s).

e An additional Verb Table is required for each overlay region.

3-44

<9

Chapter 3 Message Management

There 1is one Subsystem Control Table entry for each of the
Overlay Regions B, C or D, in use. Each defines MONOVLY as the entry
point and the OVLY parameter is coded as 1, 2 or 3 for Overlay Region
B, C or D, respectively. For example:

OVLYB SYCTTBL SUBC=B, SUBH=B,0VLY=1, LANG=NBAL, X
SBSP=MONOVLY,NUMCL=2 , DFLN=OVLYBQ

MONOVLY controls the loading of the appropriate subsystem into the
overlay region, based upon the order of messages retrieved from the
queue, and a table specification relating the message verb to the
subsystem entry point.

Subsystems assigned to Overlay B, C or D, and coded in different
languages, should have a Subsystem Control Table entry for an overlay
region for each programming language. For example:

COBOVLYB SYCTTBL SUBC=B, SUBH=C,OVLY=1, LANG=COB, X
SBSP=MONOVLY,NUMCL~2, - - - -
BALOVLYC SYCTTBL SUBC=B, SUBH=A,0VLY=2, LANG=NBAL, X

SBSP=MONOVLY,NUMCL=2, - - -

The Intercomm Enqueue/Dequeue facility (PMINQDEQ) 1is wused to
force single-threading of the overlay region. If more than one
language is used per overlay region, the conversational control routine
(CONVERSE) may not be called by any subsystem assigned to the overlay
region.

BTVERB entries in the Front End Verb Table (BTVRBTB) must use the
subsystem code assigned to the overlay region via the SYCTTBL macro.
An Overlay Region Verb Table is required for each overlay region. This
special verb table must have a Csect name of OVLYBTB for Region B,
OVLYCTB for Region C, and OVLYDTB for Region D. These Csects are coded
by the wuser, and must include an entry for each subsystem in the
particular overlay. Each table entry is twelve bytes in length, as
follows:

° Bytes 1-4--the four-character verb associated with a
subsystem in the overlay region

. Byte 5--Verb Identifier/Edit Flag: X'00’' = editing required;
X'01l’ to X'254' = user VMI value; X'FF' = no editing desired

e Byte 6--X'FF' indicates free the incoming message before
calling the subsystem, if desired, else code X'00’

° Bytes 7-8--unused

e Bytes 9-12--the subsystem entry point, coded as a VCON.

3-45

Chapter 3 Message Management

A fullword of X'FF'’, generated by the PMISTOP macro, is required
at the end of the table. A sample overlay region verb table follows:

OVLYBTB CSECT

DC C'EPKF',4X'0’ ,V(EDITTEST)
DC C'EPKV',4X'0’ ,V(EDITTEST)
DC C'V250',4X'0’ ,V(EDITTEST)
DC C'EDKF',4X'0' ,V(EDITTEST)
DC C'EDPV’,4X'0' ,V(EDITTEST)
DC C'EDPL' ,4X'0' ,V(EDITTEST)
DC C'ED32',4X'0' ,V(EDITTEST)
PMISTOP

END

As illustrated below, the Verb Identifier/Edit Flag controls
processing of incoming messages via the Edit Utility based upon a test
of the message header VMI field.

Message Verb ID/

Header Edit Flag

VMI (Verb Table

Value Byte 5) Value Action

X'FF' ignored No editing required. The message text verb
is used to locate the table entry defining
the subsystem to process the message.

X'00' X'00’ Same as above. Edit Utility is not called.

X'00’ X'0l’' - X'FE' Edit Utility is called prior to giving
control to the subsystem.

X'01’ X'o1’ Editing is not required. The message

to to header VMI is matched with the Verb

X'FE' X'FE' Identifier to locate the table entry
defining the subsystem to process the
message. (Assumes edit-before-queuing.)

The MONOVLY program checks the input verb or the VMI against the
table and calls the Edit Utility, if specified by the table entry. It
then brings the program into the overlay area and passes control to the
program. If the Overlay Region Verb Table is invalid, a message is
issued and a Snap 90 is taken; then the overlay monitor returns to the
Subsystem Controller with a return code of 4.

If asynchronous loading (ASYNLDR=YES in the System Parameter
Area, and the module ASYNCH is present) 1is being used, the module
LOADOVLY must be present. It is a necessary interface between MONOVLY
and the Loader Task ASYNCH. To generate the correct linkedit for
MONOVLY processing, the following must be coded for the TICOMLINK
Macro: MONOVLY=YES, ASYNCH=YES, OVLYSTR=YES and optionally TRANS=YES.

3-46

Chapter 3 Message Management

3.10 SUBSYSTEM INTERFACES AND LINKEDIT CONSIDERATIONS

There are no special considerations for coding or linking of
Assembler Language subsystems except that they should be reentrant and
use the Intercomm facilities described in the Assembler Language
Programmer'’s Guide. Macros supplied by Intercomm to aid in coding
Assembler Language programs and subroutines are further described in
Basic System Macros. Considerations for higher-level language programs
supported by Intercomm are described below.

3.10.1 COBOL Subsystem Interfaces

Application subsystems may be coded in 0S/VS or ANS COBOL, and

may also be compiled via the CAPEX Optimizer. However, all COBOL
subsystems must use the same compiler, because the ILBO subroutines may
not be compatible. An Intercomm facility allows COBOL subsystems to

operate in a reentrant mode, processing several messages concurrently,
as specified by the Subsystem Control Table entry for the subsystem.
Certain coding conventions must be followed, as described in the
Intercomm COBOL_Programmers Guide. A reentrant subsystem must be
linked with the REUS (but not the RENT) attribute.

The size of the Dynamic Working Storage in the Linkage Section of
a reentrant COBOL subsystem must agree with SYCTTBL macro values. The
COBOL Programmers Guide details coding techniques required when the
amount of storage freed is less than the amount of storage obtained for
the processing of a message. Two SYCTTBL parameters, GET and FREE, are
used to specify the amount of dynamic core to obtain on entry to, and
free on return from, a reentrant COBOL subsystem. The maximum request
for storage via the GET parameter is 64K, less 304 bytes. If GET and
FREE were originally coded as equal, they may be dynamically changed
via the LOAD or SPAC system control commands. If unequal, they may be
changed via the FTUN/SSUP command sequence. See System Control
Commands .

The Reentrant Subroutine Table (REENTSBS) must be included for
execution of reentrant COBOL subsystems. This table represents a list
of Intercomm service routine addresses referenced by a COBOL program
parameter list for the reentrant subroutine interface module COBREENT.
User additions to this list may begin at decimal offset 104 and be

coded in a copy member USRSUBS. User-coded subroutines require an
entry in this member and COBREENT must be used to interface to a called
subroutine. Additionally, the supplied COBOL program COPY member

ICOMSBS must be updated to provide the names and index codes for the
added user subroutines.

Figure 3-9 illustrates the standard Intercomm-supplied Reentrant

Subroutine Table. REENTSBS must be reassembled and relinked every time
an entry is changed or added to USRSUBS.

3-47

Chapter 3 Message Management

3.10.1.1 COBOL Subsystem Linkedit Considerations

To execute COBOL subsystems under Intercomm, the interface
modules PREPROG, PMICOBOT, and COBPUT must be included in the Intercomm
linkedit (automatic if the ICOMLINK parameter COBOL=YES (default) is
coded). Depending on the version and compiler NORES options used,
COBOL programs require certain COBOL routines (based on coding logic)
to be available from SYS1.COBLIB, either at 1linkedit time or at
execution time. These modules are ILBOSRV, ILBOBEG, ILBOCMM, and
ILBOMSG.

In addition, ILBOSTPO and ILBOSTPl may be required if they are
not entry points within the ILBOSRV module. The modules have several
subroutines (indicated by a suffix code) which may or may not be
linkedited with them on SYS1.COBLIB, depending on the COBOL version
(release) used, and weak external reference specifications in routines
of that version. Normally, to cut down on the size of the COBOL load
module, an execution time 1library is required if all COBOL routine
external references are not resolved at linkedit time. This execution
time library provides COBOL subroutines for the COBOL program only when
needed, thus saving space in the user’s region via LOADs and DELETEs.
For example, ILBOBEGO and ILBOCMMO will always be needed, whereas
ILBOMSGO only if an error occurs. If EXHIBIT or READY TRACE is coded,
adding an INCLUDE for ILBODSPO to the Intercomm linkedit may be
advisable.

To save space in the Intercomm region, COBOL subsystems should be
compiled with the same compiler, using the NORES, and NOTRUNC options.
For dynamically loaded COBOL subsystems defined to Intercomm as
reentrant (SYCTTBL macro, LANG=RCOB), use the REUS and NCAL linkedit
options. In addition, to save LOAD and DELETE time (if COBOL routines
not in Link Pack), the ICOMLINK parameter RECOBOL=YES (default) should
be used to generate INCLUDEs not only for Intercomm routines required
for reentrant COBOL (COBREENT, COBSTORF), but also for the most common
COBOL subroutines (ILBOSTPO, ILBOBEGO, ILBOCMMO, ILBOMSGO and
ILBOCOMO), and for the Intercomm/user subroutine table REENTSBS.

If following the above recommendation for including COBOL
routines in the Intercomm linkedit is not possible, due to the COBOL
version in use, the user is advised to perform the following steps:

1. Linkedit ILBOSRVO (PARM='REUS’) into a special SRV library,
with INCLUDE statements for subroutines ILBOBEGO, ILBOCMMO
and ILBOMSGO, as follows:

INCLUDE SYSLIB(ILBOSRVO,ILBOBEGO,ILBOCMMO, ILBOMSGO)
ALIAS ILBOSR,ILBOSRVO,ILBOSRV1,ILBOST,ILBOSTPO,ILBOSTP1
NAME ILBOSRV(R)

2. Then concatenate that special SRV library ahead of the
regular COBOL 1library in the SYSLIB data sets for the
linkedit of the COBOL subsystem.

3-48

Chapter 3 Message Management

3. Additional ALIAS names may be wused for ILBOSR3, ILBOSRST,
ILBOBEG, ILBOCMM, ILBOCMM1, ILBOMSG, and ILBOCOM depending on
unresolved references in the COBOL subsystem linkedit.

4. The ENDJOB compiler option should be used to prevent 80A, 804
and 906 abends if the subroutine library is used.

NOTE: ANS Version 4 or CAPEX Optimizer routines might be on a
library other than SYS1.COBLIB. Research this point for
proper compile and 1linkedit SYSLIB JCL when using
Intercomm procedures, and for execution time STEPLIB JCL.

3.10.2 COBOL Subsystem Initialization/Termination User Exits

Two user exits, PREPROGI (for initialization) and PREPROGE (for
termination) are provided so that the user can pass additional
parameters (area addresses) to a reentrant COBOL subsystem via the
Linkage Section, and process the added areas on subsystem return.
Standard linkage conventions must be used.

PREPROGI is called by PROPROG (after the Dynamic Working Storage
area 1is acquired) and is passed (via register 1) the address of the

parameter 1list for the subsystem. The first 5 addresses (of the
(edited) input message, SPA, SCT-entry, return-code field, DWS-area) in
the list may not be changed. The exit may add to the 1list, the

addresses of up to 5 additional areas to be passed to the subsystem.
The addresses may be of resident (in Intercomm load module) areas,
dynamically acquired storage (via STORAGE macro if below (GETMAIN if
above) lémeg line), a dynamically loaded table, a Store/Fetch string,
etc. A 31-bit address may be passed if the subsystem was loaded above
the lémeg line under XA (see SCTLISTC Dsect, SCTLDXA flag in SCTBIT2
byte).

PROPROGE is called by PREPROG (after subsystem GOBACK) or RMPURGE
(if subsystem program-checked or timed-out, but can be purged) before
resource purging. The address of the same parameter list (after user
modification) is passed as for PREPROGI.

3-49

Chapter 3

Message Management

REENTSB1 CSECT
*x

*
*
* BY COBREENT AND
*

SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS
SUBMODS

REENTSBS DS 0A

PMIPLI.

NAME=INTSORTC
NAME=DWSSNAP
NAME=MAPFREE
NAME=FECMRLSE
NAME=FESEND
NAME=FESENDC
NAME=ALLOCATE
NAME=ACCESS
NAME=MAPURGE
NAME=MAPCLR
NAME-MAPEND
NAME=MAPOUT
NAME-MAPIN
NAME=INTUNSTO
NAME-INTSTORE
NAME=INTFETCH
NAME=FECMFDBK
NAME=FECMDDQ
NAME=QWRITEX
NAME=QREADX
NAME=QWRITE
NAME=QREAD
NAME=QCLOSE
NAME=QOPEN
NAME=QBUILD

ENTRY REENTSBS

OFFSET -100,CODED AS 99

NEGATIVE OFFSETS ARE USED BY SPECIFYING AN OFFSET ENDING IN B’'11l’',
WHICH IS INCREMENTED BY 1 AND COMPLEMENTED TO OBTAIN TRUE OFFSET

OFFSET -96,CODED AS 95
OFFSET -92,CODED AS 91
OFFSET -88,CODED AS 87
OFFSET -84,CODED AS 83
OFFSET -80,CODED AS 79
OFFSET -76,CODED AS 75
OFFSET -72,CODED AS 71
OFFSET -68,CODED AS 67
OFFSET -64,CODED AS 63
OFFSET -60,CODED AS 59
OFFSET -56,CODED AS 55
OFFSET -52,CODED AS 51
OFFSET -48,CODED AS 47
OFFSET -44,CODED AS 43
OFFSET -40,CODED AS 39
OFFSET -36,CODED AS 35
OFFSET -32,CODED AS 31
OFFSET -28,CODED AS 27
OFFSET -24,CODED AS 23
OFFSET -20,CODED AS 19
OFFSET -16,CODED AS 15
OFFSET -12,CODED AS 11
OFFSET -8,CODED AS 7

OFFSET -4,CODED AS 3

ALLOW FOR NEGATIVE OFFSETS

DC A(REENTEND-REENTSBS-4) REQUIRED
SUBMODS NAME=SELECT CODE 4- FILE SELECT
SUBMODS NAME=RELEASE CODE 8- FILE RELEASE
SUBMODS NAME=READ CODE 12- FILE READ
SUBMODS NAME=WRITE CODE 16- FILE WRITE
SUBMODS NAME=GET CODE 20- FILE GET
SUBMODS NAME=PUT CODE 24- FILE PUT
SUBMODS NAME=RELEX CODE 28- RELEASE EXCL. CONTROL
SUBMODS NAME=FEOV CODE 32- FILE FEOV
SUBMODS NAME=DISEL CODE 36- DISAM SELECT
SUBMODS NAME=DIREL CODE 40- DISAM RELEASE
SUBMODS NAME=DIREAD CODE 44- DISAM READ
SUBMODS NAME=DIWRITE CODE 48- DISAM WRITE
Figure 3-9. REENTSBS Release Version (Page 1 of 2)

NOTE: the DISAM entry points are no longer supported, but are generated

for downward compatability.

3-50

J

J

Chapter 3 Message Management

SUBMODS NAME=DIGET CODE 52- DISAM GET

SUBMODS NAME=DIPUT CODE 56- DISAM PUT

SUBMODS NAME=DIDEL CODE 60- DISAM DELETE

SUBMODS NAME=DIRELEX CODE 64- DISAM RELEX

SUBMODS NAME=COBPUT CODE 68- COBOL MESSAGE SWITCHING
SUBMODS NAME=MSGCOL CODE 72- MESSAGE COLLECTION

SUBMODS NAME=COBSTORF CODE 76- COBOL STORFREE
SUBMODS NAME=CONVERSE CODE 80- CONVERSE

SUBMODS NAME=DBINT CODE 84- DATA BASE REQUEST

SUBMODS NAME=LOGPUT CODE 88- LOGPUT

SUBMODS NAME-PAGE CODE 92- PAGE ROUTINE

SUBMODS NAME=GETV CODE 96- VSAM GET

SUBMODS NAME=PUTV CODE 100-VSAM PUT
55 3 T 3% T ot 5t 5t St St S S 0 3 3 3 3 ot St ot 9 S 3 S S T 3 ot 9 S 9 S S A 3 S S s S b e v b b b e sk sk sk s e e e e e v e e e b e e Y]
*kok INSERT USER SUBMODS MACROS *kH

L L e R R
COPY USRSUBS

REENTEND EQU * REQUIRED AFTER LAST SUBMODS
ENTRY REENTEND

REENTSB1 CSECT
END

Figure 3-9. REENTSBS Release Version (Page 2 of 2)

3.10.3 VS COBOL II Support

COBOL subsystems and subroutines compiled under VS COBOL II are
not currently supported under Intercomm.

3-51

Chapter 3 Message Management

3.10.4 PL/1 Subsystem Interfaces

In the Intercomm environment, a PL/l subsystem requires special
consideration for each allowable option. Specifications of the options
chosen are indicated for the subsystem in the PLl1 and PL1LNK parameters
of the SYCTTBL macro. These options are as follows:

1. The PL/1 optimizing compiler, specified via PL1=0OPT on the
SYCTTBL macro (default).

2. The linkage conventions used by Intercomm to construct the
parameter list may be either nonbased (character string) or
based (dummy arithmetic scalar) format for the first three
parameters in the list, as specified by the PL1LNK parameter
of the SYCTTBL macro. Nonbased is the default.

The Intercomm module PREPLI is required as the interface between
Intercomm and the PL/1 compiler, as shown in Figure 3-10. Figure 3-11
illustrates the interface when the subsystem is dynamically 1loaded.
Each thread of a PL/1 subsystem is a separate instance of the PL/1
environment.

Subsystem Optimized PL/1 subsystem using
Controller PREPLI |— Py linkage convention defined by
the SCT (SYCTTBL macro PL1=OPT

and PL1LNK parameters)

Figure 3-10. PL/1 Subsystem Interface Options

PLIV
Subsystem PL/1 Optimizer
Controller |¢—Jpp{ PREPLI Subsystem

Figure 3-11. Dynamically Loaded PL/1 Subsystems

3-52

Chapter 3 Message Management

As released, PREPLI specifies no options. PL/1 invocation
options STAE, SPIE and REPORT should be disabled for production.
However, they may be specified by changing the PREPLI macro coded
within the member PREPLI, then reassembling PREPLI. The Intercomm
System Manager may provide an alternate PREPLI module for testing,
specifying some or all of the above options. Since PL/1 STAE and SPIE
can be suppressed by invocation options, Intercomm STAE and SPIE will
remain effective. For Intercomm compatability, ESTAE is used under
MVS, and ESPIE under XA.

Optimizer wusers are required to use preallocated ISA, which
allows PREPLI to allocate the ISA from Intercomm storage, based on the
specified size on the SPAC parameter of the SYCTTBL macro, and to pass
it to the subsystem. This makes clean abnormal thread termination
possible where the ERROR condition is not raised. The ISA space size
can be dynamically changed via the LOAD, SPAC or FTUN/SSUP commands, as
described in System Control Commands.

The subroutine interface program PMIPL] may be used. When
calling non-PL/1 subroutines, it will reformat the parameter list to
pass data addresses. Subroutines are referenced by specifying the
offset into the REENTSBS table as the first parameter. The offsets are
defined for PL/1 in the copy member PENTRY. If a subroutine not
currently represented in REENTSBS is called, both tables must be
updated. When coding user entries in REENTSBS, PMIPL1 assumes all
parameters are passed in character format (with the exception of
MSGCOL, PAGE and CONVERSE). This method can be bypassed, however, when
using the optimizer.

For optimizing compiler users, PMIPL]1 functions can be achieved
for Assembler Language subroutines by copying the member PLIENTRY into
the subsystem, or by declaring the subroutine, for example, COBPUT, as

DCL COBPUT ENTRY OPTIONS (ASM INTER);
and calling, in the usual PL/1 fashion:
CALL COBPUT(message,return-code);

Dynamically loaded PL/1 subsystems must be linkedited so that the
load module, specified by the SYCTTBL macro LOADNAM parameter, contains

the address table PLIV, which must be specified as the load module
entry point via a linkage editor ENTRY statement.

3-53

Chapter 3 Message Management

In the PL/1 subsystem, the procedure given control by Intercomm
must specify OPTIONS(MAIN,REENTRANT), or OPTIONS(MAIN), if not
reentrant. OPTIONS(MAIN) is used to get the true subsystem entry point
in Csect PLIMAIN. Since resident or overlay subsystems use the SBSP
parameter on the SYCTTBL macro for this purpose, then for them,
OPTIONS(MAIN) is not needed but will be accepted.

The subsystem should avoid unnecessary data conversion to keep
PL/1 library routines called by the subsystem to a minimum. If Dynamic
Linkedit is used, some or all of the PL/1 library subroutines may be
included in the resident portion of Intercomm, eliminating their
duplication in each dynamically loaded subsystem that references them.

PL/1 1library subroutines eligible for residency are those
normally included via automatic library call (control section name,
preceded by an asterisk in the link map listing). Either specify the
NCAL linkage editor option to remove all control sections, or prevent
automatic call of selected control sections (see below) via linkage
editor LIBRARY statements. Use of LIBRARY statements to exclude a
standard set of commonly used routines allows the automatic library
call to include infrequently used modules when referenced, eliminating
special programmer effort once a set of resident routines have been
selected by examining typical linkedits.

3.10.4.1 PL/1 Subsystem Linkedit Considerations

PL/1 subsystems necessitate inclusion in the Intercomm linkedit
of the Intercomm Abend Intercept Routines SPIEEXIT and STAEEXIT, as
well as the PL/1 interface routines PMIPL1l, COBPUT, and PREPLI. Coding
PL1=YES on the ICOMLINK macro automatically generates the necessary
include statements for the above (except COBPUT).

When using the PL/1 optimizing compiler, the transient library
modules are loaded into dynamic storage as required. With a relatively
high message volume for Pl/1 subsystems, a high overhead can be
encountered while loading and deleting the transient library modules.
To ease this problem, load some of the most used modules at startup
time (via USRSTRT1), such as IBMBPGRA, IBMBPIIA and IBMBPITA, or make
them resident in the Intercomm linkedit.

The Optimizer uses three transient modules which are loaded and
deleted for each thread. They are IBMBPII, initialization; IBMBPIT,
termination; and either IBMBPGR, transient library storage management,
or IBMBPIR, resident library storage management with REPORT. To keep
them resident, thereby greatly improving response time, the USRSTRT1
user exit routine could also load them at startup and a USRCLSEl user
exit routine could be written to delete them at closedown.

3-54

Chapter 3 Message Management

3.10.5 FORTRAN Subsystems

Application subsystems coded in the FORTRAN language are executed
under Intercomm in the same manner as nonreentrant COBOL subsystems.
They are single-threaded. Their SYCTTBL macros should specify
LANG=FORT and MNCL=1. They must be linkedited with compiler-dependent
subroutines; see the description of the FORTLINK procedure in Chapter
2. Do not code either REUS or RENT for the linkedit parameters. If
dynamically loadable, code REUSE=NO on the associated SYCTTBL macro.

3.11 SUBROUTINE INTERFACES AND LINKEDIT CONSIDERATIONS

The following subsection describes the wuse of wuser-coded
subroutines with user-coded subsystems and their residency and linkedit
considerations. Additional considerations apply if the caller or the
called subroutine is dynamically loaded above the lémeg line under XA.
For further details, see the applicable Programmers Guide.

3.11.1 Resident Subroutines

Resident and Overlay A Assembler Language subsystems may call
resident Assembler subroutines using standard linkage conventions.
Dynamically loaded Assembler Language subsystems must either be
dynamically 1linkedited with the resident subroutines, or wuse the
MODCNTRL macro to access dynamically loaded and resident user
subroutines previously defined via the SUBMODS macro in REENTSBS;
Intercomm routines may be accessed via VCONs in the SPA, or via
INTLOAD, if linked with the subsystem.

Resident, Overlay A and dynamically loaded COBOL and PL/1
subsystems must use Intercomm interfaces to all noncompiler

subroutines. The interface routines are COBREENT and PMIPL1,
respectively. User subroutines are defined to Intercomm via the
SUBMODS macro in the REENTSBS table. Copy code tables to define

subroutine codes to match entries in REENTSBS are ICOMSBS (COBOL) and
PENTRY (PL/1). PL/1-Optimizer subsystems may optionally call resident
Assembler Language subroutines (user or Intercomm) directly by adding
the name to the PLIENTRY table included in the program; however, this
option cannot be wused for dynamically loaded subsystems unless
dynamically linkedited, or linked with INTLOAD.

3-55

Chapter 3 Message Management

A maximum of 350 user SUBMODS entries using the NAME parameter
(resident), or LNAME and RES=LINKEDIT or RES=BOTH (default) parameters,
may be defined (due to an Assembler restriction on ESD entries). An
additional 50 are reserved for Intercomm service routine definitions.
However, additional entries may be defined using the LNAME and
RES=LOADMOD parameters of the SUBMODS macro. See also the PERMRES
parameter, as described in Basic System Macros.

Note the following language interface considerations:

e Reentrant COBOL subsystems must use the Intercomm interface
COBREENT to call subroutines, and may only call reentrant or
reusable COBOL and Assembler Language subroutines.

® Reentrant COBOL subroutines may be called only by reentrant
COBOL subroutines and subsystems which wuse the COBREENT
interface.

e PL/1 subroutines must be serially reusable and may not be
called by Assembler or COBOL subroutines or subsystems due to
language differences in parameter list construction.

e Reentrant PL/1 subsystems must use the Intercomm interface
PMIPL]1 to call PL/1 subroutines; COBOL subroutines may not be
called. See the discussion of Resident Subroutines (above)
for Assembler subroutine interface considerations.

e Nonreentrant COBOL and PL/1 subsystems may call only
language-compatible nonreentrant or reusable subroutines and
reentrant Assembler subroutines. Nonreentrant Assembler
subsystems and subroutines may call reentrant Assembler
subroutines if standard linkage conventions are used.

3.11.2 Subroutines Linked with Dynamically loaded Subsystems
Use of this convention is not recommended under Intercomm as it

impacts reentrancy and multithreading, in addition to adding to the
size of the load module.

3.11.3 Dynamically Loaded Subroutines

Intercomm subsystems have the ability to 1link to dynamically
loaded subroutines. For all languages, these subroutines must be
defined in REENTSBS using the SUBMODS macro. The loaded subroutines
will be dynamically linkedited at startup time to resolve any
unresolved VCONs and then 1loaded as required when accessed by a
subsystem. A BLDL 1list for each subroutine may optionally be
maintained for efficiency. Loaded subroutines will be automatically
deleted from storage after a wuser-specified period of 1inactivity.
Optionally, a subroutine can be 1loaded at startup and then made
resident for the duration of the Intercomm execution (see PERMRES
parameter of the SUBMODS macro).

3-56

Chapter 3 Message Management

Subroutines may be dynamically loaded during testing and then
later be made resident or defined for the subroutine overlay region
with no changes to the application. New versions of dynamically loaded
subroutines can be obtained during Intercomm execution by use of the
LOAD system control command (except if made resident at startup).

Intercomm imposes mno size restriction for these subroutines.
Dynamic subroutine 1loading is dependent upon storage availability.
Loading is overlapped through the use of subtasking. Subroutines which
issue INTENQ/DEQ or process data base or file I/O, which might cause a
time-out, should not be dynamically loadable, unless made resident at
startup.

3.11.3.1 Loading Subroutines Above the lé6meg Line

In a MVS-XA environment, user subroutines (Assembler or reentrant
COBOL only) can be loaded above the 1l6meg line. The following is
required:

) SUBMODS macro defining the subroutine must have LNAME coded,
PERMRES=NO (default), and RES=LOADMOD or BOTH (default)

e Linkedit the subroutine independently with AMODE=31 and
RMODE=ANY.

Reentrant COBOL subroutines loaded above the 1lémeg line may only be
called (via COBREENT) by reentrant COBOL subsystems or subroutines and
are subject to the same coding restrictions as described previously for
COBOL subsystems. Assembler subroutines must be reentrant and are
subject to the restrictions and coding conventions described in detail
in the Assembler Language Programmers Guide, but may be called by
reentrant COBOL programs (via COBREENT) and by Assembler programs as
described below. Address mode switching is controlled by the
subroutine load program (DYNLLOAD). Assembler tables may only be
accessed by Assembler programs as described below.

3.11.3.2 Application Programming Conventions

Language-dependent considerations for application program coding
are as follows:

° Reentrant COBOL programs must use COBREENT and REENTSBS in
the standard manner; dynamic load 1is transparent to the
application program. COBOL subroutines must be coded and
defined to Intercomm as reentrant.

3-57

Chapter 3 Message Management

° PL/1 programs must call the PMIPL1 interface routine (the
ENTRY option of the Optimizer is not allowed for

dynamic-loaded subroutine reference); dynamic 1load is
transparent to the application program. Dynamically loaded
subroutines written in PL/1 require special 1linkedit
considerations. In order to maintain the PL/1 environment

constructed for the calling subsystem, the PL/1
initialization routines generated by the compiler must be
removed, and the subroutine entry point must be explicitly

specified. This can be accomplished by the following
linkedit control cards for the subroutine (with the mname
SUBROUT) :

REPLACE PLIMAIN
REPLACE PLISTART
INCLUDE SYSLIB(SUBROUT)
ENTRY SUBROUT

NAME SUBROUT(R)

PL1 subroutines should be coded and 1linked as serially
reusable (USAGE=REENT may not be coded on the SUBMODS macro).

e Assembler programs must issue a MODCNTRL macro to invoke
dynamic subroutine load. If the loaded module is a table
processed (scanned) by a program executing in 24-Amode, it is
the users’ responsibility to switch address modes (see
XASWITCH macro in Basic System Macros). Also, the program
must carefully ensure 24-bit mode addressing when processing
is completed and for all branch processing.

Nonreentrant COBOL and FORTRAN programs may not use the Dynamic
Load facility directly. The user may provide a reentrant interface
routine in Assembler Language for those programs.

3.11.3.3 Implementation

The macro SUBMODS is coded in REENTSBS and defines the name and
characteristics of the subroutine (deletion time, residency, etc.) and

may specify a BLDL list (see Basic System Macros). A separate Csect,
DYNLSUBS, is generated to contain control data for dynamically loaded
subroutines. The modules PMIDLOAD, DYNLLOAD, and REENTSBS must be

included in the Intercomm linkedit. Coding DYNLOAD=YES and DYNLINK=YES
on the ICOMLINK macro will generate the necessary INCLUDE statements.
See the description of dynamically loaded subsystems and the Dynamic
Linkedit facility for further installation details.

3-58

Chapter 3 Message Management

3.11.4 Transient Subroutine Overlay Region (TRAN)

The Intercomm Transient Subroutine Overlay Region allows rarely
used Intercomm and Assembler Language application subroutines (which
may give up control) to be linkedited as separate overlay segments in
an overlay region reserved for this purpose. This can significantly
reduce the resident storage requirements of such Intercomm and
application subroutines.

To be eligible for the transient area, a subroutine and its
callers must follow several rules:

° All callers of the subroutine in the transient area must call
the transient area using the CALLOVLY macro.

e¢ The subroutine in the transient area must, in all cases,
return eventually to the calling program. It cannot branch
away forever into some other module. It must return.

e Usage of the transient area cannot be nested; that 1is, no
subroutine to be used in the transient area can CALLOVLY
another subroutine which is also in the transient area. It
can, however, CALL resident subroutines. (See Figure 3-12.)

e The subroutine in the transient area must be serially

reuseable or reentrant, and must follow standard linkage
conventions.

e The caller must be an Assembler Language program. If the
user wishes to use a high-level language and call a transient
subroutine, he must do the following:

1. Write a reentrant Assembler Language interface, using
standard linkage conventions, to issue the CALLOVLY for
the high-level program, and define it in REENTSBS.

2. Parameters to be passed to the subroutine in the
transient area must initially be passed to the Assembler
Language interface by the high-level 1language. (See
Figure 3-13.)

3. The high-level language caller of the Assembler Language
interface must be defined as reentrant, that is, provide
save area chaining.

e The subroutine in the transient area must invariably complete
its processing within five minutes. The time-out interval is
fixed by the Intercomm transient subroutine handler. After
this time, it will be subject to being overlaid by other
subroutines.

Chapter 3

Message Management

Allowed

Not Allowed

ASUB CSECT

CALLOVLY BSUB

ASUB CSECT

CALLOVLY BSUB

BSUB CSECT BSUB CSECT
CALL DSUB CALLOVLY CSUB
END END
Figure 3-12. Illustration of Nested CALLOVLY Coding Conventions

CALL 'COBREENT' USING CSUBI-code, Parameter-A, Parameter-B

* REGISTER ONE CONTAINS THE COBOL PARAMETER LIST ADDRESS

CSUBI CSECT
USING *,12
STM 14,12,12(13)
LR 12,15
LR 2,1
STORAGE ADDR=8(13),LEN=72,RENT=NO
L 3,8(13)
ST 13,4(3)
LR 13,3
LR 1,2
CALLOVLY CSUB, (1)
LR 1,13
L 13,4(13)
STORFREE LEN=72,ADDR=(1)
M 14,12,12(13)
BR 14
END
Figure 3-13. Using CALLOVLY in an Assembler Language Interface

for a High-Level Language Program

3-60

Chapter 3 Message Management

The set of Linkage Editor control statements illustrated below
would result in a root section containing the resident subsystems PGM1
and PGM2, and in the Intercomm transient area, the subroutines SUBI,
SUB2, SUB3 and SUB4. The transient subroutine OVERLAY and INSERT
statements must be placed in the Intercomm linkedit after the Intercomm
OVERLAY TRAN(REGION) statement.

INCLUDE SYSLIB(PGM1,PGM2)
INCLUDE SYSLIB(SUB1,SUB2,SUB3,SUB4)

OVERLAY TRAN(REGION)
Intercomm transient subroutines

OVERLAY TRAN

INSERT SUB1
OVERLAY TRAN

INSERT SUB2
OVERLAY TRAN

INSERT SUB3
OVERILAY TRAN

INSERT SUB4

PMIOVLAY and LOADOVLY must be included in the Intercomm linkedit.
The appropriate control cards for these modules and applicable
Intercomm routines in the Transient Subroutine Overlay Region may be
generated via the ICOMLINK macro specifying TRANS=YES and requires
coding of OVLYSTR=YES.

Since the linkage editor cannot create more than four overlay
regions, the use of one of them as a transient area will restrict the
application subsystems to the use of Intercomm Overlay Areas A, B and
C.

Since the transient area is a serially reuseable resource, care
must be taken not to use it for subroutines that, due to frequency of
usage or duration of processing, will create a decrease in message
throughput or delay system control functions.

3.11.5 Subroutine Overlay Region (SUB)

Intercomm provides an overlay region dedicated to rarely used
Assembler Language subroutines which follow normal linkage conventions
and never relinquish control to the Dispatcher (no I/O, no time delays,
etc.). Some Intercomm routines are defined for this overlay region and
thus accomplish a saving of 6-9K. ICOMLINK parameters are the same as
for Overlay Region TRAN.

3-61

Chapter 3 Message Management

OVERLAY and INSERT statements, for user subroutines eligible for
this area, must be placed in the Intercomm linkedit after the Intercomm
OVERLAY SUB(REGION) statement, and INCLUDE statements must be added as
described above for the TRAN area. Use of this area in addition to the
TRAN area will restrict application subsystems to Overlay A and B only.

3.12 GENERALIZED SUBTASKING

The concept of using OS subtasks to perform operations containing
inherent WAITs, (for example, GET, OPEN, CLOSE, etc.) has been
generalized. At startup time the generalized subtasking facility will
create a pool of general purpose subtasks which can thereafter be used
to perform functions of this type. This facility, which is used by
Intercomm system routines, is also available for use by Assembler-coded
subsystems or subroutines. A SUBTASK macro 1is coded to specify a
subroutine which is to receive control under a general subtask. The
subroutine executes under the subtask, then returns control to the
original routine at the next sequential instruction after the SUBTASK
macro. The linkage between the issuer of the SUBTASK macro and the
subroutine is similar to a CALL; all registers must be preserved and
restored as they would be during a CALL.

The code executed as the subtask cannot relinquish control to any
Intercomm service routines such as the Dispatcher, File Handler, etc.
nor issue an OS WAIT macro. Execution of the subtask logic is
synchronous with respect to the thread issuing the SUBTASK macro. The
calling routine may be resident or dynamically loadable, but may not
execute in an overlay area. The TCTIV for the originating subsystem
must be generous to prevent unnecessary time-outs.

3.12.1 Special Subtasks

Special subtasks are subtasks from the general pool which are
reserved by Intercomm with a unique identification number. Special
subtasks are defined to allow exclusive use of a subroutine. This is
useful for subtasking subroutines which may only be executed serially,
that is, nonreentrant code.

The first issuance of a SUBTASK macro with an ID number specified
via the TASKNUM parameter causes Intercomm to fetch a subtask from the
general pool, assign the ID number to it and place its address in the
special subtask table. Control is then passed to the subroutine to
execute under that subtask. For every subsequent SUBTASK macro with
the same ID specified, Intercomm retrieves the source subtask and
determines whether it is active. If it is active, an INTWAIT is
performed until the subtask is free. When it is free, or if it was
inactive, control 1s passed to the subroutine to execute under the
subtask, and that subtask is marked active. The ID assigned to the
subtask is unique and remains in effect until closedown.

3-62

Chapter 3 Message Management

The difference between a general subtask and a special subtask is
that when a general subtask is requested (no ID is provided), an
inactive subtask is chosen at random from the general pool and control
is passed to the subroutine to execute under that subtask. If a
special subtask 1is requested (an ID is provided with the SUBTASK
macro), the subtask to which the ID is assigned is located, and control
is passed to the subroutine only if the subtask 1is inactive, even
though there may be other inactive general or special subtasks. This
method forces serial reusability for the special subtasks.

If a subroutine is requested under a general subtask while it is
executing under a special subtask, control will be passed to the
subroutine and it will execute concurrently under both the general and
special subtasks. In addition, if a subroutine is executing under one
special subtask and that subroutine is requested for execution under a
different special subtask (different ID number), control will be passed
only if the second subtask is inactive. 1Intercomm can only determine
whether a special subtask is active or free; it cannot determine
whether the subroutine is active, nor can it associate special subtasks
with subroutines. Thus, to prevent concurrent use of the subroutine by
multiple requests, a subroutine should always be executed under the
same special subtask ID.

As with general subtasks, special subtasks should not relinquish

control to Intercomm, and they may not issue a WAIT or cause a program
check. Intercomm does not use special subtasks.

3.12.2 Implementation

The number of general and special subtasks in the system 1is
specified to Intercomm via the TASKNUM parameter of the SPALIST macro.
If the number of special subtasks in TASKNUM is zero, special subtasks
will not be allowed. The module ICOMTASK must be included in the
linkedit if general and/or special subtasks are in use.

To execute a subroutine under a general subtask, code the SUBTASK
macro in-line and omit the TASKNUM parameter. To execute a subroutine
under a special subtask, code the SUBTASK macro in-line, and code the
TASKNUM parameter with a valid subtask ID number (within the range
specified for the SPALIST TASKNUM parameter).

The subroutine must be coded in Assembler and must be resident.
Refer to Basic System Macros for coding specifications of the SPALIST
TASKNUM parameter and the SUBTASK macro.

3-63

Chapter 3 Message Management

3.13 TIME CONTROLLED MESSAGE PROCESSING

Intercomm automatically generates messages based on the time of
day, as dictated by the user’'s Time Zone Table. The user specifies
through the parameters supplied in the table what Verb Message
Identifier (VMI) is to be included as part of the constructed message
header. The message is queued, through Message Collection, to the
specified subsystem for processing at the time of day specified by the
user. The format of the message produced by Intercomm is:

e Bytes 1-42: Standard Intercomm message header with:
-- MSGHSSCH set to binary zero, MSGHSSC to C'M’'

-- MSGHRSC and MSGHRSCH fields set to the values supplied by
the user

-- MSGHVMI field set to the value specified by the user
e Byte 43: Ttem Code=l
e Byte 44: Length=1
e Byte 45: Time Zone Code Value (supplied by user)

The Time Zone Table is constructed by coding one TMZONE macro for
each message the user wishes to be automatically started by Intercomm
based on the time of day. The TMZONE macros must be coded in a Csect
named PMITIMTB. The end of the table must be delineated by the PMISTOP
macro, which indicates the end-of-table condition at execution time.
The receiving subsystem can further trigger later iterations of the
same message via the Dispatcher, or multiple table entries for the same
subsystem with different times may be coded. The receiving subsystem
might be used to:

° queue System Control Command messages

° start (acquire) a remote input or output terminal or a line

o generate a FECMDDQ for printer output

The module TRIGGER must be included as a resident program in
addition to the resident Time Zone Table. TRIGGER automatically

detects when midnight has passed and reprocesses the Time Zone Table
for the new day.

3-64

Chapter 3 Message Management

Following is a sample Time Zone Table:

PMITIMTB CSECT
* MESSAGE TO SUBSYSTEM AA AT NOON:

TMZONE SCHT=1200,PGID=A,PGIH=A,PVMI=N,TMZC=2
*
* MESSAGE TO SUBSYSTEM XY AT 4:00 PM:

TMZONE SCHT=1600,PGID=Y,PGIH=X, PVMI=X, TMZC=Y
*
* END OF TABLE

PMISTOP

END

3-65

Chapter 4

TASK MANAGEMENT

4.1 DISPATCHER AND RELATED SERVICE ROUTINES

The Intercomm multitasking Dispatcher (IJKDSPOl) controls all
scheduling of task execution in the Intercomm environment, replacing
the Operating System multitasking facility. All system programs (Front
End, Subsystem Controller, File Handler, etc.) effect overlap of
operation, interprogram communication and scheduling wvia the
Dispatcher.

4.2 DISPATCHER QUEUES

The Dispatcher controls operation via task queues of three
different types:

° Execution Queues

Tasks which are executable based upon their order of
readiness within order of priority

° Event Queues

Tasks which will become executable upon completion of an
event, indicated via the posting of an Event Control Block;
whether by the operating system (WAIT queue) or an internal
posting (IPOST queue--see DISPATCH macro)

° Time Queue

Tasks which will become executable at a particular time of
day, or on completion of a timed wait.

Tasks are created via the DISPATCH or INTWAIT macros, described
in Basic System Macros, and the Assembler lLanguage Programmer'’s Guide.
Information about the queues may be dynamically displayed via the TALY
and SCTL system control commands.

4.2.1 Defining the Number of Task Queue Elements

The Dispatcher contains assembled space for task queue elements
allowing up to 120 concurrent tasks (executable, event or
time-dependent). Task queue elements not in use are members of a free
queue element pool. Except in cases of high message volume or 200+
terminals, this number of queue elements is satisfactory. The number
of queue elements is a global specification:

&NUMWQES within INTGLOBE and SETGLOBE

Chapter 4 Task Management

To increase the number of queue elements, update the global setting in
SETGLOBE and reassemble and link IJKDSPOl. 1If the free queue is empty
when a new task element is to be created, Intercomm abends with a user
code 901 (see IJKTRACE description, below). To estimate the number of
WQEs necessary for a high-volume system, add the number of SYCTTBLs
generated for Front End processing to the number of BLINE macros and/or
VTAM I/0s (RCVNO, RCVRSP and MXSDTHD on VCT macro), and the total MNCL
across all subsystem SYCTTBLs, plus 50 for Intercomm processing.

4.2.2 IJKPRINT-Output to SYSPRINT

This Dispatcher-related service routine calls the PUT entry point
in the File Handler to output a print line image whose address is
pointed to by register 1 at entry to IJKPRINT. Print line images must
be IBM standard format V (variable-length) records, with an ASA printer
spacing control character as the first text byte. (Maximum logical
record length is that defined in the JCL for SYSPRINT.) A count is
maintained of the number of lines printed on the text page; when the
count exceeds sixty lines, the next line output will specify a skip to
head of form (ASA control character ‘l’), and the line count will be
reset,

Output is directed to the file with ddname SYSPRINT. If the file
is undefined or incorrectly defined, no output is produced and no
diagnostic indication is given. The DD statement for SYSPRINT must
define a DCB with DSORG=PS, RECFM=VA, or VBA, LRECL~137 and BLKSIZE=141
or a multiple of 137 plus 4.

Any program may, if desired, call upon this routine to perform

routing of similarly formatted records to SYSPRINT. Control is not
released to the Dispatcher during IJKPRINT processing.

4.2.3 IJKTRACE-List Dispatcher Queues

This service routine constructs print line images producing a
formatted display of all Dispatcher task queues. It is called
automatically whenever the program check handler (SPIESNAP) is entered
for a snap 126, and by RMPURGE when purging a subsystem thread with
outstanding resources not released by that thread. It is also called
by the Subsystem Controller (SYCT400) when a subsystem times out (snap
118 produced), by STAEEXIT (for snaps 121 and 122), and by VTERRMOD for

VIAM error recovery (snap 63). It may also be called for diagnostic
purposes-by any other program. A WQE trace for a specific queue may be
dynamically displayed via the SCTL system control command. Also, a

full WQE trace routed to SYSPRINT may be dynamically requested via
SCTL. Successful execution of this program also requires inclusion of
IJKCESD and IJKWHOIT in the Intercomm linkedit (see sections 4.2.4 and
4.2.95). IJKTRACE calls IJKPRINT to output the print line images to
SYSPRINT (see above). For efficiency, the SYSPRINT data set should be
blocked.

4-2

J

Chapter 4 Task Management

Each print line image is passed to the IJKPRINT routine for
output to SYSPRINT. Fields are printed in hexadecimal format, unless
otherwise noted. The following are detailed explanations of the
elements of the listing:

e Heading Line 1l--General information giving:

-- The Julian date and time (decimal) at entry to the
routine, as obtained from the operating system clock:

IJKTRACE ENTERED DATE yy.ddd TIME hh.mm.ss.

-- The byte specifying the priority and overlay group of the
last program path given control by the Dispatcher:

PRI/OVLY xx
-- The byte specified by the last executed SETOVLY macro
instruction (00 if no overlay or EXGRP structure is
used) :
SETOVLY xx
-- The caller (Csect name and displacement) of IJKTRACE:

CALLED BY name+displacement

° Heading Line 2--Defines the 1list type, locations and
activity:

-- The Dispatcher list name whose task elements, if any, are
printed below:

aaaaa LIST

In place of 'aaaaa’ will appear the 1list type: FREE,
WAIT, IPOST, TIME or EXEC.

- The FREE list contains task elements that are unused or
that represent program paths already either given control
or cancelled, in the order in which these events
occurred. The oldest (first) entry in the FREE list is

reused when required for a new program path. The newest
(last) entry is for the most recently dispatched task.
Only the last 200 entries are printed. To print more or

less, modify the local global &FQENUM in IJKTRACE.

- The WAIT list contains task elements for program paths
awaiting the posting of an Event Control Block (ECB) by
Intercomm or the operating system. Task elements appear
in the order in which the requests were made.

- The IPOST 1list contains elements for program paths
awaiting the posting of an ECB by Intercomm wvia an
internal INTPOST request. Task elements in this list are
in random order (by ascending WQE address).

4-3

Chapter 4

Task Management

- The TIME list contains task elements for program paths to
be resumed at a given real time; the list is maintained
in ascending real time sequence, with first-in first-out
sequence for equal real time values.

- One EXEC (execution) 1list for each priority 1level
(maximum=4) in the system contains task elements
representing program paths ready to be given control, in
the order that readiness was determined.

-- The addresses of the list table entry, the first task
element, and the 1last task element in the 1list are
displayed. Where a list is empty (zero count), all three
addresses are equal:

WQT XXXKXXX FIRST XXXXXX LAST XXXXX

-- The decimal count of task elements currently in the list,
and the highest or lowest count value that has occurred
since processing began (highest count for all but the
FREE list):

COUNT aaaa HI/LO aaaa
NOTE: if the free queue LO value is below 10, the total
number of task queue elements should be increased
(see Section 4.2.1).

Heading Line 3--Provides task element column descriptors if

the list contains any task elements (nonzero count). This is

followed by task element fields, one task element per line.

The column headings are:

-- WQE--Address of the task element.

-- FLAGS--Letters corresponding to flag bits in the task
element, as follows:

D--Program path has been given control (dispatched).
C--Program path has been cancelled (before dispatch).
E--Task element has been placed on execute list.
P--Task element is (has been) in the IPOST list.

I--WAIT list element is internal ECB (posted by
Intercomm) .

T--Task element is (has been) in the TIME list.
W--Task element is (has been) in the WAIT list.

NOTE: where an invalid combination of flags has been
detected, an asterisk (*) precedes the flags field.

4-4

Chapter 4

Task Management

PRI/OVL--The priority and overlay-group portions of the
priority/overlay byte specified in the DISPATCH or
INTWAIT macro instruction; the sum of these values is the
value of the PRI/OVL field.

ECB/T--The ECB address or real time, where applicable. A
real time is a 24-bit value with the least significant
bit representing 1/37.5 of one second in this display. A
description of converting timer units is provided in the
chapter on "General Debugging Techniques" in Messages and
Codes.

This field is not printed for task elements that have not
been in either a WAIT, IPOST, or TIME list, that is, the
task element was dispatched directly on an EXEC queue.

ENTRY PT--Address for transfer of control to resume the
program path; the high-order (leftmost) byte contains the
thread number in hexadecimal (if nonzero, subsystem
processing created the task element).

PARAMETER- -Value to be passed to program in register 1.

(ECB)--Value in ECB if the FLAGS field contains a W; it
is the value before posting if the task element is in an
event list (WAIT, IPOST).

TIME--for task element that is (was) in time list if the
FLAGS field contains a T, the time it was (will be)
dispatched or, if it was cancelled, the time it would
have timed out.

CSECT--the Csect (+ displacement if any), that was (will
be) given control of this task element (see ENTRY PT
above) . If the Csect name is not easily recognizable,
refer to the Csect/Module name correspondence table for
Intercomm system modules in Figure 4-1.

ENTRY--the entry point within the Csect at which this
Csect was (will be) entered, if known (defined by an
ENTRY statement within the module).

SUBSYS--if CSECT 1is SYCTRL (no ENTRY), or the thread is
not zero (and the task element not on the Free Q); the
subsystem code of the subsystem processing under this
task element.

SUB NAME--if CSECT is SYCTRL (no ENTRY), or the thread is
not zero (and the task element not on the Free Q); the
name of the subsystem processing under task element.

An example of IJKTRACE output is shown in Figure 4-2.

Chapter 4

Task Management

CSECT Name Module Name Function

SYCTRL SYCT400 Subsystem Controller
mxmonoo | IXFRNDOO | File Handler Initialization
meovol | IXFENDOL | File Handler Processing
meavmo | XFENDOL | File Handler ISK
" xesuss | IXFHNDOL | File Handler save area processing
mmonos | IXFENDOO | File Handler Closedown
 mrstor | starTUP3 | Intercomm Startwp
 smoviy | STARTUP3 | Intercomm Startup
Rsvewr | MANAGER | Resource Management
R | MANAGER | Resource Management subfunction
msecon | BMsGeOL | Message queuing
 RonNKTB | sysovtL | SCTL command processing
 REFRMAT | sysovtL | SCTL command processing

Figure 4-1.

IJKTRACE - Csect/Module Name Correspondence Table

"Z-% @an31yg

L-%

(¢ 30 T #8eg) Burasy1 FAOVIINCI °1dwes

-

c

C

TUJKTRACE ENTERED

FREE LIST
WOE FLAGS

02C700 DEW
02CA60 DEW
02C780 DEW
02CBAO DEw
02CC80 DEW
02CA70 DEW
02C8CO DEW
02CAAQ DEwW
oa2cc7o DEW
02CB40 DEwW
02CB8O DEwW
02CD8O DEW
02CCe0 DEwW
02C730 DEW
02CBEO DEW
02C720 DEW
02CDEQ DEW
02CaA20 DEW
02C070 DEW
02CB10 DEW
02C710 DEW
02ccC10 DEW
02CACO DEW
02CDAO DEW
02C790 DEN
02CAS50 DEW
02CB60 DEW
02CD40 DEwW
02CCAO DEW
02C880 DEwW
02CB70 DEW
02CBCO DEwW
02C8EOQ DEW
02C770 DEW
02C860 DEW
02ccco DEW
02C830 DEW
02CC40 DEW
02CB00 DEwW
02CDCO DEwW
02CAFO DEW
02C8A0 DET
02CA80 DEW
02CC20 DET
02C6EQ DETY
02CD50 DEW
02CAS0O DE
o2cpao DEPW

WQT 02C620

PR]

DATE 88.252

FIRST

ECB/T

03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
0B9010
O3EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
089010
03EBEO
0B9010
089010
137776
00CEOC
137777
137780
00C6F 4

082750

TIME 09.27.07

02C700 LAST
ENTRY PT
0C0787D4
00078704
000787D4
0007B7D 4
0007B7D4
0007B7D4
00078704
0007B7D4
0007B7D 4
00078704
0007B7D4
0007B7D4
000787D 4
0007B7D4
00078704
0007B70D4
0007B7D4
000787D 4
000787D4
00078704
0007B7D 4
00078704
00078704
00078704
00078704
000787D4
000787D4
0007870 4
000787D4
0007B7D4
0007B7D 4
0007B7D4
00078704
00078704
0007B704
00078704
0007B7D4
0007B7D4
00078704
000787D4
0007B7D4
00011404
0001E418
0001134C
00011404
00015066
00017A24
00030808

PRI/0OVYLY 00

02CDBO

PARAMETER
0004AC00
000CF728
0004AC00
000CF728
0004AC00
000CF728
0004AC00
000CF 728
0004AC00
000CF 728
0004AC00
000CF728
0004AC00
000CF728
0004AC00
000CF 728
0004AC00
000CF728
0004AC00
000CF728
0004AC00
000CF728
0004ACO00
000CF 728
0004AC00
000CF 728
0004AC00
000CF728
0004AC00
000CF728
0004ACO00
000CF728
0004ACO00
000CF728
0004ACO0
000CF728
0004AC00
000CF 728
0004ACO00
000CF728
0004AC00
0000CEOC
00042088
00056FF0O
0000C6F 4
00043070
000412CO
000826F0

COUNT 0048

(ECB)

SETOVLY 00

HI/LO 0037

TIME

09:27:00.43

09:27:00.45
09:27:00.69

CALLED BY SPIESNAP+284

CSECT
IXFMONO1+2084
IXFMONO1+20B4
IXFMONO1+20B%
IXFMONO1+2084
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+208B4
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+2084
IXFMONO1+2084
IXFMONO1+20B4
IXFMONO1+20B4
I XFMONO14+208B4
IXFMONO1+2084
IXFMONO1+2084
1XFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+2084
IXFMONO1+20B4
IXFMONO1 4208
IXFMONOL1+2084
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+2084
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+20B4
IXFMONO1+208B4
IXFMONOL1+20B4
IXFMONO1+2084
IXFMONO1+2084
1XFMONO1+20B4
IXFMONOL+2084
1XFMONO1+2084
IXFMONO1+2084
IXFMONOL+2084
IXFMONO1+2084
IXFMONO1+20B4
BTAMSIMeA&C
8SCDIAL+B20
BTAMSIM+994
BTAMSIM+ALC
BLHING191E
BMHO00+4
SYCTRL

ENTRY
OVRLAPIO
OVRLAPIO
OVRLAPID
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIOD
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIOD
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPID
OVRL APIO
OVRLAPIOD
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIO
OVRLAPIOD
OVRLAPIO

BMHINOOO
SCNMAIN

SUBSYS SUB NAME

JP/D01DT WAGEMNGR

% 293deyy

Ju3mIZRUrRy NSE]

*Z-% 91314

8-v

(€ 30 7 #8eq) Bup3sy] IDVIIICI °1dmes

WAIT LIST WOT 02C62C
WOE FLAGS PRI OVL
02CDY0] 80 00
02CoF O W 80 00
02C010 [} 00 00
02C820 W 80 00
02C090 W 00 00
02CADO w 80 00
02CCEO W 80 00
02C7F0 iw 00 00
02C000 Iw 00 00
02C8co Iw 00 00
02C680 1w 00 00
TIME LIST WQT 02C638
WOE FLAGS PRI OVL
02C7A0 T 80 00
02C600 T 00 00
02C810 T 80 00
02¢C80 T 80 00
02C840 T 80 00
02Cc7¢C0 T 80 00
02CC90 T 80 00
02C8%0 T 80 00
02C71%0 T 80 00
02CCY0 T 80 00
02CC5%0 T 80 00
02C6A0 T 80 00
02CCFO T 80 00
02C820 T 80 00
02C7EO T 80 00
02C760 T 00 00
02CA10 T 00 00
02Ce80 T 00 00
02C690 T 00 00
02€000 T 00 00
02C680 T 80 00
02Ce6CO T 80 00
02C740 T 00 00
02CAEO T 00 00
EXEC LIST WOT 02Cb44
WOE FLAGS PRI OVL
02€990 E 00 00
EXEC LIST WaT 02C650
EXEC LIST WOT 02C65C

FIRST 02CD30

LAST 02CeBO

ECB/T ENTRY PT PARAMETER
011848 000119€2 4E0119CC
00CFFO 0001FC28 0001FD&6C
03FO0D4 0C07DA8BA 0004F934
00C374 000167FC 00042760
00CEOC 0001E418 00042088
03EF50 00078704 0004ACO0
01378C 00017ECO 0002CCDO
081760 00064480 00000000
00F69C 0001858C 00041678
00F59C 0001858C 00040C60
OOEEDC ooo1858C 000410A0
FIRST 02C7A0 LAST 02CAEOQ

ECB/T ENTRY PT PARAME TER
137884 00011404 0000C374
137886 00011404 0000CEOC
13788A 0001134C 0005€AaDO
137890 000ACOOE 00043328
137892 0001134C 00057510
137892 0001134C 00057430
137892 0001134C 00057F50
137895 000137D4 0000C9AC
137840 00016082 0700C9AC
1378AC 000119FA 0000CAO4
137888 0001134C 00055870
13788F 0001134C 00056580
1378C5 0001134C 00056090
1378E0 00016D82 0000C9AC
13790F 0001134C 00056FFO0
137928 000388E2 0003DDC4
137Co07 00031F16 0004C718
13938C 00070488 00000000
139F63 00038586 000813C0
138688 000298C8 00000000
13B6A7 0001E27A 0000CEOC
13B6A7 0001E27A 0000CEG64
1420EF 00034198 0008414E
140030 0007F5C8 00028F20

FIRST 02C890

ECB/T

FIRST 02C650

FIRST 02C65C

ENTRY PT
0002C10A

LAST 02CB90
PARAMETER
0088252F

LAST 02C650

LAST 02C65C

COUNT 0011

(ECH)
006FFBAB
006FFBAB
OO6FFB8AB
O06FFBAB
006FFBAB
7F000000
00000000
00000000
0300CBS54
03000000
0300C3cCC

COUNT 0024

(ECB)

COUNT 0001

(ECB)

COUNT 0000

COUNT 0000

HI/L0 0023

TIME

H1/L0 0030

TIME
09:27:07.63
09:27:07.68
09:27:07.79
09:27:07.95
09:27:08.00
09:27:08,00
09:27:08.00
09:27:08.08
09:27:08,37
09:27:08,69
09:27:09.09
09:27:09,.20
09:27:09.36
09:27:10.08
09:27:11.33
09:27:12.00
09:27:31.60
09:30:13,44
09:31:32.99
09:34:10.99
09:34:11,81
09:342:11.81
09:46:17.36
10:063:13.76

HI/LO 0036

TINE

H1/L0 0003

HI/L0 0016

CSECT
BTAMSIM+102A
CNTO1MOD+ 338
IXFB37+384A
BLHOT +F3C
BSCOIAL+B20
IXFMONO1+20B4
BMHO00+44A0
PMISTUP+348
BMHO000+89C
BMHO00+B9C
BMHOOO+B9C

CSECT
BTAMS [M+A4C
BTAMS IM+A4C
BTAMS IM+994
GFDRIVER<+EG
BTAMS IM+994
BTAMS I1M+994
BTAMS [M+994
BLHIN+8C
BLHOT+14C2
BTANMSIM+1042
BTAMS IM+994
BTAMS IM+994
BTAMSIM+994
BLHOT+14C2
BTAMSIM+994
RSMGMNT+432
SYCTRL+140€E
CHECKPT
RSMGMNT+D&
INTSTS
BSCD1AL+982
BSCDlaL+982
PMI AUTOF
IXFRPTO1

CSECT
1JKDSPO1+5BA

ENTRY

ECBWAITY

OVRLAPIO
BMHDEOAB

ENTRY

BLHINOOO
HARDBACK

HARDBACK

PURGE

BSCOLOUT

BSCDLOVT

ENTRY
1 JKRETX

SUBSYS SUB NAME
suBsYs SUS NAME
SUBSYS SUB NMARE

C

C

C

193deyy

juamafeusR Asel

6-%

(€ 3o ¢ @8eq) Buyasy FOVIIACI 31dueg

*Z-% 2andyy

C

c

TJXTRACE ENDED.

EXEC LISY WOT 02Co68
1POST LIST WOT 02C674
wet FLAGS PRI 0OVL
02C700 . co 00
02C780 (4} 40 01
02C8%0 (4] 00 00
02C870 PW 00 00
02C890 PW 00 00
02Ce880 PW 00 00
o2ceco PW 00 00
02C800 Pw 00 00
02C8FO PW 00 00
02€900 PW 00 00
02C910 Pw 00 0O
02C920 PW 00 00
02C€930 PW 00 00
02C940 Pw 00 00
02C9%0 PW 00 00
02C960 PW 00 00
02C970 PW 00 00
02C980 PW 00 00
02€990 PN 00 00
02C94A0 PW 00 00
02C980 " PW 00 00
02€9CO0 PW 00 00
02C900 PW 00 00
02C9E0 PW 00 00
02C9FO0 PW 00 00
02CA00 PW 00 00
02CA30 PW 00 00
02CA40 Pw 00 02
02CABO PW 00 00
02C830 PW 00 00
02CBFO PN 00 00
02CC00 PW 00 00
o2cceo PW 40 00
o2co020 Pu 00 00
02C060 PW 00 00
02CDFO PW 00 00

FIRST 02Co08 LAST

FIRST

ECB/T

081CC4
08287C
0818BFC
081028
081DFO
081EB8
081F1C
081F80
082048
0820AC
082110
082174
082108
08223C
0822A0
082304
082368
0823CC
082430
082494
0824F8
08255C
0825C0
082624
082688
0826EC
0o81D08C
0828E0
0B81FE4
081C60
082784
081ES4
081654
08119C
082818
081898

N/A LAST

ENTRY PY
00030808
00030B08
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030B08
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
00030808
000308048
000674B4
000318A0
00030B08
00030808

02Co68

N/A

PARAME TER
00081C64
0008281C
0008189C
00081CC8
00081090
00081E58
000B1EBC
00081F20
00081FE8
0008204C
00082080
00082114
00082178
0008210C
00082240
00082244
00082308
0008 236C
00082300
00082434
00082498
000824FC
00082560
000825C4
00082628
0008268C
00081D2C
00082880
00081F B4
00081C00
00082754
00081DF 4
0006798C
0004C188
00082788
00081838

COUNT 0000

COUNT 00136

(ECB)
0002C700
0002C780
0002C850
0002C870
0002C890
0002C8B0O
0002C8CoO
0002C8DO
0002C8FO
0002C900
0002C910
0002C920
0002C930
0002C940
0002C950
0002C960
0002C970
0002C980
0002C990
0002C9A0
0002C980
0002C9CO
0002C900
0002C9EO
0002C9F0
0002CA00
0002CA30
0002CA40
0002CABO
0002CB30
0002CBFO
0002CCo0
0002CC0O
0002CD20
0002CD60O
0002CDFO

HI/LO 0001

HI/LOD 0039

TIME

CSECT
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
SYCTRL
DELOAD+4%
SYCTRL+D98
SYCTRL
SYCTRL

ENTRY
SCNRAIN
SCNRAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN
SCNMAIN

SCNMAIN
SCNMAIN

SUBSYS
470001
n/0004
V/00ES

LL/03D3

LM/D3D4
T/00€E3
c/00C3
F/00C6
P/0007
W/00E6
R/0009
H/00C8

HH/CBCB

cc/C3c3

WI/E6C9

WU/EGE4

nI/04C9

RQ/D9D8

RA/D9C1

PO/D70D8

Al1/C1F1

L1/D3F1

L2/D3F2

L3/D3F3

L4/D3F4

MD/DaC4

MM/04D4

Cl/C3F1
8/00C2
N/00DS
Q/00D8

GP/CTD7?

PG/D7C7
U/00E 4

SUB NARE
PMICLOWN
MONOVLYC
PHIOUTPT
LOADSCY
LMAP

F INTUNER
SYSCNTL
DYNSSUP
PAGEMSG
SENDBACK
IXFRPTIOQ
CHANGE
CHANGE
CoPYSS

F EWHOL
FEWHOV
MISSING
SQCOBOLA
SQASMA
sapLl
APWTESTC
FHTESTL
SNBKL1
SNBKL2
CONV1L
TESTRLSE
MMUCOMM
MONOVLYC
SWITCH
pPMIOUTPT
CHCKPTSS
GPSS

MMUTESTR
PMIOUTPTY

% 1e3deyy

Juswafeuwy ysw]

Chapter 4 Task Management

When all Dispatcher lists have been scanned and formatted, the
following line is generated:

IJKTRACE ENDED.
Control is retained in the current program path for the duration of

processing by this module; the Dispatcher is not entered, and no other
system work is performed.

4.2.4 IJKCESD--Initialize Csect/Entry Tables

IJKCESD is called once during system startup to scan the main
Intercomm load module and to scan LPSPA (if the Intercomm Link Pack
facility 1is wused) in order to create the internal tables wused to
provide the Csect and Entry names for the IJKTRACE report and various
Intercomm debugging messages, snap printouts, on-line displays, and the
Resource Management Thread Dump. IJKCESD may be resident or in the
startup overlay (conditionally called by the STUOVLY Csect). It is
automatically included if the ICOMLINK macro is used to generate the
Intercomm linkedit.

If an LPSPA linkedit 1is used (placing selected Intercomm load
modules in the Link Pack Area as described in Chapter 7), then a DD
statement for the load library containing the LPSPA load module must be
added to the Intercomm execution JCL after the //PMISTOP DD DUMMY
statement (library not processed via the File Handler), as follows:

//LPSPALIB DD DISP=SHR,DSN=LPSPA-load-module-library

4.,2.5 IJKWHOIT--Find Csect/Entry and Subsystem Names

IJKWHOIT is called by several Intercomm system modules to
determine the Csect name, and displacement within that Csect, of an
address passed as a parameter. It may also be called to find out the
name of the subsystem for which the SCT entry address is passed as a
parameter. Note that the SCT entry address is the third parameter
passed to all subsystems on transfer of control from Intercomm.
IJKWHOIT must be included in the Intercomm linkedit as resident
(automatic if the ICOMLINK macro is used to generate the Intercomm
linkedit).

To find the name of (and displacement within) a Csect in which an
address in the Intercomm (or LPSPA, if there) or dynamically loaded
load module resides, call IJKWHOIT as follows:

CALL IJKWHOIT, (addr, {sct),wherecsect, {wherentry)}, {wheresub}),

{ 0) { 0) | 0 }
VL[,MF=(E,list)]

4-10

Chapter 4 Task Management

where:
addr is a pointer to the field containing the address
whose Csect name is to be found (if only sct desired,
code 0 -- see below);

NOTE: the high-order byte of the address field must
be binary zero (X'00’) to indicate a 24-Amode
address under XA. Clear only the high-order
bit (X’'80’') if a 31-Amode address is passed.

sct is a pointer to the SCT (SYCTTBL) entry for a
subsystem (if not desired/available, code 0);

wherecsect 1is a pointer to the area to which the caller wants
the Csect name moved (a print line, for example):
minimum area length must be 15 bytes for the Csect
name plus displacement, if any (if the Csect name
cannot be found, the value UNKNOWN ADDR is placed in
the area) (if only sct passed, code 0 -- see below);

wherentry 1is a pointer to the area to which the caller wants
the entry point name (if available within the Csect)
moved: minimum area length must be 8 bytes (if not

desired, code 0);

wheresub is a pointer to the area to which the caller wants
the name of the subsystem (if sct pointer coded)

moved: minimum area length is 8 bytes. If a

subsystem defined as resident or overlay is not

included in the 1linkedit, the wvalue **NONE** is

placed in the area. (If sct is not coded, code 0).

To obtain only a subsystem name, use the following form of the
call:

CALL IJKWHOIT, (0, {sct},0,0,wheresub),VL[,MF=(E,1list)]
{((r)}

where (r) is a register pointer to the SCT entry.

Return Codes: 0 - address(es) converted and required
information moved to user area(s);

4 - either address not found, or IJKCESD was not

in the Intercomm 1linkedit, or an error

encountered at startup - mno CESD table

entries were formatted.

4.2.6 IJKDELAY--Request Time Delay

This module may be called, instead of using the DISPATCH or
INTWAIT macros for a timed wait, to introduce a timed delay averaging
100 milliseconds into a program path. The Dispatcher is given control
to perform other processing and returns at the expiration of the delay
interval. ©No parameters are passed. Standard linkage conventions are
used. The current thread will resume processing, after expiration of
the interval, with the same execution priority. There is no REENTSBS
code; a SUBMODS must be added for the routine if it is not called by an
Assembler Language program.

4-11

Chapter 4 Task Management

The facility may be utilized to give a time-slicing effect within
a routine that would otherwise monopolize CPU time. It can also force
the buildup of parallel program paths for reentrant testing purposes in
an environment where actual parallel execution otherwise might not
ensue, or it may be invoked to await the passing of a temporary
condition that is to be resolved by another previously scheduled
program.

4.2.7 IJKTLOOP--Trace Program Loop

This module assists in detecting closed program loops. If it is
included in the Intercomm linkedit, it will be activated automatically
at system startup. IJKTLOOP functions as an Intercomm subtask. When
IJKTLOOP is called at startup, a subtask is ATTACHed, followed by a
CHAP (change priority request) in the Intercomm main task giving the
subtask the highest priority in the Intercomm region. The subtask:

° Initializes flags in the Intercomm Dispatcher
° Issues a STIMER to schedule an exit routine, then
e WAITs on an ECB to be posted by that exit routine.

After 30 seconds (real time), the exit routine receives control
and posts the ECB placing the subtask in the ready state. When the
subtask receives control, it checks flags in the Dispatcher to
determine whether various conditions have occurred and to take the
appropriate actions as follows:

° If closed loop detection has been deactivated via a call to
IJKTSTOP (see below), the closed loop subtask is DETACHed by
the Intercomm main task and closed loop processing is no
longer operative.

° If the Intercomm main task is in the WAIT state, then the
STIMER 1is reissued to schedule the exit routine and the
subtask WAITs again without taking further action.

e If the Dispatcher has been entered, indicating that a task
has been scheduled in the intervening 30 seconds (that Iis,
the task that was executing at the start of the 30-second
interval has returned control to the Dispatcher and thus was

not in a long duration closed loop), then the
Dispatcher-entered flag is cleared (flag will be reset by the
Intercomm Dispatcher in the main task). The exit routine is

then rescheduled and a WAIT is performed as before.

4-12

Chapter 4 Task Management

° If none of the above conditions are true, the subtask returns
to the main task, which issues the message numbered MP020I
and abends with a user code of 909, accompanied by a snap
with ID=121, an IJKTRACE printout and a thread dump. The
abend 909 will be recovered by STAEEXIT (if included in the
Intercomm linkedit), which cancels the looping thread, issues
message MPO03I, and then transfers control to the retry
routine, STAERTRY, if it 1is included in the Intercomm
linkedit. The retry routine will call IJKTLOOP to reactivate
the closed loop detector and then restore the Intercomm
environment (via transfer of control to SPIESNAP at entry
ABNDCANC) .

Closed loop detection may be deactivated at any time via a call
to IJKTSTOP, an entry in IJKTLOOP. No parameters are required;
standard linkage conventions are followed. This may be useful if, for
example, a program thread requires control, or calls an Intercomm
routine (for example, the File Handler) that requires control, for a
longer than average duration before returning to the Dispatcher. Once
the closed loop detector, IJKTLOOP, is deactivated via IJKTSTOP, it
must be reactivated to reinstate closed loop detection. Intercomm will
not reinstate it automatically unless a 909 abend occurs.

Closed loop detection is reactivated via a call to IJKTLOOP. No
parameters are required; standard linkage conventions are followed. 1If
IJKTLOOP is called and closed loop detection is already active, a
return code of X'04’ is returned in register 15 to the caller without
any further action taken.

Deactivation and reactivation of TIJKTLOOP processing may be
dynamically controlled via the STOP and STRT system commands (see
System Contol Commands).

To summarize, IJKTLOOP processing requires inclusion in the
Intercomm linkedit of TIJKTLOOP, STAEEXIT, STAERTRY, SPIEEXIT and
SPIESNAP, in addition to IJKTRACE, IJKCESD, IJKWHOIT, IJKPRINT and
TDUMP (and the DD statements for SYSPRINT, SMLOG, SNAPDD and optionally
LPSPALIB). When generating the Intercomm linkedit via the ICOMLINK
macro, code LOOPTIM=YES. Also see Chapter 8 for further details on
snap processing and the description of snap 121 in Messages and Codes.

NOTE: The hard-coded interval for the scheduling of the exit is
30 seconds real time, not task time. This means that the
time 1is decremented continuously whether Intercomm has
control of the CPU or not. This should be taken into
account if Intercomm runs on the system with other higher
priority jobs.

Chapter 5

RESOURCE MANAGEMENT

5.1 INTRODUCTION

Intercomm Resource Management has three major options:
1. Resource Auditing and Purging

2. User-defined pools of core storage

3. Accumulation of core-use statistics

All or any combination of these three options can be selected by
the user, according to installation requirements. If only the pools
option (recommended) 1is selected, Resource Management still provides
the system with an extremely efficient version of storage management.
Macros and their parameters referenced in this section are described in
Basic System Macros.

5.2 RESOURCE AUDITING AND PURGING

Resource Auditing refers to the maintenance of a chain of
resource control blocks (RCBs) defining wuser-accessed resources for
every active thread. There are five audited resource types:

1. CORE--acquisition of storage by invoking the STORAGE macro
2. FILE--use of a data set indicated by a call to SELECT

3. DDQ--access to a dynamic data queue indicated by a call to
QBUILD or QOPEN

4. DYNL--loading of a dynamically loaded subroutine via invoking
the MODCNTRL macro by the user, COBREENT, PMIPL1 or LOADSCT

5. NQ--activating an enqueue upon a resource by issuing the
INTENQ macro

Each time a thread acquires a resource, a control block is
created containing information about the resource and is attached to a
chain of similar blocks. When the thread releases control of the
resource, the corresponding control block is detached from the chain.
The on-line TDUMP utility (see Section 5.9) 1is provided to print out
the control block chains. This output shows which thread was in
control, what resources each thread owned, which module acquired each
resource, and the order of acquisition.

Chapter 5 Resource Management

Resource Purging means that when a thread completes, normally or
abnormally, its chain of resource control blocks is checked; in the
case of a non-empty chain, the used control blocks are released after
freeing blocks of storage, releasing files, etc.

All 1levels of Resource Management will purge Dispatcher queue
entries for failed message processing threads. With Resource Auditing,
storage, files, DDQs, loaded subroutines and enqueued resources are
also purged. Additionally, a "must complete" disable/enable facility
ensures that threads are not purged during critical operations; that
is, if a subsystem times out while an I/O event is outstanding, a timed
wait for the I/O event to complete is effected before attempting the
purge.

5.3 USER-DEFINED STORAGE POOLS

User-defined storage pools are generated by the Intercomm
ICOMPOOL macro and may be dynamically loaded at startup or linkedited
into the Intercomm load module. A pool is a set of storage blocks of a
given size; there is no limit to the number of blocks in a pool. The
ICOMPOOL macro also generates an index that permits the storage
management routine to quickly determine whether or not a storage

request can be filled out of the pools. Freeing an area of pool
storage 1s usually just as fast. Furthermore, the code is loop-free,
so that these time values are constant, and system degradation due to
storage fragmentation does mnot occur. The increase in efficiency

provided by judiciously tailored Intercomm pools more than offsets any
overhead increment from core-use statistics gathering. Creation of the
user-defined Intercomm pools (via ICOMPOOL macro) is described later in
this chapter. Acquiring and releasing core wunder Intercomm is
accomplished wvia the STORAGE and STORFREE macros described in Basic

System Macros.

5.4 CORE-USE STATISTICS

Three sets of core-use statistics can be accumulated via the
RMTRACE routine. Statistics are computed and printed at intervals
defined in SPALIST macro parameters.

1. Global statistics--the number of STORAGE and STORFREE macros
issued, the average storage request length, the number of
requests filled from the pools, etc.

2. Breakdown of STORAGE requests into detailed user-defined core
block size ranges. For each range, the number of requests
falling into that range 1is given, plus "concurrency"
statistics: at any given moment, the concurrency of a range
is the number of blocks that have been obtained, but not
freed. In addition to the instantaneous concurrency, high,
low and average concurrencies are computed. These figures
are particularly useful in working out pool sizes; the most

5-2

Chapter 5 Resource Management

value from a pool is obtained if the block size falls in a
range with a large number of requests, and the average
concurrency of the range indicates how many blocks are needed
in the pool. However, if the size 1is small, the high
concurrency may be used to get maximum efficiency, at a
relatively low cost in storage.

3. Pool-use detail statistics measure the effects of different
choices of pools, providing such information as the number of
requests that could not be filled from the user-defined pool
(because all the blocks were in use), the average number of
free blocks, etc.

5.5 STORAGE CUSHION

Every version of Resource Management includes the Storage Cushion
feature. At startup, a block of storage is obtained and held until a
request arrives that cannot be satisfied out of the Intercomm pools or
dynamic storage (0S subpool area). The storage cushion 1is then
released and no new threads started until the cushion is available
again. Thus, a temporary shortage of storage is not likely to bring
the system down. The user specifies the size of the cushion in the
SPALIST macro CUSHION parameter; a zero size is acceptable. A WTO
informs the wuser whenever release and acquisition of the cushion
occurs. (Front End input operations are also temporarily halted if the
module SSPOLL is included--see Chapter 7.)

5.6 RESOURCE MANAGEMENT MODULES AND GLOBALS

Seven modules automatically included in the Intercomm linkedit
are used to support Resource Management. Their member names are
MANAGER (Csects: RSMGMNT, RMPC and RMFNQ), RMPURGE, RMTRACE, TDUMP,
POOLDUMP, RMNADISA and the core pools definition module.

. MANAGER 1s the main Resource Management module. It contains
entry points for STORAGE and STORFREE macro processing
(STORAGEM and STORFRED), routines that switch control of
blocks of storage between threads (RMPASS and RMCATCH), and
those that handle resource control blocks for files
(RMFON/OFF), enqueued resources (RMNQON/OFF), etc.

e RMPURGE is the Resource Purging routine. It is called by the
Subsystem Controller when a nonzero thread completes to free

any resources not previously freed by the thread.

° RMTRACE computes and prints out core-use statistics. (See
Figure 5-2 for explanation and sample output.)

e TDUMP prints out RCB chains. (See Figure 5-3.)

Chapter 5 Resource Management

° POOLDUMP prints out the current status of the user pools.
(See Figure 5-4.)

° RMNADISA is the Intercomm disable/enable routine, and is also
used for resource purging.

° NEWPOOLS (or wuser-defined name) contains ICOMPOOL macros
defining storage pools.

Four independent options apply to Resource Management, and are
defined by binary set symbols in INTGLOBE and set in SETGLOBE,

controlling assembly of the MANAGER module. These options are as
follows:
1. &RM

If set to 1, Resource Audit and Purge are obtained; it is
necessary to include RMPURGE amd RMNADISA if this option is
chosen. Also, TDUMP should be included.

2. &RMPOOLS

If set to 1 (required), pool support is obtained; an ICOMPOOL
module must be defined. POOLDUMP may be included.

3. &RMSTATS

If set to 1, global core-use statistics are provided.
RMTRACE must be included.

4. &RMACCT

If set to 1, detail core block size and pool-use statistics
are provided. RMTRACE must be included.

5.6.1 Obtaining a Save Area with Resource Management

The STORAGE macro has Resource Management parameters. Instead of
a LINKAGE macro, STORAGE can be issued without supplying a save area or
a parameter list by the coding of RENT=NO. (See Figure 5-1). The
macro will generate code to build the list in MANAGER, and MANAGER will
save registers in its own in-line save area. 1In fact, with Intercomm,
the in-line save area is first used, shifting only to the user's save
area when a storage request fails and a retry is necessary. Thus,
coding RENT=NO means only one attempt is made to obtain user storage;
however, the retry feature is not as likely to be invoked with the
Storage Cushion facility in use, and less likely to succeed when it is
invoked because it competes for storage with the routine that tries to
reacquire the cushion. If a STORAGE request fails, an error routine
may be given control as specified by the ERRADDR parameter. VS users
can optionally specify page boundary alignment in the STORAGE macro.

5-4

3

C

Chapter 5 Resource Management

The code in Figure 5-1 illustrates a save area obtained via a
STORAGE macro.

*Register 15 is used by the STORAGE macro, as are 14, 0 and 1. Thus,
*the user must establish a base register other than 15.

ENTRY SUB
USING SUB,Rz

SUB STM 14,12,12(13)
IR Rz,R15

*Next, establish addressability to the SPA Csect.
L Rx,=V(SPA)

*Issue STORAGE macro to obtain storage for save area and set forward
*chain in current save area.

STORAGE LEN=len,ADDR=8(13),SPA=(Rx),RENT=NO
*Test for valid return (ensure storage was obtained)

LTR 15,15
BNZ error-routine

*Restore registers used by STORAGE (optional)
M 14,1,12(13)

*Initialize new save area

L Ry,8(13) Get save area address
ST 13,4 (Ry) Back chain
IR 13,Ry Point to new save area

NOTE: Rx, Ry and Rz refer to three general registers (2 to 12).
They have the following uses:

e Rx points to the System Parameter Area (SPA).
° Ry temporarily holds the address of the storage obtained.

e Rz is the base register.

Figure 5-1. Obtaining a Save Area via the STORAGE Macro

5-5

Chapter 5 Resource Management

The RTNLINK macro, SPA=(r) parameter, 1is wused by Resource
Management. RTINLINK generates a call to the PMIRTLR Csect, which in
turn calls STORFRED to release the save area. If PMIRTLR finds its
STORFRED VCON unresolved, it expects the SPA address in register 2. If
a register has been specified as the SPALIST base in the preceding
LINKAGE macro, RTNLINK will generate a LR of the base into register 2.
In cases where a LINKAGE macro was not issued or the SPALIST base is no
longer valid upon a return, the SPA address must be loaded into a
register (r) and the SPA=(r) parameter must be coded on the RTNLINK
macro.

5.7 INSTALLING RESOURCE MANAGEMENT WITH CORE-USE MONITORING AND POOLS

5.7.1 SETGLOBE Settings

The following globals must be defined in SETGLOBE:

&RMPOOLS SETB 1 use Intercomm pools (required)
&RMSTATS SETB 1 generate global core-use statistics
&RMACCT SETB 1 generate detail usage statistics

and MANAGER must be reassembled.

An additional option implemented via the conditional assembly of
MANAGER with the global &RMINTEG in SETGLOBE SETBd to 1, causes
validation of the integrity of the storage pools on each entry to
MANAGER. If the storage pool area is not intact, an error message
(RM022A) is generated. This facility assists in detecting problems in
destruction of storage, often difficult to find due to their random
nature. This facility is controlled by the STRT/STOP system commands,
and is set off at startup.

NOTE: This facility should be used in the test environment
only, due to CPU overhead. See also the description of
the TRAP debugging module in Messages and Codes.

5.7.2 SPALIST Parameters

Associated parameters in the SPALIST macro are described below.
Other SPALIST parameters, not used at this level of Resource
Management, are discussed in conjunction with Resource Auditing.

Choose appropriate values for these parameters and, if necessary,
reassemble INTSPA (SPA and SPAEXT Csects).

5-6

)

C

Chapter 5 Resource Management

CUSHION

is the size in bytes of a block of storage (specify in 2K or 4K
increments) that will be acquired by a GETMAIN at startup and
released when a request for main storage cannot be satisfied.
When the cushion is released, the SPAHOLD switch is set so that
no new threads are started, and a routine issuing a GETMAIN is
dispatched on a time interval to get the cushion back. If
unsuccessful, it leaves SPAHOLD set and redispatches itself. The
default is 2048.

CUSHTM
is the interval in seconds between tries at getting the cushion
back. The default is 1.

COREACC
is coded YES if computation of core block size statistics, broken
down by ranges with pool "concurrencies", and pool-use detail

statistics are desired. (See Figure 5-2.) The default is YES.

RMSTIM
is the time interval, in seconds, between successive invocations
of the detailed pool wusage statistics program (RMTRACE). The
maximum value is 27,962 (7 hours, 46 minutes and 2 seconds). The
default is 5 seconds.

TRACETM

is the interval, in seconds, between printouts of global (and
detailed) core-use statistics by RMTRACE. The default is 120.

5.7.3 Defining the Intercomm pools (ICOMPOOL)

The ICOMPOOL macro is coded by the user to define each user pool
area and has the following operands:

LEN
is the size of a pool block up to a maximum of 256K less 8 bytes.
NUMBER
is the number of blocks of that size.
LOWLIM
optionally specifies the minimum request size to be filled out of
this pool.

For example, to define a pool of 20 32-byte blocks, code:

ICOMPOOL LEN=32,NUMBER=20

5-7

Chapter 5 Resource Management

To define a second pool of 10 256-byte blocks, and to ensure that

only requests for greater than 200 bytes (but less than or equal to
256) will be allocated from the pool, code:

ICOMPOOL LEN=256 ,NUMBER=10,LOWLIM=200

The number of bytes allocated from a pool block will always be
greater than the block size of the preceding pool. LOWLIM is coded
only when the difference in block sizes between successive pools is
large and user intent is to reduce wastage. If LOWLIM were not coded
in the above example, an infrequent 48-byte request could tie up an
entire 256-byte block.

ICOMPOOL macros must be arranged by increasing block size; that
is, the values of the LEN parameters have to be in ascending order. A
maximum of 255 ICOMPOOL macros may be coded.

The following JCL can be used to create the pools member:

// EXEC LIBE,Q=USR
./ ADD NAME=member-name
./ NUMBER NEW1=1000,INCR=1000
ICOMINX CSECT
ICOMPOOL macro 1

ICOMPOOL macro n
END

Assemble the new member. One set of pools, member name NEWPOOLS,
is included on the release tape. These pools are roughly sized to
handle the storage requirements of the Intercomm beta test, and may be
used as a starter set before core-use statistics have been collected.

The member may be linkedited with the Intercomm load module, or
it may be chosen dynamically at startup if the dynamic core pool
facility is in use. (If the latter, the pools may not be linkedited
with the load module.) If the pool load module is to be selected
dynamically, the member name must be ICPOOLxx where xx is a two-digit
number 00-99. When dynamic pools are in use, a number of different
sets of pool load modules can be created and the proper one chosen for
loading at startup, as described below.

5-8

J

Chapter 5 Resource Management

5.7.3.1 Dynamically Loaded Core Pools

At startup time, the user may dynamically choose a set of storage

pools for the system to use. That is, instead of choosing a set of
storage pools at 1linkedit time, a set of pools may be chosen at
execution time. The set of pools chosen is brought into core via a

LOAD macro and, for every Intercomm execution, a new set or the same
set of pools may be chosen. This option may prove advantageous if it
is desired to experiment with different sets of core pools to find the
most efficient, or if it is known that at certain times variations in
system activity make a different set of pools more efficient than they
would be normally. Also, in some operating systems, the size of load
modules is restricted, making the use of Intercomm administered storage
pools difficult. With dynamic core pools, because they are a separate
load module, the need for relinks of the system for every tuning of the
pools, and/or the problem of size restriction, can be alleviated.

To use dynamic core pools, the following must be done:
e Include the module POOLSTRT in the Intercomm linkedit

e Exclude NEWPOOLS or whatever member name currently contains
the ICOMPOOL macros to define the user pool areas. (The
ICOMLINK macro will generate the proper INCLUDE statements if
DYNPOOL~YES is coded. If DYNPOOL=NO, an INCLUDE for NEWPOOLS
is generated but not for POOLSTRT.)

° Assemble and link the set(s) of pools (created via ICOMPOOL
macros) onto a library which will be part of the //STEPLIB
concatenation for Intercomm execution, The member names for
the pool 1load modules must be ICPOOLxx where xx 1is a
two-digit decimal number 00-99.

° If the module POOLSTRT 1is present in the Intercomm load
module, it will be called at startup time and it takes the
following actions:

1. Checks if the pools were linkedited in with the system.
If so, no further action is taken and the linkedited
pools will be the ones used in the run.

2. If not 1), a WIOR is 1issued requesting a reply in the
form of a two-digit number which is the suffix of the
name of the desired pool 1load module (the =xx 1in
ICPOOLxx) .

3. A LOAD is attempted for ICPOOLxX. If found, the module
is loaded and execution of startup is continued. If not
found, or if the reply is invalid (not numeric), another
WTIOR is issued, giving the operator the choice of:

Chapter 5 Resource Management

a) retrying (the first WIOR is reissued and the
operator may reply with a different two-digit
suffix)

b) continuing without pools (all storage for the run
will be GETMAINed)

c) cancelling the run - a return to MVS is effected
with a step return code of 16. No dump is taken.

® In the Intercomm linkedit, do not ORDER the pool Csects
(ICOMINX, ICOMCHN, ICOMPOOL, POOLEND, POOLACCT, COREACCT) if
they are dynamically loaded.

If the pools are subsequently to be linked into the Intercomm
load module, add an INCLUDE for the desired pools module (ICPOOLxx) to
the linkedit control statements before the system linkedit is
executed. The INCLUDE for POOLSTRT does not have to be removed.

5.7.4 Specifying Core Block Detail Statistics

Core block detail statistics are specified by coding the COREACCT
macro before the ICOMINX CSECT statement in the pools module, as
described in Basic System Macros.

Initially, core block wusage is broken down by ranges: the
"number of requests" column of the printout (see Figure 5-2) is used to
decide the pool block sizes; the "average concurrency" is used to
decide the number of blocks per pool. The ranges are defined via the
COREACCT macro.

In the NEWPOOLS module as released, the macro is written:

COREACCT ,FROM=64,T0=4096 ,BY=64

5.7.5 Linkedit
The following modules must be included in the Intercomm Linkedit:

e MANAGER--storage management routine (reassemble after
SETGLOBE updated)

e RMTRACE--statistics-gathering routine

® NEWPOOLS or a wuser-defined ICOMPOOLs member--user pools
(unless dynamically loaded at startup)

° INTSPA--reassembled SPA and SPA Extension

] POOLSTRT--if pools are to be dynamically loaded

5-10

C

Chapter 5 Resource Management

5.7.6 Execution

In the execution step, include the following DD statement for the
data set that will receive the statistics:

//SMLOG DD SYSOUT=A,
// DCB=(DSORG=PS,LRECL=120,BLKSIZE=120,RECFM=FBA)

For efficiency, BLKSIZE may be increased to a multiple of 120.

To eliminate core-use monitoring, change SETGLOBE so that &RMACCT
and &RMSTATS are 0O, reassemble MANAGER, and take RMTRACE out of the
linkedit.

To keep the global statistics, reassemble the SPA with COREACC=NO
and/or change SETGLOBE so that &RMACCT is O and reassemble MANAGER.

5.7.7 Sample Output

Figure 5-2 provides a sample output of core-use statistics. The
following should be noted:

) CORE USE STATISTICS

Except for TOTAL POOL STORAGE, POOL STORAGE AVAILABLE and
BYTES OUTSTANDING, the figures are cumulative global
statistics, accounting for all Storage Management activity
from the beginning of the run.

. TOTAL TICOMPOOL WASTAGE

Wastage is the difference between the 1length of the pool
block and the length of the requested area allocated from the
block; available blocks are not wastage. PERCENT WASTAGE is
important; a low figure is desirable. Wastage is controlled
by the LOWLIM parameter in the ICOMPOOL macro. Wastage is
broken down by pool in the Pool Use Detail Statistics.

. ICOMPOOL FAILURES

A count of the number of times a request failed from one of
the pools because all the blocks in the pool were in use. A
high figure means that at least one of the pools should have
more blocks. Failures are broken down by pool in the Pool
Use Detail Statistics.

Chapter 5

Resource Management

UICK FREES

This applies only to areas allocated from the pools: "quick"
means no search was made to find the block containing the
area to be freed; that is, the address passed pointed to the
beginning of a pool block, and 8 is subtracted to get the
pool block header. Most of Resource Management'’'s overhead is
in STORFRED'’s search loops, so a higher quick frees value is
better.

AVERAGE SEARCH LENGTH

For Resource Auditing, this gives the average number of RCBs
that STORFRED searched to find the one corresponding to the
area being freed, when it could not do a quick free. Without
Resource Auditing, this is the average number of pool blocks
STORFRED checked to find the one containing the area being
freed.

RCB TABLE RELOCATIONS

When the RCB table is full, and an attempt 1is made to
allocate an additional RCB, space is obtained to contain the
current RCB table plus the number of RCBs to add as specified
by the SPALIST macro parameter RCBSADD. (See Section 5.8.2.)
This statistic shows the number of times this occurred. More
than one relocation is undesirable.

POOL USE DETAIL STATISTICS--AVG FREE BILOCKS

This is the average number of blocks available for
allocation. If this figure is low, relative to the number of
blocks in the pool, then failures are usually high, and vice
versa.

NOTE: Headings denoting DOUBLEWORDS indicate that the

calculation is in doublewords: multiply hy eight to get
the corresponding value in bytes. All storage requests
are rounded up to the next highest doubleword.

If a counter overflows, the print field will contain 9s,

and related fields providing average or percent values
will be zero.

5-12

£1-S

(¢ 3o T @#3eq) so13sTI®IS 9s()-210) Jo o1dwexy

"Z-6 @andy

e

~

STORAGES ISSUED

DOUBLE WORDS REQUESTED

DOUBLE WORDS GRANTED

TOTAL POOL STORAGE

REQUESTS FILLED FM 1COMPOOL
DOUBLE WDS GRANTED FM I1COMPOOL
DOUBLE WDS WASTED IN 1COMPOOL
ICOMPOOL FALILURES

STORFREES ISSUED
POOL BLOCKS FREED
DOUBLE WORDS FREED
REQUESTS NOT FILLED

AVERAGE SEARCH LENGTH
RCB TABLE RELOCATIONS

CORE USE STATISTICS

62728
2768134
27681134

147680

49564
2176801

66339

13159

62702
49512
2757878
0

3

0

RANGE NUMBER OF REQUESTS
1- 32 93
33- 64 608
65~ 128 6908
129~ 192 2596
193~ 256 1773
257~ 320 44594
321~ 384 333
385~ 448 4«27
449~ 512 24
513- 576 995
577~ 640 245
641~ 704 60
705- 768 31
769- 832 2
833~ 896 70
867~ 960 43
961- 1024 113
1025- 1088 524
1089- 1152 5
1153- 1216 14
1217- 1280 74
1281- 1344 1461
1345- 1408 11
1409- 1472 2
1473- 1536 5
1537- 1600 3
1601- 1664 2
1665- 1728 4
1729~ 1792 9
1793- 1856 33
1857- 1920 9
1921- 1984 1201
1985~ 2048 172
2049- 2112 18

TIME 09,48,00

AVERAGE REQUEST LENGTH 45
HIGH THIS PERIOD 14273
PCOL STORAGE AVAILABLE 101296
PERCENTAGE FM JCOMPOOL 8o
PERCENTAGE FM [COMPOOL 79
AVERAGE DOUBLE WDS WASTED 2
PERCENT FAILURES 21
QUICK FREES 49402
DOUBLE WORDS OUTSTANDING 10256
PERCENT NOT FILLED [h]

DISTRIBUTION OF CORE BLOCK SIZES

CONCURRENCY== NOW
72
4

57

[
wOonN

QOWHFOOO0OO0O0OOOOOOO0O0O0OOOOO NN M-

Lo -
MANWVMEWNNENNENWONRNCNNWE NN WY SO

—
- E-N-NoR-N-N-N-N-N-N-N-N-N-N-N-N-N-R-N-N- NN NN NN - -

88.252

HIGH THIS RUN
PERCENT AVAILABLE

AVERAGE LENGTH FMm [COMPOOL
PERCENT WASTAGE

PERCENTAGE QUICK

LOW AVERAGE

64
5
62

~
wOow

ONWNOOOOOOOOHMHMEFO™LOOOMNWNNN

14273
oY

aa,

99

¢ 193dwyy

JusmaBvuwy 201nosIY

%1-6
SOTI3sT3Ie3S 9sn-9109 Jo arduwexy

"Z-G @an31g

(¢ 3o ¢ #8eq)

2113-
2177~
224])~
2305~
2369~
2433~
2497~
2561~
2625~
26089~
2753~
2817~
28081~
2945~
3009~
3073~
3137~
3201~
3265~
3329~
3393~
3457~
3521~
3585~
3649~
3713~
3777~
3841~
3905~
3969~
4033~

2176
2240
2304
2368
2432
2496
2560
2624
2688
2752
2816
2880
2944
3008
3072
3136
3200
3264
3328
3392
3456
3520
3584
3648
3712
3776
3840
3904
3968
4032
4096

4097-262136

OO0 O00DO0OO0DO0O0OOFHANANMFOOOOODOLOELNNNOOO ™

0000000000 OOO0O0OO0O0O0O0O0OO0OO0O0O~OOOO0O

0000000000 MFEMFEFROOOQODOOONMNMEMO OO

RN N -N-N-N-N-N-N-N NN N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-)

=~ Q0000000 0COOHHFMEOOOQOOOOHOOMNOODOOO

C

¢ x9adeyn

juswafeurl 90INOSIY

SI-G
SOT3STIR3IS asn-910) Jo ayduexy

"Z-6 2an31y

(¢ 3o ¢ 23eq)

BLOCK SIZE
32
64
96

128
160
192
224
256
268
304
320
336
352
384
448
512
576
640
704
768
832
896
960
1056
1216
1280
1304
1344
16472
1792
1984
2048
27152
3032
3264
4032
4C9¢

BLOCKS
50
16
40
40

8

6
18
112
2

2
16
16
4

[
o

Pttt 2 N WINNWENNUNNNNNN S 2O

REQUESTS

93
608
2921
3987
1494
1102
1686
87
2028
42560
6
314
6

13
“27
24
995
245
60
31

FILLED

59
608
2600
3gBe
1494
1102
1683
87
1950
30546
6
314
6

13
427
24
980
245
60
25

2

69
41
462
36
74

POOL USE DETAIL STATISTICS

FAILED
34

0

321
101

PCNT FAILED
37
0

~ ~N -
'™

QOO0OO0OO0OFVANOOOONOOOOOOVLLrOOO W

~N

AVG FREE BLOCKS

2
12
12

10

b g et b e NN W ERENNSINNNNNWNNWV

OBLWDS ALLOCATED AVG DBLWDS WASTAGE
229
3657
26682
56920
28600
25434
46698
2733
68161
1130203
235
13186
261
603
21135
1425
66705
19013
5047
2352
200
7525
4856
59758
5073
11799
236674
1497
2252
3499
258532
11451
48587

-

bt o
QO POCH WBIBOWNOORNMNIFWNWICGHOOOOOO0OO™m™m~O

-

0
1211
o
4608

G x93deyn

Juawadrury 20Inosay

Chapter 5 Resource Management

5.8 INSTALLING RESOURCE MANAGEMENT WITH RESOURCE AUDIT AND PURGE

Concurrency figures (see Figure 5-2) may be more accurate when
using Resource Auditing. The difference is the way in which partial

STORFREEs are recorded. For example, of 256 bytes, 16 bytes are freed; .

without Resource Auditing, there is no indication that the area being
freed is part of a larger one. Thus, if the concurrency for the
1l6-byte range is decremented, then the concurrency for 16 is one too
low and the concurrency for 256 is one too high. A subsequent STORFREE
for the remaining area will make the concurrency for 240 inaccurate as
well. With Resource Auditing, the RCB is available to indicate that
the area is part of a 256-byte block; the concurrency is decremented
for the 256-byte range and a flag set in the RCB. This causes
accounting for STORFREEs on this block to be skipped so the eventual
freeing of the other 240 bytes will not affect the concurrencies. A
few partial frees will not make a significant difference in the average
concurrencies, the most important figures. The number of partial frees
in the ranges corresponding to the pools can be estimated by looking at
the percentage of "quick frees" in the global statistics; a partial
free will cause at least one search. Other advantages and restrictions
are described below.

5.8.1 SETGLOBE Settings

The following global must be set in SETGLOBE for Resource Audit
and Purge:

&M SETB 1

5.8.2 SPALIST Parameters

In addition to the previously discussed parameters in Section
5.7, there are two SPALIST macro parameters applicable to Resource
Audit and Purge.

. RCBSINT

The initial number of RCBs. Although the RCBs are chained
together, they occupy a single area of storage called the RCB
table. This permits an efficient sequential scan of all the
RCBs, minimizes storage fragmentation, and reduces the risk
of useless page faults under MVS. Space for the RCB table is
obtained the first time STORAGEM is called; this parameter
indicates how many entries should be created in the table.
The default is 75.

5-16

Chapter 5 Resource Management

NOTE: The RCB table also contains a pointer to the free-RCB
chain and the 256-entry thread table, making its
total length:

4 + (8%256) + 20*(number of RCBs)
° RCBSADD

The number of fresh RCBs to add when space is depleted in the
RCB table. When the available RCBs are exhausted, space 1is
obtained for a new table sufficient to hold this many new
RCBs, plus all the RCBs in the old table. The contents of
the old table are moved and the storage it occupied is
freed. The default is 5.

The area for the expanded RCB table is acquired via a GETMAIN for
storage from the subpool area. If space for a new RCB table cannot be
obtained, Intercomm will abend with a code of 1111. This can be
avoided by making RCBSINT large enough so relocation of the RCB table
is not necessary. One of the global statistics is the number of
relocations (see Figure 5-2); use the figure from the last statistics
printout to compute the right size for RCBSINT.

5.8.3 Macro Specifications

Installation of Resource Auditing mandates the following two
rules for Assembler Language programs:

1. To pair STORAGE and STORFREE macros, and LINKAGE and RTNLINK
macros. If a block of storage is obtained with a STORAGE and
freed with a FREEMAIN, an abend will occur with an AOA if
storage was obtained from OS dynamic storage, or a 30A if

obtained from the pools. If a block is obtained with a
GETMAIN and freed with a STORFREE, Resource Management will
issue a RMO1l3A message and program check. LINKAGE and

RTNLINK both use Resource Management to get and free work
areas, so the same remarks apply to a LINKAGE followed by a
FREEMAIN or a GETMAIN followed by a RTNLINK. Of course, a
LINKAGE can be followed by a STORFREE, etc. 1In other words
do not use GETMAIN and FREEMAIN macros.

An AOA may occur in STORFRED. This almost always means that
a thread has 1issued a FREEMAIN for a block of storage
obtained with a STORAGE or LINKAGE. The thread completes and
there is still an RCB pointing to the freed area; RMPURGE
calls STORFRED to free it and an AOA results. The address of
the block is in register 9. RMPURGE will issue a thread
dump: 1look for an RCB belonging to the thread being purged,
that 1is, SMLOG's owner, whose resource address matches
register 9. The ACQUIRED BY field for that RCB will locate
the module that obtained the storage. (See Figure 5-3.)

5-17

Chapter 5

Resource Management

Care must be taken not to leave blocks of storage unfreed.
In one sense, this rule is relaxed, since acquired storage
will be freed automatically upon return to the Subsystem

Controller. On the other hand, an area cannot be left to be
picked up, used, and freed by another thread--passing areas
between threads must be done explicitly. This forces

shielding of the area from the purge routine by attaching its
RCB to Intercomm’s chain, then moving the RCB to the
receiving thread’'s chain (performed automatically for message
queuing) so it will be freed if the receiving thread
completed abnormally.

There are two ways to handle this: the RCB can be put on
Intercomm’s chain at the time the area is obtained, by coding
SYS=YES in the STORAGE macro; however, if there is a chance
of a program check or time-out before the receiving thread is
informed where the area is, the area should be obtained in
the normal way, and later its RCB should be switched onto the
system chain. The PASS macro is used to do the switching:

PASS LEN=length,ADDR=address and optionally ,SPAEXT=(r)

Code the 1length and address exactly as for STORFREE.
Programs not 1linkedited with MANAGER must set up a base
register for the SPA Extension. In particular, Message
Collection passes the area containing the message; this: means
that while it is usually safe to do a GETMAIN as long as it
is paired with a FREEMAIN, storage always has to be obtained
for a message with a STORAGE. If this is not done, a RMO09A
message and a program check will result because RMPASS will
not find an RCB for the area.

The receiving subsystem claims the area with the CATCH macro
coded just like PASS:

CATCH LEN=length,ADDR=address and optionally ,SPAEXT=(r)

NOTE: if the SYS=YES parameter is coded on the STORAGE
macro and the user wishes to free the block while its
RCB is still attached to the system chain, SYS=YES
should also be coded on the STORFREE macro.
Otherwise, Resource Management will search for the
RCB sequentially through all the RCBs in the table,
which is inefficient.

5-18

Chapter 5 Resource Management

5.8.4 Linkedit

MANAGER must be reassembled after SETGLOBE 1is updated. The SPA
and SPA Extension must be reassembled if the RCB table size parameters
are changed. The Intercomm linkedit must include MANAGER, RMNADISA,
TDUMP and RMPURGE, plus whatever modules are needed to support any
other Resource Management options chosen (see Section 5.6).

The MANAGER module supports full Resource Management. If pool

statistics accounting is not required, reassemble with the appropriate
SETGLOBE globals set to O.

5.8.5 Enqueue-Dequeue Facility

In a multitasking on-line system it is sometimes necessary to
serialize the use of a particular resource (main storage, data set,
etc.) by allowing only one task at a time to "own" the resource.

It is also sometimes desirable to limit the number of concurrent
users of a resource to some predetermined maximum. Both these
facilities are provided by the Intercomm Enqueue-Dequeue routine (Csect
name PMINQDEQ) through the use of the macros INTENQ and INTDEQ. All
control is effected by a resource name of from one to fourty-four
characters; hence all programs utilizing a particular resource must
include enqueue/dequeue logic referencing the identical resource name
and providing the identical 1length of that name (default=16). A
time-out control prevents "runaway" exclusive control. The inclusion
of PMINQDEQ in the linkedit is automatic, as it is a required Intercomm
system routine. Resource Audit and Purge monitors the Enqueue-Dequeue
facility.

The following example requests and subsequently releases
exclusive control of the resource whose ID-address is RESOR, within the
issuer’s region only. The default time-out value from the SPALIST
(NQTIM parameter) will be used.

INTENQ RESOR

INTDEQ RESOR
The example below requests that all other Intercomm regions be
prevented from using the resource whose ID-address is in register 1.
Also, up to five tasks within the issuer’'s region may share use of the
resource. There will be no time-out protection. The SHARE parameter
is not defined for the release request.

INTENQ (1),SHARE=5,SYSTEM=YES

INTDEQ (1),SYSTEM=YES

5-19

Chapter 5 Resource Management

5.8.6 Thread Hung User Exit--IOEXIT

If a nonzero thread program checks or times out (TCTV or Enqueue
time expires), and the thread is disabled, resource purging is
suspended. A thread may be disabled because:

° the last action was a file I/0O, Store/Fetch flush, message
queuing, or message logging request which did not complete
before the time-out.

° a dynamically loaded subroutine program checked or timed out,
and this thread originally caused the load of the subroutine
(that is, issued the first call/link).

° a Data Base access interface module disabled the thread
before starting processing of the data base request.

e the thread is executing under the general or special subtask
facility.

A thread 1is disabled from resource purging via an internal
DISABLE macro, and subsequently enabled for purging via an internal
ENABLE macro. At nonzero thread purge time, if an outstanding DISABLE
exists, purge processing is halted for the TCTV time of the originating
subsystem, or until all required ENABLEs are issued (whichever occurs
first). 1If the TCTV wait time expires without all necessary ENABLEs, a
user exit IOEXIT is called (by RMNADISA) if coded and included as
resident in the Intercomm linkedit. Subsequently, a subsystem disabled
message (RMO16I) is issued, a thread dump is produced, and only enqueue
waits and outstanding WQEs are purged.

At entry to IOEXIT, standard linkage conventions are used, with
register 1 pointing to the SYCTTBL entry for the thread being purged.
The user exit could be used to issue a WTO to alert the operator at the
CPU console that one of the above disable reasons could degrade
Intercomm execution time, such as tying up access to the hung

resource. Repeated occurrences of this situation could be cause to
close down Intercomm until the problem is resolved via dump/program
analysis. Particularly, check for Enqueue lockouts, excessive

Store/Fetch flushing, excessive disk queuing (NUMCL too 1low for
terminals/subsystems), VSAM exclusive control waits (Control Interval
Lockouts), Data Base interregion access waits, etc.

The exit may not give up control to the Dispatcher either
directly or indirectly. No file or data base I/O may be performed. Do
not queue a message for a terminal that will cause logging of the
message or possible queuing on disk.

The TALY,DA command (see System Control Commands) can be used to
display information about currently active and hung threads.
Optionally, the subsystems accessing the hung resource could then be
delayed from new executions via the DELY system control command.

5-20

Chapter 5 Resource Management

5.9 DEBUGGING AIDS--THREAD RESQURCE AND_POOIL. DUMPS

5.9.1 The Thread Resource Dump

This consists of a listing of all outstanding Resource Control
Blocks (RCBs), broken down by thread. The dump is written by a routine
called TDUMP onto a SYSOUT data set called SMLOG. Thread dumps are
taken when a program check occurs and when a thread completes without

freeing all 1its resources. One call to TDUMP is from SPIESNAP
(accompanying a 126 snap); another is in RMPURGE, the routine called to
purge "leftover" resources. If the thread dump is followed in the

printout by a pool dump, it was taken by SPIESNAP; if not, it was taken
by RMPURGE. TDUMP is also called by STAEEXIT to accompany snaps 121
(long-term loop control) and 122 (user/system abend), and by PMINQDEQ

to accompany a snap 114 (enqueue time-out). An RCB for SMLOG will
always appear at the top of the 1list of resources of one of the
threads. (If it does not, storage destruction has occurred in the

Thread Status Table, entry polint TSTATAB, in SYCT400.) The thread
cwning SMLOC therefore had control when the dunp was taken.

TDUMP 1is called with register 1 pointing to the address of a
fullword argument. To dump one thread’'s resources, the argument is the
thread number, that is, three bytes of zeros and the thread number in
the low-order byte. Thread number can be obtained from IJKTHRED (an
entry in the Dispatcher) which is the 1label of a fullword field
containing the currently executing thread number in the low-order
byte. For example:

LA R1,=V(IJKTHRED) POINT TO IJKTHRED ADDRESS
CALL TDUMP

To dump all the threads, CALL TDUMP with Rl pointing to the address of
an argument of -1. The SCTL system command can be used to dynamically
produce a thread dump for a specific or all assigned thread numbers.

The RCBs are stacked, that is, a thread’s most recently acquired
resource is located at the top of its list and the oldest is at the
bottom. This is useful in determining what a subsystcem was Jdoing just
before the dump was taken. The contents of the in-line save area
(INTSAVE) used by STORAGEM and STORFRED provide useful information in
case of a snap, and is one of the areas snapped in an indicative dump
(see Chapter 8). In a full snap, use the linkedit to find the MANAGER
module (Csect RSMGMNT), and then look for the literal 'RMSAVE REGS 14
to 12' in the EBCDIC printing on the right side of the dump. The
register contents (14-12) begin after the literal; there is no space
for save area chaining. Register 15 can be checked to see 1if the
module was entered at STORAGEM or STORFRED.

Successful execution of TDUMP requires including TIJKCESD and

IJKWHOIT in the Intercomm linkedit (see Chapter 4), and a DD statement
for SMLOG (see Section 5.7.6).

5-21

Chapter 5

The

Resource Management

following explains the thread resource dump in Figure 5-3:

THREAD/SUBCODE

The three-digit thread number, 000-255, in decimal, followed
by the two-byte subsystem code in hexadecimal. For thread
000 (the system resource thread), the subcode is meaningless.

RESQURCE TYPE

There are five resource types: CORE, FILE, DDQ, DYNL and
NQ. For an enqueue resource, the entry will either be

-- NQ(OWNER)--thread has control of the resource
-- NQ(WAIT)--thread is waiting for control

-- NQ(POST)--the ECB for the enqueue has been posted and the
thread will get control after the Dispatcher transfers
the corresponding WQE to the execute list.

ACQUIRED BY

The Csect name (+ displacement), or the address, of the
location immediately following a branch-and-link. If the
resource is an area of storage, it may locate a call to
STORAGEM (STORAGE macro), a call to PMILINK2 (LINKAGE macro),
or PMISUBL2 (SUBLINK macro), a PASS macro or a CATCH macro.
If the resource is a file, it locates the call to SELECT. 1If
the resource is an enqueue, it locates the call to PMINQDEQ
generated by an INTENQ macro. If the resource is a DDQ, it
locates a call to QBUILD or QOPEN. If the resource is a
dynamically loaded subroutine, it locates the issuer of a
MODCNTRL macro which requested access to the subroutine.
(See also Figure 4-1 in Chapter 4 for Csect/Module names.)

SUBPOOL NUMBER

Either nnn or ICOM. ICOM means the storage was acquired by
MANAGER from the Intercomm pools, not dynamic (subpool nnn)
storage.

RESOURCE ADDRESS

If storage, this 1s the start of the block. If a file, this
is the address of the external DSCT; there is usually another
RCB for an area of storage containing the external DSCT. If
it is an enqueued resource, this is the address of the
72-byte resource-ID block obtained by PMINQDEQ. There will
always be a storage RCB in the thread 000 list containing the
ID block. Immediately after an NQ(WAIT) or NQ(POST), the RCB
will be an RCB for a 128-byte work area which is chained to
the ID block. If the resource is a DDQ, this is the address
of the internal Queue Locate Block (QLB). If the resource is
a subroutine defined in REENTSBS via a SUBMODS macro with the

5-22

Chapter 5

Notes:

Resource Management

LNAME parameter, this is the address of that macro's
expansion in the DYNLSUBS Csect generated within REENTSBS.

RESOURCE LENGTH

The length of a storage resource (in decimal). Note that
this value may be less than LOWLIM if a partial free was done
from an ICOMPOOL block (flagged by an asterisk after the
length value).

ICOMPOOL HEADER

The address of the doubleword control block prefixed to the
pool block from which the storage resource was allocated.
Generally, eight less than the resource address, unless part
of the area has been freed or passed to another thread.

ICOMPOOL BLOCKSIZE

The size of the pool block from which the area was allocated.
FILE NAME

The file ddname. The owner of SMLOG caused the thread dump.
DDQ NAME

The 16-byte DDQ identifier.

SUB NAME

The eight-byte (dynamically loaded) Subroutine (DYNL)
identifier (defined via a SUBMODS macro--see Chapter 3).

NQ/DQ NAME

The 16 to 44 characters of the identifier passed to PMINQDEQ
via an INTENQ macro.

RCB ADDRESS

The location of the 20-byte RCB. There are a few things the
RCB indicates that do not appear in the thread dump. See the
RCB Dsect in any of the Resource Management modules for flag
settings and offsets.

the phrase IS ACTIVE BUT OWNS NO RESOURCES usually indicates
the thread is in a CONVERSE wait.

For non-zero threads, a status line provides information
about the thread owner including the terminal-id from the
input message, and the assigned MMN number (see the
discussion of LOGPRINT in Chapter 12).

5-23

%C-S

(¢ 30 T 9%eq) dumq @dxnosay peaayl a1dues

‘g-¢ @and1yg

THREAD RESOURCE DumP

THREAD/
SUBCCDE

000/C000
00070000
00070000
000/C000
000/C000
000/0000
00070000
000/0000
00070000
000/C000
00070000
00070000
00070000
000/0000
00070000
000/0000
00070000
00070000
000/0000
000/0000
00070000
00070000
000/0000
000/0000
00070000
00070000
000/0000
000/0000
00070000
000/0000
00070000
000/C000
000/C000
00070000
00070000
000/C000
00070000
000/0000
000/0000
000/0000
000/0000
00070000
000/0000
00070000
000/0000
00070000
00070000
00070000
000/0000
000/0000
000/0000

RESOURCE ACQUIRED
TYPE BY
CORE RMPURGE+120
CORE MSGCOL+482
CORE IXFSUBS+96
CORE INTSTORF+1390
FILE INTSTORF+118BC
CORE INTSTORF+184A
FILE SIM3270+11E
CORE SIM3270+2A
CORE FDITCB+F6
CORE SYCTRL+2A
CORE BTAMSIM+63E
CORE BLHIN+1C38
CORE BTAMSIM+EL1 6
CORE GFDRIVER+294
CORE GFEINTFC+246
CORE BLHIN+189E
CORE BLHIN+189E
CORE BTAMSIM+63E
CORE BMHO00+A2C
CORE FEMSGSUB+3BA
CORE BLHOT+CD2
CORE FEMSGSUB+3BA
CORE BTAMSIM+63E
CORE BLHIN+1C38
CORE BLHIN+189E
CORE SYCTRL+2A
CORE FEMSGSUB+3BA
CORE INTSTORF+1402
CORE FEMSGSUB+3BA
CORE INTSTORF+1402
CORE BSCLEASE+ADS
CORE INTSTORF+1402
CORE INTSTORF+1402
CORE INTSTORF+1402
CORE BMHO00+A2C
CORE MSGCCL+482
CORE INTSTORF+1402
CORE IXFMONO1+3384
CORE INTSTORF+1402
CORE INTSTORF #1402
CORE INTSTORF #1402
CORE FEMSGSUB+3BA
CORE FEMSGSUB+3BA
CORE IXFMONOL+3384
FILE BTAMS [M+COE
CORE INTSTORF+1402
CORE BTAMSIM+63E
CORE BSCDIAL+DF2
CORE MSGCOL+482
CORE INTSTORF +1402
CORE BTAMS [Me63E

S/P
NO .

1COM
1CoM
1CoM
1Com

1com

1Ccom
1COm
ICOM
1com
JCOM
1COM
1com
1COM
jcom
1COM
1COM
1COM
1ComM
1COM
1COM
1COomM
1com
1com
1COM
ICOM
000
1COM
1Com
1com
1CoM
jcom
ICOM
J1COomM
1ComM
000
000
000
000
000
1COM
1com
1CoM

000
1COM
1ComM
1Com
000
1conm

RESCURCE
ADDPESS

03FB10
03FBBS
044C00
041EA8
044808
04A878
0501cCC
050140
03F220
04C468
058990
05F410
053F80
043410
03F8EO
042590
042760
058EB0
041238
041788
042678
0419A8
055870
05CCA8
043328
04C188
041810
ODFB808
041700
05ECO8
051238
050500
043240
0517C8
041128
04D738
oDCco70
0054E8
0DEBOS
008098
0DFOl0
041898
041A30
03FCFO
0BDF80
ooD1s8s
056FF0
03F100
041CBO
ODEO10O
058470

CALLED BY RMPURGLE +2AE

RESOURCE
LENGTH

96
88
296
160

280

544
40
336
1304
2464
1040
216
96
224
224
1304
120
104
224
104
1304
1984
224
336
104
2040
104
2040
664
536
208
768
120
352
2040
32
2040
2040
2040
104
104
88

2040
1304

104%
2040
1304

1COMPOGL
HEADER

03FB08
03FBBY
04ABFB
041lEAQ

044870

050138
03F218
04C460
058988
05F 408
053F78
043408
03FB8D8
042588
042758
058BEA8
041230
041780
042670
0419A0
055868
05CCAO
043320
04C180
041808

0416F8
05EC00
051230
0505C8
043238
0517C0
041120
04D730

041890
041A28
O3FCEB8

056FEB
03FOF8
041CA8

058468

1compPOOL
BLOCKSIZE

96
96
304
160

288

576
64
336
1304
2752
1056
224
96
224
224
1304
128
128
224
128
1304
1984
224
336
128

128
2048
704
576
224
768
128
352

128
128

1304
b4
160

1304

TIME=09.31.19,

FILE/DDQ/SUB/NO/DQ

NAME

INTSTORS

SCRTEST]

CPuoO3

DATE=B88.252

RCB
ADDRESS

0B8B4D4
08BOEC
OBADF4
0BB1l14
088300
OB AF 48
0BA728
0BB4AC
088420
0BADEO
0BA704
OBAF b4
OBAEE4
08840C
OBB3EA
0BA%930
088394
0BBlo4
0BA14C
088100
oBBOBY
0BA69C
0BB470
OBB3FS
OBAACO
0BAb 74
0BA8CC
OBAFCO
o8B27C
0BB2A4
0BA4BC
0BAD7C
08B1FO
088508
oBBS38
0BA4 A4
OBB4ES
0BA480
088330
088524
0BA9DO
0BA7CH
OBAEF S8
0BACSC
OBA4EA
0BB580
osp28s
0BA82C
0BAGBO
oBBas5a8s
0o8831C

C

C

¢ 193deyn

Juamafruwy 292INOSIY

GC-§

(¢ 30 z 28eq) dung eoanosay peaiyl o1dues

‘g-g ean314

(F‘\

-

000/C000
000/0000
00070000
000/€000
00070000
000/C000
000/C000
00070000
00070000
000/0000
00070000
00070000
00070000
00070000
00070000
00070000
00070000
000/€000
00070000
00070000
000/0000
00070000
00070000
000/0000
00070000
00070000
00070000
00070000
000/0000
00070000
00070000
00070000
00070000
00070000
000/0000
00070000
00070000
000/0000
00070000
000/0000
00070000
00070000
00070000
00070000
00070000
00070000
000/€000
00070000
00070000
00070000
00070000
000/0000
000/0000
00070000
000/0000

Bscotal +aBC
BTAMS [Me63E
BLHIN+189E
BTAMSIM+63E
BLHIN+1C38
BLHIN®189E
BTAMSIMe+63E
PM12741+700
PMI2741+ABC
BTAMS [M+63E
BLHIN®189E
IXFMONO1+3384
PMINQDEQ+ 7BC
MSGCOL+30
MMUSTART+330
PMIEXTRM+2C
FESEND+78
GFDRIVER+76
BTAMS IM+3C6
BTAMSIM+3Cé6
BTAMSIM+3(C6
BTAMSIM+3C6
BTAMSIM+3Ch
BTAMS IM+3C6
BTAMSIM43C6
BTAMSIM+3C6
BTAMSIM+3C6
BTAMSIM+3C6
BTAMSIM+3C6
BTAMS IM+3C6
BTAMSIM+3C6
BTAMSIM+3C6
BTAMSIM+AOQ
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
DDQTRANS+57C
DDATRANS+57C
DDATRANS+57C
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONOL1+3384
IXFMONOL1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
IXFMONO1+3384
STUOVLY+402
STUDVLY+402
STuOvVLY*402

1COM
[com
1COM
1CoM
000
1COM
ICOM
1COM
1com
1com
1COM
1com
1COM
ICOM
000
jcom
1COM

000

1COM
ICOM
IcomM
1CoM
1Com
1Com
1COM
ICOMm
1COM
ICOm
1COM
1COM
ICOM
1COM
1COnm
1COM
ICOM
icom
1COM

042088
057F50
042CDO
057430
08F660
042BEB
057510
040070
0434F8
056AD0
042930
03F948
040850
04EC28
oD 3880
040988
041AB8
0AC254
0B8D950
oBD908
oebp8co
oBpazs
0BDS518
0BD7A0
oBD6CB
080380
0BD4DO
0BDBOO
08DA70
080890
08D440
0BD638
08D2CO
03EAQ00
03F670
03E9D8
040930
03E980
040848
03F5A0
050AA0
O4FEF8
03E988
040820
03E960
040798
03E938
040710
03E910
040600
O3E8ES
0406088
ODAFCC
0DA78C
0D9F4C

224
1304
224
1304
2464
224
1304
128
232
1304
224

128
392
1920
112
160

042080
057F 48
042CC8
057428

0428BEO
057508
040D68
0434F0
056AC8
042928
03F940
040B48
04EC20

040980
041ABO

03E9FB8
03F668
03E9D0
040928
03E9AB
040840
03F598
050A98
O4FEFOQ
03E980
040818
03E958
040790
03930
040708
03E908
0405F8
03EBEO
040680

224
1304
224
1304

224
1304
128
256
1304
224
96
128
448

128
160

GFEIN
TEST3
TEST?2
TEST1
PAULL
NWKO1
SFCo2
0oGuo1l
CNTO1
INDOS
LONOL
CHIOL
PARO1
PHLO3
B80SOl

INTERLOG
INTERLOG
INTERLOG

0BAAT70
08AASC
OBAAsS
OBAAJA
08AA20
0BAAOC
OBA9F8S
OBA9EA
0BA98C
0BA9eC
0BA958
0BAB7C
0BAG 24
0BALLO
0BASFC
0BASD
0BA40O8
OBASES
0BAS5CO
0BASAC
0BAS98
0BASSA
0B8ASSC
0BAS4 S
0BAS)4
08A520
0BAS0C
0B A4FS
0BA494
0BAAS8
0BA430
0BA41C
0BA390
0BA37C
O0BA2 64
OBA3F4
OBA3EO
08A3CC
0BAJBS
0BA368
osazec
0BA278
0BA3SS
0BA3A4O
08A32C
0BA318
0BA304
O0BA2FO
08A20C
0oBA2CS
0BA2B4
0BA2A0
08A250
08A23C
0BA228

¢ xa3deyy

Jusmafwuey e01nOsSYY

‘g€-¢ 2an3tg

9¢-S

(¢ 3o ¢ @%eg) dung @oinosay peaiy] 21dwes

00070000
000/C000
000/0000
000/0000
000/C000
00070000
000/0000
00070000
00070000
00070000
000/0000
00070000
00070000
00070000
00070000
00070000

001/09D8
001/0D09D8
001/D908
001/0908
001/0908
001/0908
001/090D8

002/C9C3

FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

FILE
CORE
CORE
CORE
FILE
CORE
CORE

STATUS = IN PURGE

CORE

CURRENT NUMBER OF UNUSED RCB'S

STUDYLY+402
STUOVLY+402
STUOVLY+402
STUOVLY+402
STUUVLY+402
STUOVLY+40?
STUDVLY+402
STUOVLY+402
STUOVLY+402
STUOVLY+10E2
IXFMONO1+3386
TASKSTRT 464
IXFFAR+1352
IXFMONOL1+3336
IXFMONO1+¢3384
STOSTART+7E

TDUMP +5€
IXFMCNO1+33BE
IXFSUBS+96
COBREENT+324A
COBREENT+«2A
PREPROG+3BE
PREPROG+16

ICMTST+16

STATUS = CON WAIT TID = CHIOL

TID = TEST1

000

I1COM
1COM
1CoM
1ComM
1COM
1COM

1CoM
000
I1COM

1COM
ICOM

DISABLE COUNT =

1COM

DISABLE COUNT =

oDa70C
0DARECC
0DbR68C
0D 7€ 4C
0D760C
006DCC
00658¢C
00504C
00550C
004DOO
03F608
04AACS
03FO0BS8
03F538
040578
04F6D8

03C9EC
03F1D8
005518
052878
054490
054700
041058

03FAB0

= 0160

64
296
960

1216
144

96

0

03F600
04AACO
03F080
03F530
040570
04F600

03F100
052870

0547C8
041050

MMN =

03Fa78

INTERLOG 0BA214
INTERLOG UBA200
INTERLOG 0BAlEC
INTERLOG 0oBalDs
INTERLOG 0BALCA
INTERLOG 0BAl18B0
INTERLOG 0RA19C
INTERLOG OBAlse
INTERLOG 08Al74
oBAOES
96 0BAle6O
304 0BAl38
64 0BAl24
96 08Al110
128 0B AOFC
512 0BAODA
0232 RESOURCES OWNED BY THIS THREAD.
0091736 BYTES OF MAIN STORAGE.,
030 FILES.
SMLOG 0BACCS
64 0B8AFOC
0B8B59C
960 0BA46C
STOKFILE 0BB498
1216 0oBB8ODS
160 088218
403 0007 RESOURCES OWNED BY THIS THREAD
0002680 BYTES OF MAIN STORAGE.
002 FILES.
96 0BBasl
397 0001 RESOURCES OWNED BY THIS THREAD

0000096 BYTES OF MAIN STORAGE.

(¢ INDICATES THAT A PARTIAL FREE HAS BEEN DONE ON THIS BLOCK)

¢ 193deyn

JusmalvrurRl 20IN0SIY

C

Chapter 5 Resource Management

5.9.2 Status of Intercomm Administered Storage (Pool Dump)

This is produced by a call to POOLDUMP. There are no parameters
for the call, as with the thread dump. POOLDUMP is written onto
SMLOG. Currently, the only time a pool dump is taken is after a
program check; the call is in SPIESNAP following the call to TDUMP.
Figure 5-4 illustrates part of the output from POOLDUMP.

The pool dump consists mainly of a block-by-block listing of the
status of the Intercomm pools. For each assigned (in use) pool block,
the rightmost value is either the hex address or the Csect name +
displacement of the pool owner. Which value is printed depends on the
setting of the &POOLNM global in SETGLOBE (default=1 requesting name).
To print the address instead of the name, reset &POOLNM to O and

reassemble and link POOLDUMP (less processing overhead consumed). It
also includes the status of the storage cushion and the address of the
RCB table. The 1latter information may be useful in examining the

free-RCB chain in a full region dump. The location of the top RCB in
the free chain is the first fullword in the RCB table. It is given as
a halfword offset (divided by 4) from the start of the table. However,
RCBs are taken from the top of the free chain as well as returned
there, so no reverse trace is available.

If any of the addresses appear strange (such as 404040 or
BBBBBB), or the name is UNKNOWN, that is a good indication that storage
destruction has occurred (possibly by the owner of the preceding pool
block). RMINTEG processing (see Section 5.7.1l) or the TRAP module (see
Messages and Codes) may be used to find the culprit in future Intercomm
executions.

5.9.3 Finding the Dynamically Loaded Pools

Pointers to all pool VCONs (address of ICOMPOOL Csect, etc.) are
located in the SPAEXT. Thus, 1if the addresses of these items are
required in debugging a snap, the fullwords located in the SPAEXT which
are listed below contain the addresses of the entry points listed at
the right:

SPAEXT Label ICPOOLxx Csect
SEXCORAC COREACCT
SEXICMPL ICOMPOOL
SEXPOOLN POOLEND
SEXICMCH ICOMCHN
SEXICMNX ICOMINX
SEXPOOLA POOLACCT

Note: When ordering resident pool Csects, the above order may be used;
POOLEND must be ordered immediately after ICOMPOOL. COREACCT may
be ordered after POOLACCT.

5-27

Chapter 5

Resource Management

STATUS OF INTERCOMM ADRINISTERED
02048-BYTE STORAGE CUSHION NOT RELEASED.
CUSHION ADORESS = 005748
RC8 TARLE AT 0B98BCy LENGTH = 10052 BYTES.
40C TOTAL RCBS.
162 FREE RCBS.
@0®USER POOL. BLOCKLENGTH = 00384

1C TOTAL BLOCKS.
10 FREE BLOCKS.

$90USER POOL. BLOCKLENGTH = 00448

BLOCK IN USE. HEADER LOCATION = 04EC20
THREAD/SS =

¢ TOTAL BLOCKS.
S FREE BLOCKS.

#9%USER POOL. BLOCKLENGTH = 00512

BLOCK IN USE. HEADER LOCATION = 04F6DO0
THREAD/SS =

ALOCK IN USE. HEADER LOCATION = 04FBD&
THREAD/SS =

4 TOTAL BLOCKS,
2 FREE BLOCKS.

®0¢USER POOL. BLOCKLENGTH = 00576

BLOCK IN USE. HEADER LOCATION = O4FEFO
THREAD/SS =

BLOCK IN USE. MEADER LOCATION = 050138
THREAD/SS =

ALOCK IN USE. HEADER LOCATION = 0505C8
THREAD/SS =

« TOTAL BLOCKS.
1 FREE BLOCKS.

O3IOUSER POOL. BLOCKLENGTH = 00640

BLOCK IN USE. HEADER LOCATION = 050498
THREAD/SS =

4 TOTAL BLOCKS.
3 FREE BLOCKS.

“ONUSER POOL. BLOCKLENGTH s 00704

RLOCK IN USE. HEADER LOCATION = 051230
THREAD/SS =

2 TOTAL BLOCKS.
1 FREE BLOCKS.

$3SUSER POOL. BLOCKLENGTH = 00768

B8LOCK IN USE. HEADER LOCATION = 0517C0
THREAD/SS =

2 TOTAL BLOCKS.
1 FREE #LOCKS.

0/0000y SUBBLOCK ADDRESS = 04EC2B8+ LENGTH =

0/0000y SUBBLOCK ADDRESS = O04F608+ LENGTH =

0/0000s SUBBLOCK ADDRESS = O4FBEOy LENGTH =

0/0000y SUBBLOCK ADDRESS ® O4FEFBy LENGTH =

0/0000y SUBBLOCK ADDRESS = 050140+ LENGTH =

0/0000, SUBBLOCK ADDRESS = 0505D04 LENGTH =

0/0000s SUBBLOCK ADDRESS = 050AA0, LENGTH =

0/0000+ SUBBLOCK ADDRESS = 051238, LENGTH =

0/0000s SUBBLOCK ADDRESS = 0517C84+ LENGTH =

STORAGE

392y RCB OFFSET = 0000549 GOT BY MSGCOL+30

480y RCB OFFSEY = 000618+ GOT BY STOSTART7E

456y RCB OFFSET = 0014D4y GOT BY IXFB37¢4E

576y RCB OFFSET = 0009BCs GOT BY DDOTRANS¢57C

544y RCB OFFSET = 0018F0, GOT BY SIM3270+2A

536y RCB OFFSET = 0014COs GOT BY INTSTORF¢1402

600+ RCB OFFSET = 000900y GOT BY DDQTRANS+57C

664y RCB OFFSET = 000C00s GOT BY BSCLEASE+ADS

768y RCB OFFSET = 001D1Cy GOT BY INTSTORF+1402

Figure 5-4.

Sample Pool Dump
5-

28

Chapter 6

FILE HANDLER SPECIFICATIONS

6.1 INTRODUCTION

The Intercomm File Handler provides data management facilities of

the operating system to all user processing programs. Only external
data management planning (data set organization and processing
techniques) is required by the user. Internals are handled entirely by

the File Handler.

The general purposes of the File Handler are to eliminate all the
required input/output programming within those application programs
functioning in the on-line system, and to coordinate all concurrent
requests for input or output operations from the on-line programs. An
I/0 operation 1is requested by simply calling a File Handler service
routine. .

When a request for an input or output operation is received by
the File Handler, the appropriate control blocks are generated, the
operation 1s started and other programs in concurrent execution are
allowed to continue operation. The File Handler provides overlap of
I/0 operations via the Intercomm Dispatcher (Event Queue). It is the
interaction of the File Handler and the Dispatcher that provide
Intercomm’s multithreading facility within application programs and/or
Intercomm programs during data set I/0 operations.

In general, the functions performed by the File Handler provide:

° All I/0 operations against on-line system data sets wunder
monitor control

. Total overlap of all I/0 operations with on-line application
program processing

) I/0 error analysis and simplified reporting of errors to the
application programs

° Detection of errors which would otherwise cause abnormal task
termination

° Elimination of opening and closing of data sets at each
execution of an on-line processing module

. Exclusive record (or file) control preventing simultaneous
record updating

6-1

Chapnter 6 File Handler Snecifications

Chapter 6 File Handler Specifications

6.2.7 Creating and Defining ISAM Files

Because Intercomm uses the more efficient IBM BISAM access method
against ISAM files, where possible, certain restrictions apply
concerning the creation and definition of ISAM files for use under
Intercomm:

° Do not define separate Area Names (PRIME, INDEX, OVERFLOW)
when creating the file. Let the access method allocate these
areas from the primary allocation defined for the file and
from the CYLOFL DCB parameter on the DD statement. It is
better to use the IBM Utility IEBISAM (or an Assembler
Language program using BISAM) to create the file than to
create it with a COBOL or PL/1 program. Do not define the
file as blocked.

. Use only one DD statement on the execution JCL; do not define
separate Area Names. The only DD parameters necessary are
DISP=0OLD or SHR, the data set name, the unit and volser if
not catalogued, and the DCB parameter DSORG=IS. Optionally,
OPTCD may also be specified for the DCB parameter.

. If an existing file to be used on-line under Intercomm does
not meet the above criteria, use the FAR parameter
OPEN=QUEUED to force only QISAM (GET/PUT) access to the file
(see Section 6.6).

6.2.8 Undefined Record Support

Undefined record support applies to QSAM/BSAM only. Full
GET/PUT, READ/WRITE support for undefined records on sequential data
sets is provided by the File Handler. The application program must

supply the record length as a parameter for File Handler calls.

6.2.9 Variable Length Sequential File Support

The application program must be aware that each block starts with
a BDW (halfword of block length plus 4, followed by a halfword of
binary zeros), and each record with an RDW. When READ and WRITE are
used, blocking and deblocking of blocked files must be performed by the
application program. If GET and PUT are used, the access method will
block and deblock the file (if RECFM=VB). Whatever form, the record
always starts with an RDW (halfword of record length plus 4, followed
by a halfword of binary zeros). For output, the application program
must initialize the RDW before calling the File Handler. When WRITE is
called for a blocked file, both the BDW and the RDWs (for each record
in a block) must be initialized. The type of access to the file must
be specified by a FAR OPEN option; BASIC if READ/WRITE is used, QUEUED
if GET/PUT 1is wused. DCB=DSORG=PS must be specified on the DD
statement. Also specify BLKSIZE (add 4 bytes for BDW), LRECL
(including RDW) if a blocked file, and NCP=n and OPTCD=C (see
Overlapped Processing above). See also the FAR NCPWAIT and WRITEOVER

parameters.
A_R

Chapter 6 File Handler Specifications

6.2.10 Sequential Qutput Disk File Flip-Flop Facility

This facility invokes automatic protection of Intercomm from an
x37 abend resulting from running out of space on a BSAM (sequential
output) disk file or the Intercomm Log (when logging to disk).

A companion disk file must be defined to effect this protection.
The ddname of the companion file is constructed by right-"padding" the
ddname of the original file, up to the maximum of eight characters,

with the character 'C’; one character of the ddname is replaced, if
necessary. The following illustrates construction of the alternate
ddname :
Original No. Chars. Alternate Comment
INTERLOG 8 INTERLOC Last character
: replaced by 'C’
DISKX 5 DISKXCCC Padded with
'CCC’
XYZ 3 XYZCcCcC Padded by
'CCCcce!

The two data sets are used alternately. When one gets full, the
resulting x37 abend is intercepted, the full data set is closed, and
output is written to the companion data set. The message FRO80R is
issued, to instruct the operator to copy the full data set off-line,
effectively "emptying" it so that it may then be reused. When both
data sets become full, the message FRO81I is issued, and Intercomm
enters the wait state until the operator replies to FRO8OR,

To implement this facility, the module IXFB37 must be included in
either the Intercomm linkedit or the Intercomm Link Pack Module, and
the original disk file (for example, INTERLOG) must have the B37 FAR
option specified. x37 abend protection may not be specified for any
original file whose ddname is eight characters ending with the letter
C. The DD statement for the alternate disk file (ddname ending in C)
must be specified after the //PMISTOP DD DUMMY statement in the
Intercomm JCL to prevent an internal DSCT from being created. No
on-line access to the alternate file by non-system (Intercomm) programs
is allowed.

Both the original and the companion data sets must reside on a
DASD device, must be defined as physical sequential (DSORG=PS), may
only be accessed using WRITE, and must have a disposition of SHR to
allow off-line accessing after an x37 abend has occurred. Neither data
set may be DUMMY nor have a dsname of NULLFILE. If they do not meet
these criteria, then the original data set will not be marked as
eligible for abend recovery. The data sets must be preallocated in
another job, not in a previous step of the same job. The NCP count
(DCB subparameter) must be exactly the same for both data sets, if
chained scheduling is wused. If recovery of the file after a system
crash is desired, see the description of ICOMFEOF in Chapter 12. Abend

6-7

Chapter 6 File Handler Specifications

6.2.15 Dynamic Deallocation and Reallocation via FILE Command

Two FILE command parameters are available to dynamically

deallocate and reallocate on-line files. The parameters ALLOC and
DEALL make use of MVS Dynamic Allocation services via the DYNALLOC
macro (SVC 99). The syntax of, and response messages pertaining to,
these parameters are fully described in System Control Commands. The

following discussion deals with restrictions and operational
considerations for these parameters.

The main purpose is to allow a file which is accessed thru the
Intercomm File Handler and originally allocated to Intercomm via JCL to
be deallocated and thus made available for processing by batch jobs.
Once the batch jobs are completed, the file may then be reallocated to
Intercomm and thus again become available for on-line subsystems. The
commands cannot be used to allocate a file to Intercomm which was not
originally allocated via the Intercomm execution JCL.

When MVS deallocates the file, all traces of it (JFCB, etc.) are
disconnected from the job doing the deallocation. After deallocation,
no reference to the file exists in the operating system control blocks
belonging to Intercomm; it is as though the file was never allocated to

Intercomm in the first place. In order to successfully reallocate the
file later, information about the current allocation must be saved
before the file is deallocated. That information is obtained out of

various operating system control blocks such as the JFCB, TIOT and UCB,
and saved in a storage area which is pointed to by the internal DSCT

for the file. If it is known that the file will not need to be
reallocated to Intercomm later in the run, the NOREALC option of the
DEALL parameter can be wused. This option causes the obtaining and

saving of the reallocation information to be bypassed, thus saving some

processing time and storage. Under MVS, do not code FREE=CLOSE for any
data set.

In order to keep the amount of information that must be obtained
and saved about a file to a minimum, and because certain information is
unobtainable, the following restrictions on the reallocation of a file
must be considered:

e Temporary data sets (&&dsname) may be deallocated but not
reallocated.

e A data set whose DISP status was NEW in the beginning of the

run (as coded on the JCL DD statement) will have a status of
MOD when reallocated.

6-10

Chapter 6

File Handler Specifications

If the ddname in the FILE command describes a concatenated
data set, only one of the members of the concatenation will
be reallocated. The member of the original concatenation
that will be reallocated is unpredictable:

if //DD1 DD DSN=FILEA
// DD DSN=FILEB
// DD DSN=FILEC

and DD1 is deallocated, upon reallocation, DDl will point to
either FILEA, FILEB or FILEC but not the original
concatenation sequence.

When a data set is deallocated, any subsequent reallocation
will be attempted using DD statement parameters assigned via
the original JCL. Any parameters not provided will not be
supplied and the IBM defaults for them will be taken, as
necessary:

DSN - as coded on DD statement

member -name - as coded on DD statement for a PDS.
Generation Data - 1if coded on DD statement

Group number

LABEL number - as coded on DD statement

LABEL type - as coded on DD statement

SYSOUT class - will be A wupon reallocation. SYSOUT

class may be overridden with the DEALL
command CLASS option.

UNIT - Direct access types: 2305-1, 2305-2,
2314, 3330, 3330-11, 3340, 3350, 3380.
Tape units: 2400, 3400. If the wunit
type is not one of the above, SYSDA will
be used for reallocation.

VOL=SER - the first 5 wvolumes coded on the DD
statement. Only one unit will be
requested for a tape multivolume data
set. For a DA multivolume data set, as

many units as there are volumes will be
requested for PARALLEL MOUNT.

DISP - as coded on DD statement with exception
of NEW which is changed to MOD upon
reallocation.

Catalogued data sets are an exception to the above. For a

catalogued data set, UNIT type and VOL=SER information is not

checked. All other information, including LABEL data, is
verified.

If a data set is named by more than one ddname, each ddname
must be named by the operator on a separate FILE command (for
example, VSAM base cluster and alternate 1index paths;
deallocate the paths first).

6-11

Chapter 6 File Handler Specifications

The following DCB subparameters will also be preserved for the
specified data types; all other parameters will be taken from the
internal DCB or DSCB:

BFTEK - Buffering techniques (BDAM, QSAM, BSAM)
BILKSIZE - Block size (BSAM, QSAM, BDAM)

DSORG - Data set organization (BSAM, QSAM, BDAM)
EROPT - DCB error options (QSAM)

LRECL - Logical record length (QSAM, BSAM)

NCP - Number of channel programs before CHECK (BSAM, BISAM)
OPTCD - Operational services (QSAM, BSAM, BDAM)
RECFM - Record format (QSAM, BSAM, BDAM)

DEN - Tape density (QSAM, BSAM)

KEYLEN - Key length (Keyed BDAM or ISAM)

LIMCT - Search limit (Keyed BDAM)

BUFNO - Number of buffers (all)

NOTES: DSORG=PO data sets are not supported by the File Handler
and may not be deallocated. Sequential output disk data
sets defined for =x37 abend protection may not be
deallocated. VSAM data sets may be reallocated but JCL
overrides (AMP=AMORG) of VSAM parameters will not be
preserved. That is, upon reallocation, VSAM will take
all necessary parameters from its control blocks. IBM
currently does not support the provision of VSAM AMP
parameters via dynamic allocation.

6.2.15.1 Retry of ALLOC or DEALL After Error

Upon completion of the DYNALLOC macro, a return code in register
15 indicates whether or not the request completed successfully. If it
did not, the error reason code field in the dynamic allocation request

block 1is checked. The error reason codes are divided by IBM into
classes as documented in the IBM MVS SPL: - JOB MANAGEMENT or MVS/XA
SPL: System Macros & Facilities, Vol.l manual. An error code whose

two-byte hex value is X'02nn’ is represented to be significant of a
failure due to insufficient system resources. As such, Intercomm will
consider such errors temporary and preserve the internal control blocks
necessary for a retry. An error code whose value is other than X’'02nn’
is a permanent error, due to an invalid parameter list, system routine
error or environment error. When these occur, the internal control
block necessary for the function is freed and the request cannot be
retried by entering a subsequent ALLOC or DEALL. In either case, after
a failing ALLOC or DEALL, the status of the file remains the same as it

was before the failing command. In the case of a permanent error, a
snap (ID=34) 1is taken of the SVC 99 request block and the parameter
list used to attempt the request. The snap 1is not taken for a

temporary error. An error message is issued to the requesting terminal
for both temporary and permanent error conditions.

6-12

Chapter 6 File Handler Specifications

6.2.15.2 Subtasking of DYNALLOC Macro

When a request for allocation is accepted by the operating
system, a certain lag time for volumes to be mounted, off-line units to
be varied, etc., may occur before the allocation request can complete.
In order to avoid forcing all Intercomm activity to wait while these
events take place, the system will attempt to issue the DYNALLOC under
a general subtask. To take advantage of this, the wuser should
implement the Intercomm Generalized Subtasking facility in his system
(see Chapter 3). As many general subtasks should be created as there
are expected to be concurrent DEALL or ALLOC commands entered, plus the
number required for other system and user functions. This is important
because, if a general subtask is not available, ICOMTASK performs the
subtasked code (the DYNALLOC macro) under the main task, which may
cause a significant deterioration of system performance.

6.2.15.3 Status of Files While Deallocated

Intercomm closes and marks a file as locked in the internal DSCT
before deallocating it. This means that any subsystem selecting the
file through the File Handler will receive a return code of C’'9' in the
status field, and no I/0O can be done. If the deallocation request
fails, the file will remain locked but may be unlocked by a FILE$UNLOCK
command. Thus, the operator may free the file for subsystems to use
until the deallocation request is retried. If the deallocation is to
be retried immediately, however, it is recommended that the file not be
unlocked so as to avoid the time lag involved in quiescing the file a
second time.

Once a file has been deallocated, it remains locked until a
subsequent successful reallocation (FILESALLOC) request occurs. An
unlock command cannot wunlock a deallocated file. Upon successful
reallocation, the file is immediately marked unlocked, regardless of
whether or not it was locked prior to deallocation by a FILE$LOCK
command.

6.2.15.4 Deallocation/Reallocation of SMLOG and SYSPRINT

The two Intercomm SYSOUT data sets SMLOG (for thread resource
dumps, pool dumps, core use statistics - see Chapter 5) and SYSPRINT
(for WQE traces, File Handler Statistics, and print line images written
via IJKPRINT - see Chapter 4) may be dynamically deallocated in order
to print or display the output immediately, rather than waiting for
Intercomm closedown. Use the CLASS option of the DEALL command to
route the output if the original class was not A. These files are
automatically immediately reallocated with CLASS=A. A subsequent ALLOC
command is not needed. Because routing of output to these files is
single-threaded, they will not be deallocated in the middle of a report
(except possibly when STATFILE is used for File Handler statistics -
see section 6.10).

6-13

Chapter 6 File Handler Specifications

6.3 VSAM FILE SUPPORT

The three major VSAM file types (key-sequenced, entry-sequenced
and relative-record) are supported under Intercomm. Access may be
either sequential or direct via key, relative byte address (RBA) or
relative record number (RRN), where applicable. Generic keyed access
may also be performed. Additionally, alternate index (path) and base
cluster processing may be performed against KSDS files. Details on
access parameters and restrictions are provided in the Intercomm
Programmers Guides.

Several additional restrictions and processing considerations
apply to using VSAM files as follows:

° Do not define a JOBCAT DD statement for the Intercomm
execution JCL stream.

° If user catalogs are used, define the STEPCAT DD statement(s)
after the //PMISTOP DD DUMMY statement (see Section 6.5) in
the Intercomm execution step in order to prevent File Handler
access to the catalog at startup. DISP=SHR must be coded.
Do not specify STEPCAT if ICF catalogues are used.

° An empty ESDS file may be loaded on-line: it will be opened
only for output if there are no existing records in the
file. ESDS files with existing records are opened for
input/output. An empty file may be loaded by only one
subsystem which must be single threaded (MNCL-=1), or control
single access via the RESOURCE macro. When allocating the
file wvia IDCAMS, specify REUSE and RECOVERY (not SPEED) on
the DEFINE statement. To overlay existing records (reload
the file), use the FAR parameter WRITEOVER (see section 6.6).

° STAEEXIT must be included in the Intercomm linkedit to ensure
closing of VSAM files after an abend occurs (see the
description of STAEEXIT usage in Chapter 8 and of its
processing in Messages and Codes). Note that Intercomm file
closing is not performed after a system cancel (x22 abend),
or if a second abend condition occurs during STAEEXIT
processing. The MVS Operating System does not perform VSAM
file closing if STAEEXIT does not successfully complete, nor,
of course, if a system crash (requiring reIPL) occurs.
Therefore, it may be necessary to add steps to the Intercomm
execution JCL stream to run IDCAMS on critical (updated)
files before starting/restarting Intercomm. While a VERIFY
operation will make an inquiry-only file accessible (but does
not update the catalogue), it is recommended to use a REPRO
(unload/load) operation against a file updated (added to)
on-line in the previously unsuccessful execution.

e When using a path (via an alternate index) to access a base
cluster, the base file should be opened at startup (if
accessed); use the FAR parameter OPEN=VSAM (see Section
6.6). To preserve read/write integrity for updating via the
path(s) or base cluster, use the FAR DSN parameter (data set

6-14

Chapter 6 File Handler Specifications

name sharing), and implement LSR pools (see below). The DD
statement for the base must always precede that for the
path(s).

6.3.1 Using a VSAM Local Shared Resources Pool

Local Shared Resources is a VSAM facility which allows selected
VSAM data sets to share a common set of buffers rather than having a
buffer created for each data set for each access. This facility
implements a more efficient utilization of VSAM buffers and of dynamic
storage since buffers will be acquired for a data set only when an I/0
operation is started and are returned to the pool when the I/0
completes. The buffer pool is acquired by VSAM when the BLDVRP macro
is issued at startup, ensuring that the buffer pool will reside in a
contiguous storage area and thus reducing storage fragmentation. Since
the Intercomm File Handler overlaps I/0 requests for VSAM data sets,
use of Local Shared Resources can cut down on paging requests for I/0
buffers; if a page containing a buffer is fixed for one I/0 operation,
no subsequent paging need be done for other I/0 operations which
require buffers residing on the same page(s). For further information
on Local Shared Resources, see the IBM VSAM Administration manuals.

To install Local Shared Resources under Intercomm, first code the
applicable BLDVRP parameters on the SPALIST macro. The parameters on
the SPALIST are coded exactly the same as they would be coded on the
VSAM BLDVRP macro (omitting the TYPE parameter). Coding these
parameters causes a list form of the BLDVRP macro (a BLDVRP parameter
list) to be built in a Csect named VRPLIST. The BLDVRP parameter list
is wvariable in length, the length dependent upon the number of buffer
pools there are. (Each VSAM buffer size coded causes a pool to be
built; for example, if 512 and 1024 are specified, a pool of 512-byte
buffers and one of 1024-byte buffers are built.) Both index and data
component sizes must be specified for VSAM data sets to be connected to
the LSR pool.

One and only one Local Shared Resources pool may be built per
Intercomm region. Separate data and index component pools are not
supported. For each region in a Multiregion Intercomm, code BLDVRP
parameters on each region’s SPALIST, as desired.

The pool is built at startup when an execute form of the BLDVRP
macro is issued naming the list form BLDVRP in the VRPLIST Csect. Once
this 1is accomplished, the resource pool characteristics cannot be
changed until Intercomm is brought down and back up again with a
revised version of the SPALIST coding in the linkedit. Furthermore,
the pool will not be built if Intercomm does not find at least one VSAM
data set that can be opened and connected to it, Once BLDVRP
completes, a message is issued giving status information on the pool.
If unsuccessful, the return code is displayed. Certain parameters can
be checked at assembly time (such as invalid buffer size) but others,
such as a failing GETMAIN, are contingent on circumstances. If the
BLDVRP fails, it is not retried and VSAM buffers will be acquired by
VSAM per data set as usual.

6-15

Chapter 6 File Handler Specifications

6.3.1.1 Connecting Data Sets to the LSR Pool

The Local Shared Resources pool will be built only if the user
specifies data sets to be connected to it. This is done by a FAR
option, LSR, coded on a FAR statement for each data set that is to use
the shared resources. When LSR is coded, the File Handler will alter
the ACB for the data set to connect it to the resource pool and test
special OPEN return codes for it. Also, resource-pool-oriented usage
statistics may be accumulated for the buffer pools. These statistics
are discussed in Section 6.10; File Handler Statistics.

Specifying LSR for a VSAM file also causes its ACB to be opened
at startup, provided a VSAM resource pool exists. (That is, BLDVRP was
successful.) If a VSAM resource pool is not created, the data set is
not opened at startup unless OPEN=VSAM is also specified on the FAR
card. Empty ESDS files and ESDS files for which the FAR WRITEOVER
option is used may not be connected to the LSR pool (VSAM restriction).

Even though a Local Shared Resources pool may be created
successfully, a data set may be unable to connect to it. This latter
fact is discovered when its ACB is opened and VSAM returns a special
return code indicating the error. (These error conditions and return
codes are fully discussed in VSAM Administration: Macro Instruction
Reference.) When an attempt to connect a data set to the resource pool
fails, the File Handler will issue a message to call attention to this
error and then retry the OPEN, this time using the normal nonshared
buffers. That is, the retry of the OPEN will not specify connection to
the shared resource pool. When an attempt to connect a data set to a
resource pool fails, it is usually due to a conflict between the data
set control interval size and resource pool specifications, or because
the data set is empty. The return code in the error message can be
used to determine the necessary action to be taken.

During execution, any VSAM request failing due to a 1lack of
resources (for example, STRNO exceeded or no buffers available) will be
retried on a 1/3-second basis. Statistics about these failures may be
kept and reported so that the resource pool configuration may be
adjusted accordingly, as described in Section 6.10.1.

6.3.2 Sharing VSAM Files Under Intercomm

When a VSAM Shareoption 2 or 4 file 1is shared by multiple
Intercomm on-line or batch regions in the same CPU, the VSAMCRS FAR
option can be wused to augment VSAM shared file protection. For
Shareoption 1 data sets, VSAM provides total READ/WRITE integrity. For
Shareoption 3 files, VSAM provides no integrity; integrity for such
files is not provided by Intercomm either.

For Shareoption 2 files, VSAM provides complete WRITE integrity
in the wupdate region; that 1is, it will allow only one GET-update/
PUT-update or PUT-insert at any time. VSAM does not provide READ
integrity in this instance; a record just read by one region may be
updated or deleted by another before the first region is finished

6-16

)

Chapter 6 File Handler Specifications

processing it. The VSAMCRS FAR option augments VSAM processing by
providing READ integrity for Shareoption 2 files. TUnder this option,
Intercomm will issue an 0S ENQ for shared control of the file on the
first GET by a thread, and retain that ENQ until the last user in the

same region releases the file. This will allow any region sharing the
file to read from the VSAM file, but no user may update that file until
all regions have released shared control. Conversely, no region may

read from the file while one region holds an exclusive control ENQ on
the file for the purpose of updating. Thus, Intercomm ensures that a
user program always has the latest copy of a VSAM record. The VSAM
file in the read-only region must also have the READONLY FAR option
specified for it.

For Shareoption 4 files, VSAM provides minimal aid toward
READ/WRITE integrity. The VSAMCRS option will ensure file integrity in
this case again by ENQing on the file for shared control before GETs,
and for exclusive control before GET-update/PUT-update or PUT-insert.
In addition, an exclusive control ENQ within the region is 1issued
before processing any sequential request (for update or not) so as to
preserve VSAM positioning for the file. A DEQ and an ENDREQ are issued
at subsystem release time to release this positioning as well as to
cause VSAM to write out any updated buffers.

To conclude, the VSAMCRS FAR option should be coded when:

e READ integrity is desired for a Shareoption 2 VSAM file which
will be updated by another sharing Intercomm region.

e A Shareoption 4 file will be shared across two or more
Intercomm regions.

If any batch regions will be sharing the file while Intercomm is
executing, the batch access should be performed via the File Handler.
If this is not done, the user program should issue an 0S ENQ before any
VSAM access, and DEQ afterwards (see the description of the VSAMCRS FAR
option for enqueue names). Further information on sharing of VSAM
files may be found in the IBM VSAM Administration Guide.

6.3.2.1 Implementation for Sharing VSAM Files Across Regions

The VSAMCRS option must be coded on a FAR card for a Shareoption
2 or 4 VSAM file in every Intercomm region which will share that file.
In addition, the module IXFVSCRS must be linked with the File Handler,
IXFHNDO1. IXFVSCRS is Link Pack eligible so it must be linked with
IXFHNDO1 when the File Handler is Link Pack resident. The File Handler
will check for the VSAMCRS option when SELECT is called and ensure that
the IXFVSCRS module has been linkedited with it. If IXFVSCRS is not
present, SELECT will shut off the option, mark the file locked, and
return a code of 9. The VSAM file may be used but only if the operator
unlocks the file via the FILE command (see System Control Commands).

6-17

Chapter 6 File Handler Specifications

If VSAMCRS is coded for a Shareoption 3 file, the option is ignored and
the file is locked. 1In this case, the file may be used if the operator
unlocks the file wvia the FILE command. However, if the operator
unlocks a file which was locked because of either of the above reasons,
unpredictable errors may occur.

If VSAMCRS is coded for a Shareoption 1 file, it is ignored but
the file is not locked. However, VSAM may not allow the region to open
the file because Shareoption 1 restricts processing of a file to a
single region.

The Intercomm Interregion SVC (IGCICOM) must be installed.

Note: TCTV time-out values of subsystems wusing VSAMCRS files
may have to be increased substantially, depending upon
volume of activity against the files wused. The ENQ

issued by IXFVSCRS is done with time-out suppressed, so
that the limiting value is the subsystem time-out value.
However, if an OS ENQ request for exclusive control never
completes during thread purge processing because the
thread is disabled (see Chapter 5), then further access
to the file may be prevented because an update request
never completed. The TALY,DA system control command may
be used to determine thread status.

6.3.3 ISAM/VSAM Compatibility Under Intercomm

Subsystems accessing ISAM files can function with little or no
modification when their files are converted to VSAM. Intercomm’s
ISAM/VSAM interface does not use IBM’s VSAM/ISAM interface modules.
ISAM/VSAM support 1is provided as an option which is specified by

setting the global &VSISAM to 1 in SETGLOBE before assembly of
IXFHNDO1.

The File Handler, when processing a converted VSAM data set, uses
QISAM-compatible access for a GET or PUT call and BISAM-compatible
access for a READ or WRITE call. An ISAM retrieval is converted to a
VSAM GET for update. If a key is provided, it is, of course, treated
as a full key. For GET, with a key, positioning and a search for a
greater or equal key is performed. For READ, a search is made for an
equal key. The FHCW is initialized internally for this operation.

ISAM delete code processing continues to function as usual via
the OPTCD subparameter of AMP on the DD statement. The new OPTCD

parameters (I,IL) which specify supplementary delete code processing
are also supported.

The appropriate Intercomm Programmers Guide should be consulted
for specifics on coding techniques and return codes.

6-18

C

Chapter 6

6.4 FILE HANDLER COMPONENTS

File Handler Specifications

The File Handler is organized into eight control sections:

Member CSECT Function

IXFDSCTn IXFDSCTA Data Set Control Table
1xemNpoo | IXPMONOO | File Handler Initialization

IXFMONO9 File Handler Termination

| mxeawpol | IXPMONOL | File Handler Processing
xrqisa | IXFQISAM | QISAM Scan Mode via BISAM
IxFFAR | IXFEAR | File Attribute Record Processing
xess7 | xFp37 | File Flip/Flop Processing
| IXFvscRs | IXFUSCRS | VSAM Cross-region Control Processing

The functions of each control section are detailed below,
diagrammed in Figure 6-1.
method (particularly VSAM)

must be reassembled and relinked.

6.4.1

and

If any new version of any supported access
is installed,

all File Handler components

Data Set Control Table (IXFDSCTA)

The Data Set Control Table (DSCT) contains,

entry for each
Handler.

addresses
characteristics

access method);
file; I/0 error

file (data set)

flags identifying
flags;

during execution, an
that may be processed by the File

Each entry contains the ddname of the data set (corresponding
to the name of the Job Control DD statement defining the file);
of any Data Control Blocks
constructed to process the file; buffer addresses;
(data set organization,

the
Control Blocks
flags defining file
device type, disposition, and
the current processing status of the

or Access

and a pointer to an associated File Attribute

Block (FAB), if any, created at initialization time via IXFFAR.

Fixed information in each entry is inserted by the initialization

routine (IXFMONOO) at startup,
entry during

the
(IXFMONO1) .

and variable information is recorded in
execution by the

File Handler processing routine

The first DSCT entry is preceded by a DSCT header containing a

count of the number of
general processing options from IXFMONOO to IXFMONOL.
resident table containing 20 entries,

member IXFHNDOI.

entries

As described be

used, and flags for communicating
The DSCT is a
assembled as a Csect within the

low, this individual control section

may be replaced to change the size of the DSCT to accommodate more

files.

6-19

Chapter 6 File Handler Specifications

Unit Control Job File
Task Input-Output Table Blocks Control Blocks
TIOT UCB SYS1.
SYSJOBQE
ICOMIN —p IXFMONOO Step
Initialization
File Attribute IXFFAR
Records
IXFDSCTA Data Set Control Table
+ (DSCT) and File Attribute
FAB Blocks (FABs)
IXFMONO1 File Handler
User Data Sets Processing

IXFQISAM/IXFB37/IXFVSCRS

Application
Program
IXFMONO9 Step
Termination

Release and close each data
set specified in DSCT

Figure 6-1. File Handler Components.

6-20

Chapter 6 File Handler Specifications

6.4.1.1 Defining the Data Set Control Table

The File Handler Data Set Control Table (DSCT) specifying the
maximum number of data sets to be accessed is created by the Intercomm
macro, IXFDSCTA. The File Handler file processing member (IXFHNDO1)
contains a DSCT allowing up to 20 data sets (DD statements) to be
accessed during Intercomm execution. Additionally, the Intercomm
release contains three other members, one of which may be utilized to
allow 50 data sets (IXFDSCTl), 100 data sets (IXFDSCT2), or 200 data
sets (IXFDSCT3). Code the DSCT parameter on the ICOMLINK macro, when
generating the Intercomm linkedit control statements, to specify which
member is to be used. Alternatively, an installation may generate its
own DSCT by coding the IXFDSCTA macro to specify a more precise
maximum. Any DSCT to be used in lieu of the File Handler DSCT must be
included prior to IXFHNDOO and IXFHNDOl in the Intercomm linkedit.

The IXFDSCTA macro also allows specification of File Handler
options and statistics requirements as discussed in subsequent
sections. The Intercomm-supplied DSCTs specify no options; statistics
are for detailed access statistics. Refer to Section 6.9.4 on IXFDSCTA
options and to Section 6.10 on File Handler statistics for procedures
to follow if other than a release version of the DSCT is used.

6.4.2 File Handler Initialization (IXFMONOO)

This Csect (within member IXFHNDOO) is executed at system startup
to initialize all entries in the Data Set Control Table. The names of
all Job Control DD statements in the current job step are found from
the operating system Task Input Output Table (TIOT). For each DD
statement, the allocated device type is determined (through a system
macro instruction) and coded information from the DD statement is
accessed (from the associated Job File Control Block). Additional
information is determined by opening, and subsequently closing, the DCB
or ACB, if VSAM. 1If the data set cannot be opened, it is flagged as
locked (unusable) in the DSCT, and an error message is issued to the
system console. If corrective action is taken, see the FILE command
(in System Control Commands) for dynamically altering the status of a
file. If the device type and data set characteristics are supported by
the File Handler, the name and selected information from the above
sources 1is transferred to an entry in the DSCT. Subsequently,
additional fixed information concerning the data set is located from
FAR options specified for the data set. This FAR information is also
transferred to the DSCT entry, or File Attribute Block, as applicable.

When the TIOT has been completely scanned, the DSCT header is
then filled in. Should the initialization routine be inadvertently
called again at any time after the DSCT has first been initialized, no
action will be performed. If, during File Handler initialization, the
DSCT becomes filled and unprocessed TIOT entries remain, a console
message is written and the job step is terminated.

6-21

Chapter 6 File Handler Specifications

6.4.3 File Attribute Record Processing (IXFFAR)

This routine is executed in File Handler initialization during
Intercomm startup to read and analyze an input data set defining
various optional attributes per on-line file, such as input only,
update only, name alias, open at startup, exclusive control processing,
etc. FAR specifications are described in Section 6.6, and in the
Intercomm File Recovery Users Guide.

6.4.4 File Handler Processing (IXFMONO1l)

This Csect (within member IXFHNDOl) is composed of one mainline
routine for each function (SELECT, RELEASE, LOCATE, GET, PUT, GETV,
PUTV, READ, WRITE, RELEX). Each mainline routine verifies the caller’s
parameter list, maintains the DSCT status information, determines the
access method to be used, issues the appropriate Data Management
Input/Output macro instructions, checks and moves the record or block,
and sets the resulting status code for the caller. Exclusive control
processing is also performed if requested and/or applicable depending
on data set type. See Section 6.7, "File Handler Service Routine
Summary." Other Csects in this module are IXFSUBS which performs save
area acquisition and chaining, and IXFABWTO which issues an error
message and forces a program check (via ISK-see Messages and Codes)
when an unrecoverable logical or physical error occurs.

6.4.5 QISAM Scan Mode via BISAM (IXFQISAM)

IXFQISAM provides the interface so that the function of QISAM
Scan Mode 1is supported by using BISAM. Core requirements are
significantly reduced when an indexed sequential file accessed by QISAM
and BISAM can be accessed only through BISAM. The set of control
blocks, buffers, channel programs and work areas, tied up for QISAM as
long as the data set is open, is thereby eliminated.

IXFQISAM must be included in the Intercomm linkedit, along with
the other File Handler modules even if IXFHNDOl is in the Link Pack
Area. The following statements must precede the include statement for
IXFHNDOl1 (whether resident or in the Link Pack Area):

CHANGE GET(GETZ)
CHANGE PUT(PUTZ)

These statements are automatically generated by the assembly of the
ICOMLINK macro. Thus, a program call to the GET or PUT routines will
initially enter IXFQISAM. If the request is not for a file to be
processed by this module, control is transferred to the revised entry
points (GETZ and PUTZ) in IXFHNDOl. 1If QISAM scan mode is not used,
remove the INCLUDE statement for IXFQISAM and the two CHANGE statements
in order to reduce processing overhead for sequential files accessed
via GET and PUT.

6-22

Chapter 6 File Handler Specifications

6.4.6 File Handler Termination (IXFMONO9)

This routine, (a Csect in IXFHNDOO) calls the RELEASE function to
close each data set opened by the File Handler. When a file is closed,
it is closed for every access method for which it was opened, and all
buffers and main storage areas previously acquired for construction of
control blocks are released.

Typically, this step termination routine is required only once
per job step; it may be incorporated in a nonresident segment of the
overlay program structure. The abend intercept routine STAEEXIT
conditionally calls IXFMONO9; therefore, if it 1is nonresident, the
overlay region it occupied may be overlaid in a dump.

6.4.7 Sequential Output File Abend Control (IXFB37)

IXFB37 receives control from IXFHNDOl after an x37 abend has
occurred for a sequential output disk file defined for such abend
protection. It cancels the outstanding WQE requests (posted with a
code of X'40') representing chained writes against the file which has
become full, opens the alternate data set, and then restarts the
outstanding writes against that data set in the same order in which the
writes were initially issued so that sequential record integrity is not
lost.

6.4.8 VSAM Cross-region Shared Control (IXFVSCRS)

If included in the same linkedit (Intercomm region or Link Pack)
as IXFHNDOl, IXFVSCRS is called for every access to a VSAM file. 1If
the file was defined as eligible for cross-region processing, IXFVSCRS
determines the type of system ENQ to issue (for shared or exclusive
control or to CHNG to exclusive control, if applicable) wvia an
Intercomm INTENQ macro. An INTDEQ is issued and ENDREQ processing is

performed when the subsystem thread or resource purging (RMPURGE) calls
RELEASE for the file.

6-23

Chapter 6 File Handler Specifications

6.5 DATA SET SPECIFICATIONS

Every data set which may be accessed during the course of
Intercomm execution (from startup to closedown) must be defined by

appropriate DD statements in the execution JCL. All files must be
mounted prior to initiation of Intercomm, except those for which
deferred mounting is specified. After initiation, a subsequent

requirement for mounting a deferred data set, or a volume of a
multivolume tape file, may cause suspension of all message processing
activity in the system until the request is satisfied, depending upon
the operating system used.

All data sets accessed under Intercomm control must be previously
existing data sets (DISP=OLD or SHR), except sequential output data
sets (DISP=NEW or MOD). That is, VSAM, BDAM or ISAM data sets to be
accessed on-line must be created in a step preceding the execution of
Intercomm. The Intercomm-supplied utilities CREATEGF (for non-keyed)
or KEYCREAT (for keyed) may be used to initialize BDAM data sets.

Message processing programs will refer to each data set by its
one- to eight-character ddname, as specified in the job control data
definition statement defining the data set. Each program which uses
the same data set must refer to it by the same ddname.

It may be desirable to exclude certain DD statements containing
the DSORG parameter (such as data sets controlled by a DBMS attached in
the Intercomm region) from being included in the DSCT table. To
accomplish this reduction in size of the DSCT, insert

//PMISTOP DD DUMMY

after the last DD statement to be included in the DSCT. All Intercomm
data sets must precede this statement, except those used for snap
output and dynamic linkedit, and the JCL for BTAM lines. The maximum
number of DD statements for the Intercomm execution step is operating
system (DFP version and release) and TIOT size dependent.

6.5.1 Required DD Parameters

All DD statements defining data sets to be processed by the File
Handler must specify the DCB subparameter DSORG=(PS, DA or IS) for SAM,
BDAM or ISAM data sets, or AMP=AMORG for VSAM data sets. For fixed
length VSAM files, specify AMP=(AMORG, 'RECFM=F'). Files for which
DSORG or AMP are not specified on the DD statement will not be
considered by the File Handler when constructing its internal data set
control information (DSCT) at system startup.

A DUMMY file (or DSNAME=NULLFILE) may be specified for any data
set referenced through the File Handler, however, a DSORG or AMP (see

above) must be specified. This is useful in eliminating unnecessary
data set definition and I/0 operations upon data sets that are not to
be used in a given job. For example, the output log file may be

eliminated by specifying a dummy data set, or an indexed file
containing no existing records can be simulated for testing program

6-24

Chapter 6 File Handler Specifications

logic by specifying a dummy data set. Any File Handler operation may
be called for a dummy data set; successful completion return status
will be given to the requesting program for operations other than
input; EOF or KEY NOT FOUND return status will be given when an input
operation (GET or READ) is attempted. This feature does not apply to
x37 abend protected files.

For sequential, multivolume output files, SUL should be coded in

the LABEL parameter to avoid subsystem time-outs which could occur
between volume mounts.

6.5.2 Required DCB Parameters

The DCB parameters listed in the following table should be
contained in each data set label. The label is created from parameters
specified in the DD statement when the file is created or is
subsequently opened for output or updating. Any parameters omitted
from the data set label must be specified in the DD statement used in
the processing job step.

DCB

Parameter Function

DSORG specifies PS (sequential), IS (indexed) or DA (direct).
DSORG is required on the DD statement (unless VSAM).

AMP specifies AMORG for all VSAM files and is required on the
DD statement.

RECFM specifies record format: F, FB, U, V or VB (with A
and/or S).

BLKSIZE specifies exact or maximum block size, including 4 for
BDW, if applicable.

LRECL specifies exact or maximum logical record length,
including 4 for RDW, if applicable.

KEYLEN specifies key length (IS and Keyed DA only).

RKP specifies relative key position (IS only).

OPTCD specifies standard DCB macro parameters. E must be added
for Keyed BDAM with extended search option.

LIMCT specifies the number of records or tracks to search when

J using the extended search option for Keyed BDAM.

NCP specifies the maximum number of I/0 operations that may

be started for a sequential data set (BSAM or BISAM).

6-25

Chapter 6 File Handler Specifications

6.5.3 Read-Only Data Sets

One or more data sets may be specified as read-only by means of
FAR parameters. Requests for output operations wupon data sets
specified as read-only are not accepted. For VSAM alternate 1index
processing, all paths but the one used for update must have read-only
specified.

Read-only specification provides a method for protecting a data
set for inquiry only when referred to by one ddname, while allowing
full access to programmers using another ddname for update of the same
data set. However, the inquiry requests may not always access the most
recently updated version of the record, depending on the buffer
emptying processing of the access method used.

6.5.4 Shareability of Sequential Data Sets (QSAM/BSAM)

A sequential data set is shareable among subsystems executing in
the same Intercomm region if:

° The data set disposition is OLD or SHR (read-only) and not on
tape (can be repositioned)

° The data set disposition is either NEW or MOD (write-only)
and interleaving of output records is immaterial (tape or
disk) and the DCB is not closed via RELEASE.

A sequential data set is not shareable if it resides on tape and
has disposition OLD or SHR.

If a sequential data set is shareable, the following occurs:

1. The status code returned by SELECT is a 1 if a SYSOUT data
set, disk output, or on tape (0 if disk input).

2. Write operations upon the file requested by the same or
different threads are performed in the order requested,
without repositioning.

3. Processing modes may not be intermixed: If GET or PUT
processing is used by any program, no other program may
employ READ or WRITE processing upon the same file, and vice
versa.

4. A disk data set with DISP=0OLD or SHR is repositioned and

processed from the beginning for each new subsystem thread (a
new DCB is opened for each thread).

6-26

J

Chapter 6 File Handler Specifications

6.5.5 Data Set Disposition

The disposition indicated on the DD statement is related to the
operations which can be performed upon the file, as follows:

e NEW/MOD--The file can only be a sequential shareable data set
(see above), and no input operations are allowed.

° OLD/SHR--Both input and output operations are allowed
(provided the data set is not read-only); output operations
(depending on access method restrictions and processing
options) may be rewrites of existing records, additions of
new records, insertions of keyed records, or writing over of
an existing sequential file (see FAR WRITEOVER parameter).

6.5.6 SYSIN/SYSOUT Data Sets

If data sets are defined as DD *, DD DATA, or DD SYSOUT=x and are
accessed through the File Handler, they are processed in the same
manner as shareable sequential data sets, even though the actual
assignment 1is either to a unit record device or intermediate
direct-access storage. The implied dispositions are: SYSIN--OLD;
SYSOUT - -NEW. For SYSOUT data sets, DCB parameters are required:
DSORG=PS, RECFM and BIKSIZE, also LRECL if blocked. Under MVS, do not
code FREE=CLOSE for a SYSOUT data set because it is opened and closed
during File Handler initialization; the close will automatically

deallocate the data set. Use the FILE command to dynamically
deallocate it.

6.5.7 Reserved ddnames

SYSOnnnn data sets are reserved for the operating system and are
not processed by the File Handler (used for ICF catalogs).

The following ddnames are reserved for Intercomm System use and
should not be assigned to user data files:

e CHEKPTFL--System Checkpoint File

e DESO00--File Description Records File (Change/Display)
° DYNLLIB--Dynamic Linkedit Load Module File

e DYNLPRNT--Dynamic Linkedit Print File

e DYNLWORK--Dynamic Linkedit Work File

. FASTSNAP--Used by Fast Snap facility (see Chapter 8)

e FRLOG--File recovery image printing at restart time

6-27

Chapter 6

File Handler Specifications

ICOMIN--File Attribute Record input

INTERLOG- -System log (current)

INTSTORn- -Used by Store/Fetch Facility (and MMU)
LOGDISK--Restart Work File

LPSPALIB--LPSPA load module library (Link Pack Facility)
NEWSNAP- -Alternate snap data set used by Spinoff facility
NULLFILE-Dummy File (File Handler)

PAGES--Used by Page Facility

PMIQCFDD- -Dynamic Data Queuing Queue Control File
PMISCFDD--Dynamic Data Queuing Space Control File

PMISTOP--Delimits last DD statement to be processed by File
Handler

RCTO000--Output Utility Format Table disk-resident entries
RESTRTLG--System log (for restart)

RPTO000--Batch reports to Tape File (Output Utility)
SEC000--Basic Security disk-resident table entries
SECURITY- -Extended Security System File

SIMCARDS--Front End Simulator parameter cards

SMLOG--Statistical data and other output from Resource
Management (thread dumps, etc.)

SNAPDD- -Snap dumps

STATFILE--File Handler Statistics File

STSLOG- -System Tuning Statistics Report File
SYSABEND--Used if abends are to dump all of storage

SYSPRINT--Used by IJKTRACE, IJKPRINT, messages etc.

6-28

Chapter 6 File Handler Specifications

° SYSSNAP--1ID=15 snaps (test mode)

° SYSSNAP2--1D=20 snaps (test mode)

. SYSUDUMP- -Used if abe;ds are to dump Intercomm region only
e THREDLOG- -Backout-on-the-Fly facility DDQ File

° VRB000O--Edit Control Table disk-resident entries (Edit
Utility)

Additional system files with user-assigned ddnames for the
following system facilities:

e BTAM output queues--names assigned in BTAMSCTS (BTAMQ)
e VTAM output queues--names assigned in VTAMSCTS (VTAMQ)

e Disk Message Queues--names assigned in Subsystem Control
Table (PMIQUE) '

° Front End Simulator input data sets (DDNAME=Terminal-ID), and
simulated Local 3270 print files (SCRxxxXxXX)

° Page Facility (in addition to, or instead of, PAGES)
e Multiregion Support (MRS) disk message queues (DDQs)
e Dynamic Data Queuing (DDQ)

° Data Entry (INTBSKRM, INTBDTET, INTBDTnn)

e Autogen (AUTOGPCH)

e IXF..... (Dynamic File Allocation - volser reference)

6.6 FILE ATTRIBUTE RECORDS (FAR)

The FARs are read during File Handler initialization by the
module IXFFAR after all internal DSCTs have been initialized, and the
information from the FARs is encoded in DSCT appendages called File
Attribute Blocks (FABs). The ddname of the FAR data set is ICOMIN; any
card image data set accessible via QSAM GET is allowed.

Several types of specification may be made via the File Attribute
Record input data set. They are:

e Defining a data set (by ddname) as input only. This means
there will be no output activity allowed on the file. Any
attempt to alter the file will be treated as an error by the
File Handler. Coding this facility has exactly the same
effect as coding ddname=R in the EXEC statement PARM field.

6-29

Chapter 6

File Handler Specifications

Defining a BISAM data set (by ddname) as update only. The
file will be opened for updates, not for inserts; an attempt
to insert a record will be treated as an error. A core
saving at least equal to the block size of the file is
realized by this definition.

Defining an alias for a data set (by ddname). This causes
the File Handler to treat all calls referencing the file as
if they referenced its alias. This technique is useful for
mixing SYSOUT data from different routines using different
hard-coded ddnames without reassembling. Two ddnames that
are aliased must have the same DCB parameter specifications.

Specifying that the file be opened at system startup.
Opening DCBs or ACBs at startup reduces storage
fragmentation; once storage is allocated for a DCB/ACB it
will stay allocated for the rest of the run, unless the file
is closed via a RELEASE request to the File Handler with the
close option, or the FILE command. Opening the files at
startup time segregates long-term storage holdings at the top
of the region, hence eliminating fragmentation that would
occur when files are opened at first access.

Specifying that the high-level index of a BISAM file be kept
in storage. Index level must be above the cylinder level.

Specifying the ddname of a duplex output file. This causes
all output operations against the primary file to be
replicated automatically against the duplex output file. The
result of this is to create an on-line backup copy of a
critical sequential output file. This specification 1is
allowed only if both files are sequential output. The duplex
relationship is not symmetrical. For example, if DD2 is a
duplex of DD1l, then wusers selecting DDl would have their
output duplexed on DD2; but users selecting DD2 would not
have their output duplexed on DDI1. Do not use for the
Intercomm log or x37 abend protected files.

Marking a file permanently down if any I/0 call to the File
Handler results in a status code of C'l’ or C’'9'. When a
file is marked down, then all calls to perform I/0 will
result in a status code of C'l’, all SELECTs result in a
C'9’, and all RELEASEs complete normally. After all current
users of a down file have released it, the file will be
closed.

Specifying Intercomm logic for BDAM exclusive control, rather
than that of the operating system. A significant reduction
in CPU requirement is gained, but no_other region may request
exclusive control on that file. Do not use DISP=SHR.

6-30

Chapter 6 File Handler Specifications

° Specifying Intercomm logic for ISAM exclusive control. The
default assumed is that ISAM exclusive control updates are
limited to BISAM access within a single region. This is most
efficient and should apply to most users. Users whose
requirements differ must specify the XCTL FAR attribute.

° Specifying Intercomm logic for VSAM cross-region shared and
exclusive control for VSAM Shareoption 2 and 4 files.

® Overwriting of an existing sequential or VSAM ESDS file
(DISP=OLD or SHR).

e Forcing a wait state when NCP is reached for an output
sequential file. For example, NCPWAIT is specified for the
file with the ddname of QX1, and NCP=2 is coded on the JCL
for QX1. A processing thread calls the File Handler which
proceeds to write a block to the file. The File Handler does
an internal wait (that is, exits to the Dispatcher until the
ECB for the write is posted complete). The Dispatcher gives
control to a second thread which also calls the File Handler
to write a block to QX1. The File Handler issues that write
and discovers that an earlier write to the same file is still
outstanding, and that NCP for the file 1is 2. The File
Handler issues a HARDWAIT; that is, the Intercomm main task
goes into the wait state until the ECB for the first I/0 is

posted complete. Execution then resumes with the first
thread made active and the second waiting on its I/O to the
file.

e Preventing x37 abends for sequential output disk files and
Intercomm log.

e Providing LSR pool buffer support for VSAM files.

° Specifying Data Set Name Sharing for a VSAM base cluster and
its path(s).

6.6.1 Coding the FARs

Comment statements, starting with an asterisk (*) in column 1 may
be interspersed with the FAR statements. The coding format for FARs
is:

ddname,attributel,attribute?,...attributen.

FAR data may be coded from column 1 to 72; leading blanks are allowed;
however, embedded blanks are not allowed.

A complete description of the FAR parameters and syntax for
coding is contained in the File Recovery Users Guide. 1In the simple
case of utilizing FARs to specify attributes not associated with File
Recovery, the attributes are:

6-31

Chapter 6 File Handler Specifications

ALTAS=ddname

B37

to define an alias for a data set, in order to route I/0
operations to the alias data set. The originating ddname will
have the FAR attributes of the alias file; no other attributes
may be coded on this statement. x37 abend protection may not be
requested for the originating ddname.

applies only to sequential output disk files and the Intercomm
Log (if to disk). Invokes an automatic facility to protect
Intercomm from an x37 abend resulting from running out of space
on this file. Installation specifications are in the section
"Sequential Output Disk File Flip-Flop Facility" in this chapter.

COREINDEX

DSN

requests that the highest-level index of a BISAM file be kept in
main storage. This option applies only to files large enough
that the index hierarchy goes above the cylinder level. Cannot
be used for IAM files.

causes the specified VSAM KSDS file to be opened with the ’data
set name sharing’ attribute and is to be used for a base cluster
and associated path(s) when updating, or adding to, the data set
is done via one or more ddnames, while inquiry is also done via
one or more of the ddnames. That is, via the base and/or one or
more of its paths. The DSN attribute guarantees file integrity
and VSAM exclusive control when updating a record (depending on
SHAREOPTIONS - see section 6.3.2). Otherwise, an inquiry via a
path, for example, may not return the latest version of a record
updated in the base (different buffers used for the same control
interval). Coding DSN for a data set forces the LSR attribute
for that data set (VSAM requires use of LSR pools for DSN
processing), even if LSR omitted on the FAR statement. A FAR
with the DSN attribute must be coded for the base cluster and
each path ddname. The JCL and FAR statements for the base must
be coded before those for the associated path(s). VSAM files for
which DSN is specified must have been allocated with the UPGRADE
(on the AIX) and UPDATE (for the path(s)) attributes on the
associated DEFINE statements for IDCAMS.

DUPLEX=ddname

specifies the ddname of one or more duplex output files. When a
duplex output operation is performed, the status code returned to
the caller is C’0’, if any output operation was successful.
Otherwise, the status code from the first operation is returned.

NOTE: When duplex files are specified, all associated files are
automatically flagged with the ERRLOCK attribute.

ERRLOCK

to force marking a data set permanently down, when any I/O call
to the File Handler results in a status code of C'1l’ or C’'9’.

ICOMBDAMXCTRL

to indicate that Intercomm logic is to be used for BDAM exclusive
control, rather than that of the operating system.
6-32

Chapter 6 File Handler Specifications

LOCK

LSR

specifies that any requests to Select or access (perform I/0) the
file will be refused with a return code of 9 in the FHCW (see
section 6.7). This is useful for a file for which off-line
processing did not complete before Intercomm is brought up. To
process against the file at a later time, the FILE command must
be used to unlock the file.

causes a VSAM data set to be connected to the VSAM Local Shared
Resources pool at ACB OPEN time. The data set must be a VSAM
data set which is currently loaded (LSR cannot be used to load a
data set or to reload an ESDS file) and the resource pool must
have buffers large enough to contain the data set's control
intervals. The SPALIST BLDVRP parameter must be coded if LSR is
coded. (See "Using a VSAM Local Shared Resources Pool" in
Section 6.3.)

NCPWAIT

forces Intercomm into the wait state when the number of pending
I/0's to a sequential file has reached NCP for that file.
Intercomm becomes active again when the first I/0 in the series
is posted complete. This option is forced for INTERLOG, the
Intercomm log data set.

NOTE: This option should be used with caution. Its improper
use can cause the system to enter the wait state
excessively and performance will deteriorate as a
result. Concurrent I/0 requests should be controlled by
SYCTTBL parameters as described in Section 6.2.8.

OPEN={BASIC)

{QUEUED)
(BOTH)
(VSAM)

requests that the file be opened at startup time, rather than
waiting for the first I/0 request. The meanings of the
subparameters depend on the file organization:

direct:
BASIC -- open BDAM DCB
QUEUED -- not applicable
BOTH -- not applicable
indexed sequential:
BASIC -- open BISAM DCB only
QUEUED -- open QISAM DCB only
BOTH -- open both BISAM and QISAM DCBs

(If IXFQISAM is used, the only valid specification is BASIC;
BOTH or QUEUED will generate unpredictable results.)
sequential:

BASIC -- open BSAM DCB only

QUEUED -- open QSAM DCB only

BOTH -- open both BSAM and QSAM DCBs
vVSaM

-- open VSAM ACB

6-33

Chapter 6 File Handler Specifications

READONLY
to define an input only data set.

UPDATEONLY
to define a BISAM data set allowing updates, but not inserts.

VSAMCRS

indicates that a VSAM Shareoption 2 or 4 file will be shared by
more than one region in the same CPU and that updates will be
performed by at least one region. Intercomm will augment VSAM
shared file processing and provide read integrity for Shareoption
2 files and read/write integrity for Shareoption 4 files by means
of 0S ENQs: QNAME=INTERCOM, RNAME=VSAM-dsn (up to 44
characters). This FAR specification must be coded for the file
in question for every region which will share the file. See also
"Sharing VSAM Files Under Intercomm" in Section 6.3.

WRITEOVER
allows a complete rewrite of an existing physical sequential file
(DSORG=PS, DISP=0OLD or SHR) or VSAM ESDS file. If this option is
not specified, any data written to the file will be added at the
end of existing data (that is, DISP=MOD assumed). If WRITEOVER
and READONLY are specified for the same file, READONLY will be
used and no writing to the file will be allowed. That is,
READONLY suppresses WRITEOVER. However, if the file is an empty
VSAM ESDS, READONLY is ignored. If WRITEOVER is specified for a
VSAM ESDS file, then the file is opened at startup for output
only and with the reset attribute; the LSR option, if specified,
is rejected. To use this option, REUSE must have been coded on
the DEFINE statement for the VSAM ESDS cluster when the file was
allocated wvia IDCAMS. PUTV calls to the file must be single

threaded (see section 6.3). Before attempting to access (via
GETV) records loaded to an empty/reused ESDS file, the data set
must first be closed. For a subsequent access, it 1is

automatically reopened for input/output.

XCTL={QISAM)
{MULTIREG)
indicates that ISAM exclusive control updates are performed using
QISAM, or from multiple regions. These specifications are
functionally equivalent, and result in an OS ENQ at the file
level. This is the least efficient means of assuring exclusive

control, and can be avoided by restricting the updates to BISAM
and to within a single region.

6-34

Chapter 6 File Handler Specifications

A typical FAR input data set might be:

//ICOMIN DD *

MASTFILE, READONLY, COREINDEX
TRANFILE, UPDATEONLY, OPEN=BASIC
CUSTRECS ,ALTAS=MASTFILE

INRECS , READONLY

/*

When ALIAS is specified, it must be the only attribute defined for a
particular ddname. In other words, coding a FAR as:

TRANSIN,UPDATEONLY,ALTAS=INTRANS

is invalid syntéx. When an ALIAS is defined:

ddnamel ,ALIAS=ddname?2
any call to SELECT for ddnamel will cause subsequent calls to READ,
WRITE, GET, PUT, GETV or PUTV to operate on ddname2. There is no need
for a DD statement with ddnamel in the execution JCL; the ALIAS
attribute overrides all specifications for ddnamel. Any reference to
ddname2 thus refers to ddname2 and the associated FARs for ddname2, if
any.

To code the FAR for duplexed output:
ddnamel ,DUPLEX=ddname?2

All WRITEs to ddnamel will be duplicated on the ddname2? data set. DD
statements for both data sets must be present in the execution JCL.

IXFFAR will WTO images of each FAR read from ICOMIN in the course
of processing, including comment statements. Thus, IXFFAR error
messages (FRnnnl) may easily be related to an individual FAR. Once the
FAR syntax is correct, you may suppress the image WTOs (80-character

card images) by inserting the following card at the beginning of the
FAR deck:

NOMESSAGES

FAR images will be suppressed; error messages will still be printed.
This card must be the first record of ICOMIN.

NOTE: No internal DSCT is created for ICOMIN.

6-35

Chapter 6 File Handler Specifications

6.7 FILE HANDLER SERVICE ROUTINE SUMMARY

The following discussion provides a brief summary of File Handler
functions. The specifics of calling procedures are discussed in
greater detail in the Intercomm Programmers Guides.

The File Handler Service Routines are entry points within the
File Handler Csect IXFMONOL. Each service routine is called with a
parameter 1list, as summarized in Figure 6-2. The File Handler
determines specific operations to be performed, based wupon the
parameter list and DCB information. Parameters for File Handler calls
are:

EXTDSCT (External Data Set Control Table): 12-fullword
control block area supplied (but not modified) by the
calling program, or ddname for a RELEASE with close
option.

FHCW (File Handler Control Word): four-byte option/status
area initialized prior to call to request special
functions and analyzed after call to determine status
of operation.

Area: I/0 area within calling program (ddname in the case
of SELECT).
Key: Requested key. For undefined record format, this

field contains the record length. RRN for VSAM RRDS.

Block-id: Requested BDAM block-identification (RBN, TTR, or
MBBCCHHR), or Relative Byte Address (RBA) for VSAM.

The SELECT function is called before the first access to a file
in order to:

e Verify the availability of the file.
° Position the file for subsequent sequential access. A

reuseable (direct access input) file will be repositioned to
the beginning of the file for subsequent sequential

retrieval. A nonreuseable (tape, direct access output) file
will be positioned after the last record previously
processed.

° Initialize and chain the External DSCT area.

The RELEASE function is called after the last access to a file in
order to:

e Free any dynamically obtained buffers and control blocks

e Update file status tables and perform necessary housekeeping
functions (unchain External DSCT area).

6-36

Chapter 6

File Handler Specifications

A special RELEASE function may be used after the above operation
has been performed to close all shared control blocks for a given file
if there is no currently outstanding operation being performed against
the file by the system.

EXTDSCT FHCW AREA KEY BLOCK-1ID
SELECT R R R --- ---
RELEASE R R --- --- ---
GET R R R IorU ---
PUT R R R U .-
READ R R R DI or U D
WRITE R R R DI or U D
RELEX R R --- --- ---
GETV R R R I E
PUTV R R R I E
_______________________________] e S
Symbol Indicates
R Required parameter
I Optional for ISAM or VSAM KSDS and RRDS files, otherwise
invalid
D Optional for Keyed BDAM file (extended search), required
for random BDAM (instead of key)
DI Required for Keyed BDAM and ISAM files, otherwise invalid
U Required for accessing a BSAM or QSAM file with
undefined record format (DCB=RECFM=U)--record length
E Required for address-accessed VSAM (RBA), instead of key
--- Invalid Parameter
Figure 6-2. File Handler Service Routine Parameter Summary

6-37

Chapter 6 File Handler Specifications

The GET function may be used to access the next sequential
logical record from a QSAM or ISAM data set. In the case of
application programs requiring QISAM retrieval logic, the GET function
is used either to obtain the next sequential record for processing, or
to locate a record by key and continue sequential processing with the
located record. The File Handler may implement QISAM logic through the
Basic Indexed Sequential Access Method (BISAM), transparent to the
application program.

The PUT function is used to write or rewrite a record or a
block. When creating a new QSAM data set, new records are written
using the PUT function. When updating an existing QSAM or (logical)
QISAM data set, the last record obtained by a GET function may be
rewritten by calling the PUT function as the next operation upon the
file.

The READ function 1is wused to access physical blocks located
within BSAM, BISAM, or BDAM data sets. For sequential data sets, each
request for a READ function will process a physical block of records,
which must be deblocked if necessary by additional programming. For
indexed sequential data sets, each request for a READ function will
locate (through an index search) the block containing the desired
record, but will read only the single record specified by the key. For
direct access data sets, each request for a READ function will process
a physical block indicated by relative block number (RBN), relative
track and record (TTR) or actual address (MBBCCHHR). In the case of
BDAM without keys, the requested block is retrieved. In the case of
BDAM with keys, the key search begins at the block specified,
continuing until the search is complete. (Use of the extended search
option is based upon DCB parameters including LIMCT.)

The WRITE function is used either to write the next sequential
block in a new output BSAM data set, or to update the last block or
record obtained by a READ function from a BSAM, BDAM or BISAM data
set. The WRITE function can be used to insert records to a BISAM data
set specified by key (position located through an index search). A
record to be rewritten must have been previously read; an inserted
record must not have been previously read. WRITE with key is the only
function which will add records to an indexed sequential data set.

The GETV and PUTV functions are used to access VSAM data sets,
requesting either sequential or direct access via key, relative byte
address, or relative record number. A keyed access call for direct
retrieval may provide either a generic (leading portion of a) key or a
full key, and may specify either a search for an equal (generic) key or
for the first greater-or-equal (generic) key. All retrieval calls are
processed assuming that no update 1is to be performed unless the caller
specifies otherwise. All calls allow for subsequent sequential access
(key/RBA/RRN parameters not passed). The caller may switch back and
forth from any access technique to another, provided VSAM rules are not
violated; for example, keyed request against an entry-sequenced data
set.

6-38

Chapter 6 File Handler Specifications

6.8 LOCATE FACILITY

An additional File Handler service routine, LOCATE, provides
access to internal DSCT information for Assembler Language programs
only. The LOCATE function is intended primarily for system use in
altering the normal processing of a file. LOCATE provides access to
data management control blocks used by the File Handler. A call to
LOCATE will return data set specifications, error indicators and
related information. This data, not available via other File Handler
calls, can then be examined and/or judiciously altered.

A parameter list of variable length (depending on the amount of
information required) is passed to LOCATE. The specific format is:

CALL LOCATE, (work-area,fhcw,dsctfld[,dcbfld,decbfld,iobfld]),VL, X
MF=(E,list)

Each parameter suffixed with "fld" must specify a fullword
field. The address of the requested control block will be returned in
each of these fields. The first three parameters are required; the
remaining three are optional.

The parameters passed to LOCATE are defined as follows:
e work-area-- pointer to a File Handler work area which may be:

-- A location containing a ddname. If dcbfld is specified,
a public DCB is to be supplied (that is, an opened DCB to
be shared by all users of this file is returned).

-- A File Handler work area (External DSCT) for a previously
selected file. If dcbfld is specified, a private DCB is
to be supplied (that is, the DCB returned is to be used
only for I/O operations referencing the specified work

area. The DCB will be closed when the work area is
RELEASEd.)
) fhecw-- the File Handler Control Word name. The completion

status, in character format, will be returned in the first
byte. Completion codes are:

-- C'0'-- control blocks located
-- C€'9'-- file not located or improper type (if VSAM, and
file could not be opened, byte 3 of FHCW contains
OPEN error code)
. dsctfld-- pointer to a location on a word boundary. The

address of the internal DSCT will be returned here. The
IXFDSCTA macro should be used to generate a Dsect.

6-39

Chapter 6

File Handler Specifications

dcbfld-- pointer to a location on a word boundary. The
address of an opened Data Control Block (DCB) will be
returned here (see work-area, above). If this parameter is

the last coded, the DCB will be one for sequential access
(GET/PUT). If additional parameter(s) follow, the DCB will
be one for basic access (READ/WRITE). The record length,
block size, and other data set characteristics are specified
in the DCB. (For details, see IBM System Control Blocks, and
macro instruction IHADCB.)

decbfld-- pointer to a location on a word boundary. Address
of a Data Event Control Block (DECB) for basic access will be
returned here. Contents of the DECB vary by access method.
For BDAM or BISAM, error status indicators are present in the
DECB. (See IBM System Control Blocks.) This pointer must be
hex zeros if file is not yet selected (address of ddname of
the file is supplied for work-area). Address of DECB will
not be returned in such a case.

iobfld-- pointer to a location on a word boundary. Address
of the last used Input/Output Block (IOB) will be returned
here. If no READ/WRITE operation has been performed, a zero
value is returned.

LOCATE for VSAM, with dcbfld and decbfld specified, returns an
opened ACB and a RPL address, respectively, even if the data set was

converted
returned

Pro
Control T

from ISAM. 1If decbfld not specified, only the ACB address is
if the file could be opened.

grams which must refer to fields within the internal Data Set
able may be coded as in this example:

L
USING

IXFDSCTA

CALL LOCATE, (work-area, fhcw,dsctfld),VL Locate DSCT Entry

register,dsctfld Load Entry Address
DSCT,register Make Fields Addressable

Define DSCT Fields

6-40

Chapter 6 File Handler Specifications

Some of the fields which may be useful are:

DSCTDCBQ pointer to QSAM or QISAM DCB

DSCTDCBS pointer to BSAM or BISAM DCB

DSCTDCBD pointer to BDAM DCB

DSCTDECB pointer to DECB for BSAM, BISAM or BDAM
DSCTACB pointer to VSAM ACB

DSCTRPL pointer to VSAM RPL

Each of the above fields contains a significant value only if the high
order bit of the word is 1 (use TM field,X'80').

6.9 FILE HANDLER OPTIONS

A number of File Handler options may be specified to further
customize performance for an installation’s needs. These options are
specified via JCL, tables or conditional assembly of the File Handler.

6.9.1 Exclusive Control Time-Out

This option within the File Handler specifies a maximum time
limit that a particular record or block may be held in exclusive
control by a particular message processing thread. This time wvalue
represents the actual duration of message processing time between a
request for exclusive control and the subsequent release of exclusive
control by file wupdate, or access to the same External DSCT
representing a message thread’'s access to a file. This value is a
constant defined within the member IXFHNDOl. The standard setting
represents two minutes for exclusive control at the physical block
level, ten minutes for exclusive control at the data set 1level. An
Intercomm System Engineer should be consulted to adjust this wvalue.
This feature does not apply to VSAM files.

6.9.2 Conditional Assembly of the File Handler

Several File Handler options are specified by global settings and
subsequent conditional assembly of File Handler modules. The globals

are defined in the member INTGLOBE and specified in the member
SETGLOBE.

6-41

Chapter 6 File Handler Specifications

The following members must be reassembled and linked:
IXFHNDOO, IXFHNDO1

If the &VSAM or &VSISAM globals are set to 1, the modules must be
reassembled whenever a mnew version of VSAM 1is installed (setting
&VSISAM to 1 1internally forces &VSAM to 1). The globals are
illustrated below.

Global Default
Definition File Handler Setting
(INTGLOBE) Function (SETGLOBE)
&ISAM Allow ISAM access SETB 1
&VSAM Allow VSAM access SETB 1
&VSISAM Allow VSAM/ISAM compatability SETB 1
&IAM Allow IAM file access SETB O

6.9.3 Subtasked GETs

The File Handler has a generalized subtasking facility to allow
all GETs (both QSAM and QISAM) to be overlapped with other Intercomm
processing. The reason for the facility is that the GET macro does not
return control to a task, when it is issued to retrieve a record, until
the record is obtained. Without subtasked GETs, the File Handler, and
therefore Intercomm, would go into a wait state whenever a GET was
issued. Using a subtask to perform the GET allows Intercomm to
continue processing while only the subtask remains in the wait state.
The module ICOMTASK must be included in the linkedit.

At startup a user-specified number of generalized subtasks must
be created, which will issue the GETs, when called upon to do so by the
main Intercomm task. The user specifies the number of general subtasks
to be created in the TASKNUM parameter of the SPALIST macro.

Each subtask executes GETs serially. Therefore, with only one
subtask, all GETs will be overlapped with other processing, but not
with each other. Specifying a larger number of subtasks allows the

GETs themselves to be executed concurrently.

File Handler closedown (IXFMONQO9) detaches all the subtasks.

6-42

Chapter 6 File Handler Specifications

6.9.4 IXFDSCTA Options

The four bytes beginning at displacement 4 from the start
(header) of the IXFDSCTA Csect are the "options" bytes for the File
Handler, and can be coded to give the various options listed in Figure
6-3 either by the appropriate hex digits coded in the OPTIONS parameter
in the IXFDSCTA macro, or can be patched into the Intercomm load module

at execution time (Csect name: IXFDSCTA, displacements: 4, 5, 6
and 7).
Options Code
Do not overlap BISAM (single-thread) XX 40 XX XX
Allow unit record devices in DSCT XX XX XX 80
Disable automatic initialization XX XX XX 01
GET: Time-slice option XX XX 80 XX
Single-thread PS READs XX 80 XX XX
BDAM: Prevent exclusive control XX 02 XX XX
BDAM: Force exclusive control XX XX 02 XX
BDAM: Single-thread nonexclusive READs XX 20 XX XX
BISAM: Prevent exclusive control XX 04 XX XX
BISAM: Force exclusive control XX XX 04 XX
BISAM: Bypass RE-READ option (exclusive control) XX 01 XX XX

Figure 6-3. IXFDSCTA Options

6.9.5 User-Specified DCBs

The File Handler provides the minimum necessary control blocks

and options for processing a file. Certain increased performance
processing options require that the wuser supply the data control
block. Such nonstandard options include resident master indexes, main

storage work areas for ISAM data sets, etc.
DCBs should be supplied to the File Handler before they are

required for I/0O operations. The wuser startup exit (USRSTRT1l) in
Intercomm is a convenient point at which to supply DCBs.

6-43

Chapter 6 File Handler Specifications

The user routine must be written in Assembler Language and use
standard linkage conventions.

To supply a DCB to the File Handler, first call the LOCATE
function. This will store the address of the internal Data Set Control
Table (DSCT) entry for the requested ddname in a user-supplied field:

CALL LOCATE, (ddname, fhcw,dsctfld) ,VL,MF=(E,list)

The return status (first byte of fhcw) from LOCATE must be tested
before proceeding. If the code is nonzero, the named file is not
available for accessing; no DCB can be supplied.

The following statement must precede the END statement in the
user’s module:

IXFDSCTA

This macro will generate a Dsect (labeled DSCT) in the assembled
routine for the internal DSCT entry for the requested file.

If the file is available, dynamic main storage should next be
acquired (STORAGE macro with SYS=YES parameter coded). The number of
bytes obtained should be the length of the user-supplied DCB. The user
DCB can then be constructed in this dynamic area. Or, if constructed
elsewhere, the DCB can now be moved to the area. Unused bytes at the
beginning of the DCB must be copied into the dynamic area. The symbol
naming the DCB macro instruction must correspond to the first byte of
the area. The DCB need not be opened; however, an OPEN macro can be
issued if desired.

Having created a DCB in dynamic storage, load the DSCT address
returned by LOCATE into a register. The statement:

USING DSCT,register
should be in effect at this point. The proper DSCT field to contain
the address of the created DCB can now be addressed; this field will be
one of the following:)
° DSCTDCBQ for a QSAM or QISAM DCB
° DSCTDCBS for a BSAM or BISAM DCB
° DSCTDCBD for a BDAM DCB
Bit zero of the field DSCTDCBx should now be tested:
™ DSCTDCBx,X' 80’
If the bit is on, a DCB already exists; no new DCB can be
supplied. If the bit is off, place the address of the user DCB in the

field DSCTDCBx. Next, move (MVI) X’'80’ into the first byte of
DSCTDCBx.

6-44

Chapter 6 File Handler Specifications

The File Handler will now use the supplied DCB for subsequent I/0
operations (by all program threads referencing the file). Use will
continue until closing of the data set 1is executed explicitly.
(Closing of the data set would be requested by a RELEASE with the close
option.) Upon closing:

o The supplied DCB will be closed.

e¢ The main storage area occupied by the wuser DCB will be
freed. (Storage freed will correspond in 1length to the
standard DCB for the particular access method.)

A new DCB must be supplied if subsequent processing is desired.

Figure 6-4 illustrates a possible user-coded routine to supply a
user DCB to the File Handler.

TITLE 'USER SUPPLIED BISAM DCB TO FILE HANDLER'
USRCSECT CSECT
CALL LOCATE, (MYDCB+40,STAT,ADDRDSCT) , VL
CLI STAT,C'0’
BNE NODDNAME ERROR. FILE NOT AVAILABLE
L 2, ADDRDSCT
USING DSCT,2
™ DSCTDCBS,X' 80"
BO DCBINUSE ERROR. DCB ALREADY IN USE
LA 0,DCBLEN
STORAGE LEN=(0),SYS=YES. ..
MVC 0(DCBLEN, 1) ,MYDCB
ST 1,DSCTDCBS
MVI DSCTDCBS,X' 80’
MYDCB DCB DSORG=IS,MACRF=(RUS,WUA) , DDNAME=MYDD, . .
DCBLEN EQU *-MYDCB
ADDRDSCT DC F'0’
STAT DC cL4’ !
IXFDSCTA
END

Figure 6-4. Sample User-Supplied DCB

6-45

Chapter 6 File Handler Specifications

6.10 FILE HANDLER STATISTICS REPORT

The optional program IXFRPTOl, when included in the resident
Intercomm linkedit, produces statistical reports of File Handler
usage. Reports on all files accessed are periodically written to
SYSPRINT. Data for these reports is maintained in the internal DSCT
and optionally on the disk data set STATFILE. The printed figures
reflect cumulative file activity; that 1is, total activity since
Intercomm startup or the last reinitialization of STATFILE (if
defined). A second entry point, IXFRPTIQ allows on-line inquiry via
the FHST command. To allow terminal commands, a SYCTTBL for a resident
subsystem must be defined in the SCT with entry point IXFRPTIQ, along
with the appropriate verb definition for FHST in BTVRBTB. In this
case, a terminal operator asks for statistics for a particular file or
all files; the requested information is returned to the terminal. See
System Control Commands.

The general layout of the File Handler Statistics Report is shown

in Figure 6-5. The leftmost column lists ddnames of all accessed files
in the system. The second column shows how many times each file has
been selected. Columns three through six show the number and type of

accesses to the file (less detail may be obtained; see below). At the
right hand side of the page, total accesses per file are shown.
AVERAGE shows the average number of accesses per SELECT. (For
SYSPRINT, which has no SELECTs, no average is calculated.) At the end,
a summary line showing total activity for all files is printed.

DATE 83.056 FILE HANDLER STATISTICS REPORT TIME 10:19:38.7 PAGE 1
DDNAME SELECT GET PUT READ WRITE TOTAL AVERAGE
INTERLOG 12 0 0 0 43 43 3.58
STSLOG 2 0 48 0 0 48 24.00
INTSTOR2 9 0 0 11 0 11 1.22
SYSPRINT 0 0 521 0 0 521

SMLOG 5 0 649 0 0 649 129.80
WAGEMSTR 14 0 0 41 27 68 4.86
STOKFILE 4 4 0 0 0 4 1.00
PARTFILE 6 0 0 6 0 6 1.00
PMIQUE 5 0 0 0 0 0 0.00
RCTO000 9 0 0 9 0 9 1.00
SUMMARY 66 4 1218 67 70 1359 20.59

Figure 6-5. File Handler Statistics Report

A terminal request for statistics for a particular file produces one
line of output formatted exactly as a body line in the SYSPRINT report.

6-46

J

Chapter 6 File Handler Specifications

The number of statistics options is globally specified via the
&FHSTATS global in SETGLOBE (released as 5 for selects, gets, puts,
reads and writes). A corresponding number of fullword buckets are
generated at the end of each internal DSCT entry for each file accessed
via the File Handler.

If less detailed statistics options are desired, change the
&FHSTATS global value to 3 (selects, inputs, outputs) or 2 (selects,
accesses) and reassemble and relinkedit the following modules (if
used):

CLOSDWN3 IXFDSCTn IXFRPTO1

DDQMOD IXFDYALC IXFRVRSE

DDQSTART IXFDYNAM IXFSNAPL

INTSECOO0 IXFFAR IXFVERF1

INTSTORF . IXFHNDOO IXFVSCRS

IXFB37 IXFHNDO1 LOGPUT

IXFCHKPT IXFLOG PMISNAP1

IXFCREAT IXFQISAM PMITEST

IXFCTRL RMPURGE

IXFRPTO1 is initially dispatched by startup. Thereafter it

dispatches itself on the time interval specified by the global &RPTINTV
in the member SETGLOBE. As released, the report is produced at ten
minute intervals. If this value is changed, reassemble STARTUP3. The
time interval for dispatching IXFRPTOl can be changed during Intercomm
execution. This is accomplished by issuing a DISPATCH macro
instruction for IXFRPTO1. The address of the new time interval (in
timer units) is passed in register 1. The IXFRPTOl rescheduling cycle
can be halted by dispatching IXFRPTOl on a time interval of 0. The
dispatching of IXFRPTOl is stopped by closedown. A final File Handler
Statistics Report is produced, but IXFRPTOl is not rescheduled. As
written, IXFRPTOl supports up to 1596 files (internal DSCT table
entries). If more are defined in the Intercomm JCL, change the value
coded for FLAGTBL in the save/work area to the number of files divided
by 8 (each bit represents one file).

At each execution of IXFRPTOl, statistics are retrieved from
internal File Handler tables. If defined, the STATFILE disk data set

is also updated. Updating consists of summing figures from the
internal tables with those already accumulated on STATFILE. The
internal tables are then zeroed out. A report reflecting the total

figures on STATFILE is then written to SYSPRINT. The number of lines
per print page may be modified by changing the global setting for
&PAGELIN in IXFRPTOl (default=55).

When entered via an inquiry from a terminal, IXFRPTOl also
retrieves required data from STATFILE, if defined. Statistics in
internal tables are added in and the on-line report is sent to the
requesting terminal. STATFILE is not updated, nor are the internal
tables zeroed. Statistics for all files, even if never selected, are
displayed when an FHST command without a ddname is entered. The number
of lines per display (including headers) depends on the terminal line
length (minimum=80) and buffer size (defaults to 24).

6-47

Chapter 6 File Handler Specifications

6.10.1 File Handler LSR Statistics

In addition to the normal File Handler statistics, when a Local
Shared Resources pool is present, statistics on all of the buffer pools
in the resource pool may be gathered. Since the buffer pools are
shared among data sets, the statistics are reported on a pool rather
than data set basis. Information about the individual data sets using
the pool is displayed as usual in the data set section. To implement
LSR statistics, the &FHSTATS global must be set to 5 and the modules
listed in the previous section reassembled if &FHSTATS was less than 5.

The following statistics are displayed for Local Shared Resources
(see illustration):

BFR SIZE -- one line of statistics for each pool size in the
resource pool.

REQ REJ -- number of requests (requiring a given size
buffer) which were rejected because there were
not enough buffers of that size to satisfy it
(the amount reflects all retries of rejected
requests).

BFRFND -- number of requests satisfied by data found in a
buffer of that pool size (no I/0 needed to
satisfy request).

BUFRDS -- number of reads to bring data into a buffer of
that pool size.

STRNO EX -- number of requests that were rejected because no
placeholders were available; reflects all retries
of rejected requests (kept for resource pool as a
whole).

STRMAX -- maximum number of placeholders in use at any one
time (accumulated for the whole resource pool,
not on a buffer pool size basis, because
placeholders are assigned to the resource pool as
a whole).

Note that, when LSR is used, VSAM attempts to use buffers that
are the size of a data set’s control interval(s). If no buffer pools
of that size exist, VSAM uses the next larger size. Thus if X and Y
are pool buffer sizes and Z is a control interval size such that Z is
larger than X but smaller than Y, buffers for control interval size Z
will be taken out of the pool of size Y buffers. When the "request
rejected" statistics are displayed, they will show the number of
requests rejected for each control interval size rather than buffer
size. One should be aware, however, that the buffer pool that had no
buffers available for the request was that of the next larger size.

6-48

C

Chapter 6 File Handler Specifications

Also, when a key-sequenced data set is used with LSR, both the
data component and the index component share buffers from the LSR
pool. If the data and index component have different CI sizes, both
buffer sizes must be available in the pool (with the exact sizes or the
next higher size) and buffers must be free in the pool for the request
to be satisfied. Thus, a request may be rejected if either buffer pool

size is temporarily out of buffers. VSAM gives no indication as to
which buffer size was unavailable, so when a KSDS request is rejected,
this is reflected in the statistics under both CI sizes. This fact

must be considered when making adjustments to the LSR pool based on the
File Handler statistics.

DATE 88.056 VSAM LSR POOL STATISTICS TIME 10:19:38.7 PAGE 2
BFR SIZE REQ REJ BFRFND BUFRDS

512
1024
1536
2048
2560
3072
3584
4096
4608
5120
5632
6144
6656
7168
7680
8192

10240
12288
14336
16384
18432
20480
22528
24576
26624
28672
30720
32768

[eNeoReoNeoNoNoNloNoNoNoNoNoNoNeoNoloNeoNoloNoNolojooNoNoNo N ae)
[eNoNoReoNoNoNoNoNeoNolNoloNoNoNoNe NoNolololoNoNo oo NN

2]
=]
E [eXeoNoNeoNoNoNoNeocNoNoltNoNoNoNoNoNoNoNolofoo oo loleR o

STRNO EX

o
[

Note that the new buffer (Control Interval) sizes available under
XA 2.2.0, DFP V2.3 are also reported. A LSR statistics display may be
requested at a terminal via the FHST command.

6-49

Chapter 6 File Handler Specifications

6.10.2 Creating the File Handler Statistics File (STATFILE)

STATFILE must contain a number of records at least one greater
than the maximum number of files in the system. The STATFILE record
consists of an eight-byte ddname and four bytes for each statistic.
Totals on STATFILE are cumulative and may represent daily or weekly
totals, etc., that 1is, cumulative for several Intercomm jobs. A
schedule for reinitializing STATFILE should be established to meet the
needs of the particular Intercomm installation.

To create STATFILE, use the CREATEGF utility (see Chapter 12),
for example:

//stepname EXEC PGM=CREATEGF

//STEPLIB DD DSN=INT.MODREL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//STATFILE DD DISP=(NEW,KEEP),DSN=STATFILE, SPACE=(TRK, (2,1)),
// UNIT=unit,VOL=SER=volume,

// DCB=(DSORG=DA,BLKSIZE=560)

//SYSIN DD *

F STATFILE XX

//

where xxX 1s the number of blocks to create based on the wvalue of n
below.

At Intercomm execution time, the following DD statement must be
present for STATFILE:

//STATFILE DD DSN=STATFILE,DISP=(OLD,KEEP),
// VOL=SER=volume,UNIT=unit,
// DCB=(DSORG=PS,BLKSIZE=560, LRECL=n,RECFM=FB)

where n is:

16 -- 1if only collecting SELECT and ACCESS statistics, (&FHSTATS
set to 2).
20 -- if SELECT, INPUT, and OUTPUT statistics are to be

collected (&FHSTATS set to 3).

28 -- if SELECT, GET, PUT, READ, and WRITE statistics are to be
collected (&FHSTATS set to 5).

6-50

J

Chapter 6 File Handler Specifications

The SYSPRINT data set must be specified in the Intercomm
execution JCL as follows:

//SYSPRINT DD SYSOUT=A,
// DCB=(DSORG=PS, BLKSIZE=141,LRECL=137 ,RECFM=VA)

The SYSPRINT file should be blocked for optimum throughput since PUTs
to the file are not overlapped (see Chapter 4).

6.11 USING THE FILE HANDLER SEPARATELY FROM INTERCOMM

The File Handler may be used independently of any other Intercomm
components, if desired, by linkediting the modules BATCHPAK, IXFHNDOO,
and IXFHNDOl (preceded by IXFDSCTn, if a separate Internal DSCT table
is needed) with any application program. File Handler interface coding
is exactly the same as used in on-line programs; the same entry points
(including SELECT and RELEASE) are called, and the same parameters are
used. Unresolved external references, beginning with 'IJK’ (Dispatcher
entry points), will be bypassed during execution. However, if a VSAM
or x37 abend protected file is being processed, IJKDSPOl must also be
included.

When the File Handler is used off-line by a processing program,
that is, wused separately from Intercomm, the initialization routine
(IXFMONOO) may be called prior to any File Handler processing; however,
this module will be automatically called, if necessary, when the File
Handler is first used in a job step. If errors occur during
initialization, IXFMONOO returns to the operating system with a return
code of 16. The File Handler will not use any "unresolved" entry
points to other Intercomm modules if these are not available during
execution. At the end of processing, the batch program should issue a
second call to RELEASE with the close option, to close the file
(required for VSAM).

FAR processing will also be performed if IXFFAR is included in
the linkedit, along with a DD statement for ICOMIN (and FAR statements)
in the execution JCL. For VSAM file processing, if any of the
following FAR options are used, additional 1linkedit considerations
apply:

e LSR - include an INTSPA (SPALIST macro assembly with
EXTONLY=BOTH and with LSR pool definitions) before the
include statement for BATCHPAK

° VSAMCRS - include KEYFLIP (before the include for IJKDSPO1l),
PMINQDEQ, IXFVSCRS, and then INTSPA before the include
statement for BATCHPAK; INTSPA must contain a SPALIST macro
assembled with a SETGLOBE in which the Intercomm Interregion
SVC was specified (&MRSVC not 13).

6-51

Chapter 6 File Handler Specifications

6.11.1 Using the File Handler in LINKPACK for Batch Programs

To interface a batch program to the File Handler in the Intercomm
Link Pack Module in the Link Pack Area, the following steps are
necessary:
1. Prepare the Link Pack Facility as described in Chapter 7.
2. Write an interface routine (INTERFAC) to:
e CALL MULTISPA
e CALL LPSTART
e CALL BATCHPGM
where BATCHPGM is the entry point of the user batch program.
3. Include in the linkedit
e INCLUDE SYSLIB(MULTISPA)
e INCLUDE SYSLIB(LPSTART)
e INCLUDE SYSLIB(LPINTFC)
e INCLUDE SYSLIB(IJKDSPO1) (if VSAM file accessed)
e INCLUDE SYSLIB(IXFDSCT1)
e INCLUDE SYSLIB(IXFHNDOO)
° INCLUDE SYSLIB(IXFFAR) (if FAR options used)
e INCLUDE SYSLIB(BATCHPAK)
® INCLUDE SYSLIB(BATCHPGM) User Batch Program
° INCLUDE SYSLIB(INTERFAC) User Interface Routine

° ENTRY INTERFAC

6-52

C

Chapter 7

EXECUTION OF INTERCOMM

7.1 INTRODUCTION

———t e e e s N

Execution of Intercomm entails a linkedit of all resident
user-coded and Intercomm-supplied routines and tables, and resident or
overlay subsystems, to produce an executable load module, followed by
execution in Test Mode, or in 1live mode with actual or simulated
terminals. The mode of execution is controlled by the EXEC statement
PARM data and/or system logic determining whether or not specific
system routines were included in the load module.

The Intercomm System Manager(s) may provide as many as four
different linkedit versions of Intercomm for use at an installation:

1. A production system for actual day-to-day operation
2. A terminal testing system, including user subsystems being
tested via operator entry at terminals, and/or simulated

terminal input

3. A Test Mode system, including production subsystems for
volume testing

4. A minimal Test Mode system, including only system programs
and service routines required for testing one subsystem.

This chapter documents the following topics:
o' Generating the linkedit control statements
e The Intercomm linkedit

. Execution JCL

° System startup

° System closedown

° Live operation

° Intercomm quiesce facility

e MVS operation and installation

e XA installation and recommendations

) Interregion SVC installation

° Link Pack Feature

7-1

Chapter 7 Execution of Intercomm

7.2 GENERATING LINKEDIT CONTROL STATEMENTS

The required 1linkage editor control statements to produce an
Intercomm load module for execution may be generated initially via the
ICOMLINK macro (described in Basic System Macros). Based upon global
settings in the SETENV and SETGLOBE members and user-specified
parameters or default values for ICOMLINK, assembly of ICOMLINK
produces (punches) INCLUDE statements for the required Intercomm
routines, and OVERLAY and INSERT statements for their overlay structure
(if desired). The required entry point to the Intercomm load module is
PMISTUP. Recommended JCL to produce the linkedit deck is as follows:

// EXEC ASMPC,Q=LIB,DECK=DECK

//ASM.SYSIN DD *

* GENERATE LINK EDIT DECK
ICOMLINK user-defined-parameters....
END

/*

//SYSPUNCH DD DSN=INT.SYMINCL(link-name),DISP=SHR

NOTE: the output from SYSPUNCH can be a member of a PDS such as
SYMINCL (see Chapter 2), a TSO data set, etc., as desired.

INCLUDE statements must then be added for application subsystems
and subroutines (except those dynamically loaded). In addition,
appropriate OVERLAY and INSERT statements for some of these modules may
be defined if an overlay structure is used. Overlay areas for
application subsystems and subroutines are described in Chapter 3 of
this manual. Also, for executing under MVS, ORDER statements may be
placed at the beginning of the linkedit as described later.

7.3 THE INTERCOMM LINKEDIT

The actual 1linkedit may be accomplished via the Intercomm
procedure IKEDP. The SYSLIB definition for this procedure references
only the Intercomm 1libraries; the user must provide additional DD
statements to reference system libraries, such as SYS1.TELCMLIB
(teleprocessing access method modules), SYS1.COBLIB (COBOL modules),
and user libraries for application subsystems, etc., as appropriate.
An example of the use of the LKEDP procedure is shown in Figure 7-1.
The SYSIN data set can be a PDS member (from SYMINCL) or TSO (CMS) data
set.

The 1linkedit error messages should be examined for wunresolved

references. Many optional features are implemented by Intercomm
conditional calls; in this case unresolved references present no
problem. The Intercomm S.E.0.D. may be consulted to verify the

critical nature of unresolved references.

7-2

Chapter 7 Execution of Intercomm

//LINK EXEC LKEDP,Q=xxx, LMOD=ICOMEXEC
//* THE FOLLOWING SUBSTITUTION JCL ADDS THE COBOL
//%* LIBRARY TO THE CONCATENATION SEQUENCE OF INT.MOD&Q,
//* INT.MODUSR, INT .MODLIB, INT .MODREL:
//LKED.SYSLIB DD
// DD
// DD
// DD

DD DSN=SYS1.COBLIB,DISP=SHR
//LKED.SYSIN DD *

INCLUDE

LINKEDIT DECK PRODUCED
. BY ICOMLINK MACRO
INCLUDE
PLUS REQUIRED INCLUDES
FOR USER MODULES AND TABLES

/*

Figure 7-1. Using LKEDP Procedure to Generate Intercomm Load Module

7.3.1 Linkage Editor External Symbol Table Overflow

If the following error message:
IEW0254 ERROR - TABLE OVERFLOW--TOO MANY EXTERNAL SYMBOLS IN ESD

occurs during linkage editor execution, override the linkage editor
SIZE parameter in the following manner:

//LINK EXEC LKEDP,Q=xxx, LMOD=ICOMEXEC,
// PARM . LKED='SIZE=(512K,100K) ,XREF,LIST,LET,NCAL'

Refer to IBM linkage editor documentation for appropriate SIZE values
to use. Add OVLY to the parms if an overlay structure is desired. Do
not code either REUS or RENT. Also increase the REGION size if
necessary.

7.3.2 Linkage Editor Parameters

There are two 1linkage editor parameters which influence the
number of overlay FETCH operations and, in turn, the response time for
an overlay-loaded program.

If the Downward Compatible (DC) option is specified when
linkediting, the maximum block size created on the load library will be
1024 bytes. This means that for a 10K overlay program to be loaded, at

least 10 FETCH operations will be executed. This will considerably
slow the response time of the program because of the extra I/0
involved. The solution is to ensure that there is no DC parameter for

the linkedit step (see SIZE override example, above).
7-3

Chapter 7) Execution of Intercomm

In the SIZE parameter, the maximum record size of a disk unit J
will be equal to one half of the value of the second parameter (yyy) of
SIZE=(xxx,yyy) . If the text record size is too small, there will be
additional FETCH operations, again slowing response time. Therefore,

specify twice the maximum text record size (for 3330s, yyy should equal
26K; for 3350s, yyy should equal 40K; for 3380s, yyy should equal 80K).

7.4 EXECUTION JCL

The execute (EXEC) statement is the first statement of each job
step and contains the load module name and data that pertains to the
job step. The principal function of the Intercomm execute statement is
to identify the load module to be executed and define Intercomm’s mode
of execution. The execute statement is coded as follows:

//stepname EXEC PGM=load-module-name,
// PARM='mode-of-execution[,ddname=R,ddname=R,.....
/ , DB=name
// ,APPLID=name , PASSWD=code]’
load-module-name
indicates the name of the Intercomm load module to be executed. ‘-;>
mode-of-execution
describes the function to be initiated. The execution mode
parameter may be omitted in an on-line execution using Automated
Restart (see Chapter 9). Acronyms that define the mode of

execution and their functions are:

Acronym Execution Mode Options

STARTUP | Normal startup with terminals

RESTART | Restart mode of startup, including processing of log for
message restart

RESTRNL | Restart without log; will call RESTORE if checkpoint is
used (see Chapter 9)

TESTRNL | Same as RESTRNL, except in Test Mode

7-4

Chapter 7 Execution of Intercomm

NOTE: To preserve semipermanent DDQs (especially if spooled
printer output created via MMU) and/or semipermanent
Store/Fetch strings, Intercomm must be brought up in
restart mode; if message restart is not used, code

RESTRNL.
ddname=R
specifies the ddnames of those data sets that are to be
"readonly." Each ddname is coded followed by the equal sign and

an R. FAR statements may be used instead of coding this parameter
(see Chapter 6).

DB=name
specifies, for TOTAL users, the DBMOD name to be used for TOTAL
file processing at startup. This value overrides the &TOTDESC
global definition in SETGLOBE and/or the value coded on the
TOTFLGEN macro. (TOTAL support 1is described in Data Base
Management System Users Guide.)

APPLID=name
optionally specifies the VTAM APPLID name to be used for this
execution of Intercomm when the ACB is opened to establish
Intercomm as a VTAM application. This name is substituted into
(overrides) the name field in the VCT within the Front End Network
Table. See SNA Terminal Support Guide.

PASSWD=code
optionally specifies the password code for opening the VTAM ACB to
establish Intercomm as a VTAM application (see APPLID parameter
above) . If defined, this value overrides that coded for the
PASSWD parameter of the VCT macro.

7.4.1 Global WTO and MCS Routing

Users can force and/or suppress routing of system messages issued
in Intercomm via the PMIWTO and PMIWTOR macros. The SPALIST macro has
four parameters for this purpose:

. FMCSWTO
. SMCSWTO
. FPMIWTO
. SPMIWTO

The SPALIST parameters specify, for both MCS (CPU console) and
Intercomm routing, the options to be suppressed, and those to be forced.
This facility could be used, for example, to prevent any system messages
(except WTORs) from being sent to the CPU console, or to force all
messages to SYSPRINT. See Basic System Macros for coding
specifications. See also the WTOPFX parameter of the SPALIST macro for
message prefix-ID override feature, and Messages and Codes for message
syntax.

7-5

Chapter 7 Execution of Intercomm

7.4.2 STEPLIB or JOBLIB Requirements

Execution JCL must reference the following libraries as STEPLIB
(IAMLIB if the IAM access method is used in the region) or JOBLIB data
sets:

e The 1library containing dynamically loaded subsystems and
subroutines.

e The library containing compiler-oriented dynamically loaded
service routines, such as SYS1.COBLIB. Frequently used
routines should be made resident whenever possible.

e The library containing the Intercomm load module.

e The 1library containing user versions of Intercomm tables
which may be loaded at startup.

e MODREL--required if dynamic 1linkedit is wused, and the
ICOMCESD and ICOMVCON modules are not contained on one of the
above-mentioned libraries.

e The 1library containing the ESS (Extended Security System)
load module INTSECO02 if it is linked with the SECUEXIT user
exit (or MODREL if INTSECO02 used alone).

Concatenation sequence is critical to performance. The order of
the DD statements is installation-dependent, based upon frequency of
access. MODREL is infrequently referenced, and should be among the
last in the series. If an overlay structure is used, the 1library
containing the overlay 1loaded routines should be first in the
concatenation stream.

7.4.3 DD Statement Requirements

The execution JCL contains Data Definition (DD) statements
describing all data sets accessed by Intercomm. The following DD
statement names are required:

[INTERLOG

The system log data set (tape or disk; see Chapter 9).

° SMLOG

Resource Management statistics reports and thread dumps

Chapter 7

Execution of Intercomm

STS10G

System Tuning Statistics reports

SYSPRINT

For IJKTRACE output, statistics reports, system messages
SNAPDD

For snap output

SYSUDUMP

For abend output if SNAPDD unusable

RCT000

Output Format Table disk-resident Entries

Additionally, for subsystem and terminal queues:

PMIQUE

Intercomm subsystem disk queues (Output, Change/Display,
etc.) as defined in the SYCTTBLs at system installation time

BTAM

The Intercomm BTAM/TCAM terminal disk queues defined via
SYCTTBLs in the BTAMSCTS module, or via BTERM macros in the
network table, at Front End installation time

VTAMQ

VTAM terminal disk queues defined wvia LUNIT/LCOMP macros for
a VTAM Front End

ddnames

Additional installation-dependent disk queue data sets

Additionally, for Test Mode execution:

SYSSNAP
Test Mode input messages (snaps with ID=15)
SYSSNAP2

Test Mode output messages (snaps with ID=20)

7-7

Chapter 7 Execution of Intercomm

Additional Intercomm data sets that may be required are described
in this manual with each particular feature; that is, FAR Parameters
Input File, File Handler Statistics File, Checkpoint File, Terminal
Simulator Input, Dynamic Linkedit, etc., and in the special feature
manuals.

NOTE: All Intercomm and user data sets accessed by the File
Handler must include the DCB parameter DSORG (or AMP, if
VSAM) on the DD statement and, except for sequential
output data sets, must be DISP=0OLD or SHR. The Intercomm
utility CREATEGF may be used to format BDAM data sets
such as disk queues. (See Chapter 12, "Off-Line
Utilities".)

7.5 SYSTEM STARTUP

System startup is accomplished by the module STARTUP3, consisting
of a resident Csect given control by MVS, and a second Csect (which may
be 1linked in an Overlay) performing the main system initialization
functions. The resident module, PMISTUP, accomplishes MVS linkage
conventions, calls POOLSTRT (if in link) to load Intercomm pools (see
Chapter 5), and 1issues the ESTAE macro if the module STAEEXIT is
included in the Intercomm linkedit (see Chapter 8).

The second Csect, STUOVLY, performs analysis of the mode of
execution and, based on the presence of system modules, performs
initialization functions in the following order:

e set PMIWTO/R messages global Job/Region Identifier

e LPSTART - resolve VCONs from Link Pack Module

° SSINIT - START/STOP command function initialization

e FASTSNAP initialization

-- 1if MRSVC specified and FASTSNAP DD statement present
-- if DCB opened successfully-set on SEXFSNAP

e Configuration initialization

CPU Model SEXMODEL
Operating System SEXBITS1
Release Number SEXVERSN
Region Boundaries SEXPPBEG, SEXPPEND
Link Pack Area SEXLPBEG, SEXLPEND

° set SPINOFF snap SYSOUT spooling if FREE=CLOSE specified
° open SNAPDD data set (PMISNAP DCB)

' STOSTART - start Store/Fetch initialization

7-8

Chapter 7

Execution of Intercomm

attach ICOMDYNL - Dynamic Linkedit initialization

IXFMONOO - File Handler initialization
-- IXFFAR - FAR specifications processing

IJKCESD - initialize Csect/Entry table for debugging reports,
etc.

TASKSTRT - Generalized subtasking initialization

initialize log buffers (unless Satellite Region with single
region logging)

-- acquire storage for number/size buffers defined in SPA

-- SELECT per log buffer

PMIDATER -- set date in SPA

ILBOSTPO -- OS/VS (ANS) COBOL initialization

ASYNCH -- Attach overlay load subtask if present

ASYNCLDR -- Attach dynamic load subtask if present

determine mode (from EXEC PARM or AUTORSTU - Automated
Restart)
SPAMODE
Startup (0)
Restart 4)
Test (8)

determine restart (Live or Test) options

SYSEVENT macro - make Intercomm non-swappable (if MRSVC
specified)

VERBSTRT - dynamically load BTVRBTB, if not in linkedit
MRSTART - initialize Multiregion if applicable
CKLINK - check linkedit structure corresponds to SCT
USERINIT - user exit for preliminary startup processing
SCT initialization - all SYCTTBLs

SELECT disk queue; if queue cannot be selected (opened),

flag SCT entry to only use core queue
Initialize auxiliary SCT - point to primary

CALCRBN - allocate RBNs for Front End and SCT disk queues

if SAM modules in link, check SAMTABLE included

7-9

Chapter 7

Execution of Intercomm

PMIPRIME - If Test Mode, prime input data buffers

RESTORE - if no restart log; initialize checkpoint file, if
checkpointing desired

DDQSTART - initialize Dynamic Data Queuing facility

LOGPROC - process restart log: checkpoint, restart, file
recovery, data base recovery, serial restart (if used)

INTERLOG initialization (unless Satellite Region with single
region logging)

-- set log buffer count to NCP (if NCP lower)

-- free 0S buffers

set flag to allow WTO message routing override

TRIGGER - Time Zone Table processing

dispatch CHECKPT - checkpoint processing

DBSTART - data base initialization

dispatch LOGINPUT - extra log input - threshold testing

dispatch IXFRPTOl - File Handler Statistics reporting

BTAMSTRT - BTAM/GFE/Extented TCAM initialization
-- Front End Table Verification (BTVERIFY, TCAMVER)

VTSTART - VTAM initialization

PMICKFTB - adjust block size, try selecting each file in
PMIFILET

BLDL for all dynamically loadable S/S - move resident BLDL to
SCT extension - validate load module size against SEXSPMAX
(SPALIST--MAXLOAD parameter)

dispatch DELOAD - dynamic subsystem loading processor

PMIDEBUG - debugging WTOR (see Messages and Codes)

dispatch PMIHARDW - allow Intercomm quiesce (adjust timers)

wait for Dynamic Linkedit to end, detach subtask

7-10

Chapter 7

Execution of Intercomm

check dynamic subroutines

-- if in link, flag as permanently resident

-- if to be permanently resident, load and flag as resident.
STOSTART - wait for Store/Fetch initialization to complete
MMUSTART - initialize Message Mapping Utilities

USRSTART - user exit - 1issue startup broadcast messages or
ESS sign-on messages (call USRSTRT1 from USRSTART)

INTSTS - start System Tuning Statistics reporting

dispatch Subsystem Controller for all resident and
dynamically loadable SCTs and for all SCTs in first overlay
or VS Execution group (if used)

dispatch TRANGEN - Model System Generator activity

issue startup complete message with latest SM level, SPA
address

issue SPIE (ESPIE if XA) wusing SEXSPICA ((1,13),15) if
SPIEEXIT in linkedit (see Chapter 8)

dispatch LOWCORE - (core flush routine when cushion released
condition) - wait on SEXLOCOR ECB

indicate startup complete - post SEXSTUPE for VTAM (and
BTAM/TCAM BLINEs with WAIT=YES) - set SEXSTRUP in SEXSWTCH

post Multiregion active, if used
IJKTLOOP - closed loop detection routine initialization

dispatch exit to the Dispatcher.

At completion of system startup, both the Back End and Front End
(if required) have created tasks on the Dispatcher queues to perpetuate
their operation. Control 1is then transferred to the Dispatcher to
continue execution and manage the Intercomm multithreading environment.

7-11

Chapter 7 Execution of Intercomm

7.5.1 Preliminary Startup User Exit--USERINIT

Early in startup processing, the wuser exit USERINIT is
conditionally called with the address of the SPA in register 1. The
exit must save and restore the caller’'s registers. Because many system
facilities are not yet initialized, the user must be careful of trying
to use Intercomm facilities. However, the exit could be used to
initialize wuser statistics processing, or check data base or file
availability, etc. See the sequence of startup processing described
above for the state of the system when the exit is called. The exit
called at the end of startup, USRSTRT1 described below, provides a
better point for user system initialization.

7.5.2 Startup User Exits--USRSTART/USRSTRT1

A conditional call (CALLIF) is made to the user exit USRSTART
prior to completion of system startup and after initialization of the
Front End, File Handler, etc. If included in the load module, this
routine is given control with register 1 containing the address of the
execution parameter 1list. A member USRSTART is included with the
Intercomm release.

The USRSTART routine, as released, formats and sends a message to
the broadcast group name TOALL at startup time. The message states:

%% GOOD MORNING *** INTERCOMM IS READY: MM-DD-YY HH.MM
The Output Format Table entry is RPT00045. MORNING will be

replaced by AFTERNOON or EVENING at the proper time of day. An entry
must be made in the Broadcast Table PMIBROAD (BROADCST Csect) for the

group name TOALL. This is provided in the released version of this
table. Add to it the names of all terminals to receive the startup
message.

If the Extended Security System (ESS) is in use, an internal
USRSTART routine generates sign-on prompt messages instead.

Additionally, USRSTART calls a routine named USRSTRT1 if it is
coded and included in the linkedit (also called by ESS). USRSTRT1 must
be coded in reentrant Assembler Language and use standard linkage
conventions. At entry to USRSTRT1l, register 1 points to the address of
the MVS formatted PARM values coded on the EXEC JCL statement for
Intercomm execution, or to the Automated Restart modified parm values
if auto-restart used (see Chapter 9). No return code is expected.
This user exit may perform additional installation-dependent startup
processing, if necessary.

USRSTART is written in reentrant Assembler Language. The member
name, Csect name and load module name are all USRSTART. See also the
USRSTRT parameter of the ICOMLINK macro to provide/prevent automatic
linkedit inclusion.

7-12

Chapter 7 Execution of Intercomm

7.6 SYSTEM CLOSEDOWN

The closedown functions are performed upon receipt of the NRCD or
IMCD transactions (see System Control Commands) or, in the case of Test
Mode, when all subsystem queues are empty. Closedown in a Multiregion
Intercomm system is described in Multiregion Support Facility.

Closedown in live mode (or with simulated terminals) consists of
routing a message to the closedown subsystem, PMICLDWN, an entry in
CLOSDWN3. This subsystem will continue to scan the SCTs and requeue a
message for itself until all messages are processed (NRCD) or messages
in progress are complete (IMCD). A final checkpoint is taken and
control is passed to the Front End to ensure that all messages queued
for transmission to operational terminals are sent before closing the
line DCBs and/or VTAM ACB. The Intercomm log buffers are flushed and
the log is closed before issuing final System Tuning and File Handler
Statistics. The File Handler termination routine (IXFMONQ9) is then
called to close the files prior to job termination.

Closedown in Test Mode completes the Back End termination
functions described above because an NRCD command is internally
generated, or the job terminates with an Abend 999, indicating all
input messages have been processed. These options are controlled by
the TSTEND parameter on the SPALIST macro.

Return codes to the operating system (MVS) from Intercomm
closedown are 4 (NRCD issued) and 8 (IMCD issued).

7.6.1 Closedown Statistics

If System Tuning Statistics (see Chapter 8) is installed, two
additional reports are produced at closedown (and after an abend) for
all subsystems and for dynamically loadable user subroutines defined in
REENTSBS (see Chapter 3).

The subsystem report illustrated in Figure 7-2 is produced by the
module SSRPT and can be used to determine a subsystem’s future
residency based on message activity. The report is intended to provide
information similar to that dynamically displayable via the TALYSBE
command, including current values for dynamically modifiable subsystem
SCT fields such as MNCL, PRTY and TCTV, as well as the execution status
at closedown (NOSCHED indicates new message processing was halted).

The subroutine report illustrated in Figure 7-3 is produced by
SUBRPT and can be used to determine whether a subroutine should be made
resident based on usage, or whether the delete time (DELTIME) should be
increased (see the description of the DELTIME parameter for the SUBMODS
macro in Basic System Macros).

To produce the reports, ensure that the SMLOG SYSOUT data set is
defined in the Intercomm execution JCL, and that INTSTS, SUBRPT and
SSRPT are included in the Intercomm linkedit (automatic wvia ICOMLINK
macro).

7-13

Yi-L
31odey £37AT130V WaysL{sqng umopasoln z-/ 8indig

DATE :

00k 4
00ES
0005
00D1
D303
D&4D4
D3D4
ci07
00E?3
00C3
00Ce
ooc?2
00D?
00E6
00D9
occe
cscs
€3C3
E6C9
E6E4
D4C9
D9D8
D9C1
D7D8
ClF1l
D3F1
D3F2
D3F3
D3F4
DaC4
p1c?
oope
D7C?
00D4
C3F1
ESE9
00C1
ceceo
c3acz2
00C9
00C4
00C5
E6F1
fatn
00€7
C4C4
0003
C9C3
00E7
00E2
00E9
00F3
c2C1

TCTAL

S/S COODE

.U
oV
.N
.J
LL
MM
LM
GP
T
.c
oF
B
P
.u
R
.H

S:

09/08/88

ENTRY=-PT/
LCADNAME
PMIDUTPT
PMIQUTPT
PMIQUTPT
PMICLOWN
LOADSCT
MMUC CMM
LMAP
GPSS
FINTUNER
SYSCNTL
DYNSSUP
SWITCH
PAGEMSG
SENDBACK
IXFRPTIO
CHANGE
CHANGE
capyss
FEWHOI
FEWHOU
MISSING
sacosoLA
SQASMA
sQPL1
APWTESTC
FHTESTL
SNBKL1
SNBKLZ2
CONVI1L
TESTRLSE
WAGEMNGR
CHCKPTSS
MMUTESTM
MONDOVLYC
MONOVLYC
BSENONE %3
DEMO
FHTEST
CONV1
CONV?2
CONV3
CONV4
ECHOMSG
SUNONES®
SECTEST
DDOTEST
SECTST1
ICMTST
CHANGE
PMISIGN
PAGETESTY
TEST3270
RENT1

TIME: 10:39:19

RESIDENCY

RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
DYN.LOAD
DYN.LOAD
DYN.LOAD
RESIDENT
DYN.LOAD
DYN.LOAD
DYN.LOAD
DYN.LOAD
DYN,LOAD
DYN.LOAD
RESIDENT
RESIDENT
RESIDENT
OvLYy= 1}
ovLys=
ovLY=
ovLY=
avLy=
ovLY=
avLY=
OVLYs=
OVLY=
CVLY=
OvL Y=
ovLy=
avLY=
avLY=
ovLYs=
gvLyYs=
ovLyY=
ovLY= 10
OvLY= 10
ovLy= 11

O®NNNNCOCOVNOOOMEN

TIMES
LOADED

OO

—Oooo0oOonN

SUBSYSTEM TUNING STATISTICS FOkR KEGIOUN:

LOAD NUM MSGS
SIZE PROCESSED
170

23

5,000 9
35216

79448 17
14704
19320
19752
14232
1,080 2

NUMB ER

QUEUED

NUMBER
CANCEL

11

INTTOO4X
MAX MNCL
USAGE

5

2

1

N O WEWRFEFROWW R OWHERHEMEFERERBRRRNERERFRFWONNRONE S 2~ 220N WSS ~s s

PRTY

CCOOHOH IO MKEIMEHEHEMOOOOROOOOOOOO0OOOOOOODOOOO0O0O0OO0OODOODODOOOQOWOOO

PAGE : 1
TCTV STATUS
120 ACTIVE
120 ACTIVE
120 ACTIVE
0 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
60 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
120 ACTIVE
60 NOSCHED
60 ACTIVE
60 ACTIVE
60 ACTIVE
28 ACTIVE
240 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
6 ACTIVE
240 ACTIVE
20 ACTIVE
60 ACTIVE
44800 ACTIVE
60 NOSCHED
60 ACTIVE
240 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
60 NOSCHED
60 ACTIVE
300 ACTIVE
60 ACTIVE
300 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
60 ACTIVE
300 ACTIVE

C

|

[x19adeyn

UodI933uY] JO uoIjndaxy

S1-L
31odey £3TATI3OV QullnoIgng umopasoln ¢-/ 2an81g

C

—

DATE: 09s08/88

ROUT INE NAYE
sQcoaoLs
SQas~8
NOTTHERE

TIME: 10:39:19 SUBPCUTINE TUNING

LANGUAGE TIMES USED LOAD SIZE
RCOB 6 le648
RBAL 0 14952
RBAL 0 0

STATISTICS FUR REGION: INTTOO4X

DwWS
60
0

0

DELETE TIME
60
60
0

PAGE:
SCHEDULABLE
YES
YES
NO

L 19adeyy

WwoodI23U] JO UOoTINnIXYP

Chapter 7 Execution of Intercomm

7.6.2 Closedown Time Limit

Under certain circumstances, a normal closedown (NRCD) may be
initiated, and then, due to subsystem or terminal conditions, it is
discovered that closedown will take excessive time to complete. There
are two methods by which this situation may be handled:

° A user-specified maximum time limit on the SPALIST (CLDNLIM)
will be set at the beginning of closedown processing; at the
expiration of this time interval, closedown will not wait for
any further terminal or message processing, but will
terminate all Intercomm system functions and return to the

operating system. See also the SPALIST macro CLDTO
parameter.
e An IMCD may be entered during closedown processing. This

will have the same effect as the expiration of the time
interval described above.

When forcing a premature closedown by these techniques, an Intercomm
restart may be needed to recover messages queued or in process at the
time of closedown.

7.6.3 Closedown User Exits--USRCLOSE/USRCLSE]

A conditional call (CALLIF) is made to a user exit (USRCLOSE)
prior to completion of closedown cleanup processing (final checkpoint,
statistics reports, etc.). A member USRCLOSE is supplied with the
Intercomm release, which will send a message to the broadcast group
name TOALL during normal closedown processing. The message states:

%% GOOD MORNING #%* INTERCOMM IS CLOSED: MM-DD-YY HH.MM.

RPT00045 is used and the MORNING 1is replaced by AFTERNOON or
EVENING at the proper time of day. An entry must be made in the
Broadcast Table (BROADCST) for the group name TOALL. * (See Section
7.5.2, "Startup User Exits," above.)

USRCLOSE is written in reentrant Assembler Language. The member
name, Csect name and load module name are all USRCLOSE, which is
automatically included in the Intercomm linkedit.

USRCLOSE also calls the user exit routine USRCLSEl, if it is
included in the 1linkedit. USRCLSEl must be coded in reentrant
Assembler Language and use standard linkage conventions. At entry,
register 1 points to a parameter list containing the address of the
entered closedown message and the address of the System Parameter
Area. No return code testing is done.

7-16

Chapter 7 Execution of Intercomm

7.7 LIVE OPERATION

Execution of Intercomm in live mode necessitates that terminal
operation (the Front End) is activated for actual or simulated (see
Chapter 8) terminals. When startup functions are complete, terminal
input/output processing begins.

The system may be activated as a cold start with no consideration
for any previous execution (EXEC statement parameter STARTUP), or as a
warm start with message restart/recovery performed (EXEC statement
parameter RESTART). Restart/Recovery functions are described in detail
in Chapter 9.

7.7.1 Intercomm Dispatching Priority

In order for on-line Intercomm to provide good response time, it
requires a higher dispatching priority than other jobs operating in the
system. Intercomm may not execute as an authorized program, and
therefore connot be defined in the MVS Program Properties Table (PPT).
Use the DPRTY or PERFORM parameter on the execution JCL as permitted at
your installation.

7.7.2 Execution JCL

Execution JCL requires specifications for the network
configuration. A typical live execution job with a BTAM Front End is
shown in Figure 7-4.

For remote terminals accessed via BTAM, the sequence of the DD
statements describing operational lines must correspond to the network
configuration definition in the Front End Network Table. The LINEGRP
macro defines the ddname in the execution JCL. The order of the DD
statements for each 1line group defines the physical unit addresses
relative to the associated sequence of BLINE macros, as depicted in
Figure 7-5. Remote 1lines must be on the byte-multiplexor channel
(Channel 0).

For local BTAM (3270) terminals, the sequence of the DD
statements for each line is related to the sequence of the BTERM macros
as 1illustrated in Figure 7-6. Local terminals are defined on a
block-multiplexor channel (not Channel 0).

7.7.3 Low-Core Condition--SSPOLL

When a low-core condition (CUSHION released) exists, the user may
optionally prevent additional leased-line terminal and/or TCAM input to
the Intercomm system. Issuing of macros to accept new input is
automatically temporarily halted and later resumed when sufficient
storage becomes available. Include SSPOLL in the resident portion of
the Intercomm linkedit to activate this feature. The system control
commands SPPL and STPL, may be used at other times to temporarily halt
input.

7-17

Chapter 7

Execution of Intercomm

//ICOMEXEC EXEC PGM=ICOMLIVE, PARM='STARTUP' ,REGION=1024K
//STEPLIB DD DSN=INT.MODUSR,DISP=SHR
// DD DSN=INT .MODLIB,DISP=SHR
// DD DSN=INT.MODREL,DISP=SHR
//INTERLOG DD DSN=&&INTLOG, VOL=vvvvvv,UNIT=unit,
// DISP=(,PASS),LABEL=(,SUL),
// DCB=(DSORG=PS , RECFM=VB, BLKSIZE=4100, LRECL-4096 ,NCP=8 ,0PTCD=C)
//*
//* NOTE THAT INTERLOG BLOCK SIZE MUST BE AS LARGE
//* AS THE LONGEST EXPECTED LOGGED MESSAGE (+4).
//*
//SMLOG DD SYSOUT=A,
DCB=(DSORG=PS, LRECL=120,BLKSIZE=multiple-of-120,RECFM=FBA)
//STSLOG DD SYSOUT=A,
// DCB=(DSORG=PS,LRECL~120,BLKSIZE=multiple-of-120,RECFM=FBA)
//SYSPRINT DD SYSOUT=A,
// DCB=(DSORG=PS ,RECFM=VBA, BLKSIZE=multiple-of-137-+4,LRECL=137)
//RCTO00 DD DSN=INT.RCT000,DISP=0LD, DCB=(DSORG=DA,OPTCD=RF)
//PMIQUE DD DSN=INT.PMIQUE,DISP=OLD, DCB=(DSORG=DA, OPTCD=RF)
//BTAMQ DD DSN=INT.BTAMQ,DISP=0LD,DCB=(DSORG=DA,DPTCD=RF)
//USERFILE DD DSN=......
USER DATA SET DEFINITIONS
//* THE FOLLOWING ARE NOT PROCESSED BY THE FILE HANDLER
//PMISTOP DD DUMMY
//SYSUDUMP DD SYSOUT=A or DUMMY
//SNAPDD DD SYSOUT=A STANDARD SNAPS
//*
//* FOLLOWING IS FOR DYNAMIC LINKEDIT
//*
//DYNLLIB DD DSN=INT.MODUSR,DISP=SHR
//DYNLWORK DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL, (1,1))
//DYNLPRNT DD SYSOUT=A
//LINE1 DD UNIT=nnn
TERMINAL NETWORK DEFINITIONS IF BTAM USED
/7*
//PRINTLOG EXEC PGM=L.OGPRINT, COND=EVEN
//STEPLIB DD DSN=INT.MODREL,DISP=SHR
//INTERLOG DD DSN=&&INTLOG,DISP=0OLD,DCB=BLKSIZE=5000
//SYSPRINT DD SYSOUT=A, DCB=(DSORG=PS, BLKSIZE=121)
Figure 7-4. Typical Live Execution JCL
NOTE: if executing with VSAM data sets, place STEPCAT DD

statement(s) for user catalog(s), 1f needed, after the
//PMISTOP DD statement (do not use JOBCAT) so that the File
Handler does not process the catalog at startup.

7-18

<

Chapter 7 Execution of Intercomm

* A BTAM NETWORK TABLE CODED AS FOLLOWS REQUIRES JCL DDCARDS
* AS TILLUSTRATED BELOW

RO1 LINEGRP DDNAME-RRI,------
BLINE LGNAME-RO1,------
BTERM TERM—RR101,------
BTERM TERM-RR102,------
BLINE LGNAME=ROL,------
BTERM TERM-RR201,------
BLINE LGNAME-ROL,------

BTERM TERM=RR301,------

//* DDCARDS FOR LINEGRP RO1

//RR1 DD UNIT=031 (TERMINALS RR101,RR102,ETC.)
// DD UNIT-032 (TERMINALS RR201,ETC.)
// DD UNIT=033 (TERMINALS RR301,ETC.)

Figure 7-5. LINEGRP, BLINE Sequence and JCL for Remote Terminals

* A BTAM NETWORK TABLE CODED AS FOLLOWS FOR LOCAL 3270
* TERMINALS REQUIRES JCL DDCARDS AS ILLUSTRATED BELOW

L0l LINEGRP DDNAME=LL1,------
BLINE LGNAME=LO1, - - - - - -
BTERM TERM=LLOOL, - - ----
BTERM TERM=LL002, - - - - - -

BTERM TERM=LL003, - - - - - -

//* DDCARDS FOR LOCAL 3270 BLINE

//LL1 DD UNIT=301 (TERMINAL LLOO1)
DD UNIT=302 (TERMINAL LL002)

DD UNIT=303 (TERMINAL LLOO03)

Figure 7-6. BLINE, BTERM Sequence and JCL for Local Terminals

7-19

Chapter 7 Execution of Intercomm

7.8 INTERCOMM QUIESCE

It is sometimes necessary to stop the CPU while running Intercomm
so that maintenance or volume switching can be done. However, if the
CPU is stopped for a significant period of time (more than one minute),
it is likely that, when processing is resumed, Intercomm’s event-timing
will have been disrupted, resulting in various time-outs. This causes
erroneous cancellation of messages, snaps 114 and 118, etc.

The Quiesce facility allows the CPU console operator to stop all
Intercomm processing by replying to an outstanding WTOR prior to
stopping the CPU itself. When processing is to be resumed, Intercomm
can be reactivated by replying to a subsequent outstanding WTOR. All
of Intercomm’s internal timings are adjusted to reflect the lost time,
thereby avoiding time-outs.

The Quiesce facility is optional, and is provided by including
the module PMIHARDW in the Intercomm linkedit. This module, which is
dispatched at startup time, puts out a WTOR (MUOOlR) with the following
text:

REPLY "ICOMHALT" WHEN YOU WANT INTERCOMM TO TEMPORARILY STOP PROCESSING

This WTOR will remain outstanding until needed. When the proper
reply is given, Intercomm will go into the wait state, after putting
out another WTOR (MUOO2R):

REPLY "ICOMSTART" WHEN YOU WANT INTERCOMM TO RESUME PROCESSING

At this point, it is safe to stop the CPU. When the CPU is again
started, Intercomm can be reactivated by replying to this latter WTOR.
The first WIOR will then be put out again allowing the procedure to be

repeated if and when necessary.

The time interval during which Intercomm is quiesced is lost to

the system. If a one-hour time-dispatch was done by some internal
routine at 12:00 P.M., this interval would normally expire at 1:00
P.M. If, however, Intercomm was quiesced from 12:20 to 12:25, the

interval will expire at 1:05.

7-20

Chapter 7 Execution of Intercomm

7.9 MVS OPERATION

All MVS support is generally applicable to both MVS/370 and XA.
Installation and operation of Intercomm with MVS follows the previously
described procedures, plus additional considerations documented in this
section to take advantage of MVS facilities. More considerations
applicable primarily to XA are described in Section 7.10. The MVS
vocabulary is illustrated below:

Reference Meaning
EPS External Page Storage; Page Data Set
Page Fault A page is referenced that is not residing in real

storage, but on EPS.

..

Page Fixing Marking a page as nonpageable; that is, remains
in real storage full-time

The major difference between OS/MFT or OS/MVT and operation of
Intercomm under MVS is the unpredictable nature of program loading in

the address space/region. Under OS, when a job is loaded, the user
knows the job is actually residing in main storage. This is not true
for MVS, where there are two types of storage: Real Storage and

External Page Storage (EPS), also referred to as the Page Data Set.
Only a certain portion of a load module actually resides in real
storage; most of it (depending on real core availability, number of
jobs concurrently running, etc.) will reside on EPS.

When a program references a page that currently resides on EPS,
an I/0 operation must be performed in order to transfer that page from
EPS into real storage. This procedure is called page loading. Each
time a page that is residing on EPS is referenced (a page fault), the
task’'s TCB is marked nondispatchable by MVS until the referenced page
is loaded. This can result in extensive degradation of response time
in an on-line system, since the task (Intercomm) must wait until I/0
completes.

For Intercomm under MVS/370, an alternative to avoid page faults

is to use page preloading, which requires installation of the Intercomm
Interregion SVC (see Section 7.11).

7-21

Chapter 7 Execution of Intercomm

7.9.1 Page Preloading

Using the page preloading feature, the same process is executed
as when a page fault occurs; that is, page loading from EPS must be
requested. However, if the page loading is requested by the user
(Intercomm) before the page fault actually occurs, the task’'s TCB will
not be marked nondispatchable. Thus, the task will not be in a wait
state until the I/O completes and therefore other processing can
continue while the I/O 1is still in progress. Page preloading under
Intercomm is done for pages that are likely to be on EPS at the time
they are referenced again; that 1s, save areas and return points to
application programs are preloaded prior to transfer of control from
the Dispatcher. Page preloading cannot be used under XA, when EPS (on
the 3090 CPU) is often auxiliary storage, and thus an I/0 operation is
not required.

7.9.2 Page Fixing

Page fixing is no longer supported under Intercomm, because the
operating system paging efficiency is undermined by user page fixing.

7.9.3 MVS Installation

Installation and operation of Intercomm under MVS require a few
considerations in addition to the specific MVS/370 and XA installation
procedures described later in this chapter. All the recommendations
listed below are also covered in the Installation Guide. The MVS user
should consider:

° Each live Intercomm region must run as a nonswappable task.
In order to make Intercomm nonswappable, a SYSEVENT macro has
been inserted in STARTUP3, and requires installation of the
Intercomm Interregion SVC. For a BTAM Front End region with
remote terminals, the operating system automatically marks
the task nonswappable, therefore the SYSEVENT is not issued.

° Provision must be made for installation of the Intercomm
Interregion SVC, as described in Section 7.11.

° Concatenate SYS1.AMODGEN after SYS1.MACLIB in all Intercomm
procedures (including INTASMF) executing the assembler.

e¢ The following Intercomm modules must be reassembled and
linkedited: STARTUP3, CLOSDWN3, SYCT400, PMINQDEQ, PMIRETRV,
PMITEST, PMISNAPl1, STAEEXIT, STAERTRY, STAETASK, SPIEEXIT,
SPIESNAP, SNAPRTN, DYNLLOAD, MANAGER and, if used, PMIDEBUG,
RESTORE3, INTLOAD, TRAP, and PREPLI.

e Other system modules including the File Handler, common Front

End modules, COBOL support modules, Multiregion modules, etc.
to be reassembled are listed in the Installation Guide.

7-22

Chapter 7 Execution of Intercomm

° Because BTAM dynamic buffering is not supported, Intercomm
suppresses dynamic buffering under MVS. Therefore, the
LINEGRP macro, BUFL parameter, must specify a value at least
as large as the longest message expected, with the exception
of bisync devices (see Basic System Macros). LINEGRP macro,
BUFNO parameter, must specify a wvalue at least as large as
the wvalue assigned to the NUMLN parameter (the number of
BLINE macro instructions subordinate to the LINEGRP).

° BTAM (and TCAM) Front End modules, particularly BTSEARCH
(which contains the BTAM RESETPL macro) and BLHTRACE (SNAP
macro), must be reassembled, if in the Intercomm linkedit.
Also reassemble every time an operating system upgrade is
made.

° The entire VTAM Front End, if used, must be reassembled.
Also reassemble every time an operating and/or VTAM system
upgrade is made. Ensure that the correct MVS system library
containing VTAM macros and Dsects is in the SYSLIB
concatenation stream.

e Reassemble the Front End Network Table due to possible
changes in DCB, ACB and RPL macros.

¢ Eliminate the subsystem overlay structure, 1if at all
possible; convert subsystems to dynamically 1loadable, or
define as VS execution groups. Eliminate internal overlay
structure subsystem linkedits, if previously used.

An operator cancel (S122 and S222) will not give control to final
cleanup processing in the STAEEXIT routine. Therefore, PMIDEBUG should
be included in order to cancel Intercomm with a dump. This is also
recommended for flushing the Intercomm log buffers and closing the log,
and for closing VSAM files. A system x22 cancel will not accomplish
this. See Messages and Codes for a description of STAEEXIT processing
and the use of PMIDEBUG. Code DEBUG=YES on the ICOMLINK macro for the
linkedit generation to force an include for PMIDEBUG.

Intercomm and the MVS operating system components which affect
Intercomm execution must be tuned on an ongoing basis. See Chapter 11
for general tuning recommendations, plus those specific<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>