GC33-4010-4
File No. §370-21 (0OS/VS,DOS/VS,VM/370)

OS/VS-DOS/VS-VM/370
Systems Assembler Language

VBT

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Fifth Edition (January, 1975)

This is a reprint of GC33-4010-3 incorporating changes
released in the following Technical Newsletter:

GN33-8185 (dated October 15, 1974)

This edition applies to Release 4 of 0S/VS1, Release 3 of
0S/VvS2, and Release2 of VM/370, and Release 31 of DOS/VS
and to all other releases until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information herein;
before using this publication in connection with the operation
of IBM systems, consult the IBM System/360 and System/370
Bibliography, GA22-6822, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Product
Communications, Box 962, S-181 09 Lidingo 9, Sweden.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973, 1974

ii

Page of GC33-4010-4
Revised Feb, 25, 1975
By TNL: GN33-8193

Read This First

This manual describes the 0S/VS - DOS/VS - VM/370 assembler language.

The 0S/VS - VM/370 assembler language offers the following improvements
over the 0S/360 assembler language as processed by the F assembler:

1. New instructions and functions

2. Relaxation of language restrictions on character string lengths,
attribute usage, SET symbol dimensions, and on the number of entries
allowed in the External Symbol Dictionary

3. New system variable symbols

4. New options: for example, for the printing of statements in the
program listings or for the alignment of constants and areas.

The figure on the following pages lists in detail these assembler
language improvements and indicates the sections in the manual where the
instructions and functions incorporating these improvements are
described. 1If you are already familiar with the 0S/360 assembler
language as processed by the F assembler, you need only read those
sections. Also included in the fiqure on the following pages are the
improvements of the DOS/VS assembler language over the DOS/360 assembler
language as processed by the D assembler.

NOTE: Sections I through L, describing the macro facility and the
conditional assembly language, have been expanded to include more
examples and detailed descriptions.

Note for VWM/370 Users

The services provided by the 0S Linkage Editor and Loader programs are
paralleled in VM/370 by those provided by the CMS Loader. Therefore,
for any reference in this publication to those 0S programs, you may
assume that the CMS Loader performs the same function.

Certain shaded notes in this publication refer to "0OS only" information.

Where you see these notes you may assume the information also applies
for VM/370 users.

iii

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Y S —
COMPARISON OF ASSEMBLERS I
| | |
Assemblers . .
Language Feature SSVs Described in
DOS/360 (D) DOS/VS 08/360 (F) VM/370
1. No of continuation lines allowed in 1 2 2 2 B1B
one statement
2. Location Counter value printed for 3 bytes 3 bytes 3 bytes 4 bytes C4B
EQU, USING; ORG (in ADDRZ2 field) (upto 3
leading zeros
suppressed) 1
3. Self-Defining Terms C4E
maximum value: 224-1 224-1 224-1 231.1
number of digits
binary: 24 24 24 32
decimal: 8 8 8 10
hexadecimal: 6 6 6 8
character: 3 3 3 4
4. Relocatable and Absolute Expressions cés
unary operators allowed: no yes no yes
value carried: truncated to truncated to truncated to 31 bits
24 bits 24 bits 24 bits
number of operators: 15 15 15 19
levels of parentheses: 15 15 15 19
6. Alignment of Constants ALIGN/ constants constants constants D2
(with no length modifier) when NOALIGN not aligned aligned not aligned
NOALIGN option specified: option not
allowed
6. Extended Branching Mnemonics D1H
for RR format instructions: no yes no yes
7. COPY Instruction E1A
nesting depth allowed: none 3 none 5
macro definitions copied: no yes no yes
8. END Instruction
generated or copied END
instructions: no no no yes E1l
9. All control sections initiated by a no yes no no E2C
CSECT start at location O in listing
and object deck
10. External Symbol Dictionary Entries E2G
maximum allowed: 255 255 255 399
(including
entry symbols
identified by
ENTRY)
11. DSECT Instruction blank name entry: no yes no yes E3C
12. DROP Instruction not allowed signifies all not allowed signifies all F1B
blank operand entry: current base current base
registers registers
dropped dropped
13. EQU Instruction G2A
second operand as length attribute: no no no yes
third operand as type attribute: no no no yes
14. DC/DS Instruction; one multiple multiple multiple G3B
number of operands:
L

iv

R ——
COMPARISON OF ASSEMBLERS

l

Language Feature Assemblers . .
, OGS/VS - Described in
DOS/360 (D) DOS/VS 08/360 (F) VM/370
15. Bit-length specification allowed: no yes yes yes G3B
16. Literal Constants G3C
multiterm expression for
duplication factor: no yes no yes
length, scale, and
exponent modifier: no yes no yes
Q- or S-type address constant: no no no yes
17. Binary and Hexadecimal Constants G3D
number of nominal values: one one one multiple G3F
18. Q-type address constant allowed: no no yes yes G3M
19. ORG Instruction sequence symbol sequence symbol sequence symbol any symbol H1A
name entry allowed: or blank or blank or blank or blank
20. Literal cross-reference: no yes no yes H1B
21. CNOP Instruction sequence symbol sequence symbol | only sequence any symbol HiC
symbol as name entry: or blank or blank symbol or blank or blank
22. PRINT Instruction
inside macro definition: no yes no yes H3A
23. TITLE Instruction H3B
number of characters in name
(if not a sequence symbol): 4 4 4 8
24. OPSYN Instruction: no no yes yes HBA
25, PUSH and POP Instructions H6
for saving PRINT and USING status: no no no yes
26. Symbolic Parameters and
Macro Instruction Operands
maximum number: 100 200 200 no fixed Jac
maximum K18
mixing positional and keyword: z‘zll positional all positional all positional keyword param- J3c
parameters parameters parameters eters or operands; K3C
or operands or operands or operands can be inter-
must come must come must come spersed among
first first first positional param-
eters or operands
27. Generated op-codes START, CSECT, J4B
DSECT, COM allowed no yes no yes
28. Generated Remarks due to generated J4B
blanks in operand field: no no no yes
29, MNOTE Instruction J5D
in open code: no no no yes
30. System Variable Symbols J7
&SYSPARM: yes yes no yes
&SYSDATE: no no no yes
&SYSTIME: no no no yes
31. Maximum number of characters in K5
macro instruction operand: 127 255 255 255
32. Type and Count Attribute of L1B
SET symbols: no no no yes
&SYSPARM, &SYSNDX,
&SYSECT, &SYSDATE, &SYSTIME: | no no no yes

COMPARISON OF ASSEMBLERS

Language Feature Assemblers Described in
DOS/360 (D) | DOS/VS os/360 (F) | 9WVS
33. SET Symbol Declaration L2
global and local mixed: no, global must no, global must no, giobal must yes
) precede local precede local precede local
global and local must immedi-
ately follow prototype state-
ment, if in macro definition: yes yes yes no
must immediately follow any source
macro definitions, if in open code: yes yes yes no
34. Subscripted SET Symbols L2
maximum dimension: 255 255 2500 32,767
35. SETC Instruction L3B
duplication factor in operand: no no no yes
maximum number of characters
assigned 8 8 8 255
36. Arithmetic Expressions L4A
in conditional assembly
unary operators allowed: no yes no yes
number of terms: 16 16 16 up to 25
levels of parentheses: 5 5 5 up to 11
37. ACTR Instruction allowed anywhere no, only immedi- | yes no, only immedi- | yes L6C
in open code and inside macro ately after global ately after global
definitions: and local SET and local SET
symbol symbol
declarations declarations
38. Options for Assembler Program)
ALIGN no yes yes yes D2
ALOGIC no no no yes L8
MCALL no no no yes J8B
EDECK no yes no no Guide to the
DOS/VS Assembler
MLOGIC no no no yes L8
LIBMAC no no no yes JBA

vi

Pretface

This is a reference manual for the 0S/VS - DOS/VS - VM/370 assembler
language. It will enable you to answer specific questions about
language functions and specifications. 1In many cases it also provides
information about the purpose of the instruction you refer to, as well
as examples. of its use.

The manual is not intended as a text for learning the assembler language.

Who This Manual Is For

Major

How

This manual is for programmers coding in the 0S/VS - VM/370 or DOS/VS
assembler language.

Topics

This manual is divided into four main parts (aside from the
"Introduction™ and the Appendixes) :

PART I (Sections B and C) describes the coding rules for, and the
structure of, the assembler language.

PART II (Section D) describes the machine instruction types and their
formats.

PART III (Sections E through H) describes the assembler instructions.
PART IV (Sections I through L) describes the macro facility and the
conditional assembly language.

To Use This Manual

Since this is a reference manual, you should use the Index or the Table
of Contents to find the subject you are interested in.

Complete specifications are given for each instruction or feature of the
assembler language (except for the machine instructions, which are
documented in Principles of Operation, -- see "References You May
Need") . In many cases a "Purpose" section suggests why you might use
the feature; a "how-to" section explains use of a complex feature; and
one or more figures give examples of coding an instruction.

1f you are a present user of the OS Assembler F or the DOS Assembler D,
you need only read those sections listed in the table preceding this
"Preface", which indicates those language features that are different
from the DOS or OS System/360 languages.

vii

TABS: Tabs mark the beginning of the specifications portion of the
language descriptions. Use the tabs for quick referencing.

4

Tab - USING

0S-DOS DIFFERENCES: Wherever the 0S/VS and DOS/VS assembler languages
differ, the specifications that apply only to one assembler or the other
are so marked. The 'OS only' markings also apply for the VM/370
assembler.

KEYS: The majority of figures are placed to the right of the text that
describes them. Numbered keys within a figure are duplicated to the
left of the text describing the figure. Use the numbered keys to tie
the underlined passages in the text to specific parts of the figure.

o @

GIOSSARY: The glossary at the back of the manual contains terms that
apply to assembler programming specifically and to allied terms in data
processing in general. You can use the Glossary for terms that are
unfamiliar to you.

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing, which was prepared by

Subcommittee X3.5 on Terminology and Glossary of American National
Standards Committee X3.

References You May Need

You may want to refer to

System/370 Principles of Operation, Order No. GA22-7000

for information on the functions of the machine instructions of the
assembler langquage and to

$/VS - VM/370 Assembler Programmer's Guide, Order No. GC33-4021

for detailed information about the 0S/VS - VM/370 Assembler.

Guide to the DOS/VS Assembler, Order No. GC33-4024

for detailed information about the DOS/VS Assembler.

viii

Contents

SECTION A: INTRODUCTION . « v« « o« o « « 1 C4C -- Symbol Length Attribute
Reference . . « « « « « « « o U4
WHAT THE ASSEMBLER DOES CU4p -- Other Attribute References . U6

A1 -- THE ASSEMBLER LANGUAGE
Machine Instructions . . .
Assembler Instructions
Macro Instructions

A2 -- THE ASSEMBLER PROGRAM

A2A -- Assembler Processing Sequence
Machine Instruction Processing .
Assembler Instruction Processing
Macro Instruction Processing . .

A3 -- RELATIONSHIP OF ASSEMBLER TO

OPERATING SYSTEM . . ¢ ¢ o « « «
Services Provided by the
Operating System 9 PART I1: FUNCTIONS AND CODING OF

A4 —— CODING BIDS . o o o o « o - . <« 10 MACHINE INSTRUCTIONS . .« .« « « « - « - 61
Symbolic Representation of
Program Elements

C4E -- Self-Defining Terms U6
C5 == LITERALS « « « o = o o o = « = = 50
C6 =— EXPRESSIONS « « « « « « « =« « « « 53
C6A ~— PUXPOSE 2 « o « « « « « =« » « 53
C6B ~-- Specifications . . . <« « « 55
Absolute and Relocatable
Expressions . . + « « « « « « . 56
Absolute Expressions 57
Relocatable Expressions 58
Rules for Coding Expressions . . 59
Evaluation of Expressions . . . 60

O OUNUNEWWWNN A

10 SECTION D: MACHINE INSTRUCTIONS 63

Variety of Data Representation . 10
Controlling Address Assignment . 10 D1 -- FUNCTIONS .« « « « « « & « o o« « 63
Relocatability « « « . « « . . . 11 D12 -- Fixed-Point Arlthmetlc « « o 64
Segmenting a Program . . « . . . 11 Operations Performed 64
Linkage Between Source Modules . 11 Data Constants Used 64
Program Listings 11 D1B -- Decimal Arithmetic 65
Operations Performed 65
PART I: CODING AND STRUCTURE . « . . . 13 Data Constants Used 65
D1C -- Floating-Point Arithmetic . . 66
SECTION B: CODING CONVENTIONS 15 Operations Performed 66
Standard Assembler Coding Form . 15 Data Constants Used 66
D1D -- Logical Operations 67
B1 -- CODING SPECIFICATIONS . « 16 Operations Performed 67
B1A -- Field Boundaries 16 D1E -- Branching « 68
The Statement Field 16 Operations Performed 68
The Identification-Sequence D1F -- Status Switching 69
Field . ¢ o o ¢ o o o o o « o « 17 Operations Performed 69
The Continuation Indicator D1G -- Input/Output 71
Field . . ¢ v ¢ o o o o =« o « - 17 Operations Performed . . P A
Field Positions 17 D1H -- Branching with Extended
B1B -- Continuation Lines 18 Mnemonic Codes . . « « « o . 12
B1C -- Comments Statement Format . . 19 D11 -- Relocation Handling 74
B1D -- Instruction Statement Format 20 D2 == ALIGNMENT . « « « o « o o o « « « 15
Fixed Format . . « « « « « . « « 20 D3 -- STATEMENT FORMATS . . . e o« « o 18
Free Format . . « . « ¢ « o « « 20 D4 -- MNEMONIC OPERATION CODES e« e« o o« 19
Formatting Specifications . . . 21 D5 —- OPERAND ENTRIES . ¢ « « o o « « 80
General Specifications for
SECTION C: ASSEMBLER LANGUAGE STRUCTURE 25 Coding Operand Entries 80
DS5A -- Registers 82
Cl -- THE SOURCE MODULE . . +. o « « - « 26 Purpose and Usage .« . . « . . . 82
C2 -- INSTRUCTION STATEMENTS 26 Specifications 82
C2A -- Machine Instructions 29 DSB -~ AJAresSsSes . . « « « « « « . o 84
C2B -- Assembler Instructions . . 30 Purpose and Definition 84
Ordinary Assembler Instructlons 30 Relocatability of Addresses . . 85
Conditional Assembly Specifications 86
Instructions & . « o « . 32 Implicit Address . « « « « « « o 87
C2C -- Macro Instructions 33 Explicit Address « « « + - « - . 87
C3 -- CHARACTER SET . « « « o o « o « o 34 D5C -- Lengths 88
Ch == TERMS v « v ¢ o « o o o o o o« o« o 36 D5D -~ Immediate Data « . . « « « « 90
CpA - Symbols =« . « ¢« &« o« « &« « « « 36 D6 -- EXAMPLES OF CODEC MACHINE
Symbol Definition 38 INSTRUCTIONS . . ¢ o « « « « « « 92
Restrictions on Symbols 40 RR FOrmat . « « « o o o o = o o 92
C4B -~ Location Counter Reference . U1 RX Format . « « « « « « « « « o 93

ix

RS Format « « o o« o o o o « @
SI Format « o o o ¢ o o ¢ o

S Format . « o« « o o « o o « =«

SS Format « « o« « o ¢ o o o «

PART I1I: FUNCTIONS OF ASSEMBLER
INSTRUCTIONS « & o o« o o o o o o « o

SECTION E:

E1

E2

E3

E4

E5

SECTION F:

F1

PROGRAM SECTIONING . . .

~- THE SOURCE MODULE . . ¢ o« «
The Beginning of a Source
Module . . .
The End of a Source Module "
E1A -- The COPY Instruction . . .
E1B ~- The END Instruction . . .

-- GENERAL INFORMATION ABOUT CONTROL

SECTIONS v« « v o « o o o o o o
E2A -- At Different Processing

TiMES o« o ¢ « o o o o o =
-= TYypPes . . . « e o o o o
Executable Control Sections .
Reference Control Sections .

E2E

E2C -- Location Counter Setting .

E2D -<~ First Control Section . . .

E2E -~- The Unnamed Control Section

E2F -- Literal Pools in Control
Sections . . .

E2G -- External Symbol chtlonary

Entries
-- DEFINING A CONTROL SECTION .« e

E32 ~-- The START Instruction . .
E3B ~- The CSECT Instruction . .
E3C ~- The DSECT Instruction . .

How to Use a Dummy Control
Section « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o
Specifications
== The COM Instruction . . .
How to Use a Common Control
Section « ¢ ¢ 4 4 ¢ 4 ¢ . . .
Specifications
-- EXTERNAL DUMMY SECTIONS . . .
Generating an External Dummy

E3D

Section « + « «
How to Use External Dummy
Sections

-~ DEFINING AN EXTERNAL DUMMY
SECTION «a o 8 o e
ESA -- The DXD Instructlon « o

-E5B -- The CXD Instruction . . .

ADDRESSING . « . . « . .

-~ ADDRESSING WITHIN SOURCE MODULES:

ESTABLISHING ADDRESSABILITY .

How to Establish Addressability

-- The USING Instruction . .
The Range of a USING
Instruction . . e s o =
The Domain of a USING
Instruction . . . e o e =
How to Use the USING
Instruction . . . -
Specifications for the USING
Instruction . « « « « < ¢ < .

F1A

-

-

.

94
95
96
97

99
101
102

102
102
103
105

107

108
110
110
110
111
113
115

115
116
117
117
119
121

121
122

124
124
125
127
127
128
130
130
131
133
133
134
134
135
135
137

141

F1B -- The DROP Instruction

144

F2 -- ADDRESSING BETWEEN SOURCE MODULES:

SYMBOLIC LINKAGE « « « o 147
How to Establish Symbolic
Linkage e - o 147
F2A -- The ENTRY Instructlon « « « 150
F2B -- The EXTRN Instruction . . . 151
F2C -- The WXTRN Instruction . . . 152
SECTION G: SYMBOL AND DATA DEFINITION 153
G1 -- ESTABLISHING SYMBOLIC
REPRESENTATION . « « = o « « « » 153
Assigning Values 154
Defining and Naming Data . . . 154
G2 -- DEFINING SYMBOLS . . « « « « « « 155
G2A -- The EQU Instruction 155
G3 -- DEFINING DATA . v ¢« « o « o o « 161
G3A -- The DC Instruction 162
G3B -- General Specifications for
Constants . . . e o s « - 163
Rules for the DC Operand . .« « 164
Information about Constants . . 165
Padding and Truncation
of Values . . « . o &« « « « - » 167
Subfield 1: Duplication Factor 168
Subfield 2: Type - - -« « - « - 169
Subfield 3: Modifiers 170
Subfield 4: Nominal Value . . . 179
G3C -- Literal Constants 180
G3D -- Binary Constant (B) 181
G3E -- Character Constant (C) . . . 182
G3F ~- Hexadecimal Constant (X) . . 184
G3G -- Fixed-Point Constants
(Hand F) . &« « & « & - 186
G3H -- Decimal Constants (P and Z) 188
G3I -- Floating-Point Constants
(E, Dand L) . . . e . . . 190
G3J -- The A-Type and Y-Type Address
Constants . . . 194
G3K -- The S-Type Address Constant 196
G3L -- The V-Type Address Constant 198
G3M -- The Q-Type Address Constant 200
G3N -~ The DS Instruction 201
How to Use the LS Instruction . 201
Specifications . « « « 4+ « o o 206
G30 -- The CCW Instruction 209
SECTION H: CONTROLLING THE ASSEMBLER
PROGRAM ¢ ¢ 2 2 o o v o« o o o « = « «» 211
H1 -- STRUCTURING A PROGRAM 211
H1A -- The ORG Instruction 212
H1B -- The LTORG Instruction . . . 214
The Literal Pool 215
Addressing Considerations . . . 216
Duplicate Literals 217
Specifications 217
H1C -- The CNOP Instruction . . . 218
H2 -- DETERMINING STATEMENT FORMAT AND
SEQUENCE . . . e s o o - 219
H2A -- The ICTL Instructlon e « o« o« 219
H2B -- The ISEQ Instruction 221
H3 -- LISTING FORMAT AND OUTPUT . . . 222
H3A -- The PRINT Instruction . . . 222

HY

HS

H6

H3B -- The TITLE Instruction . . . 224
H3C -- The EJECT Instruction . . . 227
H3D -- The SPACE Instruction . . . 228
-- PUNCHING OUTPUT CARDS « o« o o 228
H4A -- The PUNCH Instruction . . . 228
H4B -- The REPRO Instruction .« « 231

-- REDEFINING SYMBOLIC OPERATION

CODES e v o« o o o a =« o o o « « 232
H5A -- The OPSYN Instruction . . . 232
-=- SAVING AND RESTORING PROGRAMMING

ENVIRONMENTS 4 « ¢« « ¢ o o « « « 234
H6A -- The PUSH Instruction 234
H6B -- The POP Instruction 234
H6C -- Combining PUSH and POP . . . 235

PART IV: THE MACRO FACILITY 237

SECTION I: INTRODUCING MACROS 239

Using MacrXos « « « « « « « « - 240
The Basic Macro Concept 243
Defining a Macro 245
Calling a Macro 246
The Contents of a Macro

Definition . . . « o o 2u8
The Conditional Assembly

Language « « « « o ¢ o « o« « o 250

SECTION J: THE MACRO DEFINITION . . . 251

J1

J2

J3

Ju

-~ USING A MACRO DEFINITION 251
JI1A —— PUYPOSE « « « o« « « o « « « 251
J1B -~ Specifications 252
Where to Define a Macro in a
Source Module . . . « . +« « . « 252
Open Code « « o« ¢ o« o o o « « o 252
The Format of a Macro
Definition . . . e « o« o« 253
-- PARTS OF A MACRO DEFINITION o e 254
J2A -- The Macro Definition Header 254
J2B -- The Macro Definition Trailer 254
J2C -- The Macro Prototype Statement:
Coding . . . « « o - 255
Alternate Ways of Codlng the
Prototype Statement 256
J2D -- The Macro Prototype Statement:
Entries <« o « . . 256
The Name Entry 256
The Operation Entry 257
The Operand Entry 258
J2E -- The Body of a Macro
Definition . . + « . + .« <. . 259
-- SYMBOLIC PARAMETERS . . . « « - 260
General Specifications 260
Subscripted Symbolic Parameters 261
J3A -~ Positional Parameters . . . 262
J3B -- Keyword Parameters 263
J3C -- Combining Positional
and Keyword Parameters . . . 265
-~ MODEL STATEMENTS . « « « « « « « 266
JUA -- PUYPOSE « o « « « o « =« « o 266
JuB -- Specifications . . . e o« - 266
Format of Model Statements « « 266
Variable Symbols as Points of
Substitution 267
Rules for Concatenation 268
Rules for Model Statement
Fields . ¢ ¢ ¢ o« o o« o o « « « 269

J5 -- PROCESSING STATEMENTS .

J6

J7

Jg

SECTION K:

K1

K2

K3

K4
K5
K6

SECTION L:

J5A -- Conditional Assembly

Instructions . . .

J5B -- Innexr Macro Instructions .
J5C -- The COPY Instruction .

J5D -- The MNOTE Instruction .
J5E -- The MEXIT Instruction .

-- COMMENTS STATEMENTS .

J6A -- Internal Macro Comments

Statements

-

-

J6B -- Ordinary Comments Statements
-~ SYSTEM VARIABLE SYMBOLS

J7A -- ESYSDATE
J7B -- GSYSECT
J7C -- ESYSLIST « . « . .
J7ID -- ESYSNDX . . . « .
J7E -- &SYSPARM
J7F -- §SYSTIME
-- LISTING OPTIONS . . .
J8A -- LIBMAC
J8B -- MCALL

== USING A MACRO INSTRUCTION .

K1A -- Purpose « « . « «
K1B -- Specifications . .

-

THE MACRO INSTRUCTION .

-

-

272

272
272
272
273
276
277

277
277
278
279
280
281
284
284
287
287
287
288

289
289

289
290

Where the Macro Instructions can

APPEAY -« o « o o o

Macro Instruction Format
Alternate Ways of Coding a Macro

Instruction
-- ENTRIES o o
K2A -- The Name Entry o .

.

K2B -- The Operation Entry .

K2C -- The Operand Entry
-- OPERANDS . . « « « .

0

K3A -- Positional Operands -

K3B -- Keyword Operands .

K3C -~ Combining Positional

and Keyword Operands .

~- SUBLISTS IN OPERANDS .
~=~ VALUES IN OPERANDS . .

== NESTING IN MACRO DEFINITIONS

K6A -- Purpose
Inner and Outer Macro
Instructions
Levels of Nesting . .
Recursion . « « « « «

K6B -- Specifications . .

General Rules and Restrictions
Passing Values through Nesting

Levels o &« ¢ ¢ o &

System Variable Symbols in

Nested Macros

LANGUAGE . « o « ¢ « o o o &«

L1

xi

-

-

-

-- ELEMENTS AND FUNCTIONS .

L1A -- SET Symbols . . .

The Scope of SET Symbols

Specifications . . .

Subscripted SET Symbols -

Specifications . . .
L1B -- Data Attributes .

What Attributes Are.
L1C -- Sequence Symbols .

-

-

-

-

THE CONDITIONAL ASSEMBLY

-

-

290
290

291
292
292
293
293
294
294
296

299
300
302
307
307

307
308
310
311
311

312
314

317

317
318
319
320

322
323
323
334

-- DECLARING SET SYMBOLS 336 APPENDIX I: CHARACTER CODES . « . . .377
L2A -- The LCLA, LCLB, and LCLC
Instructions « « 336 APPENDIX II: HEXADECIMAL-DECIMAL

L2B -- The GBLA, GBLB, and GELC CONVERSION TABLE . . « 383
Instructions . « . « « . « . 340

-- ASSIGNING VALUES TO SET SYMBOLS 343 APPENDIX III: MACHINE INSTRUCTION

L3A -- The SETA Instruction 343 FORMAT . « « « « « « « o 389

L3B -- The SETC Instruction 345

L3C -- The SETB Instruction 347 APPENDIX IV: MACHINE INSTRUCTION

-- USING EXPRESSIONS . . - « « « « 349 MNEMONIC OPERATION

L4A ~-- Arithmetic (SETA) CODES « ¢ o « o « o o = 391

Expressions 349

L4B -- Character (SETC) Expressions 355 APPENDIX V: ASSEMBLER INSTRUCTIONS . 407

L4C ~- Logical (SETB) Expressions . 359

-~ SELECTING CHARACTERS APPENDIX VI: SUMMARY OF CONSTANTS . . 411
FROM A STRING . . -« « « =« « « « 364

L5A -- Substring Notation 364 APPENDIX VII: SUMMARY OF MACRO

= BRANCHING . . ¢ v 2 o « o a » « 367 FACILITY « « o « « - « - U413

L6A -- The AIF Instruction 367

LGB - The AGO Instruction . e e e 369 GLOSSARY - e« ® o o e & e © @ e *o = “21

L6C -- The ACTR Instruction 370

LéD -- The ANOP Instruction 373 INDEX « « 2 o o o o o o« o s o « o« o« « U437

~~ IN OPEN CODE « « o o « « » « o « 374

L7A == PUYPOSE .+ « « « « « » « « « 374

L7B -- Specifications « 374

-=- LISTING OPTIONS . « « « + « = « 376

xii

Section A: Introduction

What the Assembler Does

A computer can understand and interpret only machine

language.
very difficult to write.

Machine language is in binary form and, thus,
The assemkbler language is a

symbolic programming language that you can use to code

instructions instead of coding in machine

Because the assembler language allows you
symbols made up of alphabetic and numeric
of just the binary digits 0 and 1 used in
language, you can make your coding easier
understand, and change.

The assembler must translate the symbolic
into machine language kefore the computer
program, as shown in the figure below.

language.

to use meaningful
characters instead
the machine

to read,

assembler language
can execute ycur

»
CODING SHEETS
rogram :——:> uree Uee SOURCE MODULE
Assembler Language Input
or
] '
TERMINAL
ASSEMBLER
Object Deck ﬂﬂ
' Machine Language Output
LINKAGE
EDITOR
LOAD MODULE
Main Storage of
COMPUTER
-
Section A: Introduction 1

Assume that your program, written in the assembler language,
has been punched into a deck of cards called the socurce
deck. This deck, also known as a source module, is the
input to the assembler. (fou can also enter a source
module as input to the assembler through a terminal.)

The assembler processes your source module and produces
an object module in machine language (called Qbject ccde).
Assume that the assembler punches this object module into
a deck of cards called the okject deck. :

The okject deck or object module can be used as input to
be processed by another processing program, called the
linkage editor. The linkage editor produces a load module
that can be loaded later into the main storage of the
computer, which then executes the program. Your source
module and the object code produced is printed, alcng with
other information on a program listing.

Al - The Assembler Language

The assembler language is the symkolic programming language
that lies closest to the machine language in form and
‘content. You will, therefore, find the asserbler language
useful when:

* You need to control your program closely, down to the
byte and even bit level or

e You must write subroutines for functions that are not
provided by other symkolic programming languages such as:
ALGOL, COBOL, FORTRAN, or PL/I1.

The assembler language is made up of statements that
represent instructions or comments. The instruction
statements are the working part of the language and are
divided into the following three groups:

1. Machine instructions

2. Assembler instructions

3. Macro instructions.

Machine Instructions

A machine instruction is the symbolic representation of

a machine language instruction of the IBM System/370
instruction set. It is called a machine instruction because
the assembler translates it into the machine language ccde
which the computer can execute. Machine instructions are
described in PART I1; SECTION L of this manual.

A2 -

Assembler Instructions

An assembler instruction is a request to the asserbler
program to perform certain operations during the assembly

of a source module, for example, defining data constants,
defining the end of the source module, and reserving storage
areas. Except for the instructions. that define constants,
the assembler does not translate assemkler instructions

into object code. The assembler instructions are described
in PART I1I; SECTIONS E, F, G, and H and PART 1V; SECTIONS
J, K, and L. of this manual.

Macro Instructions

A macro instruction is a request to the assembler program
to process a predefined sequence of code called a macro
definition. From this definition, the assembler gener ates
machine and assembler instructions which it then processes
as if they were part of the original input in the source
module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that you can call
for processing by coding the required macro instruction.
(These IBM-supplied macro instructions are not described
in this manual.)

You can also prepare your own macro definitions and call
them by coding the corresponding macro instructions. This
macro facility is introduced in PART IV; SECTION I. A
complete description of the macro facility, including the
macro definition, the macro instruction and the conditional
assembly language, is given in PART 1V; SECTIONS J, K, and
L.

The Assembler Program

The assembler program, also referred to as the "assemnbler®,
processes the machine, assembler, and macro instructions
you have coded in the assemkler language and produces an
object module in machine language.

Section A: Introduction

A2A - ASSEMBLER PROCESSING SEQUENCE

The assembler processes the three types of assembler
language instructions at different times during its
processing sequence. You should be aware of the assembler's
processing sequence in order to code your program correctly.
The figure below relates the assembler processing sequence
to the other times at which your program is processed and

executed.
TIMES
SOURCE
i PROGRAMMER
Coding PROGRAM
Time
\
Pre-Assembly
Time
> ASSEMBLER
Assembly
Time
Linkage
Edit LINKAGE
Time EDITOR
1) LOADER
Program can combine
Ff-:tch linkage editing
Time p and loading
operations
0OS only
_IIE:(ecution o CPU of
ime COMPUTER

The assembler processes most instructions on two occasions;
first at pre-assembly time and later at assembly time.
However, it does some processing, for example, macro
processing, only at pre-assembly time.

The assembler also produces information for other
processors. The linkage editor uses such information at
linkage-edit time toc combine object modules into load
modules. The loader loads your program (combined load
modules) into virtual storage (see GLOSSARY) at program
fetch time. Finally, at execution time, the computer o
executes the object code produced by the assembler at
assembly time.

Machine Instruction Processing

The assembler processes all machine instructions and

translates them into object code at assembly time, as shown
in the figure below.

Machine

TIMES Instructions

Assembled
into
object code

Linkage
Edit

Program
Fetch

Executed

Execution

Assembler Instruction Processing

Assembler instructions are divided into two rain types:

1. Ordinary assembler instructions

2. Conditional assembly instructions and the macro
processing instructions (MACRO, MEND, MEXIT and MNOTE .

Section A: Introduction 5

The assembler processes ordinary assemkler instructions
o at assembly time, as shown in the figure below.

—— —
Ordinary o
Assembler p A \
Instructions and ENTRY
assembly EXTRN
time WXTRN PUNCH
TIMES o expressions Address constants REPRO
Coding
Pre-Assembly
Assembly
Linkage Edit
Program Fetch
Execution
NOTES :

1. The assembler evaluates absolute and relocatable
expressions at assembly time; they are sometimes called
assembly time expressions.

2. Some instructions produce output for processing after
assembly time.

The assembler processes conditional assembly instructions
and macro processing instructions at pre-assembly time,
as shown in the figure below.

———
Conditional Assembly
(and macro processing)
instructions and
conditional assembly
TIMES e expressions MNOTE
Coding
Pre-Assembly
Fully
processed
Assembly
Generated
statements Printed
message
Linkage Edit
Program Fetch
Execution

NOTES :

1. The assembler evaluates the conditional assembly
expressions (arithmetic, logical, and character) at pre-
assenbly time.

2. The assembler processes the machine and assembler
instructions generated from pre-assembly processing at

assembly time.

Section A: Introduction

Macro Instruction Processing

. The assembler processes macro instructions at pre-assembly
time, as shown in the figure below.

Macro Macro
TIMES Instructions Definitions
Coding
Pre-Assembly
Fully
Processed
Assembly
Generated
Statements
Linkage
Edit
Program
Fetch
Execution

NOTE: The assembler processes the machine and ordinary
assembler instructions generated from a macro definition
called by a macro instruction at assembly time.

The assembler prints in a program listing all the
information it produces at the various processing times
described in the above figures.

A3 - Relationship of Assembler to Operating System

The assembler is a programming component of the 0S/VS,
VM/370, or DOS/VS. These system control programs provide
the assembler with the services:

e For assembling a source module and

e For running the assembled object module as a progranm.
In writing a source module you must include instructions
that request the desired service functions from the
operating system.

Services Provided by the Operating System

0S/VS and DOS/VS provide the following services:

1. For assembling the source module:
a. A control program

b. Libraries to contain source code and macro
definitions

c. Utilities

2. For preparing for the execution of the assembler program
as represented by the object module:

a. A control program

b. Storage allocation

c¢. Input and output facilities
d. A linkage editor

e. A loader.

VM/370 provides the following services:

1. For assembling the source module:

a. An interactive control program

b. Files to contain source code and macro definitions

c. Utilities.
2. For preparing for the execution of the assembler programs
as represented by the object modules:

a. An interactive control program

b. Storage allocation

c. Input and output facilities

d. The CMS Loader.

Section A: Introduction

A4 -- Coding Aids

10

It can be very difficult to write an assemkler language
program using only machine instructions. The assembler
provides additional functions that make this task easier.
They are summarized below.

Symbolic Regresentation of Program Elements

Symbols greatly reduce programming effort and errcrs.

You can define symbols to represent storage addresses,

di splacements, constants, registers, and almost any elerment
that makes up the assemkler language. These elements
include operands, orerand subfields, terms, and expressions.
Symbols are easier to rememker and code than numbers;
moreover, they are listed in a symkol cross-reference table
which is printed in the program listings. Thus, you can
easily find a symbol when searching for an error in your
code.

Variety of LCata Representation

You can use decimal, binary, hexadecimal or character
representation which the assemkler will convert fcr you
into the binary values required by the machine language.

Controlling Address Assignment

If you code the approrriate assembler instruction, the
assembler will compute the displacement from a base address
of any symbolic addresses you specify in a machine
instruction. It will insert this displacement, along with
the base register assigned ky the assemkler instruction,
into the object code of the machine instruction.

At execution time, the object code of address references
must be in the base-displacement form. The computer obtains
the required address Ly adding the displacement tc the

kase address contained in the base register.

Relocatability

The assembler produces an object module that can ke
relocated from an originally assigned storage area to any
other suitable virtual storage area without affecting
program execution. This is made easier because most
addresses are assembled in their kase-displacement forr.

Segmenting a Program

You can divide a source module into one or more control
sections. After assemkly, you can include or delete
individual ccntrol sections from the resulting object
module before you load it for execution. Control secticns
can be loaded separately into storage areas that are not
contiguous.

Linkage Between Source Modules

You can create symbolic linkages ketween separately
assenbled scurce modules. This allows you to refer
symbolically from one source module to data defined in
another scurce module. You can also use symbolic addresses
to branch between modules.

Program Listings

The assembler produces a listing of your source mcdule,
including any generated statements, and the object cade
assembled from the source module. You can control the
form and content of the listing to a certain extent. The
assembler also prints messages akout actual errors and
warnings abcut potential errors in your source module.

Section A:

Introduction

11

12

Part I: Coding and Structure

SECTION B: CODING CONVENTIONS
SECTION C: ASSEMBLER LANGUAGE STRUCTURE

13

14

Section B: Coding Conventions

This section describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements are usually written on a coding form
before they are punched onto cards, or entered as source
statements through other forms of input (for example,
through terminals or directly onto tape).

Standard Assembler Ccding Form

You can write assembler language statements on the standard
coding form (Order No. GX28-6509) shown kelow. The cclumns
on this form correspcnd to the columns on a punched card

or positions on a source statement entered through a
terminal. The form has space for program identification
and instructions to keypunch operatcrs.

GX28- U/M 050
. IBM 1BM System 360 Assembler Coding Form 6095

Printed in U.S.A.
PROGRAM

PUNCHING GRARHIC PAGE oF
INSTAUCTIONS —
oo oaTe PUNCH CARD ELECTRO NUMBER *

STATEMENT

Identitication
Operana. Commants

Nawa Operation

T CREET) a6 20 25 30
A standard card form, 1BM electro 6509, is available for punching source statements from this form.
Instructions for using this form are in any IBM System /360 Assembler Reference Manual.

Address comments concerning this form to 18M Nordic Laboratory, Publications Development,

Box 962 S - 181 09 Lidingo 9, Sweden.

*

Section B: Coding Conventions 15

Bl - Coding Specifications

16

B1A - FIELD BOUNDARIES

Assembler language statements usually cccury cne 80-cclumn
line cn the standard form (for statements occupying more
than 80 columns, see E1B kelow). Ncte that any printatle
character punched intc any column of a card, or otherwise
entered as a position in a source staterent, is reprcduced
in the listing printed Ly the asserkler. Each line of

the ccding form is divided into three main fields:

The Statement field,

The Identification - Sequence field, and

The Continuation Indicator field.

The Statement Field

The instructions and conmments staterents must be written
in the statement field. The statement field starts in

the "begin®" column and ends in the "end" cclumn. Any
continuation lines needed must start in the “continue"
column and end in the "end®" colurn. The assenbler assunes
the fcllecwing standard values for these columns:

e The "begin" column is column 1

e The "end" cclumn is column 71, and

e The "ccntinue” column is column 16.

These standard values can be changed by using the ICTL
instruction. However, all references tc the "begin"®,

"end®", and "ccntinue®" columns in this manual refer to the
standard values descriked akove.

Stmnt Field

IBIK IBM System 360 Assembler Coding Farm ;ﬁ:ﬁ?ﬁzznﬁ .
prr— o Py : o e
PROGRAIAMER ln.ua INSTRUCTIONS PUNCH CARD ENECTHO NUMBER *
o =N\
Nome Operation Opwand Commer Sequence
1] 1 1 18 20 28 30 38 40 48 80 58 80 65 71 73 80
AHEL plclolo] Jolplelr]aln]o]s TT1] r[E[MAIR]K]S TTTTT LK
N cloNT I Nulalt[1]o]n] Tl InEls] Miuls] Tsltlalrlz] rin] Tclofc julmn] [t]s piRg
)

The Identification - Sequence Field

The identification-sequence field can contain identification

characters or sequence numbers or both. If the ISEQ
instruction has been specified to check this field, the
assembler will verify whether or not the source statements
are in the correct sequence.

NOTE: The field the assembler normally checks lies in
columns 73 through 80. However, if the ICTL instruction
has been used to change the begin and end columns, the
boundaries for the identification-sequence field can be
affected.

The Continuation Indicator Field

The continuation indicator field occupies the column after
the end column. Therefore, the standard position for this
field is column 72. A non-blank character in this column
indicates that the current statement is continued on the
next line. This column must be blank if a statement is
completed on the same line; otherwise the assembler will
treat the statement that follows or the next line as a
continuation line of the current statement.

Field Positions

The statement field always lies between the begin and the
end columns. The continuation indicator field always lies
in the column after the end column. The identification-
sequence field usually lies in the field after the
continuation indicator field. However, the ICTL
instruction, by changing the standard begin, end, and

continue columns can create a field before the begin column.

This field can then contain the identification-sequence
field.

Section B:

Coding Conventions

17

BlB ~ CONTINUATION LINES

Continuation

To continue a statement on another line, the following
applies:

1. Enter a non-blank character in the continuation indicator
0 field (column 72). This non-blank character must not be
part of the statement coding. When more than one
continuation line is needed, a non-blank character must
be entered in column 72 of each line that is to be
continued.

2. Continue the statement on the next line, starting in
e the continue column (column 16). Columns to the left of
the continue column must be blank.

Only two continuation lines are allowed for a single
assembler language statement. However, macro instruction
statements and the prototype statement of macro definitions
can have as many continuation lines as needed.

. GX28-6509-5 U/M 050
IBM IBM System. 360 Aszembler Coding Form P

pe——

INSTRUCTIONS
PROGRAMMER OATE PUNCH CARD ELECTRO NUMBER *

STATEMENT
tdentifcarion:

Name Oparation Opavands Comments. ‘Seaunce
1 8 10 416 20 s 30 as a0 as 50 53 80 8s 7 73 80

PlulNelH]] i IN[c]LU[ole] [plH[als]E]s ’ RIE[MA[R]K]S] [clo]n[T]iIN[ule] ToIN] | ix
N[E [X[T] JL{INIE LA

18

B1C - COMMENTS STATEMENT FORMAT

Comments statements are not assemkled as part of the ckject
module, bkut are only printed in the assembly listing.

As many comments statements as needed can ke written,
subject to the following rules:

0 1. Comments statements require an asterisk in the begin
column.

NOTE: Internal macro definition comments statements require
a period in the begin coclumn, followed by an asterisk (for
details see J6A).

2. Any characters, including blanks and special characters,
of the IBM System/370 Character Set (see C3) can ke used.

3. Comments statements must lie in the statement field

e and not run over intoc the continuation indicator field;
otherwise the statement fcllowing the comments statement
will be considered as a continuation line of that comrents
statement.

4, Comments statements must not appear Lketween an
instruction statement and its continuation lines.

Comments

IBM IBM System 360 Assembler Coding Form ﬁﬁ:ﬁf;%” 050
PROGRAMMER IDA" IKSTRUCTIONS PUNCH I CARD ELECTRO NUMBER -
[— — P — e
, " g 0 P % . . « ® " “ « ul |os .
bl [tRIt]s] [1]s] [aIN] [o[RID[t [MAIR]Y] [clo[MMIEIN[T]S] [s[T]A[T[E[MIEN[T],] WH[1 [cH] TCAIN] JA[P[PIE]AIR] [AIN]Y WHIE[RIET [v]N 1]
% AN [as|s|eMBlLIER] [P[R]o[c]R|AM]. I
ERRN
i H
. bt i
T i
1
- HH H
Lt ettt 1
Li [L
Section B: Coding Conventions

19

B1D

== _INSTRUCTION STATEMENT FORMAT

20

Instructions

The statement field of an instruction statement must ke
formatted tc include frcm one to four of the following
entries:

1. A name entry
2. An oreraticn entry
3. An operand entry

4. A rerarks entry.

Fixed Fcrrat

The standard coding ferm is divided into fields that provide
fixed positions for the first three entries, as fcllcwus:

) GX28-6500-5 UM 060
IBM 1BM System 360 Assembler Coding Form Printed in US.A.
#NOGAAM D) \ PONCHING. GAAPHIC PAGE or
InsTAGCTIONS
]DA" PUNCH CARD ELECTRO NUMBE R -

- STATEMENT

Commants Somuance.
50 (13 (1] o8 7 73)

RIEM[AR]KS] [EN[T]R]Y

An 8-character name field starting in cclumn 1.
A 5-character operation field starting in cclumn 10.
An orerand field that begins in column 16.

Note that with this fixed format one klank serarates each
field.

Free Format

It is not necessary to code the nare, cperaticn, and cgerand
entries acccrding to the fixed fields on the standard

coding form. 1Instead, these entries can ke written in

any pcsition, subject tc the formatting specifications
below.

Formatting Specifications

Whether using fixed or free format, the following general
rules apply to the coding of an instruction statement:

1. The entries must be written in the following order:
name, operation, orerand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end cclumn
(71) of any continuation lines.

3. The entries must be separated from each other by one
or more blanks.

o 4. If used, the name entry must start in the begin column.

5. The name and operation entries, each followed by at
least one blank, must be contained in the first line cf
an instruction statement.

o 6. The operation entry must start at least one column tc
the right of the begin column.

GX28-6508-5 U/M 050
IBM IBM System 36D Aassmbler Cading Farm printed in U.SA.

a g
PROGRAM PUNCHING GRAPHIC GE o

INSTRUCTIONS
PROGRAMMER DATE PUNCH TARD ELECTRO NUMBES *

STATEMENT

Narma Opuration Opmand . Commants Beduencs
' 810 14 20 28 39 3s 40 P 50 88 80 (1) Rl O L1 (1)

NAME BIAILIR] | T1«[.[1]s RIE[MARIk[S] [[-I-[T li Ix[e[o] |F|o

£
4

>
=

THE NAME ENTRY: The name entry identifies an instruction
statement.

The following apprlies to the name entry:

1. It is usuvally optional.

2. It must be a valid symbol at assembly time (afterxr

substitution for variable symbols, if specified); for an
exception see the TITLE instruction (H3B).

Section B: Coding Conventions

THE OPERATION ENTRY: The operation entry provides the
symbolic operation code that specifies the machine,
assembler, or macro instruction to ke processed. The
following applies to the operation entry:

1. It is mandatory.

2. For machine and assembler instructions it must be a
valid symkol at assembly time (after substitution for
variable symbols, if specified). The standard syrkolic
operation codes are five characters or less (see Appendixes
IV and V) .

et : ‘
3. For macro instructions it can be any valid symbol that
is not identical to the operation codes described in 2
above.

THE OFERAND ENTRY: The operand entry has one or more
operands that identify and describe the data used by an
instruction. The following applies to operands:

1. One or more operands are usually required, depending
on the instruction.

2. Operands must be serarated by commas. No blanks are
allowed between the operands and the commas that separate
them.

3. Operands must nct contain embedded blanks, because a
blank normally indicates the end of the operand entry.
However, blanks are allowed if they are included in
character strings enclosed in apostrophes (for example,
C'J N") or in logical expressions (see LU4C).

22

THE REMARKS ENTRY: The remarks entry is used to describe
the current instruction. The following applies to the
remarks entry:

1. It is opticnal.

2. It can ccntain any of the 256 characters {oxr punch
combinations) of the IEM System/370 character set, including
blanks and special characters.

3. It can follow any operand entry.

4. If an cpticnal operand entry is omitted, remarks are
allowed if the absence of the operand entry is indicated
by a comma, preceded and followed Ly one or more blanks.

GX28-6509-5 U/M 050

IBM 1BM System/360 Asssmbler Coding Form e in GSA,
noGRAM : oncrna anarmic J PAGE or
| rmoan n lMTI tMTaucTIoNS PUNCH CARD ELECTRO NUMBER -
— STATEMENT .
o Owerstion Opacand Commamts ” Jr—— “

1 L] 10 ALY 16 20 28 30 38 40

AlL WA Y R 10},/8 RIEMARIK]S] Muls[T] [BIE] IS[E[PJAIR]A[TIEID] [F [R]o]

R 1)0],)9 N| lo{Ple{R|a|N[D| [E[N[T[R]Y| iB]Y| [O|N[E| [ofR| MIOIRIE
L4

P|UIN[C|H] LABE|L| [ojpclojp|E| [ojr|R]1}, |ofPiR|2]* L dBIL |ANK]S .

OIM| || T S|TIA|R|T Al |IN|D|IICIA|TIE|S QQFENCE OjF| [O[PINID
N|OINO|1 CISEC|T F RIK|S
0N[0]2 E|N|D| R|K|S

Section B: Coding Conventions

23

Section C: Assembler Language Structure

This section describes the structure of the assembler

language, that is, the various statements which are allowed

in the language and the elements that make up those
statements,

Section C: Assembler Language Structure 25

C1 -- The Source Module

A source module is a sequence of assembler language
statements that constitute the input to the assembler.
The figure on the opposite page shows an overall picture
of the structure of the assembler language.

C2 - Instruction Statements

26

The instruction statements of a source module are composed
of one to four entries that are contained in the statement
field. Other entries outside the statement field are
discussed in B1A. The four statement entries are:

1. A name entry (usually optional)

2. An operation entry (mandatory)

3. An operand entry (usually required)
4. A remarks entry (optional).

NOTES:

1. The figures in this subsection show the 'overall structure
of the statements that represent the assembler language
instructions and are not specifications for these
instructions. The individual instructions, their purposes,
and their specifications are described in other sections of
this manual (as cross-referenced in the figures). Model
statements, used to generate assembler language statements,
are described in Ju.

2. The remarks entry is not processed by the assembler, but
only copied into the listings of the program. It\;g
therefore not shown except in the overview opposite.

Source Module
made up of
Source Statements

I Source Statements are l

EITHER INSTRUCTION

STATEMENTS

OR COMMENTS
STATEMENTS

Which are of three
main types

MACRO
Instructions

MACHINE

% or ASSEMBLER
Instructions

Instructions

Which are composed of
one to four entries

OPERATION OPERAND REMARKS

Which for machine instruc- l
tions, is composed of l Which are composed of l

[

EXPRESSIONS

| Which are composed of |

Combination CHARACTER
TERMS ol of terms STRINGS

|Which are composed of characters|

IBM SYSTEM/370
CHARACTER SET

Section C: Assembler Language Structure 27

28

C2A -- MACHINE INSTRUCTIONS

The machine instructicn statements are described in the

figure below.

The instructions themselves are discussed in Part II cf
this manual and summarized in Appendix IV.

NAME
Entry

A
Symbol
' {or blank)

Entry

OPERATION

Operation
Code

A symbolic

OPERAND
Entry

One or more
operands
composed of

Expression

| |

Exp(Exp,Exp)

or Exp (Exp) or or

Exp (,Exp)

A
Literal
H'g'

1

or

Arithmetic
combination
of terms

Exp = Expression

Location
Counter
Reference
€0, *

Symbol
Length
Attribute
Reference
e.g. L'HERE

1

A
Self-Defining
Term

|

Which can be
any of the
following

|

Decimal

eg 9

1

Hexadecimal

e.g. X ‘DY’

Binary

e.g. B 1001

Character

e.g. C "JAN’

Section C:

Assembler Language Structure

29

C2B -- ASSEMBLER - INSTRUCTIONS

30

The assembler instruction statements can be divided into
two main groups: ordinary assembler instructions and
conditional assembly instructions.

Ordinary Assembler Instructions

Ordinary assembler instruction statements are described
in the figure on the opposite page.

These instructions are discussed in Part III of this manual
and summarized in Appendix V.

NAME
Entry

A
Symbol
(or blank)

OPERATION
Entry

A symbolic
Operation
Code

Entry

OPERAND

operands

One or more

For Data Definition

Instructions)

QOperands can be

For all other

ordinary Assembler

Instructions

Operands can be

1 Discussed more fully where individual instructions are described

composed of one composed of
to four subfields
Expression Character Symbolic
R Constant . !
Duplication Type Modifiers (Nominal or String Option
factor e.g.5+4 e.g. e.g.
Value) 'TO BE NOGEN
PUNCHED’
One or more
constants of
the format
e.g. 10,F L3200 below
‘Decimal (Expression) ‘Character
number’ or or string’
eg. F'2 e.g. A(ADDR) eg.C'Ais B’

Section C:

Assembler Language Structure

31

Conditional Assembly Instructions

Conditional assembly instruction statements and the racrc
processing statements (MACRO, MEND, MEXIT, MNOTE) are
described in the figure below.

The conditional assembly instructions are discussed in
Section L and macro processing instructions in Section
J; both types are summarized in Appendix V.

NAME OPERATION OPERAND
Entry Entry Entry
m | must be l l can bhe l
:equ:nloe Variable A symbolic Zero or more
SyEna ° or Symbol Operation operands
b & VAR Code composed of
{or blank)
Expression Exp, ' msg’
i eq sym
Sequence or ;/am:)bl;e or or or MNOTE or (exp)seq sy
L Symbol ymbo (Expression) 3ERROR’ (&A EQ1).SEQ

Which can be any
combination of
variable symbols
and other characters
that constitute an

Exp=Expression

Arithmetic Logical Character
Expression Expression Expression

&A +1 &B1 OR &B2 'JAN&C’

32

C2C -- MACRC INSTRUCTIONS

Macro instruction statements are described in the figure
below; the prototype statement of a macro definition, which
serves as a model for the macro instruction staterent,

is also shown.

Macro instruction statements are discussed in Section K

of this manual and the prototype statement is discussed
in Section J2.

Symbolic Symbolic Zero or more
Parameter Operation Symbolic
Code Parameters

Prototype
Statement
can be
Macro
Instruction : .
Statement NAME OPERATION OPERAND
Entry Entry Entry

Zero or more
l can be l Operands

which can be

I | | 1

Ordinary Sublists with
Symbol or Sequence or Variable Operands with | or | o0e or more
{or blank) Symbol Symbol one value entries
l
Each entry
can have a
value

Values
can be
|
[1

Character ‘Character
String or String’
{excluding {including
blanks) blanks)

section C: Assembler Language Structure

33

C3 - Character Set

34

Terms, expressions, and character strings used to build
source statements are written with the following characters:

1. Alrhameric Characters

Alrhabetic characters (or letters): A through Z, and
$, #, 2

Digits (or numerals): 0 through 9
2. Special characters
+ - ,= . % () ' / & Elank

Examples, showing the use of the above characters are given
in the figure below.

Normally, ycu would use strings of alphameric characters
to represent data (terms, see ClU), and special characters
as:

a. Arithmetic cperators in expressions

b. Data or field delimiters

c. Indicators to the assemkler for specific handling.

Characters are represented ky the card-punch ccmbinaticns
and internal bit ccnfigurations listed in Appendix I.

In addition to the printakle characters listed abcve, any

of the 256 combinations for punched cards listed in Arrendix
I can be used:

1. Between paired apcstroghes
2. As statement remarks
3. In comments statements

4. In macrc instructicn orerands (for restrictions see
KS5) .

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Characters

Usage

Example

Constituting

Alphameric

In symbols

LABEL NINE#01

Terms

Digits

As decimal
self-defining
terms

01 9

Terms

Special
Characters

+ or -

As Operators
Addition
Subtraction
Multiplication
Division

(Unary)

NINE+FIVE
NINE-5
9*FIVE
TEN/3

+NINE

~-FIVE

Expressions

Terms

Blanks

Comma

Apostrophes

As Delimiters
Between fields
Between operands

Enclosing
character strings

LABEL AR

OPND1 ,0PND2

C'STRING'

3,4

Statement

Operand field

String

Parentheses- Enclosing subfields MOVE MVC TO(80) ,FROM Statement
or subexpressions (A+B*(C-D)) Expression
As indicators
for
Ampersand Variable symbol &VAR Term
Period Sequence symbol .SEQ (label)
Comments statement - %*THIS IS A COMMENT Statement
in Macro definition
Concatenation &VAR.A Term
Bit-length DC CL.7'AB' Operand
specification
Decimal point DC F'l.7E4' Operand
Asterisk Location counter x+72 Expression
reference
Comments statement % THIS IS A COMMENT Statement
Equal sign Literal reference L 6,=F'2"' Statement
Keyword &KEY=D Keyword
Parameter

Section C:

I

Assembler Language Structure 35

C4 -- Terms

A term is the smallest element of
the assembler language that
represents a distinct and separate

value. 1t can therefore ke used
alone or in ccmbination with other
fterms to form expressions. Terms Terms Term Can Be Value is
have absolute or relocatable values
that are assigned by the assemkler
or are inherent in the terms Absolute Relocatable Assigned by Inherent in
themsel ves. Assembler Term
A term is absolute if its value Symbols X X X
does not change upon program
relocation and is relocatable if Location
its value changes upon relocation. Counter X X
The various types of terms described Reference
below are summarized in the figure
o the right. Symbeol
Length X X
Attribute
Other Data X X
Attributes
Self-Defining X X
Terms
—

C4A -- SYMBOLS

36

Eurpose

You can use a symbcl tc represent storage locations or
arbitrary values.

SYMBOLIC REPRESENTATICN: You can write a symbol in the
name field of an instruction. Ycu can thren specify this
synkcl in the crerands cf other instructions and thus refer
to the former instructicn symbclically. This symkol
rerresents a relocatakle address.

You can alsc assign an absolute value to a symbol ky coding
it in the name field of an EQU instructicn with an cperand
whose value is absclute. This allows you to use this
symbol in instruction operands tc represent registers,
displacements in explicit addresses, inmediate data,
lengths, and implicit addresses with aksclute values. Fcr
details cf these prcgram elements, see L5. The advantages
of symbolic over numeric representation are:

1. Synbcls are easiexr tCc remember and use than numerical
values, thus reducing prograrmming errcrs and increasing
programming efficiency.

2. Ycu can use meaningful symkols to descrike the rrcgranm
elements they represent; for examrle, INFUT can name a
field that is to contain input data, cr INCEX can nane

a register to ke used for indexing.

3. You can change the value of cne symbol (through an EQU
instructicn) more easily than you can change several
numerical values in many instructions.

4. Symbols are entered into a crcss-reference table that
the assenkler rrints in the program listing. This takle
helps you to find a symkol in a pregram listing, kecause
it lists (1) the numker of the statement in which the
syrkcl is defined (that is, used as the name entry) and
(2) the numkers of all the statements in which the syrkcl
is used in the crerands.

THE SYMEQL TABLE: The assembler maintains an internal
takle called a symkcl takle. When the assemkler prccesses
your source statements for the first time, the assemkler
assigns an aksolute or relocatakle value tc every syrkcl
that arrears in the name field of an instruction. The
assemkler enters this value, which normally reflects the
setting cf the locaticn ccunter, into the symbol takle;

it also enters the attrikutes asscciated with the data
represented by the syrbcl. The values of the symkol and
its attrikutes are availakle later when the assenkler.finds
this symbcl cr attribute reference used as a term in, an
operand or expression (Bttrikute references used as terms
are discussed in CUC and C4r below) .

Specifications

The three types of symbol recognized
by the assembler are:

1. Ordinary symbols

2. Sequence symbcls

3. Variable symbols.

ORDINARY SYMBOLS: Ordinary symbols alphabetic character (letter)
can be used in the name and operand
field of machine and assembler 0'to 7 alphameric characters

instruction statements. They must
be coded in the format shown in
the figure to the right.

ollR DI NSy M

NOTES: Examples:

1. No special characters are allowed HERE #01 X
in an ordinary symbol. ig%gER gég g
2. NO blanks are allowed in an B0O2 $OPEN F2a

ordinary symbcl

Section C: Assembler Language Structure 37

38

VARIABLE SYMBOLS: Variable symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded

in the format shown in the figure

to the right.

SEQUENCE SYMBOLS: Sequence symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded

in the format shown in the figure

to the right.

Symbol Definition

An ordinary symbol is considered
defined when it appears as:

1. The name entry in a machine or
assembler instruction cf the
assembler language.

2. One of the operands of an EXTRN
or WXTRN instruction.

NOTE: Ordinary symbols that appear
in instructions generated from model
statements at pre-assembly time

are also considered defined.

Examples:
&A
&B
&C

& MRS Y M

ampersand
alphabetic character (letter)

0 to 6 alphameric characters

&PARAM

&KEYWORD
&CHAR3

Examples:
.SEQ
.LOOP11
.EXIT20
.T0001

/ 0 to 6 alphameric characters
SITE QU SY M!

period

alphabetic character (letter)

The assembler assigns a value to
the ordinary symbol in the name
fields as follows:

1. According to the address of the
leftmost byte of the storage field
that contains one of the following:

a. Any machine or assemkler
instruction (excert the EQU or
CESYN instructions)

b. A storage area defined by

the LS instruction

c. Any constant defined by the
DC instruction

d. A channel command woxd defined
by the CCW instruction.

The address value thus assigned

is relocatable, because the object
code assembled from these items

is relocatable; the relocatability
of addresses is descriked in L5B.

2. According to the value of the
first or only expression specified
in the operand of an EQU instruction.
This expressicn can have a

relocatable or absolute value, which

is then assigned to the ordinary
symbol. The value of an ordinary
symbol must lie in the range -231
through +231-1,

Section C:

Assembler Language Address Value Object Code
Statements of Symbol in Hex
Address of
Relocatable AREA
LOAD L 3,AREA» r.oaD —#[58] 3] 0] xxxx]
SN R
|
F200 DC F'200'o F200~/+#[00 0 0 ooC8
/
FULL EQU AREA o FULL/
TWO0O0 EQU F200 TW0O
Absolute
R3 EQU 3 o R3=3
Address
of FULL
e,
L R3,FULL 58130 Ixxxx
A R3,TWOO DA L3 0 | XXXX]
[es————
Address of
TWO0O

Assembler Language Structure

39

Restrictions on Symbcls "—:—-'L ﬂ

l FIRST START 0

UNIQUE DEFINITION: A symbol must
ke defined only once in a source
module:

c either in the name field of a
source statement

o or in the operand field of an
EXTRN or WXTRN instruction.

This is true even for a source
module which contains two or more
control sections. REG4 , TABLE (INDEX)
NOTE: The ordinary symbol that
appears in the name field of an
PSEN or TITLE instruction does
‘not constitute a definition of that
symbol. It can therefore be used
in the name field of any other

SECOND

CL256

statement in a source mcdule. SECOND CSECT

CONTRCL SECTION NAMES: A duplicate
symbol can, however, be used as
the name entry of a START, CSECT,
DSECT, or COM instruction. The
o first time a symbol is used to name
these instructions, it identifies
the beginning of the ccntrol section;
° a duplicate use of the symbol
identifies the resumption of an

REG3,ADRDR

RESUME1

A (READER)

interrupted control section. CSECT l

PREVIOUSLY DEFINED SYMBOL: In some
instructions the symbols used in

o their operands must have been defined
in a previous instruction.
Previously defined symbols are
required for the operands of the

LA INDEX, 20

END

following instructions:
EQU
CNOP
ORG

pC and DS (in modifier and
duplication factor expressions).

40

C4B -- LOCATION COUNTIER REFERENCE

Purpose

The assembler runs a location counter
to assign storage addresses to your
program statements. It is the
assemkler's equivalent of the
instruction counter in the computer.
You can refer to the current value

of the location counter at any place
in a source module by specifying

an asterisk as a term in an operand.

THE LOCATION COUNTER: As the
instructions and constants of a
source module are being assembled,
the location counter has a value

that indicates a location in storage.
The assembler increments the location
counter according to the following:

1. After an instruction or constant
has been assembled, the location Location Source AT
counter indicates the next availakle in Hex Statements

0 location.

2. Before assembling the current
instruction or constant, the

assembler checks the koundary 000004 DONE DC CL3'SOB'
alignment required fcr it and adjusts
o the location counter, if necessary, °000007\ BEFORE EQU *
to indicate the prcrper boundary. e
0000084 ODURING DC F'200'
3. While the instruction or constant
is being assembled, the location OOOOOC° AFTER EQU =«

counter value does not change.
It indicates the lccaticn of the 000010 NEXT Ds D
current data after boundary alignment
and is the value assigned to the

0 symbol, if present, in the name
field of the staterent.

4. After assembling the instruction
or ccnstant, the assembler increments
the location counter ky the length
of the asserbled data tc indicate

o the next available location.

The assembler maintains a location
counter for each control section
in a source module; fcr complete
details about the location counter
setting in control sections, see
E2C. The assembler carries an
internal location ccunter value

as a U-byte, 32-bit value, kut it
only uses the low-order 3 bytes,
which are printed in the program
listings. However, if you specify
addresses greater than 224-1, you
cause overflow into the high-order
kyte, and the assembler issues the
error message "LOCATION COUNTER
OVERFLOW".

Section C: Assembler Language Structure 41

42

NOTE: In the figure below, an example of a location counter
overflow (or wrap-around) is shown.

The internal address value of the symbol B is carried as
a U-byte value, but the printed location only includes
the low-order 3 bytes.

The location counter value for instructions or constants

is usually printed as a 3-byte value. However, the 4-byte
value, with up to 3 leading zeros suppressed, is printed

for the addresses specified in the operands of the following
instructions: EQU, ORG, and USING. Only 3-byte values

are prir = operands in the above instructions.

You can control the setting of the location counter in
a particular control section by using the START oxr ORG
instructions.

Assembly Listings in Hexadecimal Representation

LocC OBJECT CODE | ADDR1 ADDR2 STMT SOURCE STATEMENT
000000 A START 0
000000 FEFFEE 2 o ORG +#+X'FFFFFE'
FFFFFE 58506004 00D68 3 L 5,4(,6)

wkk ERROR ok (Location counter overflow)
000002 07FF 4 B BR 15
000004 5 C DC A(B)

’ﬁ1000004 6 D EQU C

e

3]

Up to 3 leading zeros
are suppressed

Specifications

Loc. Ctr Ref

The lccaticn counter reference is
specified by an asterisk (*). The
asterisk can be specified as a

relocatakle term according to the Location Source Address
follcwing rules: in Hex Statements Value of »
1. It can only ke specified in the
cperands cf: / e
a. Machine instructions 000104 HERE B *+8 same HERE
000108 B HERE+8 | effect]
b. The L[C and L[S instructions
c. The EQU, ORG, and USING
instructions. : —
00011C" CONSTANT DC A(*) o CONSTANT
2. It can alsc be srecified in 000120, THERE L 3,=A(%) THERE
literal constants (see C5). &\
The value of the location counter I L

reference (*) is the current value

cf the lccaticn ccunter of the
control section in which the asterisk
(¥*) is specified as a term. The
asterisk has the same value as the
address cf the first byte of the
instruction in which it agpears

(for the value of the asterisk in
address constants with duplicaticn
factcrs, see G3J).

Section C: Assembler Language Structure 43

C4C -- SYMBOL LENGTH ATTRIBUTE REFFRENCE

Purpose

When you specify a symbol length attribute reference, you
obtain the length of the instruction or data referred to
by a symbol. You can use this reference as a term in
instruction operands to:

1. Specify unknown storage area lengths

2. Cause the assembler to compute length specifications
for you

3. Build expressions to be evaluated by the assembler.

Specifications

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid
symbol or the location counter reference (*).

2. The symbol must be defined in the same source module
in which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in

the operand of any instruction that requires an absolute
term. However, it cannot be used in the form L'#* in any
instruction or expression that requires a previously defined

symbol.

44

The value of the length attribute

is normally the length in bytes

of the storage area required by

an instruction, constant, or field
represented by a symbol. The
assembler stores the value of the
length attribute in the symbol table
along with the address value assigned
to the symbcl.

When the assembler encounters a
symbol length attribute reference,
it substitutes the value of the
attribute from the symbol table
entry for the symbol specified.

The assembler assigns the length
attribute values to symkols in the
name field of instructions as

follows s Length Attr.
a For machine instructions, it assigns .
either 2, 4, or 6, depending on Value of Symbol
the format of the instruction. Source Module Length Attribute
e (at assembly time)
For the DC and DS instructions,
it assigns either the implicit or ﬁigg@ fvc 30A538§ E:ﬁigHA 2
explicitly specified length. The MACHC LR 3’4 \ CHB 2
length attribute is not affected ' L'MACHC
by a duplication factor. 70 DS CL80 L'TO 80
For the EQU instruction, it assigns igggN Bg i&g;gER) i:igggN 242
the length attribute value of the CHAR De C'YUKON L'CHAR 5
0 leftmost or only term of the first DUPL DC 3F'goo' L'DUPL 2
expression in the first operand,
unless a specific length attribute
is supplied in a second orerand.
RELOC1 EQU L'RELOC1 80
RELOC2 EQU L'RELOC2 80
ABSOL1 EQU L'ABSOL1L 240
Note the length attribute values ABSOL2 EQU L'ABSOL2 240
gﬁstsﬁcigii?w1ng terms in an EQU SDTL EQU L'SDT1 1
) SDT2 EQU L'SDT2 o 1
1]
o e self-defining terrs SDT3 EQU L'SDT3 1
o e 1ccaticn ccunter reference ASTERISK EQU L'ASTERISK 01
e. LY LOCTREF EQU L'LOCTREF 01
The length attribute of the location LENGTHL DC A (L") EZLENGTHl {3
counter reference (L'#%) is equal
to the length attribute of tge LENGTH2 MVC TO(L'+) ,FROM L's 6
instruction in which the L'* agpears. LENGTH3 MVC TO(L'TO-20) ,FROM L'TO 80

For the remaining assermkblerx
instructions, see the specifications
for the individual instructions.

Section C: Assembler Language Structure 45

C4p -- OTHER ATTRIBUTE REFERENCES

There are other attributes which describe the
characteristics and structure of the data you define in

a program. For example, the kind of constant you specify
or the number of characters you need to represent a value.
These other attributes are the type (T'), scaling (S'),
integer (1'), count (X'), and number (N') attributes.

NOTE: You can refer to these attributes only in conditional

assembly instructions and expressions; for full details,
see L1B.

C4E -- SELF-DEFINING TERMS

Purpose

B self-defining term allows you to specify a value
explicitly. With self-defining terms, you can specify
decimal, binary, hexadecimal, or character data. These
terms have absolute values and can ke used as absoclute
terms in expressions to represent bit configurations,
absolute addresses, displacements, length or other
modifiers, or duplication factors.

46

Specificaticns

GENERAL RULES: Self-defining terms:

a * Regresent machine language binary
values

e Are absclute terms; their values
do not change upon program
relocaticn.

The assembler carries the values
represented by self-defining terms
e to 4 bkytes or 32- bltS, the high-

order bit is the sign bit.

DECINAL: A decimal self-defining
term is an unsigned decimal number.
The assemkler allows:

o s ' High-crder zercs

e e A maximum of 10 decimal digits

e 1 range of values from 0 through
2,147,483,647.

Self-Defining

Self-Defining Decimal Binary
Term Value Value o
15 15 1111
241 241 J1110001
B'11l1l1!® 15 1111
B'11110001" 241 11110001
B'100000001" 257 100000001
X'F! 15 1111
X'Fl' 241 11110001
X'101" 257 100000001
c'l! 241 11110001
C'A’ 193 11000001
C'AB' 49,602 1100000111000010
4 bytes
(32 bits) I
value bits
24 1F 8 :iﬁ
1=Negative Value
0=Positive Value
R

Section C: Assembler Language Structure 47

e s AN
shown in the figure to the right.
The assembler: B'110011

0 e Assembles each kinary digit as binary
it is srecified

o e Allows a maximum of 32 binary
aigits e

e Allows a range of values from Examples Binary Value
-2,147,483,648 thrcugh

o 2,147,483,647.

B'1010111' | o@

NOTE: When used as an absolute
term in expressions, a kinary self-
defining term has a negative value

@ it the high-order rit is 1. B'11101010111'f 1110I0T0ITT
High-order
ggnbit
B'A1111...111'|= 231 -1
A —— p——
32 digits o

000...000'|= =-231

o 32 digits

48

apostrophes must enclose digit
X'FF...F56"
hexadecimal 1 to 8 hexadecimal digits
Conversion Table:
4-bit
Hexadecimal | Decimal Binary
Digit Equivalent| po, ecentation
0 0 0000
1 1 0001
2 2 0010
3 3 0011
. 4 00
BEXALCECIMAL: A hexadecimal self- 5 g 8%01
defining term must ke ccded as shown
. . . 6 6 0110
in the figure to the right. The
Fler. 7 7 0111
assenkler: 8 8 1000
e« Assembles each hexadecimal digit Z io iggé
intc its 4-kit binary equivalent
13 4 inthe I th Toht B 11 1011
(Qisted in e figure to € right) c 12 1100
e« Allows a maximur cf 8 hexadecimal g iz iigé
digits F 15 1111
e Allows a range cf values from I
o -2,147,483,648 through 2,147,483,647.
Examples: Binary Value
X '[ERl 0 [111]]1010]
NOTE: When used as an absolute
term in an expression, a hexadeciral X'A' [0000[1010
e self-defining termr has a negative
e if t -order kit is 1.
value i he high <UPFA" [T
BdQHJE'
X'7FFFFFFF' = %31—1
i
X/BOOOOOOO' = =2

Section C: Assembler Language Structure 49

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

CHARACTER: P character self-defining
tern nust ke ccded as shown in the
figure to the right. The assernktler:

e Allows any of the 256 punch
combinations when using punched
cards as input. This includes the
printable characters, that is,
klanks and special characters.

e Assembles each character into

its 8-bit binary equivalent. (&
table of characters and their kinary
equivalents can be found in Appendix
1) .

e Reguires that twc ampersands

or apcstrophes be specified in the
character sequence fcr each ampersand
or apostrophe required in the
assermkled ternm.

oo Allows a maximum of U4 characters.

3 characters.

C5 - Literals

50

Purpose

You can use literals as operands

in order to introduce data into
your program. However, you cannot
use a literal as a term in an
expression. The literal represents
data rather than a reference to
data. This is convenient, Lecause

1. The data ycu enter as numbers
for computation, addresses, or

me ssages to be printed is visikle
in the instruction in which the
li teral appears, and

2. You avoid defining constants
elsewhere in your source module
and then using their symbolic names
in machine instruction operands.

N

/apostrophes must enclose characters

C'ABCD
\ 7
1 to 4 characters

character S8 ¥ 4

Examples:

g;fa_ ?:ftifin Characters Hexadecimal Binary

tor 9| Assembled | Value Value
m
C'A’ X'cl! 11000001

A‘_“_____~____ B
c'y’ 1 X'FLl' 11110001
cr (blank)| X'40' 01000000
c'#! # X'7B' 01111011
C'e' @ X'7c! 01111100
C'&é' { X'50' 01010000
cr''e ! X'7D! 01111101
C'L''A" L'A X'D37DCL"
Cllllll (1) XI7D7DI
C'FOoUR‘ FOUR X'C6D6E4DY!
AR
RN

MvC

1,=F'200"'
2,=A (SUBRTN)

MESSAGE (16) ,=C'THIS IS AN ERROR'

R

The assembler assembles the data
specified in a literal into a
"literal pool® (fully described

in H1B) . It then assembles the
address of this literal data in

the pool into the object code of
the instruction that contains the
literal specification. Thus the
assembler saves you a programming
step by storing your literal data
for you. The assembler also
organizes literal pools efficiently
so that the literal data is aligned
on the proper boundary alignment
and occupies the minimum amount

of space.

LITERALS, CONSTANTS, AND SELF-
DEFINING TERMS: Do not confuse
literals with constants or self-
defining terms. They differ in
three important ways:

1. In where you can specify them
in machine instructicns, that is,
whether they represent data or an
address of data.

2. In whether they have relocatakle
or aksolute values.

3. In what is assembled into the
object code of the machine
instruction in which they agpear.

The figure to the right illustrates
the first two points.

0- A literal represents data.

e A constant is rerresented Lty
its relocatable address. Note that
a symbol with an absolute value
does not rerresent the address of

a constant, but represents immediate

data (see D5D) or an absclute
o address.

e A self-defining term represents
data and has an absclute valvue.

Compare:

A literal with a relocatable address

i g';§;33' }sameeﬂect
,F37
F33 BC F'33"

A Literal with a self-defining term
and a symbol with an absolute value

i

MVC FLAG,=X'

MVI FLAG,? same effect
MVI FLAG,Z

FLAG Ds X

ZERO EQU X'00'

A symbol having an absolute address value
with a self-defining term

LA 4,LOCORE
LA 4,1000 same effect

LOCORE EQU 1000

Section C: Assembler Language Structure

51

Object Code
in Hex

Source Statements

l . displacement
Loc __
n Hex
LITERAL L

RELCON L
The figure to the right illustrates
the third point.
0 e« The address of the literal,
rather than the literal data itself
is assembled into the cbject code. ABSCON ™

o- The address of a constant is
assemkled intc the object code.
Note that when a symbol with an
absolute value rerresents immediate
data, it is the absolute value that SELFDT
is assembled into the cbject code.

* The absolute value of a self-
defining term is assembled into FLAGCON EQU X'B8'
the object code.

248 |F200 DC F'200'
24C|BYTE DS X

LTORG

Literal

250 |[060000cg = F'200" |Pool

Specifications

A literal must be ccded as shown
in the figure to the right.

0 The literal is specified in the
same way as the operand of a DC
instruction (for restrictions see
G30) .

GENERAL RULES FOR LITERAL USAGE:

A literal is not a term and can

be specified only as a complete
operand in a machine instruction.
In instructions with the RX format
they must not be specified in
operands in which an index register
is also specified.

Because literals provide "read-only"
data, they rust not be used:

1. In operands that rerresent the
receiving field of an instruction
that modifies storage

2. In any shift or 1/0 inst.uctions.

C6 - Expressions

C6A -- PURPOSE

You can use an expression to specify:
“ An address

aAn explicit length

0 A modifier

o A duplication factor

oA complete cperand

You can write an expression with

a simple term or as an arithmetic
combination of terms. The assembler
reduces multiterm expressions to
single values. Thus, you do not
have to ccmpute these values
yourself.

Literals

Literal Specification
;10XL5'F3'

duplication type ;

Subfields: : .dlvfaet"é‘ nominal
factor value
_7]
/
| R
A EQU X-Y+13-P/Q
B MVC { TO+L'TO-L'FROM (L'FROM) ,FROM
=
C DS (X-X)XLQP/Q—IQ)
1 ©
R _J
Section C: Assembler Language Structure 53

Expressions have absolute or relocatable values. Whether
an expression is absolute or relocatable depends on the
value of the terms it contains. You can use the absolute
or relocatakle exrression described in this subsection

in a machine instruction or any assembler instruction other
than a conditional assembly instruction. The assembler
evaluates relocatable and aksolute expressions at assenbly
time. Throughout this manual, the word "expression" refers
to these types of expression.

NOTE: There are three types of expression that you can
use only in conditional assembly instructions: arithmetic,
logical, and character expressions. They are evaluated

at pre-assembly time. 1In this manual they will always

be referred to by their full names; they are described
in detail in L4.

CéB -- SPECIFICATIONS

The figure below defines both absolute and relocatable

expressions.

NOTE:
the opposite sign after the resolution o~ all unary
operators.

The relocatable values that are palred must have

Expressions

Absolute
Expression

Rel Exp

Rel. Exp.

< Absolute '
Term

Pairing of
Relocatable
Values

y

Relocatable
Expression

or

or

Unary operators

Operators Allowed

Unary: + Positive
— Negative

Rel. Exp

Relocatable
Term
%

Abs. Exp |-

Location
Counter :
Reference |

Ordinary
Symboi -
Relocatable |
Value

of |+ Rel. Exp |or|+ Rel. Exp |

Unary operators

+ Addition

— Subtraction
¥ Multiplication
/ Division

Binary:

Abs. Exp = Absolute Expression

Rel. Exp = Relocatable Expression

Section C:

Assembler Language Structure 55

56

Absolute and Relocatable Expressions

An expression is absclute if its
value is not changed by program
relocation; it is relocatable if

its value is changed upon program
relocation. A descrirtion of the
factors that determine whether an
expression is absclute or relocatable
follows.

PAIRED RELOCATABLE TERMS: An
expression can be aksolute even
though it contains relocatable
terms, provided that all the
relocatable terms are paired. The
pairing of relocatakle terms cancels
the effect of relocation. The
assembler reduces paired terms.to
single absolute terms in the
intermediate stages of evaluation.
The assembler considers relocatable
terms as paired under the following
conditions:

e The paired terms
in the same control
source module (that
same relocatability

must be defined
section of a
is, have the
attribute) .

e The paired terms must have
opposite signs after all unary
operators are resclved. In an
expression, the paired terms do

&P not have to be contiguous, that
is, other terms can come between
the paired terms.

e The value represented ky the
epaired terms is absclute.

Source Module

FIRST CSECT

Can be o]l; gg g:

aired

e c DS F
LOCTREF EQU *
ABSA EQU X'F'
ABSB EQU 300
ABSC EQU C'A'
SECOND CSECT

Can be D DS X

paired 0 [E DS X
F DS X

END
Examples:
Paired Relocatable Terms o Absolute

B-A
C-A

+B~+C c———> B-C
-A--B c——> -A+B

LOCTREF-C

D-E
F-D

Expressions

A+ABSA-B

D-E+ABSC
F-D+B-C

paired paired

Unpaired Relocatable Terms

B
C
LOCTREF
D

Relocatable

Expressions
Unpaired

B+ABSA

£ X 1 FF 1

E E—S* (B"C).
paired

Absolute Expressions

The assembler reduces an absolute
expression to a single absolute
value if the expression:

1. Is composed of a symkol with

an absolute value, a self-defining
term, or a symbol length attrikute
reference, or any arithmetic
combination of absolute terms.

2. 1f it contains relocatable terms,
alone or in combination with aksolute
terms, and if all these relocatable
terms are paired.

Source Module

FIRST CSECT
A DC F'2'
B DC F'3’
C DC F'4!
ABSA EQU 100
ABSB EQU X'FF'
ABSC EQU B-A
" e
. Paired
ABSD EQU =R
END
Absolute
Expressions
ABSA
o|:
L'A

e {ABSA+ABSC -ABSC#*15

9 [ABSA+1 5-B+C-ABSD/ (C-A+ABSA)

Section C: Assembler Language Structure

57

Relocatable Expressions

A relocatable expression is one Reloc. Exp.
whose value changes, for example,
ky a 1000, if the object module
into which it is assembled is -
relocated 1000 bytes away from its Source Module
originally assigned storage area. :
The assembler reduces a relocatable FIRST CSECT
expression to a single relocatakle .
value if the expression: A e H'2"
1. Is composed of a single B DC H'3!
relocatable term, or
C DC H'4'
2. Contains relocatable terms, alone v
or in combination with absolute .
terms, and: '
ABSA EQU 10

a. All the relocatable terms

but one are paired. Note that ABSB EQU w—p

the unpaired term gives the

expression a relocatable value; ABSC EQU 10 %(B-3)

the paired relocatable terms .

and other absolute terms .

constitute increments or END

decrgments to the value of the l

unpaired term. Relocatable Expresssions:

b. The relocatakility attribute (Belong to control section named FIRST

of the whole expression is that and have same relocatable attribute as

of the unpaired term. A, B and C)

c. The sign preceding the unpaired
relocatable term must be positive,
after all unary operators have < A+ABSA+10

been resolved. B-+A+8~10%ABSC
LA
COMPLEX RELOCATABLE EXPRESSIONS: o o
Complex relocatable expressions,

unlike relocatable expressions,
can contain:

[—] [S—
\\\\\\ —
a. Two or more unpaired o/

relocatable terms or

B—A+éLlOO*ABSA+ABSA/(C—A)

b. An unpaired relocatable term
preceded by a negative sign.

Complex relocatable expressions
can be used only in A-type and Y-
type address constants (see G3J).

Rules for Coding Expressions

The rules for coding an absolute
or relocatable expression are:

1. Both unary (operating on one
value) and binary (operating on
two values) operators are allowed
in expressions.

2. An expression can have one or
more unary operators preceding any
term in the expression or at the
beginning of the exrression.

3. An expression must not begin
with a binary operator, nor can
it contain two binary operators
in successicn.

4. An expression must not contain
two terms in succession.

5. No blanks are allowed between
an operator and a term nor between
two successive operators.

6. An expression can contain up

to 19 unary and binary operators
and up to 6 levels of parentheses.
Note that parentheses that are part
of an operand specification do not
count toward this limit.

7. A single relocatable term is

not allowed in a multiply or divide
operation. Note that paired
relocatable terms have absolute
values and can be multiplied and
divided if they are enclosed in
parentheses.

8. A literal is not a valid term
and is therefore not allowed in
an expression.

Operators

Unary +,-

Binary +o-a%, [

=_~——::=> - ABS
===—==—ofp - REL-ABS

Binary

Context determines whether
+ or — is unary or binary
operator

~A# —_——— A+B
ABSQ/ABSD#15 =—————0p ABSC / ABSD+15
REL+&ABS — REL-ABS

Multiply

%3 INVALID

6 x+3 VALID

iy —
ocation counteri

A/ :x INVALID

— " ABSA + VALID
ABSA + % ABsg INVALID

Context determines whether
an asterisk (%) is the binary
operator for multiplication
or the location counter
reference

two terms is binary

Leftmost operator between)

X'FF' (10 A) INVALID
R i
(=,

fSB'lOl' INVALID

Section C: Assembler Language Structure

59

Evaluation of Expressions

The assembler reduces a multiterm
expression to a single value as
follows:

1. It evaluates each term.

2. It performs arithmetic operations
from left tc right. However:

o a. It performs unary operations
before binary ogerations, and

b. 1t performs the binary
operations of multigplication
and division befcre the binary
operations of addition_ and
Ssubtraction.

3. In division, it gives an integer

result; any fractional portion is
dropped. LCivision by zero gives
0.

4. In parenthesized exrressions,
the assembler evaluates the inner
most expressions first and then
considers them as terms in the next
outer level of expressions. 1€ g
continues this process until the
ontermost expression is evaluated.

5. A term or expression's
intermediate value and computed
result must lie in the range of
~-231 through +231-1,

NOTE:
assemkler evaluates paired
relccatakle terms at each level
of expression nesting.

It is assured that the

60

Value of
Absolute Expressions Expression
A=5
A’l"" X'a' 5%+ 10 t=__$ +50
00
A=10 |A+10/B == 10+10/2 m—uu 15
B=2 (A+10) /B => (10+10) /2320/2 3} 10
A=10 A/2 I=———= 5
10%A/2 == 10*% 1/2=10/2=} 5

A-(X'"FF'%2+B- (C/

Stage 11

Final Evaluation

Part II: Functions and Coding of Machine Instructions

SECTION D: MACHINE INSTRUCTIONS

61

62

Section D: Machine Instructions

This section introduces the main functions of the machine
instructions and provides general rules for coding them

in their symbolic assembler language format. For the
complete specifications of machine instructions, their
object code format, their coding specifications, and their
use of registers and virtual storage (see GLOSSARY) areas
see the Principles of Operation manuals:

e IBM System/360 Principles of Operation, Order No. GA22-
6821

e IBM System/370 Principles of Operation, Order No. GA22-
7000 .

D1 - Functions

At assemkly time, the assembler converts the symbolic
assembler language representation of the machine
instructions to the corresponding object code. It is this
object code that the computer processes at execution time.
Thus, the functions described in this section can be called
execution time functions.

Also at assemkly time, the assembler creates the okbject
code of the data constants and reserves storage for the
areas you specify in your DC and LS assemkler instructions
(see G3) . At execution time, the machine instructions

can refer to these constants and areas, kut the constants
themselves are not executed.

Section D: Machine Instructions 63

C1A ~-- FIXED-POINT ARITHMETIC

Purpose

You use fixed-point instructions
when you wish to perform arithmetic
operations on data represented in
binary form. These instructions
treat all numbers as integers.

If they are to orerate upon data
representing mixed numbers (such

as 3.14 and 0.235) you must keep
track of the decimal point yourself.
For your constants you must prcvide
the necessary number of binary
positions to represent the fractional
portion of the number specified

by using the scale mcdifier (see
G3B) .

Operations Performed

Fixed-point instructions allow you
to perform the operations listed
in the figure to the right.

Data Constants Used

In fixed-point instructions, you
can refer to the constants listed
in the figure to the right.

NOTE: Except for the conversion
operations, fixed-point arithmetic
is performed on signed binary values.

(taking sign into
account)

Fixed - Point Mnemonic
Operations Operation Codes

I Add AR, A, AH, ALR, AL
Subtract SR, S, SH, SLR, SL
Multiply MR, M, MH

i Divide DR, D
Arithmetic Compare CR,C,CH

Load into registers

LR,L,LH, LTR, LCR, LPR, LNR, LM

Store into areas

ST, STH, STM

Arithmetic Shift of
binary contents of
registers to left or
right (retaining

SLA, SRA, SLDA, SRDA

sign)
Convert (packed) CcvB
decimal data to
binary
Convert binary data CVD
to (packed) decimal
data
Constants Used Type
Fixed-Point Hand F
Binary B
Hexadecimal X
Character C

I Decimal (packed) P

Address

Y,A,S,Vand Q

C1B -- CECIMAL ARITEMETIC

Furpose

You use the decimal instructions
when you wish to perform arithmwetic
operaticns cn data that has the
binary equivalent of decimal
representaticn, either in packed

or zoned form. These instructions
treat all nurbers as integers.

For example, 3.14, 31.4, and 314
are all processed as 314. You must
keer track cf the decimal point
yourself.

Operaticns Perfcrred

Deciral instructicns allow you to
perform the operations listed in
the figure tc the right.

LCata Constants Used

In decimal instructions yocu can
refer tc the ccnstants listed in
the figure to the right.

NOTE: Excegt for the ccnversion
operations, decimal arithmetic is
performed on signed packed deciral
values.

r

1 Decimal Mnemonic Operation]
Operations Codes

Add AP

Subtract SP

I Muttiply MP
Divide DP
Arithmetic Compare cp
(taking sign into
account)
Move decimal data MVO
with a 4-bit offset
Shift decimal data SRP
in fields to left or
right
Set a field to zero ZAP
and add contents
of another field
Convert zoned to PACK
packed decimal
data
Convert packed to UNPK
zoned decimal
data
Constants Used Type

Decimal (packed) P
(zoned) z

Section D:

Machine Instructions

65

C1C -- FLOCATING-FOINT ARITHMETIC

66

Furpose

You use floating-point instructions
when you wish to rperfcrm arithmetic
operations on binary data that
represents kcth integers and
fractions. Thus, you do not have

to keer track cof the decimal point
in ycur ccrputaticns. Flcating-
point instructions also allow you
to perfcrm arithretic crerations

on both very large numkers and very
small numbers, with greater precision
than with fixed-point instructions.

Operaticns Perxformed

Floating-pcint instructions allow
you to perform the operations listed
in the figure tc the right.

LCata Constants Used

In floating-point instructions,
you can refer tc the ccnstants
listed in the figure to the right.

NOTE: Flcating-rpcint arithmetic
is performed on signed values that
rust have a special floating-point
forrat. The fracticnal pcrtion

of floating-point numkers, when
used in additicn and subtraction,
can have a normalized (no leading
zercs) cr unncrmalized format.

Floating - Point

Mnemonic Operation

Operations Codes
Add ADR, AD, AER, AE, AWR
o AW, AUR, AU, AXR

Subtract] SDR, SD, SER, SE, SWR,
SW, SUR, SU, SXR

Multiply MDR, MD, MER, ME, MXR,
MXDR,MXD

Divide DDR, DD, DER, DE

Halve HDR, HER

(division by 2)

Arithmetic Compare
{taking sign into
account)

CDR, CD, CER, CE

Load into floating -
point registers

LDR, LD, LER, LE, LTDR,
LTER, LCDR, LCER, LPDR,
LPER,LNDR,LDER,LRDR,
LRER

Store into areas

STD, STE"

Constants Used

Type

Floating - Point

E,D,and L

D1D

== LOGICAL OPERATIONS

Purpose

You can use the logical instructions
to introduce data, move data, or
inspect and change data.

Operations Pexrformed

The logical instructions allow you
to perform the operations listed
in the figure to the right.

Logical Mnemonic Operation
Operations Codes
Move MVI, MVC, MVN, MVZ, MVCL

Logical Compare

CLR,CL,CLI, CLC, CLCL,

{unsigned binary CLM

values)

AND (logical NR, N, NI, NC
multiplication)

OR (logical OR, 0, 01, 0C
addition)

Exclusive OR XR, X, X1, XC
(either........ or,

but not both)

Testing binary ™

bit patterns

Inserting characters IC, ICM

into registers

Store characters STC, STCM
into areas

Load address into LA

register

Logical Shift of
unsigned binary
contents of
registers to left or
right

SLL, SRL, SLDL, SRDL

Replace argument TR, TRT
values by corresponding

function values from

table (translate)

Edit {packed and ED, EDMK

zoned decimal data)
values in preparation
for printing

Section D:

Machine Instructions

67

Cl1E

68

-= BRANCHING

Purpose

You can use several tyrpes of
branching instructions, combined
with the logical instructions listed
in D1D, to code and control loops,
subroutine linkages, and the sequence
of processing.

Operations Performed

The kranching instructions allow
you to perform the operations listed
in the figure to the right.

NOTE: Additional mnemonics for
branching on condition are described
in section C1H below.

Branching
Operations

Mnemonic Operation
Codes

Branch depending
on the results of

the preceding
operation (that

sets the condition
code)

BCR, BC

Branch to a
subroutine with a
return. link to
current code

BALR, BAL

Branch according

to a count con-
tained in a register
{count is decremented
by one before deter-
mining course of
action)

BCTR, BCT

Branch by comparing
index value to fixed
comparand, (index
incremented or de-
cremented before
determining course
of action)

BXH, BXLE

Temporary Branch in
order to execute a

specific machine
instruction

EX

C1F --

STATUS SWITCHING

Purpose

You can use the status switching
instructions to communicate Letween
your program and the system control
program. However, some of these
instructions are privileged
instructions and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the proklem state. The
privileged instructions are marked
with a "p" in the figure to the
right.

Operations Performed

The status switching instructions
allow you to perform the operations
listed in the figure to the right.

Status Switching Mnemonic Operation

Qperations Codes

Load program status information P LPSW

Load sequence of control registers P LCTL

Set bit patterns for condition code SPM
and interrupts for program

Set bit patterns for channel usage P SSM
by system

Set protection key for a block of P SSK
storage

Set time-of -day clock P SCK

Insert protection key for storage P ISK
into a register

Store time-of-day clock STCK

Store identification of channel P STIDC, STIDP
or CPU

Store (save) sequence of control P STCTL
registers

Call supervisor for system SvC
interrupt

Call monitor for interrupts de- MC
pending on contents of
control register

Test bit which is subsequently TS
setto 1

Write or Read directly to or P WRD, RDD
from other CPU’s

B

Set Clock Comparator P SCKC

Store Clock Comparator P STCKC

Set CPU Timer P SPT

Store CPU Timer P STPT

Store Then AND System Mask P STNSM

Store Then OR System Mask P STOSM

Section D: Machine Instructions

69

79

D1G -- INPUT/OUTPUT

Purpose

You can use the input/output
instructions, instead of the IBM-
supplied system macro instructions,
when you wish to control your input
and output operations more closely.

- 7
. Input or Output Mnemonic Operation
Operxrations Ferformed Operations Codes
The input or output instructions
allow you to identify the channel, Start 1/0 SIO, SIOF
or the device on which the input
or output operation is to be Halt 1/0 HIO
pexformed. The operations performed
are listed in the figure to the Test state of channel TIO,TCH
right. However, these are privileged or device being used
instructions, and you can only use i HDV
them when the CPU is in the Halt Device
supervisor state, but not when it e ——

is in the problem state.

Section D: Machine Instructions 71

C1H -- BRANCHING WITH EXTENDED MNEMONIC CODES

Purpose

The branching instructions described below allow you to
specify a mnemonic code for the condition on which a kranch
is to occur. Thus, you avoid having to specify the mask
value required by the BEC and BCR kranching instructionms.
The assembler translates the mnemonic code that represents
the condition into the mask value, which is then assenbled
in the okject code of the machine instruction.

Specifications

The extended mnemonic codes are given in the figure on the
opposite page.

They can be used as operation codes for kranching
0 instructions, replacing the BC and BCR machine instruction
codes. Note that the first operand of the BC and BCR o
o instructions must not be present in the operand field of
the extended mnemonic branching instructions.

NOTE: The addresses represented are explicit addresses;
however, implicit addresses can also be used in this type
of instruction.

Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent

B \Dz(XZ,BZ) } Unconditional Branch RX BC 15,D2(X2,B2)
BR R2 RR BCR 15,R2
NOP D2(X2,B2) No Operation RX BC 0,D2(X2,B2)
NOPR R2 } RR BCR 0,R2

Used After Compare Instructions
BH D2 (X2,B2) } Branch on High RX BC 2,D2(X2,B2)
BHR R2 RR BCR 2,R2
BL D2 (X2,B2) } Branch on Low RX BC 4,D2(X2,B2)
BLR R2 RR BCR 4,R2
BE D2 (X2,B2) } Branch on Equal RX BC 8,D2(X2,B2)
BER R2 RR BCR 8,R2
BNH D2(X2,B2)] Branch on Not High RX BC 13,D2(X2,B2)
BNHR R2 RR BCR 13,R2
BNL R2(X2,B2) } Branch on Not Low RX BC 11,D2(X2,B2)
BNLR R2 RR BCR 11,R2
BNE D2(X2,B2)] Branch on Not Equal RX BC 7,D2(X2,B2)
BNER R2 RR BCR 7,R2

Used After Arithmetic Instructions
BO D2 (X2,B2) } Branch on Overflow RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BP D2(X2,B2) } Branch on Plus RX BC 2,D2(X2,B2)
BPR R2 RR BCR 2,R2
BM D2(X2,B2) Branch on Minus RX BC 4,D2(X2,B2)
BMR R2 } RR BCR 4,R2
BNP D2(X2,B2) Branch on Not Plus RX BC 13,D2(X2,B2)
BNPR R2 } RR BCR 13,R2
BNM D2(X2,B2)] Branch on Not Minus RX BC 11,D2(X2,B2)
BNMR R2 RR BCR 11,R2
BNZ D2 (X2,B2) Branch on Not Zero RX BC 7,D2(X2,B2)
BNZR R2 } RR BCR 7,R2
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2

Used After Test Under Mask Instructions
BO D2(X2,B2) } Branch if Ones RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BM D2(X2,B2)] Branch if Mixed RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BZ D2(X2,B2) Branch if Zeros RX BC 8,D2(X2,B2)
BZR R2 } RR BCR 8,R2
BNO D2(X2,B2) Branch if Not Ones RX BC 14,D2(X2,B2)
BNOR R2 } RR BCR 14,R2

D2=displacement,X2=index register,B;=base register ,R2=register containing
branch address

Section D:

Machine Instructions

73

D11 -- RELOCATION HANLLING

74

PUI'QOSG

You use the relocation instructions
in connnection with the relocate
feature of IBM System/370.

Operations Performed

The relocation instructions allow
you to perform the operations listed
in the figure to the right. However,
these instructions are privileged
instructions, and you can use them
only when the CPU is in the
supervisor state, but not when it

is in the proklem state.

—

Relocation Mnemonic Operation
Operations Code
Load Real Address LRA
Purge Translation

Lookaside Buffer PTLB
Reset Reference Bit RRB
Set Clock Comparator SCKC
Store Clock Comparator STCKC
Set CP U Timer SPT
Store CPU Timer STPT
Store and AND System STNSM
Mask

Store and OR Systevm STOSM

Mask

D2 - Alignment

Alignment

Pur pose

The assemkler automatically aligns the object code of all
machine instructions on halfword koundaries. For executicn
of the IBM System/370 machines, the constants and areas

do not have to lie on specific koundaries to be addressed
ky the machine instructions.

However, if the assembler option ALIGN is set, you can
cause the assembler to align constants and areas; for
example, on fullword boundaries. This allows faster
execution of the fullwcrd machine instructions.

1f the NOALIGN option is set, you do not need to align
constants and areas. They will ke assemkled at the next
available byte, which allows you to save space (no bytes
are skipped for alignment).

Section D: Machine Instructions 75

76

Specifications

MACHINE INSTRUCTIONS: When the

assembler aligns machine instructions

on halfword boundaries, it sets
oany bytes skipped to zero.

CONSTANTS AND AREAS: One of the
assemkler options that can be set

in the job control language (that
initiates execution cf the assemblerx
program) concerns the alignment

of constants and areas; it can

be specified as ALIGN or NOALIGN.

I1f ALIGN is specified, the following
applies:

o ® The assermbler aligns ccnstants

and areas on the boundaries implicit
in their type, if no length
specification is sugglied.

» The assembler checks all

o expressions that rerresent storage
addresses to ensure that they are
aligned on the boundaries required
by the instructions. If they are
not, the assembler issues a warning
message.

If NCALIGN is specified, the
following applies:

® The assembler does not align

CD constants and areas on special
boundaries, even if the length
specification is cmitted. Note
that the CCW instruction, however,
always causes the alignment of the
channel command word on a doubleword
kroundary.

e The assembler does not check
@storage addresses for boundary
alignment.

NOTE 1: The assembler always forces
alignment if a duplication factor

of 0 is specified in a constant

or area without a length modifier
(for an example, see G3N). Alignment
occurs when either ALIGN or NOALIGN
is set.

Source Statements

ALGN
Specified

L 3,AREA

A 3,CONS

/e\ Boundary
AREA DS F XXXXXKXXX

q
Object Code

Half Word
Boundary

[00[58] 30] mxx
AREA
B

CONST

Full Word

1

CONST DC F'200' [000000C8
|
NOALGN Half Word
Specified Boundary
L 3,AREA 58
AREA
A 3,CONST C- 5A
CONST
Can be on anyj
boundary
AREA DS F XXXXXXXXFt
Equiv,
DS FL4
CONST DC F'200' Q 000000C8|
pC FL4'200 ‘{Eauiv.
. |

NOTE 2: When NOALIGN is srecified,
the CNOF assembler instruction can
ke used to ensure the correct
alignment of data referred to Ly
the privileged instructions that
require specific boundary alignment.
The mnernonic operaticn codes for
these instructions are listed in
the figure to the right.

Mnemonic Operation Codes
for Privileged Operations

Meaning

LPSW

ISK

SSK

LCTL

SCK

STIDP

STCTL

Load program status word.

Insert Storage Key.

Set Storage Key.

l.oad Control registers.

Set Clock.

Store CPU Identification

Store Control registers.

(Diagnose - not handled by assembler)

Section D: Machine Instructions 77

D3 -- Statement Formats

Machine instructicns are assembled
into object code according to one
of the six formats given in the
figure to the right.

When you code machine instructions
you use symbolic formats that
correspond to the actual machine
language formats. Within each kasic
format, you can also ccde variations
of the symbolic representation
(Examples of coded mwachine
instructions, divided into groups
according to the six basic formats,
are illustrated in L[6 below).

The assembler converts only the
cgaeration code and the operand
entries of the assembler language
statement into object code. The
assemkler assigns tc the symbol
o you code as a name entry the value
of the address of the leftmost
Obxte of the assembled instruction.
When you use this same symbol in
the operand of an assembler language
statement, the asserbler uses this

address value in converting the
o symbolic operand intc its object

code form. The length attribute
assigned to the symbcl derends on
the basic machine language format

of the instruction in which the
symbol appears as a name entry

(for details on the length attribute
see CUC) .

A remarks entry is nct converted
into object code.

78

Format Length of Object Code
Reguired for the Assembled
Instruction in Bytes
RR 2
RX 4 o (L'LABEL=4)
RS 4
SI 4
S 4
SSs 6
Example:

Assembler Language Statement

LABEL L 4,256(5,10)

Wo 5 84|

51al1 0 Ol

RX Format
e
Operation Register Storage
Code Operand Operand
I 4 bytes ————I

Object Code

(machine language) ot
Assembled Instruction
in Hex

D4 -~ Mnemonic Operation Codes

Furpose

You nmust specify an cperation code
for each machine instruction
statement. The mnercnic cperation
code indicates the type of operaticn
to be rperfcrred; fcr examrgle, "A"
indicates the "addition" operaticn.
Appendix IV ccntains a corplete

list of mnemonic operation codes

and the fcrmats of the corresgonding
machine instructions.

R

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT]

Examples:
Specificaticns

The general format of the machine
instructicn creraticn ccde is shown
in the figure to the right.

0 The verkt must always be present.
It usually consists of one or two
characters and srecifies the
operation to ke performed. The
other items in the creration code
are not always present. They
include:

3, BINAREA

0

normalized short
‘fI oating-point

AD

sl

o e The modifier which further defines
the creraticn

e The type qualifier, which
indicates the type of data used

ky the instructicn in its operation,
and

normalized long
floating-point

0 e The fcrmat qualifier, R crxr I,
which indicates that an RR or SI
nachine instruction fcrrat is

assemkled.

Section D: Machine Instructions 79

D5 - Operand Entries

80

Furpose

You nust specify cne cr mcre orerands
in each machine instruction statement
to prcvide the data cr the location
of the data upon which the machine
operation is to be rerfcrmed. The
operand entries consist of one or
more fields cr subfields depending

on the format of the instruction
keing ccded. They can specify a
register, an address, a length,

and irmediate data.

You c¢an code an operand entry either
with symkcls cr with self-defining
terms. You can omit length fields
or sukfields, which the assembler
will compute for you from the other
operand entries.

General Specifications for Coding
Operand Entries

The rules for coding operand entries
are as fcllcws:

0A comma must separate operands.

efarentheses rust enclcse subfields.

A connra nust separate subfields
enclosed in parentheses.

If a sukfield is critted because
it is in implicit in a symkclic
address, the rentheses that would
have enclosed the sukfield rrust

ke cmitted.

LM

MVI

Mve

mvc

Mvi

Mvi

TO (80), FROM

0 (80,6), 240(8)

o

KEY, C'F’

Implicit
Address
See D6B

If twc sukfields are enclcsed in
parentheses and separated Lty conras,
the fcllcowing argrlies:

If both subfields are omitted kecause
they are irplicit in a symbclic
entry, the separating comma and

the rarentheses that wculd have

been needed must also ke omitted.

If the first subfield is cmitted,

the comma that separates it fron

the second sukfield must be written
as well as the enclosing parentheses.

If the seccnd subfield is omitted,
the comma that separates it from
the first subfield nust be omitted,
however, the enclosing parentheses
nmust ke written.

NOTE: Elanks must not appear within
the crerand field, excegt as part
of a character self-defining tern
or in the sgecificaticn cf a
o character literal.

MVC

MVC

MvC

MVC

MvC

o |

2,48(4,5)

e e

2,FIELD

- ~[I1mplicit
Address
See D5B

2,4844,5)

Index Register
2,48(;5) is omitted

/ o Length
32(,10),40(10) |Specification
-

is omitted

32(8,10) ,40(10)

32(16,6) ,48(6)

TO(16) ,FROM

Base Register
implicit in symbolic
address TO

32(c',',5),=CL64'A B'

Section D: Machine Instructions

81

D52 -- REGISTERS,

82

Purpose and Usage

You can specify a register in an
operand for use as an arithmetic
accumulator, a base register, an
index register, and as a general
depository for data to which you
wish to refer over and over.

You must be careful when specifying
a register ‘whose contents have been
affected by the execution of another
machine instruction, the control
program, or an IBEM-supplied system
macrc instruction.

For some machine instructions you

are limited in which registers you
can specify in an operand.

Specifications

The expressions used to specify
registers must have absolute values;
in general, registers 0 through

15 can be specified for machine
instructions. However, the following
restrictions on register usage

apply:

1. The floating-point registers
(0, 2, 4, or 6) must be specified
for floating-point instructions:

2. The even numbered registers (0,
2, 4, 6, 8, 10, 12, 14) must be
specified for the following groups
of instructions:

a. The double-shift instructions

b. The fullword multiply and
divide instructions

c. The move long and compare
logical long instructions.

3. The floating-point registers
0 and 4 must be specified for the
instructions that use extended
floating-point data:

AXR, SXR, LRDR, MXR, MXDR, MXL.

NOTE: The assembler checks the
registers specified in the
instruction statements of the above
groups. If the specified register
does not comply with the stated
restrictions, the assembler issues
a diagnostic message and does not
assemkle the instruction.

Registers

Operation Code Register Operqu
Examples: L ﬁ;AREA
0

LE 4, FLTAREA
SLDA
SRDA

o SLDL
SRDL 3
M MULTIP

o D DIVIDER
MVCL Both register operands

must be even-numbered

CLCL

QO =

REGISTER USAGE BY MACHINE
INSTRUCTIONS : Registers that are Source Module Object Code

not explicitly coded in the symbolic
assembler language representation

of machine instructions, but are
nevertheless used by the assemkled
machine instructions, are divided
into two categories:

in Hex

START 0

BALR 12,0

1. The base registers that are

implicit in the symbolic addresses

specified. These implicit addresses USING x,12 0

are described in detail in D5B.

The registers can be identified

by examining the object code of

the assembled machine instruction
OOr the USING instruction(s) that

assigns base registers for the

source module.

Implicit
Address

L 3,FIELD [58]3]0]c|xxx]

2. The registers that are used by
machine instructions in their

operations, but do not appear even Reaister
in the asserbled object ccde. They .eT“a d
are as follows: ' o fs a'so use

a. For the double shift and .

fullword multiply and divide M 4,TWO [5cT4]o]c|xxx]
o instructions, the odd-numbered

register whose number is one

greater than the even-numbered

register specified as the first MvCL il Oz {46

operand.

b. For the Move Long and Compare
Logical Long instructions, the

o odd-numbered registers whose
number is one greater than the
even numbered registers specified
in the two operands.

Register 5 and 7
are also used

BXH 3,4,ADRESS {86 [3[4]cC [xxx]
c. For the Branch on Index High L
(BXH) and the Branch on Index
Low or Egqual (BXLE) instructions;
if the register specified for e Register 5
the second operand is an even- is also used

o numbered register, the next

higher odd-numbered register
is used to contain the value

to be used for comparison. o

Registers 1 and 2
are also used

TRT ARGUMENT (10), TABLE

d. For the Translate and Test

(IRT) instruction, registers
o 1 and 2 are also used. [DD]09 [CTxxx [Cxxx]

e. For the Load Multiple (LM)
and Store Multirple (STM) LM
instructions, the registers that

0 lie between the registers
specified in the first two
operands.

1981317 |c]xxx]|

REGISTER USAGE BY SYSTEM: The
contxrol program of the IBM System/370
uses registers 0, 1, 13, 14, and A— ———
15.

Section D: Machine Instructions 83

DSE_-- ADDRESSES.

84

Purpose and Definiticn

You can ccde a symbol in the name
field of a machine instruction
statement to represent the address
of that instruction. You can then
refer to the symbol in the operands
of other machine instruction
statements. The object code for
the 1IBM System/370 requires that
all addresses be assembled in a
numeric kase-displacement format.
This format allows you to specify
addresses that are relocatakle or
absolute.

You must not confuse the concept

of relocatakility with the actual
addresses that are coded as
relocatable, nor with the format

of the addresses that are assemkled.

DEFINING SYMBOLIC ADDRESSES: You

define symbols to represent either
relocatable or absolute addresses.
You can define relocatable addresses
in two ways:

0 By using a symbol as the label in
the name field of an assembler
language statement crxr

o By equating a symbol to a relocatakle
expression.

You can define absolute addresses
(or values) by equating a symbcl
to an absolute expression.

REFERRING TC ADDRESSES: You can

refexr to relocatable and absolute
addresses in the operands of machine
instruction statements. Such address
references are also called addresses
in this manual. The two ways of
coding addresses are:

o Implicitly: that is, in a form
that the assembler must first convert
into an explicit base-displacement
form before it can be assemkled
into object code.

eExglicitllz that is, in a form
that can be directly assembled into

object code.

—

Symbolic
Addresses
(Defined)

mm—

Address

References
DC 3r'370"
EQU AREA+4
L 3 ,AREA.

Relocatable
L 4, E‘ULLWQW Addresses
L
B
EQU 1000
LA Absolute
r Addresses

LA
LA

Relocatability of Addresses

Source Module Object Code

Addresses in the base-displacement in Hex

form are relocatable, because:

START 0
Base Address

e Each relocatable address is - BALR 12,0
assembled as a displacement from USING %,12
a base address and a base register. :

X’'C58

e The base register contains the

Lase address.

MVC TO(80) FROM D2 4 F|C C08 C C58
e If the okject module assembled |_Base Address |

from your source module is relocated, Base Register (12)

only the contents of the base .

register need reflect this . Dmmmmmem
relocation. This means that the
location in virtual storage of your ¥ -
hase has changed and that your base jL?TO DS CL80 Register O as a base

register must contain this new base FROM DS CL240 register is always
address. considered to contain

the absolute address

e Your addresses have been assembled . location 0
as relative to the base address; '
therefore, the sum of the d
displacement and the contents of LA 3,1024 (41]3]ofoJ400
the Lkase register will roint to = [o
the correct address after relocation. F .

Displacement = X'C08’

Displacement

NOTE: Absolute addresses are also
assembled in the base-displacement
form, but always indicate a fixed
location in virtual storage. This END Base 1 L:
means that the contents o% the base Register Displacement
register must always be a fixed
absolute address value regardless
of relocation.

Section D: Machine Instructions 85

Specifications

Addresses

MACHINE OR OBJECT COTE FORMAT: All addresses asserbled
into the object code of the IBM System/370 machine
instructions have the format given in the figure kelow.

Format Coded or Symbolic Object Code
Representation of : Representation
Explicit Addresses of Addresses
'8 bits 4 bits | 4 bits| 4 bits| 12 bits 4 bits| 12 bits
Operation Base | Displacement | Base | Displacement
Code Reg- Reg-

ister ister

OP CODE: R1

.

RS D2 (B2)

-

sI | p1(B1) I

ss | p1(,Bl),D2(B2) fol

RX | D2(X2,D2) (0P CODE

Index
Register

S D1(B1l)

R1 and R3 represent registers
12 represents.an immediate value
L represents a length value

The addresses represented have a value which is the sum
of :

0 e A displacement and

o e The contents of a base register.

NOTE: In RX instructions, the address represented has
a value which is the sum of a displacement, the contents
00f a base register, and the contents of an index register.

86

Implicit Address

An implicit address is specified
by coding one expressicn. The
expression can be relocatable or
absolute. The assembler converts
all implicit addresses into their
kase-displacement form before it
assembles them into object code.
The assembler converts imgplicit
addresses into explicit addresses
only if a USING instruction has
been specified. The USING
instruction assigns both a base
address, from which the assemkler
computes displacements, and a base
register, to contain the Lase
address. The base register must
be loaded with the ccrrect base
address at execution time. For
details on how the USING instruction
is used when establishing
addressability, thus allowing
implicit references, see F1.

Explicit Address

An explicit address is specified
by coding two absolute expressions
as follows:

The first is an absolute expression
for the displacement, whose value
must lie in the range 0 through
4095 (4095 is the maximum value
that can be represented by the 12
binary bits available for the
displacement in the object code).

The second (enclosed in parentheses)
is an absolute expression for the
kase register, whose value must

lie in the range 0 through 15.

If the base register contains a

value that changes when the program
is relocated, the assembled address
is relocatakle. If the base register
contains a fixed absolute value

that is unaffected by program
relocation, the assembled address

is aksolute.

NOTES (for implicit and explicit
addresses) :

1. An explicit base register
designation must not accompany an
implicit address.

2. However, in RX instructions an
index register can be coded with

an implicit address as well as with
an exrlicit address.

3. When two addresses are required,
one address can be coded as an
explicit address and the other as
an implicit address.

Source Module Object Code
in Hex
START O
BALR 12,0
USING x%,12

]58]3|0|C|x§¥|

L
AREA Ds F Base Register] Displacement
LA u;l4lo:o]éﬁ§]

) / N\

Always used as
base register for
END absolute address

between 0 and
4095

Displacement

LA 4,X'400' (,10)

MVC 0(80,10),F

Source Statement Object Code

in Hex

41]4J0]aT400]

Address

(4) (58[3]4]cxxx]

4

3,256(4,12)

Explicit
L Address

”

(58[3[4]c]100]

Section D:

Machine Instructions

87

D5C _-- LENGTHS

Purpose

You can specify the length field in an SS-type instruction.
This allows you to indicate explicitly the number of bytes
of data at a virtual storage location that is to be used

bty the instruction. However, you can omit the length
specification, because the assembler computes the numker
of bytes of data.to be used from the expression that
represents the address of the data.

Specifications

IMPLICIT LENGTH: When a length subfield is omitted from
an SS-type machine instruction an implicit length is
assemkled into the object code of the instruction. The
implicit length is either of the following:

1. For an implicit address (see DSB above), it is the
length attribute of the first or only term in the expression
representing the implicit address.

2. For an explicit address (see D5B above), it is the
length attribute of the first or only term in the expression
that represents the displacement.

For details on the length attribute of symktols and other
terms see CUC.

EXPLICIT LENGTH: When a length sukfield is specified in
an SS-type machine instruction, the exrlicit length thus
defined always overrides the implicit length.

NOTES:

1. An implicit or exrlicit length is the effective length.
The length value assembled is always one less than the
effective length. If an assembled length value of 0 is
desired, an explicit length of 0 or 1 can ke specified.

2. In the SS instructicns requiring one length value, the
allowable range for explicit lengths is 0 through 256.

In the SS instructions requiring two length values, the
allowable range for explicit lengths is 0 through 16.

88

Assembler
Language
Statement

Length Attribute
of term (symbols)

Object Code
in Hex

L= Length Value

Implicit Lengths
MVC TO,FROM

MVC TO+80,FROM

AP AREA, TWO

MVC /0(,10) ,80(10)

MVC FROM-TO(,10),80 (10)

* Address
L TO FROM

|D2|4lexxx|xxxx]

| D2 rﬁ“lxxxxlxxxx]
L1 L2

[FAl 7[3| xxxxl xxxxl

L'FROM =240
L]

L

[D2To00]a000[a050]
S —— |

L
[D2]eF[acaofaoso]

Explicit Lengths

MVC

MVC 0¢80,10),80(10)

Address
TO FROM

[D2>| 9F] xxxx | xxxx|

L

[D2]4F[A000]A050]

r
CLC 0(1,10),256(10)

¥
[Dp5Joo]Jaoo0]a100]

r
CLC 0(0,10),256(10)

v
|p5foojacoofaloo]

TO DS CL80
FROM DS CL240
AREA DS PL8
TWO DC PL4'2'

Section D:

Lengths

Machine Instructions

D5D -- IMMEDIATE CATA

PUI'EOSS

In addition to addresses, registers, and lengths, some
machine instruction operands require immediate data. Such
data is assembled directly into the object code of the
machine instructions. You use immediate data to specify
the bit patterns for masks or other absolute values you
need.

You should ke careful to specify immediate data only where
it is required. TLo not confuse it with address references
to constants and areas or with any literals you specify

as the operands of machine instruction (for a compariscn
between constants, literals, and immediate data, see C5).

Specifications

Immediate data must be specified as absolute expressions
whose range of values depends on the machine instructicn
for which the data is required. The immediate data is

0 assembled into its 4-bit or 8-bit kinary representaticn o
according to the figure on the orposite page.

90

Immed. Data

Machine Instructions Range of Values Examples Object Code
in which immediate allowed for in Hex
data is required immediate data
(Op codes in
Appendix V)
SRP (ss) 0 through 9 SRP A,B, 3,/6)
lFO|7l3lxxxx1xxx§1
N
A B
Length of Addresses
Field A
. @
All BCR (RR) 0 through 15 BCR 8,3 07 3
All BC (RX) 0 through 15
Bc 11,AAA [47]B]0]w0m
L o
AAA
Address
Py
ICcM (RS) 0 through 15 STCM 3,X'F',BBB |BE|3|F|xxxx|
STCM ———
CLM BBB
Address
Address
0‘ sLoT
NI (s1) 0 through 255
CLT
XTI Flme,
uv
oI
™ Address
RDD KEY
WRD
svC (RR) 0 through 255

[0]80]

Section D: Machine Instructions

91

D6 - Examples of Coded Machine Instructions

92

The examples in this suksection

are grouged according to machine
instruction format. They illustrate
the varicus ways in which you can
code the operands of machine
instructions. Both symbolic and
numeric representation of fields

and subfields are shcwn in the
examples. You must therefore assume
that all symbcls used are defined
elsewhere in the same source module.

The okject ccde assembled from at
least one coded statement per group
is also included. A ccmplete summary
of machine instruction formats with
the ccded assembler language variants
can be found in Appendix I1I1 and

Iv.

RR_Format

You use the instructicns with the

RR format mainly to move data ketween
registers. The operand fields must
thus designate registers, with the
following exceptions:

In BCR branching instructions when
a 4-kit branching mask rerlaces
the first register specification

In SVC instructions, where an
immediate value (between 0 and 255)

replaces both registers.

NOTE: Symbcls used in RR
instructions are assumed to be
equated to absolute values ketween
0 and 15.

Name Operation Operand
ALPHAL LR 1,2
ALPHA2 LR INDE< , R§2
3
GAMMA1 BCR ©O: 2
DELTAl sSvC g 0
DELTA2 SVC TE&

Assembly Examples:

Assembler Language Statement

ALPHAL LR 1,2

RR Format

Object Code of
Machine Instruction
in Hex

- -

1|2 J

Operation|
Code

Register
Operands

2 bytes

RX Format

You use the instructions with the

RX format mainly to move data between
a register and virtual storage.

By adjusting the contents of the
index register in the RX-instructions
you can change the location in
virtual storage being addressed.

The operand fields must therefore
designate registers, including index
registers, and virtual storage
addresses, with the following
exception:

In BC branching instructicns a 4-
kit kranching mask, with a value
between 0 and 15, replaces the first
register specification.

NOTES :

1. Symbols used tc represent
registers are assumed to be equated
to absolute values between 0 and
15.

2. Symbols used to rerresent implicit
addresses can be either relocatakle
or aksolute.

3. Symbols used to represent
displacements in explicit addresses
are assumed to be equated to absolute
values between 0 and 409S.

Name Operation Operand 1

ALPHA1 L 1,200(4,10)
ALPHA2 L REG1,200 (INDEX , BASE)

\ ’///
BETAL L 2,200(,10)
BETA2 L REG2 ,D&PL (TBASE) INo Indexingl
GAMMA1 L 3, IMPLICIT 0
GAMMA2 L 3, IMPLICIT (INDEX)

Literal Specification

DELTAL L 4,88 See C5
LAMDA1 BC | 7,DISPL(,BASE)
LAMDA2 BC '%N ADDRESS

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instructionf

in Hex

ALPHAL L 1,200(4,10

5 8[114(A]0 Cc 8
Operation| Registers Displacement
RX Format Code R1 %g Base from Base
£
5 8|24 (XX X X
GAMMAl L 2,IMPLICIT(4)

Section D: Machine Instructions 93

94

RS_Format

You use the instructions with the

RS format mainly to move data between
one Or more registers and virtual
storage or to compare data in one

or more registers (see the BXH and
BXLE operations in Appendix IV).

In the Insert Characters under Mask
(ICM) and the Store Characters Under
Mask (STCM) instructions, when a
4-bit mask, with a value between

0 and 15, replaces the second
register specification.

NOTES:

1. Symbols used to rerresent
registers are assumed to be equated
to aksolute values between 0 and
15.

2. Symbols used to represent implicit
addresses can be either relocatatle
or aksolute.

3. Symbols used to represent
displacements in explicit addresses
are assumed to be equated to aksolute
values between 0 and 4095,

Name Operation Operand
ALPHAL LM 4,6,20(12)
ALPHA2 LM REG4 ,REG6,20 (BASE)
\\\o/
BETAL STM 4,6,arEr)
BETA2 STM 4,6 ,DISPL(BASE)
GAMMA1 SLL 2,15
GAMMA 2 SLL 2,0(15)
DELTAL IcM
DELTA2 IcM 0

Assembly Examples:

Assembler Language Statement

ALPHAl

RS Format

DELTAl

LM 4,6,?9(12)

IcCM 3,X'E'

Object Code of
Machine Instruction
In Hex

ﬂ

o i Registérs Displacement
peration is|
" |Code R1 %? Base! from Base
M3
B F {3 |E (A |4 O

,1024(10)

SI Format

You use the instructicns with the

SI format mainly to move immediate
data into virtual stcrage. The
operand fields must therefore
designate irmediate data and virtual
storage addresses, with the following
exception:

An immediate field is not needed
in the statements whose oreration
codes are: LPSW, SSM, TS, TCH, and
TIO.

NOTES:

1. Symbols used to rerresent
immediate data are assumed to be
equated to absolute values between
0 and 255.

2. Symbols used to represent implicit
addresses can be either relocatable
or absolute.

3. Symbols used to rerresent
displacements in explicit addresses
are assumed to be equated to absolute
values between 0 and 4095.

| Name Operation Operand
ALPHAL CLI 40(9) ,X'40"
ALPHA2 CLI ODISPIAO (NINE) ,m-;.xé.o_,
BETAL CLI o\IMPLICIT , l:t;m/o
BETA2 CLI \KEY,C'E'
0 GAMMA1 LPSW 0(9)
GAMMA2 LPSW NEWSTATE __ e

Assembly Examples:

Assembler Language Statement

ALPHAl

S| Format

Object Code of

Machine Instruction

In Hex

9 5}4 0|90 2 8
Operation |Immediate .
Code Data Displacement

3%
& 2| from Base
o

Section D:

Machine Instructions 95

96

S _Format

You use the instructions with the
S format to perform 1/0 and other
system operations and not to move
data in virtual storage.

The operation codes for these
instructions are given in the figure
to the right. They are assembled
into two bytes.

Mnemonic Assembled Description
Operation Operation
Codes Code in
Hex
SI0 9C00 Start 1/0
SIOF 9Co1 Start 1/0 fast
release
HIO 9E00 Halt 1/O
HDV 9EO01 Halt Device H
STIDP B202 Store CPU ID
STIDC B203 Store Channel ,
ID
SCK B204 Set Clock
STCK B205 Store Clock
SCKC B206 Set Clock Comparator 7
STCKC B207 Store Clock Comparator
SPT B208 Set CPU Timer
STPT B209 Store CPU Timer
PTLB B20D Purge Translation
Lookaside Buffer
RRB B213 Reset: Reference Bit

SS _Format

You use the instructions with the

SS format mainly to move data between
two virtual storage locations.

The operand fields and subfields
must therefore designate virtual
storage addresses and the explicit
data lengths you wish to include.
However, note the following
exception:

In the Shift and Round Cecimal (SRP)
instruction a #4-bit irmediate data
field, with a value between 0 and
9, is specified as a third operand.

NOTES:

1. Symbols used to represent Lase
registers in explicit addresses

are assumed to be equated to aksolute
values between 0 and 15.

. Symbols used to represent explicit
lengths are assumed to be eguated
to absolute values between 0 and

256 for SS instructions with one
length specification and Lketween
0 and 16 for SS instructicns with
two length specifications.

3. Symbols used to rerresent implicit
addresses can be either relocatakle
or aksolute.

4. Symbols used to represent
displacements in explicit addresses
are assumed to be equated to aksolute
values between 0 and 4095.

I Name Operation Operand 1
ALPHAl AP 40(9,8),30(6,7)
ALPHA2 AP 40 (NINE,BASE8) ,30(STX,BASE7)
~eo—o
ALPHA3 AP FIELD1,FIELD2 o
_—
ALPHA4 AP AREA(9) ,AREA2(6)
ALPHAS AP DISP40(,8) ,DISP30(,7)
BETA1 mvc | 0(80,8),0(7)
BETA2 MVC DISPO(,8) ,DISPO(7)
BETA3 MVC TO,FROM a
SRP | FIELD1,X'8', 3
S0
Assembly Examples: 1
Assembler Language Statement Object Code of
Machine Instruction
in Hex

ALPHAl AP 40(9,8),30(6,7) .

F A|8)]5|8|0 2 8|7|0 1 E

Lengths

SS Format |[Operation| L1 L2 |Base| Displacement |Base| Displacement

Code L 1 | from Base 1 2 | from Base 2

D 710 0 O

BETAL MVC 0(80,8),0(7)

Section D: Machine Instructions 97

98

Part III: Functions of Assembler Instructions

SECTION E: PROGRAM SECTIONING
SECTION F: ADDRESSING
SECTION G: SYMBOL AND DATA DEFINITION

SECTION H: CONTROLLING THE ASSEMBLER PROGRAM

99

100

Section E: Program Sectioning

This section explains how you can
subdivide a large program into
smaller parts that are easier to
understand and maintain. It also
explains how you can divide these
smaller parts into convenient
sections: for example, one section
to contain your executable
instructions and anothexr section
to contain your data ccnstants and
areas.

You should consider two different
subdivisions when writing an
assemkler language program:

1. The source module
2. The control section.

You can divide a program into two

or more source modules. Each source
module is assembled into a serparate
object module. The object modules
can then ke combined into load
modules to form an executable

o program.

You can also divide a source module
into two or more control sections.
Fach control section is assembled
as part of an object module. By
writing the proper linkage edit
control statements, you can select

ea complete object module or any
individual control section of the
object module to be linkage edited
and later loaded as an executable
program.

SIZE OF PROGRAM PARTS: If a source
module becomes so large that its
logic is not easily comprehensible,
break it up into smaller modules.

Unless you have special programming
reasons, you should write each
control section so that the resulting
object code is not larger than 4096
bytes. This is the largest numker

of bytes that can be ccvered by

one base register (for the assignment
of base registers to control
sections, see F12).

COMMUNICATION BETWEEN PROGRAM PARTS:
You must be able to communicate
ketween the parts of your program:
‘that is, be akle to refer to data
in a different part or be akle to
branch to another rart.

Assembly Program H
Time Fetch
O © e
Source Obiject
Modules Modules
A A
END
B B
Source @ 0
Program END Executable
Program
C C
END
Assembly Linkage Program
Time Edit Fetch
Time Time
Source Control Object
Modules Sections Modules
A A
1 ‘n' 1
e Nt
2
B{[3 3
4
Source 4 4 Executable
Program program
5 5 6
Clle 6

Section E:

Program Sectioning 101

To communicate between two or more
source modules, ycu must symbolically
link them together; symbolic linkage
is described in F2.

To communicate between two or more
control sections within a source
module, you must establish the
addressability of each control
section; establishing addressability
is descriked in F1.

Source Mod.

El -- The Source Module

A source module is composed of Punched cards
source statements in the assemkler Library
language. You can include these
statements in the source module
in two ways: or

1. .You write them on a coding form
and then enter them as input, for
example, through a terminal or,
using punched cards, through a card

reader. 0 o

2. You specify one cr more COPY direct
instructions among the source
statements being entered. When
the assemkler encounters a COPY
instruction, it replaces the CCPY
instruction with a predetermined

copied
input input

set of source statements from a The
elibrarz. These statements then Assembler
ecome a part of the source module. Program

The Beginning of a Scurce Module

The first statement of a source
module can ke any asserbler language
statement, except MEXIT and MENLC,
that is described in this manual.
You can initiate the first control
section of a source rodule by using
the START instruction. However,

you can or must write some source

statements before the beginning Source Module
of the first contreol section (for

a list of these statements see E2L).

START

The End of a Source Mcdule

08 :

~anty ‘The END instruction usually marks

M9 the end of a source module. However,

W you can code several ENC
instructions. The assembler stops
assembling when it processes the
first END instruction. If no END
instruction is found, the assembler
wil)l generate one.

END

A

0

Statements here are
processed as comments
statements if the
LIBMAC option is

set (see JBA)

END

102

& bly proces
hich of several END

es not ;;rocess any
follows the END

E1A -- THE COFY INSTRUCTICN

COPY

Purgose

The CCPY instruction allows you
to copy predefined source statements
from a library and include them

in a sQurce module. Ycu thereby
avoid:

1. Writing the same, often-used
sequence of code over and over

2. Keypunching and handling the
punched cards for that code.

Source Statement

COPY EQUATES |+

| Equates I

END

First Input
to Assembler
Program

START O START

Source Module

Effective
Input to
Assembler
Program

Section E:

Program Sectioning 103

Specifications

Name Operation Operand
The format of the COPY instruction) One ordinary

statemen@ is shown in the figure Blank copY Symbol
to the right.

The symbol in the operand field
must identify a part of a library

called:
A memker of a partitioned data
Ay F Source Module 0 Library
. N)) (Partitioned
. hos A book in"‘lthe‘ source ,atatement o ':99'" 10 ‘;‘é"“"ue e“7d1 Columns data set)

library

This member (or bock) ccntains the

; COPY MAC1
coded source statements to be copied. [S o
The source coding that is coried

into a source module: o

e 1Is inserted immediately after
the CCPY instruction

e 1Is inserted and rrccessed

according to the standard instruction OPEN START
ostatement coding format (described ’

in B1D) , even if an ICTL instruction L

has Leen specified

COPY CODEl

e Must not contain either an ICTL
or ISEQ instruction

e e Can contain a COPY instruction.
Up to 5 levels of nesting of the
COPY instruction are allowed.

. Up to 3 1

vels of nesting are =
lowed. S Dbt 200

° e Can contain macro definitions
(see Section J).

If a source macro definition is
copied into the beginning of a
source mcdule, both the MACRO and
MEND statements that delimit the
definition must be contained in
the same level of copied code.

NOTES :

1. The COPY instruction can also
be used to copy statements into
source macro definitions (see JSC).

END

occurrence of assembler language
statements in a source module
also govern the statements copied
into the source module.

2. The rules that govern the L

104

E1B -- THE END INSTRUCTION

Purpose

You use the END instruction to mark
the end of a source module. It
indicates tc the assembler where

to stop assembly processing. You
can also supply an address in the
operand field to which control can
be passed when your program is
loaded. This is usually the address
of the first executable instruction
in a source module.

Specifications

The format of the ENL instruction
statement is shown in the figure
to the right.

If specified, the operand entry

can ke generated by substitution
into variable symbols. However,
after substitution, that is, at

assembly time:

1. It must ke a relocatable
expression representing an address
in the source module delimited

by the END instruction, or

2. If it contains an external symbol,
the external symbol must be the

only term in the expression, or

the remaining terms in the expression
must reduce to zero.

3. It must not be a literal.

symbol or

——
Name Operation Operand
A sequence END A relocatable

expression or

blank blank
Source Module A
A START 0
ENTERA BALR 12,0
USING %,12
ENTRY ENTERA
END ENTERA
Source Module B
B START 0
BALR 11,0
USING %,11
EXTRN ENTERA
END ENTERA + (Subexpression)

Section E:

Program Sectioning

105

106

E2 - General Information About Control Sections

Contrl Sect.

A control section is the smallest subdivision of a prcgram
that can be relocated as a unit. The assembled control
sections contain the object code for machine instructicns,
data constants, and areas.

Section E: Program Sectioning 107

E2A -- AT DIFFERENT PROCESSING T IMES

Consider the concept of a control section at different
processing times.

0 AT CODING TIME: You create a _control section when you

108

write the instructions it contains. 1In addition, you
establish the addressability of each control section within
the source module, and provide any symbolic linkages between
control sections that lie in different source modules.

You also write the linkage editor control statements to
combine the desired control sections into a load module,

and to provide an entry point address for the beginning

of program execution.

AT ASSEMELY TIME: The assembler translates the source

statements in the control section into object code. Each
source module is assembled into one object module. The
entire object module and each of the control sections it
contains is relocatable.

AT LINKAGE EDITING TIME: According to linkage editor ccntrol
statements, the linkage editor combines the object code

of one or more control sections into one load module.

It also calculates the linkage addresses necessary for
communication between two or more control sections frcerx
different object mcdules. In addition, it calculates the
space needed to accommodate external dummy sections (see

Eb4) .

AT PROGRAM FETCH TIME: The control program loads the load
module into virtual storage. BAll the relocatable addresses
are converted to fixed locations in storage.

AT EXECUTION TIME: The control program passes control
to the load module now in virtual storage and your program
is executed.

NOTE: You can specify the relocatakle address of the
starting point for program execution in a linkage editor
contxol statement or in the operand field of an END
statement.

T CODING ASSEMBLY LINKAGE PROGRAM EXECUTION
TIME TIME EDIT FETCH TIME
TIME TIME
Source Object Load 5
Modules Modules Modules
X'23000"
First
Program
Section C
| Section B_| 0 \
Section A
" Section D ‘t’ " 5
X'40000'
Second
Program
Section F
11 Section E e 1"

Section E: Program Sectioning 109

EZB -- TYPES

Executable Contrcl Sectiops.

An executable control section is

one you initiate by using the START
or CSECT instructions and is
assembled into object ccde. At
execution time, an executable control
section contains the binary data
assembled from your coded
instructions and constants and is
therefore executable.

An executable contrcl section can
also be initiated as "private code",
without using the START or CSECT
instruction (see E2E).

Reference Control Sections

A reference control section is one

you initiate by using the DSECT,
COM, or XD instruction and is not
assemkled into object code. You

can use a reference control section
either to reserve storage areas

or to describe data to which you

can refer from executable ccntrol
sections. These reference control
sections are considered tc be empty
at assembly time, and the actual
kinary data to which they refer

is not entered until execution time.

Source Module

Assembly
Time

Execution
Time

Object Module Load Module

EXEC START

REFER COM

EXEC

S

———
]

=

=

Empty of data

F2C -- LOCATION COUNTER SETTING

The assembler maintains a separate
location counter for each control
section. The location counter
setting for each ccntrol section
starts at 0. The location values
assigned to the instructicns and
other data in a control section
are therefore relative to the
location counter setting at the
beginning of that ccntrol section. r

oHowever, for executable control

sections, the location values that
appear in the listings do not restart

eat 0 for each subsequent executable
control section. They carry on
from the end of the gprevious contrcl
section. Your executable control
sections are usually loaded into
storage in the order you write them.
You can therefore match the source
statements and object code produced
from them with the contents of a
dump of your program.

i by a START instr
10n-zero operand ent

oFor reference contrgcl sections, ; :
the location values that appear END
in the listings always start from
0.

Section E: Program Sectioning 111

o You can continue a control section
that has been discontinued by another
control section and thereby
intersperse code sequences from
different control sections. Note

e that the location values that appear
in the listings for a control
section, divided into segments,
follow from the end of one segment
to the beginning of the subsequent-
segment

112

Location
in Hex

SUBONE

Source Module

E2D -- FIRST CONTROL SECTION -

RPECIFICATIONS Any Machine Instruction
. The Following Assembler Instructions:
The specifications below apply to ‘
the first executable ccntrol section,
and not to a reference control
section. CCW
CNOP

INSTRUCTIONS THAT ESTABLISH THE 0 (COPY)
FIRST CONTROL SECTION: Any CSECT
instruction that affects the location CXD
counter or uses its current value DC
establishes the beginning of the DROP
first executable control section. DS
The instructions that establish END
the first control section are listed EQU
in the figure to the right. gggRG
The statements copied into a source START

°module by a COPY instruction, if USING
specified, determine whether or v [|

not it will initiate the first
control section.

:NOTE. The LCSECT, COM, and |
instructions initiate refere
control sections and do not establlsh
the first executable control section.

These instructions are always
considered a part of the control
section in which they appear.

First Contrl Sect.

urce Module
ICTL
WHAT MUST CCME BEFORE THE FIRST :
CONTROL, _SECTION: The following OPSYN
instructions or groups of .
instructions, if specified, must - -
appear before the first control MACRO Tm%umq@pmwm
section, as shown in the figure MAC1 macro definitions belong
to the right. to a Source Module, but
. t . must appear before the
e The ICTL instructicn, which, : MEND first controf section.
if specified, must be the first MACRO
statement in a source module MAC?2 I
» MEND
e Any source macro definitions
0 (see J1B) MACRO
' MAC3
e The COPY instruction, if the .
code to be copied contains only MEND
OPSYN instructions or complete macro
definitions.

Section E: Program Sectioning 113

114

WHAT CAN CETICNALLY COME EEFORE
THE_FIRST CONTROL SECTION: The

instructions or groups of
instructions that can crticnally

be srecified before the first control
section are shown in the figure

to the right.

Any instructions coried by a COPY
instruction or generated by the
processing of a macro instruction
before the first control section
mst kelong exclusively to one of
the groups of instructions shown
in the figure to the right.

NOTES:

1. The EJECT, 1ISEQ, PRINT, SPACE,
or TITLE instructions and comments
statements must follow the ICTL
instruction, if specified. However,
they can precede or appear between
source macro definitions. The OPSYN
instruction must (1) follow the

ICTL instruction, if srecified,

and (2) precede any source macro
definition specified.

2. All the other instructions of
the assembler language must follow
any source macro definitions
specified.

3. All the instructions or groups

of instructions listed in the figure
to the right can also appear as

part of a control section.

Source Module

0# copy

DXD
EJECT
ENTRY
EXTRN
ISEQ

PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

[Comments Statements |

I Common Control Sections |

rDummy Control SectionsJ

The following Assembler Instructions:

CAN

[External Dummy Control SectionsJ

| Any Conditional Assembly Instruction]

o-l—' Macro InstructionsJ

These instruc-
tions or groups
of instructions
belong to a
Source
Module, but
are not con-
sidered as part
of an exe~
cutable
control
section,

E2E -~ THE UNNAMED CONTROL SFCTION

The unnamed control section is an
executable control section that
can be initiated in one of the
following two ways:

0 1. By coding a START or CSECT
instruction without a name entry

2. By coding any instruction, other
than the START or CSECT instruction,
e that initiates the first executakle

control section.

The unnamed control section is
sometimes referred to as private
code.

All control sections ocught to be
provided with names so that they
can be referred to symbolically:

1. Within a source module
2. In EXTRN and WXTRN instructions

and linkage editor control statements
for linkage between source modules.

NOTE: Unnamed common control sections
or dummy control sections can be
defined if the name entry is omitted
from a COM or DSECT instruction.

E2F -- LITERAL POQLS IN CONTROL
SECT IONS

Literals, collected into pools by
the assembler, are assembled as
part of the executable control
section to which the pools belong.
If a LTORG instruction is specified
at the end of each control section,
the literals specified for that
section will be assembled into the
pool starting at the LTORG
instruction. If no LTORG instruction
is specified, a literal pool
containing all the literals used

in the entire source module is
assemkled at the end of the first
control section. This literal pool
appears in the listings after the
END instruction.

NOTE: If any control section is
divided into segments, a LTORG
instruction should be specified

at the end of each segment to create
a separate literal pool for that
segment. (For a complete discussion
of the literal pool see H1B.)

Type Code Unnamed Control Notes
Assigned for Sections in separate:
External Symbol Source Modules
Dictionary
PC START
/.
END
Unnecessary unless
dictated by specific
\ programming pur-
pose
PC CSECT
END
1
Inadvertent and in-
PC BALR 12,0 advisable initiation
USING#*,12 of first control sec-
. tion: instead, precede
END with a named

PC signifies "private code"

START instruction

R

Location
in hex

Source Module

=A (ADR)

Section E:

Program Sectioning

115

E2G_-- EXTERNAL SYMBOL DICTIONARY

116

ENTRIES

The assembler keeps a record of
each control section and prints
the following information about
it in an External Symbol Dictionary.

1. Its symbolic name, if cone is
specified

2. 1ts type code

3. Its individual identification
4. Its starting address.

The figure to the right lists:

1. The assembler instructions that
define control sections and dummy

control sections or identify entry
and external symbols, o

2. The type code that the assembler
assigns to the control sections or
dummy control sections and to the
entry and external symbols.

NOTE: The total number of entries
identifying separate control
sections, dummy control sections,
entry symbols, and external symbols
in the external symbol dictionary
must not exceed 399. External
symbols identified in a Q-type
address constant and specified as the
name entry of a DSECT instruction are

counted twice in determining this
total.

optional

ENTRY
EXTRN

DC (V~-type ad-
dress constant)

WXTRN

Name Instruction Type code en-
Entry tered into external
symbol dictionary
optional START SD) if name
entry is
CSECT SD } present
START PC | if name
entry is
CSECT PC) omitted
Any instruction that
initiates the unnamed PC
control section
optional COM CM

ER

E3 - Defining a Control Section

You must use the instructions described kelow to indicate
to the assembler:

e Where a control section begins and

e Which type of control section is being defined.

E3A -- THE START INSTRUCTION

Purgose

The START instruction can be used only to initiate the
first or only executable control section of a source ncdule.
You should use the START instruction for this purpose,
because it allows you:

1. To determine exactly where the first control secticn
is to begin; you thereby avoid the accidental initiation
of the first control section by some other instruction.

2. To give a symbolic name to the first control section,
which can then be distinguished from the other control
sections listed in the external symbol dictionary.

3. To specify the initial setting of the location counter
for the first or only control section.

Specifications

The START instruction must be the
first instruction of the first
executable control section of a
source module. It must not be
preceded by any instruction that
affects the location counter and
thereky causes the first control .
section to be initiated. Name Operation Operand

START

The format of the START instruction Any Symbol A self-defining
statement is given in the figure or blank START term, or blank
to the right.

Section E: Program Sectioning 117

The symbol in the name field, if
specified, identifies the first
control section. It must be used

in the name field of any CSECT
instruction that indicates the
continuation of the first control
section. This symbol represents

the address of the first byte of

the control section and has a length
attribute value of 1.

The assembler uses the value of

the self-defining term in the operand
field, if specified, to _set the
location counter to an initial value
for the source module. All control
sections are aligned on a doubleword
boundary. Therefore, if the value
specified in the operand is not
divisible by eight, the assembler
sets the initial value of the

o location counter to the next higher

113

doubleword boundary. If the operand
entry is omitted, the assembler
sets the initial wvalue to O.

Location In
Hex

000000

000D00

000D04
000D04

Further Examples:

001000
001000
000020

000000

Qw»

Source Module

FIRST

BREAK

START

DS

CSECT

i FIRST
CONTINUE DS F
END
START X'lao00'
START 4096
START 30
START

R
Source Module

FIRST START 0

The source statements that follow
the START instruction are assembled
into the first control section.

If a CSECT instruction indicates

the continuation of the first control
section, the source statements that
follow this CSECT instruction are
also assembled into the first control
section.

Any instruction that defines a new
or continued control section marks
the end of the preceding control
section or portion of a control
section. The END instruction marks
the end of the control section in
effect.

o'_ .

E3B -- THE CSECT INSTRUCTION ‘ .

END
Pur pose

The CSECT instruction allows you to initiate an executable
control section or indicate the continuation of an
executable control section.

Specifications

The CSECT instruction can be used anywhere in a source
module after any source macro definitions that are
specified. If it is used to initiate the first executable
control section, it must not be preceded Ly any instructicn
that affects the location counter and thereby causes the
first control section to be initiated.

The format of the CSECT instruction
statement is shown in the figure Name Operation Operand
to the right.

Any Symbol Not required
or blank CSECT

Section E: Program Sectioning 119

120

The symbol in the name field, if
specified, identifies the control
section. 1If several CSECT
instructions within a source module
have the same symbol in the name
field, the first occurrence initiates
the control section and the rest
indicate the continuation of the
control section. If the first
control section is initiated by

a START instruction, the symbol

in the name field must be used to
indicate any continuation of the
first control section.

NOTE: A CSECT instruction with
a blank name field either initiates
or indicates the continuation of
the unnamed control secticn (see
E2E) .

The symbol in the name field
represents the address of the first

byte of the control section and
has a length attribute value of
1.

The beginning of a control section
is aligned on a doubleword boundary.
However, the continuation of a
control section begins at the next
available location in that control

section.

The source statements that follow

a CSECT instruction that either

initiates or indicates the
continuation of a control section
are assembled into the object code
of the control section identified
by that CSECT instruction.

NOTES::

1. The end of a control section or
portion of a control section is
marked by:

a. Any instruction that defines a
new or continued control section
or

b. The END instruction.

Source Module

FIRST START 0

SECOND

END

Loc in

Hex

Source Module Object Module 1

E3C -- THE DSECT INSTRUCTION

Purgose

You can use the DSECT instruction
to initiate a dummy control section
or to indicate its continuation.

A dummy control section is a
reference control section that
allows you to describe the layout
of data in a storage area without
actually reserving any virtual
storage.

How to Use a Dummy Control Section

The figure to the right illustrates
a dummy control section.

A dummy control section (dummy
section) allows you to write a
sequence of assembler language
statements to describe the layout of
unformatted data located elsewhere in
your program. The assembler produces
no object code for statements in a
dummy control section and it reserves
no storage for the dummy section.
Rather, the dummy section provides a
symbolic format that is empty of
data. However, the assembler assigns
o location values to the symbols you
define in a dummy section, relative
to the beginning of that dummy
section.

Therefore, to use a dummy Section
you must:

o e Reserve a storage area for the
unformatted data

e Ensure that this data is loaded
into the area at execution time

e Ensure that the locations of

the symbols in the dummy section
actually correspond to the locations
of the data being described

0 e Establish the addressakbility
of the dummy section in combination
with the storage area (see F13).

You can then refer to the unformatted
data symbolically by using the
symbols defined in the dQummy section.

Loc
in
Dec

YU N
N RO O e

68 N

Source Module Object Module
FIRST START O
o LA 10,BUFFER
USING DUMMY, 10

0,

CLI KEY,C'X'

DUMMY DSECT]
KEY DS c P
CODE DS cr3 7
NAME DS cL20”
ADDR DS //CLZO
WAGES DS~ CLl0
HRS _ o8 CL8
DEDUET DS CL6
paY DS CL12

END

Section E: Program Sectioning 121

Specifications

The DSECT instruction identifies

the beginning or continuation of

a dummy control section (dummy
section) . One or more dummy sections
can be defined in a source module.

The DSECT instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may
be specified.

The format of the LDSECT instruction]
statement: is given in the figure Name Operation Operand

to the right.

Any Symbol Not required
or blank DSECT

Location in
Hex

The symbol in the name field, if
specified, identifies the dummy
section. If several LSECT
instructions within a source module
have the same symbol in the name
field, the first occurrence initiates
the dummy section and the rest
indicate the continuation of the
dummy section.

Source Module

[FIRST START 0

o

NOTE: A DSECT instruction with

a blank name field either initiates
or indicates the continuation of
the unnamed dummy section.

The symbol in the name field
represents the first location in
the dummy section and has a length
attribute value of 1.

The location counter for a dummy

e section is always set to an initial
value of 0. However, the
continuation of a dummy section
begins at: the next available location
in that dummy section.

The source statements that follow
a DSECT instruction belong to the
dummy section identified by that
DSECT instruction.

NOTES::

1. The assembler language statements
that appear in a dummy control
section are not assembled into
object code.

2. When establishing the

addressability of a dummy section,
ethe symbol in the name field of

the DSECT instruction or any symbol
edefined in the dummy section can

be specified in a USING instruction.

3. A symbol defined in a dummy
section can ke specified in an
oaddress constant only if the symkol
is paired with another symbol from
the same durmy section, and if the
symbols have the opposite sign.

FIRST

START 0

USING

DUMMY1,10|or USING A,10

CSECT

ADCON DC

SECOND

END

A (FROM-TO

Section E:

Program Sectioning 123

E3D

-- THE COM INSTRUCTION

Purpose

You can use the COM instruction

to initiate a common control section
or to indicate its continuation.

A common control section is a
reference control section that
allows you to reserve a storage

area that: can be used by two or

more source modules.

How to Use a Common Ccntrol Section

The figure to the right illustrates
a common control section.

A common control section (common
section) allows you toc describe

0a conmon storage area in one or

more source modules.

when the separately assembled object
modules are linked as one program,
the required storage space is
resexrved for the common control
section. Thus, two or more modules
share the common area.

Only the storage area is provided;
the assembler does not assemble

the source statements that make

up a common control section into
object code. You must prcvide the
data for the common area at execution
time.

OThe assembler assigns locations

124

to the symbols you define in a

common section relative to the
beginning of that commen section.
This allows you to refer symbolically
to the data that will be loaded

at execution time. Note that you
must establish the addressability

of a common control section in every
source module in which it is
specified (see F1A). If you code
identical common sections in two

‘or more source modules, you can
communicate data symbolically ketween
these modules through this common
section.

NOTE: You can also code a common
control section in a source module
written in the FORTRAN language.
This allows you to communicate
between assembler language modules
and FCRTRAN modules.

Loc
in
Dec

Source Modules Object Modules

A START 0

e L 10,=A(AREA}
USING AREA,10

ST 3,5UM

B START O

O{L 8,=A(AREA)
USING AREA,S8

L 3,SUM

END

Specifications

The COM instruction identifies the
beginning or continuation of a
common control section (common
section) .

One or more common sections can
be defined in a source module.

The COM instruction can be used
anywhere in a source module after

the ICTL instruction, or after any
source macro definitions that may

Name

Operation

Operand

be specified. Any Symbol

The format of the COM instruction
statement is given in the figure
to the right.

COM

Not required

Location in
Decimal

Source Modules

NOTE:

A COM instruction with a
blank name field either initiates
or indicates the continuation of
the unnamed common section.

The symbol in the name field
represents the address of the first
byte in the common section and has
a length attribute value of 1.

The location counter for a common
section is always set to an initial
value of 0. However, the
continuation of a common section
begins at the next available location
in that common section.

Reserved Storage
for common control
section XYZ when
modules A and B
are linkage edited

1,

| bvtes

B START O
If a common section with the same : 1200
name (or unnamed) is specified in Q i} bytes
two or more source modules, the 0 XY2 COM o
amount of storage reserved for this 0 TO DS CL80
common section is equal to that 80 FROM DS CL240

required by the longest common
section specified.

Section E:

Program Sectioning 125

The source statements that follow
a _COM instruction belong to the
common section identified by that
COM instruction.

NOTES:

1. The assembler language statements
that appear in a common control
section are not assembled into
object code.

2. When establishing the
addressability of a common section,
the symbol in the name field of

the COM instructicn or any symbol
defined in the common section can
be specified in a USING instruction.

Source Module

FIRST START O

USING COMMON,11 or USING A,ll

END

;k)niv

External Dummy Sections

Purpose

An external dummy section is a reference control section
that allows you to describe storage areas for one or mcre
source modules, tc be used as:

1. Work areas for each source module or

2. Communication areas between two or more source modules.

wWhen the assembled object modules are linked and loaded,
you can dynamically allocate the storage required for all
your external dummy sections at one time from one source
module (for example, by using the GETMAIN macro
instruction). This is not only convenient but you save
space and prevent fragmentation of virtual storage.

To generate and use external dummy sections, you need to
specify a combination of the following:

1. The XD or DSECT instruction

2. The Q-type address constant Source Module
3. The CXD instruction. FIRST START 0
Area allocated to
contain external
o N DXD 3D__| dummy sections
|B DXD 2FL4 |
Generating an External Cummy Section Q : - Offs%t oA
qA
\
. . EXT DSECT
An external dummy section is El DS 3C
generated when you specify a LXC E2 DS 1c offset to B
instruction or a DSECT instruction E3 DS 10H B
in combination with a Q-type address B4 DS 20F
constant that contains the pame , "oﬁwtm
of the DSECT instruction. v EXT
o s BEXT
You use the Q-type address constant
to reserve storage for the offset
to the external dummy section whose QA DC 0(Aa)
name is specified in the operand.
. . . : 0B DC Q(B)
This offset is the distance in bytes QEXT DC 0 (EXT)
from the beginning of the area .
allocated for all the external dummy 0
sections to the beginning of the
external durmy section specified.
You can use this offset value to
address the external dummy section. DUMMY DSECT
< D1 DS F
The ¢-type address constant is D2 DS oD
described in G3M. Not an external
) dummy section
END
|

Section E: Program Sectioning 127

How tc Use External Cumny Secticns

To use an external dummy section, you must dc the fcllcwirng
(@s illustrated in the figure kelow):

Identify and define the external dummy section. The
asserbler will ccmpute the length and alignwment required.

gProvide a Q-type ccnstant fcr each external dummy section
defined.

Use the CXC instructicn tc reserve a fullwcrd area intc
which the linkage editor or loader will jinsert the tctal
length of all the external durry secticns that are specified
in the source modules of your program. The linkage editcr
computes this length frcm the lengths cf the individual
external durmy sections supplied Ly the assernkler.

°Allocate a stcrage area using the ccmputed tctal length.

ILoad the address of the allocated area into a register
(for this example, register 11). Ncte that register 11
must contain this address throughout the whole prcgranm.

Add, to the address in register 11, the cffset into the
allocated area of the desired external dumry secticn.
The linkage editcr inserts this cffset intc the fullwcrd
area reserved by the arpropriate ¢-type address ccnstant.

oEsta}:lish the addressakility of the external dummy section
in combination with the portion of the allocated area
resexrved fcr the external dummy section.

You can now refer symkolically to the locaticns ir the
external dunmy secticn.

Note that the source statements in an external dumry secticn
are not assernkled intc cbject ccde. Thus, at executicn

time you must insert the data descriked into the area
reserved for the external dummy sections.

128

oGETMAIN XXX

co

[s)
TWO START 0 /
. /
G{L 3,BOFFS | /
AR 3,11 /
USING B,3 __-]
. /7
14
BOFFS DC Q(B)
9,SUM

Area to contain
external dummy
sections

Register 11

100
bytes

A

i

«—— Double word
Boundary

200
bytes

Section E:

Program Sectioning 129

ES - Defining an External Dummy Section
Tag : :
“only

ESA -- THE DXD INSTRUCTION

PUIEOSG

The DXD instruction allows you to
identify and define an external
dummy section.

Specifications

The DXD instruction defines an
external durmy secticn. The DXD
instruction can be used anywhere
in a source module, after the ICTL
instruction or after any source
macro definitions that may be
specified.

NOTE: The DSECT instruction also

defines an external dummy section,

but only if the symbol in the name

field appears in a Q-type address

constant in the same source module.

Otherwise, a DSECT instruction DXD
defines a dummy section.

The format of the LXLC instruction

is given in the figure to the right. Name Operation Operand

A symbol DXD Same format as the operand
of a DS instruction

Duplication | Type [Modifiers| Nominal
Factor Value

0 The symbol in the name field must
appear in the operand of a Q-type
address constant. This symkol
represents the address of the first
byte of the external dummy section
defined and has a length attribute
value of 1. '

Subfields

a‘rhe subfields in the operand field
are specified in the same way as
in the DS instruction. The assembler
computes the amount of storage and Example:
the alignment required for an -
external dummy section from the
area specified in the operand field. T_ D%D 10FL3
The linkage editor or loader uses : 0}
the information provided by the AOFFSET DC Q(a)
assembler to compute the total
length of storage required for all

external dummy sections specified
in a program.

NOTE: If two or more external dummy
sections for different source modules
have the same name, the linkage
editor uses the most restrictive
alignment and the largest section

to compute the total length.

130

ES5B -- THE CXD INSTRUCTION

Purgose

The CXD instruction allows you to
reserve a fullword area in storage.
The linkage editor or loader will
insert into this area the total
length of all external dummy sections
specified in the source modules

that are assembled and linked
together into one prcgram.

Specifications

The CXD instruction reserves a
fullword area in storage, and it

can appear in one or more of the
source modules assembled and combined
by the linkage editor into one
program.

The format of the CXC instruction
statement is given in the figure
to the right.

The symbol in the name field, if
specified, represents the address

of a fullword area aligned on a
fullword boundary. This symbol

has a length attribute value of

4. The linkage editocr or loader
inserts into this area the total
length of storage required for all
the external dummy sections specified
in a progranm.

Name Operation Operand
A symbol CXD Not required
or blank
Object Code
in Hex
Full word
boundary
Example: 4 bytes

LENGTH CXD

~—a
XXXXXXXX

s

Section E:

Program Sectioning 131

Section F: Addressing

This section describes the techniques and instructions
that allow you to use symbolic addresses when referring
to data. You can address data that is defined within the
same source module or data that is defined in another
source module. Symbolic addresses are more meaningful
and easier to use than the corresponding object code
addresses required for machine instructions. Also, the
assembler can convert the symbolic addresses you specify
into their object code form.

Fl1 — Addressing Within Source Modules: Establishing Addressability

By establishing the addressability

of a control section, you can refer
to. the symbolic addresses defined
in it in the operands of machine

instructions. This is much easier 0 |FIRST START 0
than coding the addresses in the
base~displacement fcrm required
by the System/370. The symbolic

addresses you code in the instruction LA 10,ADDRESS

operands are called implicit
addresses, and the addresses in

. Equivalent *
the base-displacement form are

called explicit addresses, both LA 10,X'40'(0,

of which are fully described in .
D5B.

The assembler will convert these

. T s s displ.
implicit addresses for you into P

2)

base

the explicit addresses required —
for the assemkled object code of Explicit

the machine instruction. However, Address
you must supply the assembler with: o

\
1
1. A base address from which it 40 |ADDRESS DC C'SAMPLE'
can conmpute displacements to the .
addresses within a control section
and

2. A base register to hold this END

kase address.

Section F:

Addressing 133

FilA -~

How to Estaklish Addressability

Object Codé
in Hex

Location Source Module

in Hex
To establish the addressability
of a control section, you must, FIRST START 0 0
at. coding time: BALR 12,0

USING
e Specify a base address from which BEGIN
the assemnkler can compute

displacements

Displacement
e Assign a base register to contain
this base address

g——— O N O O
.

N
\S]

e Write the instruction that loads CONADR DC
the base register with the base .
address.

At assembly time, the implicit
addresses you code are gonvexted

into their exglicit rase-displacement
form; then, they are assenbled intc
the ckject code of the machine
instructicns in which they have 1
been coded.

At execution time, the kase address

is lcaded into the Lkase registerxr
and should remain there thrcughcut END

BE?IN,lg

F'22°

the executicn of yocur gprogram.

|05|C|q
BEGIN:;i)

THE USING INSTRUCTION

134

Pur pose

The USING instruction allows you to specify a base address
and assign one or more base registers. If you also load
the base register with the base address, you have
established addressability in a control section.

To use the USING instruction correctly you should:

1. Know which locations in a control section are made
addressable by the USING instruction

2. Know where in a source module you can use these
estaklished addresses as implicit addresses in instruction
operands.

The Range of a USING Instruction

Source Module

The range of a USING instruction
(called the USING range) is the FIRST START
0 4,096 bytes beglnnlng at the base
address specified in the USING
instruction. Addresses that lie ,
within the USING range can ke L 5,INSIDE. |
converted from their implicit to '
their explicit form; those outside .

othe USING range cannot be converted.

The USING range does not depend

upon the position cf the USING
instruction in the source module;
rather, it depends upon the locaticn
of the base address specified in

the USING instruction.

Will not be
converted

USING BASADR,BASREG 0

USING
domain

NOTE: The USING range is the range
of addresses in a control section
o that is associated with the base
register specified in the USING
instruction. If the USING
instruction assigns more than cne
base register, the composite USING o
range is the sum of the USING ranges
that would apply if the base
registers were specified in serarate USING
USING instructions. range

The Domain of a USING Instruction

The domain of a USING instruction
(called the USING domain) begins
where the USING instruction appears
in a source module and continues
to the end of the source module.
(Exceptions are discussed later
in this subsection, under NOTES
ABOUT THE USING DOMAIN.) The

o assembler converts implicit address o
references into their explicit form:

ASADR-+409

OUTSIDE

1. If the address reference appears
in the domain of a USING instruction
and

END
2. If the addresses referred to
lie within the range of the same |
USING instruction.

o The assembler does not convert
address references that are outside
the USING domain. The USING domain
depends on the position of the USING
instruction in the source module
after conditional assembly, if any,
has been performed.

Section F: Addressing 135

136

How to Use the USING Instruction

You should specify your USING
instructions so that:

1. All the addresses in each control
section lie within a USING range
and

2. All the references for these
addresses lie within the
corresponding USING domain.

You should therefore place all USING
instructions at the beginning of
the source module and specify a

base address in each USING
instruction that lies at the
beginning of each control section.

FOR EXECUTABLE CONTROL SECTIONS:
The figure to the right illustrates
a way of estaklishing the
addressability of an executakle
control section (defined by a START
or CSECT instruction) . You specify
a base address and assign a base
register in the USING instruction.
At execution time the base register
is loaded with the correct base
address.

Note that for this particular
combination of the BALR and USING
instructions, you should code them
exactly as shown in the figure to
the right.

Location
in Decimal

OO'\I\)'I\JOO

USING
range

4097

Source Module

Address of
BEGIN

FIRST

BEGIN

QwP

START
BALR
USING
L
A
ST

DS
DS
DS

END

0
\

address
as BEGIN

Section F:

Addressing 137

138

If a control section is longer than 4096 bytes, you must
assign more than one base register. This allows you tc
establish the addressability of the entire control section
with one USING instruction as shown in the figure on the
opposite page.

The assembler assumes that the base registers that you
assign contain the correct base addresses. The address
of HERE is loaded into the first base register. The
addresses HERE+4096 and HERE+8192 are loaded into the
second and third base registers respectively.

Note that you must define the address, BASES, within the
first part of the total USING range, that 1is, the addresses
covered by base register 9. This is because the explicit
address converted from the implicit address reference,

is assembled into the IM instruction. At execution time,
the assembled address must have a kase register which
already contains a base address at this point; the only
base register loaded with its base address is register

9.

The addressability of addresses in the USING range covered
by the second and third base registers is not completely
established until after the LM instruction.

NOTE: Addresses specified in address constants (excert
the S-type) are not converted to their base-displacement
form.

USING
range

10

Source Module

11

LONG START
BALR
L o USING
HERE LM
B
BASES DC
BEGIN Ds

HERE+4095

HERE+4096

|
1
g HERE+8192

HERE+12187

0
9,0

HERE, 9,10

END

USING
domain

11

Section F:

Addressing 139

FOR REFERENCE CONTROIL SECTIONS:

The figure to the right illustrates
how to estaklish the addressability
of a dummy section. A dummy section
is a reference control section
defined by the DSECT instructions.
Examples of establishing
addressability for the other
reference control sections are given
in E3C and E4.

As the Lase address, ycu shculd
specify the address of the first
kyte of the dumrmy secticn, sc that
all its addresses lie within the

o rertinent USING range.

The address you load into the base
register must be the address of
the storage area being formatted
by the dummy section.

Note that the assembler assumes
that you are referring to the
symbolic addresses of the dummy
section, and it computes
displacements accordingly. However,
at execution time, the assembled
addresses refer to the location

o of real data in the storage area.

140

Source Module

FIRST

o—-INPUT
L [4]
F&NDATA DSECT
A DS

USING .

range *

‘t’ F DS
END

START 0

BALR 12,0

USING *,12

LA 11, INPUT—
USING ,INDATA,1ll

Specifications for the USING Instruction

The USING instruction must ke coded
as shown in the figure to the right.

The operand, BASE, specifies a base
address, which can be a relocatakle
or absolute expression. The value

of the expression must lie between

-224 and 224-1.

The remaining operands specify from

1 to 16 base registers. The operands
must ke aksclute exrressions whose
values lie in the range 0 through

15.

The assembler assumes that the first
base register (BASREG1) contains

the base address BASE at execution
time. If present, the subsequent
operands, BASREG2, BASREG3,....,
represent registers that the
assemkler assumes will contain the
address values, BASE+4096, '
BASE+8192,..., respectively.

NOTES ABQUT THE USING DOMAIN: The
domain of a USING instruction
continues until the end of a scurce

module except when:

e A subsequent LROP instruction
specifies the same base register
or registers assigned by the
preceding USING instruction.

e A subsequent USING instruction
specifies the same register or
registers assigned by the preceding
USING instruction.

USING
Name | Operation] Operand
Sequence | USING |BASE,BASREGL[,BASEREG] ...
symbol or 0
blank
Example:
USING BASE,9,10,11
Logical Equivalent
USING BASE, 9
USING BASE+4096,10
USING BASE+8192,11
A
Source Module
BREAK START 0
USING BASEL,1Q
° First
USING
BASEL DS domain
First and
second 0 DROP
USING |
range
BASEZ2 DS
Third USING BASEl,ll
USING Second
range USING
domain
0 US1NG BASE2,11l ..
Third
USING
domain
END
Section F: Addressing 141

142

NOTES ABOUT

THE USING RANGE:

Twce
USING ranges coincide when the same

kase address is specified in twc
different USIKG instructicns, even
though the kase registers used are
When two USINCG ranges
coincide, tte assenklexr uses the
higher numbered register for

different.

asserktling the addresses within

the ccmrcn USING range.

In the

exarple, this applies cnly tc

imglicit addresses that appear after

the second USING instruction.

effect,

the

In

the first USINC domain is

terminated after the seccnd USING

instrxucticgn.

Source Module

CONFLICT
e
A
common B
USING
range
| |(a+4095)

START

USING

.

DS

DS

USING

END

0

first
USING
domain

second
USING
domain

Source Module

OVERLAP START 0

USING RANGEL,10

RANGE1 DS OH

. first
USING
domain

first
USING
range

Two USING ranges overlap when the
kase address of cne USING instructicn
lies within the range of another
USING instructicn. When twcC ranges
overlap, the assemkbler computes second
displacements from the kase address o USING
that gives the smallest displacement; domain
it uses the ccrresrcnding base L

register when it assemkles the .
addresses within the range cverlar. . o/
This applies only to implicit

addresses thkat arrear after the __JRANGEZHmQQ

second USING instruction.

second
USING
range

END

BASE REGISTERS FOR AESOLUTE
ACLCRESSES: Aksclute addresses used
in a source mcdule must alsc ke
made addressable. Aksolute addresses Source Module Object Code
require a kase register cther than S— in Hex
the Lase register assigned to ABS START P o
relocatakle addresses (as descriked E ;

above) .
(| mmn

.

However, the assenkler does nct o
need a USING instruction to convert USING i
absolute implicit addresses in the range La 641
range 0 through 4,095 to their 0-4095 . ‘
explicit form. The assemkler uses
register 0 as a base register,
Cisplacements are ccrruted from
the kase address 0, because the
assemkler assumes that a kase cr
index of 0 implies that a zero
quantity is tc ke used in fcrring
the address, regardless of the

o contents of register 0. The USING

[41]6]o0]o]ooF

USING
‘ doma,n '

©.

domain for this automatic kase END -
register assignrent is the whcle
of a source module. L

Section F: Addressing 143

Source Module Object Code
in Hex
ABS START 0

) Ibase register l
For aksolute implicit addresses LA 3,4095 [41[3]0[0]FFE] H
greater than 4095, a USING 9
instruction must ke specified LA 3,1(3) |[41|3l3[0[0°lj
according tc the fcllcwing: USING 3_0
e With a base address representing USING)
an aksolute expressicn, and range

4096-8191

e With a base register that has
not keen assigned by a USINC
instructicn ir which a relccatable LA
base address is specified. .

base

This kase register must ke lcaded 1 register

with the base address specified.

END

F1lB - THE DROP INSTRUCTION

144

Purpose

You can use the DROP instruction to indicate to the
assemkler that one or more registers are no longer available
as base registers. This allows you:

1. To free bkase registers for other programming purposes

2. To ensure that the assembler uses the base register
you wish in a particular coding situation, for example,
when two USING ranges overlap or coincide (as described
above in F1A, Notes about the USING range) .

Specifications

DROP

The CROP instruction must be coded
as shown in the figure to the right. .

Name Operation Operand
Up to 16 operands can be specified.
They must be absolute expressions Sequence DROP BASREG1 EBASREG%]---
whose values represent the general symbol
registers 0 through 15. A CROP or blank or blank
instruction with a blank operand _

field causes all currently active
base registers assigned by USING
instructions to be dropped.

T Source Module

DROPS START 0

USING

BASE, 10

USING
domain

o After a DROF instruction, the

assembler will not use the registers

specified in a DROP instruction USING

as base registers. A register made range Rmhmﬂ0+
unavailable as a base register by unavailable
a DROP instruction can be reassigned as a base

as a kase register by a subsequent

register
USING i1instruction.

restored
USING
domain

END

Section F: Addressing 145

146

A CROP instructicn is nct needed:

e If the base address is Leing
changed ky a new USING instructicn,
and the same base register is
assigned. Bcwever, the new kase
address must be loaded into the
kase register. Ncte that the
implicit address "E" lies within
the first USING dcrain, and that
the base address to which it refers
lies within the first USING range.

e At the end of a souxrce module.

Source Module

CHANGE START 0
USING
A DS
first first
USING USING
range o N<kiomain
P‘k
B DS
[2 9
ous ING
second
USING
range
second
USING
domain
L
END

F2 — Addressing Between Source Modules: Symbolic Linkage

This section describes symbolic
linkage, that is, using symbols

to communicate between different
source modules that are separately
assembled and then linked together
by the linkage editor.

How to Establish Symbolic Linkage

You must establish symbolic linkage
between source modules so that you
can refer or branch toc symbolic
locations defined in the control
sections of external source modules.
To establish symbolic linkage with
an external source module you must

do the following: —
Current Source Linked Object
1. In the current source module, Module Modules

you must identify the symbols that
are not defined in that source
module, if you wish to use them
in instruction operands. These

0 symbols are called external symbols,
because they are defined in another
(external) source module. You
identify external symbols in the
EXTRN or WXTRN instruction or the
V-type address constant.

A START

—~Bl

n\Cl

Other
(External)
Source

Modules

2. In the external source modules,

you must identify the symbols that

are defined in those source modules

and to which you refer from the

current source module. These symbols
e are called entry symbols because

they provide points of entry to

a control section in a source module.

Your identify entry symbols with

the ENTRY instruction.

B START

3. You must provide the A-type or
Y-type address constants needed

ky the assembler to reserve storage
for the addresses represented by
the external symbols.

C START

The assemblexr places information
about entry and external symbols
in the External Symbol rLictionary.
The linkage editor uses this

o information to resolve the linkage
addresses identified by the entry
and external symbols.

Section F: Addressing 147

148

T0 _REFER TC EXTERNAL [ATA: You
should use the EXTIRN instructicn

to identify the external symkol
that represents data in an external
source module, if you wish to refer
to this data symkclically.

For example, you can identify the
address of a data area as an external
symkol and lcad the address ccnstant
specifying this symkol into a kase
register. Then, ycu use this lkase
register when estaklishing the
addressakility cf a durny section
that formats this external data.

You can ncw refer symkclically tc
the data that the external area
contains.

You rrust also identify, in the
source module that contains the
data area, the address cf the data
as an entry symbol.

Source Modules

CURRENT START 0 l
EXTRN BUFFER“

o{L 10,ADBUFF
USING DATA,10

ADBUFF DC A (BUFFER)

N
DATA

DSECT

KEYN DS C
CODE ™~ DS CL3

NAME bPS CL20
ADDR DS\\\CLZO
WAGES DS >CL10

HRS ps C

DEDUCT DS CL6
PAY DS CLl12 ™

N
END
OTHER START O ‘\\\

ENTRY BUFFER

END

Linked
Object Modules

CURRENT

OTHER

TO BRANCH TC AN EXTERNAL ALLRESS:
You should use the V-tyre address
constant to identify the external
symkol that represents the address
in an external source module to
which you wish tc kranch. Fcr the
specifications of the V-type address
constant, see G3L.

For example, you can lcad intc a
register the V-tyre address constant

that identifies the external symbkcl.
Using this register, you can then
kranch to the external address
represented by the symkol.

If the symkcl is the name entry

cf a START or CSECT instruction

in the other source ncdule, and
thus names an executakle control
section, it is autcmatically
identified as an entry symbol.

If the synkcl rerresents an address
in the middle of a control section,
you rust, hcwever, identify it as
an entry symbol for the external
source module.

You can alsc use a comkination of

an EXTIRN instructicn tc identify

and an A-tyre address constant to
contain the external kranch address.
However, the V-type address constant
is more ccnvenient kecause:

1. ¥Ycu do nct have to use an EXTRN
instructicn.

2. The symbcl identified is not
considered as defined in the source
module and can ke used as the nane
entry for any other statement in
the same source ncdule.

——

Source Modules
CURRENT START 0

L 3,EXTADR
©:: -

EXTADR DC V(OTHER)

END

oOTHER START 0
ENTRY SUBRTNo[

SUBRTN DS OH

END

Section F:

Addressing 149

F2h - THE ENTRY INSTRUCTICN

4Purgose

The entry instruction allows you

to identify symkcls defined in a
source module so that they can ke
referred to in ancther scurce mcdule.
These symhols are entry symkols.

Specifications

The format cf the ENIRY instructicn
is shcwn in the figure to the right.

ENTRY SYMECLS: The fcllowing applies
to the entry symkcls identified
in the orerand field:

e They must ke valid symkols.

e They must be defined in an
executable control section.

e They must not ke defined in a
dummy contrcl secticn, a conmcen

contrxcl section, or an external

contrcl section.

e The length attrikbute value cf
entry symkols is the same as the
length attribute value of the symkol
at its point cf definition.

A symkol used as the name entry
of a START cr CSECT instructicn
is also awtcmatically considered
an entry syrnkcl and dces not have
to be identified by an ENTIRY
instructicn.

The assembler lists each entry
symkocl of a scurce ncdule in an
External Syrbol Cictionary along
with entries for external symkcls,
conmecn control sections, and external
contrxcl sections. The maximum

nunker of External Symkcl Dictionary
entries for each source module is
399.

ENIRY instruction counts towards
this mraximur, even thcugh it may
not be used in the name field of
a statement in the scurce mcdule
nor ccnstitute a valid entry point.

150

r 1
Name Operation Operand
A sequence ENTRY One or more
symbol or relocatable
blank symbols separated
by commas
Source Module Entry in Extemalo
Symbol Dictionary
o Symbol |Type Code
FIRST START O FIRST SD
ENTRY SUBRTN, INVALID|SUBRTN LD
. INVALID| 1D
SUBRTN DS OH
DUMMY DSECT DUMMY none
INVALID DS F INVALID -
END

F2B ~ THE EXTRN INSTRUCTICN

Purpose

The EXTRN instruction allows you

to identify symkcls referred tc

in a source module kut defined in
another scurce mcdule. These synbcls
are external symbols.

Specificaticns

The format cf the EXTIRN instructicn
statement is shown in the figure Name Operation Operand
to the right.

Sequence EXTRN One or more relocatable
symbol symbols separated by
or blank commas
EXTERNAL SYMBOLS: The follcwing
applies to the external symkols
identified in the cperand field:
“ e They rmust ke valid symkols.
¢ They must not be used as the Source Modules Entry in Externala—l
name entry cf a scurce staterent Symbol Dictionary
in the source module in which they
are identified. Symbol Type Code
CURRENT START 0 CURRENT | SD
e They have a length attrikute
value of 1. EXTRN OTHER OTHER ER
e They must ke used alcne and
o cannct be paired when used in an L 3,EXTAD
expressicn (fcr pairing cf terms BF 3
see C6) .
The assermkler lists each external L 4 ,ADSUBRT
symbcl identified in a source module BF 4
ein the External Symkcl LCicticnary
along with entries for entry symkols,
common control secticns, and external EXTAD DC A (OTHER)
contrcl secticns. The maximum ADSUBRT DC V (SUBRTN) SUBRTN ER
numker of External Syrkcl Dicticnary :
entries for each source module is
END
399.
OTHER START O OTHER SD
ENTRY SUBRTN SUBRTN LD
e” Liea Ly &t A & it 3
As 1000 SUBRTN DS OH
NOTE: The synkol srecified in a
V-tyre address constant is implicitly
oidentified as an external symbcl END
and ccunts towards this maximum. S———

Section F: Addressing 151

B2C -

THE WXTRN INSTRUCTICN

152

Purpose

The WXTRN instruction allows you
to identify symkcls referred tc
in a source mcdule kut defined in
another scurce rncdule.

The WXTRN instruction differs from
the EXTRN instructicn as fcllcws:

The EXTRN instruction causes the
linkage editcr to make an autcrdtic
search of libraries to find the
module that ccntains the external
symbcls that you identify in its
operand field. If tre module is
found, linkage addresses are
resolved; then the mcdule is linked
to ycur module, which contains the
EXTRN instruction.

The WXTRN instructicn sugrresses

this autcmatic search cf likraries.
The linkage editor will only resolve
the linkage addresses if the external
symbcls that you identify in the
WXTRN operand field are defined:

1. In a module that is linked and
loaded along with the ckject ncdule
assenbled from your source module
or

2. In a module brought in from a
likrary due tc the presence cf an
EXTIRK instruction in another module
linked and lcaded with ycurs.

Specificaticns

The format cf the WXTIRN instructicn
statexent is shown in the figure
to the right.

EXTERNAL SYMBOLS: The external
symbcls identified ty a WXTRN
instructicn have the sane prcrerties
as the external symbkcls identified
ty the EXIRN instructicn. Hewever,
the type code assigned to these
external syrkcls differs.

NOTIE: If a symbol, specified in
a V-type address constant, is also
identified by a WXTRN instruction
in the same scurce mcdule, it is
assigned the same type code as the
symkol in the WXIRN instructicn.

If an external symkol is identified
ky kEcth an EXIRN and WXIRN
instruction in the same scurce
module, the first declaraticn takes
Erecedence, and suksequent
declarations are flagged with warning
messages.

Name Operation Operand

Sequence WXTRN One or more relocatable
symbol symbols separated b’

or blank commas :

Source Module

= .
Entry in External
Symbol Dictionary

Symbol | Type Code |
FIRST START 0 FIRST SD l
EXTRN OUT ,Aw__ o ouT ER
' T2 ER
OWXTRN WOUT, A WOUT WX
*»WARNING vx
VCON DC V(WOUT) WOUT WX
END
v_dj i

Section G: Symbol and Data Definition

This section describes the assemkly time facilities which
you can use to:

1.
2.

3.

By

Assign values to symbols
Define constants and storage areas
Define channel command words.

assigning an absclute value to a symbol and then using

that symbol tc represent, for example, a register or a
length, you can code machine instructions entirely in
symbolic form.

Gl - Establishing Symbolic Representation

00 00

You define symbols tc be used as
elements in your programs. This
symkolic rerresentaticn is superior
to numeric representation because:

e You can give meaningful names
to the elements;

e You can debug a program more
easily, because the symbols are
cross-referenced tc where they are

defined and used in your program. FIRST START

The cross-referenced statement .

numbers containing the symbols are

printed in your assembly listing. DATAREG EQU 10
EIGHTY EQU 80

e You can maintain a program more TWO40 EQU 240
easily, because you can change a o BASREG EQU 12
symbolic value in one place and

its value will be changed throughout o RELOC EQU *

a program. : 0

Some symbols represent absolute BALR 12,0
values, while others represent USING *,BASREG
relocatable address values. The .

Source Module

relocatable addresses are of:

B INSTR
instructions ° >9
constants INSTR MVC TO,FROM //A

storage areas. L DATAREG , DATACON
You can use these defined symbols o .
in the operand fields of instruction DATACON e F'3
statements to refer to the oTo DS CL(EIGHTY)
instructions, constants, or areas
represented by the symbol. FROM Ds CL (TWO40)

END

Section G: Symbol and Data Definition 153

Assigning Values

You can create symbcls and assign
them absolute or relccatable values
anywhere in a source module with

an EQU instruction (see G2A). You
can use these symbols instead of
the numeric value they represent

in the operand of an instruction.

Cefining and Naming Data

DATA CONSTANTS: You can define

a data constant at assembly time
that will be used by the machine
instructions in their orerations
at execution time. The three steps
for creating a data constant and
introducing it into your program
in. symbolic form are:

define the data

provide a label for the data

refer to the data by its label.

The symbol used as a label represents
the address of the ccnstant; it
is not to be confused with the

o assemkled okject code of the actual
constant.

Defining data constants is discussed
in G3.

LITERALS: You can alsc define data

at its pecint of reference in the

operand cf a machine instruction
0 by specifying a literal.

Literal constants are discussed
in G3C.

STORAGE AREAS: You must usually
reserve space in virtual storage

at assembly time for insextion and
manipulation of data at execution
time. The three steps for reserving
virtual storage and using it in

your program are:

0 e define the space

e e provide a label fcr the space

0 e refer to the space by its label.

Cefining storage areas is discussed
in G3N.

154

Source Code

L 5,LABEL
Equivalent
L 5,=F'202

N

0

Object Code
in Hex

000000CA

M

OSPACE DS

oLABEL DC F'202°
[——
P
ST 5, SPACE

@

CHANNFL COMMAND WORDS: When you

define a channel command word at
assembly time you create a command
for an input or outrut operation
to be performed at execution time.
You should:

e define the channel ccmmand word
e provide a label fcr the word.

Channel ccrrrand wcrds are discussed
in suksecticn G3C.

G2 -- Defining Symbols

G2A -- THE ECU INSTRUCTION

The ECU instruction allows you to o
assign aksclute cr relccatakle ABS EQU X'azt
values to symbols. You can use Absolute .
it for the fcllowing rurgcses: Value

HEXAZ2 EQU ABS
1. Tc assign single aksolute values . 0
to syrkols

BEGINQF\N\\\\E9U INSTR
2. To assign the values of previously 0
defined symkols cr exrressicns tc .
new synmbols, thus allowing you to . Relocatable
use different mnerncnics fcr different Value
purpcses.
3. To compute exgressicns whcse °EXPR EQU M
values are unknown at coding time e
or difficult to calculate. The
value of the expression is then

°assigned tc a syrkcl.

Section G: Symbol and Data Definition 155

Specifications

The EQU instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may

be specified. Note, however, that
the EQU instruction can initiate

an unnamed control section (private
code) if it is specified before

the first control section (initiated
by a START or CSECT instruction).

The format of the EQU instruction
statement is given in the figure
to the right.

156

Expression 1 represents a value. It
must always be specified and can have
a relocatable or absolute value. The
assembler carries this value as a
signed four-byte (32-bit) number;

all four bytes are printed in the
program listings opposite the symbol.

Any symbols appearing in these three
expressions must have been previously
defined.

EXPRESSION 1 (VALUE): The assembler
assigns the relocatable or absolute
value of expression 1 to the symbol
in the name field at assembly time.

Name Operation Operand
An ordinary EQU 4 options:
symbol or Expression 1
a variable |

symbol

Indicates the
absence of
Expression 2

If expression 2 is omitted, the assembler also assigns

a length attribute value to the symbol in the name field
according to the length attribute value of the leftmost

(or only) term of expression 1. The length attribute value
(described in C#C) thus assigned is as follows (see figure
on following page) :

1. 1f the leftmost term is a location ccunter reference
(*) , a self-defining term or a symkol length attrikute
value reference, the length attribute.value is 1. Note
that this also applies if the leftmost term is a symkcl
that is equated tc any cf these values.

2. If the leftmost term is a symbol that is used in the name

field of a DC or DS instruction, the length attribute value
@ is equal to the implicit or explicit length of the first (or

only) constant specified in the DC or DS operand field.

3. If the leftmost term is a symbol that is used in the
name field of a machine instruction, the length attribute
value is equal to the length of the assembled instruction.

4, Symbols that name assembler instructions, except the DC
and DS instructions, have a length attribute value of one.
However, the name of a CCW instruction has a length
attribute value of eight. -

NOTE: The length attribute value assigned in cases 2-4 only
applies to the assembly-time value of the attribute., Its

value at pre-assembly time, during conditional assembly
processing, is always 1.

Further, if expression 3 is omitted, the assembler assigns
a type attrikute value cf "U" tc the syrbcl in the nare
field.

Section G: Symbol and Data Definition 157

Value
assigned
to Source Module Length Attribute Value
symbol assigned to symbol
is: in name field:
SECTA START 0 At Assembly Time At Pre-assembly Time
RR LR 3,4
RX A 3,FULL
SS MVC TO,FROM
r FULL DC F'33"
AREA DS XL2000
TO DS CL240
FROM DS CL80
ADCONS DC ALl (A) ,AL2(B) ,AL3(C)
ADCCW CCW 2 ,READER,X"'48"',80
(]
Absolute | A EQU X'FF! 1 1
Absolute | B EQU L'FROM o 1 1
Relocatabie| C EQU *+4 1 1
Absolute | D EQU Ax10 1 1
Relocatable| E EQU FULL] 4 1
Relocatable| P EQU AREA+1000 2000 1
Relocatable| G EQU TO o 240 1
Absolute 1H EQU FROM~TO 80 1
Relocatable| T EQU ADCONS 1 1
Relocatable| J EQU RR o 2 1
Relocatable} K EQU RX 4 1
Relocatabie| I, EQU SS 6 1
Relocatable| M EQU SECTA 1 1
Relocatable| N EQU ADCCW o 8 1
N

158

1S

specified, the assembler assigns its ength

0 attribute value to the symbol in the name field. This value
overrides the normal length attribute value implicitly
assigned from expression 1.

If expression 2 is a self-defining term, the assembler also
assigns the length attribute value to the symbol at
e pre-assembly time (during conditional assembly processing).

‘ The assembler
4 assigns 1ts EBCDIC value as a type attribute value to the
0 symbol in the name field. This value overrides the normal
type attribute value implicitly assigned from expression 1.
Note that the type attribute value is the EBCDIC character
o equivalent of the value of expression 3.

R "
Value Source Module Length Attribute Type Attribute
assigned ' Value assigned Value assigned
|At At Pre-
Assembly |assembly
Time Time
FIRST START 0
AREA DS XL2000 ({2000 2000 X l
. Implicit
SDT EQU X'FF' Attribute 1 1 U
N Values
1 1 U
ASTERISK EQU *
Value of } A EQU AREA,1000 (1000 1000 | U
AREA Q '
255 B EQU SDT, 4 o 4 4 U
Value of
Location
ocatlon] c EQU ASTERISK, 4 { 4 4 U
ASTERISK
D EQU AREA,,C'F’' 2000 1 F
E EQU spT,,C'N! 1 1 N e
F EQU ASTERISK, ,C'A! 1 1 A h
G- EQU AREA,1000,C'1"' |1000 1000 1
H EQU spT,4,C'F! 4 4 F
I EQU ASTERISK,4,C'A" 4 4 A
J EQU AREA, 100, - m\F
_

Section G: Symbol and Data Definition

159

Using Preassembly Values

You can use the preassembly values assigned by the assembler
in conditional assembly processing.

If only expression 1 is specified, the assembler assigns a
preassembly value of 1 to the length attribute and a
preassembly value of U to the type attribute of the symbol.
These values can be used in conditional assembly (although
references to the length attribute of the symbol will be
flagged) . The absolute or relocatable value of the symbol,
however, is not assigned until assembly, and thus may not be
used at preassembly.

160

THE SYMECL IN THE NAME FIELL: The assemkler assigns an
absolute cr relccatakle value, a length attrikute value,
and a tyre attrikute value tc the symbcl in the name field.

The aksolute cr relocatable value of the symkol is assigned
at assermkly time, and is therefcre not available for
conditional assemkly processing at pre-assemkly tirme.

G3 - Detining Data

This section descrikes the I[C, L[S, and CCW instructicrs;
these instructions are used toc define ccnstants, reserve
storage and specify the contents of channel ccrrand wcrds
respectively. Ycu can alsc prcvide a lakel for these
instructions and then refer to the data syrbclically ir
the orerands cf machine and assernbler instructions. This
data is generated and storage is reserved at assenkly tirme,
and used by the machine instructions at executicn tirme.

Section G: Symbol and Data Definition 161

G3A -- THE DC INSTRUCTION

162

Purpose

You specify the DC instruction to
define the data constants you need

for program execution.

The LCC

instruction causes the assembler

to generate the binary representation

of the data constant you specify,
into a particular location in the

assembled source module;
done at assembly time.

TYPES OF CONSTANTS:

The CC
instruction can generate the
following types of constants:

this is

Binary constants -- to define bit
patterns
Character constants -- to define

character strings or messages

Hexadecimal constants --
large bit patterns

Fixed-Point constants -- use

by the fixed-point and other
instructions of the standard set
Decimal constants -- for use by

the decimal instructions
Floating-Foint constants -- for

use by the floating-groint instruction
set

Address constants -- to define

to define

addresses mainly for the use of

the fixed-pcint and cther

instructions in the standard

instruction set.

o { ADCON

DC

DC

DC

AP

DS

LE
DC

B'00010000"'
C'STRINQ OF CHARACTERS'
X'FFOOFF00'

3,FCON
F'l00'

AREA,PCON
P'100'
P

2,ECON
E'100.50"

5,ADCON
A (SOMWHERE)

G3B -- GENERAL SPECIFICATIONS FOR
CONSTANTS

Name Operation Operand
Any Symbol DC One or more
or blank

separated

by.comma;

In the format
described in the
next figure

o

r N\
The general format of the LC]| FIRSTCON DC F'2',X'Al',C'HUM' |
instructions statements is shown
in the figure to the right.

Logical Equivalent

The symbol in the name field OFIRSTCON DC Frat
represents the address cf the first DC X'al'
~ byte of the assembled constant. DC C'HUM'

0 If several cperands are srecified,

the first constant defined is LA 3,FIRSTCON
e addressakle ky the symbcl in the

name field. The other constants CLI 5,4(3)

can ke reached Ly relative. —
o addressing. 0

Each cperand in a LC instruction
statement ccnsists cf fcur subfields.
The fcrmat of a LC instruction
operand is given in the figure tc
the right.

1
Duplication
Factor

Nominal
Value(s)

The first three sukfields describe
the constant, and the fourth sukfield
specifies the norinal value of the
constant to be generated.

Required Order
if all subfields
are specified

Section G: Symbol and Data Definition 163

Rules for the DC Operand o T

T] J
1. The type subfield and the nominal MUST bc F1200

e value must always be specified.

modifier subfields are optional.

[2
2. The duplication factor and /0\

3. When multiple operands are OPRNDS DC C'FIRST',H'99',FL3'1l0Ll"’
specified, they can be of different 1
types. SEVERAL DC A(FIRST,SECOND,THIRD)

[VALUES DC__F'100,200,300" | o

Logical Equivalent

Multiple
nominal
values not

4. Wwhen multiple nominal values
are specified in the fourth sukfield,

they must be separated by commas allowed for
and be of the same type. SEVERAL DC A(FIRST) character

. DC A (SECOND) constant
5. The descriptive subfields apply DC A (THIRD)
to all the nominal values. VALUES DC F'100'

DC F'200"
NOTE: Separate constants are DC F'300'
generated for each separate operand —~
and nominal value specified.
IIMIXED DC AL3(ONE,TWO) $2F'1,2,3"

Logical Equivalent

MIXED DC AL3(ONE)
DC AL3(TWO)
DC F'l
pcC Fr'2
DC F'3'
DC F'l
DC F'2!
pc F'3!

BETWEEN DC l(}E/‘LB '+456"'

SEVERAL DC C'BOO HOO',F'95"',H'2"'

6. No blanks are allowed:

a. Between subfields

b. Between multiple operands o o

c. Within any subfields -- , /0N \
unless they occur as part of WITHIN DC C'MESSAGE HAS BLANKS

the nominal value c¢f a character
constant or as part of a character DC . XL(A+B-C'N 0'+3) 'FO’
self-defining term in a modifier - o
expression or in the duplication

factor subfield.

164

Information akout Constants ﬂ
Source Code Object Code

in Hex

SYMBOIIC ADLCRESSES OF CONSTANTS:
Constants defined by the DC HEXCON DC XL7'AD'
instruction are assembled into an S
object module at the location where
the instruction is specified. oL :
However, the type of ccnstant being 6\'.' o -
defined will determine whether 000000000000AD |
the constant is to be aligned on

a particular storage boundary or FULLCON DC F's’

not. (see kelow under Alignment

of Constants) . The value of the
symbol that names the DC instruction
is the address of the leftmost byte
(after alignment) of the first or
only constant.

,C'B',C'C',C'D"

MANYCONS DC

Cl Cc2 C3 C4

Type of | Implicit E Value of Length
constant| Length’ xamples Attribute?
B asneeded |[DC B'10010000" 1
C | asneeded [DC C'WOW' 3
DC CL8'WOow' 8
X asneeded |DC X'FFEEO0O' 3
DC XL2'FFEE' 2
H 2 |DC H'32' 2
THE LENGTH ATTRIBUTE VALUE OF SYMBOLS F 4 {DC FL3'32"' 3
NAMING CONSTANTS: The length
attribute value assigned to the P | asneeded |DC P'123' 2
symbols in the name field of DC pL4'123' 4
constants is equal to: Z asneeded |DC Z7'123" 3
DC zL10'123" 10
o The implicit length of the constant
when no explicit length is specified E 4
in the operand of the ccnstant, D 8
or L 16
The explicitly specified length Y 2 |DC Y (HERE) 2
of the constant. A 4 |DC ALl (THERE) 1
NOTE: If more than cne orerand S 2
is present, the length attribute v 4
value of the symbol is the length Q 4
in bytes of the first constant
specified, according to its 1 Depend
implicitly or explicitly specified epencs on type
length. 2Depends on whether or not an explicit length is specified in constant

Section G: Symbol and Data Definition 165

166

ALIGNMENT OF CONSTANTS; The
assemkler aligns constants on
different boundaries according to
the following:

0 On boundaries implicit to the type

of constant, when no length
specification is supplied.

On byte koundaries when an explicit
length specification is made.

Bytes that are skipped to align

a constant at the prorer boundary
are not considered part of the
constant. They are filled with
zeros. Note that the automatic
alignment of constants and areas
does not occur if the NOALIGN
assemkler option has been specified
in the job control language which
invoked the assembler.

NOTE: Alignment can be forced to
any boundary by a preceding DS (or
DC) instruction with a zero
duplication factor (see G3N).
occurs when either the ALIGN or
NOALIGN option is set.

This

— —
lType of |Implicit Examples Boundary
Constant |Boundary” Alignment
Alignment’
B byte
C byte
X byte
DC H'25' halfword
H halfword DC HL3'25" byte
F fullword |DC F'225" fullword
DC FL7'225!
-\ byte
P byte DC P'2934" byte
Z byte DC Z2'1235" byte
DC ZL2'1235' — byte
E fullword |DC E'1.25" _/ fullword
DC EL5'1.25" byte
D |doubleword [DC 8D'95" doubleword
DC 8DL7'95" byte
L. |doubleword |[DC L'2.57E65" doubleword
Y | halfword |DC Y (HERE) / halfword
A fullword |DC AL3 (THERE) byte
S halfword
v fullword
Q fullword
r "')
Depends on type

Fadding and Truncation of Values

The nominal values sgpecified fcr ccnstants are assembled

into storage.
value of a constant is deterrined:

The amount of space availakle for the ncriral

1. By the explicit length specified in the second cperand

sukfield, cx

2. If nc explicit length is specified, by the implicit
length according to the type of constant defined (see

Rppendix VI).

PAPDING: If more space is available
than is needed to accommodate the
binary representation c¢f the nominal
value, the extra space is padded:

17

With binary zeros on the left for
the kinary (B), héxadecimal (X),
fixed-point (H,F), packed decimal
(P) , and all address (a,Y¥,S,V,Q)
constants

With EBCDIC zergs on the left
B'11110000*) for the zoned decimal
(Z) constants

ewith EBCDIC blanks on the right
B'01000000') for the character
(C) constant

NOTE: Floating-pocint constants
(E,D,I) are also padded on the right
with zeros (see G3I).

Padding
Source Code Object Code
DC BL2'101° | Binary
Digits
Padding is on left
for all constants
except the charac-
ter constant Hexadecimal
Digits
DC XL3'FFAl'
DC X'FFA'
DC H'255"
DC FL3'255" 0
DC P'1234'
DC PL4'123"
DC AL3(512)
DC Z2L4'123" e
DC ZL4'3"
Padding is on
right for charac-
ter constants
DC C'FOUR'
DC CL5'FOUR 9
DC CL5'A’

Section G: Symbol and Data Definition 167

TRUNCATION :

I1f less srace is
available than is needed to
accomodate the nominal value, the
nominal value is truncated and part
of the constant is lost. Truncaticn
of the nominal value is:

0On the left for the binary (B),

168

hexadecimal
7) , and address

On the right for the character (C)
constant.

(X) , decimal (P and
{3 and Y) constants.

However, the fixed-pcint constants
(H and F) will not be truncated,
but flagged if significant bits
would be lost through truncation.

NOTE:
(E,C,L)
are rounded

Floating-point constants
are not truncated; they
(see G31).

NOTE: The akove rules for padding
and truncation also apply when the
kit-length specification is used
(see below under Subfield 3:
Modifiers) .

Subfield 1: Duplication Factor

The duplication factcr, if specified,
causes the norinal value ¢r multiple
nominal values specified in a
constant to be generated the number
of times indicated by the factor.

I+ is applied after the nominal
value or values are assembled into
the constant.

The factor can be specified by a
unsigned decimal self-defining term
or by an absolute expression enclosed
in parentheses.

The expression should have a positive
value or ke equal tc zero.

Any symbols used in the expression
mast ke previcusly defined.

Truncation

Source Code Object Code
1 byt
(1 —
DC BL1'00010000101° 10000101 g‘i;ft?'
Truncation is on
left for all constants
except character
constants
DC XL3'FF11FOFO' LIFOF0 Hexadecimal
L Digits
DC PL2'12345"' o XX
DC ZL3'12345" —-.‘-—-—IQ-—
1 byte
DC AL2(131072)
Truncation is on
right for character
constants
DC CL2'FOUR' e
DC CL1'ABCDE'
+ * ERROR* *
* *x ERROR * *

Nominal Values
too large for

space provided

Duplication

Object Code
in hex

SINGLE DC 3H'240

MULTIPLE DC 3FL1'3,4,5'

e A e,

EXPR DC (A-B+10-3)A(ADDR)

NOTES :

1. A duplication factor of zero
is permitted with the following
results:
a. No value is assembled.

k. Alignment is fcrced according
to the type of constant sgecified,
if no length attribute is present
(see akove under Alignment of
Constants) .

c. The length attribute of the
symbol naming the constant is
established according to the
implicitly or explicitly specified
length.

2. I1f duplication is specified for
an address constant containing a
location counter reference, the
value of the location counter
reference is incremented by the
length of the constant before each
duplication is pexformed (for
examples, see G3J).

Subfield 2: Type

The type subfield must be specified.
It defines the type cf constant

to be generated and is specified

ky a single letter ccde as in the
figure to the right.

The type specificaticn indicates
to the assembler:

1. How the nominal value (s) specified
in subfield 4 is to be assembled;
that is, which binary representation
or machine format the cbject code

of the constant must have.

2. At what koundary the assembler
aligns the constant, if no length
specification is present.

3. How much storage the constant

is to occupy, according to the
implicit length of the constant,

if no explicit length specification
is present (for details see above,
under Padding and Truncation of
Constants) .

ZERODUP DC

OH'3'

L' ZERODUP=2

NOALIGN DC OHL3'3!

Halfword
boundary

Examples:

Code | Type of Constant Machine Format

C Character 8-bit code for each Character

X Hexadecimal 4-bit code for each hexadecimal digit

B Binary Binary format

F Fixed-point Signed, fixed-point binary format;
normally a fullword

H Fixed-point Signed, fixed-point binary format;
normally a halfword

E Floating-point Short floating-point format ; normally a
fullword

D Floating-point Long floating-point format; normally a
doubleword

L Floating-point Extended floating-point format; normally
two doublewords

P Decimal Packed decimal format

z Decimal Zoned decimal format

A Address Value of address; normally a fullword

Y Address Value of address; normally a halfword

S Address Base register and displacement value;
a halfword

\ Address Space reserved for external symbol
addresses; each address normally a
fullword

DC pP'+234!
DC C'ABC'
DC X'FO'

DC H'2' 0002

for external dummy section

e e,
Object Code
in hex

II'
o

Section G: Symbol and Data Definition

169

Subfield 3: Mcdifiers _1

oy

The three modifiers that can ke LENGTH DC XL10'FF'

specified to describe a ccnstant

ares SCALE DC FS$8'35.92"
The lengt:h modifier (L), which o
explicitly defines the length in
bytes desired for a ccnstant.

EXPON DC EE3'3.414'

The scale modifier (S), which is
only used with the fixed-point or o
floatingpoint constants (for details
see below under Scale Modifier).

ALL3 DC DLIS3ES50'2.7182"
The exponent modifier (E), that
is only used with fixed-point or o

floating-point constants, and which
indicates the power of 10 by which
the constant is to be multiplied
before conversion to its internal
kinary format.

If multiple modifiers are used,
they must appear in the sequence:
length, scale, exponent.

LENGTH MODIFIER: The length modifier
indicates the number of bytes of
storage into which the constant r
is to be assembled. It is written
as Ln, where n is either of the
following:

DECSDT DC FL3'9999'
oA decimal self-defining term

An aksolute expressicn enclosed e

in parentheses. 1t must have a
posgtive value and any symbols it EXPR DC XL (SYMBOL-ADDR+3%B-L'D)'F7A"'

o contains must be previously defined.

R o
Source Code Object Code I
in hex
PADTRUNC DC CLg'

Two bytes
truncated

e
When the length modifier is IMPLICIT DC C

specified:

Its value determines the number

of bytes of storage allocated to

a constant. It therefore determines
whether the nominal value of a

C1C2C3C4C5

constant must be padded or truncated
to fit into the space allocated Forch?racter'c.onstant: when no
(see above under Padding and lmmmwsmmﬁwcmewpkqw-
Truncation of Constants). stant is assembled into its implicit
length «— Fullword
No boundary alignment, according boundary

to constant type, is provided (see

r i .
above under Alignment of Constants) NOALIGN DC FL3'513'

Its value must not exceed the maximum
length allowed for the various types
of constant defined. (For the
allowable range of length modifiers,
see the specifications for the
individual constants and areas from
G3C through G3N.)

Assembled at the next
available (byte) boundary

TOOLONG DC FL9'10' * *LENGTH ERROR* *

©]

Section G: Symbol and Data Definition 171

BIT-IENGTH SEECIFICATICN: The length modifier can ke
specified tc indicate the number cf bits intc which a
constant is to be assemkled. The kit-length specificaticn
is written as L.n, where n is either of the following:

A decimal self-defining term

An absolute expression enclcsed in parentheses. It nust
have a positive value and any symbcls it contains must
be previously defined.

The value of n nust lie between 1 and the number of bits
(@ multiple of 8) that are required to make up the maxinmur
number of bytes allowed in the type of constant keing
defined. The bit length-specification cannot be used with
the &, V, and C-type constants.

Source Code Object Code
Binary digits
HEXCHAR DC XL.4'F'
byte byte

When only one operand and one nominal
value are specified in a LC
instruction, the follcwing rules
apply:

1. The bit-length specification
0 allocates a field intc which a
constant is to be assembled.

aThe field starts at a byte boundary,
and can run over one or more kyte
boundaries, i1f the bit-length
specified is greater than 8.

If the field does not end at a byte HEX3CHAR DC XL.l2'FFF'
boundary, if the bit-length specified
is not a multiple of 8, the remainder
of the last byte is filled with

Zeros.

byte byte

11111113111

N

FERF
0O

72

2. The nominal value of the constant
is assembled into the field:

Starting at the high order end for
the C, E, D, and L type ccnstants.

Starting at the low order end for
the remaining types of constants
that allow bit-length specification.

The nominal value is padded or
truncated to fit the field (see
above under Padding or Truncation
of Constants) .

0 Padding of character constants is

with hexadecimal blanks, X'40°*;
other constant types are radded
with zeros.

NOTE: The length attribute value

of the symbol naming a DC instruction
with a specified bit-length is equal
to the minimum number of integral
bytes needed to contain the bit-
length specified for the constant.
L*TRUNCF is equal to 2. Thus, a
reference to TRUNCF would address

the entire two bytes that are
assembkled.

Source Code Object code

binary digits

O (o9
Pag!)

PADC DC CL.11'A’ S
Truncation of

blank at right

Filled with
zeros

PADF DC FL.13'579'

Padding by
zeros at left

579

Truncation of B
TRUNCC DC CL.1l1'AB' at right
byte figq byte

TRUNCF DC FL.13'8193'
field R
r % | v
0000000{00001j000

First 13 bits
of 8193

[L1000000000000] 0

Truncation at
left

|

Section G: Symbol and Data Definition 173

174

When more than cne cgerand is
specified in a LC instruction or
more than cne nomrinal valuve in a
LC orerand, the above rules akout
kit-length specificaticmns also
apply, excert:

1. The first field allocated starts
at a kyte bcundary, kut the
succeeding fields start at the next
available kit.

2. After all the constants have

keen assemkled intc their respective
fields, the bits remaining to make
up the last kyte are filled with
Zeros.

NOTE: If durlicaticn is specified,
filling with 2zeros occurs once at
the end of all the fields occuried
by the duplicated constants.

3. The length attribute valuve cf

the symbol naming the CC instruction
is equal to the number cf integral
kytes that would ke needed tc ccntain
the bit-length specified for the
first constant tc ke assenrbled.

o L'VALUES=2

Source DC FL.10'161,21,57'

Code VALUES

byte

byte

byte

OL'OPERANDS=1

Sourcé ppRANDS DC FL.7'8',CL.10'AB',XL.14'C4 Y
Code
byte byte byte byte byte
-
' H1joooooof
Object ‘E’
Code

Truncation of
B at right

STCRAGE REQUIREMENT FOR CONSTANTS:
The total amount of storage required
to assemble a DC instruction is

the sum of:

r .
SPACE DC 10H'3,4,5',10FL3'6,7,8' ‘T

Space for Storage Requirements

° OPERAND 1
OPERAND 2

o ALIGNMENT

1. The requirements for the
individual DC operands specified
in the instruction.

; X x 60
i X X 90
®© 6 0- .
Second operand not

aligned due to presence
of length specification

The requirement of a DC operand
is the product of:

a. The length (implicit or
explicit) ,

b. The number of nominal valvues,
and :

TOTAL 150

Bytes
c. The duplication factor, if
specified.

ALIGN DC C'ABC',F'9,10,11'

o OPERAND 1 ! X = 3
OPERAND 2 | 4 x 3 1 12

F o ALIGNMENT

2. The number of bytes skipped
for the boundary alignment between
different operands.

First operand can
end on any byte

boundary
TOTAL 15-18
Bytes
i 4

SCALE MODIFIER: The scale modifier
specifies the amount cf internal
scaling that is desired:

Binary digits for fixed-point (H,F)
constants

Hexadecimal digits for floating-

point (E,D,l) constants Scale Modifier
It can only be used with the above _ ' .
types of constant. DE H8-13275.35 Fixed-point 187
Constants
. . . ' h
The scale modifier is written as DC HS3'2.25 trTEQG
Sn, where n is either: (H,F)
’ DC FS(A+B-C%3)'2.3"

A decimal self-defining term or

. t
An absolute expression enclosed Constants
in parentheses.
DC ES12'19.3" (E,D) 0 through 14
Both types of specification can DC LS22'3.414" (L) 0 through 28

be preceded by a sign; if nc sign
is present, a plus sign is assumed.

Examples:

Allowable Range for

Floating-point

Section G: Symbol and Data Definition

175

Object Code

Binary digits

DC H'2' 00000000

00000010|

0000000400001000
[]

SCALE MODIFIER FOR FIXED-POINT
CONSTANTS: The scale modifier for
fixed-point constants specifies
the powexr of two by which the fixed-
point constant must be multiplied
after its nominal value has been
converted to its binary
representation, but before it is

o assemkled in its final "scaled"
form. Scaling causes the binary

omlnt to move from its assumed fixed
position at the right of the
rightmost bit positicn.

0000000400001001]

0000000400001001|
L J

176

Source Code Object Code

Converted to Binary Binary digits .
Re . Binary
presentation .
point
00000000[1L000{L000]
y
Asembled Constant 00000000 ‘

Converted to Binary representation
NOTES:

Binary

1. When the scale mcdifier has a point

positive value, it indicates the

o number of binary positions to ke DC HS-2 00000000[10j001000
occuried by the fracticnal pcrticn
of the binary number.

2. When the scale mcdifier has a

negative value, it indicates the

number of binary positions to ke Y
0 deleted from the integer porticn

of the binary number.

Assembled Constant

|
00000000[00000010{00]
|

3. When positions are lcst kecause Converted to Binary representation
of scaling (or lack of scaling),
rounding occurs in the leftmost-
kit of the lost pcrticn. The
rounding is reflected in the DC,HS-2 ij
o rightrost pcsiticn saved.

Assembled |
ed Constant N\ 365000000000000111 1

' ‘,(1r

Converted to Binary representation

—* Binary’
4 point

11

A |
ssembled Constant 00000000[00001001f11

Section G: Symbol and Data Definition 177

SCALE MODIFIER FOR OATING-PQINT ject Cod
CONSTANTS: The scale modifier for Source Code O%she: °

floating-point constants must have
a positive value. It specifies

the number of hexadecimal pcsiticns
that the fractional portion of the DC E'4!
kinary representation c¢f a floating-
point constant is to be shifted

B

to the right. The hexadecimal point -
is assumed to be fixed at the left o Norn]allzed
of the leftmost position in the Fraction

fractional field. Wwhen scaling
is specified, it causes an
unnormalized hexadecimal fraction -

to be assemkled (unnormalized is DC ES2'4! 4333i222l
when the leftmost positions of the
fraction contain hexadecimal zeros).
The magnitude of the constant is Unnormalized
retained kecause the exponent in Fraction
the characteristic portion of the
constant is adjusted urward

r@&®

[2]

accordingly. When hexadecimal

positions are lost, rounding occurs DC E'3.3" .34CCCD

in the leftmost hexadecimal position

of the lost porticn. The rounding o

is reflected in the rightmost
position saved.

ROUND DC ES2'3.3' [43p034cDcD

EXPONENT MOLCIFIER: The exponent
modifier specifies the power of

10 by which the nominal value cf
a constant is to be multiplied —
vefore it is converted topits Source Decimal Value Object Code
internal binary representation. Code bﬁomcqmmr
It can only ke used with the fixed- sion to binary Binary digits
point (H,F) and floating-point form
(E,D,I) constants. The exponent
modifier is written as Fn, where DC H'4' 4 [00000000j00000100]
n can be either of the following:

@ 2 decimal seif-gefining term. DC HE2'4’ 400 |[00000001[L0010000]

eAn absolute expression enclosed 0

in parentheses. —
DC FE(A-Bx3)'4] -

DO$ Bny §yMbols used in tHe expression
‘must be previously defined. -

DC HE-2'400" 4 [o0000000j00000100]

The decimal self-defining term or
the expression can be preceded by

Oa sign: if no sign is present, a
plus sign is assumed. The range
for the exponent modifier is -85
through +75.

178

NOTES:

0 1. The exponent modifier is not
to be confused with the expcnent
that can be specified in the nominal
value subfield of fixed-point and
floating-point constants (see
sections G3G and G3I).

The exponent modifier affects each
nominal value specified in the
operand, whereas the exponent written
as part of the nominal value subfield
only affects the nominal value it
follows. If both types of exponent
specification are present in a DC
operand, their values are
algekraically added togethexr before
the nominal value is converted to
kinary form. However, this sum
must lie within the permissible

o:range -85 thrcugh +75.

2. The value of the constant, after
any exponents have been applied,
must be contained in the implicitly
or explicitly specified length of
the constant to be assembled.

Subfield 4: Nominal Value

The nominal value subfield must
always be specified.: It defines
the value of the constant (or
constants) described and affected

by the subfields that precede it.
It is this value that is assemkled
into the internal binary
representation of the constant.
The formats for specifying nominal
values are described in the figure
to the right.

co

How nominal values are specified
and interpreted by the assembler
is explained in the subsections
that descrike each individual
constant, beginning at G3LC.

Values Assembled

o in decimal

DC E'2,25E+2,2.25,225E-2" 225,2.25,2.25

00 o

DC EE+2'2.25,2.25,225"

225,225,22500

DC FE+2'2.25E+2,2.25,2.25,22500E~4"

E+2-4

0 o 225
E+2+2 E+2+0
225
22500 E
DC FE-20'2.25E+80" 60

2.25x10

Too large for
4 bytes

Nom. Vah;e

Formats of Nominal
Value Subfields
Constant Single Multiple

Type Nominal Nominal

Values Values
C 'Value' Not allowed
8 ﬁ
X
H
F
P 'Value’ 'Value, value,......val ve,
z -

muitiple values must
E
D be separated by commas
LJ
3
A
Y | Address
S pConstants| (Value) (Value), value,....... value)
Q
\
-

Section G: Symbol and Data Definition 179

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

G3C -- LITERAL CONSTANTS

PUrpose

Literal constants allow you to

define and refer to data directly

in machine instruction operands.

You do not need to define a constant
separately in another part of your
source module. The difference
between a literal, a data constant,
and a self-defining term is described
in C5.

Specifications

A literal constant is specified

in the same way as the operand of

a DC instruction. The general rules
for the operand subfields of a DC
instruction (as described in G3B
above) alsc apply tc the subfield
of a literal constant. Moreover,
the rules that apply to the
individual types of constants, as
described in G3D through G3M, apply
to literal constants.

Bowever, literal constants differ
from CC operands in the fcllowing
ways:

0 e Literals must be preceded by an
equal sign.

e e Multiple operands are nct allowed.

e The duplication factcr must not

be zero.

180

L 3,=F'32"'

LM 3,5,;A(BE .

0 Multiple Nominal
Values are allowed

MVC FIELD(24),=6CL4'CANT'

h

Data Constants

G3LC -- EINARY CONSTANT (B)

Furpcse

The kinary ccnstant allcws ycu tc specify the precise kit
Fattern ycu want assemkled into storage.

Specificaticns

The ccnstants cf the subfields defining a binary ccnstant
are described in the figure kelow.

NOTE: Each kinary ccnstant is assermbled intc the integral
nurber of bytes required to contain the kits srecified.

Binary Constants

Subfield 3. Constant Type

Binary (B) J

1. Duplication Factor Yes
|____allowed

2. Modifiers As needed
Implicit Length: (Length B DC B'10101111'| L'B = l»
Modifi .

odifier not present) Cc DC B'101' L'C = 1

Alignment:
(Length Modifier not present)| Byte

Range for Lengthe 1 through 256 (byte length)
.1 through .2048 (bit length)

Range for Scale: Not allowed

Range for Exponent: Not allowed

4. Nominal Value . Binary digits
(Oor 1)

Represented by:

Enclosed by: Apostrophes

Exponent allowed: No

Number of Values per Multiple
Operand:

. With zeros
Padding: at left

Truncation of
Assembled Value : At left

Section G: Symbol and Data Definition 181

G3E -- CHARACTER CONSTANT (C)

182

Furpose

The character constant allows ycu tc specify character
strings such as error messages, identifiers, or cther text,
that the assembler will convert into their kinary (EBCLIC)
representation.

Specificaticns

The ccntents of the sukfields defining a character ccrstant
are descriked in the figurxe cn the crpcsite rage.

Each character specified in the ncrinal value subfield
is assembled into one Lyte.

Multiple nominal values are nct allcwed, because if a comma
is specified in the nominal value sukfield, the assenkler
considers the comma a valid character and therefore
asserkles it intc its kinary (EBCDIC) rerresentation.

NOTE: When arostrorhes or ampersands are to be included
in the asserbled ccnstant, doukle apostrophes or dcukle
ampersands must ke specified. They are assembled as single

apostrorhes and ampersands.

Subfield

Character Constants

3. Constant Type

Character (C)

Implicit Length: (Length

1. Duplication Factor Yes
allowed
2. Modifiers As needed

Represented by:

Characters (All 256
8-bit combinations)

A'B
Assembled A&B

' '] =
Modifier not present) C DC C'LENGTH L'c 6
1
Alignment: Byte
(Length Modifier not »se
present)

1 through 256 (byte length)

Range for length: .1 through .2048 (bit length)
g!

Range for Scale: Not allowed
Range for Exponent: Not allowed
4. Nominal Value DC C'A''B' Object Code {hex).

——=

Operand:

DC C'A&&B!
Enclosed by: Apost rophes
Exponent allowed: No
Number of values per One DC C'A,B’

[c1]6B] c2]

Assembled A, B 0

With blanks at right

Padding: (X'40")
Truncation of
Assembled value: At right

Section G: Symbol and Data Definition

183

G3F -- HEXALECIMAL CCNSTANT (X)

184

Furgose

You can use hexadecimal ccnstants to generate large kit
ratterns more conveniently than with binary constants.
Also, the hexadecimal values you specify in a scurce rcdule
allow you tc corpare them directly with the hexadecimal
values generated foxr the okject code and address lccaticns
printed in the prcgram listing.

Specificaticns

The contents cf the sukfields defining a hexadecimal
constant are descriked in the figure on the opposite gage.

Each hexadecimal digit specified in the nominal value
sukfield is assenkled intc four bkits (their bkinary ratterns
can be found in C4EF) . The implicit length in Lytes cf a
hexadecimal ccnstant is then half the number of hexadecimal
digits specified (assuming that a hexadecimal zerc is added

to _an odd numker cf digits).

Hexadecimal Constants

Subfield 3. Constant Type
Hexadecimal (X)

1.Duplication Factor

allowed Yes
2.Modifiers As needed
Impllclt Length: (Length X DC X'FFOOA2' L'X = 3 m
Modifier not present) Y DC X'FOOA2' L'Y = 3
Alignment:

(Length Modifier not present)| Byte

1 through 256 (byte length)

Range for Length:
.1 through .2048 (bit length)

Range for Scale: Not allowed

Range for Exponent: Not allowed 6

4. Nominal Value Hexadecimal digits (0 Obiject Code (hex)

Represented by: ch)rough 9 and A through DC X'1F' 00 01 1111
DC X'91F' [0000}1001{0001f1111

; : «<—1 byte—»
Enclosed by: Apostrophes
Exponent allowed: No

Number of Values

per Operand: Multiple
Padding: With zeros at left
Truncation of

Assembled value: At left

Section G: Symbol and Data Definition 185

G3G -- FIXFL-FQINT CCNSTANTS (B ANL F)

Purpose

Fixed-point constants allow you to intrcduce data that

is in a fcrmr suitakle fcr the cperaticns cf the fixed-point
rachine instructions of the standard instruction set.

The ccnstants you define can alsc ke autcmatically aligned
to the proper fullword or halfword koundary for the
instructicns that refer tc addresses on these boundaries
(unless the NCALGN option has Lkeen specified; see L2).

You can perform algekraic functicns using this tyge of
constant because they can have positive or negative values.

Specifications

The contents cf the subfields defining fixed-point constants
are described in the figure on the opposite fpage.

The nominal value can ke a signed (rlus is assumed if the
number is unsigned) integer, fraction, or mixed number
follcwed by an exponent (positive or negative). The

exponent must lie within the permissikle range. If an
exponent modifier (see G3B) is alsc specified, the algekraic
sum cf the exponent and the exponent mcdifier must lie a
within the rermissikle range.

186

Fixed-Point Constants

Subfield 3. Constant Type
Fullword(F) ‘Halfword (H)

1. Duplication Factor

Allowed Yes Yes
2, Modifiers
Implicit Length: (Length 4 bytes 2 bytes
Modifier not present)
Alignment: Full word Half word

(Length Modifer not present)

Range for Lengths

1 through 8 (byte length)
.1 through .64 (bit length)

1 through-8 (byte length)
.1 through .64 (bit length)

Range for Scale:

— 187 through + 346

— 187 through + 346

Range for Exponent:

— 85 through + 76 o

— 85 through + 75
valu

=

DC HE+90'2E-88"'

4, Nominal Value
Represented by:

Decimal digits (0 through 9)

DC F'-200"' 0

DC Fs4'2,25"

Decimal digits (O through 9)

DC H'+200'
DC HS4'.25'

2xlO_2®

Enclosed by: Apostrophes Apostrophes
Exponent allowed: Yes Yes

DC F'2E6' 9 DC H '2E-6'
Number of Values Multiple Multiple
per Operand:
Padding: With zeros at left With zeros at left

Truncation of
Assembled value:

Not allowed

(error message issued)
1

Not allowed

Section G: Symbol and Data Definition

187

Some examples of the range of values

that can be assembled intc fixed- Length E::\ngzt:\fs:z?:‘t:::;hat
point constants are given in the o
figure to the right.

. 8 -2%3 through 203-1
The range of values depends on the
implicitly or exp11c1t117 specified 4 _231 " 231_l
length (if scaling is disregarded) .
If the value specified for a 5 _215 " 215_l
particular constant does not lie
within the allowable range for a 1 _27 " ?7_1
given length, the constant is not -
assembled but flagged as an error. h—

A fixed-pcint constant is assembled as fcllows:

1. The specified numker, multiplied ky any expcnents,
is converted to a kinary numker.

2. Scaling (see G3E) is perfcrred, if specified. 1If a
scale modifier is not provided the fracticnal portion cf
the number is lost.

3. The tkinary value is rcunded, if necessary. The
resulting number will not differ from the exact nurker
specified ky more thanm cne in the least significant bit
position at the right.

4. A negative nunker is carried in 2's ccrxplement form.

5. Cuplication is arrlied after the constant has been
asserbled.

G3H -- CECIMAL CONSTANIE (P AND Z7)

188

Furpcse

The decimwal ccnstants allcw ycu tc intrcduce data that

is in a form suitakle for the operations of the decimal
feature machkine instructicns. The racked decimal constants
(P-type) are used for processing ky the decimal instructicn
set. The zcned decimal ccnstants (Z-tyre) are in the form
(EBCLCIC representation) that you can use as a print inage
(excert the digits in the rightmost Lkyte).

Specifications

The contents cf the sukfields defining decimal constants
are described in the figure on the opposite rage.

The ncminal value can be a signed (rlus is assumed if the
nunber is unsigned) decimal number. A decimal roint can
be vritten anywhere in the numker, kut it does nct affect
the assembly of the constant in any way. The specified
digits are assumed tc ccnstitute an integer. Cecimal
constants are assemkled as follows:

PACKEL LCECIMAL CCNSTANIS: Each digit is ccnverted into
its 4-bit binary equivalent. The sign indicator is
asserbled intc the rightmost four kits of the ccnstant.

ZONEL DECIMAL CONSTIANIS: Each digit is ccnverted intc
its 8-bit EECLIC rerpresentation. The sign indicatcr
replaces the first fcur Lits cf the low-crder byte of the
constant.

Decimal Constants

Subfield 3. Constant Type
Packed (P) Zoned (Z)
1. Duplication Factor
Allowed Yes Yes
2, Modifiers
Implicit Length: (Length As needed As needed
Modifier not present P DC P'+593! Z DC Z2'~593"
L'P = 2 L'Z = 3
Alignment:
{Length Modifer not present) Byte Byte

Range for Length:

1 through 16 (byte length)
.1 through .128 (bit length)

1 through 16 (byte length)
.1 through . 128 {bit length)

Range for Scale:

Not aliowed

Not allowed

Range for Exponent:

Not allowed

Not allowed

4, Nominal Value

Represented by:

eDC p'

Decimal digits (O through 9)

G15[5[C1@)

Decimal digits (0 through 9)
1

DC Z'=555"

O &

DC P'5.5'

NEEE 1)

DC P'55"

Apostrophes o

|
!

Enclosed by: Apostrophes
Exponent allowed : No No
Number of Values
per Operand: Multiple Multiple
With Binary zeros With EBCDIC zeros
Padding: at left (X'FO')
at left
Truncation of At left At left

Assembled value:

Section G: Symbol and Data Definition

189

The range of values that can be

§ssemb1ed_1nto a deciral constant Type of Decimal Range of Values that

is shown in the figure to the right. Constant can be Specified
PACKED 1031-1 through -103!
ZONED 1016—1 through -lO16

G31 -- FLOATING-POINT CONSTANIS (E, D, and I)

190

Furpcse

Floating-point constants allow you to introcduce data thrat
is in a fcrm suitakle fcr the crerations of the flcating-
point feature instruction set. These ccnstants have thre
following advantages cver fixed-pcint ccnstants.

1. You do not have to consider the fractional pcrticn cf
a value ycu srecify, ncr worry akcut the pcsiticn cf tte
decimal pcint when algekraic orerations are to be perfcrmed.
2. Ycu can specify koth much larger and much smaller values.

3. You retain greater rrocessing rprecisiocn, that is, ycur
values are carried in more significant figures.

Specificaticns

The ccntents of the sukfields defining floating-pcint
constants are descriked in the figure cn the oprosite rage.

The ncminal value can be a signed (plus is assumed if the
numker is unsigned) integer, fracticn, c¢r mixed number o
follcwed by an exponent (positive or negative). The
exponent must lie within the permissikle range. 1If ar
exponent ncdifier (see G3EB under kMcdifiers) is also
specified, the algebraic sum of the exponent and the
exponent modifier must lie within the permissikle range.

Subfield

Floating Point Constants

3. Constant Type

SHORT (E) LONG (D) EXTENDED (L)
1. Duplication Factor .
Y Y Y
Allowed o o b
2, Modifiers
Implicit Length: 4 Bytes 8 Bytes 16 Bytes
(Length Modifier Not
Precent)
Alignment:
(Length Modifier Not Full Word Double Word Double Word

Present)

Range for Length:

1 through 8 (byte length)

.1 through .64 (bit length)

1 through 8 (byte length)
.1 through .64 (bit length)

1 through 16 (byte length)
.1 through .128 (bit length)

Range for Scale:

0 through 14

0 through 14

0 through 28 %

Range for Exponent:

— 85 through + 75

— 85 through + 75

- 85 through + 75

4, Nominal Value Decimal Digits Decimal Digits Decimal Digits

(0 through 9) (0 through 9) (O through 9)
Represented by: DC E'4+525" DC D'Li525! DC L'525!

DC E'5.25! DC D'+.001" DC L'3.414'Q_
Enclosed by: Apostrophes Apostrophes Apostrophes
Exponent Allowed: Yes Yes Yes

DC E'lE+60'o DC D'—2.5E10'° DC L'3.712E-3"
Number of Values per Multiple Multiple Multiple

Operand :

Padding:

With hexadecimal zeros at
right

With hexadecimal zeros at
right

With hexadecimal zeros at
right

Truncation of Assembled
Value:

Not applicable
{Values are rounded)

Not Applicable
Values are Rounded)

Not applicable
[Values are Rounded)

Section G: Symbol and Data Definition

191

The range of values that can be 'r'_-
assembled into floating-point i
constants is given in the figure Type of Range of Magnitude (M)
to the right. Constant of Values (Positive and
Negative)
If the value specified for a
particular constant does not lie E 16"655n45(1—16_6) x 16%3
within these ranges, the constant
is not assembled but flagged as -65 -14 63
an error. D 16 <M S(1-16) x 16
L 167%° <M <(1-16728) x 16%3
{For all Three)
Approximately
5.4 x 1077°<M<7.2 x 107°

Type | Called Format

FORMAT: The format of the floating- E Short
point constants is descriked below. Floating-
The value of the constant is Point
represented by two parts: Number
“ 1. An exponent portion, followed
by D Long 7-bit 56-bit
Floating- haracteristic Fraction
0 2. A fractional portion. Point < 5%
Bits 0 1 78 63
OA sign bit indicates whether a Number
positive or negative number has
Lbeen specified. The number specified L Extended 7-bit High-order half of
must first be converted into a Floating- + Characteristic 112-bit Fraction
hexadecimal fraction, before it Point L
can be assembled into the proper Number 63

internal format. The quantity
expressed is the product of the

Ofraction_ and the number 16 raisede
to a power.

Low-order half of
USED FOR 112-bit Fraction
-SECOND HALF
OF LCON

Characteristic

b c
16E 2 St
et e]
where a,b,c. . . . are hexadecimal digits, and E is

an exponent that has a positive or negative value
indicated by the characteristic

192

BINARY REPRESENTATION: The assembler
assembles a floating-point constant
into its binary rerresentation as
follows:

The specified number, multiplied
by any exponents, is converted to
the required two-part format. The
value is translated intc:

1. A fractional portion represented
ky hexadecimal digits and the sign
indicator. The fraction is then
entered into the leftmost part of
the fraction field of the constant
(after rounding) .

2. An exponent porticn regresented
by the excess 64 binary notation,
which is then entered into the
characteristic field of the constant.

The excess 64 binary notaticn is
when the value of the characteristic
ketween +127 and +64 represents

the exponents of 16 between +63

and 0 (by subtracting 64) and the
value of the characteristic between
+63 and 0 represents the exponents
of 16 between -1 and -64.

NOTES:

1. The L-type floating-point constant
resembles two contiguous D-type
constants. The sign of the second
doubleword is assumed to be the

same as the sign of the first.

The characteristic for the second
doubleword is equal to the
characteristic of the first
doubleword minus 14 (the number
of hexadecimal digits in the
fractional portion of the first
doukleword) .

2. If scaling has been specified,
hexadecimal zeros are added to the
left of the normalized fraction
(causing it to become unnormalized)
and the exponent in the
characteristic field is adjusted
accordingly. (For further details
on scaling see G3B under Modifiers).

3. Rounding of the fraction is
performed according to the implicit
or explicit length of the constant.
The resulting number will not differ
from the exact number specified

ty more than one in the last place.

4, Negative fractions are carried
in true representaticn, nct in the
2's complement form.

5. Duplication is applied after
the constant has been assembled.

Source Code

DC D'-9.75"

Binary Representation

Object Code

in Hex

Fraction

lc1]olcJoooooo000000}

Characteristic e \\
s s G .
1000001]

=—975 "

Decimal Decimal
127 +63
126 482
. e
. el
s e -
64 0
63 -1
62 -2
00 0 —64

Values Expressed
in Characteristic

Exponent of 16
expressed by
Characteristic

Excess 64 Binary Notation

Section G: Symbol and

Data Definition

193

\G3J -- THE A-TYPE ANLC Y-TYPF ADDRESS CCNSTANTS

194

This subsection and the three following suksections describe
how the different types cf address constants are assembiled
from expressions that usually represent storage addresses,
and how the constants are used for addressing within ard
ketween siocurce mcdules.

Furgose

In the A-tyre and Y-tyre address ccnstant, ycu can specify
any of the three types of assemkly-time expressions (see
C6) , whose value the assenbler then corputes and assembles
into cbject code. You use this expression computaticn

as follows:

1. Relocatakle expressions for addressing

2. Absolute expressions for addressing and value
computaticn.

3. Ccrplex relocatable expressions to relate addresses
in different source ncdules.

Specificaticns

The ccntents cf the sukfields defining the A-type and Y-
type address constants are descriked in the figure on the
oprosite rpage.

NOTES:

1. Nc bit~length specification is allowed when a rxelccatakle
or conplex relccatakle expression is specified. The cnly
explicit lengths that can be specified with these addresses
are:

a. 3 cr 4 bytes for aA-type constants

b. 2 bytes for Y-type constants.
2. The value of the lccaticn ccunter reference (*) when
specified in an address constant varies from constant tc
constant, if any cf the fcllcwing cr a combination of the
follcwing are specified:

a. Multirle crerands

k. Multiple ncminal values

c. A durlication factor.

The lccaticn counter is incremented with the length cf
the previcusly asserkled constant.

3. when the location counter reference occurs in a literal
address ccnstant, the value of the locaticn counter is
the address of the first Lyte of the instruction.

Subfield

Address Constants (A and Y)

Address Constants

3. Constant Type

A — Type Y — Type o
1. Duplication Factor Yes Yes A DC 5Xf]_ (<=A)
aliowed Object Code in Hex ———| 0001020304
2. Modifiers
Implicit Length: (Length 4 bytes 2 bytes
Modifer not present)
Alignment:
(Length Modifier not present) | Full word Half word

Range for Length:

1 through 4 (byte length)
.1 through .32 (bit length)

1 through 2 (byte length)
.1 through .16 {bit length)

Range for Scale:

Not allowed

Not allowed

Range for Exponent:

Not aliowed

Not allowed

4, Nominal Value
Represented by:

Absolute, relocatable, or
complex relocatable

expressions

0|

Absolute, relocatable, or
complex relocatable
expressions

A DC Y(*-A,%+4)

DC A (ABSOL+10) DC Y (RELOC+32) 0 A+6
values
[Enclosed by: Parentheses Parentheses
Fxponent allowed: No No ‘
Number of Values .
per Operand: Muitiple Multiple
With zeros at left With zeros at left
Padding:

Truncation of
Assembled value:

At left

At left

Section G: Symbol and Data Definition

195

CAUTION: Srecificaticn of ¥Y-tyre address constants with
relocatable expressions should be avoided in programs that
are tc be executed cn rachines having wore than 32,767
kytes of stcrage caracity. In any case, Y-type relocatakle
address constants should not ke used in programs tc ke
executed under IBM Systemy/370 contrcl.

The A-tyre and Y-type address constants are rrocessed

as follows: If the ncrminal value is an aksolute expression,
it is computed to its 32-kit value and then truncated cn
the left to fit the implicit or exrplicit length of the
constant. If the ncrinal value is a relocatable or complex
relocatable expression, it is not completely evaluated
until linkage edit time when the ckject modules are
transformed into load modules. The 24-kit (or sraller)
relocated address values are then placed in the fields

set aside fcr then at assemkly time by the A-type and Y-
type constants.

G3K_-- THE S-TYPE ALCLCRESS CONSTANT

Furgose

You can use the S-tyre address ccnstant tc assemble an
explicit address (that is, an address in kase-disglacement
form) . You can specify the explicit address yourself or
allow the assembler to compute it from an implicit address,
using the current kase register and address in its
computation (for details cn irplicit and explicit addresses,
see L[5B) .

Specificaticns

The contents cf the sukfields defining the S-type address
constants are descriked in the figure on the opposite rage.

The ncminal values can be srecified in twc ways:

o 1. As one absolute or relocatakle expression rerpresenting
an implicit address

02. As two _alksolute expressions, the first of which
represents the displacemegg and the second, the baseo

register.

196

Address Constants (S)

Subfield 3. Constant Type
S — Type
1. Duplication Factor
Allowed Yes

2. Modifiers
Implicit Length: 2 bytes
(Length Modifier not

present)
Alignment: Half word
(Length Modifier not

present)

Range for length: 2 only (no bit length)

(in bytes)
Range for Scale: Not allowed
Range for Exponent: Not allowed

4, Nominal Value

Represented by:

Absolute or
relocatable expression

Two absolute
expressions

DC S(RELOC)
DC 5(1024)

DC S(512(12))

Enclosed by: Parentheses
Exponent allowed: No
Number of Values

per operand : Multiple
Padding: Not applicable

Truncation of
Assembled value:

*———#

Not applicable

Section G: Symbol and Data Definition

197

G3L_~-- THE V-TYPE ACCRESS CONSTANT

Purpcse

The V-type address constant allows you to reserve stcrage
for the address cf a lccaticn in a contrcl section that
lies in another source module. You should use the V-tyre
address ccnstant cnly tc kranch tc the external address
specified. This use is contrasted with anothter methcd,
that is: of specifying an external symkcl, identified

by an EXIRN instruction, in an A-type address cconstant
(for a comrarison, see F2).

Because you specify a symbol in
a V-type address constant, the Source Object Module
assembler assumes that it is an Module in Hex
external symbol. A value of zero
is assembled into the space reserved A
for the V-type constant; the correct jp START 0
erelocated value of the address is
inserted into this space by the
linkage editor before your object Q
program is loaded. DC V(OUTSIDE) RO0000000
END
B
OUTSIDE OUTSIDE
Specificaticns

The contents of the sukbfields defining the V-type address
constants are descriked in the figure on the oprosite rage.

0 The symkcl specified in the ncminal value subfield does
not ccnstituté a definition of the symkol for the scurxce
module in wkich the V-tyre address constant appears.

The symbol specified in a V-type constant must not rerresent
external data in an cverlay grcgrar.

198

Address Constants (V)

Subfield 3. Constant Type
V — Typa
1. Duplication Factor
allowed Yes
2. Modifiers
Implicit Length: (Length 3 bytes
Modifier not present)
Alignment: (Length
Modifier not present) Full word
Range for Length: 4 or 3only

(in bytes) (no bit length)
Range for Scale: Not allowed
Range for Exponent: Not allowed

4, Nominal Value

A single relocatable
symbol

DC V(MODA)

Represented by: o
DC V (EXTADR)
Enclosed by: Parentheses
Exponent allowed: No
Number of values
per Operand: Multiple
Padding: With zeros at left

Truncation of
assembled value:

Not applicable

Section G: Symbol and Data Definition

199

200

Furpcse

You use this constant tc reserve storage for the cffset

into a storage area of an external dummy section.

The

offset is entered intc this space by the linkage editcr.
when the offset is added to the address of an overall tlcck
of storage set aside fcr external dummy sections, it allows

you tc address the desired section.

(For a descrirticn

of the use of the Q-tyre address ccnstant in combination
with an external dummy section, see EU.)

Specifications

The contents ¢f the sukfields defining the Q-type address
constant are described in the figure kelow.

The symbcl specified in the ncrinal value subfield must

be previcusly defined as the lakel of a L[XLC or LSECT

statement.

R
Address Constants (Q)
Subfield 3. Constant Type
Q-Type
1. Duplication Factor Yes
allowed
2. Modifiers 4 bytes
Implicit Length: (Length
Modifier not present)
Alignment: (Length Fullword
Modifier not present)
Range for Length: 1-4 bytes
(in bytes) {no bit length)
Range for Scale: Not allowed
Range for Exponent: Not allowed

4. Nominal Value
Represented by

A single relocatable
symbol

DC Q(DUMMYEXT)
DC Q(DXDEXT) o

Enclosed by: Parentheses
Exponent allowed: No
Number of Values per .

!
Operand: Multiple
Padding: With zeros at left

Truncation of
Assembled Value

At left

G3N -~ THE LS INSTRUCTICN

Purgose

The LS instruction allows you to:
1. Reserve areas cf stcrage

2. Prcvide lakels fcr these areas

3. Use these areas Ly referring to the symkols defined

as lakels.

The L[S instruction causes no data tc be assembled.

Unlike

the LC instruction (see G3B), you do nct have tc specify
the nominal value (fcurth subfield) of a LS instructicn

cperand.

of symbolically defining storage for work areas,

input/outrut buffers, etc.

How to Use the DS Instruction

TO RESERVE STORAGE; If you wish
to take advantage of automatic
koundary alignment (if the ALIGN
option is specified) and implicit
length calculaticn, you should not
supply a length modifier in your
operand specifications. You should
specify a type subfield that
corresponds to the tyre of area
you need for your instructions
(See individual types in sections
G3D through G3M) .

Therefore, the L[S instruction is the kest way

» _
Named (Mnemonic)

—r

' Areas Aligned on| Length Attribute of
Areas for Fixed- |Boundary Symbols Naming Areas
Point Instructions same as Implicit
o Length of Areas
FAREA DS F Full word 4
HAREA DS H Half word 2
AAREA DS A Full word 4 J
DUPF DS 10F Full word L'DUPF=4
10 full words of Duplicati(?n ha}s .no
effect on implicit
storage reserved
length
Named Areas for
Floating-Point
Instructions
EAREA DS 3E Full word 4
DEAREAS 9D| Double word 8
9 double words
reserved
LAREA DS L Double word 16
Section G: Symbol and Data Definition 201

202

Using a length modifier can give

you the advantage of explicitly
specifying the length attribute
value assigned to the label naming
the area reserved. BHowever, your
areas will not be aligned
automatically according to their
type. I1If you omit the nominal value

in the operand, you should use a
length modifier for the binary (BR),
character (C) , hexadecimal (X),

and decimal (F and Z) type areas;
otherwise their labels will be given
a length attribute value of 1.

Duplication factor
has no effect on
length attribute

r Area Specified Area Length
Reserved in Attribute
o in Bytes
TEN DS CL10 10 10
TWO56 DS XL256 256 256
3 DS FL3
D7 DS DL7
A2 DS AL2
1
Ccl
c2
C3
| «
X2
X3

When you need tc reserve large areas ycu can use a
duplication_ factor. However, you can only refer tc tre

Ycu can alsc use

e first area Ly the lakel in this case.

the character (C) and hexadecimal

(X) field tyres tc srecify

o large areas using the length rcdifier.

Area Specified

LARGEF\D S 10FL3

LARGEDIWDS 100D

Q)

LARGEA}DS 60A

GE!:S» I

LARGEC DS 1000C

c2 DS CL1000

Area Reserved| Automatic Length Attribute
in Bytes Boundary of symbol used
o Alignment as Label
16 30~__| NONE 3
/800‘\ DOUBLE WORD 8
I 1 .
|_—240~~_ [FULL WORD 4
i 1.__~
|
Duplication has
no effect
1000 NONE 1
1000 NONE 1000

Maximum of
65,5635 allowed

XLARGE DS XL

LARGERX DS 2XL2000

2000

4000

NONE 2000

NONE 2000 j

Section G: Symbol and Data Definition

203

204

0 boundary.

Although the nominal value is
optional for a DS instruction, you
can put it to good use by letting
the assembler compute the length

for areas of the B, C, X, and decimal
(P or 2) type areas. You achieve

this by specifying the general
format of the nominal value that

will be placed in the area at
execution time.

TO FORCE ALIGNMENT: You can use

the DS instruction to force alignment
to a koundary that otherwise would
not be provided. You do this Ly
using a Qgplication factor of zero.
No space 1s reserved for such an
1nstruct10n, yet the data that
follows is aligned on the desired

NOTE: Alignment is forced when
either the ALIGN or NOALIGN assembler
option is set (see r2).

Length Atribut
or computed
implicit length
) Area of area
Area Specified Reserved (duplication
inbytes | Jisregarded)
16 16
2 2
60 2
3 3
15 3
5 5
3

__
0 Double word]
DS OD
O =3
AREA DS CL128 0
Full word '
DS OF
KEY pC cC'a!
ADCON DC AL3(SOMWHERE) 0 CIXXXXXX
hniand
A Address of
0 SOMWHERE
HERE DS OH og Half word '
LH 3,SUM iH
AH 3,CONST AR
STH 3,RESULT STh

HERE addresses
same location as
following

instruction (LH)

TO_NAME FIFILS OF AN AREA: Using a duplication factcr

of zero in a L[S instruction also allows you to prcvide

a lakel for an area cf stcrage withcut actually reserving

the area. You can use L[S or LC instructions toc rxreserve
0stora e for and assign lakels tc fields within the area.

These fields can then ke addressed symkolically. (Anctherx

way of acccrplishing this is described in E3C.) The whcle

area is addressable by its lakel. 1In additicn, tre syrkclic

elabel will have the length attrikute value of the whcle

Within the area each field is addressable by its

area.
label. The LCATE field has the same address as the sukfield
LCAY. However, CATE addresses 6 kytes, while DAY addresses

only 2 bytes.

T"“

card columns

J Symbol Length
Attribute
030 RECAREA DS 0CL80
DS CL4
6 [PAYNO DS CLé6
20 | NAME DS CL20
6 | DATE DS 0OCL6
2 |DAY DS CL2
2 | MONTH DS CL2
2 {YEAR DS CL2
DS CL10
GROSS DS CL8
TAXES DS CL8
DS CL18
Area not
Aligned H
RECAREA
N
DATE
DAY “'
MONTH
YEAR \ 80
l 2 bytes I lfg:i(_eqs
J

Format of 80
Character Record

Section G: Symbol and Data Definition

205

206

Specificaticns

The format of the LS instruction
statement is given in the figure
to the right.

The format cf the cperand of a DS
instruction is identical to that
of the LC cperand (see G3B).

The two differences in the
specification of subfields are:

The nominal value sukfield is
opticnal in a DS operand, but it
is mandatcry in a CC crerand. 1If
a nominal value is specified in

a LS operand, it must ke valid.

The maximum length that can be
specified in a L[S operand for the
character (C) and hexadecimal (X)
tyre areas is 65,535 bytes, rather
than 256 bytes for the same LC
operands.

Operation

Operand

Any:Symbol
or blank

DS

Operand Format

Duplication
Factor

Type

Zero or more
Nominal Values

Modifiers

OPTION1
OPTION2
AMUST

LONGC
LONGX

DS
DS
DC

DS
DS

LIMITEDC DC

| LIMITEDX DC

CL65535°
XL65535

CL256'A"’
XL256'00"

The label used in the name entry of a LS instructicn, 1like
the lakel fcr a LCC instructicn (see G3B):

1. Has an address value of the leftmost kyte of the area
reserved, after any tcundary alignwent 1is performed

2. Has a length attrikute value, derending on the implicit
or explicit length of the type of area reserved.

If the LS instructicn is specified with mcre than one
cperand or more than one nominal value in the orerand,

the label addresses the area reserved for the field tlat
corresponds tc the first nominal value cf the first orerand.
The length attribute value is equal to the length explicitly
specified or implicit in the first crerand.

Boundary Symbol
Alignment | Length
Attribute
Only if
Length Duplica-
Modifier tion has
is not no effect.
specified
Implicit Length o
C DS 3C Byte 1
H DS 2H Halfword 2
F DS F Fuliword 4
1
D DS D |'] Double word 8)
A DS 3A [A | 1 Full word 4
|
|
|
Explicit Length :
| .
EXPL DS FL3 !::Zl None 3
DS 3DL5 2 J 3¢ JL 21 | None 5
DS XL7000 L 3 | None 7000
|
1
l
|
OPRNDS DS 3F, 3C ! | 1l LI JC 1| Full word 4
DS FL3,2HLS5 'E i | I } None 3
VALUES DS A(P,Q,R) Il X I 1 Full word 4
|
MORE ps H'7,8,9* L_JL i |] Half word 2
|
I

Section G: Symbol and Data Definition 207

208

NOTE: Unlike the DC instruction,
bytes skipped for alignment are
not set to zerc. Also, ncthing

is assembled into the storage area
reserved Ly a DS instruction. No
assumption should be made as to
the contents of the reserved area.

The size of a storage area that

can ke reserved by a DS instruction
is limited only by the size of
virtual storage or by the maximum
value of the location counter,
whichever is smallex.

T-

Double word Boundary J

—

SKIPPED\DS 3D
.

End of Last
Data Entry

Unknown
Contents

G30 -~ THE CCW INSTRUCTION

Purpcse

You can use the CCW instruction to define and generate
an eight-kyte channel ccmrand werd for input/output

dperations.

The channel command word is an
eight-byte field aligned at a
doubkleword boundary, and contains
the information described in the
figure to the right.

Specifications

The format of the CCW instruction
statement is given in the figure
to the right.

S
Doubleword
Boundary
Byte
bits 0 7
Command 1
Code
8 31
Address of data to operate upon 2~4
32 37 3839 '
Must be Specified
, 5
as Zeros
40 47
Set to Zeros 6
by Assembler
48 63
Byte Count or |ength of Data 7-8

Section G: Symbol and Data Definition

Name Operation Operand

Any symbol CCW Four operands separated

or blank by commas
o

209

0 L'WRITE=8

WRITE CCW 1,DATADR,X'48',X'50'

Values are
right justified
in fields

Relocatable
or Absolute
Expression

Absolute
Expression

Absolute
Expression

Absolute
Expression

Assembled
into

All fcur operands must be specified
in the order descriked in the figure

to the right. The generated channel . 0 J|X X X X XX IO 0”0 05 0[
conmand word is aligned on a Object Code][I .

e doubleword koundary. 2Any bytes in hex 1 7-8 bytes
skipped are set tc zerc. :
The symbol in the name field, if
present, is assigned the value of Double Word

o the address of the leftmost Lyte Boundary

of the channel ccnrand word
generated. The length attrikute

value of the symkcl is 8. bits

Must be Specified
as Zeros

Treated as
as 3-byte
A-Type
address
constant

210

Section H: Controlling the Assembler Program

H1 --

This section describes the assembler instructions that
request the assembler to perform certain functions that
it would otherwise rerform in a standard predetermined
way. You can use these instructions to: ’

1. Change the standard coding format for writing your
source statements

2. Control the final structure of your assembled program

3. Alter the format of the source module and object code
printed on the assembler listing

4. Produce punched card output in addition to the object
deck

5. Substitute your cwn mnemonic operation codes for the
standard codes of the assemkler language

6. Save and restore programming environments, such as the
status of the PRINT options and the USING base register
assignment.

Structuring a Program

The instructions described in this subsection affect the
location counter and thereby the structure of a control
section. You can use them to interrupt the normal flcw
of assembly and redefine portions of a control section
or to reserve space to receive literal constants. Alsc,
you can use them to align data on any desired boundary.

Section H: Controlling the Assembler Program

211

H1A -- THE ORG INSTRUCTION

212

PurEose

You use the ORG instruction to alter
the setting of the lccaticn counterx
and thus control the structure of
the current control section. This
allows you to redefine portions

of a control section.

For example, if you wish to build

a translate table (to convert EBCLIC
character code intc scme other
internal code) :

1. You define the table as keing

filled with zeros.

2. You use the ORG instruction to
alter the location counter so that

its counter value indicates a desjired

location within the table.

3. You redefine the data to be

assemkled intc that location.

4, After repeating the first three
steps until ycur translate takle

is complete, you use an ORG
instruction with a blank operand
field to alter the locaticn counter
so that the counter value indicates
the next available location in the
current control section (after the
end of the translate table).

Both the assembled object code for
the whole table filled with zeros

and the okject code for the portions
of the table you redefined are
printed in the program listings.
However, the data defined later

is loaded over the previously defined
zeros and becomes part of your
object program, instead of the

Zeros.

In other words, the ORG instruction
can cause the location counter to
point to any part of a control
section, even the middle of an
instruction, into which you can
assemble desired data. It can also
cause the location counter to point
to the next available location so
that your program can continue to

be assembled in a sequential fashion.

FIRST

TABLE

3
TABLE+256

GOON

INPUT

START

DC
ORG
DC
DC

ORG

DC
DC

ORG
DC

ORG
DC

ORG
DS

TR

END

0

XL256'00g
TABLE+0
c'o’

c'y’

TABLE+13

c'D!
C'E'

TABLE+C'D’
AL1(13)

TABLE+C' Q"
AL1(0)

OH

Object Code

TABLE
(in Hex)
+0 FO
Fl

+13 | c4

+196| 0D

+240(00
01

+255

INPUT, TABLE

CL20

Specifications

The format of the ORG instruction
is shown in the figure to the right.

The symbols in the expression in

the operand field must be previously
defined. The unpaired relocatable
term of the expression (see C6B)
must be defined in the same control
section in which the ORG statement
appears.

The location counter is set to the
value of the expression in the
operand. If the operand is omitted,
the location counter is set to the
next available location for the
carrent control section.

The expression in the oprerand of

an ORG instruction must not specify
a location before the beginning

of the control section in which

it appears. 1In the example to the
right, the QRG instruction is invalid
if it appears between the beginning
of the current control section and
500 bytes from the beginning of

the same control section. This

is because the expression specified
is then negative and will set the
location counter to a value larger
than the assembler can process.

The location counter will “wrap
around® (the location counter is
discussed in detail in section CUB).

Name Operation Operand
0s A relocatable
Any symbol ORG expression
or blank or blank

Source Module
SECTA

START

This portion will
be loaded starting

0————-» L 4 ,AREA
A 4, TWO
ST 4,SUM
END

Negative

Source Module

START

” ORG # =500

END

Section H: Controlling the Assembler Program 213

NOTE: Using the ORG instruction
to insert data assembled later at
the same location as earlier data
will not always work.

In the example to the right, it
appears as if the character constant
will be loaded over the address
constant. However, after the
character constant is locaded into
the same location as the address
constant, the relocation factor
required for the address constant
is added to the value of the
constant. This sum then constitutes
the object code that resides in

the four bytes with the address
ADLCR.

H1B -- THE LTORG INSTRUCTION

o After the preceding LTORG instruction

214

Purpose

You use the LTORG statement so that
the assembler can collect and
assemble literals into a literal
pool. A literal pocl contains the
literals you specify in a source
module either:

orxr

After the beginning of the source
module.

The assemblexr ignores the borders
between control sections when it
collects literals into pools.
Therefore, you must be careful to
include the literal pools in the
control sections tc which they
belong (for details see Addressing
Considerations below) .

The creation of a literal pool gives
the following advantages:

1. Automatic organization of the
literal data into sections that
are properly aligned and arranged
so that no space is wasted

2. Assembling of duglicate data
into the same area

3. Because all literals are cross-
referenced, you can find the literal
constant in the pool into which

it has lkeen assembled.

ADDR DC A (LOC)
ORG * =4
CHAR DC C'BETA' o
Processing Sequence
—_——
Relocation factor
Assembled Loaded added to value
of constant CHAR
ADDR

ADDR ADDR 9

l

X X X Xi |C2C5E3C1 |

o |

l

L |

*—4

(ADDR)

l BETA
A e

|IC2C5E3C1)

-
Source Module

A START 0

=lit1

=lit2

=litb

=lit6

=lit7

=1it8

LTORG

The Literal Pool

A literal pool is created immediately
after a LTORG instruction or, if

no LTCRG instruction is specified,

at the end of the first control
section.

Each literal pool has four,segments
into which the literals are stored
(1) in the oxrder that the literals
are specified and (2) according

to their assembled lengths, which,
for each literal, is the total
explicit or implicit length, as
described below.

The first segment contains all
literal constants whose assembled
lengths are a multiple of eight.

The second segment contains those
whose assembled lengths are a
multiple of four, but not of eight.

The third segment contains those
whose assembled lengths are even,
but not a multiple of four.

The fourth segment contains all
the remaining literal constants
whose assembled lengths are odd.

The beginning of each literal pocl
is aligned on a doubleword boundary.
Therefore, the literals in the first
segment are always aligned on a
doubleword boundary, those in the
second segment on a fullword
boundary, and those in the third

o segment on a halfword boundary. L

Source Module

Literal Pool
Start

START
MvC
AD

IC

0 Assembled into

Segment
TO,=3F'9"

2,=D'7"

2,=XL1'8"
,=CL3'JAN'
,=2F'1,2"
,=H'33"
,=A (ADDR)

,=XL8'05"

Section H: Controlling the Assembler Program

215

216

domain.

Addressing Considerations

If you specify literals in source
modules with multirle control
sections, you should:

1. Write a LTORG instruction at
the end of each control section,
so that all the literals specified
in the section are assembled into
the one literal pool for that
section. If a contrcl section is
divided and interspersed among other
control sections, you should write
a LTCRG instruction at the end of
each segment of the interspersed
control section.

2. When establishing the
addressability of each control
section, make sure (a) that the
entire literal pool for that section
is also addressable, by including

it within a USING range, and (k)
that the literal specifications

are within the corresponding USING
The USING range and domain
are described in F1A.

NOTE: All the literals specified
after the last LTORG instruction,
or, if no LTORG instruction is
specified, all the literals in a
source modlule are assembled into

a literal pocol at the end of the
first control section. You must
then make this literal pool
addressable along with the addresses
in the first control section. This
literal pool is printed in the
program listing after the END
instruction.

Source Module

~ﬁ%)NE

USING

range
ONE

START O

USING ONE,BASREGL

SING
domain ONE

LTORG

Literal Pool

TWO

USING
range
TWO

CSECT

USING

LTORG

Literal Pool

END

Cuplicate Literals

If you specify duplicate literals
within the part of the source module
that is controlled by a LTORG
instruction, cnly one literal
constant is assembled into the
pertinent literal pccl. This also
applies to literals assembled into
the literal pool at the end of the
first or only control section of

a source module that contains no
LTORG instructions.

Literals are duplicates only if
their specifications are identical,
not if the cbject code assembled
happens to be identical.

When two literals specifying
identical A-type (or Y-type) address
constants contain a reference to

the value of the location counter
(*) , both literals are assembled
into the literal pool. This is
because the value of the location
counter is different in the two
literals.

Specifications

The format of the LTORG instruction
is given in the figure to the right.

If an ordinary symbol is specified
in the name field, it represents
the first byte of the literal pool;
this symbol is aligned on a
doubleword koundary and has a length
attribute value of one. If bytes
are skipped after the end of a
literal pool to achieve alignment
for the next instructicn, constant,
or area, the bytes are not filled
with zeros.

Source Module Action
BEGIN START O
0 both are stored
0 first is stored
LTORG
\\ both are stored, each
Literal pool 1 into a separate literal
pool

SECOND CSECT(:

0 : 9 both are stored

o both are stored

LTORG
Literal pool 2
END
I Name Operation Operand
Any symbol LTORG Not required
or blank

Section H: Controlling the Assembler Program

217

H1C -- THE CNOP INSTRUCTION F7

Register Contents

Assume location 2 Return address
counter is at (LINK +2)
Purpcse doubleword 10 Addre.ss of sub-
boundary routine
)
You can use the CNOP instruction L—» CNOP 6,8
to align any instructicn cr other
data on a specific halfword koundary. LINK BALR 2,10
The CNOP instruction ensures an
unbroken flow of executable CCW
instructicns by generating no-
operation instructions to fill the CCW
bytes skipred tc perform the .
alignment that you specified. CCW | THREE |
Layout of
Object Code

For example, when ycu ccde the -
linkage to a subroutine, you may
0wish to pass parameters to the
subroutine in fields immediately Equivalent
following the branch and link double

half full\ half double

oinstructig_rl, These rarameters, word ~ word word, word word
for instance, channel command words
(see G30) , can require alignment BCR 0,0 BCR
on a specific boundary. G BCR 0,0 BCR
The subroutine can then address BCR 0,0 BCﬂ
the parameters you pass through \
the register with the return address. LINK BALR 2,10 BALR
CCW ONE CCW ONE
CCW TWO CCW TWO
\
CCw THREE |J A CCW THREE

0(2//

8(2
16 (2

Specificaticns

The CNOF instruction forces the
alignrent of the loccation counter
to a halfword, fullword, or
doubkleword koundary. It does not
affect the location counter if the
counter is already prcrerly aligned.
If the specified alignment requires
the location counter tc be
incremented, one to three no-
operation instructicns (BCR 0,0
occupying two bytes each) are
generated to fill the skipped Lkytes.
Any single Lyte skirred to achieve
alignment to the first no-operation
instructicn is filled with zeros.

218

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

The format of the CNOP instructicn
statement is given in the figure
to the right.

The operands must be absolute

- Name Operation Operand
expressions, and any symbols must
have been previously defined. og Any symbol CNOP

OThe first operand, b, specifies or blank

at which even-numbered byte in a
fullword or doubleword the location

0counter is set. The second operand,
w , specifies whether the byte is

b,w
[\
lo %)

in a fullword (w=4) or a doubleword 04 24 04 2,4
(w=8) . Valid pairs of b and w are ;
as indicated in the figure to the FULLWORD FULLWORD
right. HALFWORD | HALFWORD | HALFWORD | HALFWORD
NOTE: Both 0,4 and 2,4 specify Byte] Byte ByteI Byte Bytel Byte Byte| Byte
two locations in a doukleword. | DOUBLEWORD |

0%8 2,4 4,8, 6?8

H2 -- Determining Statement Format and Sequence

You can change the standard coding conventions for the
assembler language statements or check the sequence of
source statements by using the fcllowing instructions.

H2A -- THE ICTL INSTRUCTION

Purpose

The ICTL instruction allows you to change the begin, end,
and continue columns that establish the coding format cf
the assemkler language source statements.

For example, with the ICTL instruction, you can increase

the number of columns to ke used for the identificaticn

or sequence checking of your source statements. By changing
the begin column, you can even create a field kefore the
begin column to contain identification or seguence numbers.

Section H: Controlling the Assembler Program 219

LStandard values for Columns l F

BEGIN CONTINUE END

You can use the ICTL instruction

only once, at the very beginning {{
of a source module. If you do not
use it, the assembler recognizes i S(

the standard values for the kegin,
end, and continue columns. v
16

1
Columns

Standard
identification
sequence field

Format

Specifications Name

Operation Operand I

Blank ICTL b or F
The ICTL instructicn, if specified,
must be the first statement in a
source module.

The format of the ICTL instruction
statement is shown in the figure
to the right.

The operand entry must be one to
three decimal self-defining terms.
There are only three pcssible ways
of specifying the operand entry.

Specifies Allowable range l

The operand b must always be Begin column 1 through 40

specified. The operand e, when not
specified, is assumed to be 71.

If the operand ¢ is not specified,
or if e is specified as 80, the
assembler assumes that continuation
lines are not allowed. The values
specified for the three operands
depend on each other.

End column 41 through 80

Continue column | 2 through 40

o Rules for interaction of b, e and ¢

NOTE: The ICTL instructiocn does

not affect the format of statements The position of the End column must

trought in ky a COPY instruction J not be less than the position of the Begin | e 2b+5

or generated from a library macro column + 5, but must be greater than the

definition. The assembler processes position of the Continue column e>c

these statements according to the

standard kegin, end, and continue The position of the Continue column

columns described in Section B1A. must be greater than that of the Begin c>b
column

220

H2B -- THE ISEQ INSTRUCTION

Purpose

You can use the ISEQ instruction

to cause the assembler to check

if the statements in a source module
are in sequential order. 1In the
ISEQ instruction you specify the
columns between which the assemkler
is to check for sequence nunbers.

The assembler begins sequence
checking with the first statement
line following the ISFQ instruction.
The assembler also checks
continuation lines.

Sequence numbers on adjacent
statements or lines are compared
according to the 8-bit internal
EBCDIC collating sequence. When
the sequence number on one line

is not greater than the sequence
number on the preceding line, a
sequence error is flagged, and a
warning message is issued, but the
assembly is not terminated.

NOTE: If the sequence field in the
preceding line is blank, the
assembler uses the last preceding
line with a non-blank sequence field
to make its comparison.

Specifications

The ISEQ instruction initiates or
terminates the checking of the
sequence of statements in a source
module.

The format of the ISEQ instruction
is shown in the figure to the right.

The first option in the operand
entry must be two decimal self-
defining terms. This format of
the ISEQ instruction initiates
sequence checking, beginning at
the statement or line fcllowing
the ISEQ instruction. Checkin
begins at the column represented
by 1 and ends at the column
represented by r . The second
option of the ISEQ format terminates
the sequence checking operation.

ettt ——————

73 80 Compares made
ISEQ 73,80
/0 L j[| ONE ONE with TWO
e A)) | TWO TWO with THREE
/ ST \ | THREE| THREE with FOUR
/ o 1 FOUR FOUR with FIVE
CONTINUA ION CARD
W —
J] and so on
—
R
Name Operation Operand
1
Blank ISEQ lLr 0
or blank o
Column Specifies Rules for interaction

leftmost column of
field to be checked

1 and r not allowed
to lie between begin
and end columns

rightmost column
of field to be checked

Isr | mustnot be
. greater thanr

rzt rmustnotbe
less than |

Section H: Controlling the Assembler Program 221

NOTE: The assembler checks only
those statements that are specified
in the coding of a source module.
This includes any COPY instruction
statement or macro instruction.

However, the assembler does not

check:

1. Statements inserted by a COPY

instruction

2. Statements generated from model
statements inside macrc definitions
or from model statements in open
code (statement generation is
discussed in detail in Section J)

3. Statements in
definitions.

library macro

H3 -- Listing Format and Output

The instructions described in this
section request the assembler to
produce listings and identify output
cards in the object deck according
to your special needs. They allow
you to determine printing and page
formatting options other than the
ones the assembler program assumes
by default. Among other things,

you can introduce
headings, control

your own page
line spacing,

and suppress unwanted detail.

H3A -- THE PRINT INSTRUCTION

222

Purpose

The PRINT instruction allows you
to control the amount of detail
you wish printed in the listing

of your programs.

The three options

that you can set are given in the
figure to the right.

They are listed in hierarchic order;
if OFF is specified, GEN and CATA

will not apply.

If NOGEN is

specified, CATA will not apply to

constants that are generated.

standard options

The
inherent in the

assembler program are CN, GEN, and

NOCATA.

Source Module

FIRST START 0
ISEQ 73,80
checking
occurs
ISEQ J
checking
does not
occur
ISEQ 73,80
checking
resumed
END l
L
Hierarchy Description PRINT options I
1 A listing is printed ON l
No listing is printed OFF
2 All statements generated by the
processing of a macro instruction GEN
are_printed
Statements generated by the !
processing of a macro instruction NOGEN
are not printed (Note: The
MNOTE instruction always causes
a message to be printed)
3 Constants are printed jn full in DATA
the listing
Only the leftmost eight bytes of
constants are printed in the NODATA
listing

Specifications

The format of the PRINT instruction

statement is shown in the figure I Name Operation Operand

to the right.
g A sequence !
“ At least one of the operands must symbol or PRINT

be specified, and at most one of blank

the options from each group. The
PRINT instruction can be specified
any numkber of times in a source
module, but only those print options
actually specified in the instruction
change the current print status.

specification allowed

PRINT options can ke generated by
macro processing, at pre-assemkly
time. However, at assembly time,
all options are in force until the
assembler encounters a new and
opposite option in a PRINT
instruction.

NOTE: The option specified in a
PRINT instruction takes effect after
the FRINT instruction. If PRINT

OFF is specified, the PRINT
instruction itself is printed, but
not the statements that follow it.
If the NOLIST assembler ortion is
specified in the job control
language, the entire listing for

the assembly is suppressed.

Section H: Controlling the Assembler Program 223

3

H3B -- THE TITLE INSTRUCTION

Purpose

The TITLE instruction allcws you
to:

o 1. Provide headings for each page

of the assembly listing of your
source modules.

2. 1dentify the assembly output
cards of your object modules. You
can specify up to 8 identification
characters that the assembler will
epunch into all the output cards,

keginning at column 73.

224

The assembler punches sequence
numbers into the columns that are
left, up to column 80.

Specifications

The format of the TITLE instruction
statement is given in the figure
to the right.

Any of the five options can ke
specified in the name field.

“The first three options for the
name field have a special
significance only for the first
TITLE instruction in which they
are specified. For subsequent TITLE
instructions, the first three options
do not apply. ‘

TITLE ‘THIS IS A HEADING '

Program Listing

“ THIS IS A HEADING

PROG TITLE ' heading’

C

PROG 0003

PROG 0002]
80

PROG 0001
—_—

;'
e O

Object Deck

Name Operation Operand
option
1 A string of alpha- TITLE A character
a meric characters string up to
2 A variable symbol 100 charac-
3 A combination of ters, en-
1and 2 closed in
4 A sequence symbol apostrophes
L 5 blank

For the first TITLE instruction

of a source module that has a non-
blank name entry that is not a
sequence symbol, the following
applies:

Object

Deck
Up to eight alphameric characters

can ke specified in any combination
in the name field.

Examples of TITLE instructions
in separate source modules:
These characters are runched as
identification, beginning at column

73, into all the output cards from Source Statement Value of Punched into cards
the assembly, except those produced variable symbol beginning at col. 73
by the PUNCH and REPRO instructions.

= The assemkler substitutes the current &ID~sm TITLE MOD99A MOD992
value into a variable symbol and o
uses the generated result as /
identification characters. PGM&N" TITLE 200 PGM200

0 If a valid ordinary symbol is 1234 TITLE 1234

specified, its appearance in the
name field does not constitute a

definition of that symbol for the SYMBOL_TITLE SYMBOL
source module. It can therefore

be used in the name field of any LA

other statement in the same source

module.

Section H: Controllling the Assembler Program 225

226

The character string in the operand
field is printed as a heading at

the top of each page of the assembly
listing. The heading is printed
beginning on the page in the listing
following the page on which the
TITLE instruction is specified.

A new heading is printed when a
subsequent TITLE instruction appears
in the source module.

Each TITLE statement causes the
listing to be advanced to a new page
(before the heading is. printed)
except when PRINT NOGEN is in use.

Any printable character specified
will appear in the heading, including
blanks. Variable symbols are allowed.
However, the following rules apply
to ampersands and apostrophes:

e 2 single ampersand initiates

an attempt to identify a variable
symbol and to substitute its current
value.

e Double ampersands or apostrophes
specified, print as single ampersands
or apostrophes in the heading.

e A single apostrophe followed

by one or more blanks simply
terminates the heading prematurely.
If a non-blank character follows

a single apostrophe, the assembler
issues an error message and prints
no heading.

Only the characters printed in the
heading count toward the maximum
of 100 characters allowed.

NOTE: The TITLE statement itself
is not printed in an assembly
listing.

'HEADING ONE'

TITLE

HEADING ON

Examples of headings:
Source Statement

Value
of
Variable
Symbol

Printed Heading

TITLE 'HEADING &N'

TITLE 'HEADING &% 'i !

TITLE

TWO| HEADING TWO

HEADING & °'

HEADING FOUR|

'HEADING FOUR';FIVE'

TITLE 'HEADING FOUR'REMARKS

ERROR

H3C -- THE EJECT INSTRUCTION

Purpose

The EJECT instruction allows you

to stop the printing of the assembly
listing on the current page and
continue the printing cn the next
page.

Specifications

The format of the EJECT instruction
statement is shown in the figure
to the right.

The EJECT instruction causes the

next line of the assembly listing

to be printed at the top of a new
page. If the line before the EJECT
instruction appears at the bottom

of a page, the EJECT instruction

has no effect . An EJECT instruction
immediately following another EJECT
instruction causes a blank page

in the listing.

NOTE: The EJECT instruction
statement itself is not printed
in the listing.

Source Text |

Source Text |

EJECT
Name Operation Operand
A sequence Not required
symbol or EJECT
blank
Source Module Listing
e
Page _Previous statement —o\
Boundar I~
| A L] Page
Boundary

Page
Boun

dary|

Section H: Controlling the Assembler Program

227

HID -- THE SPACE INSTRUCTION

Purpose

You can use the SPACE instruction

to insert one or more blank lines

in the listing of a source module.
This allows you to separate sections
of code on the listing page.

Specifications
I Name Operation Operand
The format of the SPACE instruction)
statement: is given in the figure A sequence A decima
to the right. symbol or SPACE self-defining term
blank or blank

The operand entry srecifies the
number of lines to be left blank.

A blank operand entry causes one
kFlank line to be inserted. 1If the
operand specified has a value greater
than the number ¢f lines remaining

on the listing page, the instruction
will bave the same effect as an
EJECT statement.

NOTE: The SPACE instruction itself
is not listed.

¥4 - Punching Output Cards

The instructions described in this section produce punched
cards as output from the assemktly in addition to those
produced for the object module (object deck) .

H4A —-- THE FUNCH INSTRUCTION

Purpose

The PUNCH instruction allows you to punch source or other
statements into a single card. With this feature you can:

1. Code PUNCH statements in a source module to produce
control statements for the linkage editor. The linkage
editor uses these control statements to process the okject
rnodule.

2. Code PUNCH statements in macro definitions. to produce,
for example, source statements in other computer languages
or for other processing phases.

The card that is punched has a physical position immediately

after the PUNCH instruction and before any other TXT cards
of the object decks that are to follow.

228

Specifications Obiect Modul
jec ule
Source Module (Card Deck)
The PUNCH instructicn causes the
data in its orerand to be punched MACRO
into a card. One PUNCH instruction MACDEF1 data 3
produces one punched carxd, but as 4
many FUNCH instructions as necessary MEND data 2
can ke used. -«
MACRO
The PUNCH instruction statement MACDEF2
can arpear anywhere in a source data 1
module except before and ketween MEND
source macro definitions. If a
PUNCH instruction occurs kefore o PUNCH 'datal'’
the first control section, the
oresultant card punched will precede o/
all other cards in the object deck. FIRST START 0
The cards punched as a result of _ e
a PUNCH instruction are not a logical PUNCH 'data2' punet™
part of the okject deck, even though \ace
they can be physically interspersed &“ﬂ
in the object deck. PUNCH "data3’ eu®
END

PUNCH

The format of the PUNCH instruction .
statement is shown in the figure Name Operation Operand
to the right.

. A sequence PUNCH A character string of
nll 256 punch combinations of the symbol or up to 80 characters,
IBM System/370 character set are blank enclosed in apostrophes

allowed in the character string
of the operand field. Variakle
symbols are also allowed.

Section H: Controlling the Assembler Program 229

230

The position of each character
specified in the PUNCH statement
ocorrespox'Tds to a column in the card

to be punched. However, the
following rules apply to ampersands
and apostrorhes:

1. A single ampersand initiates

an attempt to identify a variable
symbol and to substitute its current
value.

2. Double ampersands or apostrophes
are punched as single ampersands
or apostrophes.

3. A single apostrophe followed

by one or more blanks simply
terminates the string cf characters
punched. If a non-klank character
follows a single apcstrophe, an
error message is issued and nothing
is punched.

Only the characters punched,
including blanks, count toward the
maximum of 80 allowed.

NOTES:

1. No sequence number cr
identification is punched into the
card produced.

2. 1f the NCDECK option is specified
in the EXEC statement cf the job
control language for the assemkler
program, no cards are punched:
neither for the PUNCH or REPRO
instructicns, nor for the object
deck of the assembly.

PUNCH

Position

123456

PUNCH "

This position ——f

is always
column 1

7

13 15

21

1234567

13 156

21

Column

Examples:
Source Value of | Characters
Statement Variable | Punched
Symbol

PUNCH 'CHARS &VAR' ABC CHARS ABC
PUNCH 'CHARS && "! CHARS &'
PUNCH 'CHARS A', B' CHARS A
PUNCH 'CHARS A'REMARKS

w % ¢ ERROR s sk =
PUNCH 'CHARS A' REMARKS CHARS A

H4B -- THE REPRO INSTRUCTION

Source Module

Purpose

The REPRO instruction causes the 2 " '
data specified in the statement I IMACDEFZ —I Repro appears before

that follows to be punched into start of first control

a card. Unlike the PUNCH section; punched card
instruction, the