Publication Number
GA22-7000-10

IBM System/370

Principles of Operation

IBM System/370

Principles of Operation

Publication Number
GA22-7000-10

" File Number

$370-01

W

Eleventh Edition (September 1987)

This major revision obsoletes and replaces GA22-7000-8, GA22-
7000-9, and Technical Newsletters GN22-0644 and GN22-0683.
Significant changes or additions to the text and illustrations
are indicated by a vertical line to the left of the change.

Changes are made occasionally to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM Svystem/370, 30xx, and 4300
Processors Bibliography, 6C20-0001, for the editions that are
applicable and current.

IBM may have patents or pending patent applications covering
subject matter described herein. Furnishing this publication
does not constitute or imply a grant of any license under any
patents, patent applications, trademarks, copyrights, or other
rights of IBM or of any third party, or any right to refer to IBM
in any advertising or other promotional or marketing activities.
IBM assumes no responsibility for any infringement of patents or
other rights that may result from the use of this publication or
ﬁrom.the manufacture, use, lease, or sale of apparatus described
erein.

Licenses under IBM's utility patents are available on reasonable
and nondiscriminatory +terms and conditions. Inquiries relative
to licensing should be directed, in writing, to: IBM Corpora-
tion, Director of Contracts and Licensing, Armonk, NY, USA 10504.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates.

Publications are not stocked at the address given belouw.
Requests for IBM publications should be made to vour IBM repre-
sentative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this

publication. If the form has been removed, comments may be
addressed to: IBM Corporation, Central Systems Architecture,
Department E57, PO Box 390, Poughkeepsie, NY, USA 12602. IBM may
use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

(c) Copyright International Business Machines Corporation 1970,
1972, 1973, 1974, 1980, 1981, 1987

¥ arranged for reference,

This publication provides, for reference

purposes, a detailed definition of the
machine functions performed by
System/370.

The publication applies only to systems
operating in the System/370 mode. The
IBM 370-XA Principles of Operation,
SA22-7085, should be consulted regarding
the functions of the architecture which
apply to systems operating in the 370-XA
mode, and the IBM 4300 Processors Prin-
ciples of 0Operation for ECPS:VSE Mode,
GA22-7070, should be consulted regarding
the functions of the architecture which
apply only to systems operating in the
VSE mode.

The publication describes each function
at the level of detail needed to prepare
an assembler-language
relies on that function. It does not,
however, describe the notation and
conventions that must be emploved in
preparing such a program, for which the
user must instead refer to the appropri-
ate assembler-language publication.

The information in this publication is
provided principally for use by
assembler-language programmers, although

anvone concerned with the functional
details of Systems/370 will find it
useful.

This publication is written as a refer-
ence and should not be considered an
introduction or a textbook. It assumes
the user has a basic knowledge of data-
processing systems. IBM publications

relating to System/370 are listed and
described in the IBM System/370, 30xx,
and 4300 Processors Bibliography,
GC20-0001.

All facilities discussed in this publi-
cation are not necessarily available on
every model. Furthermore, 1in some
instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain
capabilities may be described or implied
that are not offered on any model.
Examples of such capabilities are the
number of channel-mask bits in the
control register, the size of the CPU
address, and the number of CPUs sharing
main storage. The allowance for this

type of extendibility should not be
construed as implying any intention by
IBM to provide such capabilities. For

information about the characteristics
and availability of facilities on a
specific model, see the functional char-
acteristics publication for that model.

publication is
certain words

% Largely because this

program that

PREFACE

and phrases appear, of necessity, earli-
er in the publication than the principal
discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index,
which indicates the location of the key
description.

The information presented in this publi-
cation 1is grouped in 13 chapters and
several appendixes:

Chapter 1, Introduction, highlights some
of the major facilities of System/370.

Chapter 2, 0Organization, describes the
major groupings within the system —- the
central processing unit (CPU), storage,
and input/output -- with some attention
given to the composition and character-
istics of those groupings.

explains the infor-
addressing of stor-

Chapter 3, Storage,
mation formats, the

age, and the facilities for storage
protection. It also deals with dynamic
address translation (DAT), which,
coupled with special programming
support, makes the use of a virtual
storage possible in System/7370. Dynamic
address translation eliminates the need

to assign a program to a fixed le<ation
in real storage and thus reduces the
addressing constraints on system and
problem programs.

Chapter 4, Control, describes the facil-
ities for the switching of system
status, for special externally initiated
operations, for debugging, and for

timing. It deals specitically with CPU
states, control modes, the program-
status word (PSW), control registers,

program-event recording, timing facili-
ties, resets, store status, and initial
program loading.

Chapter 5, Program Execution, explains
the role of instructions in program

execution, looks in detail at instruc-
tion formats, and describes briefly the
use of the program-status word (PSW), of
branching, and of interruptions. It
contains the principal description of
the dual-address—-space (DAS) facility.
It also details the aspects of program
execution on one CPU as observed by
other CPUs and by channels.

Chapter 6, Interruptions, details the
mechanism that permits the CPU to change
its state as a result of conditions
external to the system, within the
system, or wWithin the CPU itself. Six
classes of interruptions are identified
and described: machine-check interrup-
tions, program interruptions, super-
visor-call interruptions, external

interruptions, input/output interrup-
tions, and restart interruptions.

Chapter 7, General Instructions,
contains detailed descriptions of

logical and binary-integer data formats
and of all unprivileged instructions
except the decimal and floating-point
instructions.

Chapter 8, Decimal Instructions,
describes in detail decimal data formats
and the decimal instructions. The deci-
mal instructions are a part of the
commercial instruction set.

Chapter 9, Floating-Point Instructions,
contains detailed descriptions of
floating-point data formats and the
instructions provided by the floating-
point facility and by the extended-
precision floating-point facility.

Chapter 10, Control Instructions,

contains detailed descriptions of all of

the semiprivileged and privileged
instructions except for the I/0
instructions.

Chapter 11, Machine-Check Handling,
describes the mechanism for detecting,
correcting, and reporting machine
malfunctions.

Chapter 12, Operator Facilities,

describes the basic manual functions and
controls available for operating and
controlling the system.

Chapter 13, Inputs/Qutpuyt Operations.,
explains the programmed control of 1/0

devices by CPUs and by channels. It
includes detailed descriptions of the
I/0 instructions, channel-command words,
and other I/0-control formats.

The Appendixes include:

. Information about
tation

number represen-

. Instruction-use examples

- Lists of the instructions arranged
in several sequences

. A summary of the condition-code

sattings
- A list of the System/370 facilities
- A table of the powers of 2

. Tabular information helpful in
dealing with hexadecimal numbers

- An EBCDIC chart

affecting
System/360

. A discussion of changes
compatibility between
and System/370

iv

. A discussion of changes affecting
compatibility within Systems/370

SIZE NOTATION

the letters K and M
multipliers 219 and 229,

Although the letters are
borrowed from the decimal system and
stand for kilo (103) and mega (10¢),
they do not have the decimal meaning but
instead represent the power of 2 closest

In this publication,
denote the
respectively.

to the corresponding power of 10. Their
meaning in this publication is as
follows:
Symbol Value
K (kilo) 1,026 = 210
M (mega) 1,048,576 = 22°
The following are some examples of the

use of K and M:
2,068 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K
(not 65K).

224 is expressed as 16M.

When the words "thousand” and "million™

are used, no special power-of-2 meaning

is assighed to them.

BYTES, CHARACTERS, AND CODES

Although the System/360 architecture was
originally designed to support the
Extended Binary-Coded-Decimal Inter-
change Code (EBCDIC), the instructions
and data formats of the architecture are
for the most part independent of the
external code which is to be processed
by the machine. For most instructions,
all 256 possible combinations of bit
patterns for a particular byte can be
processed, independent of the character
which the bit pattern is intended to
represent. For instructions which use
the zoned format, and for those few
instructions which are dependent on a
particular external code, the instruc-
tion TRANSLATE may be used to convert
data from one code to another code.
Thus, a machine operating in the
System/370 mode can process EBCDIC,
ASCII, or any other code which can be
represented in eight or fewer bits per
character.

In this publication, unless otherwise
specified, the value given for a byte is
the value obtained by considering the
bits of the byte to represent a binary
code. Thus, when a byte is said to

%

contain a zero, the value 00000000 bina-
ry, or 00 hex, is meant, and not the
value for an EBCDIC character "0," which
would be F0 hex.

OTHER PUBLICATIONS

The channel-to-channel adapter is
described in the publication BM
Channel-to-Channel Adapter, S5A22-7091.

described in the
System/360 and

The I/0 interface is
publication IBM

System/370 1/0 Interface Channel to
Control Unit Original Equipment Manufac-
turers' Information, GA22-6974.

Mathematical assists are described in
the publication IBM System/370 Mathemat-
ical Assists, SA22-7094, which describes
the instructions ARCTANGENT, COMMON
LOGARITHM, COSINE, EXPONENTIAL, MULTIPLY
AND ADD, NATURAL LOGARITHM, RAISE 7O
POWER, SINE, and SQUARE ROOT.

Vector operations are described in the
publication IBM System/370 Vector Oper-—
ations, SA22-7125.

vi

.This page is intentionally left blank.

A TR

CHAPTER 1. INTRODUCTION e e e .
General-Purpose Design e e e e .
Compatibility
Compatibility among System/370
Models
Conpatlbtllty between System/360
and System/370 - .

System Program e e e e e e e
Availability e e e e e e e e
CHAPTER 2. ORGANIZATION e e .
Main Storage e e e e e e e e .
CPU e e e e e e e e e e e

PSI . e e e e e e .

General Reglsters . e e e .

Floating-Point Reglsters . .

Control Registers e e e e .

Vector Facility e e e e .
I/0 . e e e e e . .

Channel Sets . . .- .

Channels . .

I/0 Devices and Control Unlts
Operator Facilities e e e e
CHAPTER 3. STORAGE e e e e .
Storage Addressing . . .

Storage Addressing wlth
Extended Address Fields .

Instruction Address . ..
Effective Address - e e .
Storage Key . . .
Storage-Key &K- Byte Block
Facility .
Storage Keys wlth Storage Key
4K-Byte-Block Facility Not
Installed .. .
Storage Kevs wlth Storage Key
4K-Byte-Block Fac111ty
Installed . .
Storage-Key- Exceptlon Control
Storage-Key-Instruction
Extensions e e e e e e e .
Protection . - .
Key- Controlled Protectlon .

Information Formats e e e .
Integral Boundaries .
Byte-Oriented-Operand Fac1l1ty
Address Types . e e e e e e
Absolute AddreSJ e e e e e
Real Address e e e e e e e
Virtual Address . . e
Primary Virtual Address . .
Secondary Virtual Address .
Logical Address e e e e e

ASN-Translation Controls
ASN-Translation Tables .

Segment Protection e e e e .

Low-Address Protection . .
Reference Recording
Change Recording e e e . . .
Prefixing e e e e e e - .
Address Spaces e e e e e e
ASN Translation . . .

.
L S T T I I S R T B)

ASN-First-Table Entries .
ASN-Second-Table Entries .
ASN-Translation Process . .
ASN-First-Table Lookup . .
ASN-Second-Table Lookup .

H HUUWUHUWHHWHHHEHHHAEHEHWHE W INNNDNNNNNNNNDN et e e
~N OO UTUVIUVIUITVTUVIHWW N RO LARLDLDLDLUHUUWURE PPUH W W

W
{
~

[I R T R T S S B B B N RN T R R RV R RV

b [t fd ot ok foh fot ook b b b b ||
AU D PUUNPFOOOVONY

HUWUWHUHHWWHUHHWW

CONTENTS

Recognition of Exceptions
during ASN Translation . .

ASN Authorization . - e .
ASN-Authorization Controls . .
Control Register ¢4 .- .

.
.
0

ASN-Second-Table Entry e e
Authority-Table Entries . .
ASN-Authorization Process . .
Authority-Table Lookup e e .

Recognition of Exceptions
during ASN Authorization
Dynamic Address Translation .

Translation Control e e e e .
Translation Modes e e e e .
Control Register 0 e e e e .
Control Register 1 - e e e .
Control Register 7 e e e .

Translation Tables e e e e e .
Segment-Table Entries . .
Page-Table Entries e e e .

Summary of
Dynamic-Address-Translation
Formats e e e e e e e e e e

Translation Process - ..

Effective Segment- Table
Designation .

Inspection of Control Reg!ster
0 e e e e .

Segment Table Lookup e e e e

Page-Table Lookup

Formation of the Real Address

Recognition of Exceptions

during Translation . . .
Translation-Lookaside Buffer .
Use of the

Translation-Lookaside Buffer
Modification of Translation
Tables e e e e e e e e .
Address Summary « e e e
Addresses Translated - .
Handling of Addresses . .
Assigned Storage Locations . .

CHAPTER 4. CONTROL e e e e e .

Stopped, Operating, Load, and
Check-5top States e e e e e .
Stopped State . . .
Operating State e e e e e e

. . . -

Load State - e .
Check-Stop State
Program-Status Word .
EC and BC Modes .. - .
Program—-Status-Word Format in EC

- -
- - o - -
- -

Mode e .
Program- Status Nord Format in BC
Mode e e e e e e e e e e e
Control Registers e e e . .
DAS Tracing . . .

Protection for DAS Trac1ng
Other Actions Associated with
DAS Tracing . .

Serialization for DAS Trac1ng

Trace-Table Designation . e .
Trace-Table-Entry Header « e .
Interlocks e e e e e e e e .
Trace Entry e e e e e e e e
Program-Event Recording - e e .

Control-Register Allocation

3-17
3-17
3-17
3-17
3-17
3-18
3-18
3-19

3-20
3-20
3-22
3-22
3-23
3-24
3-24
3-25
3-25
3-26

3-26
3-27

3-27

3-30
3-30
3-31
3-31

3-31
3-31

3-32

3-36
3-38
3-38
3-39
3-41

I 1&HH & DA pPLpDeErpr
1

b et b ok fod ot ot et bt f= |
VIV D UWWUHUL W00 O DUIHUHNIIN

LD R

Operation N . .
Ident1f1catlon of Cause
Priority of Indication

Storage-Area Designation

PER Events .- . . .
Successful Branchlng .
Instruction Fetching .
Storage Alteration .
General-Register Alterati

Indication of PER Events

Concurrently with Other
Interruption Conditions .
Direct Control . .
Read-Write- Dlrect Fac111ty
External-Signal Fa0111ty

L A R R R I]

o

Timing .« e .

Time- of Day Clock - .

Format e e e e e e
States . .

L I T I Y)

Changes in Clock State :
Setting and Inspecting the

Clock . . .
TOD-Clock Synchronizatlon .
Clock Comparator e e e e e .
CPU Timer e e e e e e e e

Interval Timer . e . . e .
Externally Initiated Functlons

Resets e e e e e e e e e e
CPU Reset e e . .
Initial CPU Reset . . .
Subsystem Reset . . .
Program Reset e .. .
Initial Program Reset

Clear Reset e e e . .
Power-0n Reset . .
Initial Program Loadlng .
Store Status e e e e e .
Multiprocessing e e . .
Shared Main Storage .
CPU-Address IdentlfzcatIOn .
se

L T T S S ST TR S S B}

CPU Signaling and Respons .
Signal-Processor Orders .
Conditions Determining Response

Conditions Precluding
Interpretation of the Order

Operand-Address Generatlon

Branch—-Address Generation
Instruction Execution and
Sequencing - e e e

Code e e e e e e e e e .
Status Bits . c e e e e
Channel-Set Sw!tch1ng c e e .
CHAPTER 5. PROGRAM EXECUTION
Instructions e e e e e e e e .
Operands . e . . e . .- .
Instruction Format e e e .
Register Operands . . .
Immediate Operands e e e .
Storage Operands e e e e .
Address Generation . . .
Sequential Instructlon Address
Generation . e e .

Interruptible Instruct1ons
Point of Interruption .

Decision Making e e e e e e
Loop Control e e e e e e .
Subroutine Linkage e e e e .
Interruptions . e e e e .
Types of Instruct1on Ending
Completion e e e . e .
Suppression e e e e e e s
Nullification . e e e .
Termination

viii

I

EAR SR~

| I T O T T |
VOOV OVOVARPTIR U NP LDDPDUWUNNE W= O

L T

.
UL L L

vUTUTUTUTUVTLTLTUOTLULTE LTt BTttt

¢ o e ¢ ¢ o ¢ ¢ ¢ s ¢ 0

Execution of Interruptible

Instructions . . .
Exceptions to Nulllflcat1on and
Suppression . . .- .

Storage Change and Restoratlon
for DAT-Associated Access
Exceptions .

Modification of DAT Table
Entries . . .

Trial Executlon for Ed1t1ng
Instructions and TRANSLATE

Interlocked Update for
Nullification and Suppression

Dual- Address-Space Control ..
Summary e e e e e . .
DAS Funct1ons . . e e e .

Using Two Address Spaces .

Changing to Other Spaces .

Moving Information .

Transferring Program Control

Handling Storage Keys and the
PSW Key . . e e e e e .

Program- Problem Analysis .

DAS Authorization Mechanisms

Mode Requirements

Extraction—-Authority Control

PSl-Key Mask . . e .
Sacondary-Space Control .
Subsystem—Linkage Control

ASN-Translation Control .
Authorization Index . e .

PC-Number Translation
PC-Number Translation Control
PC-Number Translation Tables

Linkage-Table Entries . .
Entry-Table Entries . .
PC-Number-Translation Process
Linkage-Table Lookup e e
Entry-Table Lookup e e e .

Recognition of Exceptions
during PC-Number Translation
Sequence of Storage References
Conceptual Sequence - e .
Overlapped Operation of
Instruction Execution
Divisible Instruction

Execution . .
Interlocks for Vlrtual Storage
References e e e e e e e
Instruction Fetching e e e .
DAT-Table Fetches e e e e e
Storage-Key Accesses e e e .

Storage-0Operand References
Storage-Operand Fetch

References e e e .
Storage-0Operand Store
References e .
Storage- Operand Update
References . . - .
Storage-0Operand Cons1stency
Single-Access References .

Multiple-Access References

Block-Concurrent References

Consistency Specification
Relation between Operand

Accesses . . e .
Other Storage References -
Serialization

CcPU Ser1al1zatlon
Channel-Program Serlalizat1on

CHAPTER 6. INTERRUPTIONS . .
Interruption Action e e e e
Interruption Code e e e e .

L)

« 0 e e

L I)

Enabling and Disabling 6-6 CHAPTER 7. GENERAL INSTRUCTIONS 7-1
Handling of Floating Interruptlon Data Format . e e e e e e e 7-2
Conditions . e e e . 6-7 Binary-Integer Representat1on . 7-2
Instruction- Length Code e . . 6-7 Binary Arithmetic e e e e e e 7-3
Zero ILC 6-7 | Signed Binary Arithmetic . . 7-3
ILC on Instructlon Fetch1ng | Addition and Subtraction . . 7-3
Exceptions . . 6-8 | Fixed-Point Overflow e e .. 7-3
Exceptions Assoctated w1th the | Unsigned Binary Arithmetic - . 7-3
PSHW - 6-9 Signed and Logical Comparison . 7-4
Early Except!on Recogn\tlon 6-9 Instructions e e e e e e e e e 7-4
Late Exception Recognition . 6-9 ADD . . . e e e . . . 7-7
External Interruption . -« « . 6-10 ADD HALFNORD e e e e e e e e . 7-7
Clock Comparator .- 6-11 ADD LOGICAL e e e e e e e e 7-8
CPU Timer . c e e 6-11 AND . . . e e e e . 7-8
Emergency S1gnal .« e 6-11 BRANCH AND LINK . e e e e e 7-9
External Call e e e 6-11 BRANCH AND SAVE e e e e e e e 7-9
External Signal e e e e e . . 6-12 BRANCH ON CONDITION - .« . . 7-10
Interrupt Key . e 6-12 BRANCH ON COUNT R S B
Interval Timer e e e e e . 6-12 BRANCH ON INDEX HIGH Y A
Malfunction Alert e e e e . . 6-12 BRANCH ON INDEX LOW OR EQUAL . 7-11
Service Signal . e e e e« . 6-13 COMPARE e e e e e e e . 1712
T0D-Clock Sync Check e« « . . 6-13 COMPARE AND SNAP . .- . . 71-12
I/0 Interruption . . e e« . . 6-13 COMPARE DOUBLE AND SNAP . 7-12
Machine-Check Interruptlon . . . 6-14 COMPARE HALFWORD P A
Program Interruption e e e e . . 6-14 COMPARE LOGICAL . - <« . 1-164
| Exception-Extension Code . . . 6-15 COMPARE LOGICAL CHARACTERS UNDER
Program-Interruption Conditions 6-15 MASK e e e e o« 1-15
Addressing Exception .« . . 6-15 COMPARE LOGICAL LONG e e -« . . 1-15
AFX-Translation Exception . 6-18 CONVERT T0O BINARY e e e . . . 1-16
ASN- Translation-Specification CONVERT TO DECIMAL I 2 ¥
Exception . . 6-18 DIVIDE B A
ASX- Translatlon Except1on . 6-18 EXCLUSIVE OR e e e e e . . T1-18
Data Exception . - . . 6-18 EXECUTE . - .. Y A
Decimal-Divide Exceptxon . 6-19 INSERT CHARACTER e e e e e . . 1-20
Decimal-0Overflow Exception . 6-19 INSERT CHARACTERS UNDER MASK . 7-20
Execute Exception . . 6-19 LOAD Y A A
Exponent-0Overflow Except1on 6-19 LOAD ADDRESS e e e e e e e . 7-21
Exponent-Underflow Exception 6-16 LOAD AND TEST F Y R
EX-Translation Exception . . 6-20 LOAD COMPLEMENT e e e . . . 7-21
Fixed-Point-Divide Exception 6-20 LOAD HALFWORD S e e e . .. 71-22
Fixed-Point-Overflow Exception 6-20 LOAD MULTIPLE e e e e . . 7122
Floating-Point-Divide LOAD NEGATIVE .- 7-22
Exception .- . . . 6-20 LOAD POSITIVE e e e e . . . 7-22
LX-Translation Except\on . 6-20 MONITOR CALL S A
fonitor Event e e e e e . . 621 MOVE e e e e e e e e e e . 723
Operation Exception . 6-21 MOVE INVERSE e e e e e e . . 7-24
Page-Translation Except1on . 6-22 MOVE LONG e e e e e e e e .. 7-26
PC-Translation-Specification MOVE NUMERICS T 2
Exception e e e e e e e e . 622 MOVE WITH OFFSET e e e e e .. 127
PER Event . 6-22 MOVE ZONES e e e e . e - . . 71-28
Primary- Author1ty Except1on 6-23 MULTIPLY . e e e e e . . 7-28
Privileged-Operation Exception 6-23 MULTIPLY HALFNORD e e e e < . 71725
Protection Exception . e . . 6-23 OR e e e e e e e e e e e e e . 129
Secondary—Authority Exception 6-26 PACK . e e e e e e . . 71730
Segment-Translation Exception 6-24% SET PROGRAM MASK e e . . 7731
Significance Exception - - . 6-25 SHIFT LEFT DOUBLE e . . . 7731
Space-Switch Event e e - .« . 6-25 SHIFT LEFT DOUBLE LOGICAL .. 7-32
Special-0Operation Exception 6-2 SHIFT LEFT SINGLE 1-32
Specification Exception <« . 6-26 SHIFT LEFT SINGLE LOGICAL . . 7-33
Translation-Specification SHIFT RIGHT DOUBLE .- . - . . 71-33
Exception . . . 6-27 SHIFT RIGHT DOUBLE LOGICAL . . 7-33
| Unnormalized- Operand Exceptlon 6-27 SHIFT RIGHT SINGLE 1-34
| Vector-Operation Exception . 6-28 SHIFT RIGHT SINGLE LOGICAL . . 71-34
Collective Program—-Interruption STORE e e e 1-34
Names 6-28 STORE CHARACTER . . . 7-34
Recognition of Access Except1ons 6-28 STORE CHARACTERS UNDER MASK . 7-35
Multiple Program—Interruption STORE CLOCK e e e 7-35
Conditions . e e e e . . 6-30 STORE HALFWORD 7-36
Access Except1ons . . 6-33 STORE MULTIPLE . e . e . . . 1-36
ASH-Translation Except1ons . 6-35 SUBTRACT . . . Y 1)
Trace Exceptions e e . . 6-35 SUBTRACT HALFNORD e e e e . . 737
» Restart Interruption 6-35 SUBTRACT LOGICAL e e e e e e . 1-37
- Supervisor-Call Interruptlon . . 6-36 SUPERVISOR CALL e e e e e <« . 7-38
Priority of Interruptions < . . 636

ix

TEST AND SET - . .
TEST UNDER MASK .
TRANSLATE . .
TRANSLATE AND TEST

UNPACK - e e e e

CHAPTER 8. DECIMAL INSTRUCT
Decimal-Number Formats . .
c

D T R)

-
-
.
.
-

I

Zoned Format .« e e e
Packed Format .
Decimal Codes . e e .
Decimal Operations - . .
Decimal-Arithmetic Instru
Editing Instructions .

. - -

Execution of Decimal Instructzons
Decimal

Other Instructions for
Operands e e e e e e
Instructions . .
ADD DECIMAL
COMPARE DECIMAL
DIVIDE DECIMAL .
EDIT
EDIT AND MARK
MULTIPLY DECIMAL
SHIFT AND RCUND DECIMAL
SUBTRACT DECIMAL ...
ZERO AND ADD e e e e .

CHAPTER 9. FLOATING-POINT
INSTRUCTIONS e e e e .
Fleating-Point Number
Representation . e e .
Normalization .
Floating-Point- Data Format
Instructions e e e e e
ADD NORMALIZED . e e e
ADD UNNORMALIZED e e .
COMPARE .. e e e e
DIVIDE e e e e e e e
HALVE e e e e e
LOAD e e e e e e e e e
LOAD AND TEST e e e e
LOAD COMPLEMENT ..
LOAD NEGATIVE . e .
LOAD POSITIVE e e e .
LOAD ROUNDED e e e e .
MULTIPLY e e e e e e

D T T SR}
DT T T B
D)

STORE . .
SUBTRACT NORMALIZED
SUBTRACT UKNORMALIZED

-
-
.
-

CHAPTER 10. CONTROL INSTRUCTIONS
CONNECT CHANNEL SET - -
DIAGNOSE ..

DISCONNECT CHANNEL SET .
EXTRACT PRIMARY ASN ..
EXTRACT SECONDARY ASN)

L T T T

0
i

tions

.

« v e e e L T N I R R)

DR I T T)

L Y

.

INSERT ADDRESS SPACE CONTROL

INSERT PSW KEY < e e e
INSERT STORAGE KEY .
INSERT STORAGE KEY EXTENDED
INSERT VIRTUAL STORAGE KEY
INVALIDATE PAGE TABLE ENTRY
LOAD ADDRESS SPACE
LOAD CONTROL . e e e .
LOAD PSH . - e .
LOAD REAL ADDRESS .
MOVE TO PRIMARY .
MOVE TO SECONDARY .
MOVE WITH KEY - . .
PROGRAM CALL coe e
PROGRAM TRANSFER . -
PURGE TLB . e e e

DR T T T

PARAMETERS

-

L T T T S S]

DR T S]

NS

-

L L R Y T T

.

¢ s o e 0

D]

.

DI T T R T}

« 4 e e

7-38
7-38
7-39
7-60
7-40

LI R 2 T U U RO R N N TN R N N |
NHHOOWVWRUTUTUIWWWK (HUGUN NN e e

11 1000000000000 00 Co 0000000000 0000

o 0o 00 00
b s s |

L T |
fa

CONFOVRRNNOOUI L UL DUNNREROOWIA D NN -

[2 N N N N N N B B B KV« ¥ JV» IV~ Ve JVo JV> BV RNV
i

et oot ot f et ok ot ot o ok s |

OO D bt b b ot b et b s b et (Ve Ve Vo IV JiVs Vo Vo Vo IV o Ve RVo]

11l ooooocococooo

[AS AR o N S S S S A A A I I |

READ DIRECT . - e ..
RESET REFERENCE BIT .- ..
RESET REFERENCE BIT EXTENDED
SET ADDRESS SPACE CONTROL
SET CLOCK ..
SET CLOCK COMPARATOR

SET CPU TIMER . ..
SET PREFIX .

SET PSW KEY FROM ADDRESS
SET SECONDARY ASN - e
SET STGRAGE KEY . ..
SET STORAGE KEY EXTENDED .
SET SYSTEM MASK .

SIGNAL PROCESSOR .
STORE CLOCK COMPARATOR
STORE CONTROL e e
STORE CPU ADDRESS ..
STORE CPU ID e e e e e
STORE CPU TIMER - ..
STORE PREFIX ..

STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK
TEST BLOCK
TEST PROTECTION .« e e e
WRITE DIRECT c e e e

CHAPTER 11. MACHINE-CHECK
HANDLING . - .
Machine-Check Detect1on .

« 0
D

« 6o e e

I S T S N T S

-

Correction of Machine Malfunctlons

Error Checking and Correction
CPU Retry . ..
Effects of CPU Retry .
Checkpoint Synchronization
Handling of Machine Checks
during Checkpoint
Synchronization .
Checkpoint- Synchronlgatlon
Operations
Checkpoint- Synchron1zatzon
Action e e e e e
Unit Deletlon .
Handling of Mach1ne Checks
Validation . e e e .

Invalid CBC in Storage .
Programmed Validation of
Storage e e e e e e e

Invalid CBC in Storage Keys
Invalid CBC in Reglsterg .
Check-Stop State
System Check Stop e e
Machine—-Check Interruption .
Exigent Conditions . e e .
Repressible Conditions
Interruption Action - .
Point of Interruption ..
Machine-Check-Intarruption Code
Subclass . e e e e e
System Damage .
Instruction- Proce551ng
System Recovery e e e .
Interval-Timer Damage
Timing—-Facility Damage
External Damage
Vector-Facility Fallure
Degradation e e e .
Warning . .
Service- Processor Damage
Subclass Modifiers . .
Vector-Facility Source
Backed Up e e e e e .
Delayed e e e . .
Delaved Access Exceptlon

R S S T

Damage

10-36
10-36
10-37
10-38
10-39
10-39
10-490
10-40
10-41
10-41
10-45
10-45
10-46
10-46
10-47
10-48
10-48
10-48
10-49
10-49
10-50
10-50
10-50
10-52
10-5¢4

ot bbb ot s et o
b bt et et et et e
[IR O S Y B B |
WHHWNOMNO N -

e e el — -
| T T B e) et b et — —
Ll ol ol el o T N O N R A N e |

NN ERRHROOVONOS OIS DS S W

et bt s fok ot et ot b et

-

Synchronous
Machine-Check-Interruption
Conditions e e e e e .

Processing Backup .
Processing Damage .
Storage Errors e e e .
Storage Error Uncorrected
Storage Error Corrected .
Storage-Key Error Uncorrected
Storage Degradation .- .
Indirect Storage Error .- .

Machine-Check Interruption-Code

Validity Bits e e e e e e
PSW-EMWP Validity . .
PSW Mask and Key Valld1ty
PSW Program-Mask and

Condition-Code Validity
PSW-Instruction-Address

« ¢ e

Validity . .
Failing- Storage Address
Validity - . e e e .

Region-Code Val\dlty .
External-Damage-Code Va11d1ty
Floating-Point-Register
Validity . . .
General-Register Va11d1ty
Control-Register Validity
Logout Validity .- .
Storage Logical Valldlty .
CPU-Timer Validity e e e .
Clock-Comparator Validity
Machine-Check Extended-lLogout

Length . e e e e .
Machine-Check Extended
Interruption Information . .
Register-Save Areas .

External-Damage Code - .
Failing~Storage Address
Region Code .. .
Handling of Machine- Check
Conditions . e e .
Floating Interruptlon
Conditions e e e e e e e .
Floating
Machine-Check-Interruption
Conditions . e e e e
Machine-Check Masklng e e e .
Check-Stop Control e e e .
Recovery Subclass Mask .
Degradation Subclass Mask
External-Damage Subclass Mask
Warning Subclass Mask - .
Machine-Check Logout e e e e .
Logout Controls .. . e .
Synchronous Machine- Check
Extended-lLogout Control .
Input/Output Extended-logout
Control . .
Asynchronous Machlne Check
Extended-Logout Control .
Asynchronous Fixed-lLogout
Control
Machine- Check Extended Logout
Address .
Summary of Machlne Check Na5k1ng
and Logout e e e e e e e

CHAPTER 12. OPERATOR FACILITIES
Manual Operation e e e e e e
Basic Operator Facilities . .
Address-Compare Controls . .
Alter-and-Display Controls .
Check-Stop Indicator e e e .
IML Controls e e e e e e e

-

¢ e 0

¢« o e e

Interrupt Key . . e e e . . 12-2
Interval-Timer Control e e . . 12-3
Load Indicator e e e e e e e« . 12-3
Load-Clear Key e e e e e e < . 12-3
Load-Normal Key . . . 12-3
Load-Unit-Address Controls . . 12-3
Manual Indicator e e e« e+ e o« 12-3
Power Controls e e e s e e e . 12-3
Rate Control .
Restart Key .« . . e e e o . 12-4
Start Key e e e . e e e o . 12-4
Stop Key e e e e e e e e e e e 124
Store-Status Key e ¢ o o « o - 12-5
System-Reset-Clear Key e -« « . 12-5
System—Reset-Normal Key « « . 12-5
Test Indicator e e e e e + e« e 12-5
TOD-Clock Control e e e o« . . 12-5
Wait Indicator e e e e e e . . 12-6
Multiprocessing Configurations . 12-6
CHAPTER 13. INPUT/O0UTPUT
OPERATIONS . e e e . 13-1
Attachment of Input/Output Devices 13-2
Input/0utput Devices e -« e« o« . 13-2
Control Units e e e e e e e o 13-3
Channels . e e . e« e e« « « 13-3
Modes of Operatlon e e « - . 13-4
Types of Channels e e e . . 13-4
I/0-System Operation e e . . . 13-5
Compatibility of Operation . . 137
Control of Input/0Output Devices 13-8
Input/0Output Device Addressing 13-8
States of the Input/Output
System . 13-9
Resetting of the Input/Output
System . e e e e e . 13-12
I/0-System Reset e e e e e 13-12
I/0 Selective Reset . . 13-12
Effect of Reset on a Norking
Device . e . 13-12
Reset Upon Malfunctlon . . 13-12
Condition Code e e e e e e 13-12
Instruction Formats e e e . 13-15
Instructions e e e . e e . 13-15
CLEAR CHANNEL .. - - . 13-16
CLEAR I/0 .- 13-17
HALT DEVICE e e e e e e e 13-19
HALT I/0 e e e . e e e e . 13-23
RESUME 1/0 - . . 13-26
START I/0 e e e . e . 13-27
START I/0 FAST RELEASE - e . 13-27
STORE CHANNEL ID e e e e e 13-32
TEST CHANNEL e e e e e e e 13-33
TEST 1/0 .. 13-34
Input/Cutput- Instruct\on-Exceptlon
Handling e e . 13-36
Execution of Input/Output
Operations . e e e e e e 13-37
Blocking of Data e e e e e . 13-37
Channel-Address Word e e e . 13-37
Channel-Command Word « . . 13-38
Command Code - e . e e e . 13-39
Designation of Storage Area 13-39
Chaining e e e e e e e e e 13-40
Data Chaining e e e e e . 13-42
Command Chaining e e e e . 13-43
Skipping . . . e e e . 13-43
Program- Controlled Inter uption 13-44
Channel Indirect Data
Addressing 13-45
Addressing Us1ng the 24 Blt
IDAW 13-45

Addressvng Us1ng the 31 B1t
IDAK e e e e e e e e e 13-46

Xi

Suspension of Channel-Program

Execution .
Commands . .
Write . .
Read . . .
Read Backward

Control
Sense .
Sense ID
Transfer in Channel
Command Retry .
Conclusion of Input/Output
Operations e e e e e e
Tvpes of Conclusion
Conclusion at Operatlon
Initiation e e e e
Immediate Operations .

T T T T R

-
.
-
-
.
-
- - -
.

LI I B B R)

D Y B N I]

Conclusion of Data Transfer
Termination by HALT I/0 or

HALT DEVICE .
Termination by CLEAR I/O

¢ ¢ ¢ o ¢ ¢ s e &

.

I T Y TR S B R Y

-

Termination by CLEAR CHANNEL

Termination Due to Equipment

Malfunction .- .
Inputs/0utput Interruptaons
Interruption Conditions

Channel-Available
Interruption e e e .
Priority of Interruptions
Interruption Action
Channel-Status Word
Unit Status . e .
Attention . .
Status Mod1f1er
Control-Unit End
Busy . . .
Channel End .
Device End . .
Unit Check . e .
Unit Exception .
Channel Status . ..
Program- Controlled
Interruption . .
Incorrect Length .
Program Check . e .

L B N]
R S S S S S S)
D T B T R S R)

Protection Check
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check .
Contents of Channel- Status
Information Provided by
Channel-Status Word
Subchannel Key
Suspended Inolcatlon
Logout Pending .
Deferred Condition Code
CCH Address . . .
Count e e e e e e e
Status e e e e e e e
Channel Logout e e e e e .
I/0-Communication Area . .

T R Y

« v e

« o o e 0 e

-

APPENDIX A. NUMBER REPRESENTATION

AND INSTRUCTION-USE EXAMPLES

Number Representation .
Binary Integers .
Signed Binary Integers
Unsigned Binary Integers
Decimal Integers . e .
Floating-Point Numbers
Conversion Example - e .
Instruction-Use Examples .
Machine Format e e e e .

X1

.

o« e e e e

DR T B B B B S A]

-
-
.
-
-
-

13-46
13-48
13-49
13-49
13-50
13-50
13-51
13-52
13-53
13-53

13-5¢4
13-5¢4

13-55
13-55
13-56

13-57

=3 et
N W
11
ot
O O

[

b bt b o ot ok et
G
[I
OO oNovUn
MO~ oow

>
NN
[}
oo\ o
Hpw

13-64
13-65
13-67
13-67
13-68
13-69
13-70

13-70
13-70
13-70
13-71
13-71
13-72
13-72
13-72
13-72

13-73
13-73
13-74
13-74
13-74
13-75
13-77
13-78
13-80
13-80

> I X I I D 2> e >
i
NNNUTUANNND -

General Instructions . .

Decimal Instructions .- .

Assembler-Language Format .
ADD HALFWORD (AH) e e e e .
AND (N, NC, NI, NR) e e e .
NI Example . . . e .
Linkage Instructlons (BAL, BALR,
BAS, BASR) . .
Other BALR and BASR Examples
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH) .
BXH Example 1 e e e e e .
BXH Example 2 .
BRANCH ON INDEX LON OR EQUAL
(BXLE) .. e e e e e .
BXLE Example l . .
BXLE Example 2 .- .
COMPARE HALFWORD (CH)
COMPARE LOGICAL (CL, cCcLC, CLI
CLR} . . e e e e e
CcLC Example e e e e .
CLI Example e e e e .
CLR Example .
COMPARE LOGICAL CHARACTERS UNDE
MASK (CLM) . .
COMPARE LOGICAL LONG (CLCL)
CONVERT TO BINARY (CVB) .
CONVERT TO DECIMAL (CVD) .
DIVIDE (D, DR) e e e e e
EXCLUSIVE OR (X, XC, XI, XR)
XC Example e e e e e e e
X1 Example e e e e e e e
EXECUTE (EX) - .
INSERT CHARACTERS UND:R MASK
(ICM) . e e e e e e e
LOAD (L, LR) e e e e
LOAD ADDRESS (LA) .
LOAD HALFWORD (LH) .
MOVE (MVC, MVI) .
MVC Example . .
MVI Example
MOVE IMVERSE (MVCIN)
MOVE LONG (MVCL) e e .
MOVE NUMERICS (MVN)
MOVE WITH OFFSET (MVO0)
MOVE ZONES (MVZ) e e . .
MULTIPLY (M, MR) . e .
MULTIPLY HALFWORD (MH)
OR (0, 0C, 0I, OR) .
0I Example e e e e .
PACK (PACK)
SHIFT LEFT DOUBLE (SLDA) .
SHIFT LEFT SINGLE (SLA)D .
STORE CHARACTERS UNDER MASK
(STCM) . . . e .
STORE MULTIPLE (STM) . .
TEST UNDER MASK (TM) . .
TRANSLATE (TR) .
TRANSLATE AND TEST (TRT)
UNPACK (UNPK) - e e

« o s s

T)

¢ s e
. .
¢ s e e

.
I T R S R S

e 4 0 o e e 0 e X 4 e e

. .
DY B R}

et v e & s 0
R Y

L T S R I TR T Y T
. .

. .

R T T T S S S S ST T S S]

ADD DECIMAL (AP) .- .
COMPARE DECIMAL (CP)
DIVIDE DECIMAL (DP)
EDIT (ED) . .
EDIT AND MARK (EDMK)
MULTIPLY DECIMAL (MP)
SHIFT AND ROUND DECIMAL (SR)
Decimal Left Shift
Decimal Right Shift . . .
Decimal Right Shift and Round
Multiplying by a Variable
Power of 10 e e e e e e e .
ZERC AND ADD (ZAP) e e e e e

R I Y B

¢ o 0 s s
L T T T T B Y S R B]

e e

.
.
.
.
-
-
.
-
.
P
-

[N T N R Y AN A NN A N [N A AT N N N A A A A A = R 2 i ol ol o
ot et oy ok b o ok et b b ot b b e |]

fot bt ok [et et ot [t

HOQOOW WORNNACARLDL PUWW NNNN HEREOOO0R 00000000~

NN N -

U

TeI>I>>D DD P> DRI DI

I
[
-

i

Floating-Point Instructions . . A-36 Floating Point e e e e e e e D-4
ADD NORMALIZED (AD, ADR, AE, Halt Device e e e e e . D-4
AER, AXR) .« « « « A-36 I/0 Extended Logout .« e e . D-4
ADD UNNORMALIZED (AU, AUR, AW, Limited Channel Logout e e e . D-4
AWR) . e« « « « A-36 Move Inverse « e e e s e e e e D-4
COMPARE (CD, CDR, CE, CER) . . A-37 Multiprocessing e e e e e e . D-4
DIVIDE (DD, DDR, DE, DER) . . A-37 PSW-Key Handling e e e e e e . D-4%
HALVE (HDR, HER) . . A-38 Recovery Extensions e e e e e D-4
MULTIPLY (MD, MDR, ME, MER MXD, Segment Protection e e e e e . D-4
MXDR, MXR) e e e+« « « < . A-38 Service Signal . e e e e e . D-4
Floating-Point-Number Conversion A-38 Start-I/0-Fast Queurng e e e . D-4
Fixed Point to Floating Point A-39 Storage-Key-Instruction
Floating Point to Fixed Point A-39 Extensions . e e e D-5
Multiprogramming and Storage-Key 4K- Byte Block . . D-5
Multiprocessing Examples . . .« A-60 Suspend and Resume e e e e e . D-5
Example of a Program Failure Test Block e e e e e v e e e D-5
Using OR Immediate .« <« « . A-60 Translation e e e e e e e e D-5
Conditional Swapping | Vector . e e e e e e . . D-5
Instructions (CS, CDS) . . A-40 31-Bit IDANS e e e e e e e e D-5
Setting a Single Bit . . A-61
Updating Counters . . A-41 APPENDIX E. TABLE OF POWERS OF 2 E-1
Bypassing POST and NAIT . . A-62
BYPASS POST Routine . . A-62 APPENDIX F. HEXADECIMAL TABLES F-1
BYPASS WAIT Routine <« . . A-42 .
LOCK/UNLOCK A-42 APPENDIX G. EBCDIC CHART - e . G-1
LOCK/7UNLOCK thh LIFO Queu1ng
for Contentions . A-63 APPENDIX H. CHANGES AFFECTING
LOCK/UNLOCK with FIFO QueU\ng COMPATIBILITY BETWEEN SYSTEM/360
for Contentions e e e e . A-64 AND SYSTEM/370 - e . H-1
Free-Pool Manipulation c .« <« . A-66 Removal of USASCII 8 Mode .- . H-1
Operation Codes of 1/0
APPENDIX B. LISTS OF INSTRUCTIONS B-1 Instructions e e e e e e e . H-1
Halt I/0 e e e e e e e e e H-1
APPENDIX C. CONDITION-CODE Start I/0 e e e e e e e e H-1
SETTINGS e e e e e e e e e e c-1 Test Channel e e e e e e e H-2
Logout . e e e e e e e e e . H-2
APPENDIX D. FACILITIES . - . D-1 Command Retry e e e e e e e . H-2
Commarcial Instruction Set e e . D-1 Channel Prefetching e e e e . H-2
Other Facilities e e e e . - . D-1 Validity of Data e e e e e e . H-2
Branch and Save . . D-2
Channel Indirect Data Addre551ng D-2 APPENDIX I. CHANGES AFFECTIHNG
Channel-Set Switching e e e . D-2 COMPATIBILITY WITHIN SYSTEM/370 I-1
Clear I/0 e e e e e e e e e D-2 READ DIRECT and WRITE DIRECT . I-1
Command Retry e e e e e e e . D-2 Store Accesses e e e e e e e I-1
Conditional Swapping . . D-2 Fetch Accesses . . e e e e . I-1
CPU Timer and Clock Comparator D-2 Operand-Access ConSIStency . . I-2
Direct Control . - e . . D-2 Change Bit . .- . I-2
Dual-Address Space (DAS) . . D-2 Subchannel Interruptlon Pendxn
Extended .- . D-3 State . .. I-2
Extended- Prec151on Floatlng Pownt D-3 START I/0 and START I/O FAST
Extended Real Addressing . . D-3 RELEASE e e e e e e e e . I-2
External Signals e e e e e e D-3
Fast Release e e e e e e e e . D-3 INDEX e e e e e e e e e e e e . X-1

xiii

~penreee

CHAPTER 1. INTRODUCTION

General-Purpose Design T 4
Compatibility ..ottt ittt ittt e ceeecceseccecancancena 1-3
Compatibility among System/370 Modelsccveeeneneenn 1-3
Compatibility between System/7360 and System/370 1-3
System Programeeeeeeceeceacesncacacannas ceeeesecacnens 1-4
Availability Cetecereeennane Ceeeceee e T 4

This publication describes the IBM
System/370 architecture.

The architecture of a system defines its
attributes as seen by the programmer,
that 1is, the conceptual structure and
functional behavior of the machine, as
distinct from the organization of the
data flow, the logical design, the phys-
ical design, and the performance of any
particular implementation. Several
dissimilar machine implementations may
conform to a single architecture. When
the execution of programs on different
machine implementations produces the
results that are defined by a single
architecture, the implementations are
considered to be compatible.

System/370 is a product of the experi-
ence gained in developing and using
several generations of compatible
general-purpose systems, starting with
System/360 as a base. System/370 incor-
porates a number of significant
facilities, which are described belouw.

. Dvnamic address translation (DAT)
1is a fTacility that eliminates the
need to assign a program to fixed
locations in real storage and thus
reduces the addressing constraints
on both control programs and prob-
lem programs, providing greater
freedom in program design. Dynamic
address translation permits a more
efficient and effective utilization
of main storage. When one of the
operating systems for virtual stor-
age is used, dynamic address
translation allows the use of up to
16,777,216 bytes of virtual
storage. Two page sizes (2K and 4K
bytes) and two segment sizes (64K
and 1M bytes) are provided,
although some models offer only the

64K-byte-segment size and some
models offer only the 4K-byte-page
size. Extensions to this facility

include the common-segment bit, the
use of which increases the effec-
tive size of the translation-
lookaside buffer and thus improves
CPU performance, and the instruc-
tion INVALIDATE PAGE TABLE ENTRY,
which improves CPU performance in a
demand-paging environment.

Protection facilities include a
storage key which 1is standard on
all models. On some models this is
extended by low-address protection,
the use of which increases the
protection of storage locations at
effective addresses 0 through 511,
which are vital to the control
program. Segment protection, which
is available on some models,
provides a segment-protection bit
in the segment-table entry. When
the bit is one, an attempt to store
in the segment causes a protection
exception to be recognized.

Extended real addressing, which is
an extension to dynamic address
translation, provides the CPU with
the capability of addressing up to
64M bytes of real storage. This is
accomplished by the use of bits 13
and 14 of the page-table entry,
which serve as the high-order bits
of the page-frame real address when
4K-byte pages are specified. The
larger address size applies to the
real address provided by dynamic
address translation and to the
address provided by the LOAD REAL
ADDRESS instruction.

Channel indirect data addressing, a

companion facility to dynamic
address translation, provides
assistance in translating data
addresses for I/0 operations. It

permits & single channel-command
word to control the transmission of
data that spans noncontiguocus areas

of main storage. In the basic form
the indirect-data-address word
contains a 24-bit address. This

becomes a 31-bit address when the
31-bit-IDAW facility is installed.

Multiprocessing provides for the
interconnection of CPUs to enhance
system availability and share data
and resources. It includes facili-
ties for shared main storage, for
programmed and special machine
signaling between CPUs, and for the
programmed reassignment of the
first 4K bytes of real storage for
each CPU.

Chapter 1. Introduction 1-1

1-2

Channel-set switching permits the
collection of channels in a channel
set to be connected to any CPU in a
multiprocessing configuration.

Timing facilities include a TOD
clock, a clock comparator, and a
CPU timer, along with an interval
timer that 1is also available in
System/360. The TOD clock provides
a measure of elapsed time suitable

for the indication of date and
time; it has a cycle of approxi-
mately 143 vyears and a resolution

such that the incrementing rate is
comparable to the instruction-
execution rate of the model. The
clock comparator provides for an
interruption when the T0D clock
reaches a program-specified value.
The CPU timer 1is a high-resolution
timer that initiates an inter-
ruption upon being decremented past
zero.

Extended-precision floating point
includes addition, subtraction, and
multiplication of floating-point
numbers with a fraction of 28 hexa-
decimal digits. Also included are

instructions for rounding from
extended to long and from long to
short formats.

Program—event recording provides
program interruptions on a selec-
tive basis as an aid in program
debugging.

The dual-address—space (DAS) facil-
ity provides for the support of
semiprivileged programs, which are
executed in the problem state but
which, when allowed by authori-
zation controls, are also permitted
to use additional capabilities
previously available only through
the assistance of supervisor-state
programs. The capabilities include

(1) a PSW-key mask that controls
the PSW keys which can be set by
the program, (2) a second address

space, called the secondary address
space, together with an address-
space-control bit in the PSH that
permits the program to switch
between the primary and secondary
address spaces, and (3) a table-
based linkage mechanism which
permits a program with one authori-
ty to call a program with greater
authority.

Start-1/0-fast gqueuing permits a
subchannel to accept an SIOF func-

tion even when certain I/0-busy
conditions are encountered. If
accepted, the SIOF function is held

pending until the required facili-
ties are available. An SIOF
function is initiated when a START
I/0 FAST RELEASE instruction is
executed and other necessary condi-
tions exist. Start-I1/0-fast

System/370 Principles of Operation

queuing may be provided for one or
more subchannels of a channel.

. The suspend-and-resume facility
provides a wmeans for programmed
control of the progress of
channel-program execution. A flag
bit is provided in the channel-
command word (CCW) which indicates

that channel-program execution is
to be suspended by the channel
prior to executing the CCW. A new

bit is added to the channel-status
word which indicates that a channel
program has been suspended. A
control bit 1is provided in the
channel-address word (CAW) which
indicates that the suspend function
is permitted for the channel
program. An instruction, RESUME
I/0, causes a suspended channel
program to be resumed. The
suspend-and-resume facility may be
provided for one or more subchan-
nels of a multiplexer channel.

GENERAL-PURPOSE DESIGN

System/370 is a general-purpose system
that can readily be tailored for a vari-
ety of applications. A commercial
instruction set provides the basic proc-
essing capabilities of the system. If
the floating-point facility is installed
with the commercial instruction set, a
universal instruction set is obtained.
Adding other facilities, such as the
extended-precision floating-point facil-
ity or the conditional-swapping
facility, extends the processing capa-
bilities of the system still further.

System/370 has the capability of
addressing a main storage of up to 64M
bytes. The System/370 dynamic-address-

translation facility, used with appro-
priate programming support, can provide
each user with an address space of 16M

bytes independent of the amount of main
storage. The dual-address-space facili-
ty extends this by providing each user
with multiple address spaces. This
facility and this support permit a
System/370 model with limited main stor-
age to be wused for a much wider set of
applications, and they make many appli-
cations with requirements for extensive
storage practical and convenient.

Another major aspect of the general-
purpose design of System/370 is the
capability provided to attach a wide
variety of I/0 devices through a selec-
tor channel and two types of multiplex-

ing channels. System/370 has a byte-
multiplexer channel for the attachment
of unbuffered devices and of a large
number of communications devices. Addi-

a block-multiplexer
particularly well-

it offers
which is

tionally,
channel,

suited for the attachment of buffered
devices and high-speed cyclic devices.

An individual System/370 installation is
obtained by selecting the system compo-

nents best suited to the applications
from a8 wide variety of alternatives in
internal performance, functional
ability, and input/output.

COMPATIBILITY

COMPATIBILITY AMONG SYSTEM/370 MODELS

Although systems operating in the
System/370 mode may differ in implemen-
tation and physical capabilities,
logically they are upward and downward
compatible. Compatibility provides for
simplicity in education, availability of
system backup, and ease in system
growth. Specifically, any program writ-
ten for the System/370 mode gives
identical results on any system operat-
ing in that mode, provided that the
program:

1. 1Is not time-dependent.
2. Does not depend on system facili-

ties (such as storage capacity, I/0
equipment, or optional facilities)

being present when the facilities
are not included in the configura-
tion.

3. Does not depend on system facili-
ties being absent when the facili-
ties are included in the
configuration. For example, the
program must not depend on inter-
ruptions caused by the use of
operation codes or command codes
that are not installed in some
models. Also, it must not wuse or
depend on fields associated with
uninstalled facilities. For exam-
ple, data should not be placed in
an area used by another model for
logout. Similarly, the program
must not use or depend on unas-
signed Tfields in machine formats

(control registers, instruction
formats, etc.) that are not explic-
itly made available for program
use.

4. Does not depend on results or func-
tions that are defined to be unpre-

dictable or model-dependent. This
includes the requirement that the
program should not depend on the

assignment of I1/0 addresses and CPU
addresses.

5. Does not depend on results or func-
tions that are defined in the
functional-characteristics publica-

tion for a particular model to be
deviations from the architecture.

6. Takes into account those
made to the original
architectural definition
affect compatibility
System/370 models. These
are described in Appendix I.

changes
System/370
that
among
changes

COMPATIBILITY BETWEEN SYSTEM/360 AND
SYSTEM/370

System/370 is forward-compatible from
System/360. A program written for the
System/360 operates on the System/370,

provided that the program:

1. Complies with the limitations
described in the section "Compat-
ibility among System/370 Models."

2. Does not use PSW bit 12 as an ASCII
bit (a special case of the second
rule in the section "Compatibility
among System/370 Models™").

3. Does not use or depend on storage
locations assigned specifically for

System/370, such as the
interruption-code areas, the
machine-check save areas, and the
extended-logout area (a special
case of the third rule in the
section "Compatibility among
System/370 Models").

4. Takes 1into account other changes
made to the System/360 architec-
tural definition that affect
compatibility between System/360
and System/7370. These changes are

described in Appendix H.

Programming Note

This publication assigns meanings to
various operation codes, to bit posi-
tions in instructions, channel-command
words, registers, and table entries, and
to fixed locations in the low 512 bytes
of storage. Unless specifically noted,
the remaining operation codes, bit posi-
tions, and low-storage locations are
reserved for future assignment to new
facilities and other extensions of the
architecture. (In addition to fixed
locations in the low 512 bytes, logical
location 795 1is assigned to a specific
function.)

To ensure that existing programs operate
if and when such new facilities are
installed, programs should not depend on
an indication of an exception as a
result of invalid values that are
currently defined as being checked. If.
a value must be placed in unassigned

Chapter 1. Introduction 1-3

positions that are not checked, the
program should enter zeros. When the
machine provides a code or field, the
program should take into account that
new codes and bits may be assigned in
the future. The program should not use
unassigned low-storage locations for
keeping information since these
locations may be assigned in the future
in such a way that the machine causes
this location to be changed.

SYSTEM PROGRAM

The system is designed to operate with a
control program that coordinates the use
of system resources and executes all I/0
instructions, handles exceptional condi-
tions, and supervises scheduling and
execution of multiple programs.

AVATILABILITY

Availability is the capability of a
system to accept and successfully proc-
ess an individual 3job. System/370
permits substantial availability by
(1) allowing a large number and broad
range of Jobs to be processed concur-
rently, thus making the system readily
accessible to any particular job, and
(2) limiting the effect of an error and
identifying more precisely 1its cause,
with the result that the number of jobs
affected by errors is minimized and the
correction of the errors facilitated.

Several design aspects make this possi-
ble.

° A program is checked for the
correctness of instructions and
data as the program is executed,
and program errors are indicated
separate from equipment errors.
Such checking and reporting assists
in locating failures and isolating
effects.

. The protection facilities, in
conjunction with dynamic address
translation, permit the protection
of the contents of storage from
destruction or misuse caused by
erroneous or unauthorized storing
or fetching by a program. This
provides increased security for the
user, thus permitting applications
with different security require-
ments to be processed concurrently
with other applications.

1-4 System/370 Principles of Operation

Dynamic address translation allows
isolation of one application from
another, still permitting them to
share common resources. Also, it
permits the implementation of
virtual machines, which may be used
in the design and testing of neuw
versions of operating systems along
with the concurrent processing of
application programs. Addition-—
ally, it provides for the
concurrent operation of incompat-
ible operating systems.

Multiprocessing and channel-set
switching permit better use of
storage and processing capabili-
ties, more direct communication
between CPUs, and duplication of
resources, thus aiding in the
continuation of system operation in
the event of machine failures.

MONITOR CALL, program-event record-
ing, and the timing facilities
permit the testing and debugging of
programs Without manual inter-
vention and with little effect on
the concurrent processing of other
programs.

Emulation is performed under
control-program supervision, thus
making it possible to perform

emulation concurrently with other
applications.

On most models, error checking and
correction (ECC)Y in main storage,
CPU retry, and command retry
provide for circumventing intermit-
tent equipment malfunctions, thus
reducing the number of equipment
failures.

An enhanced machine-check handling
mechanism provides model-
independent fault 1isolation, which
reduces the number of programs
impacted by uncorrected errors.
Additionally, it provides model-
independent recording of machine-
status information. This leads to
greater machine-check handling
compatibility between models and
improves the capability for loading
and operating a program on a
different model when a system fail-
ure occurs.

A small number of manual controls
are required for basic system oper-
ation, permitting most operator-
system interaction to take place
via a wunit operating as an I/0
device and thus reducing the possi-
bility of operator errors.

CHAPTER 2. ORGANIZATION
Main Storage cececceas ceeeaeee Ceectensseccreeenes ee..2-3
o ceecece et it et cetee et 2-3
S T Y 2-3
Gaeneral Registerseeieeeeeeneeeceeeceeacnesannoaneannns 2-6
Floating-Point Registersc..ieeiieiiiieennencecncnnnns 2-%
Control Registerseieeieeeteeeeeneceecnecnencnanenns 2-4%
Vector Facility ...ttt ittt ietietecencnncnennanes 2-4
7 P feecceeeeas C et tec ettt eree e an 2-4
Channel Setsiiiiiiiireenteneeeecencnanasensncaasensas 2-6
Channels ...ttt iineeeeeeeeasacacnessnensaacncsanncnecnscaes 2-6
I/0 Devices and Control Unitsiiiiiieiinneeeennoanenn 2-6
Operator Facilities ... iiieriieieeeeeneeneneccencoanceanans 2-6

Logically, System/370 consists of main
storage, one or more central processing
units (CPUs), operator facilities, chan-
nel sets, channels, and I/0 devices.
I/70 devices are attached to channels
through control units. The physical
identity of these functions may vary
among implementations, called "models."
The figure "logical Structure" depicts
the logical structure for a single-CPU
system and for a two-CPU multiprocessing
system.

Specific processors may differ

in their

internal characteristics, the installed

facilities, the number

channels, the size of
the representation

and types of
main storage, and
of the operator

facilities. The differences in internal

characteristics are

apparent

to

the

observer only as differences in machine

performance.

Chapter 2.

Organization

2-1

Single-CPU Configuration

2-CPU Multiprocessing Configuration

Channel Set

Channel Set

Main / / Main
Storage Storage
CcPU / / CPU CcPU
Channel Channel Channel Channel Channel Channel

Channel Set

Logical Structure

A system viewed without regard to its
I/0 devices is referred to as a config-
uration. All of the physical equipment,
whether in the configuration or not, is
referred to as the installation.
Model-dependent reconfiguration controls
may be provided to change the amount of
main storage and the number of CPUs,
channels, and channel sets in the
configuration. In some instances, the
reconfiguration controls may be used to
partition a single configuration into
multiple configurations. Each of the
configurations so reconfigured has the
same structure, that is, main storage,
one or more CPUs, and channels. Each
configuration 1is isolated in that the
main storage in one configuration is not

2-2 System/370 Principles of Operation

directly addressable
another configuration.

channels in

is, however,

possible for one configura-
with another

tion to communicate

means of

direct-control facility, or a channel-
t any one time,

to-channel

the storage,
channels connected together

shared

adapter.
CPUs,

are referred to as

uration.

pendent of

uration.

Channel
associated channels are considered to be
in a particular configuration as long as
they are conhected to main storage inde-
not the channel
in the config-
channel set,

Each

194

A
ch

bei

whether or
set is connected to a CPU
CPU,

by the CPUs

0 devices,

annel sets,

sets and

in a system
ng in the config-

channel, and main-storage location can
be in only one configuration at a time.

MAIN STORAGE

Main storage, which is directly address-
able, provides for high-speed processing
of data by the CPUs and channels. Both
data and programs must be loaded into
main storage from input devices before
they can be processed. The amount of
main storage available on the system
depends on the model, and, depending on
the model, the amount in the configura-
tion may be under control of model-
dependent configuration controls. The
storage 1is available in multiples of
2K-byte blocks. MWhen either TEST BLOCK
or the storage-key 4K-byte-block facili-
ty is installed, storage is available in
multiples of &4K-byte blocks. At any
instant in time, all CPUs and all chan-
nels in the configuration have access to
the same blocks of storage and refer to
a particular block of main-storacge
locations by wusing the same absolute
address.

Main storage may include a faster-access

buffer storage, sometimes called a
cache. Each CPU may have an associated
cache. The effects, except on perform-

ance, of the physical construction and
the use of distinct storage media are
not observable by the progran.

PU

The central processing unit (CPU) is the
controlling center of the system. It
contains the sequencing and processing
facilities for 1instruction execution,
interruption action, timing functions,

initial program loading, and other
machine-related functions.
The physical implementation of the CPU

may differ among models, but the logical
function remains the same. The result
of executing an instruction is the same
for each model, providing that the
program complies with the compatibility
rules.

The CPU, in executing instructions, can
process binary integers and floating-
point numbers of fixed length, decimal
integers of variable length, and logical
information of either fixed or variable
length. Processing may be in parallel
or in series; the width of the process-
ing elements, the multiplicity of the
shifting paths, and the degree of simul-
taneity in performing the different
types of arithmetic differ from one CPU
to another without affecting the logical
results.

Instructions which the CPU executes fall
into five classes: general, decimal,
floating-point, control, and I/0
instructions. The general instructions
are used in performing binary integer
artthmetic operations and logical,
branching, and other nonarithmetic oper-
ations. The decimal instructions
operate on data in the decimal format,
and the floating-point instructions on
data in the floating-point format. The
privileged control instructions and the
I/0 instructions can be executed only
when the CPU is in the supervisor state;
the semiprivileged control instructions
can be executed in the problem state,
subject to the appropriate authorization
mechanisms.

To perform 1its functions, the CPU may
use a certain amount of internal
storage. Although this internal storage
may use the same physical storage medium
as main storage, it 1is not considered
part of main storage and is not address-
able by programs.

The CPU provides registers which are
available to programs but do not have
addressable representations in main
storage. They include the current
program-status word (PSW), the general
registers, the floating-point registers,
the control registers, the prefix regis-
ter, and the registers for the clock
comparator and the CPU timer. Each CPU
in an installation provides access to a
time-of-day (T70D) clock, which may be
local to that CPU or shared with other
CPUs in the installation. The instruc-
tion operation code determines which
type of register is to be used in an
operation. See the figure YGeneral,
Floating-Point, and Control Registers"
later in this chapter for the format of
those registers.

PSW

The program-status word (PSW) includes
the instruction address, condition code,
and other information used to control
instruction sequencing and to determine
the state of the CPU. The active or
controlling PSW is called the current
PSW. It governs the program currently
being executed.

The CPU has an interruption capability,
which permits the CPU +to switch rapidly
to another program in response to excep-
tional conditions and external stimuli.

lWhen an interruption occurs, the CPU
places the current PSW in an assigned
storage location, called the old-PSW

location, for the particular class of
interruption. The CPU fetches a new PSW
from a second assigned storage location.
This new PSW determines the next program
to be executed. When it has finished
processing the interruption, the inter-

Chapter 2. Organization 2-3

rupting program may reload the old PSW,
making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption:
external, I70, machine check, program,
restart, and supervisor call. Each
class has a distinct pair of old-PSKW and
new—-PSW locations permanently assigned
in real storage.

GENERAL REGISTERS

may designate information
of 16 general registers.
be used as
index regis-
and as accu-

Instructions

in one or more
The general registers may
base-address registers and
ters in address arithmetic

mulators in general arithmetic and
logical operations. Each register
contains 32 bits. The general registers
are identified by the numbers 0-15 and

are designated by a four-bit R field in
an instruction. Some instructions
provide for addressing multiple general
registers by having several R fields.
For some instructions, the use of a
specific general register is implied
rather than explicitly designated by an
R field of the instruction.

For some operations, two adjacent gener-
al registers are coupled, providing a
64-bit format. In these operations, the
program must designate an even-numbered
register, which contains the leftmost
(high-order) 32 bits. The next higher-
numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators
in general arithmetic and logical oper-
ations, 15 of the 16 general registers
are also used as base-address and index
registers in address generation. In

these cases, the registers are desig-
nated by a four-bit B field or X field
in an instruction. A value of =zero in

the B or X field specifies that no base
or index 1is to be applied, and, thus,
general register 0 cannot be designated
as containing a base address or index.

FLOATING-POINT REGISTERS

Four floating-point registers are avail-
able for floating-point operations.
They are identified by the numbers 0, 2,
%, and 6 and are designated by a four-

2-4¢ System/370 Principles of Operation

bit R field in floating-point instruc-

tions. Each floating-point register is
64 bits long and can contain either a
short (32-bit) or a long (64-bit)

floating-point operand. A short operand
occupies the leftmost bit positions of a
floating-point register. The rightmost
portion of the register is ignored in
operations that use short operands and
remains unchanged 1in operations that
produce short results. Two pairs of
adjacent floating-point registers can be
used for extended operands: registers 0
and 2, and registers ¢ and 6. Each of
these pairs, identified by the numbers 0
and %, provides for a 128-bit format.

CONTROL REGISTERS

The CPU makes provisions for 16 control
registers, each having 32 bit positions.
The bit positions in the registers are
assigned to particular facilities in the
system, such as program-event recording,

and are used either to specify that an
operation can take place or to furnish
special information required by the
facility.

The control registers are identified by
the numbers 0-15 and are desighated by
four-bit R fields 1in the instructions
LOAD CONTROL and STORE CONTROL. Multi-
ple control registers can be addressed
by these instructions.

VECTOR FACILITY

Depending on the model, a vector facili-
ty may be provided as an extension of
the CPU. When the vector facility 1is
provided on a CPU, it functions as an
integral part of that CPU. The func-
tions of the vector facility and its
registers are described in the publica-

tion IBM System/370 Vector Operations,
SA22-7125.

I1/0

Input/output (I/0) operations involve

the transfer of information between main
storage and an I/0 device. I/0 devices
and their control units attach to chan-
nels, which control this data transfer.

Control General Floating-Point Registers

Registers Registers
R Register
Field Number |e—32 bits—>] |«—32 bits—>| | e——64 bits——>|
0000]
0001 1
0010 2
0011 3
0100 4
0101 5

0110 3 L

0111 7
1000 8
1001 9

— Note: The brackets
1010 10 indicate that the two
registers may be coupled
as a double-register
pair, designated by
1011 11 specifying the lower-
— numbered register in
the R field. For ex-
- ample, the general-
1100 12 register pair 14 and
15 is designated by
1110 binary in the R

field.
1101 13
1110 14 B
1111 15 L_

General, Floating-Point, and Control Registers

Chapter 2. Organization 2-5

CHANNEL SETS

The group of channels which connects to

a particular CPU 1is called a channel
set. When channel-set switching is
installed in a multiprocessing config-

uration, the program can control which
CPU is connected to a particular channel
set. A CPU can be connected to no more

than one channel set at & time, and a
channel set can be connected to no more
than one CPU at a time. When channel-

set switching 1is not installed, the
channel sets, in the absence of model-
dependent reconfiguration controls, are
permanently connected to a single CPU.

CHANNELS

A channel relieves the CPU of the burden
of communicating directly with I/0
devices and permits data processing to
proceed concurrently with 170
operations. A channel is connected with
main storage, with control units, and,
unless it is a member of a disconnected
channel set, with a CPU.

A channel may be an independent unit,
complete with the necessary logical and
internal-storage capabilities, or it may
time-share CPU facilities and be phys-
ically 1integrated with the CPU. In
either case, the functions performed by
a channel are identical. The maximum
data-transfer rate may differ, however,
depending on the implementation.

There are three types of channels:

byte-multiplexer, block-multiplexer, and
selector channels.

2-6 System/370 Principles of Operation

I/0 DEVICES AND CONTROL UNITS

I/0 devices include such equipment as
card readers and punches, magnetic-tape
units, direct-access storage, displays,
kevboards, printers, teleprocessing
devices, communications controllers, and
sensor-based equipment. Many 1/0
devices function with an external
medium, such as punched cards or magnet-—
ic tape. Some I/0 devices handle only
electrical signals, such as those found
in sensor-based networks. In either
case, I/0-device operation 1is regulated
by a control unit. In all cases, the
control-unit function provides the
logical and buffering capabilities
necessary to operate the associated 1/0

device. From the programming point of
view, most control-unit functions merge
with I/0-device functions. The

control-unit function may be housed with
the I/0 device or in the CPU, or a sepa-
rate control unit may be used.

OPERATOR FACILITIES

The operator facilities provide the
functions necessary for operator control
of the machine. Associated with the
operator facilities may be an operator-
console device, which may also be used
as an I/0 device for communicating with
the program.

The main functions provided by the oper-
ator facilities include resetting,
clearing, initial program loading,
start, stop, alter, and display.

CHAPTER 3.

Storage AddressSing ...t eeeeeeeeesneeceeasasonaannoanns 3-2
Storage Addressing with Extended Address Fields 3-3
Information Formatsc it ittt eneeeeeenecnnenaennans 3-3
Integral Boundariesciiiitiereeeeeeencncneenancanennns 3-3
Byte-Oriented-Operand Facility ...ieeieinieiieeerennnennns 3-5
AdAdress TYPeS i ittt eeeeaeneeseesenannnesssasansanssennes 3-5
Absolute Address it iieeeeeeeeeeeencancaocnaenans 3-5
Real AdAress ... iiieitieeteeeeeneeeeeoosenansnseonenenns 3-5
Virtual Addressi ittt iiieieeeceeeecacaseencaaannns 3-5
Primary Virtual Addressceieienieeieeeeeeennencennnns 3-5
Secondary Virtual Addressiiiiereeenenccncananns 3-6
Logical Addressc. it eeeteeeetneneneenaeananaennns 3-6
Instruction Address ... cei it eeenenaneeennennenenas 3-6
Effoctive Address . ..u.iieeii ittt eeenenenneenannnananens 3-6
Storage Koy .ttt it ittt teeteeeeeeeeasasaceaencncenens 3-6
Storage-Key 4K-Byte-Block Facility ... ieinnnnennnn 3-7
Storage Keys with Storage-Key 4K-Byte-Block
Facility Not Installed (... iiniiiierinnteeeacnnanns 3-7
Storage Keys with Storage-Key 4K-Byte-Block
Facility Installed ...t ieeeeeeeneecennanns 3-7
Storage-Key-Exception Control ittt eeeeennnn 3-7
Storage-Key-Instruction Extensionscciieieeennnann 3-7
L oo R =Y ok 1K Y o 3-7
Key-Controlled Protectioniiiiriirieeeeneeencnnaansa 3-8
Segment Protection ... iiieeeeriieteenneonnnsanenoncnnnna 3-9
Low-Address Protection ... eiieiietnneteinceenneeennonnns 3-9
Referentce Recording ... et eteteieieeeeeeeeeneacoanseennns 3-10
Change Recording ... ieeeeeeeeeeeeaneeaacnaanceeeeaaens 3I-10
[l o= 2 48 1 X'« J 3-11
Address SpPaceS i iiirnieneeneeereeeeeeeaeencancoeoennanneneens 3-12
ASN Translation (...t ittt eneeneecnsccaccsannnnnan 3-13
ASN-Translation Controlsiiiririiiieeeeeneenncanenns 3-13
ASN-Translation Tablest ittt erennenneencan 3-14
ASN-First-Table Entriesc.iiiiiretirerteeeneenccnnnns 3-14
ASN-Second-Table Entriesueeiiitiieiteneeeeannenn 3-14
ASN-Translation ProCessc.iiiieitieeeeneceaecancannnns 3-15
ASN-First-Table LookUp ...t iieieinietin e ie i ieeccanaans 3-16
ASN-Second-Table LookUp ..ttt it eteeneeneaneens 3-16
Recognition of Exceptions during ASN Translation 3-17
ASN Authorization iii ittt eennenenasecnnoannasnens 3-17
ASN-Authorization Controls ...ciiiiiiiinteenieeeeaaanannsa 3-17
Control Register &cuiiietiineeeeeeerenononennocnenns 3-17
ASN-Second-Table Entry ...t ittt iiiieiieencaneans 3-17
Authority-Table Entriesiiiiiiiii ittt enaenans 3-18
ASN-Authorization Processier it eeeeeeeeneennenaennns 3~18
Authority-Table LOOKUP ..ttt ittt ieeetieeeeeenecnonnens 3-19
Recognition of Exceptions during ASN
AULhOr T Zation ..ottt ittt tteeieeneecnncesoosncanens 3-20
Dvnamic Address Translationciiiieireeeeccnncnecens 3-20
Translation Controlttt eieeereeencacacccncnns 3-22
Translation Modes ...ttt eeeeeroenncencoaanennns 3-22
Control Register 0i.icietieereeeeerenncnceccaneanns 3-23
Control Register 1 ...ttt eeeteecneneneconennesn 3-2%
Control Register 7ieiiiieitieeteeeceecccccncccannannns 3-24
Translation Tables ...ttt erieeeeeerncacsnncnaccannns 3-25
Segment-Table Entriesccicreteineereeceececcccannns 3-25
Page-Table Entries ... iiiiieeteeeeeneeneocenenennnnnns 3-26
Summary of Dynamic-Address-Translation Formats 3-26
Translation Process ...iiiiieeeeieeeecncsncncsonnccsasnces 3-27
Effective Segment-Table Designation 3-27
Inspection of Control Register 0c. it eeniennn 3-30
Segment-Table LooKUP ... eeeneeeencoaoananens 3-30
Page-Table LookUp ...ttt iinieeeeernceceaacanananans 3-31
Formation of the Real Addresseeiereeenneeocannenn 3-31
Recognition of Exceptions during Translation 3-31
Translation-Lookaside Bufferceeeeieieenneeecanannns 3-31
Use of the Translation-Lookaside Buffer 3-32
Modification of Translation Tablescieieiieeeeeeennn 3-36

STORAGE

Chapter 3. Storage 3-1

Address Summary
Addresses Translated
Handling of Addresses

Assigned Storage Locations

the represen-
main storage,
protection, and
recording. The

This chapter discusses
tation of information in
as well as addressing,
reference and change
aspects of addressing uwhich are covered
include the format of addresses, the
concept of address spaces, the various
types of addresses, and the manner in
which one type of address is translated
to another type of address. A list of
permanently assigned storage locations
appears at the end of the chapter.

Main storage provides the system with
directly addressable fast-access storage
of data. Both data and programs must be
loaded 1nto main storage (from input
devices) before they can be processed.

Main storage may include one or more
smaller faster-access buffer storages,
sometimes called caches. A cache is
usually physically associated with a CPU
or an I/0 processor. The effects,
except on performance, of the physical
construction and use of distinct storage
media are not observable by the program.

Fetching and storing of data by a CPU
are not affected by any concurrent chan-
nel activity or by a concurrent refer-
ence to the same storage location by
another CPU. lWhen concurrent requests
to a main-storage location occur, access
normally is granted in a sequence that
assigns highest priority to references
by channels, the priority being rotated
among CPUs. If a reference changes the
contents of the location, any subsequent
storage fetches obtain the new contents.

Main storage may be volatile or nonvola-
tile. If 1t is volatile, the contents
of main storage are not preserved when
power is turned off. If it is nonvola-
tile, turning power off and then back on
does not affect the contents of main
storage, provided all CPUs are in the
stopped state and no referaences are made
to main storage when power 1is being
turned off. In both types of main stor-
age, the contents of the storage key are
not necessarily preserved when the power
for main storage is turned off.

Note: Because most references in this
publication apply to virtual storage,
the abbreviated term "storage"™ is often

used in place of "virtual storage." The
term "storage" may also be used in place

of "main storage," "absolute storage,"
or "real storage" when the meaning 1is
clear. The terms "main storage™ and

"absolute storage"™ are used to describe
storage which is addressable by means of

3-2 System/370 Principles of Operation

....... . R 1
e etestrecteeette e ce...3-38

ettt eeeccaecesetat s eaeacarans 3-39

e tseeereereeaea B 2]

an absolute address. The terms describe
fast-access storage, as opposed to
auxiliary storage, such as provided by
direct-access storage devices. "Real
storage" 1is synonymous with "absolute
storage" except for the effects of
prefixing.

STORAGE ADDRESSING

Storage is viewed as a long horizontal
string of bits. For most operations,
accesses to storage proceed in a left-
to-right sequence. The string of bits
is subdivided into units of eight bits.
An eight-bit wunit is called a byte,
which is the basic building block of all

information formats.

is identi-
integer,

Each byte location in storage
fied by a unique nonnegative
which is the address of that byte
location or, simply, the byte address.
Adjacent byte locations have consecutive

addresses, starting with 0 on the left
and proceeding in a left-to-right
sequence. With the exception of those
facilities described in "Storage
Addressing with Extended Address Fields"
below, addresses are 24-bit unsigned
binary integers, which provide

16,777,216 (22% or 16M) byte addresses.

The CPU performs address generation when
it forms an operand or instruction
address, or when it generates the
address of a table entry from the appro-
priate table origin and index. It also
performs address generation when it
increments an address to access succes-
sive bytes of a field. Similarly, the
channel performs address generation when
it increments an address (1) to fetch a
CCW, (2) to fetch an IDAW or (3) to
transfer data.
When, during address generation, an
address is obtained that exceeds
224 - 1, the carry out of the leftmost
bit position of the address is ignored.
This handling of an address of excessive
size is called wraparound.

is to make the
addresses appear circular;
that is, address 0 appears to follow the
maximum byte address, 16,777,215.
Address arithmetic and wraparound occur
before transformation, if any, of the
address by dynamic address translation
or prefixing. With a 16M-byte storage,
information may be located partially in

The effect of wraparound
sequence of

the last and partially in the first
locations of storage and is processed
without any special indication of cross-
ing the maximum-address boundary.

Some channels do not perform address
wraparound. Depending on the model, a
program check may be generated if an

address generated by the channel to
fetch a CCW, to fetch an IDANW, or to
transfer data 1is incremented past
16,777,215 or decremented past 0.

Storage Addressing with Extended Address
Fields

Extended real addressing, 3l-bit IDAWs,
the instructions associated with
storage-key-instruction extensions, and
TEST BLOCK all provide for addresses
which are more than 24 bits. This
section describes the handling of these
addresses.

Extended real

addressing provides a

26-bit page-frame real address in the
page-table entry for 4K-byte pages.
This address is not subject to wrapa-
round because the page-frame real
address designates a 4K~-byte block.
Also provided 1is a 3Il-bit failing-
storage address for certain machine-
check interruptions, and a 26-bit
address (extended to 32 bits with zeros
on the left) as a result of LOAD REAL
ADDRESS.

The 31-bit IDAWs provide a 31-bit abso-
lute address of the 1/0 data area. This
address i1s not subject to wraparound
because all bytes designated by an IDANW
must lie within a 2K-byte block.

The instructions INSERT STORAGE KEY
EXTENDED, RESET REFERENCE BIT EXTENDED,
SET STORAGE KEY EXTENDED, and TEST BLOCK
specify 3l-bit real addresses. These
addresses are not subject to wraparound
since they designate a 4K-byte block.

INFORMATION FORMATS

Information is transmitted between stor-
age and a CPU or a channel one byte, or
a group of bytes, at a time. Unless
otherwise specified, a group of bytes in
storage is addressed by the leftmost
byte of the group. The number of bytes
in the group is either implied or
explicitly specified by the operation to
be performed. When used in a CPU opera-

tion, a group of bytes 1is called a
field.
Within each group of bytes, bits are

numbered in a left-to-right sequence.

. The leftmost bits are sometimes referred
¥ to as

the "high-order"™ bits and the

rightmost bits as the "low-order" bits.
Bit numbers are not storage addresses,
however. Only bytes can be addressed.
To operate on individual bits of a byte
in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0
through 7, from left to right.

The bits in an address are numbered &
through 31 for 24-bit addresses and 1
through 31 for 31-bit addresses. Within
any other fixed-length format of multi-
ple bytes, the bits making up the format
are consecutively numbered starting from
0.

For purposes of error detection, and in
some models for correction, one or more
check bits may be transmitted with each
byte or with a group of bytes. Such
check bits are generated automatically
by the machine and cannot be directly
controlled by the program. References
in this publication to the length of
data fields and registers exclude
mention of the associated check bits.
All storage capacities are expressed in
number of bytes.

When the length of a
field is implied by the operation code
of an instruction, the field is said to
have a fixed length, which can be one,
two, four, or eight bytes. Larger
fields may be implied for some
instructions.

storage-operand

When the length of a storage-operand
field is not implied but is stated
explicitly, the field is said to have a
variable length. Variable-length oper-
ands can vary in length by increments of
one byte.

When information 1is placed in storage,
the contents of only those byte
locations are replaced that are included
in the designated field, even though the
width of the physical path to storage
may be greater than the length of the
field being stored.

INTEGRAL BOUNDARIES

Certain units of information must be on
an integral boundary 1in storage. A
boundary is called integral for a unit
of information when its storage address
is a multiple of the length of the unit
in bytes. Special names are given to
fields of two, four, and eight bytes on
an integral boundary. A halfword 1is a

group of two consecutive bytes on a
two-byte boundary and is the basic
building block of instructions. A word

is a group of four consecutive bytes on
a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an
eight-byte boundary. (See the figure

Chapter 3. Storage 3-3

"Integral Boundaries with Storage

Addresses.")

When storage addresses designate half-
words, words, and doublewords, the bina-
ry representation of the address
contains one, two, or three rightmost
zero bits, respectively.

Instructions must be on two-byte inte-
gral boundaries, and CCWs, IDAWs, and

the storage operands of certain
instructions must be on other integral
boundaries. The storage operands of

most instructions do not have boundary-
alignment requirements.

: > Storage Addresses

Bytes 0 1 2 3 G 5 6 8

T T T T
Halfwords 0 . 2 . 4 | 6 8 1

T 1 T T T T
Words 0 4 8

! ! 1 1 1 1

T T T T T T T
Doublewords 0 8

! (] 1 1 i 1 i

Integral Boundaries with Storage Addresses

3-¢ System/370 Principles of Operation

»
;

BYTE-ORIENTED-OPERAND FACILITY

The byte-oriented-operand facility is
standard on System/370. This facility
permits storage operands of most unpriv-

ileged 1instructions to appear on any
byte boundary.
The facility does not pertain to

instruction addresses or to the operands
for COMPARE AND SWAP and COMPARE DOUBLE

AND SWAP. Instructions must appear on
two-byte integral boundaries. The
rightmost bit of a branch address must
be =zero, and the instruction EXECUTE

must designate the target instruction at
an even byte address. COMPARE AND SWAP

must designate a four-byte integral
boundary, and COMPARE DOUBLE AND SWAP
must designate an eight-byte integral

boundary.

Programming Note

For fixed-field-length operations with
field lengths that are a power of 2,
significant performance degradation 1is
possible when storage operands are not
positioned at addresses that are inte-
gral multiples of the operand length.
To improve performance, frequently used
storage operands should be aligned on
integral boundaries.

ADDRESS TYPES

For purposes of addressing main storage,
three basic types of addresses are
recognized: absolute, real, and
virtual. The addresses are distin-
guished the basis of the transf-
ormations that are applied to the
address during a storage access.
Address translation converts virtual to
real, and prefixing converts real to
absolute. In addition to the three
basic address types, additional types
are defined which are treated as one or
another of the three basic types,
depending on the instruction and the
current mode.

on

Absolute Address

An absolute address is the address
assighed to a main-storage location. An
absolute address is used for a storage
access without any transformations
performed on it.

All CPUs and channels in the configura-

tion refer to a shared main-storage
location by using the same absolute
address. Available main storage is

assigned contiguous absolute

starting at 0, and the

are always assigned in
complete 2K-byte blocks on integral
boundaries. When either TEST BLOCK or
the storage-key 4K-byte-block facility
is installed, storage is assigned in
complete 4K-byte blocks on integral
boundaries. An exception 1is recognized
when an attempt is made to use an abso-
lute address in a block which has not
been assigned to physical locations. O0On
some models, storage-reconfiguration
controls may be provided which permit
the operator to change the correspond-
ence between absolute addresses and
physical locations. However, at any one

usually
addresses
addresses

time, a physical location is not associ-
ated with more than one absolute
address.

Storage consisting of byte locations
sequenced according to their absolute
addresses is referred to as absolute
storage.

Real Address

A real address identifies a location in

real storage. When a real address is
used for an access to main storage, it
is converted, by means of prefixing, to

an absolute address.

At any instant there is one real-address
to absolute-address mapping for each CPU
in the configuration. When a real
address is used by a CPU to access main
storage, it is converted to an absolute
address by prefixing. The particular
transformation is defined by the value
in the prefix register for the CPU.

Storage consisting of byte locations
sequenced according to their real
addresses is referred to as real
storage.

Virtual Address

identifies a location
in virtual storage. When a virtual
address is used for an access to main
storage, it is translated by means of
dynamic address translation to a real
address, which is then further converted
by prefixing to an absolute address.

A virtual address

Primarv Virtual Address

virtual address is a virtual
which is to be translated by
the primary segment-table
When DAS is not installed,
addresses are treated as

A primary
address
means of
designation.
all logical

Chapter 3. Storage 3-5

primary virtual addresses when DAT is
on. When DAS 1is installed, logical
addresses and instruction addresses are
treated as primary virtual addresses
when in the primary-space mode. The
first-operand address of MOVE TO PRIMARY
and the second-operand address of MOVE
TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual
address which is to be translated by
means of the secondary segment-table
designation. When DAS is not installed,
secondary virtual addresses do not
occur. When DAS is installed, logical
addresses are treated as secondary
virtual addresses when in the
secondary-space mode. The second-
operand address of MOVE 7O PRIMARY and
the first-operand address of MOVE 70O
SECONDARY are always treated as second-
ary virtual addresses.

Logical Address

specified, the
addresses for most

logical addresses.
When DAS s not installed, logical
addresses are treated as real addresses
when DAT is off and as virtual addresses
when DAT is on. When DAS is installed,
logical addresses are treated as real
addresses in the real mode, treated as
primary virtual addresses in the
primary-space mode, and treated as
secondary virtual addresses in the
secondary—-space mode. Some instructions
have storage-operand addresses or stor-
age accesses associated with the
instruction which do not follow the
rules for logical addresses. In all
such cases, the instruction definition
contains a definition of the type of
address.

Except where otherwise
storage-operand
instructions are

Instruction Address

fetch instructions
instruction
installed,
as

is

Addresses used to
from storage are called

addresses. When DAS is not
instruction addresses are the same
logical addresses. When DAS

installed, instruction addresses are
treated as real addresses in the real
mode, treated as primary virtual
addresses in the primary-space mode, and
treated as either primary virtual
addresses or secondary virtual addresses
in the secondary-space mode. The
instruction address in the current PSW

3-6 System/370 Principles of Operation

and the target address of EXECUTE are
instruction addresses.

Note: When the CPU is in the
secondary-space mode, it is unpredict-

able whether instructions, including the
target of EXECUTE, are fetched from the
primary address space or the secondary
address space. For details, see the
section "Translation Modes™ and the
associated programming notes under the
section "Dynamic Address Translation" in
this chapter.

Effective Address

In some situations, it is convenient to
use the term "effective address." An
effective address is the address which

results from address arithmetic, before
address translation, if any, is
performed. Address arithmetic 1s the

addition of the base and displacement or
of the base, index, and displacement.

STORAGE KEY

A storage key is associated with each
2K-byte block of storage that is avail-
able in the configuration. When the
storage-key 4K-byte-block facility 1is
installed, all of the storage keys are
associated with a 4K-byte block. The
storage key has the following format:

ACC {F|R}C
0 4 6

The bit positions in the storage key are
allocated as follows:

If a refer-
key-controlled
access-control

Access-Control Bits (ACC):
ence is subject to
protection, the four
bits, bits 0-3, are matched with the
four-bit access key when information is
stored, or when information is fetched
from a location that is protected
against fetching.

Fetch-Protection Bit
ence is subject to key-controlled
protection, the fetch-protection bit,
bit 4, controls whether key-controlled
protection applies to fetch-type refer-
ences: a zero indicates that only
store-type references are monitored and

(F): If a refer-

that fetching with any access key is
permitted; a one indicates that key-
controlled protection applies to both
fetching and storing. No distinction is
made between the fetching of
instructions and of operands.

Reference Bit (R): The reference bit,

bit 5, normally is set to one each time

{

a location in the corresponding storage
block is referred to either for storing
or for fetching of information.

Change Bit (C): The change bit, bit 6,
is set to one each time information is
stored at a location in the correspond-
ing storage block.

Storage keys are not part of addressable
storage. Provided that the storage-~key
4K-byte-block facility is not installed,
a storage key is associated with each
2K-byte block of storage. The entire
storage key 1is set by SET STORAGE KEY
and 1inspected by INSERT STORAGE KEY.
Additionally, the instruction RESET
REFERENCE BIT provides a means of
inspecting the reference and change bits
and of setting the reference bit to
zero. Bits 0-4 of the storage key are
inspected by the INSERT VIRTUAL STORAGE
KEY instruction. The contents of the
storage key are unpredictable during and
after the execution of the wusability
test of the TEST BLOCK instruction.

STORAGE-KEY 4K-BYTE-BLOCK FACILITY

Depending on whether the storage-key
4K-byte-block facility is installed, one
or two storage keys are associated with
each 4K-byte block of storage that is in
the configuration. The storage-key-
exception control is also provided as
part of this facility.

Storage Keys with Storage-Kevy
4K-Bvte-Block Facility Not Installed

When the storage-key 4¢K-byte-block
facility is not installed, two keys are
associated with the block, and the block
is called a double-key 4K-byte block.

In a double-key 4K-byte block, one key
is associated with the first 2K-byte
block and one with the second 2K-byte
block. The keys are referred to as the

low-order and high-order keys, Jjust as
the two 2K-byte blocks are referred to
as the low-order and high-order 2K-byte
blocks. The instructions INSERT STORAGE
KEY, RESET REFERENCE BIT, and SET STOR-
AGE KEY designate a 2K-byte block and
operate on the high-order or low-order
key, whichever is addressed. The
instructions INSERT STORAGE KEY
EXTENDED, RESET REFERENCE BIT EXTENDED,
and SET STORAGE KEY EXTENDED designate a
4K-byte block and operate on both the
high~order and low-order keys.

Storage Keys with Storaqe-Key
4K-Byte-Block Facility Installed

When the
facility is

storage-key 4K-byte-block
installed, only one key is
associated with a 4K-byte block, and it
is called a single-key 4K-byte block.
In a single-key 4K-byte block, the
single key 1is associated with both
2K-byte blocks. The instructions INSERT
STORAGE KEY EXTENDED, RESET REFERENCE
BIT EXTENDED, and SET STORAGE KEY
EXTENDED operate on the single key of
the block. The action taken when the
instructions INSERT STORAGE KEY, RESET
REFERENCE BIT, and SET STORAGE KEY are
executed depends upon the setting of the
storage-key-exception control, bit 7 of
control register 0.

Storage-Key-Exception Control

When the storage-key 4K-byte-block
facility is installed, bit 7 of control
register 0, the storage-key-exception-—
control bit, controls the execution of
the instructions INSERT STORAGE KEY,

RESET REFERENCE BIT, and SET STORAGE
KEY. If the bit is zero, a special-
operation exception is recognized. If

the bit is one, the
performed on the single
with the 4K-byte block.

operation 1is
key associated

When the storage-key 4K-byte-block
facility is not installed, a storage key
1s associated with each 2K-byte block,
and bit 7 of control register 0 is
ignored.

STORAGE-KEY-INSTRUCTION EXTENSIONS

The storage-key~instruction-extension
facility includes the three instructions
INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE
KEY EXTENDED. Thase instructions
provide operations similar to those of
INSERT STORAGE KEY, RESET REFERENCE BIT,
and SET STORAGE KEY, except that they
operate on both single-key and double-
key 4K-byte blocks without reference to
the state of the storage-key-exception-
control bit and provide a 3l1-bit real
address.

PROTECTION

Three protection facilities are provided
to protect the contents of main storage
from destruction or misuse by programs
that contain errors or are unauthorized:
key-controlled protection, segment
protection, and low-address protection.

Chapter 3. Storage 3-7

The protection facilities are applied the fetch-protection bit of the storage

independently; access to main storage is key is zero.

only permitted when none of the facili-

ties prohibit the access. The keys are said to match when the four
access—control bits of the storage key

Key-controlled protection affords are equal to the access key, or when the

protection against improper storing or access key is zero.

against both improper storing and fetch-

ing, but not against improper fetching The protection action is summarized in

alone. the figure "Summary of Protection
Action."

When the access to storage is initiated
KEY-CONTROLLED PROTECTION by the CPU and key-controlled protection
applies, the PSW key 1is the access key,
except that, for the second operand of
When key-controlled protection applies MOVE WITH KEY and MOVE TO PRIMARY and

to a storage access, a store is permit- the first operand of MOVE TO SECONDARY,
ted only when the storage key matches the access key is specified in a general
the access key associated with the register. The PSW key occupies bit
request for storage access; a fetch is positions 8-11 of the current PSW.

permitted when the keys match or when

Conditions Is Access to
Storage Permitted?
Fetch-Protection
Bit of
Storage Key Key Relation Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mi smatch No No

Explanation:

Match The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

3-8 System/370 Principles of Operation

When the access to storage is for the
purpose of channel-program execution,
the subchannel key associated with the
I/0 operation 1is the access key. The
subchannel key 1is specified for an I/0
operation in bit positions 0-3 of the
channel-address word (CAW); the subchan-
nel key is later placed in bit positions
0-3 of the channel-status word (CSW)
stored as a result of the I/0 operation.

is prohibited because
of key-controlled protection, the unit
of operation is suppressed or the
instruction is terminated, and a program
interruption for a protection exception
takes place. When a channel-program
access is prohibited, protection check
is indicated in the CSW stored as a
result of the operation.

When a CPU access

When a store access is prohibited
because of key-controlled protection,
the contents of the protected location
remain unchanged. When a fetch access
is prohibited, the protected information
is not loaded into a register, moved to

another storage location, or provided to

an I/0 device. For a prohibited
instruction fetch, the instruction 1is
suppressed, and an arbitrary

instruction-length code is indicated.

Key-controlled protection is independent
of whether the CPU is in the problem or
the supervisor state and, except as
described below, does not depend on the
type of CPU instruction or channel-
command word being executed.

Except where otherwise specified, all
accesses to storage locations that are
explicitly designated by the program and
that are used by the CPU to store or
fetch information are subject to key-
controlled protection.

the second operand of TEST
subject to key-controlled

Accesses to
BLOCK are not
protection.

All storage accesses by a channel to
fetch a CCW or IDAWH or to access a data
area designated during the execution of
a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW,
or output data is prefetched, a
protection check is not indicated until
the CCW or IDAW is due to take control
or until the data is due to be written.

Key-controlled protection is not applied
to accesses that are implicitly made for
any of such sequences as:

. An interruption

. Updating the interval timer

. CPU logout

table entries for
translation, PC-

L Fetching of
dynamic-address

number translation, ASN transla-
tion, or ASN authorization

. DAS tracing
. A store-status function

. Fetching the CAW during the
execution of an I/0 instruction

. Storing of the CSW by an 1I/0
instruction or interruption

. Storing channel identification
during the execution of STORE CHAN-
NEL ID

. A limited channel logout

. A full channel logout

. Initial program loading

not apply to

operator
displaying

Similarly, protection does
accesses initiated via the
facilities for altering or
information. However, when the program
explicitly designates these locations,
they are subject to protection.

SEGMENT PROTECTION

The segment-protection facility controls
access to virtual storage by using the
segment-protection bit in each segment-
table entry. It provides protection
against improper storing.

The segment-protection bit, bit 29 of
the segment-table entry, controls wheth-
er storing 1is allowed 1into the corre-
sponding segment. When the bit is zero,
both fetching and storing are permitted:;
when the bit is one, only fetching is
permitted. MWhen an attempt is made to

store into a protected segment, a
program interruption for protection
takes place. The contents of the

protected location remain unchanged.

Segment protection applies to all
store-type references that use a virtual
address.

LOW-ADDRESS PROTECTION

The low-address-protection facility pro-
vides protection against the destruction
of main-storage information used by the
CcPU during interruption processing.
This is accomplished by prohibiting
instructions from storing with effective
addresses in the range 0 through 511.
The range criterion 1is applied before
address transformation, 1i1f any, of the
address by dynamic address translation
or prefixing.

Chapter 3. Storage 3-9

Low-address protection is under control
of bit 3 of control register 0, the
low-address-protection-control bit.
When the bit is zero, low-address
protection is off; when the bit is one,
low-address protection is on.

If an access is prohibited because of
low-address protection, the contents of
the protected location remain unchanged,
a program interruption for a protection
exception takes place, and the unit of
operation is suppressed or the instruc-
tion terminated.

Any attempt by the program to store by
using effective addresses in the range 0
through 511 is subject to low-address
protection. Low-address protection 1is
applied to the store accesses of
instructions whose operand addresses are
logical, virtual, or real. Low-address
protection is also applied to the trace
table.

Low-address protection is not applied to
accesses made by the CPU or channel for
such sequences as interruptions, updat-
ing the interval timer, CPU logout, and
the initial-program-loading and store-
status functions, nor is it applied to
data stores during 170 data transfer.
However, explicit stores by a program at
any of these locations are subject to
low-address protection.

Programming Note

Low-address protection and key-
controlled protection apply to the same
store accesses, except that:

protection does not
apply to storing performed by a
channel, whereas key-controlled
protection does.

. Low-address

L Key-controlled protection does not
apply to DAS tracing or the second
operand of TEST BLOCK, whereas
low-address protection does.

REFERENCE RECORDING

Reference recording provides information
for use in selecting pages for replace-
ment. Reference recording uses the
reference bit, bit 5 of the storage key.
A reference bit is provided in each
storage key when the dynamic-address-
translation facility is installed. The
reference bit is set to one each time a
location 1in the corresponding storage
block is referred to either for fetching
or storing information, regardless of
whether the CPU performing the access is
in the EC mode or BC mode or whether DAT
is on or off in that CPU.

3-10 System/370 Principles of Operation

Reference recording is always active and
takes place for all storage accesses,
including those made by any CPU,
channel, or operator facility. It takes
place for implicit accesses made by the
machine, such as those which are part of
interruptions and I/0-instruction
execution.

Reference recording does not occur for
operand accesses of the following
instructions since they directly refer
to a storage key without accessing a
storage location:

INSERT STORAGE KEY

INSERT STORAGE KEY EXTENDED

RESET REFERENCE BIT (reference bit
is set to =zero)

RESET REFERENCE BIT EXTENDED (ref-
erence bit 1s set to zero)

SET STORAGE KEY (reference bit is
set to a specified value)

SET STORAGE KEY EXTENDED (reference
bit 1is set to a specified
value)

The record provided by the reference bit

is substantially accurate. The refer-
ence bit may be set to one by fetching
data or instructions that are neither

designated nor used by the program, and,
under certain conditions, a reference
may be made without the reference bit
being set to one. Under certain unusual
circumstances, a reference bit may be
set to zero by other than explicit
program action.

CHANGE RECORDING

Change recording provides information as
to which pages have to be saved in
auxiliary storage when they are replaced
in main storage. Change recording uses

the change bit, bit 6 of the storage
key. A change bit is provided in each
storage key when the dynamic-address-

translation facility is installed.

The change bit is set to one each time a
store access causes the contents in the
corresponding storage block to be
changed. A store access that does not
change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an
attempt to store if the access is
prohibited. In particular:

1. For the CPU, a store access is
prohibited whenever an access
exception exists for that access,
or whenever an exception exists

which is of higher priority than
the priority of an access exception
for that access.

2. For a channel, a store access is
prohibited whenever a key-
controlled-protection violation
exists for that access.

Change recording is always active and
takes place for all store accesses to
storage, including those made by any
CPU, channel, or operator facility. It

takes place for implicit references made
by the machine, spch as those which are
part of interruptions.

Change recording does not take place for
the operands of the following
instructions since they directly modify
a storage key without modifying a stor-
age location:

RESET REFERENCE BIT

RESET REFERENCE BIT EXTENDED

SET STORAGE KEY (change bit
to a specified value)

SET STORAGE KEY EXTENDED

bit is set to a

value)

is set

(change
specified

Change bits which have been changed from
zeros to ohes are not necessarily
restored to zeros on CPU retry (see the
section "CPU Retry" in Chapter 11,
"Machine-Check Handling™). See the
section "Exceptions to Nullification and

Suppression” in Chapter 5, "Program
Execution,” for a description of the
handling of the change bit in certain

unusual situations.

PREFIXING

Prefixing provides the ability to assign
the range of real addresses 0-4095 (the
prefix area) to a different block in
absolute storage for each CPU, thus
permitting more than one CPU sharing
main storage to operate concurrently
with a minimum of interference, espe-
cially in the processing of
interruptions. Prefixing is provided as
part of the multiprocessing facility.

Prefixing causes real addresses in the
range 0-4095 to correspond +to the block
of 4K absolute addresses identified by
the value in the prefix register for the
CPU, and the block of real addresses
identified by the value in the prefix
register to correspond to absolute
addresses 0-4095. The remaining real
addresses are the same as the corre-
sponding absolute addresses. This
transformation allows each CPU to access
all of main storage, including the first
4K bytes and the locations designated by
the prefix registers of other CPUs.

The relationship between real and abso-
, lute addresses is graphically depicted
; in the figure "Relationship between Real
and Absolute Addresses.”

The prefix is a 19-bit quantity
contained in bit positions 1-19 of the
prefix register. Bits 1-7 of the prefix
register are always zeros. The register
has the following format:

/117777727777

»,10000000 Prefix

6 1 8 20 31

The contents of the
and inspected by the privileged
instructions SET PREFIX and STORE
PREFIX, respectively. On setting, bits
corresponding to bit positions 0-7 and
20-31 of the prefix register are
ighored. On storing, zeros are provided
for these bit positions. When the
contents of the prefix register are
changed, the change is effective for the
next sequential instruction.

With the introduction of the storage-
key-instruction-extension facility, the
test-block facility, and the extended-
real-addressing facility, prefixing 1is
described in terms of 31-bit real
addresses, whether or not these facili-
ties are installed. All real addresses
are considered to be 31 bits, with any
shorter address fields extended to 31
bits by appending =zeros on the left.
Thus, 24-bit real addresses are extended
to 31 bits by appending zeros on the
left.

When prefixing is
address is transformed
address by using one
rules, depending on
real address:

1. Bits 1-19 of the
zeros, are replaced
of the prefix.

2. Bits 1-19 of the

register can be set

applied, the real

into an absolute
of the following
bits 1-19 of the

address, if all
with bits 1-19

address, if equal

to bits 1-19 of the prefix, are
replaced with zeros.

3. Bits 1-19 of the address, if not
all zeros and not equal to bits
1-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the address

remain unchanged.

Only the address presented to storage is
translated by prefixing. The contents
of the source of the address remain
unchanged.

The distinction between real and abso-
lute addresses is made even when the
prefix register contains all zeros, in
which case a real address and its corre-
sponding absolute address are identical.

Chapter 3. Storage 3-11

. _ Prefixing _ __ Prefixing
r 1 [— 7
| | | I
I No Change T D> _L || l 1
| o e I i
No Ch]
} | { ; o Change |
I
> : | = | | :L
. | . | !
| § | ©
| af | 1] | .
Q
l ¥ ! |3 |
- | II FL I "% | »-:L
’1[‘ l No Change j—b ’l- 'l % I 1
|
(I : b < l No Change ll
!
| 3 , 1
3 S
| L g
+ - l F 3 l
&
:«:dress l | Address | I Address
1 % | | 4096 | / ‘ T 409
o] l
1 (,Add(;ess L __________ | Address | 3 «—Address
0
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B
(1) Real addresses in which bits 1-19 are equal to the prefix for this CPU (A or
B).
(2) Absolute addresses of the block that contains for this CPU (A or B) the real
locations 0-4095.
Relationship between Real and Absolute Addresses
ADDRESS SPACES one address space -- the primary address

consecutive
numbers (virtual

An address is a
sequence of integer
addresses), together with the specific
transformation parameters which allow

each number to be associated with a byte

space

location in storage. The sequence
starts at zero and proceeds left to
right.

When a virtual address is wused by a CPU

to access main storage, it is first
converted, by means of dynamic address
translation (DAT), to a real address,
and then, by means of prefixing, to an
absolute address. DAT uses two levels
of tables (seament tables and page
tables) as transformation parameters.

The designation (origin and length) of a
segment table is found for use by DAT in
a control register.

When DAS 1is not installed, the CPU can
translate virtual addresses belonging to

3-12 System/370 Principles of Operation

space, which consists of primary virtual

addresses. When DAS 1is installed, at
any instant the CPU can translate virtu-
al addresses of two address
spaces -- the primary address space,
consisting of primary virtual addresses,
and the secondary address space,
consisting of secondary virtual
addresses. The segment table defining

address space 1is specified
and that defining
address space by control

the primary
by control register 1
the secondary
register 7.

With DAS,
an address-space nhumber
translation mechanism
DAS, which, given an ASN, can locate (by
using a two-level table lookup) the
designation of the segment table which
defines the address space. Certain
instructions use ASN translation and
load the resulting segment-table desig-
nation into the appropriate control
register.

each address space is assigned
(ASN). An ASN-
is provided with

g

ASN-translation mechanisnm,
any one of up to 64K address spaces can
be selected to become the primary or
secondary address space.

By using the

The ASNs for the primary and secondary
address spaces are assigned positions in
control registe The ASN for the
primary address s ce, called the prima-
ry ASN, 1is assigned bits 16-31 of
control register 4, and that for the
secondary address space, called the

secondary ASN, is assigned bits 16-31 of
control register 3. The registers have
the following formats:

Control Register &

PASN

16 31

Control Register 3

SASN
16 31

An instruction that uses ASN translation
and loads the primary or secondary
segment-table designation into the
appropriate control register also loads
the corresponding ASN into the appropri-
ate control register.

Note: Virtual storage consisting of
byte locations ordered according to
their virtual addresses in an address
space is usually referred to as

"storage."

ASN TRANSLATION

ASN translation is the process of trans-
lating the 16-bit ASN to locate the
address—space-control parameters. ASN
translation 1is performed as part of
PROGRAM CALL with space switching
(PC-ss), PROGRAM TRANSFER with space
switching (PT-ss), and SET SECONDARY ASN
with space switching (55AR-ss). ASN
translation is also performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASN which is trans-
lated replaces the primary ASN in
control register 4. For S5SAR-ss, the
ASN which 1is translated replaces the
secondary ASN in control register 3.
These two translation processes are
called primary ASN translation and
secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS
SPACE PARAMETERS. The ASN-translation
process is the same for both primary and
secondary ASN translation; only the uses
of the results of the process are
different.

The ASN-translation process uses two
tables, the ASN first table and the ASN
second table. They are used to locate
the address-space-control parameters and
a third table, the authority table,
which is used when ASN authorization is

performed.

For the purposes of this translation,
the 1l6-bit ASN is considered to consist
of two parts: the ASN-first-table index

(AFX) is the leftmost 10 bits of the
ASN, and the ASN-second-table index
(ASX) is the six rightmost bits. The
ASN has the following format:
ASN

AFX ASX
0 10 15

The AFX i1s used to

the ASN first table.
ASN first table 1is
ASN-first-table origin

select an entry from
The origin of the
designated by the
in control regis-

ter 14. The ASN-first-table entry
contains the origin of the ASN second
table. The ASX 1is used to select an

entry from the ASN second table. This
entry contains the address-space-control
parameters.

ASN-TRANSLATION CONTROLS

ASN translation 1is controlled by the

ASN-translation-control bit and the
ASN-first-table origin, both of which
reside in control register 164. The
register has the following format:
Control Register 14

T AFTO

12 20 31
ASN-Translation Control (I): Bit 12 of
control register 14 s the ASN-
translation-control bit. This bit

provides a mechanism whereby the control
program can indicate whether ASN trans-
lation can occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

LOAD ADDRESS SPACE PARAMETERS

SET SECONDARY ASN

PROGRAM CALL with space switching

PROGRAM TRANSFER with space switch-
ing

Otherwise, a special-operation exception
is recognized. The ASN-translation-
control bit 1is examined in both the
problem and the supervisor states.

Chapter 3. Storage 3-13

ASN-First-Table Origin (AFT0): Bits
20-31 of control register 14, with 12
zeros appended on the right, form a

24-bit real address that designates the
beginning of the ASN first table. With
extended real addressing, the ASN-
first-table origin is still a 24-bit
real address and is extended on the left
with zeros.

ASN-TRANSLATION TABLES

The ASN-translation process consists in
a two-level lookup using two tables: an
ASN first table and an ASN second table.
These tables reside in real storage.

ASN-First-Table Entries

The entry fetched from the ASN first

table has the following format:
I{0000000 ASTO 0000

0 1 8 28 31

The fields in the entry are allocated as
follows:

AFX-Invalid Bit (I): Bit 0 controls
whether the ASN second table associated
with the ASN-first-table entry is avail-
able. When bit 0 is zero, ASN trans-
lation proceeds by using the designated
ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table 0Origin (ASTO0): Bits
8-27, with four zeros appended on the
right, are used to form a 24-bit real
address that designates the beginning of

the ASN second table. With extended
real addressing, the ASN-second-table
origin is still a 24-bit real address

and is extended on the left with zeros.

Bits 1-7 and 28-31 of the AFT entry must
be zeros; otherwise, an ASN-
translation-specification exception is
recognized as part of the execution of
the instruction using that entry for ASN
translation.

ASN-Second-Table Entries

The entry fetched from the ASN
table has the following format:

second

3-14 System/370 Principles of Operation

1{0000000 ATO 00
¢ 1 8 31
AX ATL 6000
32 48 60 63
i STD |
STL STO 777771X
646 72 90 95
I LTD)
v|0000000 LTO LTL
96 104 121 127

The fields in the entry are allocated as
follows:

ASX-Invalid Bit (I>: Bit 0
whether the address space
with the ASN-second-table
available. When bit 0 1is
translation proceeds. When the
one, the ASN translation
continue.

controls
associated
entry is
zero, ASN
bit is
cannot

Authorityv-Table Origin
8-29, with two =zeros appended on the
right, are used to form a 24-bit real
address that designates the beginning of
the authority table. With extended real
addressing, the authority-table origin
is still a 24-bit real address and is
extended on the left with zeros.

(AT0): Bits

Authorization Index (AX): Bits 32-47
are used as a result of primary ASN
translation by PROGRAM CALL and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The AX field 1is
ignored for secondary ASN translation.

Authority-Table Length (ATL): Bits
48-59 specify the length of the authori-
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four
bytes, is one more than the ATL value.

The contents of the ATL field are used
to establish whether the entry desig-
nated by a particular AX falls within

the authority table.

Segment-Table Designation (STD): Bits
64-95 are used as a result of ASN trans-
lation to replace the primary-segment-
table designation (PSTD) or the
secondary-segment-table designation
(SSTD). For SET SECONDARY ASN, the STD
field is placed in the SSTD, bits 0-31
of control register 7. For PROGRAM
CALL, the STD field is placed in the
PSTD, bits 0-31 of control register 1.
Each of these actions may occur inde-
pendently for LOAD ADDRESS SPACE
PARAMETERS. For PROGRAM TRANSFER, the

STD field is placed in both the PSTD and
SSTD, bits 0-31 of control registers 1
and 7, respectively. The contents of

the entire STD field are placed in the
appropriate control registers without
being inspected for validity.

Space-Switch-Event Control (X): Bit 31
of the segment-table designation is the
space-switch-event-control bit. When,
in PC-ss or PT-ss, this bit is one in
control register 1 either before or

after the execution of the PC-ss or
PT-ss, a program interruption for a
space-switch event occurs after the
execution of the instruction is
completed. When, in LOAD ADDRESS SPACE
PARAMETERS, this bit is one during
primary ASN translation, this fact 1is
indicated by the condition code.

Linkage-Table Designation (LTD): Bits
96 and 104-127 are used as a result of
primary ASN translation. The linkage-
table-designation field contains the
subsystem-linkage-control bit (V) (bit
96), the linkage-table origin (LTO0)
(bits 104-120), and the linkage-table
length (LTL) (bits 121-127). The
contents of the LTD field are placed in
control register 5 as a result of prima-
ry ASN translation.

Bits 1-7, 30, 31, 60-63, and 97-103 of
the AST entry must be zeros; otherwise,
an ASN-translation-specification excep-
tion 1is recognized as part of the
execution of the instruction using that
entry for ASN translation.

Programming Note

The unused portion of the STD field,

bits 90-94 of the AST entry, which
corresponds to bits 26-30 of the PSTD
and SSTD, should be set to zeros. These

bits are reserved for future expansion,
and programs which place nonzero values

in these bit positions may not operate
compatibly on future machines.

ASN-TRANSLATION PROCESS

This section describes the ASN-
translation process as it 1is performed
during the execution of PROGRAM CALL
with space switching, PROGRAM TRANSFER
with space switching, and SET SECONDARY
ASN with space switching. ASN trans-
lation for LOAD ADDRESS SPACE PARAMETERS
is the same, except that AFX-translation
and ASX-translation exceptions do not
occur; such situations are instead indi-
cated by the condition code.
Translation of an ASN is performed by
means of two tables, an ASN first table
and an ASN second table, both of which
reside in main storage.

The ASN first index is used to select an
entry from the ASN first table. This
entry designates the ASN second table to
be used.

The ASN second index is used to select
an entry from the ASN second table.
This entry contains the address-space-
control parameters.

If the I bit is one in either the ASN-
first-table entry or ASN-second-table
entry, the entry 1is invalid, and the
ASN-translation process cannot be

completed. An AFX-translation exception
or ASX-translation exception is recog-
nized.

Whenever access to main storage is made
during the ASN translation process for
the purpose of fetching an entry from an
ASN first table or ASN second table,
key-controlled protection does not
apply.

The ASN translation process 1is shown in
the figure "ASN Translation.™

Chapter 3. Storage 3-15

ASN

CR14 T AFTO AFX |ASX
(x%4096) (x%) (x16)

¥

. ASN First Table

+

>
R Il O ASTO 0
(x16)

¥

l ASN Second Table

+

->

R I1 0 ATO 0 AX ATL |O STD V] 0 LTO LTL

R: Address is real
ASN Translation
ASN-First-Table Lookup addressing exception is recognized, and

the operation is suppressed.
The AFX portion of the ASN, in conjunc- Bit 0 of the four-byte AFT entry speci-
tion with the ASN-first-table origin, is fies whether the corresponding AST is
used to select an entry from the ASN available. If this bit 1is one, an AFX-
second table. translation exception is recognized. If
bit positions 1-7 and 28-31 of the AFT

The 24-bit real address of the ASN- entry do not contain zeros, an ASN-
first-table entry is obtained by append- translation-specification exception is
ing 12 zeros on the right to the AFT recognized. When no exceptions are
origin contained in bit positions 20-31 recognized, the entry fetched from the

of control register 14 and adding the
AFX with two rightmost and 12 leftmost

zeros appended. This addition cannot
cause a carry into bit position 7. With
extended real addressing, this 2646-bit
real address is extended on the left
with zeros.

All four bytes of the ASN-first-table

entry appear to be fetched concurrently
as observed by other CPUs. The fetch
access is not subject to protection.
When the storage address which is gener-
ated for fetching the ASN-first-table
entry designates a location which is not
available in the configuration, an

3-16 System/370 Principles of Operation

AFT is used to access the AST.

ASN-Second-Table Lookup

The ASX portion of the ASN, in conjunc-
tion with the ASN-second-table origin
contained in the ASN-first-table entry,
is used to select an entry from the ASN

second table.

by

The 24-bit real address of the ASN-
second-table entry 1is obtained
appending four zeros on the right to

bits 8-27 of the ASN-first-table entry
and adding the ASX portion with four
rightmost and 14 leftmost zeros

appended. A carry, if any, into bit
position 7 is ignored. With extended
real addressing, this 24-bit real
address 1is extended on the left with
zeros; thus, the ASN-second table can
wrap from 22% - 1 to zero.

The 16 bytes of the ASN-second-table
entry appear to be fetched word-
concurrent as observed by other CPUs,

with the leftmost word fetched first.
The order in which the remaining three
words are fetched is unpredictable. The
fatch access is not subject to
protection. When the storage address
which 1i1s generated for fetching the
ASN-second-table entry designates a
location which 1is not available in the
configuration, an addressing exception
is recognized, and the operation 1is
suppressed.

Bit 0 of +the 1l6-byte ASN-second-table

entry specifies whether the address
space 1is accessible. If this bit 1is
one, an ASX-translation exception 1is

recognized. If bit positions 1-7, 30,
31, 60-63, and 97-103 of +the ASN-
second-table entry do not contain zeros,
an ASN-translation-specification excep-
tion is recognized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered
during the ASN-translation process are
collectively referred to as ASN-
translation exceptions. A list of these
exceptions and their priorities is given
in Chapter 6, "Interruptions.™

ASN AUTHORIZATION

ASN authorization is the process of
testing whether the program associated
with the current authorization index is
permitted to establish a particular
address space. The ASN authorization is
performed as part of PROGRAM TRANSFER
with space switching (PT-ss) and SET
SECONDARY ASHN with space switching
(S5SAR-ss) and may be performed as part
of LOAD ADDRESS SPACE PARAMETERS. ASN
authorization 1is performed after the
ASN-translation process for these
instructions.

Khen performed as part of PT-ss, the ASN
authorization tests whether the ASN can
be established as the primary ASN and is
called primary-ASN authorization. When
performed as part of LOAD ADDRESS SPACE
PARAMETERS or SS5AR-ss, the ASN authori-
zation tests whether the ASN can be

established as the secondary ASN and is
called secondary-ASN authorization.

The ASN authorization
means of an authority

is performed by
table in real

storage which is designated by the
authority-table-origin and authority-
table-length fields in the ASN-second-
table entry.

ASN-AUTHORIZATION CONTROLS

ASN authorization uses the authority-

table origin and the authority-table
length from the ASN-second-table entry,
together with an authorization index.

Control Register &

For PT-ss and SSAR-ss, the current
contents of control register & include
the authorization index. For LOAD
ADDRESS SPACE PARAMETERS, the value
which will become the new contents of
control register % is used. The regis-
ter has the following format:

AX

0 15

Authorization Index (AX): Bits 0-15 of
control register 4 are used as an index
to locate the authority bits in the
authority table.

ASN-Second-Table Entry

The ASN-second-table
fetched as part of the ASN translation
process contains information which 1is
used to designate the authority table.
An entry in the ASN second table has the
following format:

entry which is

0000000 ATO 00
0 1 8 31
ATL 0000
32 48 60 64
Authoritv-Table Origin (ATO): Bits
8-29, with two =zeros appended on the

right, are used to form a 26-bit real
address that designates the beginning of
the authority table. With extended real
addressing, the authority-table origin

Chapter 3. Storage 3-17

is still a 24-bit real address and is
extended on the left with zeros.
Authority-Table Length (ATL): Bits

48-59 specify the length of the authori-
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four
bytes, is equal to one more than the ATL
value. The contents of the length field
are used to establish whether the entry
designated by the authorization index
falls within the authority table.

Authority-Table Entries

The authority table consists of entries

of two bits each; accordingly, each byte
of the authority table contains four
entries in the following format:

PS|PS|PS|PS
] 7

The fields are allocated as follows:

Primary Authority (P): The left bit of
an authority-table entry controls wheth-
er the program with the authorization
index corresponding to the entry is
permitted to establish the address space

as a primary address space. If the P
bit is one, the access is permitted. If
the P bit is =zero, the access is not

permitted.

The right bit
entry controls

Secondary Authority (5):
of an authority-table

3-18 System/370 Principles of Operation

whether the program with the correspond-
ing authorization index 1is permitted to
establish the address space as a second-
ary address space. If the S bit is one,
the access is permitted. If the S bit
is zero, the access is not permitted.

ASN-AUTHORIZATION PROCESS

This section describes the ASN-
authorization process as it is performed
during the execution of PROGRAM TRANSFER
with space switching and SET SECONDARY
ASN with space switching. For these two
instructions, the ASN-authorization
process 15 performed by using the
authorization index currently in control
register 4. Secondary authorization for
LOAD ADDRESS SPACE PARAMETERS 1is the
same, except that the value which will
become the neuw contents of control
register 4 is used for the authorization
index, and a secondary-authority excep-
tion does not occur. Instead, such a
situation is indicated by the condition
code.

The ASN-authorization
performed by using the authorization
index, in conjunction with the
authority-table origin and length from
the AST entry, to select an authority-
table entry. The entry is fetched, and
either the primary- or secondary-—
authority bit 1s examined, depending on
whether the primary- or secondary—-ASN-

process is

authorization process is being
performed. The ASN-authorization proc-
ess 1is shown in the figure "ASN

Authorization."

CR4% AX

(x1/4)

ASN Second Table

ASN-Second-Table Entry

I/ ¢ ATO 0 AX

ATL

0 STD vi ¢ LTO LTL

(x4)

Authority Table

For primary ASN authorization (PT-ss only):
Primary-authority exception
zero or table length exceeded.

if P bit

For secondary ASN authorization (S5SSAR-ss only):

Secondary-authority exception

if S bit

zero or table length exceeded.

For secondary ASN authorization (LASP only):
if S bit zero or

Set condition code 2
table length exceede

R: Address is real

ASN Authorization

Authority-Table Lookup

The authorization index, in conjunction
with the authority-table origin
contained in the ASN-second-table entry,

is used to select an entry from the
authority table.

The authorization index 1is contained in
bit positions 0-15 of control register
Bit positions 8-31 of the AST entry
contain the 24-bit real address of the

authority table (AT0), and bit positions
48-59 contain the length of the authori-
ty table (ATL).

The 24-bit real address of a byte in the
authority table is obtained by appending
tuwo zeros on the right to the

d.

authority-table origin and adding the 14
leftmost bits of the authorization index

with 10 zeros appended on the left. A
carry, if any, into bit position 7 is
ignored. With extended real addressing,

this 24-bit real address 1is extended on
the left with zeros; thus, the authority
table can wrap from 224 - 1 to zero.

As part of the authority-table-entry-
lookup process, bits 0-11 of the author-
ization index are compared against the
authority-table length. If the compared
portion is greater than the authority-
table length, a primary-authority
exception or secondary—~authority excep-
tion is recognized for PT-ss or S5S5AR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table
length is exceeded, condition code 2 is
set.

Chapter 3. Storage 3-19

The fetch access to the byte in the
authority table is not subject to
protection. When the storage address

which is generated for fetching the byte
designates a location which 1is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The byte contains four authority-table
entries of two bits each. The rightmost
two bits of the authorization index,
bits 14 and 15 of control register 4,
are used to select one of the four
entries. The left or right bit of the
entry 1is then tested, depending on
whether the authorization test 1is for a
primary ASN or a secondary ASN. The
following table shows the bit which is
selected from the byte as a function of

bits 14 and 15 of the authorization
index and the instruction PT-ss,
SSAR-ss, or LOAD ADDRESS SPACE PARAME-
TERS.
Bit Selected from
Authority-Table Byte
for Test
Authorization-
Index Bits S Bit
P Bit (S55AR~-ss
14 15 (PT-s3) or LASP)
0 0 0 1
0 1 2 3
1 0 4 5
1 1 6 7
If the selected bit 1s one, the ASN is
authorized, and the appropriate
address-space-control parameters from

the AST entry are loaded into the appro-

priate control registers. If the
selected bit is zero, the ASN is not
authorized, and a primary-authority

exception or secondary-authority excep-
tion is recognized for PT-ss or S$SAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the ASN is not author-
ized, condition code 2 is set.

Recoanition of Exceptions during ASN
Authorization

The exceptions which can be encountered
during the primary- and secondary-ASKN-
authorization precesses and their prior-
ities are described in the definitions
of the instructions in which ASN author-
ization is performed.

3-20 System/370 Principles of Operation

Programming Note

The primary- and secondary-authority
exceptions cause nullification in order

to permit dynamic modification of the
authority table. Thus, when an address
space is created or "swapped in," the

authority table can first be set to all
zeros and the appropriate authority bits
set to one only when required.

DYNAMIC ADDRESS TRANSLATION

Dynamic address translation (DAT)
provides the ability to interrupt the
execution of a program at an arbitrary
moment, record it and its data in auxil-
iary storage, such as a direct-access
storage device, and at a later time
return the program and the data to
different main-storage locations for
resumption of execution. The transfer
of the program and its data between main
and auxiliary storage may be performed
piecemeal, and the return of the infor-
mation to main storage may take place in
response to an attempt by the CPU to
access it at the time it is needed for

execution. These functions may be
performed without change or inspection
of the program and its data, do not

require any explicit programming conven-
tion for the relocated program, and do
not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating
system, the dynamic-address-translation
facility may be used to provide to a
user a system wherein storage appears to
be larger than the main storage which is
available 1in the configuration. This
apparent main storage is referred to as
virtual storage, and the addresses used

to designate locations in the virtual
storage are referred to as virtual
addresses. The virtual storage of a

user may far exceed the size of the main
storage which is availlable in the
configuration and normally is maintained
in auxiliary storage. The virtual stor-
age 1is considered to be composed of
blocks of addresses, called pages. Only
the most recently referred-to pages of
the wvirtual storage are assigned to
occupy blocks of physical main storage.
As the user refers to pages of virtual
storage that do not appear in main stor-

age, they are brought in to replace
pages 1n main storage that are less
likely to be needed. The swapping of

pages of storage may be performed by the
operating system without the wuser's
knowledge.

The sequence of virtual addresses asso-
ciated with a virtual storage is called
an address space. With appropriate
support by an operating syvstem, the
dynamic-address—translation facility may

be used to provide a number of address
spaces. These address spaces may be
used to provide degrees of isolation
between users. Such support can consist
of a completely different address space
for each user, thus providing complete
isolation, or a shared area may be
provided by mapping a portion of each
address space to a single common storage

area. Also, with DAS, instructions are
provided which permit a semiprivileged
program to access more than one such
address space. Dynamic address trans-
lation with DAS provides for the
translation of virtual addresses from
two different address spaces without

requiring that the translation parame-
ters in the control registers be
changed. These two address spaces are
called the primary address space and the
secondary address space.

In the process of replacing blocks of
main storage by new information from an
external medium, it must be determined
which block to replace and whether the
block being replaced should be recorded
and preserved in auxiliary storage. To
aid in this decision process, a refer-
ence bit and a change bit are associated
with the storage key.

Dynamic address translation may be spec-
ified for instruction and data addresses
generated by the CPU but is not avail-
able for the addressing of data and of
CCWs and IDAWs in I/0 operations. The
channel-indirect-data-addressing facili-
ty is provided to aid I/0 operations in
a virtual-storage environment.

The dvnamic-address-translation facility
includes the instructions LOAD REAL
ADDRESS, RESET REFERENCE BIT, and PURGE
TLB. It makes use of control register 1
and bits 8-12 in control register 0.
When DAS 1is installed, the dynamic-
address—-translation facility also makes
use of control register 7.

The dynamic-address—-translation facility

includes the handling of 2K-byte and
4K~byte pages and 64K-byte and lM-byte
segments. 0On some models, the 2K-byte-

page size and IM-byte-segment size may

not be offered.

Dynamic address translation is enhanced
by that part of the extended facility
that includes the instruction INVALIDATE
PAGE TABLE ENTRY and the common-segment
facility. On some models, the common-—
segment facility permits improvement of
TLB utilization by means of a common-
segment bit in the segment-table entry.
On other models, this bit is ignored,
with no performance improvement.

Dynamic address translation is the proc-
ess of translating a virtual address
during a storage reference into the
corresponding real address. When DAT is
off, the logical address is treated as a
real address. When DAS is not installed

and DAT is on, a logical address is
treated as a virtual address and is
translated during a storage reference
into the corresponding real address.
When DAS is installed and DAT is on, the
virtual address may be either a primary
virtual address or a secondary virtual
address. Primary virtual addresses are
translated by means of the primary
segment-table designation and secondary
virtual addresses by means of the
secondary segment-table designation.
After selection of the appropriate
segment-table designation, the trans-
lation process is the same for both
types of virtual address.

In the process of translation, two units
of information are recognized -- seg-
ments and pages. A segment is a block
of sequential virtual addresses spanning
65,536 (64K) or 1,048,576 (1M) bytes and
beginning at an address that is a multi-

ple of its size. A page is a block of
sequential virtual addresses spanning
2,048 (2K) or 4,096 (4K) bytes and

beginning at an address that is a multi-
ple of its size. The size of the
segment and page is controlled by bits
8-12 in control register 0.

The virtual address, accordingly, is
divided into a segment—index (S5X) field,

a page-index (PX) field, and a byte-
index (BX) field. The size of these
fields depends on the segment and page
size.

The segment index starts with bit 8 of
the virtual address and extends through
bit 15 for a 64K-byte segment size and
through bit 11 for a 1M-byte segment
size. The page index starts with the
bit following the segment index and
extends through bit 19 for a 4K-byte
page size and through bit 20 for a
2K-byte page size. The byte index
consists of the remaining 111 or 12
rightmost bits of the virtual address.
The wvirtual address has the following
format:

For 64K-byte segments and 4K-byte pages:

SI177777 SX PX BX
0 8 16 20 31

For 64K-byte segments and 2K-byte pages:

17777777 SX PX BX
0 8 16 21 31

For 1M-byte segments and 4K-byte pages:

11777777 SX PX BX

4 8 12 20 31

Chapter 3. Storage 3-21

For 1M-byte segments and 2K-byte pages:

17777777 sX PX BX

0 8 12 21 31
Virtual addresses are translated into
real addresses by means of two trans-

lation tables: a segment table and a
page table. These reflect the current
assignment of real storage. The assign-
ment of real storage occurs in units of
pages, the real locations being assigned
contiguously within a page. The pages
need not be adjacent in real storage
even though assigned to a set of sequen-
tial virtual addresses.

TRANSLATION CONTROL

Address translation is controlled by the
DAT-mode bit in the EC-mode PSW and by a
set of bits, referred to as the trans-—
lation parameters, in control registers
0 and 1. When DAS 1i1s installed, an

additional bit in the EC-mode PSW is
included, and control register 7 is
included as part of the translation
parameters. Additional controls are

located in the translation tables.

Translation Modes

When the
facility is

dynamic-address—-translation
installed without DAS, the

3-22 System/370 Principles of Operation

CPU can operate with DAT either on or
off. The mode of operation is
controlled by bit 5 of the EC-mode PSW,
the DAT-mode bit. When this bit is one,
DAT 1is on, and logical addresses are
treated as virtual addresses; when this
bit is zero or the BC mode is specified,
DAT is off, and logical addresses are
treated as real addresses.

When DAS 1is installed, two bits in the
EC-mode PSW control dvnamic address
translation: bit 5, the DAT-mode bit,
and bit 16, the address-space-control
bit. When a BC-mode PSW 1is specified,
or, when in an EC-mode PSW the DAT-mode
bit is zero, DAT is off, the CPU is said
to be in the real mode, and instruction
and logical addresses are treated as
real addresses. When, in an EC-mode
PSW, the DAT-mode bit is one (DAT is on)
and the address-space-control bit is
zero, the CPU 1i1s said to be in the
primary-space mode, and instruction and
logical addresses are treated as primary
virtual addresses. When, in an EC-mode
PSW, DAT 1is on and the address-space-
control bit is one, the CPU is said to
be in the secondary-space mode, and
logical addresses are treated as second-

ary virtual addresses. The various
modes are shown in the figures "Trans-
lation Modes without DAS" and

"Translation Modes with DAS.™

Handling of Addresses

PSW Bit
Logical Instruction
5 112 DAT Mode Addresses Addresses
- 0 off Real mode (BC mode) Real Real
0 1 0ff Real mode Real Real
1 1 On Primary-space mode Primary Primary
virtual virtual

Translation Modes without DAS

Handling of Addresses

PSW Bit

Logical Instruction
5 112 |16 DAT Mode Addresses Addresses
- 0 - Off Real mode (BC mode) Real Real
0 1 - 0ff Real mode Real Real
1 1 0 On Primary-space mode Primary Primary

virtual virtual
1 1 1 On Secondary-space mode Secondary See note

virtual

Translation Modes with DAS

Note:

When the CPU is in

the

Control Register 0

secondary-space mode, it is unpredict-

able whether
treated as primary

instruction addresses
virtual or secondary

are

When DAS is not installed, five bits are

virtual addresses. However, all copies provided in control register 0 which are
of an instruction used in a single used in controlling dynamic address
execution are fetched from a single translation. When DAS is installed, a
space, and the machine can change the sixth bit is provided. The bits are
interpretation of instruction addresses assighed as follows:
as primary virtual or secondary virtual
only between instructions and only by
performing a checkpoint-synchronizing D TF
function.
5 8 13
Programming Notes Secondary-Space Control (D): Bit 5 of
control register 0 is the secondary-
space-control bit. This bit is provided
1. Predictable program operation 1is as part of DAS. When this bit 1s =zero
ensured in the secondary-space mode and execution of MOVE TO PRIMARY, MOVE
only when the instructions are TO SECONDARY, or SET ADDRESS SPACE
fetched from virtual-address CONTROL 1s attempted, a special-
locations which translate to the operation exception i1s recognized. When
same real address by means of both this bit 1s one, it indicates that the
the primary and secondary segment secondary segment table is attached when
tables. Thus, a program should not the CPU is in the primary-space mode.
enter the secondary-space mode
unless the aforementioned condi-
tions exist. Translation Format (IF): Bits 8-12 of
control register 0 are called the trans-
2. The requirement limiting when the lation format, which controls the page
CPU can change the address space size and segment size. Some models do
used for fetching instructions not implement all four of the combina-

eliminates problems with CPU retry,

DAT pretesting, and trial execution
of instructions for the purposes of

determining PER events.

tions,

as shouwn in the following table.

Chapter 3. Storage

3-23

Bits of

Control

Register 0 Page |Segment

Size Size

8| 9}10(11}j12(Provided|{(Bytes){(Bytes)
¢ 1 0 o0 O Opt 2K 64K
0 1 0 1 o Opt 2K M
1 0 0 0 O Std 4K 66K
1 0 o0 1 o Opt 4K iM
All others Inv

Explanation:

Opt Optional. The code is invalid
on some models, even though
the translation facility is
installed.

Std Standard. The code is valid
on all models with the trans-
lation facility installed.

Inv Invalid. The code is not valid
oh any model.

Translation Format

When an invalid bit combination 1is
detected in bit positions 8-12, a
translation-specification exception is
recognized as part of the execution of
an instruction using address transla-
tion.

Control Register 1

Control register 1 contains the primary
segment-table designation (PSTD). The
register has the following format:

Primary Segment-

PSTL Table Origin X
0 8 26 31
Primary Segment-Table Length (PSTL):
Bits 0-7 of control register 1 specify
the length of the primary segment table
in units of 64 bytes, thus making the

length of the segment table variable in
multiples of 16 entries. The length of
the primary segment table, in units of
64 bytes, is one more than the PSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a primary virtual address falls with-
in the primary segment table. Without
DAS, this field is sometimes referred to
as the segment-table length.

3-24 System/370 Principles of Operation

Origin (PST0):
register 1, with

Primary Seagment-Table
Bits 8-25 of control
six zeros appended on the right, form a
24-bit real address that designates the
beginning of the primary segment table.
Without DAS, this field is sometimes
referred to as the segment-table origin.
With extended real addressing, the
primary segment-table origin is still a
26-bit real address and extended on the
left with zeros.

Space-Switch-Event-Control Bit (X):
When bit 31 of control register 1 is one
and execution of PROGRAM CALL with space
switching (PC-ss) or PROGRAM TRANSFER
with space switching (PT-s8s) is
completed, a space-switch-event program
interruption occurs. The space-switch-
event-control bit is also examined by
LOAD ADDRESS SPACE PARAMETERS, and, if
it is one, condition code 3 is set.
When DAS 1is not installed, this bit is
ignored.

Bits 26-30 of control register 1 are not
assigned and are ignored.

Control Register 7

When DAS is installed, control register
7 contains the secondary segment-table
designation (SSTD). The register has

the following format:

Secondary Segment-

SSTL Table Origin
0 8 26 31
Secondary Segment-Table Length (SSTL):
Bits 0-7 of control register 7 specify
the length of the secondary segment

table in units of 64 bytes, thus making
the length of the segment table variable
in multiples of 16 entries. The length
of the secondary segment table, in units
of 64 bytes, 1s one more than the SSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a secondary virtual address falls
within the secondary segment table.

Secondary Segment-Table Origin (5S70):
Bits 8-25 of control register 7, with
six zeros appended on the right, form a
24-bit real address that designates the
beginning of the secondary segment
table. With extended real addressing,
the secondary segment-table origin is
still a 24-bit real address and is
extended on the left with zeros.

Bits 26-31 of control register 7 are not
assigned and are ignored.

Programming Notes

1. The validity of the information
loaded into a control register,
including that pertaining to dynam-
ic address translation, is not
checked at the time the register is
loaded. This information is
checked and the program exception,
if any, 1is indicated at the time
the information is used.

2. The information pertaining to
dynamic address translation is
considered to be used when an

instruction is executed with DAT on
or when INVALIDATE PAGE TABLE ENTRY
or LOAD REAL ADDRESS 1is executed.
The information 1i1s not considered
to be used when the PSW specifies
translation but an I/0, external,

restart, or machine-check inter-
ruption occurs before an instruc-
tion is executed, or when the PSKW

specifies the wait state.

TRANSLATION TABLES

The translation process consists in a
two-level lookup using two tables: a
segment table and a page table. These

tables reside in real storage.

Segment-Table Entries

The entry fetched from the segment table
has the following format:

PTL [0000| Page-Table Origin PICII

0 4 8 29 31

The fields in the segment-table
are allocated as follows:

entry

Page-Table Length (PTL): Bits 0-3 spec-
ify the length of the page table in
increments that are equal to 1716 of the
maximum size of the table, the maximum
size depending on the size of segments

and pages. The length of the page
table, in units 1716 of the maximum
size, is one more than the PTL value.

The length field is compared against the
leftmost four bits of the page-index
portion of the virtual address to deter-
mine whether the page index designates
an entry within the page table.

Page-Table Origin: Bits 8-28, with
three zeros appended on the right, form
a 2%-bit real address that designates
the beginning of a page table. With
extended real addressing, the page-table

origin is still a 24-bit real address
and is extended on the left with zeros.

Segment-Protection Bit (P): Bit 29,
with the segment-protection facility
installed, controls whether store
accesses can be made in the segment.

This protection mechanism is in addition
to the key-controlled-protection and
low—address—-protection mechanisms. The
bit has no effect on fetch accesses. If
the bit 1s zero, stores are permitted to
the segment, subject to the other
protection mechanisms. If the bit 1is
one, stores are disallowed. An attempt
to store when the segment-protection bit
is one causes a protection exception to
be recognized.

Common-Segment Bit (C): Bit 30, with
the common-segment facility installed,

translation-
copies of the
of the page

controls the use of
lookaside-buffer (TLB)

segment-table entry and
table which it designates. A zero iden-
tifies a private segment; in this case,
the segment-table entry and the page
table it designates may be used only in
association with the segment-table
origin that designates the segment table

in which thae segment-table entry
resides. A one 1i1dentifies a common
segment; in this case, the segment-table

entry and the page table it designates
may continue to be used for translating
addresses corresponding to the segment
index, even though a different segment
table is specified. In some models, bit
30 in the segment-table entry is
ignored, and all segments are treated as
private.

The common-segment bit is wused only for
controlling the loading and use of TLB
copies. When the common-segment facili-
ty is installed, the common-segment bit
1s ignored for explicit translation and
for implicit translation not using the

TLB.
Segment-Invalid Bit (1): Bit 31
controls whether the segment associated

with the segment-table entry 1is avail-
able. When the bit is zero, address
translation proceeds by using the desig-
nated page table. When the bit is a
one, the segment-table entry cannot be
used for translation.

The handling of bit positions 4¢-7 and
29-30 of the segment-table entry depends
on the model. Normally a translation-
specification exception 1s recognized
when these bits are not zeros; houwever,
on some models the contents of these bit
positions may be ignored. On machines
with the segment-protection facility
installed, bit 29 is interpreted as the

segment-protection bit. On machines
with the common-segment facility
installed, bit 30 1is interpreted as

defined or is ignored.

Chapter 3. Storage 3-25

Page-Table Entries

The format of the page-table entry

depends on page size, as follows:

Page-table entry with 4K-byte pages:

PFRA I|EA}/
0 12 15

Page-table entry with 2K-byte pages:

PFRA Ij0}/
(] 13 15
The fields in the page-table entry are

allocated as follouws:

Page-Frame Real Address (PFRA): Bits
0-11 or bits 0-12, depending on the page
size, provide the leftmost 12 or 13 bits
of a 24-bit real storage address. When

these bits are concatenated with the
contents of the byte-index field of the
virtual address on the right, a 24-bit

real storage address is obtained.

Page-Invalid Bit (I): Bit 12 or 13,
depending on the page size, controls
whether the page associated with the

page-table entry 1s available. When the
bit is zero, address translation
proceeds by using the page-table entry.
When the bit is one, the page-table
entry cannot be used for translation.

Extended-Storage-Address Bits (EA):
When the extended-real-addressing facil-
ity is installed, bits 13 and 14 of the
page-table entry with ¢K-byte pages are
the extended-storage-address bits.
These bits become bits 6 and 7 of a
26-bit real address.

bit position 15, the bit
the right of the page-

Except for
positions to

3-26 System/370 Principles of Operation

invalid bit must contain zeros; other-
wise, a translation-specification

exception is recognized as part of the
execution of an instruction using that
entry for address translation. In

models that provide the extended-real-
addressing facility, bit positions 13
and 14 of the page-table entry for
4K-byte pages are used as the extended-
storage-address bits and do not cause a
translation-specification exception.
Bit position 15 is unassigned and not
checked for zero.

SUMMARY OF DYNAMIC-ADDRESS-TRANSLATION
FORMATS

The first table summarizes the possible
combinations of the page-frame real
address (PFRA) field, byte-index field,
and extended-storage-address bits in the
formation of a real storage address.

The eight-bit length field in the
segment-table designation provides for a
maximum length code of 255 and permits
designating a segment table of 16,384
bytes, or 6,096 entries, which is more
than can be referred to for translation
purposes by the virtual address. HNWith
1M-byte segments, only 16 segments can
be selected, requiring a segment table
of 64 bytes. A table of 64 bytes is
specified by a length code of 0 and is
the smallest table that can be
specified. With 64K-byte segments, up
to 256 segments can be selected, requir-
ing at the most a segment table of 1,024

bytes and a length code of 15. These
relations are summarized in the second
table.

The third table lists the maximum sizes
of the page table and the increments in
which the size of the page table can be
controlled.

Real Storage Address
PFRA PFRA
without Extended with Extended
Real Addressing| Real Addressing Byte Index
Size Bit Bit Bit
of Positions No.|[Positions No.] Positions]| No.
Page in Page- of |in Page- of |in Virtuall| of
(Bytes) |Table Entry|Bits|Table Entry |Bits{ Address Bits
2K 0-12 13 0-12 13 21-31 11
4K 0-11 12 |13, 14, 0-11] 14 20-31 12
Segment | Number Max Segm Tbl
Size Index of Segment-
of Field [Address- Usable Table
Segment| Size able Size Length{Increment
(Bytes) | (Bits) |Segments|(Bytes)| Code (Bytes)
64K 8 256 1,024 15 (3
1M 4 16 64 0 64
Page Max Page Tbl
Size of Index Number Page-
Field |of Pages Usable Table
Segment| Page Size in Size Length|Increment
(Bytes) | (Bytes)|{(Bits) |{Segment |[(Bytes)| Code (Bytes)
64K 2K 5 32 64 15 4
64K 4K & 16 32 15 2
1M 2K 9 512 1,024 15 64
1M 4K 8 256 512 15 32

TRANSLATION PROCESS

translation
implicitly

This section describes the
process as it 1is performed
before a virtual address 1s used to
access main storage. The process of
translating the operand address of LOAD
REAL ADDRESS and TEST PROTECTION is the
same, except that segment-translation
and page-translation exceptions do not
occur; such situations are instead indi-
cated in the condition code.
Translation of the operand address of
LOAD REAL ADDRESS also differs in that
the CPU may be in the real mode and the

translation-lookaside buffer is not
used.

Translation of a virtual address is
performed by means of a segment table

and a page table both of which reside in
real storage. It is controlled by the
DAT-mode bit in the PSW and by the
translation parameters in control regis-
ters 0 and 1. When DAS 1s installed,
translation 1is also controlled by the
address-space-control bit in the PSW,
and the translation parameters also
include control register 7.

Effective Segqment-Table Designation

The segment-table designation used for a
particular address translation is called
the effective segment-table designation.
Accordingly, when a primary virtual
address is translated, control register
1 is used as the effective segment-table
designation, and when a secondary virtu-
al address is translated, control
register 7 1is used as the effective
segment-table designation. Without DAS,
the term "effective segment-table desig-
nation" 1is synonymous with "Yprimary
saegment-table designation."™

The segment-index portion of the virtual
address 1s used to select an entry from
the segment table, the starting address
and length of which are specified by the
effective segment-table designation.
This entry designates the page table to
be used and, if the segment-protection
facility 1is installed, provides the
segment-protection bit.

The
address is used to

page-index portion of the virtual
select an entry from

Chapter 3. Storage 3-27

the page table. This entry contains the
leftmost bits of the real address that
represents the translation of the virtu-
al address.

Thae byte-index field of the virtual
address i1s used unchanged as the right-
most bit positions of the real address.

If the I bit is one in
segment-table entry or the page-table
entry, the entry 1is 1invalid, and the
translation process cannot be completed
for this virtual address. A segment-
translation or a page-translation
exception is recognized.

either the

In order to eliminate the delay associ-
ated with references to translation
tables in real storage, the information

3-28 System/370 Principles of Operation

fetched from the tables normally is also
placed in a special buffer, the
translation-lookaside buffer (TLB), and

subsequent translations involving the
same table entries may be performed by
using the information recorded in the
TLB. The operation of the TLB is

described in the section "Translation-
Lookaside Buffer™ in this chapter.

storage is made
the address-translation process

Whenever access to real
during

for the purpose of fetching an entry
from & segment table or page table,
key-controlled protection does not
apply.

The translation process, including the
effect of the TLB, is shown graphically
in the figure "Translation Process."

Control Register 1

Control Register 7

Virtual Address

PSTD SSTD sX PX BX
(x%) (x2)

IFI

¥
[—*

¥
Effective STD ¥
STL STO
(x66)
¥
. Segment Table
+
E] >
R PTL}O PTO
(x8)
¥
2]
Translation
Lookaside
v Buffer (TLB)
Page Table
[+]
1
¥
E| . "

R PFRA PFRA

Translation Process (Part

R: Address is real

1 of 2)

Real Address

Chapter 3.

Storage

3-29

2

— translation parameters,

3] If a match exists,

— forming the real address.
4] If no match exists,

fetched entries,

the page-frame real address from the TLB

table entries in real storage are fetched.
in conjunction with the search information,

1] Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, and, when DAS
control register 7 provides the secondary segment-table designation for
translation of a secondary virtual address.

is installed,

Information, which may include portions of the virtual address and the
is used to search the TLB.

is used in

The resulting
are used to

translate the address and may be used to form an entry in the TLB.

Translation Process (Part 2 of 2)

Inspection of Control Register 0

The interpretation of the virtual
address for translation purposes is
controlled by the translation format,
bits 8-12 of control register 0. If
bits 8-12 contain an invalid code, a
translation-specification exception |is
recognized.

Segment-Table Lookup

The segment-index portion of the virtual
address, in conjunction with the
segment-table origin contained in the
effective segment-table designation, is
used to select an entry from the segment
table.

The 24-bit real address of the segment-
table entry is obtained by appending six
zeros to the right of bits 8-25 of the
effective segment-table designation and
adding the segment index to this value,
with the rightmost bit position of the
segment index aligned with bit position
29 of the address. A carry, if any,
into bit position 7 1is ignored. With
extended real addressing, this 24-bit
real address is extended on the left
with zeros; thus, the segment table can
wrap from 224 - 1 to zero.

As part of the segment-table-lookup
process, the segment index is compared
against the segment-table length, bits
0-7 of the effective segment-table
designation, to establish whether the
addressed entry is within the segment
table. With 1M-byte segments, entries
for all addressable segments are
contained in a table of minimum length
(length code of 0). With 64K-byte
segments, four zeros are appended to the
left of bits 8-11 of the virtual
address, and this extended value is
compared against the eight-bit segment-

3-30 Systems/370 Principles of Operation

table length. If the value in the
segment-table-length field is less than
the value in the corresponding bit posi-

tions of the virtual address, a
segment-translation exception 1is recog-
nized.

All four bytes of the segment-table

be fetched concurrently
CPUs. The fetch
to protection.

entry appear to
as observed by other
access 1s hot subject
When the storage address generated for
fetching the segment-table entry desig-
nates a location which 1is not available
in the configuration, an addressing
exception is recognized, and the unit of
operation is suppressed.

Bit 31 of the entry
segment table specifies
corresponding segment is available.
This bit is inspected, and, if 1t is
one, a segment-translation exception is
recognized. Handling of bit positions
4-7 and 29-30 of the segment-table entry
depends on the model: normally a
translation—-specification exception is
indicated when they do not contain
zeros; however, on some models they may
be ignored.

fetched from the
whether the

On machines with the segment-protection
facility, bit 29 is the segment-
protection bit and does not cause a
translation-specification exception; bit
29 is retained with the entry in the
TLB.

On machines with
facility, bit 30 is
bit and does not cause a translation-
specification exception. Bit 30 may be
retained with the entry in the TLB, or
it may be ignored.

the common-segment
the common-segment

When no exceptions are recognized in the

process of segment-table lookup, the
entry fetched from the segment table
designates the beginning and specifies

the length of the

table.

corresponding page

Page-Table Lookup

The page~index portion of the virtual
address, in conjunction with the page-
table origin contained in the segment-
table entry, is used to select an entry
from the page table.

The 24-bit real address of the page-
table entry 1is obtained by appending
three zeros to the right of bits 8-28 of
the segment-table entry and adding the
page index, with the rightmost bit posi-
tion of the page index aligned with bit
30 of the address. A carry, if any,
into bit position 7 is ignored. With
extended real addressing, this 24-bit
real address is extended on the left
with zeros; thus, the page table can
wrap from 22% - 1 to zero.

As part of the page-table-lookup

process, the four leftmost bits of the
page index are compared against the
page-table length, bits 0-3 of the

segment-table entry, to establish wheth-
er the addressed entry is within the

table. If the value 1in the page-table-
length field is less than the value in
the four leftmost bit positions of the

page-index field, a page-translation

exception is recognized.

The two bytes of the page-table entry
appear to be fetched concurrently as
observed by other CPUs. The fetch

access 15 not subject to protection.
When the storage address generated for
fetching the page-table entry designates
a location which is not available in the
configuration, an addressing exception
is recognized, and the unit of operation
is suppressed.

The entry fetched from the page table
indicates the availability of the page
and contains the leftmost bits of the
page-frame real address. The page-
invalid bit is inspected to establish
whether the corresponding page i1s avail-
able. If this bit is one, a page-
translation exception is recognized. 1If
bit positions 13-14¢ for 4K-byte pages or
bit position 14 for 2K-byte pages
contains a one, a translation-
specification exception is recognized.

When the extended-real-addressing facil-
ity is installed, bit positions 13 and
14 of the page-table entry for 4¢K-byte
pages are used as bits 6 and 7 of the
page-frame real address and do not cause
a translation-specification exception
when either bit is one.

Formation of the Real Address

When no exceptions in the translation
process are encountered, the page-frame

real address obtained from the page-
table entry and the byte-index portion
of the virtual address are concatenated,
with the page-frame real address forming
the leftmost part. The result is the
real storage address which corresponds
to the virtual address.

Recognition of Exceptions during Trans-
lation

Invalid addresses and invalid formats
can cause exceptions to be recognized
during the translation process.
Exceptions are recognized when informa-
tion contained 1in control registers or
table entries is used for translation
and is found to be incorrect.

The information pertaining to DAT is
considered to be used when an instruc-
tion i1s executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD REAL
ADDRESS is executed. The information is
not considered to be used when the PSW
specifies DAT on but an 1I/0, external,
restart, or machine-check interruption
occurs before an instruction is
executed, or when the PSW specifies the
wait state. Only that information
required in order to translate a virtual
address is considered to be in use
during the translation of that address,
and, in particular, addressing
exceptions that would be caused by the
use of the PSTD or the SSTD are not
recognized when the translation of an
address uses only the SSTD or only the
PSTD, respectively.

A list of translation exceptions, with
the action taken for each exception and
the priority in which the exceptions are
recognized when more than one is appli-
cable, is provided in the section
"Recognition of Access Exceptions™ in
Chapter 6, "Interruptions."”

TRANSLATION-LOOKASIDE BUFFER

To enhance performance, the dynamic-
address-translation mechanism normally
is implemented such that some of the
information specified in the segment and
page tables 1is maintained in a special
buffer, referred to as the translation-
lookaside buffer (TLB). The CPU neces-
sarily refers to a DAT-table entry in
real storage only for the initial access
to that entry. This information may be
placed in the TLB, and subsequent trans-
lations may be performed by using the
information in the TLB. The presence of
the TLB affects the translation process
to the extent that a modification of the
contents of a table entry in real stor-
age does not naecessarily have an

Chapter 3. Storage 3-31

immediate effect, if any, on the trans-
lation.
The size and the structure of the TLB

depend on the model. For instance, the
TLB may be implemented in such a way as
to contain only a few entries pertaining
to the currently designated segment
table, each entry consisting of the
leftmost portion of a&a virtual address
and its corresponding page-frame real
address and segment-protection bit; or
it may contain arrays of values where
the page-frame real address and
segment-protection bit are selected on
the basis of the effective segment-table
origin, the translation format, and the
leftmost bits of the virtual address.
Entries within the TLB are not explicit-
ly addressable by the program. In a
multiple-CPU configuration, each CPU has
its own TLB.

The description of the logical structure
of the TLB covers all implementations by
System/370 models. The TLB entries are
considered as being of two types: TLB
segment-table entries and TLB page-table
entries. A TLB entry is considered as
containing within it both the informa-
tion obtained from the table entry 1in
real storage and the attributes used to

fetch the entry from storage. Thus, a

TLB segment-table entry would contain

the following fields:

TF [STO SX {PTO |PTL C P

TF The translation format in effect
when the entry was formed

STO The segment-table origin in effect
when the entry was formed

SX The segment index used to select
the entry

PTO The page-table origin fetched from
the segment-table entry in real
storage

PTL The page-table length fetched from
the segment-table entry in real
storage

C The common-segment bit fetched
from the segment-table entry in
real storage; when the common-
segment facility is not installed,
this field is not included in the
TLB

P The segment-protection bit fetched
from the segment-table entry in
real storage; when the segment-
protection facility is not
installed, this field is not

included in the TLB.

A TLB page-table entry would contain the
following fields:

3-32 System/370 Principles of Operation

TF |PTO PX |PFRA

The translation format in effect

when the entry was formed

The page-table origin in
when the entry was formed

PTO effect

PX The page index used to select the

entry

The page-frame
fetched from the page-table entry
in real storage. When the
extended-real-addressing facility
is installed, this field for
4K-byte pages includes the
extended-storage-address bits.

PFRA real address

Depending on the implementation, not all
of the above items are required 1n the
TLB. For example, if the implementation
combines into a single TLB entry (1) the
information obtained from a page-table
entry and (2) the attributes of both the
page—-table entry and the segment-table
entry, then the page-table-origin and
page-table-length fields are not
required.

Note: The following sections describe
the conditions under which information
may be placed in the TLB and information
from the TLB may be used for address
translation, and they describe how
changes to the translation tables affect
the translation process. Information is
not necessarily retained in the TLB
under all conditions for which such
retention is permissible. Furthermore,
information in the TLB may be cleared
under conditions additional to those for
which clearing is mandatory.

Use of the Translation-lookaside Buffer

The formation of TLB entries and the
effect of any manipulation of the
contents of a table entry in real stor-
age by the program depend on whether the
entry is valid, on whether the entry is
attached to a particular CPU, on whether
a copy of the entry can be placed in the

TLB of a particular CPU, and on whether
a copy in the TLB of the entry is
usable.

The valid state of a table entry denotes
that the segment or page associated with
the table entry is available. An entry
is valid when the segment-invalid bit or
page-invalid bit in the entry is zero.

The attached state of & table entry
denotes that the CPU to which it is
attached can attempt to use the table

address translation.
be attached to more
time. When a table

entry for implicit
The table entry may
than one CPU at a

{

i

entry is described as attached, the term

"to a CPU™ is implied.

The usable state of & TLB entry denotes
that the CPU can attempt to use the TLB
entry for implicit address translation.

Also, the usable state of a TLB
segment-table entry is a fTactor in
determining whether a page-table entry

is attached.

A segment-table entry or a page-table
entry may be placed in the TLB only when
the entry 1is attached and valid and
would not cause a translation-
specification exception if used for
translation. Except for these
restrictions, the entry may be placed in
the TLB at any time.

A segment-table entry is attached when
all of the following conditions are met:
1. The current PSW specifies DAT on.
2. The current PSW contains no errors
which would cause an early excep-
tion to be recognized. Those
machines without DAS installed do
not necessarily comply with this

condition.

3. The current translation format,
bits 8-12 in control register 0, is
valid.

4. The entry meets the requirements in
a or b below.

a. The entry is within the segment
table designated by the primary
segment-table designation in
control register 1.

b. The entry is within the segment
table designated by the second-

ary segment-table designation

in control register 7 and

either of the following
requirements is met:

. The CPU is in the
secondary-space mode.

. The secondary-space con-—
trol, bit 5 of control
register 0, is one.

5. The entry can be selected by the

segment—index portion of a virtual

address.

A page-table entry is attached when it
is within the page table desighated by
either a usable TLB segment-table entry
or by an attached and valid segment-
table entry uwhich would not cause a
translation-specification exception if
used for translation.

A TLB segment-table entry is in the
usable state when all of the following
conditions are met:

1. The current PSW specifies DAT on.
2. The current PSW contains no errors
which would cause an early excep-
tion to be recognized. Those
machines without DAS installed do
not necessarily comply with this
condition.

3. The translation-format field in the
TLB segment-table entry is the same
as the current translation format.

4. The TLB segment-table entry meets
at least one of the following re-
quirements:

. The common-segment bit is one
in the TLB entry.
. The segment-table-origin Tfield

in the TLB entry is the same as
the current PSTO.

. The segment-table-origin field
in the TLB entry is the same as

the current S$5T0, and either
PSW bit 16 1is one or bit 5 of
control register 0 is one.
A TLB segment-table entry may be used
for implicit address translation only

when the
the segment
the segment

entry is in the usable state,
index of the entry matches
index of the virtual address
to be +translated, and either the
common-segment bit is one 1in the TLB
entry or the segment-table-origin field
in the TLB entry matches the segment-
table origin used to select it.

is in the usable
following condi-

A TLB page-table entry
state when all of the
tions are met:

1. The TLB page-table entry is
selected by a usable TLB segment-
table entry or by an attached and

entry which
translation-
if used for

valid segment-table
would not cause a
specification exception
translation.

2. The page-table-origin field in the
TLB page—-table entry matches the
page-table-origin field in the
segment-table entry which selects
it.

3. The page-index field in the TLB
page-table entry is within the

range permitted by the page-table-
length field in the segment-table
entry which selects it.

4. The translation-format field in the
TLB page-table entry is the same as
the current translation format.

A TLB page-table entry may be used for
implicit address translation only when
the TLB entry is in the usable state as
selected by the segment-table entry
being used and only when the page index

Chapter 3. Storage 3-33

of the TLB page-table
page index of the
translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB
contents. Translation in this case is
performed by the use of the designated
tables in real storage.

entry matches the
virtual address being

Selected page-table entries are cleared
from the TLB by means of the INVALIDATE
PAGE TABLE ENTRY instruction. All
information 1in the TLB is necessarily
cleared only by execution of PURGE TLB,
SET PREFIX, or CPU reset.

Programming Notes

1. Although a table entry may be
copied into the TLB only when the
table entry is both wvalid and
attached, the copy may remain in
the TLB even when the table entry
itself is no longer valid or
attached.

2. No entries can be copied into the
TLB when DAT is off because the
table entries at this time are not
attached. In particular, trans-
lation of the operand address of
LOAD REAL ADDRESS, with DAT off,
does not cause entries to be placed
in the TLB.

3-34 System/370 Principles of Operation

is on, infor-
the TLB

Conversely, when DAT
mation may be copied into

from all translation-table entries
that could be used for address
translation, given the current

translation parameters, the setting
of the address-space-control bit,
and the setting of the secondary-
space-control bit. The loading of
the TLB does not depend on whether
the entry 1is used for translation
as part of the execution of the
current instruction, and such load-
ing can occur when the wait state
is specified.

More than one copy of a table entry
may exist in the TLB. For example,

some implementations may cause a
copy of a valid table entry to be
placed in the TLB for each

segment-table origin by which the
entry becomes attached.

The segment size controls how many
segment-table entries can be
referred to for +translation. Both
the page size and segment size
control the selection of page-table
entries and hence may affect wheth-
er or not an entry is attached.

The states and use of the DAT
entries in both real storage and in
the TLB are summarized in the
figure "Summary of DAT Entries."

State or Function

Conditions to Be Met

STE is attached by means
of PSTD (applies only to
STE in storage)

STE is attached by means
of SSTD (applies only to
STE in storage)

STE in storage is usable
for a particular instance
of implicit translation

STE can be placed in TLB

STE in TLB is usable

STE in TLB is usable for
a particular instance of
implicit translation

PTE is attached (applies
only to PTE in storage)

PTE in storage is usable
for a particular instance
of implicit translation

[¢ ¢ ¢ 0

s 0 00

DAT on

No early PSW exception¥

TF valid

STE in segment table defined by
PSTD in CR1

STE selectable by a 24-bit ad-
dress

DAT on

No early PSW exception

TF valid

STE in segment table defined by
SSTD in CR7

STE selectable by a 24-bit ad-
dress

PSW bit 16 one or bit 5 of CRO
one

STE in segment table defined and

attached by STD being used for
the translation
STE selected by SX

STE attached
STE I bit zero
No TS

DAT on

No early PSW exception

TF matches

STE selectable by an STD:

- C bit one, or

- STO matches PSTO, or

- ST0 matches S5T0, and either
PSW bit 16 one or bit 5 of
CRO one

DAT on

No early PSW exception¥

TF matches

STE selected by STD being used
for the translation:

- STO matches, or

- C bit one

S$X matches

PTE in page table defined by
usable STE in the TLB, or de-
fined by an STE that can be
placed in the TLB

PTE attached by means of STE
being used for the translation
PTE selected by PX

Summary of DAT Entries (Part 1 of 2)

Chapter 3. Storage

3-35

State or Function Conditions to Be Met

PTE can be placed in TLB ® PTE attached
e PTE I bit zero
 No TS
PTE in TLB is usable e TF matches
e PTE selectable by a usable STE
in the TLB or by an STE that
can be placed in the TLB:
- PTO matches and
- PX within PTL
PTE in TLB is usable for * TF matches
a particular instance of * PTE selected by STE being used
implicit translation for the translation:

- PT0 matches and
- PX within PTL
e PX matches

*

C bit
I bit
PSTD
PSTO
PTE
PTL
PTO
PX
SSTD
SSTO
STD
STE
STO
S$X

TF

TS

Explanation:

Models which do not have DAS installed do not
necessarily comply with the condition.
Common—-segment bit in STE.

Invalid bit in table entry.

Primary segment-table designation.

Primary segment-table origin.

Page—-table entry.

Page-table length.

Page-table origin.

Page index.

Secondary segment-table designation.

Secondary segment-table origin.

Segment-table designation.

Segment-table entry.

Segment-table origin.

Segment index.

Translation format (control register 0, bits 8-12).
Translation—-specification exception. The condition
"No TS"™ means that attempted use of the associated
DAT-table entry would not cause a translation-
specification exception.

Summary of DAT Entries (Part 2 of 2)

Modification of Translation JTables of the new value may begin between
. instructions or during the execution of

an instruction, including the instruc-

When an attached and invalid table entry tion that caused the change. Moreover,

is made valid and no usable entry for
the associated virtual address is in the

until the TLB is cleared of entries
which qualify for substitution for that

TLB, the change takes effect no later entry, the TLB may contain both the old
than the end of the current unit of and the new values, and it is unpredict-
operation. Similarly, when an unat- able uwhether the old or new value is
tached and valid table entry is made selected for a particular access. If
attached and no usable entry for the both old and new values of a segment-
associated virtual address is in the table entry are present in the TLB, a
TLB, the change takes effect no later page-table entry may be fetched by using
than the end of the current unit of one value and placed in the TLB associ-

operation.

ated with the other value. If the new
value of the entry 1is a value which

When a valid and attached table entry is would cause an exception, the exception
changed, and when, before the TLB is may or may hot cause an interruption to
cleared of entries which qualify for occur. If an interruption does occur,
substitution for that entry, an attempt the result fields of the instruction may
is made to refer to storage by using a be changed even though the exception
virtual address requiring that entry for would normally cause suppression or
translation, unpredictable results may nullification.

occur, to the following extent. The use

3-36 System/370 Principles of Operation

Entries are

cleared from the TLB in

accordance with the following rules:

1.

All entries are cleared from the
TLB by the execution of PURGE TLB
and SET PREFIX and by CPU reset.

Selected entries are cleared from
all TLBs in the configuration by
the execution of INVALIDATE PAGE
TABLE ENTRY by any of the CPUs in
the configuration.

Some or all TLB entries may be
cleared at times other than those
required by PURGE TLB, SET PREFIX,
CPU reset, and INVALIDATE PAGE
TABLE ENTRY.

Programming Notes

1.

Entries in the TLB may continue to
be used for translation after the
table entries from which they have
been formed have become unattached
or invalid. These TLB entries are
not necessarily removed unless
explicitly cleared from the TLB.

A change made to an attached and
valid entry or a change made to a
table entry that causes the entry

to become attached and valid 1is
reflected in the translation proc-
ess for the next instruction, or
earlier than the next instruction,
unless a TLB entry qualifies for
substitution for that table entry.
However, a change made to a table
entry that causes the entry +to
become unattached or invalid is not
necessarily reflected in the trans-

lation process wuntil the TLB is
cleared of entries which qualify
for substitution for that table

entry.

Exceptions associated with dynamic
address translation may be estab-
lished by a pretest for operand
accessibility that is performed as
part of the 1initiation of instruc-
tion execution. Consequently, a
segment-translation or page-
translation exception may be
indicated when a table entry is
invalid at the start of execution
even if the instruction would have
validated the table entry it uses
and the table entry would have
appeared valid if the instruction
was considered to process the oper-
ands one byte at a time.

A change made to an attached table
entry, except to set the I bit to
zero or to alter the rightmost bit
of a page-table entry, may produce
unpredictable results if that entry
is used for translation before the
TLB is cleared of all copies of

that entry. The use of the new
value may begin between
instructions or during the
execution of an instruction,
including the instruction that
caused the change. When an
instruction, such as MOVE (MVC),

makes a change to an attached table
entry, including a change that
makes the entry invalid, and subse-
quently uses the entry for
translation, a changed entry is
being used without a prior clearing
of the entry from the TLB, and the
associated unpredictability of
result values and of exception
recognition applies.

Manipulation of attached table
entries may cause spurious table-
entry values to be recorded in a
TLB. For example, 1f changes are
made piecemeal, modification of a
valid attached entry may cause a
partially updated entry to be
recorded, or, 1f an intermediate
value is introduced 1in the process
of the change, a supposedly invalid
entry may temporarily appear valid
and may be recorded in the TLB.
Such an intermediate value may be
introduced if the change is made by
an I/0 operation that 1is retried,
or if an intermediate value 1is
introduced during the execution of
a single instruction.

As another example, if a segment-
table entry is changed to designate
a different page table and used
without clearing the TLB, then the
hew page-table entries may be
fetched and associated with the old
page-table origin. In such a case,
execution of INVALIDATE PAGE TABLE

ENTRY designating the new page-
table origin will not necessarily
clear the page-table entries

fetched from the new page table.

To facilitate +the manipulation of
translation tables, INVALIDATE PAGE
TABLE ENTRY is provided, which sets
the I bit in a page-table entry to
one and clears all TLBs 1in the

configuration of entries formed
from that table entry.
INVALIDATE PAGE TABLE ENTRY 1is

useful for setting the I bit to one
in a page—-table entry and causing
TLB copies of the entry to be
cleared from the TLB of each CPU in
the configuration. The following
aspects of the TLB operation should
be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the
programming notes following INVALI-
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before
making any change to a page-

table entry other than changing

Chapter 3. Storage 3-37

the rightmost bit; otherwise,
the selective clearing portion
of INVALIDATE PAGE TABLE ENTRY
may not clear the TLB copies of
the entry.

b. Invalidation of all the
page-table entries within a
page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of
the copies, 1i1f any, of the
segment-table entry designating
the page table. MWhen it is
desired to invalidate and clear
the TLB of a segment-table
entry, the rules in note 5
below must be followed.

c. When a large number of
page-table entries are to be
invalidated at a single time,
the overhead involved in using
PURGE TLB and in following the
rules in note 5 below may be
less than in issuing INVALIDATE
PAGE TABLE ENTRY for each
page-table entry.

5. Manipulation of table entries
should be in accordance with the
following rules. If these rules
are complied with, translation 1is
performed as if the table entries
from real storage were always used
in the translation process.

a. A valid table entry must not be
changed while it is attached to
any CPU except either to inval-
idate the entry, by using
INVALIDATE PAGE TABLE ENTRY or
to alter bit 15 of a page-table
entry.

b. When any change is made to a
table entry other than a change
to bit 15 of a page-table
entry, each CPU which may have
a TLB entry formed from that
entry must execute PURGE TLB or
SET PREFIX or perform CPU
reset, after the change occurs
and prior to the use of that
entry for implicit translation
by that CPU, except that the
purge is unhnecessary if the
change was made by using INVAL-
IDATE PAGE TABLE ENTRY.

c. When any change is made to an
invalid table entry in such a
way as to allow intermediate
valid values to appear in the
entry, each CPU to which the
entry is attached must execute
PURGE TLB or SET PREFIX or
perform CPU reset, after the
change occurs and prior to the
use of the entry for implicit
address translation by that
CPU.

3-38 System/370 Principles of Operation

d. When any change is made to a
segment-table or page-table
length, each CPU to which that

table has been attached must
execute PTLB after the length
has been changed but before
that table becomes attached
again to the CPU.
Note that when an invalid page-
table entry 1is made valid without
introducing intermediate valid

values, the TLB need nhot be cleared
in @a CPU which does not have any
usable TLB copies for that entry.
Similarly, when an invalid
segment-table entry 1is made valid
without introducing intermediate
valid values, the TLB need not be
cleared in a CPU which does not
have any usable TLB copies for that
segment-table entry and which does
not have any usable TLB copies for
the page-table entries attached by
it.

The execution of PURGE
PREFIX may have an adverse effect
on the performance of some models.
Use of these instructions should,
therefore, be minimized in conform-
ity with the above rules.

TLB and SET

ADDRESS SUMMARY

ADDRESSES TRANSLATED

Most addresses that are explicitly spec-
ified by the program and are used by the
CPU to refer to storage for an instruc-
tion or an operand are logical addresses
and are subject to implicit translation
when DAT is on. Analogously, the corre-

sponding addresses indicated to the
program on an interruption or as the
result of executing an instruction are
logical. The operand address of LOAD

REAL ADDRESS is explicitly translated,
regardless of whether the PSW specifies
the EC mode or BC mode, and regardless
of whether the EC-mode PSW specifies DAT
on or off.

Translation is not applied to quantities
that are formed from the values speci-
fied in the B and D fields of an
instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, MONITOR CALL,
and the shifting and I/0 instructions.
This also includes the addresses in
control registers 10 and 11 designating
;he starting and ending locations for
ER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the

addresses explicitly designating storage
keys (operand addresses in SET STORAGE

KEY, INSERT STORAGE KEY, RESET REFERENCE
BIT, SET STORAGE KEY EXTENDED, INSERT
STORAGE KEY EXTENDED, and RESET REFER-
ENCE BIT EXTENDED) are real addresses.
Similarly, the addresses implicitly used
by the CPU or channels for such
sequences as interruptions, updating the
interval timer at locations 80-83,
DAT-table references, and logout,
including the machine-check-extended-
logout address in control register 15,
are real addresses.

The addresses used by channels to trans-
fer data and to refer to CCWs or IDAWs
are absolute addresses. Similarly, the
I/0-extended-logout address at locations
173-175 is an absolute address.

The handling of storage addresses asso-
ciated with DIAGNOSE is model-dependent.

The processing of addresses, including
dynamic address translation and prefix-
ing, is discussed in the section
"Address Types" in this chapter.
Prefixing, when provided, 1is applied
after the address has been translated by
means of the dynamic-address-translation
facility. For a description of prefix-
ing, see the section "Prefixing” in this
chapter.

HANDLING OF ADDRESSES

The handling of addresses is summarized
in the figure "Handling of Addresses."
This figure lists all addresses that are
encountered by the program and specifies
the address type.

Chapter 3. Storage 3-39

Virtual Addresses

* Address of storage operand for INSERT VIRTUAL STORAGE KEY

Operand address in LOAD REAL ADDRESS

* Addresses of storage operands for MOVE TO PRIMARY and MOVE
TO SECONDARY

* Address stored in the word at real location 144 on a program
interruption for page-translation or segment-translation
exception

Instruction Addresses

* Instruction address in PSW

* Branch address

e Target of EXECUTE

* Address stored in the word at real location 152 on a pro-
gram interruption for PER

* Address placed in general register by BRANCH AND LINK,
BRANCH AND SAVE, and PROGRAM CALL

logical Addresses

* Addresses of storage operands for instructions not other-
wise specified

* Address placed in general register 1 by EDIT AND MARK and
TRANSLATE AND TEST

e Addresses in general registers updated by MOVE LONG and
COMPARE LOGICAL LONG

Real Addresses

e Address of storage key for INSERT STORAGE KEY, INSERT
STORAGE KEY EXTENDED, RESET REFERENCE BIT, RESET REFERENCE
BIT EXTENDED, SET STORAGE KEY, and SET STORAGE KEY EXTENDED
Address of storage operand for TEST BLOCK

Address of storage operand for READ DIRECT and WRITE DIRECT
when INVALIDATE PAGE TABLE ENTRY is installed

Page-table origin in INVALIDATE PAGE TABLE ENTRY
Segment-table origin in control registers 1 and 7
Page-table origin in segment-table entry

Page-frame real address in page-table entry

MCEL address in control register 15

The translated address generated by LOAD REAL ADDRESS
Address of segment-table entry or page-table entry provided
by LOAD REAL ADDRESS

ASN-first-table origin in control register 14
ASN-second-table origin in ASN-first-table entry
Authority—-table origin in ASN-second-table entry
Linkage-table origin in control register 5

Entry-table origin in linkage-table entry

[N

6 60 0 00

* 0 ¢ s 0

Handling of Addresses (Part 1 of 2)

3-40 System/370 Principles of Operation

PreTen

Permanently Assigned Real Addresses

* Addresses of PSWs, interruption codes, and associated in-
formation used during interruption

¢ Address used by CPU to update interval timer in the word at
real location 80

* Addresses of CAW, CSWH, and other locations used during an
I/0 interruption or during execution of an I/0 instruction,
including STORE CHANNEL ID

Absolute Addresses

Prefix value

CCW address in CAW

Data address in CCHW

IDAK address in a CCW specifying indirect-data addressing
CClW address in a CCW specifying transfer in channel

Data address in IDAW

ICEL address at real locations 173-175

Failing-storage address stored in the word at real location
2648

» CCW address in CSHW

o ¢ 0 ¢ ¢ 8 00

Permanently Assigned Absolute Addresses

* Addresses of PSW and first two CCWs used for initial pro-
gram loading
e Addresses used for the store-status function

Addresses Not Used to Reference Storaqe

e PER starting address in control register 10

e PER ending address in control register 11

* Address stored in the word at real location 156 for a
monhitor event

* Address in shift instructions and other instructions speci-
fied not to use the address to reference storage

Handling of Addresses (Part 2 of 2)

ASSTIGNED STORAGE LOCATIONS 0-7 (Real Address)
Restart New PSW: The new PSW is
The figure "Assigned Storage Locations" fetched from locations 0-7
shows the format and extent of the during a restart interruption.
assigned locations in storage. The
locations are used as follows. Unless 8-15 (Absolute Address)
specifically noted, the usage applies to
both the BC and EC modes. Initial-Program-Loading CCW1:
Bytes 8-15 read during the
0-7 (Absolute Address) initial-program-loading (IPL)
initial-read operation are
Initial-Program-loading PSW: stored at locations 8-15. The
The first eight bytes read contents of these locations are
during the initial-program- ordinarily used as the next CCW
loading (IPL) initial-read oper- in an IPL CCW chain after
ation are stored at locations completion of the IPL initial-
0-7. The contents of these read operation.

locations are used as the new
PSW at the completion of the IPL 8-15 (Real Address)
operation. These locations may

also be used for temporary stor- Restart 0l1d PSW: The current
age at the initiation of the IPL PSW is stored as the old PSW at
operation, and bytes 2 and 3 locations 8-15 during a restart
hold the I/0 address at the interruption.

conclusion of an IPL in the BC

mode. 16-23 (Absolute Address)

Initial-Program—-Loading CCW2:
Bytes 16-23 read during the
initial-program loading (IPL)

Chapter 3. Storage 3-41

26-31

32-39

40-47

48-55

56-63

66-71

72-75

80~83

3-42

initial-read operation are
stored at locations 16-23. The
contents of these locations may
be used as another CCW in the
IPL CCW chain to follow IPL
CCh1.

(Real Address)

External 0ld PSW: The current
PSW is stored as the old PSW at
locations 26-31 during an
external interruption.

(Real Address)

Supervisor—-Call 0ld PSN: The

current PSH is stored as the old
PSW at locations 32-39 during a
supervisor-call interruption.

(Real Address)

Program 0ld PSW: The current
PSW is stored as the old PSK at
locations 40-47 during a program
interruption.

(Real Address)

Machine-Check 0ld PSUW: The

current PSW is stored as the old
PSW at locations 48-55 during a
machine-check interruption.

(Real Address)

Input/0Output 0ld PSW: The
current PSW is stored as the old
PSW at locations 56-63 during an
I/0 interruption.

(Real Address)

CSW: The channel-status word
(CSW) 1is stored at locations
66-71 during an I/0
interruption. Part or all of it
may be stored during the
execution of CLEAR I/0, HALT
DEVICE, HALT 1I-/0, START 1Is0,
START I-/0 FAST RELEASE, STORE
CHANNEL ID, or TEST 1I/0, in
which case condition code 1 is
set.

(Real Address)

CAW:
(CAW)

The channel-address word
is fetched from locations
72-75 during the execution of
START 1I/0 and START I/0 FAST
RELEASE.

(Real Address)

Interval Timer: Locations 80-83
contain the interval timer. The
interval timer is updated when-
ever the CPU is in the operating
state and the manual interval-
timer control is set to enable.

System/370 Principles of Operation

84-87

88-95

96-103

104-111

112-119

120-127

128-131

132-133

134-135

(Logical Address)

Irace-Table-Designation Word:
The DAS-trace-control bit and
the trace-table-entry-header
origin are fetched from
locations 84-87.

(Real Address)

External New PSW: The new PSW

is fetched from locations 88-95

during an external interruption.

(Real Address)

Supervisor—-Call New PSW: The
new PSW is fetched from
locations 96-103 during a

supervisor-call interruption.

(Real Address)

Program New PSW: The new PSW is
fetched from locations 104-111
during a program interruption.

(Real Address)

Machine-Check New PSW:
PSW 15 fetched from
112-119 during a ma

interruption.

(Real Address)

The new
locations
chine-check

Input/Qutput New PSW: The new
PSW is fetched from locations
120-127 during an I/0 inter-
ruption.

(Real Address)

External-Interruption Parameter:

During an external interruption
due to service signal, the
parameter associated with the
interruption is stored at

locations 128-131.
(Real Address)

CPU Address: During an external
interruption due to malfunction

alert, emergency signhal, or
external call, the CPU address
associated with the source of
the interruption is stored at
locations 132-133. For all
other external-interruption
conditions, zeros are stored at
locations 132-133 when the old
PSW specified the EC mode, and

the field remains unchanged when

the old PSK specified the BC
mode.

(Real Address)
External-Interruption Code:

interruption
the interruption

During an external
in the EC mode,

PR,

136-139

140-143

146-167

code is stored at locations

134-135.
(Real Address)

Supervisor=-Call-Interruption

Identification: During a
supervisor-call interruption 1in
the EC mode, the instruction-
length code 1is stored in bit
positions 5 and 6 of location
137, and the interruption code
is stored at locations 138-139.
Zeros are stored at location 136

and in the remaining bit posi-
tions of location 137.

(Real Address)
Program—-Interruption Identifi-
cation: During a program inter-
ruption in the EC mode, the
instruction—-length code is
stored in bit positions 5 and 6
of location 141, and the inter-
ruption code is stored at
locations 142-143. Zeros are
stored at location 140 and in

the remaining bit positions of

location 1641.
(Real Address)

Translation-Exception Identifi-
cation: During a program inter-
ruption due to a segment-
translation exception or a
page-translation exception, the
segment-index and page-index
portion of the virtual address
causing the exception 1is stored
at locations 1646-1647. This
address is sometimes referred to
as the translation-exception
address. When 2K-byte pages are
used, the rightmost 11 bits of
the address are unpredictable.
When 4K-byte pages are used, the
rightmost 12 bits of the address
are unpredictable. Bits 1-7 of
location 144 are set to zeros.
When DAS is installed, bit 0 of
location 144 is set to =zero if
the translation was relative to
the primary segment table desig-
nated by control register 1, or
it is set to one if the trans-
lation was relative to the
secondary segment table desig-
nated by control register 7.
When DAS is not installed, bit 0
of location 144 is set to =zero.

program interruption
AFX-translation, ASX-
translation, primary-authority,
or secondary-authority excep-
tion, the ASHN being translated
is stored at locations 146-147.
Zeros are stored at locations
164-145.

During a
due to an

148-149

150-151

152-155

156-159

During a program interruption
for a space-switch event, the
old PASN, which is in bits 16-31
of control register 4 before the
execution of a space-switching
PROGRAM CALL or PROGRAM TRANSFER
instruction, is stored at
locations 146-147. The old
space-switch-event-control bit
is stored in bit position 0, and
zeros are stored in bit posi-
tions 1-15 of locations 166-145.

program interruption
LX-translation or EX-
exception, the PC
in bit posi-
the word at
Bits 0-11

During a
due to an
translation
number is stored
tions 12-31 of
locations 164-147.
are set to zeros.

In all cases, storing at
locations 144-147 only occurs
when the old PSW specifies the
EC mode.

(Real Address)

Monitor-Class Number: During a
program interruption due to a
monitor event, the monitor-class
number i1s stored at location
149, and zeros are stored at
location 148.

(Real Address)

PER Code: During a program
interruption due to a PER event,
the PER code is stored in bit
positions 0-3 of location 150.
Zeros are stored in bit posi-
tions 4-7 of location 150 and
bit positions 0-7 of location
151. This field can be stored
only when the instruction caus-
ing the PER condition was
executed under the control of a
PSW specifying the EC mode.

(Real Address)

PER Address: During a program
interruption due to a program
event, the PER address is stored
at locations 153-155, and zeros
are stored at location 152.
This field can be stored only
when the instruction causing the
PER condition was executed under
the control of a PSW specifying
the EC mode.

(Real Address)
Monitor Code: During
interruption due to a monitor
event, the monitor code is
stored at locations 157-159, and

zeros are stored at location
156.

a program

Chapter 3. Storage 3-63

168-171

172-175

176-179

185

186-187

216-223

216-223

226-231

(Real Address)

Channel ID: The channel-
identification information is
stored at locations 168-171

during the execution of STORE
CHANNEL ID.

(Real Address)

I0EL Address: The I/0-
extended-logout address is
fetched from locations 173-175

during the I/0-extended-logout
operation. The contents of
location 172 are ignored.

(Real Address)

Limited Channel Loqout: The
limited-channel-logout informa-
tion is stored at locations
176-179. This field may be
stored only when the CSW or a

portion of the CSW is stored.
(Real Address)

Measurement Bvte: During an I/0
interruption in the EC mode, the
measurement byte 1s stored at
location 185. A nonzero value
for the measurement byte is part
of the start-I/0-fast-queuing
facility. When this facility is
not installed, zeros are stored.

(Real Address)

I/0 Address: During an I/0
interruption in the EC mode and
at the conclusion of an IPL in
the EC mode, the I/0 address is
stored at locations 186-187.

(Absolute Address)

Store-Status CPU-Timer Save

Area: During the execution of
the store-status operation, the
contents of the CPU timer, if
the CPU-timer and clock-
comparator facility is
installed, are stored at
locations 216-~223.

(Real Address)

Machine-Check CPU-Timer Save

Area: During a machine-check
interruption, the contents of
the CPU timer, if the CPU-timer
and clock-comparator facility is
installed, are stored at
locations 216-223.

(Absolute Address)

Store-Status Clock-Comparator
Save Area: During the execution
of the store-status operation,
the contents of the clock compa-
rator, if the CPU-timer and

3-44¢ System/370 Principles of Operation

226-231

232-239

244-247

268-251

252-255

256-263

256-351

clock-comparator
installed, are
locations 226-231.

facility is
stored at

(Real Address)

Machine-Check Clock-Comparator
Save Area: During a machine-
check interruption, the contents
of the clock comparator, if the
CPU-timer and clock-comparator
facility is installed, are
stored at locations 224-231.

(Real Address)

Machine-Check-Interruption Code:
During a machine~check interrup-
tion, the machine-check-inter-
ruption code is stored at
locations 232-239%.

(Real Address)

External -Damage Code:
machine-check
to certain
conditions,

model,

may be
244-247.

During a
interruption due
external-damage
depending on the
an external-damage code
stored at locations

(Real Address)

Failing-Storage Address:
a machine-check
failing-storage

During
interruption, a
address may be

stored at locations 2649-251,
with zeros stored at location
268 . Khen the extended-real-
address facility 1is installed,
the failing-storage address 1is
31 bits and bit 0 of location
248 is set to =zero.

(Real Address)
Region Code: During a machine-
check interruption, model-
dependent information may be
stored at locations 252-255.

(Absolute Address)

Store-Status PSW Save Area:
During the execution of the
store-status operation, the

contents of the current PSW are
stored at locations 256-263.

(Real Address)

Fixed-Logout Area: Depending on

the model, 1logout information
may be stored at locations
256-351 during a machine-check
interruption or full channel
logout. Additionally, the
contents of locations 256-351
may be changed at any time,
subject to the asynchronous- |
fixed-logout-control bit in i

control register 1l4.

266-267

268-271

352-383

352-383

3864-647

(Absolute Address)

Store-Status Prefix Save Area:
During the execution of the
store-status operation, the

contents of the prefix register,
if the multiprocessing facility
is installed, are stored at
locations 2664-267.

(Absolute Address)

Store-Status Model-Dependent
Save Area: During the execution
of the store-status operation,
model-dependent information may
be stored at locations 268-271.

(Absolute Address)

Store=-Status
Register Save Area:
execution of the store-status
operation, the contents of the
floating-point registers, if the
floating-point facility is
installed, are stored at
locations 352-383.

Floating-Point-
During the

(Real Address)
Machine-Check Floating-Point-
Register Save Area: During a
machine-check interruption, the
contents of the floating-point
registers, if the floating-point
facility is installed, are
stored at locations 352-383.

(Absolute Address)

Store-Status General-Register
Save Area: During the execution

of the store-status operation,
the contents of the general
registers are stored at
locations 3864-447.

386-4647

468-511

448-511

795

Machine-Check
Save

(Real Address)

General-Register
Area: During a machine-
check interruption, the contents
of the general registers are
stored at locations 384-447.

(Absolute Address)

Store-Status Control-Register
Save Area: During the execution
of the store-status operation,
the contents of the control
registers are stored at
locations 648-511.

(Real Address)

Machine-Check Control-Register
Save Area: During a machine-
check interruption, the contents
of the control registers are
stored at locations 448-511.

(Logical Address)

CPU JIdentity for DAS Tracing:
During execution of DAS tracing,
the contents of location 795 are
fetched and placed 1in the trace
entry. This field is called
"CPU identity" because the
control program 1is expected to
place the rightmost eight bits
of the CPU address in this area.

Chapter 3. Storage 3-45

Hex Dec

o] Initial-Program-Loading PSW; or Restart New PSW
4 4

8 8 Initial-Program-lLoading CCW1l; or Restart 0ld PSW
C 12
10 16 Initial-Program-Loading CCW2
14 20

18 24 External 0ld PSW

1C 28
20 32 Supervisor-Call 0ld PSH
24 36
28 40 Program 0ld PSW
2C 44
30 48 Machine-Check 0ld PSKW
34 52
38 56 Input/Output O0ld PSW
3C 60
40 64 Channel-Status Word
44 68
48 72 Channel-Address Word
4C 76
50 80 Interval Timer
54 84 Trace-Table-Designation lord
58 38 External New PSW
5C 92
60 96 Supervisor-Call New PSHW
64 100
68 104 Program New PSH
6C 108
70 112 Machine-Check New PSW
7¢ 116
78 120 Input/Output New PSH
7C 124

Assighed Storage Locations (Part 1 of 3)

3-66

System/370 Principles of Operation

Hex Dec

80 1238 External-Interruption Parameter

84 132 CPU Address External-Interruption Code
88 136 {0 0 0 0 00 0C 00 OO0 G OjILC|O} SVC-Interruption Code

8C 140 |0 0 0 0 6 0 0 0 0 0 O O OJILC{O| Program-Interruption Code
90 144 Translation-Exception Identification

94 148 Monitor-Class Number PER Cde|{0 0 0 0 O 0 0 0 0 0 O O
98 152 PER Address

SC 156 Monitor Code

A0 160

A4 164

A8 168 Channel ID

AC 172 I0OEL Address

B8 176 Limited Channel Logout

B4 180

B8 184 Measurement Byte|I/0 Address

BC 188

co 192

€4 196

c8 200

tC 204

bo 208

D4 212

D8 216 Store-Status CPU-Timer Save Area; or Machine-Check CPU Timer

Save Area
bC 220
E0 224 Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

E6¢ 228

E8 232 Machine-Check-Interruption Code

EC 236

FO 240

F& 244 External-Damage Code

F8 248 Failing-Storage Address

FC 252 Region Code

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage

3-47

Hex Dec

100 256 Store-Status PSW Save Area; or Fixed-lLogo
104 260

ut Area (Part 1)

108 264 Store-Status Prefix Save Area; or Fixed-L

ogout Area (Part 2)

10C 268 Store-Status Mod-Dep Save Area; or Fixed-

Logout Area (Part 3)

110 272 Fixed-Logout Area (Part 4)

158 344
15C 348

160 352 Store-Status Floating-Point-Register Save Area; or Machine-

Check Floating-Point-Registar Save Area
164 356

17C 380

180 384 Store-Status General-Register Save Area;
General-Register Save Area
184 388

1BC 444

or Machine-Check

1C0 448 Store-Status Control-Register Save Area;
. Control-Register Save Area
1C4¢ 452

or Machine-Check

/
1FC 508
200 512
7/
314 788
318 792 CPU Identity
31C 796

Assigned Storage Locations (Part 3 of 3)

3-48 System/370 Principles of Operation

A

CHAPTER 4.

Stopped, Operating, Load, and Check-Stop States 4-2
Stopped State cee e cetevaenen ceccecsacsccosan 4-2
Operating State cecccecccanenn cecceccecscsencansenen 4-2
Load State ceeceennan [cereeeen ceccecssevsoenn 4-3
Check-Stop State Ceecestcesenresenennas 4-3

Program-Status Word ceeresecsetessteeneanens e .. G=3
EC and BC Modesceeeeneeen ceeceetecccetcecsenasecnan .64
Program-Status-Word Format in EC Modeccevveeeennnnann G-6
Program-Status-Word Format in BC Modecccviveeeeenne. ¢-8

Control Registerscciceeeene.. c et eeecstcetenscersaaanann %-8

DAS Tracing ...iceiieenecnennennenn ceeceeeean teceacncencan ..6-11

| Protection for DAS TraCing .c.ueieeeneeeeececencancanans ¢-13
| Other Actions Associated with DAS Tracingceeeeeeen =13
| Serialization for DAS Tracing feeeeeeeaeaaan 4-13
Trace-Table Designationiiieeriieeteeeeeeocnnoenannans 4-13
Trace-Table-Entry Headeriie ittt tieenecaannanns %4-13
| INEErloCKS v vt eitiii i e ieeeeseeeeeaseeoasecacneanennnns G6-14
Trace Entry v o ittt it ettt tteeeeeeeecaeecasenaanaannenns 4-146

Program—Event Recordingieiieriieeeeiennecnncoeenecoannns 4-15
Control-Register Allocationc..iiiiiieeeeeeenenneanns 4-~15
OpPeration ... e ieereeeeeceececacecoecenseasnnseeenccsacnanes 4-16

Identification 0f COUSE . .iiieereneeereeenoooonoonnnneen 4-17
Priority of Indication ...c.iiiiiieeiieeeennceccnncannes 4-17
Storage-Area Designationeui et itieeteeeeenceocennna 4-18
PER Events ittt ittt eeeeeeeeecacosaennsanssesecaaacaeens 4-19
Successtul Branchingttt inieetiieeneccnceanoneans 4-19
Instruction Feteching ...ttt e it e iieteenecennennans 4-19
Storage Alterationt ittt eieeecnancnnanns 4-19
General-Register Alterationoieuiireeeeeennennnn 4-20
| Indication of PER Events Concurrently with Other
] Interruption Conditionseeeereeeeeneeennoeonnoneennn 4-20

Direct Control ...ttt ittt eeeeeeannncnonanconneanesa 4-23
Read-Hrite-Direct Facilityttt eeeeeeennnnans 4-23
External-51gnal Facility .coiiiniinieiiiereecnencnccnaaanns 4-23

BRI 3 T 2 = 4-23
Time-of-Day ClocK ..ttt eteeneenecencesaoanannna 4-23

Format (.t ittt it iieeereeceeaecoaeonaecenncaenneanenns 4-24
R o= o = P 4-24
Changes in Clock State ..iii ittt eeeeeenecenaennn 4-25
Setting and Inspecting the Clock 4-25
TOD-Clock Synchronization intieineeeeeneneennoanenns 4-26
Clock Comparator eeeeeeeteeneeeasanecoaeeacncaeanes G-27
CPU TImMer & ittt eteeceasoecocsasnoaenonsoeancascencneeses 4-28
Interval Timer .ottt it i ittt eereenenennocnseencaenenes ¢-29
Externally Initiated Functionsieiiieemeneeennennann 4-30
=T 2 - O §-30
CPU RESET ittt ittt teeeeeennecscconeeasasancenanans ce.4-33
Inttial CPU Resel . iiii ittt iie e tierencerncnneeneennes ¢-34%
Subsystem Reset ...ttt it iereeeeceeoncoaaaaaannns 4-34
Program Reset iieteeeeeeeeecaneecnoonesaananenes 4-34
Initial Program Reseti.iii ittt tneeanecneceacnnns 4-34
Clear Resel .. .iiietieeeeeeeenececennnanoannenocecenens 4-36
Pomer—=0n Resetiii ittt eneeneeenaeeaeeaconacnnennns 4-35
Initial Program Loading «.uee et eeeeeeeeeooecneneanacenen .4-35
Store Status ... ii ittt eieeeeeeaeececaccacencccaanacens 4-37

MULtiproCesSsing ettt et eteeneeneeancnnnns Ceeecectacceaaa 4-37
Shared Main Storage .. i ittt irtereenennneeneennenonnnenes 4-38
CPU-Address Identificationieieeinieeeeeeecenecacennnn 4¢-38

CPU Signaling and Response ... eeteeeeceeenaceeneennnns 4-38
Signal-Processor Orders it eeeeeeeeceeccnconcances 4-38
Conditions Determining ReSpPONSe .+ .uteereeeeeencenncnnanans 4-40

Conditions Precluding Interpretation of the
Order CoUde ... iiitirineneeieeeeaeecsonannencensoacecsaneses 4-40
Status Bits .ottt i ittt ittt e it eeeearanencoacnanneancansa 4-6¢1
Channel-Scet SWitching ... it it ieereeeeceneececaenaenneeas 4-63

CONTRO

Chapter 4. Control 64-1

detail the
measuring,
of one or

This chapter describes in
facilities for controlling,
and recording the operation
more CPUs.

STOPPED, OPERATING, LOAD, AND CHECK-STQP
STATES

The stopped, operating, load, and
check-stop states are four mutually
exclusive states of the CPU. When the
CPU is in the stopped state,
instructions and interruptions, other
than the restart interruption, are not
executed. In the operating state, the

instructions and takes
subject to the control of

CPU executes
interruptions,

the program-status word (PSW) and
control registers, and in the manner
specified by the setting of the
operator-facility rate control. The CPU
is in the load state during the
initial-program-loading operation. The

CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states
can be effected by use of the operator
facilities or by acceptance of certain
SIGNAL PROCESSOR orders addressed to
that CPU. The states are not contreolled
or identified by bits in the PSW. The
stopped, load, and check-stop states are
indicated to the operator by means of
the manual indicator, load indicator,
and check-stop indicator, respectively.
These three indicators are off when the
CPU is in the operating state.

The CPU timer
in the
state.

is updated when the CPU 1is

operating state or the load
The TO0OD clock i1s not affected by
the state of any CPU. The interval
timer is updated only when the CPU is in
the operating state.

STOPPED STATE

The CPU changes from the operating state
to the stopped state by means of the
stop Tunction. The stop fTunction is
performed when:

. The stop key is activated while the
CPU is in the operating state.

® Tha CPU accepts a stop or stop-
and-store-status order specified by
a SIGNAL PROCESSOR instruction
addressed to this CPU while it is
in the operating state.

° The CPU has
of a unit of operation
performing the start function with
the rate control set to the
instruction—-step position.

finished the execution
initiated by

System/370 Principles of Operation

When the stop function is performed, the
transition from the operating to the
stopped state occurs at the end of the
current unit of operation. When the
wait-state bit of the PSW is one, the
transition takes place immediately,
provided no interruptions are pending
for which the CPU 1is enabled. In the
case of interruptible instructions, the
amount of data processed in a unit of
operation depends on the particular
instruction and may depend on the model.
Before entering the stopped state by
means of the stop function, all pending
allowed interruptions are taken while
the CPU is still in the operating state.
They cause the old PSW to be stored and
the new PSW to be fetched before the
stopped state is entered. While the CPU
is in the stopped state, interruption
conditions remain pending.

The CPU is also placed in the stopped
state when: :
. The CPU reset is completed. Howev-
er, when the reset operation 1is
performed as part of intitial
program lecading for this CPU, then

the CPU is placed in the load state
and does not necessarily enter the
stopped state.

. An address comparison indicates
equality and stopping on the match
is specified.

The execution of resets is described in
the section "Resets"” in this chapter,
and address comparison is described in
the section "Address-Compare Controls"

in Chapter 12, "Operator Facilities."

If the CPU is in the stopped state when
an INVALIDATE PAGE TABLE ENTRY instruc-
tion is executed on another CPU in the
configuration, the invalidation may be
performed immediately or may be delayed
until the CPU leaves the stopped state.

OPERATING STATE

The CPU changes from the stopped state
to the operating state by means of the
start function or when a restart inter-
ruption (see Chapter 6) occurs.

is performed 1i1f the
stopped state and (1) the
start key associated with that CPU is
activated or (2) that CPU accepts the
start order specified by a SIGHAL
PROCESSOR instruction addressed to that
CPU. The efTfect of performing the start
Tfunction 1is unpredictable when the
stopped state has been entered by means
of a reset.

The start function
CPU is in the

set to the
the start function

When the rate control is
process position and

T 4

is performed, the CPU starts operating
at normal speed. When the rate control
is set to the instruction-step position
and the wait-state bit is zero, one
instruction or, for interruptible
instructions, one unit of operation is
executed, and all pending allowed inter-
ruptions are taken before the CPU
returns to the stopped state. When the
rate control is set to the instruction-
step position and the wait-state bit is
one, the start function causes no
instruction to be executed, but all
pending allowed interruptions are taken

before the CPU returns to the stopped
state.

LOAD STATE

The CPU enters the load state when the
load-normal or load-clear key 1is acti-
vated. (See the section "Initial
Program Loading” in this chapter.) If

the initial-program-loading operation is
completed successfully, the CPU changes
from the load state to the operating
state, provided the rate control is set
to the process position; it the rate
control is set to the instruction-step
position, the CPU changes from the load
state to the stopped state.

CHECK-STOP STATE

The check-stop state, which the CPU
enters on certain types of machine
malfunction, is described in Chapter 11,
Yllachine-Check Handling." The CPU
lecaves the check-stop state when CPU
reset i1s performed.

Proqramminag HNotes

1. Except for the relationship between
execution time and real time, the
execution of a program 1is not
affected by stopping the CPU.

2. When, because of a machine malfunc-
tion, an invalid address in the
prefix register, or an incomplete
READ DIRECT instruction, the CPU is
unable to end the exacution of an
instruction, the stop function 1is

ineffective, and a reset function
has to be invoked instead. A simi-
lar situation occurs when an
unending string of interruptions
results from a PSW with a
PSli-format error of the type that

is recognized early, or from a
persistent interruption condition,
such as one due to the CPU timer.

3. Pending 1I/0 operations may be
initiated, and active I/70 oper-
ations continue to suspension or
completion, after the CPU enters
the stopped state. The inter-
ruption conditions due to
suspension or completion of I/0
operations remain pending when the
CPU is in the stopped state.

PROGRAM-STATUS WORD

The current program-status word (PSW) in

the CPU contains information required
for the execution of the currently
active program. The PSW is 664 bits in
length and includes the instruction
address, condition code, and other
control fields. In general, the PSW is
used to control instruction sequencing
and to hold and indicate much of the
status of the CPU in relation to the

program currently being executed. Addi-
tional control and status information is
contained in control registers and
permanently assigned storage locations.

The status of the CPU can be changed by
lcading a new PSW or part of a PSH.

Control 1is switched during an inter-
ruption of the CPU by storing the

current PSW, so as to preserve the
status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW, or the successful
conclusion of the initial-program-
loading sequence, introduces a new PSW.
The instruction address 1s updated by
sequential instructicn execution and
replaced by successful branches. Other
instructions are provided uwhich operate
on a portion of the PSW. The figure
"Operations on PSW Fields™ summarizes
thesa instructions.

A new or modified PSW becomes active
(that is, the information introduced
into the current PSW assumes control

interruption or
instruction that
completed. The

over the CPU) when the
the execution of an
changes the PSW is
interruption for PER associated with an
instruction that changes the PSW occurs
under control of the PER mask that is
effective at the beginning of the opera-
tion.

Bits 0-7 of the PSW are collectively
referred to as the system mask.

Chapter 4. Control 6-3

Condition Problem

System Mask PSW Key Code and State Address-
(PSW Bits (PSW Bits Program (PSW Space
0-7) 8-11) Mask?! Bit 15) Control?
Instruction Saved| Set |Saved| Set |[Saved| Set {Saved| Set |Saved| Set
BRANCH AND LINK No No No No Yes No No No No No
INSERT PSW KEY No No Yes No No No No No No No

INSERT ADDRESS SPACE No No No No No No No No Yes No
CONTROL

PROGRAM CALL No No No No No No Yes Yes No No

PROGRAM TRANSFER No No No No No No No Yes3} No No

SET ADDRESS SPACE No No No No No No No No No Yes
CONTROL

SET PROGRAM MASK No No No No No Yes No No No No

SET PSW KEY FROM No No No Yes No No No No No No
ADDRESS

SET SYSTEM MASK No Yes No No No No No No No No

STORE THEN AND SYSTEM Yes ANDs| No No No No No No No No
MASK
STORE THEN OR SYSTEM Yes ORs No No No No No No No No
MASK

Explanation:
1 PSW bits 18-23 in the EC mode; PSW bits 34-39 in the BC mode.
2 Bit 16 of the EC-mode PSW.

Cannot be changed from one to zero.

ANDs The logical AND of the immediate field in the instruction and the current
system mask replaces the current system mask.

ORs The logical OR of the immediate field in the instruction and the current
system mask replaces the current system mask.

Operations on PSW Fields

EC AND BC MODES are not subject to the summary mask or

to mask bits in control register 2.
Two control modes are provided for the When interruptions occur in the EC mode,
formatting and use of control and status the interruption code and instruction-
information: the extended-control (EC) length code are stored at various perma-
mode and the basic-control (BC) mode. nently assigned storage locations
Certain functions available in the EC according to the class of interruptions.
mode, such as PER, are not available in In the BC mode, the interruption code
thae BC mode. The mode currently in (for all except machine-check inter-
effect is specified by PSW bit 12. Bit ruptions) and instruction-length code
12 is one for the EC mode and zero for are placed in the old PSW.

the BC mode.
The program-mask and condition-code
Bit 6 of the PSW, in both the BC and EC fields in the PSW are allocated to

modes, is the summary-mask bit for different bit positions in the two
controlling I/0 interruptions. In addi- control modes.

tinn, I/0 interruptions can be

controlled individually for up to 32 The instruction INSERT STORAGE KEY
channels. In the EC mode, the individ- provides the reference and change bits
ual control 1is provided by the 32 mask when in the EC mode but produces zeros
bits in control register 2, and the in the corresponding bit positions when
summary-mask bit in the PSK applies to in the BC mode. The instruction INSERT
all 32 channels. In the BC mode, chan- STORAGE XEY EXTENDED provides the refer-
nels 6 and up are individually ence and change bits in both the EC and
controlled by the corresponding bits of BC modes.

control register 2, as well as the

summary-mask bit, bit 6 of the PSW. 1In The following instructions, all of which
the BC mode, channels 0-5 are controlled are associated with the DAS facility.,
separately by bits 0-5 of the PSW and cause a program interruption for

4-4¢ System/370 Principles of Operation

A

special-operation exception if execution 2.
is attempted in the BC mode:

EXTRACT PRIMARY ASN

EXTRACT SECONDARY ASN

INSERT ADDRESS SPACE CONTROL
INSERT VIRTUAL STORAGE KEY
MOVE TO PRIMARY

MOVE TO SECONDARY

PROGRAM CALL

PROGRAM TRANSFER

SET ADDRESS SPACE CONTROL
SET SECONDARY ASN

Programming Notes

1. The BC mode provides a PSW format
that is compatible with the PSW of
System/360.

The choice between the EC and BC
modes affects only those aspects of
operation that are specifically
defined to be different for the two
modes. It does not affect the
operation of any functions that are
not associated with the PSW control
bits provided only in the EC mode,
and, except for those listed above,
it does not affect the validity of
any instructions. The instructions
SET SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and STORE THEN OR
SYSTEM MASK perform the specified
function on the leftmost byte of
the PSW regardless of the mode
specified by the current PSW. O0On
the other hand, the instruction SET
PROGRAM MASK introduces a new
program mask regardless of the PSW
bit positions occupied by the mask.

Chapter 4. Control 4-5

PROGRAM-STATUS-WORD FORMAT IN EC MODE

I|E Prog

O0[R{0 0 0f{Ti0|X{ Key [E|MIW|P|S|0{C C| Mask |0 0 0 0 0 0 0 O

0 5 8 12 16 18 20 24 31

0 000O0CO0O0TO Instruction Address
32 40 63
PSW Format in EC Mode
The following is a summary of the func- PSW Key: Bits 8-11 form the access key
tions of the PSW fields in the EC mode. for storage references by the CPU. If
(See the figure "PSW Format in EC the reference is subject to key-
Mode."™) controlled protection, the PSW key is

matched with a storage key when informa-
PER Mask (R)r Bit 1 controls whether tion is stored or when information is
the CPU 1is enabled for interruptions fetched from a location that is
associated with program—event recording protected against fetching. However,
(PER). When the bit is =zero, no PER for accesses to the second operand of
event can cause an interruption. UWhen MOVE T0 PRIMARY and MOVE WITH KEY, the
the bit is one, interruptions are third operand is used instead of the PSW
permitted, subject to the PER-event-mask key. The third operand is also used
bits in control register 9. instead of the PSW key for accesses to
the first operand of MOVE TO SECONDARY.

DAT Mode (I): Bit b5 controls whether

implicit dynamic address translation of

logical and instruction addresses used
to access storage takes place. Khen the
bit is zero, DAT is off, and logical and
instruction addresses are treated as
real addresses. When the bit is one,
DAT is on, and the dynamic-address-—
translation mechanism is invoked.

1/0 Mask (I0): Bit 6 controls whether
the CPU is enabled for I/70 interrup-
tions. WKhen the bit is =zero, an 1/0

interruption cannot occur. When the bit
is one, I/0 interruptions are subject to
the channel-mask bits 1in control regis-
ter 2. When a channel-mask bit is zero,
the associated channel cannot cause an
I/0 interruption; when the channel-mask
bit is one, an interruption condition at
the channel can cause an interruption.
Bit 6 of the EC-mode PSHW is provided
evan when the CPU 1s not capable of
being cecnnacted to a channel set.

External Mask (EX): Bit 7 controls
whether the CPU is enabled for inter-
ruption by conditions included in the
external class. HWhen the bit 1is zeoro,
an external interruption cannot occur.
When the bit is one, an external inter-

ruption is subject to the corresponding
external subclass-mask bits in control
register 0; when the subclass—-mask bit
is zero, conditions associated with the
subclass cannot cause an interruption;
when the subclass—-mask bit 1s one, an
interruption in that subclass can occur.

4-6 Svstem/370 Principles of Operation

EC Mode (E): Bit 12, which controls the
format of the PSW and the mode of opera-
tion of the CPU, is one when the CPU is
in the extended-control (EC) mode.

Machine-Check Mask (M): Bit 13 controls
whethaer the CPU is enabled for inter-
ruption by machine-check conditions.
When the bit is zero, a machine-check
interruption cannot occur. When the bit
is one, machine-check interruptions due
to system damage and instruction—
processing damage are permitted, but
interruptions due to other machine-
check~subclass conditions are subject to
the subclass-mask bits in control regis-
ter 14.

Hait State (W): When bit 14 is one, the
CPU is waiting; that i1s, no instructions
are processed by the CPU, but inter-
ruptions may take place. Ulhen bit 14 is
zero, instruction fetching and execution
occur in the normal manner. The wait

indicator is on when the bit is one.

5

Problem State (P): UWhen

the CPU 1is in the problem
bit 15 is zero, the CPU
visor state. In the supervisor state,
all instructions are wvalid. In the
problem state, only those instructions
are valid that provide meaningful infor-
mation to the problem pregram and that
cannot affect system integrity; such
instructions are called unprivileged
instructions. The instructions that are
never valid in the problem state are
called privileged instructions. Khen a

bit 15 is one,
state. When
is in the super-

5

Wi

CPU in the problem state attempts to
execute a privileged instruction, a
privileged-operation exception is recog-
nized. Another group of instructions,
called semiprivileged instructions, are
executed by a CPU in the problem state
only if specific authority tests are
met; otherwise, a privileged-operation
exception or a special-operation excep-
tion is recognized.

Address-Space Control (§8): Bit 16, in
conjunction with PSK bit 5, controls the
translation mode. This bit is provided
with DAS. See the section "Translation
Modes™ under "Translation Control” in
Chapter 3, "Storage.”

Condition Code (CC): Bits 18 and 19 are
the two bits of the condition code. The
condition code is set to 0, 1, 2, or 3,
depending on the result obtained in
executing certain instructions. Most
arithmetic and logical operations, as
well as some other operations, set the
condition code. The instruction BRANCH
ON CONDITION can specifty any selection
of the condition-code values as a crite-

rion for branching. A table in Appendix
C summarizes the condition-code values
that may be set for all instructions

which set the condition code of the PSH.

Program Mask: Bits 20-23 are the four
program—-mask bits. Each bit i1s associ-
ated with a program axception, as
follows:

Program-

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception

results in an interruption. WKWhen the
mask bit is =zero, no interruption
occurs. The setting of the exponent-

underflow-mask bit or the significance-

mask bit also determines the manner
when

which the operation is completed
the corresponding exception occurs.

in

The

exponent-underflow and significance mask
bits are provided in the PSW even when

the floating-point facility is
installed.

not

Instruction Address: Bits 64¢0-63 form
the instruction address. This address
designates the location of the leftmost

byte of the next instruction to

be

executed, unless the CPU is in the wait

state (bit 14 of the PSW is onel.

Bit positions 0, 2-4, 17, and 24-39
unassigned and must contain zeros.

are
A

specification exception 1is recognized
when these bit positions do nhot contain

Zeros.

Chapter 4. Control

4-7

PROGRAM-STATUS-WORD FORMAT IN BC MODE

Chan Masks |I|E
0-5 0{X Key EIM{WIP Interruption Code
0 6 8 12 16 31
Prog
ILC|CC Mask Instruction Address
32 34 36 490 63

PSW Format in BC Mode

The following is a summary of the func-
tions of the PSW fields in the BC mode.

(See the figure "PSHW Format in BC
Mode.")
Channel Masks 0-5: Bits 0-5 control

whether the CPU 1is enabled for I/0
interruptions from channels 0-5, respec-
tively. When a bit is zero, the associ-
ated channel cannot cause an I/0
interruption. When the bit is one, an
interruption condition at the channel
can cause an I/0 interruption. Bits 0-5
of the BC-mode PSW are provided even
when the CPU 1is not capable of being
connected to a channel set.

I,/0 Mask (I0): Bit 6 controls whether
tha CPU is enabled for I/0 interruptions
from channels 6 and higher. WKhen the
bit is zero, these channels cannot cause
I/0 interruptions. When the bit is one,
I/0 interruptions are subject to the
channel-mask bits of tha corresponding
channels in control register 2. Uhen a
channel-mask bit is zero, the assocciated
channel cannot cause an I/0
interruption; when the channel-mask bit
is one, an interruption condition at the
channel can cause an interruption. Bit
6 of the BC-mode PSW is provided even
when the CPU is not capable of being
connected to a channel set.

External Mask (EX): The meaning of bit
7 is the same as in the EC mode.

PSH Key: The meaning of bits 8-11 is
the same as in the EC mode.

EC Mode (E): Bit 12, which controls the
format of the PSW and the mode of opera-
tion of the CPU, is =zero when the CPU is
in the basic-control (BC) mode.

Machine-Check Mask (M): The meaning of
bit 13 is the same as in the EC mode.

Hait State (W): The meaning of bit 14
is the same as in the EC mode.

Problem State (P): The meaning of bit

15 is the same as in the EC mode.

4-8 System/370 Principles of Operation

Interruption Code: Bits 16-31 in the

old PSW, when stored during a program,
supervisor-call, external, or I/0 inter-
ruption, identify the cause of the
interruption. This field is not used or
checked in the current PSUW. When a new
PSKW is introduced, the contents of this
field are ignored.

Instruction-Length Code (ILC): Bit

positions 32 and 33 of the old PSW indi-
cate the length of the last-interpreted

instruction when a program or
supervisor-call interruption occurs.
See the section "Instruction-Length

Code" in Chapter 6, "Interruptions.”
When a new PSW is introduced, the
contents of this field are ignored.

Condition Code (CC): Bits 34 and 35 are
the two bits of the condition code. The
meaning of the condition code is the
same as in the EC mode.

Program Mask: Bits 36-39 are the four
program-mask bits. Each bit is associ-

ated with a program exception, as
follows:
Program-
Mask Bit Program Exception
36 Fixed-point overflow
37 Decimal overtlow
38 Exponent underflow
39 Significance

The meaning of each mask bit is the same
as in the EC mode.

meaning of
in the EC

Instruction Address: The
bits 640-63 is the same as
mode.

CONTROL REGISTERS

The control registers provide for main-—
taining and manipulating control infor-

mation outside the PSW. There may be up
to sixteen 32-bit control registers.

One or more specific bit positions in
control registers are assigned to each
facility requiring such register space.
When the facility is installed, the bits
perform the defined control function.

The LOAD CONTROL instruction causes all
control-register positions within those
registers designated by the instruction
to be loaded from storage. The
instructions LOAD ADDRESS SPACE PARAME-
TERS, SET SECOHDARY ASN, PROGRAM CALL,
and PROGRAM TRANSFER provide specialized
functions to place information into
certain control-register positions.

Information loaded into the control
registers becomes active (that is,
assumes control over the system) at the
completion of the instruction causing
the information to be loaded.

At the time the registers are loaded,
the information is not chaecked for
exceptions, such as invalid
translation-format code or an address

unavailable or a
protected location. The validity of the
information is checked and the
exceptions, if any, are indicated at the
time the information is used.

designating an

The STORE CONTROL instruction causes all
control-register positions, within those
registers designated by the instruction,
to be placed in storage. The
instructions EXTRACT PRIMARY ASN,
EXTRACT SECONDARY ASN, and PROGRAM CALL

provide specialized functions to obtain
information from certain control-
register positions. Values

corresponding to
stalled register
unpredictable.

unassigned or unin-
positions are

Only the general structure of the
control registers is described here; the

definition of a particular control-
register position appears in the
description of the facility with which
the register position 1is associated.
The figure "Assignment of Control-
Register Fields" shous the control-
register positions which are assigned

and the initial value of the field upon
execution of initial CPU reset.

Programming Notes

1. The detailed definition of a
particular control-register bit
position can be located by refer-
ring to the entry "control-register
assignment™ in the Index.

2. To ensure that existing
operate correctly if and when new
facilities using additional
control-register positions are
installed, the program should load
zeros in unassigned control-
register positions. Although STORE
CONTROL may provide =zeros in the
bit positions corresponding to
unassigned or uninstalled register
positions, the program should not

programs

depend on such =zeros. It is
permissible, however, for the
program to load into the control

registers any information previous-
ly stored by means of STORE
CONTROL.

Chapter 4. Control 4-9

Ctrl Initial
Raeg |Bits Name of Field Associated with Value
0 0 Block-multiplexing control Block-multiplexing channels 0
0 1 SSM-suppression control SET SYSTEM MASK 0
0 2 TOD-clock—-sync control Multiprocessing 0
0 3 Low-address-protection control Low-address protection 0
0 % Extraction—-authority control Dual-address-space control 0
0 5 Secondary-space control Dual-address-space control 0
0 7 Storage-key-exception control Storage-key 4K-bvte block 0
0 8-12]Translation format Dynamic address translation 0
0 14 Vector controll Vector operations 0
0 16 Malfunction-alert subclass mask Multiprocessing 0
0 17 Emergency-signal subclass mask Multiprocessing 0
0 18 External-call subclass mask Multiprocessing 0
0 19 T0D-clock sync-check subclass mask [Multiprocessing 0
0 20 Clock-comparator subclass mask Clock comparator 0
0 21 CPU-timer subclass mask CPU timer 0
0 22 Service-signal subclass mask Service signal 0
0 26 Interval-timer subclass mask Interval timer 1
0 25 Interrupt-key subclass mask Interrupt key 1
0 26 External-signal subclass mask External signals 1
1 0-7 |Primary segment-table length Dynamic address translation 0
1 8-25|Primary segment-table origin Dvnamic address translation 0
1 31 Space-switch-event control Dual-address-space control [t}
2 0-31jChannel masks Channels 1
3 0-15{PSli-key mask Dual-address-space control 0
3 |16-31|Secondary ASN Dual-address—space control 0
4 0-15jAuthorization index Dual-address—space control 0
4 {16-31{Primary ASHN Dual-address-space control 0
5 0 Subsystem-linkage control Dual-address—space control 0
5 8-24|{Linkage-table origin Dual-address—space control 0
5 [25-31}Linkage-table length Dual-address-space control 0
7 0-7 |Secondary segment-table length Dual-address-space control 0
7 8-25]|Secondary segment-table origin Dual-address—space control 0

Assignment of Control-Register Fields (Part 1 of 2)

4-10

System/370 Principles of Operation

Ctrl Initial
Reg {Bits Name of Field Associated with Value
8 |16-31|Monitor masks MONITOR CALL 0
9 0 Successful-branching-event mask Program—event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
) 2 Storage-alteration-event mask Program—-event recording 0
9 3 GR-alteration—event mask Program-event recording 0
9 |16-31|PER general-register masks Program-event recording 0
10 8-31|{PER starting address Program-event recording 0
11 8-31|PER ending address Program-event recording 0
14 0 Check-stop control Machine-check handling 1
14 1 Synchronous-MCEL control Machine-check handling 1
14 2 I/0-extended~-logout control I/0 extended logout 0
14 4 Recovery subclass mask Machine-check handling 0
14 5 Degradation subclass mask Machine-check handling 0
14 6 External-damage subclass mask Machine-check handling 1
14 7 Warning subclass mask Machine-check handling 0
14 3 Asynchronous—-MCEL control Machine-check handling 0
14 9 Asynchronous—-fixed-log control Machine-check handling 0
14 12 ASN-translation control Dual-address—-space control 0
14 [20-31|ASN-first-table origin Dual-address-space control 0
15 8-28 |MCEL address Machine-check handling 5122

Explanation:

Bits 13, 30, and 31 of control register 0, and bits 0-30 of control register 6

are assigned to functions not described in this publication. The remaining

fields not listed are unassigned. The initial value for all unlisted control-

register positions is zero.

1 Bit 14 of control register 0, the vector-control bit, is described in the
publication IBM System/370 Vector Operations, $A22-7125.

2 Bit 22 is set to one, with all other bits set to zeros, thus vielding a
decimal byte address of 512.

Assignment of Control-Register Fields (Part 2 of 2)

DAS TRACING

Three DAS instructions optionally store
32 bytes of information about the
circumstances under which the
instructions are executed. This action

is called DAS tracing and 1is performed

by placing
block,
called

information in a 32-byte

called a trace entry, in an area

a

assists in
privileged
by providing an ongoing record in stor-

age

trace table. DAS <tracing

problen determination for
and semiprivileged programs

of signitTicant events. The trace

table and the location of the last-used
entry are

called the
The origin of the header is specified in

the

logical

trace-
location 8%4. These relation-

described by a control block

trace-table-entry header.

table-designation word at

ships are illustrated in the figure "DAS
Tracing."

DAS tracing

is controlled by bit 0 of

the trace-table designation, called the

DAS-trace-control bit. When the bit is
ona, a trace entry is made each time
PROGRAM CALL, PROGRAM TRANSFER, or SET
SECONDARY ASN is executed.

All locations associated with DAS trac-
ing are treated as 1logical addresses
whose handling derends on the DAT-mode
bit and address—space-control bit of tha
PSW. For PROGRAN CALL and PROGRAM
TRANSFER, the addresses are translated
by using the old primary segment-table
designation. For SET SECONDARY ASHN, the
addresses are translated by using either
the old primary segment-table desig-
nation or the old secondary segment-
table designation, depending on whether
PSH bit 16 specifies the primary-space
mode or the secondary-space mode,
respectively.

Bits 8-28 of the trace-table designation
provide the origin of the three-word
trace-table-entry header. Conceptually,
the header defines a table of 32-byte
elements, called trace entries. The

Chapter 4. Control 4-11

sacond and third words of the header
designate, respectively, the beginning
and end of this table. When DAS tracing

is on, the first word of the header,
called the current-entry control, is
updated in conjunction with the

execution of the instruction to be
traced. The trace entry designated by
the updated contents of the current-
entry control is used to contain the
trace information about the instruction
being traced. Updating is 1interlocked
to ensure that distinct entries are
produced when a common table is used for
tracing by more than one CPU.

Trace-Table Designation
Logical Locations 84-87

Trace-Table-Entry A
Header Origin 000 A

0 31

Ayss7

Updating the current-entry-control word
of the header normally consists in
advancing the contents of the current-
entry-control word by 32. However, if
the advanced value equals or exceeds the
value in the last-entry-control word of
the header, the contents of the first-
entry-control word replace the contents
of the current-entry-control word.
Thus, the dynamic filling of successive
entries wraps from the last entry to the
first entry, with no special recognition
accorded this event.

Tracing off
Tracing on

Trace-Table-Entry Header (8-byte boundary)

Current-Entry Ctrl

First-Entry Ctrl

Last-Entry Ctrl

0 32

64 95

Trace Table (32-byte boundary)

First (or Wrap) Entry

Current Entry

DAS Tracing

4-12 Systems/370 Principles of Operation

Location after the Last Entry

oy

Protection for DAS Tracing

The references to the trace-table desig-
nation, to the trace-table-entry header,
and to a trace entry for the purpose of
DAS tracing are not subject to key-
controlled protection. Low-address
protection and segment protection do
apply, however, to the store into the
current-entry-control word of the header
and into a trace entry. Instruction
execution is suppressed whenever a
protection exception is recognized that
is due to DAS tracing.

Other Actions Associated with DAS Trac-
ing

The store accesses made by DAS tracing
into the current-entry-control word of
the trace-table-entry header and into
the trace entry are monitored for PER
storage—-alteration events. Change
recording and reference recording also
apply to the storage accesses made by
DAS tracing.

Serialization for DAS Tracing

A serialization and checkpoint-
synchronization function 1is performed
before the operation begins and again
after the operation is completed.

TRACE-TABLE DESIGNATION

The trace-table designation is contained
in the word at logical location 8% and
has the following format.

Trace-Table-Entry-Header

Als/777/77/730rigin (logical) 000
0 1 8 29 31
DAS-Trace Control: Bit 0 controls
whether implicit tracing is performed

for PROGRAM CALL, PROGRAM TRANSFER, and
SET SECOHNDARY ASN. When this bit 1is
zero, no tracing is performed during
execution of these instructions. Khen
the bit is one, a trace entry is made
each time one of these instructions is

executed.

Trace-Table-Entry-Header 0Origin: Bits
8-28, with three zeros appended on the

right, constitute the logical address of
the trace-table-entry header.

Bits 1-7 are reserved and should be
zeros. They are ignored during implicit
tracing.

Bits 29-31 must be zeros if the DAS-
trace-control bit 1is one and execution
of PROGRAM CALL, PROGRAM TRANSFER, or
SET SECONDARY ASN is attempted; other-
wise, a specification exception is
recognized.

TRACE-TABLE-ENTRY HEADER

The trace-table-entry header defines a
table of 32-byte entries. One entry is
filled with information for each traced
instruction. After updating, the first
word of the header designates the entry
in which 1information is placed for the
current instruction. The second and
third words of the header designate the
beginning and end of the table. The
trace-table-entry header has the follow-
ing format:

Current-Entry|First-Entry |Last-Entry
Control Control Control

0 32 64 95
Current-Entry Control: Bits 0-31 are

updated to contain the origin of the
trace-table entry used for the current
instruction.

To update the field, a 32-bit intermedi-
ate aquantity called the next-entry
designator 115 formed by the logical
addition of 32 to the 32-bit contents of
the current-entry control, with overflow

out of bit 0 ignored. The next-entry
designator is then logically compared
with the 32-bit contents of the last-
entry control. If the next-entry

designator is less than the contents of
the last-entry control, then the 32-bit
next-entry designator replaces the
current-entry control. If the next-
entry designator is equal to or greater
than the contents of the last-entry
control, then the 32-bit contents of the
first-entry control replace the contents
of the current-entry control. A spec-—
ification exception is recognized i the
new value of bits 27-31 would not be
zero.

Bits 0-31 are replaced by using a word-
concurrent interlocked-update reference.
The field is not updated until it s
determined that no exceptions would be
encountered before the filling of the
current trace entry 1is completed or
before the current instruction is
completed. This 1is accomplished by
first fetching the contents of the
current-entry control, computing the
address of the trace entry, and testing
the address for access exceptions. If

Chapter 4. Control 6-13

no exceptions would be encountered, the
current-entry control is updated by
means of a compare-and-suwap type of
access. If the contents of the location
have been changed between the time of
the first fetch and the compare-and-swap
interlocked update, the new value of the

current-entry control is used, and the
procedure is repeated.

The new contents of bits 8-26 (called
the current-entry origin), with five

zero bits appended on the right, consti-
tute the logical address of the trace
entry for the current instruction. For
the purpose of determining the address
of the current entry, the first word of
the header has the following format:

Current-Entry

17727777 Origin (logical) {00000

0 8 27 31

The seceond and third words of the header
are used as follows:

First-Entry Control: Bits 32-63 replace
the contents of bit positions 0-31 when
the last-entry control disallows tracing
in the location following the last-used
trace entry.

Last-Entry Control: Bits 64-95 are
compared with a derived 32-bit quantity
called the next-entry designator.
Depending on whether the next-entry
dasignator is (1) less than, or
(2) equal to or greater than bits 64-95,
bits 0-31 are replaced by using an
interlocked-update raeference either by
(1) the next-entry dasignator or (2) the
contents of bit positions 32-63.

Interlocks

The current-entry-control word is
changed by using a word-concurrent
interlocked-update reference. The
fatches of the first-entry-control and
last-entry-control words are word-
concurrent and are made without regard
to when the interlock on the current-
entry-control word is established.

During tracing, the fetches of the
first-entry-control word and of the
last-entry-control word that are

performed in conjunction with updating
the current entry-control word are not
necassarily interlocked to prevent
subsequent storing into these words by

other CPUs and by channels.

4-14 System/370 Principles of Operation

Programming Notes

1. The last-entry-control word should
be thought of as designating the
location beyond the last entry in
the table. This 1is because an
equal comparison with the last-
entry-control value results in
wrapping to the first entry.

2. The high-order byte of each word of
the header should be set to zero;
otherwise, unexpected results can
occur. This 1is because 32 bits
participate in the comparison and
replacement actions but only 24
bits are used to address the trace
entry. Thus, a trace table may
wrap from high storage locations to
low storage locations, and, depend-

ing on high-order bit values, not
wrap to the intended beginning of
the table.

current trace information
is placed in the location desig-
nated by the updated contents of
the current-entry-control word, the
entry designated before tracing
occurs 1S not used initially,
although 1t may subsequently be

3. Because

used if 1t is in the range of the
table after wrapping.
4. Implicit tracing of SET SECONDARY

ASN while in the
mode requires that the trace-table
designation, CPU identity byte,
trace-table-entry header, and trace
table appear in the secondary space
which is current when instruction
execution begins.

secondary-space

TRACE ENTRY

A trace entry consists of 32 bytes
beginning on a 32-byte boundary. The
trace-entry address for the current
instruction is formed from bits 8-26 of
the updated current-entry-control word
of the trace-table-entry header. It i1s
treated as a logical address.

The store-type reference to a trace
entry is not necessarily a single-access
reference. During the execution of an
implicitly traced instruction, another
CPU or a channel may observe that an
entry, or peortions of an entry, are
stored more than once. The intermediate
results observed may or may not corre-
spond to the final results.

The format of an entry for the
instructions PROGRAM CALL, PROGRAM
TRANSFER, and SET SECONDARY ASHN is shown
in the figure "Trace—-tntry Formats."

Contents of Trace Entry for:
Positions within
Trace Entry PROGRAM CALL PROGRAM TRANSFER |SET SECONDARY ASN
Bytes 0-1 New PSW, bytes 0-1|{New PSW, bytes 0-1]New PSW, bytes 0-1
Byte 2 Hex 90! Hex A0} Hex BO!
Bytes 3-7 New PSW, bytes 3-7{New PSW, bytes 3-7]New PSW, bytes 3-7
Bytes 8-9 New PASN New PASN PASN
Bytes 10-11 New SASN 0 New SASN
Bytes 12-13 GR14 0ld PASN 0
Bvtes 14-15 After 0 0ld SASN
Bytes 16-19 0 0 0
Bvte Bits 0-1 ILC? ILc? ILC?
20 Bits 2-3 cC CcC cC
Bits 4-7 PM PM PM
Byte 21 CPU identity?® CPU identity? CPU identity?
Bytes 22-23 0 0 0
Bvtes 26-27 PC number? 0 0
Bytes 28-31 T0D clock, TOD clock, TOD clock,
bytes 3-6 bytes 3-6 bytes 3-6

Explanation:
1

Byte 2 contains the entry-type identifier value.
uniquely identify the type of event for which the entry is made.

Byte 20 contains the instruction-length code (ILC), condition code (CC),
and program mask (PM) of the old PSU.

3 Byte 21, "CPU identity," is fetched from logical location 795.
4 Bytes 24-27 for PROGRAM CALL contain eight zero bits appended to the left

of the 24-bit effective address speciftied by the PROGRAM CALL instruction.
The rightmost 20 bits constitute the PC number.

This position i1s used to

The ILC is always 2.

Trace-Entry Formats

PROGRAM-EVENT RECORDING

The program—-event-recording (PER) facil-
ity is provided to assist in debugging
programs. It permits the program to be

alerted to the Tollowing types of
events:
° Execution of a successful branch
instruction.
L4 Fetching of an instruction from the
designated storage area.
° Alteration of the contents of the
dasignated storaga area.
. Alteratien of the contents of

designated general registers.

The program can selectively specify that
one or more of the above types of events
be recognized. The information concern-

ing a PER event is provided to the
program by means of a program inter-
ruption, with the cause of the
interruption being identified in the

interruption code. PER is only avail-

able in the EC mode.

CONTROL-REGISTER ALLOCATION

The information for controlling PER
resides in control registers 9, 10, and
11 and has the following format:

Chapter 4. Control 4-15

Control Register 9

EM Gen.-Reg. Masks
0 4 16 31

Control Register 10

Starting Address

Control Register 11

Ending Address

o 8 31

PER-Event Masks (EM):
control register 9 specify
of events are recognized.
assigned as follows:

Bits 0-3 of
which types
The bits are

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event
Bit 2: Storage-alteration evant
Bit 3: General-register-alteration
event
Bits 0-3, when ones, specify that the

corresponding types of events be recog-
nized. When a bit is zero, the corre-
sponding type of event is not
recognized.

PER General-Register Masks: Bits 16-31
of control register 9 specify uwhich
general registers are designated for
recognition of the alteration of their
contents. The 16 bits, in the sequence
of ascending bit numbers, correspond one
for one with the 16 registers, in the
saquence of ascending register numbers.
Whean a bit is one, the alteration of the
associated register is recognized; when
it is zero, the alteration of the regis-
ter is not recognized.

PER Starting Address: Bits 8-31 of
control register 10 are the address of
the beginning of the designated storage
araa.

PER Ending Address: Bits 8-31 of
control register 11 are the address of
the end of the designated storage area.

Programming Notes

operate at reduced
while the cPU is
enabled for PER events. In order
to ensure that CPU performance is
not degraded becaus of the opera-
tion of the PER facility, programs

1. Models may
performance

4-16 System/370 Principles of Operation

that do not use it should disable
the CPU for PER events by setting
the PER mask in the EC-mode PSW to
zZero. No degradation due to PER
occurs in the BC mode or when the
PER mask in the EC-mode PSW is
zero. Disabling of the CPU for PER
events in the EC mode by means of
the masks in control register 9
does not necessarily prevent
performance degradation due to the
facility.

2. Some degradation may be experienced
on some models every time control
registers 9, 10, and 11 are loaded,
even when the CPU is disabled for
PER events (see the programming
note under "Storage—-Area Desig-
nation%).

OPERATION

PER is under control of bit 1 of the
EC-mode PSW, the PER mask. When the PER
mask, a particular PER-event mask bit,
and, for general-register-alteration
events, a particular general-register
mask bit are all ones, the CPU is
enabled for the corresponding type of
event; otherwise, it 1s disabled. In
the BC mode, the CPU is disabled for PER
events.

An interruption due to a PER event
normally occurs after the execution of
the instruction responsible for the
event. The occurrence of the event does
not affect the execution of the instruc-
tion, which may be either completed,
partially completed, terminated,
suppressed, or nullified.

When the CPU is disabled for a partic-
ular PER event at the time it occurs,
either by the PER mask in the PSH or by
the masks in control register 9, the
event 1s not recognized.

A change to the PER mask in the PSW or
to the PER control fields in control
registers 9, 10, and 11 affects PER
starting with the execution of the imme-

diately following instruction. If a PER
event occurs during the execution of an
instruction which changes the CPU from

being enabled to being disabled for that
tyvpe of event, that PER event is recog-
nized.

recognized in a trial
instruction, and subse-

PER events may be
execution of an

quently the instruction, DAT-table
entries, and operands may be refetched
for the actual execution. If any
refetched field was modified by another
CPU or by a channel between the trial

execution and the actual execution, it
is unpredictable whether the PER events
indicated are for the trial or the actu-
al execution.

iniiiin

mzge

T 4

For special-purpose instructions that
are not described in this publication,
tha operation of PER may not be exactly

as described in this section.

Identification of Cause

A program interruption for PER sets bit
8 of the interruption code to one and
places identifying information in real
storage locations 150-155. The informa-
tion stored has the following format:

Locations 150-151:

PERC|000000000000
0 4 15

Locations 152-155:

000000090 PER Address

0 8 31

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit posi-
tions 0-3 of real location 150, the PER
code. The bit position i1n the PER code
for a particular type of event 1i1s the
same as the bit position for that event
in the PER-event-mask field in control
register 9. When a program interruption
occurs, more than one type of PER event
can be concurrently indicated. Addi -
tionally, it another program-
interruption condition exists, the
interruption code for the program inter-
ruption may indicate both the PER events
and tha other condition. Zeros are
stored in bit positions 4-7 of location
150 and in bit positions 0-7 of location
151.

PER Address: The PER address at
locations 152-155 contains the instruc-
tion address used to Tfetch the instruc-
tion in execution when one or more PER
events were recognized. When the
instruction 1is the target of EXECUTE,
the instruction address used to fetch
the EXECUTE instruction is placed in the
PER-address field. Zeros are stored in
the byte at real location 152.

Instruction Address: The instruction
address in the program old PSW 1i1s the
address of the instruction which would
have been executed next, unless another
program condition is also indicated, in
which case the instruction address is
that determined by the instruction
ending due to that condition.

ILC:

The ILC indicates the length of
the

instruction designated by the PER

address, except when a concurrent spec-
ification exception for the PSW intro-
duced by LOAD PSW or a supervisor-call

interruption sets an ILC of 0.

When a PER event is recognized during
execution of a LOAD PSW or SUPERVISOR
CALL instruction which changes CPU oper-
ation from the EC mode to the BC mode,
the interruption occurs with the old PSW
specifying the BC mode and with the
interruption code stored in the old PSH.
The additional information identifying
the PER event is stored in its regular
format at real locations 150-155.

Priority of Indication

When a program interruption occurs and
more than one PER event has been recog-
nized, all recognized PER events are
concurrently indicated in the PER code.
Additionally, if another program=-
interruption condition concurrently
exists, the interruption code for the
program interruption indicates both the
PER condition and the other condition.
In the case of an instruction-fetching
event for SUPERVISOR CALL, the program
interruption occurs immediately after
the supervisor-call interruption.

If a PER event 1is recognized during the
execution of an instruction which also
introduces a new PSKW with the type of
PSW-format error which 1s recognized
early (see the section "Exceptions Asso-
ciated with the PSW" in Chapter 6,
"Interruptions™), both the specification
exception and PER are indicated concur-
rently in the interruption code of the

program interruption. However, for a
PSW-format error of the type which is
recognized late, only PER 1is indicated

code. In both
is stored as the

in the interruption
cases, the invalid PSW
program old PSW.

a PER event does not
normally affect the ending of instruc-
tion execution. However, in the follow-
ing cases, execution of an interruptible
instruction is not completed normally:

Recognition of

. When the instruction is due to be
interrupted for an asynchronous
condition (I/0, external, restart,
or repressible machine-check condi-

tion), a program interruption for
the PER event occurs Tfirst, and the
other interruptions occur subse-

quently (subject to the mask bits in
the new PSW) in the normal priority
order.

. When the stop function is performed,
a program interruption indicating
the PER event occurs before the CPU
enters the stopped state.

Chapter 4. Control 4-17

. When any program exception is recog-
nized, PER events recognized for
that instruction execution are indi-
cated concurrently.

the model, in certain
situations, recognition of a PER
event may appear to cause the
instruction to be interrupted prema-
turely without concurrent indication
of a program exception, without an
interruption for any asynchronous
condition, or without the CPU enter-
ing the stopped state.

. Depending on

Programming Notes

1. In the following cases, an instruc-
tion can both cause a program
interruption for a PER event and
change the value of masks control-
ling an interruption for PER
events. The original mask values
determine whether a program inter-
ruption takes place for the PER
event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-
fetching event and disable the
cpPU for PER interruptions.
Additionally, STORE THEN AND
SYSTEM MASK can cause a
storage-alteration event to be
indicated. In all these cases,
the program old PSW associated
with the program interruption
for the PER event may indicate
that the CPU was disabled for
PER events.

b. An instruction-fetching event
may be recognized during
execution of a LOAD CONTROL
instruction that changes the
value of the PER-event masks in
control register % or the
addresses in control registers
10 and 11 controlling indi-
cation of instruction-fetching
events.

2. No instruction can
values of general-register-altera-
tion masks and cause a general-
register-alteration event to be
recognized.

3. When a PER interruption occurs
during the execution of an inter-
ruptible instruction, the ILC indi-

both change the

cates the length of that
instruction or EXECUTE, as appro-
priate. When a PER interruption

occurs as a result of LOAD PSHW or

4-18 System/370 Principles of Operation

SUPERVISOR CALL, the ILC indicates
the length of these instructions or
EXECUTE, as appropriate, unless a
concurrent specification exception
on LOAD PSW calls for an ILC of 0.

4. When a PER interruption is caused
by branching, the PER address iden-
tifies the branch instruction (or
EXECUTE, as appropriate), whereas
the old PSW points to the next
instruction to be executed. When
the interruption occurs during the
execution of an interruptible
instruction, the PER address and

the instruction address in the old
PSW are the same.

STORAGE-AREA DESIGHNATION

Two types of PER events -- instruction

fetching and storage alteration --
involve the designatien of an area 1in
storage. The storage area starts at the
location designated by the starting
address in control register 10 and
extends up to and including the location
designated by the ending address in
control register 1ll. The area extends
to the right of the starting address.

An instruction-fetching event occurs
whenever the first byte of an instruc-
tion or the first byte of the target of
an EXECUTE instruction is fetched from
the designated area. A storage-
alteration event occurs when a store
access 1is made to the designated area by
using an operand address that is defined
to be a logical or a virtual address. A
storage-alteration event does not occur
for a store access made with an operand
address defined to be a real address.

The set of addresses designated for
instruction-fetching and storage-
alteration events wraps around at
address 16,777,215; that 1s, address 0
is considered to follow address
16,777,215. When the starting address
is less than the ending address, the
area is contiguous. When the starting
address is greater than the ending
address, the set of locations designated
includes the area from the starting
address to address 16,777,215 and the
area from address 0 to, and including,
the ending address. When the starting
address is equal to the ending address,
only that one location is designated.

Address comparison for instruction-
fetching and storage-alteration events
is performed by comparing all 24 bits of
the virtual, logical or instruction
address used for the reference with the
starting and ending addresses.

A

Programming Note

In some models, performance of address-
range checking 1s assisted by means of
an extension to each page-table entry in
the TLB. In such an i1mplementation,
changing the contents of control regis-
ters 10 and 11 when the instruction-
fetching or storage-alteration-event
mask 1s one, or setting either of these
PER-event masks to one, may cause the
TLB to be cleared of entries. This
degradation may be experienced even when
the CPU 1is disabled for PER events.
Thus, when possible, the program should
avoid loading control registers 9, 10,
or 1l1.

PER EVENTS

Successful Branching

A successful-branching event occurs
whenever one of the following instruc-
tions causes branching:

BRANCH AND LINK (BAL, BALR)

BRANCH AND SAVE (BAS, BASR)D

BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)

BRANCH ON INDEX HIGH (BXH)

BRANCH ON INDEX LOW OR EQUAL (BXLE)

A successful-branching event also occurs
whenever one of the following
instructions is completed:

PROGRAM CALL (PC)
PROGRAM TRANSFER (PT)

A successful-branching event causes a
PER successful-branching event to be
recognized 1if bit 0 of the PER-event
masks is one and the PER mask in the
EC-mode PSW is one.

A PER
indicated by
code to one.

successful-branching event 1is
setting bit 0 of the PER

Instruction Fetching

An instruction-fetching event occurs if
the Tirst byte of the instruction is
fetched from the storage area designated
by control registers 10 and 1l1. An
instruction-fetching event also occurs
if the first byte of the target of
EXECUTE is within the designated storage
area.

An instruction-fetching event causes a
PER instruction-fetching event to be
recognized if bit 1 of the PER-event

masks is one and the PER mask in the

EC-mode PSW is one.

event 1is
the PER

The PER instruction-fetching
indicated by setting bit 1 of
code to one.

Storage Alteration

A storage-alteration event occurs when-
ever a CPU, by using a logical or virtu-
al address, makes a store access without
an access exception to the storage area
designated by control registers 10 and
11.

The contents of storage are considered
to have been altered whenever the CPU
executes an instruction that causes all
or part of an opesrand or a DAS-trace
value to be stored within the designated
storage area. Alteration 1is considered
to take place whenever storing is
considered to take place for purposes of
indicating protection exceptions, except
that recognition does not occur for the
storing of data by a channel program.
(See the section "Recognition of Access
Exceptions™ in Chapter 6, "Interrup-
tions.") Storing constitutes alteration
for PER purposes even if the value
stored is the same as the original
value.

referred to
process of

Implied locations that are
by the CPU in the
(1) interval-timer updating,
(2) interruptions, and (3) execution of
I/0 instructions are not monitored.
Such locations include the interval-
timer, o0ld-PSW, interruption-code, and
CSK locations. These locations,
however, are monitored when information
is stored there explicitly by an
instruction. Similarly, monitoring does
not apply to the storing of data by a
channel program.

When an interruptible vector instruction
which performs storing is interrupted,
and PER storage alteration applies to
storage locations corresponding to
elements due to be changed beyond the
point of interruption, PER storage
alteration is indicated if any such
store actually occurred and may be indi-
cated even if such a store did not
occur. PER storage alteration is
reported for such locations only if no
access exception exists at the time that
the instruction is executed.

does not apply to
operands are speci-
fied to be real addresses. Thus, stor-
age alteration does not apply to
INVALIDATE PAGE TABLE ENTRY, RESET

Storage alteration
instructions whose

REFERENCE BIT, RESET REFERENCE BIT
EXTENDED, SET STORAGE KEY, SET STORAGE
KEY EXTENDED, and TEST BLOCK. When
INVALIDATE PAGE TABLE ENTRY is

Chapter 4. Control 6¢-19

installed, the operand address of READ
DIRECT 1is a real address and storage
alteration does not apply. When INVALI-
DATE PAGE TABLE ENTRY 1is not installed,
the operand address of READ DIRECT is a
logical address, and storage alteration
does apply.

A storage-alteration event causes a PER
storage-alteration event to be recog-
nized if bit 2 of the PER-event masks 1is
ona and the PER mask in the EC-mode PSW

is one.

A PER storage-alteration event is indi-
cated by setting bit 2 of the PER code
to one.

General-Register Alteration

A general-register-alteration event

occurs whenever the contents of a gener-
al register are replaced.

The contents of a general register are
considered to have been altered whenever
a new value is placed in the register.
Recognition of the event 1is not contin-
gent on the new value being different
from the previous one. The execution of
an RR-format arithmetic, logical, or
movement instruction is considered to
fetch the contents of the register,
perform the indicated operation, if any,
and then replace the value in the regis-

ter. A register can be designated by an
RR, RRE, RS, or RX instruction or
inplicitly, such as in TRANSLATE AND

TEST and EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to
alter the contents of the four registers
specifying the two operands, including
the cases where the padding byte 1is
used, when both operands have =zero
length. However, when condition code 3
is set for MOVE LONG, the general regis-
ters containing the operand lengths may
or may not be considered as having been
altered.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or
general-register pair, designated by R;,
only when the contents are actually
replaced, that 1is, when the first and
second operands are not equal.

It is unpredictable whether general-
register-alteration events are indicated
for instructions of the vector facility.

A general-register-alteration event
causes a PER general-register-alteration
event to be recognized if bit 3 of the

4-20 System/370 Principles of Operation

PER-event masks is one, the PER mask in
the EC-mode PSW is one, and the corre-
sponding bit in the PER general-register
mask is one.

The PER general-register-alteration

event is indicated by setting bit 3 of
the PER code to one.

Programming Note

The following are some examples of
general-register alteration:

1. Register-to-register load instruc-
tions are considered to alter the
register contents even when both
operand addresses designate the

same register.

Addition or subtraction of zero and
multiplication or division by one
are considered to constitute alter-
ation.

3. Logical and fixed-point shift oper-—
ations are considered to alter the
register contents even for shift
amounts of zero.

4. The branching instructions BRANCH
ON INDEX HIGH and BRANCH ON INDEX

LOW OR EQUAL are considered to
alter the first operand even uwhen
zero is added to its value.

INDICATION OF PER EVENTS CONCURRENTLY
WITH OTHER INTERRUPTION CONDITIONS

rules govern the indi-
events caused by an
also causes a program
monitor event, a space-
or a supervisor-call

The following

cation of PER
instruction that
exception, a
switch event,
interruption.

1. The indication of an instruction-
fetching event do