
------------- ---- - ---------- ,-

Publication Number
GA22-7000-10

IBM System/370

Principles of Operation

File Number
S370-01

Eleventh Edition (September 1987)

This major revision obsoletes and replaces GA22-7000-8, GA22-
7000-9, and Technical Newsletters GN22-0644 and GN22-0683.
Significant changes or additions to the text and illustrations
are indicated by a vertical line to the left of the change.

Changes are made occasionally to the
using this publication in connection
equipment, refer to the latest IBM
Processors Bibliography, GC20-000I7
applicable and current.

information herein; before
with the operation of IBM

System/370, 30xx, and 4300
for the editions that are

IBM may have patents or pending patent applications covering
subject matter described herein. Furnishing this publication
does not constitute or imply a grant of any license under any
patents, patent applications, trademarks, copyrights, or other
rights of IBM or of any third party, or any right to refer to IBM
in any advertising or other promotional or marketing activities.
IBM assumes no responsibility for any infringement of patents or
other rights that may result from the use of this publication or
from the manufacture, use, lease, or sale of apparatus described
herein.

licenses under IBM's utility patents are available on reasonable
and nondiscriminatory terms and conditions. Inquiries relative
to licensing should be directed, in writing, to: IBM Corpora­
tion, Director of Contracts and licensing, Armonk, NY, USA 10504.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to: IBM Corporation, Central Systems Architecture,
Department E57, PO Box 390, Poughkeepsie, NY, USA 12602. IBM may
use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

ec) Copyright International Business Machines Corporation 1970,
1972, 1973, 1974, 1980, 1981, 1987

This pUblication provides, for reference
purposes, a detailed definition of the
machine functions performed by
System/370.

The publication applies only to systems
operating in the System/370 mode. The
IBM 370-XA Principles of Operation,
SA22-7085, should be consulted regarding
the functions of the architecture which
apply to systems operating in the 370-XA
mode, and the IBM 4300 Processors Prin­
ciples of Operation for ECPS:VSE Mode,
GA22-7070, should be consulted regarding
the functions of the architecture which
apply only to systems operating in the
VSE mode.

The publication describes each function
at the level of detail needed to prepare
an assembler-language program that
relies on that function. It does not,
however, describe the notation and
conventions that must be employed in
preparing such a program, for which the
user must instead refer to the appropri­
ate assembler-language publication.

The information in this publication is
provided principally for use by
assembler-language programmers, although
anyone concerned with the functional
details of System/370 will find it
useful.

This publication is written as a refer­
ence and should not be considered an
introduction or a textbook. It assumes
the user has a basic knowledge of data­
processing systems. IBM publications
relating to System/370 are listed and
described in the IBM System/370, 30xx,
and 4300 Processors Bibliography,
GC20-0001.

All facilities discussed in this publi­
cation are not necessarily available on
every model. Furthermore, in some
instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain
capabilities may be described or implied
that are not offered on any model.
Examples of such capabilities are the
number of channel-mask bits in the
control register, the size of the CPU
address, and the number of CPUs sharing
main storage. The allowance for this
type of extendibility should not be
construed as implying any intention by
IBM to provide such capabilities. For
information about the characteristics
and availability of facilities on a
specific model, see the functional char­
acteristics publication for that model.

~ Largely because this publication is
~ arranged for reference, certain words

; PREFACE

and phrases appear, of necessity, earli­
er in the publication than the principal
discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index,
which indicates the location of the key
description.

The information presented in this publi­
cation is grouped in 13 chapters and
several appendixes:

Chapter 1, Introduction, highlights some
of the major facilities of System/370.

Chapter~, Organization, describes the
major groupings within the system -- the
central processing unit (CPU), storage,
and input/output -- with some attention
given to the composition and character­
istics of those groupings.

Chapter d, Storage, explains the infor­
mation formats, the addressing of stor­
age, and the facilities for storage
protection. It also deals with dynamic
address translation (OAT), which,
coupled with special programming
support, makes the use of a virtual
storage possible in System/370. Dynamic
address translation eliminates the need
to assign a program to a fixed lo~ation
in real storage and thus reduces the
addressing constraints on system and
problem programs.

Chapter ~, Control, describes the facil­
ities for the switching of system
status, for special externally initiated
operations, for debugging, and for
timing. It deals specifically with CPU
states, control modes, the program­
status word (PSW), control registers,
program-event recording, timing facili­
ties, resets, store status, and initial
program loading.

Chapter 2, Program Execution, explains
the role of instructions in program
execution, looks in detail at instruc­
tion formats, and describes briefly the
use of the program-status word (PSW), of
branching, and of interruptions. It
contains the principal description of
the dual-address-space (DAS) facility.
It also details the aspects of program
execution on one CPU as observed by
other CPUs and by channels.

Chapter ~, Interruptions, details the
mechanism that permits the CPU to change
its state as a result of conditions
external to the system, within the
system, or within the CPU itself. Six
classes of interruptions are identified
and described: machine-check interrup­
tions, program interruptions, super­
visor-call interruptions, external

iii

interruptions, input/output interrup­
tions, and restart interruptions.

Chapter 7, General Instructions,
contains detailed descriptions of
logical and binary-integer data formats
and of all unprivileged instructions
except the decimal and floating-point
instructions.

Chapter ~, Decimal Instructions,
describes in detail decimal data formats
and the decimal instructions. The deci­
mal instructions are a part of the
commercial instruction set.

Chapter 1, Floating-Point Instructions,
contains detailed descriptions of
floating-point data formats and the
instructions provided by the floating­
point facility and by the extended­
precision floating-point facility.

Chapter 1!, Control Instructions,
contains detailed descriptions of all of
the semiprivileged and privileged
instructions except for the I/O
instructions.

Chapter 11,
describes the
correcting,
malfunctions.

Machine-Check Handling,
mechanism for detecting,

and reporting machine

Chapter lZ, Operator Facilities,
describes the basic manual functions and
controls available for operating and
controlling the system.

Chapter 11, Input/Output Operations,
explains the programmed control of I/O
devices by CPUs and by channels. It
includes detailed descriptions of the
I/O instructions, channel-command words,
and other I/O-control formats.

The Appendixes include:

• Information about number represen­
tation

• Instruction-use examples

• Lists of the instructions arranged
in several sequences

• A summary of the condition-code
settings

• A list of the System/370 facilities

• A table of the powers of 2

• Tabular information helpful in
dealing with hexadecimal numbers

• An EBCDIC chart

•

tv

A discussion of changes
compatibility between
and System/370

affecting
System/360

• A discussion of changes affecting
compatibility within System/370

SIZE NOTATION

In this publication, the letters K and M
denote the multipliers 2 10 and 2 20 ,
respectively. Although the letters are
borrowed from the decimal system and
stand for kilo (10 3) and mega (10 6),

they do not have the decimal meaning but
instead represent the power of 2 closest
to the corresponding power of 10. Their
meaning in this pUblication is as
follows:

Symbol Value

K (kilo) 1,024 = 2 10

M (mega) 1,048,576 = 2 20

The following are some examples of the
use of K and M:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K

(not 65K).
224 is expressed as 16M.

When the words "thousand" and "million"
are used, no special power-of-2 meaning
is assigned to them.

BYTES, CHARACTERS, AND CODES

Although the System/360 architecture was
originally designed to support the
Extended Binary-Coded-Decimal Inter­
change Code (EBCDIC), the instructions
and data formats of the architecture are
for the most part independent of the
external code which is to be processed
by the machine. For most instructions,
all 256 possible combinations of bit
patterns for a particular byte can be
processed, independent of the character
which the bit pattern is intended to
represent. For instructions which use
the zoned format, and for those few
instructions which are dependent on a
particular external code, the instruc­
tion TRANSLATE may be used to convert
data from one code to another code.
Thus, a machine operating in the
System/370 mode can process EBCDIC,
ASCII, or any other code which can be
represented in eight or fewer bits per
character.

In this publication, unless otherwise
specified, the value given for a byte is
the value obtained by considering the 4
bits of the byte to represent a binary,
code. Thus, when a byte is said to

contain a zero, the value 00000000 bina­
ry, or 00 hex, is meant, and not the
value for an EBCDIC character "0," which
would be FO hex.

OTHER PUBLICATIONS

The channel-to-channel adapter is
described in the pUblication IBM
Channel-to-Channel Adapter, SA22-7091-.--

The I/O interface is
pUblication IBM

described in
System/360

the
and

System/370 I/O Interface Channel to
Control Unit Original Equipment Manufac­
turers' Information, GA22-6974.

Mathematical assists are described in
the publication IBM System/370 Mathemat­
ical Assists, SA22-7094, which describes
the i nstructi ons ARCTANGENT, COM~10N
LOGARITHM, COSINE, EXPONENTIAL, MULTIPLY
AND ADD, NATURAL LOGARITHM, RAISE TO
POWER, SINE, and SQUARE ROOT.

Vector operations are described in the
publication IBM System/370 Vector Oper­
ations, SA22-7125.

y

.This page is intentionally left blank.

vi

CHAPTER 1. INTRODUCTION .•..
General-Purpose Design .•...
Compatibility

Compatibility among System/370
~'odels•..

Compatibility between System/360
and System/370 ..

System Program . •
Availability • ..

CHAPTER 2. ORGANIZATION
Main Storage . .
CPU ...•... .

PSW • .
General Registers•.
Floating-Point Registers
Control Registers
Vector Facility

I/O
Channel Sets
Channels
I/O Devices and Control Units

Operator Facilities

CHAPTER 3. STORAGE
Storage Addressing ...••.

Storage Addressing with
Extended Address Fields

Information Formats
Integral Boundaries ...
Byte-Oriented-Operand Facility

Address Types . • . •
Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
Logical Address ..•.
Instruction Address ...
Effective Address

Storage Key•
Storage-Key 4K-Byte-Block
Facility
Storage Keys with Storage-Key

4K-Byte-Block facility Not
Installed••

Storage Keys with Storage-Key
4K-Byte-Block Facility
Installed ...•.•..•

Storage-Key-Exception Control
Storage-Key-Instruction

Extensions
Protection

Key-Controlled Protection
Segment Protection ..••••
Low-Address Protection ..••

Reference Recording
Change Recording
Prefixing •..•
Address Spaces
ASH Translation•..•

ASN-Translation Controls
ASN-Translation Tables

ASN-first-Table Entries
ASN-Second-Table Entries

ASN-Translation Process
ASN-First-Table Lookup
ASN-Second-Table Lookup

1-1
1-2
1-3

1-3

1-3
1-4
1-4

2-1
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-6
2-6
2-6
2-6

3-1
3-2

3-3
3-3
3-3
3-5
3-5
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6

3-7

3-7

3-7
3-7

3-7
3-7
3-8
3-9
3-9

3-10
3-10
3-11
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-16
3-16

CONTENTS

Recognition of Exceptions
during ASN Translation

ASN Authorization ..•
ASH-Authorization Controls

Control Register 4
ASH-Second-Table Entry
Authority-Table Entries

ASH-Authorization Process
Authority-Table Lookup
Recognition of Exceptions
during ASH Authorization

Dynamic Address Translation
Translation Control

Translation Modes
Control Register 0
Control Register 1
Control Register 7

Translation Tables . .
Segment-Table Entries
Page-Table Entries

Summary of
Dynamic-Address-Translation
Formats

Translation Process
Effective Segment-Table
Designation •

Inspection of Control Register
o •••••••••••••

Segment-Table Lookup •..•
Page-Table Lookup•
Formation of the Real Address
Recognition of Exceptions

during Translation •.••
Translation-Lookaside Buffer

Use of the
Translation-Lookaside Buffer

Modification of Translation
Tables •.•..

Address Summary
Addresses Translated
Handling of Addresses

Assigned Storage Locations

CHAPTER 4. CONTROL .
Stopped, Operating, Load, and

Check-Stop States
Stopped State
Operating State
Load State
Check-Stop state

Program-Status Word
EC and BC Modes •••••..
Program-Status-Word Format in EC

Mo de •••••••••
Program-Status-Word Format in BC

Mode •..•
Control Registers ••.•
DAS Tracing •.•..

Protection for DAS Tracing
Other Actions Associated with

DAS Tracing
Serialization for DAS Tracing

Trace-Table Designation
Trace-Table-Entry Header

Interlocks •••.••.
Trace Entry .•••••

Program-Event Recording •
Control-Register Allocation

3-17
3-17
3-17
3-17
3-17
3-18
3-18
3-19

3-20
3-20
3-22
3-22
3-23
3-24
3-24
3-25
3-25
3-26

3-26
3-27

3-27

3-30
3-30
3-31
3-31

3-31
3-31

3-32

3-36
3-38
3-38
3-39
3-41

4-1

4-2
4-2
4-2
4-3
4-3
4-3
4-4

4-6

4-8
4-8

4-11
4-13

4-13
4-13
4-13
4-13
4-14
4-14
4-15
4-15

vil

Operation · · · · · · · 4-16 Execution of Interruptible
Identification of Cause 4-17 Instructions · · · · · 5-9
Priority of Indication 4-17 Exceptions to Nullification and

storage-Area Designation 4-18 Suppression · · · · · · · · · 5-11
PER Events · · · · · 4-19 Storage Change and Restoration

Successful Branching · · · 4-19 for DAT-Associated Access
Instruction Fetching · · · · 4-19 Exceptions · · · · · · · · 5-11
Storage Alteration · · · 4-19 Modification of DAT-Table
General-Register Alteration 4-20 Entries · · · · · · · · · · 5-12

Indication of PER Events Trial Execution for Editing
Concurrently with Other Instructions and TRANSLATE 5-12
Interruption Conditions 4-20 Interlocked Update for

Direct Control · · · · · 4-23 Nullification and Suppression 5-12
Read-Write-Direct Facility 4-23 Dual-Address-Space Control 5-13
External-Signal Facility 4-23 Summary . · · · · · · · 5-13

Timing . . · · · · · · · · 4-23 DAS Functions · · · · · · 5-14
Time-of-Day Clock 4-23 Using Two Address Spaces 5-14

Format · · · · · · · 4-24 Changing to Other Spaces 5-14
states · · · · · 4-24 Moving Information · · · 5-15
Changes in Clock State · {t-25 Transferring Program Control 5-15
Setting and Inspecting the Handling Storage Keys and the

Clock · · · · · · · · 4-25 PSW Key · · · · · · · · 5-16
TOD-Clock Synchronization 4-26 Program-Problem Analysis 5-17
Clock Comparator · · · · 4-27 DAS Authorization ~lechan isms 5-17
CPU Timer · · · · · · · 4-28 Mode Requirements · · · 5-17
Interval Timer · · · · · · 4-29 Extraction-Authority Control 5-17

Externally Initiated Functions 4-30 PSW-Key Mask · · · · · · 5-18
Resets . · · · · 4-30 Secondary-Space Control 5-18

CPU Reset 4-33 Subsystem-Linkage Control 5-18
Initial CPU Reset 4-34 ASN-Translation Control 5-18
Subsystem Reset 4-34 Authorization Index 5-18
Program Reset · · 4-34 PC-Number Translation 5-21
Initial Program Reset 4-34 PC-Number Translation Control 5-21
Clear Reset · · · · 4-34 PC-Number Translation Tables 5-21
Power-On Reset · · · · 4-35 Linkage-Table Entries 5-21

Initial Program Loading 4-35 Entry-Table Entries · · · · 5-22
Store Status · · · · 4-37 PC-Number-Translation Process 5-22

Multiprocessing · · · · · · · 4-37 Linkage-Table Lookup · · · · 5-23
Shared Main Storage · · 4-38 Entry-Table Lookup · · · · 5-24
CPU-Address Identification 4-38 Recognition of Exceptions

CPU Signaling and Response 4-38 during PC-Number Translation 5-24
Signal-Processor Orders · · · 4-38 Sequence of Storage References 5-24
Conditions Determining Response 4-40 Conceptual Sequence 5-24

Conditions Precluding Overlapped Operation of
Interpretation of the Order Instruction Execution 5-24
Code · · · · · · · · · 4-40 Divisible Instruction

Status Bits 4-41 Execution · · · · · · · · · 5-25
Channel-Set Switching 4-43 Interlocks for Virtual-Storage

References · · · · 5-25
CHAPTER 5. PROGRAM EXECUTION 5-1 Instruction Fetching 5-26
Instructions · · · · · · · · 5-2 DAT-Table Fetches 5-27

Operands · · · · · · · · · 5-2 Storage-Key Accesses 5-28
Instruction Format 5-3 Storage-Operand References 5-28

Register Operands · · · · · 5-4 Storage-Operand Fetch
Immediate Operands 5-4 References · · · · · · · · 5-29
Storage Operands · · · · 5-4 Storage-Operand store

Address Generation · · · · · · · 5-5 References · · · · 5-29
Sequential Instruction-Address Storage-Operand Update

Generation · · · · · · · 5-5 References · · · · · · 5-29
Operand-Address Generation 5-5 Storage-Operand Consistency 5-30
Branch-Address Generation 5-6 Single-Access References 5-30

Instruction Execution and Multiple-Access References 5-31
Sequencing · · · · · · · · 5-6 Block-Concurrent References 5-31

Decision Making · · · · · 5-6 Consistency Specification 5-31
Loop Control 5-6 Relation between Operand
Subroutine Linkage · · · · 5-6 Accesses · · · · · · · · · · 5-32
Interruptions · · · · · 5-8 Other Storage References 5-33
Types of Instruction End; ng 5-8 Serialization · · · · · 5-33

Completion 5-9 CPU Serialization · · · 5-33
Suppression 5-9 Channel-Program Serialization 5-34
Nullification · · · · 5-9
Termination · · · 5-9 CHAPTER 6 . INTERRUPTIONS 6-1 I

Interruptible Instructions 5-9 Interruption Action 6-2 \
Point of Interruption 5-9 Interruption Code 6-5

vii i

Enabling and Disabling · · · · 6-6 CHAPTER 7 • GENERAL INSTRUCTIONS 7-1
Handling of Floating Interruption Data Format · · · · · · · · 7-2
Conditions · · · · · · · · · 6-7 Binary-Integer Representation 7-2

Instruction-Length Code 6-7 Binary Arithmetic · · · · · 7-3
Zero ILC · · · · · · · · · · 6-7 Signed Binary Arithmetic 7-3
ILC on Instruction-Fetching Addition and Subtraction 7-3
Exceptions · · · · · · · · 6-8 Fixed-Point Overflow · 7-3

Exceptions Associated with the Unsigned Binary Arithmetic 7-3
PSW . . . · · · · · · · · · 6-9 Signed and Logical Comparison 7-4

Early Exception Recognition 6-9 Instructions · · · 7-4
Late Exception Recognition 6-9 ADD · · · · · 7-7

External Interruption · · · · · 6-10 ADD HALFWORD 7-7
Clock Comparator · · · · 6-11 ADD LOGICAL · · · · · · 7-8
CPU Timer 6-11 AND · · · · · 7-8
Emergency Signal 6-11 BRANCH AND LINK 7-9
External Call · · · · 6-11 BRANCH AND SAVE 7-9
External Signal · · · · · 6-12 BRANCH ON CONDITION 7-10
Interrupt Key · · · · 6-12 BRANCH ON COUNT · · 7-11
Interval Timer · · · · · 6-12 BRANCH ON INDEX HIGH · · · 7-11
~1al funct ion Alert 6-12 BRANCH ON INDEX LOW OR EQUAL 7-11
Service Signal · · · · · · 6-13 COMPARE · · · 7-12
TOD-Clock Sync Check 6-13 COMPARE AND SWAP 7-12

I/O Interruption · · · 6-13 COMPARE DOUBLE AND SWAP 7-12
Machine-Check Interruption 6-14 CO~'PARE HALFWORD · · · · 7-14
Program Interruption · · · · 6-14 CO~1PARE LOGICAL · · 7-14

Exception-Extension Code · · · 6-15 COMPARE LOGICAL CHARACTERS UNDER
Program-Interruption Conditions 6-15 MASK · · · · · · · · · · · · 7-15

Addressing Exception · · · 6-15 CO~1PARE LOGICAL LONG 7-15
AFX-Translation Exception 6-18 CONVERT TO BINARY · · · · · · 7-16
ASN-Translation-Specification CONVERT TO DECIMAL · · · · · · 7-17

Exception · · · · · · 6-18 DIVIDE · · · · 7-17
ASX-Translation Exception 6-18 EXCLUSIVE OR · · · 7-18
Data Exception · · · · · · · 6-18 EXECUTE · · · · · 7-19
Decimal-Divide Exception 6-19 INSERT CHARACTER · · · · · 7-20
Dec i ma l-Overf lot'" Exception 6-19 INSERT CHARACTERS UNDER MASK 7-20
Execute Exception 6-19 LOAD · · · · · 7-20
Exponent-Overflow Exception 6-19 LOAD ADDRESS 7-21
Exponent-Underflow Exception 6-19 LOAD AND TEST · · · · · · · · 7-21
EX-Translation Exception · 6-20 LOAD Cor'1P L Ef'1ENT 7-21
Fixed-Point-Divide Exception 6-20 LOAD HALFWORD 7-22
Fixed-Point-Overflow Exception 6-20 LOAD ~1UL TIPLE · · · · · · · 7-22
Floating-Point-Divide LOAD NEGATIVE 7-22

Exception · · · · · · 6-20 LOAD POSITIVE · · · · · · · · 7-22
LX-Translation Exception 6-20 MONITOR CALL 7-23
t10n ito r Event · · · 6-21 MOVE · · · · · · · · · · · · · 7-23
Operation Exception · · 6-21 MOVE INVERSE · · · · 7-24
Page-Translation Exception 6-22 t'10VE LONG · · · · · · · · · · 7-24
PC-Translation-Specification MOVE NUttER I CS 7-27

Exception · · · 6-22 ~1OVE WITH OFFSET · · · · 7-27
PER Event · · · · · · 6-22 MOVE ZONES 7-28
Primary-Authority Exception 6-23 MULTIPLY · · · · · 7-28
Privileged-Operation Exception 6-23 MULTIPLY HALFWORD 7-29
Protection Exception · · · · 6-23 OR . · · · · · · · 7-29
Secondary-Authority Exception 6-24 PACK · · · · · · · · · · 7-30
Segment-Translation Exception 6-24 SET PROGRAM MASK 7-31
Significance Exception 6-25 SHIFT LEFT DOUBLE · · · · · · 7-31
Space-Switch Event · · · · · 6-25 SHIFT LEFT DOUBLE LOGICAL 7-32
Special-Operation Exception 6-25 SHIFT LEFT SINGLE 7-32
Specification Exception 6-26 SHIFT LEFT SINGLE LOGICAL 7-33
Translation-Specification SHIFT RIGHT DOUBLE 7-33

Exception · · · · · · · · · 6-27 SHIFT RIGHT DOUBLE LOGICAL 7-33
Unnormalized-Operand Exception 6-27 SHIFT RIGHT SINGLE 7-34
Vector-Operation Exception 6-28 SHIFT RIGHT SINGLE LOGICAL 7-34

Collective Program-Interruption STORE · · · · 7-34
Names . . · · · · · · · · · · 6-28 STORE CHARACTER 7-34

Recognition of Access Exceptions 6-28 STORE CHARACTERS UNDER MASK 7-35
f>1ult;ple Program-Interruption STORE CLOCK · · · · · · · 7-35

Conditions · · · · · · 6-30 STORE HALFWORD 7-36
Access Exceptions 6-33 STORE ~'Ul TIPlE · · · · · 7-36
ASH-Translation Exceptions 6-35 SUBTRACT · · 7-36
Trace Exceptions · · · · 6-35 SUBTRACT HALFWORD · · · 7-37

~ Restart Interruption 6-35 SUBTRACT LOGICAL 7-37
Supervisor-Call Interruption 6-36 SUPERVISOR CALL 7-38 , Priority of Interruptions 6-36

;x

TEST AND SET 7-38 READ DIRECT · 10-36
TEST UNDER MASK . · .. . 7-38 RESET REFERENCE BIT .. , 10-36
TRANSLATE 7-39 RESET REFERENCE BIT EXTENDED 10-37
TRANSLATE AND TEST 7-40 SET ADDRESS SPACE CONTROL 10-38
UNPACK 7-40 SET CLOCK · .. 10-39

SET CLOCK COMPARATOR 10-39
CHAPTER 8 .. DECIMAL INSTRUCTIONS 8-1 SET CPU TIMER 10-40
Decimal-Number Formats · .. 8-1 SET PREFIX · .. 10-40

Zoned Format · 8-1 SET PSW KEY FROM ADDRESS 10-41
Packed Format 8-1 SET SECm-WARY ASN 10-41
Decimal Codes · · .. 8-2 SET STORAGE KEY 10-45

Decimal Operations 8-2 SET STORAGE KEY EXTENDED 10-45
Decimal-Arithmetic Instructions 8-2 SET SYSTEM MASK 10-46
Editing Instructions .. · .. 8-3 SIGNAL PROCESSOR 10-46
Execution of Decimal Instructions 8-3 STORE CLOCK CO~iPARATOR 10-47
Other Instructions for Decimal STORE CONTROL 10-48

Operands 8-3 STORE CPU ADDRESS 10-48
Instructions 8-3 STORE CPU ID 10-48

ADD DECIMAL 8-5 STORE CPU T I~lER 10-49
COl"lPARE DECIMAL 8-5 STORE PREFIX 10-49
DIVIDE DECIMAL 8-5 STORE THEN AND SYSTEM MASK 10-50
EDIT 8-6 STORE THEN OR SYSTEi" MASK 10-50
EDIT AND MARK 8-9 TEST BLOCK 10-50
MULTIPLY DECIMAL 8-10 TEST PROTECTION 10-52
SHIFT AND ROUND DECIMAL 8-10 WRITE DIRECT 10-54
SUBTRACT DEC Ir'1A L 8-11
ZERO AND ADD 8-12 CHAPTER 11 .. MACHINE-CHECK

HANDLING 11-1
CHAPTER 9. FLOATING-POINT ~lach 1 ne-Check Detection 11-2

INSTRUCTIONS 9-1 Correction of Machine Malfunctions 11-2
Floating-Point Number Error Checking and Correction 11-2
Representation 9-1 CPU Retry 11-3

Normalization 9-2 Effects of CPU Retry 11-3
Floating-Point-Data Format 9-2 Checkpoint Synchronization 11-3
Instructions 9-4 Handling of Machine Checks

ADD NOR r·j A LIZ E D 9-6 during Checkpoint
ADD UNNOR~lA L IZED 9-7 Synchronization .. 11-3
cor-jp PI R E 9-8 Checkpoint-Synchronization
DIVIDE 9-9 Operations 11-4
HALVE 9-10 Checkpoint-Synchronization
LOAD 9-10 Action 11-4
LOAD AND TEST 9-11 Unit Deletion 11-4
LOAD COMPLEMENT 9-11 Handling of Machine Checks 11-5
LOAD NEGATIVE 9-11 Validation 11-5
LOAD POSITIVE 9-12 Invalid eBC 1 n Storage .. 11-6
LOAD ROUNDED .. · 9-12 Programmed Validation of
i'tuL TIPL Y 9-13 Storage 11-6
STORE 9-14 Invalid eBC in Storage Keys 11-7
SUBTRACT NORr1AlIZED 9-14 Invalid CBC in Registers 11-9
SUBTRACT UNNORMALIZED 9-15 Check-Stop State .. 11-10

System Check Stop .. 11-11
CHAPTER 10 .. CONTROL INSTRUCTIONS 10-1 Machine-Check Interruption 11-11

CONNECT CHANNEL SET 10-4 Exigent Conditions 11-11
DIAGNOSE 10-5 Repressible Conditions 11-12
DISCONNECT CHANNEL SET 10-6 Interruption Action 11-12
EXTRACT PRIMARY ASN 10-6 Point of Interruption 11-14
EXTRACT SECONDARY ASN 10-7 Machine-Check-Interruption Code 11-15
INSERT ADDRESS SPACE CONTROL 10-7 Subclass 11-16
INSERT PSl'J KEY 10-8 System Damage 11-16
INSERT STORAGE KEY · .. 10-8 Instruction-Processing Damage 11-17
INSERT STORAGE KEY EXTENDED 10-9 S~/stem Recovery 11-17
INSERT VIRTUAL STORAGE KEY 10-10 Interval-Timer Damage 11-17
INVALIDATE PAGE TABLE ENTRY 10-11 Timing-Facility Damage 11-17
LOAD ADDRESS SPACE PARAMETERS 10-12 External Damage 11-18
LOAD CONTROL 10-20 Vector-Facility Failure 11-18
LOl\D PSW 10-20 Degradation 11-18
LOAD REAL ADDRESS 10-21 Warning 11-18
r'1QV E TO PRH'iARY 10-22 Service-Processor Damage 11-18
MOVE TO SECONDARY 10-22 Subclass Modifiers 11-18
MOVE WITH KEY 10-24 Vector-Facility Source 11-19
PROGRAM CALL . .. 10-25 Backed Up 11-19
PROGRAM TRANSFER 10-31 Delayed 11-19

f PURGE TLB 10-36 Delayed Access Exception 11-19
\

x

Synchronous
Machine-Cheek-Interruption
Conditions
Processing Backup •.••
Processing Damage •...

Storage Errors • • . • •
Storage Error Uncorrected
Storage Error Corrected •
Storage-Key Error Uncorrected
Storage Degradation
Indirect Storage Error

Machine-Check Interruption-Code
Validity Bits ...•..•

PSW-EMWP Validity . .
PSW Mask and Key Validity
PSW Program-Mask and

Condition-Code Validity
PSW-Instruction-Address
Validity . . .•

Failing-Storage-Address
Validity ...•..

Region-Code Validity ...
External-Damage-Code Validity
Floating-Point-Register
Validity

General-Register Validity
Control-Register Validity
logout Validity•
Storage Logical Validity
CPU-Timer Validity ...•
Clock-Comparator Validity
Machine-Check Extended-logout

length .•....
Machine-Check Extended

Interruption Information
Register-Save Areas
External-Damage Code
Failing-Storage Address
Region Code

Handling of Machine-Check
Conditions•

Floating Interruption
Conditions •...

Floating
Machine-Cheek-Interruption
Conditions ...•

Machine-Check Masking ..••
Check-Stop Control ••••
Recovery Subclass Mask
Degradation Subclass Mask
External-Damage Subclass Mask
Warning Subclass Mask

Machine-Check logout
Logout Controls . ..

Synchronous Machine-Check
Extended-Logout Control •

Input/Output Extended-Logout
Control•

Asynchronous Machine-Check
Extended-Logout Control

Asynchronous Fixed-Logout
Control

Machine-Check Extended-logout
Address .•.•.....•

Summary of Machine-Check Masking
and logout ..••

CHAPTER 12. OPERATOR FACILITIES
Manual Operation
Basic Operator Facilities

Address-Compare Controls
Alter-and-Display Controls
Check-Stop Indicator
IML Controls .••...

11-19
11-19
11-20
11-20
11-20
11-20
11-21
11-21
11-21

11-21
11-22
11-22

11-22

11-22

11-22
11-22
11-22

11-22
11-23
11-23
11-23
11-23
11-23
11-23

11-23

11-24
11-24
11-24
11-26
11-26

11-27

11-27

11-27
11-27
11-28
11-28
11-28
11-28
11-28
11-28
11-29

11-29

11-29

11-29

11-29

11-29

11-30

12-1
12-1
12-1
12-1
12-2
12-2
12-2

Interrupt Key
Interval-Timer Control
load Indicator
load-Clear Key
load-Normal Key . •
load-Unit-Address Controls
Manual Indicator
Power Controls
Rate Control
Restart Key
Start Key
Stop Key ••.
Store-Status Key ••
System-Reset-Clear Key
System-Reset-Normal Key
Test Indicator .•.•
TOD-Clock Control
Wait Indicator •.•••.

Multiprocessing Configurations

CHAPTER 13. INPUT/OUTPUT
OPERATIONS .••.••••••

Attachment of Input/Output Devices
InputlOutput Devices
Control Units ..•.
Channels •.••.•

Modes of Operation
Types of Channels

I/O-System Operation .•
Compatibility of Operation

Control of Input/Output Devices
Input/Output Device Addressing
States of the Input/Output

12-2
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5
12-6
12-6

13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-5
13-7
13-8
13-8

System .••.•••..•. 13-9
Resetting of the Input/Output

System •..
I/O-System Reset ..•••
I/O Selective Reset
Effect of Reset on a Working

13-12
13-12
13-12

Device 13-12
Reset Upon Malfunction 13-12

Condition Code 13-12
Instruction Formats 13-15
Instructions 13-15
CLEAR CHANNEL 13-16
CLEAR I/O 13-17
HALT DEVICE 13-19
HALT 1/0 • • •• 13-23
RESUME I/O .. . 13-26
START I/O 13-27
START I/O FAST RELEASE 13-27
STORE CHANNEL ID 13-32
TEST CHANNEL .•..•• 13-33
TEST I/O ...• .•••. 13-34
Input/Output-Instruction-Exception
Handling •...•. 13-36

Execution of Input/Output
Operations .•..

Blocking of Data .
Channel-Address Word
Channel-Command Word
Command Code • • •
Designation of Storage Area
Chaining •.••

Data Chaining •.••
Command Chaining ••.•.

Skipping ..•• .
Program-Controlled Interruption
Channel Indirect Data

Addressing .•••
Addressing Using the 24-Bit
IDAW. . • . •

Addressing Using the 31-Bit
I DAW •.•• ••••

13-37
13-37
13-37
13-38
13-39
13-39
13-40
13-42
13-43
13-43
13-44

13-45

13-45

13-46

Suspension of Channel-Program
Execution

Commands
Write
Read ..•.•
Read Backward
Control
Sense
Sense ID • . • .
Transfer in Channel

Command Retry •
Conclusion of Input/Output

Operations
Types of Conclusion .

Conclusion at Operation
Initiation••

Immediate Operations ..•
Conclusion of Data Transfer
Termination by HALT I/O or

HALT DEVICE•
Termination by CLEAR I/O .
Termination by CLEAR CHANNEL
Termination Due to Equipment
Malfunction

Input/Output Interruptions
Interruption Conditions
Channel-Available
Interruption .••.

Priority of Interruptions
Interruption Action

Channel-Status Word
Unit status

Attention
Status ~1odifier
Control-Unit End
Busy
Channel End
DQvice End
Unit Check ..
Unit Exception

Channel Status ..
Program-Controlled
Interruption

Incorrect Length
Program Check
Protection Check
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check

Contents of Channel-Status Word
Information Provided by
Channel-Status Word

Subchannel Key
Suspended Indication
Logout Pending .
Deferred Condition Code
CCL~ Address
Count ..•..
Status ..•..

Channel Logout
I/O-Communication Area

APPENDIX A. NUMBER REPRESENTATION
AND INSTRUCTION-USE EXAMPLES

Number Representation
Binary Integers

Signed Binary Integers
Unsigned Binary Integers

Decimal Integers
Floating-Point Numbers
Conversion Example •

Instruction-Use Examples
('<lachine Format

xii

13-46
13-48
13-49
13-49
13-50
13-50
13-51
13-52
13-53
13-53

13-54
13-54

13-55
13-55
13-56

13-57
13-59
13-59

13-59
13-60
13-60

13-61
13-62
13-62
13-62
13-63
13-64
13-64
13-64
13-65
13-67
13-67
13-68
13-69
13-70

13-70
13-70
13-70
13-71
13-71
13-72
13-72
13-72
13-72

13-73
13-73
13-74
13-74
13-74
13-75
13-77
13-78
13-80
13-80

A-I
A-2
A-2
A-2
A-4
A-5
A-5
A-7
A-7
A-7

Assembler-Language Format
General Instructions ••••

ADD HALFWORD (AH) ••••
AND (N, NC, NI, NR)

NI Example . •
Linkage Instructions (BAL, BALR,

BAS, BASR)
Other BALR and BASR Examples

BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH)

BXH Example 1
BXH Example 2

BRANCH ON INDEX LOW OR EQUAL
(BXlE)

BXlE Example 1
BXlE Example 2

COMPARE HAlFWORD (CH) .•
COMPARE LOGICAL (Cl, CLC, ClI,

ClR)
CLC Example
CLI Example
ClR Example .

COMPARE lOGICAL CHARACTERS UNDER
MASK (ClM)

COMPARE LOGICAL lONG (CLCl)
CONVERT TO BINARY (CVB)
CONVERT TO DECIMAL (CVD)
DIVIDE (D, DR) •...
EXCLUSIVE OR (X, XC, XI, XR)

XC Example
XI Example

EXECUTE (EX) •
INSERT CHARACTERS UNDER MASK

(I Cf"1) ...•.....
lOAD (l, lR)•.
lOAD ADDRESS (lA)
LOAD HAlFWORD (lH) ..•...
~1OVE (MVC, MVI)

1'1VC Exampl e
,.1VI Example .

MOVE INVERSE (MVCIN)
MOVE LONG (MVCl) .•..
MOVE NUMERICS (MVN)
MOVE WITH OFFSET (MVO)
MOVE ZONES (MVZ)
~1U L TIP L Y (M, MR)
MULTIPLY HAlFWORD (MH)
OR (0, OC, 01, OR)

01 Example . ..
PACK (PACK)•.
SHIFT lEFT DOUBLE (SlDA)
SHIFT LEFT SINGLE (SLA)
STORE CHARACTERS UNDER MASK

(STCM)
STORE MULTIPLE (STM)
TEST UNDER MASK (TM)
TRANSLATE (TR)
TRANSLATE AND TEST (TRT)
UNPACK (UNPK) . . •.••

Decimal Instructions ..•.
ADD DECIMAL (AP) ...•.•.
COMPARE DECIMAL (CP) ...••
DIVIDE DECIMAL (DP)
EDIT (ED)•.
EDIT AND MARK (EDMK)
MULTIPLY DECIMAL (MP) ..
SHIFT AND ROUND DECIMAL (SRP)

Decimal Left Shift ...••
Decimal Right Shift
Decimal Right Shift and Round
Multiplying by a Variable

Power of 10•.
ZERO AND ADD (ZAP) •...

A-7
A-8
A-8
A-8
A-8

A-8
A-I0
A-I0
A-I0
A-I!
A-II
A-II

A-12
A-12
A-12
A-12

A-13
A-13
A-13
A-14

A-14
A-14
A-16
A-16
A-16
A-17
A-17
A-I8
A-IB

A-19
A-20
A-20
A-20
A-21
A-2I
A-21
A-22
A-22
A-23
A-23
A-24
A-24
A-24
A-25
A-25
A-25
A-26
A-26

A-26
A-27
A-27
A-28
A-28
A-30
A-30
A-30
A-31
A-31
A-31
A-33
A-34
A-34
A-34
A-35
A-35

A-35 ~
A-36 ~

Floating-Point Instructions A-36 Floating Point · · · · · · · · 0-4
ADD NORMALIZED (AD, ADR, AE, Halt Device · · · · · · · · · 0-4

AER, AXR) · · · · · · · · · · A-36 1/0 Extended Logout · · · · · 0-4
ADD UNNORMALIZED (AU, AUR, AW, Limited Channel Logout 0-4

AWR) . · · · · · · · · · A-36 Move Inverse · · · · · · 0-4
COt-WARE (CD, CDR, CE, CER) A-37 Multiprocessing · · · · 0-4
DIVIDE (DO, DDR, DE, DER) A-37 PSW-Key Handling 0-4
HALVE (HDR, HER) · · · · · · · A-38 Recovery Extensions 0-4
MULTIPLY (MD, MDR, ME, MER, MXD, Segment Protection 0-4

MXDR, MXR) · · · · · · · · · A-38 Service Signal · · · · · · D-4
Floating-Point-Number Conversion A-38 Start-lID-Fast Queuing · · · · D-4

Fixed Point to Floating Point A-39 Storage-Key-Instruction
Floating Point to Fixed Point A-39 Extensions · · · · · · 0-5

Multiprogramming and Storage-Key 4K-Byte Block 0-5
Multiprocessing Examples · A-40 Suspend and Resume · · · · 0-5

Example of a Program Failure Test Block · · · · · D-5
Using OR Immediate · · · · · A-40 Translation · · · · D-5

Conditional Swapping Vector · · · · · · D-5
Instructions (CS, COS) A-40 31-Bit IDAWs · · · · · · 0-5
Setting a Single Bit · · · A-41
Updating Counters · · · · · A-41 APPENDIX E. TABLE OF POWERS OF 2 E-l

Bypassing POST and WAIT A-42
BYPASS POST Routine · · · · A-42 APPENDIX F. HEXADECIMAL TABLES F-l
BYPASS WAIT Routine A-42

LOCK/UNLOCK · · · · · A-42 APPENDIX G. EBCDIC CHART G-l
LOCK/UNLOCK with LIFO Queuing
for Contentions · · · · · · A-43 APPENDIX H. CHANGES AFFECTING

LOCK/UNLOCK wi th FIFO Queuing COt'1PATIBILITY BETWEEN SYSTEM/360
for Contentions · · · · · A-44 AND SYSTEM/370 · · · · H-l

Free-Pool Manipulation · · · · A-46 Removal of USASCII-8 Mode H-l
Operation Codes of lID

APPENDIX B. LISTS OF INSTRUCTIONS B-1 Instructions H-l
Halt 1/0 · · · · H-l

APPENDIX C. CONDITION-CODE Start 1/0 H-l
SETTINGS · · · · · · · · · · C-l Test Channel · · · · · · H-2

Logout . · · · · · · · · H-2
APPENDIX D. FACILITIES · · · · D-1 Command Retry · · · B-2
Commercial Instruction Set D-l Channel Prefetching H-2
Other Facilities · · · · · D-1 Validity of Data · · · · · · · H-2

Branch and Save · · · · D-2
Channel Indirect Data Addressing D-2 APPENDIX I . CHANGES AFFECTING
Channel-Set Switching · · · · D-2 COMPATIBILITY WITHIN S YS T Ef'1I3 70 I-I
Clear 1/0 · · · · · · · · · · D-2 READ DIRECT and WRITE DIRECT I-I
Command Retry · · · · · · · · 0-2 Store Accesses · · · · · 1-1
Conditional Swapping · · · · 0-2 Fetch Accesses · · · · · · I-I
CPU Timer and Clock Comparator D-2 Operand-Access Consistency 1-2
Direct Control · · · · · · · · 0-2 Change Bit · · · · · · · · · 1-2
Dua l-AddJ~ess Space (DAS) 0-2 Subchannel Interruption-Pending
Extended · · · · · · · · · · · D-3 State . · · · · · · · · · · · 1-2
Extended-Precision Floating Point 0-3 START 1/0 and START 1/0 FAST
Extended Real Addressing D-3 RELEASE · · · · · · · · · 1-2
External Signals · · · 0-3
Fast Release · · · · · 0-3 INDEX · · · · X-I

CHAPTER ~ INTRODUCTION

General-Purpose Design •...•••••••••••••••••••••••••••••••• 1-2
Compa t i b iii ty .••.•••.••.•.••••••••.•••••.•••••••••••••.••• 1- 3

Compatibility among System/370 Models ..•..•••••••..••••. 1-3
Compatibility between System/360 and System/370 •.•.•...• 1-3

System Program ••..•..••..•.••••..•.•••••.•.••••••.••..•••• 1-4
Availability ••••••••.••..•.•••••••••••••.••.•••••••••••••• 1-4

This publication describes the IBM
System/370 architecture.

The architecture of a system defines its
attributes as seen by the programmer,
that is, the conceptual structure and
functional behavior of the machine, as
distinct from the organization of the
data flow, the logical design, the phys­
ical design, and the performance of any
particular implementation. Several
dissimilar machine implementations may
conform to a single architecture. When
the execution of programs on different
machine implementations produces the
results that are defined by a single
architecture, the implementations are
considered to be compatible.

System/370 is a product of the experi­
ence gained in developing and using
several generations of compatible
general-purpose systems, starting with
System/360 as a base. System/370 incor­
porates a number of significant
facilities, which are described below.

• Dynamic address translation (OAT)
is a facility that eliminates~e
need to assign a program to fixed
locations in real storage and thus
reduces the addressing constraints
on both control programs and prob­
lem programs, providing greater
freedom in program design. Dynamic
address translation permits a more
efficient and effective utilization
of main storage. When one of the
operating systems for virtual stor­
age is used, dynamic address
translation allows the use of up to
16,777,216 bytes of virtual
storage. Two page sizes (2K and 4K
bytes) and two segment sizes (64K
and 1M bytes) are provided,
although some models offer only the
64K-byte-segment size and some
models offer only the 4K-byte-page
size. Extensions to this facility
include the com~on-segment bit, the
use of which increases the effec­
tive size of the translation­
lookaside buffer and thus improves
CPU performance, and the instruc­
tion INVALIDATE PAGE TABLE ENTRY,
which improves CPU performance in a
demand-paging environment.

•

•

•

•

Protection facilities include a
storage key which is standard on
all models. On some models this is
extended by low-address protection,
the use of which increases the
protection of storage locations at
effective addresses 0 through 511,
which are vital to the control
program. Segment protection, which
is available on some models,
provides a segment-protection bit
in the segment-table entry. When
the bit is one, an attempt to store
in the segment causes a protection
exception to be recognized.

Extended real addressing, which is
an extension to dynamic address
translation, provides the CPU with
the capability of addressing up to
64M bytes of real storage. This is
accomplished by the use of bits 13
and 14 of the page-table entry,
which serve as the high-order bits
of the page-frame real address when
4K-byte pages are specified. The
larger address size applies to the
real address provided by dynamic
address translation and to the
address provided by the LOAD REAL
ADDRESS instruction.

Channel indirect data addressing, a
companion facility to dynamic
address translation, provides
assistance in translating data
addresses for I/O operations. It
permits a single channel-command
word to control the transmission of
data that spans noncontiguous areas
of main storage. In the basic form
the indirect-data-address word
contains a 24-bit address. This
becomes a 31-bit address when the
31-bit-IDAW facility is installed.

Multiprocessing provides for the
interconnection of CPUs to enhance
system availability and share data
and resources. It includes facili­
ties for shared main storage, for
programmed and special machine
signaling between CPUs, and for the
programmed reassignment of the
first 4K bytes of real storage for
each CPU.

Chapter 1. Introduction 1-1

•

•

•

•

•

•

Channel-set switching permits the
collection of channels in a channel
set to be connected to any CPU in a
multiprocessing configuration.

Timing facilities include a TOO
clock, a clock comparator, and a
CPU timer, along with an interval
timer that is also available in
System/360. The TOO clock provides
a measure of elapsed time suitable
for the indication of date and
time; it has a cycle of approxi­
mately 143 years and a resolution
such that the incrementing rate is
comparable to the instruction­
execution rate of the model. The
clock comparator provides for an
interruption when the TOD clock
reaches a program-specified value.
The CPU timer is a high-resolution
timer that initiates an inter­
ruption upon being decremented past
zero.

Extended-precision floating point
includes addition, subtraction, and
multiplication of floating-point
numbers with a fraction of 28 hexa­
decimal digits. Also included are
instructions for rounding from
extended to long and from long to
short formats.

Program-event recording provides
program interruptions on a selec­
tive basis as an aid in program
debugging.

The dual-address-space (DAS) facil­
~ provides for the support of
semiprivileged programs, which are
executed in the problem state but
which, when allowed by authori­
zation controls, are also permitted
to use additional capabilities
previously available only through
the assistance of supervisor-state
programs. The capabilities include
(1) a PSW-key mask that controls
the PSW keys which can be set by
the program, (2) a second address
space, called the secondary address
space, together with an address­
space-control bit in the PSW that
permits the program to switch
between the primary and secondary
address spaces, and (3) a table­
based linkage mechanism which
permits a program with one authori­
ty to call a program with greater
authority.

Start-I/O-fast gueuing permits a
subchannel to accept an SIOF func­
tion even when certain I/O-busy
conditions are encountered. If
accepted, the SIOF function is held
pending until the required facili­
ties are available. An SIOF
function is initiated when a START
I/O FAST RELEASE instruction is
executed and other necessary condi­
tions exist. Start-I/O-fast

1-2 System/370 Principles of Operation

•

queuing may be provided for one or
more subchannels of a channel.

The suspend-and-resume facility
provides a means for programmed
control of the progress of
channel-program execution. A flag
bit is provided in the channel­
command word (CCW) which indicates
that channel-program execution is
to be suspended by the channel
prior to executing the CCW. A new
bit is added to the channel-status
word which indicates that a channel
program has been suspended. A
control bit is provided in the
channel-address word (CAW) which
indicates that the suspend function
is permitted for the channel
program. An instruction, RESUME
I/O, causes a suspended channel
program to be resumed. The
suspend-and-resume facility may be
provided for one or more subchan­
nels of a multiplexer channel.

GENERAL-PURPOSE DESIGN

System/370 is a general-purpose system
that can readily be tailored for a varl­
ety of applications. A commercial
instruction set provides the basic proc­
essing capabilities of the system. If
the floating-point facility is installed
with the commercial instruction set, a
universal instruction set is obtained.
Adding other facilities, such as the
extended-precision floating-point facil­
ity or the conditional-swapping
facility, extends the processing capa­
bilities of the system still further.

System/370 has the capability of
addressing a main storage of up to 64M
bytes. The System/370 dynamic-address­
translation facility, used with appro­
priate programming support, can provide
each user with an address space of 16M
bytes independent of the amount of main
storage. The dual-address-space facili­
ty extends this by providing each user
with multiple address spaces. This
facility and this support permit a
System/370 model with limited main stor­
age to be used for a much wider set of
applications, and they make many appli­
cations with requirements for extensive
storage practical and convenient.

Another major aspect of the general­
purpose design of System/370 is the
capability provided to attach a wide
variety of I/O devices through a selec­
tor channel and two types of multiplex­
ing channels. System/370 has a byte­
multiplexer channel for the attachment
of unbuffered devices and of a large
number of communications devices. Addi­
tionally, it offers a block-multiplexer
channel, which is particularly well-

suited for the attachment of buffered
devices and high-speed cyclic devices.

An individual System/370 installation is
obtained by selecting the system compo­
nents best suited to the applications
from a wide variety of alternatives in
internal performance, functional
ability, and input/output.

COMPATIBILITY

COMPATIBILITY AMONG SYSTEM/370 MODELS

Although systems operating in the
System/370 mode may differ in implemen­
tation and physical capabilities,
logically they are upward and downward
compatible. Compatibility provides for
simplicity in education, availability of
system backup, and ease in system
growth. Specifically, any program writ­
ten for the System/370 mode gives
identical results on any system operat­
ing in that mode, provided that the
program:

1. Is not time-dependent.

2. Does not depend on system facili­
ties (such as storage capacity, I/O
equipment, or optional facilities)
being present when the facilities
are not included in the configura­
tion.

3. Does not depend on system facili­
ties being absent when the facili­
ties are included in the
configuration. For example, the
program must not depend on inter­
ruptions caused by the use of
operation codes or command codes
that are not installed in some
models. Also, it must not use or
depend on fields associated with
uninstalled facilities. For exam­
ple, data should not be placed in
an area used by another model for
logout. Similarly, the program
must not use or depend on unas­
signed fields in machine formats
(control registers, instruction
formats, etc.) that are not explic­
itly made available for program
use.

4. Does not depend on results or func­
tions that are defined to be unpre­
dictable or model-dependent. This
includes the requirement that the
program should not depend on the
assignment of I/O addresses and CPU
addresses.

5. Does not depend on results or func­
tions that are defined in the
functional-characteristics publica-

tion for a particular model to be
deviations from the architecture.

6. Takes into account those changes
made to the original System/370
architectural definition that
affect compatibility among
System/370 models. These changes
are described in Appendix I.

COMPATIBILITY BETWEEN SYSTEM/360 AND
SYSTEM/370

System/370 is forward-compatible from
System/360. A program written for the
System/360 operates on the System/370,
provided that the program:

1. Complies with the limitations
described in the section "Compat­
ibility among System/370 Models."

2. Does not use PSW bit 12 as an ASCII
bit (a special case of the second
rule in the section "Compatibility
among System/370 Models").

3. Does not use or depend on storage
locations assigned specifically for
System/370, such as the
interruption-code areas, the
machine-check save areas, and the
extended-logout area (a special
case of the third rule in the
section "Compatibility among
System/370 Models").

4. Takes into account other changes
made to the System/360 architec­
tural definition that affect
compatibility between System/360
and System/370. These changes are
described in Appendix H.

Programming Note

This pUblication assigns meanings to
various operation codes, to bit posi­
tions in instructions, channel-command
words, registers, and table entries, and
to fixed locations in the low 512 bytes
of storage. Unless specifically noted,
the remaining operation codes, bit posi­
tions, and low-storage locations are
reserved for future assignment to new
facilities and other extensions of the
architecture. (In addition to fixed
locations in the low 512 bytes, logical
location 795 is assigned to a specific
function.)

To ensure that existing programs operate
if and when such new facilities are
installed, programs should not depend on
an indication of an exception as a
result of invalid values that are
currently defined as being checked. If
a value must be placed in unassigned

Chapter 1. Introduction 1-3

positions that are not checked, the
program should enter zeros. When the
machine provides a code or field, the
program should take into account that
new codes and bits may be assigned in
the future. The program should not use
unassigned low-storage locations for
keeping information since these
locations may be assigned in the future
in such a way that the machine causes
this location to be changed.

SYSTEM PROGRAM

The system is designed to operate with a
control program that coordinates the use
of system resources and executes all I/O
instructions, handles exceptional condi­
tions, and supervises scheduling and
execution of multiple programs.

AVAILABILITY

Availability is the capability of a
system to accept and successfully proc­
ess an individual job. System/370
permits substantial availability by
(1) allowing a large number and broad
range of jobs to be processed concur­
rently, thus making the system readily
accessible to any particular job, and
(2) limiting the effect of an error and
identifying more precisely its cause,
with the result that the number of jobs
affected by errors is minimized and the
correction of the errors facilitated.

Several design aspects make this possi­
ble.

•

•

A program is checked for the
correctness of instructions and
data as the program is executed,
and program errors are indicated
separate from equipment errors.
Such checking and reporting assists
in locating failures and isolating
effects.

The protection facilities, in
conjunction with dynamic address
translation, permit the protection
of the contents of storage from
destruction or misuse caused by
erroneous or unauthorized storing
or fetching by a program. This
provides increased security for the
user, thus permitting applications
with different security require­
ments to be processed concurrently
with other applications.

1-4 System/370 Principles of Operation

•

•

•

•

•

•

•

Dynamic address translation allows
isolation of one application from
another, still permitting them to
share common resources. Al so, it
permits the implementation of
virtual machines, which may be used
in the design and testing of new
versions of operating systems along
with the concurrent processing of
application programs. Addition­
ally, it provides for the
concurrent operation of incompat­
ible operating systems.

Multiprocessing and channel-set
switching permit better use of
storage and processing capabili­
ties, more direct communication
between CPUs, and duplication of
resources, thus aiding in the
continuation of system operation in
the event of machine failures.

MONITOR CALL, program-event record­
ing, and the timing facilities
permit the testing and debugging of
programs without manual inter­
vention and with little effect on
the concurrent processing of other
programs.

Emulation is performed under
control-program superV1Slon, thus
making it possible to perform
emulation concurrently with other
applications.

On most models, error checking and
correction (ECC) in main storage,
CPU retry, and command retry
provide for circumventing intermit­
tent equipment malfunctions, thus
reducing the number of equipment
failures.

An enhanced machine-check handling
mechanism provides model­
independent fault isolation, which
reduces the number of programs
impacted by uncorrected errors.
Additionally, it provides model­
independent recording of machine­
status information. This leads to
greater machine-check handling
compatibility between models and
improves the capability for loading
and operating a program on a
different model when a system fail­
ure occurs.

A small number of manual controls
are required for basic system oper­
ation, permitting most operator­
system interaction to take place
via a unit operating as an I/O
device and thus reducing the possi­
bility of operator errors.

CHAPTER ~ ORGANIZATION

Main Storage •.••.••••••.••••••.•.••••••..•••••.••••••••••. 2-3
CPU ..•••.••••••••••.••.•..••••••••..•••..••••.•.••...•.••• 2-3

PSW ••....•..••..•..••.•••••..•••••.••..••.••.•.•••.••... 2-3
General Registers •.••.•...••••..•••....•.....•......•.•. 2-4
Floating-Point Registers ••.•••.•..••••.••..••..•.••....• 2-4
Control Registers •..••••••.•••.••......•.•.•••......•••• 2-4
Vector Facility ..••.••..••••••••..••...•••.•••••.•.••.•• 2-4

1/0•............•...........•.....•.•.... 2-4
Channel Sets .•..••.••......•.•......•...••••.•..••.•.••. 2-6
Channel s ..•....••••••.•.•....•...•••...••.••••..•••••.•. 2-6
1/0 Devices and Control Units ...•.•.•..•.•••..••••••.••. 2-6

Operator Facilities•...•.••......•..•....••..•.... 2-6

logically, System/370 consists of main
storage, one or more central processing
units (CPUs), operator facilities, chan­
nel sets, channels, and 1/0 devices.
1/0 devices are attached to channels
through control units. The physical
identity of these functions may vary
among implementations, called "models."
The figure "logical Structure" depicts
the logical structure for a single-CPU
system and for a two-CPU multiprocessing
system.

Specific processors may differ in their
internal characteristics, the installed
facilities, the number and types of
channels, the size of main storage, and
the representation of the operator
facilities. The differences in internal
characteristics are apparent to the
observer only as differences in machine
performance.

Chapter 2. Organization 2-1

Single-CPU Configuration

Main
Storage

CPU

~--~--------~-/ /

/

2-CPU Multiprocessing Configuration

Main /
Storage

I

CPU CPU /

Channel Channel Channel Channel Channel Channel

Channel Set Channel Set Channel Set

1/ /1 1 1 1 1 0 0

1 1 1 1 1 1/ /1
1 1 1 1 1 1 1 1 1 1

1/

o 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0

logical Structure

A system viewed without regard to its
I/O devices ;s referred to as a config­
uration. All of the physical equipment,
whether in the configuration or not, is
referred to as the installation.
Model-dependent reconfiguration controls
may be provided to change the amount of
main storage and the number of CPUs,
channels, and channel sets ;n the
configuration. In some instances, the
reconfiguration controls may be used to
partition a single configuration into
multiple configurations. Each of the
configurations so reconfigured has the
same structure, that is, main storage,
one or more CPUs, and channels. Each
configuration is isolated in that the
main storage in one configuration is not

2-2 System/370 Principles of Operation

directly addressable by the CPUs and
channels in another configuration. It
is, however, possible for one configura­
tion to communicate with another by
means of shared I/O devices, the
direct-control facility, or a channel­
to-channel adapter. At anyone time,
the storage, CPUs, channel sets, and
channels connected together in a system
are referred to as being in the config­
uration. Channel sets and the
associated channels are considered to be
in a particular configuration as long as
they are connected to main storage inde­
pendent of whether or not the channel
set is connected to a CPU in the config­
uration. Each CPU, channel set,

channel, and main-storage location can
be in only one configuration at a time.

MAIN STORAGE

Main storage, which is directly address­
able, provides for high-speed processing
of data by the CPUs and channels. Both
data and programs must be loaded into
main storage from input devices before
they can be processed. The amount of
main storage available on the system
depends on the model, and, depending on
the model, the amount in the configura­
tion may be under control of model­
dependent configuration controls. The
storage is available in multiples of
2K-byte blocks. When either TEST BLOCK
or the storage-key 4K-byte-block facili­
ty is installed, storage is available in
multiples of 4K-byte blocks. At any
instant in time, all CPUs and all chan­
nels in the configuration have access to
the same blocks of storage and refer to
a particular block of main-storage
locations by using the same absolute
address.

Main storage may include a faster-access
buffer storage, sometimes called a
cache. Each CPU may have an associated
cache. The effects, except on perform­
ance, of the physical construction and
the use of distinct storage media are
not observable by the prograM.

The central processing unit (CPU) is the
controlling center of the system. It
contains the sequencing and processing
facilities for instruction execution,
interruption action, timing functions,
initial program loading, and other
machine-related functions.

The physical implementation of the CPU
may differ among models, but the logical
function remains the same. The result
of executing an instruction is the same
for each model, providing that the
program complies with the compatibility
rules.

The CPU, in executing instructions, can
process binary integers and floating­
point numbers of fixed length, decimal
integers of variable length, and logical
information of either fixed or variable
length. Processing may be in parallel
or in series; the width of the process­
ing elements, the multiplicity of the
shifting paths, and the degree of simul­
taneity in performing the different
types of arithmetic differ from one CPU

~ to another without affecting the logical
results.

Instructions which the CPU executes fall
into five classes: general, decimal,
floating-point, control, and I/O
instructions. The general instructions
are used in performing binary integer
arithmetic operations and logical,
branching, and other nonarithmetic oper­
ations. The decimal instructions
operate on data in the decimal format,
and the floating-point instructions on
data in the floating-point format. The
privileged control instructions and the
I/O instructions can be executed only
when the CPU is in the supervisor state;
the semiprivileged control instructions
can be executed in the problem state,
subject to the appropriate authorization
mechanisms.

To perform its functions, the CPU may
use a certain amount of internal
storage. Although this internal storage
may use the same physical storage medium
as maln storage, it is not considered
part of main storage and is not address­
able by programs.

The CPU provides registers which are
available to programs but do not have
addressable representations in main
storage. They include the current
program-status word (PSW), the general
registers, the floating-point registers,
the control registers, the prefix regis­
ter, and the registers for the clock
comparator and the CPU timer. Each CPU
in an installation provides access to a
time-of-day (TOO) clock, which may be
local to that CPU or shared with other
CPUs in the installation. The instruc­
tion operation code determines which
type of register is to be used in an
operation. See the figure "General,
Floating-Point, and Control Registers"
later in this chapter for the format of
those registers.

PSW

The program-status word (PSW) includes
the instruction address, condition code,
and other information used to control
instruction sequencing and to determine
the state of the CPU. The active or
controlling PSW is called the current
PSW. It governs the program currently
being executed.

The CPU has an interruption capability,
which permits the CPU to switch rapidly
to another program in response to excep­
tional conditions and external stimuli.
When an interruption occurs, the CPU
places the current PSW in an assigned
storage location, called the old-PSW
location, for the particular class of
interruption. The CPU fetches a new PSW
from a second assigned storage location.
This new PSW determines the next program
to be executed. When it has finished
processing the interruption, the inter-

Chapter 2. Organization 2-3

rupting program may reload the old PSW,
making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption:
external, I/O, machine check, program,
restart, and supervisor call. Each
class has a distinct pair of old-PSW and
new-PSW locations permanently assigned
in real storage.

GENERAL REGISTERS

Instructions may designate information
in one or more of 16 general registers.
The general registers may be used as
base-address registers and index regis­
ters in address arithmetic and as accu­
mulators in general arithmetic and
logical operations. Each register
contains 32 bits. The general registers
are identified by the numbers 0-15 and
are designated by a four-bit R field in
an instruction. Some instructions
provide for addressing multiple general
registers by having several R fields.
For some instructions, the use of a
specific general register is implied
rather than explicitly designated by an
R field of the instruction.

For some operations, two adjacent gener­
al registers are coupled, providing a
64-bit format. In these operations, the
program must designate an even-numbered
register, which contains the leftmost
(high-order) 32 bits. The next higher­
numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators
in general arithmetic and logical oper­
ations, 15 of the 16 general registers
are also used as base-address and index
registers in address generation. In
these cases, the registers are desig­
nated by a four-bit B field or X field
in an instruction. A value of zero in
the B or X field specifies that no base
or index is to be applied, and, thus,
general register 0 cannot be designated
as containing a base address or index.

FLOATING-POINT REGISTERS

Four floating-point registers are avail­
able for floating-point operations.
They are identified by the numbers 0, 2,
4, and 6 and are designated by a four-

2-4 System/370 Principles of Operation

bit R field in floating-point instruc­
tions. Each floating-point register is
64 bits long and can contain either a
short (32-bit) or a long (64-bit)
floating-point operand. A short operand
occupies the leftmost bit positions of a
floating-point register. The rightmost
portion of the register is ignored in
operations that use short operands and
remains unchanged in operations that
produce short results. Two pairs of
adjacent floating-point registers can be
used for extended operands: registers 0
and 2, and registers 4 and 6. Each of
these pairs, identified by the numbers 0
and 4, provides for a 128-bit format.

CONTROL REGISTERS

The CPU makes provisions for 16 control
registers, each having 32 bit positions.
The bit positions in the registers are
assigned to particular facilities in the
system, such as program-event recording,
and are used either to specify that an
operation can take place or to furnish
special information required by the
facility.

The control registers are identified by
the numbers 0-15 and are designated by
four-bit R fields in the instructions
LOAD CONTROL and STORE CONTROL. Multi­
ple control registers can be addressed
by these instructions.

VECTOR FACILITY

Depending on the model, a vector facili­
ty may be provided as an extension of
the CPU. When the vector facility is
provided on a CPU, it functions as an
integral part of that CPU. The func­
tions of the vector facility and its
registers are described in the publica­
tion IBM System/370 Vector Operations,
SA22-7125.

Input/output (I/O) operations involve
the transfer of information between main
storage and an I/O device. I/O devices
and their control units attach to chan­
nels, which control this data transfer.

Control General Floating-Point Registers
Registers Registers

R Register
Field Number 1+--32 bits-~I 1+--32 bits-~I 1 ~ 64 bits ~I

0000 0

[I
I 0001 1

0010 2

[I
0011 3 I

[I
0100 4

I 0101 5

[I
0110 6

I 0111 7

1000 8

[I
1001 9 I

[I
Note: The brackets

1010 10 indicate that the two
registers may be coupled
as a double-register

I
pair, designated by

1011 11 specifying the lower-
numbered register in
the R field. For ex-

[I
ample, the general-

1100 12 register pair 14 and
15 is designated by
1110 binary in the R

I
field.

1101 13

[I
1110 14

I 1111 15

General, Floating-Point, and Control Registers
~

~

Chapter 2. Organization 2-5

CHANNEL SETS

The group of channels which connects to
a particular CPU is called a channel
set. When channel-set switching is
installed in a multiprocessing config­
uration, the program can control which
CPU is connected to a particular channel
set. A CPU can be connected to no more
than one channel set at a time, and a
channel set can be connected to no more
than one CPU at a time. When channel­
set switching is not installed, the
channel sets, in the absence of model­
dependent reconfiguration controls, are
permanently connected to a single CPU.

CHANNELS

A channel relieves the CPU of the burden
of communicating directly with I/O
devices and permits data processing to
proceed concurrently with I/O
operations. A channel is connected with
main storage, with control units, and,
unless it is a member of a disconnected
channel set, with a cpu.
A channel may be an independent unit,
complete with the necessary logical and
internal-storage capabilities, or it may
time-share CPU facilities and be phys­
ically integrated with the CPU. In
either case, the functions performed by
a channel are identical. The maximum
data-transfer rate may differ, however,
depending on the implementation.

There are three types of channels:
byte-multiplexer, block-multiplexer, and
selector channels.

2-6 System/370 Principles of Operation

I/O DEVICES AND CONTROL UNITS

I/O devices include such equipment as
card readers and punches, magnetic-tape
units, direct-access storage, displays,
keyboards, printers, teleprocessing
devices, communications controllers, and
sensor-based equipment. Many I/O
devices function with an external
medium, such as punched cards or magnet­
ic tape. Some I/O devices handle only
electrical signals, such as those found
in sensor-based networks. In either
case, I/O-device operation is regulated
by a control unit. In all cases, the
control-unit function provides the
logical and buffering capabilities
necessary to operate the associated I/O
device. From the programming point of
view, most control-unit functions merge
with I/O-device functions. The
control-unit function may be housed with
the I/O device or in the CPU, or a sepa­
rate control unit may be used.

OPERATOR FACILITIES

The operator facilities provide the
functions necessary for operator control
of the machine. Associated with the
operator facilities may be an operator­
console device, which may also be used
as an I/O device for communicating with
the program.

The main functions provided by the oper­
ator facilities include resetting,
clearing, initial program loading,
start, stop, alter, and display.

CHAPTER ~ STORAGE

Storage Addressi ng•.....•.....•••••..••••..•.....•.•• 3-2
Storage Addressing with Extended Address Fields ..••... 3-3

Information Formats•................•....•.......... 3-3
Integral Boundaries••........••........... 3-3
Byte-Oriented-Operand Facility ••..•.•••...••..••••...••. 3-5

Address Types•..•.••.•...••...•.•.•••...•••.• 3-5
Absolute Address•...•..••••...••.....•••..•....••. 3-5
Real Address•.....•....•......•••.•.••.•.•. 3-5
Virtual Address•....••..•.....•...••..••..•... 3-5
Primary Virtual Address •...•..•.•.....•...•••.•••.•.•. 3-5
Secondary Virtual Address ..•••....•••...••••.••.•..•.. 3-6
Logi cal Address 3-6
Instruction Address•....••.............•......•... 3-6
Effective Address••••...•••...•.•....••..•.•.•••.. 3-6

Storage Key••......•..••........ 3-6
Storage-Key 4K-Byte-Block Fac iIi ty •..........•..•.•••... 3-7

Storage Keys with Storage-Key 4K-Byte-Block
Facility Not Installed••..........•.•••••.•.. 3-7

Storage Keys with Storage-Key 4K-Byte-Block
Facility Installed•..........•.•.....••.••..... 3-7

Storage-Key-Exception Control•...•........... 3-7
Storage-Key-Instruction Extensions•......•.•... 3-7

Protection ...•..................•.....•......•...•....••.. 3-7
Key-Controlled Protection•.•.•..••...••.•.••.....•. 3-8
Segment Protection•.........•••.•.•••.••••...••. 3-9
low-Address Protection•...••...•...••. 3-9

Reference Recording••.......•....••..•.•...•••.•. 3-10
Change Recording•.................••...•.....•.... 3-10
Prefixing•...•...••.......•...... 3-11
Address Spaces•..............•...•...............•. 3-12
ASH Translation ...•.•....••.....•.•.•••.•...•.......•..... 3-13

ASH-Translation Controls ..•......•.........••...••.••••. 3-13
ASH-Translation Tables••.•....••.......••.. 3-14

ASH-First-Table Entries•...•..••...•...•.•. 3-14
ASN-Second-Table Entries•....•.•..•. 3-14

ASH-Translation Process ..••.•....••...•.•...•••.•.•...•. 3-15
ASH-First-Table Lookup•....................... 3-16
ASH-Second-Table lookup .•...........•.•.•...•.••...... 3-16
Recognition of Exceptions during ASH Translation 3-17

ASH Authorization•.....•.•.............•... 3-17
ASH-Authorization Controls ...•.•....••....•...•....••... 3-17

Control Register 4•.....•....••••.•.•....••.•••.•. 3-17
ASN-Second-Table Entry••......•...••..••... 3-17
Authority-Table Entries•................... 3-18

ASH-Authorization Process •••••..•.••....•...•••.••••.••. 3-18
Authority-Table lookup •••.•..•..••....•••••••.•••.•••• 3-19
Recognition of Exceptions during ASH
Authorization •.......•...•••...•..••...•..••••.••.••• 3-20

Dynamic Address Translation ..••....••••....•...•..••••.••• 3-20
Translation Control .•.••••••••••••..•••.•••••.•..••.•.•• 3-22

Translation Modes .••••...•....•.•••.•..••.•••.•..••..• 3-22
Control Register 0 •.•...•.......•••...•.••..•...••.... 3-23
Control Register 1 ..••..•.•.•.•.....•....•....•.••.•.. 3-24
Control Register 7 ..•••.••.••.•••••••.••••.••••••.•••. 3-24

Translation Tables •...•.••.••••....••••.•••••.••.••••..• 3-25
Segment-Table Entries ...•..•••..••••••..•.•.••.••.••.. 3-25
Page-Table Entries ..•..•...••.•.•••••....•..••.••••••• 3-26

Summary of Dynamic-Address-Translation Formats ••••.••••• 3-26
Translation Process ••.•.•.••..•••.••••••••.••••••••••••. 3-27

Effective Segment-Table Designation ••.••.•.•.••••••••. 3-27
Inspecti on of Control Regi ster 0 •••••......•••.....••. 3-30
Segment-Table lookup ••........•..•....•.............•. 3-30
Page-Table lookup •••.•.••.•••••••••••.•••••••••••••.•• 3-31
Formation of the Real Address ••••••••••••••••..•.••••. 3-31
Recognition of Exceptions during Translation •••••••••• 3-31

Translation-lookaside Buffer .•...•••..•..••..•••••.••••• 3-31
Use of the Translation-lookaside Buffer ••••••••••••••• 3-32
Modification of Translation Tables •••••••••••••••••••• 3-36

Chapter 3. Storage 3-1

Address Summary ••.•••••.••...•..•••••••••.••••.•...•.••••• 3-38
Addresses Translated .•••••.••...••..••......•......•.... 3-38
Handling of Addresses •.•.•...•..•••.•••••..•••.••...•.•. 3-39

Assigned Storage locations•••..•.•.......•....••. 3-41

This chapter discusses the represen­
tation of information in main storage,
as well as addressing, protection, and
reference and change recording. The
aspects of addressing which are covered
include the format of addresses, the
concept of address spaces, the various
types of addresses, and the manner in
which one type of address is translated
to another type of address. A list of
permanently assigned storage locations
appears at the end of the chapter.

Main storage provides the system with
directly addressable fast-access storage
of data. Both data and programs must be
loaded into main storage (from input
devices) before they can be processed.

Main storage may include one or more
smaller faster-access buffer storages,
sometimes called caches. A cache 1S

usually physically associated with a CPU
or an I/O processor. The effects,
except on performance, of the physical
construction and use of distinct storage
media are not observable by the program.

Fetching and storing of data by a CPU
are not affected by any concurrent chan­
nel activity or by a concurrent refer­
ence to the same storage location by
another CPU. When concurrent requests
to a main-storage location occur, access
normally is granted in a sequence that
assigns highest priority to references
by channels, the priority being rotated
among CPUs. If a reference changes the
contents of the location, any subsequent
storage fetches obtain the new contents.

Main storage may be volatile or nonvola­
tile. If it is volatile, the contents
of main storage are not preserved when
power is turned off. If it is nonvola­
tile, turning power off and then back on
does not affect the contents of main
storage, provided all CPUs are in the
stopped state and no references are made
to main storage when power is being
turned off. In both types of main stor­
age, the contents of the storage key are
not necessarily preserved when the power
for main storage is turned off.

Note: Because most references in this
pUblication apply to virtual storage,
the abbreviated term "storage" is often
used in place of "virtual storage." The
term "storage" may also be used in place
of "main storage," "absolute storage,"
or "real storage" when the meaning is
clear. The terms "main storage" and
"absolute storage" are used to describe
storage which is addressable by means of

3-2 System/370 Principles of Operation

an absolute address. The terms describe
fast-access storage, as opposed to
auxiliary storage, such as provided by
direct-access storage devices. "Real
storage" is synonymous with "absolute
storage" except for the effects of
prefixing.

STORAGE ADDRESSING

Storage is viewed as a long horizontal
string of bits. For most operations,
accesses to storage proceed in a left­
to-right sequence. The string of bits
is subdivided into units of eight bits.
An eight-bit unit is called a byte,
which is the basic building block of all
information formats.

Each byte location in storage is identi­
fied by a unique nonnegative integer,
which 1S the address of that byte
location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left
and proceeding in a left-to-right
sequence. With the exception of those
facilities described in "Storage
Addressing with Extended Address Fields"
below, addresses are 24-bit unsigned
binary integers, which provide
16,777,216 (2 24 or 16M) byte addresses.

The CPU performs address generation when
it forms an operand or instruction
address, or when it generates the
address of a table entry from the appro­
priate table origin and index. It also
performs address generation when it
increments an address to access succes­
sive bytes of a field. Similarly, the
channel performs address generation when
it increments an address (1) to fetch a
CCW, (2) to fetch an IDAW or (3) to
transfer data.

When, during address generation, an
address is obtained that exceeds
224 - 1, the carry out of the leftmost
bit position of the address is ignored.
This handling of an address of excessive
size is called wraparound.

The effect of wraparound is to make the
sequence of addresses appear circular;
that is, address 0 appears to follow the
maximum byte address, 16,777,215.
Address arithmetic and wraparound occur
before transformation, if any, of the
address by dynamic address translation
or prefixing. With a 16M-byte storage,
information may be located partially in

the last and partially in the first
locations of storage and is processed
without any special indication of cross­
ing the maximum-address boundary.

Some channels do not perform address
wraparound. Depending on the model, a
program check may be generated if an
address generated by the channel to
fetch a CCW, to fetch an IDAW, or to
transfer data is incremented past
16,777,215 or decremented past o.

Storage Addressing with Extended Address
Fields

Extended real addressing, 31-bit IDAWs,
the instructions associated with
storage-key-instruction extensions, and
TEST BLOCK all provide for addresses
which are more than 24 bits. This
section describes the handling of these
addresses.

Extended real addressing provides a
26-bit page-frame real address in the
page-table entry for 4K-byte pages.
This address is not subject to wrapa­
round because the page-frame real
address designates a 4K-byte block.
Also provided is a 31-bit failing­
storage address for certain machine­
check interruptions, and a 26-bit
address (extended to 32 bits with zeros
on the left) as a result of LOAD REAL
ADDRESS.

The 31-bit IDAWs provide a 31-bit abso­
lute address of the I/O data area. This
address is not subject to wraparound
because all bytes designated by an IDAW
must lie within a 2K-byte block.

The instructions INSERT STORAGE KEY
EXTENDED, RESET REFERENCE BIT EXTENDED,
SET STORAGE KEY EXTENDED, and TEST BLOCK
specify 31-bit real addresses. These
addresses are not subject to wraparound
since they designate a 4K-byte block.

INFORMATION FORMATS

Information is transmitted between stor­
age and a CPU or a channel one byte, or
a group of bytes, at a time. Unless
otherwise specified, a group of bytes in
storage is addressed by the leftmost
byte of the group. The number of bytes
in the group is either implied or
explicitly specified by the operation to
be performed. When used in a CPU opera­
tion, a group of bytes is called a
field.

Within each group of bytes, bits are
~ numbered in a left-to-right sequence.
~ The leftmost bits are sometimes referred
, to as the "high-order" bits and the

rightmost bits as the "low-order" bits.
Bit numbers are not storage addresses,
however. Only bytes can be addressed.
To operate on individual bits of a byte
in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0
through 7, from left to right.

The bits in an address are numbered 8
through 31 for 24-bit addresses and 1
through 31 for 31-bit addresses. Within
any other fixed-length format of multi­
ple bytes, the bits making up the format
are consecutively numbered starting from
o.
For purposes of error detection, and in
some models for correction, one or more
check bits may be transmitted with each
byte or with a group of bytes. Such
check bits are generated automatically
by the machine and cannot be dir€ctly
controlled by the program. References
in this publication to the length of
data fields and registers exclude
mention of the associated check bits.
All storage capacities are expressed in
number of bytes.

When the length of a storage-operand
field is implied by the operation code
of an instruction, the field is said to
have a fixed length, which can be one,
two, four, or eight bytes. Larger
fields may be implied for some
instructions.

When the length of a storage-operand
field is not implied but is stated
explicitly, the field is said to have a
variable length. Variable-length oper­
ands can vary in length by increments of
one byte.

When information is placed in storage,
the contents of only those byte
locations are replaced that are included
in the designated field, even though the
width of the physical path to storage
may be greater than the length of the
field being stored.

INTEGRAL BOUNDARIES

Certain units of information must be on
an integral boundary in storage. A
boundary is called integral for a unit
of information when its storage address
is a multiple of the length of the unit
in bytes. Special names are given to
fields of two, four, and eight bytes on
an integral boundary. A halfword is a
group of two consecutive bytes on a
two-byte boundary and is the basic
building block of instructions. A word
is a group of four consecutive bytes on
a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an
eight-byte boundary. (See the figure

Chapter 3. Storage 3-3

"Integral Boundaries
Addresses.")

with Storage

When storage addresses designate half­
words, words, and doublewords, the bina­
ry representation of the address
contains one, two, or three rightmost
zero bits, respectively.

------~ Storage Addresses

Bytes o 1 2 3 4 5 6

Halfwords o 2 4 6

Words o 4

Doublewords o

Integral Boundaries with Storage Addresses

3-4 System/370 Principles of Operation

7

Instructions must be on two-byte inte­
gral boundaries, and CCWs, IDAWs, and
the storage operands of certain
instructions must be on other integral
boundaries. The storage operands of
most instructions do not have boundary­
alignment requirements.

8

8

8

8

BYTE-ORIENTED-OPERAND FACILITY

The byte-oriented-operand facility is
standard on System/370. This facility
permits storage operands of most unpriv­
ileged instructions to appear on any
byte boundary.

The facility does not pertain to
instruction addresses or to the operands
for COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP. Instructions must appear on
two-byte integral boundaries. The
rightmost bit of a branch address must
be zero, and the instruction EXECUTE
must designate the target instruction at
an even byte address. COMPARE AND SWAP
must designate a four-byte integral
boundary, and COMPARE DOUBLE AND SWAP
must designate an eight-byte integral
boundary.

Programming Note

For fixed-field-Iength operations with
field lengths that are a power of 2,
significant performance degradation is
possible when storage operands are not
positioned at addresses that are inte­
gral multiples of the operand length.
To improve performance, frequently used
storage operands should be aligned on
integral boundaries.

ADDRESS TYPES

For purposes of addressing main storage,
three basic types of addresses are
recognized: absolute, real, and
virtual. The addresses are distin­
guished on the basis of the transf­
ormations that are applied to the
address during a storage access.
Address translation converts virtual to
real, and prefixing converts real to
absolute. In addition to the three
basic address types, additional types
are defined which are treated as one or
another of the three basic types,
depending on the instruction and the
current mode.

Absolute Address

An absolute address is the address
assigned to a main-storage location. An
absolute address is used for a storage
access without any transformations
performed on it.

All CPUs and channels in the configura­
\ tion refer to a shared main-storage

location by using the same absolute
, address. Available main storage is

usually assigned contiguous absolute
addresses starting at 0, and the
addresses are always assigned in
complete 2K-byte blocks on integral
boundaries. When either TEST BLOCK or
the storage-key 4K-byte-block facility
is installed, storage is assigned in
complete 4K-byte blocks on integral
boundaries. An exception is recognized
when an attempt is made to use an abso­
lute address in a block which has not
been assigned to physical locations. On
some models, storage-reconfiguration
controls may be provided which permit
the operator to change the correspond­
ence between absolute addresses and
physical locations. However, at anyone
time, a physical location is not associ­
ated with more than one absolute
address.

Storage consisting of byte
sequenced according to their
addresses is referred to as
storage.

Real Address

locations
absolute
absolute

A real address identifies a location in
real storage. When a real address is
used for an access to main storage, it
is converted, by means of prefixing, to
an absolute address.

At any instant there is one real-address
to absolute-address mapping for each CPU
in the configuration. When a real
address is used by a CPU to access main
storage, it is converted to an absolute
address by prefixing. The particular
transformation is defined by the value
in the prefix register for the CPU.

Storage consisting of byte locations
sequenced according to their real
addresses is referred to as real
storage.

Virtual Address

A virtual address identifies a location
in virtual storage. When a virtual
address is used for an access to main
storage, it is translated by means of
dynamic address translation to a real
address, which is then further converted
by prefixing to an absolute address.

Primary Virtual Address

A primary virtual address is a virtual
address which is to be translated by
means of the primary segment-table
designation. When DAS is not installed,
all logical addresses are treated as

Chapter 3. Storage 3-5

primary virtual addresses when OAT is
on. When DAS is installed, logi cal
addresses and instruction addresses are
treated as primary virtual addresses
when in the primary-space mode. The
first-operand address of MOVE TO PRIMARY
and the second-operand address of MOVE
TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual
address which is to be translated by
means of the secondary segment-table
designation. When DAS is not installed,
secondary virtual addresses do not
occur. When DAS is installed, logical
addresses are treated as secondary
virtual addresses when in the
secondary-space mode. The second­
operand address of MOVE TO PRIMARY and
the first-operand address of MOVE TO
SECONDARY are always treated as second­
ary virtual addresses.

logical Address

Except where otherwise specified, the
storage-operand addresses for most
instructions are logical addresses.
When DAS is not installed, logical
addresses are treated as real addresses
when OAT is off and as virtual addresses
when OAT is on. When DAS is installed,
logical addresses are treated as real
addresses in the real mode, treated as
primary virtual addresses in the
prlmary-space mode, and treated as
secondary virtual addresses in the
secondary-space mode. Some instructions
have storage-operand addresses or stor­
age accesses associated with the
instruction which do not follow the
rules for logical addresses. In all
such cases, the instruction definition
contains a definition of the type of
address.

Instruction Address

Addresses used to fetch instructions
from storage are called instruction
addresses. When DAS is not installed,
instruction addresses are the same as
logical addresses. When DAS is
installed, instruction addresses are
treated as real addresses in the real
mode, treated as primary virtual
addresses in the primary-space mode, and
treated as either primary virtual
addresses or secondary virtual addresses
in the secondary-space mode. The
instruction address in the current PSW

3-6 System/370 Principles of Operation

and the target address of EXECUTE are
instruction addresses.

Note: When the CPU is in the
secondary-space mode, it is unpredict­
able whether instructions, including the
target of EXECUTE, are fetched from the
primary address space or the secondary
address space. For detai Is, see the
section "Translation Modes" and the
associated programming notes under the
section "Dynamic Address Translation" in
this chapter.

Effective Address

In some situations, it is convenient to
use the term "effective address." An
effective address is the address which
results from address arithmetic, before
address translation, if any, is
performed. Address arithmetic is the
addition of the base and displacement or
of the base, index, and displacement.

STORAGE KEY

A storage key is associated with each
2K-byte block of storage that is avail­
able in the configuration. When the
storage-key 4K-byte-block facility is
installed, all of the storage keys are
associated with a 4K-byte block. The
storage key has the following format:

o 4 6

The bit positions in the storage key are
allocated as follows:

Access-Control Bits (ACC): If a refer­
ence is subject ~ key-controlled
protection, the four access-control
bits, bits 0-3, are matched with the
four-bit access key when information is
stored, or when information is fetched
from a location that is protected
against fetching.

Fetch-Protection Bit (f): If a refer­
ence is subjec-t-- to key-controlled
protection, the fetch-protection bit,
bit 4, controls whether key-controlled
protection applies to fetch-type refer­
ences: a zero indicates that only
store-type references are monitored and
that fetching with any access key is
permitted; a one indicates that key­
controlled protection applies to both
fetching and storing. No distinction is
made between the fetching of
instructions and of operands.

Reference Bit (R): The reference bit, 4
bit 5, normally Is set to one each time ~

a location in the corresponding storage
block is referred to either for storing
or for fetching of information.

Change Bit (~): The change bit, bit 6,
is set to one each time information is
stored at a location in the correspond­
ing storage block.

Storage keys are not part of addressable
storage. Provided that the storage-key
4K-byte-block facility is not installed,
a storage key is associated with each
2K-byte block of storage. The entire
storage key is set by SET STORAGE KEY
and inspected by INSERT STORAGE KEY.
Additionally, the instruction RESET
REFERENCE BIT provides a means of
inspecting the reference and change bits
and of setting the reference bit to
zero. Bits 0-4 of the storage key are
inspected by the INSERT VIRTUAL STORAGE
KEY instruction. The contents of the
storage key are unpredictable during and
after the execution of the usability
test of the TEST BLOCK instruction.

STORAGE-KEY 4K-BYTE-BLOCK FACILITY

Depending on whether the storage-key
4K-byte-block facility is installed, one
or two storage keys are associated with
each 4K-byte block of storage that is in
the configuration. The storage-key­
exception control is also provided as
part of this facility.

storage Keys with Storage-Key
4K-Byte-Block Facility Not Installed

When the storage-key 4K-byte-block
facility is not installed, two keys are
associated with the block, and the block
is called a double-key 4K-byte block.

In a double-key 4K-byte block, one key
is associated with the first 2K-byte
block and one with the second 2K-byte
block. The keys are referred to as the
low-order and high-order keys, just as
the two 2K-byte blocks are referred to
as the low-order and high-order 2K-byte
blocks. The instructions INSERT STORAGE
KEY, RESET REFERENCE BIT, and SET STOR­
AGE KEY designate a 2K-byte block and
operate on the high-order or low-order
key, whichever is addressed. The
instructions INSERT STORAGE KEY
EXTENDED, RESET REFERENCE BIT EXTENDED,
and SET STORAGE KEY EXTENDED designate a
4K-byte block and operate on both the
high-order and low-order keys.

Storage Keys with Storage-Key
4K-Byte-Block Facility Installed

When the storage-key 4K-byte-block
facility is installed, only one key is
associated with a 4K-byte block, and it
is called a single-key 4K-byte block.
In a single-key 4K-byte block, the
single key is associated with both
2K-byte blocks. The instructions INSERT
STORAGE KEY EXTENDED. RESET REFERENCE
BIT EXTENDED, and SET STORAGE KEY
EXTENDED operate on the single key of
the block. The action taken when the
instructions INSERT STORAGE KEY, RESET
REFERENCE BIT, and SET STORAGE KEY are
executed depends upon the setting of the
storage-key-exception control, bit 7 of
control register O.

Storage-Key-Exception Control

When the storage-key 4K-byte-block
facility is installed, bit 7 of control
register 0, the storage-key-exception­
control bit, controls the execution of
the instructions INSERT STORAGE KEY,
RESET REFERENCE BIT, and SET STORAGE
KEY. If the bit is zero, a special­
operation exception is recognized. If
the bit is one, the operation is
performed on the single key associated
with the 4K-byte block.

When the storage-key 4K-byte-block
facility is not installed, a storage key
is associated with each 2K-byte block,
and bit 7 of control register 0 is
ignored.

STORAGE-KEY-INSTRUCTION EXTENSIONS

The storage-key-instruction-extension
facility includes the three instructions
INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE
KEY EXTENDED. These instructions
provide operations similar to those of
INSERT STORAGE KEY, RESET REFERENCE BIT,
and SET STORAGE KEY, except that they
operate on both single-key and double­
key 4K-byte blocks without reference to
the state of the storage-key-exception­
control bit and provide a 31-bit real
address.

PROTECTION

Three protection facilities are provided
to protect the contents of main storage
from destruction or misuse by programs
that contain errors or are unauthorized:
key-controlled protection, segment
protection, and low-address protection.

Chapter 3. Storage 3-7

The protection facilities are applied
independentlY; access to main storage is
only permitted when none of the facili­
ties prohibit the access.

Key-controlled protection affords
protection against improper storing or
against both improper storing and fetch­
ing, but not against improper fetching
alone.

KEY-CONTROLLED PROTECTION

When key-controlled protection applies
to a storage access, a store is permit­
ted only when the storage key matches
the access key associated with the
request for storage access; a fetch is
permitted when the keys match or when

Conditions Is

the fetch-protection bit of the storage
key is zero.

The keys are said to match when the four
access-control bits of the storage key
are equal to the access key, or when the
access key is zero.

The protection action is summarized in
the figure "Summary of Protection
Action."

When the access to storage is initiated
by the CPU and key-controlled protection
applies, the PSW key is the access key,
except that, for the second operand of
MOVE WITH KEY and MOVE TO PRIMARY and
the first operand of MOVE TO SECONDARY,
the access key is specified in a general
register. The PSW key occupies bit
positions 8-11 of the current PSW.

Access to
Storage Permitted?

Fetch-Protection
Bit of

Storage Key Key Relation Fetch Store

0 f<latch Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

EXElanation:

Match The four access-control bits of the storage
key are equal to the access key, or the access
key i s zero.

Yes Access i s permitted.

No Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

3-8 System/370 Principles of Operation

When the access to storage is for the
purpose of channel-program execution,
the subchannel key associated with the
I/O operation is the access key. The
subchannel key is specified for an I/O
operation in bit positions 0-3 of the
channel-address word (CAW); the subchan­
nel key is later placed in bit positions
0-3 of the channel-status word (CSW)
stored as a result of the I/O operation.

When a CPU access is prohibited because
of key-controlled protection, the unit
of operation is suppressed or the
instruction is terminated, and a program
interruption for a protection exception
takes place. When a channel-program
access is prohibited, protection check
is indicated in the CSW stored as a
result of the operation.

When a store access is prohibited
because of key-controlled protection,
the contents of the protected location
remain unchanged. When a fetch access
is prohibited, the protected information
is not loaded into a register, moved to
another storage location, or provided to
an I/O device. For a prohibited
instruction fetch, the instruction is
suppressed, and an arbitrary
instruction-length code is indicated.

Key-controlled protection is independent
of whether the CPU is in the problem or
the supervisor state and, except as
described below, does not depend on the

,type of CPU instruction or channel­
command word being executed.

I

\ ,

Except where otherwise specified, all
accesses to storage locations that are
explicitly designated by the program and
that are used by the CPU to store or
fetch information are subject to key­
controlled protection.

Accesses to the second operand of TEST
BLOCK are not subject to key-controlled
protection.

All storage accesses by a channel to
fetch a CCW or IDAW or to access a data
area designated during the execution of
a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW,
or output data is prefetched, a
protection check is not indicated until
the CCW or IDAW is due to take control
or until the data is due to be written.

Key-controlled protection is not applied
to accesses that are implicitly made for
any of such sequences as:

• An interruption

• Updating the interval timer

• CPU logout

• Fetching of table entries
dynamic-address translation,

for
PC-

•

•

•

•

•

•

•

number translation, ASN transla­
tion, or ASN authorization

DAS tracing

A store-status function

Fetching the CAW during the
execution of an I/O instruction

Storing of the CSW by an I/O
instruction or interruption

Storing channel identification
during the execution of STORE CHAN­
NEL ID

A limited channel logout

A full channel logout

• Initial program loading

Similarly, protection does not apply to
accesses initiated via the operator
facilities for altering or displaying
information. However, when the program
explicitly designates these locations,
they are subject to protection.

SEGMENT PROTECTION

The segment-protection facility controls
access to virtual storage by using the
segment-protection bit in each segment­
table entry. It provides protection
against improper storing.

The segment-protection bit, bit 29 of
the segment-table entry, controls wheth­
er storing is allowed into the corre­
sponding segment. When the bit is zero,
both fetching and storing are permitted;
when the bit is one, only fetching is
permitted. When an attempt is made to
store into a protected segment, a
program interruption for protection
takes place. The contents of the
protected location remain unchanged.

Segment protection applies to all
store-type references that use a virtual
address.

LOW-ADDRESS PROTECTION

The low-address-protection facility pro­
vides protection against the destruction
of main-storage information used by the
CPU during interruption processing.
This is accomplished by prohibiting
instructions from storing with effective
addresses in the range 0 through 511.
The range criterion is applied before
address transformation, if any, of the
address by dynamic address translation
or prefixing.

Chapter 3. Storage 3-9

low-address protection is under control
of bit 3 of control register 0, the
low-address-protection-control bit.
When the bit is zero, low-address
protection is off; when the bit is one,
low-address protection is on.

If an access is prohibited because of
low-address protection, the contents of
the protected location remain unchanged,
a program interruption for a protection
exception takes place, and the unit of
operation is suppressed or the instruc­
tion terminated.

Any attempt by the program to store by
using effective addresses in the range 0
through 511 is subject to low-address
protection. low-address protection is
applied to the store accesses of
instructions whose operand addresses are
logical, virtual, or real. low-address
protection is also applied to the trace
table.

low-address protection is not applied to
accesses made by the CPU or channel for
such sequences as interruptions, updat­
ing the interval timer, CPU logout, and
the initial-program-loading and store­
status functions, nor is it applied to
data stores during I/O data transfer.
However, explicit stores by a program at
any of these locations are subject to
low-address protection.

Programming Note

Low-address protection
controlled protection apply
store accesses, except that:

and key­
to the same

• Low-address protection does not
apply to storing performed by a
channel, whereas key-controlled
protection does.

• Key-controlled protection does not
apply to DAS tracing or the second
operand of TEST BLOCK, whereas
low-address protection does.

REFERENCE RECORDING

Reference recording provides information
for use in selecting pages for replace­
ment. Reference recording uses the
reference bit, bit 5 of the storage key.
A reference bit is provided in each
storage key when the dynamic-address­
translation facility is installed. The
reference bit is set to one each time a
location in the corresponding storage
block is referred to either for fetching
or storing information, regardless of
whether the CPU performing the access is
in the EC mode or BC mode or whether DAT
is on or off in that CPU.

3-10 System/370 Principles of Operation

Reference recording is always active and
takes place for all storage accesses,
including those made by any CPU,
channel, or operator facility. It takes
place for implicit accesses made by the
machine, such as those which are part of
interruptions and I/O-instruction
execution.

Reference recording
operand accesses
instructions since
to a storage key
storage location:

does not occur for
of the following
they directly refer
without accessing a

INSERT STORAGE KEY
INSERT STORAGE KEY EXTENDED
RESET REFERENCE BIT (reference bit

is set to zero)
RESET REFERENCE BIT EXTENDED (ref­

erence bit is set to zero)
SET STORAGE KEY (reference bit is

set to a specified value)
SET STORAGE KEY EXTENDED (reference

bit is set to a specified
value)

The record provided by the reference bit
is SUbstantially accurate. The refer­
ence bit may be set to one by fetching
data or instructions that are neither
designated nor used by the program, and,
under certain conditions, a reference
may be made without the reference bit
being set to one. Under certain unusual
circumstances, a reference bit may be
set to zero by other than explicit
program action.

CHANGE RECORDING

Change recording provides information as
to which pages have to be saved in
auxiliary storage when they are replaced
in main storage. Change recording uses
the change bit, bit 6 of the storage
key. A change bit is provided in each
storage key when the dynamic-address­
translation facility is installed.

The change bit is set to one each time a
store access causes the contents in the
corresponding storage block to be
changed. A store access that does not
change the contents of storage mayor
may not set the change bit to one.

The change bit is not set to one for an
attempt to store if the access is
prohibited. In particular:

1. For the CPU, a store access is
prohibited whenever an access
exception exists for that access,
or whenever an exception exists
which is of higher priority than
the priority of an access exception
for that access.

2. For a channel, a store access is
prohibited whenever a key-
controlled-protection violation
exists for that access.

Change recording is always active and
takes place for all store accesses to
storage, including those made by any
CPU, channel, or operator facility. It
takes place for implicit references made
by the machine, such as those which are
part of interruptions.

Change recording does not take place for
the operands of the following
instructions since they directly modify
a storage key without modifying a stor­
age location:

RESET REFERENCE BIT
RESET REFERENCE BIT EXTENDED
SET STORAGE KEY (change bit is set

to a specified value)
SET STORAGE KEY EXTENDED (change

bit is set to a specified
value)

Change bits which have been changed from
zeros to ones are not necessarily
restored to zeros on CPU retry (see the
section "CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the
section "Exceptions to Nullification and
Suppression" in Chapter 5, "Program
Execution," for a description of the
handling of the change bit in certain
unusual situations.

PREFIXING

Prefixing provides the ability to assign
the range of real addresses 0-4095 (the
prefix area) to a different block in
absolute storage for each CPU, thus
permitting more than one CPU sharing
main storage to operate concurrently
with a minimum of interference, espe­
cially in the processing of
interruptions. Prefixing is provided as
part of the multiprocessing facility.

Prefixing causes real addresses in the
range 0-4095 to correspond to the block
of 4K absolute addresses identified by
the value in the prefix register for the
CPU, and the block of real addresses
identified by the value in the prefix
register to correspond to absolute
addresses 0-4095. The remaining real
addresses are the same as the corre­
sponding absolute addresses. This
transformation allows each CPU to access
all of main storage, including the first
4K bytes and the locations designated by
the prefix registers of other CPUs.

The relationship between real and abso­
lute addresses is graphically depicted
in the figure "Relationship between Real
and Absolute Addresses."

The prefix is a 19-bit quantity
contained in bit positions 1-19 of the
prefix register. Bits 1-7 of the prefix
register are always zeros. The register
has the following format:

1////////////1

018 20 31

The contents of the register can be set
and inspected by the privileged
instructions SET PREFIX and STORE
PREFIX, respectively. On setting, bits
corresponding to bit positions 0-7 and
20-31 of the prefix register are
ignored. On storing, zeros are provided
for these bit positions. When the
contents of the prefix register are
changed, the change is effective for the
next sequential instruction.

With the introduction of the storage­
key-instruction-extension facility, the
test-block facility, and the extended­
real-addressing facility, prefixing is
described in terms of 31-bit real
addresses, whether or not these facili­
ties are installed. All real addresses
are considered to be 31 bits, with any
shorter address fields extended to 31
bits by appending zeros on the left.
Thus, 24-bit real addresses are extended
to 31 bits by appending zeros on the
left.

When prefixing is applied, the real
address is transformed into an absolute
address by using one of the following
rules, depending on bits 1-19 of the
real address:

1. Bits 1-19 of the address, if all
zeros, are replaced with bits 1-19
of the prefix.

2. Bits 1-19 of the address, if equal
to bits 1-19 of the prefix, are
replaced with zeros.

3. Bits 1-19 of the address, if not
all zeros and not equal to bits
1-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the address
remain unchanged.

Only the address presented to storage is
translated by prefixing. The contents
of the source of the address remain
unchanged.

The distinction between real and abso­
lute addresses is made even when the
prefix register contains all zeros, in
which case a real address and its corre­
sponding absolute address are identical.

Chapter 3. Storage 3-11

1

1

I
I
I

I ~ I

l<J-----;-No Change-+-----+----

I ""Address
~ 4096

LAddress

I \ i Address I

I ~I G~40_96 __ ~I~
L __________ I ~Add~ess L ________ -.J

,...-Address
4096

_Address
o o

Real Addresses
for CPU A

Absolute
Addresses

Real Addresses
for CPU B

(1) Real addresses in which bits 1-19 are equal to the prefix for this CPU (A or
B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real
locations 0-4095.

Relationship between Real and Absolute Addresses

ADDRESS SPACES

An address space is a consecutive
sequence of integer numbers (virtual
addresses), together with the specific
transformation parameters which allow
each number to be associated with a byte
location in storage. The sequence
starts at zero and proceeds left to
right.

When a virtual address is used by a CPU
to access main storage, it is first
converted, by means of dynamic address
translation (DAT), to a real address,
and then, by means of prefixing, to an
absolute address. OAT uses two levels
of tables (segment tables and page
tables) as transformation parameters.
The designation (origin and length) of a
segment table is found for use by OAT in
a control register.

When DAS is not installed, the CPU can
translate virtual addresses belonging to

3-12 System/370 Principles of Operation

one address space -- the primary address
space, which consists of prlmary virtual
addresses. When DAS is installed, at
any instant the CPU can translate virtu­
al addresses of two address
spaces -- the primary address space,
consisting of primary virtual addresses,
and the secondary address space,
consisting of secondary virtual
addresses. The segment table defining
the primary address space is specified
by control register 1 and that defining
the secondary address space by control
register 7.

With DAS, each address space is assigned
an address-space number (ASH). An ASH­
translation mechanism ;s provided with
DAS, which, given an ASH, can locate (by
using a two-level table lookup) the
designation of the segment table which
defines the address space. Certain
instructions use ASH translation and
load the resulting segment-table desig­
nation into the appropriate control
register.

By using the ASH-translation mechanism,
anyone of up to 64K address spaces can
be selected to bacome the primary or
secondary address space.

The ASNs for the primary and secondary
address spaces are assigned positions in
control registe The ASN for the
primary address 5, ee, called the prima­
ry ASH, is assigned bits 16-31 of
control register 4, and that for the
secondary address space, called the
secondary ASH, is assigned bits 16-31 of
control register 3. The registers have
the following formats:

Control Register 4

PASH

16 31

Control Register 3

SASH

16 31

An instruction that uses ASH translation
and loads the primary or secondary
segment-table designation into the
appropriate control register also loads
the corresponding ASH into the appropri­
ate control register.

Note: Virtual storage consisting of
byte locations ordered according to
their virtual addresses in an address
space is usually referred to as
"storage."

ASN TRANSLATION

ASN translation is the process of trans­
lating the 16-bit ASN to locate the
address-space-control parameters. ASN
translation is performed as part of
PROGRAM CALL with space switching
(PC-ss), PROGRAM TRAHSFER with space
switching (PT-ss), and SET SECOHDARY ASH
with space switching (SSAR-ss). ASH
translation is also performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASH which is trans­
lated replaces the primary ASH in
control register 4. For SSAR-ss, the
ASN which is translated replaces the
secondary ASN in control register 3.
These two translation processes are
called primary ASN translation and
secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS
SPACE PARAMETERS. The ASH-translation
process is the same for both primary and

~ secondary ASN translation; only the uses
, of the results of the process are

different.

The ASH-translation process uses two
tables, the ASH first table and the ASH
second table. They are used to locate
the address-space-control parameters and
a third table, the authority table,
which is used when ASN authorization is
performed.

For the purposes of this translation,
the 16-bit ASN is considered to consist
of two parts: the ASN-first-table index
(AFX) is the leftmost 10 bits of the
ASN, and the ASN-second-table index
(ASX) is the six rightmost bits. The
ASH has the following format:

ASH

AFX ASX

o 10 15

The AFX is used to select an entry from
the ASN first table. The origin of the
ASH first table is designated by the
ASN-first-table origin in control regis­
ter 14. The ASN-first-table entry
contains the origin of the ASH second
table. The ASX is used to select an
entry from the ASN second table. This
entry contains the address-space-control
parameters.

ASH-TRANSLATION CONTROLS

ASN translation is controlled by
ASH-translation-control bit and
ASH-first-table origin, both of
reside in control register 14.
register has the following format:

Control Register 14

AFTO

12 20 31

the
the

which
The

ASN-Translation Control (+): Bit 12 of
control register 14 1S the ASN­
translation-control bit. This bit
provides a mechanism whereby the control
program can indicate whether ASN trans­
lation can occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

LOAD ADDRESS SPACE PARAMETERS
SET SECONDARY ASN
PROGRAM CALL with space switching
PROGRAM TRAHSFER with space switch-

ing

Otherwise, a special-operation exception
is recognized. The ASN-translation­
control bit is examined in both the
problem and the supervisor states.

Chapter 3. Storage 3-13

ASH-First-Table Origin (AFTO): Bits
20-31 of control register 14, with 12
zeros appended on the right, form a
24-bit real address that designates the
beginning of the ASH first table. With
extended real addressing, the ASH­
first-table origin is still a 24-bit
real address and is extended on the left
with zeros.

11100000001

018

AX

32

ASH-TRANSLATIOH TABLES STL

The ASH-translation process consists in
a two-level lookup using two tables: an
ASH first table and an ASN second table.
These tables reside in real storage.

ASH-First-Table Entries

The entry fetched from the ASN first
table has the following format:

1110000000\ ASTO
1
0000

1

o 1 8 28 31

The fields in the entry are allocated as
follows:

AFX-Invalid Bit (1): Bit 0 controls
whether the ASN second table associated
with the ASN-first-table entry is avail­
able. When bit 0 is zero, ASN trans­
lation proceeds by using the designated
ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO): Bits
8-27, with four zeros appended on the
right, are used to form a 24-bit real
address that designates the beginning of
the ASN second table. With extended
real addressing, the ASH-second-table
origin is still a 24-bit real address
and is extended on the left with zeros.

Bits 1-7 and 28-31 of the AFT entry must
be zeros; otherwise, an ASN­
translation-specification exception is
recognized as part of the execution of
the instruction using that entry for ASN
translation.

ASH-Second-Table Entries

The entry fetched from the ASH second
table has the following format:

3-14 System/370 Principles of Operation

64 72

Ivloooooool
96 104

The fields in the entry are allocated as
follows:

ASX-Invalid Bit (1): Bit 0 controls
whether the address space associated
with the ASN-second-table entry is
available. When bit 0 is zero, ASH
translation proceeds. When the bit is
one, the ASH translation cannot
continue.

Authority-Table Origin (ATO): Bits
8-29, with two zeros appended on the
right, are used to form a 24-bit real
address that designates the beginning of
the authority table. With extended real
addressing, the authority-table origin
is still a 24-bit real address and is
extended on the left with zeros.

Authorization Index (AX): Bits 32-47
are used as a--resul~ of primary ASN
translation by PROGRAM CALL and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The AX field is
ignored for secondary ASN translation.

Authority-Table Length (ATl): Bits
48-59 specify the length of the authori­
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four
bytes, is one more than the ATL value.
The contents of the ATL field are used
to establish whether the entry desig­
nated by a particular AX falls within
the authority table.

Segment-Table Designation (STD): Bits
64-95 are used as a result of ASN trans­
lation to replace the primary-segment-
table designation (PSTD) or the
secondary-segment-table designation
(SSTD). For SET SECONDARY ASN, the STD
field is placed in the SSTD, bits 0-31
of control register 7. For PROGRAM
CALL, the STD field is placed in the
PSTD, bits 0-31 of control register 1.
Each of these actions may occur inde­
pendently for LOAD ADDRESS SPACE
PARAMETERS. For PROGRAM TRANSFER, the

STD field is placed in both the PSTD and
SSTD, bits 0-31 of control registers 1
and 7, respectively. The contents of
the entire STD field are placed in the
appropriate control registers without
being inspected for validity.

Space-Switch-Event Control (X): Bit 31
of the segment-table designation is the
space-switch-event-control bit. When,
in PC-ss or PT-ss, this bit is one in
control register 1 either before or
after the execution of the PC-ss or
PT-ss, a program interruption for a
space-switch event occurs after the
execution of the instruction is
completed. When, in LOAD ADDRESS SPACE
PARAMETERS, this bit is one during
primary ASN translation, this fact is
indicated by the condition code.

Linkage-Table Designation (LTD): Bits
96 and 104-127 are used as a result of
primary ASN translation. The linkage­
table-designation field contains the
subsystem-linkage-control bit (V) (bit
96), the linkage-table origin (LTD)
(bits 104-120), and the linkage-table
length (LTL) (bits 121-127). The
contents of the LTD field are placed in
control register 5 as a result of prima­
ry ASN translation.

Bits 1-7, 30, 31, 60-63, and 97-103 of
the AST entry must be zeros; otherwise,
an ASH-translation-specification excep­
tion is recognized as part of the
execution of the instruction using that
entry for ASN translation.

Programming Note

The unused portion of the STD field,
bits 90-94 of the AST entry, which
corresponds to bits 26-30 of the PSTD
and SSTD, should be set to zeros. These
bits are reserved for future expansion,
and programs which place nonzero values

in these bit positions may not operate
compatibly on future machines.

ASN-TRANSLATION PROCESS

This section describes the ASN­
translation process as it is performed
during the execution of PROGRAM CALL
with space switching, PROGRAM TRANSFER
with space switching, and SET SECOHDARY
ASH with space switching. ASH trans­
lation for LOAD ADDRESS SPACE PARAMETERS
is the same, except that AFX-translation
and ASX-translation exceptions do not
occur; such situations are instead indi­
cated by the condition code.
Translation of an ASN is performed by
means of two tables, an ASN first table
and an ASN second table, both of which
reside in main storage.

The ASH first index is used to select an
entry from the ASN first table. This
entry designates the ASN second table to
be used.

The ASH second index is used to select
an entry from the ASN second table.
This entry contains the address-space­
control parameters.

If the I bit is one in either the ASN­
first-table entry or ASN-second-table
entry, the entry is invalid, and the
ASN-translation process cannot be
completed. An AFX-translation exception
or ASX-translation exception is recog­
nized.

Whenever access to main storage is made
during the ASN translation process for
the purpose of fetching an entry from an
ASN first table or ASN second table,
key-controlled protection does not
apply.

The ASN translation process is shown in
the figure "ASN Translation."

Chapter 3. Storage 3-15

ASH

CR14

(x4) (x16)

~ ASH First Table

~L~
R I ASTO o

(x16)

ASH Second Table

R I I 0 I ATO 10 1 AX I

R: Address is real

ASH Translation

ASH-First-Table Lookup

The AFX portion of the ASH, in conjunc­
tion with the ASH-first-table origin, is
used to select an entry from the ASH
second table.

The 24-bit real address of the ASH­
first-table entry is obtained by append­
ing 12 zeros on the right to the AFT
origin contained in bit positions 20-31
of control register 14 and adding the
AFX with two rightmost and 12 leftmost
zeros appended. This addition cannot
cause a carry into bit position 7. With
extended real addressing, this 24-bit
real address is extended on the left
with zeros.

All four bytes of the ASH-first-table
entry appear to be fetched concurrently
as observed by other CPUs. The fetch
access is not subject to protection.
When the storage address which is gener­
ated for fetching the ASH-first-table
entry designates a location which is not
available in the configuration, an

3-16 System/370 Principles of Operation

ATL 101 STD I V I 0 I L TO ILTL

addressing exception is recognized, and
the operation is suppressed.

Bit 0 of the four-byte AFT entry speci­
fies whether the corresponding AST is
available. If this bit is one, an AFX­
translation exception is recognized. If
bit positions 1-7 and 28-31 of the AFT
entry do not contain zeros, an ASN­
translation-specification exception is
recognized. When no exceptions are
recognized, the entry fetched from the
AFT is used to access the AST.

ASH-Second-Table Lookup

The ASX portion of the ASH, in conjunc­
tion with the ASH-second-table orlgln
contained in the ASH-first-table entry,
is used to select an entry from the ASH
second table.

The 24-bit real address
second-table entry is
appending four zeros on

of the
obtained
the right

ASH­
by
to

bits 8-27 of the ASN-first-table entry
and adding the ASX portion with four
rightmost and 14 leftmost zeros
appended. A carry, if any, into bit
position 7 is ignored. With extended
real addressing, this 24-bit real
address is extended on the left with
zeros; thus, the ASN-second table can
wrap from 224 - 1 to zero.

The 16 bytes of the ASN-second-table
entry appear to be fetched word­
concurrent as observed by other CPUs,
with the leftmost word fetched first.
The order in which the remaining three
words are fetched is unpredictable. The
fetch access is not subject to
protection. When the storage address
which is generated for fetching the
ASN-second-table entry designates a
location which is not available in the
configuration, an addressing exception
is recognized, and the operation is
suppressed.

Bit 0 of the 16-byte ASN-second-table
entry specifies whether the address
space is accessible. If this bit is
one, an ASX-translation exception is
recognized. If bit positions 1-7, 30,
31, 60-63, and 97-103 of the ASN­
second-table entry do not contain zeros,
an ASN-translation-specification excep­
tion is recognized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered
during the ASH-translation process are
collectively referred to as ASH­
translation exceptions. A list of these
exceptions and their priorities is given
in Chapter 6, "Interruptions."

ASH AUTHORIZATION

ASH authorization is the process of
testing whether the program associated
with the current authorization index is
permitted to establish a particular
address space. The ASH authorization is
performed as part of PROGRAM TRANSFER
with space switching (PT-ss) and SET
SECONDARY ASH with space switching
(SSAR-ss) and may be performed as part
of LOAD ADDRESS SPACE PARAMETERS. ASN
authorization is performed after the
ASH-translation process for these
instructions.

When performed as part of PT-ss, the ASH
authorization tests whether the ASH can
be established as the primary ASH and is
called primary-ASH authorization. When
performed as part of LOAD ADDRESS SPACE
PARAMETERS or SSAR-ss, the ASH authori­
zation tests whether the ASH can be

established as the secondary ASN and is
called secondary-ASN authorization.

The ASN authorization is performed by
means of an authority table in real
storage which is designated by the
authority-table-origin and authority­
table-length fields in the ASN-second­
table entry.

ASH-AUTHORIZATION COHTROLS

ASN authorization uses the authority­
table origin and the authority-table
length from the ASH-second-table entry,
together with an authorization index.

Control Register ~

For PT-ss and SSAR-ss, the current
contents of control register 4 include
the authorization index. For LOAD
ADDRESS SPACE PARAMETERS, the value
which will become the new contents of
control register 4;s used. The regis­
ter has the following format:

AX

a 15

Authorization Index (AX): Bits 0-15 of
control register 4 are used as an index
to locate the authority bits in the
authority table.

ASN-Second-Table Entry

The ASN-second-table entry which is
fetched as part of the ASH translation
process contains information which is
used to designate the authority table.
An entry in the ASN second table has the
following format:

100000001 ATO 100 I

o 1 8 31

ATl 10000 I

32 48 60 64

Authority-Table Origin (ATO): Bits
8-29, with two zeros appended on the
right, are used to form a 24-bit real
address that designates the beginning of
the authority table. With extended real
addressing, the authority-table origin

Chapter 3. Storage 3-17

is still a 24-bit real address and is
extended on the left with zeros.

Authority-Table Length (AIl): Bits
48-59 specify the length of the authori­
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four
bytes, is equal to one more than the ATL
value. The contents of the length field
are used to establish whether the entry
designated by the authorization index
falls within the authority table.

Authority-Table Entries

The authority table consists of entries
of two bits each; accordingly, each byte
of the authority table contains four
entries in the following format:

o 7

The fields are allocated as follows:

Primary Authority (E): The left bit of
an authority-table entry controls wheth­
er the program with the authorization
index corresponding to the entry is
permitted to establish the address space
as a primary address space. If the P
bit is one, the access is permitted. If
the P bit is zero, the access is not
permitted.

Secondary Authority (~):
of an authority-table

The right bit
entry controls

3-18 System/370 Principles of Operation

whether the program with the correspond­
ing authorization index is permitted to
establish the address space as a second­
ary address space. If the S bit is one,
the access is permitted. If the S bit
is zero, the access is not permitted.

ASN-AUTHORIZATION PROCESS

This section describes the ASN­
authorization process as it is performed
during the execution of PROGRAM TRANSFER
with space switching and SET SECONDARY
ASN with space switching. For these two
instructions, the ASN-authorization
process is performed by using the
authorization index currently in control
register 4. Secondary authorization for
LOAD ADDRESS SPACE PARAMETERS is the
same, except that the value which will
become the new contents of control
register 4 is used for the authorization
index, and a secondary-authority excep­
tion does not occur. Instead, such a
situation is indicated by the condition
code.

The ASN-authorization process is
performed by using the authorization
index, in conjunction with the
authority-table origin and length from
the AST entry, to select an authority­
table entry. The entry is fetched, and
either the primary- or secondary­
authority bit is examined, depending on
whether the primary- or secondary-ASH­
authorization process is being
performed. The ASN-authorization proc­
ess is shown in the figure "ASH
Authorization."

CR4

ASH Second Table

ASH-Second-Table Entry

I ATO STD LTL

(x4)

Authority Table

R p S

For primary ASH authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

For secondary ASH authorization (SSAR-ss only):
Secondary-authority exception if S bit
zero or table length exceeded.

For secondary ASH authorization (LASP only):
Set condition code 2 if S bit zero or
table length exceeded.

R: Address is real

ASH Authorization

Authority-Table Lookup

The authorization index, in conjunction
with the authority-table orlg1n
contained in the ASH-second-table entry,
is used to select an entry from the
authority table.

The authorization index
bit positions 0-15 of
4.

is contained in
control register

Bit positions 8-31 of the AST entry
contain the 24-bit real address of the
authority table (ATO), and bit positions
48-59 contain the length of the authori­
ty table (ATL).

~ The 24-bit real address of a byte in the
'1 authority table is obtained by appending
I two zeros on the right to the

authority-table orlgln and adding the 14
leftmost bits of the authorization index
with 10 zeros appended on the left. A
carry, if any, into bit position 7 is
ignored. With extended real addressing,
this 24-bit real address is extended on
the left with zeros; thus, the authority
table can wrap from 224 - 1 to zero.

As part of the authority-table-entry­
lookup process, bits 0-11 of the author­
ization index are compared against the
authority-table length. If the compared
portion is greater than the authority­
table length, a primary-authority
exception or secondary-authority excep­
tion is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table
length is exceeded, condition code 2 is
set.

Chapter 3. Storage 3-19

The fetch access to the byte in the
authority table is not subject to
protection. When the storage address
which is generated for fetching the byte
designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The byte contains four authority-table
entries of two bits each. The rightmost
two bits of the authorization index,
bits 14 and 15 of control register 4,
are used to select one of the four
entries. The left or right bit of the
entry is then tested, depending on
whether the authorization test is for a
primary ASN or a secondary ASN. The
following table shows the bit which is
selected from the byte as a function of
bits 14 and 15 of the authorization
index and the instruction PT-ss,
SSAR-ss, or LOAD ADDRESS SPACE PARAME­
TERS.

Bit Selected from
Authority-Table Byte

for Test
Authorization-

Index Bits S Bit
P Bit (SSAR-ss

14 15 (PT-ss) or LASP)

0 0 0 1

0 1 2 3

1 0 4 5

1 1 6 7

If the selected bit is one, the ASH is
authorized, and the appropriate
address-space-control paramet~rs from
the AST entry are loaded into the appro­
priate control registers. If the
selected bit is zero, the ASH is not
authorized, and a primary-authority
exception or secondary-authority excep­
tion is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the ASH is not author­
ized, condition code 2 is s~t.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered
during the primary- and secondary-ASN­
authorization precesses and their prior­
ities are described in the definitions
of the instructions in which ASH author­
ization is performed.

3-20 System/370 Principles of Operation

Programming Note

The primary- and secondary-authority
exceptions cause nullification in order
to permit dynamic modification of the
authority table. Thus, when an address
space is created or "swapped in," the
authority table can first be set to all
zeros and the appropriate authority bits
set to one only when required.

DYNAMIC ADDRESS TRANSLATION

Dynamic address translation (OAT)
provides the ability to interrupt the
execution of a program at an arbitrary
moment, record it and its data in auxil­
iary storage, such as a direct-access
storage device, and at a later time
return the program and the data to
different main-storage locations for
resumption of execution. The transfer
of the program and its data between main
and auxiliary storage may be performed
piecemeal, and the return of the infor­
mation to main storage may take place in
response to an attempt by the CPU to
access it at the time it is needed for
execution. These functions may be
performed without change or inspection
of the program and its data, do not
require any explicit programming conven­
tion for the relocated program, and do
not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating
system, the dynamic-address-translation
facility may be used to provide to a
user a system wherein storage appears to
be larger than the main storage which is
available in the configuration. This
apparent main storage is referred to as
virtual storage, and the addresses used
to designate locations in the virtual
storage are referred to as virtual
addresses. The virtual storage of a
user may far exceed the size of the main
storage which is available in the
configuration and normally is maintained
in auxiliary storage. The virtual stor­
age is considered to be composed of
blocks of addresses, called pages. Only
the most recently referred-to pages of
the virtual storage are assigned to
occupy blocks of physical main storage.
As the user refers to pages of virtual
storage that do not appear in main stor­
age, they are brought in to replace
pages in main storage that are less
likely to be needed. The swapping of
pages of storage may be performed by the
operating system without the user's
knowledge.

The sequence of virtual addresses asso­
ciated with a virtual storage is called
an address space. With appropriate ~
support by an operating system, the
dynamic-address-translation facility may

be used to provide a number of address
spaces. These address spaces may be
used to provide degrees of isolation
between users. Such support can consist
of a completely different address space
for each user, thus providing complete
isolation, or a shared area may be
provided by mapping a portion of each
address space to a single common storage
area. Also, with DAS, instructions are
provided which permit a semiprivileged
program to access more than one such
address space. Dynamic address trans­
lation with DAS provides for the
translation of virtual addresses from
two different address spaces without
requiring that the translation parame­
ters in the control registers be
changed. These two address spaces are
called the primary address space and the
secondary address space.

In the process of replacing blocks of
main storage by new information from an
external medium, it must be determined
which block to replace and whether the
block being replaced should be recorded
and preserved in auxiliary storage. To
aid in this decision process, a refer­
ence bit and a change bit are associated
with the storage key.

Dynamic address translation may be spec­
ified for instruction and data addresses
generated by the CPU but is not avail­
able for the addressing of data and of
CCWs and IDAWs in I/O operations. The
channel-indirect-data-addressing facili­
ty is provided to aid I/O operations in
a virtual-storage environment.

The dynamic-address-translation facility
includes the instructions LOAD REAL
ADDRESS, RESET REFERENCE BIT, and PURGE
TLB. It makes use of control register 1
and bits 8-12 in control register O.
When DAS is installed, the dynamic­
address-translation facility also makes
use of control register 7.

The dynamic-address-translation facility
includes the handling of 2K-byte and
4K-byte pages and 64K-byte and 1M-byte
segments. On some models, the 2K-byte­
page size and 1M-byte-segment size may
not be offered.

Dynamic address translation is enhanced
by that part of the extended facility
that includes the instruction INVALIDATE
PAGE TABLE ENTRY and the common-segment
facility. On some models, the common­
segment facility permits improvement of
TlB utilization by means of a common­
segment bit in the segment-table entry.
On other models, this bit is ignored,
with no performance improvement.

Dynamic address translation is the proc­
ess of translating a virtual address
during a storage reference into the
corresponding real address. When OAT is
off, the logical address is treated as a
real address. When DAS is not installed

and DAT is on, a logical address is
treated as a virtual address and is
translated during a storage reference
into the corresponding real address.
When DAS is installed and OAT is on, the
virtual address may be either a primary
virtual address or a secondary virtual
address. Primary virtual addresses are
translated by means of the primary
segment-table designation and secondary
virtual addresses by means of the
secondary segment-table designation.
After selection of the appropriate
segment-table designation, the trans­
lation process is the same for both
types of virtual address.

In the process of translation, two units
of information are recognized -- seg­
ments and pages. A segment is a block
of sequential virtual addresses spanning
65,536 (64K) or 1,048,576 (1M) bytes and
beginning at an address that is a multi­
ple of its size. A page is a block of
sequential virtual addresses spanning
2,048 (2K) or 4,096 (4K) bytes and
beginning at an address that is a multi­
ple of its size. The size of the
segment and page is controlled by bits
8-12 in control register o.
The virtual address, accordingly, is
divided into a segment-index (SX) field,
a page-index (PX) field, and a byte­
index (BX) field. The size of these
fields depends on the segment and page
size.

The segment index starts with bit 8 of
the virtual address and extends through
bit 15 for a 64K-byte segment size and
through bit 11 for a 1M-byte segment
size. The page index starts with the
bit following the segment index and
extends through bit 19 for a 4K-byte
page size and through bit 20 for a
2K-byte page size. The byte index
consists of the remalnlng 11 or 12
rightmost bits of the virtual address.
The virtual address has the following
format:

For 64K-byte segments and 4K-byte pages:

1////////1 SX I PX I BX

0 8 16 20 31

For 64K-byte segments and 2K-byte pages:

1////////1 SX I PX BX

0 8 16 21 31

For 1M-byte segments and 4K-byte pages:

1////////1 SX PX BX

0 8 12 20 31

Chapter 3. Storage 3-21

For 1M-byte segments and 2K-byte pages:

1////////1 SX PX BX

o 8 12 21 31

Virtual addresses are translated into
real addresses by means of two trans­
lation tables: a segment table and a
page table. These reflect the current
assignment of real storage. The assign­
ment of real storage occurs in units of
pages, the real locations being assigned
contiguously within a page. The pages
need not be adjacent in real storage
even though assigned to a set of sequen­
tial virtual addresses.

TRANSLATION CONTROL

Address translation is controlled by the
OAT-mode bit in the EC-mode PSW and by a
set of bits, referred to as the trans­
lation parameters, in control registers
o and 1. When DAS is installed, an
additional bit in the EC-mode PSW is
included, and control register 7 is
included as part of the translation
parameters. Additional controls are
located in the translation tables.

Translation Modes

When the
facility is

dynamic-address-translation
installed without DAS, the

3-22 System/370 Principles of Operation

CPU can operate with OAT either on or
off. The mode of operation ;s
controlled by bit 5 of the EC-mode PSW,
the OAT-mode bit. When this bit is one,
OAT is on, and logical addresses are
treated as virtual addresses; when this
bit is zero or the BC mode is specified,
OAT is off, and logical addresses are
treated as real addresses.

When DAS is installed, two bits in the
EC-mode PSW control dynamic address
translation: bit 5, the OAT-mode bit,
and bit 16, the address-space-control
bit. When aBC-mode PSW is specified,
or, when in an EC-mode PSW the OAT-mode
bit is zero, OAT is off, the CPU is said
to be in the real mode, and instruction
and logical addresses are treated as
real addresses. When, in an EC-mode
PSW, the OAT-mode bit is one (OAT is on)
and the address-space-control bit is
zero, the CPU is said to be in the
primary-space mode, and instruction and
logical addresses are treated as primary
virtual addresses. When, in an EC-mode
PSW, OAT is on and the address-space­
control bit is one, the CPU is said to
be in the secondary-space mode, and
logical addresses are treated as second­
ary virtual addresses. The various
modes are shown in the figures "Trans­
lation Modes without DAS" and
"Translation Modes with DAS."

Handling of Addresses
PSW Bit

logical Instruction
5 112 OAT Mode Addresses Addresses

- 0 Off Real mode (Be mode) Real Real
0 1 Off Real mode Real Real
1 1 On Primary-space mode Primary Primary

Translation Modes without DAS

PSW Bit

5 112 116 OAT Mode

- 0 - Off Real mode (BC mode)
0 1 - Off Real mode
1 1 0 On Primary-space mode

1 1 1 On Secondary-space mode

Translation Modes with OAS

Note: When the CPU is in the
secondary-space mode, it is unpredict­
able whether instruction addresses are
treated as primary virtual or secondary
virtual addresses. However, all copies
of an instruction used in a single
execution are fetched from a single
space, and the machine can change the
interpretation of instruction addresses
as primary virtual or secondary virtual
only between instructions and only by
performing a checkpoint-synchronizing
function.

Programming Notes

1. Predictable program opera~10n is
ensured in the secondary-space mode
only when the instructions are
fetched from virtual-address
locations which translate to the
same real address by means of both
the primary and secondary segment
tables. Thus, a program should not
enter the secondary-space mode
unless the aforementioned condi­
tions exist.

2. The requirement limiting when the
CPU can change the address space
used for fetching instructions
eliminates problems with CPU retry,
OAT pretesting, and trial execution
of instructions for the purposes of
determining PER events.

virtual virtual

Handling of Addresses

logical Instruction
Addresses Addresses

Real Real
Real Real
Primary Primary

virtual virtual
Secondary See note

virtual

Control Register Q

When OAS is not installed, five bits are
provided in control register 0 which are
used In controlling dynamic address
translation. When DAS is installed, a
sixth bit is provided. The bits are
assigned as follows:

101 TF

5 8 13

Secondary-Space Control (D): Bit 5 of
control register 0 is the secondary­
space-control bit. This bit is provided
as part of OAS. When this bit is zero
and execution of MOVE TO PRIMARY, MOVE
TO SECONDARY, or SET ADDRESS SPACE
CONTROL is attempted, a special­
operation exception is recognized. When
this bit is one, it indicates that the
secondary segment table is attached when
the CPU is in the primary-space mode.

Translation Format eTF): Bits 8-12 of
control register 0 are-called the trans­
lation format, which controls the page
size and segment size. Some models do
not implement all four of the combina­
tions, as shown in the following table.

Chapter 3. Storage 3-23

Bits of
Control

Register 0 Page Segment

81 9110111112
Size Size

Provided (Bytes) (Bytes)

0 1 0 0 0 opt 2K 64K
0 1 0 1 0 opt 2K 1M
1 0 0 0 0 Std 4K 64K
1 0 0 1 0 Opt 4K 1M

All others Inv

Explanation:

Opt

Std

Inv

Optional. The code is invalid
on some models, even though
the translation facility is
installed.

Standard. The code is valid
on all models with the trans­
lation facility installed.

Invalid. The code is not valid
on any model.

Translation Format

When an invalid bit combination is
detected in bit positions 8-12, a
translation-specification exception is
recognized as part of the execution of
an instruction using address transla­
tion.

Control Register 1

Control register 1 contains the primary
segment-table designation (PSTD). The
register has the following format:

PSTL I Primary Segment-
_ Table Origin

o 8 26 31

Primary Segment-Table length (PSTl):
Bits 0-7 of control register 1 specify
the length of the primary segment table
in units of 64 bytes, thus making the
length of the segment table variable in
multiples of 16 entries. The length of
the primary segment table, in units of
64 bytes, is one more than the PSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a primary virtual address falls with­
in the primary segment table. Without
DAS, this field is sometimes referred to
as the segment-table length.

3-24 System/370 Principles of Operation

Primary Segment-Table Origin (PSTO):
Bits 8-25 of control register 1,--wTth
six zeros appended on the right, form a
24-bit real address that designates the
beginning of the primary segment table.
Without DAS, this field is sometimes
referred to as the segment-table origin.
With extended real addressing, the
primary segment-table origin is still a
24-bit real address and extended on the
left with zeros.

Space-Switch-Event-Control Bit (~):
When bit 31 of control register 1 is one
and execution of PROGRAM CALL with space
switching (PC-55) or PROGRAM TRANSFER
with space switching (PT-ss) is
completed, a space-switch-event program
interruption occurs. The space-switch­
event-control bit is also examined by
LOAD ADDRESS SPACE PARAMETERS, and, if
it is one, condition code 3 is set.
When DAS is not installed, this bit is
ignored.

Bits 26-30 of control register 1 are not
assigned and are ignored.

Control Register I

When DAS is installed, control register
7 contains the secondary segment-table
designation (SSTD). The register has
the following format:

o

Secondary Segment­
Table Origin

8 26 31

Secondary Segment-Table Length (SSTl):
Bits 0-7 of control register 7 specify
the length of the secondary segment
table in units of 64 bytes, thus making
the length of the segment table variable
in multiples of 16 entries. The length
of the secondary segment table, in units
of 64 bytes, is one more than the SSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a secondary virtual address falls
within the secondary segment table.

Secondary Segment-Table Origin (SSTO):
Bits 8-25 of control register 7, with
six zeros appended on the right, form a
24-bit real address that designates the
beginning of the secondary segment
table. With extended real addressing,
the secondary segment-table origin is
still a 24-bit real address and is
extended on the left with zeros.

Bits 26-31 of control register 7 are not
assigned and are ignored.

1. The validity of the information
loaded into a control register,
including that pertaining to dynam­
ic address translation, is not
checked at the time the register is
loaded. This information is
checked and the program exception,
if any, is indicated at the time
the information is used.

2. The information pertaining to
dynamic address translation is
considered to be used when an
instruction is executed with OAT on
or when INVALIDATE PAGE TABLE ENTRY
or lOAD REAL ADDRESS is executed.
The information is not considered
to be used when the PSW specifies
translation but an I/O, external,
restart, or machine-check inter­
ruption occurs before an instruc­
tion is executed, or when the PSW
specifies the wait state.

TRANSLATION TABLES

The translation process consists in a
two-level lookup using two tables: a
segment table and a page table. These
tables reside in real storage.

Segment-Table Entries

The entry fetched from the segment table
has the following format:

IPTl 10000 1 Page-Table Origin

048 29 31

The fields in the segment-table entry
are allocated as follows:

Page-Table Length (PTl): Bits 0-3 spec­
ify the length of the page table in
increments that are equal to 1/16 of the
maximum size of the table, the maximum
size depending on the size of segments
and pages. The length of the page
table, in units 1/16 of the maXlmum
size, is one more than the PTl value.
The length field is compared against the
leftmost four bits of the page-index
portion of the virtual address to deter­
mine whether the page index designates
an entry within the page table.

Page-Table Origin: Bits 8-28, with
three zeros appended on the right, form
a 24-bit real address that designates
the beginning of a page table. With
extended real addressing, the page-table

origin is still a 24-bit real address
and is extended on the left with zeros.

Segment-Protection Bit (f): Bit 29,
with the segment-protection facility
installed, controls whether store
accesses can be made in the segment.
This protection mechanism is in addition
to the key-controlled-protection and
low-address-protection mechanisms. The
bit has no effect on fetch accesses. If
the bit is zero, stores are permitted to
the segment, subject to the other
protection mechanisms. If the bit is
one, stores are disallowed. An attempt
to store when the segment-protection bit
is one causes a protection exception to
be recognized.

Common-Segment Bit (~): Bit 30, with
the common-segment facility installed,
controls the use of translation­
lookaside-buffer (TlB) copies of the
segment-table entry and of the page
table which it designates. A zero iden­
tifies a private segment; in this case,
the segment-table entry and the page
table it designates may be used only in
association with the segment-table
origin that designates the segment table
in which the segment-table entry
resides. A one identifies a common
segment; in this case, the segment-table
entry and the page table it designates
may continue to be used for translating
addresses corresponding to the segment
index, even though a different segment
table is specified. In some models, bit
30 in the segment-table entry is
ignored, and all segments are treated as
private.

The common-segment bit is used only for
controlling the loading and use of TLB
copies. When the common-segment facili­
ty is installed, the common-segment bit
is ignored for explicit translation and
for implicit translation not using the
TLB.

Segment-Invalid Bit (1): Bit 31
controls whether the segment associated
with the segment-table entry is avail­
able. When the bit is zero, address
translation proceeds by using the desig­
nated page table. When the bit is a
one, the segment-table entry cannot be
used for translation.

The handling of bit positions 4-7 and
29-30 of the segment-table entry depends
on the model. Normally a translation­
specification exception is recognized
when these bits are not zeros; however,
on some models the contents of these bit
positions maybe ignored. On machines
with the segment-protection facility
installed, bit 29 is interpreted as the
segment-protection bit. On machines
with the common-segment facility
installed, bit 30 is interpreted as
defined or is ignored.

Chapter 3. Storage 3-25

Page-Table Entries

The format of the page-table entry
depends on page size, as follows:

Page-table entry with 4K-byte pages:

PFRA

o 12 15

Page-table entry with 2K-byte pages:

PFRA

o 13 15

The fields in the page-table entry are
allocated as follows:

Page-Frame Real Address (PFRA): Bits
0-11 or bits 0-12, depending on the page
size, provide the leftmost 12 or 13 bits
of a 24-bit real storage address. When
these bits are concatenated with the
contents of the byte-index field of the
virtual address on the right, a 24-bit
real storage address is obtained.

Page-Invalid Bit (I): Bit 12 or 13,
depending on the page size, controls
whether the page associated with the
page-table entry is available. When the
bit is zero, address translation
proceeds by using the page-table entry.
When the bit is one, the page-table
entry cannot be used for translation.

Extended-storage-Address Bits (EA):
When the extended-real-addressing facil­
ity is installed, bits 13 and 14 of the
page-table entry with 4K-byte pages are
the extended-storage-address bits.
These bits become bits 6 and 7 of a
26-bit real address.

Except for bit position
positions to the right

15, the bit
of the page-

3-26 System/370 Principles of Operation

invalid bit must contain zeros; other­
wise, a translation-specification
exception is recognized as part of the
execution of an instruction using that
entry for address translation. In
models that provide the extended-real­
addressing facility, bit positions 13
and 14 of the page-table entry for
4K-byte pages are used as the extended­
storage-address bits and do not cause a
translation-specification exception.
Bit position 15 is unassigned and not
checked for zero.

SUMMARY OF DYNAMIC-ADDRESS-TRANSLATION
FORMATS

The first table summarizes the possible
combinations of the page-frame real
address (PFRA) field, byte-index field,
and extended-storage-address bits in the
formation of a real storage address.

The eight-bit length field in the
segment-table designation provides for a
maximum length code of 255 and permits
designating a segment table of 16,384
bytes, or 4,096 entries, which is more
than can be referred to for translation
purposes by the virtual address. With
1M-byte segments, only 16 segments can
be selected, requiring a segment table
of 64 bytes. A table of 64 bytes is
specified by a length code of 0 and is
the smallest table that can be
specified. With 64K-byte segments, up
to 256 segments can be selected, requir­
ing at the most a segment table of 1,024
bytes and a length code of 15. These
relations are summarized in the second
table.

The third table lists the maximum sizes
of the page table and the increments in
which the size of the page table can be
controlled.

Real storage Address

PFRA PFRA
without Extended with Extended

Real Addressing Real Addressing Byte Index

Size Bit Bit Bit
of Positions No. Positions No. Positions No.

Page in Page- of in Page- of in Virtual of
(Bytes) Table Entry Bits Table Entry Bits Address Bits

2K 0-12 13 0-12 13 21-31 11
4K 0-11 12 13, 14, 0-11 14 20-31 12

Segment Number Max Segm Tbl
Size Index of Segment-
of Field Address- Usable Table

Segment Size able Size Length Increment
(Bytes) (Bits) Segments (Bytes) Code (Bytes)

64K 8 256 1,024 15 64
1M 4 16 64 0 64

Page Max Page Tbl
Size of Index Number

Field of Pages
Segment Page Size in Size
(Bytes) (Bytes) (Bits) Segment (Bytes)

64K 2K 5 32 64
64K 4K 4 16 32

1M 2K 9 512 1,024
1M 4K 8 256 512

TRANSLATION PROCESS

This section describes the translation
process as it is performed implicitly
before a virtual address is used to
access main storage. The process of
translating the operand address of LOAD
REAL ADDRESS and TEST PROTECTION is the
same, except that segment-translation
and page-translation exceptions do not
occur; such situations are instead indi­
cated in the condition code.
Translation of the operand address of
LOAD REAL ADDRESS also differs in that
the CPU may be in the real mode and the
translation-lookaside buffer is not
used.

Translation of a virtual address is
performed by means of a segment table
and a page table both of which reside in
real storage. It is controlled by the
OAT-mode bit in the PSW and by the
translation parameters in control regis­
ters 0 and 1. When DAS is installed,
translation is also controlled by the
address-space-control bit in the PSW,
and the translation parameters also
include control register 7.

Page-
Usable Table
Length Increment

Code (Bytes)

15 4
15 2
15 64
15 32

Effective Segment-Table Designation

The segment-table designation used for a
particular address translation is called
the effective segment-table designation.
Accordingly, when a primary virtual
address is translated, control register
1 is used as the effective segment-table
designation, and when a secondary virtu­
al address is translated, control
register 7 is used as the effective
segment-table designation. Without DAS,
the term "effective segment-table desig­
nation" is synonymous with "primary
segment-table designation."

The segment-index portion of the virtual
address is used to select an entry from
the segment table, the starting address
and length of which are specified by the
effective segment-table designation.
This entry designates the page table to
be used and, if the segment-protection
facility is installed, provides the
segment-protection bit.

The page-index portion of the virtual
address is used to select an entry from

Chapter 3. Storage 3-27

the page table. This entry contains the
leftmost bits of the real address that
represents the translation of the virtu­
al address.

The byte-index field of the virtual
address is used unchanged as the right­
most bit positions of the real address.

If the I bit is one in either the
segment-table entry or the page-table
entry, the entry is invalid, and the
translation process cannot be completed
for this virtual address. A segment­
translation or a page-translation
exception is recognized.

In order to eliminate the delay associ­
ated with references to translation
tables in real storage, the information

3-28 System/370 Principles of Operation

fetched from the tables normally is also
placed in a special buffer, the
translation-lookaside buffer (TlB), and
subsequent translations involving the
same table entries may be performed by
using the information recorded in the
TLB. The operation of the TlB is
described in the section "Translation­
lookaside Buffer" in this chapter.

Whenever access to real storage is made
during the address-translation process
for the purpose of fetching an entry
from a segment table or page table,
key-controlled protection does not
apply.

The translation process, including the
effect of the TLB, is shown graphically
in the figure "Translation Process."

Control Register 1 Control Register 7 Virtual Address

PSTD

I ~ SSTD I I sx I pxl BX I
I I (x4) (x2) I

~~
~

4 I
~.

~

I ~
Effe ctive STD ~

STO I
(x64)

I
~

Segment Table
+

~

R PTL 01 PTa

(x8)

~
~

I
~.--~ 2

Translation
Lookaside

~ Buffer (TLB)
Page Table

+

1
~

PFRA 1
~

R PFRA

G
1- ~ 0 ~. 3 ~.

I I

Real Address
R: Address is real

Translation Process (Part 1 of 2)

Chapter 3. Storage 3-29

Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, and, when DAS is installed,
control register 7 provides the secondary segment-table designation for
translation of a secondary virtual address.

Information, which may include portions of the virtual address and the
translation parameters, is used to search the TLB.

If a match exists, the page-frame real address from the TLB is used in
forming the real address.

If no match exists, table entries in real storage are fetched. The resulting
fetched entries, in conjunction with the search information, are used to
translate the address and may be used to form an entry in the TLB.

Translation Process (Part 2 of 2)

Inspection of Control Register Q

The interpretation of the virtual
address for translation purposes is
controlled by the translation format,
bits 8-12 of control register O. If
bits 8-12 contain an invalid code, a
translation-specification exception is
recognized.

Segment-Table Lookup

The segment-index portion of the virtual
address, in conjunction with the
segment-table origin contained in the
effective segment-table designation, is
used to select an entry from the segment
table.

The 24-bit real address of the segment­
table entry is obtained by appending six
zeros to the right of bits 8-25 of the
effective segment-table designation and
adding the segment index to this value,
with the rightmost bit position of the
segment index aligned with bit position
29 of the address. A carry, if any,
into bit position 7 is ignored. With
extended real addressing, this 24-bit
real address is extended on the left
with zeros; thus, the segment table can
wrap from 224 - 1 to zero.

As part of the segment-table-Iookup
process, the segment index is compared
against the segment-table length, bits
0-7 of the effective segment-table
designation, to establish whether the
addressed entry is within the segment
table. With 1M-byte segments, entries
for all addressable segments are
contained in a table of minimum length
(length code of 0). With 64K-byte
segments, four zeros are appended to the
left of bits 8-11 of the virtual
address, and this extended value is
compared against the eight-bit segment-

3-30 System/370 Principles of Operation

table length. If the value in the
segment-table-length field is less than
the value in the corresponding bit posi­
tions of the virtual address, a
segment-translation exception is recog­
nized.

All four bytes of the segment-table
entry appear to be fetched concurrently
as observed by other CPUs. The fetch
access is not subject to protection.
When the storage address generated for
fetching the segment-table entry desig­
nates a location which is not available
in the configuration, an addressing
exception is recognized, and the unit of
operation is suppressed.

Bit 31 of the entry fetched from the
segment table specifies whether the
corresponding segment is available.
This bit is inspected, and, if it is
one, a segment-translation exception is
recognized. Handling of bit positions
4-7 and 29-30 of the segment-table entry
depends on the model: normally a
translation-specification exception is
indicated when they do not contain
zeros; however, on some models they may
be ignored.

On machines with the segment-protection
facility, bit 29 is the segment­
protection bit and does not cause a
translation-specification exception; bit
29 is retained with the entry in the
TLB.

On machines with the common-segment
facility, bit 30 is the common-segment
bit and does not cause a translation­
specification exception. Bit 30 may be
retained with the entry in the TLB, or
it may be ignored.

When no exceptions are recognized in the
process of segment-table lookup, the
entry fetched from the segment table
designates the beginning and specifies
the length of the corresponding page
table.

Page-Table Lookup

The page-index portion of the virtual
address, in conjunction with the page­
table origin contained in the segment­
table entry, is used to select an entry
from the page table.

The 24-bit real address of the page­
table entry is obtained by appending
three zeros to the right of bits 8-28 of
the segment-table entry and adding the
page index, with the rightmost bit posi­
tion of the page index aligned with bit
30 of the address. A carry, if any,
into bit position 7 is ignored. With
extended real addressing, this 24-bit
real address is extended on the left
with zeros; thus, the page table can
wrap from 224 - 1 to zero.

As part of the page-table-Iookup
process, the four leftmost bits of the
page index are compared against the
page-table length, bits 0-3 of the
segment-table entry, to establish wheth­
er the addressed entry is within the
table. If the value in the page-table­
length field is less than the value in
the four leftmost bit positions of the
page-index field, a page-translation
exception is recognized.

The two bytes of the page-table entry
appear to be fetched concurrently as
observed by other CPUs. The fetch
access is not subject to protection.
When the storage address generated for
fetching the page-table entry designates
a location which is not available in the
configuration, an addressing exception
is recognized, and the unit of operation
is suppressed.

The entry fetched from the page table
indicates the availability of the page
and contains the leftmost bits of the
page-frame real address. The page­
invalid bit is inspected to establish
whether the corresponding page is avail­
able. If this bit is one, a page­
translation exception is recognized. If
bit positions 13-14 for 4K-byte pages or
bit position 14 for 2K-byte pages
contains a one, a translation­
specification exception is recognized.

When the extended-real-addressing facil­
ity is installed, bit positions 13 and
14 of the page-table entry for 4K-byte
pages are used as bits 6 and 7 of the
page-frame real address and do not cause
a translation-specification exception
when either bit is one.

Formation of the Real Address

When no exceptions in the translation
process are encountered, the page-frame

real address obtained from the page­
table entry and the byte-index portion
of the virtual address are concatenated,
with the page-frame real address forming
the leftmost part. The result is the
real storage address which corresponds
to the virtual address.

Recognition of Exceptions during Trans­
lation

Invalid addresses and invalid formats
can cause exceptions to be recognized
during the translation process.
Exceptions are recognized when informa­
tion contained in control registers or
table entries is used for translation
and is found to be incorrect.

The information pertaining to OAT is
considered to be used when an instruc­
tion is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD REAL
ADDRESS ;s executed. The information is
not considered to be used when the PSW
specifies OAT on but an I/O, external,
restart, or machine-check interruption
occurs before an instruction is
executed, or when the PSW specifies the
wait state. Only that information
required in order to translate a virtual
address is considered to be in use
during the translation of that address,
and, in particular, addressing
exceptions that would be caused by the
use of the PSTD or the SSTD are not
recognized when the translation of an
address uses only the SSTD or only the
PSTD, respectively.

A list of translation exceptions, with
the action taken for each exception and
the priority in which the exceptions are
recognized when more than one is appli­
cable, is provided in the section
"Recognition of Access Exceptions" in
Chapter 6, "Interruptions."

TRANSLATION-LOOKASIDE BUFFER

To enhance performance, the dynamic­
address-translation mechanism normally
is implemented such that some of the
information specified in the segment and
page tables is maintained in a special
buffer, referred to as the translation­
lookaside buffer (TLB). The CPU neces­
sarily refers to a OAT-table entry in
real storage only for the initial access
to that entry. This information may be
placed in the TLB, and subsequent trans­
lations may be performed by using the
information in the TLB. The presence of
the TLB affects the translation process
to the extent that a modification of the
contents of a table entry in real stor­
age does not necessarily have an

Chapter 3. Storage 3-31

immediate effect, if any, on the trans­
lation.

The size and the structure of the TLB
depend on the model. For instance, the
TLB may be implemented in such a way as
to contain only a few entries pertaining
to the currently designated segment
table, each entry consisting of the
leftmost portion of a virtual address
and its corresponding page-frame real
address and segment-protection bit; or
it may contain arrays of values where
the page-frame real address and
segment-protection bit are selected on
the basis of the effective segment-table
origin, the translation format, and the
leftmost bits of the virtual address.
Entries within the TLB are not explicit­
ly addressable by the program. In a
multiple-CPU configuration, each CPU has
its own TLB.

The description of the logical structure
of the TLB covers all implementations by
System/370 models. The TLB entries are
considered as being of two types: TLB
segment-table entries and TLB page-table
entries. A TLB entry is considered as
containing within it both the informa­
tion obtained from the table entry in
real storage and the attributes used to
fetch the entry from storage. Thus, a
TLB segment-table entry would contain
the following fields:

I TF ISTO I SX IPTO IPTl C P

TF The translation format in effect
when the entry was formed

STO The segment-table origin in effect
when the entry was formed

SX The segment index used to select
the entry

PTO The page-table origin fetched from
the segment-table entry in real
storage

PTL The page-table length fetched from
the segment-table entry in real
storage

C The common-segment bit fetched
from the segment-table entry in
real storage; when the common­
segment facility is not installed,
this field is not included in the
TlB

P The segment-protection bit fetched
from the segment-table
real storage; when the
protection facility
installed, this field
included in the TlB.

entry in
segment-

is not
is not

A TLB page-table entry would contain the
following fields:

3-32 System/370 Principles of Operation

TF IPTO PX IPFRAI

TF The translation format in effect
when the entry was formed

PTO The page-table origin in effect
when the entry was formed

PX The page index used to select the
entry

PFRA The page-frame real address
fetched from the page-table entry
in real storage. When the
extended-real-addressing facility
is installed, this field for
4K-byte pages includes the
extended-storage-address bits.

Depending on the implementation, not all
of the above items are required in the
TlB. For example, if the implementation
combines into a single TlB entry (1) the
information obtained from a page-table
entry and (2) the attributes of both the
page-table entry and the segment-table
entry, then the page-table-origin and
page-table-length fields are not
required.

Note: The following sections describe
the conditions under which information
may be placed in the TLB and information
from the TLB may be used for address
translation, and they describe how
changes to the translation tables affect
the translation process. Information is
not necessarily retained in the TlB
under all conditions for which such
retention is permissible. Furthermore,
information in the TlB may be cleared
under conditions additional to those for
which clearing is mandatory.

Use of the Translation-lookaside Buffer

The formation of TlB entries and the
effect of any manipulation of the
contents of a table entry in real stor­
age by the program depend on whether the
entry is valid, on whether the entry is
attached to a particular CPU, on whether
a copy of the entry can be placed in the
TLB of a particular CPU, and on whether
a copy in the TlB of the entry is
usable.

The valid state of a table entry denotes
that~segment or page associated with
the table entry is available. An entry
is valid when the segment-invalid bit or
page-invalid bit in the entry is zero.

The attached state of a table entry
denotes that the CPU to which it is
attached can attempt to use the table
entry for implicit address translation.
The table entry may be attached to more
than one CPU at a time. When a table

entry is described as attached, the term
"to a CPU" is implied.

The usable state of a TLB entry denotes
that the CPU can attempt to use the TLB
entry for implicit address translation.
Also, the usable state of a TLB
segment-table entry is a factor in
determining whether a page-table entry
is attached.

A segment-table entry or a page-table
entry may be placed in the TLB only when
the entry is attached and valid and
would not cause a translation­
specification exception if used for
translation. Except for these
restrictions, the entry may be placed in
the TLB at any time.

A segment-table entry is attached when
all of the following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors
which would cause an early excep­
tion to be recognized. Those
machines without DAS installed do
not necessarily comply with this
condition.

3. The current translation format,
bits 8-12 in control register 0, is
valid.

4. The entry meets the requirements in
a or b below.

a. The entry is within the segment
table designated by the prlmary
segment-table designation in
control register 1.

b. The entry is within the segment
table designated by the second­
ary segment-table designation
in control register 7 and
either of the following
requirements is met:

•

•

The CPU is in the
secondary-space mode.

The secondary-space con­
trol, bi t 5 of control
register 0, is one.

5. The entry can be selected by the
segment-index portion of a virtual
address.

A page-table entry is attached when it
is within the page table designated by
either a usable TLB segment-table entry
or by an attached and valid segment­
table entry which would not cause a
translation-specification exception if
used for translation.

A TLB segment-table entry is in the
usable state when all of the following
conditions are met:

1 .

2.

3.

4.

The current PSW specifies DAT on.

The current PSW contains no errors
which would cause an early excep­
tion to be recognized. Those
machines without DAS installed do
not necessarily comply with this
condition.

The translation-format field in the
TLB segment-table entry is the same
as the current translation format.

The TLB segment-table entry meets
at least one of the following re­
quirements:

• The common-segment bit is one
in the TLB entry.

• The segment-table-origin field
in the TLB entry is the same as
the current PSTO.

• The segment-table-origin field
in the TlB entry is the same as
the current SSTO, and either
PSW bit 16 is one or bit 5 of
control register 0 is one.

A TLB segment-table entry may be used
for implicit address translation only
when the entry is in the usable state,
the segment index of the entry matches
the segment index of the virtual address
to be translated, and either the
common-segment bit is one in the TLB
entry or the segment-table-origin field
in the TLB entry matches the segment­
table origin used to select it.

A TlB page-table entry
state when all of the
tions are met:

is in the usable
following condi-

1 . The TLB page-table entry is
selected by a usable TlB segment­
table entry or by an attached and
valid segment-table entry which
would not cause a translation­
specification exception if used for
translation .

2. The page-table-origin field in the
TlB page-table entry matches the
page-table-origin field in the
segment-table entry which selects
it.

3. The page-index field in the TlB
page-table entry is within the
range permitted by the page-table­
length field in the segment-table
entry which selects it.

4. The translation-format field in the
TlB page-table entry is the same as
the current translation format.

A TlB page-table entry may be used for
implicit address translation only when
the TlB entry is in the usable state as
selected by the segment-table entry
being used and only when the page index

Chapter 3. Storage 3-33

of the TLB page-table entry matches the
page index of the virtual address being
translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB
contents. Translation in this case is
performed by the use of the designated
tables in real storage.

Selected page-table entries are cleared
from the TLB by means of the INVALIDATE
PAGE TABLE ENTRY instruction. All
information in the TLB is necessarily
cleared only by execution of PURGE TLB~
SET PREFIX, or CPU reset.

Programming Notes

1. Although a table entry may be
copied into the TLB only when the
table entry is both valid and
attached, the copy may remain in
the TLB even when the table entry
itself is no longer valid or
attached.

2. No entries can be copied into the
TLB when DAT is off because the
table entries at this time are not
attached. In particular, trans­
lation of the operand address of
LOAD REAL ADDRESS, with OAT off~
does not cause entries to be placed
in the TLB.

3-34 System/370 Principles of Operation

Conversely, when DAT is on, infor­
mation may be copied into the TLB
from all translation-table entries
that could be used for address
translation, given the current
translation parameters, the setting
of the address-space-control bit~
and the setting of the secondary­
space-control bit. The loading of
the TLB does not depend on whether
the entry is used for translation
as part of the execution of the
current instruction, and such load­
ing can occur when the wait state
is specified.

3. More than one copy of a table entry
may exist in the TLB. For example,
some implementations may cause a
copy of a valid table entry to be
placed in the TLB for each
segment-table origin by which the
entry becomes attached.

4. The segment size controls how many
segment-table entries can be
referred to for translation. Both
the page size and segment size
control the selection of page-table
entries and hence may affect wheth­
er or not an entry is attached.

5. The states and use of the OAT
entries in both real storage and in
the TLB are summarized in the
figure "Summary of OAT Entries."

State or Function

STE is attached by means
of PSTO (applies only to
STE in storage)

STE is attached by means
of SSTO (applies only to
STE in storage)

STE in storage is usable
for a particular instance
of implicit translation

STE can be placed in TLB

STE in TLB is usable

STE in TLB is usable for
a particular instance of
implicit translation

PTE is attached (applies
only to PTE in storage)

PTE in storage is usable
for a particular instance
of implicit translation

Conditions to Be Met

• DAT on
• No early PSW exception*
• TF valid
• STE in segment table defined by

PSTO in CR1
• STE selectable by a 24-bit ad­

dress

• OAT on
• No early PSW exception
• TF valid
• STE in segment table defined by

SSTO in CR7
• STE selectable by a 24-bit ad­

dress
• PSW bit 16 one or bit 5 of CRO

one

• STE in segment table defined and
attached by STO being used for
the translation

• STE selected by SX

• STE attached
• STE I bit zero
• No TS

• OAT on
• No early PSW exception*
• TF matches
• STE selectable by an STO:

- C bit one7 or
- STO matches PST07 or
- STO matches SST0 7 and either

PSW bit 16 one or bit 5 of
CRO one

• OAT on
• No early PSW exception*
• TF matches
• STE selected by STO being used

for the translation:
- STO matches7 or
- C bit one

• SX matches

• PTE in page table defined by
usable STE in the TLB7 or de­
fined by an STE that can be
placed in the TLB

• PTE attached by means of STE
being used for the translation

• PTE selected by PX

Summary of OAT Entries (Part 1 of 2)

Chapter 3. storage 3-35

State or Function Conditions to Be Met

PTE can be placed in TlB • PTE attached
• PTE I bit zero
• No TS

PTE in TlB is usable • TF matches
• PTE selectable by a usable STE

in the TLB or by an STE that
can be placed in the TlB:
- PTO matches and
- PX within PTl

• TF matches PTE in TlB is usable for
a particular instance of
implicit translation

• PTE selected by STE being used
for the translation:
- PTO matches and
- PX within PTl

• PX matches

Explanation:

*
C bit
I bit
PSTD
PSTO
PTE
PTl
PTO
PX
SSTD
SSTO
STD
STE
STO
SX

Models which do not have DAS installed do not
necessarily comply with the condition.
Common-segment bit in STE.
Invalid bit in table entry.
Primary segment-table designation.
Primary segment-table origin.
Page-table entry.
Page-table length.
Page-table origin.
Page index.
Secondary segment-table designation.
Secondary segment-table orlgln.
Segment-table designation.
Segment-table entry.
Segment-table origin.
Segment index.

TF
TS

Translation format (control register 0, bits 8-12).
Translation-specification exception. The condition
"No TS" means that attempted use of the associated
OAT-table entry would not cause a translation­
specification exception.

Summary of OAT Entries (Part 2 of 2)

Modification of Translation Tables

When an attached and invalid table entry
;s made valid and no usable entry for
the associated virtual address is in the
TlB, the change takes effect no later
than the end of the current unit of
operation. Similarly, when an unat­
tached and valid table entry is made
attached and no usable entry for the
associated virtual address is in the
TlB, the change takes effect no later
than the end of the current unit of
operation.

When a valid and attached table entry is
changed, and when, before the TlB is
cleared of entries which qualify for
substitution for that entry, an attempt
is made to refer to storage by using a
virtual address requiring that entry for
translation, unpredictable results may
occur, to the following extent. The use

3-36 System/370 Principles of Operation

of the new value may begin between
instructions or during the execution of
an instruction, including the instruc­
tion that caused the change. Moreover,
until the TlB is cleared of entries
which qualify for substitution for that
entry, the TLB may contain both the old
and the new values, and it is unpredict­
able whether the old or new value is
selected for a particular access. If
both old and new values of a segment­
table entry are present in the TLB, a
page-table entry may be fetched by using
one value and placed in the TlB associ­
ated with the other value. If the new
value of the entry is a value which
would cause an exception, the exception
mayor may not cause an interruption to
occur. If an interruption does occur,
the result fields of the instruction may
be changed even though the exception
would normally cause suppression or
nullification.

Entries are cleared from the TLB in
accordance with the following rules:

1. All entries are cleared from the
TLB by the execution of PURGE TLB
and SET PREFIX and by CPU reset.

2. Selected entries are cleared from
all TLBs in the configuration by
the execution of INVALIDATE PAGE
TABLE ENTRY by any of the CPUs in
the configuration.

3. Some or all TLB
cleared at times
required by PURGE
CPU reset, and
TABLE ENTRY.

entries may be
other than those

TLB, SET PREFIX,
INVALIDATE PAGE

Programming Notes

1. Entries in the TLB may continue to
be used for translation after the
table entries from which they have
been formed have become unattached
or invalid. These TLB entries are
not necessarily removed unless
explicitly cleared from the TLB.

A change made to an attached and
valid entry or a change made to a
table entry that causes the entry
to become attached and valid is
reflected in the translation proc­
ess for the next instruction, or
earlier than the next instruction,
unless a TLB entry qualifies for
substitution for that table entry.
However, a change made to a table
entry that causes the entry to
become unattached or invalid is not
necessarily reflected in the trans­
lation process until the TLB is
cleared of entries which qualify
for substitution for that table
entry.

2. Exceptions associated with dynamic
address translation may be estab­
lished by a pretest for operand
accessibility that is performed as
part of the initiation of instruc­
tion execution. Consequently, a
segment-translation or page-
translation exception may be
indicated when a table entry is
invalid at the start of execution
even if the instruction would have
validated the table entry it uses
and the table entry would have
appeared valid if the instruction
was considered to process the oper­
ands one byte at a time.

3. A change made to an attached table
entry, except to set the I bit to
zero or to alter the rightmost bit
of a page-table entry, may produce
unpredictable results if that entry
is used for translation before the
TLB is cleared of all copies of

that entry. The use of the new
value may begin between
instructions or during the
execution of an instruction,
including the instruction that
caused the change. When an
instruction, such as MOVE (MVC),
makes a change to an attached table
entry, including a change that
makes the entry invalid, and subse­
quently uses the entry for
translation, a changed entry is
being used without a prior clearing
of the entry from the TLB, and the
associated unpredictability of
result values and of exception
recognition applies.

Manipulation of attached table
entries may cause spurious table­
entry values to be recorded in a
TLB. For example, if changes are
made piecemeal, modification of a
valid attached entry may cause a
partially updated entry to be
recorded, or, if an intermediate
value is introduced in the process
of the change, a supposedly invalid
entry may temporarily appear valid
and may be recorded in the TLB.
Such an intermediate value may be
introduced if the change is made by
an I/O operation that is retried,
or if an intermediate value is
introduced during the execution of
a single instruction.

As another example, if a segment­
table entry is changed to designate
a different page table and used
without clearing the TLB, then the
new page-table entries may be
fetched and associated with the old
page-table origin. In such a case,
execution of INVALIDATE PAGE TABLE
ENTRY designating the new page­
table origin will not necessarily
clear the page-table entries
fetched from the new page table.

4. To facilitate the manipulation of
translation tables, INVALIDATE PAGE
TABLE ENTRY is provided, which sets
the I bit in a page-table entry to
one and clears all TLBs in the
configuration of entries formed
from that table entry.

INVALIDATE PAGE TABLE ENTRY is
useful for setting the I bit to one
in a page-table entry and causing
TlB copies of the entry to be
cleared from the TLB of each CPU in
the configuration. The following
aspects of the TLB operation should
be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the
programming notes following INVALI­
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before
making any change to a page­
table entry other than changing

Chapter 3. Storage 3-37

the rightmost bit; otherwise,
the selective clearing portion
of INVALIDATE PAGE TABLE ENTRY
may not clear the TLB copies of
the entry.

b. Invalidation of all the
page-table entries within a
page table by means of INVALI­
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of
the copies, if any, of the
segment-table entry designating
the page table. When it is
desired to invalidate and clear
the TLB of a segment-table
entry, the rules in note 5
below must be followed.

c. When a large number of
page-table entries are to be
invalidated at a single time,
the overhead involved in using
PURGE TLB and in following the
rules in note 5 below may be
less than in issuing INVALIDATE
PAGE TABLE ENTRY for each
page-table entry.

5. Manipulation of table entries
should be in accordance with the
following rules. If these rules
are complied with, translation is
performed as if the table entries
from real storage were always used
in the translation process.

a. A valid table entry must not be
changed while it is attached to
any CPU except either to inval­
idate the entry, by using
INVALIDATE PAGE TABLE ENTRY or
to alter bit 15 of a page-table
entry.

b. When any change is made to a
table entry other than a change
to bit 15 of a page-table
entry, each CPU which may have
a TLB entry formed from that
entry must execute PURGE TLB or
SET PREFIX or perform CPU
reset, after the change occurs
and prior to the use of that
entry for implicit translation
by that CPU, except that the
purge is unnecessary if the
change was made by using INVAL­
IDATE PAGE TABLE ENTRY.

c. When any change is made to an
invalid table entry in such a
way as to allow intermediate
valid values to appear in the
entry, each CPU to which the
entry is attached must execute
PURGE TLB or SET PREFIX or
perform CPU reset, after the
change occurs and prior to the
use of the entry for implicit
address translation by that
CPU.

3-38 System/370 Principles of Operation

d. When any change is made to a
segment-table or page-table
length, each CPU to which that
table has been attached must
execute PTLB after the length
has been changed but before
that table becomes attached
again to the CPU.

Note that when an invalid page­
table entry is made valid without
introducing intermediate valid
values, the TLB need not be cleared
in a CPU which does not have any
usable TLB copies for that entry.
Similarly, when an invalid
segment-table entry is made valid
without introducing intermediate
valid values, the TLB need not be
cleared in a CPU which does not
have any usable TLB copies for that
segment-table entry and which does
not have any usable TLB copies for
the page-table entries attached by
it.

The execution of PURGE TLB and SET
PREFIX may have an adverse effect
on the performance of some models.
Use of these instructions should,
therefore, be minimized in conform­
ity with the above rules.

ADDRESS SUMMARY

ADDRESSES TRANSLATED

Most addresses that are explicitly spec­
ified by the program and are used by the
CPU to refer to storage for an instruc­
tion or an operand are logical addresses
and are subject to implicit translation
when DAT is on. Analogously, the corre­
sponding addresses indicated to the
program on an interruption or as the
result of executing an instruction are
logical. The operand address of LOAD
REAL ADDRESS is explicitly translated,
regardless of whether the PSW specifies
the EC mode or BC mode, and regardless
of whether the EC-mode PSW specifies OAT
on or off.

Translation is not applied to quantities
that are formed from the values speci­
fied in the Band D fields of an
instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, MONITOR CALL,
and the shifting and I/O instructions.
This also includes the addresses in
control registers 10 and 11 designating
the starting and ending locations for
PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage
keys (operand addresses in SET STORAGE

KEY, INSERT STORAGE KEY, RESET REFERENCE
BIT, SET STORAGE KEY EXTENDED, INSERT
STORAGE KEY EXTENDED, and RESET REFER­
ENCE BIT EXTENDED) are real addresses.
Similarly, the addresses implicitly used
by the CPU or channels for such
sequences as interruptions, updating the
interval timer at locations 80-83,
DAT-table references, and logout,
including the machine-check-extended­
logout address in control register 15,
are real addresses.

The addresses used by channels to trans­
fer data and to refer to CCWs or IDAWs
are absolute addresses. Similarly, the
I/O-extended-Iogout address at locations
173-175 is an absolute address.

The handling of storage addresses asso­
ciated with DIAGNOSE is model-dependent.

The processing of addresses, including
dynamic address translation and prefix­
ing, is discussed in the section
"Address Types" in this chapter.
Prefixing, when provided, is applied
after the address has been translated by
means of the dynamic-address-translation
facility. For a description of prefix­
ing, see the section "Prefixing" in this
chapter.

HANDLING OF ADDRESSES

The handling of addresses is summarized
in the figure "Handling of Addresses."
This figure lists all addresses that are
encountered by the program and specifies
the address type.

Chapter 3. Storage 3-39

Virtual Addresses

• Address of storage operand for INSERT VIRTUAL STORAGE KEY
• Operand address in LOAD REAL ADDRESS
• Addresses of storage operands for MOVE TO PRIMARY and MOVE

TO SECONDARY
• Address stored in the word at real location 144 on a program

interruption for page-translation or segment-translation
exception

Instruction Addresses

• Instruction address in PSW
• Branch address
• Target of EXECUTE
• Address stored in the word at real location 152 on a pro­

gram interruption for PER
• Address placed in general register by BRANCH AND LINK~

BRANCH AND SAVE, and PROGRAM CALL

Logical Addresses

• Addresses of storage operands for instructions not other­
wise specified

• Address placed in general register 1 by EDIT AND MARK and
TRANSLATE AND TEST

• Addresses in general registers updated by MOVE LONG and
COMPARE LOGICAL LONG

Real Addresses

• Address of storage key for INSERT STORAGE KEY~ INSERT
STORAGE KEY EXTENDED~ RESET REFERENCE BIT, RESET REFERENCE
BIT EXTENDED, SET STORAGE KEY, and SET STORAGE KEY EXTENDED

• Address of storage operand for TEST BLOCK
• Address of storage operand for READ DIRECT and WRITE DIRECT

when INVALIDATE PAGE TABLE ENTRY ;s installed
• Page-table origin in INVALIDATE PAGE TABLE ENTRY
• Segment-table origin in control registers 1 and 7
• Page-table origin in segment-table entry
• Page-frame real address in page-table entry
• MCEL address in control register 15
• The translated address generated by LOAD REAL ADDRESS
• Address of segment-table entry or page-table entry provided

by LOAD REAL ADDRESS
• ASN-first-table origin in control register 14
• ASN-second-table origin in ASN-first-table entry
• Authority-table origin in ASN-second-table entry
• Linkage-table origin in control register 5
• Entry-table origin in linkage-table entry

Handling of Addresses (Part 1 of 2)

3-40 System/370 Principles of Operation

Permanently Assigned Real Addresses

• Addresses of PSWs, interruption codes, and associated in­
formation used during interruption

• Address used by CPU to update interval timer in the word at
real location 80

• Addresses of CAW, CSW, and other locations used during an
I/O interruption or during execution of an I/O instruction,
including STORE CHANNEL ID

Absolute Addresses

• Prefix value
• CCW address in CAW
• Data address in CCW
• IDAW address in a CCW specifying indirect-data addressing
• CCW address in a CCW specifying transfer in channel
• Data address in IDAW
• JOEL address at real locations 173-175
• Failing-storage address stored in the word at real location

248
• CCW address in CSW

Permanently Assigned Absolute Addresses

• Addresses of PSW and first two CCWs used for initial pro­
gram loading

• Addresses used for the store-status function

Addresses Not Used to Reference Storage

• PER starting address in control register 10
• PER ending address in control register 11
• Address stored in the word at real location 156 for a

monitor event
Address in shift instructions and other instructions speci­
fied not to use the address to reference storage

Handling of Addresses (Part 2 of 2)

ASSIGNED STORAGE LOCATIONS

The figure "Assigned Storage Locations"
shows the format and extent of the
assigned locations in storage. The
locations are used as follows. Unless
specifically noted, the usage applies to
both the BC and EC modes.

0-7 (Absolute Address)

Initial-Program-loading PSW:
The first eight bytes read
during the initial-program­
loading (1PL) initial-read oper­
ation are stored at locations
0-7. The contents of these
locations are used as the new
PSW at the completion of the 1PL
operation. These locations may
also be used for temporary stor­
age at the initiation of the IPL
operation, and bytes 2 and 3
hold the I/O address at the
conclusion of an 1PL in the BC
mode.

0-7

8-15

8-15

16-23

(Real Address)

Restart New PSW: The new PSW is
fetched ~rom- locations 0-7
during a restart interruption.

(Absolute Address)

Initial-Program-loading CCWl:
Bytes 8-15 read during ~e
initial-program-loading (IPL)
initial-read operation are
stored at locations 8-15. The
contents of these locations are
ordinarily used as the next CCW
in an IPL CCW chain after
completion of the IPL initial­
read operation.

(Real Address)

Restart Old PSW: The current
PSW is stored-a5 the old PSW at
locations 8-15 during a restart
interruption.

(Absolute Address)

Initial-Program-loading CCW2:
Bytes 16-23 read during the
initial-program loading (IPl)

Chapter 3. Storage 3-41

24-31

32-39

40-47

48-55

56-63

64-71

72-75

80-83

initial-read operation
stored at locations 16-23.
contents of these locations
be used as another CCW in
IPL CCW chain to follow
CCW1.

(Real Address)

are
The
may
the
IPl

External Old PSW: The current
PSW is stored as the old PSW at
locations 24-31 during an
external interruption.

(Real Address)

Supervisor-Call Old PSW: The
current PSW is stored as the old
PSW at locations 32-39 during a
supervisor-call interruption.

(Real Address)

Program O]~ PSW: The current
PSW is stored as the old PSW at
locations 40-47 during a program
interruption.

(Real Address)

Machine-Gbeck Old PSW: The
current PSL.J is storedas the old
PSW at locations 48-55 during a
machine-check interruption.

(Real Address)

Input/OutEl!! Old PSW: The
current PSW is stored as the old
PSW at locations 56-63 during an
I/O interruption.

(Real Address)

CSW: The channel-status word
(CSW) is stored at locations
64-71 during an I/O
interruption. Part or all of it
may be stored during the
execution of CLEAR I/O, HALT
DEVICE, HALT I/O, START I/O,
START I/O FAST RELEASE, STORE
CHANNEL ID, or TEST I/O, in
which case condition code 1 is
set.

(Real Address)

CAW: The channel-address word
(CAW) is fetched from locations
72-75 during the execution of
START I/O and START I/O FAST
RELEASE.

(Real Address)

Interval Timer: Locations 80-83
contain the interval timer. The
interval timer is updated when­
ever the CPU is in the operating
state and the manual interval­
timer control is set to enable.

3-42 System/370 Principles of Operation

84-87

88-95

(Logical Address)

Trace-Table-Designation Word:
The DAS-trace-control bit and
the trace-table-entry-header
origin are fetched from
locations 84-87.

(Real Address)

External New PSW: The new PSW
is fetched from--Iocations 88-95
during an external interruption.

96-103 (Real Address)

Supervisor-Call New PSW: The
new PSW is fetched from
locations 96-103 during a
supervisor-call interruption.

104-111 (Real Address)

Program New PSW: The new PSW is
fetched from locations 104-111
during a program interruption.

112-119 (Real Address)

Machine-Check New PSW: The new
PSW is fetchedfrom locations
112-119 during a machine-check
interruption.

120-127 (Real Address)

Input/Output New PSW: The new
PSW is fetched from locations
120-127 during an I/O inter­
ruption.

128-131 (Real Address)

External-Interruption Parameter:
During an external interruption
due to service signal, the
parameter associated with the
interruption is stored at
locations 128-131.

132-133 (Real Address)

CPU Address: During an external
interruption due to malfunction
alert, emergency signal, or
external call, the CPU address
associated with the source of
the interruption is stored at
locations 132-133. For all
other external-interruption
conditions, zeros are stored at
locations 132-133 when the old
PSW specified the EC mode, and
the field remains unchanged when
the old PSW specified the BC
mode.

134-135 (Real Address)

External-Interruption Code:
During an external interruption
in the EC mode, the interruption

code is stored
134-135.

136-139 (Real Address)

at locations

Supervisor-CalI-Interruption
Identification: During a
supervisor-call interruption in
the EC mode, the instruction­
length code is stored in bit
positions 5 and 6 of location
137, and the interruption code
is stored at locations 138-139.
Zeros are stored at location 136
and in the remaining bit posi­
tions of location 137.

140-143 (Real Address)

Proqram-Interruption Identifi­
cation: During a program inter­
ruption in the EC mode, the
instruction-length code is
stored in bit positions 5 and 6
of location 141, and the inter­
ruption code is stored at
locations 142-143. Zeros are
stored at location 140 and in
the remaining bit positions of
location 141.

144-147 (Real Address)

Translation-Exception Identifi­
cation: During a program inter­
ruption due to a segment­
translation exception or a
page-translation exception, the
segment-index and page-index
portion of the virtual address
causing the exception is stored
at locations 144-147. This
address is sometimes referred to
as the translation-exception
address. When 2K-byte pages are
used, the rightmost 11 bits of
the address are unpredictable.
When 4K-byte pages are used, the
rightmost 12 bits of the address
are unpredictable. Bits 1-7 of
location 144 are set to zeros.
When DAS is installed, bit 0 of
location 144 is set to zero if
the translation was relative to
the primary segment table desig­
nated by control register 1, or
it is set to one if the trans­
lation was relative to the
secondary segment table desig­
nated by control register 7.
When DAS is not installed, bit 0
of location 144 is set to zero.

During a program interruption
due to an AFX-translation, ASX­
translation, primary-authority,
or secondary-authority excep­
tion, the ASN being translated
is stored at locations 146-147.
Zeros are stored at locations
144-145.

During a program interruption
for a space-switch event, the
old PASN, which is in bits 16-31
of control register 4 before the
execution of a space-switching
PROGRAM CALL or PROGRAM TRANSFER
instruction, is stored at
locations 146-147. The old
space-switch-event-control bit
is stored in bit position 0, and
zeros are stored in bit posi­
tions 1-15 of locations 144-145.

During a program interruption
due to an LX-translation or EX­
translation exception, the PC
number is stored in bit posi­
tions 12-31 of the word at
locations 144-147. Bits 0-11
are set to zeros.

In all
locations
when the
EC mode.

cases,
144-147

old PSW

148-149 (Real Address)

storing at
only occurs

specifies the

Monitor-Class Number: During a
program interruption due to a
monitor event, the monitor-class
number is stored at location
149, and zeros are stored at
location 148.

150-151 (Real Address)

PER Code: During a program
interruption due to a PER event,
the PER code is stored in bit
positions 0-3 of location 150.
Zeros are stored in bit posi­
tions 4-7 of location 150 and
bit positions 0-7 of location
151. This field can be stored
only when the instruction caus­
ing the PER condition was
executed under the control of a
PSW specifying the EC mode.

152-155 (Real Address)

PER Address: During a program
interruption due to a program
event, the PER address is stored
at locations 153-155, and zeros
are stored at location 152.
This field can be stored only
when the instruction causing the
PER condition was executed under
the control of a PSW specifying
the EC mode.

156-159 (Real Address)

Monitor Code: During a program
interruption due to a monitor
event, the monitor code is
stored at locations 157-159, and
zeros are stored at location
156.

Chapter 3. storage 3-43

168-171 (Real Address)

Channel ID: The channel­
identification information is
stored at locations 168-171
during the execution of STORE
CHANNEL ID.

172-175 (Real Address)

IOEL Address: The 1/0-
extended-logout address is
fetched from locations 173-175
during the I/O-extended-Iogout
operation. The contents of
location 172 are ignored.

176-179 (Real Address)

Limited Channel Logout: The
limited-channel-logout informa­
tion is stored at locations
176-179. This field may be
stored only when the CSW or a
portion of the CSW is stored.

185 (Real Address)

Measurement Byte: During an I/O
interruption in the EC mode, the
measurement byte is stored at
location 185. A nonzero value
for the measurement byte is part
of the start-I/O-fast-queuing
facility. When this facility is
not installed, zeros are stored.

186-187 (Real Address)

1/0 Address: During an 1/0
interruption in the EC mode and
at the conclusion of an IPL in
the EC mode, the I/O address is
stored at locations 186-187.

216-223 (Absolute Address)

Store-Status CPU-Timer Save
Area: During the execution----o:F
the store-status operation, the
contents of the CPU timer, if
the CPU-timer and clock-
comparator facility is
installed, are stored at
locations 216-223.

216-223 (Real Address)

Machine-Check CPU-Timer Save
Area: During a machine-check
interruption, the contents of
the CPU timer, if the CPU-timer
and clock-comparator facility is
installed, are stored at
locations 216-223.

224-231 (Absolute Address)

Store-Status Clock-Comparator
Save Area: During the execution
of the store-status operation,
the contents of the clock compa­
rator, if the CPU-timer and

3-44 System/370 Principles of Operation

clock-comparator
installed, are
locations 224-231.

224-231 (Real Address)

facility
stored

is
at

Machine-Check Clock-Comparator
Save Area: During a machine­
check interruption, the contents
of the clock comparator, if the
CPU-timer and clock-comparator
facility is installed, are
stored at locations 224-231.

232-239 (Real Address)

Machine-Cheek-Interruption Code:
During a machine-check interrup­
tion, the machine-cheek-inter­
ruption code is stored at
locations 232-239.

244-247 (Real Address)

External-Damage Code: During a
machine-check interruption due
to certain external-damage
conditions, depending on the
model, an external-damage code
may be stored at locations
244-247.

248-251 (Real Address)

Failing-Storage Address: During
a machine-check interruption, a
failing-storage address may be
stored at locations 249-251,
with zeros stored at location
248. When the extended-real­
address facility is installed,
the failing-storage address is
31 bits and bit 0 of location
248 is set to zero.

252-255 (Real Address)

Region Code: During a machine­
check interruption, model­
dependent information may be
stored at locations 252-255.

256-263 (Absolute Address)

Store-Status PSW Save Area:
During the executi~ of~e
store-status operation, the
contents of the current PSW are
stored at locations 256-263.

256-351 (Real Address)

Fixed-Logout Area: Depending on
the model, logout information
may be stored at locations
256-351 during a machine-check
interruption or full channel
logout. Additionally, the
contents of locations 256-351
may be changed at any time,
subject to the asynchronous­
fixed-logout-control bit in
control register 14.

264-267 (Absolute Address)

Store-status Prefix Save Area:
During the executio-n---of~e
store-status operation, the
contents of the prefix register,
if the multiprocessing facility
is installed, are stored at
locations 264-267.

268-271 (Absolute Address)

Store-Status Model-Dependent
Save Area: During the execution
~the store-status operation,
model-dependent information may
be stored at locations 268-271.

352-383 (Absolute Address)

Store-Status Floating-Point­
Register Save Area: During the
execution of the store-status
operation, the contents of the
floating-point registers, if the
floating-point facility is
installed, are stored at
locations 352-383.

352-383 (Real Address)

Machine-Check Floating-Point­
Register Save Area: During a
machine-check interruption, the
contents of the floating-point
registers, if the floating-point
facility is installed, are
stored at locations 352-383.

384-447 (Absolute Address)

Store-Status General-Register
Save Area: During the execution
of the store-status operation,
the contents of the general
registers are stored at
locations 384-447.

384-447 (Real Address)

Machine-Check General-Register
Save Area: During a machine­
check interruption, the contents
of the general registers are
stored at locations 384-447.

448-511 (Absolute Address)

Store-Status Control-Register
Save Area: During the execution
~the store-status operation,
the contents of the control
registers are stored at
locations 448-511.

448-511 (Real Address)

795

Machine-Check Control-Register
Save Area: During a machine­
check Tnterruption, the contents
of the control registers are
stored at locat~ons 448-511.

(Logical Address)

CPU Identity for DAS Tracing:
During execution of DAS tracing,
the contents of location 795 are
fetched and placed in the trace
entry. This field is called
"CPU fdentity" because the
control program is expected to
place the rightmost eight bits
of the CPU address in this area.

Chapter 3. storage 3-45

Hex Dec

0 0 Initial-Program-loading PSW; or Restart New PSW

4 4

8 8 Initial-Program-loading CCWl; or Restart Old PSW

C 12

10 16 Initial-Program-loading CCW2

14 20

18 24 External Old PSW

1C 28

20 32 Supervisor-Call Old PSW

24 36

28 40 Program Old PSW

2C 44

30 48 Machine-Check Old PSW

34 52

38 56 Input/Output Old PSW

3C 60

40 64 Channel-Status Word

44 68

48 72 Channel-Address Word

4C 76

50 80 Interval Timer

54 84 Trace-Table-Designation Word

58 88 External New PSW

5C 92

60 96 Supervisor-Call New PSW

64 100

68 104 Program New PSW

6C 108

70 112 Machine-Check New PSW

74 116

78 120 Input/Output New PSW

7C 124

Assigned Storage locations (Part 1 of 3)

3-46 System/370 Principles of Operation

Hex Dec

80 128 External-Interruption Parameter

84 132 CPU Address External-Interruption Code

88 136 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 SVC-Interruption Code

8C 140 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 Program-Interruption Code

90 144 Translation-Exception Identification

94 148 Monitor-Class Number PER CdelO 0 0 0 0 0 0 0 0 0 0 0

98 152 PER Address

9C 156 Monitor Code

AO 160

A4 164

A8 168 Channel ID

AC 172 IOEL Address

BO 176 Limited Channel Logout

B4 180

B8 184 I r>1easurement Byte I/O Address

BC 188

CO 192

C4 196

C8 200

CC 204

DO 208

D4 212

D8 216 Store-Status CPU-Timer Save Area; or Machine-Check CPU Timer
Save Area

DC 220

EO 224 Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

E4 228

E8 232 Machine-Check-Interruption Code

EC 236

FO 240

F4 244 External-Damage Code

F8 248 Failing-Storage Address

FC 252 Region Code

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage 3-47

Hex Dec

100 256 Store-Status PSW Save Area; or Fixed-Logout Area (Part 1)

104 260

108 264 Store-Status Prefix Save Area; or Fixed-Logout Area (Part 2)

lOC 268 Store-Status Mod-Dep Save Area; or Fixed-Logout Area (Part 3)

110 272 Fixed-Logout Area (Part 4)

/ /

158 344

15C 348

160 352 Store-Status Floating-Point-Reglster Save Area; or Machine-
Check Floating-Point-Register Save Area

164 356

/ /

17C 380

180 384 Store-Status General-Register Save Area; or Machine-Check
General-Register Save Area

184 388

/ /

1BC 444

1CO 448 Store-Status Control-Register Save Area; or Machine-Check
Control-Register Save Area

1C4 452

/ /

lFC 508

I I 200 512

/ /

314 788

I I
318 792 CPU Identity

31C 796

Assigned Storage Locations (Part 3 of 3)

3-48 System/370 Principles of Operation

CHAPTER ~ CONTROL

stopped, Operating, Load, and Check-Stop States ••••••••••• 4-2
Stopped State •.••.••.••••••••.•••.••••.•••••••••••.••••• 4-2
Operat i ng State .••••••••.••.••.••••••••••••••••••••••••• 4-2
load State•••...•••.•••.••••.•••.•••••••••••••.••• 4-3
Check-Stop State •...•..••••.•.••••••••.••••••••.•••••••. 4-3

Program-Status Word .••..•••••••.•••••••..•••••••••••..•.•. 4-3
EC and BC Modes ••..••.•••.•••.••••••••..•••••••••••.•••• 4-4
Program-Status-Word Format in EC Mode ..••••••••••••.••.• 4-6
Program-Status-Word Format in BC Mode •.••••••.•••••.•••. 4-8

Control Registers .••••..•.••.....•.••••..••••.••••.....••• 4-8
DAS Tracing •..•.•••.••..••..••••••••••••.••••••••••••••••• 4-11

Protection for DAS Tracing •..•.•..••....••..•.•.•••.•• 4-13
Other Actions Associated with DAS Tracing ••••.••.••.•• 4-13
Serialization for DAS Tracing ••..•••....•••••••••••..• 4-13

Trace-Table Designation •••.•.••••••••..•.••••.•.•••.••.• 4-13
Trace-Table-Entry Header •.•....•••••••.••.•.•.•.••.••..• 4-13

Interlocks ••....•.....•••.•.•.•.•••..••••...•.•.••..•• 4-14
Trace Entry •••...•.............••......•••...•.•.•••..•. 4-14

Program-Event Recording .•..•...•...••.......••............ 4-15
Control-Register Allocation•.••....•..•...•.••.••..• 4-15
Operati on .•......•...•.•.•••.••••..•...•.•..•..••.••.••. 4-16

Identification of Cause••........•.••.•.•.•.•.•.•• 4-17
Priority of Indication ••.•...•.........•.••••••••..... 4-17

Storage-Area Designation •...•..•..•••....••.••.•.••••••. 4-18
PER Events••.....•.•••.•.••..••.. 4-19

Successful Branching .••.•..••....•....••..•.•..•.•...• 4-19
Instruction Fetching .•..........•....•.....••..•..•..• 4-19
Storage Alteration ..••.........•......••.•.....•...... 4-19
General-Register Alteration ..•.•...•.•...•.•..•..•.••• 4-20

Indication of PER Events Concurrently with Other
Interruption Conditions•......•..•.•..•..••.• 4-20

Di rect Control••....................••...•••.... 4-23
Read-Write-Direct Facility•.•.....••......• 4-23
External-Signal Facility•..•••...•.•..•.....•..•••.. 4-23

Timing•........•................•....•.•.•••..•....•• 4-23
Time-of-Day Clock•...............•.........•••..•. 4-23

Format•..•............••...•....•••.•...••....... 4-24
States•...••.....•.••.•......••. 4-24
Changes in Clock State ..•.......•......•..•..•.••..... 4-25
Setting and Inspecting the Clock•..•.•...• 4-25

TOO-Clock Synchronization•...•...••.......•. 4-26
Clock Comparator•..........•.•...•..•......... 4-27
CPU T 1 mer•.........••.........•..•...•.•..•.•••..... 4-28
Interval Timer••.........•..•.................. 4-29

Externally Initiated Functions•.•............•. 4-30
Resets ...•......•..................•...•.•...••.•.....•. 4-30

CPU Reset•....•.....••.........•.•..••••. 4-33
Inrtial CPU Reset ...•........•.•.•.•.••.••...••.....•• 4-34
Subsystem Reset•.....•......•.•. 4-34
Program Reset••....•....•••.....•••..•....••. 4-34
Initial Program Reset••.•..•••..••...•••...•.•. 4-34
Clear Reset••..•..........•.....••...•••••... 4-34
Power-On Reset•.••.......••.•....•.•••.•..•.•. 4-35

Initial Program loading ...•.....••..••.•.••••..•...•..•• 4-35
store Status .•..•••...•.•.•......••.•..••.••••..••.•..•. 4-37

Multiprocessing ...•.•.•.••......•...•.•....••.•.•.••..•.•• 4-37
Shared Main Storage•.•......•.•••.•••.•.•..•••••.•. 4-38
CPU-Address Identification•..•..........••..•.....•. 4-38

CPU Signaling and Response .••.....•.........•.........•... 4-38
Signal-Processor Orders .•......•....•..•..•••......••.•. 4-38
Conditions Determining Response•..•..•........•••..• 4-40

Conditions Precluding Interpretation of the
Order Code•••.•••...•. 4-40

Status Bi ts•.•......•.••....•...•...•.••...•• 4-41
Channel-Set Switching•......•..•••...•..••....••.•..• 4-43

Chapter 4. Control 4-1

This chapter describes 1n
facilities for controlling,
and recording the operation
more CPUs.

detail the
measuring,
of one or

STOPPED, OPERATING, LOAD, AND CHECK-STOP
STATES

The stopped, operating, load, and
check-stop states are four mutually
exclusive states of the CPU. When the
CPU is in the stopped state,
instructions and interruptions, other
than the restart interruption, are not
executed. In the operating state, the
CPU executes instructions and takes
interruptions, subject to the control of
the program-status word (PSW) and
control registers, and in the manner
specified by the setting of the
operator-facility rate control. The CPU
is in the load state during the
initial-program-loading operation. The
CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states
can be effected by use of the operator
facilities or by acceptance of certain
SIGNAL PROCESSOR orders addressed to
that CPU. The states are not controlled
or identified by bits in the PSW. The
stopped, load, and check-stop states are
indicated to the operator by means of
the manual indicator, load indicator,
and check-stop indicator, respectively.
Th8se three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is
in the operating state or the load
state. The TOO clock is not affected by
the state of any CPU. The interval
timer is updated only when the CPU is in
the operating state.

STOPPED STATE

The CPU changes from the operating state
to the stopped state by means of the
stop function. The stop function is
pc;rformed vJhen:

•

•

The stop key is activated while the
CPU is in the operating state.

The CPU accepts a stop or stop­
and-store-status order specified by
a SIGNI\L PROCESSOR instruction
addressed to this CPU while it is
in the operating state.

The CPU has finished the execution
of a unit of operation initiated by
performing the start function with
the rate control set to the
instruction-step position.

4-2 System/370 Principles of Operation

When the stop function 1S performed, the
transition from the operating to the
stopped state occurs at the end of the
current unit of operation. When the
wait-state bit of the PSW is one, the
transition takes place immediately,
provided no interruptions are pending
for which the CPU is enabled. In the
case of interruptible instructions, the
amount of data processed in a unit of
operation depends on the particular
instruction and may depend on the model.

Before entering the stopped state by
means of the stop function, all pending
allowed interruptions are taken while
the CPU is still in the operating state.
They cause the old PSW to be stored and
the new PSW to be fetched before the
stopped state is entered. While the CPU
i sin the stopped state, interrupt ion
conditions remain pending.

The CPU is also placed in the stopped
state when:

• The CPU reset is completed. Howev­
er, when the reset operation is
performed as part of initial
program loading for this CPU, then
the CPU is placed in the load state
and does not necessarily enter the
stopped state.

• An address comparison indicates
equality and stopping on the match
is specified.

The execution of resets is described in
the section "Resets" in this chapter,
and address comparison is described in
the sect; on "Addt~ess-Compare Controls"
in Chapter 12, "Operator Facilities."

If the CPU is in the stopped state when
an INVALIDATE PAGE TABLE ENTRY instruc­
tion is executed on another CPU in the
configuration, the invalidation may be
performed immediately or may be delayed
until the CPU leaves the stopped state.

OPERATING STATE

The CPU changes from the stopped state
to the operating state by means of the
start function or when a restart inter­
ruption (5ee Chapter 6) occurs.

The start function is performed if the
CPU is in the stopped state and (1) the
start key associated with that CPU is
activated or (2) that CPU accepts the
5tart order specified by a SIGNAL
PROCESSOR instruction addressed to that
CPU. The effect of performing the start
function is unpredictable when the
stopped state has been entered by means
of a reset.

L-Jhen the rate control is se"t to the
process position and the start function

is performed, the CPU starts operating
at normal speed. When the rate control
is set to the instruction-step position
and the wait-state bit is zero, one
instruction or, for interruptible
instructions, one unit of operation is
executed, and all pending allowed inter­
ruptions are taken before the CPU
returns to the stopped state. When the
rate control is set to the instruction­
step position and the wait-state bit is
one, the start function causes no
instruction to be executed, but all
pending allowed interruptions are taken
before the CPU returns to the stopped
state.

LOAD STATE

The CPU enters the load state when the
load-normal or load-clear key ;s acti­
vated. (See the section "Initial
Program loading" in this chapter.) If
the initial-program-Ioading operation is
completed successfully, the CPU changes
from the lo~d state to the operating
state, provided the rate control is set
to the process position; if the rate
control is set to the instruction-step
position, the CPU changes from the load
state to the stopped state.

CHECK-STOP STATE

The check-stop state, which the CPU
enters on certain types of machine
malfunction, is described in Chapter 11,
nl1achine-Check Hundling." The CPU
leaves the check-stop state when CPU
reset is perfor~ed.

ProqramminQ Notes

1. Except for the relationship between
execution time and real time, the
execution of a program is not
affected by stopping the CPU.

2. When, because of a m~chine malfunc­
~lon, an invalid address in the
prefix register, or an incomplete
READ DIRECT instruction, the CPU is
unable to end the execution of an
instruction, the stop function is
ineffective, and a reset function
has to be invoked instead. A simi­
lar situation occurs when an
unending string of interruptions
results from a PSW with a
PSW-format error of the type that

is recognized early, or from a
persistent interruption condition,
such as one due to the CPU timer.

3. Pending I/O operations may be
initiated, and active I/O oper­
ations continue to suspension or
completion, after the CPU enters
the stopped state. The inter-
ruption conditions due to
suspension or completion of I/O
operations remain pending when the
CPU is in the stopped state.

PROGRAM-STATUS WORD

The current program-status word (PSW) in
the CPU contains information required
for the execution of the currently
active program. The PSW is 64 bits in
length and includes the instruction
address, condition code, and other
control fields. In general, the PSW is
used to control instruction sequencing
and to hold and indicate much of the
status of the CPU in relation to the
program currently being executed. Addi­
tional control and status information is
contained in control registers and
permanently assigned storage locations.

The status of the CPU can be changed by
loading a new PSW or part of a PSW.

Control is switched during an inter­
ruption of the CPU by storing the
current PSW, so as to preserve the
status of the CPU, and then loading a
new PSL~.

Execution of LOAD PSW, or the successful
conclusion of the initial-progrDm­
loading sequence, introduces a new PSW.
The instruction address is updated by
sequential instruction Qxecution and
replaced by successful branches. Other
instructions are provided which operate
on a portion of the PSW. The figure
"Operati ons on PSL~ Fi eids" sumr:'lari .::es
these instructions.

A new or modified PSW becomes active
(that is, tha information introduced
into the current PSW assumes control
over the CPU) when the interruption or
the execution of an instruction that
changes the PSW is co~pleted. The
interruption for PER associated with an
instruction th~t changes the PSW occurs
under control of the PER mask that is
effective at the beginning of the opera­
tion.

Bits 0-7 of the PSW are collectively
referred to as the system mask.

Chapter 4. Control 4-3

System Mask
(PSW Bits

0-7)

PSW Key
(PSW Bits

8-11)

Condition
Code and

Program
Mask l

Problem
State
(PSW

Bit 15)

Address­
Space

Control2

Instruction

BRANCH AND LINK
INSERT PSW KEY
INSERT ADDRESS SPACE

CONTROL
PROGRAM CALL
PROGRAM TRANSFER
SET ADDRESS SPACE

CONTROL
SET PROGRAM MASK
SET PSW KEY FROM

ADDRESS
SET SYSTEM MASK
STORE THEN AND SYSTEM

MASK
STORE THEN OR SYSTEM

MASK

Explanation:

Saved Set Saved

No No No
No No Yes
No No No

No No No
No No No
No No No

No No No
No No No

No Yes No
Yes ANDs No

Yes ORs No

Set

No
No
No

No
No
No

No
Yes

No
No

No

Saved

Yes
No
No

No
No
No

No
No

No
No

No

Set

No
No
No

No
No
No

Yes
No

No
No

No

Saved

No
No
No

Yes
No
No

No
No

No
No

No

Set Saved

No No
No No
No Yes

Yes No
Yes l No
No No

No No
No No

No No
No No

No No

Set

No
No
No

No
No
Yes

No
No

No
No

No

1 PSW bits 18-23 in the EC mode; PSW bits 34-39 in the BC mode.

Bit 16 of the EC-mode PSW.

3 Cannot be changed from one to zero.

ANDs The logical AND of the immediate field in the instruction and the current
system mask replaces the current system mask.

ORs The logical OR of the immediate field in the instruction and the current
system m~sk replaces the current system mask.

Operations on PSW Fields

EC AND BC MODES

Two control modes are provided for the
formatting and use of control and status
information: the extended-control (EC)
mode and the basic-control (BC) mode.
Certain functions available in the EC
mode, such as PER, are not available in
the BC mode. The mode currently in
effect is specified by PSW bit 12. Bit
12 is one for the EC mode and zero for
the BC mode.

Bit 6 of the PSW, in both the BC and EC
mode3, is the summary-mask bit for
con~rolling I/O interruptions. In addi­
tion, I/O interruptions can be
controlled individually for up to 32
channels. In the EC mode, the individ­
ual control is provided by the 32 mask
bits in control register 2, and the
summary-mask bit in the PSW applies to
all 32 channels. In the BC mode, chan­
nels 6 and up are individually
controlled by the corresponding bits of
control register 2, as well as the
summary-mask bit, bit 6 of the PSW. In
the BC mode, channels 0-5 are controlled
separately by bits 0-5 of the PSW and

4-4 System/370 Principles of Operation

are not subject to the summary mask or
to mask bits in control register 2.

When interruptions occur in the EC mode,
the interruption code and instruction­
length code are stored at various perma­
nently assigned storage locations
according to the class of interruptions.
In the BC mode, the interruption code
(for all except machine-check inter­
ruptions) and instruction-length code
are placed in the old PSW.

The program-mask and
fields in the PSW are
different bit positions
control modes.

condition-code
allocated to

in the two

The instruction INSERT STORAGE KEY
provides the reference and change bits
when in the EC mode but produces zeros
in the corresponding bit positions when
in the BC mode. The instruction INSERT
STORAGE KEY EXTENDED provides the refer­
ence and change bits in both the EC and
BC modes.

The following instructions, all of which
are associated with the DAS facility,
cause a program interruption for

special-operation exception if execution
is attempted in the BC mode:

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT VIRTUAL STORAGE KEY
MOVE TO PRIMARY
MOVE TO SECONDARY
PROGRAM CAll
PROGRAM TRANSFER
SET ADDRESS SPACE CONTROL
SET SECONDARY ASN

Programming Notes

1. The BC mode provides a PSW format
that is compatible with the PSW of
System/360.

2. The choice between the EC and BC
modes affects only those aspects of
operation that are specifically
defined to be different for the two
modes. It does not affect the
operation of any functions that are
not associated with the PSW control
bits provided only in the EC mode,
and, except for those listed above,
it does not affect the validity of
any instructions. The instructions
SET SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and STORE THEN OR
SYSTEM MASK perform the specified
function on the leftmost byte of
the PSW regardless of the mode
specified by the current PSW. On
the other hand, the instruction SET
PROGRAM MASK introduces a new
program mask regardless of the PSW
bit positions occupied by the mask.

Chapter 4. Control 4-5

PROGRAM-STATUS-WORD FORMAT IN EC MODE

0 o 0 0 0 0 0 0

0 5 8 12 16 18 20 24 31

10 o 0 0 0 0 0 01 Instruction Address

32 40

PSW Format in EC Mode

The following is a summary of the func­
tions of the PSW fields in the EC mode.
(See the figure "PSW Format in EC
~'ode.")

PER Mask (R)~ Bit 1 controls whether
the -CPU is enabled for interruptions
aS50ciated with program-event recording
(PER). When the bit is zero, no PER
event can cause an interruption. When
the bit is one, interruptions are
permitted, subject to the PER-event-mask
bits in control register 9.

DAT Mode (I): Bit 5 controls whether
implicit dynamic address translation of
logical and instruction addresses used
to access storage takes place. When the
bit is zero, DAT is off, and logical and
instruction addre5ses are treated as
real addresses. When the bit i5 one,
DAT is on, and the dynamic-address­
translation mechanism is invoked.

I/O Mask (10): Bit 6 controls whether
the -CPU is--enabled for I/O interrup­
tions. When the bit is zcro, an I/O
interruption cannot occur. When the bit
is one, I/O interruptions are subject to
thC! channel-mask bits in control regis­
ter 2. When a channel-mask bit is zero,
the associated channel CC1nnot caU::iQ.un
I/O interruption; wh~n the channel-mask
bit is one, an interruption condition at
the channel can cause an interruption.
Bit 6 0 f the E C - r:1O de P S L,J i s p t~ 0 v ide d
evan when the CPU is not capable of
being connected to a channel set.

Ext~rnal Mask (EX): Bit 7 controls
whathel' the-CPU 1; enabled for i nter­
rllPtion by conditions included in the
ext ern a 1 cIa 5 s . l·J hen the bit i s Z Q,' 0 ,

an external interruption cannot occur.
When the bit is one, an external inter­
ruption is subject to the corresponding
external subclass-mask bits in control
register 0; when the subclass-ma5k bit
is zero, conditions associated with the
subclass cannot cause an interruption;
when the subclass-mask bit is one, an
interruption in that subclas5 can occur.

4-6 System/370 Principles of Operation

63

PSW Key: Bits 8-11 form the access key
for storage references by the CPU. If
the reference is subject to key­
controlled protection, the PSW key is
matched with a storage key when informa­
tion is stored or when information is
fetched from a location that is
protected against fetching. However,
for accesses to the second operand of
MOVE TO PRIMARY and MOVE WITH KEY, the
third operand is used instead of the PSW
key. The third operand is also used
instead of the PSW key for accesses to
the first operand of MOVE TO SECONDARY.

EC Mode (1;): Bi t 12, whi ch controls the
format of the PSW and the mode of opera­
tion of the CPU, is one when the CPU is
in the extended-control (EC) mode.

Machine-Check Mask (M): Bit 13 controls
whether the cFul s enabled for i nter­
ruption by machine-check conditions.
When the bit is zero, a machine-check
interruption cannot occur. When the bit
is one, machine-check interruptions due
to system dDmage and instruction­
processing damage are permitted, but
interruptions due to other machine­
check-subclass conditions are subject to
the subclass-mask bits in control regis­
ter 14.

L,J<:!.ii Stab~ (~): l.Jhen bi t l{t is one, the
CPU is waiting; that is, no instructions
are processed by the CPU, but inter­
ruptions may take place. When bit 14 is
zero, instt'uction fetching and execution
occur in the normal manner. The wait
indicator is on when the bit is one.

Proble"! State (f): When bit 15 is one,
the CPU is in the problem state. When
bit 15 is zero, the CPU is in the super­
visor state. In the supervisor state,
all instructions are valid. In the
problem state, only those instructions
are valid that provide meaningful infor­
mation to the problem program and that
cannot affect system integrity; such
instructions are called unprivileged
instructions. The instructions that are ~
never valid in the problem state are ~
called privileged instructions. When a

CPU in the problem state attempts to
execute a privileged instruction, a
privileged-operation exception is recog­
nized. Another group of instructions,
called semiprivileged instructions, are
executed by a CPU in the problem state
only if specific authority tests are
met; otherwise, a privileged-operation
exception or a special-operation excep­
tion is recognized.

Address-Space Control (~): Bi t 16, in
conjunction with PSW bit 5, controls the
translation mode. This bit is provided
with DAS. See the section "Translation
Modes" under "Translation Control" in
Chapter 3, "Storage."

Condition Code (CC): Bits 18 and 19 are
the two bits of the condition code. The
condition code is set to 0, 1, 2, or 3,
depending on the result obtained in
executing certain instructions. Most
arithmatic and logical operations, as
well as some other operations, set the
condition code. The instruction BRANCH
ON CONDITION can specify any selection
of the condition-code values as a crite­
rion for branching. A table in Appendix
C summarizes the condition-code values
that may be set for all instructions
which set the condition code of the PSW.

Prooram Mask: Bits 20-23 are the four
program-mask bits. Each bit is associ­
ated with a program exception, as
follows:

Program-
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception
results in an interruption. When the
mask bit is zero, no interruption
occurs. The setting of the exponent-
underflow-mask bit or the significance­
mask bit also determines the manner in
which the operation is completed when
the corresponding exception occurs. The
exponent-underflow and significance mask
bits are provided in the PSW even when
the floating-point facility is not
installed.

Instruction Address: Bits 40-63 form
the instruction address. This address
designates the location of the leftmost
byte of the next instruction to be
executed, unless the CPU is in the wait
state (bit 14 of the PSW is one).

Bit positions 0, 2-4, 17, and 24-39 are
unassigned and must contain zeros. A
specification exception is recognized
when these bit positions do not contain
zeros.

Chapter 4. Control 4-7

PROGRAM-STATUS-WORD FORMAT IN Be MODE

Chan Masks
0-5 Interruption Code

0 6 8 12 16 31

Prog Inclcc Mask Instruction Address

32 34 36 40

PSW Format in BC Mode

The following is a summary of the func­
tions of the PSW fields in the BC mode.
(See the figure "PSW Format in BC
Mode.")

Channel Masks 0-5: Bits 0-5 control
whether the CPU is enabled for I/O
interruptions from channels 0-5, respec­
tively. When a bit is zero, the associ­
ated channel cannot cause an I/O
interruption. When the bit is one, an
interruption condition at the channel
can cause an I/O interruption. Bits 0-5
of the BC-mode PSW are provided even
when the CPU is not capable of being
connected to a channel set.

ILQ Mask (lQ): Bit 6 controls whether
the CPU is enabled for I/O interruptions
from channels 6 and higher. When the
bit is zero, these channels cannot cause
I/O interruptions. When the bit is one,
I/O interruptions are subject to the
channel-mask bits of the corresponding
channels in control register 2. When a
channel-mask bit is zero, the associated
channel cannot cause an I/O
interruption; when the channel-mask bit
is one, an interruption condition at the
channel can cause an interruption. Bit
6 of the BC-mode PSW is provided even
when the CPU is not capable of being
connected to a channel set.

External Mask (EX): The meaning of bit
7 is the same as in the EC mode.

PSt.J Key: The meani ng of bi ts 8-11 is
the same as in the EC mode.

EC Mode (!;): Bit 12, which controls the
format of the PSW and the mode of opera­
tion of the CPU, is zero when the CPU is
in the basic-control (BC) mode.

Machine-Check tl;)sk (!1):
bit 13 is the same as in

The meaning of
the EC mode.

LJai t State (W): The meani ng of bi t 14
lSthe same as in the EC mode.

Problem State (E): The meaning of bit
151 s -thesame as in the EC mode.

4-8 System/370 Principles of Operation

63

Interruption Code: Bits 16-31 in the
old PSW, when stored during a program,
supervisor-call, external, or I/O inter­
ruption, identify the cause of the
interruption. This field is not used or
checked in the current PSW. When a new
PSW is introduced, the contents of this
field are ignored.

Instruction-Len.9.i.b Code (ILC): Bit
positions 32 and 33 of the old PSW indi­
cate the length of the last-interpreted
instruction when a program or
supervisor-call interruption occurs.
See the section "Instruction-Length
Code" in Chapter 6, "Interruptions."
When a new PSW is introduced, the
contents of this field are ignored.

Condition Code (CC): Bits 34 and 35 are
the two b1 ts of the condi ti on code. The
meaning of the condition code is the
same as in the EC mode.

PrOQram Mask: Bits 36-39 are the four
program-musk bits. Each bit is associ­
ated with a program exception, as
follows:

Program-
Mask Bit Program Exception

36 Fixed-point overflow
37 Decimal overfloLoJ
38 Exponent underflow
39 Significance

The meaning of each mask bit
as in the EC mode.

Instruction Address: The
bits 40-63 is the same as
mode.

CONTROL REGISTERS

is the same

meaning of
in the EC

The control registers provide for main­
taining and manipulating control infor-

mation outside the PSW. There may be up
to sixteen 32-bit control registers.

One or more specific bit positions in
control registers are assigned to each
facility requiring such register space.
When the facility is installed, the bits
perform the defined control function.

The LOAD CONTROL instruction causes all
control-register positions within those
registers designated by the instruction
to be loaded from storage. The
instructions LOAD ADDRESS SPACE PARAME­
TERS, SET SECONDARY ASN, PROGRAM CALL,
and PROGRAM TRANSFER provide specialized
functions to place information into
certain control-register positions.

Information loaded into the control
registers becomes active (that is,
assumes control over the system) at the
completion of the instruction causing
the information to be loaded.

At the time the registers are loaded,
the information is not checked for
exceptions, such as invalid
translation-format code or an address
designating an unavailable or a
protected location. The validity of the
information is checked and the
exceptions, if any, are indicated at the
time the information is used.

The STORE CONTROL instruction causes all
control-register positions, within those
registers designated by the instruction,
to be placed in storage. The
instructions EXTRACT PRIMARY ASN,
EXTRACT SECONDARY ASN, and PROGRAM CALL
provide specialized functions to obtain
information from certain control­
register positions. Values

corresponding to unassigned or unin­
stalled register positions are
unpredictable.

Only the general structure of the
control registers is described here; the
definition of a particular control­
register position appears in the
description of the facility with which
the register position is associated.
The figure "Assignment of Control­
Register Fields" shows the control­
register positions which are assigned
and the initial value of the field upon
execution of initial CPU reset.

Programming Notes

1. The detailed definition of a
particular control-register bit
position can be located by refer­
ring to the entry "control-register
assignment" in the Index.

2. To ensure that existing programs
operate correctly if and when new
facilities using additional
control-register positions are
installed, the program should load
zeros in unassigned control­
register positions. Although STORE
CONTROL may provide zeros in the
bit positions corresponding to
unassigned or uninstalled register
positions, the program should not
depend on such zeros. It is
permissible, however, for the
program to load into the control
registers any information previous­
ly stored by means of STORE
CONTROL.

Chapter 4. Control 4-9

Ctrl Initial
Reg Bits Name of Field Associated with Value

0 0 Block-multiplexing control Block-multiplexing channels 0
0 1 SSM-suppression control SET SYSTEM MASK 0
0 2 TOD-clock-sync control Multiprocessing 0
0 3 Low-address-protection control Low-address protection 0
0 4 Extraction-authority control Dual-address-space control 0
0 5 Secondary-space control Dual-address-space control 0
0 7 Storage-key-exception control Storage-key 4K-byte block 0
0 8-12 Translation format Dynamic address translation 0
0 14 Vector control l Vector operations 0
0 16 Malfunction-alert subclass mask Multiprocessing 0
0 17 Emergency-signal subclass mask Multiprocessing 0
0 18 External-call subclass mask Multiprocessing 0
0 19 TOD-clock sync-check subclass mask Multiprocessing 0
0 20 Clock-comparator subclass mask Clock comparator 0
0 21 CPU-timer subclass masK CPU timer 0
0 22 Service-signal subclass mask Service signal 0
0 24 Interval-timer subclass mask Interval timer 1
0 25 Interrupt-key subclass mask Interrupt key 1
0 26 External-signal subclass mask External signals 1

1 0-7 Primary segment-table length Dynamic address translation 0
1 8-25 Primat·y segment-table origin Dynamic address translation 0
1 31 Space-switch-event control Dual-address-space control 0

2 0-31 Channel masks Channels 1

3 0-15 PSW-key mask Dual-address-space control 0
3 16-31 Secondary ASN Dual-address-space control 0

4 0-15 Authorization index Dual-address-space control 0
4 16-31 Primary i\SN Dual-address-space control 0

5 0 Subsystem-linkage control Dual-address-space control 0
5 8-24 Linkage-table origin Dual-address-space control 0
5 25-31 Linkage-table length Dual-address-space control 0

7 0-7 Secondat·y segment-table length Dual-address-space control 0
7 8-25 Secondory segment-toble origin Dual-address-space control 0

Assignment of Control-Register Fields (Part 1 of 2)

4-10 System/370 Principles of Operation

Ctrl Initial
Reg Bits Name of Field Associated with Value

8 16-31 Monitor masks MONITOR CAll 0

9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-alteration-event mask Program-event recording 0
9 16-31 PER general-register masks Program-event recording 0

10 8-31 PER starting address Program-event recording 0

11 8-31 PER ending address Program-event recording 0

14 0 Check-stop control Machine-check handling 1
14 1 Synchronous-~1CEl control Machine-check handling 1
14 2 I/O-extended-logout control I/O extended logout 0
14 4 Recovery subclass mask Machine-check handling 0
14 5 Degradation subclass mask f"lachi ne-check handling 0
14 6 External-damage subclass mask Machi ne-che.ck handling 1
14 7 Warning subclass mask Machine-check handling 0
14 8 Asynchronous-MCEl control ~'ach i ne-check handling 0
14 9 Asynchronous-fixed-log control !"lach i ne-check handling 0
14 12 ASH-translation control Dual-address-space control 0
14 20-31 ASN-first-table origin Dual-address-space control 0

15 8-28 MCEL address Machine-check handling 512 2

Ex~lanation:

Bits 13, 30, and 31 of control register 0, and bits 0-30 of control register 6
are assigned to functions not described in this publication. The remaining
fields not listed are unassigned. The initial value for all unlisted control-
register positions i s zero.

1 Bit 14 of control register 0, the vector-control bit, i s described in the
publication IBn S~5tem/370 Vpctor Oeerations, SA22-7125.

2 Bit 22 is set to one, with all other bits set to zeros, thus yielding a
decimal byte address of 512.

Assignment of Control-Register Fields (Part 2 of 2)

DAS TRACING

Three DAS instructions optionally store
32 bytes of information about the
ci rcwnstances under ~-.lhl ch the
instructions are executed. This action
is c<:lll<:::d DAS tracing and is perforll1od
by placing information in a 32-byte
block, called a tr<:lce entry, in an area
c<:llied a trace table. DAS tracing
assists in problem determination for
privileged and scmiprivlleged programs
by providing an ongoing record in stor­
age of significant events. The trace
table and the location of the last-used
entry are described by a control block
called the trace-table-entry header.
The origin of the header is specified in
the trace-table-designation word at
logical location 84. These relation­
ships are illustrated in the figure "DAS
Tracing."

DAS tracing is controlled by bit 0 of
the trace-table designation, called the

DAS-trace-control bit. When the bit is
ono, a trace entry is made each time
PRO G R At'1 C t\ L L , PRO G RAM T RAN 5 FER, 0 r 5 E T
SECOtlDARY ASH is executed.

All locations associated with DAS trac­
ing are treated as logical addresses
whose handling depends on the OAT-mode
bit and address-space-control bit of the
PSW. For PROGRM'1 CAL L <:lnd PROGR,\~1
TRANSFER, the addresses are translated
by using the old primary segment-table
dcsignation. For SET SECONDARY ASH, the
addresses are translated by using either
the old primary segment-table desig­
nation or the old secondary segment­
table designation, depending on whether
PSW bit 16 specifies the primary-space
mode or the secondary-space mode,
respectively.

Bits 8-28 of the trace-table designation
provide the origin of the three-word
trace-table-entry header. Conceptually,
the header defines a table of 32-byte
elements, called trace entries. The

Chapter 4. Control 4-11

second and third words of the header
designate, respectively, the beginning
and end of this table. When DAS tracing
is on, the first word of the header,
called the current-entry control, is
updated in conjunction with the
execution of the instruction to be
traced. The trace entry designated by
the updated contents of the current­
entry control is used to contain the
trace information about the instruction
being traced. Updating is interlocked
to ensure that distinct entries are
produced when a common table is used for
tracing by more than one CPU.

Trace-Table Designation
Logical Locations 84-87

Updating the current-entry-control word
of the header normally consists in
advancing the contents of the current­
entry-control word by 32. However, if
the advanced value equals or exceeds the
value in the last-entry-control word of
the header, the contents of the first­
entry-control word replace the contents
of the current-entry-control word.
Thus, the dynamic filling of successive
entries wraps from the last entry to the
first entry, with no special recognition
accorded this event.

Trace-Table-Entry
Header Origin

A = 0: Tracing off
A = 1: Tracing on

o 31

Trace-Table-Entry Header (8-byte boundary)

~

JFirst-Entry Ctrl ILast-Entry Ctrl I Jcurrent-Entry Ctrl

0 32 I 64 9 5

Trace Table (32-byte boundary)

-~

First (or Wrap) Entry

-~

Current Entry

~

Location after the Last Entry

DAS Tracing

4-12 System/370 Principles of Operation

Protection for DAS Tracing

The references to the trace-table desig­
nation, to the trace-table-entry header,
and to a trace entry for the purpose of
DAS tracing are not subject to key­
controlled protection. Low-address
protection and segment protection do
apply, however, to the store into the
current-entry-control word of the header
and into a trace entry. Instruction
execution is suppressed whenever a
protection exception is recognized that
is due to DAS tracing.

other Actions Associated with DAS Trac­
.i.n.g

The store accesses made by DAS tracing
into the current-entry-control word of
the trace-table-entry header and into
the trace entry are monitored for PER
storage-alteration events. Change
recording and reference recording also
apply to the storage accesses made by
DAS tracing.

Serialization for DAS Tracing

A serialization and checkpoint­
synchronization function is performed
before the operation begins and again
after the operation is completed.

TRACE-TABLE DESIGNATION

The trace-table designation is contained
in the word at logical location 84 and
has the following format.

o 1

Trace-Table-Entry-Header
Origin (logical)

8 29 31

DAS-Trace Control: Bit 0 controls
whether implicit tracing is performed
for PROGRAM CALL, PROGRAM TRANSFER, and
SET SECONDARY ASN. When this bit ;s
zero, no tracing is performed during
execution of these instructions. When
the bit is one, a trace entry is made
each time one of these instructions is
executed.

Trace-Table-Entry-Header Origin: Bits
8-28, with three zeros appended on the
right, constitute the logical address of
the trace-table-entry header.

Bits 1-7 are reserved and should be
zeros. They are ignored during implicit
tracing.

Bits 29-31 must be zeros if the DAS­
trace-control bit is one and execution
of PROGRAM CALL, PROGRAM TRANSFER, or
SET SECONDARY ASN is attempted; other­
wise, a specification exception is
recognized.

TRACE-TABLE-ENTRY HEADER

The trace-table-entry header defines a
table of 32-byte entries. One entry is
filled with information for each traced
instruction. After updating, the first
word of the header designates the entry
in which information is placed for the
current instruction. The second and
third words of the header designate the
beginning and end of the table. The
trace-table-entry header has the follow­
ing format:

Current-Entry First-Entry
Control Control

o 32

Last-Entry
Control

64 95

Current-Entry Control: Bits 0-31 are
updated to contain the origin of the
trace-table entry used for the current
instruction.

To update the field, a 32-bit intermedi­
ate quantity called the next-entry
designator is formed by the logical
addition of 32 to the 32-bit contQnts of
the current-entry control, with overflow
out of bit 0 ignored. The next-entry
designator is then logically compared
with the 32-bit contents of tho last­
entry control. If the next-entry
designator is less than the contents of
the last-entry control, then the 32-bit
next-entry designator replaces the
current-entry control. If the next­
entry designator is equal to or grp-ater
than the contents of the last-entry
control, then the 32-bit contents of the
first-entry control replace the contents
of the current-entry control. A spec­
ification exception is recognized if the
new value of bits 27-31 would not be
zero.

Bits 0-31 are replaced by using a word­
concurrent interlocked-update reference.
The field is not updated until it is
determined that no exceptions would be
encountered before the filling of the
current trace entry is completed or
before the current instruction is
completed. This is accomplished by
first fetching the contents of the
current-entry control, computing the
address of the trace entry, and testing
the address for access exceptions. If

Chapter 4. Control 4-13

no exceptions would be encountered, the
current-entry control is updated by
means of a compare-and-swap type of
access. If the contents of the location
have been changed between the time of
the first fetch and the compare-and-swap
interlocked update, the new value of the
current-entry control is used, and the
procedure is repeated.

The new contents of bits 8-26 (called
the current-entry origin), with five
zero bits appended on the right, consti­
tute the logical address of the trace
entry for the current instruction. For
the purpose of determining the address
of the current entry, the first word of
the header has the following format:

o 8

Current-Entry
Origin (logical)

27 31

The second and third words of the header
are used as follows:

First-Entrv Contr~: Bits 32-63 replace
the contents of bit positions 0-31 when
the last-entry control disallows tracing
in the location following the last-used
trace entry.

last-Entry Control: Bits 64-95 are
compared with a derived 32-bit quantity
cDlled the next-entry designator.
Depending on whether the next-entry
dosignator is (1) less than, or
(2) equal to or greater than bits 64-95,
bits 0-31 an~ rC!placed by using an
j nterlocf<ed-updato refer'once ei ther by
(1) the next-entry designator or (2) the
contents of bit positions 32-63.

Interlocks

The current-entry-control word is
changed by using ~ word-concurrent
interlocked-update reference. The
fetches of the first-entry-control and
last-entry-control words are word­
concurrent and are made without regard
to when the interlock on the current­
entry-control word is established.

During tracing, the fetches of the
first-entry-control word and of the
last-entry-control word that are
performed in conjunction with updating
the current entry-control word are not
necessarily interlocked to prevent
subsequent storing into these words by
other CPUs and by channels.

4-14 System/370 Principles of Operation

Programming Notes

1. The last-entry-control word should
be thought of as designating the
location beyond the last entry in
the table. This is because an
equal comparison with the last­
entry-control value results in
wrapping to the first entry.

2. The high-order byte of each word of
the header should be set to zero;
otherwise, unexpected results can
occur. This is because 32 bits
participate in the comparison and
replacement actions but only 24
bits are used to address the trace
entry. Thus, a trace table may
wrap from high storage locations to
low storage locations, and, depend­
ing on high-order bit values, not
wrap to the intended beginning of
the table.

3. Because current trace information
is placed in the location desig­
nated by the updated contents of
the current-entry-control word, the
entry designated before tracing
occurs is not used initially,
although it may subsequently be
used if it is in the range of the
table after wrapping.

4. Implicit tracing of SET SECONDARY
ASH while in the secondary-space
mode requires that the trace-table
designation, CPU identity byte,
trace-table-entry heDder, and trace
table appear in the secondary space
which is current when instruction
execution begins.

TRACE ENTRY

A trace entry consists of 32 bytes
beginning on a 32-byte boundary. The
trace-entry address for the current
instruction is formed from bits 8-26 of
th~ updated current-entry-control word
of the trace-table-entry header. It is
treated as a logical address.

The store-type reference to a trace
entry is not necessarily a single-access
reference. During the execution of an
implicitly traced instruction, another
CPU or a channel may observe that an
entry, or portions of an entry, are
stored more than once. The intermediate
results observed mayor may not corre­
spond to the final results.

The format of an entry for the
instructions PROGRAM CALL, PROGRAM
TRANSFER, and SET SECONDARY ASN is shown
in the figure "Trace-Entry Formats."

~ ,

Contents of Trace Entry for:
Positions within
Trace Entry PROGRAM CALL PROGRAM TRAHSFER SET SECOHDARY ASH

Bytes 0-1 Hew PSW, bytes 0-1 Hew PSW, bytes 0-1 Uew PSW, bytes 0-1

Byte 2 Hex 90 1 Hex AOl Hex BOl

Bytes 3-7 New PSW, bytes 3-7 New PSW, bytes 3-7 New PSW, bytes 3-7

Bytes 8-9 New PASH Hew PASH PASH

Bytes 10-11 Hew SASN 0 New SASH

Bytes 12-13 GR14 Old PASH 0

Bytes 14-15 After 0 Old SASH

Bytes 16-19 0 0 0

Byte Bits 0-1 ILC2 ILC2 ILC2
20 Bits 2-3 CC CC CC

Bits 4-7 PM PM PM

Byte 21 CPU identity 3 CPU identity 3 CPU identity 3

Bytes 22-23 0 0 0

Bytes 24-27 PC number 4 0 0

B~ltes 28-31 TOO clock, TOO clock, TOO clock,
bytes 3-6 bytes 3-6 bytes 3-6

EXElanation:

1 Byte 2 contains the entry-type identifier value. This position is used to
uniquely identify the type of event for which the entry is made.

2 Byte 20 contains the instruction-length code (ILC), condition code (CC) ,
and program mask (pr·D of the old PSL.J . The ILC is alw<:lYs 2.

3 Byte 21, "CPU identity," is fetched from logical location 795.

4 Bytes 24-27 for PROGRAM CALL contain eight zero bits appended to the left
of the 24-bit effective address specified by the PROGRAM CALL instruction.
The rightmost 20 bits constitute the PC number.

Trace-Entry Formats

PROGRAM-EVENT RECORDING

The program-event-recording (PER) facil­
ity is provided to assist in debugging
progr<:lms. It permits the program to be
alerted to the following types of
events:

• Execution of a successful branch
instruction.

• Fetching of an instruction from the
designated storage area.

• Alteration of the contents of the
deslgn<:lted storag2 areu.

• Alteration of the contents of
designated general reglsters.

The program can selectively specify that
one or more of the above types of ~vents
be recognized. The information concern­
ing a PER event is provided to the
program by means of a program inter­
ruption, with the cause of the
interruption being identified in the
interruption code. PER is onlyavail­
able in the EC mode.

CONTROL-REGISTER ALLOCATION

The information for controlling PER
resides in control registers 9, 10, and
11 and has the following format:

Chapter 4. Control 4-15

Control Register 9

EM IGen.-Reg • Masks

o 4 16 31

Control Register 10

Starting Address

o 8 31

Control Register 11

Ending Address

o 8 31

PER-Event Masks (EM): Bits 0-3 of
control register 95pecify which types
of events are recognized. The bits are
assigned as follows:

Bit 0:
Bit 1:
Bit 2:
Bit 3:

Successful-branching event
Instruction-fetching event
Storage-alteration eV2nt
General-register-alteration
event

Bits 0-3, when ones,
corresponding types of
nized. When a bit is
sponding type of
recognized.

specify that the
events be recog­

zero, the corre-
event ; s not

PER yp.neral-Regi ster l"1asks: Bi ts 16-31
of control register 9 specify which
general registers are designated for
recognition of the alteration of their
contents. The 16 bits, in the sequence
of ~scending bit numbers, correspond one
for one with the 16 registers, in the
sequence of ascending register nu~bers.
WhQn a bit is one, the illteration of the
associated register is recognized; when
it is zero, the alteration of the regis­
ter 1S not recognized.

PER Starting Address: Bits 8-31 of
control register 10 are the address of
the beginning of the designated storage
area.

f£~ Ending Address: Bits 8-31 of
control register 11 are the address of
the end of the designated storage area.

1. Models may operate at reduced
performance while the CPU 1S

enabled for PER events. In order
to ensure that CPU performance is
not degraded because of the opera­
tion of the PER facility, programs

4-16 System/370 Principles of Operation

that do not use it should disable
the CPU for PER events by setting
the PER mask in the EC-mode PSW to
zero. No degradation due to PER
occurs in the BC mode or when the
PER mask in the EC-mode PSW is
zero. Disabling of the CPU for PER
events in the EC mode by means of
the masks in control register 9
does not necessarily prevent
performance degradation due to the
facility.

2. Some degradation may be experienced
on some models every time control
registers 9, 10, and 11 are loaded,
even when the CPU is disabled for
PER events (see the programming
note under "Storage-Area Desig­
nation").

OPERATION

PER is under control of bit 1 of the
EC-mode PSW, the PER mask. When the PER
mask, a particular PER-event mask bit,
and, for general-register-alteration
events, a particular general-register
mask bi t are all ones, the CPU is
enabled for the corresponding type of
event; otherwise, it is disabled. In
the BC mode, the CPU is disabled for PER
events.

An interruption due to a PER event
normally occurs after the execution of
the instruction responsible for the
event. The occurrence of the event does
not affect the execution of the instruc­
tion, which may be either completed,
partially completed, terminated,
suppressed, or nullified.

When the CPU is disabled for a partic­
ular PER event at the ~lme it occurs,
either by the PER mask in the PSW or by
the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or
to the PER control fields in control
registers 9, 10, and 11 affects PER
starting with the execution of the imme­
diately following instruction. If a PER
event occurs during the execution of an
instruction which changes the CPU from
being enabled to being disabled for that
type of event, that PER event is recog­
nized.

PER events may be recognized in a trial
execution of an instruction, and subse­
quently the instruction, DAT-table
entries, and operands may be refetched
for the actual execution. If any
refetched field was modified by another
CPU or by a channel between the trial
execution and the actual execution, it
is unpredictable whether the PER events
indicated are for the trial or the actu­
al execution.

For special-purpose instructions that
are not described in this publication,
the operation of PER may not be exactly
as described in this section.

Identification of Cause

A program interruption for PER sets bit
8 of the interruption code to one and
places identifying information in real
storage locations 150-155. The informa­
tion stored has the following format:

Locations 150-151:

IPERClooooooooooool

o 4 15

Locations 152-155:

1000000001 PER Address

o 8 31

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit posi­
tions 0-3 of real location 150, the PER
code. The bit position in the PER code
for a particular type of event is the
same as the bit position for that event
in the PER-evant-mask field in control
register 9. When a program interruption
occurs, more than one type of PER event
can be concurrently indicated. Addi­
tionally, if another program­
interruption condition exists, the
interruption code for the program inter­
ruption may indicate both the PER events
and the other condition. Zeros are
stored in bit positions 4-7 of location
150 and in bit positions 0-7 of location
151.

PER Address: The PER address at
locations 152-155 contains the instruc­
tion address used to fetch the instruc­
tion in execution when one or more PER
events were recognized. When the
instruction is the target of EXECUTE,
the instruction address used to fetch
the EXECUTE instruction is placed in the
PER-address field. Zeros are stored in
the byte at real location 152.

Instruction Address: The instruction
address in the program old PSW is the
address of the instruction which would
have been executed next, unless another
program condition is also indicated, in
which case the instruction address is
that determined by the instruction
ending due to that condition.

) ILC:
the

The ILC indicates the length
instruction designated by the

of
PER

address, except when a concurrent spec­
ification exception for the PSW intro­
duced by LOAD PSW or a supervisor-call
interruption sets an ILC of O.

When a PER event is recognized during
execution of a LOAD PSW or SUPERVISOR
CALL instruction which changes CPU oper­
ation from the EC mode to the BC mode,
the interruption occurs with the old PSW
specifying the BC mode and with the
interruption code stored in the old PSW.
The additional information identifying
the PER event is stored in its regular
format at real locations 150-155.

Priority of Indication

When a program interruption occurs and
more than one PER event has been recog­
nized, all recognized PER events are
concurrently indicated in the PER code.
Additionally, if another program­
interruption condition concurrently
exists, the interruption code for the
program interruption indicates both the
PER condition and the other condition.

In the case of an instruction-fetching
event for SUPERVISOR CALL, the program
interruption occurs immediately after
the supervisor-call interruption.

If a PER event is recognized during the
execution of an instruction which also
introduces a new PSW with the type of
PSW-format error which is recognized
early (see the section "Exceptions Asso­
ciated with the PSW" in Chapter 6,
"Interruptions"), both the specification
exception and PER are indicated concur­
rently in the interruption code of the
program interruption. However, for a
PSW-format error of the type which is
recognized late, only PER is indicated
in the interruption code. In both
cases, the invalid PSW is stored as the
program old PSW.

Recognition of a PER event does not
normally affect the ending of instruc­
tion execution. However, in the follow­
ing cases, execution of an interruptible
instruction is not completed normally:

• When the instruction is due to be
interrupted for an asynchronous
condition (I/O, external, restart,
or repressible machine-check condi­
tion), a program interruption for
the PER event occurs first, and the
other interruptions occur subse­
quently (subject to the mask bits in
the new PSW) in the normal priority
order.

• When the stop function is performed,
a program interruption indicating
the PER event occurs before the CPU
enters the stopped state.

Chapter 4. Control 4-17

•

•

When any program exception is recog­
nized, PER events recognized for
that instruction execution are indi­
cated concurrently.

Depending on the model, in certain
situations, recognition of a PER
event may appear to cause the
instruction to be interrupted prema­
turely without concurrent indication
of a program exception, without an
interruption for any asynchronous
condition, or without the CPU enter­
ing the stopped state.

Programming Notes

1. In the following cases, an instruc­
tion can both cause a program
interruption for a PER event and
change the value of masks control­
ling an interruption for PER
events. The original mask values
determine whether a program inter­
ruption takes place for the PER
event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction­
fetching event and disable the
CPU for PER interruptions.
Additionally, STORE THEN AND
SYSTEM MASK can cause a
storage-alteration event to be
indicated. In all these cases,
the program old PSW associated
with the program interruption
for the PER event may indicate
that the CPU was disabled for
PER events.

b. An instruction-fetching event
may be recognized during
execution of a LOAD CONTROL
instruction that changes the
value of the PER-event masks in
control register 9 or the
addresses in control registers
10 and 11 controlling indi­
cation of instruction-fetching
events.

2. No instruction can both change the
values of general-register-altera­
tion masks and cause a general­
register-alteration event to be
recognized.

3. When a PER interruption occurs
during the execution of an inter­
ruptible instruction, the ILC indi­
cates the length of that
instruction or EXECUTE, as appro­
priate. When a PER interruption
occurs as a result of LOAD PSW or

4-18 System/370 Principles of Operation

SUPERVISOR CALL, the ILC indicates
the length of these instructions or
EXECUTE, as appropriate, unless a
concurrent specification exception
on LOAD PSW calls for an ILC of O.

4. When a PER interruption is caused
by branching, the PER address iden­
tifies the branch instruction (or
EXECUTE, as appropriate), whereas
the old PSW points to the next
instruction to be executed. When
the interruption occurs during the
execution of an interruptible
instruction, the PER address and
the instruction address in the old
PSW are the same.

STORAGE-AREA DESIGNATION

Two types of PER events -- instruction
fetching and storage alteration-­
involve the designation of an area in
storage. The storage area starts at the
location designated by the starting
address in control register 10 and
extends up to and including the location
designated by the ending address in
control register 11. The area extends
to the right of the starting address.

An instruction-fetching event occurs
whenever the first byte of an instruc­
tion or the first byte of the target of
an EXECUTE instruction is fetched from
the designated area. A storage­
alteration event occurs when a store
access is made to the designated area by
using an operand address that is defined
to be a logical or a virtual address. A
storage-alteration event does not occur
for a store access made with an operand
address defined to be a real address.

The set of addresses designated for
instruction-fetching and storage­
alteration events wraps around at
address 16,777,215; that is, address 0
is considered to follow address
16,777,215. When the starting address
is less than the ending address, the
area is contiguous. When the starting
address is greater than the ending
address, the set of locations designated
includes the area from the starting
address to address 16,777,215 and the
area from address 0 to, and including,
the ending address. When the starting
address is equal to the ending address,
only that one location is designated.

Address comparison for instruction­
fetching and storage-alteration events
is performed by comparing all 24 bits of
the virtual, logical or instruction
address used for the reference with the
starting and ending addresses.

In some models, performance of address­
range checking is assisted by means of
an extension to each page-table entry in
the TlD. In such an implementation,
changing the contents of control regis­
ters 10 and 11 when the instruction­
fetching or storage-alteration-event
mask is one, or setting either of these
PER-event masks to one, may cause the
TlB to be clQared of entries. This
degradation may be experiencQd even when
the CPU is disabled for PER events.
Thus, when possible, the program should
avoid loading control registers 9, 10,
or 11.

PER EVENTS

Successful Branching

A successful-branching event occurs
whenever one of the following instruc­
tions causes branching:

BRANCH AND lINK (BAl, BALR)
BRANCH AND SAVE (BAS, BASR)
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH)
BRANCH ON INDEX lOW OR EQUAL (BXlE)

A successful-branching event also occurs
whenever one of the following
instructions is completed:

PROGRAM CALL (PC)
PROGRAM TRANSFER (PT)

A successful-branching event causes a
PER successful-branching event to be
recognized if bit 0 of the PER-event
masks is one and the PER mask in the
EC-mode PSW is one.

A PER successful-branching event is
indicated by setting bit 0 of the PER
code to one.

Instruction Fetching

An instruction-fetching event occurs if
the first byte of the instruction is
fetched from the storage area designated
by control registers 10 and 11. An
instruction-fetching event also occurs
if the first byte of the target of
EXECUTE is within the designated storage
area.

~ An instruction-fetching event causes a
, PER i nstructi on-fetchi ng event to be

recognized if bit 1 of the PER-event

masks;s one and the PER mask in the
EC-mode PSW is one.

The PER instruction-fetching event is
indicated by setting bit 1 of the PER
code to one.

Storage Alteration

A storage-alteration event occurs when­
ever a CPU, by using a logical or virtu­
al address, makes a store access without
an access exception to the storage area
designated by control registers 10 and
11 .

The contents of storage are considered
to have been altered whenever the CPU
executes an instruction that causes all
or part of an operand or a DAS-trace
value to be stored within thQ designated
storage area. Alteration is considered
to take place whenever storing is
considered to take place for purposes of
indicating protection exceptions, except
that recognition does not occur for the
storing of data by a channel program.
(See the section "Recognition of Access
Exceptions" in Chapter 6, "Interrup­
tions.") Storing constitutes alteration
for PER purposes even if the value
stored is the same as the original
value.

Implied locations that are referred to
by the CPU in the process of
(1) interval-timer updating,
(2) interruptions, and (3) execution of
I/O instructions are not monitored.
Such locations include the interval­
timer, old-PSW, interruption-code, and
CSW locations. These locations,
however, are monitored when information
is stored there explicitly by an
instruction. Similarly, monitoring does
not apply to the storing of data by a
channel program.

When an interruptible vector instruction
which performs storing is interrupted,
and PER storage alteration applies to
storage locations corresponding to
elements due to be changed beyond the
point of interruption, PER storage
alteration is indicated if any such
store actually occurred and may be indi­
cated even if such a store did not
occur. PER storage alteration is
reported for such locations only if no
access exception exists at the time that
the instruction is executed.

Storage alteration does not apply to
instructions whose operands are speci­
fied to be real addresses. Thus, stor­
age alteration does not apply to
INVALIDATE PAGE TABLE ENTRY, RESET
REFERENCE BIT, RESET REFERENCE BIT
EXTENDED, SET STORAGE KEY, SET STORAGE
KEY EXTENDED, and TEST BLOCK. When
INVALIDATE PAGE TABLE ENTRY is

Chapter 4. Control 4-19

installed, the operand address of READ
DIRECT is a real address and storage
alteration does not apply. When INVALI­
DATE PAGE TABLE ENTRY is not installed,
the operand address of READ DIRECT is a
logical address, and storage alteration
does apply.

A storage-alteration event causes a PER
storage-alteration event to be recog­
nized if bit 2 of the PER-event masks is
one and the PER mask in the EC-mode PSW
1 S one.

A PER storage-alteration event is indi­
cated by setting bit 2 of the PER code
to one.

General-Register Alteration

A general-register-alteration event
occurs whenever the contents of a gener­
al register are replaced.

The contents of a general register are
considered to have been altered whenever
a new value is placed in the register.
Recognition of the event is not contin­
gent on the new value being different
from the previous one. The execution of
an RR-format arithmetic, logical, or
movement instruction is considered to
fetch the contents of the register,
perform the indicated operation, if any,
and then replace the value in the regis­
ter. A register can be designated by an
RR, RRE, RS, or RX instruction or
implicitly, such as in TRANSLATE AND
TEST and EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to
alter the contents of the four registers
specifying the two operands, including
the cases where the padding byte is
used, when both operands have zero
length. However, when condition code 3
is set for MOVE LONG, the general regis­
ters containing the operand lengths may
or may not be considered as having been
altered.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or
general-register pair, designated by R t ,

only when the contents are actually
replaced, that is, when the first and
second operands are not equal.

It is unpredictable whether general­
register-alteration events are indicated
for instructions of the vector facility.

A general-register-alteration event
causes a PER general-register-alteration
event to be recognized if bit 3 of the

4-20 System/370 Principles of Operation

PER-event masks is one, the PER mask in
the EC-mode PSW is one, and the corre­
sponding bit in the PER general-register
mask is one.

The PER general-register-alteration
event is indicated by setting bit 3 of
the PER code to one.

Programming Note

The following are some examples of
general-register alteration:

1. Register-to-register load instruc­
tions are considered to alter the
register contents even when both
operand addresses designate the
same register.

2. Addition or subtraction of zero and
multiplication or division by one
are considered to constitute alter­
ation.

3. Logical and fixed-point shift oper­
ations are considered to alter the
register contents even for shift
amounts of zero.

4. The branching instructions BRANCH
ON INDEX HIGH and BRANCH ON INDEX
LOW OR EQUAL are considered to
alter the first operand even when
zero is added to its value.

INDICATION OF PER EVENTS CONCURRENTLY
WITH OTHER INTERRUPTION CONDITIONS

The following rules govern the indi­
cation of PER events caused by an
instruction that also causes a program
exception, a monitor event, a space­
switch event, or a supervisor-call
interruption.

1. The indication of an instruction­
fetching event does not depend on
whether the execution of the
instruction was completed, termi­
nated, suppressed, or nullified.
The event, however, is not indi­
cated when an access exception
prohibits access to the first half­
word of the instruction. When the
first halfword of the instruction
is accessible but an access excep­
tion applies to the second or third
halfword of the instruction, it is
unpredictable whether the
instruction-fetching event is indi­
cated. Similarly, when an access
exception prohibits access to all
or a portion of the target of
EXECUTE, it is unpredictable wheth- ~
er the instruction-fetching events ,
for EXECUTE and the target are
indicated.

2. When the operation is completed or
partially completed, the event is
indicated, regardless of whether
any program exception, space-switch
event, or monitor event is also
recognized.

3. Successful branching, storage
alteration, and general-register
alteration are not indicated for an
operation or, in case the instruc­
tion is interruptible, for a unit
of operation that is suppressed or
nullified.

4. When the execution of the instruc­
tion is terminated, general­
register or storage alteration is
indicated whenever the event has
occurred, and a model may indicate
the event if the event would have
occurred had the execution of the
instruction been completed, even if
altering the contents of the result
field is contingent on operand
values. For purposes of this defi­
nition, the occurrence of those
exceptions which permit termination

(addressing, protection, and data)
are considered to be termination,
even if no result area is changed.

5. When LOAD PSW, SET SYSTEM MASK,
STORE THEN OR SYSTEM MASK, or
SUPERVISOR CALL causes a PER condi­
tion and at the same time intro­
duces a new PSW with the type of
PSW-format error that is recognized
immediately after the PSW becomes
active, the interruption code iden­
tifies both the PER condition and
the specification exception. When
LOAD PSW or SUPERVISOR CALL intro­
duces a PSW-format error of the
type that is recognized as part of
the execution of the following
instruction, the PSW is stored as
the old PSW without the specifica­
tion exception being recognized.

The indication of PER events concurrent­
ly with other program-interruption
conditions is summarized in the figure
"Indication of PER Events with Other
Concurrent Conditions."

Chapter 4. Control 4-21

PER Event
Type
of Instr Storage GR

Concurrent Condition Ending Branch Fetch Alter. Alter.

Specification
Odd instruction address S No No No No

in the PSW
Instruction access

First hal f~.Jord N or S No No No No
Second, third halfwords N or S No U No No

Specification
EXECUTE target address odd S No U No No

EXECUTE target access N or S No U No No
Other nullifying N No Yes Nol Nol
Other suppressing S ~~o Yes Nol Nol
All terminating T No Yes Yes 2 Yes 2

All completing C Yes Yes Yes Yes

Explanation:

Although PER events of this type are not indicated for
the current unit of operation of an interruptible in­
struction, PER events of this type that were recognized
on completed units of operation of the interruptible
instruction are indicated.

2 This event may be indicated, depending on the model, if
the event has not occurred but would have been indicated
if execution had been completed.

C The operation or, in the case of the interruptible in­
structions, the unit of operation is completed.

N The operation or,
structions, the

in the case of the interruptible in­
unit of operation is nullified.

S The operation or, in the case of the interruptible in­
structions, the unit of operation is suppressed.

T The execution of the instruction is terminated.

Yes The PER event is indicated with the other program­
interruption condition if the event has occurred; that
is, the contents of the designated storage location or
general register were altered, or an attempt was made
to execute an instruction whose first byte is located
in the designated storage area.

No The PER event is not indicated.

U It is unpredictable whether the PER event is indicated.

Indication of PER Events with Other Concurrent Conditions

Programming Notes

1. The execution of the interruptible
instructions MOVE LONG, TEST BLOCK,
and COMPARE LOGICAL LONG can cause
events for general-register alter­
ation and instruction fetching.
Additionally, MOVE LONG can cause
the storage-alteration event.

Interruption of such an instruction
may cause a PER event to be indi­
cated more than once. It may be

4-22 System/370 Principles of Operation

necessary, therefore, for a program
to remove the redundant event indi­
cations from the PER data. The
following rules govern the indi­
cation of the applicable events
during execution of these
instructions:

a. The instruction-fetching event
is indicated whenever the
instruction is fetched for
execution, regardless of wheth- 4
er it is the initial execution j
or a resumption. ~

b. The general-register-alteration
event is indicated on the
initial execution and on each
resumption and does not depend
on whether or not the register
actually is changed.

c. The storage-alteration event is
indicated only wh~n data has
been stored in the designated
storage area by the portion of
the operation starting with the
last initiation and ending with
the last byte transferred
before the interruption. No
special indication is provided
on premature interruptions as
to whether the event will occur
again upon the resumption of
the operation. When the desig­
nated storage area is a single
byte location, a storage­
alteration event can be
recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the
general action a program must take
to delete multiple entries in the
PER data for an interruptible
instruction so that only one entry
for each complete execution of the
instruction is obtained:

a. Check to see if the PER address
is equal to the instruction
address in the old PSW and if
the last instruction executed
was interruptible.

b. If both conditions are met,
delete instruction-fetching and
register-alteration events.

c. If both conditions are met and
the event is storage
alteration, delete the event if
some part of the remaining
destination operand is within
the designated storage ar~a.

DIRECT CONTROL

The direct-control facility consists of
two facilities: (1) a read-write-direct
facility, including the two instructions
READ DIRECT and WRITE DIRECT and an
associated 27-line interface, and (2) an
external-signal facility with six
signal-in lines. These facilities oper­
ate independent of the facilities that
perform I/O operations.

READ-WRITE-DIRECT FACILITY

~ The READ DIRECT and WRITE DIRECT
instructions use the 27-line interface

to provide timing signals and to trans­
fer a single byte of information,
normally for controlling and synchroniz­
ing purposes, between CPUs or between a
CPU and an external device. The 27
lines are:

Number
Name of Lines Direction

Wri te out 1 Output
Read out 1 Output
Hold 1 Input
Signal out 8 Output
Direct out 8 Output
Direct in 8 Input

EXTERNAL-SIGNAL FACILITY

The external-signal facility consists of
six signal-in lines and an external­
signal mask, which is bit 26 of control
register O. Each of the six signal-in
lines, when pulsed, sets up the condi­
tion for one of six distinct inter­
ruptions (see the section "External
Signal" in Chapter 6, "Interruptions").

Note: Some model s prov i de the
external-signal facility without the
read-write-direct facility.

For a detailed description, see the
System/360 and System/370 Direct-Control
and Exter'nal-Interrupti on Features
Original £9..uipment Manufi'lcturers' Infor­
mation, GA22-6845.

TIMING

The timing facilities include four
facilities for measuring time: the TOO
clock, the clock comparator, the CPU
timer, and the interval timer.

In a multiprocessing configuration, a
single TOO clock may be shared by more
than one CPU, or each CPU may have a
separate TOO clock. However, each CPU
has a separate clock comparator, CPU
timer, and int~rval timer.

TIME-OF-DAY CLOCK

The time-of-day (TOD) clock provides a
high-resolution measure of real time
suitable for the indication of date and
time of day. The cycle of the clock is
approximately 143 years.

In an installation with more than one
CPU, each CPU may have a separate TOD
clock, or more than one CPU may share a
clock, depending on the model. In all

Chapter 4. Control 4-23

cases, each CPU has access to a single
clock.

The TOO clock is a binary counter with
the format shown in the following illus­
tration. The bit positions of the clock
are numbered 0 to 63, corresponding to
the bit positions of a 64-bit unsigned
binary integer.

o

1 microsecond---,
.J..

I I
51 63

In the basic form, the TOO clock is
incremented by adding a one in bit posi­
tion 51 every microsecond. In models
having a higher or lower resolution, a
different bit position is incremented at
such a frequency that the rate of
advancing the clock is the same as if a
one were added in bit position 51 every
microsecond. The resolution of the TOO
clock is such that the incrementing rate
is comparable to the instruction­
execution rate of the model.

A TOO clock is said to be in a partic­
ular multiprocessing configuration if at
least one of the CPUs which shares that
clock is in the configuration. Thus, it
is possible for a single TOO clock to be
in more than one configuration.
Conversely, if all CPUs having access to
a particular TOO clock have been removed
from a particular configuration, then
the TOO clock is no longer considered to
be in that configuration.

When more than one TOO clock exists in
the configuration, the stepping rates
are synchronized such that all TOO
clocks in the configuration are incre­
mented at exactly the same rate.

When incrementing of the clock causes a
carry to be propagated out of bit posi­
tion 0, the carry is ignored, and count­
ing continues from zero. The program is
not alerted, and no interruption condi­
tion is generated as a result of the
overflow.

The operation of the clock is not
affected by any normal activity or event
in the system. Incrementing of the
clock does not depend on whether the
wait-state bit of the PSW is one or
whether the CPU is in the operating,
load, stopped, or check-stop state. Its
operation is not affected by CPU,
initial-CPU, program, initial-program,
or clear resets or by initial program
loading. Operation of the clock is also
not affected by the setting of the rate
control or by an initial-microprogram-

4-24 System/370 Principles of Operation

loading operation. Depending on the
model and the configuration, a TOO clock
mayor may not be powered independent of
a CPU that accesses it.

States

The following states are distinguished
for the TOO clock: set, not set,
stopped, error, and not operational.
The state determines the condition code
set by execution of STORE CLOCK. The
clock is incremented, and is said to be
running, when it is in either the set
state or the not-set state.

Not-Set State: l.Jhen the power for the
clock is turned on, the clock is set to
zero, and the clock enters the not-set
state. The clock is incremented when in
the not-set state.

When the clock is in the not-set state,
execution of STORE CLOCK causes condi­
tion code 1 to be set and the current
value of the running clock to be stored.

Sto~d State: The clock enters the
stopped state when SET CLOCK is executed
on a CPU accessing that clock and the
clock is set. This occurs when SET
CLOCK is executed without encountering
any exceptions and any manual TOO-clock
control in the configuration is set to
the enable-set position. The clock can
be placed in the stopped state from the
set, not-set, and error states. The
clock is not incremented while in the
stopped state.

When the clock is in the stopped state,
execution of STORE CLOCK on a CPU
accessing that clock causes condition
code 3 to be set and the value of the
stopped clock to be stored.

Set State: The clock enters the set
state only from the stopped state. The
change of state is under control of the
TOD-clock-sync-control bit, bit 2 of
control register 0, in the CPU which
most recently caused that clock to enter
the stopped state. If the bit is zero
or the TOO-clock-synchronization facili­
ty is not installed, the clock enters
the set state at the completion of
execution of SET CLOCK. If the bit is
one, the clock remains in the stopped
state until the bit is set to zero on
that CPU, until another CPU executes a
SET CLOCK instruction affecting the
clock, or until any other clock in the
configuration is incremented to a value
of all zeros in bit positions 32-63. If
any clock is set to a value of all zeros
in bit positions 32-63 and enters the
set state as the result of a signal from
another clock, the updating of bits
32-63 of the two clocks is in synchro­
nism.

Incrementing of the clock begins with
the first stepping pulse after the clock
enters the set state.

When the clock is in the set state,
execution of STORE CLOCK causes condi­
tion code 0 to be set and the current
value of the running clock to be stored.

Error State: The clock enters the error
state when a malfunction is detected
that is likely to have affected the
validity of the clock value. A timing­
facility-damage machine-check-interrup­
tion condition is generated on each CPU
which has access to that clock whenever
it enters the error state.

When STORE CLOCK is executed and the
clock accessed is in the error state,
condition code 2 is set, and the value
stored is unpredictable.

Not-Operational State: The clock is in
the not-operational state when its power
is off or when it is disabled for main­
tenance. It depends on the model if the
clock can be placed in this state.
Whenever the clock enters the not­
operational state, a timing-facility­
damage machine-check-interruption
condition is generated on each CPU that
has access to that clock.

When the clock is in the not-operational
state, execution of STORE CLOCK causes
condition code 3 to be set, and zero is
stored.

Changes in Clock State

When the TOO clock accessed by a CPU
changes value because of the execution
of SET CLOCK or changes state, inter­
ruption conditions pending for the clock
comparator, CPU timer, interval timer,
and TOD-clock-sync check mayor may not
be recognized for up to 1.048576 seconds
(2 20 microseconds) after the change.

Setting and Inspecting the Clock

The clock can be set to a specific value
by execution of SET CLOCK if the manual
TOO-clock control of any CPU in the
configuration is in the enable-set posi­
tion. Setting the clock replaces the
values in all bit positions from bit
position 0 through the rightmost posi­
tion that is incremented when the clock
is running. However, on some models,
the rightmost bits starting at or to the
right of bit 52 of the specified value
are ignored, and zeros are placed in the

~ corresponding positions of the clock. ,
The TOO
executing

clock can be inspected
STORE CLOCK, which causes

by
a

64-bit value to be stored. Two
executions of STORE CLOCK, possibly on
different CPUs in the same
configuration, always store different
values if the clock is running or, if
separate clocks are accessed, both
clocks are running and are synchronized.

The values stored for a running clock
always correctly imply the sequence of
execution of STORE CLOCK on one or more
CPUs for all cases where the sequence
can be established by means of the
program. Zeros are stored in positions
to the right of the bit position that is
incremented. In a configuration with
more than one CPU, however, when the
value of a running clock is stored,
nonzero values may be stored in posi­
tions to the right of the rightmost
position that is incremented. This
ensures that a unique value is stored.

In a configuration where more than one
CPU accesses the same clock, SET CLOCK
is interlocked such that the entire
contents appear to be updated concur­
rently; that is, if SET CLOCK
instructions are executed simultaneously
by two CPUs, the final result is either
one or the other value. If SET CLOCK is
executed on one CPU and STORE CLOCK on
the other, the result obtained by STORE
CLOCK is either the entire old value or
the entire new value. When SET CLOCK is
executed by one CPU, a STORE CLOCK
executed on another CPU may find the
clock in the stopped state even when the
TOD-clock-sync-control bit is zero in
each CPU. The TOD-clock-sync-control
bit is bit 2 of control register O.
Since the clock enters the set state
before incrementing, the first STORE
CLOCK executed after the clock enters
the set state may still find the
original value introduced by SET CLOCK.

Programming Notes

1. Bit position 31 of the clock is
incremented every 1.048576 seconds;
for some applications, reference to
the leftmost 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is
facilitated by establishing a stan­
dard time origin, or standard
epoch, which is the calendar date
and time to which a clock value of
zero corresponds. January 1, 1900,
o a.m. Greenwich Mean Time (GMT) is
recommended as the standard epoch
for the clock.

3. A program using the clock value as
a time-of-day and calendar indi­
cation must be consistent with the
programming support under which the
program is to be executed. If the
programming support uses the stand-

Chapter 4. Control 4-25

ard epoch, bit 0 of the clock
remains one through the years
1972-2041. (Bit 0 turned on at
11:56:53.685248 (GMT) May 11,
1971.) Ordinarily, testing bit 0
for a one is sufficient to deter­
mine if the clock value is in the
standard epoch.

4. Because of the limited accuracy of
manually setting the clock value,
the rightmost bit positions of the
clock, expressing fractions of a
second, are normally not valid as
indications of the time of day.
However, they permit elapsed-time
measurements of high resolution.

5. The following chart shows the time
interval between instants at which
various bit positions of the TOO
clock are stepped. This time value
may also be considered as the
weighted time value that the bit,
when one, represents.

TOD- Stepping Interval
Clock

OaysIHours\Min. I Bit Seconds

51 0.000 001
47 0.000 016
43 0.000 256

39 0.004 096
35 0.065 536
31 1.048 576

27 16.777 216
23 4 28.435 456
19 1 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776

7 203 14 43 6.044 416
3 3257 19 29 36.710 656

6. The following chart shows the clock
setting at the start of various
years. The clock settings,
expressed in hexadecimal notation,
correspond to 0 a.m. Greenwich
Mean Time on January 1 of each
year.

Year Clock Setting (Hex)

1900 0000 0000 0000 0000
1976 8853 BAFO B400 0000
1980 8F80 9F03 2200 0000
1984 96AD 84B5 9000 0000
1988 9DOA 6997 FEOO 0000
1992 A507 4E7 A 6COO 0000
1996 AC34 335C DADO 0000
2000 B361 183F 4800 0000

7. The stepping value of TOO-clock bit
position 63, if implemented, is
2_12 microseconds, or approximately

4-26 System/370 Principles of Operation

244 picoseconds. This value is
called a clock unit.

The following chart shows various
time intervals in clock units
expressed in hexadecimal notation.

Interval Clock Units (Hex)

1 microsecond 1000
1 millisecond 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour 069 3A40 0000
1 day 1 4100 7600 0000
365 days 1CA ESC1 3EOO 0000
366 days ICC 2A9E B400 0000
1,461 days* 72C E4E2 6EOO 0000

* Number of days in four years,
including a leap year. Note
that the year 1900 was not a
leap year. Thus, the four-
year span starting in 1900
has only 1460 days.

8. In a multiprocessing configuration,
after the TOO clock is set and
begins running, the program should
delay activity for 2 20 microseconds
(1.048576 seconds) to ensure that
the CPU-timer, clock-comparator,
interval timer, and TOD-clock­
sync-check interruption conditions
are recognized by the CPU.

TOO-CLOCK SYNCHRONIZATION

In an installation with more than one
CPU, each CPU may have a separate TOO
clock, or more than one CPU may share a
TOO clock, depending on the model. In
all cases, each CPU has access to a
single clock.

The TOD-clock-synchronization facility,
in conjunction with a clock­
synchronization program, makes it possi­
ble to provide the effect of all CPUs in
a multiprocessing configuration sharing
a single TOO clock. The result is such
that, to all programs storing the TOD­
clock value, it appears that all CPUs in
the configuration read the same TOO
clock. The TOO-clack-synchronization
facility provides these functions in
such a way that even though the number
of CPUs sharing a TOO clock is madel­
dependent, a single model-independent
clock-synchronization routine can be
written. The following functions are
provided:

• Synchronizing the 7tepping rates
for all TOO clocks 1n the config­
uration. Thus, if all clocks are.
set to the same value, they stay in ~
synchronism.

• Comparing the rightmost 32 bits of
each clock in the configuration.
An unequal condition is signaled by
an external interruption with the
interruption code 1003 hex, indi­
cating the TOO-clock-sync-check
condition.

• Setting a TOO clock to the stopped
state.

• Causing a stopped clock, with the
TOO-clock-sync-control bit set to
one, to start incrementing when
bits 32-63 of any running clock in
the configuration are incremented
to zero. This permits the program
to synchronize all clocks to any
particular clock without requiring
special operator action to select a
"master clock" as the source of the
clock-synchronization pulses.

Programming Notes

1. TOO-clock synchronization provides
for checking and synchronizing only
the rightmost bits of the TOO
clock. The program must check for
synchronization of the leftmost
bits and must communicate the
leftmost-bit values from one CPU to
another in order to correctly set
the TOO-clock contents.

2. The TOO-clock-sync-check external
interruption can be used to deter­
mine the number of TOO clocks in
the configuration.

CLOCK COMPARATOR

The clock comparator provides a means of
causing an interruption when the TOO­
clock value exceeds a value specified by
the program.

In a configuration with
CPU, each CPU has a
comparator.

more than one
separate clock

The clock comparator has the same format
as the TOO clock. In the basic form,
the clock comparator consists of bits
0-47, which are compared with the corre­
sponding bits of the TOO clock. In some
models, higher resolution is obtained by
providing more than 48 bits. The bits
in positions provided in the clock
comparator are compared with the corre­
sponding bits of the clock. When the
resolution of the clock is less than
that of the clock comparator, the
contents of the clock comparator are
compared with the clock value as this
value would be stored by executing STORE
CLOCK.

The clock comparator causes an external
interruption with the interruption code
1004 hex. A request for a clock­
comparator interruption exists whenever
either of the following conditions
exists:

1. The TOO clock is running and the
value of the clock comparator is
less than the value in the compared
portion of the clock, both values
being considered unsigned binary
integers. Comparison follows the
rules of unsigned binary
arithmetic.

2. The TOO clock is in the error state
or the not-operational state.

A request for a clock-comparator inter­
ruption does not remain pending when the
value of the clock comparator is made
equal to or greater than that of the TOO
clock or when the value of the TOO clock
is made less than the clock-comparator
value. The latter may occur as a result
of the TOO clock either being set or
wrapping to zero.

The clock comparator can be inspected by
executing the instruction STORE CLOCK
COMPARATOR and can be set to a specific
value by executing the SET CLOCK COMPA­
RATOR instruction.

The contents of the clock comparator are
initialized to zero by initial CPU
reset.

Programming Notes

1. An interruption request for the
clock comparator persists as long
as the clock-comparator value 1S

less than that of the TOO clock or
as long as the TOO clock is in the
error state or the not-operational
state. Therefore, one of the
following actions must be taken
after an external interruption for
the clock comparator has occurred
and before the CPU is again enabled
for external interruptions: the
value of the clock comparator has
to be replaced, the TOO clock has
to be set, the TOO clock has to
wrap to zero, or the clock­
comparator-subclass mask has to be
set to zero. Otherwise, loops of
external interruptions are formed.

2. The instruction STORE CLOCK may
store a value which is greater than
that in the clock comparator, even
though the CPU is enabled for the
clock-comparator interruption.
This is because the TOO clock may
be incremented one or more times
between when instruction execution
is begun and when the clock value
is accessed. In this situation,

Chapter 4. Control 4-27

the interruption occurs
execution of STORE
completed.

CPU TIMER

when
CLOCK

The CPU timer provides a means for meas­
uring elapsed CPU time and for causing
an interruption when a specified amount
of time has elapsed.

In a configuration with more than one
CPU, each CPU has a separate CPU timer.

The CPU timer is a binary counter with a
format which is the same as that of the
TOO clock, except that bit 0 is consid­
ered a sign. In the basic form, the CPU
timer is decremented by subtracting a
one in bit position 51 every
microsecond. In models having a higher
or lower resolution, a different bit
position is decremented at such a
frequency that the rate of decrementing
the CPU timer is the same as if a one
were subtracted in bit position 51 every
microsecond. The resolution of the CPU
timer is such that the stepping rate is
comparable to the instruction-execution
rate of the model.

The CPU timer requests an external
interruption with the interruption code
1005 hex whenever the CPU-timer value is
negative (bit 0 of the CPU timer is
one). The request does not remain pend­
ing when the CPU-timer value is changed
to a nonnegative value.

When both the CPU timer and the TOO
clock are running, the stepping rates
are synchronized such that both are
stepped at the same rate. Normally,
decrementing the CPU timer is not
affected by concurrent I/O activity.
However, in some models the CPU timer
may stop during extreme I/O activity and
other similar interference situations.
In these cases, the time recorded by the
CPU timer provides a more accurate meas­
ure of the CPU time used by the program
than would have been recorded had the
CPU timer continued to step.

The CPU timer is decremented when the
CPU is in the operating state or the
load state. When the manual rate
control is set to instruction step, the
CPU timer is decremented only during the
time in which the CPU is actually
performing a unit of operation.
However, depending on the model, the CPU
timer mayor may not be decremented when
the TOD clock is in the error, stopped,
or not-operational state.

Depending on the model, the CPU timer
mayor may not be decremented when the
CPU is in the check-stop state.

4-28 Systam/370 Principles of Operation

The CPU timer can be inspected by
executing the instruction STORE CPU
TIMER and can be set to a specific value
by executing the SET CPU TIMER instruc­
tion.

The CPU timer is set to zero by initial
CPU reset.

1.

2.

3.

4.

The CPU timer in association with a
program may be used both to measure
CPU-execution time and to signal
the end of a time interval on the
cpu.

The time measured for the execution
of a sequence of instructions may
depend on the effects of such
things as I/O interference, the
availability of pages, and instruc­
tion retry. Hence, repeated
measurements of the same sequence
on the same installation may
differ.

The fact that a CPU-timer inter­
ruption does not remain pending
when the CPU timer is set to a
positive value eliminates the prob­
lem of an undesired interruption.
This would occur if, between the
time when the old value is stored
and a new value is set, the CPU is
disabled for CPU-timer inter­
ruptions and the CPU timer value
goes from positive to negative.

The fact that CPU-timer inter­
ruptions are requested whenever the
CPU timer is negative (rather than
just when the CPU timer goes from
positive to negative) eliminates
the requirement for testing a value
to ensure that it is positive
before setting the CPU timer to
that value.

As an example, assume that a
program being timed by the CPU
timer is interrupted for a cause
other than the CPU timer, external
interruptions are disallowed by the
new PSW, and the CPU-timer value is
then saved by STORE CPU TIMER.
This value could be negative if the
CPU timer went from positive to
negative since the interruption.
Subsequently, when the program
being timed is to continue, the CPU
timer may be set to the saved value
by SET CPU TIMER. A CPU-timer
interruption occurs immediately
after external interruptions are
again enabled if the saved value
was negative.

The persistence
interruption
however, that

of the CPU-timer­
request means,

after an external

interruption for the CPU timer has
occurred, the value of the CPU
timer has to be replaced, the value
in the CPU timer has to wrap to a
positive value, or the CPU-timer­
subclass mask has to be set to zero
before the CPU is again enabled for
external interruptions. Otherwise,
loops of external interruptions are
formed.

5. The instruction STORE CPU TIMER may
store a negative value even though
the CPU is enabled for the inter­
ruption. This is because the CPU­
timer value may be decremented one
or more times between when instruc­
tion execution is begun and when
the CPU timer is accessed. In this
situation, the interruption occurs
when the execution of STORE CPU
TIMER is completed.

INTERVAL TIMER

The interval timer is a binary counter
that occupies a word at real storage
location 80 and has the following
format:

IS I
o

r- 1/300 second
~

I I
23 31

The interval timer is treated as a
32-bit signed binary integer. In the
basic form, the contents of the interval
timer are decremented by one in both bit
positions 21 and 22 every 1/50 of a
second, or the interval-timer contents
are decremented by one in both bit posi­
tions 21 and 23 every 1/60 of a second.
Higher resolution of timing may be
obtained in some models by counting with
higher frequency in other bit positions.
In each case, the frequency is adjusted
so that bits to the left of bit position
23 change as if bit position 23 were
being decremented by one every 1/300 of
a second. The cycle of the interval
timer is approximately 15.5 hours.

In a configuration with more than one
CPU, each CPU has an interval timer.

The interval timer causes an external
interruption, with bit 8 of the inter­
ruption code set to one and bits 0-7 set
to zeros. Bits 9-15 of the interruption
code are zeros unless set to ones for
another condition that is concurrently
indicated.

A request for an interval-timer inter­
\ ruption is generated whenever the
I interval-timer value is decremented from

a positive or zero number to a negative
number. The request is preserved and

remains pending in the CPU until it is
cleared by an interval-timer inter­
ruption or a CPU reset. The overflow
occurring as the interval-timer value is
decremented from a large negative number
to a large positive number is ignored.

The interval timer is not necessarily
synchronized with the TOO clock.

The interval-timer contents are updated
at the appropriate frequency whenever
other machine activity permits. The
updating occurs only between instruction
executions, except that the interval
timer may be updated between units of
operation of an interruptible instruc­
tion, such as MOVE LONG. An updated
interval-timer value is normallyavail­
able at the end of each instruction
execution. When the execution of an
instruction, I/O data transmission, or
other machine activity causes updating
to be delayed by more than one period,
the contents of the interval timer may
be decremented by more than one unit in
a single updating cycle. Interval-timer
updating may be omitted when such delay
is extreme. The program is not alerted
when omission of updating causes the
real-time count to be lost.

When the contents of the interval timer
are fetched by a channel or another CPU,
or when they are used as the source of
an instruction, the result is unpredict­
able. Similarly, storing by a channel
or another CPU into the interval timer
causes the contents of the interval
timer to be unpredictable. This unpre­
dictability is true even for the case of
COMPARE AND SWAP or COMPARE DOUBLE AND
SWAP when executed by another CPU.

The interval timer is not decremented
when the manual interval-timer control
is set to the disable position. The
interval timer is also not decremented
when the CPU is not in the operating
state or when the manual rate control is
set to the instruction-step position.

Depending on the model, the interval
timer mayor may not be decremented when
the TOO clock is in the error, st~pped,
or not-operational state.

When the TOO clock accessed by a CPU is
set or changes state, interruption
conditions pending for the interval
timer mayor may not be recognized for
up to 1.048576 seconds after the change.

Programming Notes

1. The value of the interval timer is
accessible by fetching the word at
real location 80 as an operand,
provided the location is not
protected against fetching. It may
be changed at any time by storing a

Chapter 4. Control 4-29

word at real location 80. When
real location 80 is protected, any
attempt by the program to change
the value of the interval timer
causes a program interruption for
protection exception.

2. The value of the interval timer may
be changed without losing the
real-time count by storing the new
value at real locations 84-87 and
then copying the contents of real
locations 80-87 to real locations
76-83 by means of the MOVE (MVC)
instruction. Thus, in a single
operation, the new interval-timer
value is placed at real locations
80-83, and the old value is made
available at real locations 76-79.

If any means other than the
instruction MOVE (MVC) are used to
interrogate and then replace the
value of the interval timer,
including MOVE LONG or two separate
instructions, the program may lose
a time increment when an updating
cycle occurs between fetching and
storing.

logical locations 84-87 are used as
the trace-table designation by DAS
tracing. If the above means for
updating the interval timer by
using MOVE are used in a system
which also uses DAS tracing, and if
logical location 84 maps to real
location 84, then the program must
restore the contents of the word at
real location 84 after updating the
interval timer.

3. When the value of the interval
timer is to be recorded on an I/O
device, the program should first
store the interval-timer value in a
temporary storage location to which
the I/O operation subsequently
refers. When a channel program
fetches from locations 80-83, the
value obtained is unpredictable.

EXTERNAllY INITIATED FUNCTIONS

RESETS

Seven reset functions are provided:

• CPU reset

• Initial CPU reset

• Subsystem reset

4-30 System/370 Principles of Operation

• Program reset

• Initial program reset

• Clear reset

• Power-on reset

CPU reset provides a means of clearing
equipment-check indications and any
resultant unpredictability in the CPU
state with the least amount of informa­
tion destroyed. In particular, it is
used to clear check conditions when the
CPU state is to be preserved for analy­
sis or resumption of the operation.

Initial CPU reset provides the functions
of CPU reset together with initializa­
tion of the current PSW, CPU timer,
clock comparator, prefix, and control
registers.

Subsystem reset provides a means for
clearing floating interruption condi­
tions and for initializing channel-set
connections as well as for invoking
I/O-system reset.

Program reset and initial program reset
cause CPU reset and initial CPU reset,
respectively, to be performed and cause
I/O-system reset to be performed (see
the section "I/O-System Reset" in Chap­
ter 13, "Input/Output Operations").

Clear reset causes initial CPU reset and
subsystem reset to be performed and,
additionally, clears or initializes all
storage locations and registers in all
CPUs in the configuration, with the
exception of the TOO clock. Such clear­
ing is useful in debugging programs and
in ensuring user privacy. Clearing does
not affect external storage, such as
direct-access storage devices used by
the control program to hold the contents
of unaddressable pages.

The power-on-reset sequences for the TOO
clock, main storage, and channels may be
included as part of the CPU power-on
sequence, or the power-on sequence for
these units may be initiated separately.

CPU reset, initial CPU reset, SUbsystem
reset, and clear reset may be initiated
manually by using the operator facili­
ties (see Chapter 12, "Operator Facili­
ties"). Initial CPU reset is part of
the initial-program-Ioading function.
The figure "Manual Initiation of Resets"
summarizes how these four resets are
manually initiated. Power-on reset is
performed as part of turning power on.
The reset actions are tabulated in the
figure "Summary of Reset Actions." For
information concerning what resets can
be performed by the SIGNAL PROCESSOR
instruction, see the section "Signal­
Processor Orders" in this chapter.

Function Performed on 1

CPU on Which Key
Key Activated Was Activated

System-reset-normal
key

• without store- Initial CPU reset
status facility

• with store- CPU reset
status facility

Other CPUs
in Config

CPU reset

Remainder of
Configuration

Subsystem reset

Subsystem reset

System-reset-clear Clear reset 2

key
Clear reset 2 Clear reset J

Load-normal key Initial CPU reset, CPU reset
followed by IPL

Subsystem reset

Load-clear key Clear reset 2 ,
followed by IPL

Clear reset 2 Clear reset J

Explanation:

* This situation cannot occur, since the store-status facility is
provided in a CPU equipped for multiprocessing.

1 Activation of a system-reset or load key may change the config­
uration, including the connection with I/O, storage units, and
other CPUs.

2 Only the CPU elements of this reset apply.

J Only the non-CPU elements of this reset apply.

Manual Initiation of Resets

Chapter 4. Control 4-31

Reset Function

Sub- Initial Initial Power-
system CPU Program CPU Program Clear On

Area Affected Reset Reset Reset Reset Reset Reset Reset

CPU U S S S1 S S1 S
PSW2 U U/V U/V C*l c* C*l C*
Prefix U U/V U/V C C C C
CPU timer U U/V U/V C C C C
Clock comparator U U/V U/V C C C C
Control registers U U/V U/V I I I I
General registers U U/V U/V U/V U/V C/V C/X
Floating-point registers U U/V U/V U/V U/V C/V C/X
Vector-facility registers U U/V U/V U/V U/V C C
storage keys U U U U U C C/X 3
Volatile main storage U U U U U C C/X 3
Nonvolatile main storage U U U U U C U
Expanded storage U4 U4 U4 U4 U4 U4 C3
TOO clock US US US US US US T3
Channel-set connection I U U U U I 1 6

Floating interruption C U U U U C C3
conditions

Channels in the config- RA U RC U RC RA RAJ
uration

Explanation:

* Clearing the contents of the PSW to zero places the CPU in the BC mode.

When the IPL sequence follows the reset function on that CPU, the CPU does
not necessarily enter the stopped state, and the PSW is not necessarily
cleared to zeros.

2

3

4

5

6

C

For aBC-mode PSW, the ILC and interruption-code fields are unpredictable
in the current PSW.

When these units are separately powered, the action is performed only when
the power for the unit is turned on.

Access to change expanded storage at the time a reset function is performed
may cause the contents of the 4K-byte block in expanded storage to be unpre­
dictable. Access to examine expanded storage does not affect the contents
of the expanded storage.

Access to the TOO clock by means of STORE CLOCK at the time a reset function
is performed does not cause the value of the TOO clock to be affected.

When these units are separately powered, the action is model-dependent.

The condition or contents are cleared. If the area affected is a field, the
contents are set to zeros with valid checking-block code.

C/V The checking-block code of the contents is made valid. The contents normally
are set to zeros but in some models may be left unchanged.

C/X The checking-block code of the contents is made valid. The contents normally
are set to zeros but in some models may be left unpredictable.

I The state or contents are initialized. If the area affected is a field, the
contents are set to the initial value with valid checking-block code.

Summary of Reset Actions (Part 1 of 2)

4-32 System/370 Principles of Operation

Explanation (Continued):

RA I/O-system reset is performed in all the channels in the configuration and
pending I/O-interruption conditions are cleared. As part of this reset,
system reset is signaled to the I/O control units and devices attached to
the channels being reset.

RC I/O-system reset is performed in those channels connected to the CPU per­
forming the program reset or initial-program reset. As part of this reset,
system reset is signaled to the I/O control units and devices attached to
the channels being reset.

S The CPU is reset; current operations, if any, are terminated; the TlB is
cleared of entries; interruption conditions in the CPU are cleared; and the
CPU ;s placed in the stopped state. The effect of performing the start
function is unpredictable when the stopped state has been entered by means
of a reset.

T The TOD clock is initialized to zero and validated; it enters the not-set
state.

U The state, condition, or contents of the field remain unchanged. However,
the result is unpredictable if an operation is in progress that changes the
state, condition, or contents of the field at the time of reset.

U/V The contents remain unchanged, provided the field is not being changed at
the time the reset function is performed. However, on some models, the
checking-block code of the contents may be made valid. The result is un­
predictable if an operation is in progress that changes the contents of the
field at the time of reset.

Summary of Reset Actions (Part 2 of 2)

CPU reset causes the following actions:

1. The execution of the current
instruction or other processing
sequence, such as an interruption,
is terminated, and all program­
interruption and supervisor-call­
interruption conditions are
cleared.

2. Any pending external-interruption
conditions which are local to the
CPU are cleared. Floating
external-interruption conditions
are not cleared.

3. Any pending machine-cheek-interrup­
tion conditions and error indi­
cations which are local to the CPU
and any check-stop states are
cleared. Floating machine-check­
interruption conditions are not
cleared. Any machine-check condi­
tion which is reported to all CPUs
in the configuration and which has
been made pending to a CPU is said
to be local to the CPU.

4. All copies of prefetched
instructions or operands are
cleared. Additionally, any results
to be stored because of the
execution of instructions in the
current checkpoint interval are
cleared.

5. The translation-lookaside buffer is
cleared of entries.

6. The CPU is placed in the stopped
state after actions 1-5 have been
completed. When the IPl sequence
follows the reset function on that
CPU, the CPU enters the load state
at the completion of the reset
function and does not necessarily
enter the stopped state during the
execution of the reset operation.

Registers, storage contents, and the
state of conditions external to the CPU
remain unchanged by CPU reset. However,
the subsequent contents of the register,
location, or state are unpredictable if
an operation is in progress that changes
the contents at the time of the reset.

When the reset function in the CPU is
initiated at the time the CPU is execut­
ing an I/O instruction or is performing
an I/O interruption, the current opera­
tion between the CPU and the channel may
or may not be completed, and the result­
ant state of the associated channel may
be unpredictable.

Programming Note

Most operations which would change a
state, a condition, or the contents of a

Chapter 4. Control 4-33

field cannot occur when the CPU is in
the stopped state. However, some
signal-processor functions and some
operator functions may change these
fields. To eliminate the possibility of
losing a field when CPU reset is issued,
the CPU should be stopped, and no opera­
tor functions should be in progress.

Initial CPU Reset

Initial CPU reset combines the CPU reset
functions with the following clearing
and initializing functions:

1. The contents of the current PSW,
prefix, CPU timer, and clock compa­
rator are set to zero. When the
IPl sequence follows the reset
function on that CPU, the contents
of the PSW are not necessarily set
to zero.

2. All assigned control-register posi­
tions are set to their initial
value.

These clearing and initializing func­
tions include validation.

Setting the current PSW to zero causes
the PSW to assume the BC-mode format.
The instruction-length code and inter­
ruption code are unpredictable, because
these values are not retained when a new
PSW is introduced.

Subsystem Reset

Subsystem reset operates only on those
elements in the configuration which are
not CPUs. It performs the following
actions:

1. I/O-system reset is performed in
each channel in the configuration.

2.

3.

All floating
tions in the
cleared.

interruption condi­
configuration are

Channel-set connections
initialized to connect each
set to its home CPU if one
is operational, and is
configuration, or else to
channel set disconnected.

are
channel
exists,
in the

make the

As part of I/O-system reset, pending
I/O-interruption conditions are cleared,
and system reset is signaled to all
control units and devices attached to
the channel (see the section "I/O-System
Reset" in Chupter 13, "Input/Output
Operations"). The effect of system
reset on I/O control units and devices
and the result~nt control-unit and
device state are described in the appro-

4-34 System/370 Principles of Operation

priate System library publication for
the control unit or device. A system
reset, in general, resets only those
functions in a shared control unit or
device that are associated with the
particular channel signaling the reset.

Program Reset

For program reset, CPU reset is
performed, and I/O-system reset is
performed in each channel connected to
this CPU.

Initial Program Reset

Initial program reset combines the
program-reset functions with the clear­
ing and initializing functions of
initial CPU reset.

Clear reset combines
reset function with
function which causes
actions:

the initial-CPU­
an initializing

the following

1. In most models, the contents of the
general and floating-point regis­
ters of those CPUs which are in the
configuration are set to zero, but
in some models the contents may be
left unchanged except that the
checking-block code is made valid.

2. The registers (vector-status regis­
ter, vector-mask register, vector­
activity count, and all vector
registers) of those vector facili­
ties, if any, which are in the
configuration are cleared to zero
with valid checking-block code.

3. The contents of the main storage in
the configuration and the associ­
ated storage keys are set to zero
with valid checking-block code.

4. A subsystem reset is performed.

Validation is included in setting regis­
ters and in clearing storage and storage
keys.

Programming Notes

1. For the CPU-reset or program-reset
operation not to affect the
contents of fields that are to be
left unchanged, the CPU must not be
executing instructions and must be

disabled for all interruptions at
the time of the reset. Except for
the operation of the interval timer
and CPU timer and for the possibil­
ity of a machine-check interruption
occurring, all CPU activity can be
stopped by placing the CPU in the
wait state and by disabling it for
I/O and external interruptions. To
avoid the possibility of causing a
reset at the time that the interval
timer or CPU timer is being updated
or a machine-check interruption
occurs, the CPU must be in the
stopped state.

2. CPU reset, initial CPU reset,
subsystem reset, program reset,
initial program reset, and clear
reset do not affect the value and
state of the TOO clock.

3. The conditions under which the CPU
enters the check-stop state are
model-dependent and include
malfunctions that preclude the
completion of the current
operation. Hence, if CPU reset,
initial CPU reset, program reset,
or initial program reset is
executed while the CPU is in the
check-stop state, the contents of
the PSW, registers, and storage
locations, including the storage
keys and the storage location
accessed at the time of the error,
may have unpredictable values, and,
in some ca5es, the contents may
still be in error after the check­
stop state is cleared by these
resets. In this situation, a clear
reset is required to clear the
error.

4. Clear reset causes all bit posi­
tions of the interval timer to be
cleared to zeros.

Power-On Reset

The power-on-reset function for a compo­
nent of the machine is performed as part
of the power-on sequence for that compo­
nent.

The power-on sequences for the TOO
clock, vector facility, main storage,
expanded storage, and channels may be
included as part of the CPU power-on
scquence, or the power-on sequence for
these units may be initiated separately.
The following sections describe the
power-on resets for the CPU, TOD clock,
vector facility, main storage, expanded
storage, and channels. See also Chapter
13, "Input/Output Operations," and the
appropriate System Library publication

~ for channels, control units, and I/O
devices.

CPU Power-On Reset: The power-on reset
causes initial CPU reset to be performed
and mayor may not cause I/O-system
reset to be performed in the channels
connected to the CPU. The contents of
general registers and floating-point
registers normally are cleared to zeros,
but in some models may be left unpre­
dictable, with valid checking-block
code.

TOO-Clock Power-On Reset: The power-on
reset causes the va~of the TOO clock
to be set to zero and causes the clock
to enter the not-set state.

Vector-Facility Power-On Reset: The
power-on reset causes the registers of
the vector facility (vector-status
register, vector-mask register, vector­
activity count, and all vector
registers) to be cleared to zeros with
valid checking-block code.

Main-Storage Power-On Reset: For vola­
tile main storage (one that does not
preserve its contents when power is off)
and for storage keys, power-on reset
causes valid checking-block code to be
placed in these fields. In most models,
the contents are cleared to zeros, but,
in some models, the contents may be left
unpredictable except for the checking­
block code. The contents of nonvolatile
main storage, including the checking­
block code, remain unchanged.

Expanded-Storage Power-On Reset: The
contents of the expanded storage are
cleared to zeros with valid checking­
block code.

Channel Power-On Reset: The channel
pOL.Jer-on reset causes I/O-system reset
to be performed. (See the section
"I/O-System Reset" in Chapter 13,
"Input/Output Operations.")

INITIAL PROGRAM LOADING

Initial program loading (IPL) provides a
manual means for causing a program to be
read from a designated device and for
initiating execution of that program.

Some models may provide additional
controls and lndications relating to
IPl; this additional information is
specified in the System library publica­
tion for the model.

IPL is initiated manually by setting the
load-unit-address controls to designate
an input device and by subsequently
activating the load-clear or load-normal
key for a particular CPU. In the
description which follows, the term
"this CPU" refers to the CPU in the
configuration for which the load-clear
or load-normal key was activated.

Chapter 4. Control 4-35

Activating the load-clear key causes a
clear reset to be performed on the
configuration.

Activating the load-normal key causes an
initial CPU reset to be performed on
this CPU, CPU reset to be propagated to
all other CPUs in the configuration, and
a sUbsystem reset to be performed on the
remainder of the configuration.

In the loading part of the operation,
after the resets have been performed,
this CPU then enters the load state.
This CPU does not necessarily enter the
stopped state during the execution of
the reset operations. The load indica­
tor is on while the CPU is in the load
state.

Subsequently, a channel program read
operation is initiated from the channel
and I/O device designated by the load­
unit-address controls.

The read operation is performed as if a
START I/O instruction were executed that
specified the channel, subchannel, and
I/O device designated by the load-unit­
address controls. The operation uses an
implied channel-address word (CAW)
containing a subchannel key of zero, a
suspend-control bit of zero, and a
channel-command-word (CCW) address of 0,
but the CAW at real location 72 is not
accessed. The load-unit-address
controls provide the 16-bit I/O address,
of which the leftmost eight bits are the
channel address and the rightmost eight
bits the device address; any leftmost
bits of the channel address that are
omitted because they are not needed to
select a channel are implied to be
zeros.

Although the absolute location of the
first CCW to be executed is specified by
the CCWaddress as 0, the first CCW
actually executed is an implied CCW,
containing, in effect, a read command
with the modifier bits set to zeros, a
data address of 0, a byte count of 24,
the chain-command and SLI flags set to
ones, and the chain-data, skip,
indirect-data-address, suspend, and PCI
flags set to zeros. The CCW fetched, as
a result of command chaining, from abso­
lute location 8 or 16, as well as any
subsequent CCW in the IPL sequence, is
interpreted the same as a CCW in any I/O
operation, except that any PCI flags
that are specified in CCWs used in the
IPL channel program are ignored.

When the I/O device provides channel-end
status for the last operation of the IPL
channel program and no exceptional
conditions are detected in the
operation, a new PSW is loaded from
absolute storage locations 0-7. When
this PSW specifies the EC mode, the I/O
address that was used for the IPL opera­
tion is stored at absolute locations
186-187, and zeros are stored at abso-

4-36 System/370 Principles of Operation

lute location 185; when the BC mode is
specified, the I/O address is stored at
absolute locations 2-3. If the PSW
loading is successful and if no machine
malfunctions are detected, this CPU
leaves the load state and the load indi­
cator is turned off. If the rate
control is set to the process position,
the CPU enters the operating state and
the CPU operation proceeds under control
of the new PSW. If the rate control is
set to the instruction-step position,
the CPU enters the stopped state, with
the manual indicator on, after the new
PSW is loaded.

When channel-end status for the last CCW
of the IPL channel program is presented,
either separate from or along with
device-end status, no I/O-interruption
condition is generated. Similarly, any
PCI flags specified by the program in
the CCWs used for the IPL sequence are
ignored. If the device-end status for
the IPL operation is provided separately
after channel-end status, it causes an
I/O interruption condition to be gener­
ated.

If the IPL I/O operation or the PSW
loading is not completed successfully,
the CPU remains in the load state, and
the load indicator remains on. This
occurs when the device designated by the
load-unit-address controls is not opera­
tional, when the device or channel
signals any condition other than channel
end, device end, or status modifier
during or at the completion of the last
CCW of the IPL channel program, or when
the PSW loaded from absolute location 0
has a PSW-format error of the type that
is recognized early. The address of the
I/O device used in the IPL operation is
not stored. The contents of absolute
storage locations 0-7 are unpredictable.
The contents of other storage locations
remain unchanged, except possibly for
those locations due to be changed by the
read operations.

When fewer than eight bytes are
into absolute locations 0-7, the
fetched from absolute location 0 at
conclusion of the IPl operation
unpredictable.

Programming Notes

read
PSW
the

is

1. The information read and placed at
absolute locations 8-15 and 16-23
may be used as CCWs for reading
additional information during the
IPL I/O operation: the CCW at
absolute location 8 may specify
reading additional CCWs elsewhere
in storage, and the CCW at absolute
location 16 may specify the
transfer-in-channel command, caus­
ing transfer to these CCWs.

2. The status-modifier bit, in
conjunction with the device-end
bit, has its normal effect during
the IPL I/O operation, causing the
channel to fetch and chain to the
CCW whose address is 16 higher than
that of the current CCW. This
applies also to the initial chain­
ing that occurs after completion of
the read operation specified by the
implicit CCW.

3. The PSW that is loaded at the
completion of the IPL operation may
be provided by the first eight
bytes of the IPL I/O operation or
may be placed at absolute locations
0-7 by a subsequent CCW.

4. When the PSW in absolute location 0
has bit 14 set to one, the CPU is
placed in the wait state after the
IPL operation is completed; at that
point, the load and manual indica­
tors are off, and the wait
indicator is on.

5. Activating the load-normal key
implicitly specifies the use of the
first 24 bytes of main storage.
Since the remainder of the IPL
program may be placed in any part
of storage, it is possible to
preserve such areas of storage as
may be helpful in debugging and
recovery. When the load-clear key
is activated, the IPL program
starts with a cleared machine in a
known state, except that informa­
tion on external storage remains
unchanged.

STORE STATUS

The store-status facility includes:

1. A change to the operation of the
system-reset-normal key. With the
store-status facility installed,
activating the system-reset-normal
key causes a CPU-reset operation
and a subsystem-reset operation to
be performed; without this
facility, an initial-CPU-reset
operation and subsystem-reset oper­
ation are performed.

2. An operator-initiated store-status
function.

The store-status operation places the
contents of the CPU registers, except
for the TOO clock, in assigned storage
locations.

The figure "Assigned Storage Locations
for Store Status" lists the fields that

~ are stored, their length, and their
I location in main storage.

CPU timer*
Clock comparator*
Current PSWH
Prefix*
Model-dependent feat.*
Fl-pt registers 0-6*
General registers 0-15
Control registers 0-15

Explanation:

Length
in

Bytes

8
8
8
4
4

32
64
64

Absolute
Address

216
224
256
264
268
352
384
448

* If the facility is not installed,
the contents of the field in
storage remain unchanged.

" In the BC mode, the ILC is unpre­
dictable, and the interruption
code is stored as zeros.

Assigned Storage Locations for Store
Status

In the BC mode, the instruction-length
code in the PSW is unpredictable, and an
interruption code of zero is stored.
The information provided for uninstalled
or unassigned control-register positions
is unpredictable. If the CPU timer,
clock comparator, prefix register or
floating-point facility is not
installed, the contents of the corre­
sponding locations in storage remain
unchanged.

The word beginning at absolute location
268 is reserved for storing additional
status as required by certain model­
dependent facilities. If no facility
requlrlng this location is installed,
the contents of the field remain
unchanged upon execution of the store­
status function.

The contents of the registers are not
changed. If an error is encountered
during the operation, the CPU enters the
check-stop state.

The store-status operation can be initi­
ated manually by use of the store-status
key (see Chapter 12, "Operator Facili­
ties"). The store-status operation can
also be initiated at the addressed CPU
by executing SIGNAL PROCESSOR, specify­
ing the stop-and-store-status order.

MULTIPROCESSING

The multiprocessing facility provides
for the interconnection of CPUs, via a
common main storage, in order to enhance
system availability and to share data
and resources. The multiprocessing

Chapter 4. Control 4-37

facility includes the following facili­
ties:

• Shared main storage

• Prefixing

• CPU-address identification

• CPU signaling and response

• TOO-clock synchronization

TOD-clock synchronization is described
earlier in this chapter. Prefixing is
described in Chapter 3, "storage."
Shared main storage, CPU-address iden­
tification, and CPU signaling and
response are described in the sections
which follow.

Associated with these facilities are
four extensions to the external inter-
ruption (external call, emergency
signal, TOD-clock-sync check, and
malfunction alert), which are described
in Chapter 6, "Interruptions"; control­
register positions for the TOD-clock­
sync-control bit and for the masks for
the external-interruption conditions,
which are listed in the section "Control
Registers" in this chapter; and the
instructions SET PREFIX, SIGNAL PROCESS­
OR, STORE CPU ADDRESS, and STORE PREFIX,
which are described in Chapter 10, "Con­
trol Instructions."

Channels in a multiprocessing configura­
tion are connected to a particular CPU.
Only that CPU which is connected to a
channel can initiate I/O operations at
that channel, and all interruption
conditions are directed to that CPU.
When channel-set switching is installed,
the channel-CPU connection can be
changed by means of the program.

SHARED MAIN STORAGE

The shared-main-storage facility permits
more than one CPU to have access to
common main-storage locations. All CPUs
having access to a common main-storage
location have access to the entire
2K-byte block containing that location
and to the associated storage key. When
the storage-key 4K-byte-block facility
is installed, all CPUs having access to
a common main-storage location have
access to the entire 4K-byte block
containing that location and to the
associated single key in that block.
All CPUs and all channels in the config­
uration refer to a shared main-storage
location using the same absolute
address.

4-38 System/370 Principles of Operation

CPU-ADDRESS IDENTIFICATION

Each CPU in a multiprocessing configura­
tion has a number assigned, called its
CPU address. A CPU address uniquelY
identifies one CPU within a configura­
tion. The CPU is designated by specify­
ing this address in the CPU-address
field of SIGNAL PROCESSOR. The CPU
signaling a malfunction alert, emergency
signal, or external call is identified
by storing this address in the CPU­
address field with the interruption.
The CPU address is assigned during
system installation and is not changed
as a result of reconfiguration changes.
The program can determine the address of
the CPU by using STORE CPU ADDRESS.

CPU SIGNALING AND RESPONSE

The CPU-signaling-and-response facility
consists of SIGNAL PROCESSOR and a mech­
anism to interpret and act on several
order codes. The facility provides for
communications among CPUs, including
transmitting, receiving, and decoding a
set of assigned order codes; initiating
the specified operation; and responding
to the signaling CPU. If a CPU has the
CPU-signaling-and-response facility
installed, it can address SIGNAL PROCES­
SOR to itself. SIGNAL PROCESSOR is
described in Chapter 10, "Control
Instructions."

SIGNAL-PROCESSOR ORDERS

The signal-processor orders are
fied in bit positions 24-31
second-operand address of SIGNAL
SOR and are encoded as shown
figure "Encoding of Orders."

Code Order

00 Unassigned
01 Sense
02 External call
03 Emergency signal
04 Start
05 Stop
06 Restart
07 Initial program reset
08 Program reset
09 Stop and store status

speci­
of the
PROCES­
in the

OA Initial microprogram load
OB Initial CPU reset
DC CPU reset

OD-FF Unassigned

Encoding of Orders

The orders are defined as follows:

Sense: The addressed CPU presents its
status to the issuing CPU (see the
section "Status Bits" in this chapter
for a definition of the bits). No other
action is caused at the addressed CPU.
The status, if not all zeros, is stored
in the general register designated by
the R, field of the SIGNAL PROCESSOR
instruction, and condition code 1 is
set; if all status bits are zeros,
condition code 0 is set.

External Call: An external-call
external-interruption condition is
generated at the addressed CPU. The
interruption condition becomes pending
during the execution of SIGNAL
PROCESSOR. The associated interruption
occurs when the CPU is enabled for that
condition and does not necessarily occur
during the execution of SIGNAL
PROCESSOR. The address of the CPU send­
ing the signal is provided with the
interruption code when the interruption
occurs. Only one external-call condi­
tion can be kept pending in a CPU at a
time. The order is effective only when
the addressed CPU is in the stopped or
the operating state.

Emergency Signal: An emergency-signal
external-interruption condition is
generated at the addressed cpu. The
interruption condition becomes pending
during the execution of SIGNAL
PROCESSOR. The associated interruption
occurs when the CPU is enabled for that
condition and does not necessarily occur
during the execution of SIGNAL
PROCESSOR. The address of the CPU send­
ing the signal is provided with the
interruption code when the interruption
occurs. At anyone time the receiving
CPU can keep pending one emergency­
signal condition for each CPU in the
configuration, including the receiving
CPU itself. The order is effective only
when the addressed CPU is in the stopped
or the operating state.

Start: The addressed CPU performs the
start function (see the section
"Stopped, Operating, Load, and Check­
Stop states" in this chapter). The CPU
does not necessarily enter the operating
state during the execution of SIGNAL
PROCESSOR. The order is effective only
when the addressed CPU is in the stopped
state. The effect of performing the
start function is unpredictable when the
stopped state has been entered by reset.

Stop: The addressed CPU performs the
stop function (see the section "Stopped,
Operating, Load, and Check-Stop States"
in this chapter). The CPU does not
necessarily enter the stopped state
during the execution of SIGNAL
PROCESSOR. The order is effective only
when the CPU is in the operating state.

Restart: The addressed CPU performs the
restart operation (see the section
"Restart Interruption" in Chapter 6,
"Interruptions"). The CPU does not
necessarily perform the operation during
the execution of SIGNAL PROCESSOR. The
order is effective only when the
addressed CPU is in the stopped or the
operating state.

Initial Program Reset: The addressed
CPU performs initial program reset (see
the section "Resets" in this chapter).
The execution of the reset does not
affect other CPUs. The reset operation
is not necessarily completed during the
execution of SIGNAL PROCESSOR.

Program Reset: The addressed CPU
performs program reset (see the section
"Resets" in this chapter). The
execution of the reset does not affect
other CPUs. The reset o~eration is not
necessarily completed during the
execution of SIGNAL PROCESSOR.

stop and Store Status: The addressed
CPU performs the stop function, followed
by the store-status function (see the
section "Store Status" in this chapter).
The CPU does not necessarily complete
the operation, or even enter the stopped
state, during the execution of SIGNAL
PROCESSOR. The order is effective only
when the addressed CPU is in the stopped
or the operating state.

Initial Microprogram Load (IML): The
addressed CPU performs initial program
reset and then initiates the IML func­
tion. The IML function is the same as
that which is performed as part of manu­
al initial microprogram loading. If the
IML function is not provided on the
addressed CPU, the order code is treated
as unassigned and invalld. The opera­
tion is not necessarily completed during
the execution of SIGNAL PROCESSOR.

Initial CPU Reset: The addressed CPU
performs -mitial CPU reset (see the
section "Resets" in this chapter). The
execution of the reset does not affect
other CPUs and does not cause I/O to be
reset. If the initial-CPU-reset order
is not provided on the addressed CPU,
the order is treated as unassigned and
invalid. The reset operation is not
necessarily completed during the
execut~on of SIGNAL PROCESSOR.

CPU Reset: The addressed CPU performs
CPU reset (see the section "Resets" in
this chapter). The execution of the
reset does not affect other CPUs and
does not cause I/O to be reset. If the
CPU-reset order is not provided on the
addressed CPU, the order is treated as
unassigned and ~nvalid. The reset oper­
ation is not necessarily completed
during the execution of SIGNAL
PROCESSOR.

Chapter 4. Control 4-39

Programming Note

For a discussion on the relative
performance of the SIGNAL PROCESSOR
orders, see the programming note follow­
ing the instruction SIGNAL PROCESSOR in
Chapter 10, "Control Instructions."

CONDITIONS DETERMINING RESPONSE

Conditions Precluding Interpretation of
the Order Code

The following situations preclude the
initiation of the order. The sequence
in which the situations are listed is
the order of priority for indicating
concurrently existing situations:

1. The access path to the addressed
CPU is busy because a concurrently
executed SIGNAL PROCESSOR is using
the CPU-signaling-and-response
facility. The CPU which is concur­
rently executing the instruction
can be any CPU in the configuration
other than this CPU, and the CPU
address can be any address, includ­
ing that of this CPU or an invalid
address. The order is rejected.
Condition code 2 is set.

2. The addressed CPU is not opera­
tional; that is, it ;s not provided
in the installation, it is not in
the configuration, it is in any of
certain customer-engineer test
modes, or its power is off. The
order is rejected. Condition code
3 is set. This condition cannot
arise as a result of a SIGNAL
PROCESSOR by a CPU addressing
itself.

3. One of the following conditions
exists at the addressed CPU:

a. A previously issued start,
stop, restart, or stop-and­
store-status order has been
accepted by the addressed CPU,
and execution of the function
requested by the order has not
yet been completed.

b. A manual start, stop, restart,
or store-status function has
been initiated at the addressed
CPU, and the function has not
yet been completed. This
condition cannot arise as a
result of a SIGNAL PROCESSOR by
a CPU addressing itself.

If the currently specified order is
sense, external call, emergency
signal, start, stop, restart, or
stop and store status, then the

4-40 System/370 Principles of Operation

4.

order is rejected, and condition
code 2 is set. If the currently
specified order is an IMl, one of
the reset orders, or an unassigned
or not-implemented order, the order
code is interpreted as described in
the section "Status Bits" in this
chapter.

One of the following conditions
exists at the addressed CPU:

a. A previously issued initial­
program-reset, program-reset,
IML, initial-CPU-reset, or
CPU-reset order has been
accepted by the addressed CPU,
and execution of the function
requested by the order has not
yet been completed.

b. A manual-reset or IML function
has been initiated at the
addressed CPU, and the function
has not yet been completed.
This condition cannot arise as
a result of a SIGNAL PROCESSOR
by a CPU addressing itself.

If the currently specified order is
sense, external call, emergency
signal, start, stop, restart, or
stop and store status, then the
order is rejected, and condition
code 2 is set. If the currently
specified order is an IML, one of
the reset orders, or an unassigned
or not-implemented order, either
the order is rejected and condition
code 2 is set or the order code is
interpreted as described in the
section "Status Bits" in this chap­
ter.

When any of the conditions described in
items 3 and 4 exists, the addressed CPU
is referred to as "busy." Busy is not
indicated if the addressed CPU is in the
check-stop state or when the operator­
intervening condition exists. A CPU­
busy condition is normally of short
duration; however, the conditions
described in item 3 may last indefinite­
ly because of a string of interruptions,
because of an incomplete READ DIRECT
operation, or because of an invalid
address in the prefix register. In this
situation, however, the CPU does not
appear busy to any of the reset orders
or to an IML.

When the conditions described in items 1
and 2 above do not apply and operator­
intervening and receiver-check status
conditions do not exist at the addressed
CPU, reset orders may be accepted
regardless of whether the addressed CPU
has completed a previously accepted
order. This may cause the previous
order to be lost when it 1S only
partially completed, making unpredict- ~ .•
able whether the results defined for the ~
lost order are obtained.

status Bits

Various status conditions are defined
whereby the issuing and addressed CPUs
can indicate their responses to the
specified order. The status conditions
and their bit positions in the general
register designated by the R, field of
the SIGNAL PROCESSOR instruction are
shown in the figure "Status Conditions."

Bit
Position Status Condition

0 Equipment check
1-23 Unassigned; zeros stored
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 Inoperative
30 Invalid order
31 Receiver check

Status Conditions

The status condition assigned to bit
position 0 is generated by the CPU
executing SIGNAL PROCESSOR. The remain­
ing status conditions are generated by
the addressed CPU.

When the equipment-check condition
exists, bit 0 of the general register
designated by the R, field of the SIGNAL
PROCESSOR instruction is set to one,
unassigned bits of the status register
are set to zeros, and the contents of
other status bits are unpredictable. In
this case, condition code 1 is set inde­
pendent of whether the access path to
the addressed CPU is busy and independ­
ent of whether the addressed CPU is not
operational, is busy, or has presented
zero status.

When the access path to the addressed
CPU is not busy and the addressed CPU is
operational and does not indicate busy
to the currently specified order, the
addressed CPU presents its status to the
issuing CPU. These status bits are of
two types:

1. Status bits 24-29 indicate the
presence of the corresponding
conditions in the addressed CPU at
the time the order code is
received. Except in response to
the sense order, each condition is
indicated only when the condition
precludes the successful execution
of the specified order. In the
case of sense, all existing status
conditions are indicated; the
operator-intervening and not-ready
conditions each are indicated if

these conditions preclude the
execution of any installed order.

2. Status bits 30 and 31 indicate that
the corresponding conditions were
detected by the addressed CPU
during reception of the order.

If the presented status is all zeros,
the addressed CPU has accepted the
order, and condition code 0 is set at
the issuing CPU; if the presented status
is not all zeros, the order has been
rejected, the status is stored at the
issuing CPU in the general register
designated by the R, field of the SIGNAL
PROCESSOR instruction, zeros are stored
in the unassigned bit positions of the
register, and condition code 1 is set.

The status conditions are defined as
follows:

EgLdpment Check: This condition exists
when the CPU executing the instruction
detects equipment malfunctioning that
has affected only the execution of this
instruction and the associated order.
The order code mayor may not have been
transmitted and mayor may not have been
accepted, and the status bits provided
by the addressed CPU may be in error.

External Call Pending: This condition
exists when an external-call inter­
ruption condition is pending in the
addressed CPU because of a previously
issued SIGNAL PROCESSOR order. The
condition exists from the time an
external-call order is accepted until
the resultant external interruption has
been completed or a CPU reset occurs.
The condition may be due to the issuing
CPU or another CPU. The condition, when
present, is indicated only in response
to sense and to external call.

Stopped: This condition exists when the
addressed CPU is in the stopped state.
The condition, when present, is indi­
cated only in response to sense. This
condition cannot be reported as a result
of a SIGNAL PROCESSOR by a CPU address­
ing itself.

Operator Intervening: This condition
exists when the addressed CPU is execut­
ing certain operations initiated fro~
local or remote operator facilities.
The particular manually initiated oper­
ations that cause this condition to be
present depend on the model and on the
order specified. On machines which do
not implement the IML order, the condi­
tions described under "Not Ready" may be
indicated as an operator-intervening
condition. The operator-intervening
condition, when present, can be indi­
cated in response to all orders.
Operator i nterven i ng is i ndi cated in
response to sense if the condition is
present and precludes the acceptance of
any of the installed orders. The condi­
tion may also be indicated in response

Chapter 4. Control 4-41

to unassigned or uninstalled orders.
This condition cannot arise as a result
of a SIGNAL PROCESSOR by a CPU address­
ing itself.

Check Stop: This condition exists when
the addressed CPU is in the check-stop
state. The condition, when present, is
indicated only in response to sense,
external call, emergency signal, start,
stop, restart, and stop and sto re
status. The condition may also be indi­
cated in response to unassigned or
uninstalled orders. This condition
cannot be reported as a result of a
SIGNAL PROCESSOR by a CPU addressing
itself.

Not Ready: This condition exists when
the addressed CPU uses reloadable
control storage to perform an order and
the required microprogram is not loaded.
The not-ready condition may be indicated
in response to all orders except IMl.
This condition cannot arise as a result
of a SIGNAL PROCESSOR by a CPU address­
ing itself.

Inoperative: This condition indicates
that the execution of the operation
specified by the order code requires the
use of a service processor which is
inoperative. The failure of the service
processor may have been previously
reported by a service-processor-damage
machine-check condition. The inopera­
tive condition cannot occur for the
sense, external-call, or emergency­
signal order code.

Invalid Order: This condition exists
during t~communications associated
with the execution of SIGHAL PROCESSOR
when an unassigned or uninstalled order
code is decoded.

Receiver Check: This condition exists
when the addressed CPU detects malfunc­
tioning of equipment during the communi­
cations associated with the execution of
SIGNAL PROCESSOR. When this condition
is indicated, the order has not been
initiated, and, since the malfunction
may have affected the generation of the
remaining receiver status bits, these
bits are not necessarily valid. A
machine-check condition mayor may not
have been generated at the addressed
CPU.

The following chart summarizes
status conditions are presented
issuing CPU in response to each
code.

which
to the
order

4-42 System/370 Principles of Operation

Status Condition

31 Receiver check~
30 Invalid order
29 Inoperative ----------------------~
28 Not ready
27 Check stop

~~ ~~~~~!~r intervening" m
24 External call pend. l
Order

Sense
External call
Emergency signal
Start
stop
Restart
Initial program reset
Program reset
Stop and store status
IMl*
Initial CPU reset*
CPU reset*
Unassigned order

Explanation:

-V -V -V
X X X
X 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X
o 0 X

-V '" X X
X X
X X
X X
X X
X X
o X
o X
X X
o 0
o X
o X
E X

-V -V -V
o 0 X
o 0 X
o 0 X
X 0 X
X 0 X
X 0 X
X 0 X
X 0 X
X 0 X
X 0 X
X 0 X
X 0 X
X 1 X

n The current state of the operator­
intervening condition may depend on
the order code that is being inter­
preted.

~ If a one is presented in the
receiver-check bit position, the
values presented in the other bit
positions are not necessarily
valid.

* If the order code is implemented,
use the line entry for the order
code; if the order code is not
implemented, use the line entry
labeled "Unassigned Order."

o A zero is presented in this bit
position regardless of the current
state of this condition.

1 A one is presented in this bit
position.

X A zero or a one is presented in
this bit position, reflecting the
current state of the corresponding
condition.

E Either a zero or the current state
of the corresponding condition is
indicated.

If the presented status bits are all
zeros, the order has been accepted, and
the issuing CPU sets condition code O.
If one or more ones are presented, the
order has been rejected, and the issuing
CPU stores the status in the general
register designated by the R, field of •
the SIGNAL PROCESSOR instruction and ~
sets condition code 1.

1. All SIGNAL PROCESSOR orders can be
addressed to this same CPU. The
following are examples of functions
obtained by a CPU addressing SIGNAL
PROCESSOR to itself:

a. Sense indicates whether an
external-call condition is
pending.

b. External call and emergency
signal cause the corresponding
interruption conditions to be
generated. External call can
be rejected because of-a-previ­
ously generated external-call
condition.

c. Start sets condition code 0 and
has no other effect.

d. stop causes the
condition code 0,
interruptions for
enabled, and enter
state.

CPU to set
take pending
which it is

the stopped

e. Restart provides a means to
store the current PSW.

f. stop and store status causes
the machine to stop and store
all current status.

2. Two CPUs can simultaneously execute
SIGNAL PROCESSOR, with each CPU
addressing the other. When this
occurs, one CPU, but not both, can
find the access path busy because
of the transmission of the order
code or status bits associated with
SIGNAL PROCESSOR that is being
executed by the other CPU. Alter­
natively, both CPUs can find the
access path available and transmit
the order codes to each other. In
particular, two CPUs can simultane­
ously stop, restart, or reset each
other.

CHANNEL-SET SWITCHING

The channel-set-switching facility
permits a collection of chnnneis to be
switched from one CPU to another. The
collection of channels which are
switched as a group is called a channel
set. A CPU can be connected to only one
channel set at a time, and a channel set
can be connected to only one CPU at a
time. The switching operation controls
only the execution of I/O instructions
and I/O interruptions. Other channel
activity, such as chaining and data­
transfer operations, is not controlled
by the switching.

When a channel set is switched to a
particular CPU, it is said to be
connected to that CPU. Channel-set
switching permits any channel set in the
configuration to be connected to any CPU
in the configuration. However, a chan­
nel set can be connected to no more than
one CPU at a time, and vice versa. When
a channel set is not connected to a CPU,
it is said to be disconnected. On a
particular CPU, all I/O instructions
executed address only the channels with­
in the channel set which is currently
connected to that CPU. Initial program
reset and program reset issued to a CPU
result in the resetting of the CPU and
of only those channels which are
currently connected to that CPU. Simi­
larly, I/O interruptions caused by a
channel which is part of a particular
channel set occur on the CPU to which
the channel set is currently connected.
Chaining and data-transfer operations by
the channel continue, independent of
whether the channel set is connected to
a CPU.

Channel sets can be connected and
disconnected by means of two
instructions, CONNECT CHANNEL SET and
DISCONNECT CHANNEL SET, which are
defined in Chapter 10, "Control
Instructions." These instructions
select a particular channel set by means
of a 16-bit channel-set address. When
the addressed channel set is not opera­
tional, execution of these instructions
results in a setting of condition code
3. A channel set is not operational
when it is not provided in the installa­
tion, its power is off, it is not in the
configuration, or it is in any of
certain customer-engineer test modes.
Depending on the model, a channel set
may be not operational when all of the
channels in the channel set are not
operational.

When a channel set is connected to a CPU
and the CPU becomes not operational, the
channel set may also become not opera­
tional, or it may become disconnected
and remain in the configuration. A CPU
can become not operational because of
certain customer-engineer test modes
being SQt, because model-dependent
reconfiguration controls remove it from
the configuration, or because its power
i s off.

The number of CPUs and channel sets in a
purticular configuration ;s not neces­
sarily the same.

When system reset normal, system reset
clear, load normal, or load clear is
activated on any CPU in the configura­
tion, in the absence of any override by
model-dependent reconfiguration
controls, then:

• All channels within all
sets in the configuration
system reset,

channel
perform

Chapter 4. Control 4-43

• Each channel set which has a home
CPU which is operational and in the
configuration is connected to its
home CPU, and

• Each channel
have a home
tional and in
disconnected.

set which does not
CPU which is opera­
the configuration is

By definition, the CPU to which a chan­
nel set is connected after subsystem
reset is called the home CPU for that
channel set. The address of the channel
set mayor may not be the same as the
address of its home CPU.

When no channel set is connected to a
particular CPU, the execution of any I/O
instruction results in a setting of

4-44 System/370 Principles of Operation

condition code 3. When a channel set is
connected to a particular CPU, condition
code 3 to an I/O instruction normally
indicates that the addressed channel,
subchannel, or device is not
operational. The I/O instructions are
described in Chapter 13, "Input/Output
Operations." The connection or discon­
nection of a channel set is not
considered to be a change in the channel
state for purposes of setting to one the
machine-check external-damage-code bit
3, channel not operational. The setting
of this bit, even when a channel set is
disconnected, indicates only those
changes from the operational state to
the not-operational state which would be
seen if the channel set were connected
to a CPU.

CHAPTER ~ PROGRAM EXECUTION

Instructions •.•••.••••..••••••..•••.••••.....•••.•.•••••.. 5-2
Operands ••••••.••••••.•••.••.••••••.••.••..••••••••••.•. 5-2
Instruction Format •••.•.••••.•••••••••.•.•••••...•.•••.. 5-3

Register Operands••••..•.•.•.•••.•...•.•.•••..•••. 5-4
Immediate Operands ..•.••••.•.•..••........••...•.•..•. 5-4
Storage Operands •....•......•••••.••.•..••••••.••••.•. 5-4

Address Generation .••.....•..•..•.••••.•..•••••••.•..••••. 5-5
Sequential Instruction-Address Generation •••.••••••..•.. 5-5
Operand-Address Generation•.•.•...••..........•..•. 5-5
Branch-Address Generation •.•.••....•.......•..........•. 5-6

Instruction Execution and Sequencing ••.•...••.•••••..•.••. 5-6
Decision Making ..•.•...•.•••..••.•.•••.•...•••.••..••••. 5-6
Loop Control•......•...•.•...•••.•.••.........••.. 5-6
Subroutine Linkage•..•.•............•... 5-6
Interruptions ..••.•....•.•...•.•..•••..•...•.•••..•..... 5-8
Types of Instruction Ending .•..•.••.••.•....•.••..•.•.•. 5-8

Completion .•..•.•..••.•..•....••..•..•..•••.•.•.....•. 5-9
Suppression ...•..............•..•................•.•.. 5-9
Nullification ..•••......•..•..•.•••..•.....••......... 5-9
Termination ...••....•....•••.••...•..•...•......•..... 5-9

Interruptible Instructions •.••......••.••..•.••.•....•.. 5-9
Point of Interruption••........•....•. 5-9
Execution of Interruptible Instructions 5-9

Exceptions to Nullification and Suppression ••.•....•...• 5-11
Storage Change and Restoration for

OAT-Associated Access Exceptions .•..••...•.••.•.••••. 5-11
Modification of OAT-Table Entries•..•.•.........•. 5-12
Trial Execution for Editing Instructions and

TRANSLATE•........•.....•..........••.•..•... 5-12
Interlocked Update for Nullification and
Suppression•...••. 5-12

Dual-Address-Space Control .•..•..............••........... 5-13
Summary .•.....................••.....•.•..........•..... 5-13
DAS Functions•...•......•..........•............• 5-14

Using Two Address Spaces ...•..........•..•...•........ 5-14
Changing to Other Spaces•.............••...... 5-14
Moving Information•......•.......•......•...•.... 5-15
Transferring Program Control •...........••.....•...... 5-15
Handling Storage Keys and the PSW Key •.............•.• 5-16
Program-Problem Analysis .•.............•........•...•. 5-17

DAS Authorization Mechanisms .•...........•..•........•.... 5-17
Mode Requirements •...•...•....••...•................. :5-17
Extraction-Authority Control ...•...•.••......•.••..•.. 5-17
P S l·J - Key Mas k•....... 5 - 18
Secondary-Space Control 5-18
Subsystem-Linkage Control •...•...••....•.•......•..... 5-18
ASN-Translation Control •.•.........•.............•.... 5-18
Authorization Index .•...•.•.•....•.......•...•........ 5-18

PC-Number Translation ...•..•......•..•.•.•................ 5-21
PC-Number Translation Control .•..•.•....•.••.•.......... 5-21
PC-Number Translation Tables•..•.....•..•.•......•.. 5-21

Linkage-Table Entries •.....•.•..•..•.....•......••.... 5-21
Entry-Table Entries•.................... 5-22

PC-Number-Translati on Process•...................... 5-22
Linkage-Table lookup ..•...•..••...•..•.••.•.....•..••. 5-23
Entry-Table Lookup•.••..••.•.•.•... 5-24
Recognition of Exceptions during PC-Number
Translation ..•......•.•.......•..•.......••.......... 5-24

Sequence of Storage References ..••••.•........•.•••..•.... 5-24
Conceptual Sequence .•....•••..•.••...•....•••••.•••... 5-24
OverlBpped Operation of Instruction Execution ...•.•... 5-24
Divisible Instruction Execution•.•.... 5-25

Interlocl<s for Virtual-Storage References•....•.•.•. 5-25
Instruction Fetching ..••.•.•....•.•.•.••...••.•••••••.•. 5-26
OAT-Table Fetches•.•.•.••.••.....•.•.•.•..••... 5-27
Storage-Key Accesses ..••..•.•...•.•••.•.••••••••.•...... 5-28
Storage-Operand References ..•..•.••.•.••.••.•.•......•.. 5-28

Storage-Operand Fetch ReferencQs •••.•••••••••••••••••• 5-29

Chapter 5. Program Execution 5-1

Storage-Operand Store References •••••••••••••••••••••• 5-29
Storage-Operand Update References ••••••••••••••••••••. 5-29

Storage-Operand Consistency ••••••••••••••••••••••••••••. 5-30
Single-Access References •••••••••••.••••.••••••••••••• 5-30
Multiple-Access References •••••••••••••••••.•••••••••• 5-31
Block-Concurrent References•....•.••••••••••• 5-31
Consistency Specification .•.•..••.•.•...•••.•••••••••• 5-31

Relation between Operand Accesses ••••••••••••••••••••••• 5-32
Other Storage References •••.••••.••••••••••••••.•••.•••• 5-33

Serialization •.....•.....•••..•••••.•••.•••.•••••.•••.•••• 5-33
CPU Serialization ••...•••.•...•••.•.••••..••••••.••.•••• 5-33
Channel-Program Serialization ••.•••••••.•••.•••••••.•.•. 5-34

Normally, operation of the CPU is
controlled by instructions in storage
that are executed sequentially, one at a
time, left to right in an ascending
sequence of storage addresses. A change
in the sequential operation may be
caused by branching, LOAD PSW, inter­
ruptions, SIGNAL PROCESSOR orders, or
manual intervention.

INSTRUCTIONS

Each instruction consists of two major
parts:

• An operation code Cop code), which
specifies the operation to be
performed

• The designation of the operands
that participate

OPERANDS

Operands can be grouped in three
classes: operands located in registers,
immediate operands, and operands in
storage. Operands may be either explic­
itly or implicitly designated.

Register operands can be located in
general, floating-point, o~ control
registers, with the type of register
identified by the op code. The register
containing the operand is specified by
identifying the register in a four-bit
field, called the R field, in the
instruction. For some instructions, an
operand is located in an implicitly
designated register, the register being
implied by the op code.

Immediate operands are contained within
the instruction, and the eight-bit field
containing the immediate operand is
called the I field.

Operands in storage may have an implied
length; be specifled by a bit mask; be
specified by a four-bit or eight-bit

5-2 System/370 Principles of Operation

length specification, called the L
field, in the instruction; or have a
length specified by the contents of a
general register. The addresses of
operands in storage are specified by
means of a format that uses the contents
of a general register as part of the
address. This makes it possible to:

1. Specify a complete address by using
an abbreviated notation

2. Perform address manipulation using
instructions which employ general
registers for operands

3. Modify addresses by program means
without alteration of the instruc­
tion stream

4. Operate independent of the location
of data areas by directly using
addresses received from other
programs

The address used to refer to storage
either is contained in a register desig­
nated by the R field in the instruction
or is calculated from a base address,
index, and displacement, specified by
the B, X, and D fields, respectively, in
the instruction.

To describe the execution of
instructions, operands are designated as
first and second operands and, in some
cases, third operands.

In general, two operands participate in
an instruction execution, and the result
replaces the first operand. However,
CONVERT TO DECIMAL, TEST BLOCK, and
instructions with "store" in the
instruction name (other than STORE THEN
AND SYSTEM MASK and STORE THEN OR SYSTEM
MASK) use the second-operand address to
designate a location in which to store.
TEST AND SET, COMPARE AND SWAP, and
COMPARE DOUBLE AND SWAP may perform an
update on the second operand. Except
when otherwise stated, the contents of
all registers and storage locations
participating in the addressing or
execution part of an operation remain
unchanged.

INSTRUCTION FORMAT

An instruction is one, two, or three
halfwords in length and must be located
in storage on a halfword boundary. Each
instruction is 1n one of eight basic
formats: RR, RRE, RX, RS, SI, S, SSE,
and SS, with two variations of SSe (See
the figure "Basic Instruction Formats.")

Some instructions contain fields that
vary slightly from the basic format, and
in some instructions the operation
performed does not follow the general
rules stated in this section. All of
these exceptions are explicitly identi­
fied in the individual instruction
descriptions.

Those instruction formats which are
unique to instructions associated with
the vector facility are described in the
publication IBM System/370 Vector Oper­
ations, SA22-7125.

The format names indicate, in general
terms, the classes of operands which
participate in the operation:

•

•

•

RR denotes a register-and-register
operation.

RRE denotes a register-and-register
operation having an extended
op-code field.

RX denotes a register-and-indexed­
storage operation.

RS denotes a
operation.

register-and-storage

• SI denotes a storage-and-immediate
operation.

• S denotes an operation using an
implied operand and storage.

• SS denotes a storage-and-storage
operation.

• SSE denotes a storage-and-storage
operation having an extended
op-code field.

RR Format

o 8 12 15

RRE Format

Op Code

o 16 24 28 31

RX Format

o 8 12 16 20 31

RS Format

Op codel R t

o 8 12 16 20 31

SI Format

Op codel

o 8 16 20 31

~ Format

Op Code B2

o 16 20 31

SS Format

r---------T----------,-----~/--,-----T-/~

Op Codel l Bl ~t B2 I ~~
o 8 16 20 32 36 47

L..-
0_p _C_o _d e~l_l_t__1..._l_2__.L._1 _B_1 --I.I_~, I B, I ~~

o 8 12 16 20 32 36 47

Op codel R, R, B, I ~, I B, I ~~
o 8 12 16 20 32 36 47

SSE Format

:=======O=p===c=o=d=e=========B==t===~-t-'--B-2--TI-~~ o 16 20 32 36 47

Basic Instruction Formats

The first byte or, in the RRE, S, and
of an

For
all

SSE formats, the first two bytes
instruction contain the op code.
some instructions in the S format,
or a portion of the second byte
ignored.

is

The first two bits of the first or only
byte of the op code specify the length
and format of the instruction, as
follm.Js:

Chapter 5. Program Execution 5-3

Bit Instruction
Positions Length (i n Instruction

0-1 Halfwords) Format

00 One RR
01 Two RX
10 Two RRE/RS/RX/S/SI
11 Three SS/SSE

In the format illustration for each
individual instruction description, the
op-code field shows the op code as hexa­
decimal digits within single quotes.
The hexadecimal representation uses 0-9
for the binary codes 0000-1001 and A-F
for the binary codes 1010-1111.

The remaining fields in the format
illustration for each instruction are
designated by code names, consisting of
a letter and possibly a subscript
number. The subscript number denotes
the operand to which the field applies.

Register Operands

In the RR, RRE, RX, and RS formats, the
contents of the register designated by
the Rs field are called the first oper­
and. The register containing the first
operand is sometimes referred to as the
"first-operand location," and sometimes
as "register Rt.n In the RR and RRE
formats, the R2 field designates the
register containing the second operand,
and the R2 field may designate the same
register as Rt . In the RS format, the
use of the R3 field depends on the
instruction.

The R field designates a general regis­
ter in the general and control
instructions and a floating-point regis­
ter in the floating-point instructions.
I n the i nst ruct ion s L DAD COfHRO Land
STORE CONTROL, the R field designates a
control register.

Unless otherwise indicated in the indi­
vidual instruction description, the
register operand is one register in
length (32 bits for a general register
or a control register and 64 bits for a
floating-point register), and the second
operand is the same length as the first.

Immediate Operands

In the SI format, the contents of the
eight-bit immediate-data field, the 12
field of the instruction, are used
dir~ctly as the second operand. The Bt
and Dt fields specify the first operand,
which is one byte in length.

5-4 System/370 Principles of Operation

Storage Operands

In the SI, SSE, and SS formats, the
contents of the general register desig­
nated by the B t field are added to the
contents of the Dt field to form the
first-operand address. In the S, RS,
SSE, and SS formats, the contents of the
general register designated by the B2
field are added to the contents of the
D2 field to form the second-operand
address. In the RX format, the contents
of the general registers designated by
the X2 and B2 fields are added to the
contents of the D2 field to form the
second-operand address.

In the SS format with a single,
eight-bit length field, l specifies the
number of additional operand bytes to
the right of the byte designated by the
first-operand address. Therefore, the
length in bytes of the first operand is
1-256, corresponding to a length code in
l of 0-255. Storage results replace the
first operand and are never stored
outside the field specified by the
address and length. In this format, the
second operand has the same length as
the first operand, except for the
following instructions: EDIT, EDIT AND
MARK, TRANSLATE, and TRANSLATE AND TEST.

In the SS format, with two length fields
given, II specifies the number of addi­
tional operand bytes to the right of the
byte designated by the first-operand
address. Therefore, the length in bytes
of the first operand is 1-16, corre­
sponding to a length code in Lt of 0-15.
Similarly, l2 specifies the number of
additional operand bytes to the right of
the location designated by the second­
operand address. Results replace the
first operand and are never stored
outside the field specified by the
address and length. If the first oper­
and is longer than the second, the
second operand is extended on the left
with zeros up to the length of the first
operand. This extension does not modify
the second operand in storage.

In the SS format with two R fields, the
contents of the general register speci­
fied by the Rt field are a 32-bit
unsigned value called the true length.
The operands are of the same length,
called the effective length. The effec­
tive length is equal to the true length
or 256, whichever is less. The
instructions using this format, which
are MOVE TO PRIMARY, MOVE TO SECONDARY,
and MOVE WITH KEY, set the condition
code to facilitate programming a loop to
move the total number of bytes specified
by the true length.

ADDRESS GENERATION

Execution of instructions by the CPU
involves generation of the addresses of
instructions and operands. This section
describes address generation as it
applies to most instructions. In some
instructions, the operation performed
does not follow the general rules stated
in this section. All of these
exceptions are explicitly identified in
the individual instruction descriptions.

SEQUENTIAL INSTRUCTION-ADDRESS GENER­
ATION

When an instruction is fetched from the
location designated by the current PSW,
the instruction address is increased by
the number of bytes in the instruction,
and the instruction is executed. The
same steps are then repeated by using
the new value of the instruction address
to fetch the next instruction in the
sequence.

Instruction addresses wrap around, with
the halfword at instruction address
224 - 2 being followed by the halfword
at instruction address o. Thus, any
carry out of PSW bit position 40, as a
result of updating the instruction
address, is lost.

OPERAND-ADDRESS GENERATION

An operand address that refers to stor­
age either is contained in a register
designated by an R field in the instruc­
tion or is calculated from the sum of
three binary numbers: base address,
index, and displacement.

The base address (n) is a 24-bit number
contained in a general register speci­
fied by the program in a four-bit field,
called the B field, in the instruction.
Base addresses can be used as a means of
independently addressing each program
and data area. In array-type calcu­
lations, it can designate the location
of an array, and, in record-type proc­
essing, it can identify the record. The
base address provides for addressing the
entire storage. The base address may
also be used for indexing.

The index (X) is a 24-bit number
contained in a general register desig­
nated by the program in a four-bit
field, called the X field, in the
instruction. It is included only in the
address specified by the RX-format
instructions. The RX-format instruc-

tions permit double indexing; that is,
the index can be used to provide the
address of an element within an array.

The displacement (D) is a 12-bit number
contained in a field, called the D
field, in the instruction. The
displacement provides for relative
addressing of up to 4,095 bytes beyond
the location designated by the base
address. In array-type calculations,
the displacement can be used to specify
one of many items associated with an
element. In the processing of records,
the displacement can be used to identify
items within a record.

In forming the address, the base address
and index are treated as 24-bit binary
integers. The displacement is similarly
treated as a 12-bit unsigned binary
integer, and 12 zeros are appended on
the left. The three are added as 24-bit
binary numbers, ignoring overflow. The
sum is always 24 bits long. The bits of
the generated address are numbered 8-31,
corresponding to the numbering of the
base-address and index bits in the
general register.

A zero in any of the B t , B21 or X2
fields indicates the absence of the
corresponding address component. For
the absent component, a zero is used in
forming the address, regardless of the
contents of general register O. A
displacement of zero has no special
significance.

When an instruction description speci­
fies that the contents of a general
register designated by an R field are
used to address an operand in storage,
bit positions 8-31 of the register
provide the operand address. For the
instructions INSERT STORAGE KEY
EXTENDED, RESET REFERENCE BIT EXTENDED,
SET STORAGE KEY EXTENDED, and TEST
BLOCK, bits 1-31 of the register provide
the address.

An instruction can designate the same
general register both for address compu­
tation and as the location of an
operand. Address computation is
completed before registers, if any, are
changed by the operation.

Unless otherwise indicated in an indi­
vidual instruction definition, the
generated operand address designates the
leftmost byte of an operand in storage.

Programming Note

Negative values may be used in index and
base-address registers. Bits 0-7 of
these values are always ignored.

Chapter 5. Program Execution 5-5

BRANCH-ADDRESS GENERATION

For branch instructions, the address of
the next instruction to be executed when
the branch is taken is called the branch
address. Depending on the branch
instruction, the instruction format may
be RR, RS, or RX.

In the RS and RX formats, the branch
address is specified by a base address,
a displacement, and, for RX, an index.
In the RS and RX formats, the branch
address generation follows the normal
rules for operand-address generation.

In the RR format, the contents of bit
positions 8-31 of the general register
designated by the R2 field are used as
the branch address, and bits 0-7 of the
register are ignored. General register
o cannot be designated as containing a
branch address. A value of zero in the
R2 field causes the instruction to be
executed without branching.

For several branch instructions, branch­
ing depends on satisfying a specified
condition. When the condition is not
satisfied, the branch is not taken,
normal sequential instruction execution
continues, and the branch address is not
used. When a branch is taken, bits 8-31
of the branch address replace bits 40-63
of the current PSW. The branch address
is not used to access storage as part of
the branch operation.

A specification exception due to an odd
branch address and access exceptions due
to fetching of the instruction at the
branch location are not recognized as
part of the branch operation but instead
are recognized as exceptions associated
with the execution of the instruction at
the branch location.

A branch instruction, such as BRANCH AND
LINK, can designate the same g~neral
register for branch-address computation
and as the location of an operand.
Branch-address computation is completed
before the remainder of the operation is
executed.

INSTRUCTION EXECUTION AND SEQUENCING

The program-status word (PSW), described
in Chapter 4, "Control," contains infor­
mation required for proper program
execution. The PSW is used to control
instruction sequencing and to hold and
indicate the status of the CPU in
relation to the program currently being
executed. The active or controlling PSW
is called the current PSW.

Branch instructions perform the func­
tions of decision making, loop control,
and subroutine linkage. A branch

5-6 System/370 Principles of Operation

instruction affects instruction sequenc­
ing by introducing a new instruction
address into the current PSW.

DECISION MAKING

Facilities for decision making are
provided by BRANCH ON CONDITION. This
instruction inspects a condition code
that reflects the result of a majority
of the arithmetic, logical, and I/O
operations. The condition code, which
consists of two bits, provides for four
possible condition-code settings: 0, 1,
2, and 3.

The specific meaning of any setting
depends on the operation that sets the
condition code. For example, the condi­
tion code reflects such conditions as
zero, nonzero, first operand high,
equal, overflow, and channel busy. Once
set, the condition code remains
unchanged until modified by an instruc­
tion that causes a different condition
code to be set. See Appendix C,
"Condition-Code Settings," for a summary
of the instructions which set the condi­
tion code.

LOOP CONTROL

Loop control can be performed by the use
of BRANCH ON CONDITION to test the
outcome of address arithmetic and count­
ing operations. For some particularly
frequent combinations of arithmetic and
tests, BRANCH ON COUNT, BRANCH ON INDEX
HIGH, and BRANCH ON INDEX LOW OR EQUAL
are provided. These branches, being
specialized, provide increased perform­
ance for these tasks.

SUBROUTINE LINKAGE

Subroutine linkage is provided by the
BRANCH AND LINK and BRANCH AND SAVE
instructions, which permit not only the
introduction of a new instruction
address but also the preservation of the
return address and associated informa­
tion. Linkage between a problem-state
program and the supervisor or monitoring
program is provided by means of the
SUPERVISOR CALL and MONITOR CALL
instructions.

The instructions PROGRAM CALL and
PROGRAM TRANSFER provide the facility
for linkage between programs of differ­
ent authority and in different address
spaces. PROGRAM CALL permits linkage to
a number of preassigned programs that
may be in either the problem or the
supervisor state and may be in either

the same address space or an address
space different from that of the caller.
In general, it ;s used to transfer
control to a program of higher
authority. PROGRAM TRANSFER permits a
change of the instruction address and
address space. PROGRAM TRANSFER also
permits a reduction in PSW-key-mask
authority and a change from the supervi­
sor to the problem state. In general,
it is used to transfer control from one
program to another of equal or lower
authority. PROGRAM TRANSFER can be used
to return from a program called by
PROGRAM CALL.

The operation of PROGRAM CALL is
controlled by means of an entry-table
entry, which is located as part of a
table-lookup process during the
execution of the instruction. The
instruction causes the primary address
space to be changed only when the ASN in

the entry-table entry ;s nonzero. When
the primary address space;s changed,
the operation ;s called PROGRAM CALL
with space switching (PC-ss). When the
primary address space is not changed,
the operation is called PROGRAM CALL to
current primary (PC-cp).

PROGRAM TRANSFER specifies the address
space which is to become the new primary
address space. When the primary address
space is changed, the operation is
called PROGRAM TRANSFER with space
switching (PT-ss). When the primary
address space is not changed, the opera­
tion is called PROGRAM TRANSFER to
current primary (PT-cp).

The linkage instructions provided and
the functions performed by each are
summarized ;n the figure "Linkage­
Instruction Summary."

Chapter 5. Program Execution 5-7

Instruction Problem PASN
Address State CR4 PSW-Key

PSl~ Bi ts 40-63 PSW Bit 15 Bits 16-31 Mask
Changed

Instruction Format Save Set Save Set Save Set in CR3

BALR* RR Yes R2 1 - - - - -
BAL* RX Yes Yes - - - - -
BASR RR Yes R2 1 - - - - -
BAS RX Yes Yes - - - - -
MC"2 SI Yes Yes Yes Yes - - -
PC-cp S Yes Yes Yes Yes - - "OR" EKM

PC-ss S Yes Yes Yes Yes Yes Yes "OR" EKM

PT-cp RRE - R2 - R2** - - "AND" R j

PT-ss RRE - R2 - R2** - Yes "AND" Rt

SVC2 RR Yes Yes Yes Yes - - -

EXElanation:

- No

* The instruction-length code, condition code, and program mask are
also saved.

** A change from the supervisor to the problem state is allowed; a
privileged operation exception is recognized when a change from
the problem to the supervisor state is specified.

Monitor-mask bits provide a means of disallowing linkage, or en­
abling linkage, for selected classes of events.

The action takes place only if the R2 field in the instruction is
nonzero.

2 MC and SVC, as part of the interruption, save the entire current
PSW and load a new PSW.

Linkage-Instruction Summary

INTERRUPTIONS

Interruptions permit
state as a result of
to the system,
input/output (I/O)
CPUs, or in the CPU
to be found
"Interruptions."

the CPU to change
conditions external

in channels or
devices, in other

itself. Details are
in Chapter 6,

Six classes of interruption conditions
are pro v i ded: external, I/O, machi ne
check, program, restart, and supervisor
call. Each class has two related PSWs,
called old and new, in permanently
assigned real storage locations. In all
classes, an interruption involves stor­
ing information identifying the cause of
the interruption, storing the current
PSW at the old-PSW location, and fetch-

5-8 System/370 Principles of Operation

ing the PSW at the new-PSW location,
which becomes the current PSW.

The old PSW contains CPU-status informa­
tion necessary for resumption of the
interrupted program. At the conclusion
of the program invoked by the inter­
ruption, the instruction LOAD PSW may be
used to restore the current PSW to the
value of the old PSW.

TYPES OF INSTRUCTION ENDING

Instruction
five ways:
suppression,
completion.

execution ends in one of
completion, nullification,
termination, and partial

Partial completion of instruction
execution occurs only for interruptible
instructions; it is described in the
section "Interruptible Instructions"
later in this chapter.

Completion

Completion of instruction execution
provides results as called for in the
definition of the instruction. When an
interruption occurs after the completion
of the execution of an instruction, the
instruction address in the old PSW
designates the next sequential instruc­
tion.

Suppression

Suppression of instruction execution
causes the instruction to be executed as
if it specified "no operation." The
contents of any result fields, including
the condition code, are not changed.
The instruction address in the old PSW
on an interruption after suppression
designates the next sequential instruc­
tion.

Nullification of instruction execution
has the same effect as suppression,
except that when an interruption occurs
after the execution of an instruction
has been nullified, the instruction
address in the old PSW designates the
instruction whose execution was nulli­
fied (or an EXECUTE instruction, as
appropriate) instead of the next sequen­
tial instruction.

Termination

Termination of instruction execution
causes the contents of any fields due to
be changed by the instruction to be
unpredictable. The operation may
replace all, part, or none of the
contents of the designated result fields
and may change the condition code if
such change is called for by the
instruction. Unless the interruption is
caused by a machine-check condition, the
validity of the instruction address in
the PSW, the interruption code, and the
ILC are not affected, and the state or
the operation of the machine is not

~ affected in any other way. The instruc­
, tion address in the old PSW on an

interruption after termination desig­
nates the next sequential instruction.

INTERRUPTIBLE INSTRUCTIONS

Point of Interruption

For most instructions, the entire
execution of an instruction is one oper­
atipn. An interruption is permitted
between operations; that is, an inter­
ruption can occur after the performance
of one operation and before the start of
a subsequent operation.

For the following instructions, referred
to as interruptible instructions, an
interruption is permitted after partial
completion of the instruction:

COMPARE LOGICAL LONG
MOVE LONG
TEST BLOCK
Interruptible instructions of the

vector facility (see the publi­
cation IBM System/370 Vector
Operations, SA22-712S)

The execution of an interruptible
instruction is considered to consist in
the execution of a number of units of
operation, and an interruption is
permitted between units of operation.
The amount of data processed in a unit
of operation depends on the particular
instruction and may depend on the model
and on the particular condition that
causes the execution of the instruction
to be interrupted.

Whenever points of interruption that
include those occurring within the
execution of an interruptible instruc­
tion are discussed, the term "unit of
operation" is used. For a noninterrup­
tible instruction, the entire execution
consists, in effect, in the execution of
one unit of operation.

When an instruction consists of a number
of units of operation and an inter­
ruption occurs after some, but not all,
units of operation have been completed,
the instruction is said to be partially
completed. In this case, the type of
ending (completion, inhibition, nullifi­
cation, suppression) is associated with
the unit of operation. In the case of
termination, the entire instruction is
terminated, not just the unit of opera­
tion.

Execution of Interruptible Instructions

The execution of an interruptible
instruction is completed when all units
of operation associated with that
instruction are completed. When an
interruption occurs after completion,
inhibition, nullification, or
suppression of a unit of operation, all

Chapter 5. Program Execution 5-9

preceding units of operation have been
completed, and subsequent units of oper­
ation and instructions have not been
started. The main difference between
these types of ending is the handling of
the current unit of operation and wheth­
er the instruction address stored in the
old PSW identifies the current instruc­
tion or the next sequential instruction.

At the time of an interruption, changes
to register contents, which are due to
be made by an interruptible vector
instruction beyond the point of inter­
ruption, have not yet been made. Chang­
es to storage locations, however, which
are due to be made by an interruptible
vector instruction beyond the point of
interruption, may have occurred for one
or more storage locations beyond the
location containing the element identi­
fied by the interruption parameters, but
not for any location beyond the last
element specified by the instruction and
not for any locations for which access
exceptions exist. Changes to storage
locations or register contents which are
due to be made by instructions following
the interrupted instruction have not yet
been made at the time of interruption.

Completion: On completion of the last
unit of operation of an interruptible
instruction, the instruction address in
the old PSW designates the next sequen­
tial instruction. The result location
for the current unit of operation has
been updated. It depends on the partic­
ular instruction how the operand
parameters are adjusted. On completion
of a unit of operation other than the
last one, the instruction address in the
old PSW designates the interrupted
instruction or an EXECUTE instruction,
as appropriate. The result location for
the current unit of operation has been
updated. The operand parameters are
adjusted such that the execution of the
interrupted instruction is resumed from
the point of interruption when the old
PSW stored during the interruption is
made the current psw.
Inhibition:
inhibited,

When a unit of operation is
the instruction address in

5-10 System/370 Principles of Operation

the old PSW designates the interrupted
instruction or an EXECUTE instruction,
as appropriate. The result location for
the current unit of operation is not
changed. The operand parameters are
adjusted such that, if the instruction
is reexecuted, execution of the inter­
rupted instruction is resumed with the
next unit of operation. Inhibition
occurs only during interruptible vector
instructions and is described in more
detail in the publication IBM System/370
Vector Operations, SA22-7125.

Nullification: When a unit of operation
is nullified, the instruction address in
the old PSW designates the interrupted
instruction or an EXECUTE instruction,
as appropriate. The result location for
the current unit of operation remains
unchanged. The operand parameters are
adjusted such that, if the instruction
is reexecuted, execution of the inter­
rupted instruction is resumed with the
current unit of operation.

Suppression: When a unit of operation
is suppressed, the instruction address
in the old PSW designates the next
sequential instruction. The operand
parameters, however, are adjusted so as
to indicate the extent to which instruc­
tion execution has been completed. If
the instruction is reexecuted after the
conditions causing the suppression have
been removed, the execution is resumed
with the current unit of operation.

Termination: When an exception which
causes termination occurs as part of a
unit of operation of an interruptible
instruction, the entire operation is
terminated, and the contents, in
general, of any fields due to be changed
by the instruction are unpredictable.
On such an interruption, the instruction
address in the old PSW designates the
next sequential instruction.

The differences among the five types of
ending for a unit of operation are
summarized in the figure "Types of
Ending for a Unit of Operation."

Unit of
Operation Is

Instruction
Address

Operand
Parameters

Current Result
Location

Completed
Last unit of
operation

Any other unit
of operation

Next instruc­
tion

Current in­
struction

Depends on the
instruction

Next unit of
operation

Changed

Changed

Inhibited Current in­
struction

Next unit of
operation

Unchanged

Nullified Current in­
struction

Current unit
of operation

Unchanged

Suppressed Next instruc­
tion

Current unit
of operation

Unchanged

Terminated Next instruc­
tion

Unpredictable Unpredictable

Types of Ending for a Unit of Operation

Programming Notes

1. Any interruption, other than super­
visor call and some program inter­
ruptions, can occur after a partial
execution of an interruptible
instruction. In particular, inter
ruptions for external, I/O,
machine-check, restart, and program
interruptions for access exce~tions
and PER events can occur b~tween
units of operation.

2. The amount of data processed in a
unit of operation of an interrupti­
ble instruction depends on the
model and may depend on the type of
condition which causes the
execution of the instruction to be
interrupted or stopped. Thus, when
an interruption occurs at the end
of the current unit of operation,
the length of the unit of operation
may be different for different
types of interruptions. Also, when
the stop function is requested
during the execution of an inter­
ruptible instruction, the CPU
enters the stopped state at the
completion of the execution of the
current unit of operation. Simi­
larly, in the instruction-step
mode, only a single unit of opera­
tion is performed, but the unit of
operation for the various cases of
stopping may be different.

EXCEPTIONS TO NULLIFICATION AND
SUPPRESSION

In certain unusual situations, the
result fields of an instruction having a
store-type operand are changed in spite
of the occurrence of an exception which

would normally result in nullification
or suppreSSlon. These situations are
exceptions to the general rule that the
operation is treated as a no-operation
when an exception requiring nullifica­
tion or suppression is recognized. Each
of these situations may result in the
turning on of the change bit associated
with the store-type operand, even though
the final result in storage may appear
unchanged. Depending on the particular
situation, additional effects may be
observable. The extent of these effects
is described along with each of the
situations.

All of these situations are limited to
the extent that a store access does not
occur and the change bit is not set when
the store access is prohibited. For the
CPU, a store access is prohibited when­
ever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the
priority of an access exception for that
access.

When, in these situations, an inter­
ruption for an exception requiring
suppression occurs, the instruction
address in the old PSW designates the
next sequential instruction. When an
interruption for an exception requiring
nullification occurs, the instruction
address in the old PSW designates the
instruction causing the exception even
though partial results may have been
stored.

Storage Change and Restoration for
OAT-Associated ACCess Exception-s--

In this section, the term "DAT­
associated access exceptions" is used to
refer to those exceptions which may

Chapter 5. Program Execution 5-11

occur as part of the dynamic-address­
translation process. These exceptions
are page translation, segment trans­
lation, translation specification, and
addressing due to a OAT-table entry
being designated at a location that is
not available in the configuration. The
first two of these exceptions normally
cause nullification, and the last two
normally cause suppression. Protection
exceptions, including those due to
segment protection, are not considered
to be OAT-associated access exceptions.

For OAT-associated access exceptions, on
some models, channels may observe the
effects on storage as described in the
following case.

When, for an instruction having a
store-type operand, a OAT-associated
access exception is recognized for any
operand of the instruction, that
portion, if any, of the store-type oper­
and which would not cause an exception
may be changed to an intermediate value
but is then restored to the original
value.

The accesses associated with storage
change and restoration for DAT­
associated access exceptions are only
observable by channels and are not
observable by other CPUs in a multiproc­
essing configuration. Except for
instructions which are defined to have
multiple-access operands, the intermedi­
ate value, if any, is always equal to
what would have been the final value if
the OAT-associated access exception had
not occurred.

1. Storage change and restoration for
OAT-associated access exceptions
occur in two main situations:

a. The exception is recognized for
a portion of a store-type oper­
and which crosses a page bound­
ary, and the other portion has
no access exception.

b. The exception is recognized for
one operand of an instruction
having two storage operands
(for example, an SS-format
instruction or MOVE LONG), and
the other operand, which is a
store-type operand, has no
access exception.

2. To avoid letting a channel observe
intermediate operand values due to
storage change and restoration for
OAT-associated access exceptions
(especially when a CCW chain is
modified), the CPU program should
do one of the following:

5-12 System/370 Principles of Operation

• Operate on one storage page at
a time

• Perform preliminary testing to
ensure that no exceptions occur
for any of the required pages

• Operate with OAT off

Modification of OAT-Table Entries

When a valid and attached OAT-table
entry is chang'ed to a value whi ch would
cause an exception, and when, before the
TLB is cleared of entries which qualify
for substitution for that entry, an
attempt is made to refer to storage by
using a virtual address requiring that
entry for translation, the contents of
any fields due to be changed by the
instruction are unpredictable. Results,
if any, associated with the virtual
address whose OAT-table entry was
changed may be placed in those real
locations originally associated with the
address. Furthermore, it is unpredict­
able whether or not an interruption
occurs for an access exception that was
not initially applicable. On some
machines, this situation may be reported
by means of an instruction-processing­
damage machine check with the delayed­
access-exception bit also indicated.

Trial Execution for Editing Instructions
and TRANSLATE

For the instructions EDIT, EDIT AND
MARK, and TRANSLATE, the portions of the
operands that are actually used in the
operation may be established in a trial
execution for operand accessibility that
is performed before the execution of the
instruction is started. This trial
execution consists in an execution of
the instruction in which results are not
stored. If the first operand of TRANS­
LATE or either operand of EDIT or EDIT
AND MARK is changed by another CPU or by
a channel, after the initial trial
execution but before completion of
execution, the contents of any fields
due to be changed by the instruction are
unpredictable. Furthermore, it is
unpredictable whether or not an inter­
ruption occurs for an access exception
that was not initiallY applicable.

Interlocked Update for Nullification and
Suppression

When an exception which is defined to
cause suppression or nullification is
recognized for an instruction with a
store-type operand, an interlocked-

update reference which does not change
the contents of the location may occur
for that portion, if any, of the store­
type operand for which no access excep­
tion exists. The interlocked-update
reference can occur only if the priority
of the exception is equal to or lower
than the priority of an access exception
for the store-type operand.

When the exception is a specification
exception for a store-type operand which
requires alignment on integral bounda­
ries, the interlocked-update reference
which may occur is limited to the single
byte at the location designated by the
operand address.

Programming Note

The update appears to be an
interlocked-update reference as observed
by other CPUs. It is not interlocked as
observed by channels. Examples of when
an interlocked-update reference may
occur to the destination-operand
location in storage are:

•

•

Specification exception for an odd
register number for COMPARE DOUBLE
AND SWAP

Data exception for an invalid deci­
mal sign for ADD DECIMAL

• Decimal-divide exception for DIVIDE
DECIMAL

DUAL-ADDRESS-SPACE CONTROL

The dual-address-space (DAS) facility
consists of a number of interrelated
functions. Some of these functions are
described in this chapter, specifically
in the sections "DAS-Authorization Mech­
anisms" and "PC-Number Translation."
Additionally, address spaces, ASN trans­
lation, and ASN authorization are
described in Chapter 3, "Storage"; DAS
tracing in Chapter 4, "Control"; inter­
ruptions in Chapter 6, "Interruptions";
and the instructions in Chapter 10,
"Control Instructions."

A complete list of the functions,
control-register fields, and
instructions that are part of DAS is
included in Appendix D, "Facilities."

SUMMARY

These major functions are provided:

1.

2.

3.

4.

5.

6 •

Two address spaces for immediate
use by the program

Means for changing to other spaces

Three instructions for moving
information

A table-based
mechanism

subroutine-linkage

The use of multiple access keys for
key-controlled protection by prob­
lem programs

Aids for program-problem analysis

Additionally, control and authority
mechanisms are incorporated to control
these functions.

These functions are intended for use by
programs considered to be
semiprivileged, that is, programs which
are executed in the problem state but
which may be authorized to use addi­
tional capabilities. The authorization
mechanisms provided with DAS are
described in the section "DAS Authori­
zation Mechanisms" in this chapter.

The 11 instructions which are included
as part of DAS are described in Chapter
10, "Control Instructions." DAS
includes the privileged instruction LOAD
ADDRESS SPACE PARAMETERS and the follow­
ing semiprivileged instructions:

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT VIRTUAL STORAGE KEY
MOVE TO PRIMARY
MOVE TO SECONDARY
t"OVE WITH KEY
PROGRAM CALL
PROGRAM TRANSFER
SET ADDRESS SPACE CONTROL
SET SECONDARY ASN

In addition, when DAS is installed, two
instructions which are not part of DAS
are changed to be semiprivileged. These
instructions are:

INSERT PSW KEY
SET PSW KEY FROM ADDRESS

The changes to the operation of these
two instructions are under the control
of mode bits in the PSW or in control
registers. Whenever a program in the
problem state attempts to execute any of
the 13 instructions at a time when the
required control registers have not been
set up, a program exception is indicated
which is also available on machines
without DAS.

Chapter 5. Program Execution 5-13

DAS FUNCTIONS

Using Two Address Spaces

Primary and Secondarv Address Spaces:
DAS makes two address spaces available
for use by a semiprivileged program.
The use of control register 1 to contain
the designation of a segment table for
one address space, called the primary
address space, is the same as when DAS
is not installed. Control register 1 is
used when translating primary virtual
addresses. For the other address space,
called the secondary address space, a
segment-table designation is contained
in control register 7. Control register
7 is used when translating secondary
virtual addresses. DAT applies in the
same way to both address spaces.

Address-Space Control: When the
address-space-control bit, bit 16 of the
EC-mode PSW, is one and DAT is on, the
CPU is said to be in the secondary-space
mode. When the CPU is in the
secondary-space mode, those operand
addresses defined to be logical refer to
the secondary address space. When the
CPU is in the secondary-space mode, it
is unpredictable whether instructions
are fetched from the primary address
space or from the secondary address
space. Programs which are executed in
this mode are expected to reside in a
portion of an address space which is
shared between the primary address space
and the secondary address space.

The instruction SET ADDRESS SPACE
CONTROL provides the semiprivileged
program with the capability of selecting
either the primary-space mode or the
secondary-space mode when DAT is on.
Since logical addresses are translated
as primary virtual addresses when the
CPU is in the primary-space mode and as
secondary virtual addresses when the CPU
is in the secondary-space mode, the
semiprivileged program can use the
entire set of unprivileged and semipriv­
ileged instructions to access
information in either of the two address
spaces. The instruction INSERT ADDRESS
SPACE CONTROL provides the program with
the ability to inspect the state of the
address-space-control bit.

In addition to the function of accessing
operands in one address space or the
other, the instructions MOVE TO PRIMARY
and MOVE TO SECONDARY provide a means of
moving data from either of the two
address spaces to the other.

5-14 System/370 Principles of Operation

Changing to Other Spaces

Address-Space Numbers: DAS provides for
changing both the primary address space
and the secondary address space. Each
address space is designated by a 16-bit
value, called the address-space number,
or ASN. The ASN can be used as a prima­
ry ASN (PASN) or a secondary ASN (SASN).
These two values are not used directly
to access an address space but are used
as symbolic identifiers of the address
space.

Bits 16-31 of control register 4 contain
the PASN. The PASN can be loaded by
means of a PROGRAM CALL with space
switching, a PROGRAM TRANSFER with space
switching, or LOAD ADDRESS SPACE PARAME­
TERS. The PASN can be inspected by
EXTRACT PRIMARY ASN. When the PASN is
loaded by means of the DAS instructions,
the corresponding segment-table­
designation (STD) value is placed in the
primary segment-table designation
(PSTD), bits 0-31 of control register 1.
The PASN can also be loaded by means of
LOAD CONTROL, in which case no trans­
lation occurs to convert the PASN to an
STD value.

Bits 16-31 of control register 3 contain
the SASN. The SASN can be loaded by
means of the SET SECONDARY ASN instruc­
tion and LOAD ADDRESS SPACE PARAMETERS.
The SASN can be inspected by EXTRACT
SECONDARY ASH. When the SASH is loaded
by means of the DAS instructions, the
corresponding STD value is placed in the
secondary segment-table designation
(SSTD), bits 0-31 of control register 7.
The SASH can also be loaded by means of
LOAD CONTROL, in which case no trans­
lation occurs to convert the SASH to an
STD value.

Address-Space-Humber Translation: By
using the instructions SET SECOHDARY ASN
and PROGRAM TRANSFER, the semiprivileged
program can specify, by reference to a
general register containing an ASN, a
particular address space which is to be
accessed. The ASN specified by the
program is used in a table-lookup proc­
ess, which locates the address-space­
control parameters that in turn are used
to permit controlled access to the
address space. The table lookup
includes an authorization test to ensure
that the program is authorized to use
the specified address space. The table
lookup, including the authorization test
and the conversion to system-usable
form, is called ASH translation. The
same table lookup, but without the
authorization test, is performed by the
PROGRAM CALL instruction on the ASN
specified in the entry-table entry. The
instruction LOAD ADDRESS SPACE PARAME­
TERS also uses ASN translation.

To obtain the segment-table designation
and other information for the new

address space, the ASN is translated by
using a set of tables whose origin is
contained in control register 14. A
two-level lookup is used. The ASN value
is partitioned into two indexes. The
first index selects an entry in the
table designated by control register 14,
called the ASN first table, or AFT.
This entry designates another table,
called the ASN second table, or AST, an
entry of which is selected by the second
index. An entry in the second table
contains several parameters about the
new address space. The information in a
second-table entry includes:

• A validity indicator, generally
used to indicate whether the asso­
ciated address space is immediately
accessible. This is useful for
managing unassigned numbers and
swapped-out spaces.

• The origin and length of a table
which provides control over whether
three of the DAS instructions are
authorized to use the new ASN.
This table is called the authority
table (AT).

• The authorization index (AX), or
level, of the new space.

• The orlgln and length of the
segment table to be used by DAT
when the new address space is
accessed.

• A control over whether a signal, in
the form of a space-switch-event
program interruption, is given for
two of the DAS instructions after a
change to a new primary address
space is completed.

• The origin of a set of tables which
describe the entry points associ­
ated with a new prlmary space.
These tables are used by the link­
age mechanism provided with DAS. A
two-level table structure is
provided. The first level is the
linkage table (IT), whose entries
provide the origins of entry tables
(ET).

Changing the Secondary Address Space:
The SET SECONDARY ASN instruction causes
the secondary address space to be
changed to the address space associated
with the ASN specified by the instruc­
tion. The ASN itself is placed in
control register 3 and is called the
secondary ASN, or SASN. The ASN is
translated to obtain the segment-table
designation for the space. This desig­
nation is placed in control register 7
as the secondary segment-table desig­
nation (SSTO). Instruction execution is
disallowed if the translation is not
authorized. The translation is author­
ized by a bit in the authority table at
an offset determined by the authori­
zation index in control register 4. The

instruction LOAD
TERS also can
address space.

Moving Information

ADDRESS SPACE PARAME­
change the secondary

DAS provides three instructions for
moving information under the control of
two access keys.

The instructions MOVE TO PRIMARY and
MOVE TO SECONDARY permit the semiprivi­
leged program to move data from either
of the two current address spaces to the
other. These instructions are defined
such that a second access key can be
specified in addition to the PSW key.
The PSW key in these two instructions is
used as the access key for the storage
references to the primary address space.
Accesses to the secondary address space
are made by using a key specified in a
general register designated by the
instruction. Thus, the semiprivileged
program can use the instruction to move
data between a calling program area and
the semiprivileged-program area and to
specify the appropriate key to be used
in each area.

A third move instruction, MOVE WITH KEY,
gives a semiprivileged program the capa­
bilityof moving information between a
caller-specified area and a
semiprivileged-program area in the same
address space. The instruction uses the
PSW key for the store accesses associ­
ated with the first operand and uses a
program-specified key for the fetch
accesses associated with the second
operand. Thus, a semiprivileged program
may set up the PSW key and specify the
source key so as to provide appropriate
authority checking on a caller-specified
address whether it be a source or a
target.

For all three move instructions, the
number of bytes to be moved is expressed
as a true length. A zero length is
allowed, with no movement performed. Up
to 256 bytes are moved each time one of
these instructions is executed, and a
condition code is set to indicate wheth­
er the number of bytes moved did or did
not exhaust the true length. These
capabilities make the instructions suit­
able for use in a simple program to move
any number of bytes. This is partic­
ularly useful when the number of bytes
to be moved must be calculated by the
program.

Transferring Program Control

DAS permits programs operating at
different levels of authority to be

Chapter 5. Program Execution 5-15

linked directly without the use of the
SUPERVISOR CALL or MONITOR CALL instruc­
tion. The instructions PROGRAM CALL and
PROGRAM TRANSFER provide a protected
mechanism for transferring control
between programs operating at different
levels, or the same level, of control.

The PROGRAM CALL instruction specifies a
20-bit index, the PC number, which is
used to locate the information associ­
ated with the program to be called.
This information, called the entry
information, includes an authorization
key mask, an entry key mask to be ORed
into the PSW-key mask in control regis­
ter 3, the information to be loaded into
the problem-state and instruction­
address portions of the current PSW, and
a parameter which is made available to
the called program in general register
4. The entry information can also cause
an optional space-switching operation to
occur. The space-switching operation is
specified when a nonzero address-space
number (ASN) is provided as part of the
entry information. When space switching
occurs, the operation is called PROGRAM
CALL with space switching (PC-ss). When
no space switching occurs, the operation
is called PROGRAM CALL to current prima­
ry (PC-cp).

The information associated with the
program to be called is obtained by
means of a two-level lookup:

• The first lookup consists in index­
ing into the linkage table to
obtain a linkage-table entry, which
contains an entry-table address.

• The second lookup consists in
indexing into the entry table to
obtain an entry-table entry, which
contains the entry information.

Since the information loaded into the
PSW and control registers is obtained
from tables set up by the control
program, system integrity is maintained
because the problem program cannot load
arbitrary values. The current values of
the PSW-key mask and the PASN are saved
in general register 3. The problem­
state status and instruction address are
saved in general register 14.

A program can use PC-ss to call a
program in another address space. In
addition to isolating programs in
address spaces, this operation provides
for a change to a higher level of privi­
lege and authority. Thus, the called
program is entered with an authorization
index that can permit access to address
spaces which are not authorized to the
caller, and with a different linkage
table. The called program can then
perform services for the calling program
by having easy access to these other
address spaces, without the requirement
that the calling program also have
access to these address spaces, and it

5-16 System/370 Principles of Operation

may use program services which are not
available to the calling program. A
hierarchy of control can be established
and the integrity of the address spaces
maintained.

PROGRAM TRANSFER may be used to restore
the information saved by PROGRAM CALL.
It ANDs information into the PSW-key
mask in control register 3 and loads the
problem-state status and instruction
address into the current PSW. However,
PROGRAM TRANSFER cannot be used to
change from the problem to the supervi­
sor state. Like PROGRAM CALL, PROGRAM
TRANSFER is described in terms of two
cases: PROGRAM TRANSFER with space
switching (PT-ss) and PROGRAM TRANSFER
to current primary (PT-cp). PT-ss
occurs when the specified ASH is differ­
ent from the current PASN.

PT-ss provides the return function to be
used by a program which has been called
by means of PC-ss. The authorization
checking provided on PT-ss permits a
table structure to be set up which
prohibits a program from increasing its
authority. PT-ss can also be used to
transfer control from one address space
to another of the same authority.

PROGRAM CALL and PROGRAM TRANSFER are
valid only when the CPU is in the
primary-space mode. They cause a
special-operation exception to be recog­
nized when the CPU is in the secondary­
space mode or the real mode.

Handling Storage Keys and the PSW ~

The handling of keys is facilitated by
instructions for changing and extracting
the PSW key in the problem state. A
semiprivileged instruction is provided
for obtaining the storage key associated
with a virtual-storage location.

INSERT PSW KEY, which is changed by DAS
to be semiprivileged, permits a semi­
privileged program to save the current
PSW key for later restoration.

INSERT VIRTUAL STORAGE KEY permits the
semiprivileged program to determine the
storage key associated with any partic­
ular virtual-storage location. It may
be used, for example, when one program,
with authority to more than one key,
calls another program and passes the
address of a location to be used as
either an input or output buffer. The
called program must determine the key
needed to access the buffer.

INSERT VIRTUAL STORAGE KEY is also
useful to the control program since the
instruction uses a virtual rather than a
real address. The sequence LOAD REAL
ADDRESS followed by INSERT STORAGE KEY
or INSERT STORAGE KEY EXTENDED does not

necessarily produce a valid result if
the program is enabled for interruptions
or operating in a multiprocessing
configuration. This could be the case,
for example, in a multiprocessing
configuration if another CPU executed
INVALIDATE PAGE TABLE ENTRY, followed by
a reassignment of the page.

SET PSW KEY FROM ADDRESS, which is
changed by DAS to be semiprivileged,
provides the semiprivileged program with
the capability of changing the PSW key,
under control of the PSW-key mask, and
thus permits the program to access
different data areas protected by
different keys.

Increased flexibility in key handling is
controlled by a 16-bit PSW-key mask in
control register 3. The PSW-key mask
permits the semiprivileged program to
operate with more than one key without
having authorization to all keys. This
mask controls the semiprivileged-program
use of keys in MOVE TO PRIMARY, MOVE TO
SECONDARY, MOVE WITH KEY, and SET PSW
KEY FROM ADDRESS. Each bit position
corresponds to a key value. The bit in
the mask must be one in order for the
corresponding key to be used.

Program-Problem Analysis

To aid program-problem analysis, the
option is provided of having a trace
entry made implicitly for three DAS
instructions. When tracing is
activated, a trace entry is made each
time PROGRAM CALL, PROGRAM TRANSFER, or
SET SECONDARY ASN is executed.

As a further analysis aid, PROGRAM CALL
and PROGRAM TRANSFER are also recognized
for PER purposes as successful branching
events. Additionally, for these two
instructions, the space-switch-event­
control bit is provided both in control
register 1 and in the second-table entry
used during ASN translation. When
either bit is one, a program inter­
ruption for a space-switch event occurs
at the completion of the instruction.
The effect is to provide for an inter­
ruption when a primary-space switch
occurs, allowing recognition that a
space has been entered, left, or both.

DAS AUTHORIZATION MECHANISMS

The DAS authorization mechanisms which
are described in this section permit the
control program to establish the degree
of function which is provided to a
particular semiprivileged program. (A
summary of the authorization mechanisms
is given in the figure "Summary of DAS

Authorization Mechanisms.") The DAS
authorization mechanisms are intended
for use by programs considered to be
semiprivileged, that is, programs which
are executed in the problem state but
which may be authorized to use addi­
tional capabilities. With these
authorization controls, a hierarchy of
programs may be established, with
programs at a higher level having a
greater degree of privilege or authority
than programs at a lower level. The
range of functions available at each
level, and the ability to transfer
control from a lower to a higher level,
are specified in tables which are
managed by the control program.

Programming Note

The DAS authorization mechanisms are
defined such that if zeros are placed in
the previously unassigned control­
register positions, a problem program
attempting to use the semiprivileged
instructions causes a privileged­
operation or special-operation exception
to be recognized.

Mode Reguirements

Most of the DAS instructions can be
executed only with DAT on. PROGRAM CALL
and PROGRAM TRANSFER are valid only in
the primary-space mode. When a DAS
instruction is executed in an invalid
translation mode, a special-operation
exception is recognized.

PROGRAM TRANSFER specifies a new value
for the problem-state bit in the PSW.
If a program in the problem state
attempts to execute PROGRAM TRANSFER and
set the supervisor state, a privileged­
operation exception is recognized.

Extraction-Authority Control

The extraction-authority-control bit is
located in bit position 4 of control
register O. In the problem state, bit 4
must be one to allow completion of these
instructions:

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY
INSERT VIRTUAL STORAGE KEY

Otherwise, a privileged-operation excep­
tion is recognized. The extraction­
authority-control bit is not examined in
the supervisor state.

Chapter 5. Program Execution 5-17

PSW-Key Mask

The PSW-key mask consists of bits 0-15
in control register 3. These bits are
used in the problem state to control
which keys and entry points are author­
ized for the program. The PSW-key mask
is modified by PROGRAM CALL and PROGRAM
TRANSFER and is loaded by LOAD ADDRESS
SPACE PARAMETERS. The PSW-key mask is
used in the problem state to control the
following:

•

•

•

The PSW-key values that can be set
by means of the instruction SET PSW
KEY FROM ADDRESS.

The PSW-key values that are valid
for the three move instructions
that specify a second access key:
MOVE TO PRIMARY, MOVE TO SECONDARY,
and MOVE WITH KEY.

The entry points which can be
called by means of PROGRAM CALL.
In this case, the PSW-key mask is
ANDed with the authorization key
mask in the entry-table entry, and,
if the result is zero, the program
is not authorized.

When an instruction in the problem state
attempts to use a key not authorized by
the PSW-key mask, a privileged-operation
exception is recognized. The same
action is taken when an instruction in
the problem state attempts to call an
entry not authorized by the PSW-key
mask. The PSW-key mask is not examined
in the supervisor state, all keys and
entry points being valid.

Secondary-Space Control

Bit 5 of control register 0 is the
secondary-space-control bit. This bit
provides a mechanism whereby the control
program can indicate whether or not the
secondary segment table has been estab­
lished. Bit 5 must be one to allow
completion of these instructions:

MOVE to PRIMARY
MOVE TO SECONDARY
SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception
is recognized. The secondary-space­
control bit is examined in both the
problem and supervisor states.

Subsystem-Linkage Control

Bit 0 of control register 5 is the
subsystem-linkage-control bit. Bit 0
must be one to allow completion of these
instructions:

5-18 System/370 Principles of Operation

PROGRAM CALL
PROGRAM TRANSFER

Otherwise, a special-operation exception
is recognized. The subsystem-linkage­
control bit is examined in both the
problem and supervisor states and
controls both the space-switching and
current-primary versions of the
instructions.

ASN-Translation Control

Bit 12 of control register 14 is the
ASN-translation-control bit. This bit
provides a mechanism whereby the control
program can indicate whether ASH trans­
lation may occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

LOAD ADDRESS SPACE PARAMETERS
SET SECONDARY ASN
PROGRAM CALL with space switching
PROGRAM TRANSFER with space switch-

ing

Otherwise, a special-operation exception
is recognized. The ASN-translation­
control bit is examined in both the
problem and supervisor states.

Authorization Index

The authorization index is contained in
bits 0-15 of control register 4. The
authorization index is associated with
the primary address space and is loaded
along with the PASN when PROGRAM CALL
with space switching, PROGRAM TRANSFER
with space switching, or LOAD ADDRESS
SPACE PARAMETERS is executed. The
authorization index is used to determine
whether a program is authorized to
establish a particular address space. A
program may be authorized to establish
the address space as a secondary-address
space, as a primary-address space, or
both. The authorization index is exam­
ined in both the problem and supervisor
states.

Associated with each address space is an
authority table. The authorization
index is used to select an entry in the
authority table. Each entry contains
two bits, which indicate whether the
program with that authorization index is
permitted to establish the address space
as a primary address space, as a second­
ary address space, or both.

The instruction SET SECONDARY ASH with
space switching uses the authorization
index to test the secondary-authority
bit in the authority-table entry to

determine if the address space can be
established as a secondary address
space. The tested bit must be one;
otherwise, a secondary-authority excep­
tion is recognized.

The instruction PROGRAM TRANSFER with
space switching uses the authorization
index to test the primary authority bit
in the authority-table entry to deter­
mine if the address space can be estab­
lished as a primary address space. The

tested bit must
primary-authority
nized.

be one; otherwise, a
exception is recog-

The instruction PROGRAM CALL with space
switching causes a new authorization
index to be loaded from the ASN-second­
table entry. This permits the program
which is called to be given an authori­
zation index which authorizes it to
access more address spaces than those
authorized for the calling program.

Chapter 5. Program Execution 5-19

Authorization Mechanism

A5N- P5W- 5pace-
Mode Translation- Key Mask Switch-

Requirement Subsystem- 5econdary- Control Extraction- (CR3.0-1S) Authori- Event-
linkage Space (CR14.12) Authority zation Control

Priv Trans Control Control Control Bit AND Index Bit
Instr Op Mode (CR5.0) (CRO.S) Un cd Cond (CRO.4) Test AKMI (CR4.0-1S) (CRl. 31>

EPAR 50-PS Q
ESAR SO-PS Q
lAC 50-PS Q
IPK Q
IVSK 50-P5 Q
lASP P 50 CC CC

£,1VCP SO-PS 50 Q
MVCS SO-PS SO Q
MVCK Q
PC-cp 50-P SO Q
PC-ss 50-P 50 50 Q

PT-cp Q2 SO-P 50
PT-ss Q2 50-P 50 50 PA
SAC SO-P5 SO
5PKA Q
55AR-cp 50-P5 50
55AR-ss SO-P5 50 SA

Explanation:

2

The P5W-key mask is ANDed with the authorization key mask in the entry-table entry.

The exception is recognized on an attempt to set the supervisor state when in the
problem state.

X

X

CC 5pace-switch-event-control bit and authorization index tests cause a condition code to
be set.

CRx.y

P

PA

Control register x, bit position y.

Privileged-operation exception for privileged instruction.

Authority checked in both the problem and supervisor states; violation causes a
primary-authority exception.

Q Privileged-operation exception for semiprivileged instruction. Authority checked only
in the problem state.

5A Authority checked in both the problem and supervisor states; violation causes a
secondary-authority exception.

50 Authority checked in both the problem and supervisor states; violation causes a
special-operation exception.

50-P CPU must be in the primary-space mode; if the CPU is in the secondary-space mode or
in the real mode, a special-operation exception is recognized in both the problem and
supervisor states.

50-PS CPU must be in the primary-space mode or the secondary-space mode; if the CPU is in
the real mode. a special-operation exception is recognized in both the problem and
supervisor states.

X When bit 31 of control register 1 is one, a space-switch event is recognized. The
operation is completed. The event is recognized in both the problem and supervisor
states.

Summary of DAS Authorization Mechanisms

5-20 System/370 Principles of Operation

PC-NUMBER TRANSLATION

PC-number translation is the process of
translating the 20-bit PC number to
locate an entry-table entry as part of
the execution of the PROGRAM CALL
instruction. To perform this trans­
lation, the 20-bit PC number is divided
into two fields. Bits 12-23 are the
linkage index (LX), and bits 24-31 are
the entry index (EX). The effective
address, from which the PC-number is
taken, has the following format:

1////////////1 LX EX

o 12 24 31

The translation is performed by means of
two tables: a linkage table and an
entry table. Both of these tables
reside in real storage. The linkage­
table designation resides in control
register 5. The entry table is desig­
nated by means of a linkage-table entry.

PC-NUMBER TRANSLATION CONTROL

PC-number translation is controlled by
means of the linkage-table designation
in control register 5. The register has
the following format:

Linkage-Table
Origin lTL

o 1 8 25 31

Subsystem-Linkage Control (V): Bit 0 of
control register 5 is th~ subsystem­
linkage-control bit. Bit 0 must be one
to allow completion of these
instructions:

PROGRAM CALL
PROGRAM TRANSFER

Otherwise, a special-operation exception
is recognized. The system-linkage­
control bit is examined in both the
problem and the supervisor states and
controls both the space-switching and
current-primary versions of the
instructions.

linkaqe-Table Origin: Bits 8-24 of
control register 5, with seven zeros
appended on the right, form a 24-bit
real address that designates the begin­
ning of the linkage table. With
extended real addressing, the linkage­
table origin is still a 24-bit real
address and is extended on the left with
zeros.

Linkage-Table lenqtb (LT~): Bits 25-31
of control register 5 specify the length

of the linkage table in units of 128
bytes, thus making the length of the
linkage table variable in multiples of
32 four-byte entries. The length of the
linkage table, in units of 128 bytes, is
one more than the value in bit positions
25-31. The linkage-table length is
compared against the leftmost seven bits
of the linkage-index portion of the PC
number to determine whether the linkage
index designates an entry within the
linkage table.

PC-NUMBER TRANSLATION TABLES

The PC-number translation process
consists in a two-level lookup using two
tables: a linkage table and an entry
table. These tables reside in real
storage.

Linkage-Table Entries

The entry fetched from the linkage table
has the following format:

018

Entry-Table
Origin ETL

26 31

The fields in the linkage-table entry
are allocated as follows:

LX Invalid Bit (I): Bit 0 controls
whether the entry -table associated with
the linkage-table entry is available.

When the bit is zero, PC-number trans­
lation proceeds by using the linkage­
table entry. When the bit is one, an
lX-translation exception is recognized.

Entry-Table Origin: Bits 8-25, with six
=eros appended on the right, form a
24-bit real address that designates the
beginning of the entry table. With
extended real addressing, the entry­
table origin is still a 24-bit real
address and is extended on the left with
zeros.

Entry-Table Length (ETL): Bits 26-31
specify the length of the entry table in
units of 64 bytes, thus making the entry
table variable in multiples of four
16-byte entries. The length of the
entry table, in units of 64 bytes, is
one more than the value in bit positions
26-31. The entry-table length is
compared against the leftmost six bits
of the entry index to determine whether
the entry index designates an entry
within the entry table.

Chapter 5. Program Execution 5-21

Bits 1-7 of the linkage-table entry must
be zeros; otherwise, a PC-translation­
specification exception is recognized.

Entry-Table Entries

The entry fetched from the entry table
is 16 bytes in length and has the
following format:

Auth Key Mask ASN

0 16 31

1000000001 Entry Instr Addr 1 P I
32 40 63

Entry Parameter

64 95

1 Entry Key Mask 1////////////////1

96 112 127

The fields in the entry-table entry are
allocated as follows:

Authorization ~ Mask: Bits 0-15 are
used to verify whether the program issu­
ing the PROGRAM CALL instruction, when
in the problem state, is authorized to
call this entry point. The authori­
zation key mask and the current PSW-key
mask in control register 3 are ANDed,
and the result is checked for all zeros.
If the result is all zeros, a
privileged-operation exception is recog­
nized. The test is not performed in the
supervisor state.

ASH: Bits 16-31 specify whether a PC-ss
O;-PC-cp is to occur. When bits 16-31
are zeros, a PC-cp is specified. When
bits 16-31 are not all zeros, a PC-ss is
specified, and the bits contain the ASN
that replaces the primary ASH.

Entr~ Instruction Address: Bits 40-62,
with a zero appended on the right, form
the instruction address which replaces
the instruction address in the PSW as
part of the PROGRAM CALL operation.

Entr~ Problem State (P): Bit 63
replaces the problem-state bit, bit 15
of the current PSW, as part of the
PROGRAM CALL operation.

5-22 System/370 Principles of Operation

Entry Parameter: Bits 64-95 are placed
in general register 4.

Entry Key Mask: Bits 96-111 are ORed
into the PSW-key mask in control regis­
ter 3 as part of the PROGRAM CALL opera­
tion.

Bits 32-39 of the entry-table entry must
be zeros; otherwise, a PC-translation­
specification exception is recognized.

Programming Note

The entry parameter is intended to
provide the called program with an
address which can be depended upon and
used as the basis of addressability in
locating necessary information which may
be environment-dependent. The parameter
may be appropriately changed for each
environment by setting UP different
entry tables. The alternative-­
obtaining this information from the
calling program -- may require extensive
validity checking or may present an
integrity exposure.

PC-HUMBER-TRANSLATION PROCESS

The translation of the PC number is
performed by means of a linkage table
and entry table both of which reside in
real storage.

For the purposes of PC-number trans­
lation, the 20-bit PC number is divided
into two parts: the leftmost 12 bits
are called the linkage index (LX), and
the rightmost eight bits are called the
entry index (EX). The LX is used to
select an entry from the linkage table,
the starting address and length of which
are specified by the contents of the
linkage-table designation in control
register 5. This entry designates the
entry table to be used. The EX field of
the PC number is then used to select an
entry from the entry table.

When, for the purposes of PC-number
translation, accesses are made to main
storage to fetch entries from the link­
age table and entry table, key­
controlled protection does not apply.

The PC-number-translation process is
shown in the figure "PC-Number Trans­
lation."

CRS

~ linkage Table

~L~
R I ETL

(x64)

-}

~~
Entry Table

R AKM IA

R: Address is real

PC-Humber Translation

linkage-Table Lookup

The linkage-index (LX) portion of the PC
number, in conjunction with the
linkage-table origin, is used to select
an entry from the linkage table.

The 24-bit real address of the linkage­
table entry is obtained by appending
seven zeros on the r;·ght to the contents
of bit positions 8-24 of control regis­
ter 5 and adding the linkage index, with
two rightmost and 10 leftmost zeros
appended. A carry, if any, into bit
position 7 is ignored. With extended
real addressing, this 24-bit real
address is extended on the left with
zeros; thus, the linkage table can wrap
from 224 - 1 to zero.

As part of the linkage-table-lookup
process, the leftmost seven bits of the
linkage index are compared against the
linkage-table length, bits 25-31 of
control register 5, to establish whether
the addressed entry is within the link­
age table. If the value in the

PC Number

P PARM /11//111

linkage-table-length field is less than
the value in the seven leftmost bits of
the linkage index, an LX-translation
exception is recognized.

All four bytes of the linkage-table
entry appear to be fetched concurrently
as observed by other CPUs. The fetch
access ;5 not subject to protection.
When the storage address which is gener­
ated for fetching the linkage-table
entry designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

Bit 0 of the linkage-table entry speci­
fies whether the entry table correspond­
ing to the linkage index is available.
This bit is inspected, and, if it is
one, an lX-translation exception is
recognized.

When no exceptions are recognized in the
process of linkage-table lookup, the
entry fetched .from the I; nkage table
designates the origin and length of the
corresponding entry table.

Chapter 5. Program Execution 5-23

Entry-Table lookup

The entry-index (EX) portion of the PC
number, in conjunction with the entry­
table origin contained in the linkage­
table entry, is used to select an entry
from the entry table.

The 24-bit real address of the entry­
table entry is obtained by appending six
zeros on the right to the entry-table
origin and adding the entry index, with
four rightmost and 12 leftmost zeros
appended. A carry, if any, into bit
position 7 is ignored. With extended
real addressing, this 24-bit real
address is extended on the left with
zeros. Thus, the entry table can wrap
from 224 - 1 to zero.

As part of the entry-table-lookup proc­
ess, the six leftmost bits of the entry
index are compared against the entry­
table length, bits 26-31 of the
linkage-table entry, to establish wheth­
er the addressed entry is within the
table. If the value in the entry-table
length field is less than the value in
the six leftmost bits of the entry
index, an EX-translation exception is
recognized.

The 16-byte entry-table entry is fetched
by using the real address. The entry
appears to be fetched word-concurrent as
observed by other CPUs, with the left­
most word fetched first. The order in
which the remaining three words are
fetched is unpredictable. The fetch
access is not subject to protection.
When the storage address which is gener­
ated for fetching the entry-table entry
designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The use that is made of the information
fetched from the entry-table entry is
described in the definition of the
PROGRAM CALL instruction.

Recogn it i Ot1 of Except ions dur i ng
PC-Number Translation

The exceptions which can be encountered
during the PC-number-translation process
and their priority are described in the
definition of the PROGRAM CALL instruc­
tion.

SEQUENCE OF STORAGE REFERENCES

The following sections describe the
effects of overlapped operation and of
piecemeal execution of a CPU program as
that execution is observed in storage.

5-24 System/370 Principles of Operation

Except for the section "Interlocks for
Virtual-Storage References," the effects
described in these sections are observa­
ble only when two or more CPUs or
channels are in simultaneous execution
and access common storage locations.
Thus, in most cases, the program must
take into account the effects which are
described in these sections only for
those cases in which the program inter­
acts with another CPU or a channel.

Conceptual Sequence

Conceptually, the CPU processes
instructions one at a time, with the
execution of one instruction preceding
the execution of the following instruc­
tion. The execution of the instruction
designated by a successful branch
follows the execution of the branch.
Similarly, an interruption takes place
between instructions or, for interrupti­
ble instructions, between units of
operation of such instructions.

The sequence of events implied by the
processing just described is sometimes
called the conceptual sequence.

Over.'lilP.ped Operation of Instruction
Execution

Each operation of instruction execution
appears to the program itself to be
performed sequentially, with the current
instruction being fetched after the
preceding operation is completed and
before the execution of the current
operation is begun. This appearance is
maintained even though the storage­
implementation characteristics and
overlap of instruction execution with
storage accessing may cause actual proc­
essing to be different. The results
generated are those that would have been
obtained had the operations been
performed in the conceptual sequence.
Thus, it is possible for an instruction
to modify the next succeeding instruc­
ti on in sto rage. HmoJever, ; n certa in
situations involving dynamic address
translation, where different virtual
addresses map to the same real address.
the copies of prefetched instructions
are not necessarily changed. Also, when
a vector-facility instruction is
executed that causes storing into a
location from which subsequent
instructions have been prefetched, the
copies of the prefetched instructions
are not necessarily changed.

In simple models in which operations are
not overlapped, the conceptual and actu­
al sequences are essentially the same.
However, in more complex machines, over­
lapped operation, buffering of operands

and results, and execution times which
are comparable to the propagation delays
between units can cause the actual
sequence to differ considerablY from the
conceptual sequence. In these machines,
special circuitry is employed to detect
dependencies between operations and
ensure that the results obtained, as
observed by the CPU which generates
them, are those that would have been
obtained if the operations had been
performed in the conceptual sequence.
However, other CPUs and channels may,
unless otherwise constrained, observe a
sequence that differs from the conceptu­
al sequence.

Divisible Instruction Execution

It can normally be assumed that the
execution of each instruction occurs as
an indivisible event. However, in actu­
al operation, the execution of an
instruction consists in a series of
discrete steps. Depending on the
instruction, operands may be fetched and
stored in a piecemeal fashion, and some
delay may occur between fetching oper­
ands and storing results. As a
consequence, intermediate or partially
completed results may be observable by
other CPUs and by channels.

When a program interacts with the opera­
tion on another CPU or a channel, the
program may have to take into consider­
ation that a single operation may
consist in a series of storage refer­
ences, that a storage reference may in
turn consist in a series of accesses,
and that the conceptual and observed
sequences of these accesses may differ.

storage references associated with
instruction execution are of the follow­
ing types: instruction fetches, DAT­
table fetches, and storage-operand
references. For the purpose of describ­
ing the sequence of storage references,
acceSSes to storage in order to perform
ASH translation, PC-number translation,
and tracing are considered to be
storage-operand references.

Programming Note

The sequence of execution of a CPU may
differ from the simple conceptual defi­
nition in the following ways:

• As observed by the CPU itself,
instructions may appear to be
prefetched when different effective
addresses are used. (See the
section "Interlocks for Virtual­
Storage References" in this
chapter.)

•

•

As observed by other CPUs and by
channels, the execution of an
instruction may appear to be
performed as a sequence of piece­
meal steps. This is described for
each type of storage reference in
the following sections.

As observed by other CPUs and by
channels, the storage-operand
accesses associated with one
instruction are not necessarily
performed in the conceptual se­
quence. (See the section "Relation
between Operand Accesses" in this
chapter.)

• As observed by channels, in certain
unusual situations, the contents of
storage may appear to change and
then be restored to the original
value. (See the section "Storage
Change and Restoration for DAT­
Associated Access Exceptions" in
this chapter.)

INTERLOCKS FOR VIRTUAL-STORAGE REFER­
ENCES

As described in the previous section,
CPU operation appears to be performed
sequentially as observed by the CPU
itself; the results stored by one
instruction appear to be completed
before the next instruction is fetched.
This appearance is maintained in over­
lapped machines by means of special
circuitry to detect accesses to a common
location by comparing effective
addresses.

For purposes of this definition, the
term "effective address" is used to
denote the address before translation,
if any, regardless of whether the
address is virtual, real, or absolute.
If two effective addresses have the same
value, the effective addresses are said
to be the same even though one may be
real or in a different address space.

When all accesses to a main-storage
location are made by using the same
effective address, then the above rule
appears to be strictly maintained, as
observed by the CPU itself. When
different effective addresses are used
to access the common location, the above
rule does not hold in two cases:

1. For some instructions, the defi­
nition specifies the results which
must be obtained for overlapping
operands. This definition is spec­
ified in terms of the sequence of
the storage accesses; that is, the
results of some or all of the
stores of one operand must be
placed in storage before some parts
or all parts of the other operand
are fetched. When the store and

Chapter 5. Program Execution 5-25

2.

the fetch are performed by means of
different effective addresses, then
the operand may appear to be
fetched before the store.

When an instruction changes the
contents of a main-storage location
from which a conceptually subse­
quent instruction is to be
executed, either directly or by
means of EXECUTE, and when differ­
ent effective addresses are used to
designate that location for storing
the result and fetching the
instruction, the instruction may
appear to be fetched before the
store occurs. This does not occur
if an intervening operation causes
the prefetched instructions to be
discarded. A definition of when
prefetched instructions must be
discarded is included in the
section "Instruction Fetching" in
this chapter.

Any change to the storage key appears to
be completed before the conceptually
following reference to the associated
storage block is made, regardless of
whether the reference to the storage
location is made by a virtual, real, or
absolute address. Analogously, any
conceptually prior references to the
storage block appear to be completed
when the key for that block is changed
or inspected.

Programming Note

A single main-storage location can be
accessed by more than one address in
several ways:

1. The OAT tables may be set up such
that multiple addresses in a single
address space, or virtual addresses
in different address spaces, map to
a single real address.

2. The translation of logical,
instruction, and virtual addresses
may be changed by loading the OAT
parameters in the control
regi sters, by changi ng the
address-space-control bit in the
PSW, or, for logical and instruc­
tion addresses, by turning DAT on
or off.

3. Certain instructions use real
addresses, and the instructions
MOVE TO PRIMARY and MOVE TO SECOND­
ARY access two address spaces.

4. Accesses to storage for the purpose
of storing and fetching information
for interruptions is performed by
means of real addresses, and, for
the store-status function, by means
of absolute addresses, whereas

5-26 System/370 Principles of Operation

5.

6.

7 •

8.

accesses by the program may be by
means of virtual addresses.

The real-to-absolute mapping may be
changed by means of the SET PREFIX
instruction or a reset.

A main-storage location may be
accessed by channels by means of an
absolute address and by the CPU by
means of a real or a virtual
address.

A main-storage location
accessed by another CPU by
one type of address and by
by means of a different
address.

may be
means of
this CPU
type of

The CPU updates the interval timer
by means of a real address, and the
program may access the location by
means of a virtual address.

The primary purpose of this section is
to describe the effects caused in case 1
above.

For case 2, no effect is observable
because prefetched instructions are
discarded when the translation parame­
ters are changed and the delay of stores
by a CPU is not observable by the CPU
itself.

For case 3, for those instructions which
fetch by using real addresses (for exam­
ple, LOAD REAL ADDRESS), no effect is
observable because only operand accesses
between instructions are involved. All
instructions that store by using a real
address or that store into another
address space cause pre fetched
instructions to be discarded, and no
effect is observable.

Cases 4 and 5 are situations which are
defined to cause serialization, with the
result that prefetched instructions are
discarded. In these cases, no effect is
observable.

The handling of cases 6 and 7 involves
accesses as observed by other CPUs and
by channels and is covered in the
following sections in this chapter.

For case 8, the effect of updating the
interval timer is observable only if an
instruction is fetched from real
location 80 or 82 by using a virtual
address which is not 80 or 82, respec­
tively.

INSTRUCTION FETCHING

Instruction fetching consists in fetch­
ing the one, two, or three halfwords
designated by the instruction address in
the current PSW. The immediate field of
an instruction is accessed as part of an

instruction fetch. If, however, an
instruction designates a storage operand
at the location occupied by the instruc­
tion itself, the location is accessed
both as an instruction and as a storage
operand. The fetch of the target
instruction of EXECUTE is considered to
be an instruction fetch.

The bytes of an instruction may be
fetched piecemeal and are not necessar­
ilyaccessed in a left-to-right direc­
tion. The instruction may be fetched
multiple times for a single execution;
for example, it may be fetched for test­
ing the addressability of operands or
for inspection of PER events, and it may
be refetched for actual execution.

Instructions are not necessarily fetched
in the sequence in which they are
conceptually executed and are not neces­
sarily fetched each time they are
executed. In particular, the fetching
of an instruction may precede the
storage-operand references for an
instruction that is conceptually
earlier. The instruction fetch occurs
prior to all storage-operand references
for all instructions that are conceptu­
ally later.

An instruction may be prefetched by
using a virtual address only when the
associated OAT table entries are
attached and valid or when entries which
qualify for substitution for the table
entries exist in the TLB. An instruc­
tion that has been prefetched may be
interpreted for execution only for the
same virtual address for which the
instruction was prefetched.

No limit is established on the number of
instructions which may be prefetched,
and multiple copies of the contents of a
single storage location may be fetched.
As a result, the instruction executed is
not necessarily the most recently
fetched copy. Storing caused by other
CPUs and by channels does not necessar­
ily change the copy of prefetched
instructions. However, if a store that
is conceptually earlier is made by the
same CPU using the same effective
address as that by which the instruction
is subsequently fetched, the updated
information is obtained.

All copies of prefetched instructions
are discarded when:

•

•

•

•

A serializing function is
performed.

The CPU enters the operating state.

The CPU changes from OAT on to OAT
off or from OAT off to OAT on.

A change is made to
parameter in control
1 when OAT is on.

a translation
register 0 or

•

•

DAS is installed and the CPU chang­
es from one to the other of the
primary-space mode and secondary­
space mode.

DAS is installed, and a change is
made to a translation parameter in
control register 7 when OAT is on.

Programming Notes

1. As observed by a CPU i tsel f, its
own instruction prefetching is not
normally apparent; the only excep­
tion occurs when multiple virtual
addresses in a single address
space, or virtual addresses in
different address spaces, map to a
single real address. This is
described in the section "Inter­
locks for Virtual-Storage
References" in this chapter.

2. The following are some effects of
instruction prefetching on one CPU
as observed by other CPUs and by
channels.

It is possible for one CPU to
prefetch the contents of a storage
location, after which another CPU
or a channel can change the
contents of that storage location
and then set a flag to indicate
that the change has been made.
Subsequently, the first CPU can
test and find the flag set, branch
to the modified location, and
execute the original prefetched
contents.

It is possible, if another CPU or a
channel concurrently modifies the
instruction, for one CPU to recog­
nize the changes to some but not
all bit positions of an
instruction.

It is possible for one CPU to
prefetch an instruction and subse­
quently, before the instruction is
executed, for another CPU to change
the storage key. As a result, the
first CPU may appear to execute
instructions from a protected stor­
age location. However, the copy of
the instructions executed is the
copy prefetched before the location
was protected.

OAT-TABLE FETCHES

The fetching of dynamic-address­
translation (OAT) table entries may
occur as follows:

1. A OAT-table entry may be prefetched
into the translation-Iookaside

Chapter 5. Program Execution 5-27

buffer (TLS) and used from the TLS
without refetching from storage,
until the entry is cleared by an
INVALIDATE PAGE TABLE ENTRY, PURGE
TLS, or SET PREFIX instruction or
by CPU reset. DAT-table entries
are not necessarily fetched in the
sequence conceptually called for;
they may be fetched at any time
they are attached and valid,
including during the execution of
conceptually previous instructions.

2. All bytes of a DAT-table entry
appear to be fetched concurrently,
as observed by other CPUs.
However, the reference to the entry
may appear to access a single byte
at a time, as observed by channels.

3. A DAT-table entry may be fetched
even after some operand references
for the instruction have already
occurred. The fetch may occur as
late as just prior to the actual
byte access requiring the DAT-table
entry.

4. A DAT-table entry may be fetched
for each use of the address,
including any trial execution, and
for each reference to each byte of
each operand.

5. The DAT page-table-entry fetch
precedes the reference to the page.
When no copy of the page-table
entry is in the TlB, the fetch of
the associated segment-table entry
precedes the fetch of the page­
table entry.

STORAGE-KEY ACCESSES

References to the storage
handled as follows:

key are

1. Whenever a reference to storage is
made and key-controlled protection
applies to the reference, the four
access-control bits and the fetch­
protection bit associated with the
storage location are inspected
concurrently with the reference to
the storage location.

2. When storing is performed, the
change bit is set in the associated
storage key concurrently with the
store operation.

3. The instructions SET STORAGE KEY
and SET STORAGE KEY EXTENDED cause
all seven bits to be set concur­
rently in the storage key. The
access to the storage key for SET
STORAGE KEY and SET STORAGE KEY
EXTENDED follows the sequence rules
for storage-operand store refer­
ences and is a single-access
reference. For SET STORAGE KEY

5-28 System/370 Principles of Operation

EXTENDED, the two keys in a
double-key 4K-byte block are not
necessarily accessed concurrently.

4. The instructions INSERT STORAGE KEY
and INSERT STORAGE KEY EXTENDED
provide a consistent image of bits
0-6 of the storage key. Similarly,
the instructions INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION
provide a consistent image of bits
0-4 of the storage key. The access
to the storage key for all of these
instructions follows the sequence
rules for storage-operand fetch
references and is a single-access
reference. For INSERT STORAGE KEY
EXTENDED, the two keys in a
double-key 4K-byte block are not
necessarily accessed concurrently.

5. The instructions RESET REFERENCE
BIT and RESET REFERENCE BIT
EXTENDED modify only the reference
bit. All other bits of the storage
key remain unchanged. The refer­
ence bit and change bit are
examined concurrently to set the
condition code. The access to the
storage key for RESET REFERENCE BIT
and RESET REFERENCE BIT EXTENDED
follows the sequence rules for
storage-operand update references.
The reference bit is the only bit
which is updated. For RESET REFER­
ENCE BIT EXTENDED, the two keys in
a double-key 4K-byte block are not
necessarily accessed concurrently.

The record of references provided by the
reference bit is not necessarilyaccu­
rate, and the handling of the reference
bit is not subject to the concurrency
rules. However, in the majority of
situations, reference recording approxi­
mately coincides with the storage
reference.

The change bit may be set in cases when
no storing has occurred. See the
section "Exceptions to Nullification and
Suppression" in this chapter.

STORAGE-OPERAND REFERENCES

A storage-operand reference is the
fetching or storing of the explicit
operand or operands in the storage
locations designated by the instruction.

During the execution of an instruction,
all or some of the storage operands for
that instruction may be fetched, inter­
mediate results may be maintained for
subsequent modification, and final
results may be temporarily held prior to
placing them in storage. Stores caused
by other CPUs and by channels do not
necessarily affect these intermediate
results.

Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand
participate in the instruction execution
only as a source, the operand is called
a fetch-type operand, and the reference
to the location is called a storage­
operand fetch reference. A fetch-type
operand is identified in individual
instruction definitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch
reference are accessed concurrently.
When an operand consists of more than
one byte, the bytes may be fetched from
storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes
are not necessarily fetched in any
particular sequence.

The storage-operand fetch references of
one instruction occur after those of all
preceding instructions and before those
of subsequent instructions, as observed
by other CPUs and by channels. The
operands of anyone instruction are
fetched in the sequence specified for
that instruction.

Storage-Operand Store References

When the bytes of a storage operand
participate in the instruction execution
only as a destination, to the extent of
being replaced by the result, the oper­
and is called a store-type operand, and
the reference to the location is called
a storage-operand store reference. A
store-type operand is identified in
individual instruction definitions by
indicating that the access exception is
for store.

All bits within a single byte of a store
reference are accessed concurrently.
When an operand consists of more than
one byte, the bytes may be placed in
storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes
are not necessarily stored 1n any
particular sequence.

The CPU may delay placing results in
storage. There is no defined limit on
the length of time that results may
remain pending before they are stored.

This delay does not affect the sequence
in which results are placed in storage.
The results of one instruction are
placed in storage after the results of
all preceding instructions have been
placed in storage and before any results
of the succeeding instructions are

stored, as observed by other CPUs and by
channels. The results of anyone
instruction are stored in the sequence
specified for that instruction.

The CPU does not fetch operands or DAT­
table entries from a storage location
until all information destined for that
location by the CPU has been stored.
Prefetched instructions may appear to be
updated before the information appears
in storage.

The stores are necessarily completed
only as a result of a serializing opera­
tion and before the CPU enters the
stopped state.

Storage-Operand Update References

In some instructions, the storage­
operand location participates both as a
source and as a destination. In these
cases, the reference to the location
consists first in a fetch and subse­
quently in a store. The operand is
called an update-type operand, and the
combination of the two accesses is
referred to as an update reference.
Instructions such as MOVE lONES, TRANS­
LATE, OR (OC, 01), and ADD DECIMAL cause
an update to the first-operand location.
An update-type operand is identified in
the individual instruction definition by
indicating that the access exception is
for both fetch and store.

For most instructions which have
update-type operands, the fetch and
store accesses associated with an update
reference do not necessarily occur one
immediately after the other, and it is
possible for other CPUs and channels to
make fetch and store accesses to the
same location during this time. Such an
update reference is sometimes called a
noninterlocked-update storage reference.

For certain special instructions, the
update reference is interlocked against
certain accesses by other CPUs. Such an
update reference is called an
interlocked-update reference. The fetch
and store accesses associated with an
interlocked-update reference do not
necessarily occur one immediately after
the other, but all store accesses and
the fetch and store accesses associated
with interlocked-update references by
other CPUs are prevented from occurring
at the same location between the fetch
and the store accesses of an
interlocked-update reference. Accesses
by channels may occur to the location
during the interlock period.

The storage-operand update references
for the following instructions appear to
be an interlocked-update reference as
observed by other CPUs. The instruc­
tions TEST AND SET, COMPARE AND SWAP,

Chapter 5. Program Execution 5-29

and COMPARE DOUBLE AND SWAP perform an
interlocked-update reference. On models
in which the STORE CHARACTERS UNDER MASK
instruction with a mask of zero fetches
and stores the byte designated by the
second-operand address, the fetch and
store accesses are an interlocked-update
reference. For DAS tracing, the
current-entry-control word in the
trace-table-entry header is changed by
means of an interlocked-update
reference.

Within the limitations of the
requirements, the fetch and
accesses associated with an
reference follow the same rules
fetches and stores described
previous sections.

Programming Notes

above
store

update
as the

in the

1. When two CPUs attempt to update
information at a common main­
storage location by means of a
noninterlocked-update reference, it
is possible for both CPUs to fetch
the information and subsequently
make the store access. The change
made by the first CPU to store the
result in such a case is lost.
Similarly, if one CPU updates the
contents of a field by means of a
noninterlocked-update reference,
but another CPU makes a store
access to that field between the
fetch and store parts of the update
reference, the effect of the store
is lost. If, instead of a store
access, a CPU makes an
interlocked-update reference to the
common storage field between the
fetch and store portions of a
noninterlocked-update reference due
to another CPU, any change in the
contents produced by the
interlocked-update reference is
lost.

2. The instructions TEST AND SET,
COMPARE AND SWAP, and COMPARE
DOUBLE AND SWAP facilitate updating
of a common storage field by two or
more CPUs. To ensure that no
changes are lost, all CPUs must use
an instruction providing an inter­
locked-update reference. In
addition, the program must ensure
that channels do not store into the
same storage location since such
stores may occur between the fetch
and store portions of an
interlocked-update reference.

3. Only those bytes which are included
in the result field of both oper­
ations are considered to be part of
the common main-storage location.
However, all bits within a common
byte are considered to be common
even if the bits modified by the

5-30 System/370 Principles of Operation

4.

two operations do not overlap. As
an example, if (1) one CPU executes
the instruction OR (OC) with a
length of 1 and the value 80 hex in
the second-operand location and
(2) the other CPU executes AND (NC)
with a length of 1 and the value FE
hex in the second-operand location,
and (3) the first operand of both
instructions is the same byte, then
the result of one of the updates
can be lost.

When the store access is part of an
update reference by the CPU, the
execution of the storing is not
necessarily contingent on whether
the information to be stored is
different from the original
contents of the location. In
particular, the contents of all
designated byte locations are
replaced, and, for each byte in the
field, the entire contents of the
byte are replaced.

Depending on the model,
to store information
performed, for example,
following cases:

an access
may be

in the

a. Execution of the OR instruction
(O! or OC) with a second oper­
and of all zeros.

b. Execution of OR (OC) with the
first- and second-operand
fields coinciding.

c. For those locations of the
first operand of TRANSLATE
where the argument and function
values are the same.

STORAGE-OPERAND CONSISTENCY

Single-Access References

A fetch reference is said to be a
single-access reference if the value is
fetched in a single access to each byte
of the data field. In the case of over­
lapping operands, the location may be
accessed once for each operand. A
store-type reference is said to be a
single-access reference if a single
store access occurs to each byte
location within the data field. An
update reference is said to be single­
access if both the fetch and store
accesses are each single-access.

Except for the accesses associated with
multiple-access references and the
stores associated with storage change
and restoration for DAT-associated
access exceptions, all storage-operand
references are single-access references.

Multiple-Access References

In some cases, multiple accesses may be
made to all or some of the bytes of a
storage operand. The following cases
may involve multiple-access references:

1. The storage operands of the follow­
ing instructions: CONVERT TO BINA­
RY, CONVERT TO DECIMAL, MOVE
INVERSE, MOVE WITH OFFSET, PACK,
TRANSLATE, TEST BLOCK, and UNPACK.

2. The stores into that portion of the
first operand of MOVE LONG which is
filled with padding bytes.

3. The storage operands of the decimal
instructions.

4. The stores into a DAS-trace entry.

5. The storage operands of vector­
facility instructions.

6. The stores associated
stop-and-store-status
PROCESSOR order.

with the
SIGNAL

When a storage-operand store reference
to a location is not a single-access
reference, the value placed at a byte
location is not necessarily the same for
each store access; thus, intermediate
results in a single-byte location may be
observed by other CPUs and by channels.

Programming Notes

1. When multiple fetch or store
accesses are made to a single byte
that is being changed by another
CPU or by a channel, the result is
not necessarily limited to that
which could be obtained by fetching
or storing the bits individually.
For example, the execution of
MULTIPLY DECIMAL may consist in
repetitive additions and subtrac­
tions, each of which causes the
second operand to be fetched from
storage and the first operand to be
updated in storage.

2. When CPU instructions which make
multiple-access references are used
to modify storage locations being
simultaneously accessed by another
CPU or by a channel, multiple store
accesses to a single byte by the
CPU may result in intermediate
values being observed by the other
CPU or by the channel. To avoid
these intermediate values (for
example, when modifying a CCW
chain), only instructions making
single-access references should be
used.

Block-Concurrent References

For some references, the accesses to all
bytes within a halfword, word, or
doubleword are specified to appear to be
block-concurrent as observed by other
CPUs. These accesses do not necessarily
appear to channels to include more than
a byte at a time. The halfword, word,
or doubleword is referred to in this
section as a block. When a fetch-type
reference is specified to appear to be
concurrent within a block, no store
access to the block by another CPU is
permitted during the time that bytes
contained in the block are being
fetched. Accesses to the bytes within
the block by channels may occur between
the fetches. When a store-type refer­
ence is specified to appear to be
concurrent within a block, no access to
the block, either fetch or store, is
permitted by another CPU during the time
that the bytes within the block are
being stored. Accesses to the bytes in
the block by channels may occur between
the stores.

Consistency Specification

For all instructions in the S format and
RX format, with the exception of
EXECUTE, CONVERT TO DECIMAL, and CONVERT
TO BINARY, when the operand is addressed
on a boundary which is integral to the
size of the operand, the storage-operand
references appear to be block-concurrent
as observed by other CPUs.

For the instructions COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP, all
accesses to the storage operand appear
to be block-concurrent as observed by
other CPUs.

The instructions LOAD MULTIPLE and STORE
MULTIPLE, when the operand starts on a
word boundary, and the instructions
COMPARE LOGICAL CCLC), COMPARE LOGICAL
CHARACTERS UNDER MASK, INSERT CHARACTERS
UNDER MASK, and STORE CHARACTERS UNDER
MASK access their storage operands in a
left-to-right direction, and all bytes
accessed within each doubleword appear
to be accessed concurrently as observed
by other CPUs.

The instructions LOAD CONTROL and STORE
CONTROL access the storage operand in a
left-to-right direction, and all bytes
accessed within each word appear to be
accessed concurrently as observed by
other CPUs.

When destructive overlap does not exist,
the operands of MOVE (MVC), MOVE WITH

Chapter 5. Program Execution 5-31

KEY, MOVE TO PRIMARY, and MOVE TO
SECONDARY are accessed as follows:

1. The first operand is accessed in a
left-to-right direction, and all
bytes accessed within a doubleword
appear to be accessed concurrently
as observed by other CPUs.

2. The second operand is accessed left
to right, and all bytes within a
doubleword in the second operand
that are moved into a single
doubleword in the first operand
appear to be fetched concurrently
as observed by other CPUs. Thus,
if the first and second operands
begin on the same byte offset with­
in a doubleword, the second operand
appears to be fetched doubleword­
concurrent. If the offsets within
a doubleword differ by 4, the
second operand appears to be
fetched word-concurrent as observed
by other CPUs.

Destructive overlap is said to exist
when the result location is used as a
source after the result has been stored,
assuming processing to be performed one
byte at a time.

The operands for MOVE LONG appear to be
accessed doubleword-concurrent as
observed by other CPUs when all of the
following are true:

• Both operands start on doubleword
boundaries and are an integral
number of doublewords in length.

• The operands do not overlap.

• The nonpadding part of the opera­
tion is being executed.

The operands for COMPARE LOGICAL LONG
appear to be accessed doubleword­
concurrent as observed by other CPUs
whon both operands start on doubleword
boundaries and are an integral number of
doublewords in length.

For EXCLUSIVE OR (XC), the operands are
processed in a left-to-right direction,
and, when the first and second operands
co~ncide, all bytes accessed within a
doubleword appear to be accessed concur­
rently as observed by other CPUs.

Programming Note

In the case of EXCLUSIVE OR (XC) desig­
nating operands which coincide exactly,
the bytes within the field may appear to
be accessed as many as three times, by
two fetches and one store: once as the
fetch portion of the first operand

5-32 System/370 Principles of Operation

update, once as the second-operand
fetch, and then once as the store
portion of the first-operand update.
Each of the three accesses appears to be
doubleword-concurrent as observed by
other CPUs, but the three accesses do
not necessarily appear to occur one
immediately after the other. One or
both fetch accesses may be omitted since
the instruction can be completed without
fetching the operands.

RELATION BETWEEN OPERAND ACCESSES

As observed by other CPUs and by chan­
nels, storage-operand fetches associated
with one instruction execution appear to
precede all storage-operand references
for conceptually subsequent
instructions. A storage-operand store
specified by one instruction appears to
precode all storage-operand stores spec­
ified by conceptually subsequent
instructions, but it does not necessar­
ily precede storage-operand fetches
specified by conceptually subsequent
instructions. However, a storage­
operand store appears to precede a
conceptually subsequent storage-operand
fetch from the same main-storage
location.

When an instruction has two storage
operands both of which cause fetch
references, it is unpredictable which
operand is fetched first, or how much of
one operand is fetched before the other
operand is fetched. When the two oper­
ands overlap, the common locations may
be fetched independently for each oper­
and.

When an instruction has two storage
operands the first of which causes a
store and the second a fetch reference,
it is unpredictable how much of the
second operand is fetched before the
results are stored. In the case of
destructively overlapping operands, the
portion of the second operand which is
common to the first is not necessarily
fetched from storage.

When an instruction has two storage
operands the first of which causes an
update reference and the second a fetch
reference, it is unpredictable which
operand is fetched first, or how much of
one operand is fetched before the other
operand is fetched. Similarly, it is
unpredictable how much of the result is
processed before it is returned to stor­
age. In the case of destructively
overlapping operands, the portion of the
second operand which is common to the
first is not necessarily fetched from
storage.

Programming Note

The independent fetching of a single
location for each of two operands may
affect the program execution in the
following situation.

When the same storage location is desig­
nated by two operand addresses of an
instruction, and another CPU or a chan­
nel causes the contents of the location
to change during execution of the
instruction, the old and new values of
the location may be used simultaneously.
For example, comparison of a field to
itself may yield a result other than
equal, or EXCLUSIVE-ORing of a field
with itself may yield a result other
than zero.

OTHER STORAGE REFERENCES

The resta rt, program, superv i so r-ca 11,
external, input/output, and mach; ne­
check PSWs appear to be accessed
doubleword-concurrent as observed by
other CPUs. Those references appear to
occur after the conceptually previous
unit of operation and before the concep­
tually subsequent unit of operation.
The relationship between the new-PSW
fetch, the old-PSW store, and the
interruption-code store is unpredic­
table.

Store accesses for interruption codes
not stored within the old PSW are not
necessarily single-access stores. The
store accesses for the external and
supervisor-calI-interruption codes
appear to occur between the conceptually
previous and conceptually subsequent
operations. The store accesses for the
program-interruption codes may precede
the storage-operand references associ­
ated with the instruction which results
in the program interruption.

The stores into the CSW and 1/0-
communication area occur within the
conceptual limits of the interruption or
I/O instruction with which they are
associated.

Updating of the interval timer occurs
after storage-operand references for the
conceptually prevl0us instruction and
before storage-operand references for
the conceptually subsequent instruction.
Interval-timer updates can also occur
within an interruptible instruction
between units of operation.

SERIALIZATION

Th2 sequence of functions performed by a
CPU is normally independent of the func-

tions performed by other CPUs and by
channels. Similarly, the sequence of
functions performed by a channel is
normally independent of the functions
performed by other channels and by CPUs.
However, at certain points in its
execution, serialization of the CPU
occurs. Serialization also occurs at
certain points for channel programs.

CPU SERIALIZATION

All interruptions and the execution of
certain instructions cause a serializa­
tion of CPU operations. A serialization
operation consists in completing all
conceptually previous storage accesses
by the CPU, as observed by other CPUs
and by channels, before the conceptually
subsequent storage accesses occur.
Serialization affects the sequence of
all CPU accesses to storage and to the
storage keys, except for those associ­
ated with DAT-table-entry fetching.

Serialization is performed by CPU reset,
all interruptions, and by the execution
of the following instructions!

• The general instructions BRANCH ON
CONDITION (BCR) with the Mt and R2
field containing all ones and all
zeros, respectively, and COMPARE
AND SWAP, COMPARE DOUBLE AND SWAP,
STORE CLOCK, SUPERVISOR CALL, and
TEST AND SET.

•

•

•

•

•

LOAD PSW, SET STORAGE KEY, and SET
STORAGE KEY EXTENDED.

All I/O instructions, CONNECT CHAN­
NEL SET, and DISCONNECT CHANNEL
SET.

PURGE TLB and SET PREFIX, which
also cause the translation­
lookaside buffer to be cleared of
entries.

SIGNAL PROCESSOR, READ DIRECT, and
L,JR IT E D IRE CT.

INVALIDATE PAGE TABLE ENTRY.

• TEST BLOCK.

•

•

MOVE TO PRIMARY, MOVE TO SECONDARY,
PROGRAM CALL, PROGRAM TRANSFER, SET
ADDRESS SPACE CONTROL, and SET
SECot~DARY ASN.

The DAS-tracing function causes
serialization to be performed
before the trace action and after
completion of the trace action.

The sequence of events associated with a
serializing operation is as follows:

1. All conceptually previous storage
accesses by the CPU are completed

Chapter 5. Program Execution 5-33

as observed by other CPUs and by
channels. This includes all
conceptually previous stores and
changes to the storage keys.

2. The normal function associated with
the serializing operation is
performed. In the case of instruc­
tion execution, operands are
fetched, and the storing of results
is completed. The exceptions are
LOAD PSW and SET PREFIX, in which
the operand may be fetched before
previous stores have been
completed, and interrupti ons, in
which the interruption code and
associated fields may be stored
prior to the serialization. The
fetching of the serializing
instruction occurs before the
execution of the instruction and
may precede the execution of previ­
ous instructions, but may not
precede the completion of any
previous serializing op~ration. In
the case of an interruption, the
old PSW, the interruption code, and
other information, if any, are
stored, and the new PSW is fetched,
but not necessarily in that
sequence.

3. Finally, instruction fetch and
operand accesses for conceptually
subsequent operations may begin.

A serializing function affects the
sequence of storage accesses that are
under the control of the CPU in which
the serializing function takes place.
It does not affect the sequence of stor­
age accesses under the control of other
CPUs and of channels.

Programming Notes

1. The following are some effects of a
serializing operation:

a. When the execution of an
instruction changes the
contents of a storage location
that is used as a source of a
following instruction and when
different addresses are used to
designate the same absolute
location for storing the result
and fetching the instruction, a
serializing operation following
the change ensures that the

5-34 System/370 Principles of Operation

modified
executed.

instruction is

b. When a serializing operation
takes place, other CPUs and
channels observe instruction
and operand fetching and result
storing to take place in the
sequence established by the
serializing operation.

2. Storing into a location from which
a serializing instruction is
fetched does not necessarily affect
the execution of the serializing
instruction unless a serializing
function has been performed after
the storing and before the
execution of the serializing
instruction.

CHANNEL-PROGRAM SERIALIZATION

Serialization of a channel
occurs as follows:

program

1. All storage accesses and storage­
key accesses by the channel program
follow initiation of the execution
of START I/O or START I/O FAST
RELEASE, or, if suspended, RESUME
I/O, as observed by CPUs and by
other channels. This includes all
accesses for the CAW, CCWs, IDAWs,
and data.

2. All storage accesses and storage­
key accesses by the channel program
are completed, as observed by CPUs
and by other channels, before the
CSW is stored indicating termi­
nation of the operation at the
subchannel.

3. If a CCW contains a PCI flag or a
suspend flag which is one, all
storage accesses and storage-key
accesses due to CCWs preceding it
in the CCW chain are completed, as
observed by CPUs and by other chan­
nels, before the CSW is stored
indicating the PCI or suspended
condition.

The serialization of a channel program
does not affect the sequence of storage
accesses or storage-key accesses caused
by other channel programs or by another
CPU program.

CHAPTER ~ INTERRUPTIONS

Interruption Action ••.••••.•••••••••••••.•••.••••••••.•••• 6-2
Interruption Code •.•••••..••••••.•••••.•.••••••••••••••• 6-5
Enabling and Disabling •.••...••.••.•...••.•.•••••••••••• 6-6
Handling of Floating Interruption Conditions •.•••..•..•. 6-7
Instruction-Length Code ••.••.•••••..••.•••••.••••••.•.•• 6-7

Zero ILC••.••••••..••...••..•.••.•••.•••••••••• 6-7
ILC on Instruction-Fetching Exceptions ••.••.•••••••.•• 6-8

Exceptions Associated with the PSW .•...•...••.•..••...•• 6-9
Early Exception Recognition••....•..••.••••••.•••. 6-9
Late Exception Recognition ...••..•.•.••..••••••.•.•..• 6-9

External Interruption .••..•••....•.••••..••.•••.••••...••• 6-10
Clock Comparator••....••.•.••.••.•.••.••..•••.•.••.. 6-11
CPU Timer•...•.•..•...•...........•.••..••.•.••.• 6-11
Emergency Signal .••.••••..••.•.•••••.•.••.••••••.••••••. 6-11
External Call ••..•.....•..•...•••.••...•••••.•.••••..••. 6-11
External Signal ••••.••••.•.....••.•..•.•...••.•..••..•.. 6-12
Interrupt Key •..•..•..•..•.•.•.•••...•.••..•.........•.. 6-12
Interval Timer ..•....•.••.•..•.•••••••.•..••••.•••••.... 6-12
Malfunction Alert ..•..•.••••...••••..•.••..•••.•.•...••• 6-12
Service Signal ...••..•.•..•.•..•••...•..•..•.•...••.•••• 6-13
TOD-Clock Sync Check ...•..••..•....•.•.•..••..•.•.•..••. 6-13

I/O Interruption .••..•............•..•...........•.......• 6-13
Machine-Check Interruption ...•...••.......••.••..•.•••..•. 6-14
Program Interruption .••.••...•...•.•••...•••.•••••.•...••. 6-14

Exception-Extension Code ..••............................ 6-15
Program-Interruption Conditions•...•..••..•..•...•.. 6-15

Addressing Exception .•..•.•..•••.....••..•••••.••••... 6-15
AFX-Translation Exception •...••.......••.••..•..••.••. 6-18
ASH-Translation-Specification Exception .•••..•..•••••. 6-18
ASX-Translation Exception .•.•..•.....•••••..•...•..... 6-18
Dilta Excepti on••..........•..........•....•..... 6-18
Decimal-Divide Exception ..•.......••.•.•..••.•..•..•.. 6-19
Decimal-Overflow Exception ...•.......•...•...•...•.•.. 6-19
Execute Exception•.......•..•............. 6-19
Exponent-Overflow Exception ..•.......•....•.•.••••.•.. 6-19
Exponent-Underflow Exception•••.....••..•. 6-19
EX-Translation Exception•....•.•...••.••..••. 6-20
Fixed-Point-Divide Exception ...•........••..•....••.•. 6-20
Fixed-Point-Overflow Exception •....•....••..•.•.••.... 6-20
Floating-Point-Divide Exception••....••••.•..•.. 6-20
LX-Translation Exception .•...••..........••.....••.... 6-20
Monitor Event•.....•.....•..•......••.••..•. 6-21
Operation Exception ... ~ ..•...••.•.•...••..•..•..•..... 6-21
Page-Translation Exception•...•.•.•.•...•.•.•... 6-22
PC-Translation-Specification Exception .••..•..••.••.•. 6-22
PER Event•...•..••...••.•..•.•..••..•••.•••••••... 6-22
Primary-Authority Exception•...•••....•.•...•. 6-23
Privileged-Operation Exception .•••.••...••.•...••.•.•. 6-23
Protection Exception ..•.•....•..••.••••.••..•.••...•.. 6-23
Secondary-Authority Exception 6-24
Segment-Translation Exception ..••••.•.••••.•.•.•...... 6-24
Significance Exception ...•.••......••...•.•.•.••....•. 6-25
Space-Switch Event••.•...•...•..••.•...•••• 6-25
Special-Operation Exception ••.•.•..••••.•.•••••••..••. 6-25
Specification Exception••..••.•.•.•••••••.•••.•..• 6-26
Translation-Specification Exception ..••.••••...••.•.•. 6-27
Unnormalized-Operand Exception •••.•••.••.••.•.••••.••. 6-27
Vector-Operation Exception •....••.••.•.•..••••••.••.•• 6-28

Collective Program-Interruption Hames .•......•..•..••.•• 6-28
Recognition of Access Exceptions•.•...••...•.••.•••. 6-28
Multiple Program-Interruption Conditions ..•..••.....•.•. 6-30

Access Exceptions ...•....•..••..•...••.•.•.•••••...••. 6-33
ASH-Translation Exceptions •....••...••.••...•.••.••••. 6-35
Trace Exceptions•.....•..•.••••.•••••••••••••• 6-35

Restart Interruption .•......••....•.••.••.•••••.••.•..•... 6-35
Supervisor-Call Interruption ...••••..•.••••.••.•.•.••.•.•. 6-36
Priority of Interruptions ..••.••...••••••••.•••....••.•••• 6-36

Chapter 6. Interruptions 6-1

The interruption mechanism permits the
CPU to change its state as a result of
conditions external to the
configuration, within the configuration,
or within the CPU itself. To permit
fast response to conditions of high
priority and immediate recognition of
the type of condition, interruption
conditions are grouped into six classes:
external, input/output, machine check,
program, restart, and supervisor call.

INTERRUPTION ACTION

An interruption consists in storing the
current PSW as an old PSW, storing
information identifying the cause of the
interruption, and fetching a new PSW.
Processing resumes as specified by the
new PSW.

The old PSW stored
normally contains
instruction that

on an interruption
the address of the

would have been

6-2 System/370 Principles of Operation

executed next had the interruption not
occurred, thus permitting resumption of
the interrupted program. For program
and supervisor-call interruptions, the
information stored also contains a code
that identifies the length of the last­
executed instruction, thus permitting
the program to respond to the cause of
the interruption. In the case of some
program conditions for which the normal
response is reexecution of the instruc­
tion causing the interruption, the
instruction address directly identifies
the instruction last executed.

Except for restart, an interruption can
occur only when the CPU is in the oper­
ating state. The restart interruption
can occur with the CPU in either the
stopped or operating state.

The details of source identification,
location determination, and instruction
execution are explained in later
sections and are summarized in the
figure "Interruption Action."

psw- Mask Bits
Mask in Ctrl Execution of
Bits Registers Instruction

Source Interruption ILC Identified
Identification Code EC BC Reg, Bit Set by Old PSW

MACHINE CHECK Locations 232-239 1

(old PSW 48,
new PSW 112)

Exigent condition 13 13 u terminated or
nullified 2

Repressible cond 13 13 14, 4-7 u unaffected 2

SUPERVISOR CALL Locations 138-139
(old PSW 32, in the EC mode and

new PSW 96) 34-35 in the BC mode

Instruction bits 00000000 ssssssss 1,2 completed

PROGRAM Locations 142-143
(old PSW 40, in the EC mode and

new PSW 104) 42-43 in the BC mode

Binary Hex 3

Operation 00000000 pOOOOOOl 0001 1,2,3 suppressed
Privileged oper 00000000 pOOOOOlO 0002 1,2,3 suppressed
Execute 00000000 pOOOOOll 0003 2 suppressed
Protection 00000000 pOOOOIOO 0004 0,!,2,3 suppressed or

terminated
Addressing 00000000 pOOOOIOI 0005 0,1,2,3 suppressed or

terminated
Specification 00000000 pOOOOllO 0006 0,1,2,3 suppressed or

completed
Data 00000000 pOOOOl!! 0007 2,3 suppressed or

terminated
Fixed-pt overflow xxxxxxxx pOOOlOOO 0008 20 36 1,2 completed
Fixed-point divide 00000000 pOOOIOOl 0009 !,2 suppressed or

completed
Decimal overfloL..j 00000000 pOOOIOIO OOOA 21 37 2,3 completed
Decimal divide 00000000 pOOOI01! OOOB 2,3 suppressed
Exponent overflow xxxxxxxx pOOOl100 OOOC 1,2 completed
Exponent underflow xxxxxxxx pOOOlIO! OOOD 22 38 1,2 completed
Significance xxxxxxxx pOOOlllO OOOE 23 39 1,2 completed
Floating-pt divide xxxxxxxx pOOOlll! OOOF 1,2 suppressed or

inhibited 4

Segment transl 00000000 p0010000 0010 !,2,3 nullified
Page translation 00000000 pOOlOOO! 001! 1,2,3 nullified
Translation spec 00000000 pOOlO010 0012 1,2,3 suppressed
Special operation 00000000 p00100l1 0013 0, 1 2 suppressed
ASN-transl spec 00000000 pOOlOl11 0017 2 suppressed
Vector operation 4 00000000 pOOl100! 0019 2,3 nullified
Space-switch event 00000000 p001ll00 OOlC 1, 31 2 completed
Unnormalized xxxxxxxx pOOlillO OOIE 2 inhibited 4

operand 4

PC-transl spec 00000000 pOOII!l! OOIF 2 suppressed
AFX translation 00000000 pOlOOOOO 0020 2 nullified
ASX translation 00000000 pOIOOOOl 0021 2 nullified
LX translation 00000000 pOIOOOIO 0022 2 nullified
EX translation 00000000 pOlOOO!l 0023 2 nullified
Primary authority 00000000 pOlOG100 0024 2 nullified
Secondary auth 00000000 pOIOOIOl 0025 2 nullified
Monitor event 00000000 p1000000 0040 8, 16-31 2 completed
PER event xxxxxxxx 1nnnnnnns 0080 1 * 9, 0-34) 0,1,2,3 completed 6

Interruption Action (Part 1 of 3)

Chapter 6. Interruptions 6-3

psw- Mask Bits
Mask in Ctrl Execution of
Bits Registers Instruction

Source Interruption IlC Identified
Identification Code EC BC Reg, Bit Set by Old PSW

EXTERNAL locations 134-135
(old PSW 24, in the EC mode and

new PSW 88) 26-27 in the BC mode

Binary Hex 3

Interval timer 00000000 1eeeeeee 0080 7 7 0, 24 u unaffected
Interrupt key 00000000 e1eeeeee 0040 7 7 0, 25 u unaffected
External signal 2 00000000 ee1eeeee 0020 7 7 0, 26 u unaffected
External signal 3 00000000 eeeleeee 0010 7 7 0, 26 u unaffected
External signal 4 00000000 eeee1eee 0008 7 7 0, 26 u unaffected
External signal 5 00000000 eeeeelee 0004 7 7 0, 26 u unaffected
External signal 6 00000000 eeeeeele 0002 7 7 0, 26 u unaffected
External signal 7 00000000 eeeeeee1 0001 7 7 0, 26 u unaffected
Malfunction alert 00010010 00000000 1200 7 7 0, 16 u unaffected
Emergency signal 00010010 00000001 1201 7 7 0, 17 u unaffected
External call 00010010 00000010 1202 7 7 0, 18 u unaffected
TOD-clock sync chk 00010000 00000011 1003 7 7 0, 19 u unaffected
Clock comparator 00010000 00000100 1004 7 7 0, 20 u unaffected
CPU timer 00010000 00000101 1005 7 7 0, 21 u unaffected
Service signal 00100100 00000001 2401 7 7 0, 22 u unaffected

INPUT/OUTPUT Locations 186-187
(old PSW 56, in the EC mode and

new PSW 120) 58-59 in the BC mode

Channel 0 00000000 dddddddd 6 0 2, 0 7 U unaffected
Channel 1 00000001 dddddddd 6 1 2, 17 u unaffected
Channel 2 00000010 dddddddd 6 2 2, 27 u unaffected
Channel 3 00000011 dddddddd 6 3 2, 3 7 u unaffected
Channel 4 00000100 dddddddd 6 4 2, 47 u unaffected
Channel 5 00000101 dddddddd 6 5 2, 57 u unaffected
Channel 6 & UP cccccccc dddddddd 6 6 2, 6+ u unaffected

RESTART locations 2-3 in the
(old PSW 8, Be mode

new PSW 0)

Restart key 00000000 00000000 8 U unaffected

Interruption Action (Part 2 of 3)

6-4 System/370 Principles of Operation

Explanation:

Locations for the old PSWs, new PSWs, and interruption codes are real locations.
1 A model-independent machine-check interruption code of 64 bits is stored at

real locations 232-239. In the BC mode, the contents of real locations 50-51
are unpredictable.

2 The effect of the machine-check condition is indicated by bits in the machine­
check-interruption code. The setting of these bits indicates the extent of
the damage and whether the unit of operation is nullified, terminated, or
unaffected.

3 The interruption code in the column labeled "Hex" is the hex code for the
basic interruption; this code does not show the effects of concurrent inter­
ruption conditions represented bye, n, p, or x in the column labeled
"Binary."

4 Vector-operation and unnormalized-operand exceptions are associated with
the vector facility. "Inhibited" is a type of ending which occurs only for
instructions associated with the vector facility. These are described in
the publication IBM System/370 Vector Operations, SA22-7125.

5 When the interruption code indicates a PER event, an ILC of 0 may be stored
only when bits 8-15 of the interruption code are 10000110 (PER, specifi­
cation).

6 The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be inhibited, nullified, suppressed,
or terminated.

7 For channels 0-5, channel masks in control register 2 have no effect in the
BC mode.

s Bits 16-31 in the old PSW in the BC mode are set to zeros. No interruption
code is provided in the EC mode.

+ Plus the following bits in the control register. One mask bit is provided for
each installed channel; the bit position matches the channel address. * In the BC mode, PER is disabled.

~ Additional masks in control register 9, bit positions 16-31, provide detailed
control over the source of PER general-register-alteration events which are
masked by control register 9, bit 3.

c Channel-address bits.
d Device-address bits.
e If one, the bit indicates another concurrent external-interruption condition.
n A possible nonzero code, indicating another concurrent program-interruption

condition.
p If one, the bit indicates a concurrent PER-event interruption condition.
s Bits of the I field of SUPERVISOR CALL.
u Unpredictable in the BC mode; not stored in the EC mode.
x Exception-extension code. This field is described in the publication IBM

System/370 Vector Operations, SA22-7125. This field is set to zero except by
vector instructions.

Interruption Action (Part 3 of 3)

INTERRUPTION CODE

The six classes of interruptions
(external, I/O, machine check, program,
restart, and supervisor call) are
distinguished by the storage locations
at which the old PSW is stored and from
which the new PSW is fetched. For most
classes, the causes are further identi­
fied by an interruption code and, for
some classes, by additional information
placed in permanently assigned real
storage locations during the inter­
ruption. (See also the section
"Assigned Storage Locations" in Chapter
3, "Storage.") For external, I/O,
program, and supervisor-call inter-
ruptions, the interruption code consists

~I of 16 bits. In the BC mode, the inter­
al ruption code is zero in the PSW stored
'1 by the store-status function and is

1 unpredictable when the PSW is displayed.

For external interruptions in the EC
mode, the interruption code is stored at
real locations 134-135. In the BC mode,
the interruption code is placed in the
old PSW. A parameter may be stored at
real locations 128-131, or a CPU address
may be stored at real locations 132-133.

For I/O interruptions in the EC mode,
the interruption code, which contains
the I/O address, is stored at real
locations 186-187. In the BC mode, the
interruption code is placed in the old
PSW. Additional information is provided
by the contents of the channel-status
word (CSW) stored at real location 64.
Further information may be provided by
the limited channel logout stored at
real locations 176-179 and by a full
channel logout stored in the fixed­
logout area (real locations 256-351) or
in the I/O-extended-Iogout area.

Chapter 6. Interruptions 6-5

For machine-check interruptions, the
interruption code consists of 64 bits
and is stored at real locations 232-239.
Additional information for identifying
the cause of the interruption and for
recovering the state of the machine may
be provided by the contents of the
machine-check failing-storage address,
the external-damage code, the region
code, and the contents of the fixed­
logout, extended-logout, and machine­
check-save areas. (See Chapter 11,
"~1achi ne-Check Handl i ng. n)

For program interruptions in the EC
mode, the interruption code is stored at
real locations 142-143, and the
instruction-length code is stored in bit
positions 5 and 6 of real location 141.
In the BC mode, the interruption code
and instruction-length code are placed
in the old PSW. Further information may
be provided in the form of the
translation-exception identification,
monitor-class number, monitor code, PER
code, and PER address, which are stored
at real locations 144-159.

For restart interruptions in the EC
mode, no interruption code is stored.
In the BC mode, an interruption code of
zero is placed in the old PSW.

For supervisor-call interruptions in the
EC mode, the interruption code is stored
at real locations 138-139, and the
instruction-length code is stored in bit
positions 5 and 6 of real location 137.
In the BC mode, the interruption code
and instruction-length code are placed
in the old PSW.

ENABLING AND DISABLING

By means of mask bits in the current PSW
and in control registers, the CPU may be
enabled or disabled for all external,
I/O, and machine-check interruptions and
for some program interruptions. When a
mask bit is one, the CPU is enabled for
the corresponding class of
interruptions, and these interruptions
can occur.

When a mask bit is zero, the CPU is
disabled for the corresponding inter­
ruptions. The conditions that cause I/O
interruptions remain pending.
External-interruption conditions either
remain pending or persist until the
cause is removed. Machine-check­
interruption conditions, depending on
the type, are ignored, remain pending,
or cause the CPU to enter the check-stop
state. The disallowed program­
interruption conditions are ignored,
except that some causes are indicated
also by the setting of the condition
code. The setting of the significance

6-6 System/370 Principles of Operation

and exponent-underflow program-mask bits
affects the manner in which floating­
point operations are completed when the
corresponding condition occurs.

The CPU is always enabled for program
interruptions for which mask bits are
not provided, as well as the
supervisor-call and restart inter-
ruptions.

The mask bits may allow or disallow all
interruptions within the class, or they
may selectively allow or disallow inter­
ruptions for particular causes. This
control may be provided by mask bits in
the PSW that are assigned to particular
causes, such as the bits assigned to the
four maskable program-interruption
conditions. Alternatively, there may be
a hierarchy of masks, where a mask bit
in the PSW controls all interruptions
within a type, and mask bits in a
control register provide more detailed
control over the sources.

When the mask bit is one, the CPU is
enabled for the corresponding interrup­
tions. When the mask bit is zero, these
interruptions are disallowed. Interrup­
tions that are controlled by a hierarchy
of masks are allowed only when all
controlling mask bits are ones.

Programming Notes

1. Mask bits in the PSW provide a
means of disallowing all maskable
interruptions; thus, subsequent
interruptions can be disallowed by
the new PSW introduced by an inter­
ruption. Furthermore, the mask
bits can be used to establish a
hierarchy of interruption priori­
ties, where a condition in one
class can interrupt the program
handling a condition in another
class but not vice versa. To
prevent an interruption-handling
routine from being interrupted
before the necessary housekeeping
steps are performed, the new PSW
must disable the CPU for further
interruptions within the same class
or within a class of lower
priority.

2. Because the mask bits in control
registers are not changed as part
of the interruption procedure,
these masks cannot be used to
prevent an interruption immediately
after a previous interruption in
the same class. The mask bits in
control registers provide a means
for selectively enabling the CPU
for some sources and disabling it
for others within the same class.

HANDLING OF FLOATING INTERRUPTION CONDI­
TIONS

An interruption condition which can be
presented to any CPU in the configura­
tion is called a floating interruption
condition. The condition is presented
to the first CPU in the configuration
which is enabled for the corresponding
interruption and which can accept the
interruption, and then the condition is
cleared and not presented to any other
CPU in the configuration. A CPU cannot
accept the interruption when it is in
the check-stop state, has an invalid
prefix, is in a string of program inter­
ruptions due to a specification
exception of the type which is recog­
nized early, is executing a READ DIRECT
instruction, or is in the stopped state.
However, a CPU with the rate control set
to instruction step can accept the
interruption when the start key is acti­
vated.

Service signal and certain machine-check
conditions are floating interruption
conditions.

INSTRUCTION-LENGTH CODE

The instruction-length code (ILC) occu­
pies two bit positions and provides the
length of the last instruction executed.
It permits identifying the instruction
causing the interruption when the
instruction address in the old PSW
designates the next sequential instruc­
tion. The ILC is provided also by the
BRANCH AND LINK instructions.

When the old PSW specifies the EC mode,
the ILC for program and supervisor-call
interruptions is stored in bit positions
5 and 6 of the bytes at real locations
141 and 137, respectively. For
external, I/O, machine-check, and
restart interruptions, the ILC is not
stored since it cannot be related to the
length of the last-executed instruction.

When the old PSW specifies the BC mode,
the ILC is stored in bit positions 32
and 33 of that PSW. The ILC is meaning­
ful, however, only after a supervisor-
call or program interruption. For
machine-check, external, I/O, and
restart interruptions, the ILC does not
indicate the length of the last-executed
instruction and is unpredictable. Simi­
larly, the ILC is unpredictable in the
PSW stored during execution of the
store-status function and when the PSW
is displayed.

For supervisor-call and program inter­
ruptions, a nonzero ILC identifies in
halfwords the length of the instruction
that was last executed. Whenever an
instruction is executed by means of

EXECUTE, instruction-length code 2 is
set to indicate the length of EXECUTE
and not that of the target instruction.

The value of a nonzero instruction­
length code is related to the leftmost
two bits of the instruction. The value
does not depend on whether the operation
code is assigned or on whether the
instruction is installed. The following
table summarizes the meaning of the
instruction-length code:

ILC Instr
Bits Instruction

Decimal Binary 0-1 Length

0 00 Not available
1 01 00 One halfword
2 10 01 Two halfwords
2 10 10 Two halfwords
3 11 11 Three halfwords

Instruction-length code 0, after a
program interruption, indicates that the
instruction address stored in the old
PSW does not identify the instruction
causing the interruption.

An ILC of 0 occurs when a specification
exception due to a PSW-format error is
recognized as part of early exception
recognition and the PSW has been intro­
duced by LOAD PSW or an interruption.
(See the section "Exceptions Associated
with the PSW" later in this chapter.)
In the case of LOAD PSW, the instruction
address of LOAD PSW or EXECUTE has been
replaced by the instruction address of
the new PSW. When the invalid PSW is
introduced by an interruption, the PSW­
format error cannot be attributed to an
instruction.

On some models without the translation
facility, an ILC of 0 occurs also when
an addressing exception or a protection
exception is recognized for a store-type
reference. In these cases, the inter­
ruption due to the exception is delayed,
the length of time or number of
instructions of the delay being unpre­
dictable. Neither the instruction
address of the instruction causing the
exception nor the length of the last­
executed instruction is made available
to the program. This type of inter­
ruption is sometimes referred to as an
imprecise program interruption.

In the case of LOAD PSW and the
supervisor-call interruption, a PER
event may be indicated concurrently with
a specification exception having an ILC
of O.

Chapter 6. Interruptions 6-7

IlC on Instruction-Fetching Exceptions

When a program interruption occurs
because of an exception that prohibits
access to the instruction, the
instruction-length code cannot be set on
the basis of the first two bits of the
instruction. As far as the significance
of the IlC for this case is concerned,
the following two situations are distin­
guished:

1. When an odd instruction address
causes a specification exception to
be recognized or when an
addressing, protection, or
translation-specification exception
is encountered on fetching an
instruction, the IlC is set to 1,
2, or 3, indicating the multiple of
2 by which the instruction address
has been incremented. It is unpre­
dictable whether the instruction
address is incremented by 2, 4, or
6. By reducing the instruction
address in the old PSW by the
number of halfword locations indi­
cated in the ILC, the instruction
address originally appearing in the
PSW may be obtained.

2. When a segment-translation or
page-translation exception is
recognized while fetching an
instruction, including the target
instruction of EXECUTE, the ILC is
arbitrarily set to 1, 2, or 3. In
this case, the operation is nulli­
fied, and the instruction address
is not incremented.

The ILC is not necessarily related to
the first two bits of the instruction
when the first halfword of an instruc­
tion can be fetched but an access excep­
tion is recognized on fetching the
second or third halfword. The IlC may
be arbitrarily set to 1, 2, or 31n
these cases. The instruction address is
or is not updated, as described in situ­
ations 1 and 2 above.

When any exceptions other than segment
translation or page translation are
encountered on fetching the target
instruction of EXECUTE, the IlC is 2.

Programming Notes

1. A nonzero instruction-length code
for a program interruption indi­
cates the number of halfword
locations by which the instruction
address in the program old PSW must
be reduced to obtain the instruc­
tion address of the last
instruction executed, unless one of
the following situations exists:

6-8 System/370 Principles of Operation

a. The interruption
an exception
nullification.

is caused
resulting

by
in

b. An interruption for a PER event
occurs before the execution of
an interruptible instruction is
completed, and no other
program-interruption condition
is indicated concurrently.

c. The interruption is caused by a
PER event due to LOAD PSW or a
branch or linkage instruction,
including SUPERVISOR CALL (but
not including MONITOR CALL).

d. The interruption is caused by
an access exception encountered
in fetching an instruction, and
the instruction address has
been introduced into the PSW by
a means other than sequential
operation (by a branch instruc­
tion, LOAD PSW, an
interruption, or conclusion of
an IPL sequence).

e. The interruption is caused by a
specification exception because
of an odd instruction address.

f. The interruption is caused by
an early specification excep­
tion or by an access exception
encountered in fetching an
instruction, and changes have
been made to a parameter that
controls the relation between
instruction addresses and real
addresses. The relation
between instruction addresses
and real addresses can be
changed without introducing an
entire new PSW by switching
from the real mode, primary­
space mode, or secondary-space
mode to a different mode, or by
changing one or more of the
translation parameters in
control registers 0, 1, and 7.
The early specification excep­
tion can be caused by executing
STORE THEN OR SYSTEM MASK or
SET SYSTEM MASK, which switches
to or from the real mode while
introducing invalid values in
bit positions 0-7 of an EC-mode
PSW.

For situations a and b above, the
instruction address in the PSW is
not incremented, and the instruc­
tion designated by the instruction
address is the same as the last one
executed. These situations are the
only ones in which the instruction
address in the old PSW identifies
the instruction causing the excep­
tion.

For situations c, d, and e, the
instruction address has been
replaced as part of the operation,

and the address of the last
instruction executed cannot be
calculated using the one appearing
in the program old PSW.

For situation f, the instruction
address in the PSW has not been
replaced, but the corresponding
real address after the change may
be different.

2. The instruction-length code (IlC)
is redundant when a PER event is
indicated since the PER address in
the word at real location 152 iden­
tifies the instruction causing the
interruption (or the EXECUTE
instruction, as appropriate).
Similarly, the ILC is redundant
when the operation is nullified,
since in this case the instruction
address in the PSW is not incre­
mented. If the IlC value is
required in this case, it can be
derived from the operation code of
the instruction identified by the
old PSW.

EXCEPTIONS ASSOCIATED WITH THE PSW

Exceptions associated with erroneous
information in the current PSW may be
recognized when the information is
introduced into the PSW or may be recog­
nized as part of the execution of the
next instruction. Errors in the PSW
which are specification-exception condi­
tions are called PSW-format errors.

Early Exception Recognition

For the following error conditions, a
program interruption for a specification
exception occurs immediately after the
PSW becomes active:

• The EC mode is specified
12 is one) in a CPU that
have the translation
installed.

(PSW bit
does not
facility

• Bit position 16 of an EC-mode PSW
is one, and DAS is not installed.

• A one is introduced into an unas­
signed bit position of an EC-mode
PSW (that is, any of bit positions
0, 2-4, 17, or 24-39).

The interruption occurs regardless of
whether the wait state is specified. If
the invalid PSW causes the CPU to become
enabled for a pending I/O, external, or
machine-check interruption, the program
interruption occurs instead, and the
pending interruption is subject to the
mask bits of the new PSW introduced by

the program interruption. If the EC
mode is not present, bits 0-15 and 34-63
of the invalid PSW are stored unchanged
in the corresponding bit positions of
the program old PSW, and the inter­
ruption code and instruction-length code
are stored in bit positions 16-33 of the
program old PSW.

When the execution of LOAD PSW or an
interruption introduces a PSW with one
of the above error conditions, the
instruction-length code is set to 0, and
the newly introduced PSW' except for the
interruption code and the instruction­
length code in the BC mode, is stored
unmodified as the old PSW. When one of
the above error conditions is introduced
by execution of SET SYSTEM MASK or STORE
THEN OR SYSTEM MASK, the instruction­
length code is set to 2, and the
instruction address 1S incremented by 4.
The PSW containing the invalid value
introduced into the system-mask field ;s
stored as the old PSW.

When a PSW with one of the above error
conditions is introduced during initial
program loading, the loading sequence is
not completed, and the load indicator
remains on.

late Exception Recognition

For the following conditions, the excep­
tion is recognized as part of the
execution of the next instruction:

•

•

A specification exception is recog­
nized due to an odd instruction
address in the PSW (PSW bit 63 is
one).

An access exception (addressing,
page-translation, protection, seg­
ment-translation, or translation­
specification) is associated with
the location designated by the
instruction address or with the
location of the second or third
halfword of the instruction start­
ing at the designated instruction
address.

The instruction-length code and instruc­
tion address stored in the program old
PSW under these conditions are discussed
in the section "IlC on Instruction­
Fetching Exceptions" in this chapter.

If an I/O, external, or machine-check­
interruption condition is pending and
the PSW causes the CPU to be enabled for
that condition, the corresponding inter­
ruption occurs, and the PSW is not
inspected for exceptions which are
recognized late. Similarly, a PSW spec­
ifying the wait state is not inspected
for exceptions which are recognized
late.

Chapter 6. Interruptions 6-9

Programming Notes

1. The execution of LOAD ADDRESS SPACE
PARAMETERS, LOAD PSW, PROGRAM CALL,
PROGRAM TRANSFER, SET PREFIX, SET
SECONDARY ASN, SET SYSTEM MASK,
STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK is
suppressed on an addressing or
protection exception, and hence the
program old PSW provides informa­
tion concerning the program causing
the exception.

2. When the first halfword of an
instruction can be fetched but an
access exception is recognized on
fetching the second or third half­
word, the ILC is not necessarily
related to the operation code.

3. If the new PSW introduced by an
interruption contains a PSW-format
error, a string of interruptions
may occur. (See the section "Pri­
ority of Interruptions" in this
chapter.)

EXTERNAL INTERRUPTION

The external interruption provides a
means by which the CPU responds to vari­
ous signals originating from either
inside or outside the configuration.

An external interruption causes the old
PSW to be stored at real location 24 and
a new PSW to be fetched from real
location 88.

The source of the interruption is iden­
tified in the interruption code. When
the old PSW specifies the EC mode, the
interruption code is stored at real
locations 134-135. When the old PSW
specifies the BC mode, the interruption
code is placed in bit positions 16-31 of
the old PSW, and the instruction-length
code is unpredictable.

Additionally, for the malfunction-alert,
emergency-signal, and external-call
conditions, a 16-bit CPU address is
associated with the source of the inter­
ruption and is stored at real locations
132-133 in both the EC and BC modes.
When the CPU address is stored, bit 6 of
the interruption code is set to one.
For all other conditions, no CPU address
is stored, and bit 6 of the interruption
code is set to zero. When bit 6 is zero
and the old PSW specifies the EC mode,
zeros are stored at real locations
132-133. When bit 6 is zero and the old
PSW specifies the BC mode, the contents
of real locations 132-133 remain
unchanged.

For the service-signal interruption, a
32-bit parameter is associated with the

6-10 System/370 Principles of Operation

interruption and is stored at real
locations 128-131 in both the EC and BC
modes. Bit 2 of the external­
interruption code indicates that a
parameter has been stored. When bit 2
is zero, the contents of real locations
128-131 remain unchanged.

External-interruption conditions are of
two types: those for which an
interruption-request condition is held
pending, and those for which the condi­
tion directly requests the interruption.
Clock comparator, CPU timer, and TOD­
clock sync check are conditions which
directly request external interruptions.
If a condition which directly requests
an external interruption is removed
before the request is honored, the
request does not remain pending, and no
interruption occurs. Conversely, the
request is not cleared by the inter­
ruption, and if the condition persists,
more than one interruption may result
from a single occurrence of the c~ndi­
tion.

When several interruption requests for a
single source are generated before the
interruption occurs, and the inter­
ruption condition is of the type which
is held pending, only one request for
that source is preserved and remains
pending.

An external interruption for a partic­
ular source can occur only when the CPU
is enabled for interruption by that
source. The external interruption
occurs at the completion of a unit of
operation. The external mask, PSW bit
7, and external subclass-mask bits in
control register 0 control whether the
CPU is enabled for a particular source.
Each source for an external interruption
has a subclass-mask bit assigned to it,
and the source can cause an interruption
only when the external-mask bit is one
and the corresponding subclass-mask bit
is one. The use of the subclass-mask
bits does not depend on whether the CPU
is in the EC or BC mode.

When the CPU becomes enabled for a pend­
ing external-interruption condition, the
interruption occurs at the completion of
the instruction execution or inter­
ruption that causes the enabling.

More than one source may present a
request for an external interruption at
the same time. When the CPU becomes
enabled for more than one concurrently
pending request, the interruption occurs
for the pending condition or conditions
having the highest priority.

The priorities for external-interruption
requests in descending order are as
follows:

Interval timer, interrupt
external signals 2-7

Malfunction alert

key,

Emergency signal
External call
TOO-clock sync check
Clock comparator
CPU timer
Service signal

The interval timer, interrupt key, and
the external signals 2-7 are of equal
priority; if more than one of these
conditions is pending and allowed, the
conditions are indicated concurrently.
All other requests are honored one at a
time. When more than one emergency­
signal request exists at a time or when
more than one malfunction-alert request
exists at a time, the request associated
with the smallest CPU address is honored
first.

CLOCK COMPARATOR

An interruption request for the clock
comparator exists whenever either of the
following conditions is met:

1. The TOO clock is in the set or
not-set state, and the value of the
clock comparator is less than the
value in the compared portion of
the TOO clock, both compare values
being considered unsigned binary
integers.

2. The clock comparator is installed,
and the TOO clock is in the error
or not-operational state.

If the condition responsible for the
request is removed before the request is
honored, the request does not remain
pending, and no interruption occurs.
Conversely, the request is not cleared
by the interruption, and, if the condi­
tion persists, more than one
interruption may result from a single
occurrence of the condition.

When the TOO clock accessed by a CPU is
set or changes state, interruption
conditions, if any, that are due to the
clock comparator mayor may not be
recognized for up to 1.048576 seconds
after the change.

The subclass-mask bit is in bit position
20 of control register O. This bit is
initialized to zero.

The clock-comparator condition is indi­
cated by an external-interruption code
of 1004 hex.

CPU TIMER

An interruption request
timer exists whenever

for the CPU
the CPU-timer

value is negative (bit 0 of the CPU
timer is one). If the value is made
positive before the request is honored,
the request does not remain pending, and
no interruption occurs. Conversely, the
request is not cleared by the inter­
ruption, and, if the condition persists,
more than one interruption may occur
from a single occurrence of the condi­
tion.

When the TOO clock accessed by a CPU is
set or changes state, interruption
conditions, if any, that are due to the
CPU timer mayor may not be recognized
for up to 1.048576 seconds after the
change.

The subclass-mask bit is in bit position
21 of control register O. This bit is
initialized to zero.

The CPU-timer condition is indicated by
an external-interruption code of 1005
hex.

EMERGENCY SIGNAL

An interruption request for an emergency
signal is generated when the CPU accepts
the emergency-signal order specified by
a SIGNAL PROCESSOR instruction address­
ing this CPU. The instruction may have
been executed by this CPU or by another
CPU in the configuration. The request
is preserved and remains pending in the
receiving CPU until it is cleared. The
pending request is cleared when it caus­
es an interruption and by CPU reset.

Facilities are provided for holding a
separate emergency-signal request pend­
ing in the receiving CPU for each CPU in
the configuration, including the receiv­
ing CPU itself.

The subclass-mask bit is in bit position
17 of control register o. This bit is
initialized to zero.

The emergency-signal condition is indi­
cated by an external-interruption code
of 1201 hex. The address of the CPU
that executed the SIGNAL PROCESSOR
instruction is stored at real locations
132-133.

EXTERNAL CALL

An interruption request for an external
call is generated when the CPU accepts
the external-call order specified by a
SIGNAL PROCESSOR instruction addressing
this CPU. The instruction may have been
executed by this CPU or by another CPU
in the configuration. The request is
preserved and remains pending in the
receiving CPU until it is cleared. The

Chapter 6. Interruptions 6-11

pending request is cleared when it caus­
es an interruption and by CPU reset.

Only one external-call request, along
with the processor address, may be held
pending in a CPU at a time.

The subclass-mask bit is in bit position
18 of control register O. This bit is
initialized to zero.

The external-call condition is indicated
by an external-interruption code of 1202
hex. The address of the CPU that
executed the SIGNAL PROCESSOR instruc­
tion is stored at real locations
132-133.

EXTERNAL SIGNAL

An interruption request for an external
signal is generated when a signal is
received on one or more of the signal-in
lines. Up to six signal-in lines may be
connected, providing for external signal
2 through external signal 7. The
request is preserved and remains pending
in the CPU until it is cleared. The
pending request is cleared when it caus­
es an interruption and by CPU reset.

Facilities are provided for holding a
separate external-signal request pending
for each of the six lines.

All external signals are subject to
control by the subclass-mask bit in bit
position 26 of control register o. This
bit is initialized to one.

External signals 2-7 are indicated by
setting to one interruption-code bits
10-15, respectively. Bits 0-7 are set
to zeros, and bits 8 and 9 are set to
zeros unless set to ones for other
conditions that are concurrently indi­
cated.

Programming Notes

1.

2.

External
of I/O
tions.

signaling is independent
operations and interrup-

The pattern presented in bit posi­
tions 10-15 of the interruption
code depends on the pattern
received before the interruption
occurs. Because of circuit skew,
all simultaneously generated
external signals do not necessarily
arrive at the same time, and some
may not be included in the inter­
ruption code for the external
interruption resulting from the
earliest signals. These late
signals, if not included in the

6-12 System/370 Principles of Operation

interruption code, cause another
interruption to occur.

INTERRUPT KEY

An interruption request for the inter­
rupt key is generated when the operator
activates that key. The request is
preserved and remains pending in the CPU
until it is cleared. The pending
request is cleared when it causes an
interruption and by CPU reset.

When the interrupt key is activated
while the CPU is in the load state, it
depends on the model whether an inter­
ruption request is generated or the
condition is lost.

The subclass-mask bit is in bit position
25 of control register O. This bit is
initialized to one.

The interrupt-key condition is indicated
by setting bit 9 in the interruption
code to one and by setting bits 0-7 to
zeros. Bits 8 and 10-15 are zeros
unless set to ones for other conditions
that are concurrently indicated.

INTERVAL TIMER

An interruption request for the interval
timer is generated when the interval
timer is decremented from a positive
number or zero to a negative number.
The request is preserved and remains
pending in the CPU until it is cleared.
The pending request is cleared when it
causes an interruption and by CPU reset.

When the TOO clock accessed by a CPU is
set or changes state, interrupt ion
conditions, if any, that are due to the
interval timer mayor may not be recog­
nized for up to 1.048576 seconds after
the change.

The subclass-mask bit is in bit position
24 of control register O. This bit is
initialized to one.

The interval-timer condition is indi­
cated by setting bit 8 in the inter­
ruption code to one and by setting bits
0-7 to zeros. Bits 9-15 are zeros
unless set to ones for other conditions
that are concurrently indicated.

MALFUNCTION ALERT

An interruption request for a malfunc­
tion alert is generated when another CPU
in the configuration enters the check­
stop state or loses power. The request

is preserved and remains pending in the
receiving CPU until it is cleared. The
pending request is cleared when it caus­
es an interruption and by CPU reset.

Facilities are provided for holding a
separate malfunction-alert request pend­
ing in the receiving CPU for each of the
other CPUs in the configuration.
Removal of a CPU from the configuration
does not generate a malfunction-alert
condition.

The subclass-mask bit is in bit position
16 of control register O. This bit is
initialized to zero.

The malfunction-alert condition is indi­
cated by an external-interruption code
of 1200 hex. The address of the CPU
that generated the condition is stored
at real locations 132-133.

SERVICE SIGNAL

An interruption request for a service
signal is generated upon the completion
of certain configuration-control and
maintenance functions, such as those
initiated by means of the model­
dependent DIAGNOSE instruction. A
32-bit parameter is provided with the
interruption to assist the program in
determining the operation for which the
interruption is reported.

Service signal is a floating inter­
ruption condition and is presented to
the first CPU in the configuration which
can accept the interruption. The pend­
ing request is cleared when it causes an
interruption in anyone of the CPUs and
also by subsystem reset.

The subclass-mask bit is in bit position
22 of control register O. This bit is
initialized to zero.

The service-signal condition is indi­
cated by an external-interruption code
of 2401 hex. A 32-bit parameter is
stored at real locations 128-131.

TOO-CLOCK SYNC CHECK

The TOD-clock-sync-check condition indi­
cates that more than one TOO clock
exists in the configuration, and that
the rightmost 32 bits of the clocks are
not running in synchronism.

An interruption request for a TOO-clock
sync check exists when the TOO clock
accessed by this CPU is running (that
is, the clock is in the set or not-set
state), the clock accessed by any other
CPU in the configuration is running, and

bits 32-63 of the two clocks do not
match. When a clock is set or changes
state, or when a running clock is added
to the configuration, a delay of up to
1.048576 seconds (2 20 microseconds) may
occur before the mismatch condition is
recognized.

When only two TOO clocks are in the
configuration and either or both of the
clocks are in the error, stopped, or
not-operational state, it is unpredict­
able whether a TOD-clock-sync-check
condition is recognized; if the condi­
tion is recognized, it may continue to
persist up to 1.048576 seconds after
both clocks have been running with the
rightmost 32 bits matching. However, in
this case, the condition does not
persist if one of the TOO clocks is
removed from the configuration.

When more than one CPU shares a TOO
clock, only the CPU with the smallest
CPU address among those sharing the
clock indicates a TOD-clock-sync-check
condition associated with that clock.

If the condition responsible for the
request is removed before the request is
honored, the request does not remain
pending, and no interruption occurs.
Conversely, the request is not cleared
by the interruption, and, if the condi­
tion persists, more than one
interruption may result from a single
occurrence of the condition.

The subclass-mask bit is in bit position
19 of control register O. This bit is
initialized to zero.

The TOD-clock-sync-check condition is
indicated by an external-interruption
code of 1003 hex.

I/O INTERRUPTION

The input/output (I/O) interruption
provides a means by which the CPU
responds to conditions originating in
I/O devices and channels.

A request for an I/O interruption may
occur at any time, and more than one
request may occur at the same time. The
requests are preserved and remain pend­
ing in channels or devices until
accepted by the CPU, or until cleared by
some other means, such as subsystem
reset.

The I/O interruption occurs at the
completion of a unit of operation.
Priority is established among requests
so that only one interruption request is
processed at a time. For more details,
see the section "Input/Output Inter­
ruptions" in Chapter 13, "Input/Output
Operations."

Chapter 6. Interruptions 6-13

When the CPU becomes enabled for I/O
interruptions and a channel has estab­
lished priority for a pending 1/0-
interruption condition, the interruption
occurs at the completion of the instruc­
tion execution or interruption that
causes the enabling.

An I/O interruption causes the old PSW
to be stored at real location 56, a
channel-status word to be stored at real
location 64, and a new PSW to be fetched
from real location 120. Upon detection
of equipment errors, additional informa­
tion may be stored in the form of a
limited channel logout at real locations
176-179, and in the form of a full chan­
nel logout at real locations 256-351 or
in the I/O-extended-Iogout area starting
at the absolute location designated by
the contents of real locations 173-175.

When the old PSW specifies the EC mode,
the I/O address identifying the channel
and device causing the interruption is
stored at real locations 186-187, and
the measurement byte is stored at real
location 185. When the old PSW speci­
fies the BC mode, the interruption code
in PSW bit positions 16-31 contains the
I/O address, and the instruction-length
code in the PSW is unpredictable.

A nonzero value for the measurement byte
is part of the
facility. When
installed, zeros
location.

start-I/O-fast-queuing
this facility is not
are stored at this

An I/O interruption can occur only while
the CPU is enabled for interruption by
the channel presenting the request.
Mask bits in the PSW and channel masks
in control register 2 determine whether
the CPU is enabled for interruption by a
channel; the method of control depends
on whether the current PSW specifies the
EC or BC mode.

The channel-mask bits in control regis­
ter 2 start at bit position 0 and extend
for at least as many contiguous bit
positions as required to control inter­
ruptions from the channel with the
greatest installed channel address which
may be connected to this CPU. The
assignment is such that a bit is
assigned to the channel whose address is
equal to the position of the bit in
control register 2. Installed channel­
mask bits are initialized to onei the
state of the remaining bits in control
register 2 is unpredictable.

When the current PSW specifies the EC
mode, each channel is controlled by the
I/O-mask bit, PSW bit 6, and by the
corresponding channel-mask bit in
control register 2; the channel can
cause an interruption only when the
I/O-mask bit is one and the correspond­
ing channel-mask bit is one. The
channel causing the interruption must be

6-14 System/370 Principles of Operation

a member of a channel set which is
connected to this CPU.

When the current PSW specifies the BC
mode, interruptions from channels 6 and
up are controlled by the I/O-mask bit,
PSW bit 6, in conjunction with the
corresponding channel-mask bit: the
channel can cause an interruption only
when the I/O-mask bit is one and the
corresponding channel-mask bit is one.
Interruptions from channels 0-5 are
controlled by channel-mask bits 0-5 in
the PSW: an interruption can occur only
when the mask bit corresponding to the
channel is one. In the BC mode, bits
0-5 in control register 2 do not partic­
ipate in controlling I/O interruptions;
they are, however, preserved in the
control register if the corresponding
channels are installed.

MACHINE-CHECK INTERRUPTION

The machine-check interruption is a
means for reporting to the program the
occurrence of equipment malfunctions.
Information is provided to assist the
program in determining the source of the
fault and extent of the damage.

A machine-check interruption causes the
old PSW to be stored at real location 48
and a new PSW to be fetched from real
location 112. When the old PSW speci­
fies the BC mode, the contents of the
interruption-code and ILC fields in the
old PSW are unpredictable.

The cause and severity of the malfunc­
tion are identified by a 64-bit
machine-cheek-interruption code stored
at real locations 232-239. Further
information identifying the cause of the
interruption and the location of the
fault may be stored at real locations
216-511 and in the area starting with
the real location designated by the
contents of control register 15.

The interruption action and the storing
of the associated information are under
the control of PSW bit 13 and bits in
control register 14. See Chapter 11,
"Machine-Check Handling," for more
detailed information.

PROGRAM INTERRUPTION

Program interruptions are used to report
exceptions and events which occur during
execution of the program.

A program interruption causes the old
PSW to be stored at real location 40 and
a new PSW to be fetched from real
location 104.

The cause of the interruption is identi­
fied by the interruption code. When the
old PSW specifies the EC mode, the
interruption code is placed at real
locations 142-143, the instruction­
length code is placed in bit positions 5
and 6 of the byte at real location 141
with the rest of the bits set to zeros,
and zeros are stored at real location
140. When the old PSW specifies the BC
mode, the interruption code and the ILC
are placed in the old PSW. For some
causes, additional information identify­
ing the reason for the interruption is
stored at real locations 144-159 in both
the EC and BC modes.

Except for PER events, the condition
causing the interruption is indicated by
a coded value placed in the rightmost
seven bit positions of the interruption
code. Only one condition at a time can
be indicated. Bits 0-7 of the inter­
ruption code are set to zeros.

PER events are indicated by setting bit
8 of the interruption code to one. When
this is the only condition, bits 0-7 and
9-15 are also set to zeros. When a PER
event is indicated concurrently with
another program-interruption condition,
bit 8 is one, and the coded value for
the other condition is indicated in bit
positions 0-7 and 9-15.

When there is a corresponding mask bit,
a program interruption can occur only
when that mask bit is one. The program
mask in the PSW controls four of the
exceptions, bit 1 in control register 0
controls whether SET SYSTEM MASK causes
a special-operation exception, bits
16-31 in control register 8 control
interruptions due to monitor events,
and, in the EC mode, a hierarchy of
masks control interruptions due to PER
events. When any controlling mask bit
is zero, the condition is ignored; the
condition does not remain pending.

Programming Notes

1. When the new PSW for a program
interruption has a PSW-format error
or causes an exception to be recog­
nized in the process of instruction
fetching, a string of program
interruptions may occur. See the
section "Priority of Interruptions"
in this chapter for a description
of how such strings are terminated.

2. Some of the conditions indicated as
program exceptions may be recog­
nized also by a channel, in which
case the exception is indicated in
the channel-status word.

EXCEPTION-EXTENSION CODE

When an arithmetic exception is recog­
nized during execution of an interrupti­
ble vector instruction, a nonzero
exception-extension code is stored in
bits 0-7 of the program-interruption
code. This code is set to a nonzero
value only for arithmetic exceptions
occurring during the execution of vector
instructions. For more details, see the
publication IBM System/370 Vector Oper­
ations, SA22-7125.

PROGRAM-INTERRUPTION CONDITIONS

The following is a detailed description
of each program-interruption condition.

Addressing Exception

An addressing exception is recognized
when the CPU attempts to reference a
main-storage location that is not avail­
able in the configuration. A main­
storage location is not available in the
configuration when the location is not
installed, when the storage unit is not
in the configuration, or when power is
off in the storage unit. An address
designating a storage location that is
not available in the configuration is
referred to as invalid.

The operation is suppressed when the
address of the instruction is invalid.
Similarly, the operation is suppressed
when the address of the target instruc­
tion of EXECUTE is invalid. Also, the
unit of operation is suppressed when an
addressing exception is encountered in
accessing a table entry. The table
entries to which the rule applies are
entries for the segment table, page
table, linkage table, entry table, ASN
first table, ASN second table, authority
table, trace-table designation, trace­
table-entry header, and CPU-identity
byte. Addressing exceptions result in
suppression when they are encountered
for references to the segment table and
page table, in both implicit references
for dynamic address translation and
references associated with the execution
of LOAD REAL ADDRESS and TEST
PROTECTION. Except for some specific
instructions whose execution is
suppressed, the operation is terminated
for an operand address that can be
translated but designates an unavailable
location. See the figure "Summary of
Action for Addressing and Protection
Exceptions."

For termination, changes may occur only
to result fields. In this context, the
term "result field" includes the condi-

Chapter 6. Interruptions 6-15

tion code, registers, and any storage
locations that are provided and that are
designated to be changed by the instruc­
tion. Therefore, if an instruction is
due to change only the contents of a
field in storage, and every byte of the
field is in a location that is not
available in the configuration, the
operation is suppressed. When part of
an operand location is available in the
configuration and part is not, storing
may be performed in the part that is
available in the configuration.

When an addressing exception occurs
during the fetching of an instruction or
during the fetching of a OAT table entry
associated with an instruction fetch, it
is unpredictable whether the IlC is 1,

6-16 System/370 Principles of Operation

2, or 3. When the exception is associ­
ated with fetching the target of
EXECUTE, the IlC is 2.

In all cases of addressing exceptions
not associated with instruction
fetching, the IlC is 1, 2, or 3, indi­
cating the length of the instruction
that caused the reference. However, on
some models without the translation
facility, an IlC of 0 occurs when an
addressing exception is recognized for a
store-type reference.

An addressing exception is indicated by
a program-interruption code of 0005 hex
(or 0085 hex if a concurrent PER event
is indicated).

Table- Instruction
Exception Entry Fetch l Fetch Operand Reference

Addressing Suppress
exception

Suppress Suppress for IPTE, LASP,
LPSW, SCKC, SPT, SPX,
SSM, STHSM, STOSM, TPROT,
and DAS tracing. 2

Terminate for all others.3

Protection
exception
for key­
controlled
protection

Suppress Suppress for IPTE, LASP,
LPSW, SCKC, SPT, SPX, SSM,
STHSM, and STOSM.

Terminate for all others. 3

Protection
exception
for seg­
ment
protection

Suppress for STHSM, STOSM,
and DAS trac;ng. 2

Terminate for all others.3

Protection
exception
for low­
address
protection

Suppress for IPTE, STNSM,
STOSM, and DAS tracing. 2

Terminate for all others. 3

Explanation:

-- Hot applicable.

1

2

3

Table entries include segment table, page table, linkage
table, entry table, ASH first table, ASH second table,
authority table, trace-table designation, trace-table­
entry header, and CPU-identity byte.

The following instructions may cause an entry to be made
in the trace table when DAS tracing is active: PC, PT,
and SSAR. The stores into the current-entry-control
word and the trace entry are subject to addressing, seg­
ment-protection, and low-address-protection exceptions.
The operation is suppressed for these exceptions.

For termination, changes may occur only to result
fields. In this context, "result field" includes con­
dition code, registers, and storage locations, if any,
which are designated to be changed by the instruction.
However, no change is made to a storage location or a
storage key when the reference causes an access excep­
tion. Therefore, if an instruction is due to change
only the contents of a field in main storage, and every
byte of that field would cause an access exception,
the result is the same as if the operation had been
suppressed.

Summary of Action for Addressing and Protection Exceptions

Chapter 6. Interruptions 6-17

AFX-Translation Exception

An AFX-translation exception is recog­
nized when, during ASH translation in
PROGRAM CAll with space switching
(PC-ss), PROGRAM TRANSFER with space
switching (PT-ss), or SET SECONDARY ASN
with space switching (SSAR-ss), bit 0 of
the ASN-first-table entry used is not
zero.

The ASN being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The AFX-translation exception is indi­
cated by a program-interruption code of
0020 hex (or OOAO hex if a concurrent
PER event is indicated).

ASN-Translation-Specification Exception

An ASN-translation-specification excep­
tion is recognized during ASN trans­
lation in LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL with space switching
(PC-55), PROGRAM TRANSFER with space
switching (PT-ss), or SET SECONDARY ASN
with space switching (SSAR-ss) when
either:

1. Bit positions 1-7 and 28-31 of a
valid ASN-first-table entry do not
contain zeros.

2. Bit positions 1-7, 30, 31, 60-63,
and 97-103 of a valid ASN-second­
table entry do not contain zeros.

The operation is suppressed.

The instruction-length code is 2 or 3.

The ASH-translation-specification excep­
tion is indicated by a program­
interruption code of 0017 hex (or 0097
hex if a concurrent PER event is indi­
cated).

ASX-Translation Exception

An ASX-translation exception is recog­
nized when, during ASN translation in
PROGRAM CAll with space switching
(PC-ss), PROGRAM TRANSFER with space
switching (PT-ss), or SET SECONDARY ASN
with space switching (SSAR-ss), bit 0 of
the ASH-second-table entry used is not
zero.

6-18 System/370 Principles of Operation

The ASH being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The ASX-translation exception is indi­
cated by a program-interruption code of
0021 hex (or 00A1 hex if a concurrent
PER event is indicated).

Data Exception

A data exception is recognized when any
of the following is true:

1. The sign or digit codes of operands
1n the decimal instructions
(described in Chapter 8, "Decimal
Instructions") or in COHVERT TO
BINARY are invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than
with coincident rightmost bytes; or
operand fields in ZERO AND ADD
overlap, and the rightmost byte of
the second operand is to the right
of the rightmost byte of the first
operand.

3. The multiplicand in MULTIPLY DECI­
MAL has an insufficient number of
leftmost zeros.

The action taken for a data exception
depends on whether a sign code is inval­
id. The operation is suppressed when a
sign code is invalid, regardless of
whether any other condition causing the
exception exists; when no sign code is
invalid, the operation is terminated.

For all instructions other than EDIT and
EDIT AND MARK, when the operation is
terminated, the contents of the sign
position in the rightmost byte of the
result field either remain unchanged or
are set to the preferred sign code; the
contents of the remainder of the result
field are unpredictable.

In the case of EDIT and EDIT AND MARK,
an invalid sign code cannot occur; the
operation is terminated on a data excep­
tion for an invalid digit code.

The instruction-length code is 2 or 3.

The data exception is indicated by a
program-interruption code of 0007 hex
(or 0087 hex if a concurrent PER event
is indicated).

Programming Notes

1. The definition for data exception
permits termination when digit
codes are invalid but no sign code
is invalid. On some models, valid
digit codes may be placed in the
result field even if the original
contents were invalid. Thus it is
possible, after a data exception
occurs, for all fields to contain
valid codes.

2. An invalid sign code for the right­
most byte of the result field is
not generated when the operation is
terminated. However, an invalid
second-operand sign code is not
necessarily preserved when it is
located in the numeric portion of
the result field.

3. When, after a program interruption
for data exception, a sign code is
found to be invalid, the operation
has been suppressed if both of the
following conditions are met:

a. The invalid sign of the source
field is not located in the
numeric portion of the result
field.

b. The invalid sign code is in a
position specified by the
instruction to be checked for a
valid sign. (This condition
excludes the first operand of
ZERO AND ADD, both operands of
EDIT, and EDIT AND MARK.)

Decimal-Divide Exception

A decimal-divide exception is recognized
when in decimal division the divisor is
zero or the quotient exceeds the speci­
fied data-field size.

The decimal-divide exception is indi­
cated only if the sign codes of both the
divisor and dividend are valid and only
if the digit or digits uscd in estab­
lishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

The decimal-divide exception is indi­
cated by a program-interruption code of
OOOB hex (or OOBB hex if a concurrent
PER event is indicated).

Decimal-Overflow Exception

A decimal-overflow exception is recog­
nized when one or more nonzero digits

are lost because the destination field
in a decimal operation is too short to
contain the result.

The interruption may be disallowed by
the decimal-overflow mask (PSW bit 21 in
the EC mode and PSW bit 37 in the BC
mode).

The operation is completed. The result
1S obtained by ignoring the overflow
digits, and condition code 3 is set.

The instruction-length code is 2 or 3.

The decimal-overflow exception is indi­
cated by a program-interruption code of
OOOA hex (or 008A hex if a concurrent
PER event is indicated).

Execute Exception

The execute exception is recognized when
the target instruction of EXECUTE is
another EXECUTE.

The operation is suppressed.

The instruction-length code is 2.

The execute exception is indicated by a
program-interruption code of 0003 hex
(or 0083 hex if a concurrent PER event
is indicated).

Exponent-Overflow Exception

An exponent-overflow exception is recog­
nized when the result characteristic of
a floating-point operation exceeds 127
and the result fraction is not zero.

The operation is completed. The frac­
tion is normalized, and the sign and
fraction of the result remain correct.
The result characteristic is made 128
smaller than the correct characteristic.

The instruction-length code is 1 or 2.

The exponent-overflow exception is indi­
cated by a program-interruption code of
XXOC hex (or XX8C hex if a concurrent
PER event is indicated), where XX is the
exception-extension code.

Exponent-Underflow Exception

An exponent-underflow exception is re­
cognized when the result characteristic
of a floating-point operation is less
than zero and the result fraction is not
zero. For an extended-format floating­
point result, exponent underflow is

Chapter 6. Interruptions 6-19

indicated only when the high-order char­
acteristic underflows.

The interruption may be disallowed by
the exponent-underflow mask (PSW bit 22
in the EC mode and PSW bit 38 in the BC
mode).

The operation is completed. The
exponent-underflow mask also affects the
result of the operation. When the mask
bit is zero, the sign, characteristic,
and fraction are set to zero, making the
result a true zero. When the mask bit
is one, the fraction is normalized, the
characteristic is made 128 larger than
the correct characteristic, and the sign
and fraction remain correct.

The instruction-length code is 1 or 2.

The exponent-underflow exception is in­
dicated by a program-interruption code
of XXOD hex (or XX8D hex if a concurrent
PER event 1S indicated), where XX is the
exception-extension code.

EX-Translation Exception

An EX-translation exception is recog­
nized during PC-number translation in
PROGRAM CALL when the entry-table entry
indicated by the entry-table-index part
of the PC number is beyond the length of
the entry table as designated by the
linkage-table entry.

The PC number is stored in bit positions
12-31 of the word at real location 144,
and the leftmost 12 bits of the word are
set to zeros.

The operation is nullified.

The instruction-length code is 2.

The EX-translation exception is indi­
cated by a program-interruption code of
0023 hex (or OOA3 hex if a concurrent
PER event is indicated).

Fixed-Point-Divide Exception

A fixed-point-divide exception is recog­
nized when in signed binary division the
divisor is zero or when the quotient in
signed binary division or the result of
CONVERT TO BINARY cannot be expressed as
a 32-bit signed binary integer.

In the case of division, the operation
is suppressed. The execution of CONVERT
TO BINARY is completed by ignoring the
leftmost bits that cannot be placed in
the register.

The instruction-length code is 1 or 2.

6-20 System/370 Principles of Operation

The fixed-point-divide exception is in­
dicated by a program-interruption code
of 0009 hex (or 0089 hex if a concurrent
PER event is indicated).

Fixed-Point-Overflow Exception

A fixed-point-overflow exception is re­
cognized when an overflow occurs during
signed binary arithmetic or signed
left-shift operations.

The interruption may be disallowed by
the fixed-poi nt-overflow mask (PSW bit
20 in the EC mode and PSW bit 36 in the
BC mode).

The operation is completed. The result
is obtained by ignoring the overflow
information, and condition code 3 is
set.

The instruction-length code is 1 or 2.

The fixed-point-overflow exception is
indicated by a program-interruption code
of XX08 hex (or XX88 hex if a concurrent
PER event is indicated), where xx is the
exception-extension code.

Floating-Point-Divide Exception

A floating-point-divide exception is
recognized when in floating-point divi­
sion the divisor has a zero fraction.

The operation is suppressed.

The instruction-length code is 1 or 2.

The floating-point-divide exception is
indicated by a program-interruption code
of XXOF hex (or XX8F hex if a concurrent
PER event is indicated), where xx is the
exception-extension code.

LX-Translation Exception

An LX-translation exception is recog­
nized during PC-number translation in
PROGRAM CALL when either:

1. The linkage-table entry indicated
by the linkage-table-index part of
the PC number is beyond the length
of the linkage table as designated
by control register 5.

2. Bit 0 of the linkage-table entry is
not zero.

The PC number is stored in bit positions
12-31 of the word at real location 144,
and the leftmost 12 bits of the word are
set to zeros.

The operation is nullified.

The instruction-length code is 2.

The lX-translation exception is indi­
cated by a program-interruption code of
0022 hex (or 00A2 hex if a concurrent
PER event is indicated>.

Monitor Event

A monitor event is recognized when MONI­
TOR CAll is executed and the monitor­
mask bit in control register 8
corresponding to the class specified by
instruction bits 12-15 is one. The
information in control register 8 has
the following format:

Control Register 8

I Monitor Masks I
16 31

The monitor-mask bits, bits 16-31 of
control register 8, correspond to moni­
tor classes 0-15, respectively. Any
number of monitor-mask bits may be on at
a time; together they specify the class­
es of monitor events that are monitored
at that time. The mask bits are
initialized to zeros.

When MONITOR CALL is executed and the
corresponding monitor-mask bit is one, a
program interruption for monitor event
occurs.

The monitor event can occur in both the
EC and BC modes.

Additional information is stored at real
locations 148-149 and 156-159. The
format of the information stored at
these locations is the same in the EC
and BC modes and is as follows:

Real Locations 148-149

o 8

Monitor
Class Ho.

15

Real Locations 156-159

1000000001 Monitor Code

o 8 31

The contents of bit positions 8-15 of
the MONITOR CALL instruction are stored
at real location 149 and constitute the
monitor-class number. Zeros are stored
at real location 148. The effective
address specified by the B t and Dt

fields of the instruction forms the
monitor code, which is stored at real
locations 157-159. Zeros are stored at
real location 156.

The operation is completed.

The instruction-length code is 2.

The monitor event is indicated by a
program-interruption code of 0040 hex
(or OOCO hex if a concurrent PER event
is indicated>.

Operation Exception

An operation exception is recognized
when the CPU attempts to execute an
instruction with an invalid operation
code. The operation code may be unas­
signed, or the instruction with that
operation code may not be installed on
the CPU.

For the purpose of checking the opera­
tion code of an instruction, the opera­
tion code is defined as follows:

1. When the first eight bits of an
instruction have the value B2, A4,
A5, A6, E4, or E5 hex, or have the
value 9C hex and the suspend-and­
resume facility is installed, the
first 16 bits form the operation
code.

2. In all other cases, the first eight
bits alone form the operation code.

The operation is suppressed.

The instruction-length code is 1, 2, or
3.

The operation exception is indicated by
a program-interruption code of 0001 hex
(or 0081 hex if a concurrent PER event
is indicated>.

Programming Notes

1. Some models may offer instructions
not described in this publication,
such as those provided for assists
or as part of special or custom
features. Consequently, operation
codes not described in this publi­
cation do not necessarily cause an
operation exception to be recog­
nized. Furthermore, these
instructions may cause modes of
operation to be set up or may
otherwise alter the machine so as
to affect the execution of subse­
quent instructions. To avoid
causing such an operation, an
instruction with an operation code
not described in this publication

Chapter 6. Interruptions 6-21

should be executed only when
specific function associated
the operation code is desired.

2. The operation code 00, with a two­
byte instruction format, currently
is not assigned. It is improbable
that this operation code will ever
be assigned.

3. In the case of I/O instructions
with hex values 90, 9E, 9F, and, on
machines without the suspend-and­
resume facility, 9C, in bit posi­
tions 0-7, the value of bit 15 is
used to distinguish between two
instructions. Bits 8-14, however,
are not checked for zeros, and
these operation codes never cause
an operation exception to be recog­
nized. On machines with the
suspend-and-resume facility, all 16
bits are checked for op codes
beginning 9C hex.

To ensure that presently written
programs operate correctly if and
when the I/O operation codes (90,
9E, and 9F) are extended further to
provide for new functions, only
zeros should be placed in the unas­
signed bit positions in the second
op-code byte. In accordance with
these recommendations, the opera­
tion codes for the I/O instructions
are shown as 9COO, 9COl, 9000, etc.

Page-Translation Exception

A page-translation exception is recog­
nized when either:

1. The page-table entry indicated by
the page-index portion of a virtual
address is outside the page table.

2. The page-invalid bit is one.

The exception is recognized as part of
the execution of the instruction that
needs the page-table entry in the trans­
lation of either an instruction or oper­
and address, except for the operand
address in LOAD REAL ADDRESS and TEST
PROTECTION, in which case the condition
is indicated by the setting of the
condition code.

The segment-index and page-index portion
of the virtual address causing the
exception is stored at real locations
145-147. When DAS is installed, bit 0
of real location 144 is set to zero if
the virtual address was relative to the
primary address space, or it is set to
one if the virtual address was relative
to the secondary address space. When
DAS is not installed, bi t 0 of real
location 144 is set to zero. Bits 1-7
of real location 144 are set to zeros.
When 2K-byte pages are used, the right-

6-22 System/370 Principles of Operation

most 11 bits of the address stored are
unpredictable; when 4K-byte pages are
used, the rightmost 12 bits of the
address stored are unpredictable.

The unit of operation is nullified.

When the exception occurs during fetch­
ing of an instruction, it is unpredict­
able whether the ILC is 1, 2, or 3.
When the exception occurs during a
reference to the target of EXECUTE, the
ILC is 2.

When the exception occurs during a
reference to an operand location, the
instruction-length code (ILC) is 1, 2,
or 3 and indicates the length of the
instruction causing the exception.

The page-translation exception is indi­
cated by a program-interruption code of
0011 hex (or 0091 hex if a concurrent
PER event is indicated).

PC-Translation-Specification Exception

A PC-translation-specification exception
is recognized during PC-number trans­
lation in PROGRAM CALL when bit posi­
tions 1-7 of a valid linkage-table entry
do not contain zeros or when bit posi­
tions 32-39 of the entry-table entry are
not all zeros.

The operation is suppressed.

The instruction-length code is 2.

The PC-translation-specification
tion is indicated by a
interruption code of OOIF hex
hex if a concurrent PER event
cated) .

A PER event is recognized when
is enabled for PER and one or
these events occur.

excep­
program­
(or 009F
is indi-

the CPU
more of

The PER mask, bit 1 of the EC-mode PSW,
controls whether the CPU is enabled for
PER. PER is disallowed in the BC mode.
When the PER mask is zero, or in the BC
mode, PER events are not recognized.
When the bit is one, PER events are
recognized, subject to the PER-event­
mask bits in control register 9.

The unit of operation is completed,
unless another condition has caused the
unit of operation to be inhibited,
nullified, suppressed, or terminated.

Additional
event is
150-155.

information identifying the
stored at real locations

The instruction-length code is 0, 1, 2,
or 3. Code 0 is set only if a specifi­
cation exception is indicated concur­
rently.

The PER event is indicated by setting
bit 8 of the program-interruption code
to one.

See the section "Program-Event
Recording" in Chapter 4, "Control," for
a detailed description of the PER event
and the associated interruption informa­
tion.

Primary-Authority Exception

A primary-authority exception is recog­
nized during ASH authorization in
PROGRAM TRANSFER with space switching
(PT-ss) when either:

1. The authority-table entry indicated
by the authorization index in
control register 4 is beyond the
length of the authority table
designated by the ASN-second-table
entry.

2. The primary-authority bit indicated
by the authorization index is zero.

The ASH being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The primary-authority exception is indi­
cated by a program-interruption code of
0024 hex (or OOA4 hex if a concurrent
PER event is indicated).

Privileged-Operation Exception

A privileged-operation exception is
recognized when any of the following is
true:

1. Execution of a privileged instruc­
tion is attempted in tha problem
state.

2. The value of the rightmost bit of
the general register designated by
the R2 field of the PROGRAM TRANS­
FER instruction is zero and would
cause the PSW probl~m-state bit to
change from the problem state (one)
to the supervisor 5tate (zero).

3. In the problem state, the key value
specified by the second operand of
the SET PSW KEY FROM ADDRESS
instruction corresponds to a zero

PSW-key-mask bit in control regis­
ter 3.

4. In the problem state, the key value
specified by the rightmost byte of
the register designated by the R3
field of the MOVE WITH KEY instruc­
tion corresponds to a zero PSW­
key-mask bit in control register 3.

5. In the problem state, the key value
specified by the rightmost byte of
the register designated by the R3
field of the instructions MOVE TO
PRIMARY and MOVE TO SECONDARY
corresponds to a zero PSW-key-mask
bit in control register 3.

6. In the problem state, any of the
instructions

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASH
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY
INSERT VIRTUAL STORAGE KEY

is encountered, and the
extraction-authority control, bit 4
of control register 0, is zero.

7. In the problem state, the result of
ANDing the authorization key mask
(AKM) with the PSW-key mask in
control register 3 during PROGRAM
CALL produces a result of zero.

The operation is suppressed.

The instruction-length code is 1, 2, or
3.

The privileged-operation exception is
indicated by a program-interruption code
of 0002 hex (or 0082 hex if a concurrent
PER event is indicated).

Protection Exception

A protection exception is recognized
when any of the following is true:

1. Key-Controlled Protection: The CPU
attempts to access a storage
location that is protected against
the type of reference, and the
access key does not match the stor­
age key.

2. low-Address Protection: The CPU
attempts a store that is subject to
low-address protection, the effec­
tive address is in the range 0-511,
and the low-address protection
control, bit 3 of control register
0, is one.

3. Segment Protection: The CPU
attempts to store, with DAT on,
into a segment which has the
segment-protection bit set to one.

Chapter 6. Interruptions 6-23

The operation is suppressed when the
location of the instruction is protected
against fetching. Similarly, the opera­
tion is suppressed when the location of
the target instruction of EXECUTE is
protected against fetching.

Except for some specific instructions
whose execution is suppressed, the oper­
ation is terminated when a protection
exception is encountered during a refer­
ence to an operand location. See the
figure "Summary of Action for Protection
and Addressing Exceptions," which is
included in the section "Addressing
Exception" in this chapter.

For termination, changes may occur only
to result fields. In this context, the
term "result field" includes condition
code, registers, and storage locations,
if any, which are due to be changed by
the instruction. However, no change is
made to a storage location when a refer­
ence to that location causes a
protection exception. Therefore, if an
instruction is due to change only the
contents of a field in storage, and
every byte of that field would cause a
protection exception, the operation is
suppressed. When termination occurs on
fetching, the protected information is
not loaded into an addressable register
nor moved to another storage location.

When the exception occurs during fetch­
ing of an instruction, it is unpredict­
able whether the ILC is 1, 2, or 3.
When the exception occurs during the
fetching of the target of EXECUTE, the
IlC is 2.

For a protected operand location, the
instruction-length code (ILC) is 1, 2,
or 3, indicating the length of the
instruction that caused the reference.
However, on some models without the
translation facility, an IlC of 0 occurs
when a protection exception is recog­
ni=ed for a store-type reference.

The protection exception is indicated by
a program-interruption code of 0004 hex
(or 0084 hex if a concurrent PER event
is indicated).

Secondary-Authority Exception

A secondary-authority exception is
recognized during ASH authorization in
SET SECONDARY ASH with space switching
(SSAR-ss) when either:

1. The authority-table entry indicated
by the authorization index in
control register 4 is beyond the
length of the authority table
designated by the ASN-second-table
entry.

6-24 System/370 Principles of Operation

2. The secondary-authority bit indi­
cated by the authorization index is
zero.

The ASH being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The secondary-authority exception is
indicated by a program-interruption code
of 0025 hex (or OOA5 hex if a concurrent
PER event is indicated).

Segment-Translation Exception

A segment-translation
recognized when either:

exception is

1. The segment-table entry indicated
by the segment-index portion of a
virtual address is outside the
segment table.

2. The segment-invalid bit is one.

The exception is recognized as part of
the execution of the instruction that
needs the segment-table entry in the
translation of either the instruction or
operand address, except for the operand
address in LOAD REAL ADDRESS and TEST
PROTECTION, in which case the condition
is indicated by the setting of the
condition code.

The segment-index and page-index portion
of the virtual address causing the
exception is stored at real locations
145-147. When DAS is installed, bit 0
of real location 144 is set to zero if
the virtual address was relative to the
primary address space, or it is set to
one if the virtual address was relative
to the secondary address space. When
DAS is not installed, bi t 0 of real
location 144 is set to zero. Bits 1-7
of real location 144 are set to zeros.
When 2K-byte pages are used, the right­
most 11 bits of the address stored are
unpredictable; when 4K-byte pages are
used, the rightmost 12 bits of the
address stored are unpredictable.

The unit of operation is nullified.

When the exception occurs during fetch­
ing of an instruction, it is unpredict­
able whether the ILC is 1, 2, or 3.
When the exception occurs during the
fetching of the target of EXECUTE, the
ILC is 2.

When the exception occurs during a
reference to an operand location, the
instruction-length code (IlC) is 1, 2,
or 3 and indicates the length of the
instruction causing the exception.

The segment-translation exception is
indicated by a program-interruption code
of 0010 hex (or 0090 hex if a concurrent
PER event is indicated).

Significance Exception

A significance exception is
when the result fraction in
point addition or subtraction

recognized
floating­

is zero.

The interruption may be disallowed by
the significance mask (PSW bit 23 in the
EC mode and PSW bit 39 in the BC mode).

The operation is completed. The signif­
icance mask also affects the result of
the operation. When the mask bit is
zero, the operation is completed by
replacing the result with a true zero.
When the mask bit is one, the operation
is completed without further change to
the characteristic of the result.

The instruction-length code is 1 or 2.

The significance exception is indicated
by a program-interruption code of XXOE
hex (or XX8E hex if a concurrent PER
event is indicated), where XX is the
exception-extension code.

Space-Switch Event

A space-switch event is recognized at
the completion of a PROGRAM CALL with
space switching (PC-ss) or a PROGRAM
TRANSFER with space switching (PT-ss)
when any of the following is true:

1. The space-switch-event-control bit,
bit 31 of control register 1, is
one before the operation.

2. The space-switch-event-control bit
is one after the operation.

3. A PER event is reported.

The old PASN, which is in the right half
of control register 4 before the
execution of the instruction PC-ss or
PT-ss, is stored at real locations
146-147. The old space-switch-event­
control bit is placed in bit position 0
and zeros are placed in bit positions
1-15 at real locations 144-145.

The operation is completed.

The instruction-length code is 2.

I The space-switch event is indicated by a
I program-interruption code of OOIC hex
I (or 009C hex if a concurrent PER event

~I is indicated).

Programming Notes

1. The space-switch event permits the
control program to galn control
whenever a program enters or leaves
a particular address space. The
space-switch-event-control bit is
loaded into control register 1,
along with the remaining bits of
the primary segment-table desig­
nation, whenever control register 1
is loaded.

2. The space-switch event may be
useful in obtaining programmed
author;zat;on checking, in caus;ng
additional trace information to be
recorded, or in enabling or disabl­
ing the CPU for PER or tracing.

3. Bit 95 of the ASN-second-table
entry (ASTE) is loaded into bit
position 31 of control register 1
as part of the PC-ss and PT-ss
operations. If bit 95 of the ASTE
for a particular address space is
set to one, then a space-switch
event is recognized when a program
enters or leaves the address space
by means of either a PC-ss or a
PT-ss.

4. The occurrence of a space-switch
event at the completion of a PC-ss
or PT-ss when any PER event is
indicated permits the control
program to determine the address
space from which the instruction
causing the PER event was fetched.

Special-Operation Exception

A special-operation exception is recog­
nized when any of the following is true:

1. Execution of SET SYSTEM MASK is
attempted in the supervisor state
and the SSM-suppression control,
bit 1 of control register 0, is
one.

2. Execution of any of the following
instructions is attempted with OAT
off:

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT VIRTUAL STORAGE KEY
MOVE TO PRIMARY
MOVE TO SECONDARY
SET ADDRESS SPACE CONTROL
SET SECONDARY ASH

3. Execution of PROGRAM CALL or
PROGRAM TRANSFER is attempted, and

Chapter 6. Interruptions 6-25

the CPU is not in the primary-space
mode.

4. Execution of LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL with space
switching (PC-ss), PROGRAM TRANSFER
with space switching (PT-ss), or
SET SECONDARY ASN (SSAR-cp or
SSAR-ss) is attempted, and the
ASN-translation control, bit 12 of
control register 14, is zero.

5. Execution of PROGRAM CALL or
PROGRAM TRANSFER is attempted and,
the subsystem-linkage control, bit
o of control register 5, is zero.

6. Execution of SET ADDRESS SPACE
CONTROL, MOVE TO PRIMARY, or MOVE
TO SECONDARY is attempted, and the
secondary-space control, bit 5 of
control register 0, is zero.

7. The storage-key 4K-byte-block
facility is installed; execution of
the instruction INSERT STORAGE KEY,
RESET REFERENCE BIT, or SET STORAGE
KEY is attempted; and the storage­
key-exception control, bit 7 of
control register 0, is zero.

The operation is suppressed.

The instruction-length code is 1, 2, or
3, and indicates the length of the
instruction causing the exception.

The special-operation exception is indi­
cated by a program-interruption code of
0013 hex (or 0093 hex if a concurrent
PER event is indicated).

Specification Exception

A specification exception is recognized
when any of the following is true:

1. A one is introduced into an unas­
signed bit position of an EC-mode
PSW (that is, any of bit positions
0, 2-4, 17, or 24-39). This is
handled as an early PSW specifica­
tion exception.

2. A PSW is introduced in which the EC
mode is specified (PSW bit 12 is
one) in a CPU that does not have
the translation facility installed.
This is handled as an early PSW
specification exception.

3. A one is introduced into an EC-mode
PSW bit position, other than in the
I/O-mask or program-mask field,
specifying a mode or facility that
is not installed in the CPU. For
example, bit 16 is one, and DAS is
not installed. This is handled as
an early PSW specification excep­
tion.

6-26 System/370 Principles of Operation

4. The PSW contains an odd instruction
address.

5. An operand address does not desig­
nate an integral boundary in an
instruction requiring such
integral-boundary designation.

6. An odd-numbered general register is
designated by an R field of an
instruction that requires an even­
numbered register designation.

7. A floating-point register other
than 0, 2, 4, or 6 is designated
for a short or long operand, or a
floating-point register other than
o or 4 is designated for an
extended operand.

8. The multiplier or divisor in deci­
mal arithmetic exceeds 15 digits
and sign.

9. The length of the first-operand
field is less than or equal to the
length of the second-operand field
in decimal multiplication or divi­
sion.

10. Bit positions 8-11 of MONITOR CALL
do not contain zeros.

11. Bits 20-22 of the second-operand
address of SET ADDRESS SPACE
CONTROL are not all zeros.

12. The leftmost eight bits of the
general register designated by the
R2 field of PROGRAM TRANSFER are
not zeros.

13. Execution of PROGRAM CALL, PROGRAM
TRANSFER, or SET SECONDARY ASN is
attempted with DAS tracing enabled,
and (1) bits 29-31 of the trace­
table designation contained in the
word at logical location 84 are not
all zeros, or (2) the new value of
bits 27-31 of the trace-table-entry
header would not be zero.

14. The storage address in INSERT
STORAGE KEY or SET STORAGE KEY does
not have zeros in the four right­
most bit positions.

The execution of the instruction identi­
fied by the old PSW is suppressed.
However, for early PSW specification
exceptions (causes 1-3), the operation
that introduces the new PSW is
completed, but an interruption occurs
immediately thereafter.

Except as noted below, the instruction­
length code (ILC) is 1, 2, or 3, indi­
cating the length of the instruction
causing the exception.

When the instruction address is odd
(cause 4), it is unpredictable whether
the ILC is 1, 2, or 3.

When the exception is recognized because
of an early PSW specification exception,
(causes 1-3), and the exception has been
introduced by LOAD PSW or an inter­
ruption, the ILC is o. When the excep­
tion is introduced by SET SYSTEM MASK or
by STORE THEN OR SYSTEM MASK, the ILC is
2.

The specification exception is indicated
by a program-interruption code of 0006
hex (or 0086 hex if a concurrent PER
event is indicated).

Programming Note

See the section "Exceptions Associated
with the PSW" in this chapter for a
definition of when the exceptions asso­
ciated with the PSW are recognized.

Translation-Specification Exception

A translation-specification exception is
recognized when translation of a virtual
address is attempted and any of the
following is true:

1. Bit positions 8-12 of control
register 0 do not contain one of
the codes 01000, 01010, 10000, or
10010. When the translation facil­
ity is installed but the 1M-byte
segment size is not provided, the
exception is recognized when bit
positions 8-12 do not contain one
of the codes 01000 or 10000. On
models offering only the 4K-byte
page size, the exception is recog­
nized when bit positions 8-12 do
not contain the code 10000.

2. The segment-table entry used for
the translation is valid and bit
positions 4-7 and 29-30 in the
ent ry do not conta in zero s. (On
some models, these bit positions
are ignored and not checked for
zeros.) When the segment­
protection facility is installed,
bit 29 of the segment-table entry
is used to indicate segment
protection and need not be zero.
When the common-segment facility is
installed, bit 30 is interpreted as
the common-segment bit and need not
be zero.

3. The page-table entry used for the
translation is valid and bit posi­
tion 14, when 2K-byte pages are
used, or bit posltions 13-14, when
4K-byte pages are used, in the
entry do not contain zeros. When
the extended-real-addressing facil­
ity is installed, and when 4K-byte
pages are used, bit positions 13
and 14 of the page-table entry are

the extended-storage-address bits
and need not be zeros.

The exception is recognized only as part
of the execution of an instruction using
address translation, that is, when DAT
is on and a logical address, instruction
address, or virtual address must be
translated, or when LOAD REAL ADDRESS or
INVALIDATE PAGE TABLE ENTRY is executed.
Cause 1 is recognized on any translation
attempt; causes 2 and 3 are recognized
only for table entries that are actually
used.

The unit of operation is suppressed.

When the exception occurs during fetch­
ing of an instruction, it is unpredict­
able whether the ILC is 1, 2, or 3.
When the exception occurs during the
fetching of the target of EXECUTE, the
ILC is 2.

When the exception occurs during a
reference to an operand location, the
instruction-length code (ILC) is 1, 2,
or 3 and indicates the length of the
instruction causing the exception.

The translation-specification exception
is indicated by a program-interruption
code of 0012 hex (or 0092 hex if a
concurrent PER event 1S indicated).

Programming Note

When a translation-specification excep­
tion is recognized in the process of
translating an instruction address, the
operation is suppressed. In this case,
the instruction-length code (ILC) is
needed to derive the address of the
instruction, as the instruction address
in the old PSW has been incremented by
the amount indicated by the ILC. In the
case of segment-translation and page­
translation exceptions, the operation is
nullified, the instruction address in
the old PSW identifies the instruction,
and the ILC may be arbitrarily set to 1,
2, or 3.

Unnormalized-Operond Exception

An unnormalized-operand exception is
recognized when, in a vector floating­
point divide or multiply operation, a
source-operand element has a nonzero
fraction with a leftmost hexadecimal
digit of zero. For more details, see
the pub lie uti 0 n I B i1 S y c; t em / 3 7 0 Vee tor
Ooerations, SA22-7125.

The unit of operation is inhibited.

The instruction-length code is 2.

Chapter 6. Interruptions 6-27

The unnormalized-operand exception is
indicated by a program-interruption code
of XX1E hex (or XX9E hex if a concurrent
PER event is indicated), where XX is the
exception-extension code.

Vector-Operation Exception

A vector-operation exception is recog­
nized when a vector-facility instruction
is executed while bit 14 of control
register 0 is zero on a CPU which has
the vector facility installed and avail­
able. The vector-operation exception is
also recognized when a vector-facility
instruction is executed and the vector
facility is not installed or available
on this CPU, but the facility can be
made available to the program either on
this CPU or another CPU in the config­
uration.

When a vector-facility instruction is
executed, and the vector facility is not
installed on any CPU which is or can be
placed in the configuration, it depends
on the model whether a vector-operation
exception or an operation exception is
recognized.

The operation is
vector-operation
recognized.

nullified when
exception

the
i s

The instruction-length code is 2 or 3.

6-28 System/370 Principles of Operation

The vector-operation exception is indi­
cated by a program-interruption code of
0019 hex (or 0099 hex if a concurrent
PER event is indicated).

COLLECTIVE PROGRAM-INTERRUPTION NAMES

For the sake of convenience, certain
program exceptions are grouped together
under a single collective name. These
collective names are used when it is
necessary to refer to the complete set
of exceptions, such as in instruction
definitions. Three collective names are
used:

Access exceptions
ASN-translation exceptions
Trace exceptions

The individual exceptions and their
priorities are listed in the section
"Multiple-Program-Interruption Condi­
tions" in this chapter.

RECOGNITION OF ACCESS EXCEPTIONS

The figure "Handling of Access
Exceptions" summarlzes the conditions
that can cause access exceptions and the
action taken when they are encountered.

Condition

Control-register-O contents l

Invalid encoding of bits 8-12

Segment-table entry
Segment-table-length violation
Entry protected against fetching
Invalid address of entry
I bit on
One in a bit position which is

checked for zer0 3

Page-table entry
Page-table-length violation
Entry protected against fetching
Invalid address of entry
I bit on
One in a bit position which is

checked for zer0 3

Access for instruction fetch
Location protected
Invalid address

Access for operands
Location protected
Invalid address

Explanation:

Translation for
Virtual Address
of LRA

Indi­
cation

TS

cc3

A
eel

TS

cc3

A
cc2

TS

Action

Suppress

Complete

Suppress
Complete
Suppress

Complete

Suppress
Complete
Suppress

The condition does not apply.

Translation
and Access for
Logical Address
of TPROT

Indi­
cation

cc3

A
cc3

TS

cc3

A
cc3

TS

Action

Complete

Suppress
Complete
Suppress

Complete

Suppress
Complete
Suppress

cc set 4 Complete
A Suppress

Translation and
Access for Any
Other Address

Indi­
cation

TS

ST

A
ST
TS

PT

A
PT
TS

P
A

P
A

Action

Suppress

Nullify

Suppress
Nullify
Suppress

Nullify

Suppress
Nullify
Suppress

Suppress
Suppress

Term.*
Term.*

* 1
Action is to terminate except where otherwise specified in this publication.
A translution-specification exception for an invalid code in control reg­
ister 0, bit positions 8-12, is recognized as part of the execution of the
instruction using address translation; when DAT is on, it is recognized
during translation of the instruction address, and, when DAT is off, it is
only recognized during execution of INVALIDATE PAGE TABLE ENTRY or for
translation of the operand address of LOAD REAL ADDRESS.

2

3

4

A
eel
cc2
cc3
P
PT
ST
TS

A translation-specification exception cannot occur for the logical address
of TEST PROTECTION because this exception would have been recognized during
the instruction fetch for the instruction.
A translation-specification exception for a format error in a table entry
is recognized only when the execution of an instruction requires the entry
for trunslation of an address.
The condition code is set as follows:

o Operand location not protected.
1 Fetches permitted, but stores not permitted~
2 Neither fetches nor stores permitted.

Addressing exception.
Condition code I set.
Condition codQ 2 set.
Condition code 3 set.
Protection exception.
Page-translation exception.
Segment-translation exception.
Translation-specification exception.

Handling of Access Exceptions

Chapter 6. Interruptions 6-29

Any access exception is recognized as
part of the execution of the instruction
with which the exception is associated.
An access exception is not recognized
when the CPU attempts to prefetch from
an unavailable location or detects some
other access-exception condition, but a
branch instruction or an interruption
changes the instruction sequence such
that the instruction is not executed.

Every instruction can cause an access
exception to be recognized because of
instruction fetch. Additionally, access
exceptions associated with instruction
execution may occur because of an access
to an operand in storage.

An access exception due to fetching an
instruction is indicated when the first
instruction halfword cannot be fetched
without encountering the exception.
When the first halfword of the instruc­
tion has no access exceptions, access
exceptions may be indicated for addi­
tional halfwords according to the
instruction length specified by the
first two bits of the instruction;
however, when the operation can be
performed without accessing the second
or third halfwords of the instruction,
it is unpredictable whether the access
exception is indicated for the unused
part. Since the indication of access
exceptions for instruction fetch is
common to all instructions, it is not
covered in the individual instruction
definitions.

Except where otherwise indicated in the
individual instruction description, the
following rules apply for exceptions
associated with an access to an operand
location. For a fetch-type operand,
access exceptions are necessarily indi­
cated only for that portion of the
operand which is required for completing
the operation. It is unpredictable
whether access exceptions are indicated
for those portions of a fetch-type oper­
and which are not required for
completing the operation. For a store­
type operand, access exceptions are
recognized for the entire operand even
if the operation could be completed
without the use of the inaccessible part
of the operand. In situations where the
value of a store-type operand is defined
to be unpredictable, it is unpredictable
whether an access exception is
indicated.

Whenever an access to an operand
location can cause an access exception
to be recognized, the word "access" is
included in the list of program
exceptions in the description of the
instruction. This entry also indicates
which operand can cause the exception to
be recognized and whether the exception
is recognized on a fetch or store access
to that operand location. Access
exceptions are recognized only for the

6-30 System/370 Principles of Operation

portion of the operand as defined by
each particular instruction.

MULTIPLE PROGRAM-INTERRUPTION CONDITIONS

Except for PER events, only one
program-interruption condition is indi­
cated with a program interruption. The
existence of one condition, however,
does not preclude the existence of other
conditions. When more than one
program-interruption condition exists,
only the condition having the highest
priority is identified in the inter­
ruption code.

With two conditions of the same
priority, it is unpredictable which is
indicated. In particular, the priority
of access exceptions associated with the
two parts of an operand that crosses a
page or protection boundary is unpre­
dictable and is not necessarily related
to the sequence specified for the access
of bytes within the operand.

The type of ending which occurs (nulli­
fication, suppression, or termination)
is that which is defined for the type of
exception that is indicated in the
interruption code. However, if a condi­
tion is indicated which permits
termination, and another condition also
exists which would cause either nullifi­
cation or suppression, then the unit of
operation is suppressed.

The figure "Priority of Program­
Interruption Conditions" lists the
priorities of all program-interruption
conditions other than PER events and
exceptions associated with DAS. All
exceptions associated with references to
storage for a particular instruction
halfword or a particular operand byte
are grouped as a single entry called
"access." The figure "Priority of
Access Exceptions" lists the priority of
access exceptions for a single access.
Thus, the second figure specifies which
of several exceptions, encountered
either in the access of a particular
portion of an instruction or in any
particular access associated with an
operand, has highest priority, and the
first figure specifies the priority of
this condition in relation to other
conditions detected in the operation.
Similarly, the priorities for exceptions
occurring as part of ASH translation and
tracing are covered in the figures "Pri­
ority of ASH-Translation Exceptions" and
"Priority of Trace Exceptions," respec­
tively.

For some instructions, the
shown in the individual
description.

priority is
instruction

The relative priorities of any two
conditions listed in the figure can be

found by comparing the priority numbers,
as found in the figure, from left to
right until a mismatch is found. If the
first inequality is between numeric
characters, either the two conditions
are mutually exclusive or, if both can
occur, the condition with the smaller
number is indicated. If the first
inequality is between alphabetic charac­
ters, then the two conditions are not
exclusive, and it is unpredictable which
is indicated when both occur.

To understand the use of the table,
consider an example involving the
instruction ADD DECIMAL, which is a
six-byte instruction. Assume that the
first four bytes of the instruction can
be accessed but that the instruction
crosses a boundary so that an addressing
exception exists for the last two bytes.
Additionally, assume that the first
operand addressed by the instruction
contains invalid decimal digits and is
in a location that can be fetched from,
but not stored into, because of key­
controlled protection. The three
exceptions which could result from

attempted execution of the ADD DECIMAL
are:

Priority
Number Exception

7.B Access exceptions for third
instruction halfword.

8.B Access exceptions (operand
1) •

8.D Data exception.

Since the first inequality (7*8) is
between numeric characters, the address­
ing exception would be indicated. If,
however, the entire ADD DECIMAL instruc­
tion can be fetched, and only the second
two exceptions listed above exist, then
the inequality (B*D) is between alpha­
bet i c characters, and it. is
unpredictable whether the protection
exception or the data exception would be
indicated.

Chapter 6. Interruptions 6-31

1.A

1.B

2.1

2.2

3.

4.

S.

6.

7.A

7.B

7.C.l

7.C.2

7.C.3

7.C.4

7.C.S

7.D

B.A

8.D

B.E

9.

Delayed addressing exception due to an attempted store by a previous
instruction (zero ILC).

Delayed protection exception due to an attempted store by a previous
instruction (zero ILC).

Specification exception due to any PSW error of the type that causes an
immediate interruption. l

Specification exception due to an odd instruction address in the PSW.

Access exceptions for first halfword of EXECUTE.2

Access exceptions for second halfword of EXECUTE.2

Specification exception due to target instruction of EXECUTE not being
specified on halfword boundary.2

Access exceptions for first instruction halfword.

Access exceptions for second instruction halfword. 3

Access exceptions for third instruction halfword. 3

Vector-operation exception.

Operation exception.

Privileged-operation exception for privileged instructions.

Execute exception.

Special-operation exception.

Specification exception caused by an uninstalled instruction that has an
assigned operation code (for example, an uninstalled floating-point in­
struction designating an odd floating-point register).

Specification exception due to conditions other than those included in
2, 5, and 7.D above.

Access exceptions for an access to an operand in storage. s

Access exceptions for any other access to an operand in storage. s

Data exception. 6

Decimal-divide exception.'

Events other than PER events, exceptions which result in completion,
and the following exceptions: fixed-point divide, floating-point divide,
and unnormalized operand. Either these exceptions and events are mutu­
ally exclusive or their priority is specified in the corresponding
definitions.

Priority of Program-Interruption Conditions (Part 1 of 2)

6-32 System/370 Principles of Operation

Explanation:

Numbers indicate priority~ with "1" being the highest priority; letters indicate
no priority.

2

3

4

5

6

7

PSW errors which cause an immediate interruption may be introduced by a new
PSW loaded as a result of an interruption or by the instructions LOAD PSW~
SET SYSTEM MASK, and STORE THEN OR SYSTEM MASK. The priority shown in the
chart is for a PSW error introduced by an interruption and may also be con­
sidered as the priority for a PSW error introduced by the previous instruc­
tion. The error is introduced only if the instruction encounters no other
exceptions. The resulting interruption has a higher priority than any inter­
ruption caused by the instruction which would have been executed next; it has
lower priority, however, than any interruption caused by the instruction which
introduced the erroneous PSW.

Priorities 3~ 4, and 5 are for the EXECUTE instruction, and priorities start­
ing with 6 are for the target instruction. When no EXECUTE is encountered~
priorities 3, 4, and 5 do not apply.

Separate accesses may occur for each halfword of an instruction. The second
instruction halfword is accessed only if bits 0-1 of the instruction are not
both zeros. The third instruction halfword is accessed only if bits 0-1 of
of the instruction are both ones. Access exceptions for one of these half­
words are not necessarily recognized if the instruction can be completed
without use of the contents of the halfword or if an exception of lower pri­
ority can be determined without the use of the halfword.

As in instruction fetching, separate accesses may occur for each portion of
an operand. Each of these accesses is of equal priority, and the two entries
8.B and 8.C are listed to represent the relative priorities of exceptions as-
sociated with any two of these accesses. Access exceptions for INSERT
STORAGE KEY, INSERT STORAGE KEY EXTENDED, INSERT VIRTUAL STORAGE KEY, INVALI­
DATE PAGE TABLE ENTRY, LOAD REAL ADDRESS, RESET REFERENCE BIT, RESET REFERENCE
BIT EXTENDED, SET STORAGE KEY, SET STORAGE KEY EXTENDED, and TEST PROTECTION
are also included in 8.B.

For MOVE LONG and COMPARE LOGICAL LONG, an access exception for a particular
operand can be indicated only if the R field for that operand designates an
even-numbered register.

The exception can be indicated only if the sign, digit, or digits responsi­
ble for the exception were fetched without encountering an access exception.

The exception can be indicated only if the digits used in establishing the
exception, and also the signs, were fetched without encountering an access
exception, only if the signs are valid, and only if the digits used in estab­
lishing the exception are valid.

Priority of Program-Interruption Conditions (Part 2 of 2)

Access Exceptions

The access exceptions consist of those
exceptions which can be encountered
while using an absolute, instruction,
logical, real, or virtual address to
access storage. Thus, with DAT on, the
exceptions are:

1. Translation specification

2. Segment translation

3. Page translation

4. Addressing

5. Protection (key-controlled,
ment, and low-address)

With DAT off, the exceptions are:

1. Addressing

2. Protection (key-controlled
low-address)

seg-

and

Additionally, the instructions LOAD REAL
ADDRESS and INVALIDATE PAGE TABLE ENTRY
can encounter a translation­
specification exception even with DAT
off.

Chapter 6. Interruptions 6-33

A.

B.1.

B.2.

B.3.

B.4.

B.S.

Protection exception (low-address protection) due to
a store-type operand reference with an effective ad­
dress in the range 0-511.

Translation-specification exception due to invalid
encoding of bits 8-12 of control register 0. 1

Segment-translation exception due to segment-table
entry being outside table. 2

Addressing exception for access to segment-table
entry.3

Segment-translation exception due to I bit in seg­
ment-table entry having the value one. 2

Translation-specification exception due to invalid
ones in segment-table entry.J

B.6.A. Protection exception (segment protection) due to a
store-type operand reference to a virtual address
which is protected against stores. 4

8.6.B.1 Page-translation exception due to page-table entry
being outside table. 2

B.6.8.2

B.6.B.3

Addressing exception for access to page-table entry.l

Page-translation exception due to I bit in page-table
entry having the value one. 2

B.6.B.4 Translation-specification exception due to invalid
ones in page-table entry.J

B.6.B.5 Addressing exception for access to instruction or
operand.

B.7. Protection exception (key-controlled protection) due
to attempt to access a protected instruction or op­
erand location.

Explanation:

4

Not applicable when DAT is off, except for execution of
INVALIDATE PAGE TABLE ENTRY and for translation of operand
address of LOAD REAL ADDRESS.

Not applicable when DAT 1S off; not applicable to operand
addresses for LOAD REAL ADDRESS and TEST PROTECTION.

Not applicable when DAT is off except for translation of
operand address for LOAD REAL ADDRESS.

Not applicable when DAT is off.

Priority of Access Exceptions

6-34 System/370 Principles of Operation

ASH-Translation Exceptions

The ASH-translation exceptions are those
exceptions which are common to the proc-
ess of translating an ASH in the
instructions PROGRAM CAll, PROGRAM
TRAHSFER, and SET SECOHDARY ASH. The
exceptions and the priority in which
they are detected are shown in the
figure "Priority of ASH-Translation
Exceptions."

1. Addressing exception for access
to ASH-first-table entry.

2.

3.

4.

5.

AFX-translation exception due
to I bit (bit 0) in ASH-first­
table entry being one.

ASH-translation-specification
exception due to invalid ones
(bits 1-7, 28-31) in ASH-first­
table entry.

Addressing exception for access
to ASH-second-table entry.

ASX-translation exception due
to I bit (bit 0) in ASH-second­
table entry being one.

6. ASH-translation-specification
exception due to invalid ones
(bits 1-7, 30, 31, 60-63, 97-
103) in ASH-second-table entry.

Priority of ASH-Translation Exceptions

Trace Exceptions

The trace exceptions are those
exceptions which can be encountered
while performing the implicit tracing
function. The exceptions, except for
PER storage alteration, and their prior­
ity are shown in the figure "Priority of
Trace Exceptions." PER storage alter­
ation is recognized only if the
instruction is completed.

1 .

2.

3.A

3.B

4.

5.

Access exceptions (except for
protection) for the trace-table
designation at logical location
84.

Specification exception due to
bits 29-31 of the word at
trace-header address in logical
location 84 not being zeros.

Access exceptions (including
low-address protection and seg­
ment protection) for first
doubleword of trace-table-entry
header.

Access exceptions (except for
protection) for third word of
trace-table-entry header.

Specification exception if new
value of trace-entry address in
trace header would not desig­
nate a 32-byte boundary.

Access exceptions (including
low-address protection and seg­
ment protection) for the trace
entry.

Priority of Trace Exceptions

RESTART IHTERRUPTIOH

The restart interruption provides a
means for the operator or another CPU to
invoke the execution of a specified
program. The CPU cannot be disabled for
this interruption.

A restart interruption causes the old
PSW to be stored at real location 8 and
a new PSW, designating the start of the
program to be executed, to be fetched
from real location o. The instruction­
length code and interruption code are
not stored in the EC mode. In the BC
mode, the instruction-length code in the
PSW is unpredictable, and zeros are
stored in the interruption-code field.

If the CPU is in the operating state,
the exchange of the PSWs occurs at the
completion of the current unit of opera­
tion and after all other pending inter­
ruption conditions for which the CPU is
enabled have been honored. In this
case, it depends on the model if the CPU
temporarily enters the stopped state as
part of the execution of the restart
operation. If the CPU is in the stopped
state, the CPU enters the operating
state and exchanges the PSWs without
first honoring any other pending inter­
ruptions.

Chapter 6. Interruptions 6-35

The restart interruption is initiated by
activating the restart key. When the
multiprocessing facility;s installed,
the operation can also be initiated at
the addressed CPU by executing a SIGNAL
PROCESSOR instruction which specifies
the restart order.

When the rate control is set to the
instruction-step position, it is unpre~
dictable whether restart causes a unit
of operation or additional interruptions
to be performed after the PSWs have been
exchanged.

Programming Note

To perform a restart when the CPU is in
the check-stop state, the CPU has to be
reset. If the translation facility is
installed, resetting with loss of the
least amount of information can be
accomplished by means of the system­
reset-normal key, which does not clear
the contents of program-addressable
registers, including the control regis­
ters, but causes the channels to be
reset. The program-reset SIGNAL PROCES­
SOR order can be used to perform a
similar function.

SUPERVISOR-CALL INTERRUPTION

The supervisor-call interruption occurs
when the instruction SUPERVISOR CAll is
executed. The CPU cannot be disabled
for the interruption, and the inter­
ruption occurs immediately upon the
execution of the instruction.

The supervisor-call interruption causes
the old PSW to be stored at real
location 32 and a new PSW to be fetched
from real location 96.

The contents of bit positions 8-15 of
the SUPERVISOR CALL instruction are
placed in the rightmost byte of the
interruption code. The leftmost byte of
the interruption code is set to zero.
The instruction-length code is 1, unless
the instruction was executed by means of
EXECUTE, in which case the code is 2.

When the old PSW specifies the EC mode,
the interruption code is placed in real
locations 138-139, the instruction­
length code is placed in bit positions 5
and 6 of the byte at real location 137,
with the other bits set to zeros, and
zeros are stored at real location 136.
When the old PSW specifies the BC mode,
the interruption code and instruction­
length code are placed in the old PSW.

6-36 System/370 Principles of Operation

PRIORITY OF INTERRUPTIONS

During the execution of an instruction,
several interruption-causing events may
occur simultaneously. The instruction
may give rise to a program interruption,
a request for an external interruption
may be received, equipment malfunction­
ing may be detected, an I/O-interruption
request may be made, and the restart key
may be activated. Instead of the
program interruption, a supervisor-call
interruption might occur; or both can
occur if PER is active. Simultaneous
interruption requests are honored in a
predetermined order.

An exigent machine-check condition has
the highest priority. When it occurs,
the current operation is terminated or
nullified. Program and supervisor-call
interruptions that would have occurred
as a result of the current operation may
be eliminated. Any pending repressible
machine-check conditions may be indi­
cated with the exigent machine-check
interruption. Every reasonable attempt
is made to limit the side effects of an
exigent machine-check condition, and
requests for external, I/O, and restart
interruptions normally remain unaf­
fected.

In the absence of an exigent machine­
check condition, interruption requests
existing concurrently at the end of a
unit of operation are honored, in
descending order of priority, as
follows:

Supervisor call
Program
Repressible machine check
External
Input/output
Restart

The processing of multiple simultaneous
interruption requests consists in stor­
ing the old PSW and fetching the new PSW
belonging to the interruption first
honored. This new PSW is subsequently
stored without the execution of any
instructions, and the new PSW associated
with the next interruption is fetched.
Storing and fetching of PSWs continues
until no more interruptions are to be
serviced. The priority is reevaluated
after each new PSW is loaded. Each
evaluation takes into consideration any
additional interruptions which may have
become pending. Additionally, external
and I/O interruptions, as well as
machine-check interruptions due to
repressible conditions, occur only if
the current PSW at the instant of evalu­
ation indicates that the CPU is
interruptible for the cause.

Instruction execution is resumed using
the last-fetched PSW. The order of
executing interruption subroutines is,

therefrre, the reverse of the order in
which the PSWs are fetched.

If the new PSW for a program inter­
ruption does not specify the wait state
and has an odd instruction address, or
causes an access exception to be recog­
nized, another program interruption
occurs. Since this second interruption
introduces the same unacceptable PSW, a
string of interruptions is established.
These program exceptions are recognized
as part of the execution of the follow­
ing instruction, and the string may be
broken by an external, I/O, machine­
check, or restart interruption or by the
stop function.

If the new PSW for a program inter­
ruption contains a one in an unassigned
bit position of an EC-mode PSW, or if it
specifies the EC mode in a CPU that does
not have the EC mode, or if it specifies
any other facility that is not installed
on the CPU, another program interruption
occurs. This condition is of higher
priority than restart, I/O, external, or
repressible machine-check conditions, or
the stop function, and CPU reset has to
be used to break the string of inter­
ruptions.

A string of interruptions for other
interruption classes can also exist if
the new PSW allows the interruption
which has just occurred. These include
machine-check interruptions, external
interruptions, and I/O interruptions due
to PCI conditions generated because of
CCWs which form a loop. Furthermore, a
string of interruptions involving more
than one interruption class can exist.
For example, assume that the CPU timer

is negative and the CPU-timer subclass
mask is one. If the external new PSW
has a one in an unassigned bit position
in the EC mode, and the program new PSW
is enabled for external interruptions,
then a string of interruptions occurs,
alternating between external and
program. Even more complex strings of
interruptions are possible. As long as
more interruptions must be serviced, the
string of interruptions cannot be broken
by employing the stop function; CPU
reset is required.

Similarly, CPU reset has to be invoked
to terminate the condition that exists
when an interruption is attempted with a
prefix value designating a storage
location that is not available to the
CPU.

On some models, when an excessive string
of consecutive interruptions is detected
which cannot be broken by means of the
stop function, the CPU enters a special
state that can be exited only by use of
CPU reset.

Interruptions for all requests for which
the CPU is enabled occur before the CPU
is placed in the stopped state. When
the CPU is in the stopped state, restart
has the highest priority.

Programming Note

The order in which concurrent inter­
ruption requests are honored can be
changed to some extent by masking.

Chapter 6. Interruptions 6-37

CHAPTER ~ GENERAL INSTRUCTIONS

Data Format•.••..•.•...•....••••.....••••...•...•.• 7-2
Binary-Integer Representation ••..•.•••.•.•..•••••..•...••. 7-2
Binary Arithmetic ...•...••.••.••.•..•....•...•.•••.•.••.•• 7-3

Signed Binary Arithmetic•....•.•....•.•.•..... 7-3
Addition and Subtraction •.•••.•......•..•....•..•.••.• 7-3
Fixed-Point Overflow ..•••..•••••.•...•..••...•..••••.• 7-3

Unsigned Binary Arithmetic •.•.•.•..••.•••••••..•••••.••• 7-3
Signed and Logical Comparison••..••...•••••.••.•.. 7-4
Instruct ions•....•..........•...•..•.•.••..•......•. 7-4

ADD•.....................•. 7-7
ADD HALFWORD•.•••...•.•..••..•.•...••••...•.•.•..••• 7-7
ADD LOGICAL•....................................... 7-8
AND .•...................•...•.....••..••......•..•.•..•. 7-8
BRANCH AND LINK•...•...........•••.....•.•. 7-9
BRANCH AND SAVE•.....•..•.................... 7-9
BRANCH ON CONDITION ...•...•............•................ 7-10
BRANCH ON COUNT ...•.•.••....•.•..•.....•.•......••.•.••. 7 -11
BRANCH ON INDEX HIGH •...•.......•..•..........•......••. 7-11
BRANCH ON INDEX LOW OR EQUAL•. 7-11
COt" PAR E•...•............................••.•..••. 7 - 1 2
COMPARE AND SWAP ..•............••.•.•..••.•••.•••••..••. 7-12
COMPARE DOUBLE AND SWAP•..•.....••••....•.•..•• 7-12
COMPARE HALFWORD ...•......•.....•..........•.•••.•...••. 7-14
COMPARE LOGICAL •..•....•••.......•••...••••.•••••.•••••. 7-14
COMPARE LOGICAL CHARACTERS UNDER MASK •.••..••.•.•.•..••• 7-15
COMPARE LOGICAL LONG•...•......•....••..••••......•. 7-15
CONVERT TO BINARy •....•.....•••.•......•..••.•••.•.••••• 7-16
CONVERT TO DECIMAL•......•..•...•....••.......... 7-17
DIVIDE•............•.•..••. 7-17
EXCLUSIVE OR•.•......•.•••...•..•••••........• 7-18
EXECUTE•.•••••...•.......•......••.•.•.•.•....••. 7-19
INSERT CHARACTER ...••.•........••.••.••..••.........••.. 7-20
INSERT CHARACTERS UNDER MASK•..•.••.....•..•. 7-20
LOAD .••.....•...•••.•.•••....•..••...•.....•..••.•..•..• 7-20
LOAD ADDRESS•.........•.........•.•..••..•••... 7-21
LOAD AND TEST••.....••....••.•••••.•.•••.••...••••.. 7-21
LOAD COMPLEMENT ... 7-21
LOAD HALFWORD•••••••.••.•••.•••....•.•••...•••••••. 7-22
LOAD MUL TIPLE••.•...•.•.•••..••••....•.••••....•..•. 7-22
LOAD NEGATIVE•....•.........•..•...•.•.•............ 7-22
LOAD POSITIVE••...........•..•.•.•..........•..... 7-22
~'OHITOR CALL •..•••••...•..•••..•••.•.••••••••....••..... 7-23
MOVE .•....•.•...••.•...••.........•.•..•...••.........•. 7-23
~10VE INVERSE •.........•...........•..........•....•...•. 7-24
MOVE LONG •......••..•....•.•...•...•....•..•....•.•••.•• 7-24
MOVE NUMERICS ...•..•...•.•••.•.•.•••••.•..••..•••••.•..• 7-27
MOVE WITH OFFSET .••.•.•..••.•............•••••...••••••• 7-27
MOVE ZONES ..•..•................•.•••..•..•....••.•••••. 7-28
MUL TIPL Y•...•...•........•••..•.•...••.....••••••.•• 7-28
MULTIPLY HALFWORD •....•••••••..•••..••••.•••••••••••.••• 7-29
OR .••..•.••.••...•..•.••.....••••..••..•..•••••••••••••. 7-29
PACK•.......•.•.•..••••.••.•.•.•••.••.•••.•••••••••• 7-30
SET PROGRAM MASK ..•••.....•...•••.•.••.••.•••.••.••••••• 7-31
SHIFT LEFT DOUBLE •..••••••••••.••••.•••••••••••••••••••. 7-31
SHIFT LEFT DOUBLE LOGICAL ••••••.••••.•.••••••....••.•.•. 7-32
SHIFT LEFT SINGLE ••..••.••••..••••••••.••••••••.•.•••••• 7-32
SHIFT LEFT SINGLE LOGICAL •.••••.•..•••.•••••••••••••..•• 7-33
SHIFT RIGHT DOUBLE •...••••.••••••.••....••.••••••••.•••. 7-33
SHIFT RIGHT DOUBLE LOGICAL ••.•..••.••..••••••.•••••••••• 7-33
SHIFT RIGHT SINGLE •.•••••••.•••••••••••••••••••••••••••• 7-34
SHIFT RIGHT SINGLE LOGICAL •...•••..••..••.••••••.••••••. 7-34
STORE•.......•..........••••...•..•............. 7-34
STORE CHARACTER••.••.•••••••.•.••••.••.••••••• 7-34
STORE CHARACTERS UNDER MASK ••••••••••.•••••••••••••••••• 7-35
STORE CLOCK••..••••..•••••••••..•••••.••••••••••••• 7-35
STORE HALFWORD .••••.•••.••.••••••••••••••••••.•••••••••• 7-36
STORE MULTIPLE •• 7-36
SUBTRACT •••.•••.••••••••••••••••••••••.••••••••••••••••• 7-36

Chapter 7. General Instructions 7-1

SUBTRACT HALFWORD ••••••••••••.••••••.••••••.•••••••••••. 7-37
SUBTRACT LOGICAL •••••.•••••••••••••••.••••••.•••••.•.••• 7-37
SUPERVISOR CALL ••••••••••••••.•••••••••••••••••••••••••• 7-38
TEST AND SET •••••••••.••••••.•••••.•••••.••••••••••••••• 7-38
TEST UNDER MASK •••••...••••••.••••.••.••.....•.•••••••.• 7-38
TRANSLATE•.•...•..•••..•.......•....••...•....•. 7-39
TRANSLATE AND TEST ••••..•••••.•••••••••••••.••..•..••..• 7-40
UNPACK .••.••.•.••••...•••••••••.••••••••.••••••.••.••••• 7-40

This chapter includes all the unprivi­
leged instructions described in this
publication other than the decimal and
floating-point instructions.

DATA FORMAT

The general instructions treat data as
being of four types: signed binary
integers, unsigned binary integers,
unstructured logical data, and decimal
data. Data is treated as decimal by the
conversion, packing, and unpacking
instructions. Decimal data is described
in Chapter 8, "Decimal Instructions."

The general instructions manipulate data
which resides in general registers or in
storage or is introduced from the
instruction stream. Some general
instructions operate on data which
resides in the PSW or the TOO clock.

In a storage-to-storage operation the
operand fields may be defined in such a
way that they overlap. The effect of
this overlap depends upon the operation.
When the operands remain unchanged, as
in COMPARE or TRANSLATE AND TEST, over­
lapping does not affect the execution of
the operation. For instructions such as
MOVE and TRANSLATE, one operand is
replaced by new data, and the execution
of the operation may be affected by the
amount of overlap and the manner in
which data is fetched or stored. For
purposes of evaluating the effect of
overlapped operands, data is considered
to be handled one eight-bit byte at a
time. Special rules apply to the oper­
ands of MOVE LONG and MOVE INVERSE.

BINARY-INTEGER REPRESENTATION

Binary integers are treated as signed or
unsigned.

In an unsigned binary integer, all bits
are used to express the absolute value
of the number. When two unsigned binary
integers of different lengths are added,

7-2 System/370 Principles of Operation

the shorter number is considered to be
extended on the left with zeros.

In some operations, the result is
achieved by the use of the one's comple­
ment of the number. The one's comple­
ment of a number is obtained by
inverting each bit of the number,
including the sign.

For signed binary integers, the leftmost
bit represents the sign, which is
followed by the numeric field. Positive
numbers are represented in true binary
notation with the sign bit set to zero.
When the value is zero, all bits are
zeros, including the sign bit. Negative
numbers are represented in two's­
complement binary notation with a one in
the sign-bit position.

Specifically, a negative number is
represented by the two's complement of
the positive number of the same absolute
value. The two's complement of a number
is obtained by forming the one's comple­
ment of the number, adding a value of
one in the rightmost bit position,
allowing a carry into the sign position,
and ignoring any carry out of the sign
position.

This number representation can be
considered the rightmost portion of an
infinitely long representation of the
number. When the number is positive,
all bits to the left of the most signif­
icant bit of the number are zeros. When
the number is negative, these bits are
ones. Therefore, when a signed operand
must be extended with bits on the left,
the extension is achieved by setting
these bits equal to the sign bit of the
operand.

The notation for signed binary integers
does not include a negative zero. It
has a number range in which, for a given
length, the set of negative nonzero
numbers is one larger than the set of
positive nonzero numbers. The maximum
positive number consists of a sign bit
of zero followed by all ones, whereas
the maximum negative number (the nega­
tive number with the greatest absolute
value) consists of a sign bit of one
followed by all zeros.

A signed binary integer of either sign,
except for zero and the maximum negative
number, can be changed to a number of
the same magnitude but opposite sign by
forming its two's complement. Forming
the two's complement of a number is
equivalent to subtracting the number
from zero. The two's complement of zero
is zero.

The two's complement of the maximum
negative number cannot be represented in
the same number of bits. When an opera­
tion, such as LOAD COMPLEMENT, attempts
to produce the two's complement of the
maximum negative number, the result is
the maximum negative number, and a
fixed-paint-overflow exception is recog­
nized. An overflow does not result,
however, when the maximum negative
number is complemented as an intermedi­
ate result but the final result is
within the representable range. An
example of this case is a subtraction of
the maximum negative number from -1.
The product of two maximum negative
numbers of a given length is represent­
able as a positive number of double that
length.

In discussions of signed binary integers
in this publication, a signed binary
integer includes the sign bit. Thus,
the expression "32-bit signed binary
integer" denotes an integer with 31
numeric bits and a sign bit, and the
expression "64-bit signed binary
integer" denotes an integer with 63
numeric bits and a sign bit.

In an arithmetic operation, a carry out
of the numeric field of a signed binary
integer is carried into the sign bit.
However, in algebraic left-shifting, the
sign bit does not change even if signif­
icant numeric bits are shifted out.

1. An alternate way of forming the
two's complement of a signed binary
integer is to invert all bits to
the left of the rightmost one bit,
leaving the rightmost one bit and
all zero bits to the right of it
unchanged.

2. The numeric bits of a signed binary
integer may be considered to repre­
sent a positive value, with the
sign representing a value of either
zero or the maximum negative
number.

BINARY ARITHMETIC

SIGNED BINARY ARITHMETIC

Addition and Subtraction

Addition of signed binary integers is
performed by adding all bits of each
operand, including the sign bits. When
one of the operands is shorter, the
shorter operand is considered to be
extended on the left to the length of
the longer operand by propagating the
sign-bit value.

Subtraction is performed by adding the
one's complement of the second operand
and a value of one to the first operand.

Fixed-Point Overflow

A fixed-point-overflow condition exists
for signed binary addition or
subtraction when the carry out of the
sign-bit position and the carry out of
the leftmost numeric bit position disa­
gree. Detection of an overflow does not
affect the result produced by the addi­
tion. In mathematical terms, signed
addition and subtraction produce a
fixed-point overflow when the result is
outside the range of representation for
signed binary integers. Specifically,
for ADD and SUBTRACT, which operate on
32-bit signed binary integers, there is
an overflow when the proper result would
be greater than or equal to +2 31 or less
than -2 31 • The actual result placed in
the general register after an overflow
differs from the proper result by 232.
A fixed-point overflow causes a program
interruption if allowed by the program
mask.

The instructions SHIFT LEFT SINGLE and
SHIFT LEFT DOUBLE produce an overflow
when the result is outside the range of
representation for signed binary inte­
gers. The actual result differs from
that for addition and subtraction in
that the sign of the result remains the
same as the original sign.

UNSIGNED BINARY ARITHMETIC

Addition of unsigned binary integers is
performed by adding all bits of each
operand. When one of the operands is
shorter, the shorter operand is consid­
ered to be extended on the left with
zeros. Unsigned binary arithmetic is
used in address arithmetic for adding
the X, B, and D fields. (See the

Chapter 7. General Instructions 7-3

section "Address Generation" in Chapter
5, "Program Execution.") It is also used
to obtain the addresses of the function
bytes in TRANSLATE and TRANSLATE AND
TEST. Furthermore, unsigned binary
arithmetic is used on 32-bit unsigned
binary integers by ADD LOGICAL and
SUBTRACT LOGICAL. Given the same two
operands, ADD and ADD LOGICAL produce
the same 32-bit result. The
instructions differ only in the inter­
pretation of this result. ADD
interprets the result as a signed binary
integer and inspects it for sign, magni­
tude, and overflow to set the condition
code accordingly. ADD LOGICAL inter­
prets the result as an unsigned binary
integer and sets the condition code
according to whether the result is zero
and whether there was a carry out of bit
position o. Such a carry is not consid­
ered an overflow, and no program
interruption for overflow can occur for
ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one's complement of
the second operand and a value of one
are added to the first operand.

Programming Notes

1. Logical addition and subtraction
may be used to perform arithmetic
on multiple-precision binary-
integer operands. Thus, for
multiple-precision addition, ADD
LOGICAL can be used to add the
corresponding parts of the operands
beginning with the lowest-order
parts. If the condition code indi­
cates a carry, a value of one
should be added to the sum of the
next-higher-order parts. If the
multiple-precision operands are
signed, ADD should be used on the
highest-order parts. The condition
code then indicates any overflow or
the proper sign and magnitude of
the entire result; an overflow is
also indicated by a program inter­
ruption for fixed-point overflow if
allowed by the program mask. If
the multiple-precision operands are
unsigned, ADD LOGICAL should be
used throughout.

2. Another use for ADD LOGICAL is to
increment values representing bina­
ry counters, which are allowed to
wrap around from all ones to all
zeros without indicating overflow.

SIGNED AND LOGICAL COMPARISON

Comparison operations determine whether
two operands are equal or not and, for

7-4 System/370 Principles of Operation

most operations, which of two unequal
operands is the greater (high).
Signed-binary-comparison operations are
provided which treat the operands as
signed binary integers, and logical­
comparison operations are provided which
treat the operands as unsigned binary
integers or as unstructured data.

COMPARE and COMPARE HALFWORD are
signed-binary-comparison operations.
These instructions are equivalent to
SUBTRACT and SUBTRACT HALFWORD without
replacing either operand, the resulting
difference being used only to set the
condition code. The operations permit
comparison of numbers of opposite sign
which differ by 2 31 or more. Thus,
unlike SUBTRACT, COMPARE cannot cause
overflow.

Logical comparison of two operands is
performed byte by byte, in a left-to­
right sequence. The operands are equal
when all their bytes are equal. When
the operands are unequal, the comparison
result is determined by a left-to-right
comparison of corresponding bit posi­
tions in the first unequal pair of
bytes: the zero bit in the first
unequal pair of bits indicates the low
operand, and the one bit the high oper­
and. Since the remaining bit and byte
positions do not change the comparison,
it is not necessary to continue compar­
ing unequal operands beyond the first
unequal bit pair.

INSTRUCTIONS

The general instructions and their
mnemonics, formats, and operation codes
are listed in the figure "Summary of
General Instructions." The figure also
indicates when the condition code is set
and the exceptional conditions in oper­
and designations, data, or results that
cause a program interruption.

A detailed definition of instruction
formats, operand designation and length,
and address generation is contained in
the section "Instructions" in Chapter 5,
"Program Execution." Exceptions to the
general rules stated in that section are
explicitly identified in the individual
instruction descriptions.

Note: In the detailed descriptions of
the individual instructions, the mnemon­
ic and the symbolic operand designations
for the assembler language are shown
with each instruction. For LOAD AND
TEST, for example, LTR is the mnemonic
and R t , R2 the operand designation.

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R lA
ADD A RX C A IF R SA
ADD HALFWORD AH RX C A IF R 4A
ADD LOGICAL ALR RR C R IE
ADD LOGICAL AL RX C A R 5E

AND NR RR C R 14
AND N RX C A R 54
AND (character) NC SS C A ST D4
AND (immediate) NI SI C A ST 94
BRANCH AND LINK BALR RR B R 05

BRANCH AND LINK BAL RX B R 45
BRANCH AND SAVE BASR RR BS B R OD
BRANCH AND SAVE BAS RX BS B R 4D
BRANCH ON CONDITION BCR RR ¢l B 07
BRANCH ON CONDITION BC RX B 47

BRANCH ON COUNT BCTR RR B R 06
BRANCH ON COUNT BCT RX B R 46
BRANCH ON INDEX HIGH BXH RS B R 86
BRANCH ON INDEX lOW OR EQUAL BXlE RS B R 87
COMPARE CR RR C 19

COMPARE C RX C A 59
CO~lPARE AND SWAP CS RS C SW A SP $ R ST BA
COt-1PARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST SS
CONPARE HAlFWORD CH RX C A 49
COf"1PARE lOGICAL CLR RR C 15

COMPARE lOGICAL CL RX C A 55
COMPARE LOGICAL (character) CLC SS C A D5
Cot1PARE LOGICAL (immediate) CLI SI C A 95
COMPARE lOGICAL C. UNDER MASK CLM RS C A SD
COf'lPARE LOGICAL LONG CLCL RR C A SP II R OF

CONVERT TO BINARY CVB RX A D IK R 4F
CONVERT TO DECIMAL CVD RX A ST 4E
DIVIDE DR RR SP IK R 1D
DIVIDE D RX A SP IK R 5D
EXCLUSIVE OR XR RR C R 17

EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR (character) XC S5 C A ST D7
EXCLUSIVE OR (immediate) XI SI C A ST 97
EXECUTE EX RX AI SP EX 44
INSERT CHARACTER IC RX A R 43

INSERT CHARACTERS UNDER MASK ICM RS C A R BF
LOAD LR RR R 18
LOAD L RX A R 58
LOAD ADDRESS LA RX R 41
LOAD AND TEST LTR RR C R 12

Summary of General Instructions (Part 1 of 3)

Chapter 7. General Instructions 7-5

Mne- Op
Name monic Characteristics Code

LOAD CO~1P L EMENT LCR RR C IF R 13
LOAD HALFWORD LH RX A R 48
LOAD f'1UL TIPlE LM RS A R 98
LOAD NEGATIVE LNR RR C R 11
LOAD POSITIVE LPR RR C IF R 10

MONITOR CALL MC 51 SP MO AF
MOVE (character) MVC 55 A ST D2
MOVE (immediate) MVI 51 A ST 92
r'10VE INVERSE MVCIN 55 MI A ST E8
r'lOVE LONG NVCL RR C A SP II R ST OE

f-l0VE NUMERICS MVN 55 A ST Dl
NOVE WITH OFFSET NVO 55 A ST Fl
r10VE ZONES t-1VZ SS A ST D3
f'1ULTIPLY ~1R RR SP R IC
MULTIPLY M RX A SP R 5C

MULTIPLY HALFWORD MH RX A R 4C
OR OR RR C R 16
OR 0 RX C A R 56
OR (character) OC 55 C A ST D6
OR (immediate) 01 51 C A ST 96

PACK PACK 55 A ST F2
SET PROGRAM MASK SPM RR l 04
SHIFT lEFT DOUBLE SLDA RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D
SHIFT LEFT SINGLE SLA RS C IF R 8B

SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C
SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88

STORE ST RX A ST 50
STORE CHARACTER STC RX A ST 42
STORE CHARACTERS UNDER MASK STCM RS A ST BE
STORE CLOCK STCK 5 C A $ ST B205
STORE HALFWORD 5TH RX A ST 40

STORE MULTIPLE STM RS A ST 90
SUBTRACT SR RR C IF R IB
SUBTRACT 5 RX C A IF R 5B
SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR RR C R IF

SUBTRACT LOGICAL SL RX C A R SF
SUPERVISOR CALL SVC RR ¢ OA
TEST AND SET TS S C A $ ST 93
TEST UNDER MASK TM SI C A 91
TRANSLATE TR SS A ST DC

TRANSLATE AND TEST TRT 55 C A GM R DD
UNPACK UNPK 55 A ST F3

Summary of General Instructions (Part 2 of 3)

7-6 System/370 Principles of Operation

Explanation:

¢ Causes serialization and checkpoint synchronization.
¢l Causes serialization and checkpoint synchronization when the Mt and R:z

fields contain all ones and all zeros, respectively.
$ Causes serialization.
A Access exceptions for logical addresses.
AI Access exceptions for instruction address.
B PER branch event.
BS Branch-and-save facility.
C Condition code is set.
D Data exception.
EX Execute exception.
GM Instruction execution includes the implied use of general registers 1

and 2.
IF Fixed-point-overflow exception.
II Interruptible instruction.
IK Fixed-point-divide exception.
L Hew condition code is loaded.
MI Move-inverse facility.
MO Monitor event.
R PER general-register-alteration event.
RR RR instruction format.
RS RS instruction format.
RX RX instruction format.
S S instruction format.
SI SI instruction format.
SP Specification exception.
SS SS instruction format.
5T PER storage-alteration event.
5W Conditional-swapping facility.

Summary of General Instructions (Part 3 of 3)

ADD

AR R 11 R2 [RR]

, 1 A' I Rt I R2 I
0 8 12 15

A Rt ,D:z(X 2,B 2) [RX]

'SA' I Rt I X:z I B2 D:z

0 8 12 16 20 31

The second operand is added to the first
operand, and the sum is placed at the
first-operand location. The operands
and the sum are treated as 32-bit signed
binary integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi­
tion code 3 is set. If the fixed­
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

o Result zero; no overflow

1

2

3

Result less than zero; no over­
flow
Result greater than zero; no
overflow
Overflow

Program Exceptions:

Access (fetch, operand 2 of A only)
Fixed-point overflow

ADD HALFWORD

AH [RX]

'4A'

o 8 12 16 20 31

The second operand is added to the first
operand, and the sum is placed at the
first-operand location. The second
operand is two bytes in length and;s
treated as a 16-bit signed binary inte­
ger. The first operand and the sum are
treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi­
tion code 3 is set. If the fixed-

Chapter 7. General Instructions 7-7

point-overflow mask is one, a program AND
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no over-

flow
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Access (fetch, operand 2)
Fixed-point overflow

Programming Note

An example of the use of the ADD HAlF­
WORD instruction is given in Appendix A.

ADD LOGICAL

AlR R t , R:z [RR]

'IE' I R t I R2 I
0 8 12 15

AL Rt,D:z(X:z,B:z) [RX]

'5E' I R t I X2 I B2 O2

0 8 12 16 20 31

The second operand is added to the first
operand, and the sum is placed at the
first-operand location. The operands
and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:

o Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

Access (fetch, operand 2 of Al
only)

7-8 System/370 Principles of Operation

NR [RR]

' 14 ' I R t I R2 I
0 8 12 15

N R"D 2 (X:z,B:z) [RX]

'54'

o 8 12 16 20 31

NI [5I]

'94'

o 8 16 20 31

NC [55]

,--_' D_4 _' ----'--__ l_ I_B_t ---'Ir....-~, I B 2 I ~J
o 8 16 20 32 36 47

The AND of the first and second operands
is placed at the first-operand location.

The connective AND is applied to the
operands bit by bit. A bit position in
the result is set to one if the corre­
sponding bit positions in both operands
contain ones; otherwise, the result bit
is set to zero.

For AND (NC), each operand is processed
left to right. When the operands over­
lap, the result is obtained as if the
operands were processed one byte at a
time and each result byte were stored
immediately after fetching the necessary
operand bytes.

For AND (NI), the first operand is one
byte in length, and only one byte is
stored.

Resulting Condition Code:

o
1
2
3

Result zero
Result not zero

Program Exceptions:

Access (fetch, operand 2, Nand NC;
fetch and store, operand 1, NI
and NC)

Programming Notes

1. An example of the use of the AND
instruction is given in Appendix A.

2. The AND instruction may be used to
set a bit to zero.

3. Accesses to the first operand of
AND (NI) and AND (NC) consist in
fetching a first-operand byte from
storage and subsequently storing
the updated value. These fetch and
store accesses to a particular byte
do not necessarily occur one imme­
diately after the other. Thus, the
instruction AND cannot be safely
used to update a location in stor­
age if the possibility exists that
another CPU or a channel may also
be updating the location. An exam­
ple of this effect is shown for OR
(01) in the section "Multiprogram­
ming and Multiprocessing Examples"
in Appendix A.

BRANCH AND LINK

BALR R, , R:z [RR]

, 05' I Rt I R:z I
0 8 12 15

BAL R"D:z(X:z,B:z) [RX]

'45' I R, I X:z I B:z D:z

0 8 12 16 20 31

Information from the current PSW,
including the updated instruction
address, is loaded as link information
at the first-operand location. Subse­
quently, the instruction address is
replaced by the branch address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, bits 8-31 of general
register R:z are used as the branch
address; however, when the R:z field is
zero, the operation is performed without
branching. The branch address is
computed before general register R t is
changed.

The link information consists of the
instruction-length code (ILC), the
condition code (CC), the program mask
bits, and the updated instruction
address, arranged in the following
format:

Instruction Address

o 2 4 8 31

The instruction-length code is 1 or 2.

Condition Code:
unchanged.

The code remains

Program Exceptions: None.

Programming Notes

1. An example of the use of the BRANCH
AND LINK instruction is given in
Appendix A.

2. When the R, field in the RR format
is zero, the link information is
loaded without branching.

3. When BRANCH AND LINK is the target
instruction of EXECUTE, the
instruction-length code is 2.

4. The format and the contents of the
link information do not depend on
whether the PSW specifies the EC or
BC mode. In both modes, the link
information is in the format of the
rightmost 32 bit positions of the
BC-mode PSW.

BRANCH AND SAVE

BASR R t , R:z [RR]

'00' I Rt I R:z I
0 8 12 15

BAS Rt ,0,(X 2,B 2) [RX]

'4D' Rt X2 B, D2

0 8 12 16 20 31

The updated instruction address, with
eight zeros appended on the left, is
saved as link information at the first­
operand location. Subsequently, the
instruction address is replaced by the
branch address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, bits 8-31 of general
register R2 are used as the branch
address; however, when the R, field is
zero, the operation is performed without
branching. The branch address is
computed before general register R t is
changed.

Chapter 7. General Instructions 7-9

Condition Code:
unchanged.

The code remains

Program Exceptions:

Operation (if the branch-and-save
facility is not installed)

Programming Notes

1. An example of the use of the BRANCH
AND SAVE instruction is given in
Appendix A.

2. The BRANCH AND SAVE instruction
(BAS and BASR) may be used in place
of the BRANCH AND LINK instruction
(BAL and BALR) when it is desired
to obtain the instruction address
without the instruction-length
code, program mask, and condition
code.

BRANCH ON CONDITION

BCR Mil R2 [RR]

, 07' I Mt I R2 I
0 8 12 15

BC Mt ,D 2(X 2 ,B 2) [RX]

'47' I Mt I X2 I B2 D2

o 8 12 16 20 31

The instruction address in the current
PSW is replaced by the branch address if
the condition code has one of the values
specified by Mt ; otherwise, normal
instruction sequencing proceeds with the
updated instruction address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, bits 8-31 of general
register R2 are used as the branch
address; however, when the R2 field is
zero, the operation is performed without
branching.

The Mt field is used as a four-bit mask.
The four condition codes (0, 1, 2, and
3) correspond, left to right, with the
four bits of the mask, as follows:

7-10 System/370 Principles of Operation

Instruction Mask
Condition Bit No. of Position

Code Mask Value

0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to
select the corresponding mask bit. If
the mask bit selected by the condition
code is one, the branch is successful.
If the mask bit selected is zero, normal
instruction sequencing proceeds with the
next sequential instruction.

When the Mt and R2 fields of BRANCH ON
CONDITION (BCR) are all ones and all
zeros, respectively, a serialization and
checkpoint-synchronization function is
performed.

Condition Code:
unchanged.

The

Program Exceptions: None.

Programming Notes

code remains

1. An example of the use of the BRANCH
ON CONDITION instruction is given
in Appendix A.

2. When a branch is to depend on more
than one condition, the pertinent
condition codes are specified in
the mask as the sum of their mask
position values. A mask of 12, for
example, specifies that a branch is
to be made when the condition code
is 0 or 1.

3. When all four mask bits are zeros
or when the R2 field in the RR
format contains zero, the branch
instruction is equivalent to a
no-operation. When all four mask
bits are ones, that is, the mask
value is 15, the branch is uncondi­
tional unless the R2 field in the
RR format is zero.

4. Execution of BCR 15,0 (that is, an
instruction with a value of 07FO
hex) may result in significant
performance degradation. To ensure
optimum performance, the program
should avoid use of BCR 15,0 except
in cases when the serialization or
the checkpoint-synchronization
function is actually required.

5. Note that the relation between the
RR and RX formats in branch-address
specification is not the same as in
operand-address specification. For
branch instructions in the RX
format, the branch address is the

address specified by X2 , B2, and
D2; in the RR format, the branch
address is contained in the regis­
ter designated by R2 . For
operands, the address specified by
X2, B2, and D2 is the operand
address, but the register desig­
nated by R2 contains the operand,
not the operand address.

BRANCH ON COUNT

BCTR R t , R2 [RR]

'06 ' I Rt I R2 I
0 8 12 15

BCT R.,D 2(X 2 ,B 2) [RX]

, 46 ' I Rt I X2 I B2 D2

0 8 12 16 20 31

A one is subtracted from the first oper­
and, and the result is placed at the
first-operand location. The first oper­
and and result are treated as 32-bit
binary integers, with overflow ignored.
When the result is zero, normal instruc­
tion sequencing proceeds with the
updated instruction address. When the
result is not zero, the instruction
address in the current PSW is replaced
by the branch address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, bits 8-31 of general
register R2 are used as the branch
address; however, when the R:z field is
zero, the operation is performed without
branching. The branch address is
computed before general register Rt is
changed.

Condition Code: The code remains
unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of the BRANCH
ON COUNT instruction is given in
Appendix A.

2. The first operand and result can be
considered as either signed or
unsigned binary integers since the
result of a binary subtraction is
the same in both cases.

3. An initial count of one results in
zero, and no branching takes place;

4.

an initial count of zero results in
-1 and causes branching to be
executed; an initial count of -1
results in -2 and causes branching
to be executed; and so on. In a
loop, branching takes place each
time the instruction is executed
until the result is again zero.
Note that, because of the number
range, an initial count of -2 31

results in a positive value of
2 31 - 1.

Counting is performed without
branching when the R2 field in the
RR format contains zero.

BRANCH ON INDEX HIGH

BXH Rt ,R 3 ,D 2(B 2) [RS]

'86' I Rt I R3 I B2 D2

0 8 12 16 20 31

BRANCH ON INDEX lOW OR EQUAL

BXlE [RS]

o 8 12 16 20 31

An increment is added to the first oper­
and, and the sum is compared with a
compare value. The result of the
comparison determines whether branching
occurs. Subsequently, the sum is placed
at the first-operand location. The
second-operand address is used as a
branch address. The R3 field designates
registers containing the increment and
the compare value.

For BRANCH ON INDEX HIGH, when the sum
is high, the instruction address in the
current PSW is replaced by the branch
address. When the sum is low or equal,
normal instruction sequencing proceeds
with the updated instruction address.

For BRANCH ON INDEX lOW OR EQUAL, when
the sum is low or equal, the instruction
address in the current PSW is replaced
by the branch address. When the sum is
high, normal instruction sequencing
proceeds with the updated instruction
address.

When the R3 field is even, it designates
a pair of registers; the contents of the
even and odd registers of the pair are
used as the increment and the compare
value, respectively. When the R3 field
is odd, it designates a single register,

Chapter 7. General Instructions 7-11

the contents of which are used as both
the increment and the compare value.

For purposes of the addition and compar­
ison~ all operands and results are
treated as 32-bit signed binary
integers. Overflow caused by the addi­
ti on is ignored.

The original contents of the compare­
value register are used as the compare
value even when that register is also
specified to be the first-operand
location. The branch address is
computed before general register Rl is
changed.

The sum is placed at the first-operand
location, regardless of whether the
branch is taken.

Condition Code:
unchanged.

The code remains

Program Exceptions: None.

Programming Notes

1 . Several examples of the use of the
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL instructions are
given in Appendix A.

2. The word "index" in the names of
these instructions indicates that
one of the major purposes is the
incrementing and testing of an
index value. The increment~ being
a signed binary integer, may be
used to increase or decrease the
value in general register R\ by an
arbitrary amount.

COMPARE

CR R \ ~ R:z [RR]

'19' I R\ I R2 I
0 8 12 15

C R 1 ,D 2 (X 2 ,B 2) [RX]

'59' I Rl I X2 I B2 D2

0 8 12 16 20 31

The first operand is compared with the
second operand~ and the result is indi­
cated in the condition code. The oper­
ands are treated as 32-bit signed binary
integers.

7-12 System/370 Principles of Operation

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

Access (fetch~ operand 2 of Conly)

COMPARE AND SWAP

CS [RS]

'BA'

o 8 12 16 20 31

COMPARE DOUBLE AND SWAP

CDS [RS]

'BB'

o 8 12 16 20 31

The first and second operands are
compared. If they are equal, the third
operand is stored at the second-operand
location. If they are unequal~ the
second operand is loaded into the
first-operand location. The result of
the comparison is indicated in the
condition code.

For COMPARE AND SWAP, the first and
third operands are 32 bits in length~
with each operand occupying a general
register. The second operand is a word
in storage.

For COMPARE DOUBLE AND SWAP~ the first
and third operands are 64 bits in
length, with each operand occupying an
even-odd pair of general registers. The
second operand is a doubleword in stor­
age.

When an equal comparison occurs, the
third operand is stored at the second­
operand location. The fetch of the
second operand for purposes of compar­
ison and the store into the second­
operand location appear to be a block­
concurrent interlocked-update reference
as observed by other CPUs.

When the result of the comparison ;s
unequal, the second-operand location
remains unchanged. However, on some
models~ the value may be fetched and
subsequently stored back unchanged at
the second-operand location. This
update appears to be a block-concurrent

interlocked-update reference as observed
by other CPUs.

A serialization function is performed
before the operand is fetched and again
after the operation is completed.

The second operand of COMPARE AND SWAP
must be designated on a word boundary.
The R t and R3 fields for COMPARE DOUBLE
AND SWAP must each designate an even
register, and the second operand for the
CDS instruction must be designated on a
doubleword boundary. Otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

o

1

2
3

First and second
equal, second operand
by third operand
First and second
unequal, first operand
by second operand

Program Exceptions:

operands
replaced

operands
replaced

Access (fetch and store, operand 2)
Operation (if the conditional-

swapping facility is not
installed)

Specification

Programming Notes

1. Several examples of the use of the
COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP instructions are given in
Appendix A.

2. COMPARE AND SWAP can be used by CPU
programs sharing common storage
areas in either a multiprogramming
or multiprocessing environment.
Two examples are:

a. By performing the following
procedure, a CPU program can
modify the contents of a stor­
age location even though the
possibility exists that the CPU
program may be interrupted by
another CPU program that will
update the location or that
another CPU program may simul­
taneously update the location.
First, the entire word contain­
ing the byte or bytes to be
updated is loaded into a gener­
al register. Next, the updated
value is computed and placed in
another general regist~r. Then
COMPARE AND SWAP is executed
with the R j field designating
the register that contains the
original value and the R3 field
designating the register that
contains the updated value. If
the update has been successful,

condition code 0 is set. If
the storage location no longer
contains the original value,
the update has not been
successful, the general regis­
ter designated by the R, field
of the COMPARE AND SWAP
instruction contains the new
current value of the storage
location, and condition code 1
is set. When condition code 1
is set, the CPU program can
repeat the procedure using the
new current value.

b. COMPARE AND SWAP can be used
for controlled sharing of a
common storage area, including
the capability of leaving a
message (in a chained list of
messages) when the common area
is in use. To accomplish this,
a word in storage can be used
as a control word, with a zero
value in the word indicating
that the common area is not in
use and that no messages exist,
a negative value indicating
that the area is in use and
that no messages exist, and a
nonzero positive value indicat­
ing that the common area is in
use and that the value is the
address of the most recent
message added to the list.
Thus, any number of CPU
programs desiring to seize the
area can use COMPARE AND SWAP
to update the control word to
indicate that the area is 1n
use or to add messages to the
list. The single CPU program
which has seized the area can
also safely use COMPARE AND
SWAP to remove messages from
the list.

3. COMPARE DOUBLE AND SWAP can be us~d
in a manner similar to that
described for COMPARE AND SWAP. In
addition, it has another use.
Consider a chained list, with a
control word used to address the
first message 1n the list, as
described in programming note 2b
above. If multiple CPU programs
are to b2 permitted to delete
messages by using COMPARE AND SWAP
(and not just the single CPU pro­
gram which has seized the common
area), there is a possibility the
list will be incorrectly updated.
This would occur if, for example,
after one CPU program has fetched
the address of the most recent mes­
sage in order to remove the
message, another CPU program
removes the first two messages and
then adds the first message back
into the chain. The first CPU
program, on continuing, cannot
easily detect that the list is
changed. By increasing the size of
the control word to a doubleword

Chapter 7. General Instructions 7-13

containing both the first message
address and a word with a change
number that is incremented for each
modification of the list, and by
using COMPARE DOUBLE AND SWAP to
update both fields together, the
possibility of the list being
incorrectly updated is reduced to a
negligible level. That is, an
incorrect update can occur only if
the first CPU program is delayed
while changes exactly equal in
number to a multiple of 2 32 take
place and only if the last change
places the original message address
in the control word.

4. COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP do not interlock against
storage accesses by channels.
Therefore, the instructions should
not be used to update a location at
which a channel program may store,
since the channel-program data may
be lost.

5. For the case of a condition-code
setting of 1, COMPARE AND SWAP and
COMPARE DOUBLE AND 5WAP mayor may
not, depending on the model, cause
any of the following to occur for
the second-operand location: a PER
storage-alteration event may be
recognized; a protection exception
for storing may be recognized; and,
provided no access exception
exists, the change bit may be set
to one.

COMPARE HALFWORD

CH [RX]

, 49'

o 8 12 16 20 31

The first operand is compared with the
second operand, and the result is indi­
cated in the condition code. The second
operand is two bytes in length and is
treated as a 16-bit signed binary inte­
ger. The first operand is treated as a
32-bit signed binary integer.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

Access (fetch, operand 2)

7-14 5ystem/370 Principles of Operation

Programming Note

An example of the use
HALFWORD instruction is
dix A.

of the COMPARE
given in Appen-

COMPARE LOGICAL

CLR [RR]

'15' I R, I R:z I
0 8 12 15

CL Rt ,D:z(X:21 B:z) [RX]

'55' I R, I X:z I B:z D:z

o 8 12 16 20 31

CLI [51]

'95' Dl

o 8 16 20 31

CLC [55)

'D5' L B:z I ~J I B, I ~_' -l.----'--
o 8 16 20 32 36 47

The first operand is compared with the
second operand, and the result is indi­
cated in the condition code.

The comparison proceeds left to right,
byte by byte, and ends as soon as an
inequality is found or the end of the
fields is reached. For COMPARE LOGICAL
(CL) and COMPARE LOGICAL (CLC), access
exceptions mayor may not be recognized
for the portion of a storage operand to
the right of the first unequal byte.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

Access (fetch, operand
CLC; fetch, operand
CLC)

2, CL and
1, CLI and

Programming Notes

1 • Examples of the use of the COMPARE
LOGICAL instruction are given in
Appendix A.

2. COMPARE LOGICAL treats all bits of
each operand alike as part of a
field of unstructured logical data.
For COMPARE LOGICAL (CLC), the
comparison may extend to field
lengths of 256 bytes.

COMPARE LOGICAL CHARACTERS UNDER MASK

o 8 12 16 20 31

The first operand is compared with the
second operand under control of a mask,
and the result is indicated in the
condition code.

The contents of the M3 field are used as
a mask. These four bits, left to right,
correspond one for one with the four
bytes, left to right, of general regis­
ter R t • The byte positions correspond­
ing to ones in the mask are considered
as a contiguous field and are compared
with the second operand. The second
operand is a contiguous field in
storage, starting at the second-operand
address and equal in length to the
number of ones in the mask. The bytes
in the general register corresponding to
zeros in the mask do not participate in
the operation.

The comparison proceeds left to right,
byte by byte, and ends as soon as an
inequality is found or the end of the
fields is reached.

When the mask is not zero, exceptions
associated with storage-operand access
are recognized for no more than the
number of bytes specified by the mask.
Access exceptions mayor may not be
recognized for the portion of a storage
operand to the right of the first
unequal byte. When the mask is zero,
access exceptions are recognized for one
byte at the second-operand address.

Resulting Condition Code:

o

1
2
3

Operands equal, or mask bits
all zeros
First operand low
First operand high

Program Exceptions:

Access (fetch, operand 2)

Programming Note

An example of the use of the
LOGICAL CHARACTERS UNDER MASK
tion is given in Appendix A.

COMPARE LOGICAL LONG

CLCL [RR]

'OF'

o 8 12 15

COMPARE
instruc-

The first operand is compared with the
second operand, and the result is indi­
cated in the condition code. The short­
er operand is considered to be extended
on the right with padding bytes.

The R t and R2 fields each
even-odd pair of general
must designate an
register; otherwise, a
exception is recognized.

designate an
registers and
even-numbered
specification

The location of the leftmost byte of the
first operand and second operand is
designated by bits 8-31 of general
registers R t and R2 , respectively. The
number of bytes in the first-operand and
second-operand locations is specified by
bits 8-31 of general registers R t + 1
and R2 + 1, respectively. Bit positions
0-7 of general register R2 + 1 contain
the padding byte. The contents of bit
positions 0-7 of general registers R t ,

R21 and R t + 1 are ignored.

The contents of the registers just
described are as follows:

Rt

1////////1 First-Operand Address

o 8 31

\////////1 First-Operand Length

o 8 31

////////// Second-Operand Address/

o 8 31

Pad Second-Operand Length

o 8 31

Chapter 7. General Instructions 7-15

The comparison proceeds left to right,
byte by byte, and ends as soon as an
inequality is found or the end of the
longer operand is reached. If the oper­
ands are not of the same length, the
shorter operand is considered to be
extended on the right with the appropri­
ate number of padding bytes.

If both operands are of zero length, the
operands are considered to be equal.

The execution of the instruction is
interruptible. When an interruption
occurs, other than one that causes
termination, the contents of general
registers R! + 1 and R2 + 1 are decre­
mented by the number of bytes compared,
and the contents of general registers R!
and R2 are incremented by the same
number, so that the instruction, when
reexecuted, resumes at the point of
interruption. The leftmost bits which
are not part of the address in general
registers R t and R2 are set to zeros;
the contents of bit positions 0-7 of
general registers R t + 1 and R2 + 1
remain unchanged; and the condition code
is unpredictable. If the operation is
interrupted after the shorter operand
has been exhausted, the length field
pertaining to the shorter operand is
zero, and its address is updated accord­
ingly.

If the operation ends because of an
inequality, the address fields in gener­
al registers R t and R2 at completion
identify the first unequal byte in each
operand. The lengths in bit positions
8-31 of general registers R t + 1 and
R2 + 1 are decremented by the number of
bytes that were equal, unless the
inequality occurred with the padding
byte, in which case the length field for
the shorter operand is set to zero. The
addresses in general registers Rt and R2
are incremented by the amounts by which
the corresponding length fields were
reduced.

If the two operands, including the
padding byte, if necessary, are equal,
both length fields are made zero at
completion, and the addresses are incre­
mented by the corresponding operand­
length values.

At the completion of the operation, the
leftmost bits which are not part of the
address in general registers R! and R2
are set to zeros, including the case
when one or both of the initial length
values are zero. The contents of bit
positions 0-7 of general registers
Rl + 1 and R2 + 1 remain unchanged.

Access exceptions for the portion of a
storage operand to the right of the
first unequal byte mayor may not be
recognized. For operands longer than 2K
bytes, access exceptions are not recog­
nized more than 2K bytes beyond the byte
being processed. Access exceptions are

7-16 System/370 Principles of Operation

not indicated for locations more than 2K
bytes beyond the first unequal byte.

When the length of an operand is zero,
no access exceptions are recognized for
that operand. Access exceptions are not
recognized for an operand if the R field
associated with that operand is odd.

Resulting Condition Code:

o Operands equal, or both zero
length

1 First operand low
2 First operand high
3

Program Exceptions:

Access (fetch, operands 1 and 2)
Specification

1. An example of the use of the
COMPARE LOGICAL LONG instruction is
given in Appendix A.

2. When the R t and R2 fields are the
same, the operation proceeds in the
same way as when two distinct pairs
of registers having the same
contents are specified, and, in the
absence of dynamic modification of
the operand area by another CPU or
by a channel, condition code 0 is
set. However, it is unpredictable
whether access exceptions are
recognized for the operand since
the operation can be completed
without storage being accessed.

3. Other programming notes concerning
interruptible instructions are
included in the section "Interrup­
tible Instructions" in Chapter 5,
"Program Execution."

4. Special precautions should be taken
when COMPARE LOGICAL LONG is made
the target of EXECUTE. See the
programming note concerning inter­
ruptible instructions under
EXECUTE.

CONVERT TO BINARY

o 8 12 16 20 31

The second operand is changed from deci­
mal to binary, and the result is placed
at the first-operand location.

The second operand occupies e;ght bytes
in storage and has the format of packed
decimal data, as described in Chapter 8,
"Decimal Instructions." It is checked
for valid sign and digit codes, and a
data exception is recognized when an
invalid code is detected.

The result of the conversion is a 32-bit
signed binary integer, which is placed
in general register R t • The maximum
positive number that can be converted
and still be contained in a 32-bit
register is 2,147,483,647; the maximum
negative number (the negative number
with the greatest absolute value) that
can be converted is -2,147,483,648. For
any decimal number outside this range,
the operation is completed by placing
the 32 rightmost bits of the binary
result in the register, and a fixed­
point-divide exception is recognized.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2)
Data
Fixed-point divide

Programming Notes

1. An example of the use of the
CONVERT TO BINARY instruction is
given in Appendix A.

2. When the second operand is
negative, the result is in two's­
complement notation.

3. The storage-operand references for
CONVERT TO BINARY may be multiple­
access references. (See the
section "Storage-Operand Consisten­
cy" in Chapter 5, "Program
Execution.")

CONVERT TO DECIMAL

o 8 12 16 20 31

The first operand is changed from binary
to decimal, and the result is stored at
the second-operand location. The first
operand is treated as a 32-bit signed
binary integer.

The result occupies eight bytes in stor­
age and is 1n the format for packed
decimal data, as described in Chapter 8,
"Decimal Instructions." The rightmost

four bits of the result represent the
sign. A positive sign ;s encoded as
1100; a negative sign is encoded as
1101.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 2)

Programming Notes

1. An example of the use of the
CONVERT TO DECIMAL instruction is
given in Appendix A.

2. The number to be converted is a
32-bit signed binary integer
obtained from a general register.
Since 15 decimal digits are avail­
able for the result, and the deci­
mal equivalent of 31 bits requires
at most 10 decimal digits, an over­
flow cannot occur.

3. The storage-operand references for
CONVERT TO DECIMAL may be
multiple-access references. (See
the section "Storage-Operand
Consistency" in Chapter 5, "Program
Execution.")

DIVIDE

DR R t , R2 [RRl

'10' I R t I R2 I
0 8 12 15

0 Rt ,D 2(X 2 ,B 2) [RXl

'50 ' I R t I X2 I B2 O2

0 8 12 16 20 31

The doubleword first operand (the divi­
dend) is divided by the second operand
(the divisor), and the remainder and the
quotient are placed at the first-operand
location.

The R t field designates an even-odd pair
of general registers and must designate
an even-numbered register; otherwise, a
specification exception is recognized.

The dividend is treated as a 64-bit
signed binary integer. The divisor, the
remainder, and the quotient are treated
as 32-bit signed binary integers. The
remainder is placed in general register

Chapter 7. General Instructions 7-17

R t , and the quotient is placed in gener­
al register Rt + 1.

The sign of the quotient is determined
by the rules of algebra. The remainder
has the same sign as the dividend,
except that a zero quotient or a zero
remainder is always positive.

When the divisor is zero, or when the
magnitudes of the dividend and divisor
are such that the quotient cannot be
expressed by a 32-bit signed binary
integer, a fixed-point-divide exception
is recognized. This includes the case
of division of zero by zero.

Condition Code: The code remains
unchanged.

Program Exceptions:

Access (fetch, operand 2 of D only)
Fixed-point divide
Specification

EXCLUSIVE OR

XR R 11 R2 [RR]

, 17 ' I R t I R2 I
0 8 12 15

X R p D2(X 2,B 2) [RX]

'57' I R t I X2 I B2 D2

o 8 12 16 20 31

XI D1 (B t),I 2 [SI]

'97 ' 12 B\ Dt

0 8 16 20 31

XC Dt (L,B t),D 2 (B 2) [SS]

I I
/

I ~~ 'D7' L BI DI B2
/

0 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second
operands is placed at the first-operand
location.

The connective EXCLUSIVE OR is applied
to the operands bit by bit. A bit posi­
tion in the result is set to one if the
corresponding bit positions in the two

7-18 System/370 Principles of Operation

operands are unlike; otherwise, the
result bit is set to zero.

For EXCLUSIVE OR (XC), each operand is
processed left to right. When the oper­
ands overlap, the result is obtained as
if the operands were processed one byte
at a time and each result byte were
stored immediately after fetching the
necessary operand bytes.

For EXCLUSIVE OR (XI), the first operand
is one byte in length, and only one byte
is stored.

o
1
2
3

Result zero
Result not zero

Program Exceptions:

Access (fetch, operand 2, X and XC;
fetch and store, operand 1, XI
and XC)

Programming Notes

1. An example of the use of the EXCLU­
SIVE OR instruction is given in
Appendix A.

2. EXCLUSIVE OR may be used to invert
a bit, an operation particularly
useful in testing and setting
programmed binary bit switches.

3. A field EXCLUSIVE-ORed with itself
becomes all zeros.

4. For EXCLUSIVE OR (XR), the sequence
A EXCLUSIVE-OR B, B EXCLUSIVE-OR A,
A EXCLUSIVE-OR B results in the
exchange of the contents of A and B
without the use of an additional
general register.

5. Accesses to the first operand of
EXCLUSIVE OR (XI) and EXCLUSIVE OR
(XC) consist in fetching a first­
operand byte from storage and
subsequently storing the updated
value. These fetch and store
accesses to a particular byte do
not necessarily occur one imme­
diately after the other. Thus,
EXCLUSIVE OR cannot be safely used
to update a location in storage if
the possibility exists that another
CPU or a channel may also be updat­
ing the location. An example of
this effect is shown for OR (01) in
the section "Multiprogramming and
Multiprocessing Examples" in Appen­
dix A.

EXECUTE

[RX]

'44'

o 8 12 16 20 31

The single instruction at the second­
operand address is modified by the
contents of general register R1, and the
resulting instruction, called the target
instruction, is executed.

When the R1 field is not zero, bits 8-15
of the instruction designated by the
second-operand address are ORed with
bits 24-31 of general register R t • The
DRing does not change either the
contents of general register R1 or the
instruction in storage, and it is effec­
tive only for the interpretation of the
instruction to be executed. When the R t

field is zero, no DRing takes place.

The target instruction may be two, four,
or six bytes in length. The execution
and exception handling of the target
instruction are exactly as if the target
instruction were obtained in normal
sequential operation, except for the
instruction address and the
instruction-length code.

The instruction address of the current
PSW is increased by the length of
EXECUTE. This updated address and the
instruction-length code of EXECUTE are
used, for example, as part of the link
information when the target instruction
is BRANCH AND LINK. When the target
instruction is a successful branching
instruction, the instruction address of
the current PSW is replaced by the
branch address specified by the target
instruction.

When the target instruction is in turn
EXECUTE, an execute exception is recog­
nized.

The effective address of EXECUTE must be
even; otherwise, a specification excep­
tion is recognized. When the target
instruction is two or three halfwords in
length but can be executed without
fetching its second or third halfword,
it is unpredictable whether access
exceptions are recognized for the unused
halfwords. Access exceptions are not
recognized for the second-operand
address when the address is odd.

The second-operand address of EXECUTE is
an instruction address rather than a
logical address; thus, when DAS is
installed and the CPU is in the
secondary-space mode, it is unpredict­
able whether the target instruction is

fetched from the primary space or the
secondary space. When DAS ;s not
installed, an instruction address is the
same as a logical address.

Condition Code: The code may be set by
the target instruction.

Program Exceptions:

Access (fetch, target instruction)
Execute
Specification

Programming Notes

1. An example of the
EXECUTE instruction
Appendix A.

use of the
is given in

2. The DRing of eight bits from the
general register with the desig­
nated instruction permits the indi­
rect specification of the length,
index, mask, immediate-data, regis­
ter, or extended-op-code field.

3. The fetching of the target instruc­
tion is considered to be an
instruction fetch for purposes of
program-event recording and for
purposes of reporting access
exceptions.

4. An access or specification excep­
tion may be caused by EXECUTE or by
the target instruction.

5. When an interruptible instruction
is made the target of EXECUTE, the
program normally should not desig­
nate any register updated by the
interruptible instruction as the
Rt , X21 or B2 register for EXECUTE.
Otherwise, on resumption of
execution after an interruption, or
if the instruction is refetched
without an interruption, the
updated values of these registers
will be used in the execution of
EXECUTE. Similarly, the program
should normally not let the desti­
nation field in storage of an
interruptible instruction include
the location of EXECUTE, since the
new contents of the location may be
interpreted when resuming
execution.

6. EXECUTE should be executed in the
secondary-space mode only if the
virtual address of the target
instruction translates to the same
real address by means of both the
primary segment table and secondary
segment table. Otherwise, unpre­
dictable results may occur.

Chapter 7. General Instructions 7-19

INSERT CHARACTER

IC [RX]

'43'

o 8 12 16 20 31

The byte at the second-operand location
is inserted into bit positions 24-31 of
general register R1 • The remaining bits
in the register remain unchanged.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (fetch, operand 2)

INSERT CHARACTERS UNDER MASK

o 8 12 16 20

remains

31

Bytes from contiguous locations begin­
ning at the second-operand address are
inserted into general register Rf under
control of a mask.

The contents of the Ml field are used as
a mask. These four bits, left to right,
correspond one for one with the four
bytes, left to right, of general regis­
ter R1 • The byte positions correspon­
ding to ones in the mask are filled,
left to right, with bytes from succes­
sive storage locations beginning at the
second-operand address. When the mask
is not zero, the length of the second
operand is equal to the number of ones
in the mask. The bytes in the general
register corresponding to zeros in the
m~sk remain unchanged.

The resulting condition code is based on
the mask and on the value of the bits
inserted. When the mask is zero or when
all inserted bits are zeros, the condi­
tion code is set to O. When the
inserted bits are not all zeros, the
code is set according to the leftmost
bit of the storage operand: if this bit
is one, the code is set to 1; if this
bit is zero, the code is set to 2.

When the mask is not zero, exceptions
associated with storage-operand access
are recognized only for the number of
bytes specified by the mask. When the
mask is zero, access exceptions are
recognized for one byte at the second­
operand address.

7-20 System/370 Principles of Operation

Resulting Condition Code:

0 All inserted bits zeros, or
mask bits all zeros

1 Leftmost inserted bit one
2 Leftmost inserted bit zero, and

not all inserted bits zeros
3

Program Exceptions:

Access (fetch, operand 2)

Programming Notes

1. Examples of the use of the INSERT
CHARACTERS UNDER MASK instruction
are given in Appendix A.

2. The condition code for INSERT CHAR­
ACTERS UNDER MASK is defined such
that, when the mask is 1111, the
instruction causes the same condi­
tion code to be set as for LOAD AND
TEST. Thus, the instruction may be
used as a storage-to-register
load-and-test operation.

3. INSERT CHARACTERS UNDER MASK with a
mask of 1111 or 0001 performs a
function similar to that of a LOAD
(L) or INSERT CHARACTER (IC)
instruction, respectively, with the
exception of the condition-code
setting. However, the performance
of INSERT CHARACTERS UNDER MASK may
be sIOL>Jer.

LOAD

'18' I R, I R:z I
o 8 12 15

L R, , D:z (X:z , B :I) [RX]

, 58 ' I R 1 I X 2 I B 2 D 2

o 8 12 16 20 31

The second operand is placed unchanged
at the first-operand location.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 of L only)

Programming Note

An example of the use of the LOAD
instruction is given in Appendix A.

LOAD ADDRESS

LA [RX]

'41 '

o 8 12 16 20 31

The address specified by the X2 ' B2 , and
O2 fields is placed in bit positions
8-31 of general register R I • Bits 0-7
of the register are set to zeros. The
address computation follows the rules
for address arithmetic.

No storage references
place, and the address
for access exceptions.

for operands take
is not inspected

Condition Code: The code remains
unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of the LOAD
ADDRESS instruction is given in
Appendix A.

2. LOAD ADDRESS may be used to incre­
ment the rightmost 24 bits of a
general register, other than regis­
ter 0, by the contents of the D2
field of the instruction. The
register to be incremented should
be designated by RI and by either
X2 (with B2 set to zero) or B2
(with X2 set to zero).

LOAD AND TEST

LTR [RR]

, 12 '

o 8 12 15

The second operand is placed unchanged
at the first-operand location, and the
sign and magnitude of the second
operand, treated as a 32-bit signed
binary integer, are indicated in the
condition code.

Resulting Condition Code:

o
1
2
3

Result zero
Result less than zero
Result greater than zero

Program Exceptions: None.

Programming Note

When the RI and R2 fields designate the
same register, the operation is equiv­
alent to a test without data movement.

LOAD COMPLEMENT

LCR R1 ,R 2 [RR]

, 13'

o 8 12 15

The two's complement of the second oper­
and is placed at the first-operand
location. The second operand and result
are treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi­
tion code 3 is set. If the fixed­
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no over-

flow
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Fixed-point overflow

Programming Note

The operation complements all numbers.
Zero and the maximum negative number
remain unchanged. An overflow condition
occurs when the maximum negative number
is complemented.

Chapter 7. General Instructions 7-21

LOAD HALFWORD

LH [RX]

'48'

o 8 12 16 20 31

The second operand is considered to be
extended to a 32-bit signed binary inte­
ger and is placed at the first-operand
location. The second operand is two
bytes in length and is considered to be
a 16-bit signed binary integer. The
second operand is extended to 32 bits by
setting each of the 16 leftmost bit
positions equal to the sign bit of the
storage operand.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (fetch~ operand 2)

Programming Note

remains

An example of the use of the LOAD HAlF­
WORD instruction is given in Appendix A.

LOAD MULTIPLE

LM [RS]

'98'

o 8 12 16 20 31

The set of general registers starting
with general register R, and ending with
general register RJ is loaded from stor­
age beginning at the location designated
by the second-operand address and
continuing through as many locations as
needed.

The general registers are loaded in the
ascending order of their register
numbers~ starting with general register
R, and continuing up to and including
general register R31 with general regis­
ter 0 following general register 15.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (fetch, operand 2)

remains

7-22 System/370 Principles of Operation

Programming Note

All combinations of register numbers
specified by Rl and R3 are valid. When
the register numbers are equal~ only
four bytes are transmitted. When the
number specified by R3 is less than the
number specified by Rl~ the register
numbers wrap around from 15 to o.

LOAD NEGATIVE

LNR [RRJ

o 8 12 15

The two's complement of the absolute
value of the second operand is placed at
the first-operand location. The second
operand and result are treated as 32-bit
signed binary integers.

Resulting Condition Code:

o
1
2
3

Result zero
Result less than zero

Program Exceptions: None.

Programming Note

The operation complements positive
numbers; negative numbers remain
unchanged. The number zero remains
unchanged.

LOAD POSITIVE

[RR]

o 8 12 15

The absolute value of the second operand
is placed at the first-operand location.
The second operand and the result are
treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi­
tion code 3 is set. If the fixed­
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

Result zero; no overflow o
1
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Fixed-point overflow

Programming Note

The operation complements negative
numbers; positive numbers and zero
remain unchanged. An overflow condition
occurs when the maximum negative number
is complemented; the number remains
unchanged.

MONITOR CAll

MC [SI]

'AF' D,

o 8 16 20 31

A program interruption is caused if the
appropriate monitor-mask bit in control
register 8 is one.

The monitor-mask bits are in bit posi­
tions 16-31 of control register 8, which
correspond to monitor classes 0-15,
respectively.

Bit positions 12-15 in the 12 field
contain a binary number specifying one
of 16 monitoring classes. When the
monitor-mask bit corresponding to the
class specified by the 12 field is one,
a monitor-event program interruption
occurs. The contents of the 12 field
are stored at location 149, with zeros
stored at location 148. Bit 9 of the
program-interruption code is set to one.

The first-operand address is not used to
address data; instead, the address spec­
ified by the B, and D, fields forms the
monitor code, which is placed in the
word at location 156. Address computa­
tion follows the rules of address
arithmetic; bits 0-7 are set to zeros.

When the monitor-mask bit corresponding
to the class specified by bits 12-15 of
the instruction is zero, no interruption
occurs, and the instruction is executed
as a no-operation.

Bit positions 8-11 of the instruction
must contain zeros; otherwise, a spec­
ification exception is recognized.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Monitor event
Specification

Programming Notes

1. MONITOR CAll provides the capabili­
ty for passing control to a moni­
toring program when selected points
are reached in the monitored
program. This is accomplished by
implanting MONITOR CALL
instructions at the desired points
in the monitored program. This
function may be useful in perform­
ing various measurement functions;
specifically, tracing information
can be generated indicating which
programs were executed, counting
information can be generated indi-
cating how often particular
programs were used, and timing
information can be generated indi­
cating how long a particular
program required for execution.

2. The monitor masks provide a means
of disallowing all monitor-event
program interruptions or "allowing
monitor-event program interruptions
for all or selected classes.

3. The monitor code provides a means
of associating descriptive informa­
tion, in addition to the class
number, with each MONITOR CALL.
Without the use of a base register,
up to 4,096 distinct monitor codes
can be associated with a monitoring
interruption. With the base regis­
ter designated by a nonzero value
in the Bl field, each monitoring
interruption can be identified by a
24-bit code.

MOVE

MVI 0\(B\),I 2 [SI]

0,

o 8 16 20 31

[SS]

'02' L I s, I ~, B2 I ~;]
o 8 16 20 32

The second operand is placed
first-operand location.

36 47

at the

Chapter 7. General Instructions 7-23

For MOVE (MVC), each operand is proc­
essed left to right. When the operands
overlap, the result is obtained as if
the operands were processed one byte at
a time and each result byte were stored
immediately after fetching the necessary
operand byte.

For MOVE (MVI), the first operand is one
byte in length, and only one byte is
stored.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2 of MVC;
store, operand 1, MVI and MVC)

Programming Notes

1 .

2.

Examples of the use
instruction are given
A.

of the MOVE
in Appendix

It is possible to propagate one
byte through an entire field by
having the first operand start one
byte to the right of the second
operand.

MOVE INVERSE

[SS]

'E8' l I B, I ~, B, I ~~
o 8 16 20 32 36 47

The second operand is placed at the
first-operand location with the left­
to-right sequence of the bytes inverted.

The first-operand address designates the
leftmost byte of the first operand. The
second-operand address designates the
rightmost byte of the second operand.
Both operands have the same length.

The result is obtained as if the second
operand were processed from right to
left and the first operand from left to
right. The second operand may wrap
around from location 0 to location
224 - 1. The first operand may wrap
around from location 224 - 1 to location
o.
When the operands overlap by more than
one byte, the contents of the overlapped
portion of the result field are unpre­
dictable.

Condition Code:
unchanged.

The code remains

7-24 System/370 Principles of Operation

Program Exceptions:

Access (fetch, operand 2; store,
operand 1)

Operation (if the move-inverse
facility is not installed)

Programming Notes

1. An example of the use of the MOVE
INVERSE instruction is given in
Appendix A.

2. The contents of each byte moved
remain unchanged.

3. MOVE INVERSE is the only SS-format
instruction for which the second­
operand address designates the
rightmost, instead of the leftmost,
byte of the second operand.

4. The storage-operand references for
MOVE INVERSE may be multiple-access
references. (See the section
"Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

MOVE LONG

MveL [RR]

'OE'

o 8 12 15

The second operand is placed at the
first-operand location, provided over­
lapping of operand locations would not
affect the final contents of the first­
operand location. The remaining right­
most byte positions, if any, of the
first-operand location are filled with
padding bytes.

The R t and R2 fields each
even-odd pair of general
must designate an
regi ster; otherwi se, a
exception is recognized.

designate an
registers and
even-numbered
specification

The location of the leftmost byte of the
first operand and second operand is
designated by bits 8-31 of general
registers R t and R2 , respectively. The
number of bytes in the first-operand and
second-operand locations is specified by
bits 8-31 of general registers R t + 1
and R2 + I, respectively. Bit positions
0-7 of register R2 + 1 contain the
padding byte. The contents of bit posi­
tions 0-7 of registers R t , R2 , and
R t + 1 are ignored.

The contents of the registers just
described are as follows:

Rt

1////////1 First-Operand Address

0 8 31

Rt + 1

1////////1 First-Operand Length

0 8 31

R2

1////////1 Second-Operand Addressl

0 8 31

R2 + 1

Pad Second-Operand Length

0 8 31

The movement starts at the left end of
both fields and proceeds to the right.
The operation is ended when the number
of bytes specified by bit positions 8-31
of general register R t + 1 have been
moved into the first-operand location.
If the second operand is shorter than
the first operand, the remaining right­
most bytes of the first-operand location
are filled with the padding byte.

As part of the execution of the instruc­
tion, the values of the two length
fields are compared for the setting of
the condition code, and a check is made
for destructive overlap of the operands.
Operands are said to overlap destruc­
tively when the first-operand location
is used as a source after data has been
moved into it, assuming the inspection
for overlap is performed by the use of
logical operand addresses. When the
operands overlap destructively, no move­
ment takes place, and condition code 3
is set.

Operands do not overlap destructively,
and movement is performed, if the left­
most byte of the first operand does not
coincide with any of the second-operand
bytes participating in the operation
other than the leftmost byte of the
second operand. When an operand wraps
around from location 16,777,215 to
location 0, operand bytes in locations
up to and including 16,777,215 are
considered to be to the left of bytes in
locations from 0 up.

When the length specified by bit posi­
tions 8-31 of general register RI + 1 is
zero, no movement takes place, and
condition code 0 or 1 is set to indicate
the relative values of the lengths.

instruction is The execution of the
interruptible. When
occurs other than one
nation, the contents
ters R t + 1 and R2 +

an interruption
that causes termi­
of general regis-
1 are decremented

by the number of bytes moved, and the
contents of general registers R t and R2
are incremented by the same number, so
that the instruction, when reexecuted,
resumes at the point of interruption.
The leftmost bits which are not part of
the address in general registers R, and
R2 are set to zeros; the contents of bit
positions 0-7 of general registers
R, + 1 and R2 + 1 remain unchanged; and
the condition code is unpredictable. If
the operation is interrupted during
padding, the length field in general
register R2 + 1 is 0, the address in
general register R2 is incremented by
the original contents of general regis­
ter R2 + 1, and general registers R t and
R, + 1 reflect the extent of the padding
operation.

When the first-operand location includes
the location of the instruction or of
EXECUTE, the instruction may be
refetched from storage and reinterpreted
even in the absence of an interruption
during execution. The exact point in
the execution at which such a refetch
occurs is unpredictable.

As observed by other CPUs and by chan­
nels, that portion of the first operand
which is filled with the padding byte is
not necessarily stored into in a left­
to-right direction and may appear to be
stored into more than once.

At the completion of the operation, the
length in general register R, + 1 is
decremented by the number of bytes
stored at the first-operand location,
and the address in general register R t

is incremented by the same amount. The
length in general register R2 + 1 is
decremented by the number of bytes moved
out of the second-operand location, and
the address in general register R2 is
incremented by the same amount. The
leftmost bits which are not part of the
address in general registers R, and R2
are set to zeros, including the case
when one or both of the original length
values are zeros or when condition code
3 is set. The contents of bit positions
0-7 of general registers R t + 1 and
R2 + 1 remain unchanged.

When condition code 3 is set, no
exceptions associated with operand
access are recognized. When the length
of an operand is zero, no access
exceptions for that operand are recog-
nized. Similarly, when the second
operand is longer than the first
operand, access exceptions are not
recognized for the part of the second­
operand field that is in excess of the
first-operand field. For operands long­
er than 2K bytes, access exceptions are
not recognized for locations more than
2K bytes beyond the current location
being processed. Access exceptions are
not recognized for an operand if the R
field associated with that operand is
odd. Also, when the R, field is odd,

Chapter 7. General Instructions 7-25

PER storage-alteration events are not
recognized, and no change bits are set.

0 Operand lengths equal; no
destructive overlap

1 First-operand length low; no
destructive overlap

2 First-operand length high; no
destructive overlap

3 No movement performed because
of destructive overlap

Program Exceptions:

Access (fetch, operand 2;
operand 1)

Specification

store,

Programming Notes

1 . An example of the use of the MOVE
LONG instruction is given in Appen­
dix A.

2. MOVE LONG may be used for clearing
storage by setting the padding byte
to zero and the second-operand
length to zero. On most models,
this is the fastest instruction for
clearing storage areas in excess of
256 bytes. However, the stores
associated with this clearing may
be multiple-access stores and
should not be used to clear an area
if the possibility exists that
another CPU or a channel will
attempt to access and use the area
as soon as it appears to be zero.
For more details, see the section
"Storage-Operand Consistency" in
Chapter 5, "Program Execution."

3. The program should avoid specifica­
tion of a length for either operand
which would result in an addressing
exception. Addressing (and also
protection) exceptions may result
in termination of the entire opera­
tion, not just the current unit of
operation. The termination may be
such that the contents of all
result fields are unpredictable; in
the case of MOVE LONG, this
includes the condition code and the
two even-odd general-register
pairs, as well as the first-operand
location in main storage. The
following are situations that have
actually occurred on one or more
models:

a. When a protection exception
occurs on a 2K-byte block, or,
when the storage-key 4K-byte­
block facility is installed, on
a 4K-byte block, of a first
operand which is several blocks
in length, stores to the
protected block are suppressed.

7-26 System/370 Principles of Operation

4.

b.

However, the move continues
into the subsequent blocks of
the first operand, which are
not protected. Similarly, an
addressing exception on a block
does not necessarily suppress
processing of subsequent blocks
which are available.

Some models may update the
general registers only when an
external, I/O, repressible
machine-check, or restart
interruption occurs, or when a
program interruption occurs for
which it is required to nullify
or suppress a unit of
operation. Thus, if, after a
move into several blocks of the
first operand, an addressing or
protection exception occurs,
the general registers may
remain unchanged.

When the first-operand length
zero, the operation consists
setting the condition code
setting the leftmost bytes
general registers R\ and R2
zero.

i s
in

and
of
to

5. When the contents of the R t and R2
fields are the same, the operation
proceeds the same way as when two
distinct pairs of registers having
the same contents are designated.
Condition code 0 is set.

6. The. following is a detailed
description of those cases in which
movement takes place, that is,
where destructive overlap does not
exist. Depending on whether the
second operand wraps around from
location 224 - 1 to location 0,
movement takes place in the follow­
ing cases:

a. When the second operand does
not wrap around, movement is
performed if the leftmost byte
of the first operand coincides
with or is to the left of the
leftmost byte of the second
operand, or if the leftmost
byte of the-first operand is to
the right of the rightmost
second-operand byte participat­
ing in the operation.

b. When the second operand wraps
around, movement is performed
if the leftmost byte of the
first operand coincides with or
is to the left of the leftmost
byte of the second operand, and
if the leftmost byte of the
first operand is to the right
of the rightmost second-operand
byte participating in the oper­
ation.

The rightmost second-operand byte
is determined by using the smaller

of the first-operand and second­
operand lengths.

When the second-operand length is
one or zero, destructive overlap
cannot exist.

7. Special precautions should be taken
if MOVE LONG is made the target of
EXECUTE. 5ee the programming note
concerning interruptible instruc­
tions under EXECUTE.

8. Since the execution of MOVE LONG is
interruptible, the instruction
cannot be used for situations where
the program must rely on uninter­
rupted execution of the instruction
or on the interval timer not being
updated during the execution of the
instruction. Similarly, the
program should normally not let the
first operand of MOVE LONG include
the location of the instruction or
of EXECUTE because the new contents
of the location may be interpreted
for a resumption after an inter­
ruption, or the instruction may be
refetched without an interruption.

9. Further programming notes concern­
ing interruptible instructions are
included in the section "Interrup­
tible Instructions" in Chapter 5,
"Program Execution."

MOVE NUMERICS

[55]

'D1 ' L I ~~ B2 I B, I ~_, --L.-_L--

o 8 16 20 32 36 47

The rightmost four bits of each byte in
the second operand are placed in the
rightmost bit positions of the corre­
sponding bytes in the first operand.
The leftmost four bits of each byte in
the first operand remain unchanged.

Each operand is processed left to right.
When the operands overlap, the result is
obtained as if the operands were proc­
essed one byte at a time and each result
byte were stored immediately after
fetching the necessary operand bytes.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

1. An example of the use of the MOVE
NUMERICS instruction is given in
Appendix A.

2. MOVE NUMERICS moves the numeric
portion of a decimal-data field
that is in the zoned format. The
zoned-decimal format is described
in Chapter 8, "Dec i ma 1
Instructions." The operands are
not checked for valid sign and
digit codes.

3. Accesses to the first operand of
MOVE NUMERICS consist in fetching
the rightmost four bits of each
byte in the first operand and
subsequently storing the updated
value of the byte. These fetch and
store accesses to a particular byte
do not necessarily occur one -imme­
diately after the other. Thus,
this instruction cannot be safely
used to update a location in stor­
age if the possibility exists that
another CPU or a channel may also
be updating the location. An exam­
ple of this effect is shown for OR
(01) in the section "Multiprogram­
ming and Multiprocessing Examples"
in Appendix A.

MOVE WITH OFFSET

MVO Dt(Lt,Bt),D2(L2,B2) [SS]

'F1' I L, I L2 I B, I ~, B2 ~~
0 8 12 16 20 32 36 47

The second operand is placed to the left
of and adjacent to the rightmost four
bits of the first operand.

The rightmost four bits of
operand are attached as the
bits to the second operand,
operand bits are offset by
positions, and the result is
the first-operand location.

the first
rightmost

the second
four bit
placed at

The result is obtained as if the oper­
ands were processed right to left. When
necessary, the second operand is consid­
ered to be extended on the left with
zeros. If the first operand is too
short to contain all of the second oper­
and, the remaining leftmost portion of
the second operand is ignored. Access
exceptions for the unused portion of the
second operand mayor may not be indi­
cated.

When the operands overlap, the result is
obtained as if the operands were proc­
essed one byte at a time, as if each
result byte were stored immediately

Chapter 7. General Instructions 7-27

after fetching the necessary operand
bytes, and as if the left digit of each
second-operand byte were to remain
available for the next result byte and
need not be refetched.

Condition Code: The code remains
Unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1. An example of the use of the MOVE
WITH OFFSET instruction is given in
Appendix A.

2. MOVE WITH OFFSET may be used to
shift packed decimal data by an odd
number of digit positions. The
packed-decimal format is described
1 n Chapter 8, "Decimal Instruc­
tions." The operands are not
checked for valid sign and digit
codes. In many cases, however,
SHIFT AND ROUND DECIMAL may be more
convenient to use.

3. Access to the rightmost byte of the
first operand of MOVE WITH OFFSET
consists in fetching the rightmost
four bits and subsequently storing
the updated value of this byte.
These fetch and store accesses to
the rightmost byte of the first
operand do not necessarily occur
one immediately after the other.
Thus, this instruction cannot be
safely used to update a location in
storage if the possibility exists
that another CPU or a channel may
also be updating the location. An
example of this effect 15 shown for
OR (Or) in the section "f'1ultipro­
grarnming and Multiprocessing
Examples" in Appendix A.

4. The storage-operand references for
MOVE WITH OFFSET may be multiple­
access references. (See the
section "Storage-Operand Consisten­
Cy" in Chapter 5, "Program
Execution.")

MOVE ZONES

MVZ [SS]

~ __ 'D_3 __ ' __ ~ ____ L __ ~I __ B_l~I~~, B. I ~~
o 8 16 20 32 36 47

7-28 System/370 Principles of Operation

The leftmost four bits of each byte in
the second operand are placed in the
leftmost four bit positions of the
corresponding bytes 1n the first
operand. The rightmost four bits of
each byte in the first operand remain
unchanged.

Each operand is processed left to right.
When the operands overlap, the result is
obtained as if the operands were proc­
essed one byte at a time and each result
byte were stored immediately after the
necessary operand byte is fetched.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1 . An example of the use of the MOVE
ZONES instruction is given in
Appendix A.

2. MOVE ZONES moves the zoned portion
of a decimal field in the zoned
format. The zoned format is
described in Chapter 8, "Decimal
Instructions." The operands are
not checked for valid sign and
digit codes.

3. Accesses to the first operand of
MOVE ZONES consist in fetching the
leftmost four bits of each byte in
the first operand and subsequently
storing the updated value of the
byte. These fetch and store
accesses to a particular byte do
not necessarily occur one imme­
diately after the other. Thus,
this instruction cannot be safely
used to update a location in stor­
age if the possibility exists that
another CPU or a channel may also
be updating the location. An exam­
ple of this effect is shown for the
OR (01) instruction in the 5~ction
"Multiprogramming and Multiprocess­
ing Examples" in Appendix A.

MULTIPLY

MR [RRJ

, lC'

o 8 12 15

~

M [RX]

o 8 12 16 20

The second word of the first
(multiplicand) is multiplied
second operand (multiplier),
doubleword product is placed
first-operand location.

31

operand
by the

and the
at the

The R! field designates an even-odd pair
of general registers and must designate
an even-numbered register; otherwise, a
specification exception is recognized.

Both the multiplicand and multiplier are
treated as 32-bit signed binary
integers. The multiplicand is taken
from general register R! + 1. The
contents of general register R! are
ignored. The product is a 64-bit signed
binary integer, which replaces the
contents of the even-odd pair of general
registers designated by R I • An overflow
cannot occur.

The sign of the product is determined by
the rules of algebra from the multiplier
and multiplicand sign, except that a
zero result is always positive.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 of M only)
Specification

Programming Notes

1. An example of the use of the MULTI­
PLY instruction is given in Appen­
dix A.

2. The significant part of the product
usually occupies 62 bits or fewer.

plier), and the product is placed
first-operand location. The
operand is two bytes in length
considered to be a 16-bit signed
integer.

at the
second
and is
binary

The multiplicand is treated as a 32-bit
signed binary integer and is replaced by
the rightmost 32 bits of the signed­
binary-integer product. The bits to the
left of the 32 rightmost bits of the
product are not tested for significance;
no overflow indication is given.

The sign of the product is determined by
the rules of algebra from the multiplier
and multiplicand sign, except that a
zero result is always positive.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (fetch, operand 2)

Programming Notes

remains

1. An example of the use of the MULTI­
PLY HALFWORO instruction is given
in Appendix A.

2. The significant part of the product
usually occupies 46 bits or fewer.
Only when two maximum negative
numbers are multiplied are 47
significant product bits formed.
Since the rightmost 32 bits of the
product are stored unchanged,
ignoring all bits to the left, the
sign bit of the result may differ
from the true sign of the product
in the case of overflow. For a
negative product, the 32 bits
placed in register R t are the
rightmost part of the product in
two's-complement notation.

Only when two maximum negative OR
numbers are multiplied are 63
significant product bits formed.

MULTIPLY HALFWORD

MH R! ,D 2(X 2 ,B 2) [RX]

'4C' I R! I X2 I B2 O2

0 8 12 16 20 31

The first operand (multiplicand) is
multiplied by the second operand (multi-

OR

0

0

0

[RR]

' 16 ' I R! I R2

8 12 15

Rl1 D2(X 2,B 2) [RX]

'56' I R! I X2 I B2 D2

8 12 16 20 31

Chapter 7. General Instructions 7-29

o 8 16 20 31

OC [55]

~ __ 'D __ 6_' __ ~ ____ l __ ~I~B_I __ L-1 ~, B, 1 ~~
o 8 16 20 32 36 47

The OR of the first and second operands
is placed at the first-operand location.

The connective OR is applied to the
operands bit by bit. A bit position in
the result is set to one if the corre­
sponding bit position in one or both
operands contains a one; otherwise, the
result bit is set to zero.

For OR (OC), each operand is processed
left to right. When the operands over­
lap, the result is obtained as if the
operands were processed one byte at a
time and each result byte were stored
immediately after fetching the necessary
operand bytes.

For OR (01), the first operand is only
one byte in length, and only one byte is
stored.

Resulting Condition Code:

o Result zero
1 Result not zero
2
3

Program Exceptions:

Access (fetch, operand 2, 0 and OC;
fetch and store, operand 1, 01
and DC)

Programming Notes

1.

2.

3.

Examples of the use of
instruction are given in
A.

the OR
Appendix

OR may be used to set a bit to one.

Accesses to the first operand of OR
(01) and OR (OC) consist in fetch­
ing a first-operand byte from stor­
age and subsequently storing the
updated value. These fetch and
store accesses to a particular byte
do not necessarily occur one imme­
diately after the other. Thus, OR
cannot be safely used to update a
location in storage if the possi-

7-30 System/370 Principles of Operation

PACK

PACK

bility exists that another CPU or a
channel may also be updating the
location. An example of this
effect is shown in the section
"Mul t i programmi ng and f'lul ti process­
ing Examples" in Appendix A.

D t (l t ,B t), D2 (L 2' B 2) [55]

,,-'_F2_' _____ I _L _1 1 _L _2 ___ I _8 _I "",,--I ~ , 1 B, ~~
o 8 12 16 20 32 36 47

The format of the second operand is
changed from zoned to packed, and the
result is placed at the first-operand
location. The zoned and packed formats
are described in Chapter 8, "Decimal
Instructions."

The second operand is treated as though
it had the zoned format. The numeric
bits of each byte are treated as a
digit. The zone bits are ignored,
except the zone bits in the rightmost
byte, which are treated as a sign.

The sign and digits are moved unchanged
to the first operand and are not checked
for valid codes. The sign is placed in
the rightmost four bit positions of the
rightmost byte of the result field, and
the digits are placed adjacent to the
sign and to each other in the remainder
of the result field.

The result is obtained as if the oper­
ands were processed right to left. When
necessary, the second operand is consid­
ered to be extended on the left with
zeros. If the first operand is too
short to contain all digits of the
second operand, the remaining leftmost
portion of the second operand is
ignored. Access exceptions for the
unused portion of the second operand may
or may not be indicated.

When the operands overlap, the result is
obtained as if each result byte were
stored immediately after fetching the
necessary operand bytes. Two second­
operand bytes are needed for each result
byte, except for the rightmost byte of
the result field, which requires only
the rightmost second-operand byte.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2; store,
operand 1)

Programming Notes

1. An example of the use of the PACK
instruction is given in Appendix A.

2. PACK may be used to interchange the
two hexadecimal digits in one byte
by specifying a zero in the L, and
L2 fields and the same address for
both operands.

3. To remove the zone bits of all
bytes of a field, including the
rightmost byte, both operands must
be extended on the right with a
dummy byte, which subsequently is
ignored in the result field.

4. The storage-operand references for
PACK may be multiple-access refer­
ences. (See the secti on "Storage­
Operand Consistency" in Chapter 5,
"Program Execution.")

SET PROGRAM MASK

SPM R, [RR]

o 8 12 15

The first operand is used to set the
condition code and the program mask of
the current PSW.

Bits 12-15
ignored.

of the instruction are

Bits 2 and 3 of general register R,
replace the condition code, and bits 4-7
replace the program mask. Bits 0, 1,
and 8-31 of general register R, are
ignored.

Condition Code:
specified by bits
register R,.

The code is
2 and 3 of

Program Exceptions: None.

Programming Notes

set as
general

1. Bits 2-7 of the general register
may have been loaded from the PSW
by BRANCH AND LINK.

2. SET PROGRAM MASK permits setting of
the condition code and the mask
bits in either the problem state or
the supervisor state.

3. The program should take into
consideration that the setting of
the program mask can have a signif-

icant effect on subsequent
execution of the program. Hot only
do the four mask bits control
whether the corresponding inter­
ruptions occur, but the exponent­
underflow and significance masks
also determine the result which is
obtained.

SHIFT LEFT DOUBLE

o 8 12 16 20 31

The 63-bit numeric part of the signed
first operand is shifted left the number
of bits specified by the second-operand
address, and the result is placed at the
first-operand location.

Bits 12-15
ignored.

of the instruction are

The R, field designates an even-odd pair
of general registers and must designate
an even-numbered register; otherwise, a
specification exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 64-bit
signed binary integer. The sign posi­
tion of the even-numbered register
remains unchanged. The leftmost bit
position of the odd-numbered register
contains a numeric bit, which partic­
ipates in the shift in the same manner
as the other numeric bits. Zeros are
supplied to the vacated bit positions on
the right.

If one or more bits unlike the sign bit
are shifted out of bit position 1 of the
even-numbered register, an overflow
occurs, and condition code 3 is set. If
the fixed-point-overflow mask bit is
one, a program interruption for fixed­
point overflow occurs.

Resulting Condition Code:

o
1

2

3

Result zero; no overflow
Result less than zero; no over­
flow
Result greater than zero; no
overflow
Overflow

Program Exceptions:

Fixed-point overflow
Specification

Chapter 7. General Instructions 7-31

Programming Notes

1. An example of the use of the SHIFT
LEFT DOUBLE instruction is given in
Appendix A.

2. The eight shift instructions
provide the following three pairs
of alternatives: left or right,
single or double, and signed or
logical. The signed shifts differ
from the logi cal shi fts in that, in
the signed shifts, overflow is
recognized, the condition code is
set, and the leftmost bit partic­
ipates as a sign.

3. A zero shift amount in the two
signed double-shift operations
provides a double-length sign and
magnitude test.

4. The base register participating in
the generation of the second­
operand address permits indirect
specification of the shift amount.
A zero in the B2 field indicates
the absence of indirect shift spec­
ification.

SHIFT LEFT DOUBLE LOGICAL

SLDL [RS]

'8D'

o 8 12 16 20 31

The 64-bit first operand is shifted left
the number of bits specified by the
second-operand address, and the result
is placed at the first-operand location.

Bits 12-15
ignored.

of the instruction are

The R, field designates an even-odd pair
of general registers and must designate
an even-numbered register; otherwise, a
specification exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 64 bits of the first operand partic­
ipate in the shift. Bits shifted out of
bit position 0 of the even-numbered
register are not inspected and are lost.
Zeros are supplied to the vacated bit
positions on the right.

Condition Code:
unchanged.

The code remains

7-32 System/370 Principles of Operation

Program Exceptions:

Specification

SHIFT LEFT SINGLE

SLA [RS]

'8B'

o 8 12 16 20 31

The 31-bit numeric part of the signed
first operand is shifted left the number
of bits specified by the second-operand
address, and the result is placed at the
first-operand location.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 32-bit
signed binary integer. The sign of the
first operand remains unchanged. All 31
numeric bits of the operand participate
in the left shift. Zeros are supplied
to the vacated bit positions on the
right.

If one or more bits unlike the sign bit
are shifted out of bit position 1, an
overflow occurs, and condition code 3 is
set. If the fixed-poi nt-overflow mask
bit is one, a program interruption for
fixed-point overflow occurs.

Resulting Condition Code:

o
1

2

3

Result zero; no overflow
Result less than zero; no over­
flow
Result greater than zero; no
overflow
Overflow

Program Exceptions:

Fixed-point overflow

Programming Notes

1. An example of the use of the SHIFT
LEFT SINGLE instruction is given in
Appendix A.

2. For numbers with a value greater
than or equal to -2 30 and less than
2 30 , a left shift of one bit posi­
tion is equivalent to multiplying
the number by 2.

3. Shift amounts from 31 to 63 cause
the entire numeric part to be
shifted out of the register, leav­
ing a result of the maximum nega­
tive number or zero, depending on
whether or not the initial contents
were negative.

SHIFT LEFT SINGLE LOGICAL

SLL [RS]

'89'

o 8 12 16 20 31

The 32-bit first operand is shifted left
the number of bits specified by the
second-operand address, and the result
is placed at the first-operand location.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand partic­
ipate in the shift. Bits shifted out of
bit position 0 are not inspected and are
lost. Zeros are supplied to the vacated
bit positions on the right.

Condition Code: The code remains
unchanged.

Program Exceptions: None.

SHIFT RIGHT DOUBLE

SRDA [RS]

'8E'

o 8 12 16 20 31

The 63-bit numeric part of the signed
first operand is shifted right the
number of bits specified by the second­
operand address, and the result is
placed at the first-operand location.

Bits 12-15
ignored.

of the instruction are

The R\ field designates an even-odd pair
of general registers and must designate
an even-numbered register; otherwise, a
specification exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to

be shifted. The remainder of the
address is ignored.

The first operand is treated as a 64-bit
signed binary integer. The sign posi­
tion of the even-numbered register
remains unchanged. The leftmost bit
position of the odd-numbered register
contains a numeric bit, which partic­
ipates in the shift in the same manner
as the other numeric bits. Bits shifted
out of bit position 31 of the odd­
numbered register are not inspected and
are lost. Bits equal to the sign are
supplied to the vacated bit positions on
the left.

Resulting Condition Code:

o
1
2
3

Result zero
Result less than zero
Result greater than zero

Program Exceptions:

Specification

SHIFT RIGHT DOUBLE LOGICAL

SRDL [RS)

'8C'

o 8 12 16 20 31

The 64-bit first operand is shifted
right the number of bits specified by
the second-operand address, and the
result is placed at the first-operand
location.

Bits 12-15
ignored.

of the instruction are

The R\ field designates an even-odd pair
of general registers and must designate
an even-numbered register; otherwise, a
specification exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 64 bits of the first operand partic­
ipate in the shift. Bits shifted out of
bit position 31 of the odd-numbered
register are not inspected and are lost.
Zeros are supplied to the vacated bit
positions on the left.

Condition Code:
unchanged.

Program Exceptions:

Specification

The code remains

Chapter 7. General Instructions 7-33

SHIFT RIGHT SINGLE

SRA [RS]

'8A'

o 8 12 16 20 31

The 31-bit numeric part of the signed
first operand is shifted right the
number of bits specified by the second­
operand address, and the result is
placed at the first-operand location.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 32-bit
signed binary integer. The sign of the
first operand remains unchanged. All 31
numeric bits of the operand participate
in the right shift. Bits shifted out of
bit position 31 are not inspected and
are lost. Bits equal to the sign are
supplied to the vacated bit positions on
the left.

Resulting Condition Code:

o
1
2
3

Result zero
Result less than zero
Result greater than zero

Program Exceptions: None.

ProQramming Notes

1. A right shift of one bit position
is equivalent to division by 2 with
rounding downward. When an even
number is shifted right one posi­
tion, the result is equivalent to
dividing the number by 2. When an
odd number is shifted right one
position, the result is equivalent
to dividing the next lower number
by 2. For example, +5 shifted
right by one bit position yields
+2, whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause
the entire numeric part to be
shifted out of the register, leav­
ing a result of -1 or zero, depend­
ing on whether or not the initial
contents were negative.

7-34 System/370 Principles of Operation

SHIFT RIGHT SINGLE LOGICAL

SRL [RS]

'88'

o 8 12 16 20 31

The 32-bit first operand is shifted
right the number of bits specified by
the second-operand address, and the
result is placed at the first-operand
location.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand partic­
ipate in the shift. Bits shifted out of
bit position 31 are not inspected and
are lost. Zeros are supplied to the
vacated bit positions on the left.

Condition Code:
unchanged.

The code

Program Exceptions: None.

STORE

ST [RX]

'50'

o 8 12 16 20

remains

31

The first operand is stored at the
second-operand location.

The 32 bits in the general register are
placed unchanged at the second-operand
location.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 2)

STORE CHARACTER

[RX]

'42' I R, I X2 I B2

o 8 12 16 20

remains

31

Bits 24-31 of general register R, are
placed unchanged at the second-operand
location. The second operand is one
byte in length.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 2)

STORE CHARACTERS UNDER MASK

o 8 12 16 20

remains

31

Bytes selected from general register R,
under control of a mask are placed at
contiguous byte locations beginning at
the second-operand address.

The contents of the M3 field are used as
a mask. These four bits, left to right,
correspond one for one with the four
bytes, left to right, of general regis­
ter R,. The bytes corresponding to ones
in the mask are placed in the same order
at successive and contiguous storage
locations beginning at the second­
operand address. When the mask is not
zero, the length of the second operand
is equal to the number of ones in the
mask. The contents of the general
register remain unchanged.

When the mask is not zero, exceptions
associated with storage-operand accesses
are recognized only for the number of
bytes specified by the mask.

When the mask is zero, the single byte
designated by the second-operand address
remains unchanged; however, on some
models, the value may be fetched and
subsequently stored back unchanged at
the same storage location. This update
appears to be an interlocked-update
reference as observed by other CPUs.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 2)

Programming Notes

remains

1. An example of the use of the STORE
CHARACTERS UNDER MASK instruction
is given in Appendix A.

2. STORE CHARACTERS UNDER MASK with a
mask of 0111 may be used to store a
three-byte address, for example, in
modifying the address in a CCW.

3. STORE CHARACTERS UNDER MASK with a
mask of 1111, 0011, or 0001
performs the same function as
STORE, STORE HAlFWORD, or STORE
CHARACTER, respectively. However,
on most models, the performance of
STORE CHARACTERS UNDER MASK is
slower.

4. Using STORE CHARACTERS UNDER MASK
with a zero mask should be avoided
since this instruction, depending
on the model, may perform a fetch
and store of the single byte desig-
nated by the second-operand
address. This reference is not
interlocked against accesses by
channels. In addition, it may
cause any of the following to occur
for the byte designated by the
second-operand address: a PER
storage-alteration event may be
recognized; access exceptions may
be recognized; and, provided no
access exceptions exist, the change
bit may be set to one.

STORE CLOCK

STCK [5]

'B205'

o 16 20 31

The current value of the TaD clock is
stored at the eight-byte field desig­
nated by the second-operand address,
provided the clock is in the set,
stopped, or not-set state.

Zeros are stored for the rightmost bit
positions that are not provided by the
clock.

When the clock is in the error state,
the value stored is unpredictable. When
the clock is in the not-operational
state, zeros are stored at the operand
location.

The quality of the clock value stored by
the instruction is indicated by the
resultant condition-code setting.

A serialization function is performed
before the value of the clock is fetched
and again after the value is placed in
storage.

Resulting Condition Code:

o Clock in set state
1 Clock in not-set state
2 Clock in error state

Chapter 7. General Instructions 7-35

3 Clock in stopped state or not­
operational state

Program Exceptions:

Access (store, operand 2)

Programming Notes

1. Bit position 31 of the clock is
incremented every 1.048576 seconds;
hence, for timing applications
involving human responses, the
leftmost clock word may provide
sufficient resolution.

2. Condition code 0 normally indicates
that the clock has been set by the
control program. Accordingly, the
value may be used in elapsed-time
measurements and as a valid time­
of-day and calendar indication.
Condition code 1 indicates that the
clock value is the elapsed time
since the power for the clock was
turned on. In this case, the value
may be used in elapsed-time meas­
urements but is not a valid time­
of-day indication. Condition codes
2 and 3 mean that the value
provided by STORE CLOCK cannot be
used for time measurement or indi­
cation.

3. Condition code 3 indicates that the
clock is in either the stopped
state or the not-operational state.
These two states can normally be
distinguished because an all-zero
value is stored when the clock is
in the not-operational state.

STORE HAlFWORD

o 8 12 16 20 31

Bits 16-31 of general register Rt are
placed unchanged at the second-operand
location. The second operand IS two
bytes in length.

Condition Code: The code remains
unchanged.

Program Exceptions:

Access (store, operand 2)

7-36 System/370 Principles of Operation

STORE MULTIPLE

o 8 12 16 20 31

The contents of the set of general
registers starting with general register
Rt and ending with general register R3
are placed in the storage area beginning
at the location designated by the
second-operand address and continuing
through as many locations as needed.

The general registers are stored in the
ascending order of register numbers,
starting with general register Rt and
continuing up to and including general
register R3 , with general register 0
following general register 15.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (store, operand 2)

Programming Note

An example of the use
MULTIPLE instruction is
dix A.

SUBTRACT

SR R t , R 2 [RR]

, IB' I Rt I R2 I
0 8 12 15

S Rp D2(X 2 ,B 2)

'5B' I Rt I X2 I B2

o 8 12 16

of the STORE
given in Appen-

[RX]

D2

20 31

The second operand is subtracted from
the first operand, and the difference is
placed at the first-operand location.
The operands and the difference are
treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi­
tion code 3 is set. If the fixed­
point-overflow mask is one, a program

interruption for fixed-point overflow
occurs.

Resulting Condition Code:

o
1

2

3

Result zero; no overflow
Result less than zero; no over­
flow
Result greater than zero; no
overflow
Overflow

Program Exceptions:

Access (fetch, operand 2 of S only)
Fixed-point overflow

Programming Notes

1. When, in the RR format, R1 and R2
designate the same register,
subtracting is equivalent to clear­
ing the register.

2. Subtracting a maximum negative
number from another maximum nega­
tive number gives a zero result and
no overflow.

SUBTRACT HALFWORO

SH [RX]

'4B' O2

o 8 12 16 20 31

The second operand is subtracted from
the first operand, and the difference is
placed at the first-operand location.
The second operand is two bytes in
length and is treated as a 16-bit signed
binary integer. The first operand and
the difference are treated as 32-bit
signed binary integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi­
tion code 3 is set. If the fixed­
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no over-

flow
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Access (fetch, operand 2)

Fixed-point overflow

SUBTRACT LOGICAL

SLR [RR]

, 1 F' I R1 I R2 I
0 8 12 15

SL R1,02(X 2,B 2) [RX]

'5 F' I R1 I X2 I B2 O2

o 8 12 16 20 31

The second operand is subtracted from
the first operand, and the difference is
placed at the first-operand location.
The operands and the difference are
treated as 32-bit unsigned binary inte­
gers.

Resulting Condition Code:

o
1
2
3

Result not zero; no carry
Result zero; carry
Result not zero; carry

Program Exceptions:

Access (fetch, operand 2 of SL
only)

Programming Notes

1. Logical subtraction is performed by
adding the one's complement of the
second operand and a value of one
to the first operand. The use of
the one's complement and the value
of one instead of the two's comple­
ment of the second operand results
in a carry when the second operand
is zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the
condition code and in the absence
of the interruption for overflow.

3.

4.

A zero difference
panied by a carry
tion O.

is always accom­
out of bit posi-

The condition-code setting for
SUBTRACT LOGICAL can also be inter-
preted as indicating the presence
and absence of a borrow,
follows:

1
2
3

Result not zero; borrow
Result zero; no borrow
Result not zero; no borrow

as

Chapter 7. General Instructions 7-37

SUPERVISOR CALL

SVC I [RR]

'OA' I

o 8 15

The instruction causes a supervisor-call
interruption, with the I field of the
instruction providing the rightmost byte
of the interruption code.

Bits 8-15 of the instruction, with eight
zeros appended on the left, are placed
in the supervisor-call interruption code
that is stored in the course of the
interruption. See "Supervisor-Call In­
terruption" in Chapter 6,
"Interruptions."

A serialization and checkpoint-
synchronization function is performed.

Condition Code: The code
unchanged ana--Ts saved as part
old PSW. A new condition code is
as part of the supervisor-call
ruption.

Program Exceptions: None.

TEST AND SET

TS D2 (B 2) [S]

'93' 1////////1 B2 D2

0 8 16 20

remains
of the
loaded
inter-

31

The leftmost bit (bit position 0) of the
byte located at the second-operand
address is used to set the condition
code, and then the byte is set to all
ones.

Bits 8-15 of
ignored.

the instruction are

The byte in storage is set to all ones
as it is fetched for the testing of bit
position O. This update appears to be
an interlocked-update reference as
observed by other CPUs.

A serialization function is performed
before the byte is fetched and again
after the storing of all ones.

Resulting Condition Code:

o
1
2
3

Leftmost bit zero
Leftmost bit one

7-38 System/370 Principles of Operation

Program Exceptions:

Access (fetch and store, operand 2)

Programming Notes

1. TEST AND SET may be used for
controlled sharing of a common
storage area by programs operating
on different CPUs. This instruc­
tion is provided primarily for
compatibility with programs written
for System/360. The instructions
COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP provide functions which
are more suitable for sharing among
programs on a single CPU or for
programs that may be interrupted.
See the description of these
instructions and the associated
programming notes for details.

2. TEST AND SET does not interlock
against storage accesses by chan­
nels. Therefore, the instruction
should not be used to update a
location into which a channel
program may store, since the
channel-program data may be lost.

TEST UNDER MASK

TM D1 (B 1),1 2 [SI]

' 91 ' 12 B 1 D1

0 8 16 20 31

A mask is used to select bits of the
first operand, and the result is indi­
cated in the condition code.

The byte of immediate data, 1 2 , is used
as an eight-bit mask. The bits of the
mask are made to correspond one for one
with the bits of the byte in storage
designated by the first-operand address.

A mask bit of one indicates that the
storage bit is to be tested. When the
mask bit is zero, the storage bit is
ignored. When all storage bits thus
selected are zero, condition code 0 is
set. Condition code 0 is also set when
the mask is all zeros. When the
selected bits are all ones, condition
code 3 is set; otherwise, condition code
1 is set.

Access exceptions associated with the
storage operand are recognized for one
byte even when the mask is all zeros.

Resulting Condition Code:

o Selected bits all zeros; or
mask bits all zeros

1 Selected bits mixed zeros and
ones

2
3 Selected bits all ones

Program Exceptions:

Access (fetch, operand 1)

Programming Note

An example of the use of the TEST UNDER
MASK instruction is given in Appendix A.

TRANSLATE

TR [SS]

'DC' L I B, I ~, B. I EJ
o 8 16 20 32 36 47

The bytes of the first operand are used
as eight-bit arguments to reference a
list designated by the second-operand
address. Each function byte selected
from the list replaces the corresponding
argument in the first operand.

The L field specifies the length of only
the first operand.

The bytes of the first operand are
selected one by one for translation,
proceeding left to right. Each argument
byte is added to the initial second­
operand address. The addition is
performed following the rules for
address arithmetic, with the argument
byte treated as an eight-bit unsigned
binary integer and extended with zeros
on the left. The sum is used as the
address of the function byte, which then
replaces the original argument byte.

The operation proceeds until the first­
operand field is exhausted. The list is
not altered unless an overlap occurs.

When the operands overlap, the result is
obtained as if each result byte were
stored immediately after fetching the
corresponding function byte.

Access exceptions are recognized only
for those bytes in the second operand
which are actually required.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1. An example of the use of the TRANS­
LATE instruction is given in Appen­
dix A.

2. TRANSLATE may be used to convert
data from one code to another code.

3. The instruction may also be used to
rearrange data. This may be accom­
plished by placing a pattern in the
destination area, by designating
the pattern as the first operand of
TRANSLATE, and by designating the
data that is to be rearranged as
the second operand. Each byte of
the pattern contains an eight-bit
number specifying the byte destined
for this position. Thus, when the
instruction is executed, the
pattern selects the bytes of the
second operand in the desired
order.

4. Because each eight-bit argument
byte is added to the initial
second-operand address to obtain
the address of a function byte, the
list may contain 256 bytes. In
cases where it is known that not
all eight-bit argument values will
occur, it is possible to reduce the
size of the list.

5. Significant performance degradation
is possible when, with OAT on, the
second-operand address of TRANSLATE
designates a location that is less
than 256 bytes to the left of a
2K-byte boundary. This is because
the machine may perform a trial
execution of the instruction to
determine if the second operand
actually crosses the boundary.

6. The fetch and subsequent store
accesses to a particular byte in
the first-operand field do not
necessarily occur one immediately
after the other. Thus, this
instruction cannot be safely used
to update a location in storage if
the possibility exists that another
CPU or a channel may also be updat­
ing the location. An example of
this effect is shown for OR (01) in
the section "Multiprogramming and
Multiprocessing Examples" in Appen­
dix A.

7. The storage-operand references of
TRANSLATE may be multiple-access
references. (See the section
"Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

Chapter 7. General Instructions 7-39

TRANSLATE AND TEST

[55]

'DO' L I 8, I ~, I 8, I ~~
o 8 16 20 32 36 47

The bytes of the first operand are used
as eight-bit arguments to select func­
tion bytes from a list designated by the
second-operand address. The first
nonzero function byte is inserted in
general register 2, and the related
argument address in general register 1.

The L field specifies the length of only
the first operand.

The bytes of the first operand are
selected one by one for translation,
proceeding from left to right. The
first operand remains unchanged in stor­
age. Calculation of the address of the
function byte is performed as in the
TRANSLATE instruction. The function
byte retrieved from the list is
inspected for a value of zero.

When the function byte is zero, the
operation proceeds with the next byte of
the first operand. When the first­
operand field is exhausted before a
nonzero function byte is encountered,
the operation is completed by setting
condition code O. The contents of
general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the
operation is completed by inserting the
function byte in general register 2 and
the related argument address in general
register 1. This address points to the
argument byte last translated. The
function byte replaces bits 24-31 of
general register 2. The address
replaces bits 8-31 of general register
1. Bits 0-7 of general register 1 and
bits 0-23 of general register 2 remain
unchanged.

When the function byte is nonzero,
either condition code 1 or 2 is set,
depending on whether the argument byte
is the rightmost byte of the first oper­
and. Condition code 1 is set if one or
more argument bytes remain to be trans­
lated. Condition code 2 is set if no
more argument bytes remain.

Access exceptions are recognized only
for those bytes in the second operand
which are actually required. Access
exceptions are not recognized for those
bytes in the first operand which are to
the right of the first byte for which a
nonzero function byte is obtained.

Resulting Condition Code:

o All function bytes zero

7-40 System/370 Principles of Operation

1

2

3

Nonzero function byte; first­
operand field not exhausted
Nonzero function byte; first­
operand field exhausted

Program Exceptions:

Access (fetch, operands 1 and 2)

Programming Notes

1. An example of the use of the TRANS­
LATE AND TEST instruction is given
in Appendix A.

2. TRANSLATE AND TEST may be used to
scan the first operand for charac­
ters with special meaning. The
second operand, or list, is set up
with all-zero function bytes for
those characters to be skipped over
and with nonzero function bytes for
the characters to be detected.

UNPACK

[55]

'F3' I L, I L, I 8, I ~, 8, ~~
o 8 12 16 20 32 36 47

The format of the second operand is
changed from packed to zoned, and the
result is placed at the first-operand
location. The packed and zoned formats
are described in Chapter 8, "Decimal
Instructions."

The second operand is treated as though
it had the packed format. Its digits
and sign are placed unchanged in the
first-operand location, using the zoned
format. Zone bits with coding of 1111
are supplied for all bytes except the
rightmost byte, the zone of which
receives the sign of the second operand.
The sign and digits are not checked for
valid codes.

The result is obtained as if the oper­
ands were processed right to left. When
necessary, the second operand is consid­
ered to be extended on the left with
zeros. If the first-operand field is
too short to contain all digits of the
second operand, the remaining leftmost
portion of the second operand is
ignored. Access exceptions for the
unused portion of the second operand may
or may not be indicated.

When the operands overlap, the result is
obtained as if the operands were proc­
essed one byte at a time and as if the
first result byte were stored immediate-

ly after fetching the first operand
byte. The entire rightmost second­
operand byte is used in forming the
first result byte. For the remainder of
the field, information for two result
bytes is obtained from a single second­
operand byte, and execution proceeds as
if the leftmost four bits of the byte
were to remain available for the next
result byte and need not be refetched.
Thus, the result is as if two result
bytes were to be stored immediately
after fetching a single operand byte.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2; store,
operand 1)

Programming Notes

1. An example of the use of the UNPACK
instruction is given in Appendix A.

2. A field that is to be unpacked can
be destroyed by improper ·overlap­
ping. To save storage space for
unpacking by overlapping the oper­
ands, the rightmost byte of the
first operand must be to the right
of the rightmost byte of the second
operand by the number of bytes in
the second operand minus 2. If
only one or two bytes are to be
unpacked, the rightmost bytes of
the two operands may coincide.

3. The storage-operand references of
UNPACK may be multiple-access
references. (See the section
"Storage-Operand Consistency" in
Chapter 5, "Program Execution.~)

Chapter 7. General Instructions 7-41

CHAPTER ~ DECIMAL INSTRUCTIONS

Decimal-Number Formats ••.•.•••..•.••••...•.•.••..•.•....•. 8-1
Zoned Format ••..•...•••••••...••.•••........••••.....•.• 8-1
Packed Format •...•.....•.•..•....••.........•.•......... 8-1
Decimal Codes •.•.•.....•••.•.•.•...•.......••.•.•....•.. 8-2

Decimal Operations ••...•••••.•.•.....•.•.•••.•••..••.•.... 8-2
Deci mal-Ari thmeti c Instructi ons .•.••.•.••....•.••••.•... 8-2
Editing Instructions 8-3
Execution of Decimal Instructions •.............•........ 8-3
Other Instructions for Decimal Operands •....•....••.•.•. 8-3

Instructions ••.••.••••.....•.•....•.••...•..••...•.•...•.. 8-3
ADD DECIMAL•••.......•.•.....•.........••...••.•.... 8-5
COMPARE DECIMAL ... 8-5
DIVIDE DECIMAL .•••...•..••...•..•...........••..•....•.. 8-5
EDIT•...•..•••..••...•.••••.••....•...•.••••....•.. 8-6
EDIT AND MARK ..••.......••.•......•...........•..•...•.. 8-9
MUl TIPl Y DECIMAL•....•............................ 8-10
SHIFT AND ROUND DECIMAL •••........•....•...•...••..•.•.. 8-10
SUBTRACT DECIMAL .••...••.••..•.•.....•.•.•.•.......••... 8-11
ZERO AND ADD ••...••..•.•••••....••.......•.•.••.•.....•. 8-12

The decimal instructions of this chapter
perform arithmetic and editing oper­
ations on decimal data. Additional
operations on decimal data are provided
by several of the instructions in Chap­
ter 7, "General Instructions." Decimal
operands always reside in storage, and
all decimal instructions use the SS
instruction format. Decimal operands
occupy storage fields that can start on
any byte boundary.

DECIMAL-NUMBER FORMATS

Decimal numbers may be represented in
either the zoned or packed format. Both
decimal-number formats are of variable
length; the instructions used to operate
on decimal data each specify the length
of their operands and results. Each
byte of either format consists of a pair
of four-bit codes; the four-bit codes
include decimal-digit codes, sign codes,
and a zone code.

ZONED FORMAT

r----~---,----~---~-/~---~~---r---~---~

N IZ/SI N Z N Z N Z
~---~---~---~---~-/~---~~---~.---~.---~

In the zoned format, the rightmost four
bits of a byte are called the numeric
bits (N) and normally consist of a code
representing a decimal digit. The left­
most four bits of a byte are called the
zone bits eZ), except for the rightmost
byte of a decimal operand, where these

bits may be treated either as a zone or
a s a sign (S).

Decimal digits in the zoned format may
be part of a larger character set, which
includes also alphabetic and special
characters. The zoned format is, there­
fore, suitable for input, editing, and
output of numeric data in human-readable
form. There are no decimal-arithmetic
instructions which operate directly on
decimal numbers in the zoned format;
such numbers must first be converted to
the packed format.

The editing instructions produce a
result of up to 256 bytes; each byte may
be a decimal digit in the zoned format,
a message byte, or a fill byte.

PACKED FORMAT

D D D D D D D S

In the packed format, each byte contains
two decimal digits (D), except for the
rightmost byte, which contains a sign to
the right of a decimal digit. Decimal
arithmetic is performed with operands in
the packed format and generates results
in the packed format.

The packed-format operands and results
of decimal-arithmetic instructions may
be up to 16 bytes (31 digits and sign),
except that the maximum length of a
multiplier or divisor is eight bytes (15
digits and sign). In division, the sum
of the lengths of the quotient and

Chapter 8. Decimal Instructions 8-1

remainder may be from two to 16 bytes.
The editing instructions can fetch as
many as 256 decimal digits from one or
more decimal numbers of variable length,
each in the packed format.

DECIMAL CODES

The decimal digits 0-9 have the binary
encoding 0000-1001.

The preferred sign codes are 1100 for
plus and 1101 for minus. These are the
sign codes generated for the results of
the decimal-arithmetic instructions and
the CONVERT TO DECIMAL instruction.

Alternate sign codes are also recognized
as valid in the sign position: 1010,
1110, and 1111 are alternate codes for
plus, and 1011 is an alternate code for
minus. Alternate sign codes are
accepted for any decimal source operand,
but are not generated in the completed
result of a decimal-arithmetic instruc­
tion or CONVERT TO DECIMAL. This is
true even when an operand remains other­
wise unchanged, such as when adding zero
to a number. An alternate sign code is,
however, left unchanged by MOVE
NUMERICS, MOVE WITH OFFSET, MOVE ZONES,
PACK, and UNPACK.

When an invalid sign or digit code is
detected, a data exception is
recognized. For the decimal-arithmetic
instructions and CONVERT TO BINARY, the
action taken for a data exception
depends on whether a sign code is inval­
id. When a sign code is invalid, the
operation is suppressed regardless of
whether any other condition causing a
data exception exists. When an invalid
digit code is detected but no sign code
is invalid, the operation is terminated.

For the editing instructions EDIT and
EDIT AND MARK, an invalid sign code is
not recognized. The operation is termi­
nated for a data exception due to an
invalid digit code. No validity check­
ing is performed by MOVE NUMERICS, MOVE
WITH OFFSET, MOVE ZONES, PACK, and
UNPACK.

The zone code 1111 is generated in the
left four bit positions of each byte
representing a zone and a decimal digit
in zoned-format results. Zoned-format
results are produced by EDIT, EDIT AND
MARK, and UNPACK. For EDIT and EDIT AND
MARK, each result byte representing a
zoned-format decimal digit contains the
zone code 1111 in the left four bit
positions and the decimal-digit code in
the right four bit positions. For
UNPACK, zone bits with a coding of 1111
are supplied for all bytes except the
rightmost byte, the zone of which
receives the sign.

8-2 System/370 Principles of Operation

The meaning of the decimal codes is
summarized in the figure "Summary of
Digit and Sign Codes."

Programming Note

Since 1111 is both the zone code and an
alternate code for plus, unsigned (posi­
tive) decimal numbers may be represented
in the zoned format with 1111 zone codes
in all byte positions. The result of
the PACK instruction converting such a
number to the packed format may be used
directly as an operand for decimal
instructions.

Recognized As

Code Digit Sign

0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 Invalid Plus (preferred)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (zone)

Summary of Digit and Sign Codes

DECIMAL OPERATIONS

The decimal instructions in this chapter
consist of two classes, the decimal­
arithmetic instructions and the editing
instructions.

DECIMAL-ARITHMETIC INSTRUCTIONS

The decimal-arithmetic instructions
perform addition, subtraction, multipli­
cation, division, comparison, and shift­
ing.

Operands of the decimal-arithmetic
instructions are in the packed format
and are treated as signed decimal inte­
gers. A decimal integer is represented
in true form as an absolute value with a
separate plus or minus sign. It
contains an odd number of decimal

digits, from one to 31, and the sign;
this corresponds to an operand length of
one to 16 bytes.

A decimal zero normally has a plus sign,
but multiplication, division, and over­
flow may produce a zero value with a
minus sign. Such a negative zero is a
valid operand and is treated as equal to
a positive zero by COMPARE DECIMAL.

The lengths of the two operands speci­
fied in the instruction need not be the
same. If necessary, the shorter operand
is considered to be extended with zeros
on the left. Results, however, cannot
exceed the first-operand length as spec­
ified in the instruction.

When a carry or leftmost nonzero digits
of the result are lost because the
first-operand field is too short, the
result is obtained by ignoring the over­
flow digits, condition code 3 is set,
and, if the decimal-overflow mask bit is
one, a program interruption for decimal
overflow occurs. The operand lengths
alone are not an indication of overflow;
nonzero digits must have been lost
during the operation.

The operands of decimal-arithmetic
instructions should not overlap at all
or should have coincident rightmost
bytes. In ZERO AND ADD, the operands
may also overlap in such a manner that
the rightmost byte of the first operand
(which becomes the result) is to the
right of the rightmost byte of the
second operand. For these cases of
proper overlap, the result is obtained
as if operands were processed right to
left. Because the codes for digits and
signs are verified during the perform­
ance of the arithmetic, improperly
overlapping operands are recognized as
data exceptions.

Programming Note

A packed decimal number in storage may
be designated as both the first and
second operand of ADD DECIMAL, COMPARE
DECIMAL, DIVIDE DECIMAL, MULTIPLY DECI­
MAL, SUBTRACT DECIMAL, or ZERO AND ADD.
Thus, a decimal number may be added to
itself, compared with itself, and so
forth; SUBTRACT DECIMAL may be used to
set a decimal field in storage to zero,
and, for MULTIPLY DECIMAL, a decimal
number may be squared in place.

EDITING INSTRUCTIONS

The editing instructions are EDIT and
EDIT AND MARK. For these instructions,
only the first operand (the pattern) has
an explicitly specified length. The

second operand (the source) is consid­
ered to have as many digits as necessary
for the completion of the operation.

Overlapping
instructions
suIts.

operands
yield

for the editing
unpredictable re-

EXECUTION OF DECIMAL INSTRUCTIONS

During the execution of a decimal
instruction, all bytes of the operands
are not necessarily accessed concurrent­
ly, and the fetch and store accesses to
a single location do not necessarily
occur one immediately after the other.
Furthermore, for decimal instructions,
data in source fields may be accessed
more than once, and intermediate values
may be placed in the result field that
may differ from the original operand and
final result values. (See the section
"Storage-Operand Consistency" in Chapter
5, "Program Execution.") Thus, in a
multiprocessing configuration, an
instruction such as ADD DECIMAL cannot
be safely used to update a shared stor­
age location when the possibility exists
that another CPU may also be updating
that location.

OTHER INSTRUCTIONS FOR DECIMAL OPERANDS

In addition to the decimal instructions
in this chapter, MOVE NUMERICS and MOVE
ZONES are provided for operating on data
of lengths up to 256 bytes in the zoned
format. Two instructions are provided
for converting data between the zoned
and packed formats: PACK transforms
zoned data of lengths up to 16 bytes
into packed data, and UNPACK performs
the reverse transformation. MOVE WITH
OFFSET can operate on packed data of
lengths up to 16 bytes. Two
instructions are provided for conversion
between the packed-decimal and signed­
binary-integer formats. CONVERT TO
BINARY converts packed decimal to
binary, and CONVERT TO DECIMAL converts
binary to packed decimal; the length of
the packed decimal operand of these
instructions is eight bytes (15 digits
and sign). These seven instructions are
not considered to be decimal
instructions and are described in Chap­
ter 7, "General Instructions." The
editing instructions in this chapter may
also be used to change data from the
packed to the zoned format.

INSTRUCTIONS

The decimal instructions and their
mnemonics, formats, and operation codes

Chapter 8. Decimal Instructions 8-3

are listed in the figure "Summary of
Decimal Instructions." The figure also
indicates when the condition code is set
and the exceptional conditions in oper­
and designations, data, or results that
cause a program interruption.

Note: In the detailed descriptions of
the individual instructions, the mnemon-

Mne-
Name monic

ADD DECIMAL AP SS
COMPARE DECIMAL CP SS
DIVIDE DECIMAL DP SS
EDIT ED SS
EDIT AND MARK EDMK SS,

MULTIPLY DECIMAL MP SS
SHIFT AND ROUND DECIMAL SRP SS
SUBTRACT DECIMAL SP SS
ZERO AND ADD ZAP SS

EXElanation:

C
C

C
C

C
C
C

ic and the symbolic operand designation
for the assembler language are shown
with each instruction. For ADD DECIMAL,
for example, AP is the mnemonic and
DtCLt,Bt),D2Cl2,B2) the operand desig­
nation.

Op
Characteristics Code

A D OF ST FA
A D F9
A SP D DK ST FD
A D ST DE
A D Gl R ST OF

A SP D ST FC
A D OF ST FO
A D DF ST FB
A D DF ST Fa

A Access exceptions for logical addresses.
C Condition code i s set.
D Data exception.
DF Decimal-overflow exception.
DK Decimal-divide exception.
Gl Instruction execution includes the implied use of general register 1.
R PER general-register-alteration event.
SP Specification exception.
SS SS instruction format.
ST PER storage-alteration event.

Summary of Decimal Instructions

8-4 System/370 Principles of Operation

ADD DECIMAL

AP [S5]

'FA' I L, I L, I B, I ~, I B, I ~~
o 8 12 16 20 32 36 47

The second operand is added to the first
operand, and the resulting sum is placed
at the first-operand location. The
operands and result are in the packed
format.

Addition is algebraic, taking into
account the signs and all digits of both
operands. All sign and digit codes are
checked for validity.

If the first operand is too short to
contain all leftmost nonzero digits of
the sum, decimal overflow occurs. The
operation is completed. The result;s
obtained by ignoring the overflow
digits, and condition code 3 is set. If
the decimal-overflow mask is one, a
program interruption for decimal over­
flow occurs.

The sign of the sum is determined by the
rules of algebra. In the absence of
overflow, the sign of a zero result is
made positive. If overflow occurs, a
zero result is given either a positive
or negative sign, as determined by what
the sign of the correct sum would have
been.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no over­

flow
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Decimal overflow

Programming Note

An example of the use of the ADD DECIMAL
instruction is given in Appendix A.

COMPARE DECIMAL

CP [S5]

'F9' I L, I L, I B, I ~, B, I ~~
o 8 12 16 20 32 36 47

The first operand is compared with the
second operand, and the result is indi­
cated in the condition code. The oper­
ands are in the packed format.

Comparison is algebraic and follows the
procedure for decimal subtraction,
except that both operands remain
unchanged. When the difference ;s zero,
the operands are equal. When a nonzero
difference is positive or negative, the
first operand is high or low, respec­
tively.

Overflow cannot occur
difference is discarded.

because the

All sign and digit codes are checked for
validity.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

Access (fetch, operands 1 and 2)
Data

Programming Notes

1. An example of the use of the
COMPARE DECIMAL instruction is
given in Appendix A.

2. The preferred and alternate sign
codes for a particular sign are
treated as equivalent for compar­
ison purposes.

3. A negative zero and a positive zero
compare equal.

DIVIDE DECIMAL

DP [55)

'FD' I L, I L, I B, I ~, I B, I ~~
o 8 12 16 20 32 36 47

The first operand (the dividend) is
divided by the second operand (the divi­
sor). The resulting quotient and

Chapter 8. Decimal Instructions 8-5

remainder are placed at the first­
operand location. The operands and
results are in the packed format.

The quotient is placed leftmost in the
first-operand location. The number of
bytes in the quotient field is equal to
the difference between the dividend and
divisor lengths (ll - l2). The remain­
der is placed rightmost in the first­
operand location and has a length equal
to the divisor length. Together, the
quotient and remainder fields occupy the
entire first operand; therefore, the
address of the quotient is the address
of the first operand.

The divisor length cannot exceed 15
digits and sign (l2 not greater than
seven) and must be less than the divi­
dend length (l2 less than L l);

otherwise, a specification exception is
recognized.

The dividend, divisor, quotient, and
remainder are each signed decimal inte­
gers in the packed format and are
right-aligned in their fields. All sign
and digit codes of the dividend and
divisor are checked for validity.

The sign of the quotient is determined
by the rules of algebra from the divi­
dend and divisor signs. The sign of the
remainder has the same value as the
dividend sign. These rules hold even
when the quotient or remainder is zero.

Overflow cannot occur. If the divisor
is zero or the quotient is too large to
be represented by the number of digits
specified, a decimal-divide exception is
recognized. This includes the case of
division of zero by zero. The decimal­
divide exception is indicated only if
the sign codes of both the dividend and
divisor are valid, and only if the digit
or digits used in establishing the
exception are valid.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Decimal divide
Specification

Programming Notes

1. An example of the use of the DIVIDE
DECIMAL instruction is given in
Appendix A.

2. The dividend cannot exceed 31
digits and sign. Since the remain­
der cannot be shorter than one

8-6 System/370 -Principles of Operation

digit and sign, the quotient cannot
exceed 29 digits and sign.

3. The condition for a decimal-divide
exception can be determined by a
trial comparison. The leftmost
digit of the divisor is aligned one
digit to the right of the leftmost
dividend digit. When the divisor,
so aligned, is less than or equal
to the dividend, ignoring signs, a
divide exception is indicated.

4. If a data exception does not exist,
a decimal-divide exception occurs
when the leftmost dividend digit is
not zero.

EDIT

ED [55]

~'_D_E'~~ ___ L~I_B_t~1 ~, I B, I ~~
o 8 16 20 32 36 47

The second operand (the source), which
normally contains one or more decimal
numbers in the packed format, is changed
to the zoned format and modified under
the control of the first operand (the
pattern). The edited result replaces
the first operand.

The length field specifies the length of
the first operand, which may contain
bytes of any value.

The length of the source is determined
by the operation according to the
contents of the pattern. The source
normally consists of one or more decimal
numbers, each in the packed format. The
leftmost four bits of each source byte
must specify a decimal-digit code
(0000-1001); a slgn code (1010-1111) is
recognized as a data exception. The
rightmost four bits may specify either a
sign code or a decimal-digit code.
Access and data exceptions are recog­
nized only for those bytes in the second
operand which are actually required.

The result is obtained as if both oper­
ands were processed left to right one
byte at a time. Overlapping pattern and
source fields give unpredictable
results.

During the editing process, each byte of
the pattern is affected in one of three
ways:

1. It is left unchanged.

2. It is replaced by a source digit
expanded to the zoned format.

3. It is replaced by the first byte in
the pattern, called the fill byte.

Which of the three actions
is determined by one or
following: the type of
byte, the state of the
indicator, and whether the
examined is zero.

takes place
more of the
the pattern
significance
source digit

Pattern Bytes: There are four types of
pattern bytes: digit selector, signif­
icance starter, field separator, and
message byte. Their coding is as
follows:

Name Code

Digit selector 0010 0000
Significance starter 0010 0001
Field separator 0010 0010
Message byte Any other

The detection of either a digit selector
or a significance starter in the pattern
causes an examination to be made of the
significance indicator and of a source
digit. As a result, either the expanded
source digit or the fill byte, as appro­
priate, is selected to replace the
pattern byte. Additionally, encounter­
ing a digit selector or a significance
starter may cause the significance indi­
cator to be changed.

The field separator identifies individ­
ual fields in a multiple-field editing
operation. It is always replaced in the
result by the fill byte, and the signif­
icance indicator is always off after the
field separator is encountered.

Message bytes in the pattern are either
replaced by the fill byte or remain
unchanged in the result, depending on
the state of the significance indicator.
They may thus be used for padding, punc­
tuation, or text in the significant
portion of a field or for the insertion
of sign-dependent symbols.

Fill Byte: The first byte of the
pattern is used as the fill byte. The
fill byte can have any code and may
concurrently specify a control function.
If this byte is a digit selector or
significance starter, the indicated
editing action is taken after the code
has been assigned to the fill byte.

Source Digits: Each time a digit selec­
tor or significance starter is encount­
ered in the pattern, a new source digit
is examined for placement in the pattern
field. Either the source digit is
disregarded, or it is expanded to the
zoned format, by appending the zone code
1111 on the left, and stored in place of
the pattern byte.

Execution is as if the source digits
were selected one byte at a time and as
if a source byte were fetched for
inspection only once during an editing
operation. Each source digit is exam-

ined only once for a zero value. The
leftmost four bits of each byte are
examined first, and the rightmost four
bits, when they represent a decimal­
digit code, remain available for the
next pattern byte that calls for a digit
examination. When the leftmost four
bits contain an invalid digit code, a
data exception is recognized, and the
operation is terminated.

At the time the left digit of a source
byte is examined, the rightmost four
bits are checked for the existence of a
sign code. When a sign code is encount­
ered in the rightmost four bit
positions, these bits are not treated as
a decimal-digit code, and a new source
byte is fetched from storage when the
next pattern byte calls for a source­
digit examination.

When the pattern contains no digit
selector or significance starter, no
source bytes are fetched and examined.

Significance Indicator: The signifi­
cance indicator is turned on or off to
indicate the significance or nonsignif­
icance, respectively, of subsequent
source digits or message bytes. Signif­
icant source digits replace their corre­
sponding digit selectors or significance
starters in the result. Significant
message bytes remain unchanged in the
result.

The significance indicator, by its on or
off state, indicates also the negative
or positive value, respectively, of a
completed source field and is used as
one factor in the setting of the condi­
tion code.

The significance indicator is set to off
at the start of the editing operation,
after a field separator is encountered,
or after a source byte is examined that
has a plus code in the rightmost four
bit positions.

The significance indicator is set to on
when a significance starter is encount­
ered whose source digit is a valid deci­
mal digit, or when a digit selector is
encountered whose source digit is a
nonzero decimal digit, provided that in
both instances the source byte does not
have a plus code in the rightmost four
bit positions.

In all other situations, the signif­
icance indicator is not changed. A
minus sign code has no effect on the
significance indicator.

of an editing
is equal in

It is composed
bytes, and zoned

Result Bytes: The result
operation replaces and
length to the pattern.
of pattern bytes, fill
source digits.

If the pattern byte
and the significance

is a message byte
indicator is on,

Chapter 8. Decimal Instructions 8-7

the message byte remains unchanged in
the result. If the pattern byte 1S a
field separator or if the significance
indicator is off when a message byte is
encountered in the pattern, the fill
byte replaces the pattern byte in the
result.

If the digit selector or significance
starter is encountered in the pattern
with the significance indicator off and
the source digit zero, the source digit
is considered nonsignificant, and the
fill byte replaces the pattern byte. If
the digit selector or significance star­
ter is encountered with either the
significance indicator on or with a
nonzero decimal source digit, the source
digit is considered significant, is
changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code: The sign and magnitude
of the last field edited are used to set
the condition code. The term "last
field" refers to those source digits, if
any, in the second operand selected by
digit selectors or significance starters
after the last field separator; if the
pattern contains no field separator,
there is only one field, which is
considered to be the last field. If no
such source digits are selected, the
last field is considered to be of zero
length.

Condition code 0 is set when the last
field edited is zero or of zero length.

Condition code 1 is set when the last
field edited is nonzero and the signif­
icance indicator is on. (This indicates
a result less than zero if the last
source byte examined contained a sign
code in the rightmost four bits.)

Condition code 2 is set when the last
field edited is nonzero and the signif­
icance indicator is off. (This indi­
cates a result greater than zero if the
last source byte examined contained a
sign code in the rightmost four bits.>

The figure "Summary of Editing
Functions" summarizes the functions of
the EDIT and EDIT AND MARK operations.
The leftmost four columns list all the
significant combinations of the four
conditions that can be encountered in
the execution of an editing operation.
The rightmost two columns list the
action taken for each case -- the type
of byte placed in the result field and
the new setting of the significance
indicator.

Resulting Condition Code:

o Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3

8-8 System/370 Principles of Operation

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data

Programming Notes

1. Examples of the use of the EDIT in­
struction are given in Appendix A.

2. Editing includes sign and punctu­
ation control, and the suppression
and protection of leading zeros by
replacing them with blanks or as­
terisks. It also facilitates pro­
grammed blanking of all-zero
fields. Several fields may be
edited in one operation, and numer­
ic information may be combined with
text.

3. In most cases, the source is short­
er than the pattern because each
four-bit source digit produces an
eight-bit byte in the result.

4. The total number of digit selectors
and significance starters in the
pattern always equals the number of
source digits edited.

5. If the fill byte is a blank, if no
significance starter exists in the
pattern, and if the source digit
examined for each digit selector is
zero, the editing operation blanks
the result field.

6. The resulting condition code indi­
cates whether or not the last field
is all zeros and, if nonzero,
reflects the state of the signif­
icance indicator. The significance
indicator reflects the sign of the
source field only if the last
source byte examined contains a
sign code in the rightmost four
bits. For multiple-field editing
operations, the condition code
reflects the sign and value only of
the field following the last field
separator.

7. Significant performance degradation
is possible when, with OAT on, the
second-operand address of EDIT
designates a location that is less
than the length of the first oper­
and to the left of a 2K-byte
boundary. This is because the
machine may perform a trial
execution of the instruction to
determine if the second operand
actually crosses the boundary. The
second operand of EDIT, while
normally shorter than the first
operand, can in the extreme case
have the same length as the first.

Pattern Byte

Digit selector

Significance starter

Field separator

Message byte

Explanation:

Conditions

Previous
State of
Significance
Indicator

Off

On

Off

On

*
Off
On

Source
Digit

0
1-9
1-9
0-9
0-9

0
0
1-9
1-9
0-9
0-9

**
**
**

Results

state of
Significance

Right Four Indicator at
Source Bits End of Digit
Are Plus Code Result Byte Examination

* Fill byte Off
No Source digittt On
Yes Source digittt Off
No Source digit On
Yes Source digit Off

No Fill byte On
Yes Fill byte Off
No Source digittt On
Yes Source digittt Off
No Source digit On
Yes Source digit Off

** Fill byte Off

** Fill byte Off
** Message byte On

* No effect on result byte or on new state of significance indicator.
** Not applicable because source is not examined.
tt For EDIT AND MARK only, the address of the rightmost such result byte is

placed in general register 1.

Summary of Editing Functions

EDIT AND MARK

EDMK [SS]

~'_D_F' __ ~ __ l~I_B_!~1 ~, I s, I ~~
o 8 16 20 32 36 47

The second operand (the source), which
normally contains one or more decimal
numbers in the packed format, is changed
to the zoned format and modified under
the control of the first operand (the
pattern). The address of the first
significant result byte is inserted in
general register 1. The edited result
replaces the pattern.

EDIT AND MARK is identical to EDIT,
except for the additional function of
inserting the address of the result byte
in bit positions 8-31 of general regis­
ter 1 if the result byte is a zoned
source digit and the significance indi­
cator was off before the examination.
Bits 0-7 of the register are not
changed. If no result byte meets the
criteria, general register 1 remains
unchanged; if more than one result byte
meets the criteria, the address of the
rightmost such result byte is inserted.

See the figure "Summary of Editing Func­
tions" under EDIT for a summary of the
EDIT and EDIT AND MARK operations.

Resulting Condition Code:

o
1
2
3

last field zero or zero length
last field less than zero
last field greater than zero

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data

Programming Notes

1. Examples of the use of the EDIT AND
MARK instruction are given in
Appendix A.

2. EDIT AND MARK facilitates the
programming of floating currency­
symbol insertion. Using appropri­
ate source and pattern data, the
address inserted in general regis­
ter 1 is one greater than the
address where a floating currency­
sign would be inserted. BRANCH ON
COUNT (BCTR), with zero in the R2

Chapter 8. Decimal Instructions 8-9

field, may be used to reduce the
inserted address by one.

3. No address is inserted in general
register 1 when the significance
indicator is turned on as a result
of encountering a significance
starter with the corresponding
source digit zero. To ensure that
general register 1 contains a prop­
er address when this occurs, the
address of the pattern byte that
immediately follows the appropriate
significance starter could be
placed in the register beforehand.

4. When multiple fields are edited
with one execution of the EDIT AND
MARK instruction, the address, if
any, inserted in general register 1
applies to the rightmost field
edited for which the criteria were
met.

5. See also the programming note under
EDIT regarding performance degrada­
tion due to a possible trial
execution.

MULTIPLY DECIMAL

MP [55]

'Fe' I L. I L. I B. I ~. B. ~~
o 8 12 16 20 32 36 47

The product of the first operand (the
multiplicand) and the second operand
(the multiplier) is placed at the
first-operand location. The operands
and result are in the packed format.

The multiplier length cannot exceed 15
digits and sign (L 2 not greater than
seven) and must be less than the multi­
plicand length (l2 less than L 1); other­
wise, a specification exception is
recognized.

The multiplicand must have at least as
many bytes of leftmost zeros as the
number of bytes in the multiplier;
otherwise, a data exception is recog­
nized. This restriction ensures that no
product overflow occurs.

The multiplicand, multiplier, and prod­
uct are each signed decimal integers in
the packed format and are right-aligned
in their fields. All sign and digit
codes of the multiplicand and multiplier
are checked for validity.

The sign of the product is determined by
the rules of algebra from the multiplier
and multiplicand signs, even if one or
both operands are zeros.

8-10 System/370 Principles of Operation

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Specification

Programming Notes

1. An example of the use of the MULTI­
PLY DECIMAL instruction is given in
Appendix A.

2. The product cannot exceed 31 digits
and sign. The leftmost digit of
the product is always zero.

SHIFT AND ROUND DECIMAL

SRP [55]

,---'_F 0_' --1-1 _L _1 -A-I _I _3 -A-I _B _1 ~I ~. lB. ~~
o 8 12 16 20 32 36 47

The first operand is shifted in the
direction and for the number of
decimal-digit positions specified by the
second-operand address, and, when shift­
ing to the right is specified, the abso­
lute value of the first operand is
rounded by the rounding digit, 1 3 • The
first operand and the result are in the
packed format.

The first operand is considered to be in
the packed-decimal format. Only its
digit portion is shifted; the sign posi­
tion does not participate in the shift­
ing. Zeros are supplied for the vacated
digit positions. The result replaces
the first operand. Nothing is stored
outside of the specified first-operand
location.

The second-operand address, specified by
the B2 and D2 fields, is not used to
address data; bits 26-31 of that address
are the shift value, and the leftmost
bits of the address are ignored.

The shift value is a six-bit signed
binary integer, indicating the direction
and the number of decimal-digit posi­
tions to be shifted. Positive shift
values specify shifting to the left.
Negative shift values, which are repres­
ented in two's complement notation,
specify shifting to the right. The
following are examples of the interpre­
tation of shift values:

Shift Value Amount and Direction

011111 31 digits to the left
000001 One digit to the left
000000 No shift
111111 One digit to the right
100000 32 digits to the right

For a right shift, the 13 field, bits
12-15 of the instruction, are used as a
decimal rounding digit. The first oper­
and, which is treated as positive by
ignoring the sign, is rounded by deci­
mally adding the rounding digit to the
leftmost of the digits to be shifted out
and by propagating the carry, if any, to
the left. The result of this addition
is then shifted right. Except for
validity checking and the participation
in rounding, the digits shifted out of
the rightmost decimal-digit position are
ignored and are lost.

If one or more nonzero digits are shift­
ed out during a left shift, decimal
overflow occurs. The operation is
completed. The result is obtained by
ignoring the overflow digits, and condi­
tion code 3 is set. If the decimal­
overflow mask is one, a program
interruption for decimal overflow
occurs. Overflow cannot occur for a
right shift, with or without rounding,
or when no shifting is specified.

In the absence of overflow, the sign of
a zero result is made positive. If
overflow occurs, the sign of the result
is the same as the original sign but
with the preferred sign code.

A data exception is recognized when the
first operand does not have valid sign
and digit codes or when the rounding
digit is not a valid digit code. The
validity of the first-operand codes is
checked even when no shift is specified,
and the validity of the rounding digit
is checked even when no addition for
rounding takes place.

Resulting Condition Code:

o
1

Result zero; no overflow
Result less than zero; no
flow

over-

2

3

Result greater than zero; no
overflow
Overflow

Program Exceptions:

Access (fetch and store, operand 1)
Data
Decimal overflow

Programming Notes

1. Examples of the use of the SHIFT
AND ROUND instruction are given in
Appendix A.

2. SHIFT AND ROUND can be used for
shifting up to 31 digit positions
left and up to 32 digit positions
right. This is sufficient to clear
all digits of any decimal number
even with rounding.

3. For right shifts, the rounding
digit 5 provides conventional
rounding of the result. The round­
ing digit a specifies truncation
without rounding.

4. When the B2 field is zero, the
six-bit shift value is obtained
directly from bits 42-47 of the
instruction.

SUBTRACT DECIMAL

[55]

'FB' I ~, s, ~~
a 8 12 16 20 32 36 47

The second operand is subtracted from
the first operand, and the resulting
difference is placed at the first­
operand location. The operands and
result are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second
operand is considered to have a sign
opposite to the sign in storage. The
second operand in storage remains
unchanged.

Resulting Condition Code:

a Result zero; no overflow
1 Result less than zero; no over-

flow
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Decimal overflow

Chapter 8. Decimal Instructions 8-11

ZERO AND ADD

[55]

• F8 • I l. I l, lB. I ~. B, ~~
o 8 12 16 20 32 36 47

The second operand is placed at the
first-operand location. The operation
is equivalent to an addition to zero.
The operand and result are in the packed
format.

Only the second operand is checked for
valid sign and digit codes. Extra zeros
are supplied on the left for the shorter
operand if needed.

If the first operand is too short to
contain all leftmost nonzero digits of
the second operand, decimal overflow
occurs. The operation is completed.
The result is obtained by ignoring the
overflow digits, and condition code 3 is
set. If the decimal-overflow mask is
one, a program interruption for decimal
overflow occurs.

In the absence of overflow, the sign of
a zero result is made positive. If
overflow occurs, a zero result is given

8-12 5ystem/370 Principles of Operation

the sign of the second operand but with
the preferred sign code.

The two operands may overlap, provided
the rightmost byte of the first operand
is coincident with or to the right of
the rightmost byte of the second
operand. In this case the result is
obtained as if the operands were proc­
essed right to left.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no over­

flow
2 Result greater than zero; no

overflow
3 Overflow

Program Exceptions:

Access (fetch, operand 2; store,
operand 1)

Data
Decimal overflow

Programming Note

An example of the use of the ZERO AND
ADD instruction is given in Appendix A.

CHAPTER ~ FLOATING-POINT INSTRUCTIONS

Floating-Point Number Representation •....•••••..•••.•••.•. 9-1
Normalization •..•••.•••.•••.•.•••..•••...••.•..••.•.••..•. 9-2
Floating-Point-Data Format •••.•...•••..•.••.•.•.•••••.•••• 9-2
Instructions•.•.•••..•••....•••••••..•.•.•.•••.••.•••. 9-4

ADD NORMAL IZED •...•...•....••.•••..•...••.•..••.•...•••• 9-6
ADD UNNORMALIZED •...•.••........•..•....•......•........ 9-7
COMPARE ...•.....•••.•••••••••.•••......•.•.••.••••..••.. 9-8
DIVIDE••..•••.••.•..••..•..••....••...••.••..•••.. 9-9
HALVE•..•....•..••...••....•...•.••••..•...•.•.• 9-10
LOAD•..............•.•....••.•......••...•• 9-10
LOAD AND TEST .••..••..•.•.•..••...•....•.•••.•.•••.•••.. 9-11
LOAD COMPLEMENT .•••...•..•..••.••.•.••.•..•••.••.•.•.•.• 9-11
LOAD NEGATIVE .•...................•....•...•...•...•..•. 9-11
LOAD POSITIVE .•....•...................•....••.....•.... 9-12
LOAD ROUNDED •..•.....•..••.........•....•............... 9-12
MULTIPLY•.•.•.......•.........•....•.••.•.•..•...••. 9-13
STORE••.•.•.•....•.•.....•.....•......... 9-14
SUBTRACT NORMALIZED•......•..••.•.•.•.••••. 9-14
SUBTRACT UNNORMALIZED•..•....••..•..•...... 9-15

Floating-point instructions are used to
perform calculations on operands with a
wide range of magnitude and to yield
results scaled to preserve precision.

The floating-point instructions provide
for loading, rounding, adding, subtract­
ing, comparing, multiplying, dividing,
and storing, as well as controlling the
sign of short, long, and extended oper­
ands. Short operands generally permit
faster processing and require less stor­
age than long or extended operands. On
the other hand, long and extended oper­
ands permit greater precision in
computation. Four floating-point regis­
ters are provided. Instructions may
perform either register-to-reglster or
storage-and-register operations.

Most of the instructions generate
normalized results, which preserve the
highest precision in the operation. For
addition and subtraction, instructions
are also provided that generate unnor­
mali zed results. Either normalized or
unnormalized numbers may be used as
operands for any floating-point opera­
tion.

The rounding and extended-operand in­
structions are part of the extended­
precision floating-point facility. The
other floating-point instructions and
the floating-point registers are part of
the floating-point facility.

FLOATING-POINT NUMBER REPRESENTATION

A floating-point number consists of a
signed hexadecimal fraction and an

unsigned seven-bit binary integer called
the characteristic. The characteristic
represents a signed exponent and is
obtained by adding 64 to the exponent
value (excess-64 notation). The range
of the characteristic is 0 to 127, which
corresponds to an exponent range of -64
to +63. The value of a floating-point
number is the product of its fraction
and the number 16 rai.sed to the power of
the exponent which is represented by its
characteristic.

The fraction of a floating-point number
is treated as a hexadecimal number
because it is considered to be multi­
plied by a number which is a power of
16. The name, fraction, indicates that
the radix point is assumed to be imme­
diately to the left of the leftmost
fraction digit. The fraction is repres­
ented by its absolute value and a
separate sign bit. The entire number is
positive or negative, depending on
whether the sign bit of the fraction is
zero or one, respectively.

When a floating-point operation would
cause the result exponent to exceed 63,
the characteristic wraps around from 127
to 0, and an exponent-overflow condition
exists. The result characteristic is
then too small by 128. When an opera­
tion would cause the exponent to be less
than -64, the characteristic wraps
around from 0 to 127, and an exponent­
underflow condition exists. The result
characteristic is then too large by 128,
except that a zero characteristic is
produced when a true zero is forced.

A true zero is a floating-point number
with a zero characteristic, zero frac­
tion, and plus sign. A true zero may

Chapter 9. Floating-Point Instructions 9-1

arise as the normal result of an arith­
metic operation because of the partic­
ular magnitude of the operands. The
result is forced to be a true zero when:

1. An exponent underflow occurs and
the exponent-underflow mask bit in
the PSW is zero,

2. The result fraction of an addition
or subtraction operation is zero
and the significance mask bit in
the PSW is zero, or

3. The operand of the HALVE instruc­
tion, one or both operands of the
MULTIPLY instruction, or the divi­
dend in the DIVIDE instruction has
a zero fraction.

When a program interruption for exponent
underflow occurs, a true zero is not
forced; instead, the fraction and sign
remain correct, and the characteristic
is too large by 128. When a program
interruption for significance occurs,
the fraction remains zero, the sign is
positive, and the characteristic remains
correct.

The sign of a sum, difference, product,
or quotient with a zero fraction is
positive. The sign of a zero fraction
resulting from other operations is
established from the operand sign, the
same as for nonzero fractions.

NORMALIZATION

A quantity can be represented with the
greatest precision by a floating-point
number of a given fraction length when
that number is normalized. A normalized
floating-point number has a nonzero
leftmost hexadecimal fraction digit. If
one or more leftmost fraction digits are
zeros, the number;s said to be unnor­
malized.

Unnormalized numbers are normalized by
shifting the fraction left, one digit at
a time, until the leftmost hexadecimal
digit is nonzero and reducing the char­
acteristic by the number of hexadecimal
digits shifted. A number with a zero
fraction cannot be normalized; its char­
acteristic either remains unchanged, or
it is made zero when the result is
forced to be a true zero.

Addition and subtraction with extended
operands, as well as the MULTIPLY,
DIVIDE, and HALVE operations, are
performed only with normalization.
Addition and subtraction with short or
long operands may be specified as either
normalized or unnormalized. For all
other operations, the result is produced
without normalization.

9-2 System/370 Principles of Operation

With unnormalized operations, leftmost
zeros in the result fraction are not
eliminated. The result mayor may not
be in normalized form, depending upon
the original operands.

In both normalized and unnormalized
operations, the initial operands need
not be in normalized form. The operands
for multiplication and division are
normalized before the arithmetic
process. For other normalized oper­
ations, normalization takes place when
the intermediate arithmetic result is
changed to the final result.

When the intermediate result of
addition, subtraction, or rounding caus­
es the fraction to overflow, the frac­
tion is shifted right by one
hexadecimal-digit position and the value
one is supplied to the vacated leftmost
digit position. The fraction is then
truncated to the final result length,
while the characteristic is increased by
one. This adjustment is made for both
normalized and unnormalized operations.

Programming Note

Up to three leftmost bits of the frac­
tion of a normalized number may be
zeros, since the nonzero test applies to
the entire leftmost hexadecimal digit.

FLOATING-POINT-DATA FORMAT

Floating-point numbers have a 32-bit
(short) format, a 64-bit (long) format,
or a 128-bit (extended) format. Numbers
in the short and long formats may be
designated as operands both in storage
and in the floating-point registers,
whereas operands having the extended
format can be designated only in the
floating-point registers.

The floating-point registers contain 64
bits each and are numbered 0, 2, 4, and
6. A short or long floating-point
number requires a single floating-point
register. An extended floating-point
number requires a pair of these regis­
ters: either registers 0 and 2 or
registers 4 and 6; the two register
pairs are designated as 0 or 4, respec­
tively. When the R! or R2 field of a
floating-point instruction designates
any register number other than 0, 2, 4,
or 6 for the short or long format, or
any register number other than 0 or 4
for the extended format, a program
interruption for specification exception
occurs.

Short Floating-Point Number

l=s==I=c=h=a=r=a=c=t=e=r==i=s=t=i=c=I===6==-=D=i=9=i=t~~·=r=a=c=t=i=0=n===
018 31

Long Floating-Point Number

r"1 s==' =C=h=a=r=a=c=t=e=-r:_i=s=t=i=C= I -_-_ -_1=4=-=0=i=9=; ~==F=r=a=c=t==i o==n===

o 1 8

Extended Floating-Point Number

High-Order Part

63

r--T----------------.----------/------------~
High-Order Leftmost 14 ~igits

Characteristic of 28-0igit Fraction
'--~--------------~---------/------------~
o 1 8 63

Low-Order Part
r--T----------------.----------/------------~

Low-Order Rightmost 14 Digits
Characteristic of 28-Digit Fraction

'--~--------------~---------/------------~
64 72 127

In all formats, the first bit (bit 0) is
the sign bit (S). The next seven bits
are the characteristic. In the short
and long formats, the remalnlng bits
constitute the fraction, which consists
of six or 14 hexadecimal digits, respec­
tively.

A short floating-point number occupies
only the leftmost 32 bit positions of a
floating-point register. The rightmost
32 bit positions of the register are
ignored when used as an operand in the
short format and remain unchanged when a
short result is placed in the register.

An extended floating-point number has a
28-digit fraction and consists of two
long floating-point numbers which are
called the high-order and low-order
parts. The high-order part may be any
long floating-point number. The frac­
tion of the high-order part contains the
leftmost 14 hexadecimal digits of the
28-digit fraction. The characteristic
and sign of the high-order part are the
characteristic and sign of the extended
floating-point number. If the high­
order part is normalized, the extended
number is considered normalized. The
fraction of the low-order part contains
the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic
of the low-order part of an extended
operand are ignored.

When a result in the extended format is
placed in a register pair, the sign of
the low-order part is made the same as
that of the high-order part, and, unless
the result is a true zero, the low-order

characteristic is made 14 less than the
high-order characteristic. When the
subtraction of 14 would cause the low­
order characteristic to become less than
zero, the characteristic is made 128
greater than its correct value. Expo­
nent underflow is indicated only when
the high-order characteristic under­
flows.

When an extended result is made a true
zero, both the high-order and low-order
parts are made a true zero.

The range' covered by the magnitude (M)
of a normalized floating-point number
depends on the format.

In the short format:

16-65 S M S (1 - 16- 6) x 16 63

In the long format:

16- 65 S M S (1 - 16- 14) x 16 63

In the extended format:

16-65 S M S (1 - 16- 28) x 16 63

In all formats, approximately:

5.4 X 10-79 S M S 7.2 X 10 75

Although the final result of a
floating-point operation has six hexade­
cimal fraction digits in the short
format, 14 fraction digits in the long
format, and 28 fraction digits in the
extended format, intermediate results
have one additional hexadecimal digit on
the right. This digit is called the
guard digit. The guard digit may
increase the precision of the final
result because it participates in addi­
tion, subtraction, and comparison
operations and in the left shift that
occurs during normalization.

The entire set of floating-point oper­
ations is available for both short and
long operands. The instructions gener­
ate a result that has the same format as
the operands, except that for MULTIPLY,
a long product is produced from a short
multiplier and multiplicand. Floating­
point operations in the extended format
are available only for normalized addi­
tion, subtraction, and mUltiplication.
MULTIPLY can also generate an extended
product from a long multiplier and
multiplicand. LOAD ROUNDED provides for
rounding from extended to long format or
from long to short format.

Programming Notes

1. A long floating-point number can be
converted to the extended format by
appending any long floating-point
number having a zero fraction,

Chapter 9. Floating-Point Instructions 9-3

including a true zero. Conversion
from the extended to the long
format can be accomplished by trun­
cation or by means of the LOAD
ROUNDED instruction.

2. In the absence of an exponent over­
flow or exponent underflow, the
long floating-point number consti­
tuting the low-order part of an
extended result correctly expresses
the value of the low-order part of
the extended result when the char­
acteristic of the high-order part
is 14 or higher. This applies also
when the result is a true zero.
When the high-order characteristic
is less than 14 but the number is
not a true zero, the low-order
part, when considered as a long
floating-point number, does not
express the correct characteristic
value.

3. The entire fraction of an extended
result participates in normaliza­
tion. The low-order part alone may
or may not appear to be a normal­
ized long floating-point number,
depending on whether the 15th digit
of the normalized 28-digit fraction
is nonzero or zero.

9-4 System/370 Principles of Operation

INSTRUCTIONS

The floating-point instructions and
their mnemonics, formats, and operation
codes are listed in the figure "Summary
of Floating-Point Instructions." The
figure also indicates when the condition
code is set and the exceptional condi­
tions in operand designations, data, or
results that cause a program inter­
ruption.

Mnemonics for the floating-point
instructions have an R as the last
letter when the instruction is in the RR
format. For instructions where all
operands are the same length, certain
letters are used to represent operand­
format length and normalization, as
follows:

E Short normalized
U Short unnormalized
D Long normalized
W Long unnormalized
X Extended normalized

Note: In the detailed descriptions of
the individual instructions, the mnemon­
ic and the symbolic operand designation
for the assembler language are shown
with each instruction. For a register­
to-register operation using LOAD
(short), for example, lER is the mnemon­
ic and R t ,R 2 the operand designation.

Mne- Op
Name monic Characteristics Code

ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36
ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 2A
ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 6A
ADD NORMALIZED (short) AER RR C FP SP EU EO LS 3A
ADD NORMALIZED (short) AE RX C FP A SP EU EO LS 7A

ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 2E
ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 6E
ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 3E
ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 7E
COMPARE (long) CDR RR C FP SP 29

COMPARE (long) CD RX C FP A SP 69
COMPARE (short) CER RR C FP SP 39
COMPARE (short) CE RX C FP A SP 79
DIVIDE (long) DDR RR FP SP EU EO FK 2D
DIVIDE (long) DD RX FP A SP EU EO FK 6D

DIVIDE (short) DER RR FP SP EU EO FK 3D
DIVIDE (short) DE RX FP A SP EU EO FK 7D
HALVE (long) HDR RR FP SP EU 24
HALVE (short) HER RR FP SP EU 34
LOAD (long) LDR RR FP SP 28

LOAD (long) LD RX FP A SP 68
LOAD (short) LER RR FP SP 38
LOAD (short) LE RX FP A SP 78
LOAD AND TEST (long) LTDR RR C FP SP 22
LOAD AND TEST (short) LTER RR C FP SP 32

LOAD COMPLEMENT (long) LCDR RR C FP SP 23
LOAD COMPLEMENT (short) LCER RR C FP SP 33
LOAD NEGATIVE (long) LNDR RR C FP SP 21
LOAD NEGATIVE (short) LNER RR C FP SP 31
LOAD POSITIVE (long) LPDR RR C FP SP 20

LOAD POSITIVE (short) LPER RR C FP SP 30
LOAD ROUNDED (ext. to long) LRDR RR XP SP EO 25
LOAD ROUNDED (long to short) LRER RR XP SP EO 35
MULTIPLY (extended) MXR RR XP SP EU EO 26
MULTIPLY (long) MDR RR FP SP EU EO 2C

MULTIPLY (long) MD RX FP A SP EU EO 6C
MULTIPLY (long to extended) MXDR RR XP SP EU EO 27
MULTIPLY (long to extended) MXD RX XP A SP EU EO 67
MULTIPLY (short to long) MER RR FP SP EU EO 3C
l'1UL TIPL Y (short to long) ME RX FP A SP EU EO 7C

STORE (long) STD RX FP A SP ST 60
STORE (short) STE RX FP A SP ST 70
SUBTRACT NORMALIZED (ext.) SXR RR C XP SP EU EO LS 37
SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 2B
SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 6B

SUBTRACT NORMALIZED (short) SER RR C FP SP EU EO LS 3B
SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 7B
SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 2F
SUBTRACT UNNORMALIZED (long) Sl.J RX C FP A SP EO LS 6F
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 3F
SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 7F

Summary of Floating-Point Instructions (Part 1 of 2)

Chapter 9. Floating-Point Instructions 9-5

Explanation:

A Access exceptions for logical addresses.
C Condition code is set.
EO Exponent-overflow exception.
EU Exponent-underflow exception.
FK Floating-point-divide exception.
FP Floating-point facility.
LS Significance exception.
RR RR instruction format.
RX RX instruction format.
SP Specification exception.
ST PER storage-alteration event.
XP Extended-precision floating-point facility.

Summary of Floating-Point Instructions (Part 2 of 2)

ADD NORMALIZED

AER R 1 ,R 2 [RR, Short Operands]

'3A' I R t I R2

0 8 12 15

AE Rl'D 2(X 2,B 2) [RX, Short Operands]

'7A' I R t I X2 I B2 I D2

0 8 12 16 20 31

ADR R t ,R 2 [RR, long Operands]

'2A' I R 1 I R 2

o 8 12 15

AD [RX, long Operands]

'6A'

o 8 12 16 20 31

AXR R 1 ,R 2 [RR, Extended Operands]

'36' I Rl I R2 I
o 8 12 15

The second operand is added to the first
operand, and the normalized sum is
placed at the first-operand location.

Addition of two floating-point numbers
consists in characteristic comparison,
fraction alignment, and signed fraction
addition. The characteristics of the
two operands are compared, and the frac­
tion accompanying the smaller
characteristic is aligned with the other
fraction by a right shift, with its

9-6 System/370 Principles of Operation

characteristic increased by one for each
hexadecimal digit of shift until the two
characteristics agree.

When a fraction is shifted right during
alignment, the leftmost hexadecimal
digit shifted out is retained as a guard
digit. The fraction that is not shifted
is considered to be extended with a zero
in the guard-digit position. When no
alignment shift occurs, both operands
are considered to be extended with zeros
in the guard-digit position. The frac­
tions with signs are then added
algebraically to form a signed interme­
diate sum.

The intermediate-sum fraction consists
of seven (short format), 15 (long
format), or 29 (extended format) hexade­
cimal digits, including the guard digit,
and a possible carry. If a carry is
present, the sum is shifted right one
digit position so that the carry becomes
the leftmost digit of the fraction, and
the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted
left as necessary to eliminate any lead­
ing hexadecimal zero digits resulting
from the addition, provided the fraction
is not zero. Zeros are supplied to the
vacated rightmost digits, and the char­
acteristic is reduced by the number of
hexadecimal digits of shift. The frac­
tion thus normalized is then truncated
on the right to six (short format), 14
(long format), or 28 (extended format)
hexadecimal digits. In the extended
format, a characteristic is generated
for the low-order part, which is 14 less
than the high-order characteristic.

The sign of the sum is determined by the
rules of algebra, unless all digits of
the intermediate-sum fraction are zero,
in which case the sign is made plus.

An exponent-overflow exception is recog­
nized when a carry from the leftmost
position of the intermediate-sum frac­
tion would cause the characteristic of
the normalized sum to exceed 127. The

operation is completed by making the
result characteristic 128 less than the
correct value, and a program inter­
ruption for exponent overflow takes
place. The result sign and fraction
remain correct, and, for AXR, the char­
acteristic of the low-order part remains
correct.

An exponent-underflow exception is
recognized when the characteristic of
the normalized sum would be less than
zero and the fraction is not zero. If
the exponent-underflow mask bit is one,
the operation is completed by making the
result characteristic 128 greater than
the correct value. The result sign and
fraction remain correct, and a program
interruption for exponent underflow
takes place. When exponent underflow
occurs and the exponent-underflow mask
bit is zero, a program interruption does
not take place; instead, the operation
is completed by making the result a true
zero. For AXR, no exponent underflow is
recognized when the characteristic of
the low-order part would be less than
zero but the characteristic of the
high-order part is zero or greater.

The result fraction is zero when the
intermediate-sum fraction, including the
guard di gi t, is zero. Wi th a zero
result fraction, the action depends on
the setting of the significance mask
bit. If the significance mask bit is
one, no normalization occurs, the inter­
mediate and final result characteristics
are the same, and a program interruption
for significance takes place. If the
significance mask bit is zero, the
program interruption does not occur;
instead, the result is made a true zero.

The R\ field for AER, AE, ADR, and AD,
and the R2 field for AER and ADR must
designate register 0, 2, 4, or 6. The
R1 and R2 fields for AXR must designate
register 0 or 4. Otherwise, a specifi­
cation exception is recognized.

Resulting Condition Code:

o
1
2
3

Result fraction zero
Result less than zero
Result greater than zero

Program Exceptions:

Access (fetch, operand 2 of AE and
AD only)

Exponent overflow
Exponent underflow
Operation (if the floating-point

facility is not installed, or,
for AXR, if the extended­
precision floating-point facil­
ity is not installed)

Significance
Specification

1. An example of the use of the ADD
NORMALIZED instruction is given in
Appendix A.

2. Interchanging the two operands in a
floating-point addition does not
affect the value of the sum.

3. The ADD NORMALIZED instruction
normalizes the sum but not the
operands. Thus, if one or both
operands are unnormalized, preci­
sion may be lost during fraction
alignment.

ADD UNNORMALIZED

AUR R \ , R:z [RR, Short Operands]

, 3 E' I R\ I R2

0 8 12 15

AU Rt,D:z(X:z,B:z) [RX, Short Operands]

'7 E' I Rt I X2 I B2 I O2

0 8 12 16 20 31

AWR [RR, Long Operands]

o 8 12 15

AW [RX, Long Operands]

'6 E'

o 8 12 16 20 31

The second operand is added to the first
operand, and the unnormalized sum is
placed at the first-operand location.

The execution
identical to
except that:

of ADD
that of

UNNORMALIZED is
ADD NORMALIZED,

1. When no carry is present after th~
addition, the intermediate-sum
fraction is truncated to the proper
result-fraction length without a
left shift to eliminate leading
hexadecimal zeros and without the
corresponding reduction of the
characteristic.

2. Exponent underflow cannot occur.

Chapter 9. Floating-Point Instructions 9-7

3. The guard digit does not partici­
pate in the recognition of a zero
result fraction. A zero result
fraction is recognized when the
fraction (that is, the inter­
mediate-sum fraction, excluding the
guard digit) is zero.

The R t and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of AU and
AW only)

Exponent overflow
Operation (if the floating-point

facility is not installed)
Significance
Specification

Programming Notes

1. An example of the use of the ADD
UNNORMALIZED instruction is given
in Appendix A.

2. Except when the result is made a
true zero, the characteristic of
the result of ADD UNNORMAlIZED is
equal to the greater of the two
operand characteristics, increased
by one if the fraction addition
produced a carry, or set to zero if
exponent overflow occurred.

COMPARE

CER R t , R2 [RR, Short Operands]

'39' I Rt I R:z

0 8 12 15

CE R t ,D 2 (X 2 ,B 2) [RX, Short Operands]

, 79'

o 8 12 16 20 31

CDR [RR, Long Operands]

o 8 12 15

9-8 System/370 Principles of Operation

CD [RX, Long Operands]

'69'

o 8 12 16 20 31

The first operand is compared with the
second operand, and the condition code
is set to indicate the result.

The comparison is algebraic and follows
the procedure for normalized floating­
point subtraction, except that the
difference is discarded after setting
the condition code and both operands
remain unchanged. When the difference,
including the guard digit, is zero, the
operands are equal. When a nonzero
difference is positive or negative, the
first operand is high or low, respec­
tively.

An exponent-overflow, exponent­
underflow, or significance exception
cannot occur.

The Rt and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o
1
2
3

Operands equal
First operand low
First operand high

Program Exceptions:

Access (fetch, operand 2 of CE and
CD only)

Operation (if the floating-point
facility is not installed)

Specification

Programming Notes

1. Examples of the use of the COMPARE
instruction are given in Appendix
A.

2. An exponent inequality alone is not
sufficient to determine the
inequality of two operands with the
same sign, because the fractions
may have different numbers of lead­
ing hexadecimal zeros.

3. Numbers with zero fractions compare
equal even when they differ in sign
or characteristic.

DIVIDE

DER [RR, Short Operands]

o 8 12 15

DE

'70'

o 8 12 16 20 31

DDR [RR, long Operands]

o 8 12 15

DO [RX, long Operands]

'60'

o 8 12 16 20 31

The first operand (the dividend) is
divided by the second operand (the divi­
sor), and the normalized quotient is
placed at the first-operand location.
No remainder is preserved.

Floating-point division consists in
characteristic subtraction and fraction
division. The operands are first
normalized to eliminate leading hexade­
cimal zeros. The difference between the
dividend and divisor characteristics of
the normalized operands, plus 64, is
used as the characteristic of an inter­
mediate quotient.

All dividend and divisor fraction digits
participate in forming the fraction of
the intermediate quotient. The
intermediate-quotient fraction can have
no leading hexadecimal zeros, but a
right shift of one digit position may be
necessary with an increase of the char­
acteristic by one. The fraction is then
truncated to the proper result-fraction
length.

An exponent-overflow exception is recog­
nized when the characteristic of the
final quotient would exceed 127 and the
fraction is not zero. The operation is
completed by making the characteristic
128 less than the correct value. The
result is normalized, and the sign and
fraction remain correct. A program

interruption
occurs.

for exponent overflow

An exponent-underflow exception exists
when the characteristic of the final
quotient would be less than zero and the
fraction is not zero. If the exponent­
underflow mask bit is one, the operation
is completed by making the character­
istic 128 greater than the correct
value, and a program interruption for
exponent underflow occurs. The result
is normalized, and the sign and fraction
remain correct. If the exponent­
underflow mask bit is zero, a program
interruption does not take place;
instead, the operation is completed by
making the quotient a true zero.

Exponent underflow does not occur when
an operand characteristic becomes less
than zero during normalization of the
operands or when the intermediate­
quotient characteristic is less than
zero, as long as the final quotient can
be represented with the correct charac­
teristic.

When the divisor fraction is zero, a
floating-point-divide exception is
recognized. This includes the case of
division of zero by zero.

When the dividend fraction is zero, but
the divisor fraction is nonzero, the
quotient is made a true zero. No expo­
nent overflow or exponent underflow
occurs.

The sign of the quotient is determined
by the rules of algebra, except that the
sign is always plus when the quotient is
made a true zero.

The R t and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 of DD and
DE only)

Exponent overflow
Exponent underflow
Floating-point divide
Operation (if the floating-point

facility is not installed>
Specification

Programming Note

Examples of the use of the DIVIDE
instruction are given in Appendix A.

Chapter 9. Floating-Point Instructions 9-9

HALVE

HER [RR, Short Operands]

o 8 12 15

HDR [RR, Long Operands]

o 8 12 15

The second operand is divided by 2, and
the normalized quotient is placed at the
first-operand location.

The fraction of the second operand is
shifted right one bit position, placing
the contents of the rightmost bit posi­
tion in the leftmost bit position of the
guard digit, and a zero is supplied to
the leftmost bit position of the frac­
tion. The intermediate result,
including the guard digit, is then
normalized, and the final result is
truncated to the proper length.

An exponent-underflow exception exists
when the characteristic of the final
result would be less than zero and the
fraction is not zero. If the exponent­
underflow mask bit is one, the operation
is completed by making the character­
istic 128 greater than the correct
value, and a program interruption for
exponent underflow occurs. The result
is normalized, and the sign and fraction
remain correct. If the exponent­
underflow mask bit is zero, a program
interruption does not take place;
instead, the operation is completed by
making the result a true zero.

When the fraction of the second operand
is zero, the result is made a true zero,
and no exponent underflow occurs.

The sign of the result is the same as
that of the second operand, except that
the sign is always plus when the
quotient is made a true zero.

The R t and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The

Exponent underflow

code remains

Operation (if the floating-point
facility is not installed)

Specification

9-10 System/370 Principles of Operation

Programming Notes

1. An example of the use of the HALVE
instruction is given in Appendix A.

2. With short and long operands, the
halve operation is identical to a
divide operation with the number 2
as divisor. Similarly, the result
of HDR is identical to that of MD
or MDR with one-half as a multipli­
er. No multiply operation
corresponds to HER, since no multi­
ply operation produces short
results.

3. The result of HALVE is zero only
when the second-operand fraction is
zero, or when exponent underflow
occurs with the exponent-underflow
mask set to zero. A fraction with
zeros in every bit position, except
for a one in the rightmost bit
position, does not become zero
after the right shift. This is
because the one bit is preserved in
the guard-digit position and, when
the result is not made a true zero
because of exponent underflow,
becomes the leftmost bit after
normalization of the result.

LOAD

LER Ru R2 [RR, Short Operands]

'38' I Rt I R2

0 8 12 15

LE R t ,D 2 (X 2,B 2) [RX, Short Operands]

'78'

o 8 12 16 20 31

LDR [RR, Long Operands]

o 8 12 15

LD [RX, Long Operands]

o 8 12 16 20 31

The second operand is placed unchanged
at the first-operand location.

The R, and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Condition Code: The
unchanged.

code remains

Program Exceptions:

Access (fetch,
LD only)

Operation (if
facility is

Specification

operand 2 of LE and

the floating-point
not installed)

LOAD AND TEST

[RR, Short Operands]

'32'

o 8 12 15

[RR, Long Operands]

, 22 ' I R t I R 2

o 8 12 15

The second operand is placed unchanged
at the first-operand location, and its
sign and magnitude are tested to deter­
mine the setting of the condition code.

The R, and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o
1
2
3

Result fraction zero
Result less than zero
Result greater than zero

Program Exceptions:

Operation (if the floating-point
facility is not installed)

Specification

Programming Note

When the same register is designated as
the first-operand and second-operand
location, the operation is equivalent to
a test without data movement.

LOAD COMPLEMENT

[RR, Short Operands]

'33'

0 8 12 15

LCDR R, , R2 [RR, Long Operands]

'23' I R, I R2

0 8 12 15

The second operand is placed at the
first-operand location with the sign bit
inverted.

The sign bit is inverted, even if the
fraction is zero. The characteristic
and fraction are not changed.

The Rt and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

Operation (if the floating-point
facility is not installed)

Specification

LOAD NEGATIVE

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

'21'

o 8 12 15

The second operand is
first-operand location
made minus.

placed at the
with the sign

The sign bit is made one, even if the
fraction is zero. The characteristic
and fraction are not changed.

The R, and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Chapter 9. Floating-Point Instructions 9-11

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2
3

Program Exceptions:

Operation (if the floating-point
facility is not installed)

Specification

LOAD POSITIVE

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is
first-operand location
made plus.

placed at the
with the sign

The sign bit is made zero. The charac­
teristic and fraction are not changed.

The Rl and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction zero
1
2 Result greater than zero
3

Program Exceptions:

Operation (if the floating-point
facility is not installed)

Specification

LOAD ROUNDED

lRER R t ,R 2

[RR, long Operand 2, Short Operand 1]

o 8 12 15

9-12 System/370 Principles of Operation

LRDR R1 ,R 2

o

[RR, Extended Operand 2,
long Operand 1]

'25' I Rl I R2 I
8 12 15

The second operand is rounded to the
next shorter format, and the result is
placed at the first-operand location.

Rounding consists in adding a one in bit
position 32 or 72 of the long or
extended second operand, respectively,
and propagating any carry to the left.
The sign of the fraction is ignored, and
addition is performed as if the frac­
tions were positive.

If rounding causes a carry out of the
leftmost hexadecimal digit position of
the fraction, the fraction is shifted
right one digit position so that the
carry becomes the leftmost digit of the
fraction, and the characteristic is
increased by one.

The intermediate fraction is then trun­
cated to the proper result-fraction
length.

The sign of the result is the same as
the sign of the second operand. There
is no normalization to eliminate leading
zeros.

An exponent-overflow exception exists
when shifting the fraction right would
cause the characteristic to exceed 127.
The operation is completed by loading a
number whose characteristic is 128 less
than the correct value, and a program
interruption for exponent overflow
occurs. The result is normalized, and
the sign and fraction remain correct.

Exponent-underflow and
exceptions cannot occur.

significance

The Rl field must designate register 0,
2, 4, or 6; the R2 field of lRER must
designate register 0, 2, 4, or 6; and
the R2 field of lRDR must designate
register 0 or 4. Otherwise, a specifi­
cation exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The

Exponent overflow

code remains

Operation (if the extended-
precision floating-point facil­
ity is not installed)

Specification

MULTIPLY

MER Rt ,R 2

o

[RR, Short Multiplier and Multiplicand,
Long Product]

, 3C' I R t I R:z

8 12 15

ME R"D 2 (X 2 ,B:z)

o

[RX, Short Multiplier and Multiplicand,
Long Product]

'7C'

8 12 16 20 31

MDR [RR, Long Operands]

, 2C' I R t I R:z

o 8 12 15

MD [RX, Long Operands]

'6C'

o 8 12 16 20 31

MXDR Rt,R:z

o

[RR, Long Multiplier and Multiplicand,
Extended Product]

'27' I R t I R:z I
8 12 15

MXD R t ,D:z(X 2 ,B:z)

o

[RX, Long Multiplier and Multiplicand,
Extended Product]

'67'

8 12 16 20 31

MXR R t ,R 2 [RR, Extended Operands]

, 26 ' I R t I R:z I
o 8 12 15

The normalized product of the second
operand (the multiplier) and the first
operand (the multiplicand) is placed at
the first-operand location.

Multiplication of two floating-point
numbers consists in exponent addition
and fraction multiplication. The oper­
ands are first normalized to eliminate
leading hexadecimal zeros. The sum of
the characteristics of the normalized
operands, less 64, is used as the char­
acteristic of the intermediate product.

The fraction of the intermediate product
is the exact product of the normalized
operand fractions. When the
intermediate-product fraction has one
leading hexadecimal zero digit, the
fraction is shifted left one digit posi­
tion, bringing the contents of the
guard-digit position into the rightmost
position of the result fraction, and the
intermediate-product characteristic is
reduced by one. The fraction is then
truncated to the proper result-fraction
length.

For MER and ME, the multiplie~ and
multiplicand fractions have six hexade­
cimal digits; the product fraction has
the full 14 digits of the long format,
with the two rightmost fraction digits
always zeros. For MDR and MD, the
multiplier and multiplicand fractions
have 14 digits, and the final product
fraction is truncated to 14 digits. For
MXDR and MXD, the multiplier and multi­
plicand fractions have 14 digits, with
the multiplicand occupying the high­
order part of the first operand; the
final product fraction contains 28
digits and is an exact product of the
operand fractions. For MXR, the multi­
plier and multiplicand fractions have 28
digits, and the final product fraction
is truncated to 28 digits.

An exponent-overflow exception is recog­
nized when the characteristic of the
final product would exceed 127 and the
fraction is not zero. The operation is
completed by making the characteristic
128 less than the correct value. If,
for extended results, the low-order
characteristic would also exceed 127,
it, too, is decreased by 128. The
result is normalized, and the sign and
fraction remain correct. A program
interruption for exponent overflow
occurs.

Exponent overflow is not recognized when
the intermediate-product characteristic
is initially 128 but is brought back
within range by normalization.

An exponent-underflow exception exists
when the characteristic of the final
product would be less than zero and the
fraction is not zero. If the exponent­
underflow mask bit is one, the operation
is completed by making the character­
istic 128 greater than the correct
value, and a program interruption for
exponent underflow occurs. The result
is normalized, and the sign and fraction
remain correct. If the exponent-

Chapter 9. Floating-Point Instructions 9-13

underflow mask bit is zero, program
interruption does not take place;
instead, the operation is completed by
making the product a true zero. For
extended results, exponent underflow is
not recognized when the low-order char­
acteristic would be less than zero but
the high-order characteristic is equal
to or greater than zero.

Exponent underflow does not occur when
the characteristic of an operand becomes
less than zero during normalization of
the operands, as long as the final prod­
uct can be represented with the correct
characteristic.

When either or both operand fractions
are zero, the result is made a true
zero, and no exponent overflow or expo­
nent underflow occurs.

The sign of the product is determined by
the rules of algebra, except that the
sign is always zero when the result is
made a true zero.

The R t field for MER, ME, MDR, and MD,
and the R2 field for MER, MDR, and MXDR
must designate register 0, 2, 4, or 6.
The Rl field for MXDR, MXD, and MXR, and
the R2 field for MXR must designate
register 0 or 4. Otherwise, a specifi­
cation exception is recognized.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2 of ME, MD,
and MXD only)

Exponent overflow
Exponent underflow
Operation (if the floating-point

facility is not installed, or,
for MXDR, MXD, and MXR, if the
extended-precision floating-
point facility is not
installed)

Specification

Programming Notes

1. An example of the use of the MULTI­
PLY instruction is given in Appen­
dix A.

2. Interchanging the two operands in a
floating-point multiplication does
not affect the value of the
product.

9-14 System/370 Principles of Operation

STORE

o 8 12 16 20 31

STD [RX, Long Operands]

'60'

o 8 12 16 20 31

The first operand is placed unchanged at
the second-operand location.

The Rt field must designate register 0,
2, 4, or 6; otherwise, a specification
exception is recognized.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 2)
Operation (if the floating-point

facility is not installed)
Specification

SUBTRACT NORMALIZED

SER R t , R2 [RR, Short Operands]

'3B' I R t I R2

0 8 12 15

SE Rp D2 (X 2 ,B 2) [RX, Short Operands]

'7B'

o 8 12 16 20 31

SDR [RR, Long Operands]

'2B'

o 8 12 15

SD [RX, Long Operands]

'6B'

o 8 12 16 20 31

SXR [RR, Extended Operands]

'37' I R t I R2 I
o 8 12 15

The second operand is subtracted from
the first operand, and the normalized
difference is placed at the first­
operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED,
except that the second operand partic­
ipates in the operation with its sign
bit inverted.

The R t fi eld of SER, SE, SDR, and SD,
and the R2 field of SER and SDR must
designate register 0, 2, 4, or 6. The
R t and R2 fields of SXR must designate
register 0 or 4. Otherwise, a specifi­
cation exception is recognized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of SE and
SD only)

Exponent overflow
Exponent underflow
Operation (if the floating-point

facility is not installed, or,
for SXR, if the extended­
precision floating-point facil­
ity is not installed)

Significance
Specification

SUBTRACT UNNORMALIZED

SUR [RR, Short Operands]

o 8 12 15

SU Rtl D2 (X 2 ,B 2) [RX, Short Operands]

'7 F' I R t I X2 I B2 I D2

0 8 12 16 20 31

SWR R t' R2 [RR, Long Operands]

'2F' I Rt I R2

0 8 12 15

SW Rtl D2(X 2,B 2) [RX, Long Operands]

'6F' I Rt I X2 I B2

o 8 12 16 20 31

The second operand is subtracted from
the first operand, and the unnormalized
difference is placed at the first­
operand location.

The execution of SUBTRACT UNNORMALIZED
is identical to that of ADD
UNNORMAlIZED, except that the second
operand participates in the operation
with its sign bit inverted.

The R t and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of SU and
SW only)

Exponent overflow
Operation (if the floating-point

facility is not installed)
Significance
Specification

Chapter 9. Floating-Point Instructions 9-15

CHAPTER 10. CONTROL INSTRUCTIONS

CONNECT CHANNEL SET ..•••••••.•••.••••.••.•.••••..•.•.••. 10-4
DIAGNOSE•...•.•.•••••....••.•••••.•.•••••••••.•..•. 10-5
DISCONNECT CHANNEL SET•..•••..•..•.•••..•.••... 10-6
EXTRACT PRIMARY ASN ...•..•••.••...•..•...•.....•••..•.•• 10-6
EXTRACT SECONDARY ASN .••.••••••••••••••••••••.•••.•••••• 10-7
INSERT ADDRESS SPACE CONTROL .•.••••••.•••••••••••••••••• 10-7
INSERT PSW KEy .•.•••.•.•.•••...•.•..•...•.•.•••••.•••••• 10-8
INSERT STORAGE KEY .•.......•.....••••••••..•••••....•.•. 10-8
INSERT STORAGE KEY EXTENDED ••.•..•••••••••••••.•....•.•. 10-9
INSERT VIRTUAL STORAGE KEY .•...........••••••••••.•••••• 10-10
INVALIDATE PAGE TABLE ENTRY .••..•.••••.•••.••••...•••.•. 10-11
LOAD ADDRESS SPACE PARAMETERS••.•••...•.•.......... 10-12
LOAD CONTROL•..........•.••.••••••••••••••••.•..••. 10-20
LOAD PSW••....•.•.•.•..••••••.•••••••••••••.•.•. 10-20
LOAD REAL ADDRESS •......••••••...••••.••.•.••••.••••.••• 10-21
MOV E TO PRIMARY ..••••.•••••••..•••••••.••••••••••.•••.•. 10-22
MOVE TO SECONDARY •..•.•••••.•••••.••••..••••••••.•••...• 10-22
MOVE WITH KEy ...•..•••••••••••.•••..•..•••••••••••.••••• 10-24
PROGRAM CALL•••...••.•••.••.•••.••••••••••••••••.••. 10-25
PROGRAM TRANSFER••...•••.....•.•.......•.•••••.•••• 10-31
PURGE TLB ...••.••.•••.•.••••••••...•••••..••••••••••.••• 10-36
READ DIRECT ..•.•••...•.•••••....•..••...••••.•••••••.••. 10-36
RESET REFERENCE BIT .•..•.••.•..•.••••...••....•••••••••• 10-36
RESET REFERENCE BIT EXTENDED ...•••.•...•.•..••.•••.••••• 10-37
SET ADDRESS SPACE CONTROL .•••..••..•.•...•..•••••••.•••• 10-38
SET CLOCK•...••..•.••••••••••.•.•..•..••.••••••••••• 10-39
SET CLOCK COMPARATOR ..•.......••.•....•...•••..••.•••••• 10-39
SET CPU TIMER•...•.•.••• 10-40
SET PREFIX••.................•...•..•••••..• 10-40
SET PSW KEY FROM ADDRESS ••...•..••.•..•....•.•.••••.•••. 10-41
SET SECONDARY ASN•........•.••••......••.••.••• 10-41
SET STORAGE KEy••.••..••.•.•••••••••••••.•..••. 10-45
SET STORAGE KEY EXTENDED •..•....••••••••••.•••.•...••..• 10-45
SET SYSTEM MASK••••••..•..••••.••..•••.••••••••• 10-46
SIGNAL PROCESSOR .•......•.•••...•.•.••••••••••.....•..•• 10-46
STORE CLOCK COMPARATOR .•..•...•..•.•••••...••••.....•.•. 10-47
STORE CONTROL•••...•••••.•••..•••••...•..••. 10-48
STORE CPU ADDRESS •••.••••••.••...••••...••••••.••....... 10-48
STORE CPU 10 .•.•••••.•••.••••••••••••.•••••••.••••••.••• 10-48
STORE CPU TIMER .••••.••••••••••••••••••••••.••••.•••.••. 10-49
STORE PREFIX ...•.•.......••••...••••••.••••••..•.•...•.. 10-49
STORE THEN AND SYSTEM MASK .••..•.••.•..•.••.••••.••...•. 10-50
STORE THEN OR SYSTEM MASK ••••••••••.••••••••••••...••.•. 10-50
TEST BLOCK •.....•.......•••••....••••••••..•••...••...•• 10-50
TEST PROTECTION•........•.••.•••.•.•••••.•• 10-52
WRITE DIRECT•.........•.....•.•.••..••.•••••••.•••• 10-54

Chapter 10. Control Instructions 10-1

This chapter includes all privileged and
semiprivileged instructions described in
this publication, except the
input/output instructions, which are
described in Chapter 13, "Input/Output
Operations."

Privileged instructions may be executed
only when the CPU is in the supervisor
state. An attempt to execute an
installed privileged instruction in the
problem state generates a privileged­
operation exception.

The semiprivileged instructions are
those instructions that can be executed
in the problem state when certain
authority requirements are met. An
attempt to execute an installed semi­
privileged instruction in the problem
state when the authority requirements
are not met generates a privileged­
operation exception or some other
program-interruption condition depending
on the particular requirement which is
violated. Those requirements which
cause a privileged-operation exception
to be generated in the problem state are

10-2 System/370 Principles of Operation

not enforced when execution is attempted
in the supervisor state.

The control instructions and their
mnemonics, formats, and operation codes
are listed in the figure "Summary of
Control Instructions." The figure also
indicates when the condition code is set
and the exceptional conditions in oper­
and designations, data, or results that
cause a program interruption.

For those control instructions which
have special rules regarding the handl­
ing of exceptional situations, a section
called "Special Conditions" is included.
This section indicates the type of
ending (suppression, nullification, or
completion) only for those exceptions
for which the ending may vary.

Note: In the detailed descriptions of
the individual instructions, the mnemon­
ic and the symbolic operand designation
for the assembler language are shown
with each instruction. For LOAD PSW,
for example, LPSW is the mnemonic and
02(B 2) the operand designation.

Mne- Op
Name mon;c Character;st;cs Code

CONNECT CHANNEL SET CONCS S C CS P $ B200
DIAGNOSE DM P DM 83
DISCONNECT CHANNEL SET DISCS S C CS P $ B201
EXTRACT PRIMARY ASN EPAR RRE DU Q SO R B226
EXTRACT SECONDARY ASN ESAR RRE DU Q SO R B227

INSERT ADDRESS SPACE CONTROL lAC RRE C DU Q SO R B224
INSERT PSW KEY IPK S PK Q G2 R B20B
INSERT STORAGE KEY ISK RR P Al SP SO R 09
INSERT STORAGE KEY EXTENDED ISKE RRE EK P Al R B229
INSERT VIRTUAL STORAGE KEY IVSK RRE DU Q Al SO R B223

INVALIDATE PAGE TABLE ENTRY IPTE RRE EF P Al $ B221
LOAD ADDRESS SPACE PARAMETERS lASP SSE C DU P AS SP SO E500
LOAD CONTROL LCTL RS P A SP B7
LOAD PSW LPSW 5 L P A SP ¢ 82
LOAD REAL ADDRESS LRA RX C TR P Al R B1

MOVE TO PRIMARY MVCP SS C DU Q A SO ¢ ST DA
MOVE TO SECONDARY MVCS SS C DU Q A SO ¢ ST DB
MOVE WITH KEY MVCK SS C DU Q A ST D9
PROGRAM CALL PC S DU Q AT Zl T ¢ GM B R ST B218
PROGRAM TRANSFER PT RRE DU Q AT SP Z2 T ¢ B ST B228

PURGE TlB PTLB 5 TR P $ B20D
READ DIRECT ROD 51 DC P Al $ SO 85
RESET REFERENCE BIT RRB S C TR P Al SO B213
RESET REFERENCE BIT EXTENDED RRBE RRE C EK P Al B22A
SET ADDRESS SPACE CONTROL SAC 5 DU SP SO ¢ B219

SET CLOCK SCK 5 C P A SP B204
SET CLOCK COMPARATOR SCKC S CK P A SP B206
SET CPU TIMER SPT S CK P A SP B208
SET PREFIX SPX 5 MP P A SP $ B210
SET PSW KEY FROM ADDRESS SPKA S PK Q B20A

SET SECONDARY ASN SSAR RRE DU AT Z3 T ¢ ST B225
SET STORAGE KEY SSK RR P Al SP SO ¢ 08
SET STORAGE KEY EXTENDED SSKE RRE EK P Al ¢ B22B
SET SYSTEM MASK SSM S P A SP SO 80
SIGNAL PROCESSOR SIGP RS C MP P $ R AE

STORE CLOCK COMPARATOR STCKC 5 CK P A SP ST B207
STORE CONTROL STCTl RS P A SP ST B6
STORE CPU ADDRESS STAP S MP P A SP ST B212
STORE CPU ID STIDP S P A SP ST B202
STORE CPU TIMER STPT S CK P A SP ST B209

STORE PREFIX STPX S MP P A SP ST B211
STORE THEN AND SYSTEM MASK STNSM SI TR P A ST AC
STORE THEN OR SYSTEM MASK STOSM 51 TR P A SP ST AD
TEST BLOCK TB RRE C TB P Al II $ GO R B22C
TEST PROTECTION TPROT SSE C EF P Al E501
WRITE DIRECT WRD SI DC P Al $ 84

Summary of Control Instruct;ons (Part 1 of 2)

Chapter 10. Control Instructions 10-3

Explanation:

¢ Causes serialization and checkpoint synchronization.
$ Causes serialization.
A Access exceptions for logical addresses.
Al Access exceptions; not all access exceptions may occur; see instruc­

tion description for details.
AS Access exceptions and ASN-translation-specification exception; see

instruction description for details.
AT ASN-translation exceptions (which include addressing, ASN-translation

specification, AFX translation, and ASX translation).
B PER branch event.
C Condition code is set.
CK CPU-timer and clock-comparator facility.
CS Channel-set-switching facility.
DC Direct-control facility.
DM Depending on the model, DIAGNOSE may generate various program excep-

tions and may change the condition code.
DU Dual-address-space facility.
EF Extended facility.
EK Storage-key-instruction-extension facility.
GO Instruction execution includes the implied use of general register O.
G2 Instruction execution includes the implied use of general register 2.
GM Instruction execution includes the implied use of general registers

3, 4, and 14.
II Interruptible instruction.
L New condition code is loaded.
MP Multiprocessing facility.
P Privileged-operation exception.
PK PSW-key-handling facility.
Q Privileged-operation exception for semiprivileged instructions.
R PER general-register-alteration event.
RR RR instruction format.
RRE RRE instruction format.
RS RS instruction format.
RX RX instruction format.
5 5 instruction format.
SD PER storage-alteration event, which can be caused by READ DIRECT only

when INVALIDATE PAGE TABLE ENTRY is not installed.
51 51 instruction format.
SO Special-operation exception.
SP Specification exception.
55 SS instruction format.
SSE SSE instruction format.
ST PER storage-alteration event.
T Trace exceptions (which include access and specification).
TB Test-block facility.
TR Translation facility.
Zl Additional exceptions and events for PROGRAM CALL (which include

addressing, EX-translation, LX-translation, PC-translation-specifi­
cation, and special-operation exceptions and space-switch event).

Z2 Additional exceptions and events for PROGRAM TRANSFER (which include
addressing, primary-authority, and special-operation exceptions and
space-switch event).

Z3 Additional exceptions for SET SECONDARY ASN (which include addressing,
secondary authority, and special operation).

Summary of Control Instructions (Part 2 of 2)

CONNECT CHANNEL SET

[5]

'B200'

o 16 20 31

The channel set currently connected to
this CPU is disconnected, and the

10-4 System/370 Principles of Operation

addressed channel set, if currently
disconnected, is connected to this CPU.

The second-operand address, specified by
the B2 and D2 fields, is not used to
address data; bits 16-31 form the 16-bit
channel-set address. Bits 8-15 of the
second-operand address are ignored.

When the channel set currently connected
to this CPU is not the channel set
addressed by the instruction, the

currently connected channel set is imme­
diately disconnected from this CPU,
regardless of whether the channel set
addressed by the instruction is opera­
tional or can be connected to this CPU.

If the addressed channel set is current­
ly connected to this CPU, no channel-set
connection is changed, and condition
code 0 is set. If the addressed channel
set is operational and currently discon­
nected, it is connected to this CPU, and
condition code 0 is set.

When the addressed channel set is
connected to another CPU, it is not
connected to this CPU, and condition
code 1 is set.

When the addressed channel set is not
operational, no connection is performed,
and condition code 3 is set.

A serialization function is performed.

If a channel in the channel set which is
connected by means of this instruction
has an I/O interruption pending, and if
the CPU is enabled for I/O
interruptions, the interruption is
recognized at the completion of this
instruction.

Resulting Condition Code:

o
1

2
3

Connection completed
Connection not performed; chan­
nel set connected to another
CPU

Not operational

Program Exceptions:

Operation (if the channel-set­
switching facility is not
installed)

Privileged operation

Programming Note

The switching of channel sets and the
associated states of a channel set are
described in the section "Channel-Set
Switching" in Chapter 4, "Control."

DIAGNOSE

'83'

o 8 31

The CPU performs built-in diagnostic
functions, or other model-dependent

functions. The purpose of the diagnos­
tic functions is to verify proper func­
tioning of equipment and to locate
faulty components. Other model-
dependent functions may include
disabling of failing buffers, reconfig­
uration of CPUs, storage, channel sets,
and channels, and modification of
control storage.

Bits 8-31 may be used as in the 51 or RS
formats, or in some other way, to speci­
fy the particular diagnostic function.
The use depends on the model.

The execution of the instruction may
affect the state of the CPU and the
contents of a register or storage
location, as well as the progress of an
I/O operation. Some diagnostic func­
tions may cause the test indicator to be
turned on.

Condition Code: The code is unpredict-
able. --

Program Exceptions:

Privileged operation
Depending on the model, other

exceptions may be recognized.

Programming Notes

1. Since the instruction is not
intended for problem-state-program
or control-program use, DIAGNOSE
has no mnemonic.

2. DIAGNOSE, unlike other
instructions, does not follow the
rule that programming errors are
distinguished from equipment
errors. Improper use of DIAGNOSE
may result in false machine-check
indications or may cause actual
machine malfunctions to be ignored.
It may also alter other aspects of
system operation, including
instruction execution and channel­
program operation, to an extent
that the operation does not comply
with that specified in this publi­
cation. As a result of the
improper use of DIAGNOSE, the
system may be left in such a condi­
tion that the power-on reset or
initial-microprogram-loading (IML)
function must be performed. Since
the function performed by DIAGNOSE
may differ from model to model and
between versions of a model, the
program should avoid issuing DIAG­
NOSE unless the program recognizes
both the model number and version
code stored by STORE CPU 10.

Chapter 10. Control Instructions 10-5

DISCONNECT CHANNEL SET

[S]

'B201'

o 16 20 31

The addressed channel set is discon­
nected from the CPU to which it is
currently connected. If the channel set
is not connected, no operation is
performed.

The second-operand address, specified by
the B2 and D2 fields, is not used to
address data; bits 16-31 form the 16-bit
channel-set address. Bits 8-15 of the
second-operand address are ignored.

When the addressed channel set is opera­
tional but not connected to any CPU, no
disconnection operation is performed,
and condition code 0 is set.

When the addressed channel set is
connected either to the CPU issuing the
DISCONNECT CHANNEL SET instruction or to
a CPU that is in the stopped or check­
stop state, the disconnection operation
is performed, and condition code 0 is
set.

When the addressed channel set is
connected to another CPU which is in the
operating state, which is being reset,
or for which a SIGNAL PROCESSOR reset
order or IML order is pending, no
disconnection operation is performed,
and condition code 1 is set.

When the addressed channel set is
connected to another CPU which is in the
operator-intervening state, it depends
on the model if condition code 0 or 1 is
set. The action taken in this case is
consistent with the condition code indi­
cated.

When the addressed channel set is not
operational, no disconnection operation
is performed, and condition code 3 is
set.

A serialization function is performed.

If a channel in a channel set which is
disconnected by this instruction has an
I/O interruption pending, the inter­
ruption condition remains pending in the
channel while the channel set is in the
disconnected state.

Resulting Condition Code:

o
1

2
3

Disconnection completed
Disconnection not performed;
channel set connected to anoth­
er CPU not in proper state

Not operational

10-6 System/370 Principles of Operation

Program Exceptions:

Operation (if the channel-set­
switching facility is not
installed)

Privileged operation

Programming Note

The switching of channel sets and the
associated states of a channel set are
described in the section "Channel-Set
Switching" in Chapter 4, "Control."

EXTRACT PRIMARY ASN

EPAR R t [RRE]

'B226'

o 16 24 28 31

The 16-bit PASN, bits 16-31 of control
register 4, is placed in bit positions
16-31 of general register R t • Bits 0-15
of the general register are set to
zeros.

Bits 16-23 and 28-31 of the instruction
are ignored.

Special Conditions

The instruction must be executed with
OAT on; otherwise, a special-operation
exception is recognized. The special­
operation exception is recognized in
both the problem and supervisor states.

In the problem state, the extraction­
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog­
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
EXTRACT PRIMARY ASN."

Condition Code:
unchanged.

Program Exceptions:

The code

Operation (if the dual-address-
space facility is not
installed)

Privileged operation (extraction­
authority control is zero in
the problem state)

Special operation

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B.1 Operation exception if the
dual-address-space facility
is not installed.

7.B.2 Special-operation exception
due to OAT being off.

8. Privileged-operation exception
due to extraction-authority
control, bit 4 of control reg­
ister 0, being zero.

Priority of Execution: EXTRACT
PRIMARY ASN

EXTRACT SECONDARY ASN

ESAR [RRE]

'B227'

a 16 24 28 31

The 16-bit SASN, bits 16-31 of control
register 3, is placed in bit positions
16-31 of general register R t • Bits 0-15
of the general register are set to
zeros.

Bits 16-23 and 28-31 of the instruction
are ignored.

Special Conditions

The instruction must be executed with
DAT on; otherwise, a special-operation
exception is recognized. The special­
operation exception is recognized 1n
both the problem and supervisor states.

In the problem state, the extraction­
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog­
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
EXTRACT SECONDARY ASN."

Condition Code:
unchanged.

The code remains

Program Exceptions:

Operation (if the dual-address-
space facility is not
installed)

Privileged operation (extraction­
authority control is zero in
the problem state)

Special operation

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B.1 Operation exception if the
dual-address-space facility
is not installed.

7.B.2 Special-operation exception
due to DAT being off.

8. Privileged-operation exception
due to extraction-authority
control, bit 4 of control
register 0, being zero.

Priority of Execution: EXTRACT
SECONDARY ASN

INSERT ADDRESS SPACE CONTROL

lAC Rt [RRE]

'B224' 1////////1 Rt 1////1
0 16 24 28 31

The address-space-control bit, bit 16 of
the current PSW, is placed in bit posi­
tion 23 of general register Rt • Bits
16-22 of the register are set to zeros,
and bits 0-15 and 24-31 of the register
remain unchanged. The address-space­
control bit is also used to set the
condition code.

Bits 16-23 and 28-31 of the instruction
are ignored.

Special Conditions

The instruction must be executed with
OAT on; otherwise, a special-operation
exception is recognized. The special­
operation exception is recognized in
both the problem and supervisor states.

Chapter 10. Control Instructions 10-7

In the problem state, the extraction­
author; ty control,· bi t 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog­
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
INSERT ADDRESS SPACE CONTROL."

Resulting Condition Code:

o
1
2
3

PSW bit 16 zero
PSW bit 16 one

Program Exceptions:

Operation (if the dual-address-
space facility is not
installed)

Privileged operation (extraction­
authority control is zero in
the problem state)

Special operation

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B.l Operation exception if the
dual-address-space facility
is not installed.

7.B.2 Special-operation exception
due to OAT being off.

8. Privileged-operation exception
due to extraction-authority
control, bit 4 of control
register 0, being zero.

Priority of Execution: INSERT ADDRESS
SPACE CONTROL

Programming Notes

1. Bits 16-22 of general register R t

are reserved for expansion for use
with possible future facilities.
The program should not depend on
these bits being set to zeros.
Similarly~ condition codes 2 and 3
may be set as a result of future
facilities.

2. INSERT ADDRESS SPACE CONTROL and
SET ADDRESS SPACE CONTROL are

10-8 System/370 Principles of Operation

defined to operate on the third
byte of a general register so that
the address-space-control bit can
be saved in the same general regis­
ter as the PSW key, which is placed
in the fourth byte of general
register 2 by INSERT PSW KEY.

INSERT PSW KEY

IPK [S]

'B20B' 1////////////////1

o 16 31

The four-bit PSW-key, bits 8-11 of the
current PSW, is inserted in bit posi­
tions 24-27 of general register 2, and
bits 28-31 of that register are set to
zeros. Bits 0-23 of general register 2
remain unchanged.

Bits 16-31
ignored.

of the instruction are

Special Conditions

In the problem state, when DAS is
installed, the extraction-authority
control, bit 4 of control register 0,
must be one; otherwise, a privileged­
operation exception is recognized. When
DAS is not installed, execution of the
instruction in the problem state results
in a privileged-operation exception
regardless of the extraction-authority
control. In the supervisor state, the
extraction-authority-control bit is not
examined.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Operation (if the PSW-key-handling
facility is not installed)

Privileged operation (executed in
the problem state, and either
the dual-address-space facility
is not installed or the
extraction-authority control is
zero)

INSERT STORAGE KEY

15K [RR]

o 8 12 15

The storage key for the 2K-byte block
that is addressed by the contents of
general register R2 is inserted in
general register R t •

Bits 8-20 of general register R2 desig­
nate a 2K-byte block in real storage.
Bits 0-7 and 21-27 of the register are
ignored. Bits 28-31 of the register
must be zeros; otherwise, a specifica­
tion exception is recognized.

When the storage-key 4K-byte-block
facility is not installed, all blocks
are double-key 4K-byte blocks, and the
operation proceeds normally.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks, and the
action taken depends on the setting of
the storage-key-exception-control bit,
bit 7 of control register o. If the bit
is zero, a special-operation exception
is recognized. If the bit is one, the
operation is performed on the single key
for the 4K-byte block.

The address designating the storage
block, being a real address, 1S not
subject to dynamic address translation.
The reference to the storage key is not
subject to a protection exception.

The execution of the instruction depends
on whether the PSW specifies the EC or
BC mode. In the EC mode, the seven-bit
storage key is inserted in bit positions
24-30 of general register Rt , and bit 31
is set to zero. In the BC mode, bits
0-4 of the storage key are placed in bit
positions 24-28 of that register, and
bits 29-31 of the register are set to
zeros. In both modes, the contents of
bit positions 0-23 of the register
remain unchanged.

Special Conditions

Bits 28-31 of general register R2 must
be zeros; otherwise, a specification
exception is recognized.

When the storage-key 4K-byte-block
facility is installed and the storage­
key-exception-control bit (bit 7 of
control register 0) is zero, a special­
operation exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The

Addressing (address
general register

Privileged operation
Special operation
Specification

code remains

by

INSERT STORAGE KEY EXTENDED

ISKE [RREl

'B229'

o 16 24

The storage key for the block
addressed by the contents of
register R2 is inserted in
register Rt •

28 31

that is
general
general

Bits 16-23
ignored.

of the instruction are

The contents of general register R2 are
treated as a 31-bit real address of a
4K-byte block in storage. Bits 1-19 of
the register designate the 4K-byte
block, and bits 0 and 20-31 of the
register are ignored.

The address designating the storage
block, being a real address, is not
subject to dynamic address translation.
The reference to the storage key is not
subject to a protection exception.

When the storage-key 4K-byte-block
facility is not installed, all blocks
are double-key 4K-byte blocks. The key
for the first 2K-byte block within the
4K-byte block designated by the instruc­
tion is called the low-order key. The
key for the second 2K-byte block is
called the high-order key. The contents
of the low-order key are inserted, but
with the resultant change bit being the
OR of the change bits from the low-order
and high-order keys. Similarly, the
resultant reference bit is the OR of the
reference bits from the low-order and
high-order keys. The contents of the
storage keys are not changed.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks, and the
single key is inserted in the register.

The seven-bit storage key is inserted in
bit positions 24-30 of general register
R., and bit 31 is set to zero. The
contents of bit positions 0-23 of the
register remain unchanged. The opera­
tion is not dependent on whether the PSW
specifies the EC or BC mode.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Addressing (address specified by
general register R2)

Operation (if the storage-key­
instruction-extension facility
is not installed)

Privileged operation

Chapter 10. Control Instructions 10-9

Programming Note

The results of the execution of INSERT
STORAGE KEY EXTENDED for a double-key
4K-byte block may have intermediate
values for the reference and change bits
if there is a concurrent storage-key
operation being executed on either key
for the same double-key block by another
CPU in the configuration.

INSERT VIRTUAL STORAGE KEY

IVSK R I' R2 [RREl

'B223' 1////////1 Rt R2

0 16 24 28 31

The storage key for the location desig­
nated by the virtual address in general
register R2 is inserted in general
register R, .

Bits 16-23
ignored.

of the instruction are

Bits 8-31 of general register R2 are
used as a virtual address. Bits 0-7 of
the register are ignored.

The address is a virtual address and is
subject to the address-space-control
bit, bit 16 of the current PSW. In the
primary-space mode, the address is
treated as a primary virtual address; in
the secondary-space mode, the address is
treated as a secondary virtual address.
The reference to the storage key is not
subject to a protection exception.

Bits 0-4 of the storage key, which are
the access-control bits and the fetch­
protection bit, are placed in bit posi­
tions 24-28 of general register Rt , with
bits 29-31 set to zeros. The contents
of bit positions 0-23 of the register
remain unchanged. The change and refer­
ence bits in the storage key are not
inspected. The change bit is not
affected by the operation. The refer­
ence bit, depending on the model, mayor
may not be set to one as a result of the
operation.

10-10 System/370 Principles of Operation

The following diagram shows the storage
key and the register positions just
described.

R t

0

Storage Key
for the
Location

lAce \F\R\C\

J,eros
'" I

'"
24 28 31

Special Conditions

The instruction must be executed with
OAT on; otherwise, a special-operation
exception is recognized. The special­
operation exception is recognized in
both the problem and supervisor states.

In the problem state, the extraction­
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog­
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
INSERT VIRTUAL STORAGE KEY."

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (except for
address specified
register R2)

Operation (if the
space facility
installed)

protection,
by general

dual-address-
is not

Privileged operation (extraction­
authority control is
the problem state)

Special operation

zero in

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B.1 Operation exception if the
dual-address-space facility is
not installed.

7.B.2 Special-operation exception due
to OAT being off.

8.

9.

Privileged-operation exception
due to extraction-authority
control, bit 4 of control reg­
ister 0, being zero.

Access exceptions (except for
protection) for address speci­
fied by general register R2 .

Priority of Execution: INSERT VIRTUAL
STORAGE KEY

Programming Note

Since all bytes in a 2K-byte block are
associated with the same page and the
same storage key, bits 21-31 of general
register R2 effectively are ignored.
When 4K-byte pages are used, the
storage-key 4K-byte-block facility is
installed, and all blocks are single-key
4K-byte blocks, then bits 20-31 of
general register R2 essentially are
ignored.

INVALIDATE PAGE TABLE ENTRY

IPTE [RRE]

'B221' 1////////1 R,

o 16 24 28 31

The designated page-table entry is
invalidated, and the translation­
lookaside buffers (TLBs) in all CPUs in
the configuration are cleared of the
associated entries.

Bits 16-23
ignored.

of the instruction are

The contents of general register Rt have
the format of a segment-table entry with
only the page-table origin used. The
contents of general register R2 have the
format of a virtual address with only
the page index used. The contents of

fields that are not part of the page­
table origin or page index are ignored.
The translation format, contained in bit
positions 8-12 of control register 0,
specifies the mode for translation.

The contents of the general registers
just described are as follows:

Rt

1////////1 Page-Table Origin 1///1

o 8 29 31

R2 (for 64K-byte segments and 4K-byte
pages)

1////////////////1 PX 1////////////1

o 16 20 31

R2 (for 64K-byte segments and 2K-byte
pages)

1////////////////1 PX 1///////////1

o 16 21 31

R2 (for 1M-byte segments and 4K-byte
pages)

1////////////1 PX 1////////////1

o 12 20 31

R2 (for 1M-byte segments and 2K-byte
pages)

1////////////1 PX 1///////////1

o 12 21 31

The page-table origin and the page index
designate a page-table entry, following
the dynamic-address-translation rules
for page-table lookup. The address
formed from these two components is a
real address. The page-invalid bit of
this page-table entry is set to one.
During this procedure, no page-table­
length check is made, and the page-table
entry is not inspected for availability
or format errors. Additionally, the
page-frame real address (including the
extended-addressing bits, when applica­
ble) contained in the entry is not
checked for an addressing exception.

The entire page-table entry is fetched
concurrently from storage. Subsequently
the byte containing the page-invalid bit
is stored. The fetch access to the
page-table entry is subject to key­
controlled protection, and the store

Chapter 10. Control Instructions 10-11

access is subject to key-controlled
protection and low-address protection.

A serialization function is performed
before the operation begins and again
after the operation is completed. As is
the case for all serialization oper­
ations, this serialization applies only
to this CPU; other CPUs are not neces­
sarily serialized.

If it is successful in setting the
page-invalid bit to one, this CPU clears
selected entries from its TLB and
signals all CPUs in the configuration to
clear selected entries from their TLBs.
Each TLB is cleared of at least those
entries that have been formed using all
of the following:

• The translation format specified in
bit positions 8-12 of control
register 0 of the CPU executing the
INVALIDATE PAGE TABLE ENTRY
instruction

• The page-table orlgln designated by
the first operand

• The page index designated by the
second operand

• The page-frame real address
(including the extended-addressing
bits, when applicable) contained in
the designated page-table entry

The execution of INVALIDATE PAGE TABLE
ENTRY is not completed on the CPU which
executes it until (1) all entries corre­
sponding to the specified parameters
have been cleared from the TLB on this
CPU and (2) all other CPUs in the
configuration have completed any storage
accesses, including the updating of the
change and reference bits, by using TLB
entries corresponding to the specified
parameters.

Special Conditions

When bit positions 8-12 of control
register 0 contain an invalid code, a
translation-specification exception is
recognized. The exception is recognized
regardless of whether DAT is on or off.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Addressing (page-table entry)
Operation (if the extended facility

is not installed)
Privileged operation
Protection (fetch and store, page­

table entry, key-controlled

10-12 System/370 Principles of Operation

protection, and low-address
protection)

Translation specification (bits
8-12 in control register 0
only)

Programming Notes

1. The selective clearing of entries
may be implemented in different
ways, depending on the model, and,
in general, more entries may be
cleared than the mlnlmum number
required. Some models may clear
all entries which contain the
designated page-frame real address.
Others may clear all entries which
contain the designated page index,
and some implementations may clear
precisely the minimum number of
entries required. Therefore, in
order for a program to operate on
all models, the program should not
take advantage of any properties
obtained by a less selective clear­
ing on a particular model.

2. The clearing of TLB entries may
make use of the page-frame real
address in the page-table entry.
Therefore, if the page-table entry,
when in the attached state, ever
contained a page-frame real address
that is different from the current
value, copies of the previous
values may remain in the TLB.

3. INVALIDATE PAGE TABLE ENTRY cannot
be safely used to update a shared
location in main storage if the
possibility exists that another CPU
or a channel may also be updating
the location.

LOAD ADDRESS SPACE PARAMETERS

lASP [SSE]

,,-__ ' E_5_0 0_' _---'-'_B_t _,"--~ I I B, I ~J
o 16 20 32 36 47

The contents of the doubleword at the
first-operand location contain values to
be loaded into control registers 3 and
4, including a secondary ASN and a
primary ASN. Execution of the instruc­
tion consists in performing four major
steps: PASN translation, SASN trans­
lation, SASN authorization, and
control-register loading. Each of these
steps mayor may not be performed,
depending on the outcome of certain
tests and on the setting of bits 29-31
of the second-operand address. These
steps, when successful, obtain addi­
tional values, which are loaded into

control registers 1, 5, and 7. When the
steps are not successful, no control
registers are changed, and the reason is
indicated in the condition code.

The doubleword first operand contains a
PSW-key mask (PKM), a secondary ASH
(SASH), an authorization index (AX), and
a primary ASH (PASH). The primary ASH
is translated by means of the ASH­
translation tables to obtain a PSTD,
LTD, and, optionally, an AX. The
secondary ASH is translated by means of
the ASH-translation tables to obtain an
SSTD, and, optionally, an authority
check is made to ensure that the new AX
is authorized to establish the new SASH.

The doubleword at the first-operand
location has the following format:

PKM-d SASH-d AX-d PASN-d

o 16 32 48 63

The "d" stands for designated doubleword
and is used to distinguish these fields
from other fields with similar names
which are referred to in the definition.
The current contents of the correspond­
ing fields in the control registers are
referred to as PKM-old, SASH-old, etc.
The updated contents of the control
registers are referred to as PKM-new,
SASH-new, etc.

The second-operand address is not used
to address data; instead, the rightmost
three bits are used to control portions
of the operation. The remainder of the
second-operand address is ignored. Bits
29-31 of the second-operand address are
used as follows:

Function Specified
in Second Operand

Bit When Bit I s Zero When Bit Is One

29 ASH translation ASH translation
performed only performed.*
when new ASH and
old ASH are dif-
ferent.

30 Use AX associ- Use AX from
ated with PASH. first operand.

31 SASH authoriza- SASH authoriza-
tion performed.* tion not per-

formed.

* SASH translation and SASH authori-
zation are performed only when
SASH-d is not equal to PASH-d.
When SASN-d is equal to PASH-d,
the SSTD is loaded from the PSTD,
and no authorization is performed.

The operation
PARAMETERS is

of LOAD ADDRESS
depicted in the

SPACE
figure

"Execution of LOAD ADDRESS SPACE PARAME­
TERS."

PASH Translation

In the PASH translation process, the
PASH-d is translated by means of the ASH
first table and the ASH second table.
The STD and LTD fields and, optionally,
the AX field, obtained from the ASH­
second-table entry are subsequently used
to update the corresponding control
registers.

When bit 29 of the second-operand
address is one, PASH translation is
always performed. When bit 29 is zero,
PASH translation is performed only when
PASH-d is not equal to PASH-old. When
bit 29 is zero and PASH-d is equal to
PASH-old, the PSTD-old and LTD-old are
left unchanged in the control registers
and become the PSTD-new and LTD-new,
respectively. In this case, if bit 30
i s zero, then the AX-o 1 dis left
unchanged in the control register and
becomes the AX-new.

The PASN translation follows the normal
rules for ASH translation, except that
the invalid bits, bit 0 in the ASH­
first-table entry and bit 0 in the ASH­
second-table entry, when ones, do not
result in an ASH-translation exception,
and the space-switch-event-control bit
in the ASH-second-table entry, when one,
does not result in a space-switch event.
When either of the invalid bits is one,
condition code 1 is set. When the ASH­
second-table entry is valid and either
the current space-switch-event-control
bit in control register 1 is one or the
space-switch-event-control bit in the
ASH-second-table entry is one, condition
code 3 is set. When condition code 1 or
3 is set, the control registers remain
unchanged.

The contents of the AX, STD, and LTD
fields in the ASH-second-table entry
which is accessed as a result of the
PASH translation are referred to as
AX-p, STD-p, and LTD-p, respectively.

SASH Translation

In the SASH-translation process, the
SASH-d is translated by means of the ASH
first table and the ASH second table.
The STD field obtained from the ASH­
second-table entry is subsequently used
to update the secondary-segment-table
designation (S5TD) in control register
7. The ATO and ATL fields obtained are
used in the SASH authorization, if it
occurs.

Chapter 10. Control Instructions 10-13

SASH translation is performed only when
SASH-d is not equal to PASH-d. When
SASH-d is equal to PASN-d, the SSTD-new
is set to the same value as PSTD-new.
When SASH-d is equal to SASH-old, bit 29
(force ASH translation) is zero, and bit
31 (skip SASH authorization) is one,
then SASH translation is not performed,
and SSTD-old becomes SSTD-new.

The SASH translation follows the normal
rules for ASH translation, except that
the invalid bits, bit 0 in the ASH­
first-table entry and bit 0 in the ASH­
second-table entry, when ones, do not
result in an ASH-translation exception.
When either or both of the invalid bits
are ones, condition code 2 is set, and
the control registers remain unchanged.

The contents of the STD, ATO, and ATl
fields in the ASH-second-table entry
which is accessed as a result of the
SASH translation are referred to as
STD-s, ATO-s, and ATl-s , respectively.

SASH Authorization

SASH authorization is performed when bit
31 of the second-operand address is zero
and SASH-d is not equal to PASH-d. When
SASH-d is equal to PASH-d or when bit 31
of the second-operand address is one,
SASH authorization is not performed.

SASH authorization is performed by using
ATO-s, ATl-s, and the intended value for
AX-new. When bit 30 of the second­
operand address is zero and PASH trans­
lation was performed, the intended value
for AX-new is AX-p. When bit 30 of that
address is zero and PASH translation was
not performed, the AX is not changed,
and AX-new is the same as AX-old. When
bit 30 of that address is one, the
intended value for AX-new is AX-d. SASH
authorization follows the rules for
secondary authorization as described in
the section "ASH-Authorization Process"
in Chapter 3, "Storage." If the SASH is
not authorized (that is, the authority­
table length is exceeded, or the
selected bit is zero), condition code 2
is set, and none of the control regis­
ters are updated.

Control-Register loading

When the PASH-translation, SASH­
translation, and SASH-authorization
functions, if called for in the opera­
tion, are performed without encountering
any exceptions, the operation is
completed by replacing the contents of
control registers 1, 3, 4, 5, and 7 with
the new values, and condition code 0 is
set. The control registers are loaded
as follows:

10-14 System/370 Principles of Operation

The PSW-key-mask and SASH fields in
control register 3 are replaced by the
PKM-d and SASH-d fields from the first­
operand location.

The PASH, bits 16-31 of control register
4, is replaced by the PASH-d field from
the first-operand location.

The authorization index, bits 0-15
replaced

of
as control register 4, is

follows:

• When bit 30 of the second-operand
address is one, from AX-d.

• When bit 30 of the second-operand
address is zero and PASH trans­
lation is performed, from AX-p.

• When bit 30 of the second-operand
address is zero and PASH trans­
lation is not performed, the
authorization index is not changed.

The primary-segment-table designation in
control register 1 and the linkage-table
designation in control register 5 are
replaced as follows:

• When PASH translation is performed,
the primary-segment-table designa­
tion in control register 1 and the
linkage-table designation in
control register 5 are replaced
from the STD-p and lTD-p fields,
respectively, which are obtained
during PASH translation.

• When PASH translation is not
performed, the primary-segment­
table-designation and linkage­
table-designation fields remain
unchanged.

The contents of the secondary-segment­
table designation in control register 7
are replaced as follows:

• When SASH-d equals PASH-d, by the
new contents of control register 1,
the primary-segment-table desig­
nation.

• When SASH translation is performed,
by the contents of the STD-s.

When SASH-d does not equal PASH-d and
SASH translation is not performed, the
secondary-segment-table designation re­
mains unchanged.

other Condition-Code Settings

When PASH translation is called for and
cannot be completed because bit 0 is one
in either the ASH-first-table or the
ASH-second-table entries, condition code
1 is set, and the control registers are
not changed.

When (1) PASH translation is called for
and completed and (2) either the current
space-switch-event-control bit, bit 31
of control register 1 is one or the
space-switch-event-control bit in the
ASH-second-table entry ;s one, condition
code 3 is set, and the control registers
are not changed.

When SASH translation is called for and
the translation cannot be completed
because bit 0 is one in either the ASH­
first-table or ASH-second-table entries,
or because SASH authorization is called
for and the SASH is not authorized,
condition code 2 is set, and the control
registers are not changed.

Special Conditions

The instruction can be executed only
when the ASH-translation control, bit 12
of control register 14, is one. If the
ASH-translation-control bit is zero, a
special-operation exception is recog­
nlzed.

The first operand must be designated on
a doubleword boundary; otherwise, a
specification exception is recognized.

The operation is suppressed on all
addressing and protection exceptions.

The figures "Summary of Actions: LOAD
ADDRESS SPACE PARAMETERS" and "Priority
of Execution: LOAD ADDRESS SPACE PARAM­
ETERS" summarize the functions of the
instruction and the priority of recogni­
tion of exceptions and condition codes.

Resulting Condition Code:

o

1

2

3

Translation and authorization
complete; parameters loaded
Primary ASH not available;
parameters not loaded
Secondary ASH not available or
not authorized; parameters not
loaded
Space-switch event specified;
parameters not loaded

Program Exceptions:

Access (fetch, operand 1)
Addressing (ASH-first-table entry,

ASH-second-table entry,
authority-table entry)

ASH-translation specification
Operation (if the dual-address-

space facility is not
installed)

Privileged operation
Special operation
Specification

Chapter 10. Control Instructions 10-15

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second and third instruction halfwords.

7.B.1 Operation exception if the dual-address-space facility is not
installed.

7.B.2 Privileged-operation exception.

7.B.3 Special-operation exception due to the ASH-translation control,
bit 12 of control register 14, being zero.

8. Specification exception.

9. Access exceptions for the first operand.

10. Execution of PASH translation (when performed).

10.1 Addressing exception for access to ASH-first-table entry.

10.2 Condition code 1 due to I bit (bit 0) in ASH-first-table entry
being one.

10.3 ASH-translation-specification exception due to invalid ones (bits
1-7, 28-31) in ASH-first-table entry.

10.4 Addressing exception for access to ASH-second-table entry.

10.5 Condition code 1 due to I bit (bit 0) in ASH-second-table entry
being one.

10.6 ASH-translation-specification exception due to invalid ones (bits
1-7, 30, 31, 60-63, 97-103) in ASH-second-table entry.

10.7 Condition code 3 due to either the old or new space-switch-event­
control bit being one.

11. Execution of SASH translation (when performed).

11.1 Addressing exception for access to ASH-first-table entry.

11.2 Condition code 2 due to I bit (bit 0) in ASH-first-table entry
being one.

11.3 ASH-translation-specification exception due to invalid ones (bits
1-7, 28-31) in ASH-first-table entry.

11.4 Addressing exception for access to ASH-second-table entry.

11.5 Condition code 2 due to I bit (bit 0) in ASH-second-table entry
being one.

11.6 ASH-translation-specification exception due to invalid ones (bits
1-7, 30, 31, 60-63, 97-103) in ASH-second-table entry.

12. Execution of secondary authorization (when performed).

12.1 Condition code 2 due to authority-table entry being outside table.

12.2 Addressing exception for access to authority-table entry.

12.3 Condition code 2 due to S bit in authority-table entry being zero.

Priority of Execution: LOAD ADDRESS SPACE PARAMETERS

10-16 System/370 Principles of Operation

Second-
Operand-
Address

PASN-d Bits* PASN Result Field
Equals Translation
PASN-old 29 30 Performed PSTD-new AX-new LTD-new PKM-new SASN-new

Yes 0 0 No PSTD-old AX-old LTD-old PKM-d SASN-d
Yes 0 1 No PSTD-old AX-d LTD-old PKM-d SASN-d
Yes 1 0 Yes STD-p AX-p LTD-p PKM-d SASN-d
Yes 1 1 Yes STD-p AX-d LTD-p PKM-d SASN-d
No - 0 Yes STD-p AX-p LTD-p PKM-d SASN-d
No - 1 Yes STD-p AX-d LTD-p PKM-d SASN-d

Summary of Actions: LOAD ADDRESS SPACE PARAMETERS (Part 1 of 2)

Second-Ope rand-
SASN-d SASN-d Address Bits* SASN SASN
Equals Equals Translation Authorization Result Field
PASN-d SASN-old 29 31 Performed PerformedU SSTD-new

Yes - - - No No PSTD-new
No Yes 0 1 No No SSTD-old
No Yes 1 1 Yes No STD-s
No Yes - 0 Yes Yes STD-s
No No - 1 Yes No STD-s
No No - 0 Yes Yes STD-s

Explanation:

- Action in this case is the same regardless of the outcome of this
comparison or of the setting of this bit.

* Second-operand-address bits:
29 Force ASN translation.
30 Use AX from first operand.
31 Skip secondary authority test.

U SASN authorization is performed using ATO-s, ATl-s, and AX-new.

Summary of Actions: LOAD ADDRESS SPACE PARAMETERS (Part 2 of 2)

PASN-new

PASN-d
PASN-d
PASN-d
PASN-d
PASN-d
PASN-d

Chapter 10. Control Instructions 10-17

Programming Notes

1. Bits 29 and 31 in the second­
operand address are intended prima­
rily to provide improved
performance for those cases where
the associated action is unneces­
sary.

When bit 29 is set to zero, the
action of the instruction is based
on the assumption that the current
values for PSTD-old, LTD-old, and
AX-old are consistent with PASH-old
and that SSTD-old is consistent
with SASH-old. When this is not
the case, bit 29 should be set to
one.

Bit 31, when one, eliminates the
SASH-authorization test. The
program may be able to determine in
certain cases that the SASH is
authorized, either because of prior
use or because the AX being loaded
is authorized to access all address
spaces.

2. The SASH-translation and SASH­
authorization steps are not
performed when SASH-d is equal to
PASH-d. This is consistent with
the action in SET SECONDARY ASN to
current primary (SSAR-cp), which
does not perform the translation or
ASH authorization.

3. See the figure "Summary of Abbrevi­
ations for LOAD ADDRESS SPACE
PARAMETERS" for a listing of abbre­
viations used in this instruction
description.

10-18 System/370 Principles of Operation

Abbreviation for
Control-
Register Previous Subsequent

Humber.Bit Contents Contents

1.0-31 PSTD-old PSTD-new
3.0-15 PKM-old PKM-new
3.16-31 SASH-old SASH-new
4.0-15 AX-old AX-new
4.16-31 PASH-old PASN-new
5.0-31 LTD-old LTD-new
7.0-31 SSTD-old SSTD-new

First-Operand
Bit Positions Abbreviation

0-15 PKM-d
16-31 SASN-d
32-47 AX-d
48-63 PASN-d

Abbreviation Used for
the Field When Accessed

as Part of
Field in ASN-
Second-Table PASH SASN

Entry Translation Translation

8-29 - ATO-s
32-47 AX-p -
48-59 - ATL-s
64-95 STD-p STD-s
96-127 LTD-p _1

Ex~lanation:

- The field i s not used in this
case.

1 Although the field is not used,
bits 97-103 are tested for zeros.

Summary of Abbreviations for LOAD
ADDRESS SPACE PARAMETERS

Fetch op-1 doubleword

PASN-d = PASN-old
AND

Op-2-addr bit 29 = 0

Yes

PSTD-old -~ PSTD-tmp
LTD-old -~ LTD-tmp

AX-old -~ AX-tmp

I
1

Yes I
S - =

No

- I

SASN-d = SASN-old
AND

Op-2-addr bit 29 = 0 No
AND ~------~

Op-2-addr bit 31 = 1

Yes

-it
No

IASN available~I--------~)11 -~ Cond Codel

I Yes
-it

Either old or new
space-switch-event-
control bit = 1

! No
-it

STD-p -~ PSTD-tmp
lTD-p -~ LTD-tmp

AX-p -~ AX-tmp

I

'"

Yes
~----~13 -~ Cond Codel

No
IASN availablel~--------~12 -~ Cond COdel

I Yes
-it

PSTD-tmp-~ SSTD-tmp ISSTD-Old -~ SSTD-tmpl

I
-it

'"
IOP-2-addr 1\

No
bit 30 =

I I Yes
-it -it

IAX-d -~ Ax-newl AX-tmp -~ AX-new

I
~

PSTD-tmp -~ PSTD-new

~ Op-2-addr bi t 31 = 0 I
I Yes
-it

'" Yes
IAuthorizedl

No

PKM-d -~ PKM-new
LTD-tmp -~ LTD-new ~------~ SASN-d -~ SASN-new

SSTD-tmp ~ SSTD-new PASN-d -~ PASN-new

Execution of LOAD ADDRESS SPACE PARAMETERS

~12 -~ Cond cOdel

~I 0 -~ Cond cOdel

Chapter 10. Control Instructions 10-19

LOAD CONTROL

o 8 12 16 20 31

The sat of control registers starting
with control register Rt and ending with
control register R3 is loaded from the
locations designated by the second­
operand address.

The storage area from which the contents
of the control registers are obtained
starts at the location designated by the
second-operand address and continues
through as many storage words as the
number of control registers specified.
The control registers are loaded in
ascending order of their register
numbers, starting with control register
Rl and continuing up to and including
control register R3 , with control regis­
ter 0 following control register 15.
The second operand remains unchanged.

Special Conditions

The second operand must be designated on
a word boundary; otherwise, a specifica­
tion exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (fetch, operand 2)
Privileged operation
Specification

Programming Notes

remains

1. To ensure that existing programs
operate correctly if and when new
facilities using additional
control-register positions are
defined, only zeros should be load­
ed in unassigned control-register
positions.

2. Loading of control registers on
some models may require a signif­
icant amount of time. This is
particularly true for changes in
significant parameters.

For example, the TLB may be cleared
of entries as a result of changing
the translation parameters in
control register 0 or as a result
of changing or enabling the
program-event-recording parameters
in control registers 9-11. Where

10-20 System/370 Principles of Operation

possible, the program should avoid
unnecessary loading of control
registers. In loading control
registers 9-11, most models attempt
to optimize for the case when the
bits of control register 9 are
zeros.

As another example, the translation
format, bits 8-12 of control regis­
ter 0, is initialized to all zeros
by initial CPU reset. An all-zero
value is an invalid translation
format, and, on some models,
results in purging the TLB even
though OAT may be off. Thus, the
program should avoid loading inval­
id values for this field.

LOAD PSW

LPSW [S]

'82'

o 8 16 20

The current PSW is replaced
contents of the doubleword
location designated by the
operand address.

31

by the
at the
second-

Bits 8-15 of
ignored.

the instruction are

If the new PSW specifies the BC mode,
information in bit positions 16-33 of
the new PSW is not retained as the PSW
is loaded. When the PSW is subsequently
stored, these bit positions contain the
new interruption code and the
instruction-length code.

A serialization and checkpoint-synchron­
ization function is performed before or
after the operand is fetched and again
after the operation is completed.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

The value which is to be loaded by the
instruction is not checked for validity
before it is loaded. However, imme­
diately after loading, a specification
exception is recognized and a program
interruption occurs when any of the
following is true for the newly loaded
PSW:

• The EC mode is specified
12 is one) in a CPU that
have the translation
installed.

(PSW bit
does not
facility

• Bit position 16 of an EC-mode PSW
is one, and DAS is not installed.

• A one is introduced into an unas­
signed bit position of an EC-mode
PSW (that is, any of bit positions
0, 2-4, 17, or 24-39).

In these cases, the operation is com­
pleted, and the resulting instruction­
length code is zero.

The test for a specification exception
after the PSW is loaded is described in
the section "Early Exception Recogni­
tion" in Chapter 6, Interruptions." It
may be considered as occurring early in
the process of preparing to execute the
subsequent instruction.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code: The code is set as
specified in the new PSW loaded.

Program Exceptions:

Access (fetch, operand 2)
Privileged operation
Specification

LOAD REAL ADDRESS

LRA [RXJ

'B1'

o 8 12 16 20 31

The real address corresponding to the
second-operand virtual address is placed
in general register Rt •

The virtual address specified by the X2,
B2 , and D2 fields is translated by means
of the dynamic-address-translation
facility, regardless of whether the
current PSW specifies EC or BC mode, and
regardless of whether DAT is on or off.

When DAS is not installed, the trans­
lation is performed by using the current
contents of control registers 0 and 1.
When DAS is installed, the translation
is performed by using the current trans­
lation format in control register 0 and
the segment-table designation in either
control register 1 or 7. Control regis­
ter 1 is used if the current PSW
specifies BC mode or specifies EC mode
with bit 16 set to zero. Control regis­
ter 7 is used if the current PSW
specifies EC mode with bit 16 set to
one.

The translation is performed without the
use of the translation-lookaside buffer
(TLB). Sufficient zeros are appended on
the left of the resultant real address

to produce a 32-bit
then placed in general
translated address is
boundary alignment or
protection exceptions.

result, which is
register R t • The
not inspected for
for addressing or

Condition code 0 is set when translation
can be completed, that is, when the
entry in each table lies within the
specified table length and its I bit is
zero.

When the I bit in the segment-table
entry is one, condition code 1 is set,
and the real address of the segment­
table entry is placed in general regis­
ter Rt • When the I bit in the page­
table entry is one, condition code 2 is
set, and the real address of the page­
table entry is placed in general
register R t • When either the segment­
table entry or the page-table entry;s
outside the table, condition code 3 is
set, and general register R t contains
the real address of the entry that would
have been fetched if the length
violation had not occurred. In all
these cases, sufficient zeros are
appended on the left of the resultant
real address to produce a 32-bit result,
and the 32-bit result is placed in the
register.

Special Conditions

A translation-specification exception is
recognized when bits 8-12 of control
register 0 contain an invalid code, or
the segment-table entry or page-table
entry has the I bit with a value of zero
and has a format error.

The operation is suppressed on all
addressing exceptions.

Resulting Condition Code:

o Translation available
1 Segment-table entry invalid (1

bit is one)
2 Page-table entry invalid (1 bit

is one)
3 Segment- or page-table length

exceeded

Program Exceptions:

Addressing (segment-table entry or
page-table entry)

Operation (if the translation
facility is not installed)

Privileged operation
Translation specification

Programming Note

Caution must be exercised in the use of
LOAD REAL ADDRESS in a multiprocessing

Chapter 10. Control Instructions 10-21

configuration. Since INVALIDATE PAGE
TABLE ENTRY may set the I bit in storage
to one before causing the corresponding
entries in TLBs of other CPUs to be
cleared, the simultaneous execution of
LOAD REAL ADDRESS on this CPU and INVAL­
IDATE PAGE TABLE ENTRY on another CPU
may produce inconsistent results.
Because LOAD REAL ADDRESS accesses the
tables in storage, the page-table entry
may appear to be invalid (condition code
2) even though the corresponding TLB
entry has not yet been cleared, and the
TLB entry may remain in the TLB until
the completion of INVALIDATE PAGE TABLE
ENTRY on the other CPU. There is no
guaranteed limit to the number of
instructions which may occur between the
completion of LOAD REAL ADDRESS and the
TLB being cleared of the entry.

MOVE TO PRIMARY

[SS]

• DA • I R, I R, Is, I ~, s, I ~;]
o 8 12 16 20 32 36 47

MOVE TO SECONDARY

MVCS DI (R I ,B I),D:z(B 2),R 3 [SS]

'DB' I RI I R3 I B I I ~, I B2 I ~;]
0 8 12 16 20 32 36 47

The first operand is replaced by the
second operand. One operand is in the
primary address space, and the other is
in the secondary address space. The
accesses to the operand in the primary
space are performed by using the PSW
key; the accesses to the operand in the
secondary space are performed by using
the key specified by the third operand.

The addresses of the first and second
operands are virtual, one operand
address being translated by means of the
primary segment-table designation and
the other by means of the secondary
segment-table designation. Operand­
address translation is performed by
ignoring the state of the address­
space-control bit in the current PSW.

For MOVE TO PRIMARY, movement is to the
primary space from the secondary space.
The first-operand address is translated
by using the primary segment table, and
the second-operand address is translated
by using the secondary segment table.

10-22 System/370 Principles of Operation

For MOVE TO SECONDARY, movement is to
the secondary space from the primary
space. The first-operand address is
translated by using the secondary
segment table, and the second-operand
address is translated by using the
primary segment table.

Bit positions 24-27 of general register
R3 are used as the secondary-space
access key. Bit positions 0-23 and
28-31 of the register are ignored.

The contents of general register R t are
a 32-bit unsigned value called the true
length.

The contents of the general registers
just described are as follows:

True Length

o 31

R3 1////////////////////////IKey 1////1

o 24 28 31

The first and second operands are the
same length, called the effective
length. The effective length is equal
to the true length, or 256, whichever is
less. Access exceptions for the first
and second operands are recognized only
for that portion of the operand within
the effective length. When the effec­
tive length is zero, no access
exceptions are recognized for the first
and second operands, and no movement
takes place.

Each storage operand is processed left
to right. The storage-operand­
consistency rules are the same as for
MOVE (MVC), except that when the oper­
ands overlap in real storage, the use of
the common real-storage locations is not
necessarily recognized.

As part of the execution of the instruc­
tion, the value of the true length is
used to set the condition code. If the
true length is 256 or less, including
zero, the true length and effective
length are equal, and condition code 0
is set. If the true length is greater
than 256, the effective length is 256,
and condition code 3 is set.

For both MOVE TO PRIMARY and MOVE TO
SECONDARY, a serialization and check­
point-synchronization function is
performed before the operation begins
and again after the operation is
completed.

Special Conditions

Since the secondary space is accessed,
the operation is performed only when the
secondary-space control, bit 5 of
control register 0, is one and OAT is
on. When either the secondary-space
control is zero or OAT is off, a
special-operation exception is recog­
nized. The special-operation exception
is recognized in both the problem and
supervisor states.

In the problem state, the operation is
performed only if the secondary-space
access key is valid, that is, if the
corresponding PSW-key-mask bit in
control register 3 is one. Otherwise, a
privileged-operation exception is recog­
nized. In the supervisor state, any
value for the secondary-space access key
is valid.

The priority of the recognition of
exceptions and condition codes is shown
1n the figure "Priority of Execution:
MOVE TO PRIMARY and MOVE TO SECONDARY."

Resulting Condition Code:

o True length less than or equal
to 256

1
2
3 True length greater than 256

Program Exceptions:

Access (fetch, primary virtual ad­
dress, operand 2, MVCS; fetch,
secondary virtual address, op­
erand 2, MVCPi store, secondary
virtual address, operand 1,
MVCSj store, primary virtual
address, operand 1, MVCP)

Operation (if the dual-address-
space facility is not
installed)

Privileged operation (selected
PSW-key-mask bit is zero in the
problem state)

Special operation

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
and third instruction half­
words.

7.B.1 Operation exception if the
dual-address-space facility is
not installed.

7.B.2 Special-operation exception due
to the secondary-space control,
bit 5 of control register 0,
being zero or to OAT being off.

8. Privileged-operation exception
due to selected PSW-key-mask
bit being zero in the problem
state.

9.

10.

Completion due to length zero.

Access exceptions for operands.

Priority of Execution: MOVE TO PRIMARY
and MOVE TO SECONDARY

Programming Notes

1. MOVE TO PRIMARY and MOVE TO SECOND­
ARY can be used in a loop to move a
variable number of bytes of any
length. See the programming note
under MOVE WITH KEY.

2. MOVE TO PRIMARY and MOVE TO SECOND­
ARY should be used only when move­
ment is between different address
spaces. The performance of these
instructions on most models may be
significantly slower than MOVE WITH
KEY, MOVE (MVC), or MOVE LONG. In
addition, the definition of over­
lapping operands for MOVE TO
PRIMARY and MOVE TO SECONDARY is
not compatible with the more
precise definitions for MOVE (MVC),
MOVE WITH KEY, or MOVE LONG.

Chapter 10. Control Instructions 10-23

MOVE WITH KEY

MVCK [55]

'D9' I R, I R, I 8, I ~, 8, ~:J
o 8 12 16 20 32 36 47

The first operand is replaced by the
second operand. The fetch accesses to
the second-operand location are
performed by using the key specified in
the third operand, and the store
accesses to the first-operand location
are performed by using the PSW key.

Bit positions 24-27 of general register
R3 are used as the source access key.
Bit positions 0-23 and 28-31 of the
register are ignored.

The contents of general register R, are
a 32-bit unsigned value called the true
length.

The contents of the general registers
just described are as follows:

True Length

o 31

R3 1////////////////////////IKey 1////1
o 24 28 31

The first and second operands are the
same length, called the effective
length. The effective length is equal
to the true length, or 256, whichever is
less. Access exceptions for the first
and second operands are recognized only
for that portion of the operand within
the effective length. When the effec­
tive length is zero, no access
exceptions are recognized for the first
and second operands, and no movement
takes place.

Each storage operand is processed left
to right. When the storage operands
overlap, the result is obtained as if
the operands were processed one byte at
a time and each result byte were stored
immediately after the necessary operand
byte was fetched. The storage-operand­
consistency rules are the same as for
the MOVE (MVC) instruction.

As part of the execution of the instruc­
tion, the value of the true length is
used to set the condition code. If the
true length is 256 or less, including
zero, the true length and effective

10-24 5ystem/370 Principles of Operation

length are equal, and condition code 0
is set. If the true length is greater
than 256, the effective length is 256,
and condition code 3 is set.

Special Conditions

In the problem state, the operation is
performed only if the source access key
is valid, that is, if the corresponding
P5W-key-mask bit in control register 3
is one. Otherwise, a privileged­
operation exception is recognized. In
the supervisor state, any value for the
source access key is valid.

The priority of the recognition of
exceptions and condition codes is shown
in the figure "Priority of Execution:
MOVE WITH KEY Instruction."

o
1
2
3

True length less than or equal
to 256

True length greater than 256

Program Exceptions:

Access (fetch, operand 2; store,
operand 1)

Privileged operation (selected
PSW-key-mask bit is zero in the
problem state)

Operation (if the dual-address-
space facility is not
installed)

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
and third instruction half­
words.

7.B

8.

Operation exception if the
dual-address-space facility is
not installed.

Privileged-operation exception
due to selected PSW-key-mask
bit being zero in the problem
state.

9. Completion due to length zero.

10. Access exceptions for operands.

Priority of Execution: MOVE WITH KEY

Programming Hotes

1. MOVE WITH KEY can be used in a loop
to move a variable number of bytes
of any length, as follows:

lOOP

EHD

LA
MVCK
BC
AR
AR
SR
B

RW,256
D1(R1,B1),D2(B2),R3
8,EHD
B 1 ,RW
B2 ,RW
R1,RW
LOOP

2. The performance of MOVE WITH KEY on
most models may be significantly
slower than that of the MOVE (MVC)
and MOVE LOHG instructions. There­
fore, MOVE WITH KEY should not be
used if the key of the source and
the target are the same.

PROGRAM CAll

PC [5]

'B218'

o 16 20 31

A two-level lookup is performed to
locate an entry-table entry (ETE). The
ETE contains an authorization-key mask;
an ASH; an entry parameter, which is
loaded into general register 4; and
information to update the PSW-key mask
in control register 3 and to replace the
problem-state bit and instruction
address in the PSW. The original
contents of the control-register and the
PSW fields are saved in general regis­
ters 3 and 14.

The ETE also causes a space-switching
operation to occur if it specifies a
nonzero ASH. When the ETE specifies a
zero ASH, the operation is called
PROGRAM CALL to current primary (PC-cp);
when the ETE specifies a nonzero ASH,
the operation is called PROGRAM CALL
with space switching (PC-ss). When
space switching is specified, the new
PASH is loaded into control register 4
from the ETE and is used in a two-level
lookup to locate an ASH-second-table
entry (ASTE). From this ASTE, a new
PSTD, AX, and LTD are loaded into
control registers 1, 4, and 5, respec­
tively. Whether or not space switching
is specified, the previous PASH and PSTD
are placed in the SASH and SSTD, respec­
tively, and the previous PASN is saved
in general register 3.

PROGRAM CALL PC-Humber Translation

The second-operand address is not used
to address data; instead, the rightmost
20 bits of the address are used as a PC
number and have the following format:

Second-Operand Address

r------PC Humber------~

1////////////1 LX EX

o 12 24 31

Linkage Index (LX): Bits 12-23 of the
second-operand address are the linkage
index and are used to select an entry
from the linkage table designated by the
linkage-table designation in control
register 5.

Entry Index (EX): Bits 24-31 of the
second-operand address are the entry
index and are used to select an entry
from the entry table designated by the
linkage-table entry.

Bits 0-11 of the second-operand address
are ignored.

The linkage-table and entry-table lookup
process is depicted in part 1 of the
figure "Execution of PROGRAM CALL." The
detailed definition for this table­
lookup process is in the section
"PC-Humber Translation" in Chapter 5,
"Program Execution." The entry-table
entry has the following format:

AKM ASH I 0-0 1 IA 1 P I
0 16 32 40 63

PARM EKM 1/////////1
64 96 112 127

LTE bits 1-7 and ETE bits 32-39 must be
zeros; otherwise, a PC-translation­
specification exception is recognized.

After the entry-table entry has been
fetched, if the current PSW specifies
the problem state, the current PSW-key
mask in control register 3 is tested
against the AKM field in the entry-table
entry to determine whether the program
is authorized to access this entry. The
AKM and PSW-key mask are AHDed, and if
the result is zero, a privileged­
operation exception is recognized. When
PROGRAM CALL is executed in the supervi­
sor state, the AKM field is ignored.

If the result of the AHD of the AKM and
the PSW-key mask is not zero, or if the
CPU is in the supervisor state, the
execution of the instruction continues.

Chapter 10. Control Instructions 10-25

The PSW-key mask, bits 0-15 of control
register 3, is placed in bit positions
0-15 of general register 3, and the
current PASH, bits 16-31 of control
register 4, is placed in bit positions
16-31 of general register 3.

The current PSTD, bits 0-31 of control
register 1, is placed in control regis­
ter 7 to become the current SSTD.

The current PASH, bits 16-31 of control
register 4, is placed in bit positions
16-31 of control register 3 to become
the current SASH.

Bits 40-62 of the current PSW (the
updated instruction address) are placed
in bit positions 8-30 of general regis­
ter 14. Bit 15 of the PSW (the
problem-state bit) is placed in bit
position 31 of general register 14.
Bits 0-7 of general register 14 are set
to zeros.

Bits 40-62 of the ETE, with a rightmost
zero appended, are placed in PSW bit
positions 40-63 (the instruction
address). Bit 63 of the ETE is placed
in PSW bit position 15 (the problem­
state bit).

Bits 64-95 of the ETE (the entry parame­
ter) are loaded into general register 4.

Bits 96-111 of the ETE (the EKM) are
ORed with the PSW-key mask, bits 0-15 of
control register 3, and the result
replaces the PSW-key mask in control
register 3.

PROGRAM CALL to Current Primary (PC-cp)

If bits 16-31 of the ETE (the ASH) are
zeros, a PROGRAM CALL to current primary
(PC-cp) is specified, and the operation
is completed after performing those
actions as described above.

The PC-cp operation is depicted in parts
1 and 2 of the figure "Execution of
PROGRAM CALL."

PROGRAM CALL with Space Switching
(PC-ss) ----

If the ASH in the ETE is nonzero, a
PROGRAM CAll with space switching
(PC-ss) instruction is specified, and
the ASH is translated by means of a
two-level table lookup.

The PC-ss operation is depicted in parts
1, 2 and 3 of the figure "Execution of
PROGRAM CAll." The PC-ss operation is
completed as follows:

10-26 System/370 Principles of Operation

Bits 16-25 of the ETE are used as a
10-bit AFX to index into the ASH first
table, and bits 26-31 are used as a
six-bit ASX to index into the ASH second
table specified by the AFX. The ASH
table-lookup process is described in the
section "ASH Translation" in Chapter 3,
"Storage." The exceptions associated
with ASH translation are collectively
called ASH-translation exceptions.
These exceptions and their priority are
described in Chapter 6, "Interruptions."

Bits 16-31 of the entry-table entry are
placed in bit positions 16-31 of control
register 4 as the new PASH.

Bits 64-95 of the ASH-second-table entry
(the STD) are loaded into control regis­
ter 1 as the new PSTD.

Bits 32-47 of the ASH-second-table entry
(the AX) are loaded into bit positions
0-15 of control register 4 as the new
authorization index.

Bits 96-127 of the ASH-second-table
entry (the LTD) are loaded into control
register 5 as the new linkage-table
designation.

For both the PC-cp and PC-ss operations,
a serialization and checkpoint-synch­
ronization function is performed before
the operation begins and again after the
operation is completed.

Special Conditions

The instruction can be executed only
when the CPU is in primary-space mode
and the subsystem-linkage control, bit 0
of control register 5, is one. If the
CPU is in real mode or secondary-space
mode, or if the subsystem-linkage
control is zero, a special-operation
exception is recognized. In addition,
the PC-ss instruction can be executed
only when the ASH-translation control,
bit 12 of control register 14, is one.
If PC-ss is attempted with the ASH­
translation control zero, a special­
operation exception is recognized. The
special-operation exception is recog­
nized in both the problem and supervisor
states.

When, for PC-ss, the space-switch­
event-control bit, bit 31 of control
register 1, is one either before or
after the execution of the instruction,
a space-switch-event program inter­
ruption occurs after the operation is
completed. A space-switch-event program
interruption also occurs after the
completion of a PC-ss operation if a PER
event is reported.

The operation is suppressed on all
addressing exceptions.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
PROGRAM CALL."

Condition Code:
unchanged.

Program Exceptions:

The code remains

Addressing (linkage-table entry or
entry-table entry)

ASN translation (PC-ss only)

EX translation
LX translation
Operation (if the dual-address-

space facility is not
installed)

pc-translation specification
Privileged operation (AND of AKM

and PSW-key mask is zero in the
problem state)

Space-switch event (PC-ss only)
Special operation
Trace

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B.1 Operation exception if the dual-address-space facility is not
installed.

7.B.2 Special-operation exception due to OAT being off, the CPU
being in secondary-space mode, or the subsystem-linkage­
control bit in control register 5 being zero.

8.A Trace exceptions.

8.B.1 LX-translation exception due to linkage-table entry being
outside table.

8.B.2 Addressing exception for access to linkage-table entry.

8.B.3 LX-translation exception due to I bit (bit 0) in linkage-table
entry being one.

8.B.4 PC-translation-specification exception due to invalid ones
(bits 1-7) in linkage-table entry.

8.B.5 EX-translation exception due to entry-table entry being out­
side table.

8.B.6 Addressing exception for access to entry-table entry.

8.B.7 PC-translation-specification exception due to invalid ones
(bits 32-39) in entry-table entry.

8.B.8 Privileged-operation exception due to a zero result from
ANDing PSW-key mask and AKM in the problem state.

8.B.9 Special-operation exception due to the ASN-translation con­
trol, bit 12 of control register 14, being zero (PC-ss only).

8.B.10 ASN-translation exceptions (PC-ss only).

9. Space-switch event (PC-ss only).

Priority of Execution: PROGRAM CALL

Chapter 10. Control Instructions 10-27

CR5

Linkage Table
'---~ +

~

R I I 0 I ETO IETl

(x64)

1
Entry Table

L...--~

R AKM

R: Address is real

PROGRAM CAll Instruction

'B218'

I
'"

IA

Operand-2
Address

p PARM

Execution of PROGRAM CALL (Part 1 of 3): PC-Number Translation

10-28 System/370 Principles of Operation

////////

Entry-Table Entry

~Priv op
~"';f zero in
~ problem state

CR3 ~------~------~
beforel~_p_KrM __ ~_S_A_S_H_~

I
.J,

eE-E -------e

I I
.J, .J,

IA P PARM

GR 4 r-----------.
afterl PARM

CR4
before

CRI ~--------------~
before~I ______ p_S~T~D ______ ~

CR7 ~--------------~
after~I ______ s_S_T_D ______ ~

PSW [/
before /~~ __ ~ __ ~ _____ I~A __ ~O~

1'"""1 ------------.

.J,
CR 3--------r---------.
afterl PKM SASH

.J,

GR3 ~-----~~-----~
afterl PKM PASH

o
I
.J, .J,

GR14 ~----r---------~~
after~I __ O~ _____ I_A ____ ~I~pl

'" I Yes E]I--H_o_--'I
'" '" PC-cp PC-55

Instruction ASH trans-
complete lation

Execution of PROGRAM CALL (Part 2 of 3): PC-cp and PC-55

Chapter 10. Control Instructions 10-29

EKM 1////////1

~ ASH First Table

~ L t--r----r-----r
R I AS TO o

(x16)

ASH Second Table

R I I 0 I ATO J 0 I AX 1 ATL 101 STO IvJ 0 I LTD ILTL
I I

! ~
I
-l-

CRI CR4 I afterl PSTO I afterl AX PASH

I

CR5 ~---------------
after I L TO

R: Address is real

Execution of PROGRAM CALL (Part 3 of 3): ASH Translation for PC-ss

10-30 System/370 Principles of Operation

PROGRAM TRANSFER

PT [RREl

'B228'

o 16 24 28 31

The contents of general register Rt are
used as the new values for the PSW-key
mask, the PASN, and the SASN. The
contents of general register R2 are used
as the new values for the problem-state
bit and instruction address in the
current PSW.

Bits 16-23
ignored.

of the

General registers R t

following format:

R t PSW-Key Mask

o

instruction are

and R2 have the

ASN

16 31

R2 1000000001 Instruction Address Ipi
o 8 31

When the contents of bit positions 16-31
of general register Rt are equal to the
current PASN, the operation is called
PROGRAM TRANSFER to current primary
(PT-cp); when the fields are not equal,
the operation is called PROGRAM TRANSFER
with space switching (PT-ss).

The contents of general register R2 are
used to update the problem-state bit and
the instruction address of the current
PSW. Bit 31 of general register R2 is
placed in the problem-state bit
position, PSW bit position 15, unless
the operation would cause PSW bit 15 to
change from one to zero (problem state
to supervisor state). If such a change
would occur, a privileged-operation
exception is recognized. Bits 8-30 of
general register R2 replace the instruc­
tion address, bits 40-62, of the current
PSW. Bit 63 of the PSW is set to zero.

Bits 0-15 of general register R t are
ANDed with the PSW-key mask, bits 0-15
of control register 3, and the result
replaces the contents of the PSW-key
mask.

In both the PT-ss and PT-cp
instructions, the ASN specified by bits
16-31 of general register R t replaces
the SASN in control register 3, and the
SSTD in control register 7 is replaced
by the final contents of control regis­
ter 1.

PROGRAM TRANSFER to Current Primary
(PT-cp)

The PROGRAM TRANSFER to current primary
(PT-cp) operation is depicted in part 1
of the figure "Execution of PROGRAM
TRANSFER." On a PT-cp operation, the
operation is completed when the common
portion of the PROGRAM TRANSFER opera­
tion, described above, is completed.
The authorization index, PASN, primary
STD, and linkage-table designation are
not changed by PT-cp.

PROGRAM TRANSFER with Space Switching
(PT-ss)

If the ASN in bits 16-31 of general
register Rt is not equal to the current
PASN, a PROGRAM TRANSFER with space
switching (PT-ss) is specified, and the
ASN is translated by means of a two­
level table lookup.

The PT-5s operation is depicted in parts
1 and 2 of the figure "Execution of
PROGRAM TRANSFER." The PT-ss operation
is completed as follows:

For a PT-ss, the contents of bit posi­
tions 16-31 of general register Rt are
used as an ASN, which is translated by
means of a two-level table lookup.

Bits 16-25 of general register R t are a
10-bit AFX which is used to select an
entry from the ASH first table. Bits
26-31 are a six-bit ASX which is used to
select an entry from the ASN second
table. The ASN table-lookup process is
described in the section "ASN Trans­
lation" in Chapter 3, "Storage." The
exceptions associated with ASN trans­
lation are collectively called "ASN­
translation exceptions." These
exceptions and their priority are
described in Chapter 6, "Interruptions."

The authority-table orlgln from the
ASN-second-table entry is used as the
base for a third table lookup. The
current authorization index, bits 0-15
of control register 4, is used, after it
has been checked against the authority­
table length, as the index to locate the
entry in the authority table. The
authority-table lookup is described in
the section "ASN Authorization" in Chap­
ter 3, "Storage."

The PT-ss operation is completed by
placing bits 64-95 of the ASN-second­
table entry in both the PSTD and SSTD,
bit positions 0-31 of control registers
1 and 7, respectively. The contents of
bit positions 32-47 of the ASN-second­
table entry are placed in the authoriza­
tion index, bit positions 0-15 of
control register 4. The contents of bit
positions 96-127 of the ASN-second-table

Chapter 10. Control Instructions 10-31

entry are placed in the LTD, bit posi­
tions 0-31 of control register 5. The
ASH, bits 16-31 of general register Rtl
is placed in the SASH and PASH, bit
positions 16-31 of control registers 3
and 4.

For both the PT-cp and PT-ss operations,
a serialization and checkpoint-synchron­
ization function is performed before the
operation begins and again after the
operation is completed.

Special Conditions

The instruction can be executed only
when the CPU is in primary-space mode
and the subsystem-linkage control, bit 0
of control register 5, is one. If the
CPU is in real mode or secondary-space
mode, or if the subsystem-linkage
control is zero, a special-operation
exception is recognized.

Bit 31 of general register R2 is placed
in the problem-state bit position, PSW
bit position 15, unless the operation
would cause PSW bit 15 to change from
one to zero (problem state to supervisor
state). If such a change would occur, a
privileged-operation exception is recog­
nized.

The instruction is completed only if
bits 0-7 of general register R2 are all
zeros; if not, a specification exception
is recognized.

In addition to the above requirements,
when a PT-ss instruction is specified,

10-32 System/370 Principles of Operation

the ASH-translation control, bit 12 of
control register 14, must be one; other­
wise, a special-operation exception is
recognized.

When, for PT-ss, the space-switch­
event-control bit, bit 31 of control
register 1, is one either before or
after the execution of the instruction,
a space-switch-event program inter­
ruption occurs after the operation is
completed. A space-switch-event program
interruption also occurs after the
completion of a PT-ss operation if a PER
event is reported.

The operation is suppressed on all
addressing exceptions.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
PROGRAM TRAHSFER."

Condition Code:
unchanged.

Program Exceptions:

The code remains

Addressing (authority-table entry,
PT-ss only)

ASH translation (PT-ss only)
Operation (if the dual-address-

space facility is not
installed)

Primary authority (PT-s5 only)
Privileged operation (attempt to

set the supervisor state when
in the problem state)

Space-switch event (PT-ss only)
Special operation
Specification
Trace

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B.l Operation exception if the dual-address-space facility is not
installed.

7.B.2 Special-operation exception due to OAT being off, the CPU
being in secondary-space mode, or the subsystem-linkage­
control bit in control register 5 being zero.

8.A Trace exceptions.

8.B.l Privileged-operation exception due to attempt to set the
supervisor state when in the problem state.

8.B.2 Specification exception due to nonzero value in bits 0-7 of
general register R2 •

8.B.3 Special-operation exception due to the ASN-translation con­
trol, bit 12 of control register 14, being zero (PT-ss only).

8.B.4 ASN-translation exceptions (PT-ss only).

8.B.5 Primary-authority exception due to authority-table entry
being outside table (PT-55 only).

8.B.6 Addressing exception for access to authority-table entry
(PT-ss only).

8.B.7 Primary-authority exception due to P bit in authority-table
entry being zero (PT-ss only).

9. Space-switch event (PT-ss on!y).

Priority of Execution: PROGRAM TRANSFER

Programming Notes

1. The operation of PROGRAM TRANSFER
(PT) is such that it may be used to
restore the CPU to the state saved
by a previous PROGRAM CALL. This
restoration is accomp!ished by
issuing PT 3,14. Though general
registers 3 and 14 are not restored
to their original values, the PASN,
PSW-key mask, problem-state bit,
and instruction address are
restored, and the authorization
index, PSTD, and LTD are made
consistent with the restored PASN.

2. With proper authority, and while
executing in a common area, PROGRAM
TRANSFER may be used to change the
primary address space to any
desired space. The secondary
address space is also changed to be
the same as the new primary address
space.

3. Unlike the RR-format branch in­
structions, a value of zero in the
R2 field for PROGRAM TRANSFER
designates genera! register 0, and
branching occurs.

Chapter 10. Control Instructions 10-33

PROGRAM TRANSFER
Instruction

'B228' 1////IRtIR21

~--------~II ~ __ ~ I I
~ ~

IA

10-34 System/370 Principles of Operation

CR14

(x4) (x16)

PKM ASN

I
oJ, ~ ASH First Table

~ L I---T---T---r--

~--------------------~e--·+-----~

R I AS TO

(xl6)

o
CR4
before

(xl/4)

~ ASH Second Table

~ LI---T-----r---T--,----,.---r---r---~___i
R

oJ,

~
R

I ATO STO

(x4)

Authority Table r----------e I

P S

oJ,
CRl
afterl PSTO

oJ,

CR7
afterl SSTO

~Primary-authority exception if P bit is
zero or if table length is exceeded

R: Address is real

lTl
I

CR4 ~--------r-------~
afterl~ __ A_X __ ~~ __ P_A_S_N~

CR5 ~--------------~
after I l TO

Execution of PROGRAM TRANSFER (Part 2 of 2): PT-ss

Chapter 10. Control Instructions 10-35

PURGE TLB

PTLB [S]

'B20D' 1////////////////1

o 16 31

The translation-lookaside buffer (TLB)
of this CPU is cleared of entries. No
change is made to the contents of
addressable storage or registers.

Bits 16-31
ignored.

of the instruction are

The TLB appears cleared of its original
contents beginning with the fetching of
the next sequential instruction. The
operation is not signaled to any other
CPU.

A serialization function is performed.

Condition Code: The
unchanged.

Program Exceptions:

code remains

Operation (if the translation
facility is not installed)

Privileged operation

READ DIRECT

RDD [SI]

'85'

o 8 16 20 31

The contents of the 12 field are made
available as signal-out timing signals.
A direct-in data byte is accepted from
an external device in the absence of a
hold signal and is placed at the
location designated by the first-operand
address.

When the INVALIDATE PAGE TABLE ENTRY
instruction is not installed, the
first-operand address is a logical
address, and is subject to the normal
access exceptions and to the PER
storage-alteration event.

When the INVALIDATE PAGE TABLE ENTRY
instruction is installed, the first­
operand address is a real address and is
not subject to dynamic address trans­
lation. Addressing, key-control led­
protection, and low-address-protection
exceptions apply. The PER storage­
alteration event does not apply.

The contents of the 12 field are made
available on a set of eight signal-out

10-36 System/370 Principles of Operation

lines as O.S-microsecond to
1.0-microsecond timing signals. These
signal-out lines are also used in the
WRITE DIRECT instruction. On a ninth
line (read out), a O.S-microsecond to
1.O-microsecond timing signal is made
available coincident with these timing
signal~. The read-out line is distinct
from the write-out line in the WRITE
DIRECT instruction. No checking bits
are made available with the eight
instruction bits.

Eight data bits are accepted from a set
of eight direct-in lines when the hold
signal on the hold-in line is absent.
The hold signal is sampled after the
read-out signal has been completed and
should be absent for at least 0.5 micro­
second. No checking bits are accepted
with data signals, but a checking-block
code is generated as the data is placed
in storage. When the hold signal is not
removed, the CPU does not complete the
instruction.

A serialization function is performed
before the signals are made available
and again after the first-operand byte
is placed in storage.

An excessively long instruction
execution may result in omission of
updating of the interval timer.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 1; access
applies only if the INVALIDATE
PAGE TABLE ENTRY instruction is
not installed)

Addressing (operand 1)
Operation (if the direct-control

facility is not installed)
Privileged operation
Protection (store, operand 1; key­

controlled protection and low­
address protection)

RESET REFERENCE BIT

RRB [S]

'B213'

o 16 20 31

The reference bit in the storage key for
the 2K-byte block that is designated by
the second-operand address is set to
zero.

Bits 8-20 of the second-operand address
designate a 2K-byte block in real stor­
age. Bits 0-7 and 21-31 of the address
are ignored.

When the storage-key 4K-byte-block
facility is not installed, all blocks
are double-key 4K-byte blocks, and the
operation proceeds normally.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks, and the
action depends on the setting of the
storage-key-exception-control bit, bit 7
of control register O. If the bit is
zero~ a special-operation exception is
recognized. If the bit is one, the
operation is performed on the single key
for the 4K-byte block.

Because it is a real address, the
address designating the storage block is
not subject to dynamic address trans­
lation. The reference to the storage
key is not subject to a protection
exception.

The values of the remalnlng bits of the
storage key, including the change bit,
are not affected.

The condition code is set to reflect the
state of the reference and change bits
before the reference bit is set to zero.

Special Conditions

When the storage-key 4K-byte-block
facility is installed and the storage­
key exception-control bit (bit 7 of
control register 0) is zero, a special­
operation exception is recognized.

Resulting Condition Code:

0 Reference bit zero; change bit
zero

1 Reference bit zero; change bit
one

2 Reference bit one; change bit
zero

3 Reference bit one; change bit
one

Program Exceptions:

Addressing (operand 2)
Operation (if the translation

facility is not installed)
Privileged operation
Special operation

RESET REFERENCE BIT EXTENDED

RRBE [RRE]

'B22A'

o 16 24 28 31

The reference bits in the storage keys
for the 4K-byte block that is addressed
by the contents of general register R2
are set to zeros. The contents of
general register R t are ignored.

Bits 16-23
ignored.

of the instruction are

The contents of general register R2 are
treated as a 31-bit real address of a
4K-byte block in storage. Bits 1-19 of
the register designate the 4K-byte
block, and bits 0 and 20-31 of the
register are ignored.

When the storage-key 4K-byte-block
facility is not installed~ all blocks
are double-key 4K-byte blocks. The key
for the first 2K-byte block within the
4K-byte block designated by the instruc­
tion is called the low-order key. The
key for the second 2K-byte block is
called the high-order key. The refer­
ence bits of both the low-order and
high-order keys are set to zeros.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks. The refer­
ence bit in the single key is set to
zero.

Because it is a real address, the
address designating the storage block is
not subject to dynamic address trans­
lation. The reference to the storage
key is not subject to a protection
exception.

The remaining
including the
affected.

bits of the storage key,
change bit, are not

The condition code is set to reflect the
state of the reference and change bits
before the reference bit is set to zero.
If the addressed block is a single-key
4K-byte block, the reference and change
bits in the single key are used. If the
block is a double-key 4K-byte block, the
condition code is set as a function of
the OR of the change bits from the low­
order and high-order keys and as a
function of the OR of the reference bits
from the low-order and high-order keys.

Resulting Condition Code:

0 Reference bit zero; change bit
zero

1 Reference bit zero; change bit
one

2 Reference bit one; change bit
zero

3 Reference bit one; change bit
one

Program Exceptions:

Addressing (address specified by
general register R2)

Chapter 10. Control Instructions 10-37

Operation Cif the storage-key­
instruction-extension facility
is not installed)

Privileged operation

SET ADDRESS SPACE CONTROL

SAC [S]

'B219'

o 16 20 31

Bits 20-23 of the second-operand address
are used as a code to set the address­
space-control bit in the PSW. The
second-operand address is not used to
address data; instead, bits 20-23 form
the code. Bits 8-19 and 24-31 of the
second-operand address are ignored.
Bits 20-22 of the second-operand address
must be zeros; otherwise, a specifica­
tion exception is recognized.

The following figure summarizes the
operation of SET ADDRESS SPACE CONTROL:

Second-Operand Address

I////////////////////Icodel////////I

o 20 24 31

0000
0001
All others

Primary space
Secondary space
Invalid

Result in
PSW Bit II

o
1

Unchanged

A serialization and checkpoint-synchron­
ization function is performed before the
operation begins and again after the
operation is completed.

Special Conditions

The operation is performed only when the
secondary-space control, bit 5 of
control register 0, is one and DAT is
on. When either the secondary-space
control is zero or DAT is off, a
special-operation exception is recog­
nized. The special-operation exception
is recognized in both the problem and
supervisor states.

The priority of recognition of program
exceptions for the instruction is shown

10-38 System/370 Principles of Operation

in the figure "Priority of
SET ADDRESS SPACE CONTROL."

Execution:

Condition Code:
unchanged.

The code remains

Program Exceptions:
Operation Cif the dual-address-

space facility is not
installed)

Special operation
Specification

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B.1 Operation exception if the
dual-address-space facility
is not installed.

7.B.2 Special-operation exception
due to DAT being off or the
secondary-space control,

8.

bit 5 of control register 0,
being zero.

Specification exception due to
nonzero value in bits 20-22 of
the second-operand address.

Priority of Execution: SET ADDRESS
SPACE CONTROL

Programming Notes

1. SET ADDRESS SPACE CONTROL is
defined in such a way that the mode
to be set can be placed directly in
the displacement field of the
instruction or can be specified
from the same bit positions of a
general register as saved by INSERT
ADDRESS SPACE CONTROL.

2. Predictable program operation is
ensured in secondary mode only when
the instructions are fetched from
virtual-address locations which
translate to the same real address
by means of both the primary and
secondary segment tables. Thus, a
program should not enter
secondary-space mode if it is not
aware of the virtual-to-real
mapping in both the primary and
secondary spaces.

SET CLOCK

SCK [5]

'8204'

o 16 20 31

The current value of the TOO clock is
replaced by the contents of the double­
word designated by the second-operand
address, and the clock enters the
stopped state.

The doubleword operand replaces the
contents of the clock, as determined by
the resolution of the clock. Only those
bits of the operand are set in the clock
that correspond to the bit positions
which are updated by the clock; the
contents of the remaining rightmost bit
positions of the operand are ignored and
are not preserved in the clock. In some
models, starting at or to the right of
bit position 52, the rightmost bits of
the second operand are ignored, and the
corresponding positions of the clock
which are implemented are set to zeros.

After the clock value is set, the clock
enters the stopped state. The clock
leaves the stopped state to enter the
set state and resume incrementing under
control of the TOD-clock-sync control
(bit 2 of control register 0). When the
bit is zero or the TOD-clock-
synchronization facility is not
installed, the clock enters the set
state at the completion of the instruc­
tion. When the bit is one, the clock
remains in the stopped state either
until the bit is set to zero or until
any other running TOO clock in the
configuration is incremented to a value
of all zeros in bit positions 32-63.

When the TOO clock is shared by another
CPU, the clock remains in the stopped
state under control of the TOD-clock­
sync control bit of the CPU which set
the clock. If, while the clock is
stopped, it is set by another CPU, then
the clock comes under control of the
TOD-clock-sync control bit of the CPU
which last set the clock.

The value of the clock is changed and
the clock is placed in the stopped state
only if the manual TOO-clock control of
any CPU in the configuration is set to
the enable-set position. If the TOD­
clock control is set to the secure
position, the value and the state of the
clock are not changed. The two results
are distinguished by condition codes 0
and 1, respectively.

When the clock is not operational, the
value and state of the clock are not
changed, regardless of the setting of
the TOO-clock control, and condition
code 3 is set.

Special Conditjons

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

Resulting Condjtion Code:

o Clock value set
1 Clock value secure
2
3 Clock in not-operational state

Program Exceptions:

Access (fetch, operand 2)
Privileged operation
Specification

Programming Note

In an installation with more than one
CPU, each CPU may have a separate TOO
clock, or more than one CPU may share a
TOO clock, depending on the model. When
multiple TOO clocks exist, special
procedures are required to synchronize
the clocks. See the section "TOO-Clock
Synchronization" in Chapter 4,
"Control."

SET CLOCK COMPARATOR

SCKC [5]

'8206'

o 16 20 31

The current value of the clock compara­
tor is replaced by the contents of the
doubleword designated by the second­
operand address.

Only those bits of the operand are set
in the clock comparator that correspond
to the bit positions to be compare.d with
the TOO clock; the contents of the
remaining rightmost bit positions of the
operand are ignored and are not
preserved in the clock comparator.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

The operation is suppressed on all
addressing and protection exceptions.

Chapter 10. Control Instructions 10-39

Condition Code: The
unchanged.

Program Exceptions:

code

Access (fetch, operand 2)

remains

Operation (if the CPu-timer and
clock-comparator facility is
not installed)

Privileged operation
Specification

SET cpu TIMER

SPT [S]

'8208'

o 16 20 31

The current value of the CPU tim~r is
replaced by the contents of the double­
word designated by the second-operand
address.

Only those bits of the operand are set
in the CPU timer that correspond to the
bit positions to be updated; the
contents of the remaining rightmost bit
positions of the operand are ignored and
are not preserved in the CPU timer.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (fetch, operand 2)

remains

Operation (if the CPU-timer and
clock-comparator facility is
not installed)

Privileged operation
Specification

SET PREFIX

SPX [S]

'8210'

o 16 20 31

The contents of the prefix register are
replaced by the contents of bit posi-

10-40 System/370 Principles of Operation

tions 8-19 of the word at the location
designated by the second-operand
address. The translation-lookaside
buffer (TL8) of this CPU is cleared of
entries.

After the second operand is fetched,
depending on the model, the prefix value
mayor may not be tested to determine
whether the corresponding 4K-byte block
in absolute storage is available before
the value is used to replace the
contents of the prefix register.

On models which do not test the value,
the instruction is completed after
setting the prefix register. If the
address loaded designates a location
which is not available in the configura­
tion, then, when an instruction or
interruption procedure is attempted that
requires prefixing to be applied to the
storage address, the CPU suspends opera­
tion. Correction of this condition and
allowing processing to be reinitiated
requires that a reset be performed,
either by means of manual intervention
or by receipt of a SIGNAL PROCESSOR
reset order.

On models which do test the value, some
or all of the necessary checks are
performed to ensure that the entire
4K-byte block designated by the prefix
address is available. If the storage
area is not available, an addressing
exception is recognized, and the opera­
tion is suppressed. The check to
determine that the 4K-byte block is
available may involve accessing the
location. This access is not subject to
protection; however, the access may
cause the reference bits to be set to
ones.

If the operation is completed, the new
prefix is used for any interruptions
following the execution of the instruc­
tion and for the execution of subsequent
instructions. The contents of bit posi­
tions 0-7 and 20-31 of the operand are
ignored.

The translation-lookaside buffer (TLB)
is cleared of entries. The TLB appears
cleared of its original contents, begin­
ning with the fetching of the next
sequential instruction.

A serialization function is performed
before or after the operand is fetched
and again after the operation is
completed.

Special Conditions

The operand must be designated on a word
boundary; otherwise, a specification
exception is recognized.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2)
Addressing (new prefix area)
Operation (if the multiprocessing

facility is not installed)
Privileged operation
Specification

SET PSW KEY FROM ADDRESS

SPKA [S]

'B20A'

o 16 20 31

The four-bit PSW key, bits 8-11 of the
current PSW, is replaced by bits 24-27
of the second-operand address.

The second-operand address is not used
to address data; instead, bits 2~-27 of
the address form the new PSW key. Bits
8-23 and 28-31 of the second-operand
address are ignored.

Special Conditions

In the problem state, when DAS is
installed, the execution of the instruc­
tion is subject to control by the PSW­
key mask in control register 3. When
the bit in the PSW-key mask correspond­
ing to the PSW-key value to be set is
one, the instruction is executed
successfully. When the selected bit in
the PSW-key mask is zero, a privileged­
operation exception ;s recognized. When
DAS is not installed, execution of the
instruction in the problem state results
in a privileged-operation exception
regardless of the contents of control
register 3. In the supervisor state,
any value for the PSW key is valid.

Condition Code: The
unchanged.

Program Exceptions:

code remains

Operation (if the PSW-key-handling
facility is not installed)

Privileged operation (executed in
the problem state, and either
DAS is not installed or
selected PSW-key-mask bit is
zero)

Programming ~

1. The format of SET PSW KEY FROM
ADDRESS permits the program to set
the PSW key either from the general
register designated by the B2 field
or from the D2 field in the
instruction itself.

2. When one program requests another
program to access a location desig­
nated by the requesting program,
SET PSW KEY FROM ADDRESS can be
used by the called program to veri­
fy that the requesting program is
authorized to make this access,
provided the storage location of
the called program is not protected
against fetching. The called
program can perform the verifica­
tion by replacing the PSW key with
the requesting-program PSW key
before making the access and subse­
quently restoring the called­
program PSW key to its original
value. Caution must be exercised,
however, in handling any resulting
protection exceptions since such
exceptions may cause the operation
to be terminated. See TEST
PROTECTION and the associated
programming notes for an alterna­
tive approach to the testing of
addresses passed by a calling
program.

SET SECONDARY ASN

SSAR R t [RRE]

'B225'

o 16 24 28 31

The ASH specified in bit positions 16-31
of general register Rt replaces the
secondary ASN in control register 3, and
the segment-table designation corre­
sponding to that ASN replaces the SSTD
in control register 7.

Bits 16-23 and 28-31 of the instruction
are ignored.

The contents of bit positions 16-31 of
general register R t are called the new
ASN. The contents of bit positions 0-15
of the register are ignored.

First the new ASN is compared with the
current PASN. If the new ASN is equal
to the PASN, the operation is called SET
SECONDARY ASN to current primary
(SSAR-cp). If the new ASN is not equal
to the current PASN, the operation is
called SET SECONDARY ASN with space
switching (SSAR-ss). The SSAR-cp and
SSAR-ss operations are depicted in the
figure "Execution of SET SECONDARY ASN."

Chapter 10. Control Instructions 10-41

SET SECONDARY ~ to Current Primary
(SSAR-cp)

The new ASN replaces the SASN, bits
16-31 of control register 3; the PSTD,
bits 0-31 of control register 1,
replaces the SSTD, bits 0-31 of control
register 7; and the operation is
completed.

SET SECONDARY ASN with Space Switching
(SSAR-ss)

The new ASN is translated by means of
the ASH translation tables, and then the
current AX, bits 0-15 of control regis­
ter 4, is used to test whether the
program is authorized to access the
specified ASH.

The new ASN is translated by means of a
two-level table lookup. Bits 0-9 of the
new ASH (bits 16-25 of the register) are
a 10-bit AFX which is used to select an
entry from the ASH first table. Bits
10-15 of the new ASH (bits 26-31 of the
register) are a six-bit ASX which is
used to select an entry from the ASH
second table. The two-level lookup is
described in the section "ASH Trans­
lation" in Chapter 3, "Storage." The
exceptions associated with ASH trans­
lation are collectively called "ASN­
translation exceptions." These
exceptions and their priority are
described in Chapter 6, "Interruptions."

The AST entry obtained as a result of
the second lookup contains the segment­
table designation and the authority­
table origin and length associated with
the ASH. All bit positions in the AST
entry requiring zeros are inspected for
zeros. This includes bits 97-103, even
though the linkage-table-designation
portion of the entry is not used.

The authority-table origin from the ASH
second-table entry is used as a base for
a third table lookup. The current
authorization index, bits 0-15 of

10-42 System/370 Principles of Operation

control register 4, is used, after it
has been checked against the authority­
table length, as the index to locate the
entry in the authority table. The
authority-table lookup is described in
the section "ASN Authorization" in Chap­
ter 3, "Storage."

The new ASH, bits 16-31 of general
register Rt , is placed in the SASH, bit
positions 16-31 of control register 3.
The segment-table designation, bits
64-95 of the AST entry, is placed in the
SSTD, bits 0-31 of control register 7.

For both the SSAR-cp and SSAR-ss oper­
ations, a serialization and checkpoint­
synchronization function is performed
before the operation begins and again
after the operation is completed.

Special Conditions

The operation is performed only when the
ASH-translation control, bit 12 of
control register 14, is one and OAT is
on. When either the ASH-translation­
control bit is zero or OAT is off, a
special-operation exception is recog­
nized. The special-operation exception
is recognized in both the problem and
supervisor states.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
SET SECOHDARY ASH."

Condition Code:
unchanged.

Program Exceptions:

The code remains

Addressing (authority-table entry,
SSAR-ss only)

ASH translation (SSAR-ss only)
Operation (if the dual-address-

space facility is not
installed)

Secondary authority (SSAR-ss only)
Special operation
Trace

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B.1 Operation exception if the dual-address-space facility is not
installed.

7.B.2 Special-operation exception due to OAT being off, or the ASN­
translation control, bit 12 of control register 14, being
zero.

8.A Trace exceptions.

8.B.1 ASH-translation exceptions (SSAR-ss only).

8.B.2 Secondary-authority exception due to authority-table entry
being outside table (SSAR-ss only).

8.B.3 Addressing exception for access to authority-table entry
(SSAR-ss only).

8.B.4 Secondary-authority exception due to S bit in authority­
table entry being zero (SSAR-ss only).

Priority of Execution: SET SECONDARY ASN

Chapter 10. Control Instructions 10-43

ASH '"
SET SECOHDARY ASH

CR14 Instruction

ASH First Table
'" (accessed for
~ SSAR-ss only)

(x4) (x16)

ASH

I
'" ~ L t--r----r-----r ~---------------------~.--+--------

R I AS TO

(xl6)

ASH Second Table

o
CR4
before

I
'"

'" '"
~
'" '" SSAR-cp SSAR-ss

~ (accessed for SSAR-ss only)

~L~~~~~-r---t
R I ATO

(x4)

Authority Table
(accessed for
SSAR-ss only)

STD lTl

CRl
before PSTD

CR3 ~------~~------~
beforel~ __ p_K~M~~~_S_A_S_H __ ~

I R P S
(SSAR-cp only)

'"
(SSAR-ss only)

CR7 ~--------------~
after~I _____ S_S_T_D ______ ~

Secondary-authority exception if S bit is
zero or if table length is exceeded
(SSAR-ss only)

R: Address is real

Execution of SET SECONDARY ASH

10-44 System/370 Principles of Operation

'" '" CR3 ~------~------~
afterl PKM SASH

SET STORAGE KEY

SSK [RR]

'08'

o 8 12 15

The storage key for the 2K-byte block
that is addressed by the contents of
general register R2 is replaced by bits
from general register R t •

Bits 8-20 of general register R2 desig­
nate a 2K-byte block in real storage.
Bits 0-7 and 21-27 of the register are
ignored. Bits 28-31 of the register
must be zeros; otherwise, a specifica­
tion exception is recognized.

When the storage-key 4K-byte-block
facility is not installed, all blocks
are double-key 4K-byte blocks, and the
operation proceeds normally.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks, and the oper­
ation depends on the setting of the
storage-key-exception-control bit, bit 7
of control register o. If the bit is
zero, a special-operation exception is
recognized. If the bit ;s one, the
operation is performed on the single key
for the 4K-byte block.

Because it is a real address, the
address designating the storage block is
not subject to dynamic address trans­
lation. The reference to the storage
key is not subject to a protection
exception.

The new seven-bit storage-key value is
obtained from bit positions 24-30 of
general register Rt • The contents of
bit positions 0-23 and 31 of the regis­
ter are ignored. When the translation
facility is not installed, bits 29 and
30 are ignored.

A serialization and checkpoint­
synchronization function is performed
before the operation begins and again
after the operation is completed.

Special Conditions

Bits 28-31 of general register R2 must
be zeros; otherwise, a specification
exception is recognized.

When the storage-key 4K-byte-block
facility is installed and the storage­
key-exception-control bit (bit 7 of
control register 0) is zero, a special­
operation exception is recognized.

Condition ~:
unchanged.

Program Exceptions:

The

Addressing (address
general register

Privileged operation
Special operation
Specification

SET STORAGE KEY EXTENDED

code

[RRE]

'B22B'

o 16 24

remains

by

28 31

The storage keys for the 4K-byte block
that is addressed by the contents of
general register R2 are replaced by bits
from general register Rt •

Bits 16-23
ignored.

of the instruction are

The contents of general register R2 are
treated as a 31-bit real address ofa
4K-byte block in storage. Bits 1-19 of
the register designate the 4K-byte
block, and bits 0 and 20-31 of the
register are ignored.

When the storage-key 4K-byte-block
facility is not installed, all blocks
are double-key 4K-byte blocks. The key
for the first 2K-byte block within the
4K-byte block designated by the instruc­
tion is called the low-order key. The
key for the second 2K-byte block is
called the high-order key. Both the
low-order key and the high-order key are
replaced. The two keys are not neces­
sarily updated concurrently.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks, and the
single key is replaced.

Because it is a real address, the
address designating the storage block is
not subject to dynamic address trans­
lation. The reference to the storage
key is not subject to a protection
exception.

The new seven-bit storage-key value is
obtained from bit positions 24-30 of
general register R t • The contents of
bit positions 0-23 and 31 of the regis­
ter are ignored.

A serialization and checkpoint­
synchronization function is performed
before the operation begins and again
after the operation is completed.

Chapter 10. Control Instructions 10-45

Condition Code:
unchanged.

Program Exceptions:

The code remains

Addressing (address specified by
general register R2)

Operation (if the storage-key­
instruction-extension facility
is not installed)

Privileged operation

SET SYSTEM MASK

[S]

'80'

o 8 16 20 31

Bits 0-7 of the current PSW are replaced
by the byte at the location designated
by the second-operand address.

Bits 8-15 of
ignored.

Special Conditions

the instruction are

When the translation facility is
installed, the execution of the instruc­
tion is subject to the SSM-suppression­
control bit, bit 1 of control register
o. When the bit is zero, the instruc­
tion is executed normally. When the bit
is one and the CPU is in the supervisor
state, a special-operation exception is
recognized.

The value to be loaded into the PSW is
not checked for validity before loading.
However, immediately after loading, a
specification exception is recognized,
and a program interruption occurs, if
the CPU is in EC mode and the contents
of bit positions 0 and 2-4 of the PSW
are not all zeros. In this case, the
instruction is completed, and the
instruction-length code is set to 2.
The specification exception, which is
listed as a program exception for this
instruction, is described in the section
"Early Exception Recognition" in Chapter
6, Interruptions." This exception may
be considered as caused by execution of
this instruction or as occurring early
in the process of preparing to execute
the subsequent instruction.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code:
unchanged.

The code remains

10-46 System/370 Principles of Operation

Program Exceptions:

Access (fetch, operand 2)
Privileged operation
Special operation
Specification

Programming Note

SET SYSTEM MASK is frequently used in
the BC mode to disable or enable the CPU
for I/O or external interruptions.
Hence, suppressing the execution of SET
SYSTEM MASK by means of the SSM­
suppression-control bit, bit 1 of
control register 0, may be useful when
converting a program written for a
BC-mode PSW to operate with an EC-mode
PSW.

SIGNAL PROCESSOR

SIGP [RS]

'AE'

o 8 12 16 20 31

An eight-bit order code is transmitted
to the CPU designated by the CPU address
contained in the third operand. The
result is indicated by the condition
code and may be detailed by status
assembled in the first-operand location.

The second-operand address is not used
to address data; instead, bits 24-31 of
the address contain the eight-bit order
code. Bits 8-23 of the second-operand
address are ignored. The order code
specifies the function to be performed
by the addressed CPU. The assignment
and definition of order codes appear in
the section "CPU Signaling and Response"
in Chapter 4, "Control."

The 16-bit binary number contained in
bit positions 16-31 of general r~9ister
R3 forms the CPU address. Bits 0-15 of
the register are ignored.

The operands just described have the
following formats:

General register designated by Rt :

Status

o 31

General register designated by R3:

1////////////////1 CPU Address

o 16 31

Second-operand address:

////////////////////////

o 24 31

A serialization function is performed
before the operation begins and again
after the operation is completed.

When the order code is accepted and no
nonzero status is returned, condition
code 0 is set. When status information
is generated by this CPU or returned by
the addressed CPU, the status is placed
in general register Rt , and condition
code 1 is set.

When the access path to the addressed
CPU is busy, or the addressed CPU is
operational but in a state where it
cannot respond to the order code, condi­
tion code 2 is set.

When the addressed CPU is not opera­
tional (that is, it is not provided in
the i nstallati on, it is not in the
configuration, it is in any of certain
customer-engineer test modes, or its
power is off), condition code 3 is set.

Resulting Condition Code:

o Order code accepted
1 Status stored
2 Busy
3 Not operational

Program Exceptions:

Operation (if the multiprocessing
facility is not installed)

Privileged operation

Programming Notes

1. A more detailed discussion of the
condition-code settings for SIGNAL
PROCESSOR is contained in the
section "CPU Signaling and
Response" in Chapter 4, "Control."

2. To ensure that presently written
programs wi!! be executed properly
when new faci!ities using addi­
tional bits are installed, only
zeros should appear in the unused

bit positions of the second-operand
address and in bit positions 0-15
of general register R3 •

3. Certain SIGNAL PROCESSOR orders are
provided with the expectation that
they will be used primarily in
special circumstances. Such orders
may be implemented with the aid of
an auxiliary maintenance or service
processor, and, thus, the execution
time may take several seconds.
Unless all of the functions
provided by the order are required,
combinations of other orders, in
conjunction with appropriate
programming support, can be
expected to provide a specific
function more rapidly. The
emergency-signal, external-call,
and sense orders are the only
orders which are intended for
frequent use. The following orders
are intended for infrequent use,
and performance therefore may be
much slower than for frequently
used orders: IML, restart, start,
stop, stop and store status, and
all the reset orders.

STORE CLOCK COMPARATOR

[S]

'8207'

o 16 20 31

The current value of the clock compara­
tor is stored at the doubleword location
designated by the second-operand
address.

Zeros are provided for the rightmost bit
positions of the clock comparator that
are not compared with the TOO clock.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

Condition Code: The code remains
unchanged.

Program Exceptions:

Access (store, operand 2)
Operation (if the CPU-timer and

clock-comparator facility is
not installed)

Privileged operation
Specification

Chapter 10. Control Instructions 10-47

STORE CONTROL

[RS]

'B6'

o 8 12 16 20 31

The set of control registers starting
with control register R t and ending with
control register R3 is stored at the
locations designated by the second­
operand address.

The storage area where the contents of
the control registers are placed starts
at the location designated by the
second-operand address and continues
through as many storage words as the
number of control registers specified.
The contents of the control registers
are stored in ascending order of their
register numbers, starting with control
register R, and continuing up to and
including control register R3, with
control register 0 following control
register 15. The contents of the
control registers remain unchanged.

The information stored for unassigned
control-register positions, or positions
associated with a facility which is not
installed, is unpredictable.

Special Conditions

The second operand must be designated on
a word boundary; otherwise, a specifica­
tion exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 2)
Privileged operation
Specification

Programming Note

remains

Although STORE CONTROL may provide zeros
in the bit positions corresponding to
the unassigned register positions, the
program should not depend on such zeros.

10-48 System/370 Principles of Operation

STORE CPU ADDRESS

STAP [S]

'B212'

o 16 20 31

The CPU address by which this CPU is
identified in a multiprocessing config­
uration is stored at the halfword
location designated by the second­
operand address.

The operand must be designated on a
halfword boundary; otherwise, a specifi­
cation exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 2)

remains

Operation (if the multiprocessing
facility is not installed)

Privileged operation
Specification

STORE CPU 10

[S]

'B202'

o 16 20 31

Information identifying the CPU is
stored at the doubleword location desig­
nated by the second-operand address.

The information stored has the following
format:

o

32

8

Model
Number

CPU Identification
Number

48

Maximum MCEL
Length

31

63

Bit positions 0-7 contain the version
code. The format and significance of
the version code depend on the model.

Bit positions 8-31 contain the CPU iden­
tification number, consisting of six
four-bit digits. Some or all of these

digits are selected from the physical
serial number stamped on the CPU. The
contents of the CPU-identification­
number field, in conjunction with the
model number, permit unique identifica­
tion of the CPU.

Bit positions 32-47 contain the model
number, consisting of four digits:
leftmost zero digits, if necessary,
followed by the digits of the System/370
model number. For example, a Model 145
or 3033 system would store 0145 hex or
3033 hex, respectively.

Bit positions 48-63 contain a 16-bit
binary value indicating the length in
bytes of the longest machine-check
extended logout (MCEL) that can be
stored by the CPU.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 2)
Privileged operation
Specification

Programming Notes

1. The program should
possibility that the
cation number may
digits A-F as well
0-9.

allow for the
CPU identifi­
contain the

as the digits

2. The principal uses of the informa­
tion stored by STORE CPU ID are the
following:

a. The CPU identification number,
in conjunction with the model
number, provides a unique CPU
identification that can be used
in associating results with an
individual system, particularly
in regard to functional differ­
ences, performance differences,
and error handling.

b. The model number, in conjunc­
tion with the version code, can
be used by model-independent
programs in determining which
model-dependent recovery
programs should be called.

c. The MCEL length can be used by
model-independent programs to

allocate main storage for the
MCEL area.

STORE CPU TIMER

[S]

'B209'

o 16 20 31

The current value of the CPU timer is
stored at the doubleword location desig­
nated by the second-operand address.

Zeros are provided for the rightmost bit
positions that are not updated by the
CPU timer.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 2)

remains

Operation (if the CPU-timer and
clock-comparator facility is
not installed)

Privileged operation
Specification

STORE PREFIX

STPX [S]

'B211'

o 16 20 31

The contents of the prefix register are
stored at the word location designated
by the second-operand address. Zeros
are provided for bit positions 0-7 and
20-31.

Special Conditions

The operand must be designated on a word
boundary; otherwise, a specification
exception is recognized.

Condition
unchanged.

Code: The code remains

Chapter 10. Control Instructions 10-49

Program Exceptions:

Access (store, operand 2)
Operation (if the multiprocessing

facility is not installed)
Privileged operation
Specification

STORE THEN AND SYSTEM MASK

STNSM D1 (B 1),I 2 [51]

'AC'

o 8 16 20 31

Bits 0-7 of the current PSW are stored
at the first-operand location. Then the
contents of bit positions 0-7 of the
current PSW are replaced by the logical
AND of their original contents and the
second operand.

Special Conditions

The operation is suppressed on address­
ing and protection exceptions.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 1)

remains

Operation (if the translation
facility is not installed)

Privileged operation

Programming Note

STORE THEN AND SYSTEM MASK permits the
program to set selected bits in the
system mask to zeros while retaining the
original contents for later restoration.
For example, it may be necessary that a
program, which has no record of the
present status, disable program-event
recording for a few instructions.

STORE THEN OR SYSTEM MASK

STOSM D1 (B 1),I 2 [SI]

'AD' 12

o 8 16 20 31

Bits 0-7 of the current PSW are stored
at the first-operand location. Then the
contents of bit positions 0-7 of the

10-50 System/370 Principles of Operation

current PSW are replaced by the logical
OR of their original contents and the
second operand.

Special Conditions

The value to be loaded into the PSW is
not checked for validity before loading.
However, immediately after loading, a
specification exception is recognized,
and a program interruption occurs, if
the CPU is in the EC mode and the
contents of bit positions 0 and 2-4 of
the PSWare not all zeros. In this
case, the instruction is completed, and
the instruction-length code is set to 2.
The specification exception, which is
listed as a program exception for this
instruction, is described in the section
"Early Exception Recognition" in Chapter
6, "Interruptions." This exception may
be considered as caused by execution of
this instruction or as occurring early
in the process of preparing to execute
the subsequent instruction.

The operation is suppressed on address­
ing and protection exceptions.

Condition Code:
unchanged.

Program Exceptions:

The code

Access (store, operand 1)

remains

Operation (if the translation
facility is not installed)

Privileged operation
Specification

Programming Note

STORE THEN OR SYSTEM MASK permits the
program to set selected bits in the
system mask to ones while retaining the
original contents for later restoration.
For example, the program may enable the
CPU for I/O interruptions without having
available the current status of the
external-mask bit.

TEST BLOCK

TB R I' R2 [RRE]

'B22C'

o 16 24 28 31

The storage locations and storage keys
of a 4K-byte block are tested for
usability, and the result of the test is
indicated in the condition code. The
test for usability is based on the

susceptibility
occurrence of
code.

of the block to the
invalid checking-block

Bits 16-23
ignored.

of the

The block tested is
contents of general
contents of general
ignored.

addressed by
register R2 •
register R1

the
The
are

When the storage-key 4K-byte-block
facility is not installed, all blocks
are double-key 4K-byte blocks, and two
keys are tested.

When the storage-key 4K-byte-block
facility is installed, all blocks are
single-key 4K-byte blocks, and only one
key is tested. In this instruction
definition, the term "storage keys" is
used whether one or two storage keys are
affected.

A complete testing operation is neces­
sarily performed only when the initial
contents of general register 0 are zero.
The contents of general register 0 are
set to zero at the completion of the
operation.

If the block is found to be usable, the
4K bytes of the block are cleared to
zeros, the contents of the storage keys
are unpredictable, and condition code 0
is set. If the block is found to be
unusable, the data and the storage keys
are set, as far as is possible by the
model, to a value such that subsequent
fetches to the area do not cause a
machine-check condition, and condition
code 1 is set.

The contents of general register R2 are
treated as a 31-bit real address of a
4K-byte block in storage. Bits 1-19 of
the register designate the 4K-byte
block, and bits 0 and 20-31 of the
register are ignored.

The address of the block is a real
address, and the accesses to the block
designated by the second-operand address
are not subject to key-controlled and
segment protection. Low-address
protection does apply. The operation is
terminated on addressing and protection
exceptions. If termination occurs, the
condition code and the contents of
general register 0 are unpredictable.
The contents of the storage block and
its associated storage keys are not
changed when these exceptions occur.

Depending on the model, the test for
usability may be performed (1) byalter­
nately storing and reading out test
patterns to the data and storage keys in
the block or (2) by reference to an
internal record of the usability of the
blocks which are available in the
configuration, or (3) by using a combi­
nation of both mechanisms.

In models in which an internal record is
used, the block is indicated as unusable
if a solid failure has been previously
detected, or if intermittent failures in
the block have exceeded the threshold
implemented by the model. In such
models, depending on the criteria,
attempts to store mayor may not occur.
Thus, if block 0 is not usable, and no
store occurs, low-address protection may
or may not be indicated.

In models in which test patterns are
used, TEST BLOCK may be interruptible.
When an interruption occurs after a unit
of operation, other than the last one,
the condition code is unpredictable, and
the contents of general register 0 may
contain a record of the state of inter­
mediate steps. When execution is
resumed after an interruption, the
condition code is ignored, but the
contents of general register 0 may be
used to determine the resumption point.

If (1) TEST BLOCK is executed with an
initial value other than zero in general
register 0, or (2) the interrupted
instruction is resumed after an inter­
ruption with a value in general register
o other than the value which was present
at the time of the interruption, or
(3) the block is accessed by another CPU
or by a channel during the execution of
the instruction, then the contents of
the storage block, its associated stor­
age keys, and general register 0 are
unpredictable, along with the resultant
condition-code setting.

Invalid checking-block-code errors
initially found in the block or encount­
ered during the test do not normally
result in machine-check conditions. The
test-block function is implemented in
such a way that the frequency of
machine-check interruptions due to the
instruction execution is not
significant. However, if, during the
execution of TEST BLOCK for an unusable
block, that block is accessed by another
CPU (or by a channel), error conditions
may be reported both to this CPU and to
the other CPU (or to the channel).

A serialization function is performed
before the block is accessed and again
after the operation is completed (or
partially completed).

The priority of the recognition of
exceptions and condition codes is shown
in the figure "Priority of Execution:
TEST BLOCK."

Resulting Condition Code:

o Block usable
1 Block not usable
2
3

Chapter 10. Control Instructions 10-51

Program Exceptions:

Addressing (fetch and store, oper­
and 2)

Operation (if the test-block facil­
ity is not installed)

Privileged operation
Protection (store, operand 2, low­

address protection only)

1.-6. Exceptions with the same pri­
ority as the priority of pro­
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B Privileged-operation exception.

8. Addressing exception due to
block not being available in
the configuration.*

9.A Condition code 1, block not
usable.

9.B Protection exception due to
low-address protection.*

10. Condition code 0, block usable
and set to zeros.

Explanation:

* The operation is terminated on
addressing and protection excep­
tions, and the condition code may
be unpredictable.

Priority of Execution: TEST BLOCK

Programming Notes

1. The execution of TEST BLOCK on most
models is significantly slower than
that of the MOVE LONG instruction
with padding; therefore, the
instruction should not be used for
the normal case of clearing
storage.

2. The program should use TEST BLOCK
at initial program loading and as
part of the vary-storage-online
procedure to determine if blocks of
storage exist which should not be
used.

3. The program should use TEST BLOCK
when an uncorrected error is
reported in either the data or
storage keys of a block. This is
because in the execution of TEST
BLOCK the attempt is made, as far

10-52 System/370 Principles of Operation

as is possible on the model, to
leave the contents of a block in a
state such that subsequent
prefetches or unintended references
to the block do not cause machine­
check conditions. The program may
use the resulting condition code in
this case to determine if the block
can be reused. (The block could be
i ndi cated as usable if, for
example, the error were an
externally generated error or an
indirect storage error.) This
procedure should be followed
regardless of whether the
indirect-storage-error indication
is reported.

4. The model mayor may not be
successful in removing the errors
from a block when TEST BLOCK is
executed. The program therefore
should take every reasonable
precaution to avoid referencing an
unusable block. For example, the
program should not place the page­
frame real address of an unusable
block in an attached and valid
page-table entry.

5. On some models, machine checks may
be reported for a block even though
the block is not referenced by the
program. When a machine check is
reported for a storage-key error in
a block which has been marked as
unusable by the program, it is
possible that SET STORAGE KEY or
SET STORAGE KEY EXTENDED may be
more effective than TEST BLOCK in
validating the storage key.

6. The storage-operand references for
TEST BLOCK may be multiple-access
references. (See the section
"Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

TEST PROTECTION

TPROT [SSE]

'----__ ' E_50_1_' _--,-I_B_I ---IIL..-~ , I B 2 I ~:J
o 16 20 32 36 47

The location designated by the first­
operand address is tested for protection
exceptions using the access key speci­
fied in bits 24-27 of the second-operand
address.

The second-operand address is not used
to address data; instead, bits 24-27 of
the address form the access key to be
used in testing. Bits 8-23 and 28-31 of
the second-operand address are ignored.

The first-operand address is a logical
address and thus is subject to trans-

lation when DAT is on. When OAT is on
and the first-operand address cannot be
translated because of a situation that
would normally cause a page-translation
or segment-translation exception, the
instruction is completed by setting
condition code 3.

When translation of the first-operand
address can be completed, or when OAT is
off, the storage key for the block
designated by the first-operand address
is tested against the access key speci­
fied in bits 24-27 of the second-operand
address, and the condition code is set
to indicate whether store and fetch
accesses are permitted, taking into
consideration all applicable protection
mechanisms. Thus, for example, if the
low-address-protection facility is
installed and active and if the first­
operand effective address is less than
512, then a store access is not permit­
ted. Segment protection, when
installed, is also taken into account.

The contents of storage, including the
change bit, are not affected. Depending
on the model, the reference bit for the
first-operand address may be set to one,
even for the case in which the location
is protected against fetching.

Special Conditions

When OAT is on, an addressing exception
is recognized when the address of the
segment-table entry, the page-table
entry, or the operand real address after
translation designates a location which
is not available in the configuration.
Also, when DAT is on, a translation­
specification exception is recognized
when the segment-table entry or page­
table entry has a format error. When
DAT is off, only the addressing excep­
tion due to the operand real address
applies. For all of these cases, the
operation is suppressed.

Resulting Condition Code:

o Fetching permitted; storing
permitted

1 Fetching permitted; storing not
permitted

2 Fetching not permitted; storing
not permitted

3 Translation not available

Program Exceptions:

Addressing (operand 1)
Operation (if the extended facility

is not installed)
Privileged operation
Translation specification

Programming ~

1. TEST PROTECTION permits a program
to check the validity of an address
passed from a calling program with­
out incurring program exceptions.
The instruction sets a condition
code to indicate whether fetching
or storing is permitted at the
location designated by the first­
operand address of the instruction.
The instruction takes into consid­
eration all of the protection
mechanisms installed in the
machine: key-controlled, segment,
and low-address protection. Addi­
tionally, since segment translation
and page translation may be a
program substitute for a protection
violation, these situations are
used to set the condition code
rather than cause a program excep­
tion.

2. See the programming notes under SET
PSW KEY FROM ADDRESS for more
details and for an alternative
approach to testing validity of
addresses passed by a calling
program. The approach using TEST
PROTECTION has the advantage of a
test which does not result in
interruptions; however, the test
and use are separated in time and
may not be accurate if the possi­
bility exists that the storage key
of the location in question can
change between the time it is test­
ed and the time it is used.

3. In the handling of dynamic address
translation, TEST PROTECTION is
similar to LOAD REAL ADDRESS in
that the instructions do not cause
page-translation and segment­
translation exceptions. Instead,
these situations are indicated by
means of a condition-code setting.
Situations which result in condi­
tion codes 1, 2, and 3 for LOAD
REAL ADDRESS result in condition
code 3 for TEST PROTECTION. The
instructions also differ in several
other respects. The f;rst-~~erand
address of TEST PROTECTION is a
logical address and thus is not
subject to translation when DAT is
off. The second-operand address of
LOAD REAL ADDRESS is a· virtual
address which is always translated.
TEST PROTECTION may use the TLB for
translation of the address, whereas
LOAD REAL ADDRESS does not use the
TLB. (LOAD REAL ADDRESS is the
only instruction which must perform
translation without use of the
TLB.)

When DAT is off for LOAD REAL
ADDRESS, the translation-specifica­
tion exception for an invalid value
of bits 8-12 of control register 0
occurs after instruction fetching

Chapter 10. Control Instructions 10-53

as part of the execution portion of
the instruction. This situation
cannot occur for TEST PROTECTION
since the operand address is a
logical· address and does not result
in examination of control register
o when OAT is off. When OAT is on,
the exception would be recognized
during instruction fetching. Since
the instruction-fetching portion of
an instruction is common for all
instructions, descriptions of
access exceptions associated with
instruction fetching do not appear
in the individual instruction defi­
nitions.

WRITE DIRECT

WRD [51]

'84' Bt D t

o 8 16 20 31

The byte at the location designated by
the first-operand address is made avail­
able as a set of direct-out static
signals. Eight instruction bits are
made available as signal-out timing
signals.

When INVALIDATE PAGE TABLE ENTRY is not
installed, the first-operand address is
a logical address and subject to normal
access exceptions. When INVALIDATE PAGE
TABLE ENTRY is installed, the first­
operand address is a real address and
therefore not subject to translation;

10-54 System/370 Principles of Operation

only addressing and key-controlled­
protection exceptions apply.

The eight data bits of the byte fetched
from the real storage location desig­
nated by the first-operand address are
presented on a set of eight direct-out
lines as static signals. These signals
remain until WRITE DIRECT is again
executed. No checking bits are
presented with the eight data bits.

The contents of the 12 field are made
available simultaneously on a set of
eight signal-out lines as D.S-micro­
second to 1.O-microsecond timing
signals. On a ninth line (write out), a
D.S-microsecond to 1.O-microsecond
timing signal is made available concur­
rently with these timing signals. The
eight signal-out lines are also used in
the READ DIRECT instruction. No check­
ing bits are made available with the
eight instruction bits.

A serialization function is performed
before the operand is fetched and again
after the signals have been presented.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 1; access
applies only if the INVALIDATE
PAGE TABLE ENTRY instruction is
not installed)

Addressing (fetch, operand 1)
Operation (if the direct-control

facility is not installed)
Privileged operation
Protection (fetch, operand 1)

CHAPTER 11. MACHINE-CHECK HANDLING

Machine-Check Detection •••••••••••••••.•••••.••••••••••••• 11-2
Correction of Machine Malfunctions ••••••.•.••••••••.•....• 11-2

Error Checking and Correction •••••••••••.•..••••.•••.••• 11-2
CPU Retry ••.....••.•••••..••••••••••••••.••••••••..•.••• 11-3

Effects of CPU Retry•.••..•••...•••••••••••••••.• 11-3
Checkpoint Synchronization ...•...............•........ 11-3
Handling of Machine Checks during Checkpoint
Synchronization .•.•••.•••.••..•...•.••••••••••••••••. 11-3

Checkpoint-Synchronization Operations ••••••••.•••••.•. 11-4
Checkpoint-Synchronization Action •.•...•••••••.••.•.•. 11-4

Unit Deletion•••.•.••••••••••••..•..••.••••••••.••.. 11-4
Handling of Machine Checks .••••.••.•••.•.•••.••.•••.•••••. 11-5

Validation••...•.•••••..••..••.•..•.•••••••••.•.•• 11-5
Invalid CBC in Storage .•.••••••..•.....•..•..••.••.•.•.. 11-6

Programmed Validation of Storage .•....•...•..••.••.... 11-6
Invalid CBC in Storage Keys•••.•...•..••••••.••••••. 11-7
Invalid CBC in Registers .••••.••••..•.••••..••.•••...••• 11-9

Check-Stop State•.•••••.....•...•••.•••..••••••..•.•. 11-10
System Check stop••.........•.•.•.••••••.....•. 11-11

Machine-Check Interruption •••••..•••••••••.••.•••••••••.•. 11-11
Exigent Conditions ••.•••••.•..••.••.••••....•••••.•.•••. 11-11
Repressible Conditions •••.••...•.••.•••••••.••••..•.•.•. 11-12
Interruption Action •.••••.......•••.••••••••••••..••..•. 11-12
Point of Interruption •••.•.•••••••••••••••..••.•.••••••• 11-14

Machine-Check-Interruption Code •..••••••••••.•.••••..•..•. 11-15
Subclass ..•.•....•..••••...••••.••••••••••••••••••..•••. 11-16

System Damage .••....••.......•.•••.••.•.•..•....•..••. 11-16
Instruction-Processing Damage •••..••.••••.•..•........ 11-17
System Recovery •••.•....•..•••••.••••••••••.•••••••••. 11-17
Interval-Timer Damage •••••.••••••••••••••••.•••••••••• 11-17
Timing-Facility Damage••....•••.•. 11-17
External Damage •••...•...••••••••..••.•..•••••..•.••.. 11-18
Vector-Facility Failure •••.•••••••••.••••••••••••••••. 11-18
Degradation •..••.••••.••.•••.•••••••••.•.•••••.••••••. 11-18
Warning ••.•....•.....••..•.•••••.•••••••••••••.••••••. 11-18
Service-Processor Damage ••.•••••••••••••••••••...••..• 11-18

Subclass Modifiers ••.•••.•••..•••••••••••••••••••••.•.•• 11-18
Vector-Facility Source ••••••..••...••••••••••••.•••••• 11-19
Backed Up••..••..•.•...••.•••.•••••••••.••••.•. 11-19
Delayed •........••.•.•...........•.•....••••......•.•. 11-19
Delayed Access Exception ..•••••••••.•...•.••..•.•.•••. 11-19

Synchronous Machine-Check-Interruption Conditions ••.•••. 11-19
Processing Backup •.•••.•••..••.•••••..••••••.••••.•.•• 11-19
Processing Damage •....•••.......•.•.•••••.••••••••••.• 11-20

Storage Errors•.••.•••...••.•..•.•••••.••••••••...• 11-20
Storage Error Uncorrected •••.••••••••••••••••••••••••• 11-20
Storage Error Corrected •••••••••••••••••••••.•.••••••. 11-20
Storage-Key Error Uncorrected •••••••••••••••••....•••• 11-21
Storage Degradation •.••••...•.•••.•.•••••.••••••...••• 11-21
Indirect Storage Error •••••••••••••••••••••••••••••••• 11-21

Machine-Check Interruption-Code Validity Bits ••••••••••• 11-21
PSW-EMWP Validity •.••••••••••••.•••••••••••••••••••••• 11-22
PSW Mask and Key Validity •...•••••••.•..••••••••...••. 11-22
PSW Program-Mask and Condition-Code Validity •••••••.•• 11-22
PSW-Instruction-Address Validity •••••••••••••••••••••• 11-22
Failing-Storage-Address Validity •.•.••••••••••.•.••••. 11-22
Region-Code Validity •••••••.••••..•••••••••••••••••••• 11-22
External-Damage-Code Validity ••••••••••••••••••••.•••• 11-22
Floating-Point-Register Validity •••••••••••••••••••••• 11-22
General-Register Validity ••••••••••••••••••••••••••.•• 11-23
Control-Register Validity •..••••••••••.•••••••••..•.•• 11-23
Logout Validity •••.••••••••••••••••••••••••••••••••••• 11-23
Storage Logical Validity •••••••••••••••••••••••••••••• 11-23
CPU-Timer Validity •.•.•••••••••••••••••••••••••••••••• 11-23
Clock-Comparator Validity ••••••••••••••••••••••••••••• 11-23
Machine-Check Extended-Logout Length •••••••••••••••••• 11-23

Machine-Check Extended Interruption Information ••••••••••• 11-24
Register-Save Areas ••••••••••••••••••••••••••••••••••••• 11-24

Chapter 11. Machine-Check Handling 11-1

External-Damage Code •••••••••••••••••••••••••••••••••••• 11-24
Failing-Storage Address ••••••••.••.••••••.•••••.•••••••. 11-26
Region Code .•.•••.•••••••.•.•••••••••••••••••••••••••••. 11-26

Handling of Machine-Check Conditions •••••••••••••••••••••. 11-27
Floating Interruption Conditions .•.•.••••••.•.•••••••••• 11-27

Floating Machine-Check-Interruption Conditions .•.••••. 11-27
Machine-Check Masking ••••••••.••••••.••••••••.•.•.••••.••. 11-27

Check-Stop Control •.•.•.•.•••.•••.••••.••••....••••••• 11-28
Recovery Subclass Mask •••.••.•.•.•..•••••••.•••.•.•••. 11-28
Degradation Subclass Mask ..••••...•.•••.•.•••••.••..•. 11-28
External-Damage Subclass Mask ••••••••••••••••••••••••. 11-28
Warning Subclass Mask ••••••••••••••••••••••••.••...••. 11-28

Machine-Check Logout •.•.••..•..•••••••.•••••.••••••••..••• 11-28
Logout Controls ..•.......•..•.••.•...••••••.•...•..•••.. 11-29

Synchronous Machine-Check Extended-logout Control• 11-29
Input/Output Extended-Logout Control •••••.••.••.•.•••• 11-29
Asynchronous Machine-Check Extended-Logout

Control •.....•.•.......•....•......•.•••••••••.•.•••. 11-29
Asynchronous Fixed-logout Control •••••.••.••••...••.•. 11-29

Machine-Check Extended-logout Address .••.••••••.•••.•••• 11-29
Summary of Machine-Check Masking and logout •.•••••..••.•.• 11-30

The machine-check-handling mechanism
provides extensive equipment-malfunction
detection to ensure the integrity of
system operation and to permit automatic
recovery from some malfunctions. Equip­
ment malfunctions and certain external
disturbances are reported by means of a
machine-check interruption to assist in
program-damage assessment and recovery.
The interruption supplies the program
with information about the extent of the
damage and the location and nature of
the cause. Equipment malfunctions,
errors, and other situations which can
cause machine-check interruptions are
referred to as machine checks.

MACHINE-CHECK DETECTION

Machi ne-check-detecti on mechanisms may
take many forms, especially in control
functions for arithmetic and logical
processing, addressing, sequencing, and
execution. For program-addressable
information, detection is normally
accomplished by encoding redundancy into
the information in such a manner that
most failures in the retention or trans­
mission of the information result in an
invalid code. The encoding normally
takes the form of one or more redundant
bits, called check bits, appended to a
group of data bits. Such a group of
data bits and the associated check bits
are called a checking block. The size
of the checking block depends on the
model.

The inclusion of a single check bit in
the checking block allows the detection
of any single-bit failure within the
checking block. In this arrangement,
the check bit is sometimes referred to
as a "parity bit." In other arrange­
ments, a group of check bits is included

11-2 System/370 Principles of Operation

to permit detection of multiple errors,
to permit error correction, or both.

For checking purposes, the contents of
the entire checking block, including the
redundancy, are called the checking­
block code (CSC). When a CSC completelY
meets the checking requirements (that
is, no failure is detected), it is said
to be valid. When both detection and
correction are provided and a CSC is not
valid but satisfies the checking
requirements for correction (the failure
is correctable), it is said to be near­
valid. When a CSC does not satisfy the
checking requirements (the failure is
uncorrectable), it is said to be
invalid.

CORRECTION OF MACHINE MALFUNCTIONS

Three mechanisms may be used to provide
recovery from machine-detected malfunc­
tions: error checking and correction,
CPU retry, and unit deletion.

Machine failures which are corrected
successfully mayor may not be reported
as machine-check interruptions. If
reported, they are system-recovery
conditions, which permit the program to
note the cause of CPU delay and to keep
a log of such incidents.

ERROR CHECKING AND CORRECTION

When sufficient redundancy is included
in circuitry or in a checking block,
failures can be corrected. For example,
circuitry can be triplicated, with a
voting circuit to determine the correct
value by selecting two matching results

out of three, thus correcting a single
failure. An arrangement for correction
of failures of one order and for
detection of failures of a higher order
is called error checking and correction
(ECC). Commonly, ECC allows correction
of single-bit failures and detection of
double-bit failures.

Depending on the model and the portion
of the machine in which ECC is applied,
correction may be reported as system
recovery, or no report may be given.

Uncorrected errors in storage and in the
storage key may be reported, along with
a failing-storage address, to indicate
where the error occurred. Depending on
the situation, these errors may be
reported along with system recovery,
with external secondary report, or with
the damage or backup condition resulting
from the error.

CPU RETRY

In some models, information about some
portion of the state of the machine is
saved periodically. The point in the
processing at which this information is
saved is called a checkpoint. The
information saved is referred to as the
checkpoint information. The action of
saving the information is referred to as
establishing a checkpoint. The action
of discarding previously saved informa­
tion is called invalidation of the
checkpoint information. The length of
the interval between establishing check­
points is model-dependent. Checkpoints
may be established at the beginning of
each instruction or several times within
a single instruction, or checkpoints may
be established less frequently.

Subsequently, this saved information may
be used to restore the machine to the
state that existed at the time when the
checkpoint was established. After
restoring the appropriate portion of the
machine state, processing continues from
the checkpoint. The process of restor­
ing to a checkpoint and then continuing
is called CPU retry.

CPU retry may be used for machine-check
recovery, to effect nullification and
suppreSSlon of instruction execution
when certain program interruptions
occur, and in other model-dependent
situations.

Effects of CPU Retry

CPU retry is, in general, performed so
that there is no effect on the program.
However, change bits which have been
changed from zeros to ones are not

necessarily set back to zeros. As a
result, change bits m~y appear to be set
to ones for blocks w~ich would have been
accessed if restori~g to the checkpoint
had not occurred. If the path taken by
the program;s dependent on information
that may be changed by another CPU or by
a channel or if an interruption occurs,
then the final path taken by the program
may be different from the earlier path;
therefore, change bits may be ones
because of stores along a path apparent­
ly never taken.

Checkpoint synchronization consists in
the following steps.

1. The CPU operation is delayed until
all conceptually previous accesses
by this CPU to storage have been
completed, both for purposes of
machine-check detection and as
observed by other CPUs and by chan­
nels.

2. All previous checkpoints, if any,
are canceled.

3. Optionally, a new checkpoint is
established. The CPU operation is
delayed until all of these actions
appear to be completed, as observed
by other CPUs and by channels.

Handling of Machine Checks during Check­
point Synchronization

When, in the process of completing all
previous stores as part of the
checkpoint-synchronization action, the
machine is unable to complete all stores
successfully but can successfully
restore the machine to a previous check­
point, processing backup is reported.

When, in the process of completing all
stores as part of the checkpoint­
synchronization action, the machine is
unable to complete all stores success­
fully and cannot successfully restore
the machine to a previous checkpoint,
the type of machine-check-interruption
condition reported depends on the origin
of the store. Failure to successfully
complete stores associated with instruc­
tion execution may be reported as
instruction-processing damage, or some
less critical machine-check-interruption
condition may be reported with the
storage-Iogical-validity bit set to
zero. A failure to successfully
complete stores associated with the
execution of an interruption, other than
program or supervisor call, is reported
as system damage.

Chapter 11. Machine-Check Handling 11-3

When the machine check occurs as part of
a checkpoint-synchronization action
before the execution of an instruction,
the execution of the instruction is
nullified. When it occurs before the
execution of an interruption, the inter­
ruption condition, if the interruption
is external, I/O, or restart, is held
pending. If the checkpoint-
synchronization operation was a
machine-check interruption, then along
with the originating condition, either
the storage-Iogical-validity bit is set
to zero or instruction-processing damage
is also reported. Program interrup­
tions, if any, are lost.

Checkpoint-Synchronization Operations

All interruptions and the execution of
certain instructions cause a
checkpoint-synchronization action to be
performed. The operations which cause a
checkpoint-synchronization action are
called checkpoint-synchronization oper­
ations and include:

• CPU reset

• All interruptions: external, I/O,
machine check, program, restart,
and supervisor call

• The BRANCH ON CONDITION (BCR)
instruction with the Mt and R2
fields containing all ones and all
zeros, respectively

• The instructions LOAD PSW, SET
STORAGE KEY, SET STORAGE KEY
EXTENDED, and SUPERVISOR CALL

• All I/O instructions

• The instructions MOVE TO PRIMARY,
MOVE TO SECONDARY, PROGRAM CALL,
PROGRAM TRANSFER, SET ADDRESS SPACE
CONTROL, and SET SECONDARY ASN

• The DAS-tracing function

Programming Note

The instructions which are defined to
cause the checkpoint-synchronization
action invalidate checkpoint information
but do not necessarily establish a new
checkpoint. Additionally, the CPU may
establish a checkpoint between any two
instructions or units of operation, or
within a single unit of operation.
Thus, the point of interruption for the
machine check is not necessarily at an
instruction defined to cause a
checkpoint-synchronization action.

11-4 System/370 Principles of Operation

Checkpoint-Synchronization Action

For all interruptions except I/O inter­
ruptions, a checkpoint-synchronization
action is performed at the completion of
the interruption. For I/O interrup­
tions, a checkpoint-synchronization
action m9Y or may not be performed at
the completion of the interruption. For
all interruptions except program,
supervisor-call, and exigent machine­
check interruptions, a checkpoint­
synchronization action is also performed
before the interruption. The fetch
access to the new PSW may be performed
either before or after the first
checkpoint-synchronization action. The
store accesses and the changing of the
current PSW associated with the inter­
ruption are performed after the first
checkpoint-synchronization action and
before the second.

For all checkpoint-synchronization in­
structions except BRANCH ON CONDITION
(BCR), I/O instructions, and SUPERVISOR
CALL, checkpoint-synchronization actions
are performed before and after the
execution of the instruction. For BCR,
only one checkpoint-synchronization
action is necessarily performed, and it
may be performed either before or after
the instruction address is updated. For
SUPERVISOR CALL, a checkpoint­
synchronization action is performed
before the instruction is executed,
including the updating of the instruc­
tion address in the PSW. The
checkpoint-synchronization action taken
after the supervisor-call interruption
is considered to be part of the inter­
ruption action and not part of the
instruction execution. For I/O
instructions, a checkpoint-synchroniza­
tion action is always performed before
the instruction is executed and mayor
may not be performed after the instruc­
tion is executed.

The DAS-tracing function causes
checkpoint-synchronization actions to be
performed before the trace action and
after completion of the trace action.

UNIT DELETION

In some models, malfunctions in certain
units of the system can be circumvented
by discontinuing the use of the unit.
Examples of cases where unit deletion
may occur include the disabling of all
or a portion of a cache or of a
translation-Iookaside buffer (TLB).
Unit deletion may be reported as a
degradation machine-check-interruption
condition.

HANDLING OF MACHINE CHECKS

A machine check is caused by a machine
malfunction and not by data or
instructions. This is ensured during
the power-on sequence by initializing
the machine controls to a valid state
and by placing valid CBC in the CPU
registers, in the storage keys, and, if
it is volatile, also in main storage.

Designation of an unavailable component,
such as a storage unit, channel, or I/O
device, does not cause a machine-check
indication. Instead, such a condition
is indicated by the appropriate program
or I/O interruption or condition-code
setting. In particular, an attempt to
access a storage location which is not
in the configuration, or which has power
off at the storage unit, results in an
addressing exception when detected by
the CPU and does not generate a
machine-check condition, even though the
storage location or its associated stor­
age key has invalid CBC. Similarly, if
the channel attempts to access such a
location, an I/O-interruption condition
indicating program check is generated
rather than a machine-check condition.

A machine check is indicated whenever
the result of an operation could be
affected by information with invalid
CBC, or when any other malfunction makes
it impossible to establish reliably that
an operation can be, or has been,
performed correctly. When information
with invalid CBC is fetched but not
used, the condition mayor may not be
indicated, and the invalid CBC is
preserved.

When a machine malfunction is detected,
the action taken depends on the model,
the nature of the malfunction, and the
situation in which the malfunction
occurs. Malfunctions affecting
operator-facility actions may result in
machine checks or may be indicated to
the operator. Malfunctions affecting
certain other operations such as SIGNAL
PROCESSOR may be indicated by means of a
condition code or may result in a
machine-check-interruption condition.

A malfunction detected as part of an I/O
operation may cause a machine-check­
interruption condition, an I/O-error
condition, or both. I/O-error condi­
tions are indicated by an I/O inter-
ruption or by the appropriate
condition-code setting during the
execution of an I/O instruction. When
the machine reports a failing-storage
location detected during an I/O opera­
tion, both I/O-error and machine-check
conditions may be indicated. The 1/0-
error condition is the primary
indication to the program. The
machine-check condition 1S a secondary
indication, which is presented as system

recovery or as an external secondary
report, together with a failing-storage
address.

VALIDATION

Machine errors can be generally classi­
fied as solid or intermittent, according
to the persistence of the malfunction.
A persistent machine error is said to be
solid, and one that is not persistent is
said to be intermittent. In the case of
a register or storage location, a third
type of error must be considered, called
externally generated. An externally
generated error is one where no failure
exists in the register or storage
location but invalid CBC has been intro­
duced into the location by actions
external to the location. For example,
the value could be affected by a power
transient, or an incorrect value may
have been introduced when the informa­
tion was placed at the location.

Invalid CBC is preserved as invalid when
information with invalid CBC is fetched
or when an attempt is made to update
only a portion of the checking block.
When an attempt is made to replace the
contents of the entire checking block
and the block contains invalid CBC, it
depends on the operation and the model
whether the block remains with invalid
CBC or is replaced. An operation which
replaces the contents of a checking
block with valid CBC, while ignoring the
current contents, is called a validation
operation. Validation is used to place
a valid CBC in a register or at a
location which has an intermittent or
externally generated error.

Validating a checking block does not
ensure that a valid CBC will be observed
the next time the checking block is
accessed. If the failure is solid,
validation is effective only if the
information placed in the checking block
is such that the failing bits are set to
the value to which they fail. If an
attempt is made to set the bits to the
state opposite to that in which they
fail, then the validation will not be
effective. Thus, for a solid failure,
validation is only useful to eliminate
the error condition, even though the
underlying failure remains, thereby
reducing the exposure to additional
reports. The locations, however, cannot
be used, since invalid CBC will result
from attempts to store other values at
the location. For an intermittent fail­
ure, however, validation is useful to
restore a valid CBC such that a subse­
quent partial store into the checking
block will be permitted. (A partial
store is a store into a checking block
without replacing the entire checking
block.)

Chapter 11. Machine-Check Handling 11-5

When a checking block consists of multi­
ple bytes in storage, or multiple bits
in CPU registers, the invalid CBC can be
made valid only when all of the bytes or
bits are replaced simultaneously.

For each type of field in the system,
certain instructions are defined to
validate the field. Depending on the
model, additional instructions may also
perform validation; or, in so~e models,
a register is automatically validated as
part of the machine-check-interruption
sequence after the original contents of
the register are placed in the appropri­
ate save area.

When an error occurs in a checking
block, the original information
contained in the checking block should
be considered lost even after
validation. Automatic register vali­
dation leaves the contents
unpredictable. Programmed and manual
validation of checking blocks causes the
contents to be changed explicitly.

Programming Note

The machine-check-interruption handler
must assume that the registers require
validation. Thus, each register should
be loaded, using an instruction defined
to validate, before the register is used
or stored.

INVALID CBC IN STORAGE

The size of the checking block in stor­
age depends on the model but is never
more than 2K bytes.

When invalid CBC is detected in storage,
a machine-check condition may occur;
depending on the circumstances, the
machine-check condition may be system
damage, instruction-processing damage,
external damage, or system recovery. If
the invalid CBC is detected as part of
the execution of a channel program, the
error is normally reported as an
I/O-error condition. When a CCW,
indirect-data-address word, or data is
prefetched from storage, is found to
have invalid CBC, but is not used in the
channel program, the condition is
normally not reported as an I/O-error
condition. The condition mayor may not
be reported as a machine-check­
interruption condition. Invalid CBC
detected during accesses to storage for
other than CPU-related accesses may be
reported as system recovery with storage
error uncorrected indicated, or as
external secondary report, since the
primary error indication is reported by
some other means.

11-6 System/370 Principles of Operation

When the storage checking block consists
of multiple bytes and contains invalid
CBC, special storage-validation proce­
dures are generally necessary to restore
or place new information in the checking
block. Validation of storage is
provided with the manual load-clear and
system-reset-clear operations and may
also be provided as a program function.
Manual storage validation by clear reset
validates all blocks which are available
in the configuration.

A checking block with invalid CBC is
never validated unless the entire
contents of the checking block are
replaced. An attempt to store into a
checking block having invalid CBC, with­
out replacing the entire checking block,
leaves the data in the checking block
(including the check bits) unchanged.
Even when an instruction or a channel
program input operation specifies that
the entire contents of a checking block
are to be replaced, validation mayor
may not occur, depending on the opera­
tion and the model.

Programming Note

Machine-check conditions may be reported
for prefetched and unused data. Depend­
ing on the model, such situations may,
or may not, be successfully retried.
For example, a BRANCH AND LINK (BALR)
instruction which specifies an R2 field
of zero will never branch, but on some
models a prefetch of the location desig­
nated by register zero may occur.
Access exceptions associated with this
prefetch will not be reported. However,
if an invalid checking-block code is
detected, CPU retry may be attempted.
Depending on the model, the prefetch may
recur as part of the retry, and thus the
retry will not be successful. Even when
the CPU retry is successful, the
performance degradation of such a retry
is significant, and system recovery may
be presented, normally with a failing­
storage address. To avoid continued
degradation, the program should initiate
proceedings to eliminate use of the
location and to validate the location.

Programmed Validation of Storage

Provided that an invalid CBC does not
exist in the storage key associated with
a 4K-byte block, the instruction TEST
BLOCK causes the entire 4K-byte block to
be set to zeros with a valid CBC,
regardless of the current contents of
the storage. TEST BLOCK thus removes an
invalid CBC from a location in storage
which has an intermittent, or one-time,
failure. However, if a permanent fail­
ure exists in a portion of the storage,

a subsequent fetch may find an invalid
CBC.

When TEST BLOCK is installed, it will,
in most cases, be the most effective
instruction in validating storage. When
TEST BLOCK is not installed, MOVE LONG,
depending on the model, may prove effec­
tive.

The effectiveness of the following
guideline depends on the model. On some
models, instructions may be implemented
that are more effective than the one
listed here; however, the following
approach is recommended when a model­
dependent routine cannot be justified.

Execution of MOVE LONG will be most
effective in validating the main-storage
area containing the first operand when
the following conditions are satisfied:

• The first-operand field and
second-operand field participating
in the operation do not overlap.

• The first-operand field starts on a
2K-byte boundary and is 2K bytes
(or a multiple of 2K bytes) in
length.

• The second-operand field, if nonze­
ro in length, starts on a 2K-byte
boundary and is 2K bytes (or a
multiple of 2K bytes) in length.

• In general, the validation will be
more effective if the second­
operand field is of zero length. A
nonzero-length second operand

should be specified only if it is
required to restore the contents of
the block without introducing
intermediate values.

An interruption
during execution
affect the
performed.

or stopping of
of MOVE LONG
validation

INVALID CBC IN STORAGE KEYS

the CPU
does not
function

Depending on the model, each storage key
may be contained in a single checking
block, or the access-control and fetch­
protection bits and the reference and
change bits may be in separate checking
blocks.

The figure "Invalid CBC in Storage Keys"
describes the action taken when the
storage key has invalid CBC. The figure
indicates the action taken for the case
when the access-control and fetch­
protection bits are in one checking
block and the reference and change bits
are in a separate checking block. In
machines where both fields are included
in a single checking block, the action
taken is the combination of the actions
for each field in error, except that
completion is permitted only if an error
in all affected fields permits
completion. References to main storage
to which key-controlled protection does
not apply are treated as if an access
key of zero is used for the reference.
This includes such references as
channel-program references during
initial program loading and implicit
references, such as interruption action
and OAT-table accesses.

Chapter 11. Machine-Check Handling 11-7

Action Taken on Invalid CBC

Type of Reference
For Access-Control and
Fetch-Protection Bits

SET STORAGE KEY or SET Complete; validate.
STORAGE KEY EXTENDED

INSERT STORAGE KEY

INSERT STORAGE KEY
EXTENDED

PDi preserve.

PDi preserve.

RESET REFERENCE BIT or PD or complete;
RESET REFERENCE BIT preserve.
EXTENDED

INSERT VIRTUAL STORAGE PD; preserve.
KEY or TEST
PROTECTION

CPU prefetch (informa- CPFi preserve.
tion not used)

Channel-program pre­
fetch (information
not used)

IPF; preserve.

Fetch, nonzero access MC; preserve.
key

Store, nonzero access MCl; preserve.
key

Fetch, zero access
key2

Store, zero access
key2

Explanation:

MC or complete;
preserve.

MC or complete;
preserve.

For Reference and
Change Bits

Complete; validate.

PD in EC mode, CPF in
BC modei preserve.

PD; preserve.

PD; preserve.

CPF; preserve.

CPFi preserve.

IPFi preserve.

MC or complete;
preserve.

MC and preserve; or
complete 3 and correct.

MC or complete;
preserve.

MC and preserve; or
complete 3 and correct.

2

The contents of the main-storage location are not changed.

The action shown for an access key of zero is also appli­
cable to references to which key-controlled protection
does not apply.

3

Complete

Correct

The reference and change bits are set to ones if the
"complete" action is taken.

The condition does not cause termination of the execution
of the instruction and, unless an unrelated condition pro­
hibits it, the execution of the instruction is completed,
ignoring the error condition. No machine-check-damage
conditions are reported, but system recovery may be re­
ported.

The reference and change bits are set to ones with valid
CBC.

Invalid CBC in Storage Keys (Part 1 of 2)

11-8 System/370 Principles of Operation

Explanation (Continued):

Preserve The contents of the entire checking block having invalid
CBC are left unchanged.

Validate The entire key is set to the new value with valid CBC.

CPF Invalid CBC in the storage key for a CPU prefetch which
is unused, or for instructions which do not examine the
reference and change bits, may result in any of the fol­
lowing situations:
• The operation is completed; no machine-check condi­

tion is reported.
• The operation is completed; system recovery, with

storage-key error uncorrected, is reported.
• Instruction-processing damage, with or without backup

and with storage-key error uncorrected, is reported.

IPF Invalid CBC in the storage key for a channel-program pre­
fetch which is unused may result in any of the following:
• The I/O operation is completed; no machine-check con­

dition is reported.
• The I/O operation is completed; system recovery, with

storage-key error uncorrected, is reported.
• An I/O-error condition is reported; no machine-check

condition is reported.
• An I/O-error condition is reported; system recovery,

with storage-key error uncorrected, is reported.
• The I/O operation is completed, or an I/O-error condi­

tion is reported; external damage, with or without
storage-key error uncorrected, is reported.

• The I/O operation is completed, or an I/O-error condi­
tion is reported; external damage, with a valid
external-damage code, with external secondary report,
and with storage-key error uncorrected, is reported.

MC Same as PO for CPU references, but a channel-program ref­
erence may result in the following combinations of 1/0-
error conditions and machine-check conditions:
• An I/O-error condition is reported; no machine-check

condition is reported.
• An I/O-error condition is reported; system recovery,

with or without storage-key error uncorrected, is re­
ported.

• The I/O operation is completed, or an I/O-error condi­
tion is reported; external damage, with or without
storage-key error uncorrected, is reported.

• An I/O-error condition is reported; external damage,
with a valid external-damage code, with external
secondary report, and with storage-key error uncor­
rected, is reported.

PO Instruction-processing damage, with or without backup and
with or without a storage-key error uncorrected, is re­
ported.

Note: When storage-key error uncorrected is reported, a failing­
storage address mayor may not also be reported.

Invalid CBC in Storage Keys (Part 2 of 2)

INVALID CSC IN REGISTERS

When invalid CBC is detected in a CPU
register, a machine-check condition may
be recognized. CPU registers include
the general, floating-point, and control
registers, the current PSW, the prefix
register, the TOO clock, the CPU timer,
and the clock comparator.

When a machine-check interruption
occurs, whether or not it is due to
invalid CSC in a CPU register, the
following actions affecting the CPU
registers, other than the prefix regis­
ter and the TOO-clock, are taken as part
of the interruption.

Chapter 11. Machine-Check Handling 11-9

1. The contents of the registers are
saved in assigned storage loca­
tions. Any register which is in
error is identified by a corre­
sponding validity bit of zero in
the machine-cheek-interruption
code. Malfunctions detected during
register saving do not result in
additional machine-cheek-interrup­
tion conditions; instead, the
correctness of all the information
stored is indicated by the appro­
priate setting of the validity
bits.

2. On some models, registers with
invalid CBC are then validated,
their actual contents being unpre­
dictable. On other models,
programmed validation is required.

The prefix register and the TOD clock
are not stored during a machine-check
interruption, have no corresponding
validity bit, and are not validated.

On those models in which registers are
not automatically validated as part of
the machine-check interruption, a regis­
ter with invalid CBC will not cause a
machine-cheek-interruption condition
unless the contents of the register are
actually used. In these models, each
register may consist of one or more
checking blocks, but multiple registers
are not included in a single checking
block. When only a portion of a regis­
ter is accessed, invalid CBC in the
unused portion of the same register may
cause a machine-cheek-interruption
condition. For example, invalid CBC in
the right half of a floating-point
register may cause a machine-check­
interruption condition if a LOAD (LE)
operation attempts to replace the left
half, or short form, of the register.

Invalid CBC associated with the check­
stop-control bit (control register 14,
bit 0) and with the asynchronous fixed­
logout-control bit (control register 14,
bit 9) will cause the CPU either to
enter the check-stop state immediately
or to assume that bits 0 and 9 have
their initialized values of one and
zero, respectively.

Invalid CBC associated with the prefix
register cannot safely be reported by
the machine-check interruption, since
the interruption itself requires that
the prefix value be applied to convert
real addresses to the corresponding
absolute addresses. Invalid CBC in the
prefix register causes the CPU to enter
the check-stop state immediately when
the check-stop-control bit (control
register 14, bit 0) is one. When the
check-stop-control bit is zero, the
machine is permitted to ignore even the
most severe errors; thus, invalid CBC in
the prefix register may be ignored or
may cause the CPU to enter the check­
stop state.

11-10 System/370 Principles of Operation

On those models which do not validate
registers during a machine-check inter­
ruption, the following instructions will
cause validation of a register, provided
the information in the register is not
used before the register is validated.
Other instructions, although they
replace the entire contents of a regis­
ter, do not necessarily cause
validation.

General registers are validated by
BRANCH AND LINK (BAl, BAlR), LOAD (LR),
and LOAD ADDRESS. LOAD (L) and LOAD
MULTIPLE validate if the operand is on a
word boundary, and LOAD HALFWORD vali­
dates if the operand is on a halfword
boundary.

Floating-point registers are validated
by LOAD (LDR) and, if the operand is on
a doubleword boundary, by LOAD (lD).

Control registers may be validated
either singly or in groups by using the
instruction LOAD CONTROL.

The CPU timer, clock comparator, and
prefix register are validated by SET CPU
TIMER, SET CLOCK COMPARATOR, and SET
PREFIX, respectively.

The TOD clock is validated by SET CLOCK
if the TOD-clock control is in the
enable-set position.

Programming Note

Depending on the register, and the
model, the contents of a register may be
validated by the machine-check inter­
ruption or the model may require that a
program execute a validating instruction
after the machine-check interruption has
occurred. In the case of the CPU timer,
depending orr the model, both the
machine-check interruption and validat­
ing instructions may be required to
restore the CPU timer to full working
order.

CHECK-STOP STATE

In certain situations it is impossible
or undesirable to continue operation
when a machine error occurs. In these
cases, the CPU may enter the check-stop
state, which is indicated by the check­
stop indicator.

In general, the CPU may enter the
check-stop state whenever an uncorrecta­
ble error or other malfunction occurs
and the machine is unable to recognize a
specific machine-cheek-interruption
condition.

The CPU always enters the check-stop
state if the check-stop-control bit, bit
o of control register 14, is one and if
any of the following conditions exists:

• PSW bit 13 is zero and an exigent
machine-check condition is gener­
ated.

• During the execution of an inter­
ruption due to one exigent
machine-check condition, another
exigent machine-check condition is
detected.

•

•

During a machine-check interrup­
tion, the machine-cheek-interrup­
tion code cannot be stored
successfully, or the new PSW cannot
be fetched successfully.

Invalid CBC is detected in the
prefix register.

• A malfunction in the receiving CPU,
which is detected after accepting
the order, prevents the successful
completion of a SIGNAL PROCESSOR
order and the order was a reset, or
the receiving CPU cannot determine
what the order was. The receiving
CPU enters the check-stop state.

If the check-stop-control bit is zero
when one of these conditions occurs, the
CPU mayor may not enter the check-stop
state, depending on the model. There
may be many other conditions for partic­
ular models when an error may cause
check stop.

When the CPU is in the check-stop state,
instructions and interruptions are not
executed, the interval timer is not
updated, and channel operations may be
stopped. In systems with channel-set
switching, I/O operations are normally
not affected. The TOD clock is normally
not affected by the check-stop state.
The CPU timer mayor may not run in the
check-stop state, depending on the error
and the model. The start key and stop
key are not effective in this state.

The CPU may be removed from the check­
stop state by CPU reset.

In a multiprocessing configuration, a
CPU entering the check-stop state gener­
ates a request for a malfunction-alert
external interruption to all CPUs in the
configuration. Except for the reception
of a malfunction alert, other CPUs and
channels not connected to the malfunc­
tioning CPU are normally unaffected by
the check-stop state in a CPU. However,
depending on the nature of the condition
causing the check stop, other CPUs may
also be delayed or stopped, and I/O
activity for channels connected to other
CPUs may be affected.

System Check stop

In a multiprocessing configuration, some
errors, malfunctions, and damage condi­
tions are of such severity that the
condition causes all CPUs in the config­
uration to enter the check-stop state.
This condition is called a system check
stop. The state of the channels is
unpredictable.

Programming Note

The program should avoid setting the
check-stop control, bit 0 of control
register 14, to zero, since the machine
may continue to operate rather than
enter the check-stop state when extreme­
ly serious conditions, such as an error
in the prefix register, occur.

MACHINE-CHECK INTERRUPTION

A request for a machine-check inter­
ruption, which is made pending as the
result of a machine check, is called a
machine-cheek-interruption condition.
There are two types of machine-check­
interruption conditions: exigent condi­
tions and repressible conditions.

EXIGENT CONDITIONS

Exigent machine-cheek-interruption con­
ditions are those in which damage has or
would have occurred such that execution
of the current instruction or inter­
ruption sequence cannot safely continue.
Exigent conditions include two sub­
classes: instruction-processing damage
and system damage. In addition to indi­
cating specific exigent conditions,
system damage is used to report any
malfunction or error which cannot be
isolated to a less severe report.

Exigent conditions for instruction
sequences can be either nullifying exi­
gent conditions or terminating exigent
conditions, according to whether the
instructions affected are nullified or
terminated. Exigent conditions for
interruption sequences are terminating
exigent conditions. The terms "nullifi­
cation" and "termination" have the same
meaning as that used in Chapter 6,
"Interruptions," except that more than
one instruction may be involved. Thus,
a nullifying exigent condition indicates
that the CPU has returned to the begin­
ning of a unit of operation prior to the
error. A terminating exigent condition
means that the results of one or more

Chapter 11. Machine-Check Handling 11-11

instructions
values.

may have

REPRESSIBLE CONDITIONS

unpredictable

Repressible machine-cheek-interruption
conditions are those in which the
results of the instruction-processing
sequence have not been affected.
Repressible conditions can be delayed,
until the completion of the current
instruction or even longer, without
affecting the integrity of CPU
operation. Repressible conditions are
of three groups: recovery, alert, and
repressible damage. Each group includes
one or more subclasses.

A malfunction in the CPU, storage, chan­
nel, or operator facilities which has
been successfully corrected or circum­
vented internally without logical damage
is called a recovery condition. Depend­
ing on the model and the type of
malfunction, some or all recovery condi­
tions may be discarded and not reported.
Recovery conditions that are reported
are grouped in one subclass, system
recovery.

A machine-cheek-interruption condition
not directly related to a machine mal­
function is called an alert condition.
The alert conditions are grouped in two
subclasses: degradation and warning.

A malfunction resulting in an incorrect
state of a portion of the system not
directly affecting sequential CPU opera­
tion is called a repressible-damage
condition. Repressible-damage condi­
tions are grouped in five subclasses,
according to the function affected:
timing-facility damage, interval-timer
damage, external damage, service­
processor damage, and vector-facility
failure.

Programming Notes

1. Even though repressible conditions
are usually reported only at normal
points of interruption, they may
also be reported with exigent
machine-check conditions. Thus, if
an exigent machine-check condition
causes an instruction to be abnor­
mally terminated and a machine­
check interruption occurs to report
the exigent condition, any pending
repressible conditions may also be
reported. The meaningfulness of
the validity bits depends on what
exigent condition is reported.

2. Classification of damage as either
exigent or repressible does not
imply the severity of the damage.

11-12 System/370 Principles of Operation

The distinction is whether action
must be taken as soon as the damage
is detected (exigent) or whether
the CPU can continue processing
(repressible). For a repressible
condition, the current instruction
can be completed before taking the
machine-check interruption if the
CPU is enabled for machine checks;
if the CPU is disabled for machine
checks, the condition can safely be
kept pending until the CPU is again
enabled for machine checks.

For example, the CPU may be disa­
bled for machine-check inter­
ruptions because it is handling an
earlier instruction-processing-dam­
age interruption. If, during that
time, an I/O operation encounters a
storage error, that condition can
be kept pending because it is not
expected to interfere with the
current machine-check processing.
If, however, the CPU also makes a
reference to the area of storage
containing the error before re­
enabling machine-check interrup­
tions, another instruction-proces­
sing-damage condition is created,
which is treated as an exigent con­
dition and causes the CPU to enter
the check-stop state, if the check­
stop-control bit is set to one.

INTERRUPTION ACTION

A machine-check interruption causes the
following actions to be taken. The PSW
reflecting the point of interruption is
stored as the machine-check old PSW at
real location 48. The contents of other
registers are stored in register-save
areas at real locations 216-231 and
352-511. After the contents of the
registers are stored in register-save
areas, depending on the model, the
registers may be validated with the
contents being unpredictable. A
failing-storage address may be stored at
real location 248, an external-damage
code may be stored at real location 244,
and a region code may be stored at real
location 252. A machine-check­
interruption code (MCIC) of eight bytes
is placed at real location 232. The new
PSW is fetched from real location 112.
Additionally, sometime before the stor­
ing of the MCIC, one or more machine­
check logouts may have occurred. The
machine-generated addresses to access
the old and new PSW, the MCIC, extended
interruption information, and the
fixed-logout area are all real
addresses. The machine-check extended­
logout address is also a real address.

The fields accessed during the machine­
check interruption are summarized in the
figure "Machine-Cheek-Interruption Loca­
tions."

Information Stored (Fetched)

Old PSW
New PSW (fetched)
Machine-cheek-interruption code
Register-save areas

CPU timer
Clock comparator
Floating-point registers 0, 2, 4, 6
General registers 0-15
Control registers 0-15

Extended interruption information
External-damage code
Failing-storage address
Region code

logout areas
Fixed logout
Machine-check extended logout (MCEL)

Explanation:

* All locations are in real storage.

Starting Length
Location* in Bytes

48
112
232

216
224
352
384
448

244
248
252

256
Note 1

8
8
8

8
8

32
64
64

4
4
4

96
Note 2

1. The starting location of the MCEL is determined by the
MCEL address in control register 15.

2. The length of the MCEL is model-dependent.

Machine-Cheek-Interruption locations

If the machine-cheek-interruption code
cannot be stored successfully or the new
PSW cannot be fetched successfully, the
CPU enters the check-stop state if the
check-stop-control bit is one.

A repressible machine-check condition
can initiate a machine-check inter­
ruption only if both PSW bit 13 is one
and the associated subclass mask bit in
control register 14 is also one. When
it occurs, the interruption does not
terminate the execution of the current
instruction; the interruption is taken
at a normal point of interruption, and
no program or supervisor-call inter­
ruptions are eliminated. If the machine
check occurs during the execution of a
machine function, such as a CPU-timer
update, the machine-check interruption
takes place after the machine function
has been completed.

When the CPU is disabled for a partic­
ular repressible machine-check
condition, the condition remains
pending. Depending on the model and the
condition, multiple repressible condi­
tions may be held pending for a
particular subclass, or only one condi­
tion may be held pending for a
particular subclass, regardless of the
number of conditions that may have been
detected for that subclass. When multi­
ple external-damage conditions occur,
each condition is retained.

When a repressible machine-check inter­
ruption occurs because the interruption

condition is in a subclass for which the
CPU is enabled, pending conditions in
other subclasses may also be indicated
in the same interruption code, even
though the CPU is disabled for those
subclasses. All indicated conditions
are then cleared.

If a machine check which is to be
reported as a system-recovery condition
is detected during the execution of the
interruption procedure due to a previous
machine-check condition, the system­
recovery condition may be combined with
the other conditions, discarded, or held
pending.

An exigent machine-check condition can
cause a machine-check interruption only
when PSW bit 13 is one. When a nullify­
ing exigent condition causes a machine­
check interruption, the interruption is
taken at a normal point of interruption.
When a terminating exigent condition
causes a machine-check interruption, the
interruption terminates the execution of
the current instruction and may elimi­
nate the program and supervisor-call
interruptions, if any, that would have
occurred if execution had continued.
Proper execution of the interruption
sequence, including the storing of the
old PSW and other information, depends
on the nature of the malfunction. When
an exigent machine-check condition
occurs during the execution of a machine
function, such as a CPU-timer update,
the sequence is not necessarily
completed.

Chapter 11. Machine-Check Handling 11-13

When PSW bit 13 is zero and an exigent
machine-check condition is generated,
subsequent action depends on the state
of the check-stop-control bit, bit 0 of
control register 14. When the check­
stop-control bit is zero, the machine­
check condition is held pending, and an
attempt is made to complete the
execution of the current instruction and
to proceed with the next sequential
instruction. When the check-stop­
control bit is one, processing stops
immediately, and the CPU enters the
check-stop state. Depending on the
model and the severity of the error, the
CPU may enter the check-stop state even
when the check-stop-control bit is zero.

Similarly, if, during the execution of
an interruption due to one exigent
machine-check condition, another exigent
machine check is detected, the subse­
quent action depends on the state of the
check-stop-control bit. If the 'check­
stop-control bit is one, the CPU enters
the check-stop state; if the bit is
zero, an attempt is made to proceed with
the condition held pending for subse­
quent interruption. If an exigent
machine check is detected during an
interruption due to a repressible
machine-check condition, system damage
is reported.

Exigent machine-check conditions held
pending while the check-stop-control bit
is zero remain pending and do not cause
the CPU to enter the check-stop state if
the check-stop-control bit is subse­
quently set to one.

Machine-cheek-interruption conditions
are handled in the same manner regard­
less of whether the wait-state bit in
the PSW is one or zero: a machine-check
condition causes an interruption if the
CPU is enabled for that condition.

Machine checks which occur while the
rate control is set to the instruction­
step position are handled in the same
manner as when the control is set to the
process position; that is, recovery
mechanisms are active, and logout and
machine-check interruptions occur when
allowed. Machine checks occurring
during a manual operation may be indi­
cated to the operator, may generate a
system-recovery condition, may be
reported as an external secondary
report, may result in system damage, or
may cause a check stop, depending on the
model.

Every reasonable attempt is made to
limit the side effects of any machine
check and the associated interruption.
Normally, interruptions, as well as the
progress of I/O operations, remain unaf­
fected. The malfunction, however, may
affect these activities, and, if the
currently active PSW has bit 13 set to
one, the machine-check interruption will
indicate the total extent of the damage

11-14 System/370 Principles of Operation

caused, and not just the damage which
originated the condition.

POINT OF INTERRUPTION

The point in the processing which is
indicated by the interruption and used
as a reference point by the machine to
determine and indicate the validity of
the status stored is referred to as the
point of interruption.

Because of the checkpoint capability in
models with CPU retry, the interruption
resulting from an exigent machine­
check-interruption condition may indi­
cate a point 1n the CPU processing
sequence which is logically prior to the
error. Additionally, the model may have
some choice as to which point in the CPU
processing sequence the interruption is
indicated, and, in some cases, the
status which can be indicated as valid
depends on the point chosen.

Only certain points in the processing
may be used as a point of interruption.
For repressible machine-check inter­
ruptions, the point of interruption must
be after one unit of operation is
completed and any associated program or
supervisor-call interruption is taken,
and before the next unit of operation is
begun.

Exigent machine-check conditions for
instruction sequences are those in which
damage has or would have occurred to the
instruction stream. Thus, the damage
can normally be associated with a point
part way though an instruction, and this
point is called the point of damage. In
some cases there may be one or more
instructions separating the point of
damage and the point of interruption,
and the processing associated with one
or more instructions may be damaged.
When the point of interruption is a
point prior to the point of damage due
to a nullifiable exigent machine-check
condition, the point of interruption can
be only at the same points as for
repressible machine-check conditions.

Exigent machine-check conditions which
are delayed (disallowed and presented
later when allowed) can be presented
only at the same points of interruption
as repressible machine-check conditions.
When a terminating exigent machine-check
condition is not delayed, the point of
interruption may also be after the unit
of operation is completed but before any
associated program or supervisor-call
interruption occurs. In this case, a
valid PSW instruction address is defined
as that which would have been stored in
the old PSW for the program or
supervisor-call interruption. Since the
operation has been terminated, the
values in the result fields, other than

the instruction address, are unpredict­
able. Thus the validity bits associated
with fields which are due to be changed
by the instruction stream are meaning­
less when a terminating exigent
machine-check condition is reported.

When the point of interruption and the
point of damage due to an exigent
machine-check condition are separated by
a checkpoint-synchronization function,
the damage has not been isolated to a
particular program, and system damage is
indicated.

Programming Note

When an exigent machine-cheek-interrup­
tion condition occurs, the point of
interruption which is chosen affects the
amount of damage which must be
indicated. An attempt is made, when
possible, to choose a point of interrup­
tion which permits the minimum
indication of damage. In general, the

preference is the interruption point
immediately preceding the error.

When all the status information stored
as a result of an exigent machine­
check-interruption condition does not
reflect the same point, an attempt is
made when possible to choose the point
of interruption so that the instruction
address which is stored in the machine­
check old PSW is valid.

MACHINE-CHECK-INTERRUPTION CODE

On all machine-check interruptions, a
machine-cheek-interruption code (MCIC)
is stored at the doubleword starting at
real location 232 and has the format
shown in the figure "Machine-Check
Interruption-Code Format."

Bits in the MCIC which are not assigned,
or not implemented by a particular
model, are stored as zeros.

Chapter 11. Machine-Check Handling 11-15

S P S T
D D R D

0

I ~ 10 I ~ 10
32

o
1
2
3
4
5
6
7
8

10
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
34
46
47

34

48-63

C E V S S K D W M P I F R E
D D F E C E S P S M A A C C

8 10 13 16 24

000 010 000 0 oli gl MCEL Length

40 46 48

System damage (SD)
Instruction-processing damage (PD)
System recovery (SR)
Interval-timer damage (TD)
Timing-facility damage (CD)
External damage (ED)
Vector-facility failure (VF)
Degradation (DG)
Warning (W)
Service-processor damage (SP)
Vector-facility source (VS)
Backed up (B)
Delayed (D)
Storage error uncorrected (SE)
Storage error corrected (SC)
Storage-key error uncorrected (KE)
Storage degradation (OS)
PSW-EMWP validity (WP)
PSW mask and key validity (MS)

F
P

PSW program-mask and condition-code validity (PM)
PSW-instruction-address validity (IA)
Failing-storage-address validity (FA)
Region-code validity (RC)
External-damage-code validity (EC)
Floating-point-register validity (FP)
General-register validity (GR)
Control-register validity (CR)
Logout validity (LG)
Storage logical validity (ST)
Indirect storage error (IE)
Delayed-access exception (DA)
CPU-timer validity (CT)
Clock-comparator validity (CC)
Machine-check-extended-logout (MCEL) length

G C L S
R R G T

31

63

Note: All other bits of the MCIC are unassigned and stored as zeros.

Machine-Check Interruption-Code Format

SUBCLASS

Bits 0-8 and 10 are the subclass bits
which identify the type of machine-check
condition causing the interruption. At
least one of the subclass bits is stored
as a one. When multiple errors have
occurred, several subclass bits may be
set to ones.

11-16 System/370 Principles of Operation

System Damage

Bit 0 (SD), when one, indicates that
damage has occurred which cannot be
isolated to one or more of the less
severe machine-check subclasses. When
system damage is indicated, the remain­
ing bits in the machine-check­
interruption code are not meaningful,
and information stored in the register­
save areas and machine-check extended­
interruption fields is not meaningful.

System damage is a terminating exigent
condition and has no subclass-mask bit.

Instruction-Processing Damage

Bit 1 (PO), when one, indicates that
damage has occurred to the instruction
processing of the cpu.
The exact meaning of bit 1 depends on
the setting of the backed-up bit, bit
14. When the backed-up bit is one, the
condition is called processing backup.
When the backed-up bit is zero, the
condition is called processing damage.
These two conditions are described in
the section "Synchronous Machine-Check­
Interruption Conditions" in this
chapter.

Instruction-processing damage can be a
nullifying or a terminating exigent
condition and has no subclass-mask bit.

System Recoverv

Bit 2 (SR), when one, indicates that
malfunctions were detected but did not
result in damage or have been success­
fully corrected. Some malfunctions
detected as part of an I/O operation may
result in a system-recovery condition in
addition to an I/O-error condition. The
presence and extent of the system­
recovery capability depend on the model.

System recovery is a repressible condi­
tion. It is masked by the recovery
subclass-mask bit, which is in bit posi­
tion 4 of control register 14.

Programming Notes

1. System recovery may be used to
report a failing-storage address
detected by a CPU prefetch or by an
I/O operation.

2. Unless the corresponding validity
bits are ones, the indication of
system recovery does not imply
storage logical validity, or that
the fields stored as a result of
the machine-check interruption are
valid.

Interval-Timer Damage

Bit 3 (TO), when one, indicates that
damage has occurred to the interval
timer or to the word at real storage
locations 80-83.

Interval-timer damage is a repressible
condition. It 1S masked by the
external-damage subclass-mask bit, which

is in bit position 6 of control register
14.

Timing-Facility Damage

Bit 4 (CD), when one, indicates that
damage has occurred to the TOO clock,
the CPU timer, the clock comparator, or
to the CPU-timer or clock-comparator
external-interruption conditions. The
timing-facility-damage machine-check
condition is set whenever any of the
following occurs:

1. The TOO clock accessed by this CPU
enters the error or not-operational
state.

2. The CPU timer is damaged, and the
CPU is enabled for CPU-timer
external interruptions. On some
models, this condition may be
recognized even when the CPU is not
enabled for CPU-timer interrup­
tions. Depending on the model, the
machine-check condition may be
generated only as the CPU timer
enters an error state. Or, the
machine-check condition may be
continuously generated whenever the
CPU is enabled for CPU-timer inter­
ruptions, until the CPU timer is
validated.

3. The clock comparator is damaged,
and the CPU is enabled for clock­
comparator external interruptions.
On some models, this condition may
be recognized even when the CPU is
not enabled for clock-comparator
interruptions.

Timing-facility damage may also be set
along with instruction-processing damage
when an instruction which accesses the
TOO clock, CPU timer, or clock compara­
tor produces incorrect results. Depend­
ing on the model, the CPU timer or clock
comparator may be validated by the
interruption which reports the CPU timer
or clock comparator as invalid.

Timing-facility damage is a repressible
condition. It is masked by the timing­
facility subclass-mask bit, which is in
bit position 6 of control register 14.

Programming Note

Timing-facility-damage conditions for
the CPU timer and the clock comparator
are not recognized on most models when
these facilities are not in use. The
facilities are considered not in use
when the CPU is disabled for the corre­
sponding external interruptions (PSW bit
7, or the subclass-mask bits, bits 20
and 21 of control register 0, are

Chapter 11. Machine-Check Handling 11-17

zeros), and when the corresponding set
and store instructions are not executed.
Timing-facility-damage conditions that
are already pending remain pending,
however, when the CPU is disabled for
the corresponding external interruption.

Timing-facility-damage conditions due to
damage to the TOO clock are always
recognized.

External Damage

Bit 5 CEO), when one, indicates that
damage has occurred to a channel or to
storage during operations not directly
associated with processing the current
instruction. Channel malfunctions are
reported as external damage only when
the channel is unable to report the
malfunctions by an I/O-error condition.
Depending on the model and on the type
and extent of the error, an external­
damage condition may be indicated as
system damage instead of external
damage.

When bit 5, external damage, is one and
bit 26, external-damage-code validity,
is also one, the external-damage code
has been stored to indicate, in more
detail, the cause of the external-damage
machine-check interruption. When the
external damage cannot be isolated to
one or more of the conditions as defined
in the external-damage code, or when the
detailed indication for the condition is
not implemented by the model, external
damage is indicated with bit 26 set to
zero. The presence and extent of
reporting external damage depend on the
model.

External damage is a repressible condi­
tion. It is masked by the external­
damage subclass-mask bit, which is in
bit position 6 of control register 14.

Vector-Facility Failure

Bit 6 (VF) of the machine-check­
interruption code, when one, indicates
that the vector facility has failed to
such an extent that the service process­
or has made the facility not available.

This bit may be set to one regardless of
whether the vector-control bit, bit 14
of control register A, is one or zero.

Vector-facility failure is a repressible
condition and has no subclass-mask bit.

11-18 System/370 Principles of Operation

Degradation

Bit 7 COG), when one, indicates that
continuous degradation of system
performance, more serious than that
indicated by system recovery, has
occurred. Degradation may be reported
when system-recovery conditions exceed a
machine-preestablished threshold or when
unit deletion has occurred. The pres­
ence and extent of the degradation­
report capability depend on the model.

Degradation is a repressible condition.
It is masked by the degradation
subclass-mask bit, which is in bit posi­
tion 5 of control register 14.

Warning

Bit 8 (W), when one, i ndi cates' that
damage is imminent in some part of the
system (for example, that power is about
to fail, or that a loss of cooling is
occurring). Whether warning conditions
are recognized depends on the model.

If the condition responsible for the
imminent damage is removed before the
interruption request is honored (for
example, if power is restored), the
request does not remain pending, and no
interruption occurs. Conversely, the
request is not cleared by the inter­
ruption, and, if the condition persists,
more than one interruption may result
from the same condition.

Warning is a repressible condition •. It
is masked by the warning subclass-mask
bit, which is in bit position 7 of
control register 14.

Service-Processor Damage

Bit 10 (SP), when one, indicates that
damage has occurred to the service
processor. Service-processor damage may
be made pending at all CPUs in the
configuration, or it may be detected
independently by each CPU. The presence
and extent of reporting service­
processor damage depend on the model.

Service-processor damage is a repressi­
ble condition and has no subclass-mask
bit.

SUBCLASS MODIFIERS

Bits 13 (VS), 14 (B), 15 (D), and 34
(DA) of the machine-check-interruption
code act as modifiers to the subclass
bits.

Vector-Facility Source

Bit 13 (VS) of the machine-check­
interruption code, when one, indicates
that the vector facility is the source
of the reported machine-check condition.
Vector-facility source is reported
together with instruction-processing
damage. When this bit is one, the
contents of vector-facility registers
may have been damaged.

This bit may be set to one regardless of
whether the vector-control bit, bit 14
of control register 0, is one or zero.

Bit 13 is not meaningful when vector­
facility failure is reported.

Backed !!.e

Bit 14 (B), when one, indicates that the
point of interruption is at a checkpoint
before the point of error. This bit is
meaningful only when the instruction­
processing-damage bit, bit 1, is also
set to one. The presence and extent of
the capability to indicate a backed-up
condition depend on the model.

Delayed

Bit 15 (D), when one, indicates that
some or all of the machine-check condi­
tions were delayed in being reported
because the CPU was disabled for that
type of interruption at the time the
condition occurred. The bit mayor may
not apply to floating machine-check
interruptions. The presence and extent
of the capability to indicate a delayed
condition depend on the model.

Delayed Access Exception

Bit 34 (DA), when one, indicates that an
access exception was detected during a
storage access using OAT when no such
exception was detected by an earlier
test for access exceptions.

Bit 34 is a modifier to instruction­
processing damage (bit 1) and is mean­
ingful only when bit 1 of the machine­
check-interruption code is one. When
bit 1 is zero, bit 34 has no meaning.
The presence and extent of reporting
delayed access exception depend on the
model.

Programming Note

The occurrence of a delayed access
exception normally indicates that the
program is uSlng an improper procedure
to update the OAT tables.

SYNCHRONOUS MACHINE-CHECK-INTERRUPTION
CONDITIONS

The instruction-processing damage and
backed-up bits, bits 1 and 14 of the
machine-cheek-interruption code, identi­
fy, in combination, two conditions.

Bit 1 Bit 1i Name of Condition

1
1

o
1

Processing damage
Processing backup

Processing Backup

The processing-backup condition indi­
cates that the point of interruption is
prior to the point, or points, of error.
This is a nullifying exigent condition.
When all of the other CPU-related-damage
subclasses and modifiers of the
machine-cheek-interruption code are zero
and all of the validity bits associated
with CPU status are indicated as valid,
the machine has successfully returned to
a checkpoint prior to the malfunction,
and no damage has yet occurred to the
CPU.

The subclass bits which must be zero for
this to be the case are as follows:

MCIC Bit

o
3
4
6

Name

System damage
Interval-timer damage
Timing-facility damage
Vector-facility failure

The subclass-modifier bits which must be
zero for this to be the case are as
follows:

MCIC Bit

13
34

Vector-facility source
Delayed-access exception

The validity bits in the machine-check­
interruption code which must be one for
this to be the case are as follows:

Chapter 11. Machine-Check Handling 11-19

MCIC .Ilil

20
21
22

23
27
28
29
31

46
47

Programming Note

Fields Covered ~ .Ilil

PSW EMWP bits
PSW mask and key
PSW program mask and

condition code
PSW instruction address
Floating-point registers
General registers
Control registers
Storage logical validity

(result fields within
current checkpoint
interval>

CPU timer
Clock comparator

The processing-backup condition is
reported rather than system recovery to
indicate that a malfunction or failure
stands in the way of continued operation
of the CPU. The malfunction has not
been circumvented, and damage would have
occurred if instruction processing had
continued.

Processing Damage

The processing-damage condition indi­
cates that damage has occurred to the
instruction processing of the CPU. The
point of interruption is a point beyond
some or all of the points of damage.
Processing damage is a terminating
exigent condition; therefore, the
contents of result fields may be unpre­
dictable and still indicated as valid.

Processing damage may include malfunc­
tions in program-event recording, moni­
tor call, and dynamic address
translation. Processing damage causes
any supervisor-call-interruption condi­
tion and program-interruption condition
to be discarded. However, the contents
of the old PSW and interruption-code
locations for these interruptions may be
set to unpredictable values.

STORAGE ERRORS

Bits 16-18 of the machine-check­
interruption code are used to indicate
an invalid CBC or a near-valid CBC
detected in main storage or an invalid
CBC in a storage key. Bit 19, storage
degradation, may be indicated concur­
rently with bit 17. The failing­
storage-address field, when indicated as

11-20 System/370 Principles of Operation

valid, identifies a location within the
storage checking block containing the
error, or, for storage-key error uncor­
rected, within the block associated with
the storage key. Bit 32, indirect stor­
age error, may be set to one to indicate
that the location designated by the
failing-storage address is not the
original source of the error.

The storage-error-uncorrected and
storage-key-error-uncorrected bits do
not in themselves indicate the occur­
rence of damage because the error
detected may not have affected a result.
The portion of the configuration
affected by an invalid CBC is indicated
in the subclass field of the machine­
check-interruption code.

Storage errors detected for a channel,
when indicated as I/O-error conditions,
may also be reported as (1) system
recovery, (2) external damage with the
external-damage code valid or invalid,
or (3) external secondary report. CBC
errors that occur in storage or in the
storage key and that are detected on
prefetched or unused data for a CPU
program mayor may not be reported,
depending on the model.

Storage Error Uncorrected

Bit 16 (SE), when one, indicates that a
checking block in main storage contained
invalid CBC and that the information
could not be corrected. The contents of
the checking block in main storage have
not been changed. The location reported
may have been accessed or prefetched for
this CPU or another CPU or a channel, or
it may have been accessed as the result
of a model-dependent storage access.

Storage Error Corrected

Bit 17 (SC), when one, indicates that a
checking block in main storage contained
near-valid CBC and that the information
has been corrected before being used.
Depending on the model, the contents of
the checking block in main storage may
or may not have been restored to valid
CBC. The location reported may have
been accessed or prefetched for this CPU
or for another CPU or for a channel, or
it may have been accessed as the result
of a model-dependent storage access.
The presence and extent of the storage­
error-correction capability depend on
the model. This indication mayor may
not be accompanied by an indication of
storage degradation, bit 19 (OS).

Storage-Key Error Uncorrected

Bit 18 (KE), when one, indicates that a
storage key contained invalid CBC and
that the information could not be
corrected. The contents of the checking
block in the storage key have not been
changed. The storage key may have been
accessed or prefetched for this CPU or
for another CPU or for a channel~ or it
may have been accessed as the result of
a model-dependent storage access.

Storage Degradation

Bit 19 (OS), when one~ indicates that
performance degradation has occurred for
the reported storage-error-corrected
condition.

Storage degradation indicates that
although the associated storage error
has been corrected, the correction proc­
ess involved a substantial amount of
time. Thus, this bit indicates that use
of the associated block of storage
should be avoided, if possible.

The indication of storage degradation
has meaning only when bit 17, storage
error corrected, is also one. The pres­
ence and extent of reporting storage
degradation depend on the model.

Programming Note

Because storage degradation is reported
with storage error corrected and,
furthermore, because storage error
corrected is normally reported with
system recovery, the recovery subclass
mask, bit 4 of control register 14,
should be set to one in order for stor­
age degradation to be indicated.

Indirect Storage Error

Bit 32 (IE), when one, indicates that
the physical main-storage location iden­
tified by the failing-storage address is
not the original source of the error.
Instead, the error originated in another
level of the storage hierarchy and has
been propagated to the current
physical-storage portion of the storage
hierarchy. Bit 32 is meaningful only
when bit 16 or 18 (storage error uncor­
rected or storage-key error uncorrected)
of the machine-check-interruption code
is one. When bits 16 and 18 are both
zeros, bit 32 has no meaning.

For errors originating outside the stor­
age hierarchy, the attempt to store is

rejected, and the appropriate error
indication is presented. When an error
is detected during implicit movement of
information inside the storage
hierarchy, the action is not rejected
and reported in this manner because the
movement may be asynchronous and may be
initiated as the result of an attempt to
access completely unrelated information.
Instead, errors in the contents of the
source during implicit moving of infor­
mation from one portion of the storage
hierarchy to another may be preserved in
the target area by placing a special
invalid CBC in the checking block asso­
ciated with the target location. These
propagated errors, when detected later~
are reported as indirect storage errors.
The original source of such an error may
have been in a cache associated with an
I/O processor or a CPU, or the error may
have been the result of a data-path
failure in transmitting data from one
portion of the storage hierarchy to
another. Additionally, a propagated
error may be generated during the move­
ment of data from one physical portion
of storage to another as the result of a
storage-reconfiguration action.

The presence and extent of reporting
indirect storage error depend on the
model.

Programming Note

See the programming notes under TEST
BLOCK in Chapter 10, "Control
Instructions," for the action which
should be taken after storage errors are
reported.

MACHINE-CHECK INTERRUPTION-CODE VALIDITY
BITS

Bits 20-31, 46, and 47 of the machine­
check-interruption code are validity
bits. Each bit indicates the validity
of a particular field in storage. A
validity bit is meaningless if the asso­
ciated facility is not installed. With
the exception of the storage-logical­
validity bit (bit 31), each bit is
associated with a field stored during
the machine-check interruption. When a
validity bit is one, it indicates that
the saved value placed in the corre­
sponding storage field is valid with
respect to the indicated point of inter­
ruption and that no error was detected
when the data was stored.

When a validity bit is zero, one or more
of the following conditions may have
occurred: the original information was
incorrect, the original information had
invalid CBC, additional malfunctions
were detected while storing the informa-

Chapter 11. Machine-Check Handling 11-21

tion, or none or only part of the
information was stored. Even though the
information is unpredictable, the
machine attempts, when possible, to
place valid CBC in the storage field and
thus reduce the possibility of addi­
tional machine checks being caused.

The validity bits for the floating-point
registers, general registers, control
registers, CPU timer, and clock compara­
tor indicate the validity of the saved
value placed in the corresponding save
area. The information in these regis­
ters after the machine-check interrup­
tion is not necessarily correct even
when the correct value has been placed
in the save area and the validity bit
set to one. The use of the registers
and the operation of the facility asso­
ciated with the control registers, CPU
timer, and clock comparator, are unpre­
dictable until these registers are
validated. (See the section "Invalid
CBC in Registers" earlier in this chap­
ter.)

PSW-EMWP Validity

Bit 20 (WP), when one, indicates that
the EMWP bits (bits 12-15) of the
machine-check old PSW are correct.

PSW Mask and Key Validity

Bit 21 (MS), when one, indicates that
the system mask, PSW key, and miscella­
neous bits of the machine-check old PSW
are correct. Specifically, this bit
covers bits 0-11 of both the EC-mode and
the BC-mode PSWs, and also bits 16, 17,
and 24-39 of the EC-mode PSW.

PSW Program-Mask and Condition-Code
Validity

Bit 22 (PM), when one, indicates that
the program mask and condition code of
the machine-check old PSW are correct.

PSW-Instruction-Address Validity

Bit 23 (IA), when one, indicates that
the instruction address (bits 40-63) of
the machine-check old PSW is correct.

11-22 System/370 Principles of Operation

Programming Note

When a machine check occurs which stores
aBC-mode PSW, the contents of the
interruption code and ILC in the
machine-check old PSW are unpredictable,
and no PSW-validity bit covers these
bits. The four PSW-validity bits cover
all 64 bits of the EC-mode PSW.

Failing-storage-Address Validity

Bit 24 (FA), when one, indicates that a
correct failing-storage address has been
placed at real location 248 after a
storage-error-uncorrected, storage-key­
error-uncorrected, or storage-error­
corrected condition has occurred. The
presence and extent of the capability to
identify the failing-storage location
depend on the model. When no such
errors are reported, that is, bits 16-18
of the machine-check-interruption code
are zeros, the failing-storage address
is meaningless, even though it may be
indicated as valid.

Region-Code Validity

Bit 25 (RC), when one, indicates that a
correct region code has been stored in
the word at real location 252. The
presence of the region code depends on
the model. When a model does not
provide a region code, bit 25 is set to
zero.

External-Damage-Code Validity

Bit 26 (EC), when one, and provided that
bit 5, external damage, is also one,
indicates that a valid external-damage
code has been stored in the word at real
location 244. When bit 5 is zero, bit
26 has no meaning.

Floating-Point-Register Validity

Bit 27 (FP), when one, indicates that
the contents of the floating-point­
register save area at real locations
352-383 reflect the correct state of the
floating-point registers at the point of
interruption. When the floating-point
facility is not installed, this bit is
set to zero.

General-Register Validity

Bit 28 (GR), when one, indicates that
the contents of the general-register
save area at real locations 384-447
reflect the correct state of the general
registers at the point of interruption.

Control-Register Validity

Bit 29 (CR), when one, indicates that
the contents of the control-register
save area at real locations 448-511
reflect the correct state of the control
registers at the point of interruption.

Logout Validity

Bit 30 (LG), when one, indicates that
the machine-check extended-logout infor­
mation was correctly stored. When a
model does not provide extended-logout
information, bit 30 is set to zero.

storage Logical Validity

Bit 31 (ST), when one, indicates that
the storage locations, the contents of
which are modified by the instructions
being executed, contain the correct
information relative to the point of
interruption. That is, all stores
before the point of interruption are
completed, and all stores, if any, after
the point of interruption are
suppressed. When a store before the
point of interruption is suppressed
because of an invalid CBC, the storage­
logical-validity bit may be indicated as
one, provided that the invalid CBC has
been preserved as invalid.

When instruction-processing damage is
indicated but processing backup is not
indicated, the storage-Iogical-validity
bit has no meaning.

Storage logical validity reflects only
the instruction-processing activity and
does not reflect errors in the state of
storage as the result of interval-timer
update or I/O operations, or of the
storing of the old PSW and other inter­
ruption information.

CPU-Timer Validity

Bit 46 (CT), when one, indicates that
the CPU timer is not in error and that
the contents of the CPU-timer save area
at real location 216 reflect the correct

state of the CPU timer at the time the
interruption occurred. When the
CPU-timer and clock-comparator facility
is not installed, bit 46 is set to zero.

Clock-Comparator Validity

Bit 47 (CC), when one, indicates that
the clock comparator is not in error and
that the contents of the clock­
comparator save area at real location
224 reflect the correct state of the
clock comparator. When the CPU-timer
and clock-comparator facility is not
installed, bit 47 is set to zero.

Programming Note

The validity bits must be used in
conjunction with the subclass bits and
the backed-up bit in order to determine
the extent of the damage caused by a
machine-check condition. No damage has
occurred to the system when all of the
following are true:

•

•

•

•

The four PSW-validity bits, the
three register-validity bits, the
two timing-facility-validity bits,
and the storage-Iogical-validity
bit are all ones if the facility
with which they are associated is
installed.

Subclass bits 0, 3, 4, 5, 6, and 10
are zeros.

The instruction-processing-damage
bi tis zero or, if one, the
backed-up bit is also one.

The vector-facility-source bit and
the delayed-access-exception bit
are zeros.

Machine-Check Extended-Logout Length

Bits 48-63 of the machine-check­
interruption code contain a 16-bit bina­
ry value indicating the length in bytes
of the information most recently stored
in the extended-logout area, starting at
the real location designated by the
machine-check extended-logout address in
control register 15. When no extended
logout has occurred, this field is set
to zero.

Programming Note

When asynchronous machine-check extended
logouts are permitted (control register

Chapter 11. Machine-Check Handling 11-23

14, bit 8, is one), more than one
extended logout may have occurred. The
length stored on interruption does not
necessarily indicate the longest logout
which has occurred.

MACHINE-CHECK EXTENDED INTERRUPTION
INFORMATION

As part of the machine-check inter­
ruption, in some cases, extended inter­
ruption information is placed in fixed
areas assigned in storage. The contents
of registers associated with the CPU are
placed in register-save areas. For
external damage, additional information
is provided for some models by storing
an external-damage code. When storage
error uncorrected, storage error
corrected, or storage-key error uncor­
rected is indicated, the failing-storage
address is saved. Some models store a
region code to show the location of the
error.

Each of these fields has associated with
it a validity bit in the machine-check­
interruption code. If, for any reason,
the machine cannot store the proper
information in the field, the associated
validity bit is set to zero.

REGISTER-SAVE AREAS

As part of the machine-check inter­
ruption, the current contents of the CPU
registers, except for the prefix regis­
ter and the TOO clock, are stored in
five register-save areas assigned in
storage. Each of these areas has asso­
ciated with it a validity bit in the
machine-cheek-interruption code. If,
for any reason, the machine cannot store
the proper information in the field, the
associated validity bit is set to zero.

The following are the five sets of
registers and the real locations in
storage where their contents are saved
during a machine-check interruption.

locations

216-223
224-231
352-383

384-447
448-511

Registers

CPU timer
Clock comparator
Floating-point regis-

ters 0, 2, 4, 6
General registers 0-15

. Control registers 0-15

When the CPU-timer and clock-comparator
facility or the floating-point facility
is not installed, the corresponding
locations remain unchanged. The infor­
mation stored for unassigned or unin­
stalled control-register positions is
unpredictable.

11-24 System/370 Principles of Operation

EXTERNAL-DAMAGE CODE

The word at real location 244 is the
external-damage code. This field, when
implemented and indicated as valid,
describes the cause of external damage.
The field is valid only when the
external-damage bit and the external­
damage-validity bit (bits 5 and 26 in
the machine-cheek-interruption code) are
both ones. The presence and extent of
reporting an external-damage code depend
on the model.

The external-damage code has the follow-
ing format:

10 ol~ ilol~ ~Io :~ C C S
N C T

0 2 7 8 10 31

External Secondary Report (ES): Bit 2,
when one, indicates that the machine­
check interruption has been reported for
an external error for which the primary
indication has been or will be made by
means of some other report. The primary
indication may be an I/O-error
condition, an indication to the
operator, another machine-check inter­
ruption, or even another bit in the same
machine-check interruption.

External secondary report has three main
purposes. First, it is used to present
the failing-storage address associated
with storage errors detected during
channel accesses to storage. In this
case, the failing-storage address and
storage-error-uncorrected, storage­
error-corrected, or storage-key-error­
uncorrected indication are used to
identify the cause of failure and the
associated location.

Second, external secondary report is
used to present model-dependent logout
information for an error associated with
a channel that is physically integrated
with the CPU. The machine-check indi­
cation in this case is provided so that
channels integrated with the CPU can use
the normal CPU logout mechanism for
presenting the model-dependent logout
information.

For these two purposes, the primary
error indication is normally by means of
an I/O-error condition. These errors
include conditions presented as
channel-control check, channel-data
check, and interface-control check.
External secondary reports due to I/O
and channel errors (1) may be presented
to any or all CPUs in the configuration,
(2) are not necessarily presented to the
CPU to which the channel is connected,

and (3) when channel-set switching is
installed, may be presented even when
the channel set is disconnected. In
some models, external secondary reports
due to I/O and channel errors may be
broadcast to all CPUs in the configura­
tion.

The third use of external secondary
report is to provide a mechanism for
presenting logout information associated
with errors detected by other external
devices or during operator-initiated
operations. The primary indication in
this case is normally by means of the
external device or by an indication to
the operator.

Channel Not Operational (CN): Bit 3,
when one, indicates that one or more
channels in the configuration have
entered the not-operational state with­
out signaling system reset to their
attached devices. This situation occurs
when these channels have detected an
error of such severity that channel
operations cannot continue. In config­
urations with channel-set switching,
channel-not-operational conditions are
reported to all CPUs in the configura­
tion even when the channel set is
disconnected. Only those state changes
in the channel which would be seen if
the channel set were connected to a CPU
are considered for purposes of this
interruption. The channel-not­
operational condition is reported only
in configurations in which all channels
have implemented the recovery-extension
facility.

Channel-Control Failure (CC): Bit 4,
when one, indicates that-one or more
channels in the configuration have
entered the not-operational state and
mayor may not have signaled system
reset to their attached devices. This
situation occurs when the channels have
lost power or detected an error of such
severity that channel operations cannot
continue. In configurations with
channel-set switching, channel-control­
failure conditions are reported to all
CPUs in the configuration, even when the
channel set is disconnected. The
channel-control-failure condition is
reported only in configurations in which
all channels have implemented the
recovery-extension facility.

When the machine can determine that all
affected channels actually entered the
not-operational state without signaling
system reset to their attached devices,
the channel-not-operational condition is
indicated rather than channel-control
failure.

I/O-Instruction Timeout (ST): Bit 5,
when one, indicates that the execution
time of an I/O instruction has exceeded
the maximum allowed by the CPU. The I/O
instruction has been completed by

setting condition code 3. When the CPU
is enabled for external-damage machine­
check conditions at the time the timeout
occurs, and, if a program interruption
for a PER event does not intervene, the
instruction address stored in the
machine-check old PSW (if indicated as
valid) points to the instruction follow­
ing the last executed I/O instruction.
In this case, the address of the failing
I/O instruction (or of EXECUTE) can be
obtained by subtracting 4 from the
instruction address. Timeout of an I/O
instruction is reported by means of bit
5 only when the CPU can ensure that the
channel has not signaled system reset to
its attached devices. Depending on the
channel and the timeout condition, the
channel mayor may not be operational.
The I/O-instruction-timeout condition is
reported only in configurations in which
all channels have implemented the
recovery-extension facility.

1/0- I n t err u p t ion Timeout (T T) : Bit 6 ,
when one, indicates that the channel
portion of an I/O interruption has
exceeded the time limit established by
the CPU and that the CPU has canceled
the interruption. The I/O-interruption
condition mayor may not have been lost,
and information mayor may not have been
stored at the locations of the old PSW,
CSW, and other areas associated with an
I/O interruption. The I/O interruption
was not taken; that is, sequenti al
instruction processing continued without
loading the I/O new PSW. Timeout of an
I/O interruption is reported by means of
bit 6 only when the CPU can ensure that
the channel has not signaled system
reset to its attached devices. Depend­
ing on the channel and the timeout
condition, the channel mayor may not be
operational. The I/O-interruption­
timeout condition is reported only in
configurations in which all channels
have implemented the recovery-extension
facility.

Expanded storage Not Operational (XN):
Bit 8, when one, indicates that the
controller associated with some or all
of the expanded storage in the config­
uration has become not operational.

Expanded-storage-not-operational
tions are reported to all CPUs
configuration.

condi­
in the

Expanded-storage Control Failure (XF):
Bit 9, when one, indicates tha~ a
malfunction has been detected in a
controller associated with some or all
of the expanded storage in the config­
uration. When expanded-storage control
failure is indicated, the blocks of the
expanded storage contain either the
proper contents or a preserved error.

Expanded-storage-control-failure
tions are reported to all CPUs
configuration.

condi­
in the

Chapter 11. Machine-Check Handling 11-25

Reserved: Bits 0, I, 7, and 10-31 are
reserved for future expansion and are
always set to zeros.

Programming Notes

1. Bit 0 is reserved for future expan­
sion and possible redefinition of
the remaining bits in the
external-damage code. Thus, the
program should test bit 0 for a
zero value before interpreting the
other bits in the external-damage
code.

2. Bit 3 (channel not operational),
bit 4 (channel-control failure),
and external damage with the
external-damage code invalid, form
a set of three errors of increasing
severity. When a channel-not­
operational or channel-control­
failure condition is reported, the
affected channels enter the not­
operational state. Thus, if the
program is aware of the channel
addresses of all channels which
have been operational in the
configuration, then, by repeatedly
executing the TEST CHANNEL instruc­
tion designating each channel in
the configuration, the program can
determine which channels have
entered the not-operational state.
Since the channel-not-operational
and channel-control-failure condi­
tions are reported to all CPUs in
the configuration, all channels on
all CPUs must be tested. When
channel-set switching is installed,
then all channels, including those
not currently connected to any CPU,
must be tested.

Channel not operational is the
least severe indication of the
three. The affected channels can
be determined as indicated above,
and it is known in this case that
system reset has not been signaled
to the attached devices.

Channel-control failure is more
severe than channel not operational
in that system reset may have been
signaled to the attached devices.

External damage with the external­
damage code invalid is the most
severe indication of the three.
All channels in the configuration
may have been affected, and the
affected channels mayor may not
appear to be not operational when a
TEST CHANNEL instruction is
executed. Damage which can be
reported by means of this indi­
cation includes errors occurring
during the execution of an I/O

11-26 System/370 Principles of Operation

interruption. For example, this
indication can be used to report
that an I/O interruption occurred
with incorrect I/O address, incor­
rect CSW, incorrect full-channel
logout, incorrect limited-channel­
logout information, or channel­
control failure.

3. On some models, a channel which has
become channel not operational may
be restored by executing CLEAR
CHANNEL. See the programming note
under "CLEAR CHANNEL," in Chapter
13, Input/Output Operations."

FAILING-STORAGE ADDRESS

When storage error uncorrected, storage
error corrected, or storage-key error
uncorrected is indicated in the
machine-check-interruption code, the
associated address, called the failing­
storage address, is stored in bit posi­
tions 8-31 of the word at real location
248. Bits 0-7 of that word are set to
zeros. When the extended-rea I-address
facility is installed, the failing­
storage address is 31 bits, and a zero
is stored in bit position 0 of the word
at real location 248. The field is
valid only if the failing-storage­
address validity bit, bit 24 of the
machine-check-interruption code, is one.

In the case of storage errors, the
failing-storage address may designate
any byte within the checking block. For
storage-key error uncorrected, the
failing-storage address may designate
any address within the block of storage
associated with the storage key that is
in error. When an error is detected in
more than one location before the inter­
ruption, the failing-storage address may
designate any of the failing locations.
The address stored is an absolute
address; that is, the value stored is
the address that is used to reference
storage after dynamic address trans­
lation and prefixing have been applied.

REGION CODE

Depending on the model, a region code
may be stored in the word at real
location 252. The field is valid only
if the region-code-validity bit, bit 25
in the machine-check-interruption code,
is one. The region code may contain
model-dependent information which more
specifically defines the location of the
error. For example, it may contain a
model-dependent address of the unit
causing an external damage or recovery
report.

HANDLING OF MACHINE-CHECK CONDITIONS

FLOATING INTERRUPTION CONDITIONS

An interruption condition which is made
available to any CPU in a multiprocess­
ing configuration is called a floating
interruption condition. The first CPU
that accepts the interruption clears the
interruption condition, and it is no
longer available to any other CPU in the
configuration.

The service-signal external-interruption
condition is a floating interruption
condition. Depending on the model, some
machine-check-interruption conditions
associated with system recovery,
warning, and external secondary report
may be floating interruption conditions.

A floating interruption is presented to
the first CPU in the configuration which
is enabled for the interruption condi­
tion and can accept the interruption. A
CPU cannot accept the interruption when
it is in the check-stop state, has an
invalid prefix, is performing an unend­
ing string of interruptions due to a
PSW-format error of the type that is
recognized early, is executing a READ
DIRECT instruction, or is in the stopped
state. However, a CPU with the rate
control set to instruction step can
accept the interruption when the start
key is activated.

Programming Note

When a CPU enters the check-stop state
in a multiprocessing configuration, the
program on another CPU can determine
whether a floating interruption may have
been reported to the failing CPU and
then lost. This can be accomplished if
the interruption program places zeros in
the real storage locations containing
old PSWs and interruption codes after
the interruption has been handled (or
has been moved into another area for
later processing). After a CPU enters
the check-stop state, the program in
another CPU can inspect the old-PSW and
interruption-code locations of the fail­
ing CPU. A nonzero value in an old PSW
or interruption code indicates that the
CPU has been interrupted but the program
did not complete the handling of the
interruption.

Floating Machine-Check-Interruption
Conditions

Floating machine-check-interruption con­
ditions are reset only by the manually
initiated resets through the operator
facilities. When a machine check occurs
which prohibits completion of a floating
machine-check interruption, the inter­
ruption condition is no longer consid­
ered a floating interruption condition,
and system damage is indicated.

MACHINE-CHECK MASKING

All machine-check interruptions are
under control of the machine-check mask,
PSW bit 13. In addition, some machine­
check conditions are controlled by
subclass masks in control register 14.

The exigent machine-check conditions
(system damage and instruction­
processing damage) are controlled only
by the machine-check mask, PSW bit 13.
When PSW bit 13 is one, an exigent
condition causes a machine-check inter­
ruption. When PSW bit 13 is zero and
the check-stop-control bit, bit 0 of
control register 14, is one, the occur­
rence of an exigent machine-check
condition causes the CPU to enter the
check-stop state. When PSW bit 13 is
zero and the check-stop-control bit is
zero, the machine may attempt to contin­
ue or may enter the check-stop state
depending on the type of error.

The repressible machine-check condi­
tions, except vector-facility failure
and service-processor damage, are
controlled both by the machine-check
mask, PSW bit 13, and by four subclass­
mask bits in control register 14. If
PSW bit 13 is one and one of the
subclass-mask bits is one, the associ­
ated condition initiates a machine-check
interruption. If a subclass-mask bit is
zero, the associated condition does not
initiate an interruption but is held
pending. However, when a machine-check
interruption is initiated because of a
condition for which the CPU is enabled,
those conditions for which the CPU is
not enabled may be presented along with
the condition which initiates the inter­
ruption. All conditions presented are
then cleared.

Control register 14 contains mask bits
that specify whether certain conditions
can cause machine-check interruptions;
it has the following format:

o 1 4 7

Chapter 11. Machine-Check Handling 11-27

With the exception of bit 0, which is
provided on all models, each of the bits
is necessarily provided only if the
associated function is provided.

Programming Note

The program should avoid, whenever
possible, operating with PSW bit 13, the
machine-check mask, set to zero, since
any exigent machine-check condition
which is recognized during this situ­
ation may cause the CPU to enter the
check-stop state. In particular, the
program should avoid executing I/O
instructions or allowing I/O inter­
ruptions with PSW bit 13 zero.

Check-Stop Control

Bit 0 (CS) of control register 14,
controls the system action taken when an
exigent machine-check condition occurs
under one of the following two condi­
tions:

1. The CPU is disabled for
check interruptions (that
bit 13 i s zero).

machine­
iS 1 PSW

2. An exigent machine-check condition
occurs during the process of stor­
ing the machine-cheek-interruption
code, storing the machine-check old
PSW, or fetching the machine-check
new PSW during a machine-check
interruption.

If the check-stop-control bit is one and
either condition occurs, the machine
enters the check-stop state; if the
check-stop-control bit is zero, the
machine may attempt to continue or may
enter the check-stop state, depending on
the type of error and the model. The
check-stop-control bit is initialized to
one. If damage occurs to control regis­
ter 14, the check-stop-control bit is
assumed to be one.

Recovery Subclass Mask

Bit 4 (RM) of control register 14 con­
trols system-recovery interruption con­
ditions. This bit is initialized to
zero.

Degradation Subclass Mask

Bit 5 (OM) of control register 14
controls degradation interruption condi-

11-28 System/370 Principles of Operation

tions. This bit is initialized to zero.

External-Damage Subclass Mask

Bit 6 (EM) of control register 14 con­
trols timing-facility-damage, interval­
timer-damage, and external-damage inter­
ruption conditions. This bit is
initialized to one.

Warning Subclass Mask

Bit 7 (WM) of control register 14
controls warning interruption condi­
tions. This bit is initialized to zero.

MACHINE-CHECK LOGOUT

Some models place model-dependent infor­
mation in main storage as a result of a
machine check. This is referred to as a
machine-check logout. Machine-check
logouts are of four different types:
synchronous fixed logout, asynchronous
fixed logout, synchronous machine-check
extended logout, and asynchronous
machine-check extended logout.

Machine-cheek-logout information may,
depending on the model, be placed in the
machine-check extended-logout (MCEl)
area. The starting real location of the
MCEl area is designated by the contents
of control register 15. The existence
and length of the MCEl are model­
dependent.

Some models may place model-dependent
information in the fixed-logout area.
This area is 96 bytes in length and
starts at real location 256. The fixed
logout may be in addition to or instead
of an extended logout.

When a machine-check logout occurs
during the machine-check interruption,
it is called a synchronous logout. If a
machine-check logout occurs without a
machine-check interruption, or if the
logout and the interruption are sepa­
rated by instruction processing or by
CPU retry, then the logout is called an
asynchronous logout.

To preserve the initial machine-check
conditions, some models perform an asyn­
chronous logout before invoking CPU
retry. Depending on the model, logout
may occur before recovery, after recov­
ery, or at both times. If logout occurs
at both times, it may be into the same
portion or two different portions of the
logout area.

LOGOUT CONTROLS

Control register 14 contains bits which
control when a logout may occuri it has
the following format:

I I /Jill[F
L L L L

/
1 2 8 9

Synchronous Machine-Check
Extended-Logout Control

Bit 1 CSL) of control register 14
controls the logout action during a
machine-check interruption. When this
bit is one, the machine-check extended­
logout area may be changed during the
interruptioni when this bit is zero, the
area may be changed only under control
of the asynchronous machine-check
extended-logout-control bit, bit 8 of
control register 14. Bit 1 of control
register 14 is initialized to one.

Input/Output Extended-Logout Control

Bit 2 (Il) of control register 14, when
one, permits channel logout into the I/O
extended-logout area. When this bit is
zero, I/O extended logouts cannot occur.
Bit 2 of control register 14 is initial­
ized to zero.

Asynchronous Machine-Check
Extended-Logout Control

Bit 8 (AL) of control register 14, in
conjunction with PSW bit 13, controls
asynchronous change of the machine-check
extended-logout area. When this bit and
PSW bit 13 are both ones, the machine
may change the machine-check extended­
logout area at any time; when this bit
is zero, the area may be changed only
under control of the synchronous
machine-check extended-logout-control
bit, bit 1 of control register 14. Bit
8 of control register 14 is initialized
to zero.

Asynchronous Fixed-Logout Control

Bit 9 (FL) of control register 14, when
one, permits the fixed-logout area to be
changed at any time. When this bit is
zero, the fixed-logout area may be

changed only during a machine-check
interruption or during an I/O inter­
ruption. Bit 9 of control register 14
is initialized to zero.

MACHINE-CHECK EXTENDED-LOGOUT ADDRESS

Control register 15 contains the
machine-check extended-logout address
and has the following format:

MCEL Address

o 8 29 31

Bits 8-28 of control register 15, with
three rightmost zeros appended, desig­
nate the starting real location of the
machine-check extended-logout (MCEl)
area. The contents of control register
15 are initialized by setting bit 22 to
one and all other bits to zeros, which
specifies a starting address of 512
(decimal). When extended real address­
ing is installed, the MCEl address is
still a 24-bit real address and is
extended on the left with zeros. Thus,
the machine-check extended logout can
wrap from real location 224 - 1 to real
location O.

When a model provides the machine-check
extended logout (MCEl), control register
15 is implemented.

Programming Notes

1. The availability and extent of the
machine-check e~tended-logout area
differs among models and, for any
particular model, may depend on the
facilities or engineering changes
installed. In order to provide for
such variations, the program should
determine the extent of the logout
by means of STORE CPU 10 whenever a
storage area for the extended
logout is to be assigned. A length
of zero in the MCEL field that
results from executing STORE CPU 10
indicates that no MCEL is provided.

2. The maximum logout information is
obtained by setting both the
synchronous and asynchronous
machine-check extended-logout-
control bits to ones. Both of
these bits must be zeros to prevent
any changes to the machine-check
extended-logout area.

3. Use of the machine-check extended­
logout area while asynchronous
machine-check extended logout is
allowed may produce unpredictable
results.

Chapter 11. Machine-Check Handling 11-29

4. When the asynchronous fixed-
logout-control bit is one, program
use of the fixed-logout area should
be restricted to the fetching of
data from this area. CPU programs
or channel programs storing into
the fixed-logout area may cause
machine checks or undetected errors
if the store occurs during CPU
retry. Note that this is £ill excep­
tion to the rule that programming
errors do not cause machine-check
indicatTOns-.-- -----

SUMMARY OF MACHINE-CHECK MASKING AND
LOGOUT

A summary
logout is
figures.

of machine-check masking and
g1ven in the following three

Action When CPU
Disabled for

Machine-Check Condition Subclass and
Sub-

MCIC Class Check-Stop Check-Stop
Bit Subclass Mask Ctrl = 0 Ctrl

0 System damage - p* Check
1 Instruction-processing damage - p* Check
2 System recovery RM Y
3 Interval-timer damage EM P
4 Timing-facility damage EM P
5 External damage EM P
6 Vector-facility failure - P
7 Degradation OM P
8 Warning WM P

10 Service-processor damage - P

Explanation:

* System integrity may have been lost, and the system
cannot be considered dependable.

- The condition does not have a subclass mask.

P Indication is held pending.

Y Indication may be held pending or may be discarded.

OM Degradation subclass mask (bit 5 of CR14).

EM External-damage subclass mask (bit 6 of CR14).

RM Recovery subclass mask (bit 4 of CR14).

WM Warning subclass mask (bit 7 of CR14).

Machine-Cheek-Condition Masking

11-30 System/370 Principles of Operation

Y
P
P
P
P
P
P
P

= 1

stop
stop

PSW CR14 Bit 1 CR14 Bit 8
Bit 13 (Sl) (Al) MCEl Action

o X X MCEl does not occur.
1 0 o MCEL does not occur.
1 1 o MCEL may occur only during

machine-check interruption. 1

1 0 1 MCEL may occur at any time. 2

1 1 1 MCEL may occur at any time.

CR14 Bit 9
(FL) Fixed-Logout Action

o Fixed-logout area may be changed by the CPU
only during machine-check interruption. 1

1 Fixed-logout area may be changed at any time.

Explanation:

1

2

AL

FL

MCEL

Sl

X

Logout prior to instruction retry is not permissible in
this state even though recovery reports are enabled.

In some models, the asynchronous machine-check extended­
logout control (AL) is ignored, and no logout occurs in
this state.

Asynchronous machine-check extended-logout control.

Asynchronous fixed-logout control.

Machine-check extended logout.

Synchronous machine-check extended-logout control.

Indicates that the same action occurs whether the bit is
zero or one.

Machine-Cheek-Logout Control

Control State of Bit
Register 14 on Initial

Bit Description Bit Position CPU Reset

Check-stop control 0 1
Synchronous MCEL control 1 1
IOEL control 2 0
Recovery subclass mask 4 0
Degradation subclass mask 5 0
External-damage subclass mask 6 1
Warning subclass mask 7 0
Asynchronous MeEL control 8 0
Asynchronous fixed-logout control 9 0

Machine-Check Control-Register Bits

Chapter 11. Machine-Check Handling 11-31

CHAPTER 12. OPERATOR FACILITIES

Manual Operation ••••••••••••••••••••••••.••••••••••••••••• 12-1
Basic Operator Facilities •••••••••••••••.••••••••••••••••• 12-1

Address-Compare Controls ••••••••••••••.••••••••••••••••. 12-1
A I ter-and-D i splay Cont ro Is ••...•.•••••.•••••••...••.•••• 12-2
Check-Stop Indicator •••• ~ •••••••••••••.••••••••••••••••• 12-2
IML Control s ••.•••••••••••••.•••••••••.•.••••••••••••••• 12-2
Interrupt Key ...••••••••••••.•.•.•••••.••••••••••••••••• 12-2
Interval-Timer Control •••••••••••••••..••••••••••••••••• 12-3
Load Indicator •• 12-3
Load-Clear Key ••••••••••••••.•••••••••.••••••••••••••••• 12-3
Load-Normal Key ...••••.•••••••••••••••.••••••••••••••••• 12-3
Load-Unit-Address Controls ••••••••••.•.•.•••.••••••••••• 12-3
Manual Indicator ••••••••••••••••••••••.••••••••••••••••. 12-3
Power Controls ..•.••.•••.•••.•••••••••.•••••••.••••••••• 12-3
Rate Control ••.•••••...•.•••.•..••.•.•.••••••••••••••••• 12-4
Resta rt Key ••••.••••••.•••••••••••••...•.•.•••••......•. 12-4
Sta rt Key •••••.•••...•••••••.•••••••••.•.•••••••.••••••• 12-4
stop Key •...••.••••..••••.•.••••••.•••.••••••.•••••••••• 12-4
Store-Status Key .••..•...•••••••.•••••.•.••••..••••••••• 12-5
System-Reset-Clear Key ...•.•.•.•.•.•••.•••••..••••••.••• 12-5
System-Reset-Normal Key ..•.•••.•..••••.•..•.••..•••.••.• 12-5
Test Indi cator ••.••••.••••••••••••••••.••••••••••••.•••• 12-5
TOO-Clock Control .•••.•.••••.•.•••••••.••••••••••••••••• 12-5
Wai t Indi cator•.....••••.•••••••••.•.••••••••••••••• 12-6

Multiprocessing Configurations ••••••••••.•••••••••••••••.. 12-6

MANUAL OPERATION

The operator facilities provide func­
tions for the manual operation and
control of the machine. The functions
include operator-to-machine communi­
cation, indication of machine status,
control over the setting of the TOO
clock, initial program loading, resets,
and other manual controls for operator
intervention in normal machine
operation.

A model may provide additional operator
facilities which are not described in
this chapter. Examples are the means to
indicate specific error conditions in
the equipment, to change equipment con­
figurations, and to facilitate mainte­
nance. Furthermore, controls covered in
this chapter may have additional
settings which are not described here.
Such additional facilities and settings
may be described in the appropriate
System Library publication.

Most models provide, in association with
the operator facilities, a console
device which may be used as an I/O
device for operator communication with
the program; this console device may
also be used to implement some or all of
the facilities described in this
chapter.

The operator facilities may be imple­
mented on different models in various

technologies and configurations. On
some models, more than one set of phys­
ical representations of some keys,
controls, and indicators may be
provided, such as on multiple local or
remote operating stations, which may be
effective concurrently.

A machine malfunction that prevents a
manual operation from being performed
correctly, as defined for that
operation, may cause the CPU to enter
the check-stop state or give some other
indication to the operator that the
operation has failed. Alternatively, a
machine malfunction may cause a
machine-check-interruption condition to
be recognized.

BASIC OPERATOR FACILITIES

ADDRESS-COMPARE CONTROLS

The address-compare controls provide a
way to stop the CPU when a preset
address matches the address used in a
specified type of main-storage refer­
ence.

One of the address-compare controls is
used to set up the address to be
compared with the storage address.

Chapter 12. Operator Facilities 12-1

Another control provides at least two
positions to specify the action, if any,
to be taken when the address match
occurs:

1. The normal position disables the
address-compare operation.

2. The stop position causes the CPU to
enter the stopped state on an
address match. When the control is
in this setting, the test indicator
is on. Depending on the model and
the type of reference, pending I/O,
external, and machine-check inter­
ruptions mayor may not be taken
before entering the stopped state.

A third control may specify the type of
storage reference for which the address
comparison is to be made. A model may
provide one or more of the following
positions, as well as others:

1. The any position causes the address
comparison to be performed on all
storage references.

2. The data-store position causes
address comparison to be performed
when storage is addressed to store
data.

3. The I/O position causes address
comparison to be performed when
storage is addressed by a channel
to transfer data or to fetch a
channel-command or indirect-data­
address word. Whether references
to the channel-address word or the
channel-status word cause a match
to be indicated depends on the
model.

4. The instruction-address position
causes address comparison to be
performed when storage is addressed
to fetch an instruction. The
rightmost bit of the address
setting mayor may not be ignored.
The match is indicated only when
the first byte of the instruction
is fetched from the selected
location. It depends on the model
whether a match is indicated when
fetching the target instruction of
EXECUTE.

Depending on the model and the type of
reference, address comparison may be
performed on virtual, real, or absolute
addresses, and it may be possible to
specify the type of address.

In a multiprocessing configuration, it
depends on the model whether the address
setting applies to one or all CPUs in
the configuration and whether an address
match causes one or all CPUs in the
configuration to stoP.

12-2 System/370 Principles of Operation

ALTER-AND-DISPLAY CONTROLS

The operator facilities provide controls
and procedures to permit the operator to
alter and display the contents of
locations in storage, the storage keys,
the general, floating-point, and control
registers, the prefix, and the PSW.

Before alter-and-display operations may
be performed, the CPU must first be
placed in the stopped state. During
alter-and-display operations, the manual
indicator may be turned off temporarily,
and the start and restart keys may be
inoperative.

Addresses used to select storage
locations for alter-and-display oper­
ations are real addresses. The capabil­
ity of specifying logical, virtual, or
absolute addresses may also be provided.

CHECK-STOP INDICATOR

The check-stop indicator is on when the
CPU is in the check-stop state. Reset
operations normally cause the CPU to
leave the check-stop state and thus turn
off the indicator. The manual indicator
may also be on in the check-stop state.

IML CONTROLS

The IML controls provided with some
models perform initial microprogram
loading (IML).

The IML controls are effective while the
power is on.

Note: The name "IMPL controls" was used
in earlier descriptions.

INTERRUPT KEY

When the interrupt key is activated, an
external-interruption condition indicat­
ing the interrupt key is generated.
(See the section "Interrupt Key" in
Chapter 6, "Interruptions.")

The interrupt key is effective when the
CPU is in the operating or stopped
state. It depends on the model whether
the interrupt key is effective when the
CPU is in the load state.

INTERVAL-TIMER CONTROL

The interval-timer control disables or
enables operation of the interval timer.
Disabling the interval timer does not
affect any other facility.

When the control is set to the disable
position, updating of real-storage
locations 80-83 ceases. The contents of
the interval timer remain at the last
value to which they were updated, unless
changed by a subsequent store operation.
Depending on the model, any already­
pending interval-timer-interruption con­
dition is unaffected, is cleared, or is
kept pending without regard to the state
of the external mask, PSW bit 7, and the
interval-timer mask, bit 24 of control
register O.

When the control is set to the enable
position, updating of real-storage
locations 80-83 is resumed by using the
current contents. If an interval­
timer-interruption request existed and
was kept pending when the interval-timer
control was last set to the disable
position, that condition remains pending
until the CPU is enabled for the inter­
ruption.

The enable position is considered the
normal position. The test indicator may
or may not be turned on when the
interval-timer control is set to the
disable position.

Programming Note

Disabling the interval timer allows
execution of a program which uses real­
storage locations 80-83 as ordinary
storage. A program which does not use
the interval timer will function
correctly with the interval timer disa­
bled, even when the interval timer
fails.

LOAD INDICATOR

The load indicator is on during initial
program loading, indicating that the CPU
is in the load state. The indicator
goes on for a particular CPU when the
load-clear or load-normal key is acti­
vated for that CPU and the corresponding
operation is started. It goes off after
the new PSW is loaded successfully. For
details, see the section "Initial
Program Loading" in Chapter 4,
"Control."

LOAD-CLEAR KEY

Activating the load-clear key causes a
reset operation to be performed and
initial program loading to be started by
using the channel and I/O device desig­
nated by the load-unit-address controls.
Clear reset is performed on the config­
uration. For details, see the sections
"Resets" and "Initial Program Loading"
in Chapter 4, "Control."

The load-clear key is effective when the
CPU is in the operating, stopped, load,
or check-stop state.

LOAD-NORMAL KEY

Activating the load-normal key causes a
reset operation to be performed and
initial program loading to be started by
using the channel and I/O device desig­
nated by the load-unit-address controls.
Initial CPU reset is performed on the
CPU for which the load-normal key was
activated, CPU reset is propagated to
all other CPUs in the configuration, and
a subsystem reset is performed on the
remainder of the configuration. For
details, see the sections "Resets" and
"Initial Program Loading" in Chapter 4,
"Control."

The load-normal key is effective when
the CPU is in the operating, stopped,
load, or check-stop state.

LOAD-UNIT-ADDRESS CONTROLS

The load-unit-address controls specify
the I/O address of the channel and the
device used for initial program loading.
For details, see the section "Initial
Program Loading" in Chapter 4,
"Control."

MANUAL INDICATOR

The manual indicator is on when the CPU
is in the stopped state. Some functions
and several manual controls are effec­
tive only when the CPU is in the stopped
state.

POWER CONTROLS

The power controls are used to turn the
power on and off.

The CPUs, storage, channels, operator
facilities, and I/O devices may all have

Chapter 12. Operator Facilities 12-3

their power turned on and off by common
controls, or they may have separate
power controls. When a particular unit
has its power turned on, that unit is
reset. The sequence is performed so
that no instructions or I/O operations
are performed until explicitly
specified. The controls may also permit
power to be turned on in stages, but the
machine does not become operational
until power on is complete.

When the power is completelY turned on,
an IML operation is performed on models
which have an IML function. A power-on
reset is then in~tiated (see the ~ection
"Resets" in Chapter 4, "Control").

RATE CONTROL

The setting of the rate control deter­
mines the effect of the start function
and the manner in which instructions are
executed.

The rate control has at least two posi­
tions. The normal position is the proc­
ess position. Another position is the
instruction-step position. When the
rate control is set to the process posi­
tion and the start function is
performed, the CPU starts operating at
normal speed. When the rate control is
set to the instruction-step position and
the wait-state bit is zero, one instruc­
tion or, for interruptible instructions,
one unit of operation is executed, and
all pending allowed interruptions are
taken before the CPU returns to the
stopped state. When the rate control is
set to the instruction-step position and
the wait-state bit is one, no instruc­
tion is executed, but all pending
allowed interruptions are taken before
the CPU returns to the stopped state.
For details, see the section "Stopped,
Operating, Load, and Check-Stop States"
in Chapter 4, "Control."

The test indicator is on while the rate
control is not set to the process posi­
tion.

If the setting of the rate control is
changed while the CPU is in the operat-
1ng or load state, the results are
unpredictable.

RESTART KEY

Activating the restart key
restart interruption. (See
"Restart Interruption" in
"Interruptions.")

initiates a
the section
Chapter 6,

12-4 System/370 Principles of Operation

The restart key is effective when the
CPU is in the operating or stopped
state. The key is not effective when
the CPU is in the check-stop state. It
depends on the model whether the restart
key is effective when any CPU in the
configuration is in the load state.

The effect is unpredictable when the
restart key is activated while any CPU
in the configuration is in the load
state. In particular, if the CPU
performs a restart interruption and
enters the operating state while another
CPU is in the load state, operations
such as I/O instructions, the SIGNAL
PROCESSOR instruction, and the INVALI­
DATE PAGE TABLE ENTRY instruction may
not operate according to the definitions
given in this publication.

START KEY

Activating the start key causes the CPU
to perform the start function. (See the
section "Stopped, Operating, Load, and
Check-Stop States" in Chapter 4, "Con­
trol.")

The start key is effective only when the
CPU is in the stopped state. The effect
is unpredictable when the stopped state
has been entered by a reset.

STOP KEY

Activating the stop key causes the CPU
to perform the stop function. (See the
section "Stopped, Operating, Load, and
Check-Stop States" in Chapter 4, "Con­
trol.")

The stop key is effective only when the
CPU is in the operating state.

Operation Note

Activating the stop key
when:

• An unending string
program or external
occurs.

has no effect

of certain
interruptions

• The prefix register contains an
invalid address.

•

•

The CPU is in the load or check­
stop state.

A READ DIRECT instruction cannot be
completed.

STORE-STATUS KEY

Activating the store-status key initi­
ates a store-status operation. (See the
section "Store Status" in Chapter 4,
"Control.")

The store-status key is effective only
when the CPU is in the stopped state.

Operation Note

The store-status operation may be used
in conjunction with a standalone dump
program for the analysis of major
program malfunctions. For such an oper­
ation, the following sequence would be
called for:

1. Activation of the stop or system­
reset-normal key

2. Activation of the store-status key

3. Activation of the load-normal key
to enter a standalone dump program

The system-reset-normal key must be
activated in step 1 when (1) the stop
key is not effective because a contin­
uous string of interruptions is occur­
ring, (2) the prefix register contains
an invalid address, (3) a READ DIRECT
instruction cannot be completed, or (4)
the CPU is in the check-stop state.

SYSTEM-RESET-CLEAR KEY

Activating the system-reset-clear key
causes a clear-reset operation to be
performed. Clear reset is propagated to
all CPUs and storage units in the
configuration, and a subsystem reset is
performed on the remainder of the
configuration. For details, see the
section "Resets" in Chapter 4,
"Control."

The system-reset-clear key is effective
when the CPU is in the operating,
stopped, load, or check-stop state.

SYSTEM-RESET-NORMAl KEY

When the store-status facility is not
installed, activating the system-reset­
normal key causes an initial-CPU-reset
operation and a subsystem-reset opera­
tion to be performed. When the store­
status facility is installed, activating
the system-reset-normal key causes a
CPU-reset operation and a subsystem­
reset operation to be performed. In a
multiprocessing configuration, a CPU

reset is propagated to all CPUs in the
configuration. For details, see the
section "Resets" in Chapter 4,
"Control."

The system-reset-normal key is effective
when the CPU is in the operating,
stopped, load, or check-stop state.

TEST INDICATOR

The test indicator is on when a manual
control for operation or maintenance is
in an abnormal position that can affect
the normal operation of a program.

Setting the address-compare controls or
the check control to the stop position
or setting the rate control to the
instruction-step position turns on the
test indicator. Setting the interval­
timer control to the disable position
mayor may not turn on the test indica­
tor.

The test indicator may be on when one or
more diagnostic functions under the
control of DIAGNOSE are activated, or
when other abnormal conditions occur.

Operation Note

If a manual control is left in a setting
intended for maintenance purposes, such
an abnormal setting may, among other
things, result in false machine-check
indications or cause actual machine
malfunctions to be ignored. It may also
alter other aspects of machine
operation, including instruction
execution, channel operation, and the
functioning of operator controls and
indicators, to the extent that operation
of the machine does not comply with that
described in this publication.

The abnormal setting of a manual control
causes the test indicator of the
affected CPU to be turned oni however,
in a multiprocessing configuration, the
operation of other CPUs may be affected
even though their test indicators are
not turned on.

TOO-CLOCK CONTROL

When the TOO-clock control is not acti­
vated, that is, the control is set to
the secure position, the state and value
of the TOO clock are protected against
unauthorized or inadvertent change by
not permitting the instructions SET
CLOCK or DIAGNOSE to change the state or
value.

Chapter 12. Operator Facilities 12-5

When the TOD-clock control is activated,
that is, the control is set to the
enable-set position, alteration of the
clock state or value by means of SET
CLOCK or DIAGNOSE is permitted. This
setting is momentary, and the control
automatically returns to the secure
position.

In a multiprocessing configuration,
activating the TOO-clock control enables
all TOO clocks in the configuration to
be set. If there is more than one phys­
ical representation of the TOO-clock
control, no TOO clock is secure unless
all TOO-clock controls in the configura­
tion are set to the secure position.

WAIT INDICATOR

The wait indicator is on when the wait­
state bit in the current PSW is one.

MULTIPROCESSING CONFIGURATIONS

In a multiprocessing configuration, one
of each of the following keys and

12-6 System/370 Principles of Operation

controls is provided for each CPU:
alter and display, interrupt, rate,
restart, start, stop, and store status.
The load-clear key, load-normal key, and
load-unit-address controls are provided
for each CPU capable of performing I/O
operations. Alternatively, a single set
of initial-program-Ioading keys and
controls may be used together with a
control to select the desired CPU.

There need not be more than one of each
of the following keys and controls in a
multiprocessing configuration: address
compare, check, IML, interval timer,
power, system reset clear, system reset
normal, and TOO clock.

One check-stop, manual, test, and wait
indicator is provided for each CPU. A
load indicator is provided only on a CPU
capable of performing I/O operations.
Alternatively, a single set of indica­
tors may be switched to more than one
CPU.

In a system capable of reconfiguration,
there must be a separate set of keys,
controls, and indicators in each config­
uration.

CHAPTER 13. INPUT/OUTPUT OPERATIONS

Attachment of Input/Output Devices •••••••••••••••••••.•.•• 13-2
Input/Output Devices ..•••••••••••.••••••••••••••••••••.. 13-2
Control Units ...•..••••.••••••••••••••••••••••••••••••.• 13-3
Channel s .•.•....•.•.•.•••••••.••••••••••.••••••••••••••. 13-3

Modes of Operation .•••••••.•••••.•••••••••.••••.•••••. 13-4
Types of Channels•.•••.•...•••.•••••.•.•.•••••••• 13-4

I/O-System Operation •..•••.•.•••.•••••••.••••••••.••.... 13-5
Compati bi 1 i ty of Operati on •••.••.••••.•.•••••.•.•.••••.. 13-7

Control of Input/Output Devices .•.••••••••••..••••••..•••. 13-8
Input/Output Device Addressing ...•...•••...••.•.•.••..•. 13-8
States of the Input/Output System •.••.••..•............. 13-9
Resetting of the Input/Output System ••••.•••••••••..•••• 13-12

I/O-System Reset ••...•.•..•.•...•••••••••••••••••.•••• 13-12
I/O Selective Reset .•..............•••...••••••••..•.. 13-12
Effect of Reset on a Working Device •••....•.••........ 13-12
Reset Upon Malfunction •••.•••...•••••••••••••••••••.•. 13-12

Condition Code ..••......•••••.•.•.••••••••.••.••••.•..•. 13-12
Instruction Formats•.•••.•••••.••••••.••••..•.. 13-15
Instructions•.............•..•.•••••..•..•.•.•.....• 13-15
CLEAR CHANNEL •........••.•..•••....•.••..•..•.••••.•.•.. 13-16
CLEAR I/O••.•.•.•....•.•••.•••.•••••..••.. 13-17
HAL T DEVICE ..•.•...••.••.•••...•••••••••••••..•.••.••••. 13-19
HALT I/O•...........••..•..••...•••••••.......••.... 13-23
RESUME I/O ••....•....•••....•.••••..••••.•••.•••...•.... 13-26
START I/O •...•.•..•...•••.•••••••••.•••••••••.•••..•..•. 13-27
START I/O FAST RELEASE .••••..•••..•••••••••••.•.••.••••• 13-27
STORE CHANNEL 10••.•....••••....•••..•....•... 13-32
TEST CHANNEL ••.•.......•.••...•..•.•••••••.•.•.•........ 13-33
TEST I/O••••..•••.••.••..•••••••••...•.... 13-34
Input/Output-Instruction-Exception Handling •••••••..•••. 13-36

Execution of Input/Output Operations •..••.••.•••..•...•••• 13-37
Blocki ng of Data•.•.•••.•.•.•.•••••..••......••••.. 13-37
Channel-Address Word ...•••••.•.••••••••••••••••••••••... 13-37
Channel-Command Word .•••••••.•••.•••••••••••••••••.••••• 13-38
Command Code•.•.••...•..••.•••...•••.•••••••.• 13-39
Designation of Storage Area ••..•.•...•••.•••.•••.•.•••.. 13-39
Chaining •....•.......••••••••.••...•••••••.•.•.•••••.••• 13-40

Data Chaining ••....•.•••.•.•.•.••••••••••••..••..•••.• 13-42
Command Chaining•..•...•••.•.••.••.•..••••.•.••• 13-43

Skipping ...•.............•.•...•.....•.....•••••.•...... 13-43
Program-Controlled Interruption ...••••••.••••..•.•..•.•• 13-44
Channel Indirect Data Addressing .•..••••••.•.•••••••.••. 13-45

Addressing Using the 24-Bit IDAW ..••••.••••••••••.••.• 13-45
Addressing Using the 31-Bit IDAW ..••••.....••.••.•.•.. 13-46

Suspension of Channel-Program Execution ••••••••••••••.•. 13-46
Commands .•.••••.••...•.•••••••.••••••••••••••.••••.••.•. 13-48

Write ..•.••...•••.•..•••.•••.•.••.••••••••••••••••••.. 13-49
Read .•••.•...•.....•.•••••••••..•••••••..•••••.•.....• 13-49
Read Backward •••.•.•••••.•.••••••.••••••••.•••••.••..• 13-50
Control •••••.••..•••••••••••••••.••••••.•••••••••••••• 13-50
Sense ..••.•..••......••••.••••••.•••••••••.•.••••••.•• 13-51
Sense 10 ..•...•......•.•..••.••..•••••••••.•••.••..... 13-52
Transfer in Channel .••••••.•.•••••.•.•.•••••...••••••• 13-53

Command Retry .•..••••.••••••••.•••••••.•••••••••.••••••• 13-53
Conclusion of Input/Output Operations •••••.••••••••••••••• 13-54

Types of Conclusion •.•..••••••••.••••••••••••••.•••••••• 13-54
Conclusion at Operation Initiation ••.•••••••••.••••••• 13-55
Immediate Operations •.•.•••••••••••••••••••••••••••••• 13-55
Conclusion of Data Transfer •••..••••.••••••••••••••••• 13-56
Termination by HALT I/O or HALT DEVICE •••••••••••••••• 13-57
Termination by CLEAR I/O ..•••••••••••••••••••••••••••• 13-59
Termination by CLEAR CHANNEL •••••••••••••••••••••••••• 13-59
Termination Due to Equipment Malfunction •••••••••••••• 13-59

Input/Output Interruptions •••••••••••••••••••••••••••••• 13-60
Interruption Conditions ••••••••••••••••••••••••••••••• 13-60
Channel-Available Interruption •••••••••••••••••••••••• 13-61

Priority of Interruptions ••••••••••••••••••••••••••••••• 13-62
Interruption Action ••••••••••••••••••••••••••••••••••• 13-62

Chapter 13. Input/Output Operations 13-1

Channel-status Word ••••••••••••••••••••••••••••••••••••• 13-62
Unit Status .•••.•••.••..••••.••••••••.•.•••••••••••.•••• 13-63

Attention .•...•••••.•...•••.•••••••••••••••••••••.•.•• 13-64
Status Modifier .•..••.•..•.•..••.••.•..•.••••••.•...•. 13-64
Control-Unit End •••.•.•.••.••••••••••••••••••••••.•••. 13-64
Busy•.•....•.......••••.•.••••.••.••••.•••••.•••• 13-65
Channel End •......•...•..••••••.•.•..••••••••••••••.•. 13-67
Device End•.....••......•••..•••••••.••...•••. 13-67
Un it Check•.....•...••.•••.••...•••..••••...•••.•• 13-68
Unit Exception •.•...•..•...••.•••.•..•.•.•.•••.••.•••. 13-69

Channel Status ...•..•.•.•..•..•••••.•.•••••••••••••••••. 13-70
Program-Controlled Interruption•.•... 13-70
Incorrect length•....•......•.....•..•.•.•. 13-70
Program Check••.•.••.•••••..•....•.••.••.••.•••. 13-70
Protection Check •.......•...••....•..•.••••••.•..••.•. 13-71
Channel-Data Check••....•.••....•••...•..••.•.•. 13-71
Channel-Control Check••.•.••............•. 13-72
Interface-Control Check ••......•.•••...••.•.••..•.•••. 13-72
Chaining Check•....•.•...••.•.•..••..••••.•.•••. 13-72

Contents of Channel-Status Word •..•.....•..••.••........ 13-72
Information Provided by Channel-Status Word .•.•....... 13-73
Subchannel Key•....•..•...•••••••...•••.•. 13-73
Suspended Indication •....•••....•.•.•..•.••.•••.•••.•. 13-74
logout Pending •.......•....••.........••...•.••.••.••. 13-74
Deferred Condition Code•......•.• 13-74
CCW Address ..•........•..•.•...••.....•.••.•.•..••.... 13-75
Count••...•.•......••••........•..•••••.•..•...• 13-77
Status•...••.•...•••.•.•.•.•...•.•..••.••.••••••.• 13-78

Channel logout•...........•..................•....•... 13-80
I/O-Communication Area ..••.•..•••....•.••.....•..•..•.•..• 13-80

The transfer of information to or from
main storage, other than to or from the
central processing unit or by means of
the direct control path, is referred to
as an input or output operation. An
input/output (I/O) operation involves
the use of an I/O device. Input/output
devices perform I/O operations under
control of control units, which are
attached to the central processing unit
(CPU) by means of channels.

This chapter describes the programmed
control of I/O devices by the channels
and by the CPU. Formats are defined for
the various types of lID control infor­
mation. The formats apply to all I/O
operations and are independent of the
type of I/O device, its speed, and its
mode of operation.

The formats described include provisions
for functions applicable only to some
I/O-device types, such as erasing a gap
on a magnetic-tape unit. The way in
which a device makes use of the format
is defined in the System library (Sl)
publication for the particular device.

Almost all storage references for I/O
operations are references to absolute
storage. Throughout this chapter,
unless indicated otherwise, "storage"
means absolute storage, and "address"
means absolute address. The terms "I/O
address," "channel address," and "device
address" are never abbreviated to
"address" in this publication.

13-2 System/370 Principles of Operation

ATTACHMENT OF INPUT/OUTPUT DEVICES

INPUT/OUTPUT DEVICES

Input/output devices provide external
storage and a means of communication
between data-processing systems or
between a system and its environment.
Input/output devices include such equip­
ment as card readers, card punches,
magnetic-tape units, direct-access­
storage devices (disks and drums),
display units, typewriter-keyboard
devices, printers, teleprocessing
devices, and sensor-based equipment.

Most types of I/O devices, such as prin­
ters, card equipment, or tape devices,
deal directly with external media, and
these devices are physically distin­
guishable and identifiable. Other types
consist only of electronic equipment and
do not directly handle physical record­
ing media. The channel-to-channel
adapter, for example, provides a
channel-to-channel data-transfer path,
and the data never reaches a physical
recording medium outside main storage.
Similarly, a communications controller
handles transmission of information
between the data-processing system and a
remote station, and its input and output
are signals on a transmission line. An
I/O device may be physically distinct
equipment, or it may time-share equip­
ment with other I/O devices.

An input/output device ordinarily is
attached to one control unit and is
accessible from one channel. Switching
equipment is available to make some
devices accessible to two or more chan­
nels by switching devices between
control units and control units between
channels. The time required for switch­
ing occurs during device-selection time
and may be ignored.

CONTROL UNITS

A control unit provides the logical
capabilities necessary to operate and
control an I/O device and adapts the
characteristics of each device to the
standard form of control provided by the
channel.

The control unit accepts control signals
from the channel, controls the timing of
data transfer, and provides indications
concerning the status of the device.

The I/O device attached to the control
unit may be designed to perform only
certain limited operations, or it may
perform many different operations. A
typical operation is moving the record­
ing medium and recording data. To
accomplish these functions, the device
needs detailed signal sequences peculiar
to the type of device. The control unit
decodes the commands received from the
channel, interprets them for the partic­
ular type of device, and provides the
signal sequence required for execution
of the operation.

A control unit may be housed separately,
or it may be physically and logically
integral with the I/O device or the CPU.
In most electromechanical devices, a
well-defined interface exists between
the device and the control unit because
of the difference in the type of equip­
ment the control unit and the device
contain. These electromechanical
devices often are of a type where only
one device of a group attached to a
control unit is required to transfer
data at a time (magnetic-tape units or
disk-access mechanisms, for example),
and the control unit is shared among a
number of I/O devices. On the other
hand, in some electronic I/O devices
such as the channel-to-channel adapter,
the control unit does not have an iden­
tity of its own.

From the programmer's point of view,
most functions performed by the control
unit can be merged with those performed
by the I/O device. Therefore, this
publication normally does not make
specific mention of the control-unit
function; the execution of I/O oper­
ations is described as if the I/O
devices communicated directly with the

channel. Reference is made to the
control unit only when emphasizing a
function performed by it or when
describing how sharing of the control
unit among a number of devices affects
the execution of I/O operations.

CHANNELS

A channel directs the flow of informa­
tion between I/O devices and main stor­
age. It relieves the CPU of the task of
communicating directly with the devices
and permits data processing to proceed
concurrently with I/O operations.

A channel provides a means for connect­
ing various types of I/O devices to the
CPU and to storage. The channel accepts
control information from the CPU in the
format supplied by the program and
changes it into a sequence of signals
acceptable to a control unit and device.
Similarly, when an I/O device provides
signals that should be brought to the
attention of the program, the channel
transforms the signals to information
that can be used in the cpu.
A channel contains facilities for the
control of I/O operations. During
execution of an I/O operation involving
data transfer, the channel assembles or
disassembles data and synchronizes the
transfer of data bytes with storage
cycles. To accomplish this, the channel
maintains and updates an address and a
count that describe the destination or
source of data in storage. When the
channel facilities are provided in the
form of separate autonomous equipment
designed specifically to control I/O
devices, I/O operations are completely
overlapped with the activity in the CPU.
The only storage cycles required during
I/O operations in such channels are
those needed to transfer data and
control information to or from the final
locations in storage. These cycles do
not delay the CPU program, except when
both the CPU and the channel concurrent­
ly attempt to refer to the same storage
area.

If separate equipment is not provided,
facilities of the CPU are used for
controlling I/O devices. When the CPU
and channels, or the CPU, channels, and
control units, share common facilities,
I/O operations cause interference to the
CPU, varying in intensity from occa­
sional delay of a CPU cycle to a
complete lockout of CPU activity. The
intensity depends on the extent of shar­
ing and on the I/O data rate. The
sharing of the facilities, however, is
accomplished automatically, and the
program is not affected by CPU delays,
except for an increase in execution
time.

Chapter 13. Input/Output Operations 13-3

Modes of Operation

An I/O operation occurs in one of two
modes: burst or byte-multiplex.

In burst mode, the I/O device monopo­
lizes the channel and stays logically
connected to the channel for the trans­
fer of a burst of information. No other
device can communicate with the channel
during the time a burst is transferred.
The burst can consist of a few bytes, a
whole block of data, a sequence of
blocks with associated control and
status information (the block lengths
may be zero), or status information
which monopolizes the channel.

Some channels can tolerate an absence of
data transfer during a burst-mode opera­
tion, such as occurs when reading a long
gap on magnetic tape, for not more than
approximate!y 1/2 minute. Equipment
malfunction may be indicated when an
absence of data transfer exceeds this
time.

In byte-mu!tip!ex mode, the I/O device
stays logically connected to the channe!
only for a short interva! of time. The
facilities in a channel capable of oper­
ating in byte-multiplex mode may be
shared by a number of concurrent!y oper­
ating I/O devices. In this mode, all
I/O operations are split into short
intervals of time during which only a
segment of information is transferred.
During such an interval, only one device
is logically connected to the channe!.
The intervals associated with the
concurrent operation of multiple I/O
devices are sequenced in response to
demands from the devices. The channel
controls are occupied with anyone oper­
ation only for the time required to
transfer a segment of information. The
segment can consist of a single byte of
data, a few bytes of data, a status
report from the device, or a control
sequence used for initiation of a new
operation.

Operation in burst and byte-multiplex
modes is differentiated because of the
way the channels respond to I/O
instructions. A channel operating a
device in the burst mode may appear busy
to new I/O instructions, whereas a chan­
nel operating one or more devices in the
byte-multiplex mode is capable of initi­
ating an operation on another device.
If a channel that can operate in either
mode is communicating with an I/O device
at the instant a new I/O instruction is
issued, action on the instruction is
delayed by the channel until the current
mode of operation is established.
Furthermore, the new I/O operation is
initiated only after the channel has
serviced all outstanding requests from
devices previously placed in operation.

13-4 System/370 Principles of Operation

The distinction between a short burst of
data occurring in the byte-multiplex
mode and an operation in the burst mode
is in the length of the bursts of data.
A channel that can operate in either
mode determines its mode of operation by
timeout. Whenever the burst causes the
device to be connected to the channel
for more than approximately 100 micro­
seconds, the channel is considered to be
operating in the burst mode.

Ordinarily, devices with a high data­
transfer rate operate with the channel
in burst mode, and slower devices run in
byte-multiplex mode. Some control units
have a manual switch for setting the
mode of operation.

~ of Channels

A system can be equipped with
types of channels: selector,
multiplexer, and block multiplexer.

three
byte

The channel facilities required for
sustaining a single I/O operation are
termed a subchannel. The subchannel
consists of internal storage used for
recording the addresses, count, and any
status and control information associ­
ated with the I/O operation. The
capability of a channel to permit multi­
plexing depends upon whether it has more
than one subchannel.

A selector channel, which contains a
minimum of facilities, has one subchan­
nel and always forces the I/O device to
transfer data in the burst mode. The
burst extends over the whole block of
data, or, when command chaining is spec­
ified, over the whole sequence of
blocks. A selector channel cannot
perform any multiplexing and therefore
can be invo!ved in only one I/O opera­
tion or chain of operations at a time.
In the meantime, other I/O devices
attached to the channel can be executing
previously initiated operations that do
not involve communication with the chan­
nel, such as backspacing tape. When the
selector channel is not executing an
operation or a chain of operations and
is not processing an interruption, it
monitors the attached devices for status
information.

A byte-multiplexer channel contains
multiple subchannels and can operate at
anyone time in either byte-multiplex or
burst mode. A byte-multiplexer channel
operates most efficiently with I/O
devices that are designed to operate in
byte-multiplex mode. The mode of opera­
tion is determined by the I/O device,
and, during data transfer, the mode can
change at any time. Unless data trans­
fer is occurring, the mode of operation
has no meaning. The data transfer asso­
ciated with an operation can occur

partially in the byte-multiplex mode and
partially in the burst mode.

A block-multiplexer channel contains
multiple subchannels and can only oper­
ate in burst mode. A block-multiplexer
channel operates most efficiently with
devices that are designed to operate in
burst mode. When multiplexing is not
inhibited, the channel permits multi­
plexing between bursts, between blocks
when command chaining is specified, or
when command retry is performed. On
most models, the burst is forced to
extend over the block of data, and
multiplexing occurs between blocks of
data when command chaining is specified.
Whether or not multiplexing occurs
depends on the design of the channel and
I/O device and on the state of the
block-multiplexing-control bit.

When the block-multiplexing-control bit,
bit 0 of control register 0, is zero,
multiplexing is inhibited; when it is
one, multiplexing is allowed.

Whether a block-multiplexer channel
executes an I/O operation with multi­
plexing inhibited or allowed is deter­
mined by the state of the block­
multiplexing-control bit at the time the
operation is initiated by START I/O or
START I/O FAST RELEASE and applies to
that operation until the involved
subchannel becomes available.

For brevity, the term "multiplexer chan­
nel" is used hereafter when describing a
function or facility that is common to
both the byte-multiplexer and the
block-multiplexer channel. Multiplexer
channels vary in the number of subchan­
nels they contain. When multiplexing,
they can sustain concurrently one I/O
operation per subchannel, provided that
the total load on the channel does not
exceed its capacity. Each subchannel
appears to the program as an independent
selector channel, except in those
aspects of communication that pertain to
the physical channel. (For example,
individual subchannels on a multiplexer
channel are not distinguished as such by
the TEST CHANNEL instruction or by the
masks controlling I/O interruptions from
the channel.) When a multiplexer chan­
nel is not servicing an I/O device, it
monitors the attached devices for data
and for status information.

Subchannels on a multiplexer channel may
be either nonshared or shared.

A subchannel is referred to as nonshared
if it is associated with and can be used
only by a single I/O device. A
nonshared subchannel is used with
devices that do not have any
restrictions on the concurrency of
channel-program operations, such as a

, single drive of an IBM 3330 Disk
Storage.

A subchannel is referred to as shared if
data transfer to or from a set of
devices implies the use of the same
subchannel. Only one device associated
with a shared subchannel may be involved
in data transmission at a time. Shared
subchannels are used with devices, such
as magnetic-tape units or some display
devices, that share a control unit. For
such devices, the sharing of the
subchannel does not restrict the concur­
rency of I/O operations since the
control unit permits only one device to
be involved in a data-transfer operation
at a time. I/O devices may share a
control unit without necessarily sharing
a subchannel. For example, the IBM 3880
storage control recognizes 64 device
addresses, each of which is assigned a
nonshared subchannel.

Programming Note

A block-multiplexer channel can be made
to operate as a selector channel by the
appropriate setting of the block­
multiplexing-control bit. However,
since a block-multiplexer channel inher­
ently can interleave the execution of
multiple I/O operations and since the
state of the block-multiplexing-control
bit can be changed at any time, it is
possible to have one or more operations
that permit multiplexing and an opera­
tion that inhibits multiplexing being
executed simultaneously by a channel.

Therefore, to ensure complete compat­
ibility with selector channel operation,
all operational subchannels on the
block-multiplexer channel must be avail­
able or operating with multiplexing
inhibited when the use of that channel
as a selector channel is begun. All
subsequent operations should then be
initiated with the block-multiplexing­
control bit inhibiting multiplexing.

I/O-SYSTEM OPERATION

Input/output operations are initiated
and controlled by information with two
types of formats: instructions and
channel-command words (CCWs).
Instructions are decoded by the CPU and
are part of the CPU program. CCWs are
decoded and executed by the channels and
I/O devices and initiate I/O operations,
such as reading and writing. One or
more CCWs arranged for sequential
execution form a channel program. Both
instructions and CCWs are fetched from
storage. The formats of CCWs are common
for all types of I/O devices, although
the modifier bits in the command code of
a CCW may specify device-dependent oper­
ations.

Chapter 13. Input/Output Operations 13-5

The CPU program initiates I/O operations
with the instruction START I/O or START
I/O FAST RELEASE. These instructions
identify the channel and the I/O device
and cause the channel to fetch the
channel-address word (CAW) from a fixed
location in real storage. The CAW
contains the subchannel key and
suspend-control bit and designates the
location in storage from which the chan­
nel subsequently fetches the first CCW.
The CCW specifies the command to be
executed and the storage area, if any,
to be used.

When START I/O is executed and the
addressed channel and subchannel are
available and when the suspend flag is
not specified in the CCW, the channel
attempts to select the I/O device and
sends the command-code part of the CCW
to the control unit. The device
responds indicating whether it can
execute the command. If the suspend
flag is specified, the command code is
not sent to the device, and, depending
on the circumstances, the operation is
·either suspended or terminated instead.

At this time, the execution of START I/O
is completed. The results of the
attempt to initiate the execution of the
command are indicated by setting the
condition code in the PSW and, in
certain situations, by storing pertinent
information in the channel-status word
(CSW).

When START I/O FAST RELEASE is executed,
the functions performed during the
execution of the instruction depend on
the design of the channel. Some chan­
nels perform the same functions as for
START I/Oj other channels release the
CPU (that is, complete the execution of
the instruction) before the I/O opera­
tion has been initiated at the addressed
device. Channels are permitted to
release the CPU as early as when the CAW
has been fetched and validated. Chan­
nels designed to release the CPU before
the I/O operation is initiated at the
I/O device perform the functions associ­
ated with I/O operation initiation
logically subsequent and asynchronous to
the execution of START I/O FAST RELEASE.
When the CPU is released, the results of
the execution of the instruction to that
point are indicated by setting the
condition code in the PSW and, in
certain situations, by storing pertinent
information in the CSW.

If the I/O operation is initiated at the
I/O device and its execution involves
transfer of data, the subchannel is set
up to respond to service requests from
the device and assumes further control
of the operation. In operations that do
not require any data to be transferred
to or from the device, the device may
signal the end of the operation imme­
diatelY on receipt of the command code.

13-6 System/370 Principles of Operation

An I/O operation may involve transfer of
data to one storage area, designated by
a single CCW, or to a number of noncon­
tiguous storage areas. In the latter
case, generally a list of CCWs is used
for execution of the I/O operation, each
CCW designating a contiguous storage
area, and the CCWs are said to be
coupled by data chaining. Data chaining
is specified by a flag in the CCWand
causes the channel to fetch another CCW
upon the exhaustion or filling of the
storage area designated by the current
CCW. The storage area designated by a
CCW fetched on data chaining pertains to
the I/O operation already in progress at
the I/O device, and the I/O device is
not notified when a new CCW is fetched.

Provision is made in the CCW format for
the programmer to specify that, when the
CCW is decoded, the channel request an
I/O interruption as soon as possible,
thereby notifying the CPU program that
chaining has progressed at least a~ far
as that CCW.

To complement the dynamic-address­
translation facility available in the
CPU, channel indirect data addressing is
available. A flag in the CCW specifies
that an indirect-data-address list is to
be used to designate the storage areas
for that CCW. Each time the boundary of
a 2K-byte block of storage is reached,
the list is referenced to determine the
next block of storage to be used. By
extending the storage-addressing capa­
bilities of the channel, channel
indirect data addressing permits essen­
tially the same CCW sequences to be used
for a program running with dynamic
address translation in the CPU that
would be used if it were operating with
equivalent contiguous real storage.

The conclusion of an I/O operation
normally is indicated by channel end and
device end. When channel end is
presented, it means that the I/O device
has received or provided all data asso­
ciated with the operation and no longer
needs channel facilities. When device
end is presented, it usually means that
the I/O device has concluded execution
of the I/O operation. On some I/O
devices, for reasons of performance,
device end is presented before the I/O
operation has been concluded. Device
end can occur concurrently with channel
end or later.

Operations that keep the control unit
busy after releasing channel facilities
may, in some situations, cause a third
indication called control-unit end.
Control-unit end may occur only concur­
rently with or after channel end.

Concurrent with channel end, both the
channel and the I/O device can provide
indications of unusual situations.
Control-unit end and device end can be

accompanied by error indications from
the I/O device.

The indication of the conclusion of an
I/O operation can be brought to the
attention of the program by an I/O
interruption or, when the CPU is disa­
bled for I/O interruptions from the
channel, by programmed interrogation of
the I/O device. An indication that will
result in a request for an I/O inter­
ruption is called an interruption
condition. In either case, a CSW is
stored, which contains additional infor­
mation concerning the execution of the
operation. When channel end is indi­
cated in the CSW and no equipment
malfunctions have been detected, the CSW
identifies the last CCW used and
provides its residual byte count, thus
indicating the extent of storage used.

Facilities are provided for the program
to initiate the execution of a chain of
I/O operations with a single START I/O
or START I/O FAST RELEASE instruction.
When the chaining flags in the current
CCW specify command chaining and no
unusual conditions have been detected in
the operation, the receipt of the
device-end signal causes the channel to
fetch a new CCW and, if the suspend flag
;s not specified in the new CCW, to
initiate execution of a new command at
the device. If the suspend flag is
specified, execution of the new command
is not initiated, and command chaining
is terminated. Execution of the new
command is initiated by the channel in
the same way as the previous operation.
Channel end and device end are not
presented to the program when command
chaining causes execution of another I/O
operation to be initiated. However,
unusual situations can cause premature
termination of command chaining and
generation of an I/O-interruption condi­
tion.

Activities that generate 1/0-
interruption conditions are asynchronous
to activity in the CPU, and more than
one I/O-interruption condition can exist
at the same time. The channel and the
CPU establish priority among the condi­
tions so that only one condition is
presented to the CPU at a time.

The execution of an I/O operation or
chain of I/O operations involves up to
four levels of participation:

1. Except for the effects caused by
the integration of CPU and channel
equipment, the CPU is busy for the
duration of execution of START I/O
or START I/O FAST RELEASE, which
lasts at most until the addressed
I/O device responds to the first
command.

2. The subchannel is busy with the
execution from the time condition
code 0 is set for the START I/O or

START I/O FAST RELEASE until the
CPU has accepted the I/O inter­
ruption signaling that the I/O
operation or, for chained oper­
ations, the last operation has been
completed at the subchannel.

3. The control unit may remain busy
after the execution has completed
at the subchannel and may generate
control-unit end when it becomes
free.

4. The I/O device is busy from the
initiation of the first operation
at the I/O device until the inter­
ruption condition caused by the
device end associated with the
operation is cleared from the I/O
device.

An interruption condition caused by
device end blocks the initiation of an
I/O operation with the I/O device, but
normally does not affect the state of
any other part of the system. An inter­
ruption condition caused by control-unit
end may block communications through the
control unit to any device attached to
it, and an interruption condition caused
by channel end normally blocks all
communications through the subchannel.

In some system models, a suspend-and­
resume facility may be provided on an
individual subchannel basis for
nonshared subchannels. The mechanism
for suspending channel-program execution
provides the program a controlling func­
tion over the execution of a channel
program. The initiation of the suspend
function is controlled by the setting of
the suspend-control bit in the CAW. The
suspend function is signaled to the
channel during channel-program execution
by a flag (that is, a bit set to one) in
the CCW.

Suspension occurs when the channel
fetches a CCW with a valid S flag. The
command field of this CCW is not sent to
the I/O device, and the device is
signaled that the chain of commands is
terminated. A subsequent RESUME I/O
(RIO) instruction informs the channel
that the suspend CCW may have been modi­
fied and that the channel must refetch
the CCW and examine the current settings
of the flags. If the suspend flag is
zero in the CCW, the channel resumes
execution of the chain of commands.

COMPATIBILITY OF OPERATION

The organization of the I/O system
provides for a uniform method of
controlling I/O operations. The capa­
bility of a channel, however, depends on
its use and on the CPU model to which it
is connected. Channels are provided
with different data-transfer capabili-

Chapter 13. Input/Output Operations 13-7

ties, and an I/O device designed to
transfer data only at a specific rate (a
magnetic-tape unit or a disk storage,
for example) can operate only on a chan­
nel that can accommodate at least this
data rate.

The data rate a channel can accommodate
depends also on the way the I/O opera­
tion is programmed. The channel can
sustain its highest data rate when no
data chaining is specified. Oata chain­
ing reduces the maximum allowable rate,
and the extent of the reduction depends
on the frequency at which new CCWs are
fetched and on the address resolution of
the first byte in each new storage area.
Furthermore, since a channel shares
storage with the CPU and other channels,
activity in the rest of the system
affects the accessibility of storage
and, hence, the instantaneous load the
channel can sustain.

In view of the dependence of channel
capacity on programmlng and on activity
in the rest of the system, an evaluation
of the ability of elements in a specific
I/O configuration to function concur­
rently must be based on a consideration
of both the data rate and the way the
I/O operations are programmed. Two
systems differing in performance but
employing identical complements of I/O
devices may be able to execute certain
programs in common, but it is possible
that other programs requiring, for exam­
ple, data chaining, may not run on one
of the systems because of the increased
load caused by the data chaining.

CONTROL OF INPUT/OUTPUT DEVICES

The CPU controls I/O operations by means
of 10 I/O instructions: CLEAR CHANNEL,
CLEAR I/O, HALT DEVICE, HALT I/O, RESUME
I/O, START I/O, START I/O FAST RELEASE,
STORE CHANNEL 10, TEST CHANNEL, and TEST
I/O.

The instructions TEST CHANNEL, CLEAR
CHANNEL, and STORE CHANNEL 10 address a
channel; they do not address an I/O
device. The other seven I/O
instructions address a channel and a
device on that channel.

INPUT/OUTPUT DEVICE ADDRESSING

Within each channel set, an I/O device
and the associated access path are
designated by an I/O address. The
16-bit I/O address consists of two
parts: a channel address in the left­
most eight bit positions and a device
address in the rightmost eight bit posi­
tions.

13-8 System/370 Principles of Operation

The channel address provides for identi­
fying up to 256 channels per channel
set. Channels are numbered 0-255.
Channel 0 is a byte-multiplexer channel,
and each of channels 1-255 may be a
byte-multiplexer, block-multiplexer, or
selector channel.

The number and type of channels and
subchannels available, as well as their
address assignment, depend on the system
model and the particular installation.

The device address identifies the
particular I/O device and control unit
on the designated channel. The device
address identifies, for example, a
particular magnetic-tape drive, disk­
access mechanism, or transmission line.
Any number in the range 0-255 can be
used as a device address, providing
facilities for addressing up to 256
devices per channel. An exception is
some multiplexer channels that provide
fewer than the maximum configuration of
subchannels and hence do not permit use
of the corresponding unassignable device
addresses.

Devices that do not share a control unit
with other devices may be assigned any
device address in the range 0-255,
provided the device address is not
recognized by any other control unit.
Logically, such devices are not distin­
guishable from their control unit, and
both are identified by the same device
address.

Devices sharing a control unit (for
example, magnetic-tape drives or disk­
access mechanisms) are assigned device
addresses within sets of contiguous
numbers. The size of such a set is
equal to the maximum number of devices
that can share the control unit, or 16,
whichever is smaller. Furthermore, such
a set starts with a device address in
which the number of rightmost zeros is
at least equal to the number of bit
positions required for specifying the
set size. The leftmost bit positions of
a device address within such a set iden­
tify the control unit, and the rightmost
bit positions designate the device on
the control unit.

Control units designed to accommodate
more than 16 devices may be assigned
nonsequential sets of device addresses,
each set consisting of 16, or the number
required to bring the total number of
assigned device addresses equal to the
maximum number of devices attachable to
the control unit, whichever is smaller.
The device-addressing facilities are
added in increments of a set so that the
number of device addresses assigned to a
control unit does not exceed the number
of devices attached by more than 15.

The control unit does not respond to any
device address outside its assigned set
or sets. For example, if a control unit

is designed to control devices having
only the values 0000 to 1001 in the
rightmost bit positions of the device
address, it does not recognize device
addresses containing 1010 to 1111 in
these bit positions. On the other hand,
a control unit responds to all device
addresses in the assigned set for which
the corresponding I/O devices are ready,
or are not ready but can be made ready
by means of an ordinary manual inter­
vention. A control unit mayor may not
respond to an address within the
assigned set when the corresponding
device is not installed or has been
logically removed from the control unit.
If a control unit responds to a device
address for which no I/O device is
installed or the device has been
logically removed from the control unit,
the absent device appears in the not­
ready state. If no control unit
responds to the device address, the I/O
device appears not operational.

Input/output devices accessible through
more than one channel in a channel set
have a distinct I/O address for each
path of communications. This I/O
address identifies the channel and the
control unit. For sets of devices shar­
ing a control unit or connected to two
or more control units, the portion of
the I/O address identifying the device
on the control unit is fixed and does
not depend on the path of
communications.

The assignment of I/O addresses is arbi­
trary, subject to the rules described
and any model-dependent restrictions.
The assignment is made at the time of
installation, and the addresses normally
remain fixed thereafter.

STATES OF THE INPUT/OUTPUT SYSTEM

The state of the I/O system identified
by an I/O address depends on the collec-

tive state of the channel, subchannel,
and I/O device. Each of these compo­
nents of the I/O system can have up to
four states, as far as the response to
an I/O instruction is concerned. These
states are listed in the figure
"Input/Output-System States." The name
of the state is followed by its abbrevi­
ation and a brief definition.

A channel, subchannel, or I/O device
that is available, interruption-pending,
or working is called "operational." A
channel, subchannel, or I/O device that
is interruption-pending, working, or
not-operational is called "not
available."

In a multiplexer channel, the channel
and subchannel are easily distinguisha­
ble and, if the channel is operational,
any combination of channel and subchan­
nel states is possible. Since the
selector channel can have only one
subchannel, the channel and subchannel
are functionally coupled, and certain
states of the channel are related to
those of the subchannel. In particular,
the working state can occur only concur­
rently in both the channel and
subchannel and, whenever an interruption
condition is pending in the subchannel,
the channel also is in the same state.
The channel and subchannel, however, are
not synonymous, and an interruption
condition not associated with data
transfer, such as attention, may not
affect the state of the subchannel.
Thus, the subchannel may as a function
of the I/O instruction, be available
when the channel is interruption-pending
or has an interruption condition pending
at a device. A consistent distinction
between the subchannel and channel
permits selector and multiplexer chan­
nels to be covered uniformly by a single
description.

Chapter 13. Input/Output Operations 13-9

Name Abbreviation and Definition

Channel

Available
Interruption pending

Working
Not operational

A
I

W
N

None of the following states
Interruption condition immedi­

ately available from channel
Channel operating in burst mode
Channel not operational

Subchannel

Available
Interruption pending

A
I

None of the following states
Information for CSW available in

subchannel
Working
Not operational

W
N

Subchannel executing an operation
Subchannel not operational

I/O Device

Available
Interruption pending
Working
Not operational

A
I
W
N

None of the following states
Interruption condition in device
Device executing an operation
Device not operational

Input/Output-System States

The I/O device referred to in the figure
"Input/Output-System states" includes
both the I/O device proper and its
control unit. For some types of I/O
devices, such as magnetic-tape units,
the working and the interruption-pending
states can be caused by activity in the
addressed I/O device or control unit. A
"not available" shared control unit
imposes its state on all devices
attached to the control unit. The
states of the I/O devices are not
related to those of the channel and
subchannel.

When the response to an I/O instruction
is determined by the state of the chan­
nel or subchannel, the components
further removed are not interrogated.
Thus, 10 composite states may be distin­
guished as conditions for the execution
of I/O instructions. Each composite
state is identified by three letters.
The first letter specifies the state of
the channel, the second letter specifies
the state of the subchannel, and the
third letter specifies the state of the
device. Each letter may be A, I, W, or
N, denoting the state of the component.
The letter X indicates that the state of
the corresponding component is not
significant for the execution of the
instruction.

Available (AAA): The addressed channel,
subchannel,-COntrol unit, and I/O device
are operational, are not engaged in the
execution of any previously initiated
operations, and do not contain any pend­
ing interruption conditions.

Because of internal activity, some
block-multiplexer channels may at times

13-10 System/370 Principles of Operation

appear to be working even though they
are not engaged in the execution of a
previously initiated operation and do
not contain any interruption condition.
This will result in a WXX state instead
of the AAA state.

If the addressed device is not installed
or has been logically removed from the
control unit, but the associated control
unit is operational and the address has
been assigned to the control unit, the
device is said to be not ready. When an
instruction is addressed to a device in
the not-ready state, the control unit
responds to the selection and indicates
unit check whenever the not-ready state
precludes a successful execution of the
operation. When the control unit
responds to the selection of a not-ready
device, the device is said to be opera­
tional and therefore in the available
state even though unit check is indi­
cated. (See the section "Unit Check" in
this chapter.)

Interruption Pending in Device (AAI) or
Device Working (AAW): The addressed
channel and subchannel are available.
The addressed control unit or I/O device
is executing a previously initiated
operation or contains an interruption
condition. These situations are
possible:

1. The device is executing an opera­
tion, such as rewinding magnetic
tape or seeking on a disk file,
after signaling channel end.

2. The control unit associated with
the device is executing an opera­
tion, such as backspacing file on a

magnetic-tape unit, after signaling
channel end.

3. The device or control unit is
executing an operation with another
subchannel or channel.

4. The device or control unit contains
the device-end, control-unit-end,
or attention condition, or a
channel-end condition associated
with a terminated operation.

Device Not Operational (AAN): The
addressed channel and subchannel are
available. The addressed I/O device is
not operational. A device appears not
operational when no control unit recog­
nizes the address. This occurs when the
control unit is not provided in the
system, when power is off in the control
unit, or when the control unit has been
logically removed from the channel. The
not-operational state is indicated also
when the control unit is provided and is
designed to attach the device, but the
device has not been installed and the
address has not been assigned to the
control unit. (See also the section
"Input/Output Device Addressing" in this
chapter.)

Interruption Pending in Subchannel
(AIX): The addressed channel is avail­
able. An interruption condition is
pending in the addressed subchannel.
The subchannel is able to provide infor­
mation for a CSW. The interruption
information indicates status associated
with the addressed I/O device or another
I/O device associated with the subchan­
nel. The state of the addressed device
is not significant, except when the
address specified by TEST I/O is the
same as the address of the I/O device
for which the subchannel is
interruption-pending, in which case the
CSW contains status information that has
been provided by the device.

The state AIX does not occur on the
selector channel. On the selector chan­
nel, the existence of an interruption
condition in the subchannel immediately
causes the channel to assign to this
condition the highest priority for I/O
interruptions and, hence, leads to the
state IIX.

Subchannel Working (AWX): The addressed
channel is available. The addressed
subchannel is executing a previously
initiated START I/O (510) or START I/O
FAST RELEASE (SIOF) function. The
addressed subchannel enters the working
state when condition code 0 is set for
510 or SIOF. The addressed subchannel
remains in the working state until the
510 or SIOF function is concluded at the
subchannel. Usually the conclusion of
the 510 or SIOF function occurs when the
I/O operation or chain of operations
receives channel end for the last opera­
tion.

The state of the addressed device is not
significant, except when HALT I/O or
HALT DEVICE is issued. During the
execution of HALT I/O and HALT DEVICE,
the state of the device may be interro­
gated and will then be indicated in
either the CSW or the condition code.

HALT DEVICE issued to a subchannel that
has a pending or suspended I/O operation
considers the channel to be busy. In
this case, the I/O system appears to be
in the channel-working state (WXX) rath­
er than the subchannel-working state
(AWX).

The subchannel-working state does not
occur on the selector channel since all
operations on the selector channel are
executed in the burst mode and cause the
channel to be in the working state
(WWX).

Subchannel Not Operational (ANX): The
addressed channel is available. The
addressed subchannel on the multiplexer
channel is not operational. A subchan­
nel is not operational when it is not
provided in the channel. This state
cannot occur on the selector channel.

Interruption Pending in Channel (IXX):
The addressed channel is not working and
has established which device will cause
the next I/O interruption from this
channel. The state in which the channel
contains an interruption condition is
distinguished only by the instruction
TEST CHANNEL. This instruction does not
cause the subchannel and I/O device to
be interrogated. The other I/O
instructions, with the exception of
STORE CHANNEL ID, consider the channel
available when it contains an inter­
ruption condition. A channel with an
interruption condition may be considered
to be working by the instruction STORE
CHANNEL 10. When the channel assigns
priority for interruptions among
devices, the interruption condition is
preserved in the I/O device or subchan­
nel. (See the section "Interruption
Conditions" in this chapter.)

Channe! Working (WXX): The addressed
channel is operating in the burst mode.
In the multiplexer channel, a burst of
bytes is currently being handled. In
the selector channel, an operation or a
chain of operations is currently being
executed, and the channel end for the
last operation has not yet been
signaled. The states of the addressed
device and, in the mu!tiplexer channel,
of the subchannel are not significant.
In addition, because of internal activ­
ity, some block-mu!tiplexer channels may
at times appear to be working even
though they are not operating in burst
mode. Depending on the model and the
channel type, TEST I/O, CLEAR I/O, START
I/O FAST RELEASE, and HALT DEVICE may
consider the channel to be available

Chapter 13. Input/Output Operations 13-11

when the channel is working with a
device other than the addressed device.

Channel Not Operational (NXX): The
addressed channel is not operational. A
channel is not operational when it is
not available in the configuration, when
power is off in the channel, when it is
not connected to the CPU, or when it
detects a channel-check-stop condition.
As long as a channel-cheek-stop condi­
tion persists, the channel performs no
I/O instructions, with the exception of
CLEAR CHANNEL (which may be executed,
depending on the system model); performs
no I/O interruptions; executes no chan­
nel programs; and suspends all
I/O-interface activity. When a channel
is not operational, the states of the
addressed I/O device and subchannel are
not significant.

RESETTING OF THE INPUT/OUTPUT SYSTEM

Two types of resetting can occur in the
I/O system: an I/O-system reset and an
I/O selective reset. The response of
each type of I/O device to the two types
of reset is specified in the SL publica­
tion for the device.

I/O-System Reset

I/O-system reset is performed in the
channel and on the associated I/O inter­
face when the CPU to which the channel
is connected executes the instruction
CLEAR CHANNEL or a program reset,
initial-program reset, clear reset, or
power-on reset is performed, when a
power-on sequence is performed by the
channel, and, under certain conditions
on some models, when a channel detects
equipment malfunctions and the
recovery-extension facility is not
installed.

I/O-system reset causes the channel to
conclude operations on all subchannels.
Status information and all interruption
conditions in all subchannels are reset,
and all operational subchannels are
placed in the available state. The
channel signals system reset to all I/O
devices attached to it.

I/O Selective Reset

I/O selective reset is performed by some
channels when they detect certain equip­
ment malfunctions.

I/O selective reset causes the channel
to signal selective reset to the device
that is connected to the channel at the

13-12 System/370 Principles of Operation

time the malfunction is detected.
subchannels are reset.

Effect of Reset QU g Working Device

No

With either type of reset, if the device
is currently communicating with a chan­
nel, the device immediately disconnects
from the channel. Data transfer and any
operation using the facilities of the
control unit are immediately concluded,
and the I/O device is not necessarily
positioned at the beginning of a block.
Mechanical motion not involving the use
of the control unit, such as rewinding
magnetic tape or positioning a disk­
access mechanism, proceeds to the normal
stopping point, if possible. The device
appears in the working state until the
termination of mechanical motion or the
inherent cycle of operation, if any,
whereupon it becomes available. Status
information in the device and control
unit is reset, but an interruption
condition may be generated when any
mechanical operation is completed.

Reset Upon Malfunction

When a malfunction occurs and the
program is alerted by an I/O inter­
ruption, or when a malfunction occurs
during the execution of an I/O instruc­
tion and the program is alerted by the
setting of a condition code, then an I/O
selective reset may have been performed.
A CSW is stored identifying the cause of
the malfunction.

The device addressed by the I/O instruc­
tion is not necessarily the device that
is reset.

When a malfunction occurs and the
program is alerted by a machine-check
interruption, then an I/O selective
reset or, on some models, I/O-system
reset may have been performed. This may
or may not be accompanied by an I/O
interruption.

CONDITION CODE

The results of certain tests by the
channel and device, and the original
state of the addressed part of the I/O
system are used during the execution of
an I/O instruction to set one of four
condition codes in the PSW. The condi­
tion code is set at the time the
execution of the instruction is
concluded, that is, the time the CPU is
released to proceed with the next
instruction. The condition code ordi­
narily indicates whether or not the

function specified by the instruction
has been performed and, if not, the
reason for the rejection. In the case
of START I/O FAST RELEASE executed inde­
pendent of the device, a condition code
o may be set that is later superseded by
a deferred condition code stored in the
CSW.

The figure "Condition-Code Settings for
I/O States and Functions" lists the

I/O
Conditions State

SIO
SIOF

Available AAA O,1*a
Interruption pending in device AAI 1*a
Device working AAW 1*a
Device not operational AAN 3a
Interruption pending in subch. AIX

For the addressed device ~~

For another device 2
Subchannel working AWX

With the addressed device 2
With another device 2

Subchannel not operational ANX 3
Interruption pending in channel IXX aa
Channel working WXX

With the addressed device 2
With another device 2~

Internal activity 2~

Channel not operational NXX 3

Explanation:

I/O-system states and the corresponding
condition codes for each I/O function.
The I/O-system states and associated
abbreviations are defined in the section
"states of the Input/Output System"
earlier in this chapter. The digits in
the figure represent the decimal value
of the condition code.

Condition-Code Settings

TIO CLRIO HIO HDV RIO TCH STIDC CLRCH

0 0 1* 1* 0 0 0 0
1* 0 1* 1* 0 0 0 0
1* 0 1* 1* 0 0 0 0
3 0 3 3 0 0 0 0

1*" 1* 0 0 0 0 0 U
2 0 0 0 0 0 0 0

2 1* 1*" 1*" 0 0 0 0
2 0 1*" 0 0 0 0 0
3 3 3 3 0 0 0 0
~~ ~a ~~ ~~ 0 1 n" 0

2 *** 2 + 0 2 "" 0&
2- ** 2 * 0 2 "" 0&
2- ** 2 * 0 2 "" 0&
3 3 3 3 3 3 3 3&&

* Whenever condition code 1 is set, the CSW or its status portion is stored at
real location 64 during execution of the instruction.

** When CLEAR I/O encounters the WXX state, either condition code 2 is set, or
the channel is treated as available and the condition code is set according
to the state of the subchannel. When the channel is treated as available,
the condition codes for the WXX states are the same as for the AXX states.

*** Condition code 1 (with the CSW stored) or 2 may be set, depending on the
channel.

* The condition code depends on the state of the subchannel, the channel type,
and the system model. If the subchannel is not operational, condition code
2 or 3 is set. If the subchannel is available or working with the addressed
device, condition code 2 is set. Otherwise, condition code 0 or 2 is set.

" When a "device not operational" response is received in selecting the ad­
dressed device, condition code 3 is set.

"" When the channel is unable to store the channel ID because of the working or
interruption-pending state, a condition code 2 is set. If the working or
interruption-pending state does not preclude storing the channel 10, a con­
dition code 0 is set.

+ The condition code depends on the I/O interface sequence, the channel type,
and the system model. If the channel ascertains that the device received
the signal to terminate, a condition code 1 is set and the CSW stored.
Otherwise, a condition code 2 is set.

Condition-Code Settings for I/O States and Functions (Part 1 of 2)

Chapter 13. Input/Output Operations 13-13

Explanation (Continued):

• If the subchannel is interruption-pending for the addressed device, condi­
tion code 1 may be set depending on the channel type.

& On certain channels, when the working state precludes performing the 1/0-
system reset, condition code 2 is set.

&& On certain channels, when the not-operational state is due to a channel­
check-stop condition, the instruction is executed, and condition code 0 is
set.

~ Depending on the facilities provided for START I/O FAST RELEASE, some chan­
nels may set condition code O.

~~ If the subchannel is interruption-pending because of the concluding of the
portion of the operation involving the use of channel facilities, condition
code 2 is set. If the interruption-pending condition exists for other rea­
sons, condition code 1 is set.

~ START I/O FAST RELEASE may cause the same condition code to be set as for
START I/O or may cause condition code 0 to be set.

~~ For the purpose of executing START I/O, START I/O FAST RELEASE, TEST I/O,
CLEAR I/O, HALT DEVICE, and HALT I/O, a channel containing an interruption
condition appears the same as an available channel, and the condition code
setting depends on the states of the subchannel and device. The condition
codes for the IYY states are the same as for the AYY states, where the Ys
represent the states of the subchannel and the device. As an example, the
condition code for the lAW state is the same as for AAW.

Condition-Code Settings for I/O States and Functions (Part 2 of 2)

The channel-available state results in
condition code 0 only when no errors are
detected during the execution of the I/O
instruction.

When a subchannel on a multiplexer chan­
nel contains an interruption condition
(state AIX), the I/O device associated
with the concluded operation normally is
in the interruption-pending state. When
the channel detects during the execution
of TEST I/O that the device is not oper­
ational, condition code 3 is set.
Similarly, condition code 3 is set when
HALT I/O or HALT DEVICE is addressed to
a subchannel in the working state (state
AWX), but the device is detected to be
not operational.

Error conditions, including all equip­
ment or programming errors detected by
the channel or the I/O device during
execution of the I/O instruction, gener­
ally cause the CSW to be stored. Howev­
er, when the nature of the error causes
a machine-check interruption, but no I/O
interruption, to occur, the CSW is not
stored. Three types of errors can
occur:

Channel-Equipment Error: The channel
can detect the following equipment
errors during execution of START I/O,
START I/O FAST RELEASE, TEST I/O, CLEAR
I/O, HALT I/O, and HALT DEVICE:

13-14 System/370 Principles of Operation

1. The channel received an address
from the device during initial
selection that either had a parity
error or was not the same as the
one the channel sent out. Some
device other than the one addressed
may be malfunctioning.

2. The unit-status byte that the chan-
nel received during initial
selection had a parity error.

3. A signal from the I/O device
occurred at an invalid time or had
invalid duration.

4. The channel detected an error
its control equipment. (This
also true for STORE CHANNEL
RESUME I/O, and TEST CHANNEL,
RESUME I/O and TEST CHANNEL do
cause a CSW to be stored.)

in
i s

ID,
but
not

The channel may perform an I/O selective
reset or, on some models, may perform an
I/O-system reset or generate a halt
signal, depending on the type of error
and the model. If a CSW is stored,
channel-control check or interface­
control check is indicated, depending on
the type of error.

Channel-Programming Error:
can detect the following
errors during execution of
START I/O FAST RELEASE.

The channel
programming

START I/O or
All of the

errors are indicated during START I/O,
and during START I/O FAST RELEASE when
it is executed as START I/O, by the
condition-code setting and by the status
portion of the CSW. When the SIOF func­
tion is performed, the first two errors
are indicated as for START I/O, and the
remaining errors may be indicated as for
SIO or may be indicated in a subsequent
I/O interruption.

Depending on the model, conditions 9,
10, 11 and 12 may (a) cause an error
condition to be recognized and prevent
operation initiation or (b) may cause an
error condition to be recognized only if
the operation causes the device to
attempt to transfer data. In case (b),
a command that specifies an immediate
operation does not cause an error indi­
cation for an SIO or SIOF function.

1. Invalid CCW-address specification
in CAW

2. Invalid CAW format

3. Invalid CCW address in CAW

4. First-CCW location protected
against fetching

5. First CCW specifying transfer in
channel

6. Invalid command code in first CCW

7. Invalid count in first CCW

8. Invalid format for first CCW

9. If channel indirect data addressing
(CIDA) was specified, an invalid
data-address specification in the
first CCW

10. If CIDA was specified, an invalid
data address in the first CCW

11. If CIDA was specified, the first­
IDAW location protected against
fetching

12. If CIDA was specified, invalid
format for the first IDAW

13. If suspend control was specified,
invalid suspend flag in first CCW.

The CSW indicates program check, except
for items 4 and 11, for which protection
check is indicated.

Device Error: Programming or equipment
errors detected by the device as part of
the execution of TEST I/O, START I/O, or
START I/O FAST RELEASE are indicated by
unit check or unit exception in the CSW.

The causes of unit check and unit excep­
tion for each type of I/O device are
detailed in the SL pUblication for the
device.

INSTRUCTION FORMATS

All I/O instructions use the following S
format:

Op Code

o 16 20 31

Except for STORE CHANNEL 10, bit posi­
tions 8-14 of these instructions are
ignored unless the system model provides
the suspend-and-resume facility. When
the facility is provided, bits 8-14 are
ignored, except for RESUME I/O, STORE
CHANNEL 10, and the operation codes 9C03
through 9CFF, which are invalid.

The second-operand address specified by
the B2 and O2 fields is not used to
designate data but instead is used to
identify the channel and I/O device.
Address computation follows the rules of
address arithmetic. The effective
address has the following format:

I////////Ichn AddrlDev Addrl

8 16 24 31

Bit positions
I/O address.
ignored.

INSTRUCTIONS

16-31 contain the 16-bit
Bit positions 8-15 are

All I/O instructions cause a serializa­
tion and checkpoint-synchronization
function to be performed. See the
section "Serialization" in Chapter 5,
"Program Execution."

The names, mnemonics, and operation
codes of the I/O instructions are listed
in the figure "Summary of Input/Output
Instructions." The figure also indi­
cates that all I/O instructions cause a
program interruption when they are
encountered in the problem state, that
all I/O instructions set the condition
code, and that all I/O instructions are
in the S instruction format.

Note: In the detailed descriptions of
the individual instructions, the mnemon­
ic and the symbolic operand designation
for the assembler language are shown
with each instruction. In the case of
START I/O, for example, SIO is the
mnemonic and D2(B 2) the operand desig­
nation.

Chapter 13. Input/Output Operations 13-15

Mne- Op*
Name monic Characteristics Code

CLEAR CHANNEL CLRCH 5 C RE P ¢ 9F01
CLEAR I/O CLRIO S C P ¢ 9001
HALT DEVICE HDV 5 C P ¢ 9E01
HALT I/O HIO S C P ¢ 9EOO
RESUME I/O RIO S C SR P ¢ 9C02

START I/O 510 5 C P ¢ 9COO
START I/O FAST RELEASE SIOF 5 C P ¢ 9C01
STORE CHANNEL ID STIDC 5 C P ¢ B203
TEST CHANNEL TCH 5 C P ¢ 9FOO
TEST I/O TIO 5 C P ¢ 9DOO

Explanation:

¢ Causes serialization and checkpoint synchronization.
* The handling of bits 8-15 of the operation code depends on the

instruction and the facilities installed. See the description
of the instruction for details.

C Condition code is set.
P Privileged-operation exception.
RE Recovery-extension facility.
5 5 instruction format.
SR Suspend-and-resume facility.

Summary of Input/Output Instructions

Programming Note

The instructions CLEAR I/O, HALT DEVICE,
HALT I/O, START I/O, START I/O FAST
RELEASE, STORE CHANNEL ID, and TEST I/O
may cause a CSW to be stored. To
prevent the contents of the CSW stored
by the instruction from being destroyed
by an immediately following I/O inter­
ruption, the CPU must be disabled for
all I/O interruptions before CLEAR I/O,
HALT DEVICE, HALT I/O, START I/O, START
I/O FAST RELEASE, STORE CHANNEL ID, or
TEST I/O is issued and must remain disa­
bled until the information in the CSW
provided by any of these instructions
has been acted upon or stored elsewhere
for later use.

CLEAR CHANNEL

signaled to all I/O devices attached to
the addressed channel.

Bits 8-14 of the instruction are
ignored. Bits 16-23 of the second­
operand address identify the channel to
which the instruction applies. Bits
24-31 of the address are ignored.

The CLRCH function inspects only the
state of the addressed channel. When
the channel is available or
interruption-pending, I/O-system reset
is performed.

When the channel is working, some chan­
nels may indicate busy and cause no
I/O-interface action, while other chan­
nels cause I/O-system reset to be
performed.

When the channel is not operational
because of a channel-cheek-stop condi­
tion, some channels cause an I/O-system
reset to be performed on the I/O inter-

[5] face. In all other not-operational­
state cases, the reset function is
inhibited.

'9FOl'

o 16 20 31

With the recovery-extension facility
installed, the CLRCH function is
performed. Otherwise, the TCH function,
which is described in the definition of
TEST CHANNEL, is performed.

I/O-system reset is performed in the
addressed channel, with system reset

13-16 System/370 Principles of Operation

Program Exceptions:

Privileged operation

Resulting Condition Code:

o I/O-system reset was performed
on the I/O interface associated
with the addressed channel

1
2 Channel busy

3 Not operational

The condition code set when CLEAR CHAN­
NEL causes the CLRCH function to be
performed is shown for all possible
states of the I/O system in the figure
"Condition Codes Set by CLEAR CHANNEL."
The condition code set when CLEAR CHAN­
NEL causes the TCH function to be
performed is shown for all possible
states of the I/O system in the figure
"Condition Codes Set by TEST CHANNEL" in
the definition of the instruction TEST
CHANNEL. See the section "States of the
Input/Output System" in this chapter for
a detailed definition of the A, I, W,
and N states.

N
Channel

A
I
W
H

+

3++

Available
Interruption Pending
Working
Not Operational

On certain channels, when the work­
ing state precludes performing the
I/O-system reset on the I/O inter­
face, condition code 2 is set.

++ On certain channels, when the not­
operational state is due to a
channel-check-stop condition, the
instruction is executed, and condi­
tion code 0 is set.

Condition Codes Set by CLEAR CHANNEL

Programming Note

CLEAR CHANNEL should be used to reset an
I/O-device association with an I/O
interface when I/O devices are shared
with other systems or have multiple
paths to the same system. In those
cases when I/O devices are shared,
before using CLEAR CHANNEL, steps should
be taken to protect against compromising
data integrity until the desired 1/0-
device association can be reestablished.

CLEAR CHANNEL may cause a channel that
is not operational because of a
channel-check-stop condition to be
restored. Before a not-operational
channel can be restored or system reset
signaled on an I/O interface, on some
models CLEAR CHANNEL must be issued to
all channels. On other models, CLEAR
CHANNEL, when issued to a subset of the
channels, can cause a not-operational
channel to be restored and system reset
to be signaled on an I/O interface.
Refer to the SL publication for the
model to determine the appropriate
recovery action.

CLEAR I/O

[S]

'9D01'

o 16 20 31

The CLRIO function causes the current
operation with the addressed device to
be discontinued and the state of the
operation at the time of the discontin­
uation to be indicated in the stored
CSW.

Bits 8-14 of the instruction are
ignored. Bit positions 16-31 of the
second-operand address identify the
channel, subchannel, and I/O device to
which the instruction applies.

Either a TIO or CLRIO function is
performed, depending on the channel and
the block-multiplexing-control bit, bit
o of control register O. The TID func­
tion is performed when the CLRIO func­
tion is not implemented by the channel
or when the block-multiplexing-control
bi tis zero.

The TIO function is described in the
definition of the TEST I/O instruction.

When the subchannel is available,
interruption-pending with another
device, or working with another device,
no channel action is taken, and condi­
tion code 0 is set. Channels not capa­
ble of determining subchannel states
while in the working state may set
condition code 2.

When the subchannel is either working
with the addressed device or
interruption-pending with the addressed
device, the CLRIO function causes condi­
tion code 1 to be set and causes the
channel to discontinue the operation
with the addressed device by storing the
status of the operation in the CSW and
making the subchannel available. When
the channel is working with the
addressed device, the device is signaled
to terminate the current operation.
Some channels may, instead, indicate
busy and cause no channel action.

When any of the following conditions
occurs, the CLRIO function causes the
CSW to be stored at real storage
locations 64-71. The contents of the
entire CSW pertain to the I/O device
addressed by the instruction.

1. The channel is available or
interruption-pending, and the
subchannel (1) contains an inter­
ruption condition for the addressed
device because of the ending of an
I/O operation at the subchannel or
(2) is working with the addressed
device. The subchannel-key,

Chapter 13. Input/Output Operations 13-17

command-address, and count fields
describe the state of the operation
at the time of the execution of the
instruction. If the subchannel is
interruption-pending for reasons
other than the completion of an I/O
operation at the subchannel, the
fields in the CSW other than the
unit-status field are all set to
zeros. If the operation has not
yet been initiated at the device,
the deferred condition code is 1.

2. The channel is working with the
addressed device. The subchannel­
key, command-address, and count
fields describe the state of the
operation at the time the instruc­
tion is executed. (Some channels
alternatively indicate busy under
this condition.)

3. The channel is working with a
device other than the one
addressed, and the subchannel
(1) contains a pending interruption
condition for the addressed device
because of the ending of an I/O
operation at the subchannel or
(2) is working with the addressed
device.

In the former case, the
subchannel-key, command-address,
and count fields describe the state
of the operation at the time CLEAR
I/O is executed. If the operation
has not yet been initiated at the
device, the deferred condition code
i s 1.

In the latter case, if the subchan­
nel is interruption-pending for
reasons other than the completion
of an I/O operation at the subchan­
nel, the fields in the CSW other
than the unit-status field are all
set to zeros.

Some channels alternatively indi­
cate busy under the above condi­
tions (channel working).

13-18 System/370 Principles of Operation

4. The channel recognizes an equipment
error during the execution of the
instruction. The CSW identifies
the error condition. The states of
the channel and the I/O operations
in progress are unpredictable. The
limited channel logout, if stored,
indicates a sequence code of 000.

When the CLRIO function cannot be
executed because of a pending logout
that affects the operational capability
of the channel, a full CSW is stored.
The fields in the CSW are all set to
zeros, with the exception of the
logout-pending and channel-control-check
bits, which are set to ones. No channel
logout is associated with this status.

Program Exceptions:

Privileged operation

Resulting Condition Code:

o No operation in
subchannel for
device

1 CSW stored
2 Channel busy
3 Not operational

progress at the
the addressed

The condition code set when CLEAR I/O
causes the CLRIO function to be
performed is shown for all possible
states of the I/O system in the figure
"Condition Codes Set by CLEAR I/O." The
condition code set when CLEAR I/O causes
the TIO function to be performed is
shown for all possible state of the I/O
system in the figure "Condition Codes
Set by TEST I/O" in the definition of
the TEST I/O instruction. See the
section "States of the Input/Output
System" in this chapter for a detailed
definition of the A, I, W, and N states.

A I
Channel

A H
Subchannel

o +++

A Available
I Interruption pending

I* = Interruption pending for a device other than the one
addressed

In = Interruption pending for the addressed device
W Working

W* = Working with a device other than the one addressed
wn = Working with the addressed device

H Hot operational
* CSW stored

+ In the W*AX, W*I*X, and W*W*X states, a condition code 0 or
2 may be set, depending on the channel.

++ In the W*Inx, WtwnX,
(with the CSW stored)
channel.

and wnxx states, a condition
or 2 may be set, depending

code 1
on the

+++ In the W*HX state, a condition code 2 or 3 may be set,
depending on the channel.

Hote: Underscored codes pertain to situations that can occur
only on the multiplexer channel.

Condition Codes Set by CLEAR I/O

Programming Hotes

1. Since some channels cause condition
code 2 to be set when the instruc­
tion is received and the channel is
working, it may be useful to issue
a halt instruction and then CLEAR
I/O to the desired address. Using
HALT DEVICE will ensure that condi­
tion code 2 is received on the
CLEAR I/O only when the channel is
working with a device other than
the one addressed. Using HALT I/O
will ensure that the current work­
ing state, if any, is terminated
without regard for the address.

2. Because of the inability of CLEAR
I/O to terminate operations on some
channels when in the working state,
the instruction is not a suitable
substitute for HALT I/O or HALT
DEVICE.

3. The combination of HALT DEVICE
followed by CLEAR I/O can be used
to clear out all activity on a
channel by executing the two
instructions for all device
addresses on the channel.

4. The subchannel is said to be work­
ing with a device from the time
condition code 0 is set for SIO or
SIOF addressed to the device until
the subchannel becomes
interruption-pending because of the
ending at the subchannel of the I/O

operation or chain of operations.
Suspension of the channel-program
execution does not cause the ending
at the subchannel of an I/O opera­
tion or chain of operations.
Therefore, the subchannel is said
to be working even while the
channel-program execution is
suspended.

HALT DEVICE

HDV [5]

'9E01'

o 16 20 31

The current I/O operation at the
addressed I/O device is terminated. The
subsequent state of the subchannel
depends on the type of channel.

Bits 8-14 of the instruction are
ignored. Bits 16-31 of the second­
operand address identify the channel,
the subchannel, and the I/O device to
which the instruction applies.

Either a HALT DEVICE (HDV) or a HALT I/O
(HIO) function is performed, depending
on the channel. The HIO function is
performed when the HDV function is not
implemented by the channel.

Chapter 13. Input/Output Operations 13-19

The HIO function is described in the
definition of the HALT I/O instruction.
The HDV function is described below.

If the subchannel is in the working
state and an I/O operation is pending or
suspended at the subchannel for the
addressed device, the channel appears
busy and condition code 2 is set.
Subsequently, when conditions allow, the
device is selected and issued the halt
signal.

If condition code 2 is set for HALT
DEVICE as described above and the I/O
operation has not been initiated at the
device by the time the halt signal is
issued, the I/O operation is terminated
and an interruption condition is recog­
nized. The unit-status field of CSW
stored when the interruption condition
is cleared contains either the last
status received from the device when the
channel attempted to initiate the pend­
ing operation at the device, or zeros if
the channel has not attempted to initi­
ate the operation. The command-address
field contains the address of the first
or suspended CCW plus 8, and the
deferred condition code is 1.

If condition code 2 is set when HALT
DEVICE is executed as described above
but the pending or suspended operation
is terminated by the device before the
halt signal is issued, the channel
recognizes an interruption condition
because of the termination. Deferred
condition code 1 is indicated in the CSW
stored when the interruption condition
is cleared. The halt signal mayor may
not be issued in this case.

If condition code 2 is set when HALT
DEVICE is executed as described above
and the pending I/O operation has been
initiated at the device by the time the
halt signal is issued, the subchannel
remains working with the device and
termination of the operation occurs as a
function of status received from the
device.

If condition code 2 is set when HALT
DEVICE is executed as described above
and the I/O operation has not been
initiated and the device is detected to
be not operational either prior to or
during the attempt to issue the halt
signal, the I/O operation is terminated,
and an interruption condition is recog­
nized. Deferred condition code 3 is
indicated in the CSW stored when the
interruption condition is cleared, and
the unit-status field contains zeros.

If condition code 2 is set when HALT
DEVICE is executed as described above
and the channel accepts status from the
device before the pending I/O operation
is initiated at the device and before
the halt signal is issued, the operation
is terminated, and an interruption
condition is recognized. Deferred

13-20 System/370 Principles of Operation

condition code 1 is indicated in the CSW
stored when the interruption condition
is cleared. The status that caused the
channel to terminate the operation is
indicated in the unit-status field of
the CSW, with the busy bit included.
The halt signal mayor may not be issued
in this case.

When the channel is either available or
interruption-pending, with the subchan­
nel available or working with an I/O
operation in progress at the addressed
device, HALT DEVICE causes the addressed
device to be selected and to be signaled
to terminate the current operation, if
any. If the subchannel is available,
the subchannel is not affected. If, on
a byte-multiplexer channel, the subchan­
nel is working with an I/O operation in
progress at the addressed device, data
transfer is immediately terminated, but
the subchannel remains in the working
state until the device with which it is
working provides the next status byte,
whereupon the subchannel is placed in
the interruption-pending state.

When the channel is either available or
interruption-pending with the subchannel
either working with a device other than
the one addressed or interruption­
pending, no action is taken.

When the channel is working in burst
mode with the addressed device, data
transfer for the operation is immediate­
ly terminated, and the device immediate­
ly disconnects from the channel. If
command chaining or command retry is in
progress for the I/O operation using the
subchannel, it is suppressed.

When the channel is working in burst
mode with a device other than the one
addressed, and the subchannel is avail­
able, interruption-pending, or working
with a device other than the one
addressed, no action is taken. If the
subchannel is working with an I/O opera­
tion in progress at the addressed
device, the subchannel is set up to
signal termination of the device opera­
tion the next time the device requests
or offers a byte of data, if any. If
command chaining or command retry is
indicated for the I/O operation using
the subchannel, it is suppressed.

When the channel is working in burst
mode with a device other than the one
addressed and the subchannel is not
operational, is interruption-pending, or
is working with a device other than the
one addressed, the resulting condition
code may, in some channels, be deter­
mined by the subchannel state.

Termination of a burst operation by HALT
DEVICE on a selector channel causes the
channel and subchannel to be placed in
the interruption-pending state. Gener­
ation of the interruption condition is
not contingent on the receipt of status

information from the device. When HALT
DEVICE causes a burst operation on a
byte-multiplexer channel to be termi­
nated, the subchannel associated with
the burst operation remains in the work­
ing state until the device next provides
status, whereupon the subchannel enters
the interruption-pending state. The
termination of a burst operation by HALT
DEVICE on a block-multiplexer channel
may, depending on the model and the
design of the subchannel, take place as
for a selector channel or may allow the
subchannel to remain in the working
state until the device next provides
status.

On the byte-multiplexer channel operat­
ing in the byte-multiplex mode, the I/O
device is selected and the instruction
executed only after the channel has
serviced all outstanding requests for
data transfer for previously initiated
operations, including the operation to
be halted. If the control unit does not
accept the signal to terminate the oper­
ation because it is busy or in the not­
operational state, the subchannel, if
working, is set up to signal termination
of device operation the next time the
device requests or offers a byte of
data. If command chaining or command
retry is indicated for the I/O operation
using the subchannel, it is suppressed.

When either of the two situations
numbered below occurs, HALT DEVICE caus­
es the 16-bit unit-status and channel­
status portion of the CSW to be replaced
by a new set of status bits. The
contents of the other fields of the CSW
are not changed. The CSW stored
pertains only to the execution of HALT
DEVICE and does not describe the I/O
operation, at the addressed subchannel,
that is terminated. The extent of data
transfer and the status at the termi­
nation of the operation at the
subchannel are provided in the CSW asso­
ciated with the interruption condition
caused by the termination. The two
situations are:

1. The addressed device is selected
and signaled to halt the current
operation, if any. The CSW then
contains zeros in the status field
unless a machine malfunction is
detected.

2. The control unit is busy and the
device cannot be given the signal
to terminate the I/O operation.
The CSW unit-status field contains
ones in the busy and status­
modifier bit positions. The
channel-status field contains zeros
unless a machine malfunction is
detected.

When a channel recognizes an equipment
malfunction during the execution of HALT
DEVICE, a CSW mayor may not be imme­
diately stored, depending on the state

of the subchannel or the channel model.
When the subchannel is interruption­
pending and a malfunction occurs during
the execution of HALT DEVICE, condition
code 0 may be set, and the subsequently
stored CSW mayor may not indicate the
malfunction, depending on whether or not
the malfunction affected the I/O opera­
tion. When the channel recognizes a
malfunction and the subchannel is work­
ing with the addressed device, condition
code 0 or 1 may be set, depending on the
channel model. If the channel sets
condition code 1, the contents of the
immediately stored CSW identify the type
of malfunction. If the channel sets
condition code 0, the contents of the
subsequently stored CSW identify the
type of malfunction. In either case,
the state of the channel and the
progress of the I/O operation are unpre­
dictable. Refer to the SL publication
for the system model to determine its
particular implementation.

When HALT DEVICE cannot be executed
because of a pending logout which
affects the operational capability of
the channel or subchannel, a full CSW is
stored. The fields in the CSW are all
set to zeros, with the exception of the
logout-pending bit and the channel­
control-check bit, which are set to
ones. No channel logout occurs in this
case.

When HALT DEVICE causes data transfer to
be terminated, the subchannel associated
with the operation either (1) remains in
the working state until the channel-end
condition is received and the subchannel
enters the interruption-pending state or
(2) immediately enters the interrup­
tion-pending state, depending on the
type of channel. If the subchannel is
shared by other devices attached to the
control unit, I/O instructions addressed
to those devices set the condition code
appropriate to the subchannel states
described.

When HALT DEVICE causes data transfer to
be terminated, the control unit associ­
ated with the operation may not become
available until the data-handling
portion of the operation in the control
unit is concluded. Conclusion of this
portion of the operation is signaled by
the generation of channel end. This may
occur at the normal time for the opera­
tion, or earlier, or later, depending on
the operation and type of device.

When HALT DEVICE causes data transfer to
be terminated, the I/O device executing
the terminated operation remains in the
working state until the end of the
inherent cycle of the operation, at
which time device end is generated. If
blocks of data at the device are
defined, as in read-type operations on
magnetic tape, the recording medium is
advanced to the beginning of the next
block.

Chapter 13. Input/Output Operations 13-21

When HALT DEVICE is issued at a time
when the subchannel is available and no
burst operation is in progress, the
effect of the halt signal depends
partially on the type of device and its
state. In all cases, the halt signal
has no effect on devices that are not in
the working state or are executing a
mechanical operation in which data is
not transferred, such as rewinding tape
or positioning a disk-access mechanism.
If the device is executing a type of
operation that is unpredictable in dura­
tion, or in which data is transferred,
the device interprets the signal as one
to terminate the operation. Pending
interruption conditions at the device
are not reset.

Program Exceptions:

Privileged operation

A
Channel

A I W*
Subchannel

Q Q
A N

CU/
Device 1* 3

A Available
I Interruption pending
W Working

WH N

d
A

li

Resulting Condition Code:

o Subchannel busy with another
device or interruption pending

1 CSW stored
2 Channel working
3 Not operational

The condition code set when HALT DEVICE
causes the HDV function to be performed
is shown for all possible states of the
I/O system in the figure "Condition
Codes Set by HALT DEVICE." The condi­
tion code set when HALT DEVICE causes
the HIO function to be performed is
shown for all possible states of the I/O
system in the figure "Condition Codes
Set by HALT I/O" in the description of
the HALT I/O instruction. See the
section "States of the Input/Output
System" in this chapter for a detailed
definition of the A, I, W, and N states.

I WH

A I W* WH N

o Q •
N

3

W* = Working with a device other than the one addressed
WH = Working with the addressed device

N Not operational
* CSW Stored

$ CSW stored. Condition code 0 (with no CSW stored) instead of condition code 1
may be set when a malfunction is detected.

~ In the WHXX state, either condition code 1 (with CSW stored) or condition
code 2 may be set, depending on the channel. However, condition code 1 (with
CSW stored) can be set only if the control unit has received the signal to
terminate.

+ In the W*IX and W*W*X states, either condition code 0 or 2 may be set.

• In the W*NX state, either condition code 2 or 3 may be set, depending on the
model and the channel type.

Note: Underscored condition codes pertain to situations that can occur only on the
multiplexer channel.

Condition Codes Set by HALT DEVICE

13-22 System/370 Principles of Operation

P~o9~ammin9 Notes

1. A p~og~am can ensu~e complete
compatibility between HALT DEVICE
and HALT I/O on channels that
execute HALT DEVICE as HALT I/O by
obse~ving the following
conventions:

a. On a byte-multiplexe~ channel,
do not issue HALT DEVICE to a
multiplexing device when a
burst operation could be in
progress on the channel.

b. On a byte-multiplexer channel,
do not issue HALT DEVICE to a
device on a shared subchannel
while that subchannel is work­
ing with a device other than
the one addressed.

c. On a selector channel in the
working state, do not issue
HALT DEVICE to any device other
than the one with which the
channel is working.

2. A block-multiplexer channel may
execute HALT DEVICE as a block­
multiplexer or selector channel.
However, when a block-multiplexer
channel is operating with multi­
plexing inhibited, HALT DEVICE
causes the HDV function to be
performed rather than the HIO func­
tion.

3. The execution of HALT DEVICE always
causes data transfer between the
addressed device and the channel to
be terminated. The condition code
and the C5W (when stored) indicate
whether the control unit was
signaled to terminate its operation
during the execution of the
instruction. If the control unit
was not signaled to terminate its
operation, the condition code and
the C5W (when stored) imply the
situations under which the
execution of a HALT DEVICE for the
same address will cause the control
unit to be signaled to terminate.

Condition code 0 indicates that
HALT DEVICE cannot signal the
control unit until an interruption
condition on the same subchannel is
cleared.

Condition code 1 with control­
unit-busy status in the C5W indi­
cates that HALT DEVICE cannot
signal the control unit until the
control-unit-end status is received
from that control unit.

Condition code 1 with
status field of the
that the addressed
selected and signaled
the cu~rent operation,

zeros in the
C5W indicates
device was
to terminate
if any.

Condition code 2 indicates that the
control unit cannot be signaled
until the channel is not working.
The end of the working state can be
detected by noting an interruption
from the channel o~ by noting the
results of repeatedly executing
HALT DEVICE.

Condition code 3 indicates that
manual intervention is required in
order to allow HALT DEVICE to
signal the cont~ol unit to termi­
nate.

HALT I/O

[5]

'9EOO'

o 16 20 31

Execution of the current I/O operation
at the addressed I/O device, subchannel,
or channel is terminated. The subse­
quent state of the subchannel depends on
the type of channel.

Bits 8-14 of the instruction are
ignored. Bits 16-31 of the
second-operand address identify the
channel and, when the channel is not
working, identify the subchannel and the
I/O device to which the instruction
applies.

The HIO function is performed by the
HALT I/O instruction and, on some chan­
nels and under certain circumstances, by
HALT DEVICE.

When the channel is either available or
interruption-pending, with the subchan­
nel either available or working, HALT
I/O causes the addressed I/O device to
be selected and to be signaled to termi­
nate the current operation, if any. If
the subchannel is available, its state
is not affected. If, on the byte­
multiplexer channel, the subchannel is
working, data transfer is immediately
terminated, but the subchannel remains
in the working state until the device
provides the next status byte, whereupon
the subchannel is placed in the
interruption-pending state.

When the channel is either available or
interruption-pending with the subchannel
working but the I/O operation is either
not yet initiated at the device or is
suspended, HALT I/O causes the suspended
or pending I/O operation to be termi­
nated and an interruption condition to
be recognized. The C5W stored when the
interruption occurs contains zeros in
the unit-status and channel-status
fields. The command-address field

Chapter 13. Input/Output Operations 13-23

contains the address of the first or the
suspended CCW, plus 8, and the deferred
condition code is 1.

When HALT I/O is issued to a channel
operating in the burst mode, data trans­
fer for the burst operation is termi­
nated, and the I/O device performing the
burst operation is immediately discon­
nected from the channel. The subchannel
and I/O-device address in the instruc­
tion is ignored in this case.

The termination of a burst operation by
HALT I/O on the selector channel causes
the channel and subchannel to be placed
in the interruption-pending state.
Generation of the interruption condition
is not contingent on the receipt of a
status byte from the I/O device. When
HALT I/O causes a burst operation on the
byte-multiplexer channel to be termi­
nated, the subchannel associated with
the burst operation remains in the work­
ing state until the I/O device next
provides status, whereupon the subchan­
nel enters the interruption-pending
state. The termination of a burst oper­
ation by HALT I/O on a block-multiplexer
channel may, depending on the model and
the design of the subchannel, take place
as for a selector channel or may allow
the subchannel to remain in the working
state until the device next provides
status.

On the byte-multiplexer channel operat­
ing in the byte-multiplex mode, the I/O
device is selected and the instruction
executed only after the channel has
serviced all outstanding requests for
data transfer for previously initiated
operations, including the operation to
be halted. If the control unit does not
accept the signal to halt the operation
because it is in the not-operational or
busy state, the subchannel, if working
with a device, is set up to signal
termination of device operation the next
time the device requests or offers a
byte of data. If command chaining or
command retry is indicated in the
subchannel, it is suppressed if the
device presents status.

When the addressed subchannel is
interruption-pending, with the channel
available or interruption-pending, HALT
I/O does not cause any action.

When any of the following conditions
occurs, HALT I/O causes the status
portion, bits 32-47, of the CSW to be
replaced by a new set of status bits.
The contents of the other fields of the
CSW are not changed. The CSW stored by
HALT I/O pertains only to the execution
of HALT I/O and does not describe the
I/O operation that is terminated at the
addressed subchannel. The extent of
data transfer, and the status at the
termination of the operation at the
subchannel, are provided in the CSW

13-24 System/370 Principles of Operation

associated with the interruption condi­
tion due to the termination.

1. The addressed device was selected
and signaled to halt the current
operation. The CSW contains zeros
ln the status field unless an
equipment error is detected.

2. The channel attempted to select the
addressed device, but the control
unit could not accept the halt
signal because it was executing a
previously initiated operation or
had an interruption condition asso­
ciated with a device other than the
one addressed. The signal to
terminate the operation has not
been transmitted to the device, and
the subchannel, if in the working
state with an I/O operation in
progress at the device, will signal
termination the next time the
device identifies itself. The CSW
unit-status field contains ones in
the busy and status-modifier bit
positions. The channel-status
field contains zeros unless an
equipment error is detected.

When a channel detects an equipment
malfunction during the execution of HALT
I/O, a CSW mayor may not be immediately
stored, depending on the state of the
subchannel or the channel model. When
the subchannel is interruption-pending
and a malfunction occurs during the
execution of HALT I/O, condition code 0
is set, and the channel-status field of
the subsequently stored CSW mayor may
not indicate channel-control check,
along with the other ending-status
information, depending on whether the
malfunction affected the I/O operation.
When the channel recognizes a malfunc­
tion during the execution of HALT I/O
and the subchannel is working, condition
code 0 or 1 may be set, depending on the
channel model. If the channel sets
condition code 1, the contents of the
immediately stored CSW identify the
malfunction. If the channel sets condi­
tion code 0, the contents of the
subsequently stored CSW identify the
malfunction and may also indicate other
status information describing the termi­
nated operation. Consult the SL
publication for each system model to
determine implementation.

When HALT I/O cannot be executed because
of a pending logout which affects the
operational capability of the channel or
subchannel, a full CSW is stored. The
fields in the CSW are all set to zeros,
with the exception of the logout-pending
bit and the channel-control-check bit,
which are set to ones. No channel
logout occurs in this case.

When HALT I/O causes data transfer to be
terminated, the control unit associated
with the operation may not become avail­
able until the data-handling portion of

the operation in the control unit is
terminated. Termination of the data­
transfer portion of the operation is
signaled by the generation of channel
end, which may occur at the normal time
for the operation, earlier, or later,
depending on the operation and type of
device.

When HALT I/O causes data transfer to be
terminated, the subchannel associated
with the operation either (1) remains in
the working state until the channel-end
condition is received and the subchannel
enters the interruption-pending state or
(2) immediately enters the
interruption-pending state, depending on
the type of channel. If the subchannel
is shared by other devices attached to
the control unit, I/O instructions
addressed to those devices set the
condition code appropriate to the
subchannel states described.

When HALT I/O causes data transfer to be
terminated, the I/O device executing the
terminated operation remains in the
working state until the end of the
inherent cycle of the operation, at
which time device end is generated. If
blocks of data at the I/O device are
defined, such as reading on magnetic
tape, the recording medium is advanced
to the beginning of the next block.

When HALT I/O is issued at a time when
the subchannel is available and no burst

Channel

A
Subchannel

A N
CU/
Device 1* 3

A
I
W
N

Available
Interruption pending
Working
Not operational
CSW stored

A

I N

Q 1
A

1*

A

operation is in progress, the effect of
the halt signal depends on the type?f
I/O device and its state and is speCl­
fied in the SL publication for the I/O
device. The halt signal has no effect
on I/O devices that are not in the work­
ing state or are executing a mechanical
operation in which data is not trans­
ferred, such as rewinding tape or
positioning a disk-access mechanism. If
the I/O device is executing a type of
operation that is variable in duration,
the I/O device interprets the signal as
one to terminate the operation. Atten­
tion or device-end signals at the device
are not reset.

Program Exceptions:

Privileged operation

Resulting Condition Code:

o
1
2
3

Interruption pending
subchannel
CSW stored
Burst operation terminated
Not operational

in

The condition code set by HALT I/O for
all possible states of the I/O system is
shown in the figure "Condition Codes Set
by HALT I/O." See the section "States
of the Input/Output System" in this
chapter for a detailed definition of the
A, I, W, and N states.

I W

2
I

0
N

3

* ~ When a device-nat-operational
selecting the addressed device,
Condition code 0 may be set if a

response is received in
a condition code 3 is set.
malfunction is detected.

Note: Underscored condition codes pertain to situations that can
occur only on the multiplexer channel.

Condition Codes Set by HALT I/O

Chapter 13. Input/Output Operations 13-25

Programming Note

The instruction HALT I/O provides the
program with a means of terminating an
I/O operation before all data specified
in the operation has been transferred or
before the operation at the device has
reached its normal ending point. It
permits the program to immediately free
the selector channel for an operation of
higher priority. On the byte­
multiplexer channel, HALT I/O provides a
means of controlling real-time oper­
ations and permits the program to
terminate data transmission on a commu­
nication line.

RESUME I/O

RIO [S]

'9C02'

o 16 20 31

Depending on whether the suspend-and­
resume facility is provided by the
system model, an RIO or SIO function is
performed. The RIO function is
performed when the suspend-and-resume
facility is provided by the system
model; otherwise, the SIO function is
performed.

The SIO function is described in the
definition of the instruction START I/O.

Execution of the RIO function causes a
currently suspended channel-program
execution to be resumed with the device
if the suspend flag in the CCW causing
suspension has been set to zero. If the
suspend flag remains set to one or if
the I/O operation is not currently
suspended, the instruction has no effect
on the channel-program execution. The
instruction is executed only when the
CPU is in the supervisor state; other­
wise, a privileged-operation exception
is recognized, and the operation is
suppressed.

Bits 16-31 of the second-operand address
identify the channel, subchannel, and
I/O device to which the instruction
applies.

The RIO function is performed independ­
ent of the state of the channel,
subchannel, and device so long as the
channel is operational.

If the channel is not operational,
condition code 3 is set, and no action
takes place. If the channel is opera­
tional, condition code 0 is set. If the
suspend-and-resume facility is not
provided for the addressed subchannel or
if the addressed subchannel is not oper-

13-26 System/370 Principles of Operation

ational, no further action takes place.
If the suspend-and-resume facility is
provided for the addressed subchannel
and a channel-program execution is
currently suspended or in the process of
being suspended at the subchannel, the
channel is signaled to perform the
resume function. A channel-program
execution is in the process of being
suspended if a channel-command word
(CCW) has been fetched which contains a
valid S flag but the suspend function
has not yet been completed.

The RIO function is performed by the
channel logically subsequent to and
asynchronous to the execution of the
RESUME I/O that provided the stimulus.
The RIO function causes the channel to
perform a modified SIOF function by
using the CCW that previously caused the
channel to perform the suspend function
as the first CCW of the resumed
channel-program execution. Resumption
of channel-program execution appears to
the device to be the initiation of a new
I/O operation not chained to the previ­
ous operation.

Program Exceptions:

Privileged operation

Resulting Condition Code:

o RIO function performed
1
2
3 Channel not operational

The condition code set by RESUME I/O for
all possible states of the I/O system is
shown in the figure "Condition Codes Set
by RESUME I/O." See the section "States
of the Input/Output System" in this
chapter for a detailed definition of the
A, I, W, and N states.

Channel

A Available
I Interruption pending
W Working
N Not operational

Condition Codes Set by RESUME I/O

Programming Notes

1. Programs designed to be executed in
models that do not provide the
suspend-and-resume facility may not
be executed properly in models that
provide the facility because bits
8-14 of the RESUME I/O operation

code (9C02) are
significant.

defined to be

2. Programs that issue RESUME I/O are
not executed correctly in models
that do not provide the suspend­
and-resume facility. In these
models, RESUME I/O is executed as
START I/O. This means that
programs that use RESUME I/O must
be designed to issue RESUME I/O
only in models that provide the
suspend-and-resume facility. The
program can determine whether the
suspend-and-resume facility is
provided by issuing a mock START
I/O with the suspend-control bit
set to one in the CAW. If the mock
I/O operation is not terminated
with a channel-program-check indi­
cation because CAW bit 4 is not
equal to zero, the suspend-and­
resume facility is provided, and
the program may safely issue RESUME
I/O.

3. Unlike a channel program initiated
by START I/O or START I/O FAST
RELEASE, a suspended channel
program being resumed may specify a
CCW containing the transfer-in­
channel command as the first CCW
executed when channel-program
execution is resumed.

START I/O

SIO [S]

'9COO'

o 16 20 31

START I/O FAST RELEASE

SIOF [S]

'9C01'

o 16 20 31

A write, read, read backward, control,
or sense operation is initiated with the
addressed I/O device and subchannel.

Bits 8-14 of the instruction are ignored
unless the suspend-and-resume facility
is provided by the system model. When
the facility is provided, bits 0-15 of
the instruction are interpreted as
follows:

Operation
Code Interpretation

9COO
9C01
9C02

9C03-9CFF

START I/O
START I/O FAST RELEASE
RESUME I/O
Invalid operation

Bits 16-31 of the second-operand address
identify the channel, subchannel, and
I/O device to which the instruction
applies. The CAW, at real location 72,
contains the subchannel key, the
suspend-control bit, and the address of
the first CCW. This CCW specifies the
operation to be performed and the stor­
age area to be used, if any.

Either an SIO or SIOF function is
performed, depending on the instruction,
the channel, and the block­
multiplexing-control bit, bit 0 of
control register o. The instruction
START I/O always causes the SIO function
to be performed, as does START I/rr FAST
RELEASE when the block-multiplexing­
control bit is zero. When the bit is
one, START I/O FAST RELEASE may, depend­
ing on the channel, cause either the SIO
or the SIOF function to be performed.

For the SIO function, the I/O operation
is initiated at the device if the
suspend flag is not 1 in the first CCW,
the addressed I/O device and subchannel
are available, the channel is available
or interruption-pending, and errors or
exceptional situations have not been
detected. The I/O operation is not
initiated when the addressed part of the
I/O system is in any other state or when
the channel or device detects any error
or exceptional situations during
execution of the instruction.

For the SIOF function, the I/O operation
is made pending at the subchannel if the
subchannel is available, the channel is
available or interruption-pending, and
no errors or exceptional conditions are
recognized during the execution of START
I/O FAST RELEASE. Selection of the I/O
device may be performed during the
execution of the instruction or may be
performed later. When an SIOF function
is performed, initiation of the I/O
operation at the I/O device occurs
logically subsequent and asynchronous to
the execution of the instruction. When
the I/O operation is not initiated at
the I/O device during the execution of
the instruction, the I/O operation is
said to be pending at the subchannel
until channel and subchannel facilities
are available for initiation. When an
I/O operation is made pending at the
subchannel, the subchannel enters the
working state and condition code 0 is
set for the instruction.

Status, other than control-unit end or
device end signaling the end of a previ­
ously signaled control-unit-busy or
device-busy condition, that is presented

Chapter 13. Input/Output Operations 13-27

by the device while the I/O operation is
pending at the subchannel causes the
pending I/O operation to be canceled.
An interruption condition is recognized,
and the status, with the busy bit
appended, is stored in the unit-status
field when the CSW is stored that clears
the interruption condition. The
deferred condition code is stored as 1
in the CSW in this case, and the CCW­
address field contains the address of
the first CCW plus 8.

When the channel attempts to initiate
the pending I/O operation at the I/O
device, the detection of any error
condition by the channel or the I/O
device causes the channel to terminate
the operation. The detection of any
exceptional condition by the channel or
the I/O device during the attempt to
initiate the I/O operation at the I/O
device also causes the channel to termi­
nate the operation, except for certain
busy conditions when start-I/O-fast
queuing is provided for the subchannel.

When start-I/O-fast queuing is provided,
busy conditions detected during the
selection of the I/O device cause the
currently pending I/O operation at the
subchannel not to be initiated. Whether
the I/O operation remains pending or is
terminated when these conditions are
detected depends on the degree of
start-I/O-fast queuing provided and
conditions existing at the channel and
subchannel when detected.

Control-unit or device-busy conditions
detected during the attempt to initiate
a pending I/O operation at the device
may cause the operation to remain pend­
ing.

If conditions are such that the I/O
operation is not terminated but remains
pending at the subchannel, the operation
will remain pending until terminated for
some other reason or until the no­
longer-busy indication is received from
the control unit or device. When the
latter occurs, the channel again
attempts to initiate the pending I/O
operation at the device.

When the channel is available or
interruption-pending, when the subchan­
nel is available before the execution of
510 or SIOF, and when the suspend-and­
resume facility is provided and the
first CCW contains a valid suspend (S)
flag, condition code 0 is set, but the
command in the first CCW is not trans­
ferred to the device. Instead, the
subchannel enters the subchannel-working
state with channel-program execution
suspended. When the SIOF function is
performed in this case, detection of a
valid S flag in the first CCW may occur
either before or after condition code 0
is set, depending on the system model.

13-28 System/370 Principles of Operation

When the channel is available or
interruption-pending, and the subchannel
is available before the execution of the
instruction, the following situations
cause a CSW to be stored. How the CSW
is stored depends on whether an SIO or
SIOF function is performed. The SIO
function causes the status portion of
the CSW to be replaced by a new set of
status bits. The status bits pertain to
the device addressed by the instruction.
The contents of the other fields of the
CSW are not changed. When the SIOF
function is performed, situation 1 caus­
es the same action as for the 510
function; also, the control-unit and
device state may be tested, with the
result that situation 5 may cause the
same action as for the SID function.
Or, situation 5 may be indicated in a
subsequent I/O interruption during which
the entire CSW is stored, or, when
start-I/O-fast queuing is provided,
situation 5 may not be indicated at all.
The remaining situations for the SIOF
function are indicated in a subsequent
I/O interruption, during which the
entire CSW is stored.

1. The channel detects a programming
error in the contents of the CAW or
detects an equipment error during
execution of the instruction. The
CSW identifies the error. If
selection of the device occurred
prior to detection of the error or
if the error condition was detected
during the selection of the device,
the device status is indicated in
the CSW.

2. The channel detects a programming
error associated with the first CCW
or, if channel i ndi rect data
addressing is specified, with the
first IDAWi or, for the SIOF func­
tion, the channel detects an
equipment error after completion of
the instruction. The CSW identi­
fies the error. If selection of
the device occurred prior to
detection of the error, or if the
error condition was detected during
the selection of the device, the
device status is indicated in the
CSW.

3. An immediate operation was
executed, and either (1) no command
chaining is specified and no
command retry occurs, or
(2) chaining is suppressed because
of unusual situations detected
during the operation. In the CSW,
the channel-end bit is one, the
busy bit is zero, and other status
may be indicated. The I/O opera­
tion is initiated, but no
information has been transferred to
or from the storage area designated
by the CCW. No interruption condi­
tions are generated at the
subchannel, and the subchannel is
available for a new I/O operation.

If device end is not indicated, the
device remains busy, and a subse­
quent device-end condition is
generated by the device.

4. The I/O device is interruption­
pending, or the control unit is
interruption-pending for the
addressed device. The CSW unit­
status field contains one in the
busy-bit position, identifies the
interruption condition, and may
contain other bits provided by the
device or control unit. The inter­
ruption condition is cleared. The
I/O operation is not initiated.
The channel-status field indicates
any errors detected by the channel.

5. The I/O device or the control unit
is executing a previously initiated
operation, or the control unit is
interruption-pending for a device
other than the one addressed. The
CSW unit-status field contains one
in the busy-bit position or, if the
control unit is busy, the busy and
status-modifier bits are ones. The
I/O operation is not initiated.
The channel-status field indicates
any errors detected by the channel,
and the PCI bit is one if specified
in the first ccw.

6. The I/O device or control unit
detected an equipment or program­
ming error during the initiation,
or the addressed device is not
ready. The CSW identifies the
error. The channel-end and busy
bits are zeros, unless the device
was busy, in which case the busy
bit, as well as any bits causing
interruption conditions, are ones.
The interruption conditions indi­
cated in the CSW have been cleared
at the device. The I/O operation
is not initiated. No interruption
conditions are generated at the I/O
device or subchannel.

When the SIO or SIOF function cannot be
executed because of a pending logout
which affects the operational capability
of the channel or subchannel, a full CSW
is stored. The fields in the CSWare
all set to zeros, with the exception of
the logout-pending bit and the channel­
control-check bit, which are set to
ones. No channel logout occurs in this
case.

Certain situations encountered during
the execution of SIO cause condition
code 1 to be set. When SIOF is
executed, these same situations may be
encountered after condition code 0 is
set. When the latter occurs, a
deferred-condition-code-1 1/0-
interruption condition is generated to
report these situations to the program.
An exception to this may occur when
start-I/O-fast queuing is provided for
the subchannel. With start-I/O-fast

queuing, control-unit-busy or device­
busy conditions encountered while
attempting to initiate the I/O operation
may be handled by the channel instead of
a deferred-condition-code-1 I/O inter­
ruption generated.

When the SIOF function causes condition
code 0 to be set and, subsequently, it
is determined that the device is not
operational, a deferred-condition-code-3
I/O-interruption condition is generated.
In both of the above cases, in the
resulting I/O interruption, a full CSW
is stored, and the deferred condition
code appears in the CSW.

When start-I/O-fast queuing is provided,
I/O operations may remain pending at the
subchannel while the control unit or
device is busy. The control unit or
device signals the end of the busy peri­
od by presenting a status byte
containing control-unit end or device
end, respectively.

When device-end status signals the end
of a previously signaled device-busy
period, and an I/O operation is pending
at the subchannel for the device, the
channel attempts to initiate the pending
operation without causing an I/O inter­
ruption. When the status is control­
unit end, and one or more devices
attached to the control unit have I/O
operations pending, the channel attempts
to initiate one of the pending oper­
ations.

If a control unit presents a status byte
and the channel is unable to accept that
status byte because of an I/O operation
that is pending at the associated
subchannel for a different device to
which a busy indication had previously
been presented, then the I/O operation
that is queued at the subchannel is
terminated and the subchannel becomes
interruption-pending. When the associ­
ated interruption occurs, the CSW that
is stored contains the busy indication
in the unit-status byte, and the
deferred condition code is 1.

If the busy indication received by the
channel when the device or control unit
was interrogated while busy was not
presented to the program, the no­
longer-busy indication is not presented
to the program. If the device-busy
indication was presented to the program
and no I/O operation is pending for that
device when the device-end indication is
received, an interruption condition is
recognized, and the device-end indi­
cation is presented to the program.

If the control-unit busy indication was
presented to the program, receipt of the
corresponding control-unit-end (CUE)
indication causes the channel to recog­
nize an interruption condition. If the
subchannel corresponding to the unit
address with which the CUE indication is

Chapter 13. Input/Output Operations 13-29

associated is available, the subchannel
is made interruption-pending. The CUE
status is stored in the unit-status
field of the CSW stored when the inter­
ruption condition is cleared. If the
subchannel corresponding to the unit
address with which the CUE indication is
associated is working, that is, the
subchannel contains a pending I/O opera­
tion or a suspended channel-program
execution, the channel generates the
channel-available-interruption (CAl)
condition instead, and the control­
unit-end status is not made available to
the program. When the CAl condition
replaces the CUE condition, the state of
the associated subchannel is not
affected. (See the section, "Channel­
Available Interruption," for the
detailed description of CAl.)

On the byte-multiplexer channel, both
the SIO and SIOF functions cause the
addressed device to be selected and the
operation to be initiated only after the

13-30 System/370 Principles of Operation

channel has serviced all outstanding
requests for data transfer for previous­
ly initiated operations.

Program Exceptions:

Privileged operation

Resulting Condition Code:

OSlO or SIOF function has been
accepted

1 CSW stored
2 Channel or subchannel busy
3 Not operational

The condition code set by START I/O and
START I/O FAST RELEASE for all possible
states of the I/O system ;s shown in the
figure "Condition Codes Set by START I/O
and START I/O FAST RELEASE." See the
section "States of the Input/Output
System" in this chapter for a detailed
definition of the A, I, W, and N states.

A or I W
Channel

2+
A I~

Subchannel
2$

A N
CU/
Device ¢ 3~

A Available
I Interruption pending

I~ = Interruption pending for a device other than the one
addressed

I# = Interruption pending for the addressed device
W Working
N Not operational
* CSW stored
¢ • When a nonimmediate I/O operation has been initiated and

the channel is proceeding with its execution, when an
immediate operation has been initiated and command
chaining takes place, or when command retry is signaled
in response to the first command and is honored by the
channel, condition code 0 is set.

• When an immediate operation has been initiated, and no
command chaining or command retry is taking place, or
the device is not ready, or an error has been detected
by the control unit or device, for the SIO function
condition code 1 is set, and the CSW is stored. Under
the same circumstances, for the SIOF function, condition
code 0 is set, and subsequently an I/O-interruption
condition is generated. The CSW stored when the 1/0-
interruption condition is cleared contains the same
information as the CSW stored during the SIO function
under the same conditions, plus the deferred-condition­
code-l indication.

~ The SIOF function may cause condition code 0 to be set, in
which case the other condition code shown will be specified
as a deferred condition code.

& When the subchannel is interruption-pending because an I/O
operation is concluded at the subchannel, condition code 2
is set. When the subchannel is interruption-pending for any
other reason, condition code 1 is set, and the status
portion of the CSW is stored with a one included in the
busy-bit position of the unit-status field.

$ The AIX state only occurs on the multiplexer channel.
+ With start-I/O-fast queuing, the channel-working state (WXX)

is normally treated the same as the available channel state
for the purpose of performing the SIOF function and the
condition-code setting depends on the state of the subchan­
nel. When the working state of the channel precludes the
acceptance of the SIOF function, however, condition code 2
is set. When the block-multiplexing-control bit is zero, it
causes the SIO function to be performed instead of the SIOF
function, so condition code 2 is set.

~ When the SIOF function causes condition code 0 to be set and
the subchannel is provided with start-I/O-fast queuing, the
I/O operation may remain pending at the subchannel instead
of being terminated.

Note: Underscored condition codes pertain to situations that can
occur only on the multiplexer channel.

Condition Codes Set by START I/O and START I/O FAST RELEASE

Programming Notes

1. The instruction START I/O FAST
RELEASE has the advantage over
START I/O that the CPU can be
released after the CAW is fetched,
rather than after completion of a

possibly lengthy device-selection
procedure. Thus, the CPU is freed
for other activity earlier. A
disadvantage, however, is that if a
deferred condition code is
presented, the resultant CPU
execution time may be greater than

Chapter 13. Input/Output Operations 13-31

that required in executing START
I/O.

2. When the channel detects a program­
ming error during execution of the
510 function, when the addressed
device contains an interruption
condition, and when the channel and
subchannel are available, the
instruction mayor may not clear
the interruption condition, depend­
ing on the type of error and the
system model. If the instruction
has caused the device to be inter­
rogated, as indicated by the
presence of the busy bit in the
CSW, the interruption condition has
been cleared, and the CSW contains
program or protection check, as
well as the status from the device.

3. Two major differences exist between
the SIO and SIOF functions:

a. Unchained immediate commands on
certain channels (that is,
those which execute SIOF inde­
pendent of the device) result
in a condition code 0 for the
SIOF function, whereas condi­
tion code 1 is set for the SIO
function. See also programming
note 2 in the section "Command
Retry" of this chapter.

b. Condition code 0 is set by
these certain channels for the
SIOF function, even though the
addressed device is not avail­
able or the command is rejected
by the device. The device
information will be supplied by
means of an interruption condi­
tion.

4. Subsequent to an I/O interruption
signaling the conclusion of an I/O
operat i on at t;,e subchannel but not
at the de\ice (as, for example,
when the device status contains
channel end without device end),
the subchannel is available while
the device remains working. With
start-I/O-fast queuing, START I/O
FAST RELEASE addressed to the
device in this case causes the new
I/O operation to be made pending at
the subchannel. The new I/O opera­
tion remains pending at the
subchannel until the device signals
the conclusion of the previous I/O
operation by presenting status
containing the device-end indi­
cation. When this occurs, the
device end, either alone or with
control-unit end, may be interpret­
ed by the channel as a no-Ionger­
busy indication. If the status is
interpreted as a no-longer-busy
indication, the channel attempts to
initiate the new pending I/O opera­
tion at the device. In this case,
the device-end status or device-end
and control-unit-end status for the

13-32 System/370 Principles of Operation

previous operation is discarded by
the channel and is not made avail­
able to the program. Otherwise,
the device-end indication is inter­
preted by the channel as
unsolicited status, and an inter­
ruption condition is recognized.

STORE CHANNEL 10

STIOC 02(B 2) [S]

'B203'

o 16 20 31

Information identifying the designated
channel is stored in the four-byte field
at real storage location 168.

Bits 16-23 of the second-operand address
identify the channel to which the
instruction applies. Bit positions
24-31 of the address are ignored.

The format of the information stored at
locations 168-171 is:

ITypelChannel Modell Max rOEL Lengthl

o 4 16 31

Bits 0-3 specify the channel type. When
a channel can operate as more than one
type, the code stored identifies the
channel type at the time the instruction
is executed. The following codes are
assigned:

Bits
.9.. 1 2* ~ Channel ~

0 0 0 0 Selector
0 0 0 1 Byte multiplexer
0 0 1 0 Block multiplexer

* When STORE CHANNEL 10 is
executed, the setting of bit 2 is
unpredictable when bit 3 of the
channel type code is stored as
zero and bit 0 of control regis­
ter 0 is (1) currently set to
zero or (2) was set to zero when
a previous START I/O or START I/O
FAST RELEASE was executed and at
least one subchannel is currently
in the working or interruption­
pending state because of execut­
ing the function of that previous
instruction.

Bits 4-15 identify the channel model.
When the channel model is implied by the
channel type and the CPU model, zeros
are stored in the field.

Bits 16-31 contain the length in bytes
of the longest I/O extended logout that
can be stored. If the channel never

stores logout information using the IOEl
address, then this field is set to zero.

When the channel detects an equipment
malfunction during the execution of
STORE CHANNEL 10, the channel causes the
status portion, bits 32-47, of the CSW
to be replaced by a new set of status
bits. With the exception of the
channel-control-check bit (bit 45),
which is stored as a one, all bits in
the status field are stored as zeros.
The contents of the other fields of the
CSW are not changed.

When STORE CHANNEL 10 cannot be executed
because of a pending logout which
affects the operational capability of
the channel, a full CSW is stored. The
fields in the CSW are all set to zero,
with the exception of the logout-pending
bit and the channel-control-check bit,
which are set to ones. No channel
logout occurs in this case.

Program Exceptions:

Privileged operation

Resulting Condition Code:

o Channel IO correctly stored
1 CSW stored
2 Channel activity prohibited

storing 10
3 Not operational

The condition code set by STORE CHANNEL
IO for all possible states of the I/O
system is shown in the figure "Condition
Codes Set by STORE CHANNEL 10." See
"States of the Input/Output System" for
a detailed definition of the A, I, W,
and N states.

Channell: I : I ~ I : I
A Available
I Interruption pending
W Working
N Not operational

• When the channel is unable to store
the channel IO because of its work­
ing state or because it contains a
pending interruption condition,
condition code 2 is set. If the
working or interruption-pending
state does not preclude the storing
of the channel 10, condition code 0
is set.

Condition Codes Set by STORE CHANNEL ID

TEST CHANNEL

TCH [S]

'9FOO'

o 16 20 31

The condition code in the PSW is set to
indicate the state of the addressed
channel. The state of the channel is
not affected, and no action is caused.
Bits 8-14 of the instruction are
ignored.

Bits 16-23 of the second-operand address
identify the channel to which the
instruction applies. Bit positions
24-31 of the address are ignored.

The TCH function is performed by the
TEST CHANNEL instruction and, on some
channels and under certain
circumstances, by CLEAR CHANNEL.

The TCH function inspects only the state
of the addressed channel. It tests
whether the channel is operating in the
burst mode, is interruption-pending, or
is not operational. When the channel is
operating in the burst mode and contains
an interruption condition, the condition
code is set as for operation in the
burst mode. When none of these situ­
ations exist, the available state is
indicated. No device is selected, and,
on the multiplexer channel, the subchan­
nels are not interrogated.

Program Exceptions:

Privileged operation

Resulting Condition Code:

o Channel available
1 Interruption or logout condi­

tion in channel
2 Channel operating in burst mode
3 Channel not operational

The condition code set by TEST CHANNEL
for all possible states of the addressed
channel is shown in the figure "Condi­
tion Codes Set by TEST CHANNEL." See
the section "States of the Input/Output
System" in this chapter for a detailed
definition of the A, I, W, and N states.

Channell~ ---:--~---~--~I-:~I--:~I
A Available
I Interruption pending
W Working
N Not operational

Condition Codes Set by TEST CHANNEL

Chapter 13. Input/Output Operations 13-33

TEST I/O

TIO [S]

'9DOO'

o 16 20 31

The state of the addressed channel,
subchannel, and device is indicated by
setting the condition code in the PSW
and, in certain situations, by storing
the CSW. Interruption conditions may be
cleared. Bits 8-14 of the instruction
are ignored.

Bits 16-31 of the second-operand address
identify the channel, subchannel, and
I/O device to which the instruction
applies.

The TIO function is performed by the
instruction TEST I/O and, on some chan­
nels and under certain circumstances, by
CLEAR I/O.

When the channel is operating in burst
mode and the addressed subchannel
contains an interruption condition for
the addressed device, the TIO function
causes condition code 1 or 2 to be set,
depending on the model and channel type.
If condition code 1 is set, the CSW is
stored to identify the interruption
condition, and the interruption condi­
tion is cleared. The interruption
condition in the subchannel is not
cleared, and the CSW is not stored if
the channel is working and has not yet
accepted the status causing the inter­
ruption condition from the device.
Condition code 2 is set in this case.

When the channel is either available or
interruption-pending and the addressed
subchannel is either interruption­
pending for a different device or work­
ing, the TIO function causes condition
code 2 to be set.

When either of the situations described
in the following two paragraphs occurs
with the channel either available or
interruption-pending or, on some chan­
nels, working, the TIO function causes
the CSW to be stored. The contents of
the entire CSW pertain to the I/O device
addressed by the instruction.

1. The subchannel is interruption­
pending for the addressed device,
and the interruption condition is
due to the termination of an I/O
operation at the subchannel. When
the CSW is stored, the interruption
condition is cleared. The CSW
fields contain the final values for
the I/O operation. The unit-status
and/or channel-status fields
contain indications provided by the
device or channel respectiVely,
which identify the interruption

13-34 System/370 Principles of Operation

condition and any other conditions
detected by the channel or device.

2. The subchannel is interruption-
pending for the addressed device,
and the interruption condition is
not due to the termination of an
I/O operation at the sUbchannel.
When the CSW is stored, the inter­
ruption condition is cleared. The
subchannel key, CCW address, and
count fields are stored as zeros.
The unit-status field contains
indications provided by the device
which identify the interruption
condition. The channel-status
field contains zeros unless a chan­
nel equipment error is detected.

When any of the following situations
occurs with the channel either available
or interruption-pending, the TIO func­
tion causes the CSW to be stored. The
contents of the entire CSW pertain to
the I/O device addressed by the instruc­
tion.

1. The subchannel is available, and
the I/O device contains an inter­
ruption condition or the control
unit contains control-unit end for
the addressed device. The CSW
unit-status field identifies the
interruption condition and may
contain other bits provided by the
device or control unit. The inter­
ruption condition is cleared. The
busy bit in the CSW is zero. The
other fields of the CSW contain
zeros unless an equipment error is
detected.

2. The subchannel is available, and
the I/O device or the control unit
is executing a previously initiated
operation or the control unit has
an interruption condition associ­
ated with a device other than the
one addressed. The CSW unit-status
field contains one in the busy-bit
position or, if the control unit is
busy, the busy and status-modifier
bits are ones. Other fields of the
CSW contain zeros unless an equip­
ment error is detected.

3. The subchannel is available, and
the I/O device or channel detected
an equipment error during execution
of the instruction or the addressed
device is not ready and does not
have any interruption condition.
The CSW identifies the error. If
the device is not ready, unit check
is indicated. No interruption
conditions are generated at the I/O
device or the subchannel.

When the TIO function cannot be executed
because of a pending logout which
affects the operational capability of
the channel or subchannel, a full CSW is
stored. The fields in the CSW are all
set to zeros, with the exception of the

logout-pending bit and
control-check bit, which
ones. No channel logout
with this status.

the channel­
are set to

is associated

When the TIO function is used to clear
an interruption condition signaling
conclusion of an I/O operation at the
subchannel and the channel has not yet
accepted the condition from the device,
the function causes the device to be
selected and the interruption condition
in the device to be cleared. During
certain I/O operations, some types of
devices cannot provide their current
status in response to TEST I/O. Some
magnetic-tape control units, for
example, are in such a state when they
have provided channel end and are
executing the backspace-file operation.
When TEST I/O is issued to a control
unit in such a state, the unit-status
field of the CSW has the busy and
status-modifier bits set to ones, with
zeros in the other CSW fields. The
interruption condition in the device and
in the subchannel is not cleared.

On some types of devices, the device
never provides its current status in
response to TEST I/O, and an inter­
ruption condition can be cleared only by
permitting an I/O interruption, by
I/O-system reset, or by I/O selective
reset. When TEST I/O is issued to such
a device, the unit-status field has the
status-modifier bit set to one, with
zeros in the other CSW fields. The
interruption condition in the device and
in the subchannel, if any, is not
cleared.

However, by the time the channel assigns
the highest priority for interruptions
to a condition associated with an opera­
tion at the subchannel, the channel has
accepted the status from the device and
cleared the corresponding condition at
the device. Some channels accept and
clear an interruption condition signal­
ing the conclusion of an I/O operation
at the subchannel from the device before

it is assigned the highest priority for
interruptions. Other channels may
accept and clear any type of inter­
ruption condition from the device prior
to assigning it the highest priority for
interruptions. The acceptance of an
interruption condition from a device
causes the associated subchannel to
enter the interruption-pending state.
When the channel recognizes an inter­
ruption condition signaling the
conclusion of an I/O operation at the
subchannel, the associated subchannel
enters the interruption-pending state
even when the interruption condition has
not yet been accepted from the device.

When the TIO function is addressed to a
device for which the channel has already
accepted the interruption condition, the
device is not selected, and the condi­
tion in the subchannel is cleared
regardless of the type of device and its
present state. The CSW contains unit
status and other information associated
with the interruption condition.

On the byte-multiplexer channel, the TIO
function causes the addressed device to
be selected only after the channel has
serviced all outstanding requests for
data transfer for previously initiated
operations.

Program Exceptions:

Privileged operation

Resulting Condition Code:

o Available
1 CSW stored
2 Channel or subchannel busy
3 Not operational

The condition code set by the TIO func­
tion for all possible states of the I/O
system is shown in the figure "Condition
Codes Set by TEST I/O." See the section
"States of the Input/Output System" in
this chapter for a detailed definition
of the A, I, W, and N states.

Chapter 13. Input/Output Operations 13-35

A I W~ W~
Channel

2
A A I~ N

Subchannel
Z 2 Z

A N A N
CU/
Device 0 3 0 3

A Available
I Interruption pending

I~ = Interruption pending for a device other than the one
addressed

In = Interruption pending for the addressed device
W Working

W~ = Working with a device other than the one addressed
wn = Working with the addressed device

N Not operational
* CSW stored
~ In the W*Inx state, either condition code 1 may be set with the

CSW stored, or condition code 2 may be set, depending on the
channel and the activity in the channel.

Note: Underscored condition codes pertain to situations that can
OCCUr only on the multiplexer channel.

Condition Codes Set by TEST I/O

Programming Notes

1. Disabling the CPU for I/O inter­
ruptions provides the program with
a means of controlling the priority
of I/O interruptions selectively by
channels. The priority of devices
attached on a channel cannot be
controlled by the program. The
instruction TEST I/O in some cases
permits the program to clear inter­
ruption conditions selectively by
I/O device.

2. When a CSW is stored by the TIO
function, the interface-control­
check and channel-control-check
indications may be due to an inter­
ruption condition already existing
in the channel or may be due to an
interruption condition created by
the TIO function. Similarly, the
unit-check bit set to one with the
channel-end, control-unit-end, or
device-end bits set to zeros may be
due to a situation created by the
preceding operation, the I/O device
being not ready, or an equipment
error detected during the execution
of TEST I/O. The instruction TEST
I/O cannot be used to clear an
interruption condition due to the
PCI flag while the subchannel is
working.

3. The use of a TEST I/O loop on a
multiplexer channel to retrieve
ending status for a channel program
should, in general, be avoided.
TEST I/O loops may be used to
return ending status to a sense
command when that command was
initiated by a START I/O that

13-36 System/370 Principles of Operation

received condition code O. TEST
I/O loops under other conditions
may result in hang conditions.

4. In some models, the use of a
disabled-TIO-Ioop procedure to
detect the completion of an I/O
operation initiated by SIOF may
cause a deadlock condition. The
deadlock occurs if SIOF is issued
to a subchannel for which start­
I/O-fast queuing is provided, and
conditions are such that a pending
I/O interruption must be cleared
before the pending I/O operation
can be initiated by the channel.
This is another example where a
disabled TIO loop does not work
reliably.

INPUT/OUTPUT-INSTRUCTION-EXCEPTION
HANDLING

Before the channel is signaled to
execute an I/O instruction, the instruc­
tion is tested for validity by the CpU.
Exceptional situations detected at this
time cause a program interruption.

The following exception causes a program
interruption:

Privileged Operation: An I/O instruc­
tion is encountered when the CPU is in
the problem state. The instruction is
suppressed before the channel has been
signaled to execute it. The CSW, the
condition code in the PSW, and the state
of the addressed subchannel and I/O
device are not affected by the attempt

to execute an I/O instruction while in
the problem state.

EXECUTION OF INPUT/OUTPUT OPERATIONS

The channel can execute six commands:
write, read, read backward, control,
sense, and transfer in channel. Each
command except transfer in channel
initiates a corresponding I/O operation.
The term "I/O operation" refers to the
activity initiated by a command in the
I/O device and associated subchannel.
The subchannel is involved with the
execution of the operation from the
initiation of the command until the
channel-end signal is received or, in
the case of command chaining, until the
device-end signal is received. The
operation in the device lasts until
device end is signaled.

BLOCKING OF DATA

Data recorded by an I/O device may be
divided into blocks. The length of a
block depends on the device; for
example, a block can be a card, a line
of printing, or the information recorded
between two consecutive gaps on magnetic
tape.

The maximum amount of information that
can be transferred in one I/O operation
is one block. An I/O operation is
terminated when the associated storage
area is exhausted or the end of the
block is reached, whichever occurs
first. For some operations, such as
writing on a magnetic-tape unit or at an
inquiry station, blocks are not defined,
and the amount of information trans­
ferred is controlled only by the
program.

CHANNEL-ADDRESS WORD

The channel-address word (CAW) specifies
the subchannel key, the suspend-control
bit, and the address of the first CCW
associated with START I/O or START I/O
FAST RELEASE. The channel refers to the
CAW only during the execution of START
I/O or START I/O FAST RELEASE. The CAW
is fetched from real storage location 72
of the CPU issuing the instruction. The
pertinent information thereafter is
stored in the subchannel, and the
program is free to change the contents
of the CAW. Fetching of the CAW by the
channel does not affect the contents of
the location.

The CAW has the following format:

CCW Address

o 4 8 31

The fields in the CAW are allocated for
the following purposes:

Subchannel Key: Bits 0-3 form the
access key for all fetching of CCWs,
IDAWs, and output data and for the stor­
ing of input data associated with START
I/O and START I/O FAST RELEASE. This
key is matched with a storage key during
these storage references. For details,
see the section "Key-Controlled
Protection" in Chapter 3, "Storage."

Suspend Control (~): Bit 4 of the CAW
controls execution of the suspend func­
tion for the channel program identified
by the CAW. The setting of the
suspend-control bit applies to the chan­
nel program specified by the CAW. When
bit 4 is set to one, suspend control is
specified, and channel-program suspen­
sion occurs when a valid S flag is
detected in a CCW. When bit 4 is set to
zero, suspend control is not specified,
and the presence of the S flag in any
CCW of the channel program causes the
program-check condition to be
recognized.

If the suspend-and-resume facility is
not provided for the model, the
suspend-control bit must be zero; other­
wise, a program-check condition is
recognized, and the I/O operation is not
initiated at the device. When the
suspend-and-resume facility is provided
for the model but the suspend function
is not available for the addressed
subchannel, bit 4 is ignored, but any
occurrence of an S flag in the channel
program causes a program-check condition
to be recognized.

CCW Address: Bits 8-31 designate the
location of the first CCW in absolute
storage.

Bit positions 5-7 of the CAW must
contain zeros. The three rightmost bits
of the CCW address must be zeros to
specify the CCW on integral boundaries
for doublewords. If either of these
restrictions is violated, an error
condition is recognized during the
execution of START I/O or START I/O FAST
RELEASE. If the CCW address specifies a
storage location which is not available
or is protected against fetching, START
I/O and, in some cases, START I/O FAST
RELEASE, cause an error condition to be
recognized. When a programming-error
condition is recognized during the
execution of START I/O or START I/O FAST
RELEASE, the status portion of the CSW
is stored, with the protection-check or
program-check bit set to one. In this
event, the I/O operation is not initi­
ated at the device.

Chapter 13. Input/Output Operations 13-37

Programming Note

Bit positions 5-7 of the CAW, which
presently must contain zeros, may in the
future be assigned to the control of new
functions. It is, therefore, recom­
mended that these bit positions not be
set to ones for the purpose of obtaining
an intentional program-check indication.

CHANNEL-COMMAND WORD

The channel-command word (CCW) specifies
the command to be executed and, for
commands initiating I/O operations, it
designates the storage area associated
with the operation, the action to be
taken whenever transfer to or from the
area is completed, and other options.
The CCWs can be located at any available
location in the first 16M-byte block of
storage, and more than one can be asso­
ciated with a START I/O or START I/O
FAST RELEASE.

The first CCW is fetched during the
execution of START I/O or START I/O FAST
RELEASE being executed as START I/O.
When START I/O FAST RELEASE is executed
independent of the device, the first CCW
may be fetched subsequent to the
execution of START I/O FAST RELEASE.
Each additional CCW in the sequence is
obtained when the operation has
progressed to the point where the addi­
tional CCW is needed. Fetching of the
CCWs by the channel does not affect the
contents of the location in storage.

Except for a CCW containing the
transfer-in-channel command, the CCW has
the following format:

ICmd Codel Data Address

o 8 31

Flags 101////////1 Count

32 39 48 63

The fields in the CCW are allocated for
the following purposes:

Command Code: Bits 0-7 specify the
operation~be performed.

Data Address: Bits 8-31
location in absolute storage.
first location referred to in
designated by the CCW.

specify a
It is the
the area

Chain-Data (CD) Flag: Bit 32, when one,
specifies chaining of data. It causes
the storage area designated by the next
CCW to be used with the current opera­
tion.

13-38 System/370 Principles of Operation

Chain-Command (CC) Flag: Bit 33, when
one, and when the CD flag and S flag are
zeros, specifies chaining of commands.
It causes the operation specified by the
command code in the next CCW to be
initiated on normal completion of the
current operation.

Suppress-Length-Indication (SLI) Flag:
Bit 34 controls whether incorrect-length
is to be indicated to the program. When
this bit is one and the CD flag is zero,
the incorrect-length indication is
suppressed. When both the CC and SLI
flags are one and the CD flag is zero,
command chaining takes place regardless
of any incorrect-length situation.

Skip (SKIP) Flag: Bit 35, when one,
specifies suppression of the transfer of
information to storage during a read,
read backward, or sense operation.

Program-Controlled-Interruption (PCI)
Flag: Bit 36, when one, causes the
channel to generate an interruption
condition when the CCW takes control of
the channel. When bit 36 is zero,
normal operation takes place.

Indirect-Data-Address (IDA) Flag: Bit
37, when one, specifies indirect data
addressing.

Suspend (~) Flag: Bit 38, when set to
one, specifies suspension of channel­
program execution. When valid, it caus­
es channel-program execution to be
suspended prior to execution of the CCW
containing the S flag.

Count: Bits 48-63 specify the number of
bytes in the storage area designated by
the CCW.

Bit position 39 of every CCW other than
one specifying transfer in channel must
contain zero. Otherwise, a program­
check condition is generated. When the
fi rst CCW desi gnated by the C-AW does not
contain zero in bit position 39, the I/O
operation is not initiated, and the
status portion of the CSW with the
program-check indication is stored
during execution of START I/O or START
I/O FAST RELEASE being executed as START
I/O. Detection of this condition during
data chaining causes the I/O device to
be signaled to conclude the operation.
When the absence of these zeros is
detected during command chaining or
subsequent to the execution of START I/O
FAST RELEASE, the new operation is not
initiated, and an interruption condition
is generated.

The contents of bit positions 40-47 of
the CCW are ignored. If the command
code specifies the transfer-in-channel
command, bit positions 32-63 of the CCW
are ignored. For the format of the CCW
containing the transfer-in-channel
command, see the section "Transfer in
Channel" later in this chapter.

Programming Note

Bit position 39 of the CCW, which pres­
ently must be set to zero, may in the
future be assigned to the control of new
functions. It is recommended,
therefore, that this bit position not be
set to one for the purpose of obtaining
an intentional program-check indication.

COMMAND CODE

The command code, bit positions 0-7 of
the CCW, specifies to the channel and
the I/O device the operation to be
performed. A detailed description of
each command appears under "Commands."

The two rightmost bits or, when these
bits are 00, the four rightmost bits of
the command code identify the operation
to the channel. The channel distin­
guishes among the following four oper­
ations:

Output forward (write, control)
Input forward (read, sense)
Input backward (read backward)
Branching (transfer in channel)

The channel ignores the leftmost bits of
the command code.

Commands that initiate I/O operations
(write, read, read backward, control,
sense, and sense ID) cause all eight
bits of the command code to be trans­
ferred to the I/O device. In these
command codes, the leftmost bit posi­
tions contain modifier bits. The
modifier bits specify to the device how
the command is to be executed. They
may, for example, cause the device to
compare data received during a write
operation with data previously recorded,
and they may specify such information as
recording density and parity. For the
control command, the modifier bits may
contain the order code specifying the
control function to be performed. The
meaning of the modifier bits depends on
the type of I/O device and is specified
in the SL publication for the device.

The command-code assignment is listed in
the following table. The symbol X indi­
cates that the bit position is ignoredi
M identifies a modifier bit.

Code Command

XXXX 0000 Invalid
MMMM MM01 Write
MMMM MMIO Read
MMMM 1100 Read Backward
MMMM MM11 Control
MMMM 0100 Sense
1110 0100 Sense ID
XXX X 1000 Transfer in Channel

Whenever the channel detects an invalid
command code during the initiation of a
command, a program check is generated.
When the first CCW designated by the CAW
contains an invalid command code, the
status portion of the CSW with the
program-check indication is stored
during execution of START I/O or START
I/O FAST RELEASE being executed as START
I/O. When the invalid code is detected
during command chaining or subsequent to
the execution of START I/O FAST RELEASE,
the new operation is not initiated, and
an interruption condition is generated.
The command code is ignored during data
chaining, unless it specifies transfer
in channel.

DESIGNATION OF STORAGE AREA

The storage area associated with an I/O
operation is defined by one or more
CCWs. A CCW defines an area by specify­
ing the address of the first byte to be
transferred and the number of consec­
utive bytes contained in the area. The
address of the first byte appears in the
data-address field of the CCW, except
when channel indirect data addressing is
specified. (See the section "Channel
Indirect Data Addressing" later in this
chapter.) The number of bytes contained
in the storage area is specified in the
count field.

In write, read, control, and sense oper­
ations, storage locations are used in
ascending order of addresses. As infor­
mation is transferred to or from
storage, the address from the address
field is incremented, and the count from
the count field is decremented. The
read-backward operation places data in
storage in a descending order of
addresses, and both the count and the
address are decremented. When the count
reaches zero, the storage area defined
by the CCW is exhausted.

Some channels do not perform address
wraparound. Depending on the model, a
program check may be generated if an
address generate~ by the channel to
transfer data 1S incremented past
16,777,215 or is decremented past o.
Any available storage location can be
used in the transfer of data to or from

Chapter 13. Input/Output Operations 13-39

an I/O device if the location is not
protected against the type of reference.
Similarly, a CCW can be located in any
available storage location (in the first
16M-byte block of storage) if the
location is not protected against a
fetch-type reference.

When the first CCW designated by the CAW
is in a storage location that is not
available, the I/O operation is not
initiated, and the status portion of the
CSW with the program-check indication is
stored during the execution of START I/O
or START I/O FAST RELEASE being executed
as START I/O. When, subsequently,
during the operation or chain of oper­
ations, the channel refers to a storage
location that is not provided, an inter­
ruption condition indicating program
check is generated, and the device is
signaled to terminate the operation.

When the first CCW designated by the CAW
is in a storage location that is
protected against a fetch-type
reference, the I/O operation is not
initiated, and the status portion of the
CSW with the protection-check indication
is stored during the execution of START
I/O or START I/O FAST RELEASE being
executed as START I/O. When, subse­
quently, during the I/O operation or
chain of operations, the channel refers
to a protected storage location, an
interruption condition indicating
protection check is generated, and the
device is signaled to terminate the
operation.

During an output operation, the channel
may fetch data from storage before the
time the I/O device requests the data.
Any number of bytes specified by the
current CCW may thus be prefetched.
When data chaining during an output
operation, the channel may prefetch the
next CCW and the data and IDAWs associ­
ated with the prefetched CCW (as
specified by the data-address and count
field of the CCW or the data addresses
from the IDAWs and the count field of
the CCW) at any time during the
execution of the current CCW.

Prefetching may cause the channel to
refer to storage locations that are
protected or not available. Such errors
detected during prefetching of data,
CCWs, or IDAWs, do not affect the
execution of the operation and do not
cause error indications until the I/O
operation actuallY attempts to use the
data or until the CCW or IDAW takes
control. If the operation is concluded
by the channel, by the I/O device, or by
the HIO, HDV, CLRCH, or CLRIO function
before the invalid information is
needed, no program check or protection
check is generated.

The count field in the CCW can specify
any number of bytes from one to '5,535.
Except for a CCW specifying transfer in

13-40 System/370 Principles of Operation

channel, which has no count field, the
count field may not contain the value
zero. Whenever the count field in the
CCW initially contains a zero, a program
check is generated. When this occurs in
the first CCW designated by the CAW, the
operation is not initiated, and the
status portion of the CSW with the
program-check indication is stored
during execution of START I/O or START
I/O FAST RELEASE being executed as START
I/O. When a count of zero is detected
during data chaining, the I/O device is
signaled to terminate the operation.
Detection of a count of zero during
command chaining or subsequent to the
execution of START I/O FAST RELEASE
suppresses initiation of the new opera­
tion and generates an interruption
condition.

CHAINING

When the channel has performed the
transfer of information specified by a
CCW, it can continue the activity initi­
ated by START I/O or START I/O FAST
RELEASE by fetching a new CCW. Such
fetching of a new CCW is called
chaining, and the CCWs belonging to such
a sequence are said to be chained.

Chaining takes place between CCWs
located in successive doubleword
locations in storage. It proceeds in an
ascending order of addresses; that is,
the address of the new CCW is obtained
by adding 8 to the address of the
current CCW. Two chains of CCWs located
in noncontiguous storage areas can be
coupled for chaining purposes by a
transfer-in-channel command. All CCWs
in a chain apply to the I/O device spec­
ified in the original START I/O or START
I/O FAST RELEASE. Depending on the
model, the address used to fetch a CCW
may wrap from 16,777,208 to 0, or a
program check may be generated when that
CCW takes control of the operation.

Two types of chaining are provided:
chaining of data and chaining of
commands. Chaining is controlled by the
chain-data (CD) and chain-command (CC)
flags in conjunction with the suppress­
length-indication (SLI) flag in the CCW.
These flags specify the action to be
taken by the channel upon the exhaustion
of the current CCW and upon receipt of
ending status from the device, as shown
in the figure "Channel-Chaining Action."

The specification of chaining is effec­
tively propagated through a transfer­
in-channel command. When in the process
of chaining, a transfer-in-channel
command is fetched, the CCW designated
by the transfer in channel is used for
the type of chaining specified in the
CCW preceding the transfer in channel.

The CD and CC flags are ignored in the
transfer-in-channel command.

indirect data addressing is invoked, see
the section "Channel Indirect Data
Addressing" later in this chapter.

Note: For a description of the storage area associated with a CCW when channel

Flags in
Current
CCW

CD CC SLI

0 0 0
0 0 1
0 1 0
0 1 1

1 - -

Action in Channel upon Exhaustion of Count
or Receipt of Channel End

Nonimmediate Operation

Immediate Operation I II III

End, NIL Stop, IL End, NIL End, IL
End, NIL Stop, NIL End, NIL End, NIL
Chain Command Stop, IL Chain command End, IL
Chain Command Chain command Chain command Chain command

End, NIL Chain Data * End, IL

Explanation:

I

II

III

End

Stop

IL

NIL

May be either zero or one.

Count exhausted, end of block at device not reached

Count exhausted and channel end from device

Count not exhausted and channel end from device

The operation is terminated. If the operation is
immediate and has been specified by the first CCW
associated with START I/O (or START I/O FAST RELEASE
executed as START I/O), condition code 1 is set, and
the status portion of the CSW is stored as part of the
execution of the instruction. In all other cases, an
interruption condition is generated in the subchannel.

The device is signaled to terminate data transfer, but
the subchannel remains in the working state until
channel end is received; at this time an interruption
condition is generated in the subchannel.

Incorrect length is indicated with the interruption
condition.

Incorrect length is not indicated.

Chain command The channel performs command chaining upon receipt of
device end.

Chain data The channel immediately fetches a new CCW for the same
operation.

The situation where the residual count is zero but data
chaining is indicated at the time the device provides
channel end cannot validly occur. When data chaining
is indicated, the channel fetches the new CCW after
transferring the last byte of data designated by the
current CCW but before the device provides the next
request for data or status transfer. As a result, the
channel recognizes the channel end from the device only
after it has fetched the new CCW, which cannot contain
a count of zero unless a programming error has been
made.

Channel-Chaining Action

Chapter 13. Input/Output Operations 13-41

Data Chaining

During data chaining, the new CCW
fetched by the channel defines a new
storage area for the original I/O opera­
tion. Execution of the operation at the
I/O device is not affected. When all
data designated by the current CCW has
been transferred to storage or to the
device, data chaining causes the opera­
tion to continue, using the storage area
designated by the new CCW. The contents
of the command-code field of the new CCW
are ignored, unless they specify trans­
fer in channel.

Data chaining is considered to occur
immediately after the last byte of data
designated by the current CCW has been
transferred to storage or to the device.
When the last byte of the transfer has
been placed in storage or accepted by
the device, the new CCW takes over the
control of the operation and replaces
the pertinent information in the
subchannel. If the device signals chan­
nel end after exhausting the count of
the current CCW but before transferring
any data to or from the storage area
designated by the new CCW, the CSW asso­
ciated with the concluded operation
pertains to the new CCW.

If programming errors are detected in
the new CCW or during its fetching, the
error indication is generated, and the
device is signaled to conclude the oper­
ation when it attempts to transfer data
designated by the new CCW. If the
device signals channel end after the new
CCW takes control but before trans­
ferring any data designated by the new
CCW, program check or protection check
is indicated in the CSW associated with
the termination. The contents of the
CSW pertain to the new CCW unless a
program check or protection check is
generated while fetching the new CCW or
while fetching or executing an interven­
ing transfer-in-channel command. A data
address which causes a program check or
protection check gives an error indi­
cation only after the I/O device has
attempted to transfer data to or from
the addressed storage location.

If the chain-data flag is set to one in
the current CCW, and the count has not
been exhausted when the device signals
channel end, the operation is
terminated. An interruption condition
is generated in the subchannel with
incorrect length indicated. The
incorrect-length condition is indicated
regardless of the setting of the SLI bit
in the current CCW.

Data chaining during an input operation
causes the new CCW to be fetched when
all data designated by the current CCW
has been placed in storage. On an
output operation, the channel may fetch
the new CCW and the data and IDAWs asso-

13-42 System/370 Principles of Operation

ciated with the prefetched CCW (as
specified by the data-address field of
the CCW or the data-address fields from
the IDAWs and the count field of the
CCW) from storage before data chaining
occurs. Any programming errors in a
prefetched CCW, however, do not affect
the execution of the operation until all
data designated by the current CCW has
been transferred to the I/O device. If
the device concludes the operation
before all data designated by the
current CCW has been transferred or if
data chaining is suppressed for any
other reason, the errors associated with
the prefetched CCW are not indicated to
the program.

During an output operation, the channel
may prefetch only one CCW describing a
data area; however, the data and IDAWs
associated with the prefetched CCW may
also be prefetched. If the prefetched
CCW specifies transfer in channel, only
one more CCW may be fetched before the
exhaustion of the current CCW.

Programming Notes

1. Data chaining may be used to re­
arrange data as it is transferred
between storage and an I/O device.
Data chaining permits data to be
transferred to or from noncontig­
uous areas of storage, and, when
used in conjunction with the skip­
ping function (see the section
"Skipping" later in this chapter),
data chaining enables the program
to place in storage selected
portions of a block of data.

When, during an input operation,
the program specifies data chaining
to a location in which data has
been placed under the control of
the current CCW, the channel, in
fetching the next CCW, fetches the
new contents of the location. This
is true even if the location
contains the last byte transferred
under the control of the current
CCW. When, on input, a c~annel
program data-chains to a CCW placed
in storage by the CCW specifying
data chaining, the block is said to
be self-describing. A self­
describing block contains one or
more CCWs that specify storage
locations and counts for subsequent
data in the same block.

The use of self-describing blocks
is equivalent to the use of
unchecked data. An I/O data­
transfer malfunction that affects
validity of a block is signaled
only at the completion of data
transfer. The error normally does
not prematurely terminate or other­
wise affect the execution of the

operation. Thus, there is no
assurance that a CCW read as data
is valid until the operation is
completed. If the CCW is in error,
the use of the CCW in the current
operation may cause subsequent data
to be placed in wrong storage
locations with resultant
destruction of the contents of
those locations.

2. When, during data chaining, an I/O
device transfers data by using the
data-streaming facility (see the
section "Data-Streaming Feature" in
Chapter 2 of the publication IBM
System/360 and System/370 I/O
Interface Channel to Control Unit
Original Eguipment--Manufacturer5'
Information, GA22-6974), an overrun
or chaining-check condition may be
recognized when a small count value
is specified in the CCW. The mini­
mum acceptable number of bytes that
can be specified varies as a func­
tion of the system model and system
activity. Refer to the appropriate
channel SL pUblication to determine
the most reasonable minimum byte
count that can be handled by the
channel.

Command Chaining

During command chaining, the new CCW
fetched by the channel specifies a new
I/O operation. The channel fetches the
new CCW and initiates the new operation
(unless the new CCW contains a suspend
flag) upon receipt of the device-end
signal for the current operation. The
presence of a suspend flag in the new
CCW causes command chaining to be termi­
nated. (See the section "Suspension of
Channel-Program Execution" later in this
chapter.) When command chaining takes
place, the completion of the current
operation does not generate an inter­
ruption condition, and the count
indicating the amount of data trans­
ferred during the current operation is
not made available to the program. For
operations involving data transfer, the
new command always applies to the next
block at the device.

The new operation is initiated only if
no unusual situations have been detected
in the current operation. In
particular, the channel initiates a new
I/O operation by command chaining upon
receipt of a status byte signaling one
of the following status combinations:
device end, device end and status modi­
fier, device end and channel end, device
end and channel end and status modifier.
In the former two cases, channel end
must have been signaled before device
end, with all other status bits set to
zeros. If status such as attention,
unit check, unit exception, incorrect

length, program check, or protection
check has occurred, the sequence of
operations is concluded, and the status
associated with the current operation
causes an interruption condition to be
generated. The new CCW in this case is
not fetched. Incorrect length does not
suppress command chaining if the current
CCW has the SLI flag set to one.

An exception to sequential chaining of
CCWs occurs when the I/O device presents
status modifier with device end. When
no unusual conditions have been detected
and command chaining is specified or
when command retry has been previously
signaled and an immediate retry could
not be performed, the combination of
status modifier and device end causes
the channel to alter the sequential
execution of CCWs. If command chaining
was specified, status modifier and
device end cause the channel to chain to
the CCW whose storage address is 16
higher than that of the CCW that speci­
fied chaining. If command retry was
previously signaled and immediate retry
could not be performed, the status caus­
es the channel to command-chain to the
CCW whose storage address is 8 higher
than that of the CCW for which retry was
initially signaled.

When both command and data chaining are
used, the first CCW associated with the
operation specifies the operation to be
executed, and the last CCW indicates
whether another operation follows.

Programming Note

Command chaining makes it possible for
the program to initiate transfer of
multiple blocks by means of a single
START 1/0 or START I/O FAST RELEASE. It
also permits a subchannel to be set up
for the execution of auxiliary
functions, such as positioning the
disk-access mechanism, and for data­
transfer operations without interference
by the program at the end of each opera­
tion. Command chaining, in conjunction
with the status-modifier condition,
permits the channel to modify the normal
sequence of operations in response to
signals provided by the I/O device.

SKIPPING

Skipping causes the suppression of stor­
age references during an I/O operation.
It is defined only for read, read back­
ward, and sense operations and is
controlled by the skip flag, which can
be specified individually for each CCW.
When the skip flag is one, skipping
occurs; when zero, normal operation

Chapter 13. Input/Output Operations 13-43

takes place. The setting of the skip
flag is ignored in all other operations.

Skipping affects only the handling of
information by the channel. The opera­
tion at the I/O device proceeds
normally, and information is transferred
to the channel. The channel keeps
updating the count but does not place
the information in storage. Chaining is
not precluded by skipping. In the case
of data chaining, normal operation is
resumed if the skip flag in the new CCW
is zero.

When the skip flag is set to one, the
data address in the CCW is not checked.

Programming Note

Skipping, when combined with data chain­
ing, permits the program to place in
storage selected portions of a block
from an I/O device.

PROGRAM-CONTROLLED INTERRUPTION

The program-controlled-interruption
(PCI) function permits the program to
cause an I/O interruption during the
execution of an I/O operation. The
function is controlled by the PCI flag
in the CCW. The flag can be on either
in the first CCW specified by START I/O
or START I/O FAST RELEASE or in a CCW
fetched during chaining or command
retry. Neither the PCI flag nor the
associated interruption affects the
execution of the current operation.

Whenever the PCI flag in the CCW is one,
an interruption condition is generated
in the channel. When the first CCW
associated with an operation contains
the PCI flag, either initially or upon
command chaining, the interruption may
occur as early as immediately upon the
initiation of the operation. The PCI
flag in a CCW fetched on data chaining
causes the interruption to occur after
all data designated by the preceding CCW
has been transferred. The time of the
interruption, however, depends on the
model and the current activity in the
system and may be delayed even if I/O
interruptions are allowed. No predict­
able relationship exists between the
time the interruption due to the PCI
flag occurs and the progress of data
transfer to or from the area designated
by the CCW, but the fields within the
CSW pertain to the same instant of time.

If chaining occurs before the inter­
ruption due to the PCI flag has taken
place, the PCI interruption condition is
carried over to the new CCW. This

13-44 System/370 Principles of Operation

carryover occurs both on data and
command chaining and, in either case,
the interruption condition is propagated
through the transfer-in-channel command.
The interruption conditions due to the
PCI flags are not stacked; that is, if
another CCW is fetched with a PCI flag
before the interruption due to the PCI
flag of the previous CCW has occurred,
only one interruption takes place.

A CSW containing the PCI bit set to one
may be stored by an interruption while
the operation is still proceeding, while
channel-program execution is suspended,
or by an interruption, TEST I/O, or
CLEAR I/O upon the termination of the
operation. A CSW cannot be stored by
TEST I/O while the subchannel is in the
working state.

When the CSW is stored by an inter­
ruption before the operation or chain of
operations has been concluded, the CCW
address is 8 greater than the address of
the CCW that contained the last recog­
nized PCI flag or 8 greater than the
address of a CCW which has subsequently
become current, and the count is unpre­
dictable. All unit-status bits in the
CSW are zero. If the channel has
detected any unusual situations, such as
channel-data check, program check, or
protection check by the time the inter­
ruption occurs, the corresponding
channel-status bit is one, although the
status in the subchannel is not reset
and is indicated again upon the termi­
nation of the operation.

A unit-status bit set to one in the CSW
indicates that the operation or chain of
operations has been concluded. The CSW
in this case has its regular format with
the PCI bit set to one.

However, when the interruption due to
the PCI flag is delayed until the opera­
tion at the subchannel is concluded, two
interruptions from the subchannel may
still take place. The first inter­
ruption indicates and clears the
interruption condition due to the PCI
flag, and the second provides the CSW
associated with the ending status.
Whether one or two interruptions occur
depends on the model and on whether the
interruption condition due to the PCI
flag has been assigned the highest
priority for interruption at the time of
conclusion. TEST I/O or CLEAR I/O
addressed to the device associated with
an interruption condition in the
subchannel clears the interruption
condition due to the PCI flag, as well
as the one associated with the conclu­
sion.

The setting of
in every CCW
transfer in
ignored. The
during initial

the PCI flag is inspected
except those specifying
channel, where it is
PCI flag is also ignored
program loading.

Programmjng Notes

1. Since no unit-status bits are set
to ones in the CSW associated with
the conclusion of an operation of a
selector channel by HALT I/O or
HALT DEVICE, unit-status bits and
the PCI bit set to ones are not
necessary for the operation to be
concluded. When status in a selec­
tor channel includes PCI at the
time the operation is concluded by
HALT I/O or HALT DEVICE, the CSW
associated with the concluded oper­
ation is indistinguishable from the
CSW provided by an interruption
during execution of the operation.

2. Program-controlled interruption
provides a means of alerting the
program to the progress of chaining
during an I/O operation. It
permits programmed dynamic storage
allocation.

CHANNEL INDIRECT DATA ADDRESSING

Channel indirect data addressing permits
a single channel-command word to control
the transmission of data that spans non­
contiguous pages in absolute storage.

Channel indirect data addressing is
specified by a flag bit in the CCW
which, when one, indicates that the
data-address field is not used to
directly address data. The contents of
the data-address field specify the
location of an indirect-data-address
word (IDAW), which contains an absolute
address designating a data area within
storage. An IDAW is used for the trans­
fer of up to 2K bytes. The IDAW
specified by the CCW can designate any
location. IDAWs can be located at any
available location in the first 16M-byte
block of storage.

Additional IDAWs, if needed for complet­
ing the data transfer for the CCW, are
contained in successive storage
locations. The number of IDAWs required
for a CCW is determined by the count
field of the CCW and by the data address
in the initial IDAW. When, for example,
the CCW count field specifies 4K bytes
and the first IDAW specifies a location
in the middle of a 2K-byte block, three
IDAWs are required. Data is then trans­
ferred, for read, write, control, and
sense commands, to or from successively
higher storage locations or, for a
read-backward command, to successively
lower storage locations, until a 2K-byte
block boundary is reached. The control
of data transfer is then passed to the
next IDAW. The second and any subse­
quent IDAWs must specify, depending on
the command, the first or last byte of a
2K-byte block. Thus, for read, write,

control, and sense commands, these IDAWs
have zeros in bit positions 21-31. For
a read-backward command, these IDAWs
have ones in bit positions 21-31.

Except for the unique restrictions on
the specification of the data address by
the IDAW, all other rules for the data
address, such as for protected storage
and invalid addresses, and the rules for
data prefetching, remain the same as
when indirect data addressing is not
used.

A channel may prefetch any of the IDAWs
pertaining to the current CCW or to a
prefetched CCW. An IDAW takes control
of the data transfer when the last byte
has been transferred for the previous
IDAW. The same rules apply as with data
chaining regarding when an IDAW takes
control of data transfer during an I/O
operation. That is, when the count in
the CCW has not reached zero, a new IDAW
takes control of the data transfer when
the last byte has been transferred for
the previous IDAW for that CCW, even in
situations where (1) channel end,
(2) channel end and device end, or
(3) channel end, device end, and status
modifier are received prior to transfer
of any data bytes pertaining to the new
IDAW. A prefetched IDAW does not take
control of an I/O operation if the count
in the CCW reached zero with the trans­
fer of the last byte of data for the
previous IDAW for that CCW. Errors
detected in prefetched IDAWs are not
indicated until the IDAW takes control
of the data transfer. Depending on the
model, addresses used to fetch an IDAW
may wrap from 16,777,212 to 0, or a
channel program check may be generated
when that IDAW takes control of the
operation.

Addressing Using the 24-Bit IDAW

The format of the IDAW and the signif­
icance of its fields when the
24-bit-IDAW facility is installed are as
follows:

1000000001 Data Address

o 8 31

Bit positions 0-7 are reserved for
future use and must contain zeros;
otherwise, a program-check condition is
recognized.

Bits 8-31 specify the location of the
first byte to be used in the data trans­
fer. In the first IDAW for a CCW, any
location can be specified. For subse­
quent IDAWs, depending on the command,
either the first or the last location of
a 2K-byte block located on a 2K-byte
boundary must be specified. For read,

Chapter 13. Input/Output Operations 13-45

write, control,
beginning of
specified, and
are zeros. For
the end of the
and bits 21-31

and sense commands, the
the block must be

bits 21-31 of the IDAW
a read-backward command,
block must be specified,

of the IDAW are ones.

When the IDAW flag (bit 37) of the CCW
is set to one and any of the following
conditions occurs:

1. The address in the CCW does not
designate the first IDAW on an
integral word boundary,

2. The address in the CCW designates a
storage location which is not
available,

3. Access to the storage location
specified by the address in the CCW
is prohibited by protection, or

4. Bits 0-7 of the first IDAW are not
zeros,

then, depending on the model, the above
four conditions may be handled in one of
two ways:

1 • The channel checks for the above
conditions before initiating the
operation at the device. If any of
these conditions i s recognized, the
channel does not initiate the oper-
ation with the device, and an
interruption condition is
generated.

2. The channel initiates the operation
at the device prior to checking for
these conditions. In this case,
recognition of any of these condi­
tions causes the channel to termi­
nate execution of the I/O operation
and generate an interruption condi­
tion only if the device attempts to
transfer data.

Addressing Using the 31-Bit IDAW

The format of the IDAW and the signif­
icance of its fields when the 31-bit­
IDAW facility is installed are as
follows:

Data Address

o 31

Bit position 0 is reserved for future
use and must be zero. Otherwise, a
program-check condition is recognized.

Bits 1-31 specify the location of the
first byte to be used in the data trans­
fer. In the first IDAW for a CCW, any
location can be specified. For subse­
quent IDAWs, depending on the command,
either the first or the last location of

13-46 System/370 Principles of Operation

a 2K-byte block located on a 2K-byte
boundary must be specified. For read,
write, control, and sense commands, the
beginning of the block must be
specified, and bits 21-31 of the IDAW
are zeros. For a read-backward command,
the end of the block must be specified,
and bits 21-31 of the IDAW are ones.

When the IDAW flag (bit 37) of the CCW
is set to one and any of the following
conditions occurs:

1. The address in the CCW does not
designate the first IDAW on an
integral word boundary,

2. The address in the CCW does not
designate a valid storage location,

3. Access to the storage location
specified by the address in the CCW
is prohibited by protection, or

4. Bit 0 of the first IDAW is not zero

then, depending on the model, the above
four conditions may be handled in one of
two ways:

1. The channel checks for the above
conditions before initiating the
operation at the device. If any of
these conditions i s recognized, the
channel does not initiate the oper-
ation wi th the device, and an
interruption condition is
generated.

2. The channel initiates the operation
at the device prior to checking for
these conditions. In this case,
recognition of any of these condi­
tions causes the channel to termi­
nate execution of the I/O operation
and generate an interruption condi­
tion only if the device attempts to
transfer data.

SUSPENSION OF CHANNEL-PROGRAM EXECUTION

The suspend function, when used in
conjunction with the RIO function,
provides the program with a means to
stop and restart the execution of a
channel program. The initiation of the
suspend function is controlled by the
setting of the suspend-control bit in
the CAW. The suspend function is
signaled to the channel during channel­
program execution by the S flag in the
CCW. The 5 flag in a CCW is not valid
and causes a program-check condition to
be recognized if (1) the CAW contains
the suspend-control bit set to zero,
(2) the CCW is fetched while data chain­
ing (see the earlier section "Data
Chaining" for the handling of program­
ming errors detected during data
chaining), or (3) the suspend function
is not available for the subchannel.

The suspend-and-resume facility may be
provided on an individual subchannel
basis for nonshared subchannels. That
is, if suspend-and-resume facilities are
provided by the model, they are provided
for one or more nonshared subchannels of
one or more multiplexer channels. The
suspend-and-resume facility is not
provided for shared subchannels, includ­
ing the subchannel of a selector
channel.

When channel-program execution is initi­
ated via SIO or SIOF executed while the
block-multiplexing-control bit (bit 0 of
control register 0) is zero, the
suspend-and-resume facility, if provided
for the subchannel, mayor may not be
operable. When the facility is not
operable, detection of the S flag in a
CCW causes the channel to recognize the
program-check condition and terminate
the operation.

Suspension occurs when a new CCW takes
control that has a valid S flag. The
command field of this CCW is not sent to
the I/O device, and the device is
signaled that the chain of commands is
terminated. The CCW containing the S
flag must be a valid CCW since all
normal CCW checking is performed. A
subsequent RESUME I/O instruction
informs the channel that the suspend CCW
may have been modified and that the
channel must refetch the CCW and examine
the current settings of the flags. The
channel never executes a CCW with the S
flag, regardless of the number of RIO
instructions executed.

If the CCW containing the S flag also
contains the PCI flag, an interruption
condition is generated and made pending
at the subchannel or device after
channel-program execution is suspended.
The PCI is presented to the program when
it is allowed, regardless of whether the
channel-program execution is still
suspended or not. The suspend function,
when used in conjunction with PCI,
serves as a mechanism for alerting the
program to the occurrence of a suspen­
sion at the subchannel.

When the first CCW of an I/O operation
has the suspend flag validly set to one,
the operation is suspended prior to
initiating the operation at the device.
When this occurs, condition code 0 is
set for START I/O. Thus, when suspen­
sion occurs on the first CCW, a START
I/O initiating an immediate operation
for which command chaining is not speci­
fied in the CCW causes a condition code
0, rather than a condition code 1, to be
set.

Programming ~

1. In certain situations, normal
resumption of a suspended channel
program may not be desired. Normal
termination of the suspended
program may be accompli~~ed by:

a. Executing HALT DEVICE\addressed
to the device. \

b. Modifying the CCWs in storage
such that when channel-program
execution is resumed, the first
command issued to the device is
a control command with modifier
bits of all zeros
(no-operation) and with no
chain-command flag specified,
and then issuing RESUME I/O.

2. If the command code of a CCW that
caused suspension of channel­
program execution is replaced by
the transfer-in-channel command
code (X8 hex) prior to executing
RIO, the S flag need not be removed
from the CCW because bits 32-63 of
the CCW are ignored when the
command is transfer in channel
(TIC).

3. In some models, the suspend-and­
resume facility is operable for a
channel-program execution that is
initiated on a block-multiplexer
channel while the block­
multiplexing-control bit (bit 0 of
control register 0) is zero. In
these models, channel-program
execution occurs with multiplexing
inhibited until the channel-program
execution is suspended. When
suspension occurs, the effect on
the channel is the same as if block
multiplexing had occurred. That
is, the device is disconnected from
the channel at the end of a block,
and the subchannel remains in the
working state. When this happens,
the channel becomes available for a
new SIO function for some other
device.

When the suspended channel-program
execution is subsequently resumed,
it is executed as if a new
channel-program execution were
initiated via an SIOF function with
the block-multiplexing-control bit
set to one. That is, block multi­
plexing is no longer inhibited
after the channel-program execution
is resumed.

Chapter 13. Input/Output Operations 13-47

COMMANDS

The figure "Channel-Command Codes" lists
the command codes for the seven valid
commands and indicates which flags are
defined for each command. The flags are
ignored for all commands for which they
are not defined.

Name Code

Wri te MMMM MMOI CD CC SLI
Read MMMM MM10 CD CC SLI
Read backward MMMM 1100 CD CC SLI
Control MMMM MM11 CD CC SLI
Sense MMMM 0100 CD CC SlI
Sense 10 1110 0100 CD CC SLI
Transfer in channel XXXX 1000

EXj2lanation:

CD Chain data
CC Chain command
SLI Suppress length indication
SKIP Skip
pcr Program-controlled interruption
IDA Indirect data addressing
M Modifier bit
S Suspend
X Ignored

Channel-Command Codes

13-48 System/370 Principles of Operation

Flags

PCI IDA S
SKIP PCI IDA S
SKIP PCI IDA S

PCI IDA S
SKIP PCI IDA S
SKIP PCI IDA S

All flags have individual significance,
except that the CC and SLI flags are
ignored when the CD flag is set to one.
The SLI flag is ignored on immediate
operations, in which case the
incorrect-length indication is
suppressed, regardless of the setting of
the flag. The PCI flag is ignored
during initial program loading.

Each command is described below, and the
format is illustrated.

Programming ~

1. A malfunction that affects the
validity of data transferred in an
I/O operation is signaled at the
end of the operation by means of
unit check or channel-data check,
depending on whether the device
(control unit) or the channel
detected the error. In order to
make use of the checking facilities
provided in the system, data read
in an input operation should not be
used until the end of the operation
has been reached and the validity
of the data has been checked.
Similarly, on writing, the copy of
data in storage should not be
destroyed until the program has
verified that no malfunction
affecting the transfer and record­
ing of data was detected.

2. An error condition may be recog­
nized by the channel and the I/O
operation terminated when 256 or
more chained commands are executed
with an I/O device and none of the
executed commands result in the
transfer of any data. When this
condition is recognized, program
check is indicated.

IMMMMMMOll Data Address

o 8 31

C C 5 P I
D C L / C D 5 o //////// Count

I I A

32 35 40 48 63

A write operation is initiated at the
I/O device, and the subchannel is set up
to transfer data from storage to the I/O
device. Data in storage is fetched in
an ascending order of addresses, start­
ing with the address specified in the
CCW.

A CCW used in a write operation is
inspected for the CD, CC, SLI, 5, PCI,
and IDA flags. The setting of the skip
flag is ignored. Bit positions 0-5 of
the CCW contain modifier bits.

Programming Note

When writing on devices for which block
length is not defined, such as a
magnetic-tape unit or an inquiry
station, the amount of data written is
controlled only by the count in the CCW.
Every operation terminated under count
control causes the incorrect-length
indication, unless the indication is
suppressed by the SLI flag.

MMMMMMIO Data Address

o 8 31

s
C C S K P I
D C l I C D S 0 //////// Count

I p I A

32 40 48 63

A read operation is initiated at the I/O
device, and the subchannel is set up to
transfer data from the device to
storage. For devices such as
magnetic-tape units, disk storage, and
card equipment, the bytes of data ~ithin
a block are provided in the same
sequence as written by means of a write
command. Data is placed in storage in
an ascending order of addresses, start­
ing with the address specified in the
CCW.

A CCW used in a read operation is
inspected for every flag -- CD, CC, SLI,
SKIP, S, PCI, and IDA. Bit positions
0-5 of the CCW contain modifier bits.

Chapter 13. Input/Output Operations 13-49

Read Backward

MMMMII00 Data Address

o 8 31

S
C C S K P I
0 C L I C 0 S 0 //////// Count

I P I A

32 40 48 63

A read-backward operation is initiated
at the I/O device, and the subchannel is
set up to transfer data from the device
to storage. On magnetic-tape units,
read backward causes reading to be
performed with the tape moving backward.
The bytes of data within a block are
sent to the channel in a sequence oppo­
site to that on writing. The channel
places the bytes in storage in a
descending order of addresses, starting
with the address specified in the CCW.
The bits within a byte are in the same
order as sent to the device on writing.

A CCW used in a read-backward operation
is inspected for every flag -- CO, CC,
SLI, SKIP, S, PCI, and lOA. Bit posi­
tions 0-3 of the CCW contain modifier
bits.

Control

Oata Address

o 8 31

C C S P I
0 C L / C 0 S o //////// Count

I I A

32 35 40 48 63

A control operation is initiated at the
I/O device, and the subchannel is set up
to transfer data from storage to the
device. The device interprets the data
as control information. The control
information, if any, is fetched from
storage in an ascending order of

13-50 System/370 Principles of Operation

addresses, starting with the address
specified in the CCW. A control command
may be used to initiate at the I/O
device an operation not involving trans­
fer of data, such as backspacing or
rewinding magnetic tape or positioning a
disk-access mechanism.

For many control functions, the entire
operation is specified by the modifier
bits in the command code, and the func­
tion is performed as an immediate opera­
tion (see the section "Immediate
Operations" later in this chapter). If
the command code does not specify the
entire control function, the data­
address field of the CCW designates the
location containing the required addi­
tional information. This control
information may include a code further
specifying the operation to be performed
or an external address, such as the disk
address for the seek function, and is
transferred in response to requests by
the device.

A control command code containing zeros
for the six modifier bits is defined as
a no-operation. The no-operation order
causes the addressed device to respond
with channel end and device end without
causing any action at the device. The
control command can be executed as an
immediate operation, or the device can
delay the status until after the initial
selection sequence is completed. Other
operations that can be initiated by
means of the control command depend on
the type of I/O device. These oper­
ations and their codes are specified in
the SL publication for the device.

A CCW used in a control operation is
inspected for the CD, CC, SLI, S, PCI,
and IDA flags. The setting of the skip
flag is ignored. Bit positions 0-5 of
the CCW contain modifier bits.

Programming Note

Since a CCW (other than transfer in
channel) with a count of zero is
invalid, the program cannot use the CCW
count field to specify that no data be
transferred to the I/O device. Any
operation terminated before data has
been transferred causes the incorrect­
length indication, provided the
operation is not immediate and has not
been rejected during the initiation
sequence. The incorrect-length indi­
cation is suppressed when the SLI flag
is on and the CO flag is off.

MMMMOIOO Data Address

o 8 31

5
C C 5 K P I
D C l I C D 5 0 //////// Count

I P I A

32 40 48 63

A sense operation is initiated at the
I/O device, and the subchannel is set up
to transfer data from the device to
storage. The data is placed in storage
in an ascending order of addresses,
starting with the address specified in
the CCW.

The sense command is similar to a read
command ex~ept that the data is obtained
from sense indicators rather than from a
record source.

The basic sense command (modifier bits
set to zeros) initiates a sense opera­
tion on all I/O devices and causes the
retrieval of up to 32 bytes of data.
The basic sense command does not initi­
ate any operation other than the reading
of sense indicators. The basic sense
command sent to an addressable control
unit is accepted even though the
addressed I/O device is in the not-ready
state. If the control unit detects an
error during the sense operation, unit
check is sent with the channel-end
status condition.

The purpose of the basic sense command
is to provide data detailed enough to
ascertain the actual state of the device
and unusual conditions associated with
the execution of the I/O operation
during which the error was detected.

The first six bits of the first sense
data byte (sense byte 0) retrieved by
the basic sense command are common to
all I/O devices. The six bits, when set
to ones, designate the following:

Bit Designation

0 Command reject
1 Intervention required
2 Bus-out check
3 Equipment check
4 Data check
5 Overrun

The following is the meaning of the
first six bits:

Command Reject: The device has detected
a programming error. A command has been
received which the device is not
designed to execute, such as read back­
ward issued to a direct-access-storage
device, or which the device cannot
execute because of its present state,
such as write issued to a file-protected
tape unit. Command reject is indicated
when the program issues an invalid
sequence of commands, such as write to a
direct-access-storage device without
previous designation of the block.
Command reject may also be indicated
when invalid data is transferred and the
data is treated as an extension of the
command. For example, command reject is
indicated when an invalid seek argument
is transferred to a direct-access­
storage device.

Intervention Required: The last opera­
tion could not be executed because of a
situation requiring some type of inter­
vention at the device. This bit indi­
cates situations such as the hopper in a
card punch being empty or the printer
being out of paper. It is also turned
on when the addressed device is not
ready, is in test mode, or is not
provided on the control unit.

Bus-Out Check: The device or the
control unit has received a data byte or
a command code with an invalid parity
from the channel. During writing, bus­
out check indicates that incorrect data
may have been recorded at the device,
but this does not cause the operation to
be terminated prematurely. Parity
errors on command codes and control
information cause the operation to be
immediately terminated and suppress
checking for situations that would cause
command reject and intervention
required.

Equipment Check: During the last opera­
tion, the device or the control unit has
detected equipment malfunctioning, such
as an invalid card-hole count or a
printer-buffer parity error.

Data Check: The device or the control
unit ~detected a data error other
than those included in bus-out check.
Data check identifies errors associated
with the recording medium and includes
errors such as reading an invalid card
code or detecting invalid parity on data
recorded on magnetic tape.

On an input operation, data check indi­
cates that incorrect data may have been
placed in storage. The control unit
forces correct parity on data sent to
the channel. On writing, data check
indicates that incorrect data may have
been recorded at the device. Unless the
operation is of a type where the error
precludes meaningful continuation, data
errors on reading and writing do not
cause the operation to be terminated
prematurely.

Chapter 13. Input/Output Operations 13-51

Overrun: The overrun condition occurs
when the channel fails to respond to the
control unit in the anticipated time
interval to a request for service from
the I/O device. When the total activity
initiated by the program exceeds the
capability of the channel, an overrun
may occur when data is transferred to or
from a control unit that is either using
the data-streaming facility or is not
buffered. Data streaming is described
in the publication IBM System/360 and
System/370 I/O Interface Channel to
Control Unit Original Equipment Manufac­
turers' Information, GA22-6974. An
overrun condition also may occur when
the I/O device receives the new command
too late during command chaining.

When the channel fails to accept a byte
on an input operation, the following
data transferred to storage may be used
to fill the gap. On an output
operation, overrun indicates that data
recorded at the device may be invalid.

All information significant to the use
of the device normally is provided in
the first byte. Any bit positions
following those used for programming
information may contain diagnostic
information, and the total number of
sense bytes for the basic sense command
(command code 04) may extend up to 32
bytes as needed. The number and the
meaning of the sense bytes extending
beyond the first byte are peculiar to
the type of I/O device and are specified
in the Sl publication for the device.

The basic sense command has zero modifi­
er bits. This command initiates a sense
operation on all devices and cannot
cause the command-reject, intervention­
required, data-check, or overrun bit to
be set to one. If the control unit
detects an equipment malfunction, or
invalid parity of the sense command
code, the equipment-check or bus-out­
check bit is set to one, and unit check
is indicated in the unit-status byte.

Devices that can provide special diag­
nostic sense information or can be
instructed to perform other special
functions by use of the sense command
may define modifier bits for the control
of these functions. The special sense
operations may be initiated by a unique
combination of modifier bits, or a group
of codes may specify the same function.
Any remaining sense command codes may be
considered invalid, thus causing the
unit-check indication, or may cause the
same action as the basic sense command,
depending upon the type of device.

The sense information that pertains to
the last I/O operation or other action
at a device may be reset any time after
the completion of a sense command
addressed to that device. Any command
addressed to the control unit of a
device, other than the no-operation

13-52 System/370 Principles of Operation

command and the command which results
from the TIO function, is allowed to
reset the sense information, provided
that the busy bit is not included in the
initial status. The sense information
may also be changed as a result of asyn­
chronous actions, as when the device
changes from the not-ready to ready
state. (See "Device End" in this chap­
ter.)

A CCW used in a sense operation is
inspected for every flag -- CD, CC, SLI,
SKIP, S, PCI, and IDA. Bit positions
0-3 of the CCW contain modifier bits.

11100100 Data Address

o 8 31

S
C C S K P I
D C L I C D S 0 //////// Count

I P I A

32 40 48 63

Execution of the sense-ID command
proceeds exactly as that of a read
command, except that data is obtained
from sensing indicators rather than from
a record source. The data source is up
to seven bytes in length.

The control unit and I/O device may
properly execute the sense-ID command,
may execute the command as the basic
sense command, or may reject the sense­
ID command with unit-check status.
Refer to the Sl publication for the
control unit and I/O device.

The sense-ID command does not initiate
any operations other than the sensing of
the type/model number. If the addressed
unit is available and not busy, then
execution of the sense-ID command is
accomplished. Basic sense data may be
reset as a result of executing the
sense-ID command.

Basic sense
result of
command.

data may be reset as a
executing the sense-ID

Bytes

o
1,2
3
4,5
6

Contents

FF hex
Control-unit type number
Control-unit model number
I/O-device type number
I/O-device model number

All unused sense bytes are set to zeros.

Bytes 1 and 2 contain the four-decimal­
digit control-unit type number that
corresponds directly with the control­
unit type number attached to the control
unit.

Byte 3 contains the control-unit model
number, if applicable. If not appli­
cable, byte 3 is a byte of all zeros.

Bytes 4 and 5 contain the four-decimal­
digit I/O-device type number that corre­
sponds directly with the I/O-device type
number attached to the I/O device.

Byte 6 contains the I/O-device model
number, if applicable. If not applica­
ble, byte 6 is a byte of all zeros.

Whenever a control unit is not separate­
ly addressable from the attached I/O
device or I/O devices, the response to
the sense-ID command is a concatenation
of the control-unit type number and the
I/O-device type number.

If a control unit can be addressed sepa­
rately from the attached I/O device or
I/O devices, then the response to the
sense-ID command depends on the unit
addressed. If the control unit is
addressed, the response to the sense-ID
command is as follows:

Bytes

o
1,2
3

Contents

FF hex
Control-unit type number
Control-unit model number

The response consists of the control­
unit type and model number, with normal
ending status presented after byte 3.

If the I/O device is addressed, the
response to the sense-IO command is as
follows:

Contents

FF hex
I/O-device type number
I/O-device model number

The response consists of the I/O-device
type and model number, with normal
ending status presented after byte 3.

For communication controllers utilizing
indirect addressing to end devices, and
for cases where the control unit and
device are not distinct, the sense data
source is the same as if a control unit
were being addressed.

A CCW used in a sense 10 operation is
inspected for every flag CO, CC, SLI,
SKIP, S, PCI, and IDA.

Transfer in Channel

1////1 1000 1 CCW Address

0 4 8 31

1/ / / / / / / / / / / / / / / / I
32 63

The next CCW is fetched from the
location in absolute storage designated
by the data-address field of the CCW
specifying transfer in channel. The
transfer-in-channel command does not
initiate any I/O operation at the chan­
nel, and the I/O device is not signaled.
The purpose of the transfer-in-channel
command is to provide chaining between
CCWs not located in successive double­
word locations. The command can occur
in both data and command chaining.

The first CCW designated by the CAW must
not specify transfer in channel. When
this restriction is violated, no I/O
operation is initiated, and a program
check is generated. The error causes
the status portion of the CSW, with the
program-check status bit set to one, to
be stored during the execution of START
I/O or START I/O FAST RELEASE being
executed as START I/O. When START I/O
FAST RELEASE is executed independent of
the device, the error may cause, depend­
ing on the model, the same indication as
for START I/O or may cause an inter­
ruption condition to be generated.

To address a CCW on integral boundaries
for doublewords, a CCW specifying trans­
fer in channel must contain zeros in bit
positions 29-31. Furthermore, a CCW
specifying a transfer in channel must
not be fetched from a location desig­
nated by an immediately preceding
transfer in channel. When either of
these errors is detected, a program
check is generated.

The contents of the second half of the
CCW, bit positions 32-63, are ignored.
Similarly, the contents of bit positions
0-3 of the CCW are ignored.

COMMAND RETRY

Some channels have the capability to
perform command retry, a channel and
control-unit procedure that causes a
command to be retried without requiring
an I/O interruption. This retry is
initiated by the control unit presenting
either of two status-bit combinations by
means of a special communication
sequence with the channel. When immedi­
ate retry can be performed, the control
unit signals a channel-end, unit-check,

Chapter 13. Input/Output Operations 13-53

and status-modifier status-bit combina­
tion, together with device end. When
immediate retry cannot be performed, the
presentation of device end is delayed
until the control unit is prepared. If
device end and no other status bits are
signaled, command retry is performed.
If device end is accompanied by status
modifier, command retry ;s not
performed, and the channel command­
chains to the CCW following the one for
which retry was signaled. When any
other status bits accompany device end
or device end and status modifier,
command retry is suppressed, and the
operation is terminated. The resulting
CSW contains the status indications that
caused command retry to be suppressed.

When the channel is not capable of
performing command retry, the retry is
suppressed. If command retry is
suppressed during the execution of START
I/O or START I/O FAST RELEASE executed
as START I/O, the CSW is stored, and
condition code 1 is set. If command
retry is suppressed subsequently, the
operation is terminated, and an inter­
ruption condition is recognized. The
CSW will contain the channel-end, unit­
check, and status-modifier status
indications, along with any other appro­
priate status.

During command retry, the channel action
is similar to that taken when command
chaining. Thus, when command retry is
performed, a START I/O initiating an
immediate operation for which command
chaining is not indicated in the CCW
causes a condition code 0, rather than a
condition code 1, to be set. The subse­
quent termination of the I/O operation
causes an interruption condition to be
generated. During command retry, the
CCW may be refetched.

Programming Note

The following possible results of
command retry must be anticipated by the
program:

1. A CCW with the PCI flag set to one
may, if retried because of command
retry, cause multiple PCI inter­
ruptions to occur.

2. A channel program consisting of a
single, unchained CCW specifying an
immediate command may cause a
condition code 0 rather than a
condition code 1 to be set. This
setting of the condition code
occurs if the control unit signals
command retry at the time initial
status is signaled to the channel.
An interruption condition is gener­
ated upon completion of the
operation.

13-54 System/370 Principles of Operation

3. If a CCW used in an operation is
changed before that operation has
been successfully completed, the
results are unpredictable.

4. A CSW stored after the initiation
of a retry but before the presenta­
tion of device end, as when an
interruption due to the PCI flag
occurs, contains the address of the
command to be retried plus 8.

5. If a HALT I/O, HALT DEVICE, or
CLEAR I/O instruction is issued
after the initiation of a retry but
before the presentation of device
end, the CSW contains the address
of the command to be retried plus
8.

6. On a multiplexer channel, chained
CCWs which might ordinarily have
been executed in a burst may, upon
the occurrence of command retry,
cause multiplexing to occur, with
the result that the channel becomes
unexpectedly available.

7. Command chaining may occur even
though the CCW does not indicate
command chaining. This can occur
if command retry is signaled, imme­
diate retry is not requested, and
the control unit or device presents
status consisting solely of device
end and status modifier.

CONCLUSION OF INPUT/OUTPUT OPERATIONS

When the operation or sequence of oper­
ations initiated by START I/O or START
I/O FAST RELEASE is ended, the channel
and the device generate status. Status
can be brought to the attention of the
program by means of an I/O interruption,
by TEST I/O or CLEAR I/O, or, in certain
cases, by START I/O or START I/O FAST
RELEASE. This status, as well as an
address and a count indicating the
extent of the operation sequence, are
presented to the program in the form of
a channel-status word (CSW).

TYPES OF CONCLUSION

Normally an I/O operation at the
subchannel lasts until the device
signals channel end for a CCW for which
command chaining or command retry ;s not
indicated. Channel end can be signaled
during the sequence initiating the oper­
ation, or later. When the channel
detects equipment malfunctioning or an
I/O-system reset is performed, the chan­
nel disconnects the device without
receiving channel end. The program can
force a device to be disconnected prema-

turely by issuing CLEAR CHANNEL, CLEAR
I/O, HALT I/O, or HALT DEVICE.

After the addressed channel and subchan­
nel have been verified to be in a state
where START I/O or START I/O FAST
RELEASE can be executed, certain tests
are performed on the validity of the
information specified by the program and
on the availability of the addressed
control unit and I/O device. This test­
ing occurs during the execution of START
I/O, either during or subsequent to the
execution of START I/O FAST RELEASE, and
during command chaining and command
retry.

A data-transfer operation is initiated
at the subchannel and device only when
the CCW contains the S flag set to zero,
when no programming or equipment errors
are detected by the channel, and when
the device responds with zero status or
signals command retry during the initi­
ation sequence. When the channel
detects or the device signals any unusu­
al situations during the initiation of
an operation, the command is said to be
rejected.

Rejection of the command during the
execution of START I/O or START I/O FAST
RELEASE is indicated by the setting of
the condition code in the PSW. Unless
the I/O device is not operational, the
reasons for the rejection are detailed
by the portion of the CSW stored by
START I/O or START I/O FAST RELEASE.
The I/O device is not started, no inter­
ruption conditions are generated, and
the subchannel is available subsequent
to the initiation sequence. The I/O
device is immediately available for the
initiation of another operation,
provided the command was not rejected
because the device or control unit was
busy or not operational.

When an unusual situation causes a
command to be rejected during initiation
of an I/O operation by command chaining
or command retry, an interruption condi­
tion is generated, and the subchannel is
not available until the condition is
cleared. The reasons for the rejection
are indicated to the program by means of
the corresponding status bits in the
CSW. The not-operational state of the
I/O device, which during the execution
of START I/O and in some cases during
the execution of START I/O FAST RELEASE
causes condition code 3 to be set,
instead causes the interface-control­
check bit to be set to one when detected
during command chaining or command
retry. The new operation at the I/O
device is not initiated.

When START I/O FAST RELEASE;s executed
by a channel independent of the
addressed device, tests for most
program-specified information, for
control-unit and device availability,
for control-unit and device status, and
for most errors may be performed subse­
quent to the execution of START I/O FAST
RELEASE. Some situations which would
have caused a condition code 1 or 3 to
be set had the instruction been START
I/O instead cause an interruption condi­
tion to be generated. The CSW, when
stored, indicates that the interruption
condition is a deferred condition code 1
or 3.

When START I/O FAST RELEASE is executed
and start-I/O-fast queuing is provided
for the addressed subchannel, control­
unit or device busy indications, when
presented in the absence of other indi­
cations, may not result in the
generation of an interruption condition
indicating deferred condition code 1.
Instead the I/O operation may remain
pending at the subchannel with the
subchannel in the working state until
the corresponding no-longer-busy indi­
cation is presented to the channel by
the control unit or device. Subsequent­
ly, when the no-longer-busy indication
is presented to the channel, the channel
again attempts to initiate the pending
I/O operation at the device. (See also
"START I/O FAST RELEASE" in this
chapter.)

When the resume function is performed by
the channel, tests for program-specified
information, for control-unit and device
availability, for control-unit and
device status, and for errors are
performed as for START I/O FAST RELEASE
executed independent of the addressed
device. Any unusual or error conditions
(except control unit or device busy)
detected while attempting to resume
channel-program execution at the device
causes an interruption condition to be
generated. The CSW, when stored, indi­
cates that the interruption condition is
a deferred condition code 1 or 3.

Control-unit or device-busy conditions
encountered when the resume function is
performed by the channel are handled as
for START I/O FAST RELEASE when start­
I/O-fast queuing is provided. That is,
control-unit or device-busy indications
may not result in the generation of an
interruption condition. Instead, the
channel program may remain pending at
the subchannel until the no-longer-busy
indication is presented by the control
unit or device.

Immediate Operations

Any command except that for the TIO
function may cause the I/O device to

Chapter 13. Input/Output Operations 13-55

signal channel end immediately upon
receipt of the command code. An I/O
operation causing channel end to be
signaled during the initiation sequence
is called an immediate operation.

When the first CCW designated by the CAW
during a START I/O or START I/O FAST
RELEASE executed as a START I/O initi­
ates an immediate operation with command
chaining not indicated and command retry
not occurring, no interruption condition
is generated. In this case, channel end
is brought to the attention of the
program by causing START I/O or START
I/O FAST RELEASE to store the CSW status
portion. The subchannel is immediately
made available to the program. The I/O
operation, however, ;s initiated, and,
if channel end is not accompanied by
device end, the device remains busy.
Device end, when subsequently provided
by the device, causes an interruption
condition to be generated.

An immediate operation initiated by the
first CCW designated by the CAW during a
START I/O FAST RELEASE executed inde­
pendent of the addressed device appears
to the program as a nonimmediate
command. That is, any status generated
by the device for the immediate command,
or for a subsequent command if command
chaining occurs, causes an interruption
condition to be generated.

When command chaining is specified after
an immediate operation and no unusual
situations have been detected during the
execution, or when command retry occurs
for an immediate operation, neither
START I/O nor START I/O FAST RELEASE
causes the immediate storing of CSW
status. The subsequent commands in the
chain are handled normally, and channel
end for the last operation of the chain
of CCWs generates an interruption condi­
tion even if the I/O device provides the
signal immediately upon receipt of the
command code.

Whenever immediate completion of an I/O
operation is signaled, no data has been
transferred to or from the device as a
result of that operation.

Since a count of zero is not valid, any
CCW specifying an immediate operation
must contain a nonzero count. When an
immediate operation is executed,
however, incorrect length is not indi­
cated to the program, and command
chaining is performed when so specified.

Programming Note

Control operations for which the entire
operation is specified in the command
code may be executed as immediate oper­
ations. Whether the control function is
executed as an immediate operation

13-56 System/370 Principles of Operation

depends on the o~_~ation and type of
device and is specified in the SL publi­
cation for the device.

Conclusion of Data Transfer

When the device accepts a command, the
subchannel is set up for data transfer.
The subchannel is in the working state
during this period. Unless the channel
detects equipment malfunctioning or the
operation is concluded by CLEAR CHANNEL,
CLEAR I/O, or, on the selector channel,
the operation is concluded by CLEAR
CHANNEL, CLEAR I/O, HALT I/O, or HALT
DEVICE, the subchannel-working state
lasts until the channel receives the
channel-end signal from the I/O device.
When no command chaining or command
retry is specified or wBen chaining is
suppressed because of unusual
situations, channel end causes the oper­
ation at the subchannel to be terminated
and an interruption condition to be
generated. The status bits in the asso­
ciated CSW indicate channel end and any
unusual situations. The I/O device can
signal channel end at any time after
initiation of the operation, and the
signal may occur before any data has
been transferred.

For operations not involving data trans­
fer, the I/O device normally controls
the timing of channel end. The duration
of data-transfer operations may be vari­
able and may be controlled by the I/O
device or the channel.

Excluding I/O-system reset, equipment
errors, CLEAR CHANNEL, CLEAR I/O, HALT
DEVICE, and HALT I/O, the channel
signals the device to conclude data
transfer whenever any of the following
events occurs:

1. The storage areas specified for the
operation are exhausted or filled.

2. A program check is detected.

3. A protection check is detected.

4. A chaining check is~etected.

The first event occurs when the channel
has stepped the count to zero in the
last CCW associated with the operation.
A count of zero indicates that the chan­
nel has transferred all information
specified by the program. The other
three events are due to errors and cause
premature conclusion of data transfer.
In every case, the conclusion is
signaled in response to a service
request from the device and causes data
transfer to cease. If the device has no
blocks defined for the operation (such
as writing to magnetic tape), it
concludes the operation and generates
channel end.

•

The device can control the duration of
an operation and the timing of channel
end. On certain operations for which
blocks are defined (such as reading from
magnetic tape), the device does not
provide the channel-end signal until the
end of the block is reached, regardless
of whether or not the device has been
previously signaled to conclude data
transfer.

If the data address in the CCW is inval­
id, and the operation is a write or
control operation, no data is trans­
ferred during the operation, and the
device is signaled to conclude the oper­
ation in response to the first service
request. On writing, devices such as
magnetic-tape units request the first
byte of data before any mechanical
motion is started and, if the data
address is invalid, the operation is
concluded before the recording medium
has been advanced. However, since the
operation has been initiated at the I/O
device, the I/O device generates a
channel-end interruption condition.
Whether a block at the I/O device is
advanced when no data is transferred
depends on the type of I/O device and is
specified in the SL publication for the
I/O device.

When command chaining takes place, the
subchannel is in the working state from
the time condition code 0 is set for
START I/O or START I/O FAST RELEASE
until the device signals channel end for
the last operation of the chain. On a
selector channel or a block-multiplexer
channel operating with multiplexing
inhibited, the device executing the I/O
operation stays connected to the channel
and the channel is in the working state
during the entire execution of the chain
of I/O operations. When multiplexing
occurs, an I/O operation in the burst
mode causes the channel to be in the
working state only while transferring a
burst of data. If channel end and
device end do not occur concurrently,
the device disconnects from the channel
after providing channel end, and the
channel can in the meantime communicate
with other devices.

Any unusual situations cause command
chaining to be suppressed and an inter­
ruption condition to be generated. The
unusual situations can be detected by
either the channel or the device, and
the device can provide the indications
with channel end, control-unit end, or
device end. When the channel is aware
of the unusual situation by the time the
channel-end signal for the operation is
received, the chain is ended as if the
operation during which the situation
occurred were the last operation of the
chain. The device-end signal subse­
quently is processed as an interruption
condition. When the device signals unit
check or unit exception with control­
unit end or device end, the subchannel

terminates the working state upon
receipt of the signal from the device.
The channel-end indication in this case
is not made available to the program.

Termination ~ HAll !LQ ~ HALT DEVICE

The instructions HALT I/O and HALT
DEVICE cause the current operation at
the addressed channel or subchannel to
be immediatelY terminated. The method
of termination differs from that used
upon exhaustion of count or upon
detection of programming errors to the
extent that termination by HALT I/O or
HALT DEVICE is not necessarily contin­
gent on the receipt of a service request
from the device.

When HALT I/O is issued to a channel
operating in burst mode, the channel
issues the halt signal to the device
currently operating with the channel,
regardless of the device address speci­
fied by the HALT I/O instruction. If
the channel is involved in the data­
transfer portion of an operation, data
transfer is immediately terminated, and
the device is disconnected from the
channel. If the channel is executing a
chain of operations and the device has
already provided channel end for the
current operation, the instruction caus­
es the device to be disconnected and
command chaining to be immediately
suppressed.

When HALT DEVICE is issued to a channel
operating in burst mode, the halt signal
is issued to the device involved in the
burst-mode operation only if that device
is the one to which the HALT DEVICE is
addressed. If the operation thus termi­
nated is in the data-transfer portion of
the operation, data transfer is imme­
diately terminated, and the device is
disconnected from the channel. If the
channel is executing a chain of oper­
ations and the device has already
provided channel end for the current
operation, HALT DEVICE causes the device
to be disconnected and command chaining
to be immediately suppressed. If, on a
selector channel, the device involved in
the burst is not the one to which the
HALT DEVICE is addressed, no action is
taken. If, on a multiplexer channel,
the device involved in the burst is not
the one to which the HALT DEVICE is
addressed, HALT DEVICE causes any opera­
tion for the addressed device to be
terminated at the addressed subchannel
and suppresses any further data transfer
or command chaining for that device.

When HALT
for which
suspended
code 2 is
ating in
device.

DEVICE is issued to a device
an I/O operation is pending or
at the subchannel, condition
set as if the channel is oper­
burst mode with a different
Subsequently, when conditions

Chapter 13. Input/Output Operations 13-57

allow, the device is selected, and the
halt signal is issued as the device
responds. The pending or suspended
operation is terminated at the subchan­
nel and an interruption condition is
recognized which is not contingent on
the receipt of status from the device.

When HALT I/O or HALT DEVICE is issued
to a channel not operating in burst
mode, then, if the subchannel is not
interruption-pending (or, for HALT
DEVICE, working with another device),
the channel attempts to select the
device and issue the halt signal as the
device responds. If the device presents
status and command chaining is indicated
in the subchannel, chaining is
suppressed.

The termination of an operation by HALT
I/O or HALT DEVICE on the selector chan­
nel results in up to four distinct
interruption conditions. The first one
is generated by the channel upon
execution of the instruction and is not
contingent on the receipt of status from
the device. The channel-status bits
reflect the unusual situations, if any,
detected during the operation. The
execution of HALT I/O or HALT DEVICE
itself is not reflected in CSW status,
and all status bits in a CSW due to this
interruption condition can be zero. The
channel is available for the initiation
of a new I/O operation as soon as the
interruption condition is cleared.

The second interruption condition on the
selector channel occurs when the control
unit signals channel end. The selector
channel handles this condition as any
other interruption condition from the
device after the device has been discon­
nected from the channel, and provides
zeros in the subchannel-key, CCW­
address, count, and channel-status
fields of the associated CSW. Channel
end is not made available to the program
when HALT I/O or HALT DEVICE is issued
to a channel executing a chain of oper­
ations and the device has already
provided channel end for the current
operation.

Finally, the third and fourth inter­
ruption conditions occur when control­
unit end, if any, and device end are
signaled. These signals are handled as
for any other I/O operation.

The termination of an operation by HALT
I/O or HALT DEVICE on a multiplexer
channel causes the normal interruption
conditions to be generated. If the
instruction is issued when the subchan­
nel is in the data-transfer portion of
an operation, the subchannel remains in
the working state until channel end is
signaled by the device, at which time
the subchannel is placed in the
interruption-pending state. If HALT I/O
or HALT DEVICE is issued after the

13-58 System/370 Principles of Operation

device has signaled channel end and the
subchannel is executing a chain of oper­
ations, channel end is not made
available to the program, and the
subchannel remains in the working state
until the next status byte from the
device is received. Receipt of a status
byte subsequently places the subchannel
in the interruption-pending state. The
CSW associated with the interruption
condition in the subchannel contains the
status bytes provided by the device and
the channel, if any. The interruption
condition is processed as for any other
type of termination.

The termination of a burst operation by
HALT I/O or HALT DEVICE on a block­
multiplexer channel may, depending on
the model and the design of the subchan­
nel, take place as for a selector chan­
nel or may allow the subchannel to
remain in the working state until the
device provides ending status.

When HALT I/O is issued and the subchan­
nel is in the working state with either
a pending or a suspended channel-program
execution and the channel is either
available or interruption-pending, the
addressed device is selected and issued
the halt signal. Condition code 1 is
set, and the status portion, bits 32-47
of the CSW, are stored to indicate the
results of HIO execution. If the
addressed device is issued the halt
signal, the CSW contains zeros in the
status field unless an equipment error
is detected. If the channel attempted
to select the device but the control
unit could not accept the halt signal
because of a busy condition, the CSW
unit-status field indicates the busy
condition.

The termination of a pending or
suspended channel-program execution by
HALT I/O causes an interruption condi­
tion to be recognized. The CSW stored
when the interruption occurs contains
either zeros or the last status received
from the device in the unit-status field
and zeros in the channel-status field.
The command-address field contains the
address of the first CCW, plus 8, or the
CCW having the S flag, plus 8, and the
deferred condition code is 1.

When a pending or suspended I/O opera­
tion is terminated by HALT I/O or HALT
DEVICE on any channel, the CSW stored
when the interruption condition is
cleared contains either the last status
received from the device since the I/O
operation was made pending or zeros.
The command-address field contains the
address of the first or suspended CCW
plus 8, and the deferred condition code
is 1 or 3, depending on whether the
device is detected to be operational or
not operational, respectively. If the
unit status is not zeros, the busy bit
is included.

Programming Note

The count field in the CSW associated
with an operation terminated by HALT 1/0
or HALT DEVICE is unpredictable.

Termination ~ CLEAR 1/0

The termination of an operation by CLEAR
1/0 causes the subchannel to be set to
the available state and causes a CSW to
be stored. The validity of the CSW
fields is defined in the instruction
CLEAR 1/0 earlier in this chapter.

When the CLRIO function terminates an
operation at a subchannel in the
interruption-pending state, up to three
subsequent interruption conditions
related to the operation can occur.
Since the CLRIO function causes the
subchannel to be made available, these
interruption conditions will result in
only the status portion of the CSW being
indicated.

The first interruption condition arises
when channel end is signaled to a selec­
tor or block-multiplexer channel. This
occurs only when the interruption­
pending state of the subchannel at the
execution of CLEAR 1/0 is due to the
previous execution of HALT 1/0 or HALT
DEVICE.

The second and third interruption condi­
tions arise when control-unit end, if
any, and device end are signaled to the
channel.

When the ClRIO function terminates an
operation at a subchannel in the working
state, up to four subsequent inter­
ruption conditions related to the opera­
tion can occur. For all of these
conditions, only the status portion of
the CSW is indicated.

The first interruption condition arises
on certain channels when the terminated
operation was in the midst of data
transfer. Since the device is not
signaled to terminate the operation
during the execution of the ClRIO func­
tion unless the channel is working with
the addressed device when the instruc­
tion is received, the device may,
subsequent to execution of the CLRIO
function, attempt to continue the data
transfer. The channel responds by
signaling the device to terminate data
transfer. Depending on the channel, the
need to signal the device to terminate
data transfer may be ignored or may be
considered an interface-control check
which creates an interruption condition.
Only channel status, and an all-zero
unit status, is indicated in the CSW.

A second interruption condition may
occur if channel-end status is received
from the device. The third and fourth
conditions may occur if control-unit
end, andlor device end are presented to
the channel. In these three cases, only
unit status is indicated in the CSW,
unless an error is detected by the chan­
nel.

When a pending 1/0 operation is termi­
nated by the CLRIO function, the CSW
stored contains the address of the first
CCW, plus 8, in the command-address
field; either zeros, if the channel has
not attempted to initiate the operation
at the device, or the last status
received from the device in the unit­
status field; zeros in the channel­
status field; and the deferred condition
code is 1. If the unit status is not
zeros, the busy bit is included.

When CLEAR 1/0 is issued to a device
having a suspended channel-program
execution, the suspended channel-program
execution is terminated, condition code
1 is set, and a CSW is stored with zeros
in the unit-status field and channel­
status field. The command-address field
contains the address of the CCW having
the S flag, plus 8.

Termination ~ CLEAR CHANNEL

When CLEAR CHANNEL is issued, I/O-system
reset is performed in the addressed
channel, and system reset is signaled to
all 1/0 devices attached to that
channel. I/O-system reset causes the
channel to conclude operations in all
subchannels. Status information and all
interruption conditions in all subchan­
nels are reset, and all operational
subchannels are placed in the available
state.

Termination Due to Equipment Malfunction

When channel-equipment malfunctioning is
detected or invalid signals are received
from a device, the recovery procedure
and the subsequent states of the
subchannels and devices on the channel
depend on the type of error and on the
model. Normally, the program is alerted
to the termination by an 1/0 inter­
ruption condition, and the associated
CSW indicates channel-control check or
interface-control check. However, when
the nature of the malfunction prevents
generation of an 1/0 interruption condi­
tion, a machine-check interruption
condition is created, and a CSW is not
stored. A malfunction may cause the
channel to perform I/O selective reset
or generate the halt signal.

Chapter 13. Input/Output Operations 13-59

Signaling of the halt signal, I/O selec­
tive reset, or system reset causes
channel-program execution, if any, to be
terminated at the affected subchannels.

In any termination of a suspended
channel-program execution that causes an
interruption condition to be recognized,
suspension is canceled at the subchannel
and the command-address field of the CSW
stored when the interruption condition
is cleared contains the address of the
current (suspended) CCW, plus 8.

INPUT/OUTPUT INTERRUPTIONS

Input/output interruptions provide a
means for the CPU to change its state in
response to conditions that occur in I/O
devices or channels. The conditions are
indicated in an associated CSW which is
stored at the time of interruption.
These conditions can be caused by the
program or by an external event at the
device.

Interruption Conditions

A request for an I/O interruption is
called an I/O-interruption condition,
or, in this chapter, simply an inter­
ruption condition.

An interruption condition can be brought
to the attention of the program only
once and is cleared when it causes an
interruption. Alternatively, an inter­
ruption condition can be cleared by
I/O-system reset, I/O selective reset,
TEST I/O, or CLEAR I/O, and conditions
generated by the I/O device following
the termination of an operation at the
subchannel can also be cleared by START
I/O or START I/O FAST RELEASE. The
latter include interruption conditions
caused by attention, device end, and
control-unit end, and channel end when
provided by a device after conclusion of
an operation at the subchannel.

The device attempts to initiate a
request to the channel for an I/O inter­
ruption whenever it detects any of the
following:

Channel end
Control-unit end
Device end
Attention

The channel combines the above status
with information in the subchannel and
either creates an interruption
condition, attempts command retry, or
continues command chaining as a function
of the received status. When command
chaining or command retry takes place,
channel end and device end do not create

13-60 System/370 Principles of Operation

an interruption condition and are not
made available to the program.

The channel creates an interruption
condition when any of the following
conditions occurs during command chain­
ing:

Unit check (except when command
retry occurs)

Unit exception
Busy indication from device or

control unit
Program check
Protection check

When an operation initiated by command
chaining is terminated because of an
unusual situation detected during the
command initiation sequence, the inter­
ruption condition may remain pending
within the channel, or the channel may
create an interruption condition at the
device. This interruption condition is
created at the device only in response
to presentation of status by the device
and causes the device subsequently to
present the same status for interruption
purposes. The interruption condition at
the device mayor may not be associated
with unit status. If the unusual situ­
ation is detected by the device (unit
check or unit exception) the unit-status
field of the associated CSW identifies
the condition. If the unusual situation
is detected by the channel, as in the
case of program and protection check,
the identification of the error is
preserved in the subchannel and appears
in the channel-status field of the asso­
ciated CSW.

An interruption condition caused by the
device may be accompanied by channel and
other unit status. Furthermore, more
than one condition associated with the
same device can be cleared at the same
time. As an example, when channel end
is not cleared at the device by the time
device end is generated, both may be
indicated in the CSW and cleared at the
device concurrently.

However, either prior to or at the time
the channel assigns highest priority for
interruptions to an interruption condi­
tion associated with an operation at the
subchannel, the channel accepts the
status from the device and clears the
condition at the device. The inter­
ruption condition and the associated
status indication are subsequently
preserved in the subchannel. Any subse­
quent status generated by the device is
not included when the CSW is stored,
even if the status is generated before
the interruption condition is cleared.

When the channel is not working, a
device that is interruption-pending may
attempt to initiate a request to the
channel for an I/O interruption by
presenting a nonzero status byte to the
channel. Depending on the channel, some

models may accept the status into the
subchannel. AiternativelY1 some models
may signal the device to hold the status
until the channel is capable of causing
an interruption. In this case1 the
channel selects the device to obtain the
status when the interruption occurs.
The status stored by the channel is the
status presented by the device at inter­
ruption time and1 because of changed
conditions at the device, may not be the
same status presented by the device
initially. Specifically, a status of
zero, busy, or busy and status modifier
may be stored.

When the channel detects any of the
following, it generates an interruption
condition without necessarily communi­
cating with or having received the
status byte from the device:

• PCl flag in a CCW

• Termination of a burst operation by
HALT I/O or HALT DEVICE on a selec­
tor channel

• Channel-available
(CAl)

interruption

• A programming error associated with
the CCW or first IDAW following the
SIOF function

• The device not operational after
condition code 0 is set for an SIOF
or RIO function.

The interruption conditions from the
channel1 except for CAl, can be accompa­
nied by other channel-status
indications, but none of the device
status bits is on when the channel
initiates the interruption in this case.

Channel-Available Interruption

The channel-available-interruption (CAl)
condition is provided on all block­
multiplexer channels and all channels
that provide start-I/O-fast queuing for
one or more subchannels. The CAl condi­
tion causes the entire CSW to be
replaced by a new set of bits. All
fields of the CSW are set to zero. The
I/O address stored contains a zero
device address and a channel address
identifying the interrupting channel.

A channel which provides the channel­
available-interruption condition gener­
ates the CAl condition if it previously
had responded with a condition code 2 to
an I/O instruction other than HALT I/O
or HALT DEVICE and if the working state
thus indicated no longer exists. When
the working state which caused condition
code 2 was due to a subchannel busy with
a device other than the one addressed1
the conclusion eof the working state is

not signaled by a CAl. Some channels
may generate the CAl condition in the
following situations:

1. The channel is unable to retrieve
status from the I/O device because
the I/O device appeared not opera­
tional when the channel was allowed
to cause an interruption.

2. The channel had previously
responded with a condition code 1
to a TEST CHANNEL instruction.

A channel that provides start-I/O-fast
queuing also generates the CAl condition
in the following situation. If a
control-unit-busy condition has been
signaled to the program by storing a
CSW, either during the execution of
START I/O or START I/O FAST RELEASE, or
during an I/O interruption subsequent to
setting condition code 0 for START I/O
FAST RELEASE executed independent of the
device1 the control unit subsequently
generates the control-unit-end condition
to signal that the control unit is now
available. The control unit may associ­
ate the control-unit-end status with any
device address that the control unit is
capable of recognizing to present the
status to the channel. When the device
address used by the control unit to
present the control-unit-end status (in
the absence of any other status indi­
cation) is associated with a subchannel
that is working and has an I/O operation
pending at the subchannel or has a
suspended channel-program execution, the
subchannel is not made interruption­
pending with the control-unit-end
status. Instead, the channel recognizes
the CAl condition. The control-unit-end
status is discarded in this case and the
state of the subchannel associated with
the device address remains unchanged.

Since any other interruption condition
(except PCI) accomplishes the same func­
tion as CAI 1 a CAl condition is reset
upon the occurrence of any interruption
(except PCl) on that channel. Some
channels also reset a CAl condition when
another interruption condition (except
PCl) is cleared by a TEST I/O or CLEAR
I/O on the same channel. The occurrence
of another channel-working state before
the CAl causes the CAl condition to be
suspended until the working state ends.

Programming Note

The CAl can be used as a tool for keep­
ing I/O requests in sequence by using it
in conjunction with TEST CHANNEL. The
CAl condition pending in a channel does
not cause the rejection of a subsequent
START I/O or START I/O FAST RELEASE but
does cause a condition code 1 to be
returned to TEST CHANNEL. A channel
which responded with condition code 1 or

Chapter 13. Input/Output Operations 13-61

2 because the channel was interruption­
pending or busy does not subsequently
respond with a condition code 0 to a
TEST CHANNEL without clearing an inter­
ruption condition in the interim.

PRIORITY OF INTERRUPTIONS

Generation of interruption conditions is
asynchronous to the activity in the CPU,
and interruption conditions associated
with more than one I/O device can exist
at the same time. The priority among
interruption conditions is controlled by
two types of mechanisms -- one estab­
lishes the priority among interruption
conditions within a channel, and another
establishes priority among interruption
conditions from different channels. A
channel requests an I/O interruption
only after it has established priority
among interruption conditions. The
status associated with interruption
conditions is preserved in the devices
or channels until accepted by the CPU.

Assignment of priority among requests
for interruption associated with devices
on anyone channel is a function of the
type of channel, the type of inter­
ruption condition, and the method of
attaching the device to the channel. A
device's priority is not related to its
device address. Interruption conditions
from different devices do not necessar­
ily occur in the sequence in which they
are generated. However, multiple inter­
ruption conditions for a single device
are presented in the sequence in which
they are generated.

The priorities among requests for I/O
interruptions from different channels
are unpredictable. The priority assign­
ment need not be dependent on the chan­
nel address or type.

Interruption Action

An I/O interruption can occur only when
the CPU is enabled for I/O
interruptions. The interruption occurs
at the completion of a unit of
operation. If a channel has established
the priority among interruption condi­
tions, while the CPU is disabled for I/O
interruptions, the interruption occurs
immediately after the completion of the
instruction enabling the CPU and before
the next instruction is executed. This
interruption is associated with the
highest priority condition for the chan­
nel. If interruptions are allowed from
more than one channel concurrently, the
interruption occurs from the channel
having the highest priority among those
requesting interruption.

13-62 System/370 Principles of Operation

If the priority among interruption
conditions has not yet been established
in the channel by the time the inter­
ruption is allowed, the interruption
does not necessarily occur immediately
after the completion of the instruction
enabling the CPU. This delay can occur
regardless of how long the interruption
condition has existed in the device or
the subchannel.

The interruption causes the current
program-status word (PSW) to be stored
as the old PSW at real storage location
56 and causes the CSW associated with
the interruption to be stored at real
storage location 64. In EC mode, the
measurement byte is stored at real stor­
age location 185, and the channel and
device causing the interruption are
identified by the I/O address which is
stored at real storage locations
186-187. In BC mode, the channel and
device causing the interruption are
identified by the I/O address in bit
positions 16-31 of the I/O old PSW.

If a limited-channel
it is stored at real
176-179.

logout is present,
storage locations

A new PSW is loaded from real storage
location 120. Subsequently, processing
resumes in the state indicated by this
PSW. The CSW associated with the inter­
ruption identifies the interruption
condition responsible for the inter­
ruption and provides further details
about the progress of the operation and
the status of the device.

Programming Note

When a control unit which is shared
among a number of I/O devices which are
concurrently executing operations such
as rewinding tape or positioning a
disk-access mechanism, the initial
device-end signals generated on
completion of the operations are
provided in the order of generation,
unless command chaining is specified for
the operation last initiated. In the
latter case, the control unit provides
the device-end signal for the last
initiated operation first, and the other
signals are delayed until the subchannel
is freed. Whenever interruptions due to
the device-end signals are delayed
because the CPU is disabled for I/O
interruptions or the subchannel is busy,
the original order of the signals is
destroyed.

CHANNEL-STATUS WORD

The channel-status word (CSW) provides
to the program the status of an I/O

device or the indication of the reasons
for which an I/O operation has been
concluded. The CSW is formed, or parts
of it are replaced, in the process of
I/O interruptions and possibly during
the execution of START I/O, START I/O
FAST RELEASE, TEST I/O, CLEAR I/O, HALT
I/O, HALT DEVICE, and STORE CHANNEL ID.
The CSW is stored at real storage
location 64 and is available to the
program at this location until the time
the next I/O interruption occurs or
until another I/O instruction causes its
contents to be replaced, whichever
occurs first.

The information placed in the CSW by an
I/O interruption pertains to the channel
and device which are identified by the
I/O address stored during the inter­
ruption. The information placed in the
CSW by START I/O, START I/O FAST
RELEASE, TEST I/O, CLEAR I/O, HALT I/O,
HALT DEVICE, or STORE CHANNEL ID
pertains to the channel and (except for
STORE CHANNEL ID) the device addressed
by the instruction.

The CSW has the following format:

IKeylslllccl CCW Address

0 4 6 8 31

Count

32 40 48 63

The fields in the CSW are allocated as
follows:

Subchannel Key: Bits 0-3 form the
access key used in the chain of oper­
ations at the subchannel.

Suspended (~): Bit 4, when stored as
one, indicates that the subchannel asso­
ciated with the information in the CSW
has the execution of a channel program
currently suspended. The S condition
can only be indicated in the CSW stored
as a result of an I/O interruption
because of the program-controlled­
interruption (PCI) condition.

logout Pending (1): Bit 5, when one,
indicates that an I/O instruction cannot
be executed until a logout has been
cleared. Bit 45, channel-control check,
will always be one when bit 5 is one.

Deferred Condition Code eCC): Bits 6
and 7 indicate whether situations have
been encountered subsequent to the
setting of a condition code 0 for START
I/O FAST RELEASE or RESUME I/O that
would have caused a different
condition-code setting for START I/O.
The possible setting of these bits, and
their meanings, are as follows:

Setting of

Bit 6 Bit 7 Meaning

0 0 Normal I/O interruption
0 1 Deferred condition code

i s 1
1 0 (Reserved)
1 1 Deferred condition code

is 3

CCW Address: Bits 8-31 form an absolute
address that is 8 higher than the
address of the last CCW used.

Status: Bits 32-47 identify the status
of the device and the channel that
caused the storing of the CSW. Bits
32-39, the unit status, indicate situ­
ations detected by the device or control
unit. Bits 40-47, the channel status,
are provided by the channel and indicate
situations associated with the subchan­
nel. The 16 bits are designated as
follows:

Bit Designation

32 Attention
33 Status modifier
34 Control-unit end
35 Busy

36 Channel end
37 Device end
38 Unit check
39 Unit exception

40 Program-controlled interruption
41 Incorrect length
42 Program check
43 Protection check

44 Channel-data check
45 Channel-control check
46 Interface-control check
47 Chaining check

Count: Bits 48-63 form the
count for the last CCW used.

UNIT STATUS

residual

The following status indications are
generated by the I/O device or control
unit. The timing and causes of these
status indications for each type of
device are specified in the Sl publica­
tion for the device.

When the I/O device is accessible from
more than one channel, status due to
channel-initiated operations is signaled
to the channel that initiated the asso­
ciated I/O operation. The handling of
status not associated with I/O oper-

Chapter 13. Input/Output Operations 13-63

ations, such as attention, unit
exception, and device end because of
transition from the not-ready to the
ready state, depends on the type of
device and situation and is specified in
the SL publication for the device. (See
"Device End" in this chapter.)

Attention

Attention is signaled when the device
detects an asynchronous condition that
is significant to the program. The
condition may also be described by other
status indications that accompany atten­
tion. Attention is interpreted by the
program and is not associated with the
initiation, execution, or conclusion of
an I/O operation.

The device can signal attention to the
channel when no operation is in progress
at the I/O device, control unit, or
subchannel. Attention can be signaled
with device end upon completion of an
operation, and it can be signaled to the
channel during the initiation of a new
I/O operation. An I/O device may pres­
ent attention accompanied by device end
and unit exception when a not-ready-to­
ready-state transition is signaled.
(See "Device End" in this chapter.) The
handling and presentation of attention
to the channel depends on the type of
device.

When the device signals attention during
the initiation of an operation, the
operation is not initiated. Attention
causes command chaining and command
retry to be suppressed.

Status Modifier

Status modifier is generated by the
device when the device cannot provide
its current status in response to the
TIO function, when the control unit is
busy, when the normal sequence of
commands has to be modified, or when
command retry is to be initiated.

When status modifier is signaled in
response to the TIO function and status
modifier is the only status bit that is
set to one, this indicates that the
device is unable to execute the TIO
function and has not provided its
current status. The interruption condi­
tion, which may be pending at the device
or subchannel, has not been cleared, and
the CSW stored contains zeros in the
subchannel-key, CCW-address, and count
fields.

When the status-modifier bit in the CSW
is set to one together with the b~sy
bit, it indicates that the busy status

13-64 System/370 Principles of Operation

pertains to the control unit associated
with the addressed I/O device. The
control unit appears busy when it is
executing a type of operation that
precludes the acceptance and execution
of any command or the instructions TEST
I/O, HALT I/O, and HALT DEVICE or, for
some control units, when it contains an
interruption condition for a device
other than the one addressed. The
interruption condition may be due to
control-unit end, due to channel end
following execution of the CLRIO func­
tion, or, on a selector channel or
block-multiplexer channel operating with
multiplexing inhibited, due to channel
end following the execution of HALT I/O
or HALT DEVICE. The busy state occurs
for operations such as backspace file,
in which case the control unit remains
busy after providing channel end, for
operations concluded by CLEAR I/O, and
for operations concluded on the selector
channel by HALT I/O or HALT DEVICE, and
temporarily occurs on control units such
as the IBM 3705 Communication Controller
after initiation of an operation on a
device accommodated by the control unit.
A control unit accessible from two or
more channels may appear busy when it is
communicating with another channel.

Presence of status modifier and device
end means that the normal sequence of
commands must be modified. The handling
of this status combination by the chan­
nel depends on the operation. If
command chaining is specified in the
current CCW and no unusual situations
have been detected, presence of status
modifier and device end causes the chan­
nel to fetch and chain to the CCW whose
storage address is 16 higher than that
of the current CCW. If the I/O device
signals status modifier at a time when
no command chaining is specified, or
when any unusual situations have been
detected, no action is taken in the
channel, and the status-modifier bit and
any other status bits presented by the
device are set to ones in the CSW.

Status modifier is set to one in combi­
nation with unit check and channel end
to initiate the command-retry procedure.

Control units that recognize special
conditions that must be brought to the
attention of the program present status
modifier along with other status indi­
cations in order to modify the meaning
of the status. The status presented is
unrelated to the execution of an I/O
operation.

Control-Unit End

Control-unit end indicates that the
control unit has become available for
use for another operation.

Control-unit
control units
control units
channels, and
the following

end is provided only by
shared by I/O devices or

accessible by two or more
only when one or both of

have occurred:

1. The program had previously caused
the control unit to be interrogated
while the control unit was in the
busy state. The control unit is
considered to have been interro­
gated in the busy state when a
command or the instructions START
I/O, START I/O FAST RELEASE (when
not executed independent of the
device), TEST I/O, HALT I/O, or
HALT DEVICE had been issued to a
device on the control unit, and the
control unit had responded with
busy and status modifier in the
unit-status byte. (See the section
"Status Modifier" earlier in this
chapter.)

2. The control unit detected an unusu­
al condition during the portion of
the operation after channel end had
been signaled to the channel. The
indication of the unusual situation
accompanies control-unit end.

If the control unit remains busy with
the execution of an operation after
signaling channel end but has not
detected any unusual situations and has
not been interrogated by the program,
control-unit end is not generated.
Similarly, control-unit end is not
provided when the control unit has been
interrogated and could perform the indi­
cated function. The latter case is
indicated by the absence of busy and
status modifier in the response to the
instruction causing the interrogation.

When the busy state of the control unit
is temporary, control-unit end is
included with busy and status modifier
in response to the interrogation even
though the control unit has not yet been
freed. The busy condition is considered
to be temporary if its duration is
commensurate with the program time
required to handle an I/O interruption.
The IBM 3705 Communications Controller
is an example of a device in which the
control unit may be busy temporarily and
which includes control-unit end with
busy and status modifier.

Control-unit end can be signaled with
channel end, with device end, or between
the two. Control-unit end may be
signaled at other times and may be
accompanied by other status bits. When
control-unit end is signaled by means of
an I/O interruption in the absence of
any other status, the interruption may
be identified by any device address

assigned to the control unit which is
associated with a device in the avail­
able state, even if the device is not
ready or absent. A control-unit end may
cause the control unit to appear busy
for the initiation of new operations
with any attached device.
Alternatively, a control-unit end may be
assigned by the control unit to a
specific device address, and only that
device would appear busy for the initi­
ation of new operations.

When control-unit end is signaled to the
channel in the absence of any other
status to indicate that the control-unit
busy period previously indicated to the
program is ended, and the control unit
is available, the control-unit-end
status normally causes the channel to
recognize an interruption condition to
present the control-unit end to the
program. However, when start-I/O-fast
queuing or the suspend-and-resume facil­
ity is provided and the device address
with which the control unit signals the
control-unit end is associated with a
working subchannel that has a pending
I/O operation or has a suspended
channel-program execution, the channel
recognizes the channel-available­
interruption (CAl) condition instead.
The control-unit-end status is discarded
by the channel and the state of the
associated subchannel remains unchanged
in this case. (See the section
"Channel-Available Interruption," earli­
er in this chapter.)

Busy indicates that the I/O device or
control unit cannot execute the command
or instruction because (1) it is execut­
ing a previously initiated operation,
(2) it contains an interruption condi­
tion, (3) it is shared by channels or
I/O devices and the shared facility is
not available, or (4) a self-initiated
function is being performed. The status
associated with the interruption condi­
tion for the addressed device, if any,
accompanies the busy status. If busy
applies to the control unit, busy is
accompanied by status modifier.

The figure "Indications of Busy in CSW"
lists the situations for devices
connected to only one channel when the
busy bit is set to one in the CSW and
indicates when busy is accompanied by
status modifier. For devices shared by
more than one channel, operations
related to one channel may cause the
control unit or device to appear busy to
the other channels.

Chapter 13. Input/Output Operations 13-65

Condition

Subchannel available
DE or attention in device
Device working, CU available
CU end or channel end in CU:

For the addressed device
For another device

CU working
Interruption condition in

subchannel for the addressed
device because of:

Chaining terminated by busy
device

Chaining or retry terminated
by busy CU

Other type of termination
Asynchronous status~

Subchannel working
CU available
CU working

Explanation:

B Busy bit in CSW is one.

SID,
SIOF*,
or RIO*

B,cl
B

B,cl
&

B,SM

* B,el

* *

CSW Status Stored by

HIO or I/O
TIO CLRIO+ HDV IRPTn

NB,cl~ *
B~ *
NB,cl~ *

$~ *
B,SM~ *

B,cl B,cl

B,SM,cl B,SM,cl

NB,cl
NB,cl

* *

NB,cl
NB,cl

NB
NB

* *
* * *

* *
NB

B,SM

NB,cl
m

NB,cl
NB,el
B,SM

B,cl

B,SM,cl

NB,el
NB,el=

* *

cl Interruption condition cleared; status is placed in CSW.

CU Control unit.

DE Device end.

HB Busy bit in CSW is zero.

SM Status-modifier bit in CSW is one.

* CSW not stored, or I/O interruption cannot occur.

* When a channel executes START I/O FAST RELEASE as START I/O, the CSW
status stored for the two instructions is identical. When START I/O
FAST RELEASE is executed independent of the device and when RESUME
I/O is executed, the CSW status is stored by an I/O interruption with
the CSW also indicating deferred condition code 1, except when start­
I/O-fast queuing is provided for the subehannel. When start-I/O-fast
queuing is provided, a control-unit-busy or device-busy condition, in
the absence of other status, may not cause an interruption and, in­
stead, the I/O operation remains pending at the subchannel until the
no-longer-busy indication is received by the channel.

= When the device presents asynchronous status other than control-unit
end while a channel program is suspended at the subchannel, the
channel program is terminated, and an interruption condition is
generated; the status, with the busy bit included, is stored in the
CSW when the interruption occurs, along with the deferred condition
code equal to zero and the command address equal to the address of
the suspended CCW + 8.

Indications of Busy in CSW (Part 1 of 2)

13-66 System/370 Principles of Operation

Explanation (Continued):

& Either a CSW is not stored or busy and status modifier are stored.

$ Unit status of either zeros or busy and status modifier is stored.

m Unit status of busy may be stored, or an I/O interruption may not
occur.

~ Asynchronous status is any unit status that is not related to the
termination of an I/O operation at the subchannel.

Except when the I/O interruption is caused by a deferred condition
code 1 for START I/O FAST RELEASE.

+ The entries in this column apply only when the CLRIO function is
executed. When CLEAR I/O causes the TIO function to be executed, the
entries in the TIO column apply.

y. When the control unit is the type that never supplies status to the
TIO function, unit status consisting solely of status modifier is
stored, and no interruption conditions are cleared.

Indications of Busy in CSW (Part 2 of 2)

Channel End

Channel end is caused by the completion
of the portion of an I/O operation
involving transfer of data or control
information between the I/O device and
the channel. The condition indicates
that the control unit no longer requires
channel facilities to perform the opera­
tion.

Each I/O operation initiated at the
device causes channel end to be
signaled, and there is only one channel
end for an operation. Channel end is
not signaled when programming errors or
equipment malfunctions are detected
during initiation of the operation.
When command chaining takes place, only
the channel end of the last operation of
the chain is made available to the
program. Channel end is not made avail­
able to the program when a chain of
commands is prematurely concluded
because of an unusual situation indi­
cated with control-unit end or device
end, or during the initiation of a
chained or retried command.

The instant within an I/O operation when
channel end is signaled depends on the
operation and the type of device. For
operations such as writing on magnetic
tape, channel end occurs when the block
has been written. On devices that veri­
fy the writing, channel end mayor may
not be delayed until verification is
performed, depending on the device.
When magnetic tape is being read, chan­
nel end occurs when the next interblock
gap on tape reaches the read-write head.
On devices equipped with buffers, chan­
nel end occurs upon completion of data
transfer between the channel and the
buffer. During control operations,

channel end is generated when the
control information has been transferred
to the devices, although for short oper­
ations channel end may be delayed until
completion of the operation. Operations
that do not cause any data to be trans­
ferred can provide channel end during
the initiation sequence.

Channel end in the control unit may
cause the control unit to appear busy
for the initiation of new operations.

Channel end is presented in combination
with status modifier and unit check to
initiate the command-retry procedure.

Device End

Device end is indicated (1) when the
completion of an I/O operation occurs at
the device, (2) when the I/O device
signals that a change from the not-ready
to the ready state has occurred,
(3) when the termination of an activity
has occurred which previously caused a
response of busy to the channel, and
(4) when the I/O device signals that an
asynchronous condition has been recog­
nized. Device end normally indicates
that the I/O device has become available
for use in another operation.

Each I/O operation initiated at the
device causes device end, and there is
only one device end for an operation.
Device end is not generated when any
programming or equipment malfunction is
detected during initiation of the opera­
tion. When command chaining takes
place, only the device end of the last
operation of the chain is made available
to the program unless an unusual condi-

Chapter 13. Input/Output Operations 13-67

tion is detected during the initiation
of a chained or retried command, in
which case the chain is concluded with­
out device end.

Device end associated with an I/O opera­
tion is generated either simultaneously
with channel end or later. For data­
transfer operations on some I/O devices,
the operation is complete at the time
channel end is generated, and both
device end and channel end occur togeth­
er. The time at which device end is
presented depends upon the I/O-device
type and the kind of command executed.
For most I/O devices, device end is
presented when the I/O operation is
completed at the I/O device. In some
cases, for reasons of performance,
device end is presented before the I/O
operation has actually been completed at
the I/O device. However, in all cases,
when device end is presented, the I/O
device is available for execution of an
immediately following CCW if command
chaining was specified in the previous
CCW. During execution of control
commands, device end may be presented
with channel end or later.

When command chaining is specified,
receipt of the device-end signal, in the
absence of any unusual situations, caus­
es the channel to initiate a new I/O
operation.

When the state of a device is changed
from not ready to ready, either device
end or device end, attention, and unit
exception are indicated. Refer to the
SL publication for the I/O device to
determine which indication is given.

A device is considered to be not-ready
when operator intervention is required
in order to make the device ready. A
not-ready condition can occur, for exam­
ple, because of any of the following:

1. An unloaded condition for magnetic
tape

2. Card equipment out of cards or with
the stacker full

3. A printer out of paper

4. Error conditions that need operator
intervention

5. The unit having changed from the
enabled to the disabled state

Device end is also accompanied by other
status where conditions are recognized
that are unrelated to the execution of
an I/O operation.

13-68 System/370 Principles of Operation

Unit check indicates that the I/O device
or control unit has detected an unusual
situation that is detailed by the infor­
mation available to a sense command.
Unit check may indicate that a program­
ming or equipment error has been
detected, that the not-ready state of
the device has affected the execution of
the command or instruction, or that an
exceptional situation other than the one
identified by unit exception has
occurred. The unit-check bit provides a
summary indication of the sense data.

An error causes the unit-check indi­
cation when it occurs during the
execution of a command or the TIO func­
tion or during some activity associated
with an I/O operation. Unless the error
pertains to the activity initiated by a
command or is of immediate significance
to the program, the error does not cause
the program to be alerted after device
end has been cleared; a malfunction may,
however, cause the device to become not
ready.

Unit check is indicated when the exist­
ence of the not-ready state precludes a
satisfactory execution of the command,
or when the command, by its nature,
tests the state of the device. When no
interruption condition is pending for
the addressed device at the control
unit, the control unit signals unit
check when the TIO function or the
no-operation control command is issued
to a not-ready device. In the case of
no-operation, the command is rejected,
and channel end and device end do not
accompany unit check.

Unless the command is designed to cause
unit check, such as the rewind-and­
unload command for magnetic tape, unit
check is not indicated if the command is
properly executed even though the device
has become not ready during or as a
result of the operation. Similarly,
unit check is not indicated if the
command can be executed with the device
not ready. Selection of a device that
is not ready does not cause a unit check
when the sense command is issued or when
an interruption condition is pending for
the addressed device at the control
unit.

If the device detects during the initi­
ation sequence that the command cannot
be executed, unit check is signaled to
the channel without channel end,
control-unit end, or device end. Such
unit status indicates that no action has
been taken at the device in response to
the command. If the situation preclud­
ing proper execution of the operation
occurs after execution has been started,
unit check is accompanied by channel
end, control-unit end, or device end,
depending on when the situation was

detected. Any errors detected after
device end has been cleared are indi­
cated by signaling unit check with
attention, unit check with control-unit
end, or unit check with device end.

Errors, such as invalid command code or
invalid command-code parity, do not
cause unit check when the device is
working or contains an interruption
condition at the time of selection.
Under these circumstances, the device
responds by providing busy status and
indicating the interruption condition,
if any. The command-code invalidity is
not indicated.

Concluding an operation with the unit­
check indication causes command chaining
to be suppressed.

Unit check is presented in combination
with channel end and status modifier to
initiate the command-retry procedure.

Programming Notes

1. If a device becomes not ready upon
completion of a command, the ending
interruption condition can be
cleared by the TIO function without
generation of unit check due to the
not-ready state, but any subsequent
TIO function issued to the device
causes a unit-check indication.

2. In order that sense indications set
in conjunction with unit check are
preserved by the device until
requested by a sense command, some
devices inhibit certain functions
until a command other than the TIO
function or no-operation is
received. Furthermore, any command
other than sense, the TIO function,
or no-operation may cause the
device to reset any sense informa­
tion. Similarly, when start-I/O­
fast queuing is provided,
initiation of I/O operations pend­
ing at the time the unit check is
received may be inhibited for other
devices attached to the same
control unit. The initiation of
the pending operations is inhibited
until a subsequent I/O operation
(usually a sense operation) is
successfully initiated at the
device that presented the unit
check. To avoid degradation of the
device and its control unit and to
avoid inadvertent resetting of the
sense information, a sense command
should be issued immediately to any
device signaling unit check.

3. Unit-check status presented either
in the absence of or accompanied by

other status indicates only that
sense information is available to
the basic sense command. Presenta­
tion of either channel end and unit
check or channel end, device end,
and unit check does not provide any
indication as to the kind of condi­
tions encountered by the control
unit, the state of the I/O device,
or whether execution of the I/O
operation ever was initiated.
Descriptions of these conditions or
states are provided in the sense
information.

Unit Exception

Unit exception is caused when the I/O
device detects a situation that usually
does not occur. Unit exception includes
si tuat ions such as recogn it i on of a. tape
mark and does not necessarily indicate
an error. During execution of an I/O
operation, unit exception has only one
meaning for any particular command and
type of device.

Unit exception may be generated when the
device is executing an I/O operation, or
when the device is involved with some
activity associated with an I/O opera­
tion and the condition is of immediate
significance to the program. If the
device detects during the initiation
sequence that the operation cannot be
executed, unit exception is presented to
the channel and appears without channel
end, control-unit end, or device end.
Such unit status indicates that no
action has been taken at the device in
response to the command. If the condi­
tion precluding normal execution of the
operation occurs after the I/O operation
has been initiated, unit exception is
accompanied by channel end, control-unit
end, or device end, depending on when
the situation was detected. Any unusual
condition associated with an I/O opera­
tion, but detected after device end has
been cleared, is indicated by signaling
unit exception with attention.

If the I/O device responds with busy
status to a command, the generation of
unit exception is suppressed even when
execution of that command usually causes
unit exception to be indicated.

Concluding an operation with
exception indication causes
chaining and command retry
suppressed.

the unit­
command
to be

Some devices present unit exception
accompanied by device end and attention
whenever a device changes from the
not-ready state to the ready state.
(See "Device End" in this chapter.)

Chapter 13. Input/Output Operations 13-69

CHANNEL STATUS

The following status bits are generated
by the channel. Except for the status
bits resulting from equipment malfunc­
tion, they can occur only while the
subchannel is involved with the
execution of an I/O operation.

Program-Controlled Interruption

A program-controlled interruption occurs
when the channel fetches a CCW with the
program-controlled-interruption (PCI)
flag set to one. The I/O interruption
due to the PCI flag takes place as soon
as possible after the CCW takes control
of the operation, unless the CCW also
contains the S flag set to one, but may
be delayed an unpredictable amount of
time because I/O interruptions are
disallowed or because of other activity
in the system. When the CCW also
contains a valid S flag, the PCI condi­
tion is not generated until after
channel-program execution is suspended.

The interruption condition due to the
PCI flag does not affect the progress of
the I/O operation.

Incorrect Length

Incorrect length occurs when the number
of bytes contained in the storage areas
assigned for the I/O operation is not
equal to the number of bytes requested
or offered by the I/O device. Incorrect
length is indicated for one of the
following reasons:

Long Block.Q.!l Input: During a read,
read-backward, or sense operation, the
device attempted to transfer one or more
bytes to storage after the assigned
storage areas were filled. The extra
bytes have not been placed in storage.
The count in the CSW is zero.

long Block .Q.!l Output: During a write or
control operation, the device requested
one or more bytes from the channel after
the assigned storage areas were
exhausted. The count in the CSW is
zero.

Short Block.Q.!l Input: The number of
bytes transferred during a read, read­
backward, or sense operation is insuffi­
cient to fill the storage areas assigned
to the operation. The count in the CSW
is not zero.

~ ~.Q.!l Output: The device
terminated a write or control operation
before all information contained in the

13-70 System/370 Principles of Operation

assigned storage areas was transferred
to the device. The count in the CSW is
not zero.

Incorrect length is not indicated when
the current CCW has the SlI flag set to
one and the CD flag set to zero. The
indication does not occur for immediate
operations and for operations rejected
during the initiation sequence.

When incorrect length occurs, command
chaining is suppressed, unless the SlI
flag in the CCW is one or unless the
operation is immediate. See the figure
"Channel-Chaining Action" in this chap­
ter for the effect of the CD, CC, and
SLI flags on the indication of incorrect
length.

Programming Note

The setting of incorrect length is
unpredictable in the CSW stored during
CLEAR I/O, HALT I/O, or HALT DEVICE if
the subchannel was in the working state.

Program Check

Program check occurs
errors are detected
Program check can be
ing causes:

when programming
by the channel.

due to the follow-

Invalid CCW-Address Specification: The
CAW or the transfer-in-channel command
does not designate the CCW on a double­
word boundary.

Invalid CCW Address: The channel has
attempted~ fetch a CCW from a storage
location which is not available to the
channel. An invalid CCW address can
occur in the channel because the program
has specified an invalid address in the
CAW or in the transfer-in-channel
command or because on chaining the chan­
nel has attempted to fetch a CCW from an
unavailable location.

Invalid Command Code: The command code
in the first CCW designated by the CAW
or in a CCW fetched on command chaining
has zeros in bit positions 4-7. The
command code is not tested for validity
during data chaining.

Invalid Count: A CCW other than a CCW
specifying transfer in channel contains
the value zero in bit positions 48-63.

Invalid IDAW-Address Specification:
Channel indirect data addressing is
specified, and the contents of the
data-address field in the CCW do not
designate the first IDAW on an integral
word boundary.

Invalid IDAW Address: The channel has
attempted to fetch an IDAW from a stor­
age location which is not available to
the channel. An invalid IDAW address
can occur in the channel because the
program has specified an invalid address
in a CCW that specifies indirect data
addressing or because the channel, on
sequentially fetching IDAWs, has
attempted to fetch from an unavailable
location.

Invalid Data Address: The channel has
attempted to transfer data- to or from a
storage location which is not available
to the channel. An invalid data address
can occur in the channel because the
program has specified an invalid address
in the CCW, or in an IDAW, or because
the channel, on sequentially accessing
storage, has attempted to access an
unavailable location.

Invalid IDAW Specification: The 24-
bit-IDAW facility is installed and bits
0-7 of the IDAW are not all zeros, or
the second or subsequent IDAW does not
specify the first or, for read-backward
operations, the last byte of a 2K-byte
storage block. The 31-bit IDAW facility
is installed and bit 0 of the IDAW is
not zero, or the second or subsequent
IDAW does not specify the first or, for
read-backward operations, the last byte
of a 2K-byte storage block.

Invalid CAW Format: The CAW does not
contain zeros in bit positions 4-7 when
the suspend-and-resume facility is not
provided by the system model or in bit
positions 5-7 when the suspend-and­
resume facility is provided.

Invalid CCW Format: A CCW other than a
CCW specifying transfer in channel does
not contain zeros in bit positions 38-39
when the suspend function is not
provided for the subchannel or does not
contain zero in bit position 39 when the
suspend function is provided.

Invalid Suspend Flag: A CCW fetched
during data chaining, other than a CCW
specifying transfer in channel, does not
contain a zero in bit position 38. A
CCW other than a CCW specifying transfer
in channel does not contain a zero in
bit position 38 and either suspend
control was not specified in the CAW, or
the suspend function is not operable for
the subchannel.

Invalid Sequence: The first CCW desig­
nated by the CAW specifies transfer in
channel, or the channel has fetched two
successive CCWs both of which specify
transfer in channel, or a sequence of
256 or more CCWs with command chaining
specified were executed by the channel
and did not result in the transfer of
any data with an I/O device.

Detection of program check during the
initiation of an operation causes

execution of the operation to be
suppressed. When program check is
detected after the operation has been
initiated at the device, the device is
signaled to conclude the operation the
next time it requests or offers a byte
of data. Program check causes command
chaining and command retry to be
suppressed.

Protection Check

Protection check occurs when the channel
attempts a storage access that is
prohibited by key-controlled storage
protection. Protection applies to the
fetching of CCWs, IDAWs, and output
data, and to the storing of input data.
Storage accesses associated with each
channel program are performed using the
subchannel key provided in the CAW asso­
ciated with that channel program. For
details, see the section "Key-Controlled
Protection" in Chapter 3, "Storage."

When protection check occurs during the
fetching of a CCW that specifies the
initiation of an I/O operation, or
occurs during the fetching of the first
IDAW, the operation is not initiated.
When protection check is detected after
the operation has been initiated at the
device, the device is signaled to
conclude the operation the next time it
requests or offers a byte of data.
Protection check causes command chaining
and command retry to be suppressed.

Channel-Data Check

Channel-data check indicates that a
machine error has been detected in the
information transferred to or from stor­
age during an I/O operation, or that an
error has been detected on data trans­
ferred from the device during an input
operation. This information includes
the data read or written, as well as the
information transferred as data during a
sense or control operation. The error
may have been detected in the channel,
in storage, or on the path between the
two. Channel-data check may be indi­
cated for data with an invalid
checking-block code in storage when the
data is referred to by the channel but
the data does not participate in the
operation. This can happen, for
example, on an input operation when less
than a full checking block of data is to
be placed in storage. In this case,
called a partial store, the entire
checking block is fetched from storage,
is updated with the input data, and is
replaced in storage. If a CBC error is
detected when the checking block is
fetched, it cannot be corrected because
only part of the checking - block is

cnapter 13. Input/Output Operations 13-71

updated during a partial store. In this
situation, a channel-data check condi­
tion is recognized because of a CBC
error in data referred to (the original
contents of the checking block> and not
because of an error in the input data
itself.

Whenever an error on input data is indi­
cated by means of channel-data check,
the channel forces correct parity on all
data received from the I/O device, and
all data placed in storage has valid
checking-block code. When, on an input
operation, the channel attempts to store
less than a complete checking block, and
when invalid checking-block code is
detected on the checking block in stor­
age, the contents of the location remain
unchanged with invalid checking-block
code. On an output operation, whenever
a channel-data check is indicated, all
bytes that came from a checking block
with invalid checking-block code have
been transmitted with parity errors.

Channel-data check causes command chain­
ing and command retry to be suppressed
but does not affect the execution of the
current operation. Data transfer
proceeds to normal completion, if possi­
ble, and an interruption condition is
generated when the device presents chan­
nel end. A logout may be performed,
depending on the channel. Accordingly,
the detection of the error may affect
the state of the channel and the device.

Channel-Control Check

Channel-control check is caused by
machine malfunction affecting channel
controls. It may be caused by invalid
checking-block codes on CCW addresses,
data addresses, and the contents of the
CCW. Channel-control check may also
include those channel-detected errors
associated with data transfer that are
not indicated as channel-data check, as
well as those communication errors
detected by the channel that are not
indicated as interface-control check.
Errors responsible for channel-control
check may cause the contents of the CSW
to be invalid and conflicting. The CSW
as generated by the channel has valid
checking-block code.

Detection of channel-control check caus­
es the current operation, if any, to be
immediately concluded.

Channel-control check is set whenever
CSW bit 5, logout pending, is set to
one.

In some situations, machine malfunctions
affecting channel control may instead be
reported as an external-damage or
system-damage machine-check condition.

13-72 System/370 Principles of Operation

Interface-Control Check

Interface-control check indicates that
an invalid signal has been received by
the channel when communicating with a
control unit or device. This check is
detected by the channel and usually
indicates malfunctioning of an I/O
device. It can be due to the following:

1. The device address or status byte
received from a device has invalid
parity.

2. A device responded with a device
address other than the device
address specified by the channel
during initiation of an operation.

3. During command chaining or command
retry the device appeared not oper­
ational.

4. A signal from a device occurred at
an invalid time or had invalid
duration.

5. A device signaled I/O-error alert.

The interface-control-check condition
may also include those channel-detected
errors associated with data transferred
from the device that are not indicated
as channel-data check.

Detection of interface-control check
causes the current operation, if any, to
be immediately concluded.

Chaining Check

Chaining check is caused by channel
overrun during data chaining on input
operations. Chaining check occurs when
the I/O data rate is too high to be
handled by the channel and by storage
under current conditions. Chaining
check cannot occur on output operations.

Chaining check causes the I/O device to
be signaled to conclude the operation.
It causes command chaining and command
retry to be suppressed.

CONTENTS OF CHANNEL-STATUS WORD

The contents of the CSW depend on the
reason the CSW was stored and on the
programming method by which the informa­
tion is obtained. The deferred­
condition-code field and the status
portion identify the reason the CSW was
stored. The subchannel-key, suspended­
indication, logout-pending, deferred-

condition-code, CCW-address, and count
fields may contain information pertain­
ing to the last operation or may be set
to zero, or the original contents of
these fields at real locations 64-67 and
70-71 may be left unchanged.

Information Provided ~ Channel-Status
Word

Interruption conditions resulting from
the execution or conclusion of an opera­
tion at the subchannel cause the whole
CSW to be replaced. Such a CSW can be
stored only by an I/O interruption or by
TEST I/O or CLEAR I/O. Except for situ­
ations associated with command chaining
and equipment malfunctioning, the stor­
ing can be caused by PCI or channel end
and by the execution of HALT I/O or HALT
DEVICE on the selector channel. The
contents of the CSW are related to the
current values of the corresponding
quantities, although the count is unpre­
dictable after program check, protection
check, and chaining check, and after an
interruption due to HALT I/O, HALT
DEVICE, the CLRIO function, or the PCI
flag.

A CSW stored upon the execution of a
chain of operations pertains to the last
operation which the channel executed or
attempted to initiate. Information
concerning the preceding operations is
not preserved and is not made available
to the program.

When an unusual situation causes command
chaining to be suppressed, the premature
conclusion of the chain is not explicit­
ly indicated in the CSW. A CSW associ­
ated with a conclusion due to a
situation occurring at channel-end time
contains channel end and identifies the
unusual situation. When the device
signals the unusual situation with
control-unit end or device end, the
channel-end indication is not made
available to the program, and the chan­
nel provides the current subchannel key,
CCW address, and count, as well as the
unusual indication, with control-unit
end or device end in the CSW. The CCW­
address and count fields pertain to the
operation that was executed.

When the execution of a chain of
commands is concluded by an unusual
situation detected during initiation of
a new operation, the CCW-address and
count fields pertain to the rejected
command. Except for situations result­
ing from equipment malfunctioning,
conclusion at initiation time can occur
because of attention, unit check, unit
exception, busy, protection check, or
program check, and causes both the
channel-end and device-end bits in the
CSW to be set to zeros.

A CSW associated with status signaled
after the operation at the subchannel
has been concluded contains zeros in the
subchannel-key, CCW-address, and count
fields, provided the status is not
cleared during START I/O or START I/O
FAST RELEASE. This status includes
attention, control-unit end, and device
end (and channel end when it occurs
after the conclusion of an operation on
the selector channel by HALT I/O or HALT
DEVICE).

When the above status indications are
cleared during START I/O or START I/O
FAST RELEASE, only the status portion of
the CSW is stored, and the original
contents of the subchannel-key, CCW­
address, deferred-condition-code,
logout-pending, and count fields at
locations 64-67 and 70-71 are preserved.
Similarly, only the status bits of the
CSW are changed when the command is
rejected or the operation at the
subchannel is concluded during the
execution of START I/O or START I/O FAST
RELEASE or whenever HALT I/O or HALT
DEVICE causes CSW status to be stored.

The CSW stored when a channel-available
interruption occurs contains zeros in
all fields.

Errors detected during execution of the
I/O operation do not affect the validity
of the CSW unless channel-control check
or interface-control check are
indicated. Channel-control check indi­
cates that equipment errors have been
detected which can cause any part of the
CSW, as well as the I/O address, to be
invalid. Interface-control check indi­
cates that the address identifying the
device or the status bits received from
the device may be invalid. The channel
forces correct parity on invalid CSW
fields. The validity of these fields
can be ascertained by inspecting the
limited channel logout.

When any I/O instruction cannot be
executed because of a pending logout
which affects the operational capability
of the channel or subchannel, a full CSW
is stored. The fields in the CSW are
all set to zeros, with the exception of
the logout-pending bit and the channel­
control-check bit, which are set to
ones.

Subchannel Key

A CSW stored to reflect the progress of
an operation at the subchannel contains
the subchannel key used in that opera­
tion. The contents of this field are
not affected by programming errors
detected by the channel or by the situ­
ations causing termination of the opera­
tion.

Chapter 13. Input/Output Operations 13-73

Suspended Indication

When the CSW is stored during an inter­
ruption because of the program­
controlled-interruption (PCI) condition,
bit 4 of the CSW indicates whether the
channel-program execution is currently
suspended. Suspension of channel­
program execution is a function of the
suspend-and-resume facility that may be
provided for one or more subchannels of
multiplexer channels, depending on the
system model.

A channel-program execution is consid­
ered to be suspended from the time the
channel performs the suspend function
because of the presence of a valid S
flag in a CCW until that channel-program
execution is terminated at the subchan­
nel or until the resume function is
performed because of a successful (con­
dition code 0) RIO issued to the
subchannel. During the period of
suspension, the storing of a CSW can
only occur as a result of the PCI condi­
tion. The PCI condition may be
generated because of a PCI flag in the
CCW containing the S flag or because of
a PCI flag in a CCW fetched earlier in
the chain of commands being executed at
the subchannel. When the PCI flag and a
valid S flag are in the same CCW, the
resulting CSW contains the suspended
indication unless the CSW indicates that
channel-program execution is terminated
at the subchannel.

Logout Pending

The logout-pending bit can be stored as
one only in a CSW stored during the
execution of an I/O instruction. The
I/O instructions that can result in
storing the CSW with the logout-pend~ng
indication are CLEAR I/O, HALT DEVICE,
HALT I/O, START I/O, START I/O FAST
RELEASE, STORE CHANNEL ID, and TEST I/O.
When the CSW is stored and indicates
logout pending, channel-control check is
also indicated in the channel-status
field.

Deferred Condition Code

In the case of START I/O FAST RELEASE
executed independent of the device or
RESUME I/O issued to a suspended
subchannel, initiation or resumption of
the I/O operation is not completed
during the execution of the instruction.
If no conditions are encountered during

13-74 System/370 Principles of Operation

the execution of the instruction that
preclude the acceptance of the function
of the instruction by the channel,
condition code 0 is set, and conditions
encountered subsequent to executing the
instruction which preclude the
completion of the specified function
cause the deferred condition code to be
set. The deferred condition code is set
when a CSW is stored because of an
interruption condition signaling the
conclusion of the I/O operation at the
subchannel.

Deferred condition code 1 is set either
when the channel has detected a condi­
tion that would have caused condition
code 1 to be set in response to the
START I/O FAST RELEASE instruction if
the SIO function had been performed, or
when HALT I/O, HALT DEVICE, CLEAR I/O or
equipment malfunction causes the channel
to terminate the I/O operation while it
is pending at the subchannel. When HALT
I/O, HALT DEVICE, or equipment malfunc­
tion terminates a pending I/O operation,
deferred condition code 1 is set in the
CSW that is stored during the I/O inter­
ruption signaling the termination.

Deferred condition code 1 ;s also set
when the channel detects a condition
while attempting to resume a suspended
channel-program execution that would
have caused deferred condition code 1,
had the SIOF function been executed
independent of the device with the
subchannel available, instead of RESUME
I/O with the subchannel suspended.

Deferred condition code 1 is also
when, after HALT DEVICE is issued
suspended subchannel, the device
been selected and an attempt made
issue the halt signal.

set
to a

has
to

Deferred condition code 3 is set when
the channel has detected that the
addressed device is not operational even
though condition code 0 was set in
response to the START I/O FAST RELEASE
or RESUME I/O instruction, or when,
after HDV is issued to a suspended
subchannel, the device is found to be
not operational when the attempt is made
to issue the halt signal. When the CSW
contains deferred condition code 3, the
unit-status field contains zeros and has
no meaning with respect to the progress
of the I/O operation.

The figure "Contents of the Deferred­
Condition-Code Field" summarizes the
handling of deferred condition codes.
The figure lists the states and activ­
ities that can cause deferred­
condition-code indications to be created
and the methods by which these indi­
cations can be placed in the CSW.

Upon Termination
When When of Operation at
I/O Subch

Deferred Is Is Ctrl I/O
Condition Code Idle Working Subch Unit Dev

Deferred
condition code 1

Deferred*
condition code 3

Explanation:

After
SIOF~ or
RIO or
during When
Command SIO or
Retry or SIOF& Is
Chaining Executed

C-

C-

When
When When I/O

When CLRIO Is HIO or Inter-
TIO Is Executed HDV Is ruption
Executed + Executed Occurs

S CS~ S"

S S S

C The channel can create a deferred-condition-code indication as a result of and subsequent to
the execution of the designated instruction. In the case of CLRIO, the indication is created
at the time the instruction is executed. The indication is not created as a result of the
SIO instruction. In all other cases, the creation of the indication generates an interruption
condition.

S The deferred-condition-code indication is stored in the CSW at the designated time.

* When the CSW is stored, it contains zero unit status.

~ The deferred condition code that is indicated in the CSW can also be the result of CLRIO ter­
minating a pending I/O operation that was initiated by means of SIOF executed independent of
the device, or by terminating a suspended I/O operation.

~ The deferred condition code that is indicated in the CSW can ~lso be the result of HDV or HIO
terminating a pending I/O operation that was initiated by means of SIOF executed independent
of the device, or by terminating a suspended I/O operation.

+ The entries in this column apply only when the CLRIO function is executed. When CLEAR I/O
causes the TIO function to be executed, the entries in the TIO column apply.

& When executed as SIO

~ When executed independent of the device

- Applies only to RIO or SIOF executed independent of the device

Hote: The absence of an entry indicates that no deferred condition code is created or stored.

Contents of the Deferred-Condition-Code Field

CCW Address

When the CSW is formed to reflect the
progress of the I/O operation at the
subchannel, the CCW address is normally
8 higher than the address of the last
CCW used in the operation.

The figure "Contents of the CCW-Address
Field in the CSW" lists the contents of

the CCW-address field for all situations
that can cause the CSW to be stored.
They are listed in order of priority;
that is, if two situations occur, the
CSW appears as indicated for the situ­
ation higher on the list. When a CSW
has been stored and the situation exists
that a command-retry request has been
recognized but the CCW has not been
re-executed, the "last-used CCW + 8" is
the CCW that is to be retried.

Chapter 13. Input/Output Operations 13-75

Situations

I/O instruction issued when
channel logout-pending

Channel-control check
Status stored by START I/O or

START I/O FAST RELEASE
Status stored by HALT I/O or

HALT DEVICE
Invalid CCW-address spec in
transfer in channel (TIC)

Invalid CCW address in TIC
Invalid CCW address generated
Invalid command code, CCW
format, IDAW-address speci­
fication, or count

Invalid data address, invalid
IDAW address, or IDAW speci­
fication

Invalid sequence - 2 TICs
Invalid key on CCW fetch
Invalid key on data or IDAW
access

Chaining check
Termination under count control
Termination by I/O device
Termination by HALT I/O or

HALT DEVICE
Termination by CLEAR I/O
Suppression of command

chaining due to unit check,
attention, or unit exception
with device end, channel end,
or control-unit end

Termination on command
chaining by busy, attention,
unit check, or unit exception

Deferred condition code 1 or 3

PCI flag in CCW

Interface control check
Channel end after HALT I/O or

HALT DEVICE on selector
channel (and, depending on
design of the subchannel, on
block-multiplexer channel)

Channel end after CLEAR I/O
Control-unit end
Device end
Attention
Busy
Status modifier
Channel-available interruption

Contents of the CCW-Address Field

Contents of Field

Zero

Unpredictable
Unchanged

Unchanged

Address of TIC + 8

Address of TIC + 8
First invalid CCW address + 8
Address of invalid CCW + 8

Address of current CCW + 8

Address of second TIC + 8
Address of protected CCW + 8
Address of current CCW + 8

Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8

Address of last-used CCW + 8
Address of last CCW used in

the completed operation + 8

Address of CCW specifying
the new operation + 8

Address of CCW specifying
the new or suspended op­
eration + 8

Address of CCW that con­
tained the last recognized
PCI flag + 8, or address of
CCW which has subsequently
become current + 8. When
the suspended bit (bit 4) of
the CSW is stored as one,
the address stored is the
address of the CCW contain­
ing the S flag + 8.

Unpredictable
Zero

Zero
Zero
Zero
Zero
Zero
Zero
Zero

in the CSW

13-76 System/370 Principles of Operation

to storage; on an output operation, the
difference is equal to the number of
bytes transferred to the I/O device.

The residual count, in conjunction with
the original count specified in the last
CCW used, indicates the number of bytes
transferred to or from the area desig­
nated by the CCW. When an input opera­
tion is concluded, the difference
between the original count in the CCW
and the residual count in the CSW is
equal to the number of bytes transferred

The figure "Contents of the Count Field
in the CSW" lists the contents of the
count field for all situations that can
cause the CSW to be stored. They are
listed in the order of priority; that
is, if two situations occur, the CSW
appears as for the situation higher on
the list.

Situations

I/O instruction issued when
channel logout-pending

Channel-control check
Status stored by START I/O or

START I/O FAST RELEASE
Status stored by HALT I/O or

HALT DEVICE
Program check
Protection check
Chaining check
Termination under count control
Termination by I/O device
Termination by HALT I/O or

HALT DEVICE
Termination by CLEAR I/O
Suppression of command

chaining due to unit check,
attention, or unit exception
with device end, channel end,
or control-unit end

Termination on command chaining
by busy, attention, unit
check, or unit exception

Deferred condition code 1 or 3
PCI flag in CCW
Interface-control check
Channel end after HALT I/O or

HALT DEVICE on selector chan­
nel (and, depending on design
of the subchannel, on block­
multiplexer channel)

Channel end after CLEAR I/O
Control-unit end
Device end
Attention
Busy
Status modifier
Channel-available interruption

Contents of Field

Zero

Unpredictable
Unchanged

Unchanged

Unpredictable
Unpredictable
Unpredictable
Correct
Correct
Unpredictable

Unpredictable
Correct. Residual count of last

CCW used in the completed
operation.

Correct. Original count of
CCW specifying the new
operation.

Unpredictable
Unpredictable
Unpredictable
Zero

Zero
Zero
Zero
Zero
Zero
Zero
Zero

Contents of the Count Field in the CSW

Chapter 13. Input/Output Operations 13-77

status

The status bits identify the situations
that have been detected during the I/O
operation, that have caused a command to
be rejected, or that have been generated
by external events.

When the channel detects several errors,
all corresponding status bits in the CSW
may be set to ones or only one may be
set, depending on the error and model.
Errors associated with equipment
malfunctioning have precedence, and
whenever malfunctioning causes an opera­
tion to be terminated, channel-control
check, interface-control check, or
channel-data check is indicated, depend­
ing on the error. When an operation is
concluded by program check, protection
check, or chaining check, the channel
identifies the situation responsible for
the conclusion and mayor may not indi­
cate incorrect length. When a data
error has been detected and the opera­
tion is concluded prematurely because of
a program check, protection check, or
chaining check, both channel-data check
and the other error are identified.

13-78 System/370 Principles of Operation

If the CCW fetched on command chaining
has the PCI flag set to one but a
programming error in the contents of the
CCW precludes the initiation of the
operation, it is unpredictable whether
the PCI bit is one in the CSW associated
with the interruption condition.

However, if the CCW fetched on command
chaining has the PCI flag set to one but
an unusual situation detected by the
device precludes the initiation of the
operation, the PCI bit is one in the CSW
associated with the interruption condi­
tion. Similarly, the PCI bit is
unpredictable in a CSW stored by START
I/O or START I/O FAST RELEASE or in a
CSW that has a nonzero deferred condi­
tion code.

Situations detected by the channel are
not related to those identified by the
I/O device.

The figure "Contents of the CSW Status
Fields" summarizes the handling of
status bits. The figure lists the
states and activities that can cause
status indications to be created and the
methods by which these indications can
be placed in the CSW.

Status

When
I/O
Is
Idle

Attention c*
Status modifier
Control-unit end
Busy
Channel end
Device end c*
Unit check C
Unit exception C
Program-

controlled­
interruption

Incorrect length
Program check
Protection check
Channel-data

check
Channel-control C*

check¢
Interface- C*

control check
Chaining check

Explanation:

After
When SIOF~ or
Subch Upon Termination RIO or
Is of Operation at During
Work i ng ~---r----r---~ Command
with Ctrl I/O Retry or
Device Subch Unit Dev Chaining

C
C
C
C

C

C

C
C
C*

C
C
C
C

C

C*
C C
C C

When
SIO or When
SIOF& Is TIO Is
Executed Executed

S
CS
CS
CS
Cs~
CS~
CS
CS
CS

CS
CS

CS

CS

S
CS
CS
CS
S
S
CS
S
5

S
S
S
S

CS

CS

S

When
When When I/O
ClRIO Is HIO or Inter­
Executed HDV Is ruption

S
S
5
S
S
S
S
S
S

s
S
S

CS

CS

S

+ Executed Occurs

CS
CS
CS

CS

CS

S
S
S
S
S
S
CS
S
S

S
S
S
S

CS

CS

S

C The channel or device can create or present status at the indicated time. A CSW or its status
portion is not necessarily stored at this time.

Status such as channel end or device end is created at the indicated time. Other status bits
may have been created previously but are made accessible to the program only at the indicated
time. Examples of such status bits are program check and channel-data check, which are detec­
ted while data is transferred but are made available to the program only with channel end, un­
less the PCI flag or an equipment malfunction has cause an interruption condition to be gen­
erated earlier.

S The status indication is stored in the CSW at the indicated time.

An "S" appearing alone indicates that the status has been created previously. The letter "C"
appearing with the "S" indicates that the status did not necessarily exist previously in the
form that causes the program to be alerted, and may have been created by the I/O instruction
or I/O interruption. For example, an equipment malfunction may be detected during an I/O in­
terruption, causing channel-control or interface-control check to be indicated; or a device
such as the IBM 3705 may signal temporary control unit busy in response to interrogation by an
I/O instruction, causing status modifier, busy, and control-unit end to be indicated in the CSW.

* The status generates an interruption condition.

Channel end and device end do not result in interruption conditions when command chaining is
specified or command retry is signaled, and no other unusual situations have been detected.
Unit check does not result in an interruption condition when command retry is signaled and is
honored by the channel.

Contents of the CSW Status Fields (Part 1 of 2)

Chapter 13. Input/Output Operations 13-79

Explanation (Continued):

~ This indication is created at the indicated time only by an immediate operation.

H When an operation on the selector channel has been concluded by HALT DEVICE or HALT I/O, or an
operation has been concluded by CLEAR I/O, channel end indicates the conclusion of the data­
handling portion of the operation at the control unit.

& When executed as SIO.

~ When executed independent of the device.

+ The entries in this column apply only when the CLRIO function is executed. When CLEAR I/O
causes the TIO function to be executed, the entries in the TIO column apply.

~ Channel-control-check status may also be generated, and is then stored in the CSW, when the
STIDC function is executed.

Contents of the CSW Status Fields (Part 2 of 2)

CHANNEL LOGOUT

When a channel stores a CSW that indi­
cates channel-control check in the
absence of logout pending, or
interface-control check, or, on some
channels, channel-data check, a channel
logout accompanies the storing of the
CSW. Such a logout is useful for error
recovery. The logout may be a limited
channel logout, a full channel logout,
or both. The type of logout that occurs
and, for the full channel logout, the
length of the full channel logout and
the location at which it is stored,
depend on the channel type and model.

The limited channel logout contains
model-independent information and is
stored at real locations 176-179 of the
CPU to which the channel is connected.
When it is stored, bit 0 of the logout
is always stored as a zero.

The full channel logout contains model­
dependent information. When the length
of the full channel logout exceeds 96
bytes, it is stored at the location
specified by the I/O extended-logout
(IOEL) address in real locations 173-175
of the CPU to which the channel is
connected. When the length of the full
channel logout is 96 bytes or fewer, the
channel may either use the IOEL address
or store the full channel logout in the
fixed-logout area, real locations
256-351 of the CPU to which the channel
is connected. The information stored by
the STORE CHANNEL 10 instruction implies
whether the IOEL is used and, if it is
used, specifies the maximum full­
channel-logout length. The full­
channel-logout information may be stored
in the IOEl area only when the IOEl-mask
bit (control register 14, bit 2) of the
CPU to which the channel is connected is
one.

I/O-COMMUNICATION AREA

Real locations 168-191 of the CPU to
which the channel is connected consti-

13-80 System/370 Principles of Operation

tute a permanently assigned area of
storage used by channels, designated the
I/O-communication area (IOCA). (See the
figure "I/O-Communication Area.")

Real location 172, 180-184, and 188-191
are reserved for future I/O use.

Channel 10 (locations 168-171):
locations 168-171, when stored during
the execution of a STORE CHANNEL 10
instruction, contain information which
describes the addressed channel.

I/O Extended-logout Address (Locations
173-175): The I/O extended-logout
(IOEl) address (real locations 173-175)
should be set by the program to desig­
nate an area in absolute storage to be
used by channels not capable of stor~ng
or not choosing to store the full chan­
nel logout in the fixed-logout area
(real locations 256-351). The rightmost
three bits of the I/O-extended-logout
address are reserved and are ignored by
the channel so that the full channel
logout always begins on a doubleword
boundary.

Whether the IOEl facility is used
depends on the channel type and model.
Channels with a full-channel-Iogout
length not exceeding 96 bytes use either
the IOEl area or real locations 256-351
as the full-channel-logout area. Chan­
nels with a full-channel-logout length
exceeding 96 bytes use the IOEl area.

Programming Note

The extent of the full-channel-Iogout
area differs among channels and, for any
particular channel, may depend on the
features or engineering changes
installed. In order to provide for such
variations, the program should determine
the extent of the full channel logout by
means of STORE CHANNEL 10 whenever a
storage area for the full channel logout
is to be assigned.

Channel ID

I IOEl Address

168

172

176

180

184

188

limited Channel logout

IMeasurement By tel

I/O-Communication Area

limited Channel logout (locations
176-179): The limited-channel-logout
(lCl) field (real locations 176-179)
contains model-independent information
related to equipment errors detected by
the channel. This information is used
to provide detailed machine status when
errors have affected I/O operations.
The field may be stored only when the
CSW or a portion of the CSW is stored.

The limited-channel-logout facility may
not be available on all channels. The
field, if stored, mayor may not be
accompanied by the full channel logout.
Channels which do not store the
limited-channel-logout field usually
store equivalent information in the full
channel logout.

The bits of the field are defined as
follows:

o

1-3

This bit is always stored as a
zero when a limited channel
logout is stored. If the
program ensures that this bit is
set to one and any channel­
control check, interface-control
check, or channel-data check
occurs, a test of this bit can
determine if the limited channel
logout was stored by the
channel. The limited channel
logout cannot be stored by a
channel unless one of these
three channel-status bits is set
to one.

Identity of the storage-control
unit (SCU). This identifies the
SCU through which storage refer­
ences were directed when an
error was detected. This iden­
tity is not necessarily the
identity of the storage unit
involved with data transfer.
When only one physical path
exists between channel and stor­
age, the storage-control unit
has the identity of the CPU to
which the channel is connected.
If more than one path exists,
the storage-control unit has its
own identity.

I/O Address

4-7

8-12

When bit 3 is zero, bits 1 and 2
are undefined. In this case,
the SCU identity is implied to
be the same as the identity of
the CPU to which the channel is
connected. When bit 3 is one,
the binary value of bits 1 and 2
identifies a physical SCU. Each
SCU in the system has a unique
identity.

Detect field. This identifies
the type~un;t that detected
the error. At least one bit is
present in this field, and
multiple bits may be set when
more than one unit detects the
error.

Bit 4
Bit 5
Bit 6
Bit 7

CPU
Channel
Main-storage control
Main storage

Source field. This indicates
the most likely source of the
error. The determination is
made by the channel on the basis
of the type of error check, the
location of the checking
station, the information flow
path, and the success or failure
of transmission through previous
check stations.

Normally, only one bit will be
present in this field. However,
when interunit communication
cannot be resolved to a 3ingle
unit, such as when the interface
between units is at fault,
multiple bits (normally two) may
be set to ones in this field.
When a reasonable determination
cannot be made, all bits in this
field are set to zeros.

If the detect and source fields
indicate different units, the
interface between them can also
be considered suspect.

Bit 8 -- CPU
Bit 9 -- Channel
Bit 10 Main-storage control
Bit 11 Main storage
Bit 12 -- Control unit

Chapter 13. Input/Output Operations 13-81

13-14

15-23

24-25

26

27

Reserved. Stored zero.

Field-validity ~. These
bits indicate the validity of
the information stored in the
designated fields. When the
validity bit is set to one, the
field is stored and usable.
When the validity bit is set to
zero, the field is not usable.

The fields designated are:

Bit 15 -- Full channel logout.

Bit 16
Bit 17
Bit 18
Bit 19
Bit 20
Bit 21

Bit 22
Bit 23

This bit is set to
one, by models that
implement the
recovery-extension
facility, when full­
channel-logout in­
formation with correct
contents is stored by
the channel. Other­
wise, the bit is
stored as zero.
Reserved. Stored zero
Reserved. Stored zero
Reserved. Stored zero
Sequence code
Unit status
CCW address and sub­
channel key in CSW
Channel address
Device address

~ of termination that has
occurred is indicated by these
two bits.

This encoded field has meaning
only when a channel-control
check or an interface-control
check is indicated in the CSW.
When neither of these two checks
is indicated, no termination has
been forced by the channel.

00 Interface disconnect
01 Stop, stack, or normal

termination
10 Selective reset
11 Syst~m reset

Reserved. Stored zero.

Interface inoperative. When the
recovery-extension facility is
installed, this bit is set to
one when the channel detects an
I/O-interface malfunction which
persists after selective reset
is signaled on the interface.
Interface-control check,
channel-control check, or both
are also set when this condition
is detected. When the
recovery-extension facility is
not installed, bit 27 is stored
as zero.

Programming note: This bit
implies that devices involved in
active I/O operations related to

13-82 System/370 Principles of Operation

28

29-31

the identified channel may have
been left in the working state.
CLEAR CHANNEL addressed to that
channel can be used to relieve
the condition.

I/O-error alert. This bit, when
set to one, indicates that the
limited channel logout resulted
from the signaling of I/O-error
alert by the indicated unit.
The I/O-error-alert signal indi­
cates that the control unit has
detected a malfunction which
prevents it from communicating
properly with the channel. The
channel, in response, performs
an I/O selective reset and caus­
es interface-control check to be
set.

Seguence code. This code iden­
tifies the I/O sequence in
progress at the time of error.
It is meaningless if stored
during the execution of HALT I/O
or HALT DEVICE.

For all cases, the CCW address
in the CSW, if validly stored
and nonzero, is the address of
the current CCW plus 8.

The sequence code assignments
are:

000 A channel-detected error
occurred during the
execution of a TEST I/O or
CLEAR I/O instruction.

001 A nonzero command byte has
been sent by the channel,
but device status has not
yet been analyzed by the
channel. This code is set
during initial selection.

010 The command has been
accepted by the device, but
no data has been
transferred. This code is
set if the initial status is
either channel end alone, or
channel end and device end,
or channel end, device end,
and status modifier, or all
zeros.

all At least one byte of data
has been transferred between
the channel and the device.
This code is also used when
the channel is in an idle or
polling state.

100 The command in the current
CCW has either not yet been
sent to the device or else
was sent but not accepted by
the device. This code is
set when one of the follow­
ing situations occurs:

1.

2.

3.

4.

5.

6.

When the CCW address is
updated during command
chaining, resuming a
suspended channel
program, START I/O, or
START I/O FAST RELEASE

When an initial
selection sequence
resulted in status
including attention,
control-unit end, unit
check, unit exception,
busy, status modifier
(without channel end and
device end), or device
end (without channel
end)

When the control
responds with
status instead of
device address when
channel attempts
select the device

unit
busy
the
the
to

When command retry is
signaled

When the channel inter­
rogates the device in
the process of clearing
an interruption condi­
tion

When the channel signals
the conclusion of the
chain of operations to
the device during
command chaining while
performing the suspend
function

101 The command in the current
CCW has been accepted, but
data transfer is unpredict­
able. This code applies
from the time a device is
logically connected to the
channel until the time it is
determined that a new
sequence code applies. The
code may also be used when a
channel is in the polling or
idle state, and it is not
possible to determine that
code 010 or 011 applies.
The code may also be used at
other times when a channel
cannot distinguish between
code 010 or 011.

110 Reserved.

111 Reserved.

Measurement Byte (location 185): A
value is stored at real location 185
whenever an I/O address is stored at
real locations 186-187. Whenever the
channel stores a complete CSW during an
interruption in EC mode and the CSW
indicates the conclusion of an operation
initiated via START I/O FAST RELEASE

executed independent of the device for a
subchannel provided with start-I/O-fast
queuing, the measurement byte (which is
otherwise stored as zeros) has the
following format:

Location 185 (real) IDCINPoloool

o 2 5 7

The bits of the measurement byte are
defined as follows:

0-1 Delay Code (~). This code
indicates the condition encount­
ered by the channel on the first
attempt by the channel to initi­
ate the I/O operation at the
device. Delay codes are as
follows:

~ Code Meaning

00 No busy condition
encountered or
no valid code
available

01 Channel busy
10 Control unit busy
11 Device busy

2-4 Number of Pending Operations
(NPO). These bits contain the
binary count of the number of
pending I/O operations for the
channel at the time the measure­
ment byte is stored. A value of
all ones represents seven or
more pending I/O operations. A
value of all zeros represents
either no pending I/O operations
or no valid number available.

Otherwise, the measurement byte is
stored as zeros.

Errors detected during the execution of
an I/O operation do not affect the
validity of the values stored in the
measurement byte unless the channel­
control-check condition is indicated in
the CSW. A channel-control-check condi­
tion that affects the validity of the
delay code or the number of pending I/O
operations causes the channel to store
zeros in the measurement byte.

I/O Address (Locations 186-187): A
two-byte field is provided at real
locations 186-187 for storing the I/O
address on each I/O interruption in the
EC mode, and at the conclusion of a
successful initial-program-Ioading
sequence in the EC mode.

Programming Note

I/O-busy conditions result
contention for shared resources
I/O system. Such contention

from
in the

is not

Chapter 13. Input/Output Operations 13-83

apparent to the program to the extent
that I/O-busy conditions are handled by
channels when start-I/O-fast queuing is
provided. In order to provide some
indication of I/O-busy conditions

13-84 System/370 Principles of Operation

handled by channels, the measurement
byte is provided in systems that provide
start-I/O-fast queuing and are operating
in EC mode.

APPENDIX ~ NUMBER REPRESENTATION AND INSTRUCTION-USE EXAMPLES

Number Representation ••••••••••••••••••••••••••••••••••••• A-2
Binary Integers •..••••••••••••••.••..••••••••••••••••••• A-2

Signed Binary Integers •.••....•.•.••.••••••.•••••••••• A-2
Unsigned Binary Integers •••..••••••••••••••.•••••••••• A-4

Decimal Integers .•.••.••••••.••••••••..•••••••••.••••••• A-5
Floating-Point Numbers••..........••.••••.•...••••. A-5
Conversion Example ..•.•.••...•••••••••.••.••••.••••••••. A-7

Instruction-Use Examples ••••••••••••••••.••••••••••••••••• A-7
Machine Format ..••••••••••••.•••••••••.•••••••••.•••.••• A-7
Assembler-Language Format •••.••••••.••.••••••••••.•.•••• A-7

General Instructions •.•.....••..•..•.•••..•..•••.•••...••. A-8
ADD HALFWORD (AH) •.•••••.•••..••..••••..••.••••••••••••• A-8
AND (N, NC, NI, NR) •••..•••••.••••••••••••••••.••••••••• A-8

NI Example .•••••••••••.•••...•..••••.•••••••.•••..•••• A-8
Linkage Instructions (BAL, BALR, BAS, BASR) •••••••••.••. A-8

Other BALR and BASR Examples •••••.•..••.••••.•••...••• A-lO
BRANCH ON CONDITION (BC, BCR) ..•.•••••••.••••••••••••... A-lO
BRANCH ON COUNT (BCT, BCTR) ..•••..••.•.••..•••••..•••••• A-lD
BRANCH ON INDEX HIGH (BXH) .•...•.......•....••........•• A-ll

BXH Example 1 •••.••.•..•..•••••...••..••.•...........• A-l!
BXH Example 2 •...••....•...•.••.•..•.•.•.•.•••..•••••• A-l!

BRANCH ON INDEX LOW OR EQUAL (BXLE) ••..••..•••.••••..••• A-12
BXLE Example 1 •...•...•.....•...•....•••.•..........•• A-l2
BXLE Example 2 .•.••.•..•.•.•...•.•...•..•.•....•...... A-12

COMPARE HALFWORD (CH) .•......•••..•..•.•...•••••..•••••. A-12
COMPARE LOGICAL (CL, CLC, CLI, CLR) •••...•.••........••• A-13

CLC Example •.•...•...•.•.....•.....•.......•...•.•.•.• A-13
CLI Example•.............................. A-l3
CLR Example•••........•................•.•..••.•. A-l4

COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) •••.•....••.• A-l4
COMPARE LOGICAL LONG (CLCL)•.... A-14
CONVERT TO BINARY (CVB) ..•.•.•.••••....•.........•....•. A-l6
CONVERT TO DECIMAL (CVD) .•.•.•.•.•.•••.•.•.•..•.•.••..•. A-l6
DIVIDE (0, DR) ••.•••...•••.••.•.••••.•.••••••••••..•.••. A-16
EXCLUSIVE OR (X, XC, XI, XR) •..••.•....•.•.••.......•.•. A-17

XC Example•....••.............•.•.•.......•..•. A-17
XI Example .•..••••...•.•....••..•....•••.•••.•...•..•. A-18

EXECUTE (EX) .•...•.••......•.•••••....•••....•....•.•.•. A-l8
INSERT CHARACTERS UNDER MASK (ICM) •..•.••..••.•.•...••.. A-19
LOAD (L, LR) .•....•...•....••....•......•.•......•...•.. A-20
LOAD ADDRESS (LA) •••...•...•.•••••..••.•••••..•......... A-20
LOAD HALFWORD (LH) ••.•...•...••.••••...••.•.•.••...•...• A-20
MOVE (MVC, MVI) ••••.•.•..•.•••...•..•..••.•.••...•.••.•. A-2!

MVC Example •..•.•....................•................ A-21
MVI Example •..••.•...•••..•.•.•.•.•...........•.•...•. A-2l

MOVE INVERSE (MVCIN)••••.••••••.•.••••••.•••••••. A-22
MOVE LONG (MVCL) .•••..••••.••.••••••.••••.•••.••••..•.•. A-22
MOVE NUMERICS (MVN)••...•.•...•..•••..•••••....••••. A-23
MOVE WITH OFFSET (MVO) ..•.•..••.•••..•••..•.•.•.•.•..•.. A-23
MOVE ZONES (MVZ) ••••..•••••••••••••••••••••.•.•.••.•.••. A-24
MUL TIPL Y (M, MR) •••....••.•.•••.•••..••••.•.•.•••.••..•• A-24
MULTIPLY HALFWORD (MH) .••.•.•••••••••..•••••••.•••...••. A-24
OR (0, OC, 01, OR) .•..••....•....•..••..•.•.••...•...•.. A-25

01 Example ••.•••••.•••••.•••••••••••••••••••.••••••... A-25
PACK (PACK) .•...•••...•••••.•••••••••••••••.•••.•..••.•• A-25
SHIFT LEFT DOUBLE (SlDA) ..•.....•...••.••••.•••..•••••.. A-26
SHIFT LEFT SINGLE (SLA) •..•••..•.•.••..••••.••.••...••.. A-26
STORE CHARACTERS UNDER MASK (STCM) ••••••••••••.••..•••.. A-26
STORE MULTIPLE (STM) .••.•••••••••••••••••••.••.••••••.•• A-27
TEST UNDER MASK (TM) ••••.••...•••••.•••••.••••..•..••.•. A-27
TRANSLATE (TR)•.....•.•.•.•................ A-28
TRANSLATE AND TEST (TRT) •.•.•••••••••••••••••.•...•..... A-28
UNPACK (UNPK) .•••••...•.••••••..••••••.••.•••.••••••••.. A-30

Decimal Instructions •.•.•••..••....••.••••••.•••••.•.•.••• A-30
ADD DECIMAL (AP) •....••••...••.•••..••••••••.•...•..•••• A-3D
COMPARE DECIMAL (CP) •••••••••..•••••••••••••••••••..••.. A-3I
DIVIDE DECIMAL (DP) ...•••.•.••••••••••••••••••••.•••.••. A-3I
EDIT (ED) ••••••.••••.•••.••••.••••••••••••.••••••.••••.• A-3I

Appendix A. Number Representation and Instruction-Use Examples A-I

EDIT AND MARK (EDMK) •••••••••••••••••••••••••••••••••••• A-33
MULTIPLY DECIMAL (MP) ••••••••••••••••••••••••••••••••••• A-34
SHIFT AND ROUND DECIMAL (SRP) ••••••••••••••••••••••••••• A-34

Decimal Left Shift •••••••••••••••••••••••••••••••••.•• A-34
Decimal Right Shift ••••••••••••••••••••••••••••••••••• A-35
Decimal Right Shift and Round ••••••••••••••••••••••••• A-35
Multiplying by a Variable Power of 10 ••••••••••••••••• A-35

ZERO AND ADD (ZAP) ••••••••••.••••••••••••••••••••••••••• A-36
Floating-Point Instructions ••••••.•••••••••••••••••••••••• A-36

ADD NORMALIZED (AD, ADR, AE, AER, AXR) •••••••••••••••••• A-36
ADD UNNORMALIZED (AU, AUR, AW, AWR) ••••••••••••••••••••• A-36
COMPARE (CD, CDR, CE, CER)•••••••.•••••••••••••..••• A-37
DIVIDE (DD, DDR, DE, DER) .••..•••••••.••••••••••••••••.• A-37
HALVE (HDR, HER) •••••...•••••••••.•••.•••••••••••••••.•• A-38
MULTIPLY (MD, MDR, ME, MER, MXD, MXDR, MXR) ••••••••••.•• A-38
Floating-Point-Number Conversion •..••••••••••••••••••.•• A-38

Fixed Point to Floating Point ••••••••••••••••••••••..• A-39
Floating Point to Fixed Point .••••••••.••••••••.•••.•• A-39

Multiprogramming and Multiprocessing Examples ••••••••••••. A-40
Example of a Program Failure Using OR Immediate ••••••••• A-40
Conditional Swapping Instructions (CS, CDS) .••..•••...•. A-40

Setting a Single Bit •••.••.••••••.•.•••••••••••••.•••• A-41
Updating Counters .•••••..•.•••.••••••.••••.••••••••.•• A-41

Bypassing POST and WAIT ••..•..••.•.•••••..•••••••••.•... A-42
BYPASS POST Routine ..•...•..•...•.•..•..•.•.•...•..... A-42
BYPASS WAIT Routine .•••..•..•..••••••...••.•.......... A-42

LOCK/UNLOCK .•••.•.•••.•.••.....••.•••.•••.•.•..•••••••.. A-42
LOCK/UNLOCK with LIFO Queuing for Contentions ••.•••.•. A-43
LOCK/UNLOCK with FIFO Queuing for Contentions .•.•.•... A-44

Free-Pool Manipulation •••.••..•.••..••........•.••••..•• A-46

NUMBER REPRESENTATION

BINARY INTEGERS

each bit of the positive binary integer
and adding one. As an example using the
halfword format, the binary number with
the decimal value +26 is made negative
(-26) in the following manner:

Signed Binary Integers

Signed binary integers are most commonly
represented as halfwords (16 bits) or
words (32 bits). In both lengths, the
leftmost bit (bit 0) is the sign of the
number. The remaining bits (bits 1-15
for halfwords and 1-31 for words) are
used to specify the magnitude of the
number. Binary integers are also
referred to as fixed-point numbers,
because the radix point (binary point)
is considered to be fixed at the right,
and any scaling is done by the program­
mer.

Positive binary integers are in true
binary notation with a zero sign bit.
Negative binary iritegers are in two's­
complement notation with a one bit in
the sign position. In all cases, the
bits between the sign bit and the left­
most significant bit of the integer are
the same as the sign bit (that is, all
zeros for positive numbers, all ones for
negative numbers).

Negative binary integers are formed in
two's-complement notation by inverting

A-2 System/370 Principles of Operation

+26 0 000 0000 0001 1010
Invert 1 111 1111 1110 0101
Add 1 1

-26 1 111 1111 1110 0110 (Two's
complement
form)

(S is the sign bit.)

This is equivalent to subtracting the
number:

from
00000000 00011010

1 00000000 00000000

Negative binary integers are changed to
positive in the same manner.

The following addition examples illus­
trate two's-complement arithmetic and
overflow conditions. Only eight bit
positions are used.

1. +57 = 0011 1001
+35 = 0010 0011

+92 = 0101 1100

2. +57 = 0011 1001
-35 = 1101 1101

+22 = 0001 0110 No overflow -- carry
into leftmost posi­
tion and carry out

3. +35 = 0010 0011
-57 = 1100 0111

-22 = 1110 1010 Sign change only -­
no carry into left­
most position and no
carry out

4. -57 = 1100 0111
-35 = 1101 1101

-92 = 1010 0100 No overflow -- carry
into leftmost posi­
tion and carry out

5. +57 = 0011 1001
+92 = 0101 1100

+149 =*1001 0101 *Overflow -- carry
into leftmost posi­
tion, no carry out

6. -57 = 1100 0111
-92 = 1010 0100

-149 =*0110 1011 *Overflow -- no carry
into leftmost posi­
tion but carry out

The presence or absence of an overflow
condition may be recognized from the
carries:

2 31 _1 = 2 147 483 647 = 0 111 1111
2 16 = 65 536 = 0 000 0000
2° = 1 = 0 000 0000
0 = a = a 000 0000

-2° = -1 = 1 111 1111
-2 1 = -2 = 1 111 1111
-2 16 = -65 536 = 1 111 1111
-2 31 +1 = -2 147 483 647 = 1 000 0000
-2 31 = -2 147 483 648 = 1 000 0000

32-Bit Signed Binary Integers

1111
0000
0000
0000
1111
1111
1111
0000
0000

• There is no overflow:

a. If there is no carry into the
leftmost bit position and no
carry out (examples 1 and 3).

b. If there is a carry into the
leftmost position and also a
carry out (examples 2 and 4).

• There is an overflow:

a. If there is a carry into the
leftmost position but no carry
out (example 5).

b. If there is no carry into the
leftmost position but there is
a carry out (example 6).

The following are 16-bit signed binary
integers. The first is the maX1mum
positive 16-bit binary integer. The
last 1S the maximum negative 16-bit
binary integer (the negative 16-bit
binary integer with the greatest abso­
lute value).

2 15 _1 = 32,767
2°
a

-2°
-2 15

1
a

-1
= -32,768

=
=
=

= 0 111 1111 1111 1111 = 0 000 0000 0000 0001 = 0 000 0000 0000 0000
= 1 111 1111 1111 1111 = 1 000 0000 0000 0000

The following figure illustrates several
32-bit signed binary integers arranged
in descending order. The first is the
maximum positive binary integer that can
be represented by 32 bits, and the last
is the maximum negative binary integer
that can be represented by 32 bits.

1111 1111 1111 1111 1111
0001 0000 0000 0000 0000
0000 0000 0000 0000 0001
0000 0000 0000 0000 0000
1111 1111 1111 1111 1111
1111 1111 1111 1111 1110
1111 0000 0000 0000 0000
0000 0000 0000 0000 0001
0000 0000 0000 0000 0000

Appendix A. Number Representation and Instruction-Use Examples A-3

Unsigned Binary Integers

Certain instructions, such as ADD
LOGICAL, treat binary integers as
unsigned rather than signed. Unsigned
binary integers have the same format as
signed binary integers, except that the
leftmost bit is interpreted as another
numeric bit rather than a sign bit.
There is no complement notation because
all unsigned binary integers are consid­
ered positive.

The following examples illustrate the
addition of unsigned binary integers.
Only eight bit positions are used. The
examples are numbered the same as the
corresponding examples for signed binary
integers.

1. 57 = 0011 1001
35 = 0010 0011

92 = 0101 1100

2. 57 = 0011 1001
221 = 1101 1101

278 =*0001 0110 *Carry out of
leftmost position

2 32 -1 = 4 294 967 295 = 1111 1111
2 31 = 2 147 483 648 = 1000 0000
2 31 _1 = 2 147 483 647 = 0111 1111
2 16 = 65 536 = 0000 0000
2° = 1 = 0000 0000
0 = 0 = 0000 0000

32-Bit Unsigned Binary Integers

A-4 System/370 Principles of Operation

1111
0000
1111
0000
0000
0000

3. 35 = 0010 0011
199 = 1100 0111

234 = 1110 1010

4. 199 = 1100 0111
221 = 1101 1101

420 =*1010 0100 *Carry out of
leftmost position

5. 57 = 0011 1001
92 = 0101 1100

149 = 1001 0101

6. 199 = 1100 0111
164 = 1010 0100

363 =*0110 1011 *Carry out of
leftmost position

A carry out of the leftmost bit position
mayor may not imply an overflow,
depending on the application.

The following figure illustrates several
32-bit unsigned binary integers arranged
in descending order.

1111 1111 1111 1111 1111
0000 0000 0000 0000 0000
1111 1111 1111 1111 1111
0001 0000 0000 0000 0000
0000 0000 0000 0000 0001
0000 0000 0000 0000 0000

DECIMAL INTEGERS

Decimal integers consist of one or more
decimal digits and a sign. Each digit
and the sign are represented by a 4-bit
code. The decimal digits are in
binary-coded decimal (BCD) form, with
the values 0-9 encoded as 0000-1001.
The sign is usually represented as 1100
(C hex) for plus and 1101 (D hex) for
minus. These are the preferred sign
codes, which are generated by the
machine for the results of decimal­
arithmetic operations. There are also
several alternate sign codes (1010,
1110, and 1111 for plus; 1011 for
minus). The alternate sign codes are
accepted by the machine as valid in
source operands but are not generated
for results.

Decimal integers may have different
lengths, from one to 16 bytes. There
are two decimal formats: packed and
zoned. In the packed format, each byte
contains two decimal digits, except for
the rightmost byte, which contains the
sign code in the right half. For deci­
mal arithmetic, the number of decimal
digits in the packed format can vary
from one to 31. Because decimal inte­
gers must consist of whole bytes and
there must be a sign code on the right,
the number of decimal digits is always
odd. If an even number of significant
digits is desired, a leading zero must
be inserted on the left.

In the zoned format, each byte consists
of a decimal digit on the right and the
zone code 1111 (F hex) on the left,
except for the rightmost byte where the
sign code replaces the zone code. Thus,
a decimal integer in the zoned format
can have from one to 16 digits. The
zoned format may be used directly for
input and output in the extended
binary-coded-decimal interchange code
(EBCDIC), except that the sign must be
separated from the rightmost digit and
handled as a separate character. For
positive (unsigned) numbers, however,
the sign can simply be represented by
the zone code of the rightmost digit
because the zone code is one of the
acceptable alternate codes for plus.

In either format, negative decimal inte­
gers are represented in true notation
with a separate sign. As for binary
integers, the radix point (decimal
point) of decimal integers is considered
to be fixed at the right, and any scal­
ing is done by the programmer.

The following are some examples of deci­
mal integers shown in hexadecimal nota­
tion:

Decimal Packed Zoned
Value Format Format

+123 12 3C F1 F2 C3
or or
12 3F F1 F2 F3

-4321 04 32 1D F4 F3 F2 D1

+000050 00 00 05 OC FO FO FO FO F5 CO
or or
00 00 05 OF FO FO FO FO F5 FO

-7 7D D7

00000 00 00 OC FO FO FO FO CO
or or
00 00 OF FO FO FO FO FO

Under some circumstances, a zero with a
minus sign (negative zero) is produced.
For example, the multiplicand:

00 12 3D (-123)

times the multiplier:

OC (+0)

generates the product:

00 00 OD (-0)

because the product sign follows the
algebraic rule of signs even when the
value is zero. A negative zero,
however, is equivalent to a positive
zero in that they compare equal in a
decimal comparison.

FLOATING-POINT NUMBERS

A floating-point number is expressed as
a hexadecimal fraction multiplied by a
separate power of 16. The term floating
point indicates that the placement, of
the radix (hexadecimal) point, or scal­
ing, is automatically maintained by the
machine.

The part of a floating-point number
which represents the significant digits
of the number is called the fraction. A
second part specifies the power (expo­
nent) to which 16 is raised and indi­
cates the location of the radix point of
the number. The fraction and exponent
may be represented by 32 bits (short
format), 64 bits (long format), or 128
bits (extended format).

Short Floating-Point Number

IsICharacter;st;cI6-D;9;t ~ract;onl
o 1 8 31

Appendix A. Number Representation and Instruction-Use Examples A-5

long Floating-Point Number

IsICharacter;st;cl 14-D;9;t:Fract;on

o 1 8 63

Extended Floating-Point Number

High-Order Part
r-T---------------~----------/----------~

High-Order leftmost 14 Digits
Characteristic of 28-Digit Fraction

~~--------------~----------/----------~ o 1 8 63

low-Order Part
~~---------------r----------/----------,

low-Order Rightmost 14 Digits
Characteristic of 28-Digit Fraction

~~--------------~----------/----------~
64 72 127

A floating-point number has two signs:
one for the fraction and one for the
exponent. The fraction sign, which is
also the sign of the entire number, is
the leftmost bit of each format (0 for
plus, 1 for minus). The numeric part of
the fraction is in true notation regard­
less of the sign. The numeric part is
contained in bits 8-31 for the short
format, in bits 8-63 for the long
format, and in bits 8-63 followed by
bits 72-127 for the extended format.

The exponent sign is obtained by
expresslng the exponent in excess-64
notation; that is, the exponent is added
as a signed number to 64. The resulting
number is called the characteristic. It
is located in bits 1-7 for all formats.
The characteristic can vary from a to
127, permitting the exponent to vary
from -64 through a to +63. This
provides a scale multiplier in the range
of 16- 64 to 16+ 63 • A nonzero fraction,
if normalized, has a value less than one
and greater than or equal to 1/16, so

1.0 = +1/16x16 1 = a 100 0001
0.5 = +8/16x16° = a 100 0000
1/64 = +4/16x16- 1 = 0 all 1111
0.0 = +0 x16- 64 = a 000 0000

-15.0 = -15/16x16 1 = 1 100 0001
5.4x10- 79 ,.., +1/16x16- 64 = a 000 0000
7.2x1075 ,.., (1-16- 6)x16 63 = 0 111 1111

that the range covered by the magnitude
M of a normalized floating-point number
is:

In decimal terms:

16- 65 is approximately 5.4 x 10- 79

16 63 is approximately 7.2 x 10 75

More precisely,

In the short format:

In the long format:

16- 65 ~ M ~ (1 - 16- 14) x 16 63

In the extended format:

16- 65 ~ M ~ (1 - 16- 28) x 16 63

Within a given fraction length (6, 14,
or 28 digits), a floating-point opera­
tion will provide the greatest precision
if the fraction is normalized. A frac­
tion is normalized when the leftmost
digit (bit positions 8, 9, 10, and 11)
is nonzero. It is unnormalized if the
leftmost digit contains all zeros.

If normalization of the operand is
desired, the floating-point instructions
that provide automatic normalization are
used. This automatic normalization is
accomplished by left-shifting the frac­
tion (four bits per shift) until a
nonzero digit occupies the leftmost
digit position. The characteristic is
reduced by one for each digit shifted.

The following figure illustrates sample
normalized short floating-point numbers.
The last two numbers represent the smal­
lest and the largest positive normalized
numbers.

0001 0000 0000 0000 0000 00OO{2}
1000 0000 0000 0000 0000 0000{2}
0100 0000 0000 0000 0000 0000{2}
0000 0000 0000 0000 0000 OOOO{2}
1111 0000 0000 0000 0000 0000{2}
0001 0000 0000 0000 0000 0000{2}
1111 1111 1111 1111 1111 1111{2}

[The symbol"" means "approximately equal."]

Normalized Short Floating-Point Numbers

A-6 System/370 Principles of Operation

CONVERSION EXAMPLE

Convert the decimal number 59.25 to a
short floating-point number. (In anoth­
er appendix are tables for the conver­
sion of hexadecimal and decimal integers
and fractions.)

1. The number is separated into a
decimal integer and a decimal frac­
tion.

59.25 = 59 plus 0.25

2. The decimal integer is converted to
its hexadecimal representation.

59{10} = 3B{16}

3. The decimal fraction is converted
to its hexadecimal representation.

0.25{10} = 0.4{16}

4. The integral and fractional parts
are combined and expressed as a
fraction times a power of 16 (expo­
nent) •

3B.4{16} = 0.3B4{16} x 16 2

5. The characteristic is developed
from the exponent and converted to
binary.

base + exponent = characteristic
64 + 2 = 66 = 1000010

6. The fraction is converted to binary
and grouped hexadecimally.

.3B4{16} = .0011 1011 0100

7. The characteristic and the fraction
are stored in the short format.
The sign position contains the sign
of the fraction.

~ Char

o 1000010

Fraction

0011 1011 0100 0000
0000 0000

Examples of instruction sequences that
may be used to convert between signed
binary integers and floating-point
numbers are shown in the section
"Floating-Point-Number Conversion" later
in this appendix.

INSTRUCTION-USE EXAMPLES

The following examples illustrate the
use of many of the unprivileged
instructions. Before studying one of
these examples, the reader should
consult the instruction description.

The instruction-use examples are written
principally for assembler-language

programmers, to be used in conjunction
with the appropriate assembler-language
pUblications.

Most examples present one particular
instruction, both as it is written in an
assembler-language statement and as it
appears when assembled in storage
(machine format).

In the instruction-use examples, the
notation {2}, {10}, or {16} may be used,
indicating that the preceding number is
binary, decimal, or hexadecimal, respec­
tively.

MACHINE FORMAT

All machine-format values are given in
hexadecimal notation unless otherwise
specified. Storage addresses are also
given in hexadecimal. Hexadecimal ~per­
ands are shown converted into binary,
decimal, or both if such conversion
helps to clarify the example for the
reader.

ASSEMBLER-LANGUAGE FORMAT

In assembler-language statements, regis­
ters and lengths are presented in deci­
mal. Displacements, immediate operands,
and masks may be shown in decimal, hexa­
decimal, or binary notation; for
example, 12, X'C', and B'1100' represent
the same value. Whenever the value in a
register or storage location is referred
to as "not significant," this value is
replaced during the execution of the
instruction.

When SS-format instructions are written
in the assembler language, lengths are
given as the total number of bytes in
the field. This differs from the
machine definition, in which the length
field specifies the number of bytes to
be added to the field address to obtain
the address of the last byte of the
field. Thus, the machine length is one
less than the assembler-language length.
The assembler program automatically
subtracts one from the length specified
when the instruction is assembled.

In some of the examples, symbolic
addresses are used in order to simplify
the examples. In assembler-language
statements, a symbolic address is
represented as a mnemonic term written
in all capitals, such as FLAGS, which
may denote the address of a storage
location containing data or program­
control information. When symbolic
addresses are used, the assembler
supplies actual base and displacement
values according to the programmer's
specifications. Therefore, the actual

Appendix A. Number Representation and Instruction-Use Examples A-7

values for base and displacement are not
shown in the assembler-language format
or in the machine-language format. For
assembler-language formats, in the
labels that designate instruction
fields, the letter "S" is used to indi­
cate the combination of base and
displacement fields for an operand
address. (For example, S2 represents
the combination of B2 and D2.) In the
machine-language format, the base and
displacement address components are
shown as asterisks (****).

GENERAL INSTRUCTIONS

(See Chapter 7 for a complete descrip­
tion of the general instructions.)

ADD HALFWORD (AH)

The ADD HALFWORD instruction algebra­
ically adds the contents of a two-byte
field in storage to the contents of a
register. The storage operand is
expanded to 32 bits after it is fetched
and before it is used in the add opera­
tion. The expansion consists in propa­
gating the leftmost (sign) bit 16
positions to the left. For example,
assume that the contents of storage
locations 2000-2001 are to be added to
register 5. Initially:

Register 5 contains 00 00 00 19 =
25{10}.

Storage locations 2000-2001 contain FF
FE = -2{10}.

Register 12 contains 00 00 18 00.
Register 13 contains 00 00 01 50.

The format of the required instruction
is:

Machine Format

Op Code

4A 5 o C

Assembler Format

Op Code R"D 2 (X 2 ,B 2)

AH 5,X'6BO'(13,12)

After the instruction is executed,
register 5 contains 00 00 00 17 =
23{10}. Condition code 2 is set to
indicate a result greater than zero.

A-8 System/370 Principles of Operation

AND (N, NC, NI, NR)

When the Boolean operator AND is applied
to two bits, the result is one when both
bits are onei otherwise, the result is
zero. When two bytes are ANDed, each
pair of bits is handled separately;
there is no connection from one bit
position to another. The following is
an example of ANDing two bytes:

First-operand byte: 0011 0101{2}
Second-operand byte: 0101 1100{2}

Result byte: 0001 0100{2}

NI Example

A frequent use of the AND instruction is
to set a particular bit to zero. For
example, assume that storage location
4891 contains 0100 0011{2}. To set the
rightmost bit of this byte to zero
without affecting the other bits, the
following instruction can be used
(assume that register 8 contains 00 00
48 90):

Machine Format

Op Code

94 FE 8

Assembler Format

Op Code D1 (B 1),I 2

NI 1(8),X'FE'

When this instruction is executed, the
byte in storage is ANDed with the imme­
diate byte (the 12 field of the instruc­
tion):

Location 4891: 0100 0011{2}
Immediate byte: 1111 1110{2}

Result: 0100 0010{2}

The resulting byte, with bit 7 set to
zero, is stored back in location 4891.
Condition code 1 is set.

LINKAGE INSTRUCTIONS (BAL, BALR, BAS,
BASR)

The BRANCH AND LINK (BAL or BALR)
instruction is commonly used to branch
to a subroutine with the option of later
returning to the main instruction
sequence. On models with the

branch-and-save facility, the BRANCH AND
SAVE (BAS or BASR) instructions may be
used for the same purpose. Both save
the address of the next instruction as
link information in a general register
and then cause execution to continue
from a different instruction sequence at
the branch address specified by this
instruction. They differ in that BRANCH
AND LINK places additional information
(the instruction-length code, condition
code, and program mask) in the leftmost
byte of the link information, whereas
BRANCH AND SAVE places zeros in that
byte.

BRANCH AND SAVE, when available, is
recommended for use in place of BRANCH
AND LINK in programs that are intended
to be executed on System/370 models
equipped with the extended-architecture
(370-XA) mode. When such a model is
operating in the 370-XA mode, the infor­
mation placed by BRANCH AND LINK in the
leftmost byte of the linkage register
while 24-bit addressing is in effect may
lead to problems if the same program may
be used with 31-bit addressing; BRANCH
AND SAVE sets the leftmost byte to zero
with 24-bit addressing, which is compat­
ible with 31-bit addressing. (For more
information on 31-bit addressing and on
subroutine linkage methods for the
370-XA mode, see the IBM System/370
Extended Architecture Principles of
Operation, SA22-7085.)

The following example compares the oper­
ation of these instructions and of the
unconditional-branch instruction BRANCH
ON CONDITION (BC or BCR with a mask of
15). Assume that each instruction in
turn ;s located at the current instruc­
tion address, ready to be executed next.
Assume also that general register 5 is
to receive the linkage information, and
that general register 6 contains the
branch address.

The format of the BALR instruction is:

Machine Format

Op Code

05 5 6

Assembler Format

BALR 5,6

The BASR instruction has the same
format, but the op code is OD.

For comparison with the RR-format
instructions, the results of two
RX-format instructions are also shown.

The format of the BAL instruction is:

Machine Format

Op Code

45 5 o 6 0001

Assembler Format

BAL 5,0(0,6)

The BAS instruction has the same format,
but the op code is 4D.

The BCR instruction specifies only one
register:

Machine Format

Op Code

07 F 6

Assembler Format

BCR 15,6

Assume that:

Register 5 contains BB BB BB BB.
Register 6 contains 82 46 8A CEo
PSW bits 32-63 contain 00 00 10 D6.
Condition code is 01{2}.
Program mask is 1100{2}.

The effect of executing each instruction
in turn is as follows:

Instruction Register 2 PSW (32-63)

Before BB BB BB BB 00 00 10 D6

BCR 15,6 BB BB BB BB 00 46 8A CE
BAL 5,0(0,6) 9C 00 10 DA 00 46 8A CE
BAS 5,0(0,6) 00 00 10 DA 00 46 8A CE
BALR 5,6 5C 00 10 D8 00 46 8A CE
BASR 5,6 00 00 10 D8 00 46 8A CE

Note that a value of zero in the R2
field of any of the RR-format
instructions indicates that the branch­
ing function is not to be performed; it
does not refer to register O. Thus, the
instruction BALR 8,0 may be used to
preserve the current condition code in
bits 2 and 3 of register 8 for future
inspection. Register 0 can be desig­
nated by the Rt field, however. In the
RX-format branch instructions, branching
occurs independent of whether there is a
value of zero in the B2 field or X2

Appendix A. Number Representation and Instruction-Use Examples A-9

field of the instruction. However, when
the field is zero, instead of using the
contents of general register 0, a value
of zero is used for that component of
address generation.

Other BALR and BASR Examples

The BAlR or BASR instruction with the R2
field set to zero may be used to load a
register for use as a base register.
For example, in the assembler language,
the two statements:

BALR
USING

or

BASR
USING

15,0
*,15

indicate that the address of the next
sequential instruction following the
BALR or BASR instruction will be placed
in register 15, and that the assembler
may use register 15 as a base register
until otherwise instructed. (The USING
statement is an "assembler instruction"
and is thus not a part of the object
program.)

BRANCH ON CONDITION (BC, BCR)

The BRANCH ON CONDITION instructio~
tests the condition code to see whether
a branch should or should not occur.
The branch occurs only if the current
condition code corresponds to a one bit
in a mask specified by the instruction.

Condition
Code
-0-

1
2
3

Instruction
(Mask) Bit

8-
9

10
11

Mask
Value
-8-

4
2
1

For example, assume that an ADD (A or
AR) operation has been performed and
that a branch to address 6050 is desired
if the sum is zero or less (condition
code is 0 or 1). Also assume:

Register 10 contains 00 00 50 00.
Register 11 contains 00 00 10 00.

The RX form of the instruction performs
the required test (and branch if neces­
sary) when written as:

A-I0 System/370 Principles of Operation

Machine Format

Op Code Mt

47 C B A 1 050 1

Assembler Format

Op Code Mt ,D 2(X 2,B 2)

BC 12,X'50'(11,10)

A mask of 12{10} means that there are
ones in instruction bits 8 and 9 and
zeros in bits 10 and 11, so that branch­
ing takes place when the condition code
is either 0 or 1.

A mask of 15 would indicate a branch on
any condition (an unconditional branch).
A mask of zero would indicate that no
branch is to occur (a no-operation).

(See also the section on "Linkage
Instructions (BAL, BALR, BAS, BASR)" for
an example of the BCR instruction.)

BRANCH ON COUNT (BCT, BCTR)

The BRANCH ON COUNT instruction is often
used to execute a program loop for a
specified number of times. For example,
assume that the following represents
some lines of coding in an assembler­
language program:

.
LUPE AR 8,1

.
BACK BCT 6,LUPE

where register 6 contains 00 00 00 03
and the address of LUPE is 6826. Assume
that, in order to address this location,
register 10 is used as a base register
and contains 00 00 68 00.

The format of the BCT instruction is:

Machine Format

Op Code R1

46 6 o A

Assembler Format

BCT

The effect of the coding is to execute
three times the loop defined by the
instructions labeled lUPE through BACK,
while register 6 is decremented from
three to zero.

BRANCH ON INDEX HIGH (BXH)

BXH Example !

The BRANCH ON INDEX HIGH instruction is
an index-incrementing and loop­
controlling instruction that causes a
branch whenever the sum of an index
value and an increment value is greater
than some compare value. For example,
assume that:

Register 4 contains 00 00 00 8A =
138{10} = the index.

Register 6 contains 00 00 00 02 = 2{10}
= the increment.

Register 7 contains 00 00 00 AA =
170{10} = the compare value.

Register 10 contains 00 00 71 30 = the
branch address.

The format of the BXH instruction is:

Machine Format

Op Code R1

86 4 6 A I 0001

Assembler Format

BXH 4,6,0(10)

When the instruction is executed, first
the contents of register 6 are added to
register 4, second the sum is compared
with the contents of register 7, and
third the decision whether to branch is
made. After execution:

Register 4 contains 00 00 00 8C =
140{10}.

Registers 6 and 7 are unchanged.

Since the new value in register 4 is not
yet greater than the value in register
7, the branch to address 7130 is not
taken. Repeated use of the instruction
will eventually cause the branch to be
taken when the value in register 4
reaches 172{10}.

BXH Example Z.

When the register used to contain the
increment is odd, that register also
becomes the compare-value register. The
following assembler-language subroutine
illustrates how this may be used to
search a table.

Table

2 Bytes 2 Bytes

ARG1 FUNCT1
ARG2 FUNCT2
ARG3 FUNCT3
ARG4 FUNCT4
ARG5 FUNCT5
ARG6 FUNCT6

Assume that:

Register 8 contains the search
argument.

Register 9 contains the width of the
table in bytes (00 00 00 04).

Register 10 contains the length of the
table in bytes (00 00 00 18).

Register 11 contains the starting
address of the table.

Register 14 contains the return address
to the main program.

As the following subroutine is executed,
the argument in register 8 is succes­
sively compared with the arguments in
the table, starting with argument 6 and
working backward to argument 1. If an
equality is found, the corresponding
function replaces the argument in regis­
ter 8. If an equality is not found,
zero replaces the argument in register
8.

SEARCH lNR 9,9
NOTEQUAl BXH 10,9,lOOP
NOT FOUND SR 8,8

BCR 15,14
lOOP CH 8,0(10,11)

BC 7,NOTEQUAl
lH 8,2(10,11)
BCR 15,14

The first instruction (lNR) causes the
value in register 9 to be made negative.
After execution of this instruction,
register 9 contains FF FF FF Fe =
-4{10}. Considering the case when no
equality is found, the BXH instruction

Appendix A. Number Representation and Instruction-Use Examples A-I1

will be executed seven times. Each time
BXH is executed, a value of -4 is added
to register 10, thus reducing the value
in register 10 by 4. The new value in
register 10 is compared with the -4
value in register 9. The branch is
taken each time until the value in
register 10 is -4. Then the branch is
not taken, and the SR instruction sets
register 8 to zero.

BRANCH ON INDEX LOW OR EQUAL (BXLE)

The BRANCH ON INDEX LOW OR EQUAL
instruction performs the same operation
as BRANCH ON INDEX HIGH, except that
branching occurs when the sum is lower
than or equal to (instead of higher
than) the compare value. As the
instruction which increments and tests
an index value in a program loop, BXLE
is useful at the end of the loop and BXH
at the beginning. The following
assembler-language routines illustrate
loops with BXLE.

BXlE Example!

Assume that a group of ten 32-bit signed
binary integers are stored at consec­
utive locations, starting at location
GROUP. The integers are to be added
together, and the sum is to be stored at
location SUM.

LOOP

SR
LA
SR
LA
LA
A
BXLE
ST

5,5
6,GROUP
7,7
8,4
9,39
5,0(7,6)
7,8,LOOP
5,SUM

Set sum to zero
Load first address
Set index to zero
Load increment 4
Load compare value
Add integer to sum
Test end of loop
Store sum

The two-instruction loop contains an ADD
(A) instruction which adds each integer
to the contents of general register 5.
The ADD instruction uses the contents of
general register 7 as an index value to
modify the starting address obtained
from register 6. Next, BXLE increments
the index value by 4, the increment
previously loaded into register 8, and
compares it with the compare value in
register 9, the odd register of this
even-odd pair. The compare value was
previously set to 39, which is one less
than the number of bytes in the data
area; this is also the address, relative
to the starting address, of the right­
most byte of the last integer to be
added. When the last integer has been

A-12 System/370 Principles of Operation

added, BXLE
to the next
is found to
value (39)
place.

increments the index value
relative address (40), which
be greater than the compare
so that no branching takes

BXLE Example ~

The technique illustrated in Example 1
is restricted to loops containing
instructions in the RX instruction
format. That format allows both a base
register and an index register to be
specified (double indexing).

For instructions in other formats, where
an index register cannot be specified,
the previous technique may be modified
by having the address itself serve as
the index value in a BXLE instruction
and by using as the compare value the
address of the last byte rather than its
relative address. The base register
then provides the address directly at
each iteration of the loop, and it is
not necessary to specify a second regis­
ter to hold the index value (single
indexing).

In the following example, an AND (NI)
instruction in the SI instruction format
sets to zero the rightmost bit of each
of the same group of integers as in
Example 1, thus making all of them even.
The 12 field of the HI instruction
contains the byte X'FE', which consists
of seven ones and a zero. That byte is
AHDed into byte 3, the rightmost byte,
of each of the integers in turn.

LA 6,GROUP
LA 8,4
LA 9,GROUP+39

lOOP NI 3(6),X'FE'
BXLE 6,8,LOOP

COMPARE HALFWORD (CH)

Load first address
Load increment 4
Load compare value
AHD immediate
Test end of loop

The COMPARE HAlFWORD instruction
compares a 16-bit signed binary integer
in storage with the contents of a regis­
ter. For example, assume that:

Register 4 contains FF FF 80 00 =
-32,768{10}.

Register 13 contains 00 01 60 50.
Storage locations 16080-16081 contain

8000 = -32,768{10}.

When the instruction:

Machine Format

Op Code

49 4 o o

Assembler Format

Op Code R t ,02(X 2,B 2)

CH 4,X'30'(0,13)

is executed, the contents of locations
16080-16081 are fetched, expanded to 32
bits (the sign bit is propagated to the
left), and compared with the contents of
register 4. Because the two numbers are
equal, condition code 0 is set.

COMPARE LOGICAL (CL, CLC, CLI, CLR)

The COMPARE LOGICAL instruction differs
from the signed-binary comparison
instructions ec, CH, CR) in that all
quantities are handled as unsigned bina­
ry integers or as unstructured data.

CLC Example

The COMPARE LOGICAL (CLC) instruction
can be used to perform the byte-by-byte
comparison of storage fields up to 256
bytes in length. For example, assume
that the following two fields of data
are in storage:

Field 1
1886 1891

1011061C81051E210610516BIC114BIC214BI

Field 2
1900 190B

ID1 1061C81D51E2106lD516BIC114BIC314BI

Also assume:

Register 9 contains 00 00 18 80.
Register 7 contains 00 00 19 00.

Execution of the instruction:

Machine Format

Op Code L

05 OB 9 0061 7 0001

Assembler Format

CLC 6(12,9),0(7)

sets condition code I, indicating that
the contents of field 1 are lower in
value than the contents of field 2.

Because the collating sequence of the
EBCDIC code is determined simply by a
logical comparison of the bits in the
code, the CLC instruction can be used to
collate EBCOIC-coded fields. For exam­
ple, in EBCDIC, the above two data
fields are:

Field 1: JOHHSOH,A.B.
Field 2: JOHHSOH,A.C.

Condition code 1 indicates that
JOHHSOH,A.B. should precede JOHHSOH,A.C.
for the fields to be in alphabetic
sequence.

CLI Example

The COMPARE LOGICAL (CLI) instruction
compares a byte from the instruction
stream with a byte from storage. For
example, assume that:

Register 10 contains 00 00 17 00.
Storage location 1703 contains 7E.

Execution of the instruction:

Machine Format

Op Code

95 AF A

Assembler Format

CLI 3(10),X'AF'

sets condition code 1, indicating that
the first operand (the quantity in main
storage) is lower than the second (imme­
diate) operand.

Appendix A. Humber Representation and Instruction-Use Examples A-13

CLR Example

Assume that:

Register 4 contains 00 00 00 01 = 1.
Register 7 contains FF FF FF FF =

2 32 - 1.

Execution of the instruction:

Machine Format

Op Code

15 4 7

Assembler Format

Op Code R t ,R 2

CLR 4,7

sets condition code 1. Condition code 1
indicates that the first operand is
lower than the second.

If, instead, the signed-binary compar­
ison instruction COMPARE (CR) had been
executed, the contents of register 4
would have been interpreted as +1 and
the contents of register 7 as -1. Thus,
the first operand would have been
higher, so that condition code 2 would
have been set.

COMPARE LOGICAL CHARACTERS UNDER MASK
(CLM)

The COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) instruction provides a means
of comparing bytes selected from a
general register to a contiguous field
of bytes in storage. The M3 field of
the CLM instruction is a four-bit mask
that selects zero to four bytes from a
general register, each mask bit corre­
sponding, left to right, to a register
byte. In the comparison, the register
bytes corresponding to ones in the mask
are treated as a contiguous field. The
operation proceeds left to right. For
example, assume that:

Storage locations 10200-10202 contain
FO BC 7B.

A-14 System/370 Principles of Operation

Register 12 contains 00 01 00 00.
Register 6 contains FO BC 5C 7B.

Execution of the instruction:

Machine Format

Op Code

BD 6 D

Assembler Format

CLM 6,B'1101',X'200'(12)

causes the following comparison:

Register 6: FO BC 5C 7B
Mask M3: 1 1 0 1

FO BC 7B

Storage I ; I locations
10200-10202: FO BC 7B

Because the selected bytes are equal,
condition code 0 is set.

COMPARE LOGICAL LONG (CLCL)

The COMPARE LOGICAL LONG (CLCL) instruc­
tion is used to compare two operands in
storage, byte by byte. Each operand can
be of any length. Two even-odd pairs of
general registers (four registers in
all) are used to locate the operands and
to control the execution of the CLCL
instruction, as illustrated in the
following diagram. The first register
of each pair must be an even register,
and it contains the storage address of
an operand. The odd register of each
pair contains the length of the operand
it covers, and the leftmost byte of the
second-operand odd register contains a
padding byte which is used to extend the
shorter operand, if any, to the same
length as the longer operand.

The following illustrates the assignment
of registers:

R t Address
(even)

1////////1 First-Operand

0 8 31

R t +1 First-Operand Length
(odd)

1////////1
1

0 8 31

R2
(even)

1////////1 Second-Operand Addressl

0 8 31

R2+1 Ipad By tel Second-Operand Length I
(odd)" .

o 8 31

Since the CLCL instruction may be inter­
rupted during execution, the interrupt­
ing program must preserve the contents
of the four registers for use when the
instruction is resumed.

The following instructions set up two
register pairs to control a text-string
comparison. For example, assume:

Operand !

Address: 20800{16}
Length: 100{10}

Operand ~

Address: 20AOO{16}
Length: 132{10}

Padding Byte

Address: 20003{16}
Length: 1
Value: 40{16}

Register 12 contains 00 02 00 00.

The setup instructions are:

LA 4,X'800'(12) Set register 4 to
start of first
operand

LA 5,100 Set register 5 to
length of first
operand

LA 8,X'AOO'(12) Set register 8 to
start of second
operand

LA 9,132 Set register 9 to
length of second
operand

ICM 9,B'1000',3(12) Insert padding byte
in leftmost byte
position of regis-
ter 9

Register pair 4,5 defines the first
operand. Bits 8-31 of register 4
contain the storage address of the start
of an EBCDIC text string, and bits 8-31
of register 5 contain the length of the
string, in this case 100 bytes.

Register pair 8,9 defines the second
operand, with bits 8-31 of register 8
containing the starting location of the
second operand and bits 8-31 of register
9 containing the length of the second
operand, in this case 132 bytes. Bits
0-7 of register 9 contain an EBCDIC
blank character (X'40') to pad the
shorter operand. In this example, the
padding byte is used in the first oper­
and, after the 100th byte, to compare
with the remaining bytes in the second
operand.

With the register pairs thus set up, the
format of the CLCL instruction is:

Machine Format

Op Code

OF 4 8

Assembler Format

CLCL 4,8

When this instruction is executed, the
comparison starts at the left end of
each operand and proceeds to the right.
The operation ends as soon as an
inequality is detected or the end of the
longer operand is reached.

If this CLCL instruction is interrupted
after 60 bytes have compared equal, the
operand lengths in registers 5 and 9
will have been decremented to 40 and 72,
respectively. The operand addresses in
registers 4 and 8 will have been incre­
mented to X'2083C' and X'20A3C'j the
leftmost byte of registers 4 and 8 will
have been set to zero. The padding byte
X'40' remains in register 9. When the
ClCl instruction is reexecuted with
these register contents, the comparison
resumes at the point of interruption.

Now, assume that the instruction is
interrupted after 110 bytes. That is,
the first 100 bytes of the second oper­
and have compared equal to the first
operand, and the next 10 bytes of the
second operand have compared equal to
the padding byte (blank). The residual
operand lengths in registers 5 and 9 are
o and 22, respectively, and the operand
addresses in registers 4 and 8 are
X'20864' (the value when the first oper­
and was exhausted) and X'20A6E' (the
current value for the second operand).

When the comparison ends, the condition
code is set to 0, I, or 2, depending on
whether the first operand is equal to,
less than, or greater than the second
operand, respectively.

Appendix A. Number Representation and Instruction-Use Examples A-15

When the operands are unequal, the
addresses in registers 4 and 8 indicate
the bytes that caused the mismatch.

CONVERT TO BINARY (CVB)

The CONVERT TO BINARY instruction
converts an eight-byte, packed-decimal
number into a signed binary integer and
loads the result into a general
register. After the conversion opera­
tion is completed, the number is in the
proper form for use as an operand in
signed binary arithmetic. For example,
assume:

Storage locations 7608-760F contain a
decimal number in the packed
format: 00 00 00 00 00 25 59 4C
(+25,594).

The contents of register 7 are not
significant.

Register 13 contains 00 00 76 00.

The format of the conversion instruction
is:

Machine Format

Op Code

4F 7 o D 008
1

Assembler Format

Op Code R t ,D 2 (X 2 ,B 2)

CVB 7,8(0,13)

After the instruction is executed,
register 7 contains 00 00 63 FA.

CONVERT TO DECIMAL (CVD)

The CONVERT TO DECIMAL instruction is
the opposite of the CONVERT TO BINARY
instruction. CVD converts a signed
binary integer in a register to packed
decimal and stores the eight-byte
result. For example, assume:

Register 1 contains the signed binary
integer: 00 00 OF OF.

Register 13 contains 00 00 76 00.

The format of the instruction is:

A-16 System/370 Principles of Operation

Machine Format

Op Code R t

4E 1 o D 008 1

Assembler Format

CVD 1,8(0,13)

After the instruction is executed, stor­
age locations 7608-760F contain 00 00 00
00 00 03 85 5C (+3855).

The plus sign generated is the preferred
plus sign, 1100{2}.

DIVIDE (D, DR)

The DIVIDE instruction divides the divi­
dend in an even-odd register pair by the
divisor in a register or in storage.
Since the instruction assumes the divi­
dend to be 64 bits long, it is important
first to extend a 32-bit dividend on the
left with bits equal to the sign bit.
For example, assume that:

Storage locations 3550-3553 contain 00
00 08 DE = 2270{10} (the
dividend).

Storage locations 3554-3557 contain 00
00 00 32 = 50{10} (the divisor).

The initial contents of registers 6 and
7 are not significant.

Register 8 contains 00 00 35 50.

The following assembler-language state­
ments load the registers properly and
perform the divide operation:

Statement Comments

L 6,0(0,8) Places 00 00 08 DE into
register 6 .

SRDA 6,32(0) Shifts 00 00 08 DE into
register 7 . Register
6 i s filled with zeros
(sign bits).

D 6,4(0,8) Performs the division.

The machine format of the above DIVIDE
instruction is:

Machine Format

Op Code Rt X2 B2 D2

5D 6 0 8 004
1

After the instructions listed above are
executed:

Register 6 contains 00 00 00 14 =
20{10} = the remainder.

Register 7 contains 00 00 00 2D =
45{10} = the quotient.

Hote that if the dividend had not been
first placed in register 6 and shifted
into register 7, register 6 might not
have been filled with the proper
dividend-sign bits (zeros in this exam­
ple), and the DIVIDE instruction might
not have given the expected results.

EXCLUSIVE OR (X, XC, XI, XR)

When the Boolean operator EXCLUSIVE OR
is applied to two bits, the result is
one when either, but not both, of the
two bits is one; otherwise, the result
is zero. When two bytes are EXCLUSIVE
ORed, each pair of bits is handled sepa­
rately; there is no connection from one
bit position to another. The following
is an example of the EXCLUSIVE OR of two
bytes:

First-operand byte: 0011 0101{2)
Second-operand byte: 0101 1100{2)

Result byte: 0110 1001{2)

XC Example

The EXCLUSIVE OR (XC) instruction can be
used to exchange the contents of two
areas in storage without the use of an
intermediate storage area. For example,
assume two three-byte fields in storage:

359 358

Field 1 1001171901

360 362

Field 2 1001141011

Execution of the instruction (assume
that register 7 contains 00 00 03 58):

Machine Format

Op Code L

D7 02 7 0011 7 008 1

Assembler Format

XC 1(3,7),8(7)

Field 1 is EXCLUSIVE ORed with field 2
as follows:

Field 1 : 00000000 00010111 10010000{2}
= 00 17 90{16}

Field 2: 00000000 00010100 00000001{2}
= 00 14 01{16}

Result: 00000000 00000011 10010001{2}
= 00 03 91{16}

The result replaces the former contents
of field 1. Condition code 1 is set to
indicate a nonzero result.

Now, execution of the instruction:

Machine Format

Op Code L

D7 02 7 0081 7

Assembler Format

XC 8(3,7),1(7)

produces the following result:

Field 1 : 00000000 00000011 10010001{2}
= 00 03 91{16}

Field 2: 00000000 00010100 00000001{2}
= 00 14 01{16}

Result: 00000000 00010111 10010000{2}
= 00 17 90{16}

The result of this operation replaces
the former contents of field 2. Field 2
now contains the original value of field
1. Condition code 1 is set to indicate
a nonzero result.

Lastly, execution of the instruction:

Appendix A. Number Representation and Instruction-Use Examples A-17

Machine Format

Op Code L

07 02 7 0011 7 008 1

Assembler Format

XC 1(3,7),8(7)

produces the following result:

Field 1 : 00000000 00000011 10010001{2}
= 00 03 91{16}

Field 2: 00000000 00010111 10010000{2}
= 00 17 90{16}

Result: 00000000 00010100 00000001{2}
= 00 14 01{16}

The result of this operation replaces
the former contents of field 1. Field 1
now contains the original value of field
2. Condition code 1 is set to indicate
a nonzero result.

XI Example

A frequent use of the EXCLUSIVE OR (XI)
instruction is to invert a bit (change a
zero bit to a one or a one bit to a
zero). For example, assume that storage
location 8082 contains 0110 1001{2}. To
invert the leftmost and rightmost bits
without affecting any of the other bits,
the following instruction can be used
(assume that register 9 contains 00 00
80 80):

Machine Format

Op Code

97 81 9

Assembler Format

XI 2(9),X'81'

When the instruction is executed, the
byte in storage is EXCLUSIVE ORed with
the immediate byte (the 12 field of the
instruction):

Location 8082: 0110 1001{2}
Immediate byte: 1000 0001{2}

Result: 1110 1000{2}

A-18 System/370 Principles of Operation

The resulting byte is stored back in
location 8082. Condition code 1 is set
to indicate a nonzero result.

Notes:

1. With the XC instruction, fields up
to 256 bytes in length can be
exchanged.

2. With the XR instruction, the
contents of two registers can be
exchanged.

3. Because the X instruction operates
storage to register only, an
exchange cannot be made solely by
the use of X.

4. A field EXCLUSIVE ORed with itself
is cleared to zeros.

5. For additional examples of the use
of EXCLUSIVE OR, see the section
"Floating-Point-Number Conversion"
later in this appendix.

EXECUTE (EX)

The EXECUTE instruction causes one
target instruction in main storage to be
executed out of sequence without actual­
ly branching to the target instruction.
Unless the R t field of the EXECUTE
instruction is zero, bits 8-15 of the
target instruction are ORed with bits
24-31 of the Rt register before the
target instruction is executed. Thus,
EXECUTE may be used to supply the length
field for an SS instruction without
modifying the S5 instruction in storage.
For example, assume that a MOVE (MVC)
instruction is the target that is
located at address 3820, with a format
as follows:

Machine Format

Op Code L

02 00 C 0001

Assembler Format

Op Code Ot(L,B t),02(B 2)

MVC 3(1,12),0(13)

where register 12 contains 00 00 89 13
and register 13 contains 00 00 90 AO.

Further assume that at storage address
5000, the following EXECUTE instruction
is located:

Machine Format

Op Code R t

44 1 ° A 0001

Assembler Format

EX 1,0(0,10)

where register 10 contains 00 00 38 20
and register 1 contains 00 OF FO 03.

When the instruction at 5000 is
executed, the rightmost byte of register
1 is ORed with the second byte of the
target instruction:

Instruction byte:
Register byte:

0000 0000{2} = 00
0000 0011{2} = 03

Result: 0000 0011{2} = 03

causing the instruction at 3820 to
executed as if it originally were:

Machine Format

Op Code L B t Dt B2 O2

02 03 C 003
1

0 0001

Assembler Format

MVC 3(4,12),0(13)

However, after execution:

Register 1 is unchanged.

be

The instruction at 3820 is unchanged.
The contents of the four bytes starting

at location 90AO have been moved to
the four bytes starting at location
8916.

The CPU next executes the instruction
at address 5004 (PSW bits 40-63
contain 00 50 04).

INSERT CHARACTERS UNDER MASK (ICM)

The INSERT CHARACTERS UNDER MASK (ICM)
instruction may be used to replace all
or selected bytes in a general register
with bytes from storage and to set the
condition code to indicate the value of
the inserted field.

For example, if it is desired to insert
a three-byte address from FIELDA into
register 5 and leave the leftmost byte
of the register unchanged, assume:

Machine Format

Op Code

BF 5 7 * * * *

Assembler Format

ICM 5,B'0111',FIELDA

FIELDA:
Register 5 (before):
Register 5 (after):
Condition code (after):

As another example:

Machine Format

Op Code

FE DC BA
12 34 56 78
12 FE DC BA
1 (leftmost

bit of
inserted
field is
one)

BF 6 9 * * * *

Assembler Format

ICM 6,B'1001',FIELDB

FIELDB:
Register 6 (before):
Register 6 (after):
Condition code (after):

12 34
00 00 00 00
12 00 00 34
2 (inserted

field is
nonzero
with left­
most zero
bit)

When the mask field contains 1111, the
ICM instruction produces the same result
as LOAD (L) (provided that the indexing
capability of the RX format is not need­
ed), except that IeM also sets the
condition code. The condition-code
setting is useful when an all-zero field
(condition code 0) or a leftmost one bit
(condition code 1) is used as a flag.

Appendix A. Number Representation and Instruction-Use Examples A-19

LOAD (L, LR)

The LOAD instruction takes four bytes
from storage or from a general register
and place them unchanged into a general
register. For example, assume that the
four bytes starting with location 21003
are to be loaded into register 10.
Initially:

Register 5 contains 00 02 00 00.
Register 6 contains 00 00 10 03.
The contents of register 10 are not

significant.
Storage locations 21003-21006 contain

00 00 AB CD.

To load register 10, the RX form of the
instruction can be used:

Machine Format

Op Code

58 A 5 6 0001

Assembler Format

Op Code R t ,D 2 (X 2 ,B 2)

L 10,0(5,6)

After the instruction is executed,
register 10 contains 00 00 AB CD.

LOAD ADDRESS (LA)

The LOAD ADDRESS instruction provides a
convenient way to place a nonnegative
binary integer up to 4095{10} in a
register without first defining a
constant and then using it as an
operand. For example, the following
instruction places the number 2048{10}
in register 1:

Machine Format

Op Code

41 1 o o I 800 1

Assembler Format

LA 1,2048(0,0)

A-20 System/370 Principles of Operation

The LOAD ADDRESS instruction can also be
used to increment a register by an
amount up to 4095{10} specified in the
D2 field. Only the rightmost 24 bits of
the sum are retained, however. The
leftmost eight bits of the 32-bit result
are set to zeros. For example, assume
that register 5 contains 00 12 34 56.

The instruction:

Machine Format

Op Code R t

41 5 o 5

Assembler Format

LA 5,10(0,5)

adds 10 (decimal) to the contents of
register 5 as follows:

Register 5 (old): 00 12 34 56
D2 field: 00 00 00 OA

Register 5 (new): 00 12 34 60

The register may be specified as either
B2 or X2 . Thus, the instruction LA
5,10(5,0) produces the same result.

As the most general example, the
instruction LA 6,10(5,4) forms the sum
of three values: the contents of regis­
ter 4, the contents of register 5, and a
displacement of 10 and places the 24-bit
sum with eight zeros appended on the
left in register 6.

LOAD HALFWORD (LH)

The LOAD
unchanged
the right
half of
zeros or
(leftmost

HALFWORD instruction places
a halfword from storage into
half of a register. The left
the register is loaded with

ones according to the sign
bit) of the halfword.

For example, assume that the two bytes
in storage locations 1803-1804 are to be
loaded into register 6. Also assume:

The contents of register 6 are not
significant.

Register 14 contains 00 00 18 03.
Locations 1803-1804 contain 00 20.

The instruction required to load the
register is:

Machine Format

Op Code R,

48 6 o E 0001

Assembler Format

lH 6,0(0,14)

After the instruction is executed,
register 6 contains 00 00 00 20. If
locations 1803-1804 had contained a
negative number, for example, A7 B6, a
minus sign would have been propagated to
the left, giving FF FF A7 B6 as the
final result in register 6.

MOVE (MVC, MVI)

MVC Example

The MOVE (MVC) instruction can be used
to move data from one storage location
to another. For example, assume that
the following two fields are in storage:

2048 2052

Fii
ld

\ C1 IC2IC3IC4IC5IC6IC7IC8IC9ICAICBI

3840 3848

Fi~ld IFI1F21F31F41F51F61F71F81F91

Also assume:

Register 1 contains 00 00 20 48.
Register 2 contains 00 00 38 40.

With the following instruction, the
first eight bytes of field 2 replace the
first eight bytes of field 1:

Machine Format

Op Code l

02 07 1 000 I 2 0001

Assembler Format

MVC 0(8,1),0(2)

After the instruction is executed, field
1 becomes:

2048 2052

Fii
ld IF1 IF21F31F41F51F61F71F81C91CAICBI

Field 2 is unchanged.

MVC can also be used to propagate a byte
through a field by starting the first­
operand field one byte location to the
right of the second-operand field. For
example, suppose that an area in storage
starting with address 358 contains the
following data:

358 360

100lFI1F21F31F41F51F61F71F81

With the following MVC instruction, the
zeros in location 358 can be propagated
throughout the entire field (assume that
register 11 contains 00 00 03 58):

Machine Format

Op Code l

02 07 B 0011 B 0001

Assembler Format

MVC 1(8,11),0(11)

Because MVC is executed as if one byte
were processed at a time, the above
instruction, in effect, takes the byte
at address 358 and stores it at 359 (359
now contains 00), takes the byte at 359
and stores it at 35A, and so on, until
the entire field is filled with zeros.
Note that an MVI instruction could have
been used originally to place the byte
of zeros in location 358.

Notes:

1. Although the field occupying
locations 358-360 contains nine
bytes, the length coded in the
assembler format is equal to the
number of moves (one less than the
field length).

2. The order of operands is important
even though only one field is
involved.

MVI Example

The MOVE (MVI) instruction places one
byte of information from the instruction

Appendix A. Number Representation and Instruction-Use Examples A-21

stream into storage. For example, the
instruction:

Machine Format

Op Code 12

92 SB 1 0001

Assembler Format

Op Code Dt (B t),I 2

MVI 0(1),C'$'

may be used, in conjunction with the
instruction EDIT AND MARK, to insert the
EBCDIC code for a do!!ar symbo! at the
storage address contained 1n genera!
register 1 (see a!so the examp!e for
EDIT AND MARK).

MOVE INVERSE (MVCIN)

The MOVE INVERSE (MVCIN) instruction can
be used to move data from one storage
location to another while reversing the
order of the bytes within the fie!d.
For examp!e, assume that the following
two fields are in storage:

2048 20S2

Fi~ld IC11C21C31C41csIC61C71C81C91CAICBI

3840 3848

Fi~ld IF11F21F31F41FsIF61F71F81F91

Also assume:

Register 1 contains 00 00 20 48.
Register 2 contains 00 00 38 40.

With the following instruction, the
first eight bytes of field 2 replace the
first eight bytes of field 1:

Machine Format

Op Code L

E8 07 1 0001 2

Assembler Format

Op Code Dt (L,B t),D 2(B 2)

MVCIN 0(8,1),7(2)

A-22 System/370 Principles of Operation

After the instruction is executed, field
1 becomes:

2048 20S2

Fi~ld IF81F71F61FsIF41F31F21F11C91CAICBI

Field 2 is unchanged.

Note: This example uses the same gener­
al registers, storage locations, and
original values as the first example for
MVC. For MVCIN, the second-operand
address must designate the rightmost
byte of the field to be moved, in this
case location 3847. This is accom­
plished by means of the 7 in the D2
field of the instruction.

MOVE LONG (MVCL)

The MOVE LONG (MVCL) instruction can be
used for moving data in storage as in
the first example of the MVC
instruction, provided that the two oper­
ands do not overlap. MVCL differs from
MVC in that the address and length of
each operand are specified in an even­
odd pair of general registers.
Consequently, MVCL can be used to move
more than 2S6 bytes of data with one
instruction. As an examp!e, assume:

Register 2 contains 00 OA 00 00.
Register 3 contains 00 00 08 00.
Register 8 contains 00 06 00 00.
Register 9 contains 00 00 08 00.

Execution of the instruction:

Machine Format

Op Code R, R2

DE 8 2

Assembler Format

MVCL 8,2

moves 2,048{10} bytes from locations
AOOOO-A07FF to locations 60000-607FF.
Bits 8-31 of registers 2 and 8 are
incremented by 800{16}, and bits 0-7 of
registers 2 and 8 are set to zeros.
Bits 8-31 of registers 3 and 9 are
decremented to zero. Condition code 0
is set to indicate that the operand
lengths are equal.

If register 3 had contained FO 00 04 00,
only the 1,024{10} bytes from locations
AOOOO-A03FF would have been moved to
locations 60000-603FF. The remaining

locations 60400-607FF of the first oper­
and would have been filled with 1,024
copies of the padding byte X'FO', as
specified by the leftmost byte of regis­
ter 3. Bits 8-31 of registers 2 and 8
would have been incremented by 400{16},
and bits 0-7 of registers 2 and 8 set to
zeros. Bits 8-31 of registers 3 and 9
would still have been decremented to
zero. Condition code 2 would have been
set to indicate that the first operand
was longer than the second.

The technique for setting a field to
zeros that is illustrated in the second
example of MVC cannot be used with MVCl.
If the registers were set up to attempt
such an operation with MVCl, no data
movement would take place and condition
code 3 would indicate destructive over­
lap.

Instead, MVCl may be used to clear a
storage area to zeros as follows.
Assume register 8 and 9 are set up as
before. Register 3 contains only zeros,
specifying zero length for the second
operand and a zero padding byte. Regis­
ter 2 is not used to access storage, and
its contents are not significant.
Executing the instruction MVCl 8,2 caus­
es locations 60000-607FF to be filled
with zeros. Bits 8-31 of register 8 are
incremented by 800{16}, and bits 0-7 of
registers 2 and 8 are set to zeros.
Bits 8-31 of register 9 are decremented
to zero, and condition code 2 is set to
indicate that the first operand is long­
er than the second.

MOVE NUMERICS (MVN)

Two related instructions, MOVE NUMERICS
and MOVE ZONES, may be used with decimal
data in the zoned format to operate
separately on the rightmost four bits
(the numeric bits) and the leftmost four
bits (the zone bits) of each byte. Both
are similar to MOVE (MVC), except that
MOVE NUMERICS moves only the numeric
bits and MOVE ZONES moves only the zone
bits.

To illustrate the operation of the MOVE
NUMERICS instruction, assume that the
following two fields are in storage:

7090 7093

Field A IC61C71C81C91

7041 7046

Field B IFO/F1IF2IF3IF4IF51

Also assume:

Register 14 contains 00 00 70 90.
Register 15 contains 00 00 70 40.

After the instruction:

Machine Format

Op Code l

01 03 F E 0001

Assembler Format

MVN 1(4,15),0(14)

is executed, field B becomes:

7041 7046

IF61F71F81F91F41F51

The numeric bits of the bytes at
locations 7090-7093 have been stored in
the numeric bits of the bytes at
locations 7041-7044. The contents of
locations 7090-7093 and 7045-7046 are
unchanged.

MOVE WITH OFFSET (MVO)

MOVE WITH OFFSET may be used to shift a
packed-decimal number an odd number of
digit positions or to concatenate a sign
to an unsigned packed-decimal number.

Assume that the three-byte
packed-decimal number in
locations 4500-4502 is to be
locations 5600-5603 and given
of the packed-decimal number
location 5603. Also assume:

unsigned
storage

moved to
the sign

ending at

Register 12 contains 00 00 56 00.
Register 15 contains 00 00 45 00.
Storage locations 5600-5603 contain 77

88 99 OC.
Storage locations 4500-4502 contain 12

34 56.

After the instruction:

Machine Format

Op Code

F1 3 2 C 000 I F 0001

Assembler Format

MVO 0(4,12),0(3,15)

Appendix A. Number Representation and Instruction-Use Examples A-23

is executed, the storage locations
5600-5603 contain 01 23 45 6C. Note
that the second operand is extended on
the left with one zero to fill out the
first-operand field.

MOVE ZONES (MVZ)

The MOVE ZONES instruction can operate
on overlapping or nonoverlapping fields,
as can the instructions MOVE (MVC) and
MOVE NUMERICS. When operating on nono­
verlapping fields, MOVE ZONES works like
the MOVE NUMERICS instruction (see its
example), except that MOVE ZONES moves
only the zone bits of each byte. To
illustrate the use of MOVE ZONES with
overlapping fields, assume that the
following data field is in storage:

800 805

IFI1C21F31 C4 lF51C61

Also assume that register 15 contains 00
00 08 00. The instruction:

Machine Format

Op Code l

03 04 F 0011 F 0001

Assembler Format

MVZ 1(5,15),0(15)

propagates the zone bits from the byte
at address 800 through the entire field,
so that the field becomes:

800 805

IFI1F21F31F41F51F61

MULTIPLY (M, MR)

Assume that a number in register 5 is to
be multiplied by the contents of a
four-byte field at address 3750.
Initially:

The contents of register 4 are not
significant.

Register 5 contains 00 00 00 9A =
154{10} = the multiplicand.

Register 11 contains 00 00 06 00.
Register 12 contains 00 00 30 00.

A-24 System/370 Principles of Operation

Storage locations 3750-3753 contain 00
00 00 83 = 131{10} = the
multiplier.

The instruction required for performing
the multiplication is:

Machine Format

Op Code R t X2 B2 O2

5C 4 B C 150
1

Assembler Format

M 4,X'150'(11,12)

After the instruction is executed, the
product is in the register pair 4 and 5:

Register 4 contains 00 00 00 00.
Register 5 contains 00 00 4E CE =

20,174{10}.
Storage locations 3750-3753 are

unchanged.

The RR format of the instruction can be
used to square the number in a register.
Assume that register 7 contains 00 01 00
05. The contents of register 6 are not
significant. The instruction:

Machine Format

Op Code

lC 6 7

Assembler Format

Op Code Rt ,R 2

MR 6,7

multiplies the number in register 7 by
itself and places the result in the pair
of registers 6 and 7:

Register 6 contains 00 00 00 01.
Register 7 contains 00 OA 00 19.

MULTIPLY HAlFWORO (MH)

The MULTIPLY HAlFWORO instruction is
used to multiply the contents of a
register by a two-byte field in storage.
For example, assume that:

Register 11 contains 00 00 00 15
=21{10} = the multiplicand.

Register 14 contains 00 00 01 00.

Register 15 contains 00 00 20 00.
Storage locations 2102-2103 contain FF

09 = -39{10} = the multiplier.

The instruction:

Machine Format

Op Code

4C B E F

Assembler Format

OR MH 11,2(14,15)

multiplies the two numbers. The
product, FF FF Fe CO = -819{10},
replaces the original contents of regis­
ter 11.

Only the rightmost 32 bits of a product
are stored in a register; any signif­
icant bits on the left are lost. No
program interruption occurs on overflow.

OR (0, OC, 01, OR)

When the Boolean operator OR is applied
to two bits, the result is one when
either bit is one; otherwise, the result
is zero. When two bytes are ORed, each
pair of bits is handled separately;
there is no connection from one bit
position to another. The following is
an example of DRing two bytes:

First-operand byte:
Second-operand byte:

Result byte:

01 Example

0011 0101{2}
0101 1100{2}

0111 1101{2}

A frequent use of the OR instruction is
to set a particular bit to one. For
example, assume that storage location
4891 contains 0100 0010{2}. To set the
rightmost bit of this byte to one with­
out affecting the other bits, the
following instruction can be used
(assume that register 8 contains 00 00
48 90):

Machine Format

Op Code 12

96 01 8

Assembler Format

Op Code 0,(B,),I 2

01 1(8),X'01'

When this instruction is executed, the
byte in storage is ORed with the immedi­
ate byte (the 12 field of the instruc­
tion):

Location 4891:
Immediate byte:

Result:

0100 0010{2}
0000 0001{2}

0100 0011{2}

The resulting byte with bit 7 set to one
is stored back in location 4891. Condi­
tion code 1 is set.

PACK (PACK)

Assume that storage locations 1000-1003
contain the following zoned-decimal
number that is to be converted to a
packed-decimal number and left in the
same location:

1000 1003

Also assume that register 12 contains 00
00 10 00. After the instruction:

Machine Format

Op Code

F2 3 3 C 000 I C 0001

Assembler Format

PACK 0(4,12),0(4,12)

is executed,
1000-1003 is
format:

the result in locations
in the packed-decimal

1000 1003

Packed number 10010112314CI

Appendix A. Number Representation and Instruction-Use Examples A-25

Notes:

1. This example illustrates the opera­
tion of PACK when the first- and
second-operand fields overlap
completely.

2. During the operation, the second
operand was extended on the left
with zeros.

SHIFT LEFT DOUBLE (SLDA)

The SHIFT LEFT DOUBLE instruction shifts
the 63 numeric bits of an even-odd
register pair to the left, leaving the
sign bit unchanged. Thus, the instruc­
tion performs an algebraic left shift of
a 64-bit signed binary integer.

For example, if the contents of regis­
ters 2 and 3 are:

00 7F OA 72 FE DC BA 98 =
00000000 01111111 00001010 01110010
11111110 11011100 10111010 10011000{2}

The instruction:

Machine Format

Op Code

8F o

Assembler Format

SLDA 2,31(0)

results in registers 2 and 3 both being
left-shifted 31 bit positions, so that
their new contents are:

7F 6E 5D 4C 00 00 00 00 =
01111111 01101110 01011101 01001100
00000000 00000000 00000000 00000000{2}

Because significant bits are shifted out
of bit position 1 of register 2, over­
flow is indicated by setting condition
code 3, and, if the fixed-poi nt-overflow
mask bit in the PSW is one, a fixed­
point-overflow program interruption
occurs.

SHIFT LEFT SINGLE (SLA)

The SHIFT LEFT SINGLE instruction is
similar to SHIFT LEFT DOUBLE, except
that it shifts only the 31 numeric bits
of a single register. Therefore, this

A-26 System/370 Principles of Operation

instruction performs an algebraic left
shift of a 32-bit signed binary integer.

For example, if the contents of register
2 are:

00 7F OA 72 = 00000000 01111111 00001010
01110010{2}

The instruction:

Machine Format

Op Code

8B 2 1////1 o 008 1

Assembler Format

SLA 2,8(0)

results in register 2 being shifted left
eight bit positions so that its new
contents are:

7F OA 72 00 = 01111111 00001010 01110010
00000000{2}

Condition code 2 is set to indicate that
the result is greater than zero.

If a left shift of nine places had been
specified, a significant bit would have
been shifted out of bit position 1.
Condition code 3 would have been set to
indicate this overflow and, if the
fixed-poi nt-overflow mask bit in the PSW
were one, a fixed-point overflow inter­
ruption would have occurred.

STORE CHARACTERS UNDER MASK (STCM)

STORE CHARACTERS UNDER MASK (STCM) may
be used to place selected bytes from a
register into storage. For example, if
it is desired to store a three-byte
address from general register 8 into
location FIELD3, assume:

Machine Format

Op Code

BE 8 7

Register Format

STCM 8,B'0111',FIELD3

Register 8:
FIELD3 (before):
FIELD3 (after):

12 34 56 78
not significant
34 56 78

As another example:

Machine Format

Op Code

8E 9 5 * * * *

Register Format

STCM 9,8'0101',FIELD2

Register 9: 01 23 45 67
FIELD2 (before): not significant
FIELD2 (after): 23 67

STORE MULTIPLE (STM)

Assume that the contents of general
registers 14, 15, 0, and 1 are to be
stored in consecutive four-byte fields
starting with location 4050 and that:

Register 14 contains 00 00 25 63.
Register 15 contains 00 01 27 36.
Register 0 contains 12 43 00 62.
Register 1 contains 73 26 12 57.
Register 6 contains 00 00 40 00.
The initial contents of locations

4050-405F are not significant.

The STORE MULTIPLE instruction allows
the use of just one instruction to store
the contents of the four registers:

Machine Format

Op Code

90 E 1 6 050 1

Assembler Format

STM 14,1,X'50'(6)

After the instruction is executed:

Locations 4050-4053 contain 00 00 25
63.

Locations 4054-4057 contain 00 01 27
36.

Locations 4058-4058 contain 12 43 00
62.

Locations 405C-405F contain 73 26 12
57.

TEST UNDER MASK (TM)

The TEST UNDER MASK instruction examines
selected bits of a byte and sets the
condition code accordingly. For
example, assume that:

Storage location 9999 contains F8.
Register 7 contains 00 00 99 90.

Assume the instruction to be:

Machine Format

Op Code

91 C3 7

Assembler Format

TM 9(7),8'11000011'

The instruction tests only those bits of
the byte in storage for which the mask
bits are ones:

F8 = 1111 1011{2}
Mask = 1100 0011{2}

Test = 11xx xx11{2}

Condition code 3 is set: all selected
bits in the test result are ones. (The
bits marked "x" are ignored.)

If location 9999 had contained 89, the
test would have been:

89 = 1011 1001{2}
Mask = 1100 0011{2}

Test = 10xx xx01{2}

Condition code 1 is set: the selected
bits are both zeros and ones.

If location 9999 had contained 3C, the
test would have been:

3C = 0011 1100{2}
Mask = 1100 0011{2}

Test = OOxx xxOO{2}

Condition code 0 is set:
bits are zeros.

all selected

Note: Storage location 9999 remains
unchanged.

Appendix A. Number Representation and Instruction-Use Examples A-27

TRANSLATE CTR)

The TRANSLATE instruction can be used to
translate data from any character code
to any other desired code, provided that
each character code consists of eight
bits or fewer. An appropriate trans­
lation table is required in storage.

In the following example, EBCDIC code ;s
translated to ASCII code. The first
step is to create a 256-byte table in
storage locations 1000-10FF. This table
contains the characters of the ASCII
code in the sequence of the binary
representation of the EBCDIC code; that
is, the ASCII representation of a char­
acter is placed in storage at the
starting address of the table plus the
binary value of the EBCDIC represen­
tation of the same character.

For simplicity, the example shows only
the part of the table containing the
decimal digits:

10FO 10F9

Assume that the four-byte field at stor­
age location 2100 contains the EBCDIC
code for the digits 1984:

Locations 2100-2103 contain Fl F9 F8
F4.

Register 12 contains 00 00 21 00.
Register 15 contains 00 00 10 00.

As the instruction:

Machine Format

Op Code L D:z

DC 03 C 000 I F 0001

Assembler Format

Op Code D1(L,B1),D:z(B:z)

TR 0(4,12),0(15)

A-28 System/370 Principles of Operation

is executed, the binary value of each
EBCDIC byte is added to the starting
address of the table, and the resulting
address is used to fetch an ASCII byte:

Table starting address: 1000
First EBCDIC byte: F1

Address of ASCII byte: 10F1

After execution of the instruction:

Locations 2100-2103 contain 31 39 38
34.

Thus, the ASCII code for the digits 1984
has replaced the EBCDIC code in the
four-byte field at storage location
2100.

TRANSLATE AND TEST (TRT)

The TRANSLATE AND TEST instruction can
be used to scan a data field for charac­
ters with a special meaning. To indi­
cate which characters have a special
meaning, a table similar to the one used
for the TRANSLATE instruction is set up,
except that zeros in the table indicate
characters without any special meaning
and nonzero values indicate characters
with a special meaning.

The figure "Translate-and-Test Table"
that follows has been set up to distin­
guish alphameric characters (A to Z and
o to 9) from blanks, certain special
symbols, and all other characters which
are considered invalid. EBCDIC coding
is assumed. The 256-byte table is
assumed stored at locations 2000-20FF.

o 1 234 5 6 7 8 9 ABC D E F

200_

201_

202_

203_

204_

205_

206

207_

208_

209_

20A_

208_

20C_

20D_

20E_

20F_

40

40

40

40

04

14

24

40

40

40

40

40

40

40

40

00

40

40

40

40

40

40

28

40

40

40

40

40

00

00

40

00

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

00 00

00 00

00 00

00 00

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 08 40 OC 10 40

40 40 40 18 lC 20 40 40

40 40 40 2C 40 40 40 40

40 40 40 30 34 38 3C 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

00 00 40 40 40 40 40 40

00 00 40 40 40 40 40 40

00 00 40 40 40 40 40 40

00 00 40 40 40 40 40 40

Note: If the character codes in the statement being
translated occupy a range smaller than 00 through
FF{16}, a table of fewer than 256 bytes can be used.

Translate and Test Table

The table entries for the alphameric
characters in EBCDIC are 00; thus, the
letter A (code Cl) corresponds to byte
location 20Cl, which contains 00.

The 15 special symbols have nonzero
entries from 04{16} to 3C{16} in incre­
ments of 4. Thus, the blank (code 40)
has the entry 04{16}, the period (code
4B) has the entry 08{16}, and so on.

All other table positions have the entry
40{16} to indicate an invalid character.

The table entries are chosen so that
they may be used to select one of a list
of 16 words containing addresses of
different routines to be entered for
each special symbol or invalid character
encountered during the scan.

Assume that this list of 16 branch
addresses is stored at locations
3004-3043.

Starting at storage location CA80, there
is the following sequence of 21{10}
EBCDIC characters, where "b" stands for
a blank.

Locations CA80-CA94:

UNPKbPROUT(9),WORD(5)

Also assume:

Register 1 contains 00 00 CA 7F.
Register 2 contains 00 00 30 00.
Register 15 contains 00 00 20 00.

As the instruction:

Machine Format

Op Code L Bt Dt B2 D2

DD 14 1 001
1

F 0001

Assembler Format

TRT 1(21,1),0(15)

is executed, the value of the first
source byte, the EBCDIC code for the
letter U, is added to the starting
address of the table to produce the
address of the table entry to be exam­
ined:

Appendix A. Number Representation and Instruction-Use Examples A-29

Table starting address
First source byte (U)

Address of table entry

2000
E4

20E4

Because zeros were placed in storage
location 20E4, no special action occurs.
The operation continues with the second
and subsequent source bytes until it
reaches the blank in location CA84.
When this symbol is reached, its value
is added to the starting address of the
table, as usual:

Table starting address
Source byte (blank)

Address of table entry

2000
40

2040

Because location 2040 contains a nonzero
value, the following actions occur:

1. The address of the source byte,
00CA84, is placed in the rightmost
24 bits of register 1.

2. The table entry, 04, is placed in
the rightmost eight bits of regis­
ter 2, which now contains 00 00 30
04.

3. Condition code 1 is set (scan not
completed).

The TRANSLATE AND TEST instruction may
be followed by instructions to branch to
the routine at the address found at
location 3004, which corresponds to the
blank character encountered in the scan.
When this routine is completed, program
control may return to the TRANSLATE AND
TEST instruction to continue the scan,
except that the length must first be
adjusted for the characters already
scanned.

For this purpose, the TRANSLATE AND TEST
may be executed by the use of an EXECUTE
instruction, which supplies the length
specification from a general register.
In this way, a complete statement scan
can be performed with a single TRANSLATE
AND TEST instruction used repeatedly by
means of EXECUTE, and without modifying
any instructions in storage. In the
example, after the first execution of
TRANSLATE AND TEST, register 1 contains
the address of the last source byte
translated. It is then a simple matter
to subtract this address from the
address of the last source byte (CA94)
to produce a length specification. This
length minus one is placed in the regis­
ter that is referenced as the R1 field
of the EXECUTE instruction. (Note that
the length code in the machine format is
one less than the total number of bytes
in the field.) The second-operand
address of the EXECUTE instruction
points to the TRANSLATE AND TEST

A-30 System/370 Principles of Operation

instruction, which is the same as illus­
trated above, except for the length (l)
which is set to zero.

UNPACK (UNPK)

Assume that storage locations 2501-2502
contain a signed, packed-decimal number
that is to be unpacked and placed in
storage locations 1000-1004. Also
assume:

Register 12 contains 00 00 10 00.
Register 13 contains 00 00 25 00.
Storage locations 2501-2502 contain 12

3D.
The initial contents of storage

locations 1000-1004 are not signif­
icant.

After the instruction:

Machine Format

Op Code

F3 4 1 C 000 I D

Assembler Format

Op Code Dt (lt,B t),D 2(l2,B 2)

UNPK 0(5,12),1(2,13)

is executed, the storage locations
1000-1004 contain FO FO F1 F2 D3.

DECIMAL INSTRUCTIONS

(See Chapter 8 for a complete descrip­
tion of the decimal instructions.)

ADD DECIMAL (AP)

Assume that the signed, packed-decimal
number at storage locations 500-503 is
to be added to the signed, packed­
decimal number at locations 2000-2002.
Also assume:

Register 12 contains 00 00 20 00.
Register 13 contains 00 00 05 00.
Storage locations 2000-2002 contain 38

46 00 (a negative number>.
Storage locations 500-503 contain 01 12

34 5C (a positive number>.

After the instruction:

Machine Format

Op Code

FA 2 3 C 000 I D 0001

Assembler Format

AP 0(3,12),0(4,13)

is executed, the storage
2000-2002 contain 73 88 5Ci
code 2 is set to indicate
result is greater than zero.

locations
condition
that the

Note that:

1. Because the two numbers had differ­
ent signs, they were in effect
subtracted.

2. Although the second operand is
longer than the first operand, no
overflow interruption occurs
because the result can be entirely
contained within the first operand.

COMPARE DECIMAL (CP)

Assume that the signed, packed-decimal
contents of storage locations 700-703
are to be algebraically compared with
the signed, packed-decimal contents of
locations 500-502. Also assume:

Register 12 contains 00 00 06 00.
Register 13 contains 00 00 03 00.
Storage locations 700-703 contain 17 25

35 6D.
Storage locations 500-502 contain 72 14

2D.

After the instruction:

Machine Format

Op Code

F9 3 2 C 100 I D

Assembler Format

is executed, condition code 1 is set,
indicating that the first operand (the
contents of locations 700-703) is less
than the second.

DIVIDE DECIMAL (DP)

Assume that the signed, packed-decimal
number at storage locations 2000-2004
(the dividend) is to be divided by the
signed, packed-decimal number at
locations 3000-3001 (the divisor). Also
assume:

Register 12 contains 00 00 20 00.
Register 13 contains 00 00 30 00.
Storage locations 2000-2004 contain 01

23 45 67 8C.
Storage locations 3000-3001 contain 32

10.

After the instruction:

Machine Format

Op Code L t

FD 4 1 C 000 I 0 0001

Assembler Format

DP 0(5,12),0(2,13)

is executed, the dividend is entirely
replaced by the signed quotient and
remainder, as follows:

2000 2004

Locations 2000-2004 13814610DI0118Cl

quotient I remainder

Notes:

1. Because the dividend and divisor
have different signs, the quotient
receives a negative sign.

2. The remainder receives the sign of
the dividend and the length of the
divisor.

3. If an attempt were made to divide
the dividend by the one-byte field
at location 3001, the quotient
would be too long to fit within the
four bytes allotted to it. A
decimal-divide exception would
exist, causing a program inter­
ruption.

EDIT (ED)

Before decimal
can be used in
and signs must
characters.
marks, such

data in the packed format
a printed report, digits

be converted to printable
Moreover, punctuation

as commas and decimal

Appendix A. Number Representation and Instruction-Use Examples A-31

points, may have to be inserted in
appropriate places. The highly flexible
EDIT instruction performs these func­
tions in a single instruction execution.

This example shows step-by-step one way
that the EDIT instruction can be used.
The field to be edited (the source) is
four bytes long; it is edited against a
pattern 13 bytes long. The following
symbols are used:

Symbol Meaning

b (Hexadecimal 40) Blank character
((Hexadecimal 21) Significance

starter
d (Hexadecimal 20) Digit selector

Assume that register 12 contains:

00 00 10 00

and that the source and pattern fields
are:

Source

1200 1203

1021S714216Cl

1-

L+

A-32 System/370 Principles of Operation

Pattern

1000 lOOC

14012012016BI2012l12014BI20t2ot4otc31D91

b d d d d d d b C R

Execution of the instruction:

Machine Format

Op Code L

DE OC C 000 I C

Assembler Format

ED O(13,12),X'200'(l2)

alters the pattern field as follows:

Significance
Indicator Location

Pattern Digit (Before/After) Rule 1000-lOOC

b off/off leave(l) bdd,d(d.ddbCR
d 0 off/off fill bbd,d(d.ddbCR
d 2 off/on(2) digit bb2,d(d.ddbCR
1 on/on leave same
d 5 on/on digit bb2,5(d.ddbCR
(7 on/on digit bb2,57d.ddbCR
d 4 on/on digit bb2,574.ddbCR
. on/on leave same
d 2 on/on digit bb2,574.2dbCR
d 6+ on/off(3) digit bb2,574.26bCR
b off/off fill same
C off/off fill bb2,574.26bbR
R off/off fill bb2,574.26bbb

Notes:

1. This character is the fill byte.

2. First nonzero decimal source digit turns on significance
indicator.

3. Plus sign in the four rightmost bits of the byte turns
off significance indicator.

Thus, after the instruction is executed,
the pattern field contains the result as
follows:

Pattern

1000 100C

140140lF216BIF51F71F414BIF21F61401401401

b b 2 574 2 6 b b b

This pattern field prints as:

2,574.26

The source field remains unchanged.
Condition code 2 is set because the
number was greater than zero.

If the number in the source field is
changed to the negative number 00 00 02
6D and the original pattern is used, the
edited result this time is:

Pattern

1000 100C

140140140140140140lFol4BlF21F6140lC31D91

b b b b b b 0 2 6 b C R

This pattern field prints as:

0.26 CR

The significance starter forces the
significance indicator to the on state
and hence causes a leading zero and the
decimal point to be preserved. Because
the minus-sign code has no effect on the
significance indicator, the characters

CR are printed to show a negative (cred­
it) amount.

Condition code 1 is set (number less
than zero).

EDIT AND MARK (EDMK)

The EDIT AND MARK instruction may be
used, in addition to the functions of
EDIT, to insert a currency symbol, such
as a dollar sign, at the appropriate
position in the edited result. Assume
the same source in storage locations
1200-1203, the same pattern in locations
1000-100C, and the same contents of
general register 12 as for the EDIT
instruction above. The previous
contents of general register 1 (GR1) are
not significant; a LOAD ADDRESS instruc­
tion is used to set up the first digit
position that is forced to print if no
significant digits occur to the left.

The instructions:

LA 1,6(0,12) Load address of
forced significant
digit into GR1

EDMK 0(13,12),X'200'(12) leave address
of first signif­
icant digit in GR1

BCTR 1,0 Subtract 1 from
address in GRl

MVI O(l),C'$' Store dollar sign
at address in GR1

produce the following results for the
two examples under EDIT:

Appendix A. Number Representation and Instruction-Use Examples A-33

Pattern

1000 100e

140lSBIF216BIFsIF71F414BIF21F61401401401

b $ 2 S 7 4 2 6 b b b

This pattern field prints as:

$2,S74.26

Condition code 2 is set to indicate that
the number edited was greater than zero.

Pattern

1000 lOOC

140140\40\40\40ISB\FoI4BIF2IF6140IC3ID91

b b b b b $ 0 2 6 b C R

This pattern field prints as:

$0.26 CR

Condition code 1 is set because the
number is less than zero.

MULTIPLY DECIMAL (MP)

Assume that the signed, packed-decimal
number in storage locations 1202-1204
(the multiplicand) is to be multiplied
by the signed, packed-decimal number in
locations SOO-SOl (the multiplier).

1202 1204

Multiplicand \3814610DI

SOO SOl

Multiplier ~
The multiplicand must first be extended
to have at least two bytes of leftmost
zeros, corresponding to the multiplier
length, so as to avoid a data exception
during the multiplication. ZERO AND ADD
can be used to move the multiplicand
into a longer field. Assume:

Register 4 contains 00 00 12 00.
Register 6 contains 00 00 OS 00.

Then execution of the instruction:

ZAP X'100'(S,4),2(3,4)

sets up a new multiplicand in storage
locations 1300-1304:

1300 1304

Multiplicand (new) 100100138\4610DI

A-34 System/370 Principles of Operation

Now, after the instruction:

Machine Format

Op Code L t L2 Bt Dt

FC 4 1 4 100
1

Assembler Format

Op Code Dt(Lt,Bt),D2(L2,B2)

MP X'100'(S,4),O(2,6)

B2 D2

6 0001

is executed, storage locations 1300-1304
contain the product: 01 23 45 66 OC.

SHIFT AND ROUND DECIMAL (SRP)

The SHIFT AND ROUND DECIMAL (SRP)
instruction can be used for shifting
decimal numbers in storage to the left
or right. When a number is shifted
right, rounding can also be done.

Decimal Left Shift

In this example, the contents of storage
location FIELDl are shifted three places
to the left, effectively multiplying the
contents of FIELDl by 1000. FIELD! is
six bytes long. The following instruc­
tion performs the operation:

Machine Format

Op Code L!

FO 5

Assembler Format

SRP FIELD!(6),3,0

FIELD! (before): 00 01 23 4S 67 8C

FIELD1 (after): 12 34 S6 78 00 OC

The second-operand address in this
instruction specifies the shift amount
(three places). The rounding digit, 1 3 ,

is not used in a left shift, but it must
be a valid decimal digit. After
execution, condition code 2 is set to
show that the result is greater than
zero.

Decimal &i9h1 Shift

In this example, the contents of storage
location FIELD2 are shifted one place to
the right, effectively dividing the
contents of FIELD2 by 10 and discarding
the remainder. FIELD2 is five bytes in
length. The following instruction
performs this operation:

Machine Format

Op Code

FO 4 o 1**** I

Assembler Format

SRP FIELD2(5),64-1,0

00111111

I
6-bit two's
complement
for -1

FIELD 2 (before): 01 23 45 67 8C

FIELD 2 (after): 00 12 34 56 7C

In the SRP instruction, shifts to the
right are specified in the second­
operand address by negative shift
values, which are represented as a
six-bit value in two's complement form.

The six-bit two's complement of a
number, n, can be specified as 64 - n.
In this example, a right shift of one is
represented as 64 - 1.

Condition code 2 is set.

Decimal Right Shift and Round

In this example, the contents of storage
location FIELD3 are shifted three places
to the right and rounded, in effect
dividing by 1000 and rounding up.
FIELD3 is four bytes in length.

Machine Format

Op Code

FO 3

Assembler Format

00111101

I
6-bit two's
complement
for -3

SRP FIELD3(4),64-3,5

FIELD 3 (before): 12 39 60 OD

FIELD 3 (after): 00 01 24 OD

The shift amount (three places) is spec­
ified in the D2 field. The 13 field
specifies a rounding digit of 5. The
rounding digit is added to the last
digit shifted out (which is a 6), and
the carry is propagated to the left.
The sign is ignored during the addition.

Condition code 1 is set because the
result is less than zero.

Multiplying ~ g Variable Power of 1Q

Since the shift value specified by the
SRP instruction specifies both the
direction and amount of the shift, the
operation is equivalent to multiplying
the decimal first operand by 10 raised
to the power specified by the shift
value.

If the shift value is to be variable, it
may be specified by the B2 field instead
of the displacement D2 of the SRP
instruction. The general register
designated by B2 should contain the
shift value (power of 10) as a signed
binary integer.

A fixed scale factor modifying the vari­
able power of 10 may be specified by
using both the B2 field (variable part
in a general register) and the D2 field
(fixed part in the displacement).

The SRP instruction uses only the right­
most six bits of the effective address
D2 (B 2) and interprets them as a six-bit
signed binary integer to control the
left or right shift as in the preceding
shift examples.

Appendix A. Number Representation and Instruction-Use Examples A-35

ZERO AND ADD (ZAP)

Assume that the signed, packed-decimal
number at storage locations 4500-4502 is
to be moved to locations 4000-4004 with
four leading zeros in the result field.
Also assume:

Register 9 contains 00 00 40 00.
Storage locations 4000-4004 contain 12

34 56 78 90.
Storage locations 4500-4502 contain 38

46 ODe

After the instruction:

Machine Format

Op Code

F8 4 2 9 000 I 9

Assembler Format

Op Code Dt(Lt,Bt),D2(L2,B2)

ZAP 0(5,9),X'500'(3,9)

500
1

is executed, the storage locations
4000-4004 contain 00 00 38 46 OD; condi­
tion code 1 is set to indicate a nega­
tive result without overflow.

Note that, because the first operand is
not checked for valid sign and digit
codes, it may contain any combination of
hexadecimal digits before the operation.

FLOATING-POINT INSTRUCTIONS

(See Chapter
tion of the
tions.)

9 for a complete descrip­
floating-point instruc-

In this section, the abbreviations FPRO,
FPR2, FPR4, and FPR6 stand for
floating-point registers 0, 2, 4, and 6
respectively.

ADD NORMALIZED (AD, ADR, AE, AER, AXR)

The ADD NORMALIZED instruction performs
the addition of two floating-point
numbers and places the normalized result
in a floating-point register. Neither
of the two numbers to be added must
necessarily be in normalized form before
addition occurs. For example, assume
that:

FPR6 contains the unnormalized number
C3 08 21 00 00 00 00 00 = -82.1{16} = -130.06{10} approximately.

Storage locations 2000-2007 contain the
normalized number 41 12 34 56 00 00

A-36 System/370 Principles of Operation

00 00 = +1.23456{16} = +1.14{10}
approximately.

Register 13 contains 00 00 20 00.

The instruction:

Machine Format

Op Code

7A 6 o D 0001

Assembler Format

Op Code Rt ,D 2(X 2,B 2)

AE 6,0(0,13)

performs the short-precision addition of
the two operands, as follows.

The characteristics of the two numbers
(43 and 41) are compared. Since the
number in storage has a characteristic
that is smaller by 2, it is right­
shifted two hexadecimal digit positions.
One guard digit is retained on the
right. The fractions of the two numbers
are then added algebraically:

FPR6
Shifted number from

storage

Intermediate sum
Left-shifted sum

1 Guard digit

Fraction GDl
-43 08 21 00
+43 00 12 34 5

-43 08 OE CB B
-42 80 EC BB

Because the intermediate sum is unnor­
malized, it is left-shifted to form the
normalized floating-point number
-80.ECBB{16} = -128.92{10} approxi­
mately. Combining the sign with the
characteristic, the result is C2 80 EC
BB, which replaces the left half of
FPR6. The right half of FPR6 and the
contents of storage locations 2000-2007
are unchanged. Condition code 1 is set
to indicate a result less than zero.

If the long-precision instruction AD
were used, the result in FPR6 would be
C2 80 EC BA AO 00 00 00. Note that use
of the long-precision instruction would
avoid a loss of precision in this exam­
ple.

ADD UNNORMALIZED (AU, AUR, AW, AWR)

The ADD UNNORMALIZED instruction oper­
ates the same as the ADD NORMALIZED
instruction, except that the final
result is not normalized. For example,
using the the same operands as in the
example for ADD NORMALIZED, when the
short-precision instruction:

Machine Format

Op Code R,

7E 6 o o 0001

Assembler Format

AU 6,0(0,13)

is executed, the two numbers are added
as follows:

FPR6
Shifted number from

storage

Intermediate sum

1 Guard digit

Fraction GOl
-43 08 21 00
+43 00 12 34 5

-43 08 OE CB B

The guard digit participates in the
addition but is discarded. The unnor­
mali zed sum replaces the left half of
FPR6. Condition code 1 is set because
the result is less than zero.

The truncated result in FPR6 (C3 08 OE
CB 00 00 00 00) shows a loss of a
significant digit when compared to the
result of short-precision normalized
addition.

COMPARE (CO, CDR, CE, CER)

Assume that FPR4 contains 43 00 00 00 00
00 00 00 (zero), and FPR6 contains 35 12
34 56 78 9A BC DE (a positive number).
The contents of the two registers are to
be compared using a long-precision
COMPARE instruction.

Machine Format

Op Code R,

29 4 6

Assembler Format

CDR 4,6

The number with the smaller character­
istic, which is in register FPR6, is
right-shifted 43 - 35 hex (67 - 53 deci­
mal) or 14 digit positions, so that the
two characteristics agree. The shifted

number is 43 00 00 00 00 00 00 00, with
a guard digit of one. Therefore, when
the two numbers are compared, condition
code 1 is set, indicating that operand 1
in FPR4 is less than operand 2 in FPR6.

If the example is changed to a second
operand with a characteristic of 34
instead of 35, so that FPR6 contains 34
12 34 56 78 9A BC DE, the operand is
right-shifted 15 positions, leaving all
fraction digits and the guard digit as
zeros. Condition code 0 is set, indi­
cating equality. This example shows
that two floating-point numbers with
different characteristics or fractions
may compare equal if the numbers are
unnormalized or zero.

As another example of comparing unnor­
mali zed floating-point numbers, 41 00 12
34 56 78 9A BC compares equal to all
numbers of the form 3F 12 34 56 78 9A BC
OX (X represents any hexadecimal digit).
When the COMPARE instruction is
executed, the two rightmost digits are
shifted right two places, the 0 becomes
the guard digit, and the X does not
participate in the comparison.

However, when two normalized floating-
point numbers are compared, the
relationship between numbers that
compare equal is unique: each digit in
one number must be the same as the
corresponding digit in the other number.

DIVIDE (DO, OOR, DE, OER)

Assume that the first operand (the divi­
dend) is in FPR2 and the second operand
(the divisor) in FPRO. If the operands
are in the short-precision format, the
resulting quotient is returned to FPR2
by the instruction:

Machine Format

Op Code R,

3D 2 o

Assembler Format

DER 2,0

Several examples of short-precision
floating-point division, with the divi­
dend in FPR2 and the divisor in FPRO,
are shown below. For case A, the
result, which replaces the dividend, is
obtained in the following steps.

Appendix A. Number Representation and Instruction-Use Examples A-37

7.2522F

.123400 1.821000
7F6COO

2A400 0
24680 0

5D80 00
5B04 00

27C 000
246 800

35 8000
24 6800

11 18000
11 10COO

7400

FPR2 Before FPRO FPR2 After
Case (Dividend) (D i v i so r) (~uotient)

A -43 082100 +43 001234 -42 72522F
B +42 101010 +45 111111 +3D FOFOFO
C +48 30000F +41 400000 +47 COO03C
D +48 30000F +41 200000 +48 180007
E +48 180007 +41 200000 +47 COO038

Case C shows a number being divided by
4.0. Case D divides the same number by
2.0, and case E divides the result of
case D again by 2.0. The results of
cases C and E differ in the rightmost
hexadecimal digit position, which illus­
trates an effect of result truncation.

HALVE (HDR, HER)

HALVE produces the same result as
floating-point DIVIDE with a divisor of
2.0. Assume FPR2 contains the long­
precision number +48 30 00 00 00 00 00
OF. The following HALVE instruction
produces the result +48 18 00 00 00 00
00 07 in FPR2:

Machine Format

Op Code

24 2 2

Assembler Format

HDR 2,2

A-38 System/370 Principles of Operation

MULTIPLY (MO, MDR, ME, MER, MXO, MXOR,
MXR)

For this example, the following 10ng­
precision operands are in FPRO and FPR2:

FPRO: -33 606060 60606060
FPR2: -5A 200000 20000020

A long-precision product is generated by
the instruction:

Machine Format

Op Code

2C o 2

Assembler Format

MDR 0,2

If the operands were not already normal­
ized, the instruction would first
normalize them. It then generates an
intermediate result consisting of the
full 28-digit hexadecimal product frac­
tion obtained by multiplying the
14-digit hexadecimal operand fractions,
together with the appropriate sign and a
characteristic that is the sum of the
operand characteristics less 64 (40
hex) :

The fraction multiplication is performed
as follows:

.60606060606060

.20000020000020

COCOCOCOCOCOCOO
COCOCOCOCOCOCO

COCOCOCOCOCOCO

.OCOCOC181818241818180COCOCOO

Attaching the sign and characteristic to
the fraction gives:

+40 aCOCDC 18181824 1818180C OCOCOO

Because this intermediate product has a
leading zero, it is then normalized.
The truncated final result placed in
FPRO is:

+4C COCOC1 81818241

FLOATING-POINT-NUMBER CONVERSION

The following examples illustrate one
method of converting between binary
fixed-point numbers (32-bit signed bina­
ry integers) and normalized floating­
point numbers. Conversion must provide
for the different representations used

with negative numbers: the two's­
complement form for signed binary
integers, and the signed-absolute-value
form for the fractions of floating-point
numbers.

Fixed Point to Floating Point

The method used here inverts the left­
most bit of the 32-bit signed binary
integer, which is equivalent to adding
2 31 to the number and considering the
result to be positive. This changes the
number from a signed integer in the
range 2 31 - 1 through -2 31 to an
unsigned integer in the range 2 32 - 1
through o. After conversion to the long
floating-point format, the value 2 31 is
subtracted again.

Assume that general register 9 (GR9)
contains the integer -59 in two's­
complement form:

GR9: FF FF FF C5

Further, assume two eight-byte fields in
storage: TEMP, for use as temporary
storage, and TW03I, which contains the
floating-point constant 2 31 in the
following format:

TW03I: 4E 00 00 00 80 00 00 00

This is an unnormalized long floating­
point number with the characteristic 4E,
which corresponds to a radix point (hex­
adecimal point) to the right of the
number.

The following instruction sequence
performs the conversion:

Result

X 9,TW03I+4 GR9:
7FFF FFC5

ST 9,TEMP+4 TEMP:
xxxx xxxx 7FFF FFC5

MVC TEMP(4),TW03I TEMP:
4EOO 0000 7FFF FFC5

LO 2,TEMP FPR2:
4EOO 0000 7FFF FFC5

SO 2,TW03I FPR2:
C23B 0000 0000 0000

The EXCLUSIVE OR (X) instruction inverts
the leftmost bit in general register 9,
using the right half of the constant as
the source for a leftmost one bit. The
next two instructions assemble the modi­
fied number in an unnormalized long
floating-point format, using the left
half of the constant as the plus sign,
the characteristic, and the leading
zeros of the fraction. LOAD (LD) places

the number unchanged in floating-point
register 2. The SUBTRACT NORMALIZED
(SO) instruction performs the final two
steps by subtracting 2 31 in floating­
point form and normalizing the result.

Floating Point to Fixed Point

The procedure described here consists
basically in reversing the steps of the
previous procedure. Two additional
considerations must be taken into
account. First: the floating-point
number may not be an exact integer.
Truncating the excess hexadecimal digits
on the right requires shifting the
number one digit position farther to the
right than desired for the final result,
so that the units digit occupies the
position of the guard digit. Second:
the floating-point number may have to be
tested as to whether it is outside the
range of numbers representable as a
32-bit signed binary integer.

Assume that floating-point register 6
contains the number 59.25{10} = 3B.4{16}
in normalized form:

FPR6: 42 3B 40 00 00 00 00 00

Further, assume three eight-byte fields
in storage: TEMP, for use as temporary
storage, and the constants 2 32 (TW032)
and 2 31 (TW03IR) in the following
formats:

TW032:
TW03IR:

4E 00 00.01 00 00 00 00
4F 00 00 00 08 00 00 00

The constant TW031R is shifted right one
more position than the constant TW031 of
the previous example, so as to force the
units digit into the guard-digit posi­
tion.

The following instruction sequence
performs the integer truncation, range
tests, and conversion to a signed binary
integer in general register 8 (GR8):

Result

SO 6,TW03IR FPR6:
C87F FFFF C500 0000

BC II,OVERFLOW Branch to overflow
routine if result
is greater than or
equal to zero

AW 6,TW032 FPR6:
4EOO 0000 8000 003B

BC 4,OVERFLOW Branch to overflow
routine if result
is less than zero

STD 6,TEMP TEMP:
4EOO 0000 8000 003B

XI TEMP+4,X'80' TEMP:
4EOO 0000 0000 003B

L 8,TEMP+4 GR8:
0000 003B

Appendix A. Number Representation and Instruction-Use Examples A-39

The SUBTRACT NORMALIZED (SD) instruction
shifts the fraction of the number to the
right until it lines up with TW03IR,
which causes the fraction digit 4 to
fall to the right of the guard digit and
be lost; the result of subtracting 2 31

from the remaining digits is renormal­
ized. The result should be less than
zero; if not, the original number was
too large in the positive direction.
The first BRANCH ON CONDITION (BC)
performs this test.

The ADD UNNORMALIZED (AW) instruction
adds 232: 2 31 to correct for the previ­
ous subtraction and another 2 31 to
change to an all-positive range. The
second BC tests for a result less than
zero, showing that the original number
was too large in the negative direction.
The unnormalized result is placed in
temporary storage by the STORE (STD)
instruction. There the leftmost bit of
the binary integer is inverted by the
EXCLUSIVE OR (XI) instruction to
subtract 2 31 and thus convert the
unsigned number to the signed format.
The final result is loaded into GR8.

MULTIPROGRAMMING AND MULTIPROCESSING
EXAMPLES -

When two or more programs sharing common
storage locations are being executed
concurrently in a multiprogramming or
multiprocessing environment, one program
may, for example, set a flag bit in the
common-storage area for testing by
another program. It should be noted
that the instructions AND (NI or NC),
EXCLUSIVE OR (XI or XC), and OR (01 or
OC) could be used to set flag bits in a
multiprogramming environment; but the
same instructions may cause program
logic errors in a multiprocessing
configuration where two or more CPUs can
fetch, modify, and store data in the
same storage locations simultaneously.

EXAMPLE OF A PROGRAM FAILURE USING OR
IMMEDIATE

Assume that two independent programs try
to set different bits to one in a common
byte in storage. The following example
shows how the use of the instruction OR
immediate (01) can fail to accomplish
this, if the programs are executed
simultaneously on two different CPUs.
One of the possible error situations is
depicted.

A-40 System/370 Principles of Operation

Execution of
instruction
01 FLAGS,X'Ol'
on CPU A

Fetch
FLAGS X'OO'

OR X'OI'
into X'OO'

Store X'OI'
into FLAGS

Execution of
instruction

FLAGS 01 FLAGS,X'SO'
on CPU B

X'OO' Fetch
FLAGS X'OO'

X'OO'

X'OO' OR X'80'
into X'OO'

X'OO'

X'80' Store X'80'
into FLAGS

X'OI'

FLAGS should have value of X'SI'
following both updates.

The problem shown here is that the value
stored by the 01 instruction executed on
CPU A overlays the value that was stored
by CPU B. The X'80' flag bit was erro­
neously turned off, and the data is now
invalid.

The COMPARE AND SWAP instruction has
been provided to overcome this and simi­
lar problems.

CONDITIONAL SWAPPING INSTRUCTIONS (CS,
CDS)

The COMPARE AND SWAP (CS) and COMPARE
DOUBLE AND SWAP (CDS) instructions can
be used in multiprogramming or multi­
processing environments to serialize
access to counters, flags, control
words, and other common storage areas.

The following examples of the use of the
COMPARE AND SWAP and COMPARE DOUBLE AND
SWAP instructions illustrate the appli­
cations for which the instructions are
intended. It is important to note that
these are examples of functions that can
be performed by programs while the CPU
is enabled for interruption (multipro­
gramming) or by programs that are being
executed in a multiprocessing configura­
tion. That is, the routine allows a
program to modify the contents of a
storage location while the CPU is
enabled, even though the routine may be
interrupted by another program on the
same CPU that will update the location,
and even though the possibility exists
that another CPU may simultaneously
update the same location.

The COMPARE AND SWAP instruction first
checks the value of a storage location
and then modifies it only if the value
is what the program expects; normally
this would be a previously fetched
value. If the value in storage is not
what the program expects, then the

location is not modified; instead, the
current value of the location is loaded
into a general register, in preparation
for the program to loop back and try
again. During the execution of COMPARE
AND SWAP, no other CPU can perform a
store access or interlocked-update
access at the specified location.

Setting g Single Bit

The following instruction sequence shows
how the COMPARE AND SWAP instruction can
be used to set a single bit in storage
to one. Assume that the first byte of a
word in storage called "WORD" contains
eight flag bits.

LA 6,X'80'

SLL 6,24

L

RETRY LR
OR
CS

BC

7,WORD

8,7
8,6
7,8,WORD

4,RETRY

Put bit to be ORed
into GR6

Shift left 24 places
to align the byte
to be ORed with
the location of
the flag bits
within WORD

Fetch current flag
values

load flags into GR8
Set bit to one
Store new flags if

current flags un­
changed, or re­
fetch current
flag values if
changed

If new flags are not
stored, try again

The format of the COMPARE AND SWAP
instruction is:

Machine Format

Op Code

BA 7

Assembler Format

CS 7,8,WORD

The COMPARE AND SWAP instruction
compares the first operand (general
register 7 containing the current flag
values) to the second operand in storage
(WORD) while no CPU other than the one
executing the COMPARE AND SWAP instruc­
tion is permitted to perform a store
access or interlocked-update access at
the specified storage location.

If the comparison is successful, indi­
cating that the flag bits have not been
changed since they were fetched, the
modified copy in general register 8 is

stored into WORD. If the flags have
been changed, the compare will not be
successful, and their new values are
loaded into general register 7.

The conditional branch (BC) instruction
tests the condition code and reexecutes
the flag-modifying instructions if the
COMPARE AND SWAP instruction indicated
an unsuccessful comparison (condition
code 1). When the COMPARE AND SWAP
instruction is successful (condition
code 0), the flags contain valid data,
and the program exits from the loop.

The branch to RETRY will be taken only
if some other program modifies the
contents of WORD. This type of a loop
differs from the typical "bit-spin"
loop. In a bit-spin loop, the program
continues to loop until the bit changes.
In this example, the program continues
to loop only if the value does change
during each iteration. If a number of
CPUs simultaneously attempt to modify a
single location by using the sample
instruction sequence, one CPU will fall
through on the first try, another will
loop once, and so on until all CPUs have
succeeded.

Updating Counters

In this example, a 32-bit counter is
updated by a program using the COMPARE
AND SWAP instruction to ensure that the
counter will be correctly updated. The
original value of the counter is
obtained by loading the word containing
the counter into general register 7.
This value is moved into general regis­
ter 8 to provide a modifiable copy, and
general register 6 (containing an incre­
ment to the counter) is added to the
modifiable copy to provide the updated
counter value. The COMPARE AND SWAP
instruction is used to ensure valid
storing of the counter.

The program updating the counter checks
the result by examining the condition
code. The condition code 0 indicates a
successful update, and the program can
proceed. If the counter had been
changed between the time that the
program loaded its original value and
the time that it executed the COMPARE
AND SWAP instruction, the execution
would have loaded the new counter value
into general register 7 and set the
condition code to 1, indicating an
unsuccessful update. The program must
then repeat the update sequence until
the execution of the COMPARE AND SWAP
instruction results in a successful
update.

The following instruction
performs the above procedure:

sequence

Appendix A. Number Representation and Instruction-Use Examples A-41

LA 6,1 Put increment (1) into
GR6

L 7,CNTR Put original counter
value into GR7

LOOP LR 8,7 Set up copy in GR8 to
modify

AR 8,6 Increment copy
CS 7,8,CNTR Update counter in

storage
BC 4,LOOP If original value had

changed, update new
value

The following shows two CPUs, A and B,
executing this instruction sequence
simultaneously: both CPUs attempt to
add one to CNTR.

CPU A CPU B Comments
GR7 GR8 CNTR GR7 GR8

16
16 16 CPU A loads GR7

and GR8 from
CNTR

16 16 CPU B loads GR7
and GR8 from
CNTR

17 CPU B adds one
to GR8

17 CPU A adds one
to GR8

17 CPU A executes
CSi successful
match, store

17 CPU B executes
CS; no match,
GR7 changed to
CNTR value

18 CPU B loads GR8
from GR7, adds
one to GR8

18 CPU B executes
CSi successful
match, store

BYPASSING POST AND WAIT

BYPASS POST Routine

The following routine allows the SVC
"POST" as used in OS/VS to be bypassed
whenever the corresponding WAIT has not
yet been executed, provided that the
supervisor WAIT and POST routines use
COMPARE AND SWAP to manipulate event
control blocks (ECBs).

GRO contains the POST code.
GR1 contains the address of the ECB.
GR5 contains 40 00 00 00{16}

A-42 System/370 Principles of Operation

HSPOST OR 0,5 Set bit 1 of
GR1 to one

L 3,0(1) GR3 = contents
of ECB

LTR 3,3 ECB marked
'waiting'!

BC 4,PSVC Yes, execute
post
SVC

CS 3,0,0(1) No, store post
code

BC 8,EXITHP Continue
PSVC POST (1),(0) ECB address is

EXITHP [Any instruction]

in GR1, post
code in GRO

The following routine may be used in
place of the previous HSPOST routine if
it is assumed that bit 1 of the contents
of GRO is already set to one and if the
ECB is assumed to contain zeros when it
is not marked "WAITING."

HSPOST SR 3,3
CS 3,0,0(1)
BC 8,EXITHP
POST (1),(0)

EXITHP [Any instruction]

BYPASS WAIT Routine

A BYPASS WAIT function, corresponding to
the BYPASS POST, does not use the CS
instruction, but the FIFO LOCK/UNLOCK
routines which follow assume its use.

HSWAIT TM
BC

O(1),X'40'
1,EXITHW If bit 1 is one,

then ECB is al­
ready posted;
branch to exit

WAIT ECB=(l)
EXITHW [Any instruction]

LOCK/UNLOCK

When a common storage area larger than a
doubleword is to be updated, it is
usually necessary to provide special
interlocks to ensure that a single
program at a time updates the common
area. Such an area is called a serially
reusable resource (SRR).

In general, updating a list, or even
scanning a list, cannot be safely accom­
plished without first "freezing" the
list. However, the COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP instructions can
be used in certain restricted situations
to perform queuing and list
manipUlation. Of prime importance is
the capability to perform the
lock/unlock functions and to provide
sufficient queuing to resolve

contentions, either in a LIFO or FIFO
manner. The lock/unlock functions can
then be used as the interlock mechanism
for updating an SRR of any complexity.

The lock/unlock functions are based on
the use of a "header" associated with
the SRR. The header is the common
starting point for determining the
states of the SRR, either free or in
use, and also is used for queuing
requests when contentions occur.
Contentions are resolved using WAIT and
POST. The general programming technique
requires that the program that encount­
ers a "locked" SRR must "leave a mark on
the wall" indicating the address of an
ECB on which it will WAIT. The "unlock­
ing" program sees the mark and posts the
ECB, thus permitting the waiting program
to continue. In the two examples given,
all programs using a particular SRR must
use either the LIFO queuing scheme or
the FIFO scheme; the two cannot be
mixed. When more complex queuing is
required, it is suggested that the queue
for the SRR be locked using one of the
two methods shown.

LOCK/UNLOCK with LIFO Queuing for
Contentions

The header consists of a word, that is,
a four-byte field aligned on a word
boundary. The word can contain zero, a
positive value, or a negative value.

• A zero value indicates that the
serially reusable resource (SRR) is
free.

• A negative value indicates that the
SRR is in use but no additional
programs are waiting for the SRR.

• A positive value indicates that the
SRR is in use and that one or more
additional programs are waiting for
the SRR. Each waiting program is
identified by an element in a
chained list. The positive value
in the header is the address of the
element most recently added to the
list.

Each element consists of two words. The
first word is used as an ECB; the second
word is used as a pointer to the next
element in the list. A negative value
in a pointer indicates that the element
is the last element in the list. The
element is required only if the program
finds the SRR locked and desires to be
placed in the list.

The following chart describes the action
taken for LIFO LOCK and LIFO UNLOCK
routines. The routines following the
chart allow enabled code to perform the
actions described in the chart.

Appendix A. Number Representation and Instruction-Use Examples A-43

Action

Header Contains Header Contains Header Contains
Function Zero Positive Value Negative Value

LIFO LOCK SRR i s free. SRR is in use. Store the
(the incoming Set the header contents of the header into
element is at to a negative location A+4. Store address A
location A) value. Use the into the header. WAIT; the ECB

SRR. is at location A.

LIFO UNLOCK Error Some program is The list is
waiting for the empty. Store
SRR. Move the zeros into the
pointer from header. The SRR
the "last in" is free.
element into
the header.
POST; the ECB
is in the "last
in" element.

LIFO LOCK Routine:

Initial Conditions:

GRI contains the address of the incom­
ing element.

GR2 contains the address of the header.

LLOCK SR
ST
LNR

3,3
3,0(1)
0,1

GR3 = 0
Initialize the ECB
GRO = a negative

value
TRYAGN CS 3,0,0(2) Set the header to

a negative value
if the header

USE

BC

ST

CS

LA
BC

8,USE

3,4(1)

contains zeros
Did the header

contain zeros?
No, store the

value of the
header into the
pointer in the
incoming element

3,1,0(2) Store the address
of the incoming
element into the
header

3,0(0) GR3 = 0
7,TRYAGN Did the header get

updated?
WAIT ECB=(1) Yes, wait for the

resource; the
ECB is in the
incoming element

[Any instruction]

LIFO UNLOCK Routine:

Initial Conditions:

GR2 contains the address of the header.

A-44 System/370 Principles of Operation

LUNlK L

A LTR

BC
L
CS

BC

1,0(2)

1,1

4,B
0,4(1)
1,0,0(2)

7,A

GR1 = the contents
of the header

Does the header
contain a neg­
ative value?

No, load the
pointer from the
"last in" element
and store it in
the header

Did the header get
updated?

POST (1) Yes, post the "last
in" element

Continue
B

EXIT

BC
SR
CS

BC
[Any

15,EXIT
0,0
1,0,0(2)

The header contains
a negative value;
free the header

7,A and continue
instruction]

Note that the LOAD instruction L 1,0(2)
at location LUNLK would have to be CS
1,1,0(2) if it were not for the rule
concerning storage-operand consistency.
This rule requires the LOAD instruction
to fetch a four-byte operand aligned on
a word boundary such that, if another
CPU changes the word being fetched by an
operation which is also at least word­
consistent, either the entire new or the
entire old value of the word is
obtained, and not a combination of the
two. (See the section "Storage-Operand
Consistency" in Chapter 5, "Program
Execution.")

LOCK/UNLOCK with FIFO Queuing for
Contentions

The header always contains the address
of the most recently entered element.
The header is originally initialized to
contain the address of a posted ECB.
Each program using the serially reusable
resource (SRR) must provide an element
regardless of whether contention occurs.

Each program then enters the address of
the element which it has provided into
the header, while simultaneously it
removes the address previously contained
in the header. Thus, associated with
any particular program attempting to use
the SRR are two elements, called the
"entered element" and the "removed
element." The "entered element" of one
program becomes the "removed element"
for the immediately following program.
Each program then waits on the removed
element, uses the SRR, and then posts
the entered element.

When no contention occurs, that is, when
the second program does not attempt to
use the SRR until after the first
program is finished, then the POST of
the first program occurs before the WAIT
of the second program. In this case,
the bypass-post and bypass-wait routines
described in the preceding section are
applicable. For simplicity, these two
routines are shown only by name rather
than as individual instructions.

In the example, the element need be only
a single word, that is, an ECB.
However, in actual practice, the element
could be made larger to include a point­
er to the previous element, along with a
program identification. Such informa­
tion would be useful in an error
situation to permit starting with the
header and chaining through the list of
elements to find the program currently
holding the SRR.

It should be noted that the element
provided by the program remains pointed
to by the header until the next program
attempts to lock. Thus, in general, the
entered element cannot be reused by the
program. However, the removed element
is available, so each program gives up
one element and gains a new one. It is
expected that the element removed by a
particular program during one use of the
SRR would then be used by that program
as the entry element for the next
request to the SRR.

It should be noted that, since the
elements are exchanged from one program
to the next, the elements cannot be
allocated from storage that would be
freed and reused when the program ends.
It is expected that a program would
obtain its first element and release its
last element by means of the routines
described in the section "Free-Pool
Manipulation" in this appendix.

The following chart describes the action
taken for FIFO LOCK and FIFO UNLOCK.

Function Action

FIFO LOCK Store address A
into the header.

(the incoming WAIT; the ECB is at
element is at the location addres-
location A) sed by the old con-

tents of the header.

FIFO UNLOCK POST; the ECB is at
location A.

The following routines allow enabled
code to perform the actions described in
the previous chart.

FIFO LOCK Routine:

Initial conditions:

GR3 contains the address of the header.
GR4 contains the address, A, of the

element currently owned by this
program. This element becomes the
entered element.

FLOCK LR 2,4

SR
ST
L

TRYAGN CS

BC

LR

1,1
1,0(2)
1,0(3)

1,2,0(3)

7,TRYAGN

HSWAIT

GR2 now contains
address of ele­
ment to be
entered

GR1 = °
Initialize the ECB
GR1 = contents of

the header
Enter address A

into header
while remember­
ing old contents
of header into
GR1; GR1 now
contains address
of removed
element

Removed element
becomes new cur­
rently owned
element

Perform bypass-
wa it rout i ne; if
ECB already
posted, con-
t i nue; if not,
wait; GR1 con­
tains the ad­
dress of the ECB

USE [Any instruction]

FIFO UNLOCK Routine:

Initial conditions:

GR2 contains the address of the removed
element, obtained during the FLOCK
routine.

GR5 contains 40 00 00 00{16}

Appendix A. Humber Representation and Instruction-Use Examples A-45

FUNLK LR 1,2 Place address of en-
tered element in
GR1; GR1 = address
of ECB to be posted

SR 0,0 GRO = 0; GRO has a
post code of zero

OR 0,5 Set bit 1 of GRO to
one

HSPOST Perform bypass-post
routine; if ECB has
not been waited on,
then mark posted
and continue; if it
has been waited on,
then post

CONTINUE [Any instruction]

FREE-POOL MANIPULATION

It is anticipated that a program will
need to add and delete items from a free
list without using the lock/unlock
routines. This is especially likely
since the lock/unlock routines require
storage elements for queuing and may
require working storage. The
lock/unlock routines discussed previous­
ly allow simultaneous lock routines but
permit only one unlock routine at a
time. In such a situation, multiple
additions and a single deletion to the
list may all occur simultaneously, but
multiple deletions cannot occur at the
same time. In the case of a chain of
pointers containing free storage
buffers, multiple deletions along with
additions can occur simultaneously. In
this case, the removal cannot be done
using the COMPARE AND SWAP instruction
without a certain degree of exposure.

Consider a chained list of the type used
in the LIFO lock/unlock example. Assume
that the first two elements are at
locations A and B, respectively. If one
program attempted to remove the first
element and was interrupted between the
fourth and fifth instructions of the
LUNLK routine, the list could be changed
so that elements A and C are the first

A-46 System/370 Principles of Operation

two elements when the interrupted
program resumes execution. The COMPARE
AND SWAP instruction would then succeed
in storing the value B into the header,
thereby destroying the list.

The probability of the occurrence of
such list destruction can be reduced to
near zero by appending to the header a
counter that indicates the number of
times elements have been added to the
list. The use of a 32-bit counter guar­
antees that the list will not be
destroyed unless the following events
occur, in the exact sequence:

1. An unlock routine is interrupted
between the fetch of the pointer
from the first element and the
update of the header.

2. The list is manipulated, including
the deletion of the element refer­
enced in 1, and exactly 2 32 -1 addi­
tions to the list are performed.
Note that this takes on the order
of days to perform in any practical
situation.

3. The element referenced in 1 is
added to the list.

4. The unlock routine interrupted in 1
resumes execution.

The following routines use such a count­
er in order to allow multiple, simul­
taneous additions and removals at the
head of a chain of pointers.

The list consists of a doubleword header
and a chain of elements. The first word
of the header contains a pointer to the
first element in the list. The second
word of the header contains a 32-bit
counter indicating the number of addi­
tions that have been made to the list.
Each element contains a pointer to the
next element in the list. A zero value
indicates the end of the list.

The following chart describes the free­
pool-list manipulation.

Action

Function Header = O,Count Header = A,Count

ADD TO LIST Store the first word of the header into
(the incoming location A. store the address A into the
element is at first word of the header. Decrement the
location A) second word of the header by one.

DELETE FROM The list is empty. Set the first word of the
LIST header to the value of

the contents of location
A. Use element A.

The following routines
code to perform the
manipulation described
chart.

allow enabled
free-pool-list

in the above

ADD TO FREE LIST Routine:

Initial Conditions:

GR2 contains the address of the element
to be added.

GR4 contains the address of the header.

ADDQ LM 0,1,0(4) GRO,GRI = contents
of the header

TRYAGN ST 0,0(2) Point the new ele-
ment to the top
of the list

LR 3,1 Move the count to
GR3

BCTR 3,0 Decrement the count
CDS 0,2,0(4) Update the header
BC 7,TRYAGN

DELETE FROM FREE LIST Routine:

Initial conditions:

GR4 contains the address of the header.

DELETQ LM 2,3,0(4) GR2,GR3 = con-
tents of the
header

TRYAGN LTR 2,2 Is the list
empty?

BC 8,EMPTY Yes, get help
L 0,0(2) No, GRO = the

pointer from
the first
element

LR 1,3 Move the count
to GRI

CDS 2,0,0(4) Update the
header

BC 7,TRYAGN
USE [Any instruction] The address of

the removed
element is in
GR2

Note that the LM (LOAD MULTIPLE)
instructions at locations ADDQ and
DELETQ would have to be CDS (COMPARE
DOUBLE AND SWAP) instructions if it were
not for the rule concerning storage­
operand consistency. This rule requires
the LOAD MULTIPLE instructions to fetch
an eight-byte operand aligned on a
doubleword boundary such that, if anoth­
er CPU changes the doubleword being
fetched by an operation which is also at
least doubleword-consistent, either the
entire new or the entire old value of
the doubleword is obtained, and not a
combination of the two. (See the
section "Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

Appendix A. Number Representation and Instruction-Use Examples A-47

The following figures list instructions
by name, mnemonic, operation code, and
facility. Some models may offer
instructions that do not appear in the
figures, such as those provided for
assists or as part of special or custom
features.

The operation codes for the vector
facility are not included in this appen­
dix. See the pUblication IBM System/370
Vector Operations, SA22-7125, for opera­
tion codes associated with this
facility.

The operation code 00 hex with a
two-byte instruction format is allocated
for use by the program when an indi­
cation of an invalid operation is
required. It is improbable that this
operation code will ever be assigned to
an instruction implemented in the CPU.

Explanation of Symbols in "Character­
istics" and ~ Code" Columns

9 Causes serialization and checkpoint
synchronization.

9 1 Causes serialization and checkpoint
synchronization when the Mt and R2
fields contain all ones and all
zeros, respectively.

$ Causes serialization. * The handling of bits 8-15 of the
operation code for some of the I/O
instructions depends on the
instruction and the facilities
installed. See the description of
the instruction for details.

A Access exceptions for logical
addresses.

Al Access exceptions; not all access
exceptions may occur; see instruc­
tion description for details.

AI Access exceptions for instruction
address.

AS Access exceptions and ASN­
translation-specification
exception; see instruction descrip­
tion for details.

AT ASN-translation exceptions (which
include addressing, ASN-translation
specification, AFX translation, and
ASX translation>.

B PER branch event.
BS Branch-and-save facility.
C Condition code is set.
CK CPU-timer and clock-comparator

facility.
CS Channel-set-switching facility.
D Data exception.
DC Direct-control facility.
DF Decimal-overflow exception.
DK Decimal-divide exception.
DM Depending on the model, DIAGNOSE

may generate various program
exceptions and may change the
condition code.

DU Dual-address-space facility.
EF Extended facility.

EK

EO
EU
EX
FK
FP
GO

Gl

G2

GM

IF
II
IK
L
LS
MI
MO
MP
P
PK
Q

R

RE
RR
RRE
RS
RX
S
SD

SI
SO
SP
SR
SS
SSE
ST
SW
T

TB
TR
XP

APPENDIX ~ LISTS OF INSTRUCTIONS

Storage-key-instruction-extension
facility.
Exponent-overflow exception.
Exponent-underflow exception.
Execute exception.
Floating-point-divide exception.
Floating-point facility.
Instruction execution includes the
implied use of general register O.
Instruction execution includes the
implied use of general register I.
Instruction execution includes the
implied use of general register 2.
Instruction execution includes the
implied use of multiple general
registers.
Fixed-point-overflow exception.
Interruptible instruction.
Fixed-point-divide exception.
New condition code is loaded.
Significance exception.
Move-inverse facility.
Monitor event.
Multiprocessing facility.
Privileged-operation exception.
PSW-key-handling facility.
Privileged-operation exception for
semiprivileged instructions.
PER general-register-alteration
event.
Recovery-extension facility.
RR instruction format.
RRE instruction format.
RS instruction format.
RX instruction format.
S instruction format.
PER storage-alteration event, which
can be caused by READ DIRECT only
when INVALIDATE PAGE TABLE ENTRY is
not installed.
SI instruction format.
Special-operation exception.
Specification exception.
Suspend-and-resume facility.
SS instruction format.
SSE instruction format.
PER storage-alteration event.
Conditional-swapping facility.
Trace exceptions (which include
access and specification).
Test-block facility.
Translation facility.
Extended-precision floating-point
facility.
Additional exceptions and events
for PROGRAM CALL (which include
addressing, EX translation, LX
translation, PC-translation speci­
fication, and special-operation
exceptions and space-switch event).
Additional exceptions and events
for PROGRAM TRANSFER (which include
addressing, primary authority, and
special-operation exceptions and
space-switch event).
Additional exceptions for SET
SECONDARY ASN (which include ad­
dressing, secondary authority, and
special operation).

Appendix B. Lists of Instructions B-1

Mne- Op Page
Name monic Characteristics Code No.

ADD AR RR C IF R lA 7-7
ADD A RX C A IF R SA 7-7
ADD DECIMAL AP 55 C A D DF ST FA 8-5
ADD HALFWORD AH RX C A IF R 4A 7-7
ADD LOGICAL ALR RR C R IE 7-8

ADD LOGICAL AL RX C A R 5E 7-8
ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36 9-6
ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 2A 9-6
ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 6A 9-6
ADD NORMALIZED (short) AER RR C FP SP EU EO LS 3A 9-6

!

ADD NORMALIZED (short) AE RX C FP A SP EU EO LS 7A 9-6
ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 2E 9-7
ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 6E 9-7
ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 3E 9-7
ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 7E 9-7

AND NR RR C R 14 7-8
AND N RX C A R 54 7-8
AND (character) NC 55 C A ST D4 7-8
AND (immediate) NI 51 C A ST 94 7-8
BRANCH AND LINK BALR RR B R 05 7-9

BRANCH AND LINK BAL RX B R 45 7-9
BRANCH AND SAVE BA5R RR BS B R OD 7-9
BRANCH AND SAVE BAS RX BS B R 4D 7-9
BRANCH ON CONDITION BCR RR ¢1 B 07 7-10
BRANCH ON CONDITION BC RX B 47 7-10

BRANCH ON COUNT BCTR RR B R 06 7-11
BRANCH ON COUNT BCT RX B R 46 7-11
BRANCH ON INDEX HIGH BXH RS B R 86 7-11
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87 7-11
CLEAR CHANNEL CLRCH S C RE P ¢ 9FOl* 13-16

CLEAR I/O CLRIO 5 C P ¢ 9DOHE 13-17
COMPARE CR RR C 19 7-12
COMPARE C RX C A 59 7-12
COMPARE (long) CDR RR C FP SP 29 9-8
COMPARE (long) CD RX C FP A SP 69 9-8

COMPARE (short) CER RR C FP SP 39 9-8
Cor1PARE (short) CE RX C FP A SP 79 9-8
COMPARE AND SWAP CS RS C SW A SP $ R ST BA 7-12
COMPARE DECIMAL CP SS C A D F9 8-5
COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST BB 7-12

COMPARE HAlFWORD CH RX C A 49 7-14
COMPARE LOGICAL CLR RR C 15 7-14
COMPARE LOGICAL CL RX C A 55 7-14
COMPARE LOGICAL (character) ClC SS C A D5 7-14
COMPARE LOGICAL (immediate) ClI SI C A 95 7-14

COMPARE LOGICAL C. UNDER MASK CLM RS C A BD 7-15
COMPARE LOGICAL LONG CLCL RR C A SP II R OF 7-15
CONNECT CHANNEL SET CONCS 5 C CS P $ B200 10-4
CONVERT TO BINARY CVB RX A D IK R 4F 7-16
CONVERT TO DECIMAL CVD RX A ST 4E 7-17

DIAGNOSE DM P DM 83 10-5
DISCONNECT CHANNEL SET DISCS S C CS P $ B201 10-6
DIVIDE DR RR SP IK R ID 7-17
DIVIDE D RX A SP IK R 5D 7-17
DIVIDE (long) DDR RR FP SP EU EO FK 2D 9-9

Instructions Arranged by Name (Part 1 of 4)

B-2 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

DIVIDE (long) DD RX FP A SP EU EO FK 6D 9-9
DIVIDE (short) DER RR FP SP EU EO FK 3D 9-9
DIVIDE (short) DE RX FP A SP EU EO FK 7D 9-9
DIVIDE DECIMAL DP SS A SP D DK ST FD 8-5
EDIT ED SS C A D ST DE 8-6

EDIT AND MARK EDMK SS C A D G1 R ST DF 8-9
EXCLUSIVE OR XR RR C R 17 7-18
EXCLUSIVE OR X RX C A R 57 7-18
EXCLUSIVE OR (character) XC SS C A ST D7 7-18
EXCLUSIVE OR (immediate) XI SI C A ST 97 7-18

EXECUTE EX RX AI SP EX 44 7-19
EXTRACT PRIMARY ASN EPAR RRE DU Q SO R B226 10-6
EXTRACT SECONDARY ASN ESAR RRE DU Q SO R B227 10-7
HALT DEVICE HDV S C P ¢ 9E01* 13-19
HALT I/O HID 5 C P ¢ 9EOO* 13-23

HALVE (long) HDR RR FP SP EU 24 9-10
HALVE (short) HER RR FP SP EU 34 9-10
INSERT ADDRESS SPACE CONTROL lAC RRE C DU Q SO R B224 10-7
INSERT CHARACTER IC RX A R 43 7-20
INSERT CHARACTERS UNDER MASK ICM RS C A R BF 7-20

INSERT PSW KEY IPK S PK Q G2 R B20B 10-8
INSERT STORAGE KEY ISK RR P Al SP SO R 09 10-8
INSERT STORAGE KEY EXTENDED ISKE RRE EK P Al R B229 10-9
INSERT VIRTUAL STORAGE KEY IVSK RRE DU Q Al SO R B223 10-10
INVALIDATE PAGE TABLE ENTRY IPTE RRE EF P Al $ B221 10-11

LOAD LR RR R 18 7-20
LOAD L RX A R 58 7-20
LOAD (long) LDR RR FP SP 28 9-10
LOAD (long) LD RX FP A SP 68 9-10
LOAD (short) LER RR FP SP 38 9-10

LOAD (short) LE RX FP A SP 78 9-10
LOAD ADDRESS LA RX R 41 7-21
LOAD ADDRESS SPACE PARAMETERS LASP SSE C DU P AS SP SO E500 10-12
LOAD AND TEST LTR RR C R 12 7-21
LOAD AND TEST (long) LTDR RR C FP SP 22 9-11

LOAD AND TEST (short) LTER RR C FP SP 32 9-11
LOAD COMPLEMENT LCR RR C IF R 13 7-21
LOAD COMPLEMENT (long) LCDR RR C FP SP 23 9-11
LOAD COMPLEMENT (short) LCER RR C FP SP 33 9-11
LOAD CONTROL LCTL RS P A SP B7 10-20

LOAD HALFWORD LH RX A R 48 7-22
LOAD MULTIPLE LM RS A R 98 7-22
LOAD NEGATIVE LNR RR C R 11 7-22
LOAD NEGATIVE (long) LNDR RR C FP SP 21 9-11
LOAD NEGATIVE (short) LNER RR C FP SP 31 9-11

LOAD POSITIVE LPR RR C IF R 10 7-22
LOAD POSITIVE (long) LPDR RR C FP SP 20 9-12
LOAD POSITIVE (short) LPER RR C FP SP 30 9-12
LOAD PSW LPSW 5 L P A SP ¢ 82 10-20
LOAD REAL ADDRESS LRA RX C TR P Al R B1 10-21

LOAD ROUNDED (ext. to long) LRDR RR XP SP EO 25 9-12
LOAD ROUNDED (long to short) LRER RR XP SP EO 35 9-12
MONITOR CALL MC 51 SP MO AF 7-23
MOVE (character) MVC 55 A ST D2 7-23
MOVE (immediate) MVI 51 A ST 92 7-23

Instructions Arranged by Name (Part 2 of 4)

Appendix B. lists of Instructions B-3

Mne- Op Page
Name monic Characteristics Code No.

MOVE INVERSE MVCIN SS MI A ST E8 7-24
MOVE LONG MVCL RR C A SP II R ST OE 7-24
MOVE NUMERICS MVN SS A ST Dl 7-27
MOVE TO PRIMARY MVCP SS C DU Q A SO 9 ST DA 10-22
MOVE TO SECONDARY MVCS SS C DU Q A SO 9 ST DB 10-22

MOVE WITH KEY MVCK SS C DU Q A ST D9 10-24
MOVE WITH OFFSET MVO SS A ST Fl 7-27
MOVE ZONES MVZ SS A ST D3 7-28
MULTIPLY MR RR SP R lC 7-28
MULTIPLY M RX A SP R 5C 7-28

MULTIPLY (extended) MXR RR XP SP EU EO 26 9-13
MULTIPLY (long to extended) MXDR RR XP SP EU EO 27 9-13
MULTIPLY (long to extended) MXD RX XP A SP EU EO 67 9-13
MULTIPLY (long) MDR RR FP SP EU EO 2C 9-13
MULTIPLY (long) MD RX FP A SP EU EO 6C 9-13

MULTIPLY (short to long) MER RR FP SP EU EO 3C 9-13
MULTIPLY (short to long) ME RX FP A SP EU EO 7C 9-13
MULTIPLY DECIMAL MP SS A SP D ST FC 8-10
MULTIPLY HALFWORD MH RX A R 4C 7-29
OR OR RR C R 16 7-29

OR 0 RX C A R 56 7-29
OR (character) OC SS C A ST D6 7-29
OR (immediate) 01 SI C A ST 96 7-29
PACK PACK SS A ST F2 7-30
PROGRAM CALL PC S DU Q AT Zl T 9 GM B R ST B218 10-25

PROGRAM TRANSFER PT RRE DU Q AT SP Z2 T 9 B ST B228 10-31
PURGE TLB PTLB S TR P $ B20D 10-36
READ DIRECT RDD SI DC P A1 $ SD 85 10-36
RESET REFERENCE BIT RRB S C TR P Al SO B213 10-36
RESET REFERENCE BIT EXTENDED RRBE RRE C EK P A1 B22A 10-37

RESUME I/O RIO S C SR P ¢ 9C02* 13-26
SET ADDRESS SPACE CONTROL SAC S DU SP SO 9 B219 10-38
SET CLOCK SCK 5 C P A SP B204 10-39
SET CLOCK COMPARATOR SCKC 5 CK P A SP B206 10-39
SET CPU TIMER SPT 5 CK P A SP B208 10-40

SET PREFIX SPX S MP P A SP $ B210 10-40
SET PROGRAM MASK SPM RR L 04 7-31
SET PSW KEY FROM ADDRESS SPKA S PK Q B20A 10-41
SET SECONDARY ASN SSAR RRE DU AT Z3 T 9 ST B225 10-41
SET STORAGE KEY SSK RR P Al SP SO 9 08 10-45

SET STORAGE KEY EXTENDED SSKE RRE EK P Al ¢ B22B 10-45
SET SYSTEM MASK SSM S P A SP SO 80 10-46
SHIFT AND ROUND DECIMAL SRP SS C A D DF ST FO 8-10
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F 7-31
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D 7-32

SHIFT LEFT SINGLE SLA RS C IF R 8B 7-32
SHIFT LEFT SINGLE LOGICAL SLL RS R 89 7-33
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-33
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C 7-33
SHIFT RIGHT SINGLE SRA RS C R 8A 7-34

SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-34
SIGNAL PROCESSOR SIGP RS C MP P $ R AE 10-46
START I/O SIO S C P 9 9COO* 13-27
START I/O FAST RELEASE SIOF S C P 9 9C01* 13-27
STORE ST RX A ST 50 7-34

Instructions Arranged by Name (Part 3 of 4)

B-4 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

STORE (long) STD RX FP A SP ST 60 9-14
STORE (short) STE RX FP A SP ST 70 9-14
STORE CHANNEL ID STIDC S C P ¢ B203 13-32
STORE CHARACTER STC RX A ST 42 7-34
STORE CHARACTERS UNDER MASK STCM RS A ST BE 7-35

STORE CLOCK STCK S C A $ ST B205 7-35
STORE CLOCK COMPARATOR STCKC S CK P A SP ST B207 10-47
STORE CONTROL STCTL RS P A SP ST B6 10-48
STORE CPU ADDRESS STAP S MP P A SP ST B212 10-48
STORE CPU ID STIDP S P A SP ST B202 10-48

STORE CPU TIMER STPT S CK P A SP ST B209 10-49
STORE HALFWORD STH RX A ST 40 7-36
STORE MULTIPLE STM RS A ST 90 7-36
STORE PREFIX STPX S MP P A SP ST B211 10-49
STORE THEN AND SYSTEM MASK STNSM SI TR P A ST AC 10-50

STORE THEN OR SYSTEM MASK STOSM SI TR P A SP ST AD 10-50
SUBTRACT SR RR C IF R 1B 7-36
SUBTRACT S RX C A IF R 5B 7-36
SUBTRACT DECIMAL SP SS C A D DF ST FB 8-11
SUBTRACT HALFWORD SH RX C A IF R 4B 7-37

SUBTRACT LOGICAL SLR RR C R IF 7-37
SUBTRACT LOGICAL SL RX C A R SF 7-37
SUBTRACT NORMALIZED (ext.) SXR RR C XP SP EU EO LS 37 9-14
SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 2B 9-14
SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 6B 9-14

SUBTRACT NORMALIZED (short) SER RR C FP SP EU EO LS 3B 9-14
SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 7B 9-14
SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 2F 9-15
SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 6F 9-15
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 3F 9-15

SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 7F 9-15
SUPERVISOR CALL SVC RR ¢ OA 7-38
TEST AND SET TS S C A $ ST 93 7-38
TEST BLOCK TB RRE C TB P Al II $ GO R B22C 10-50
TEST CHANNEL TCH S C P ¢ 9FOO* 13-33

TEST I/O TID S C P ¢ 9DOO* 13-34
TEST PROTECTION TPROT SSE C EF P Al E501 10-52
TEST UNDER MASK TM S1 C A 91 7-38
TRANSLATE TR SS A ST DC 7-39
TRANSLATE AND TEST TRT SS C A GM R DD 7-40

UNPACK UNPK SS A ST F3 7-40
WRITE DIRECT WRD SI DC P Al $ 84 10-54
ZERO AND ADD ZAP SS C A D DF ST F8 8-12

Instructions Arranged by Name (Part 4 of 4)

Appendix B. Lists of Instructions B-5

Mne- Op Page
monic Name Characteristics Code No.

DIAGNOSE DM P DM 83 10-5
A ADD RX C A IF R 5A 7-7
AD ADD NORMALIZED (long) RX C FP A SP EU EO LS 6A 9-6
ADR ADD NORMALIZED (long) RR C FP SP EU EO LS 2A 9-6
AE ADD NORMALIZED (short) RX C FP A SP EU EO LS 7A 9-6

AER ADD NORMALIZED (short) RR C FP SP EU EO LS 3A 9-6
AH ADD HALFWORD RX C A IF R 4A 7-7
AL ADD LOGICAL RX C A R 5E 7-8
ALR ADD LOGICAL RR C R IE 7-8
AP ADD DECIMAL SS C A D DF ST FA 8-5

AR ADD RR C IF R 1A 7-7
AU ADD UNNORMALIZED (short) RX C FP A SP EO LS 7E 9-7
AUR ADD UNNORMALIZED (short) RR C FP SP EO LS 3E 9-7
AW ADD UNNORMALIZED (long) RX C FP A SP EO LS 6E 9-7
AWR ADD UNNORMALIZED (long) RR C FP SP EO LS 2E 9-7

AXR ADD NORMALIZED (extended) RR C XP SP EU EO LS 36 9-6
BAL BRANCH AND LINK RX B R 45 7-9
BALR BRANCH AND LINK RR B R 05 7-9
BAS BRANCH AND SAVE RX BS B R 4D 7-9
BASR BRANCH AND SAVE RR BS B R OD 7-9

BC BRANCH ON CONDITION RX B 47 7-10
BCR BRANCH ON CONDITION RR ¢l B 07 7-10
BCT BRANCH ON COUNT RX B R 46 7-11
BCTR BRANCH ON COUNT RR B R 06 7-11
BXH BRANCH ON INDEX HIGH RS B R 86 7-11

BXLE BRANCH ON INDEX lOW OR EQUAL RS B R 87 7-11
C COMPARE RX C A 59 7-12
CD COMPARE (long) RX C FP A SP 69 9-8
CDR COMPARE (long) RR C FP SP 29 9-8
CDS COMPARE DOUBLE AND SWAP RS C SW A SP $ R ST BB 7-12

CE COMPARE (short) RX C FP A SP 79 9-8
CER COMPARE (short) RR C FP SP 39 9-8
CH COMPARE HALFWORD RX C A 49 7-14
CL COMPARE LOGICAL RX C A 55 7-14
CLC COMPARE LOGICAL (character) SS C A 05 7-14

CLCL COMPARE LOGICAL LONG RR C A SP II R OF 7-15
CLI COMPARE LOGICAL (immediate) SI C A 95 7-14
CLM COMPARE LOGICAL C. UNDER MASK RS C A BD 7-15
CLR COMPARE LOGICAL RR C 15 7-14
CLRCH CLEAR CHANNEL S C RE P ¢ 9FOl* 13-16

CLRIO CLEAR I/O S C P ¢ 9001* 13-17
CONCS CONNECT CHANNEL SET S C CS P $ B200 10-4
CP COMPARE DECIMAL SS C A 0 F9 8-5
CR COMPARE RR C 19 7-12
CS COMPARE AND SWAP RS C SW A SP $ R ST BA 7-12

CVB CONVERT TO BINARY RX A 0 IK R 4F 7-16
CVD CONVERT TO DECIMAL RX A ST 4E 7-17
0 DIVIDE RX A SP IK R 50 7-17
DO DIVIDE (long) RX FP A SP EU EO FK 60 9-9
DDR DIVIDE (long) RR FP SP EU EO FK 20 9-9

DE DIVIDE (short) RX FP A SP EU EO FK 70 9-9
DER DIVIDE (short) RR FP SP EU EO FK 3D 9-9
DISCS DISCONNECT CHANNEL SET S C CS P $ B201 10-6
DP DIVIDE DECIMAL SS A SP 0 OK ST FD 8-5
DR DIVIDE RR SP IK R 10 7-17

Instructions Arranged by Mnemonic (Part 1 of 4)

B-6 System/370 Principles of Operation

Mne- Op Page
monic Name Characteristics Code No.

ED EDIT SS C A D ST DE 8-6
EDMK EDIT AND MARK SS C A D G1 R ST DF 8-9
EPAR EXTRACT PRIMARY ASN RRE DU Q SO R B226 10-6
ESAR EXTRACT SECONDARY ASN RRE DU Q SO R B227 10-7
EX EXECUTE RX AI SP EX 44 7-19

HDR HALVE (long) RR FP SP EU 24 9-10
HDV HALT DEVICE S C P ¢ 9E01* 13-19
HER HALVE (short) RR FP SP EU 34 9-10
HIO HALT I/O S C P ¢ 9EOO* 13-23
lAC INSERT ADDRESS SPACE CONTROL RRE C DU Q SO R B224 10-7

IC INSERT CHARACTER RX A R 43 7-20
ICM INSERT CHARACTERS UNDER MASK RS C A R BF 7-20
IPK INSERT PSW KEY S PK Q G2 R B20B 10-8
IPTE INVALIDATE PAGE TABLE ENTRY RRE EF P Al $ B221 10-11
ISK INSERT STORAGE KEY RR P Al SP SO R 09 10-8

ISKE INSERT STORAGE KEY EXTENDED RRE EK P Al R B229 10-9
IVSK INSERT VIRTUAL STORAGE KEY RRE DU Q Al SO R B223 10-10
L LOAD RX A R 58 7-20
LA LOAD ADDRESS RX R 41 7-21
LASP LOAD ADDRESS SPACE PARAMETERS SSE C DU P AS SP SO E500 10-12

LCDR LOAD COMPLEMENT (long) RR C FP SP 23 9-11
LCER LOAD COMPLEMENT (short) RR C FP SP 33 9-11
LCR LOAD COMPLEMENT RR C IF R 13 7-21
LCTL LOAD CONTROL RS P A SP B7 10-20
LD LOAD (long) RX FP A SP 68 9-10

LDR LOAD (long) RR FP SP 28 9-10
LE LOAD (short) RX FP A SP 78 9-10
LER LOAD (short) RR FP SP 38 9-10
LH LOAD HALFWORD RX A R 48 7-22
LM LOAD MULTIPLE RS A R 98 7-22

LNDR LOAD NEGATIVE (long) RR C FP SP 21 9-11
LNER LOAD NEGATIVE (short) RR C FP SP 31 9-11
LNR LOAD NEGATIVE RR C R 11 7-22
LPDR LOAD POSITIVE (long) RR C FP SP 20 9-12
LPER LOAD POSITIVE (short) RR C FP SP 30 9-12

LPR LOAD POSITIVE RR C IF R 10 7-22
LPSW LOAD PSW S L P A SP ¢ 82 10-20
LR LOAD RR R 18 7-20
LRA LOAD REAL ADDRESS RX C TR P Al R Bl 10-21
LRDR LOAD ROUNDED (ext. to long) RR XP SP EO 25 9-12

LRER LOAD ROUNDED (long to short) RR XP SP EO 35 9-12
LTDR LOAD AND TEST (long) RR C FP SP 22 9-11
L TER LOAD AND TEST (short) RR C FP SP 32 9-11
LTR LOAD AND TEST RR C R 12 7-21
M MULTIPLY RX A SP R 5C 7-28

MC MONITOR CALL SI SP MO AF 7-23
MD MULTIPLY (long) RX FP A SP EU EO 6C 9-13
MDR MULTIPLY (long) RR FP SP EU EO 2C 9-13
ME MULTIPLY (short to long) RX FP A SP EU EO 7C 9-13
MER MULTIPLY (short to long) RR FP SP EU EO 3C 9-13

MH MULTIPLY HALFWORD RX A R 4C 7-29
MP MULTIPLY DECIMAL SS A SP D ST FC 8-10
MR MULTIPLY RR SP R lC 7-28
MVC MOVE (character) SS A ST D2 7-23
MVCIN MOVE INVERSE SS MI A ST E8 7-24

Instructions Arranged by Mnemonic (Part 2 of 4)

Appendix B. Lists of Instructions B-7

Mne- Op Page
monic Name Characteristics Code No.

MVCK MOVE WITH KEY SS C DU Q A ST 09 10-24
MVCL MOVE LONG RR C A SP II R ST OE 7-24
MVCP MOVE TO PRIMARY SS C DU Q A SO ¢ ST DA 10-22
MVCS MOVE TO SECONDARY 55 C DU Q A SO ¢ ST DB 10-22
MVI MOVE (immediate) 51 A ST 92 7-23

MVN MOVE NUMERICS 55 A ST Dl 7-27
MVO MOVE WITH OFFSET SS A ST Fl 7-27
MVZ MOVE ZONES SS A ST 03 7-28
MXD MULTIPLY (long to extended) RX XP A SP EU EO 67 9-13
MXDR MULTIPLY (long to extended) RR XP SP EU EO 27 9-13

MXR MULTIPLY (extended) RR XP SP EU EO 26 9-13
N AND RX C A R 54 7-8
NC AND (character) SS C A ST 04 7-8
NI AND (immediate) SI C A ST 94 7-8
NR AND RR C R 14 7-8

0 OR RX C A R 56 7-29
OC OR (character) 55 C A ST 06 7-29
01 OR (immediate) SI C A ST 96 7-29
OR OR RR C R 16 7-29
PACK PACK 55 A ST F2 7-30

PC PROGRAM CALL S DU Q AT Zl T ¢ GM B R ST B218 10-25
PT PROGRAM TRANSFER RRE DU Q AT SP Z2 T ¢ B ST B228 10-31
PTLB PURGE TLB 5 TR P $ B20D 10-36
ROD READ DIRECT 51 DC P Al $ SO 85 10-36
RIO RESUME I/O S C SR P ¢ 9C02* 13-26

RRB RESET REFERENCE BIT 5 C TR P Al SO B213 10-36
RRBE RESET REFERENCE BIT EXTENDED RRE C EK P Al B22A 10-37
S SUBTRACT RX C A IF R 5B 7-36
SAC SET ADDRESS SPACE CONTROL S DU SP SO ¢ B219 10-38
SCK SET CLOCK S C P A SP B204 10-39

SCKC SET CLOCK COMPARATOR S CK P A SP B206 10-39
SO SUBTRACT NORMALIZED (long) RX C FP A SP EU EO LS 6B 9-14
SDR SUBTRACT NORMALIZED (long) RR C FP SP EU EO LS 2B 9-14
SE SUBTRACT NORMALIZED (short) RX C FP A SP EU EO LS 7B 9-14
SER SUBTRACT NORMALIZED (short) RR C FP SP EU EO LS 3B 9-14

SH SUBTRACT HALFWORD RX C A IF R 4B 7-37
SIGP SIGNAL PROCESSOR RS C MP P $ R AE 10-46
SIO START I/O S C P ¢ 9COO* 13-27
SIOF START I/O FAST RELEASE 5 C P ¢ 9COl* 13-27
SL SUBTRACT LOGICAL RX C A R 5F 7-37

SLA SHIFT LEFT SINGLE RS C IF R 8B 7-32
SLDA SHIFT LEFT DOUBLE RS C SP IF R 8F 7-31
SLDL SHIFT LEFT DOUBLE LOGICAL RS SP R 80 7-32
SLL SHIFT LEFT SINGLE LOGICAL RS R 89 7-33
SLR SUBTRACT LOGICAL RR C R IF 7-37

SP SUBTRACT DECIMAL SS C A 0 OF ST FB 8-11
SPKA SET PSW KEY FROM ADDRESS S PK Q B20A 10-41
SPM SET PROGRAM MASK RR L 04 7-31
SPT SET CPU TIMER S CK P A SP B208 10-40
SPX SET PREFIX S MP P A SP $ B210 10-40

SR SUBTRACT RR C IF R IB 7-36
SRA SHIFT RIGHT SINGLE RS C R 8A 7-34
SRDA SHIFT RIGHT DOUBLE RS C SP R 8E 7-33
SRDL SHIFT RIGHT DOUBLE LOGICAL RS SP R 8C 7-33
SRL SHIFT RIGHT SINGLE LOGICAL RS R 88 7-34

Instructions Arranged by Mnemonic (Part 3 of 4)

B-8 System/370 Principles of Operation

Mne- Op Page
monic Name Characteristics Code No.

SRP SHIFT AND ROUND DECIMAL SS C A D OF ST FO 8-10
SSAR SET SECONDARY ASN RRE DU AT Z3 T ¢ ST B225 10-41
SSK SET STORAGE KEY RR P Al SP SO ¢ 08 10-45
SSKE SET STORAGE KEY EXTENDED RRE EK P Al ¢ B228 10-45
SSM SET SYSTEM MASK S P A SP SO 80 10-46

ST STORE RX A ST 50 7-34
STAP STORE CPU ADDRESS S MP P A SP ST B212 10-48
STC STORE CHARACTER RX A ST 42 7-34
STCK STORE CLOCK S C A $ ST B205 7-35
STCKC STORE CLOCK COMPARATOR S CK P A SP ST B207 10-47

STCM STORE CHARACTERS UNDER MASK RS A ST BE 7-35
STCTL STORE CONTROL RS P A SP ST B6 10-48
STD STORE (long) RX FP A SP ST 60 9-14
STE STORE (short) RX FP A SP ST 70 9-14
STH STORE HALFWORD RX A ST 40 7-36

STIDC STORE CHANNEL ID 5 C P ¢ B203 13-32
STIDP STORE CPU 10 5 P A SP ST B202 10-48
STM STORE MULTIPLE RS A ST 90 7-36
STNSM STORE THEN AND SYSTEM MASK SI TR P A ST AC 10-50
STOSM STORE THEN OR SYSTEM MASK SI TR P A SP ST AD 10-50

STPT STORE CPU TIMER S CK P A SP ST B209 10-49
STPX STORE PREFIX S MP P A SP ST B211 10-49
SU SUBTRACT UNNORMALIZED (short) RX C FP A SP EO LS 7F 9-15
SUR SUBTRACT UNNORMALIZED (short) RR C FP SP EO LS 3F 9-15
SVC SUPERVISOR CALL RR ¢ OA 7-38

SW SUBTRACT UNNORMALIZED (long) RX C FP A SP EO LS 6F 9-15
SWR SUBTRACT UNNORMALIZED (long) RR C FP SP EO LS 2F 9-15
SXR SUBTRACT NORMALIZED (ext.) RR C XP SP EU EO LS 37 9-14
TB TEST BLOCK RRE C TB P Al II $ GO R B22C 10-50
TCH TEST CHANNEL 5 C P ¢ 9FOO* 13-33

TIO TEST I/O 5 C P ¢ 9DOO* 13-34
TM TEST UNDER MASK 51 C A 91 7-38
TPROT TEST PROTECTION SSE C EF P Al E501 10-52
TR TRANSLATE SS A ST DC 7-39
TRT TRANSLATE AND TEST 55 C A GM R DD 7-40

TS TEST AND SET 5 C A $ ST 93 7-38
UNPK UNPACK 55 A ST F3 7-40
WRD WRITE DIRECT 51 DC P Al $ 84 10-54
X EXCLUSIVE OR RX C A R 57 7-18
XC EXCLUSIVE OR (character) 55 C A ST D7 7-18

XI EXCLUSIVE OR (immediate) 51 C A ST 97 7-18
XR EXCLUSIVE OR RR C R 17 7-18
ZAP ZERO AND ADD 55 C A D DF ST F8 8-12

Instructions Arranged by Mnemonic (Part 4 of 4)

Appendix B. Lists of Instructions B-9

Op Mne- Page
Code Name monic Characteristics No.

04 SET PROGRAM MASK SPM RR l 7-31
05 BRANCH AND LINK BALR RR a R 7-9
06 BRANCH ON COUNT BCTR RR B R 7-11
07 BRANCH ON CONDITION BCR RR ¢1 B 7-10
08 SET STORAGE KEY SSK RR P Al SP SO ¢ 10-45

09 INSERT STORAGE KEY ISK RR P Al SP SO R 10-8
OA SUPERVISOR CALL SVC RR ¢ 7-38
OD BRANCH AND SAVE BASR RR as B R 7-9
OE MOVE LONG MVCL RR C A SP II R ST 7-24
OF COMPARE LOGICAL LONG CLCL RR C A SP II R 7-15

10 LOAD POSITIVE LPR RR C IF R 7-22
11 LOAD NEGATIVE LNR RR C R 7-22
12 LOAD AND TEST LTR RR C R 7-21
13 LOAD COMPLEMENT LCR RR C IF R 7-21
14 AND NR RR C R 7-8

15 COMPARE LOGICAL CLR RR C 7-14
16 OR OR RR C R 7-29
17 EXCLUSIVE OR XR RR C R 7-18
18 LOAD LR RR R 7-20
19 COMPARE CR RR C 7-12

lA ADD AR RR C IF R 7-7
IB SUBTRACT SR RR C IF R 7-36
IC MULTIPLY MR RR SP R 7-28
1D DIVIDE DR RR SP IK R 7-17
IE ADD LOGICAL ALR RR C R 7-8

IF SUBTRACT LOGICAL SLR RR C R 7-37
20 LOAD POSITIVE (long) LPDR RR C FP SP 9-12
21 LOAD NEGATIVE (long) LNDR RR C FP SP 9-11
22 LOAD AND TEST (long) LTDR RR C FP SP 9-11
23 LOAD COMPLEMENT (long) LCDR RR C FP SP 9-11

24 HALVE (long) HDR RR FP SP EU 9-10
25 LOAD ROUNDED (ext. to long) LRDR RR XP SP EO 9-12
26 MULTIPLY (extended) MXR RR XP SP EU EO 9-13
27 MULTIPLY (long to extended) MXDR RR XP SP EU EO 9-13
28 LOAD (long) LDR RR FP SP 9-10

29 COMPARE (long) CDR RR C FP SP 9-8
2A ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 9-6
2B SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 9-14
2C MULTIPLY (long) t-mR RR FP SP EU EO 9-13
2D DIVIDE (long) DDR RR FP SP EU EO FK 9-9

2E ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 9-7
2F SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 9-15
30 LOAD POSITIVE (short) LPER RR C FP SP 9-12
31 LOAD NEGATIVE (short) LNER RR C FP SP 9-11
32 LOAD AND TEST (short) LTER RR C FP SP 9-11

33 LOAD COMPLEMENT (short) LCER RR C FP SP 9-11
34 HALVE (short) HER RR FP SP EU 9-10
35 LOAD ROUNDED (long to short) LRER RR XP SP EO 9-12
36 ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 9-6
37 SUBTRACT NORMALIZED (ext.) SXR RR C XP SP EU EO LS 9-14

38 LOAD (short) LER RR FP SP 9-10
39 COMPARE (short) CER RR C FP SP 9-8
3A ADD NORMALIZED (short) AER RR C FP SP EU EO LS 9-6
3B SUBTRACT NORMALIZED (short) SER RR C FP SP EU EO LS 9-14
3C MULTIPLY (short to long) MER RR FP SP EU EO 9-13

Instructions Arranged by Operation Code (Part 1 of 4)

B-10 System/370 Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

3D DIVIDE (short) DER RR FP SP EU EO FK 9-9
3E ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 9-7
3F SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 9-15
40 STORE HALFWORD STH RX A ST 7-36
41 LOAD ADDRESS LA RX R 7-21

42 STORE CHARACTER STC RX A ST 7-34
43 INSERT CHARACTER IC RX A R 7-20
44 EXECUTE EX RX AI SP EX 7-19
45 BRANCH AND LINK BAL RX B R 7-9
46 BRANCH ON COUNT BCT RX B R 7-11

47 BRANCH ON CONDITION BC RX B 7-10
48 LOAD HALFWORD LH RX A R 7-22
49 COMPARE HALFWORD CH RX C A 7-14
4A ADD HALFWORD AH RX C A IF R 7-7
4B SUBTRACT HALFWORD SH RX C A IF R 7-37

4C MULTIPLY HALFWORD MH RX A R 7-29
4D BRANCH AND SAVE BAS RX BS B R 7-9
4E CONVERT TO DECIMAL CVD RX A ST 7-17
4F CONVERT TO BINARY CVB RX A D IK R 7-16
50 STORE ST RX A ST 7-34

54 AND N RX C A R 7-8
55 COMPARE LOGICAL CL RX C A 7-14
56 OR 0 RX C A R 7-29
57 EXCLUSIVE OR X RX C A R 7-18
58 LOAD L RX A R 7-20

59 COMPARE C RX C A 7-12
5A ADD A RX C A IF R 7-7
5B SUBTRACT S RX C A IF R 7-36
5C NULTIPLY M RX A SP R 7-28
5D DIVIDE D RX A SP IK R 7-17

5E ADD LOGICAL AL RX C A R 7-8
SF SUBTRACT LOGICAL SL RX C A R 7-37
60 STORE (long) STD RX FP A SP ST 9-14
67 MULTIPLY (long to extended) MXD RX XP A SP EU EO 9-13
68 LOAD (long) LD RX FP A SP 9-10

69 COMPARE (long) CD RX C FP A SP 9-8
6A ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 9-6
6B SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 9-14
6C MULTIPLY (long) MD RX FP A SP EU EO 9-13
6D DIVIDE (long) DD RX FP A SP EU EO FK 9-9

6E ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 9-7
6F SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 9-15
70 STORE (short) STE RX FP A SP ST 9-14
78 LOAD (short) LE RX FP A SP 9-10
79 COMPARE (short) CE RX C FP A SP 9-8

7A ADD NORMALIZED (short) AE RX C FP A SP EU EO LS 9-6
7B SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 9-14
7C MULTIPLY (short to long) ME RX FP A SP EU EO 9-13
70 DIVIDE (short) DE RX FP A SP EU EO FK 9-9
7E ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 9-7

7F SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 9-15
80 SET SYSTEM MASK SSM S P A SP SO 10-46
82 LOAD PSW LPSW S L P A SP ¢ 10-20
83 DIAGNOSE DM P DM 10-5
84 WRITE DIRECT WRD SI DC P Al $ 10-54

Instructions Arranged by Operation Code (Part 2 of 4)

Appendix B. Lists of Instructions B-ll

Op Mne- Page
Code Name monic Characteristics No.

85 READ DIRECT RDD SI DC P Al $ SD 10-36
86 BRANCH ON INDEX HIGH BXH RS B R 7-11
87 BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 7-11
88 SHIFT RIGHT SINGLE LOGICAL SRL RS R 7-34
89 SHIFT LEFT SINGLE LOGICAL SLL RS R 7-33

8A SHIFT RIGHT SINGLE SRA RS C R 7-34
8B SHIFT LEFT SINGLE SLA RS C IF R 7-32
8C SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 7-33
8D SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 7-32
8E SHIFT RIGHT DOUBLE SRDA RS C SP R 7-33

8F SHIFT LEFT DOUBLE SLDA RS C SP IF R 7-31
90 STORE MULTIPLE STM RS A ST 7-36
91 TEST UNDER MASK TM SI C A 7-38
92 MOVE (immediate) MVI SI A ST 7-23
93 TEST AND SET TS S C A $ ST 7-38

94 AND (immediate) Nl SI C A ST 7-8
95 COMPARE LOGICAL (immediate) CLI SI C A 7-14
96 OR (immediate) 01 SI C A ST 7-29
97 EXCLUSIVE OR (immediate) XI SI C A ST 7-18
98 LOAD MULTIPLE LM RS A R 7-22

9COO* START I/O SIO S C P ¢ 13-27
9C01* START I/O FAST RELEASE SIOF S C P ¢ 13-27
9C02* RESUME I/O RIO S C SR P ¢ 13-26
9DOO* TEST I/O TIO S C P ¢ 13-34
9D01* CLEAR I/O CLRIO S C P ¢ 13-17

9EOO* HALT I/O HIO S C P ¢ 13-23
9E01* HALT DEVICE HDV S C P ¢ 13-19
9FOO* TEST CHANNEL TCH S C P ¢ 13-33
9F01* CLEAR CHANNEL CLRCH S C RE P ¢ 13-16
AC STORE THEN AND SYSTEM MASK STNSM SI TR P A ST 10-50

AD STORE THEN OR SYSTEM MASK STOSM SI TR P A SP ST 10-50
AE SIGNAL PROCESSOR SIGP RS C MP P $ R 10-46
AF MONITOR CALL MC SI SP MO 7-23
B1 LOAD REAL ADDRESS LRA RX C TR P Al R 10-21
B200 CONNECT CHANNEL SET CONCS S C CS P $ 10-4

B201 DISCONNECT CHANNEL SET DISCS S C CS P $ 10-6
B202 STORE CPU 10 STIDP S P A SP ST 10-48
B203 STORE CHANNEL ID STIDC S C P ¢ 13-32
B204 SET CLOCK SCK S C P A SP 10-39
B205 STORE CLOCK STCK S C A $ ST 7-35

B206 SET CLOCK COMPARATOR SCKC S CK P A SP 10-39
B207 STORE CLOCK COMPARATOR STCKC S CK P A SP ST 10-47
B208 SET CPU TIMER SPT S CK P A SP 10-40
B209 STORE CPU TIMER STPT S CK P A SP ST 10-49
B20A SET PSW KEY FROM ADDRESS SPKA S PK Q 10-41

B20B INSERT PSW KEY IPK S PK Q G2 R 10-8
B20D PURGE TLB PTlB S TR P $ 10-36
B210 SET PREFIX SPX S MP P A SP $ 10-40
B211 STORE PREFIX STPX S MP P A SP ST 10-49
B212 STORE CPU ADDRESS STAP S MP P A SP ST 10-48

B213 RESET REFERENCE BIT RRB S C TR P Al SO 10-36
B218 PROGRAM CALL PC S DU Q AT Zl T ¢ GM B R ST 10-25
B219 SET ADDRESS SPACE CONTROL SAC S DU SP SO ¢ 10-38
B221 INVALIDATE PAGE TABLE ENTRY IPTE RRE EF P Al $ 10-11
B223 INSERT VIRTUAL STORAGE KEY IVSK RRE DU Q Al SO R 10-10

Instructions Arranged by Operation Code (Part 3 of 4)

B-12 System/370 Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

B224 INSERT ADDRESS SPACE CONTROL lAC RRE C DU Q SO R 10-7
B225 SET SECONDARY ASN SSAR RRE DU AT Z3 T 9 ST 10-41
B226 EXTRACT PRIMARY ASN EPAR RRE DU Q SO R 10-6
B227 EXTRACT SECONDARY ASN ESAR RRE DU Q SO R 10-7
B228 PROGRAM TRANSFER PT RRE DU Q AT SP Z2 T 9 B ST 10-31

B229 INSERT STORAGE KEY EXTENDED ISKE RRE EK P Al R 10-9
B22A RESET REFERENCE BIT EXTENDED RRBE RRE C EK P Al 10-37
B22B SET STORAGE KEY EXTENDED SSKE RRE EK P Al 9 10-45
B22C TEST BLOCK TB RRE C TB P Al II $ GO R 10-50
B6 STORE CONTROL STCTL RS P A SP ST 10-48

B7 LOAD CONTROL LCTL RS P A SP 10-20
BA COMPARE AND SWAP CS RS C SW A SP $ R ST 7-12
BB COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST 7-12
BD COMPARE LOGICAL C. UNDER MASK CLM RS C A 7-15
BE STORE CHARACTERS UNDER MASK STCM RS A ST 7-35

BF INSERT CHARACTERS UNDER MASK ICM RS C A R 7-20
01 MOVE NUMERICS MVN SS A ST 7-27
02 MOVE (character) MVC SS A ST 7-23
03 MOVE ZONES MVZ SS A ST 7-28
D4 AND (character) NC SS C A ST 7-8

05 COMPARE LOGICAL (character) CLC SS C A 7-14
D6 OR (character) OC SS C A ST 7-29
D7 EXCLUSIVE OR (character) XC SS C A ST 7-18
D9 MOVE WITH KEY MVCK SS C DU Q A ST 10-24
DA NOVE TO PRIMARY MVCP SS C DU Q A SO 9 ST 10-22

DB MOVE TO SECONDARY MVCS SS C DU Q A SO 9 ST 10-22
DC TRANSLATE TR SS A ST 7-39
DO TRANSLATE AND TEST TRT SS C A GM R 7-40
DE EDIT ED SS C A D ST 8-6
DF EDIT AND MARK EDMK SS C A D G1 R ST 8-9

E500 LOAD ADDRESS SPACE PARAMETERS LASP SSE C DU P AS SP SO 10-12
E501 TEST PROTECTION TPROT SSE C EF P Al 10-52
E8 MOVE INVERSE MVCIN SS MI A ST 7-24
FO SHIFT AND ROUND DECIMAL SRP 55 C A D DF ST 8-10
Fl MOVE WITH OFFSET MVO 55 A ST 7-27

F2 PACK PACK SS A 5T 7-30
F3 UNPACK UNPK S5 A ST 7-40
F8 ZERO AND ADD ZAP 5S C A D DF ST 8-12
F9 COMPARE DECIMAL CP S5 C A D 8-5
FA ADD DECIMAL AP SS C A D DF ST 8-5

FB SUBTRACT DECIMAL SP SS C A D DF ST 8-11
FC MULTIPLY DECIMAL MP 5S A SP D ST 8-10
FD DIVIDE DECIft1AL DP SS A SP D DK ST 8-5

Instructions Arranged by Operation Code (Part 4 of 4)

Appendix B. Lists of Instructions B-13

Mne- Op Page
Name monic Characteristics Code No.

BRANCH AND SAVE BASR RR Bsl
1 1=

R OD 7-9
BRANCH AND SAVE BAS RX BS R 4D 7-9

Instructions Arranged by Facility: Branch and Save

Mne- Op Page
Name monic Characteristics Code No.

CONNECT CHANNEL SET CONCS S C cslp
1

$

1
B200 10-4

DISCONNECT CHANNEL SET DISCS S C CS P $ B201 10-6

Instructions Arranged by Facility: Channel-Set Switching

Mne- Op Page
Name monic Characteristics Code No.

ADD AR RR C IF R lA 7-7
ADD A RX C A IF R 5A 7-7
ADD DECIMAL AP SS C A D DF ST FA 8-5
ADD HALFWORD AH RX C A IF R 4A 7-7
ADD LOGICAL ALR RR C R IE 7-8

ADD LOGICAL AL RX C A R 5E 7-8
AND NR RR C R 14 7-8
AND N RX C A R 54 7-8
AND (character) NC SS C A ST D4 7-8
AND (immediate) NI SI C A ST 94 7-8

BRANCH AND LINK BALR RR B R 05 7-9
BRANCH AND LINK BAL RX B R 45 7-9
BRANCH ON CONDITION BCR RR ¢1 B 07 7-10
BRANCH ON CONDITION BC RX B 47 7-10
BRANCH ON COUNT BCTR RR B R 06 7-11

BRANCH ON COUNT BCT RX B R 46 7-11
BRANCH ON INDEX HIGH BXti RS B R 86 7-11
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87 7-11
CLEAR I/O ClRIO S C P ¢ 9D01* 13-17
COMPARE CR RR C 19 7-12

COMPARE C RX C A 59 7-12
COMPARE DECIMAL CP SS C A D F9 8-5
COMPARE HAlFWORD CH RX C A 49 7-14
COMPARE LOGICAL ClR RR C 15 7-14
COMPARE LOGICAL Cl RX C A 55 7-14

COMPARE LOGICAL (character) ClC SS C A D5 7-14
COMPARE LOGICAL (immediate) ClI SI C A 95 7-14
COMPARE LOGICAL C. UNDER MASK CLM RS C A BD 7-15
CONPARE LOGICAL LONG CLCL RR C A SP II R OF 7-15
CONVERT TO BINARY CVB RX A D IK R 4F 7-16

CONVERT TO DECIMAL CVD RX A ST 4E 7-17
DIAGNOSE DM P DM 83 10-5
DIVIDE DR RR SP IK R ID 7-17
DIVIDE D RX A SP IK R 5D 7-17
DIVIDE DECIMAL DP SS A SP D DK ST FD 8-5

Instructions Arranged by Facility: Commercial Instruction Set (Part 1 of 3)

B-14 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

EDIT ED SS C A D ST DE 8-6
EDIT AND MARK EDMK SS C A D G1 R ST DF 8-9
EXCLUSIVE OR XR RR C R 17 7-18
EXCLUSIVE OR X RX C A R 57 7-18
EXCLUSIVE OR (character) XC SS C A ST D7 7-18

EXCLUSIVE OR (immediate) XI SI C A ST 97 7-18
EXECUTE EX RX AI SP EX 44 7-19
HALT DEVICE HDV S C P ¢ 9E01* 13-19
HALT I/O HIO S C P ¢ 9EOO* 13-23
INSERT CHARACTER IC RX A R 43 7-20

INSERT CHARACTERS UNDER MASK ICM RS C A R BF 7-20
INSERT STORAGE KEY ISK RR P Al SP SO R 09 10-8
LOAD lR RR R 18 7-20
LOAD l RX A R 58 7-20
LOAD ADDRESS lA RX R 41 7-21

LOAD AND TEST lTR RR C R 12 7-21
LOAD COMPLEMENT lCR RR C IF R 13 7-21
LOAD CONTROL LCTl RS P A SP B7 10-20
lOAD HAlFWORD LH RX A R 48 7-22
lOAD MULTIPLE LM RS A R 98 7-22

LOAD NEGATIVE LHR RR C R 11 7-22
lOAD POSITIVE LPR RR C IF R 10 7-22
lOAD PSW lPSW S l P A SP ¢ 82 10-20
MONITOR CAll MC 51 5P MO AF 7-23
MOVE (character) MVC 55 A 5T D2 7-23

MOVE (immediate) MVI SI A 5T 92 7-23
MOVE LONG MVCL RR C A SP II R 5T OE 7-24
MOVE NU~1ERIC5 MVH 55 A 5T Dl 7-27
MOVE WITH OFF5ET MVO 55 A 5T F1 7-27
MOVE ZONES MVZ S5 A 5T D3 7-28

MULTIPLY MR RR SP R lC 7-28
MULTIPLY M RX A SP R 5C 7-28
MULTIPLY DECIMAL MP 55 A 5P D 5T FC 8-10
MULTIPLY HALFWORD MH RX A R 4C 7-29
OR OR RR C R 16 7-29

OR 0 RX C A R 56 7-29
OR (character) OC 55 C A 5T D6 7-29
OR (immediate) 01 51 C A 5T 96 7-29
PACK PACK 55 A 5T F2 7-30
SET CLOCK 5CK S C P A 5P B204 10-39

SET PROGRAM MA5K 5PM RR L 04 7-31
SET 5TORAGE KEY S5K RR P Al SP 50 ¢ 08 10-45
SET SYSTEM MA5K 5SM 5 P A SP 50 80 10-46
SHIFT AND ROUND DECIMAL 5RP 5S C A D DF ST FO 8-10
SHIFT LEFT DOUBLE SLDA RS C SP IF R SF 7-31

SHIFT LEFT DOUBLE lOGICAL SLDL R5 SP R 8D 7-32
SHIFT LEFT SINGLE SlA RS C IF R 8B 7-32
SHIFT lEFT SINGLE lOGICAL 5ll R5 R 89 7-33
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-33
SHIFT RIGHT DOUBLE lOGICAL SRDL RS 5P R 8C 7-33

SHIFT RIGHT SINGLE SRA RS C R 8A 7-34
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-34
START I/O 510 5 C P ¢ 9COO* 13-27
START I/O FAST RELEASE SIOF S C P ¢ 9C01* 13-27
STORE ST RX A 5T 50 7-34

Instructions Arranged by Facility: Commercial Instruction Set (Part 2 of 3)

Appendix B. Lists of Instructions B-15

Mne- Op Page
Name monic Characteristics Code No.

STORE CHANNEL ID STIDC S C P ¢ B203 13-32
STORE CHARACTER STC RX A ST ct2 7-34
STORE CHARACTERS UNDER MASK STCM RS A ST BE 7-35
STORE CLOCK STCK S C A $ ST B205 7-35
STORE CONTROL STCTL RS P A SP ST B6 10-48

STORE CPU ID STIDP S P A SP ST B202 10-48
STORE HALFWORD STH RX A ST 40 7-36
STORE MULTIPLE STM RS A ST 90 7-36
SUBTRACT SR RR C IF R 1B 7-36
SUBTRACT S RX C A IF R 5B 7-36

SUBTRACT DECIMAL SP SS C A D DF ST FB 8-11
SUBTRACT HALFWORD SH RX C A IF R 4B 7-37
SUBTRACT LOGICAL SLR RR C R 1F 7-37
SUBTRACT LOGICAL SL RX C A R SF 7-37
SUPERVISOR CALL SVC RR ¢ OA 7-38

TEST AND SET TS S C A $ ST 93 7-38
TEST CHANNEL TCH S C P ¢ 9FOO* 13-33
TEST I/O TIO S C P ¢ 9DOO* 13-34
TEST UNDER MASK TM SI C A 91 7-38
TRANSLATE TR SS A ST DC 7-39

TRANSLATE AND TEST TRT SS C A GM R DD 7-40
UNPACK UNPK SS A ST F3 7-40
ZERO AND ADD ZAP SS C A D DF ST F8 8-12

Instructions Arranged by Facility: Commercial Instruction Set (Part 3 of 3)

Mne- Op Page
Name monic Characteristics Code No.

COMPARE AND SWAP CS RS C swl A spl $ I R ST BA 7-12
COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST BB 7-12

Instructions Arranged by Facility: Conditional Swapping

Mne- Op Page
Name monic Characteristics Code No.

SET CLOCK COMPARATOR SCKC S CK P A SP B206 10-39
SET CPU TIMER SPT S CK P A SP B208 10-40
STORE CLOCK COMPARATOR STCKC S CK P A SP ST B207 10-47
STORE CPU TIMER STPT S CK P A SP ST B209 10-49

Instructions Arranged by Facility: CPU Timer and Clock Comparator

B-16 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

READ DIRECT RDD SI Dclp A' I $ I SD 85 10-36
WRITE DIRECT WRD SI DC P Al $ 84 10-54

Instructions Arranged by Facility: Direct Control

Mne- Op Page
Name monic Characteristics Code No.

EXTRACT PRIMARY ASN EPAR RRE DU Q SO R B226 10-6
EXTRACT SECONDARY ASN ESAR RRE DU Q SO R B227 10-7
INSERT ADDRESS SPACE CONTROL lAC RRE C DU Q SO R B224 10-7
INSERT VIRTUAL STORAGE KEY IVSK RRE DU Q Al SO R B223 10-10
LOAD ADDRESS SPACE PARAMETERS LASP SSE C DU P AS SP SO E500 10-12

MOVE TO PRIMARY MVCP SS C DU Q A SO ¢ ST DA 10-22
MOVE TO SECONDARY MVCS SS C DU Q A SO ¢ ST DB 10-22
MOVE WITH KEY MVCK SS C DU Q A ST D9 10-24
PROGRAM CALL PC S DU Q AT Zl T ¢ GM B R ST B218 10-25
PROGRAM TRANSFER PT RRE DU Q AT SP Z2 T ¢ B ST B228 10-31

SET ADDRESS SPACE CONTROL SAC S DU SP SO ¢ B219 10-38
SET SECONDARY ASN SSAR RRE DU AT Z3 T ¢ ST B225 10-41

Instructions Arranged by Facility: Dual Address Space

Mne- Op Page
Name monic Characteristics Code No.

INVALIDATE PAGE TABLE ENTRY IPTE RRE EFlp A' I $ I B221 10-11
TEST PROTECTION TPROT SSE C EF P Al E501 10-52

Instructions Arranged by Facility: Extended Facility (without MVS Assist)

Mne- Op Page
Name monic Characteristics Code No.

ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36 9-6
LOAD ROUNDED (ext. to long) LRDR RR XP SP EO 25 9-12
LOAD ROUNDED (long to short) LRER RR XP SP EO 35 9-12
MULTIPLY (extended) MXR RR XP SP EU EO 26 9-13
MULTIPLY (long to extended) MXDR RR XP SP EU EO 27 9-13

MULTIPLY (long to extended) MXD RX XP A SP EU EO 67 9-13
SUBTRACT NORMALIZED (ext.) SXR RR C XP SP EU EO LS 37 9-14

Instructions Arranged by Facility: Extended-Precision Floating Point

Appendix B. Lists of Instructions B-17

Mne- Op Page
Name monic Characteristics Code No.

ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 2A 9-6
ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 6A 9-6
ADD NORMALIZED (short) AER RR C FP SP EU EO LS 3A 9-6
ADD NORMALIZED (short) AE RX C FP A SP EU EO lS 7A 9-6
ADD UNNORMAlIZED (long) AWR RR C FP SP EO LS 2E 9-7

ADD UNNORMALIZED (long) AW RX C FP A SP EO lS 6E 9-7
ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 3E 9-7
ADD UNNORMAlIZED (short) AU RX C FP A SP EO LS 7E 9-7
COMPARE (long) CDR RR C FP SP 29 9-8
COMPARE (long) CD RX C FP A SP 69 9-8

COMPARE (short) CER RR C FP SP 39 9-8
COMPARE (short) CE RX C FP A SP 79 9-8
DIVIDE (long) DDR RR FP SP EU EO FK 2D 9-9
DIVIDE (long) DD RX FP A SP EU EO FK 6D 9-9
DIVIDE (short) DER RR FP SP EU EO FK 3D 9-9

DIVIDE (short) DE RX FP A SP EU EO FK 7D 9-9
HALVE (long) HDR RR FP SP EU 24 9-10
HALVE (short) HER RR FP SP EU 34 9-10
LOAD (long) LDR RR FP SP 28 9-10
LOAD (long) LD RX FP A SP 68 9-10

LOAD (short) LER RR FP SP 38 9-10
LOAD (short) LE RX FP A SP 78 9-10
LOAD AND TEST (long) LTDR RR C FP SP 22 9-11
LOAD AND TEST (short) LTER RR C FP SP 32 9-11
LOAD COMPLEMENT (long) LCDR RR C FP SP 23 9-11

LOAD COMPLEMENT (short) LCER RR C FP SP 33 9-11
LOAD NEGATIVE (long) LNDR RR C FP SP 21 9-11
LOAD NEGATIVE (short) LNER RR C FP SP 31 9-11
LOAD POSITIVE (long) LPDR RR C FP SP 20 9-12
LOAD POSITIVE (short) LPER RR C FP SP 30 9-12

I"'lUL TIPL Y (long) MDR RR FP SP EU EO 2C 9-13
MULTIPLY (long) MD RX FP A SP EU EO 6C 9-13
MULTIPLY (short to long) MER RR FP SP EU EO 3C 9-13
MULTIPLY (short to long) 1"1E RX FP A SP EU EO 7C 9-13
STORE (long) STD RX FP A SP ST 60 9-14

STORE (short) STE RX FP A SP ST 70 9-14
SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 2B 9-14
SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 6B 9-14
SUBTRACT NORMALIZED (short) SER RR C FP SP EU EO LS 3B 9-14
SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 7B 9-14

SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 2F 9-15
SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 6F 9-15
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 3F 9-15
SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 7F 9-15

Instructions Arranged by Facility: Floating Point

B-18 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

MOVE INVERSE MVCIN ss MIl A I I ST E8 7-24

Instructions Arranged by Facility: Move Inverse

Mne- Op Page
Name monic Characteristics Code No.

SET PREFIX SPX S MP P A SP $ B210 10-40
SIGNAL PROCESSOR SIGP RS C MP P $ R AE 10-46
STORE CPU ADDRESS STAP S MP P A SP ST B212 10-48
STORE PREFIX STPX S MP P A SP ST B211 10-49

Instructions Arranged by Facility: Multiprocessing

Mne- Op Page
Name monic Characteristics Code No.

INSERT PSW KEY IPK S PKIQ
1

G21 R B20B 10-8
SET PSW KEY FROM ADDRESS SPKA S PK Q B20A 10-41

Instructions Arranged by Facility: PSW-Key Handling

Mne- Op Page
Name monic Characteristics Code No.

CLEAR CHANNEL CLRCH S C RElp I ¢
f

9FOHE 13-16

Instructions Arranged by Facility: Recovery Extensions

Mne- Op Page
Name monic Characteristics Code No.

INSERT STORAGE KEY EXTENDED ISKE RRE EK P Al R B229 10-9
RESET REFERENCE BIT EXTENDED RRBE RRE C EK P Al B22A 10-37
SET STORAGE KEY EXTENDED SSKE RRE EK P Al ¢ B22B 10-45

Instructions Arranged by Facility: Storage-Key-Instruction Extensions

Mne- Op Page
Name monic Characteristics Code No.

RESUME I/O RIO S C SRlp I ¢ I 9C02* 13-26

Instructions Arranged by Facility: Suspend and Resume

Appendix B. Lists of Instructions B-19

Mne- Op Page
Name monic Characteristics Code No.

TEST BLOCK TB RRE C TBlp Al III $ GOI R B22C 10-50

Instructions Arranged by Facility: Test Block

Mne- Op Page
Name monic Characteristics Code No.

LOAD REAL ADDRESS LRA RX C TR P Al R B1 10-21
PURGE TLB PTLB S TR P $ B20D 10-36
RESET REFERENCE BIT RRB S C TR P Al SO B213 10-36
STORE THEN AND SYSTEM MASK STNSM S1 TR P A ST AC 10-50
STORE THEN OR SYSTEM MASK STOSM SI TR P A SP ST AD 10-50

Instructions Arranged by Facility: Translation

B-20 System/370 Principles of Operation

This appendix lists the condition-code
setting for instructions in the
System/370 architecture which set the
condition code. In addition to those
instructions listed which set the condi­
tion code, the condition code may be
changed by DIAGNOSE and the target of
EXECUTE. The condition code is loaded
by LOAD PSW, by SET PROGRAM MASK, and by
an interruption. The condition code is
set to zero by initial CPU reset and is
loaded by the successful conclusion of
the initial-program-loading sequence.

Instruction

ADD, ADD HALFWORD
ADD DECIMAL
ADD LOGICAL

ADD NORMALIZED
ADD UNNORMALIZED

AND
CLEAR CHANNEL
CLEAR I/O

COMPARE (gen, fl pt)
COMPARE HALFWORD

COMPARE AND SWAP
COMPARE DECIMAL
COMPARE DOUBLE AND SWAP
COMPARE LOGICAL
COMPARE LOGICAL CHARACTERS

UNDER MASK

COMPARE LOGICAL LONG
CONNECT CHANNEL SET

DISCONNECT CHANNEL SET

EDIT, EDIT AND MARK
EXCLUSIVE OR

HALT DEVICE

HALT I/O

INSERT ADDRESS SPACE CONTROL
INSERT CHARACTERS UNDER MASK
LOAD ADDRESS SPACE

PARAMETERS

LOAD AND TEST (gen, fl pt)
LOAD COMPLEMENT (gen)
LOAD COMPLEMENT (fl pt)
LOAD NEGATIVE (gen, fl pt)
LOAD POSITIVE (gen)

LOAD POSITIVE (fl pt)
LOAD REAL ADDRESS

MOVE LONG

MOVE TO PRIMARY, MOVE TO
SECONDARY

MOVE WITH KEY

Zero
Zero
Zero,

o

no carry
Zero
Zero

Zero
Reset signaled
No operation

in progress
Equal
Equal

Equal
Equal
Equal
Equal
Equal

Equal
Successful

Successful

Zero
Zero

Interruption
pending/busy

Interruption
pending

Zero
All zeros
Parameters

loaded

Zero
Zero
Zero
Zero
Zero

Zero
Translation

available
Length equal

Length =< 256

Length =< 256

APPENDIX ~ CONDITION-CODE SETTINGS

The condition codes for the vector
facility are not included in this appen­
dix. See the pUblication IBM System/370
Vector Operations, SA22-7125, for the
condition codes set by vector
instructions.

Some models may offer instructions which
set the condition code and do not appear
in this document, such as those provided
for assists or as part of special or
custom features.

Condition Code

1

< zero
< zero
Not zero,

no carry
< zero
< zero

Not zero

CSW stored

Low
Low

Not equal
Low
Not equal
Low
Low

Low
Connected to

another CPU
Connected to

another CPU
< zero
Not zero

CSW stored

CSW stored

One
First bit one
Primary ASN

not available

< zero
< zero
< zero
< zero

ST entry
invalid

Length low

> zero
> zero
Zero,

carry
> zero
> zero

2

Channel busy
Channel busy

High
High

High

High
High

High

> zero

3

Overflow
Overflow
Not zero,

carry

Not operational
Not operational

Not operational

Not operational

Channel Not operational
working

Burst operation Not operational
terminated

First bit zero --
Secondary ASN Space-switch

not available event
or not
authorized

> zero
> zero
> zero

> zero

> zero
PT entry

invalid
Length high

Overflow

Overflow

Length
violation

Destructive
overlap

length > 256

Length > 256

Summary of Condition-Code Settings (Part 1 of 2)

Appendix C. Condition-Code Settings C-l

Condition Code

Instruction 0 1 2 3

OR Zero Not zero -- --
RESET REFERENCE BIT, RESET R bit zero, R bit zero, R bit one, R bit one,

REFERENCE BIT EXTENDED C bit zero C bit one C bit zero C bit one
RESUME I/O Successful -- -- Not operational
SET CLOCK Set Secure -- Not operational
SHIFT AND ROUND DECIMAL Zero < zero > zero Overflow

SHIFT LEFT (DOUBLE/SINGLE) Zero < zero > zero Overflow
SHIFT RIGHT (DOUBLE/SINGLE) Zero < zero > zero --
SIGNAL PROCESSOR Order accepted Status stored Busy Not operational
START I/O, START I/O FAST Successful CSW stored Busy Not operational

,RELEASE
STORE CHANNEL ID ID stored CSW stored Busy Not operational

STORE CLOCK Set Not set Error Not operational
SUBTRACT, SUBTRACT HALFWORD Zero < zero > zero Overflow
SUBTRACT DECIMAL Zero < zero > zero Overflow
SUBTRACT LOGICAL -- Not zero, Zero, Not zero,

no carry carry carry
SUBTRACT NORMALIZED Zero < zero > zero --
SUBTRACT UNNORMALIZED Zero < zero > zero --
TEST AND SET Left bit zero Left bit one -- --
TEST BLOCK Usable Not usable -- --
TEST CHANNEL Available Interruption Burst mode Not operational

pending
TEST I/O Available CSW stored Busy Not operational

TEST PROTECTION Can fetch, Can fetch, Cannot fetch, Translation not
can store cannot store cannot store available

TEST UNDER MASK All zeros Mixed -- All ones
TRANSLATE AND TEST All zeros Incomplete Complete --
ZERO AND ADD Zero < zero > zero Overflow

EXElanation:

-- Not applicable
> zero Result greater than zero
< zero Result less than zero
=< 256 Equal to, or less than, 256
> 256 Greater than 256
High First operand high
Low First operand low
length Length of first operand

Summary of Condition-Code Settings (Part 2 of 2)

C-2 System/370 Principles of Operation

APPENOIX ~ FACILITIES

Commercial Instruction Set •...•.•••.••••..••••••••••.•.•.. 0-1
Other Facilities •.•..•••••.••.•.••••.•••••••..••••••••.•.• 0-1

Branch and Save .•.....•..•....•......•••••...••••••.•.•. 0-2
Channel Indirect Oata Addressing •...••••..•••.•.••.•.... 0-2
Channel-Set Switching .•......•..••.•••••.....•.•....••.. 0-2
Clear I/O ••...........•.•.•.•.•.•••..•.•...........•.... 0-2
Command Retry •..••..•••••....•..••••••••••..•••.••.••••. 0-2
Conditional Swapping .•••.•.....•••••.•••....••.....••.•. 0-2
CPU Timer and Clock Comparator .•••.•..•.•......•........ 0-2
Direct Control ..•••....•.•.•..•.•.••.•.••••••..•........ 0-2
Dual-Address Space (OAS) •.•.....•••.••••.•.•..••...•..•. 0-2
Extended•......•.••.....••....•....••.•..•.....• 0-3
Extended-Precision Floating Point•... 0-3
Extended Real Addressing•...•..•......•..•...•.•... 0-3
External Signals ••.....•••....••.•....•••..••••.•••..... 0-3
Fast Release •...•••.•..........•••••.•••.•••...•••..•••. 0-3
Floating Point •.•.•..............•..•..•....•..•.•.•••.. 0-4
Halt Device ..••.•.•...•.•.....•..•.•••••.........•..•... 0-4
I/O Extended Logout•..••..••..••....•••.•...••.•. 0-4
Limited Channel Logout•••••..•••••..•••.....•.•. 0-4
Move Inverse•...••••.••••...••...••..•... 0-4
Multiprocessing••••...•............ 0-4
PSW-Key Handling •....•.....•••..•.••.•••.••••.•..•..•.•. 0-4
Recovery Extensions•.•.....•.••.•••••••••••..•..•... 0-4
Segment Protection•...•..••.•....•••..•••..••..•.•.. 0-4
Service Signal••.••..••.•....•.•.•................•. 0-4
Start-I/O-Fast Queuing ..•.......•..••••..•.•••.......... 0-4
Storage-Key-Instruction Extensions•.........•...•... 0-5
Storage-Key 4K-Byte Block•..•....•••••.••....•....•. 0-5
Suspend and Resume•........•...•..••................ 0-5
Test Block•....................•.......•......... 0-5
Translation ••••.•........•..•...••••.••......•••.•.•••.. 0-5
Vector •...•.•...•..............•.••.•.•.•..••••.••.•..•. 0-5
31-Bi t IOAWs •...••....•.............••.•..•••..•.•.•.••. 0-5

This appendix lists the facilities in
System/370. Every system includes a
CPU, main storage, and the capability
for at least one byte-multiplexer,
block-multiplexer, or selector channel.
The capability may be implemented by
means of a separate physical unit or may
be provided by sharing the physical unit
with the CPU.

control bit (if block multiplexing
is provided), for the interrupt-key
and interval-timer masks, for chan­
nel masks associated with installed
channels, for monitor masks, for
control of installed machine­
check-handling facilities, and for
the IOEL control (if an installed
channel has the I/O-extended-Iogout
facility)

COMMERCIAL INSTRUCTION SET

Every CPU incorporates the commercial
instruction set (listed in Appendix B)
and the associated basic computing func­
tions, including:

• Byte-oriented operands

• General registers

• Basic-control (BC) mode

• Control registers, with bit posi­
tions for the block-multiplexing-

• Key-controlled protection

• Interval timer

• TOO clock

• Basic operator facilities

OTHER FACILITIES

Additionally, the following facilities
are available:

Appendix D. Facilities 0-1

BRANCH AND SAVE

Includes the BRANCH AND SAVE (BAS and
BASR) instruction.

CHANNEL INDIRECT DATA ADDRESSING

Includes indirect-data-address words and
the associated CCW flag, which facili­
tate storage addressing when virtual
addresses are used.

CHANNEL-SET SWITCHING

Provides the ability to connect a chan­
nel set to any CPU in a multiprocessing
configuration. It includes the
instructions CONNECT CHANNEL SET and
DISCONNECT CHANNEL SET.

CLEAR I/O

Provides the clear-I/O (CLRIO) function
on a channel when the CLEAR I/O instruc­
tion is executed. When the CLRIO func­
tion is not implemented, CLEAR I/O is
executed as TEST I/O.

COMMAND RETRY

Provides the capability in a channel to
retry a command without the occurrence
of an I/O interruption. The retry is
initiated by the control unit.

CONDITIONAL SWAPPING

Includes the instructions COMPARE AND
SWAP and COMPARE DOUBLE AND SWAP.

CPU TIMER AND CLOCK COMPARATOR

Includes the clock comparator, the CPU
timer, the associated extensions to
external interruption, control-register
positions for the clock-comparator and
CPU-timer masks, and the instructions
SET CLOCK COMPARATOR, STORE CLOCK COMPA­
RATOR, SET CPU TIMER, and STORE CPU
TIMER.

D-2 System/370 Principles of Operation

DIRECT CONTROL

Includes the external-signal facility
and the read-write-direct facility,
which contains the instructions READ
DIRECT and WRITE DIRECT.

DUAL-ADDRESS SPACE (DAS)

Includes the following:

1. Dual-space control, which includes:

a. An address-space control, PSW
bit 16

b. A primary ASN, bits 16-31 of
control register 4

c. A secondary ASN, bits 16-31 of
control register 3

d. A secondary-segment-table
designation, in control regis­
ter 7

2. DAS authorization mechanisms, which
include the following:

a. An extraction-authority
control, bit 4 of control
register 0

b. A PSW-key mask, bits 0-15 of
control register 3

c. A secondary-space control, bit
5 of control register 0

d. A subsystem-linkage control,
bit 0 of control register 5

e. An ASN-translation control, bit
12 of control register 14

f. An authorization index, bits
0-15 of control register 4

g. A space-switch-event-control
bit, bit 31 of control register
1

3. PC-number translation, which uses
the linkage-table designation in
control register 5

4. ASN translation, which uses an
ASN-first-table origin, bits 20-31
of control register 14

5. ASN authorization

6. DAS tracing

7. The following instructions:

EXTRACT PRIMARY ASN (EPAR)
EXTRACT SECONDARY ASN (ESAR)
INSERT ADDRESS SPACE CONTROL (lAC)
INSERT VIRTUAL STORAGE KEY (IVSK)

LOAD ADDRESS SPACE PARAMETERS
(LASP)

MOVE TO PRIMARY CMVCP)
MOVE TO SECONDARY CMVCS)
MOVE WITH KEY (MVKC)
PROGRAM CALL (PC)
PROGRAM TRANSFER CPT)
SET ADDRESS SPACE CONTROL (SAC)
SET SECONDARY ASN (SSAR)

8. Nine new exception or event condi­
tions which result in a program
interruption. These conditions
are:

AFX-translation exception
ASN-translation-specification

exception
ASX-translation exception
EX-translation exception
LX-translation exception
PC-translation-specification excep-

tion
Primary-authority exception
Secondary-authority exception
Space-switch event

For page- and segment-translation
exceptions, a bit is stored with
the translation-exception address.
This bit indicates whether the
address was translated by using the
primary or secondary segment-table
designation.

The following System/370 instructions
are changed or affected by the installa­
tion of DAS, as noted:

•

•

•

Execution of the SET PSW KEY FROM
ADDRESS instruction is permitted in
the problem state, subject to the
contents of bit positions 0-15 of
control register 3. When the bit
in the control register correspond­
ing to the PSW-key value to be set
is one, execution is allowed;
otherwise, a privileged-operation
exception 1S recognized. The
contents of control register 3 are
ignored in the supervisor state.

Execution of the INSERT PSW KEY
instruction is permitted in the
problem state, subject to the
extraction-authority control, bit 4
of control register O. When the
bit is one, execution is allowed;
otherwise, a privileged-operation
exception is recognized. The
extraction-authority control is
ignored in the supervisor state.

LOAD REAL ADDRESS uses the contents
of control register 7, instead of
the contents of control register 1,
when PSW bit 16 is one. Thus the
second operand is translated either
as a primary virtual address or as
a secondary virtual address,
depending on the mode specified in
the PSW.

• The second-operand address of
EXECUTE is defined to be an
instruction address rather than a
logical address. In secondary­
space mode, it is thus unpredict­
able whether the target instruction
is fetched from the primary space
or the secondary space.

EXTENDED

Includes the instructions INVALIDATE
PAGE TABLE ENTRY and TEST PROTECTION,
the common-segment facility and the
associated bit position in the segment­
table entry, low-address protection and
the associated control-register position
for the low-address-protection control
bit, and 12 MVS-dependent instructions.
INVALIDATE PAGE TABLE ENTRY lncludes
revisions to the READ DIRECT and WRITE
DIRECT instructions to make the operand
addresses real instead of logical.

EXTENDED-PRECISION FLOATING POINT

Includes the extended-precision
floating-point instructions (listed in
Appendix B).

EXTENDED REAL ADDRESSING

Provides for a 26-bit page-frame real
address in the page-table entry for
4K-byte pages.

EXTERNAL SIGNALS

to external
signals, the

Includes the extension
interruptions for external
control-register position
external-signal mask, and the
accept external signals.

FAST RELEASE

for the
means to

Provides the start-I/O-fast-release
(SIOF) function on the channel when the
START I/O FAST RELEASE instruction is
executed. This function provides for
fast release of the CPU, which occurs
before the device-selection procedure is
completed, reducing the CPU delay asso­
ciated with the initiation of the I/O
operation. When the SIOF function is
not implemented, START I/O FAST RELEASE
is executed as START I/O.

Appendix D. Facilities D-3

FLOATING POINT

Includes the floating-point instructions
(listed in Appendix B) and the
floating-point registers. The
floating-point facility, together with
the commercial instruction set, is some­
times referred to as the universal
instruction set.

HALT DEVICE

Provides the halt-device (HDV) function
on a channel when the HALT DEVICE
instruction is executed. When the HDV
function is not implemented, HALT DEVICE
is executed as HALT I/O.

I/O EXTENDED LOGOUT

Provides for the storing of detailed
channel-error information in a storage
area designated by a pointer.

LIMITED CHANNEL LOGOUT

Provides four bytes of channel-status
information for model-independent recov­
ery from channel errors.

MOVE INVERSE

Includes the MOVE INVERSE instruction.

MULTIPROCESSING

Includes the following facilities, which
permit the formation of a multiprocess­
ing configuration:

• Shared Main Storage

• Prefixing

• CPU-Address Identification

• CPU Signaling and Response

• TOO-Clock Synchronization

These facilities include four extensions
to the external interruption (external
call, emergency signal, TOD-clock-sync
check, and malfunction alert), control­
register positions for the TOD-clock­
sync-control bit and for the masks for
the four external-interruption condi­
tions, and the instructions SET PREFIX,

0-4 System/370 Principles of Operation

SIGNAL PROCESSOR, STORE CPU ADDRESS, and
STORE PREFIX.

PSW-KEY HANDLING

Includes the instructions SET PSW KEY
FROM ADDRESS and INSERT PSW KEY.

RECOVERY EXTENSIONS

Includes the following:

• Machine-check external-damage code
at real locations 244-247, the
external-damage-code-validity bit
(bit 26 of the machine-check­
interruption code), and the
channel-not-operational indication
in the machine-check external­
damage code.

•

•

The clear-channel (CLRCH) function
in a channel when the CLEAR CHANNEL
instruction is executed; when the
CLRCH function is not implemented,
CLEAR CHANNEL is executed as TEST
CHANNEL.

The full-channel-logout-valid bit
(bit 15) and the interface­
inoperative bit (bit 27) in the
limited channel logout.

SEGMENT PROTECTION

Provides a segment-protection bit in the
segment-table entry. When the bit is
one, an attempt to store in the segment
causes a protection exception to be
recognized.

SERVICE SIGNAL

Provides an external interruption which
is used by the service-call logical
processor (SCLP) to signal to the
control program.

START-I/O-FAST QUEUING

Provides for fast release of the CPU by
the channel during the execution of
START I/O FAST RELEASE and the queuing
of the operation at the subchannel when
the control unit or device is busy,
rather than termination of the operation
by means of an I/O interruption with a
deferred-condition-code-l indication.
The queuing of the operation at the

subchannel appears to the program as if
no busy indication had been encountered.
Includes the ability to store a nonzero
value in the measurement byte at
location 185.

STORAGE-KEY-INSTRUCTION EXTENSIONS

Provides the instructions INSERT STORAGE
KEY EXTENDED, RESET REFERENCE BIT
EXTENDED, and SET STORAGE KEY EXTENDED.
These instructions provide 31-bit
addresses and operate on the storage
keys associated with a 4K-byte block of
storage.

STORAGE-KEY 4K-BYTE BLOCK

Provides for a single key associated
with each 4K-byte block of storage, and
the storage-key-exception control, bit 7
of control register O. When this facil­
ity is not installed, a separate storage
key is associated with each 2K-byte
block of storage.

SUSPEND AND RESUME

Provides a suspend bit in the CCW which
may indicate that the channel program is
to be suspended, as well as a bit in the
CAW that controls whether the suspend
bit should be examined and a new bit in
the channel-status word which indicates
that a channel program has been
suspended. The instruction RESUME I/O
causes a suspended channel program to be
resumed.

TEST BLOCK

Includes the TEST BLOCK instruction for
testing the usability of a 4K-byte block
of main storage.

TRANSLATION

Includes the following facilities:

•

•

Dynamic Address Translation (DAT).
The DAT facility includes ---the
translation mechanism, with the
associated control-register posi­
tions and program-interruption
codes, and reference and change
recording. The DAT facility also
includes controls for 4K-byte page
size and 64K-byte segment size.
Depending on the model, controls
for 2K-byte page size or 1M-byte
segment size, or both, may also be
provided.

Program-Event Recording (PER). The
PER faci!ity includes the associ­
ated control-register positions and
extensions to the program­
interruption code.

• Extended-Contro! (EC) Mode.

•

•

SSM Suppression. This facility in­
c!udes the control-register posi­
tion for the SSM-suppression­
control bit and the program­
interruption code for special
operation.

Store Status and Noninitia!izing
~! Reset.

As part of these facilities, the follow­
ing instructions are provided: LOAD
REAL ADDRESS, PURGE TLB, RESET REFERENCE
BIT, STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK.

VECTOR

The instructions and functions of the
vector faci!ityand its registers are
described in the publication IBM
System/370 Vector Operations, SA22-7125.

31-B1T IDAWS

Extends the size of the address field in
the indirect-data-address word to 31
bits.

Appendix D. Facilities D-5

PLUS
1 a
2 1
4 2
8 3

16 4
32 5
64 6

128 7

256 8
512 9

1,024 10
2,048 11

4,096 12
8,192 13

16,384 14
32,768 15

65,536 16
131,072 17
262,144 18
524,288 19

1,048,576 20
2,097,152 21
4,194,304 22
8,388,608 23

16,777,216 24
33,554,432 25
67,108,864 26

134,217,728 27

268,435,456 28
536,870,912 29

1,073,741,824 30
2,147,483,648 31

4,294,967,296 32
8,589,934,592 33

17,179,869,184 34
34,359,738,368 35

68,719,476,736 36
137,438,953,472 37
274,877,906,944 38
549,755,813,888 39

1,099,511,627,776 40
2,199,023,255,552 41
4,398,046,511,104 42
8,796,093,022,208 43

17,592,186,044,416 44
35,184,372,088,832 45
70,368,744,177,664 46

140,737,488,355,328 47

281,474,976,710,656 48
562,949,953,421,312 49

1,125,899,906,842,624 50
2,251,799,813,685,248 51

4,503,599,627,370,496 52
9,007,199,254,740,992 53

18,014,398,509,481,984 54
36,028,797,018,963,968 55

72,057,594,037,927,936 56
144,115,188,075,855,872 57
288,230,376,151,711,744 58
576,460,752,303,423,488 59

1,152,921,504,606,846,976 60
2,305,843,009,213,693,952 61
4,611,686,018,427,387,904 62
9,223,372,036,854,775,808 63

18,446,744,073,709,551,616 64

Powers of 2 (Part 1 of 2)

APPENDIX ~ TABLE OF POWERS OF ~

MINUS
1.
0.5
0.25
0.125

0.0625
0.03125
0.01562 5
0.00781 25

0.00390 625
0.00195 3125
0.00097 65625
0.00048 82812 5

0.00024 41406 25
0.00012 20703 125
0.00006 10351 5625
0.00003 05175 78125

0.00001 52587 89062 5
0.00000 76293 94531 25
0.00000 38146 97265 625
0.00000 19073 48632 8125

0.00000 09536 74316 40625
0.00000 04768 37158 20312 5
0.00000 02384 18579 10156 25
0.00000 01192 09289 55078 125

0.00000 00596 04644 77539 0625
0.00000 00298 02322 38769 53125
0.00000 00149 01161 19384 76562 5
0.00000 00074 50580 59692 38281 25

0.00000 00037 25290 29846 19140 625
0.00000 00018 62645 14923 09570 3125
0.00000 00009 31322 57461 54785 15625
0.00000 00004 65661 28730 77392 57812 5

0.00000 00002 32830 64365 38696 28906 25
0.00000 00001 16415 32182 69348 14453 125
0.00000 00000 58207 66091 34674 07226 5625
0.00000 00000 29103 83045 67337 03613 28125

0.00000 00000 14551 91522 83668 51906 64062 5
0.00000 00000 07275 95761 41834 25903 32031 25
0.00000 00000 03637 97890 70917 12951 66015 625
0.00000 00000 01818 98940 35458 56475 83007 8125

0.00000 00000 00909 49470 17729 28237 91503 90625
0.00000 00000 00454 74735 08864 64118 95751 95312 5
0.00000 00000 00227 37367 54432 32059 47975 97656 25
0.00000 00000 00113 68683 77216 16029 73937 98828 125

0.00000 00000 00056 84341 88608 08014 86968 99414 0625
0.00000 00000 00028 42170 94304 04007 43484 49707 03125
0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5
0.00000 00000 00007 10542 73576 01001 85871 12426 75791 25

0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125
0.00000 00000 00000 98817 94197 00125 23233 89053 34472 65625
0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812 5

0.00000 00000 00000 22204 46049 25031 30808 47263 33618 16406 25
0.00000 00000 00000 11102 23024 62515 65404 23631 66809 08203 125
0.00000 00000 00000 05551 11512 31257 82702 11815 83404 54101 5625
0.00000 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125

0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5
0.00000 00000 00000 00693 88939 03907 22837 76476 97925 56762 69531 25
0.00000 00000 00000 00346 94469 51953 61418 88238 48962 78381 34765 625
0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 9125

0.00000 00000 00000 00086 73617 37988 40354 72059 62240 69595 33691 40625
0.00000 00000 00000 00043 36808 68994 20177 36029 81120 34797 66845 70312 5
0.00000 00000 00000 00021 68404 34497 10088 68014 90560 17398 83422 85156 25
0.00000 00000 00000 00010 84202 17248 55044 34007 45280 09699 41711 42578 125

0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625

Appendix E. Table of Powers of 2 E-l

18,446,744,073,709,551,616 64
36,893,488,147,419,103,232 65
73,786,976,294,838,206,464 66

147,573,952,589,676,412,928 67

295,147,905,179,352,825,856 68
590,295,810,358,705,651,712 69

1,180,591,620,717,411,303,424 70
2,361,183,241,434,822,606,848 71

4,722,366,482,869,645,213,696 72
9,444,732,965,739,290,427,392 73

18,889,465,931,478,580,854,784 74
37,778,931,862,957,161,709,568 75

75,557,863,725,914,323,419,136 76
151,115,727,451,828,646,838,272 77
302,231,454,903,657,293,676,544 78
604,462,909,807,314,587,353,088 79

1,208,925,819,614,629,174,706,176 80
2,417,851,639,229,258,349,412,352 81
4,835,703,278,458,516,698,824,704 82
9,671,406,556,917,033,397,649,408 83

19,342,813,113,834,066,795,298,816 84
38,685,626,227,668,133,590,597,632 85
77,371,252,455,336,267,181,195,264 86

154,742,504,910,672,534,362,390,528 87

309,485,009,821,345,068,724,781,056 88
618,970,019,642,690,137,449,562,112 89

1,237,940,039,285,380,274,899,124,224 90
2,475,880,078,570,760,549,798,248,448 91

4,951,760,157,141,521,099,596,496,896 92
9,903,520,314,283,042,199,192,993,792 93

19,807,040,628,566,084,398,385,987,584 94
39,614,081,257,132,168,796,771,975,168 95

79,228,162,514,264,337,593,543,950,336 96
158,456,325,028,528,675,187,087,900,672 97
316,912,650,057,057,350,374,175,801,344 98
633,825,300,114,114,700,748,351,602,688 99

1,267,650,600,228,229,401,496,703,205,376 100
2,535,301,200,456,458,802,993,406,410,752 101
5,070,602,400,912,917,605,986,812,821,504 102

10,141,204,801,825,835,211,973,625,643,008 103

20,282,409,603,651,670,423,947,251,286,016 104
40,564,819,207,303,340,847,894,502,572,032 105
81,129,638,414,606,681,695,789,005,144,064 106

162,259,276,829,213,363,391,578,010,288,128 107

324,518,553,658,426,726,783,156,020,576,256 108
649,037,107,316,853,453,566,312,041,152,512 109

1,298,074,214,633,706,907,132,624,082,305,024 110
2,596,148,429,267,413,814,265,248,164,610,048 111

5,192,296,858,534,827,628,530,496,329,220,096 112
10,384,593,717,069,655,257,060,992,658,440,192 113
20,769,187,434,139,310,514,121,985,316,880,384 114
41,538,374,868,278,621,028,243,970,633,760,768 115

83,076,749,736,557,242,056,487,941,267,521,536 116
166,153,499,473,114,484,112,975,882,535,043,072 117
332,306,998,946,228,968,225,951,765,070,086,144 118
664,613,997,892,457,936,451,903,530,140,172,288 119

1,329,227,995,784,915,872,903,807,060,280,344,576 120
2,658,455,991,569,831,745,807,614,120,560,689,152 121
5,316,911,983,139,663,491,615,228,241,121,378,304 122

10,633,823,966,279,326,983,230,456,482,242,756,608 123

21,267,647,932,558,653,966,460,912,964,485,513,216 124
42,535,295,865,117,307,932,921,825,928,971,026,432 125
85,070,591,730,234,615,865,843,651,857,942,052,864 126

170,141,183,460,469,231,731,687,303,715,884,105,728 127

340,282,366,920,938,463,463,374,607,431,768,211,456 128

Powers of 2 (Part 2 of 2)

E-2 System/370 Principles of Operation

The following tables aid in converting hexadecimal values
to decimal values, or the reverse.

Direct Conversion Table

This table provides direct conversion of decimal and
hexadecimal numbers in these ranges:

Hexadecimal
000 to FFF

Decimal
0000 to 4095

To convert numbers outside these ranges, and to con­
vert fractions, use the hexadecimal and decimal conver­
sion tables that follow the direct conversion table in this
Appendix.

0 1 2 3 4 5 6

00_ 0000 0001 0002 0003 0004 0005 0006
01_ 0016 0017 0018 0019 0020 0021 0022
02_ 0032 0033 0034 0035 0036 0037 0038
03_ 0048 0049 0050 0051 0052 0053 0054
04_ 0064 0065 0066 0067 0068 0069 0070
05_ 0080 0081 0082 0083 0084 0085 0086
06_ 0096 0097 0098 0099 0100 0101 0102
07_ 0112 0113 0114 0115 0116 0117 0118
08_ 0128 0129 0130 0131 0132 0133 0134
09_ 0144 0145 0146 0147 0148 0149 0150
OA_ 0160 0161 0162 0163 0164 0165 0166
OB_ 0176 0177 0178 0179 0180 0181 0182
OC_ 0192 0193 0194 0195 0196 0197 0198
OD_ 0208 0209 0210 0211 0212 0213 0214
OE_ 0224 0225 0226 0227 0228 0229 0230
OF_ 0240 0241 0242 0243 0244 0245 0246

10_ 0256 0257 0258 0259 0260 0261 0262
1L 0272 0273 0274 0275 0276 0277 0278
12_ 0288 0289 0290 0291 0292 0293 0294
13_ 0304 0305 0306 0307 0308 0309 0310
14_ 0320 0321 0322 0323 0324 0325 0326
15_ 0336 0337 0338 0339 0340 0341 0342
16_ 0352 0353 0354 0355 0356 0357 0358
17_ 0368 0369 0370 0371 0372 0373 0374
18_ 0384 0385 0386 0387 0388 0389 0390
19_ 0400 0401 0402 0403 0404 0405 0406
1A_ 0416 0417 0418 0419 0420 0421 0422
1B_ 0432 0433 0434 0435 0436 0437 0438
lC_ 0448 0449 0450 0451 0452 0453 0454
ID_ 0464 0465 0466 0467 0468 0469 0470
1E_ 0480 0481 0482 0483 0484 0485 0486
1F_ 0496 0497 0498 0499 0500 0501 0502

APPENDIX ~ HEXADECIMAL TABLES

7 8 9 A B C D E F

0007 0008 0009 0010 0011 0012 0013 0014 0015
0023 0024 0025 0026 0027 0028 0029 0030 0031
0039 0040 0041 0042 0043 0044 0045 0046 0047
0055 0056 0057 0058 0059 0060 0061 0062 0063
0071 0072 0073 0074 0075 0076 0077 0078 0079
0087 0088 0089 0090 0091 0092 0093 0094 0095
0103 0104 0105 0106 0107 0108 0109 0110 0111
0119 0120 0121 0122 0123 0124 0125 0126 0127
0135 0136 0137 0138 0139 0140 0141 0142 0143
0151 0152 0153 0154 0155 0156 0157 0158 0159
0167 0168 0169 0170 0171 0172 0173 0174 0175
0183 0184 0185 0186 0187 0188 0189 0190 0191
0199 0200 0201 0202 0203 0204 0205 0206 0207
0215 0216 0217 0218 0219 0220 0221 0222 0223
0231 0232 0233 0234 0235 0236 0237 0238 0239
0247 0248 0249 0250 0251 0252 0253 0254 0255

0263 0264 0265 0266 0267 0268 0269 0270 0271
0279 0280 0281 0282 0283 0284 0285 0286 0287
0295 0296 0297 0298 0299 0300 0301 0302 0303
0311 0312 0313 0314 0315 0316 0317 0318 0319
0327 0328 0329 0330 0331 0332 0333 0334 0335
0343 0344 0345 0346 0347 0348 0349 0350 0351
0359 0360 0361 0362 0363 0364 0365 0366 0367
0375 0376 0377 0378 0379 0380 0381 0382 0383
0391 0392 0393 0394 0395 0396 0397 0398 0399
0407 0408 0409 0410 0411 0412 0413 0414 0415
0423 0424 0425 0426 0427 0428 0429 0430 0431
0439 0440 0441 0442 0443 0444 0445 0446 0447
0455 0456 0457 0458 0459 0460 0461 0462 0463
0471 0472 0473 0474 0475 0476 0477 0478 0479
0487 0488 0489 0490 0491 0492 0493 0494 0495
0503 0504 0505 0506 0507 0508 0509 0510 0511

Appendix F. Hexadecimal Tables F-l

0 1 2 3 4 5 6 7 8 9 A B C D E F

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21_ 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06'84 0685 0686 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E - 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
3L 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37_ 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B C D E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
4L 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45_ 1104 1105 1106 1107 1108 1109 lllO 1111 1112 1113 1114 1115 Ill6 1117 1118 1119
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47_ 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 1186 1187 ll88 1189 1190 1191 1192 1193 1194 1195 ll96 1197 1198 1199
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57_ 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

F-2 System/370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6~ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
68_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
7L 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
9L 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2·<tl4 2415
97_ 2416 2417 241,8 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2.500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D_ 2512 2513 2514 2515 2516 2517 2518 25·19 2520 2521 2522 2523 2524 2525 2526 2527
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix F. Hexadecimal Tables F-3

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 - 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 2624 - 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 - 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8 __ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA - 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD - 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE - 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF - 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl - 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 - 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 - 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4 - 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5 - 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 - 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7 - 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8 - 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 29.54 2955 2956 2957 2958 2959
B9_ 2960 2961 2962 2963 2964 296.5 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA - 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB - 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD - 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE - 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 30.52 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO - 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl - 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 310.5 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 - 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 31.52 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6 - 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 - 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA - 3232 3233 3234 323.5 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB - 3248 3249 3250 3251 32.52 3253 3254 3255 32.56 3257 3258 3259 3260 3261 3262 3263
CC - 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD - 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE -- 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF - 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO - 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl 3344 334.5 3346 3347 3348 3349 3350 33.51 33.52 33.53 3354 3355 3356 3357 3358 3359
D2 - 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 - 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5 - 3-408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 - 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8 - 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 DA - 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 DB - 3504 3505 3506 3507 3508 3509 3510 3511 3.512 3513 3514 3515 3516 3517 3518 3519
DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3.532 3533 3534 3535 DD - 3536 3537 3538 3539 3540 3541 3542 3543 3.544 3545 3546 3547 3548 3549 3550 3551 DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

F-4 System/370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
EL 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7_ 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Fl - 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 - 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 - 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 - 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4()13 4014 4015
FB_ 4016 4017 4018' 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix F. Hexadecimal Tables F-5

Conversion Table: H~mtkc;1IUl1 and Decimal Integers

HALFWORD

BYTE BYTE

BITS: 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 9 0 0 0 0 0
1 268 , 435 , 456 1 16,777,216 1 1,048,576 1 65,536
2 531.,870,912 2 33,554,432 2 2,097,152 2 131,072
3 R05 , 306 , 368 3 50 331 648 3 3,145,728 3 196608
4 1,073,741 824 4 67 108 864 4 4,194 304 4 262,144
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216
7 1,8711,-048,19:2 7 117 440 512 7 7,340,032 7 458,752
8 2,147,483,648 8 134,217 728 8 8,388,608 8 524,288
9 ~,415,919, 104 9 150,994,944 9 9,437,184 9 589,824
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360
B 2,952,790 016 B 184 549 376 B 11,534 336 B 720 896
C 3,221,225,472 C 201 326 592 C 12,582 912 C 786 432
0 3,489,660,928 0 218,103,808 0 13 631 488 0 851,968
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504
F 14,026,531,840 F 251,658,240 F 15,728,640 F 983,040

8 7 6 5

TO CONVERT HEXADECIMAL TO DECIMAL
EXAMPLE

1. Locate the column of decimal numbers corresponding to Conversion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Value
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. 0

2. Repeat step 1 for the next (second from the left)
2. 3 position.

3. Repeat step 1 for the units (third from the left) 3. 4
position.

4. Add the numbers selected from the table to form the 4. Decimal

decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL
EXAMPLE

1. (a) Select from the table the highest decimal number
Conversion of that is equal to or less than the number to be CO;'l-
Decimal Value verted.

(b) Record the hexadecimal of the column containing
1. D the se lected number.

(c) Subtract the selected decimal from the number to
be converted.

2. 3
2. Using the remainder from step l(c} repeat all of step 1

to develop the second position of the hexadecimal
(and a remainder) . 3. 4

3. Using the remainder from step 2 repeat all of step 1 to
4. Hexadecimal

develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

POWERS OF 16 TABLE

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 0000 16 = (107)16

16n

1 0
16 1

256 2
4 096 3

65 536 4
1 048 576 5

16 m 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10 = A
17 592 186 044 416 11 = B

281 474 976 710 656 12 = C
4 503 599 627 370 496 13 = D

72 057 594 037 927 936 14", E

,1 152 921 504 606 846 976 15,/' F
v

Decimal Values

F-6 System/370 Principles of Operation

Hex

0
1
2
3
4
5
6
7
8
9
A
B
C
0
E
F

034

3328

48

4

3380

3380

-3328
~

~
4

-4

D34

HALFWORD

BYTE BYTE

0123 4567 0123 4567

Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0
4,096 1 256 1 16 1 1
8,192 2 512 2 32 2 2

12,288 3 -m 3 48 3 3
16 384 4 1.024 4 64 4 4
20,480 5 1,280 5 80 5 5
24,576 6 1,536 6 96 6 6
28672 7 1,792 7 112 7 7
32 768 8 2.048 8 128 8 8
36,864 9 2,304 9 144 9 9
40.960 A 2,560 A 160 A 10
45 056 B 2 816 B 176 B 11
49 152 C 3.072 C 192 C 12
53,248 0 3,328 0 208 0 13
57,344 E 3,584 E 224 E 14
61,440 F 3;840 F -m- F 15

4 3 2 1

Ta convert integer numbers greater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units pasition.

Example: 03416 = 338010

DECIMAL TO HEXADECIMAL

0= 13

~
208

3 = + 3
2t1
x16

3376
4= +4

3380

Divide and collect the remainder in reverse order.

Conversion Table: Hexadecimal and Decimal Fractions

BYTE

BITS 0123 4567

Hex Decimal Hex Decimal Hex

.0 .0000 .00 .()()()() 0000 .000 .()()()()

.1 .0625 .01 .0039 0625 .001 .0002

.2 .1250 .02 .0078 1250 .002 .0004

.3 .1875 .03 .0117 1875 .003 .0007

.4 .2500 .04 .0156 2500 .004 .0009

.5 .3125 .05 .0195 3125 .005 .0012

.6 .3750 .06 .0234 3750 .006 .0014

.7 .4375 .07 .0273 4375 .007 .0017

.8 .5000 .08 .0312 5000 .008 .0019

.9 .5625 .09 .0351 5625 .009 .0021

.A .6250 .OA .0390 6250 .OOA .0024

· B .6875 .OB .0429 6875 .OOB .0026
.C .7500 .OC .0468 7500 .OOC .0029
.D .8125 .00 .0507 8125 .000 .. 0031

• E .8750 .OE .0546 8750 .OOE .0034
• F .9375 .OF .0585 9375 .OOF .0036

1 2

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find.A in position I .6250

Find .OB in position 2 .0429 6875

Find .00<: in position 3 .0029 2968 7500

. ABC Hex is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

HALFWORD

3

BYTE

0123 4567

Decimal Hex Decimal Equivalent

0000
4414
8828
3242
7656
2070
6484
0898
5312
9726
4140
8554
2968
7382
1796
6210

0000 .0000 .0000 0000 0000 0000
0625 .0001 .0000 1525 8789 0625
1250 .0002 .0000 3051 7578 1250
1875 .0003 .0000 4577 6367 1875
2500 .0004 .0000 6103 5156 2500
3125 .0005 .0000 7629 3945 3125
3750 .0006 .0000 9155 2734 3750
4375 .0007 .0001 0681 1523 4375
5000 .0008 .0001 2207 0312 5000
5625 .0009 .0001 3732 9101 5625
6250 .OOOA .0001 5258 7890 6250
6875 .OOOB .0001 6784 6679 6875
7500 .OOOC .0001 8310 5468 7500
8125 .OOOD .0001 9836 4257 8125
8750 .OOOE .0002 1362 3046 8750
9375 .OOOF .0002 2888 1835 9375

4

To convert fractions beyond the capocity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexodecimal fraction to its decimal equivalent using the same
technique as for integer numbers. Divide the results by 16n (n is the
number of fraction positions) .
Example: .8A7 = .54077110

8A716 = 2215 10 .540771
163 = 4096 409612215 .000000

1. Find .1250 next lowest to
subtract

.1300
-.1250 = .2 Hex

2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .01

3. Find.OOO9 7656 2500 .0010 9375 0000
-.0009 7656 2500 = .004

4. Find .0001 0681 1523 4375 .0001 1718 7500 ()()()()
-.0001 0681 1523 4375 = .0007

.0000 1037 5976 5625 = .2147 Hex

5 .• 13 Decimal is approximately equal to _______ --J+

DECIMAL FRACTION TO HEXADECIMAL

Collect integer ports of product in the order of colculation.

Example: .540810 = .8A716

.5408

1
8 ~

A'-

7 .-

x16
[].6528

x16
fi:QI.4448

x16
[].1l68

Appendix F. Hexadecimal Tables F-7

Hexadecimal Addition and Subtraction Table

Exemple: 6 + 2 = 8, 8 - 2. 6, and 8 - 6 .. 2

1 2 3 4 5 6 7 8 9 A B C 0 E F

1 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10

2 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11

3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13

5 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14

6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15

7 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17

9 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18

A OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA

C OD OE OF 10 11 12 13 14 15 16 17 18 19 lA lB

0 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC

E OF 10 11 12 13 14 15 16 17 18 19 lA lB lC 10

F 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 IE

Hexadecimal Multiplication Table.
Example: 2 x" = 08, F x 2 = IE

1 2 3 4 5 6 7 8 9 A B C 0 E F

1 01 02 03 04 05 06 07 08 09 OA OB oc 00 OE OF

2 02 04 06 08 OA oc OE 10 12 14 16 18 lA lC IE

3 03 06 09 oc OF 12 15 18 lB IE 21 24 27 2A 20

4 04 08 oc 10 14 18 lC 20 24 28 2C 30 34 38 3C

5 05 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 4B

6 06 oc 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A

7 07 OE 15 lC 23 2A 31 38 3F 46 40 54 5B 62 69

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 09 12 lB 24 20 36 3F 48 51 5A 63 6C 75 7E 87

A OA 14 IE 28 32 3C 46 SO SA 64 6E 78 82 8C 96

B OB 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A AS

C oc 18 24 30 3C 48 54 60 6C 78 84 90 9C M '84

0 OD lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E OE lC 2A 38 46 54 62 70 7E 8C 9A M B6 C4 02

F OF IE 20 3C 4B SA 69 78 87 96 AS 84 C3 02 E1

F-8 System/370 Principles of Operation

APPENDIX ~ EBCDIC ~

EXTENDED BINARY-CODED-DECIMAl INTER­
CHANGE CODE (EBCDIC)

The 256-position EBCDIC table shows
graphic-character, control-character,
and formatting-character representations
for EBCDIC. The bit-position numbers,
bit patterns, hexadecimal represent­
ations, and card-hole patterns for these
and other possible EBCDIC characters are
also shown.

To find the card-hole pattern for most
characters, partition the table into
four blocks, as follows:

1 3

2 4

Block 1 : Zone punches at top of table;
digit punches at left

Block 2: Zone punches at bottom of
table; digit punches at left

Block 3 : Zone punches at top of table;
digit punches at right

Block 4 : Zone punches at bottom of
table; digit punches at right

Fifteen positions in the table are
exceptions to the above arrangement.
Each such position is indicated by a
circled number in the upper right corner
of the box for that position. The
card-hole patterns for these positions
are shown beneath the table.
Bit-position numbers, bit patterns, and
hexadecimal representations for these
positions are found in the usual manner.

Appendix G. EBCDIC Chart G-l

The EBCDIC table shows 94 graphic·
character positions. Some products have
used an 88-character, 63-character, or
62-character subset of these graphic
characters.

The 94-character set consists of all
graphic characters shown in the EBCDIC
table. This character set can be used
for interchange with other systems;
those systems may use codes, other than
EBCDIC, which have 94 graphic
characters.

An 88-character set, that has been used
consists of the 94-character set with
the graphic characters at 6A, 79, AI,
CO, DO, and EO hex omitted. This char­
acter set has been used for 44-key
keyboard applications which require both
uppercase and lowercase alphabetic char­
acters.

A 63-character set that has been used
consists of the---94-character set with
the lowercase alphabetic characters
omitted and with the graphic characters
at 6A, 79, AI, CO, and DO hex omitted.
This character set has been used for
interchange with other systems; those
systems may have used codes, other than
EBCDIC, which have 63 graphic
characters.

A 62-character set that has been used
consists of the 63-character set with
the graphic character at EO hex omitted.
This character set has been used for
44-key keyboard applications which do
not require lowercase alphabetic charac­
ters.

Character

SEL
%
R
a

G-2 System/370 Principles of Operation

Thirteen positions (4A, 4F, SA, 5B, SF,
6A, 79, 7B, 7C, AI, CO, DO, and EO hex)
are defined in the table as Data Proc­
essing National Use positions. Each
such position contains a shaded triangle
in the top left corner of the box for
that position. The graphic characters
provided in these positions on printing
and display devices may differ from one
language to another or from one country
to another. The characters provided for
use in data-processing applications by
the English (U.S.) version of EBCDIC are
shown in the table.

The other graphic characters shown in
the EBCDIC table are provided for data­
processing applications in the English
(U.S.) version of EBCDIC and in addi­
tional versions of EBCDIC in other
languages which use a latin-based alpha­
bet. Products designed for data­
processing applications in a language
which does not use a Latin-based alpha­
bet support character sets meeting the
particular requirements of that
language.

Word-processing products normally
support a character set slightly differ­
ent from the one shown in the table.
Additionally, a number of application
areas (such as printing and publishing,
magnetic-ink character recognition, and
some programming languages) also require
unique character-set support.

Some examples of the use of the EBCDIC
table are shown in the following figure:

Type

Control Character
Special Graphic
Upper Case
Lower Case
Control Character,
function not yet
assigned

Bit Pattern

00000100
01 101100
11 01 1001
10000001
00 11 0000

- ..J ..
Bit Positions
01 234567

Hex Hole Pattern

Zone Punches I Digit Punches

04 12-91-4
6C 01- 8 - 4
09 111- 9
81 12 - 01- 1

' 30 12 - 11 - 0 - 91- 8 - 1
I
1

I Bit Positions 0,1

~~~--T---~----~--~--~--~--~----~--~----~--~---r---'---'----~ I Bit POlitions 2,3 
r-_4----r_---r----r_--4---~--_+--~----r_--~--~----~--~--_+--_4--~ :~ 

o 

1 

J 
] 

DC2 

DC3 

:~V 

NL 

BS 

pac 

CAN 

EM 

UBS 

CUI 

IFS 

IGS 

IRS 

FS SYN 

WUS IR 

BYP/ PP 
INP 

LF TRN 

ETB NBS 

ESC EaT 

SA SBS 

SFE IT 

SM/SW RFF 

CSP CU3 

MFA DC4 

ENQ NAK 

ACK 

~ar!! Hole Pottern. 

CD 12-0-9-8-1 CD 12-11-0-9-8-1 

~ 
12-11-9-8-1 CD No Punches 
11-0-9-8-1 CD 12 

Contra I Choracter Representotians 

ACK Acknow ledge E1X 
BEL Bell FF 
BS Backspace FS 
BYP/INP Bypass/lnhibi t Presentation GE 
CAN Cancel HT 
CR Carriage Return IFS 
CSP Contra I Sequence Prefix IGS 
CU1 Cu~tamer Use 1 IR 
CU3 Custamer Use 3 IRS 
DCl Devi ce Control 1 IT 
DC2 Device Control 2 IUS/ITB 
DC3 Devi ce Control 3 
OC4 Dev i ce Control 4 LF 
OEL D.I.te MFA 
OLE Data link Escape NAK 
OS Digit Select NBS 
EM End of Medium NL 
ENQ Enquiry NUL 
EO Eight Ones pac 
EaT End of Transmission 
ESC ElCace PP 
ETB End of Transmission Block RES/ENP 

RSP 

< % @ 

> 

CD 11 ® 
CD 12-11-0 

~ CD 12-0 12 

End of Text 
Farm Feed 
Field Separator 
Graphi c Escape 
Horizontal Tab 
Interchange Fi Ie Separator 
Interchange Group Separator 
Index Return 
Interchange Record Separator 
Indent Tab 
Interchange Unit Separator/ 
Intermediate Transmission Block 
Line Feed 
Modify Field Attribute 
Negative Acknowledge 
Numeri c Backspace 
New line 
Null 
Program-Operator 
Communi cotion 
Pre5enta tion Posi ti on 
Restore/Enable Presentation 

11-0 

0-8-2 

RFF 
RNL 
RPT 
SA 
SBS 
SEL 
SFE 
SI 
SM/SW 
SO 
SOH 
SOS 
SPS 
STX 
SUB 
SYN 
lRN 
UBS 
VT 
WUS 

® 
® 
@ 

0-1 

11-0-9-1 

12-11 

Required Form Feed 
Required New line 
Repeat 
Set Attribute 
Subscript 
s"1,,ct 
Start Field Extended 
Shift In 
Set Mode/Switch 
Shift Out 
Start of Heading 
Start of Signifi canc.e 
Superscript 
Start of Text 
Substi tute 
Synchronous Idle 
Transparent 
Uni t I!a ckspa ce 
Verti co I Tab 
Word Underscore 

C 

D M U 

N V 

o W 

G X 

H Q Y 

z 

SHY 

Formatting Choracter Representations 
NSP Numeric Space 
RSP Required Space 
SP Space 
SHY Syllable Hyphen 

Special Graphic Characters 

Cent Sign Comma 
Period, Decimcd Point ~o Percent 

< Less-than Sign Underscore 

Left Parenthesis > Greeter-than Sign 
Plus Sign Question Mark 

I Logical OR Grave Accent 
& Ampersand Colon 

Exclamation Point Number Sign 
Dalla. Sign @ At Sign 
Asterisk Prime, Apostrophe 
R:gl-.t Pore ... tl-..es:s Equal 5:g" 
Semicolon Quotation Mork 
Logical NOT Tilde 
Minus Sign, Hyphen Opening Brace 

/ Slash Closing Brace 
Vertical li ne Reverse Slant 

Appendix G. EBCDIC Chart G-3 





APPENDIX ~ CHANGES AFFECTING COMPATIBILITY BETWEEN SYSTEM/360 AHD SYSTEM/370 

Removal of USASCII-8 Mode ••••••••••••••••••••••••••••••• H-1 
Operation Codes of 110 Instructions ••••••••••••••••••••• H-1 

Halt I/O ..••••.•••••••••••..•••••••••••••••••••••••••. H-1 
start 1/0 ..•.•.••.•.••••••.•••.•••••.••••••••••••••.•• H-1 
Test Channel ..•.•.•••••••••.••••••••.•••••••••••••.••• H-2 

Logout ..•.•...••....•.•••••••••••••••••••••..••••.••••.• H-2 
Command Retry ..••...•••••.••••••••••••.•••••••••..•••..• H-2 
Channel Prefetching .•••..•••••.•••••••.•••••••.••••••••. H-2 
Validity of Data ....••..•••..••••••••••••••••••••.•••••• H-2 

This appendix summarizes those changes 
included in the System/370 architecture 
that may affect whether or not a program 
written according to the System/360 
architecture will operate on models 
implementing the System/370 architecture 
described in this publication. Not 
included are descriptions of System/370 
functions which are compatible exten­
sions, that is, (1) those that are 
suppressed on initialization, such as 
block multiplexing, and (2) those that 
are specified in such a manner that they 
cause program exceptions on System/360, 
such as new instructions. 

REMOVAL OF USASCII-8 MODE 

System/360 provides for USASCII-8 by a 
mode under control of PSW bit 12. USAS­
CII-8 was a proposed zoned-decimal code 
that has since been rejected. When bit 
12 of the System/360 PSW is one, the 
preferred codes for USASCII-8 are gener­
ated for decimal results. When PSW bit 
12 is zero, the preferred codes for 
EBCDIC are generated. 

In System/370, the USASCII-8 mode and 
the associated meaning of PSW bit 12 are 
removed. In System/370, all 
instructions whose execution in 
System/360 depends on the setting of PSW 
bit 12 are executed generating the 
preferred codes for EBCDIC. 

Bit 12 of the PSW is 
System/370 as follows: 

handled in 

• 

• 

In models that do not have the 
translation facility installed, a 
one in PSW bit position 12 causes a 
program interruption for specifica­
tion exception. 

In models that have the translation 
facility installed, a one in PSW 
bit position 12 causes the CPU to 
operate in the extended-control 
(EC) mode. 

OPERATION CODES OF I/O INSTRUCTIONS 

In System/360, the operation codes of 
the four I/O instructions (HALT 1/0, 
START I/O, TEST CHANNEL, and TEST 1/0) 
are one byte in length, and bits 8-15 of 
the I/O instructions are ignored. In 
System/370, the operation codes of all 
I/O instructions are the first two bytes 
of the instruction. System/360 programs 
that execute I/O instructions in which 
any of bits 8-15 is not zero may perform 
a different function when executed on a 
System/370 CPU, as explained below. 

In System/370, HALT I/O (HIO) is 
assigned the operation code 9EOO hex and 
HALT DEVICE (HDV) the operation code 
9E01. Because bits 8-14 are ignored in 
both instructions, an instruction 
executed as HALT I/O in System/360 will 
still be executed as HALT I/O 1n 
System/370 if the third hex digit is any 
value and the fourth hex digit is an 
even value. However, in System/370, if 
bit 15 of the instruction is one, the 
function performed will be the HIO func­
tion or the HDV function, depending on 
the design of the channel. 

In System/370, START 110 is assigned the 
operation code 9COO and RESUME 1/0 is 
assigned the operation code 9C02. 
Therefore, an. instruction executed as 
START 110 in System/360 will be executed 
as RESUME 110 in System/370 if bits 8-15 
of the instruction contain the value 02 
hex and the suspend-and-resume facility 
is installed. When the suspend-and­
resume facility is installed, operation 

Changes Affecting Compatibility between System/360 and System/370 H-l 



codes in the range 9C03 through 9CFF 
cause an operation exception to be 
recognized. If the suspend-and-resume 
facility is not installed, bits 8-14 of 
the instruction are always ignored, and 
bit 15 is ignored when the block­
multiplexing-control bit (bit 0 of 
control register 0) is zero at the time 
the instruction is executed. 

Test Channel 

In System/370, TEST CHANNEL is assigned 
the operation code 9FOO and CLEAR CHAN­
NEL (CLRCH) the operation code 9F01 hex. 
Because bits 8-14 of the instruction are 
ignored in both instructions, an 
instruction executed as TEST CHANNEL in 
System/360 will still be executed as 
TEST CHANNEL in System/370 if the third 
hex digit is any value and the fourth 
hex digit is an even value. However, in 
System/370, if bTt15 of the instruction 
is one, the CLRCH function is performed 
if the recovery-extension facility is 
installed; otherwise, the TCH function 
is performed. 

LOGOUT 

In System/360, the logout area starts 
with location 128 and extends through as 
many locations as the given model 
requires. Portions of this area are 
used for machine-check logout, and other 
portions may be used for channel logout. 
While no limit is set on the size of the 
logout area, the extent of the area used 
on most System/360 models is less than 
that stored by a comparable System/370 
model. 

On System/370, the machine-check inter­
ruption causes information to be stored 
at locations 216-239, 244-255, and 
352-511. Additionally, the model may 
store logout information in the fixed­
logout area, locations 256-351, and the 
model may also have a machine-check 
extended-logout (MCEL) area, which, on 
initialization, is specified to start at 
location 512. Channels may place logout 
information in the limited channel 
logout area, locations 176-179, and in 
the fixed-logout area, locations 
256-351. 

In System/360, logout is not permitted 
on data check. System/370 permits 
logout to occur when the channel causes 
an I/O interruption with the data-check 
indication. 

H-2 System/370 Principles of Operation 

COMMAND RETRY 

System/370 channels may provide command 
retry, whereby the channel, in response 
to a signal from the device, can retry 
the execution of a channel command. 
Since I/O devices announced prior to 
System/370 do not signal for command 
retry, no problem of compatibility 
exists on these devices. However, some 
new devices, which would otherwise be 
compatible with former devices, do 
signal for command retry. 

The effects of command retry usually are 
not significant; however, the following 
is a list of some of the differences 
which command retry can cause: 

1. An immediate command specifying no 
chaining may result in setting 
condition code 0 rather than condi­
tion code 1. 

2. Multiple PCI interruptions may be 
generated for a single CCW with the 
PCI flag. 

3. Since CCWs may be refetched, 
programs which dynamically modify 
CCWs may be affected. 

4. The residual count in the CSW 
reflects only the Ivst execution of 
the command and does not necessar­
ily reflect the maximum storage 
used in previous executions. 

CHANNEL PREFETCHING 

In System/360, on an output operation, 
as many as 16 bytes may be prefetched 
and buffered; similarly, with data 
chaining specified, the channel may 
prefetch the new CCW when up to 16 bytes 
remain to be transferred under control 
of the current CCW. In System/370, the 
restriction of 16 bytes is removed. 

VALIDITY OF DATA 

In System/360, the contents of main 
storage are preserved when power is 
turned off. In System/370, because main 
storage may be volatile or nonvolatile, 
the program must not depend on the 
validity of data in main storage after 
system power has been lost or turned off 
and then restored. 



APPENDIX ~ CHANGES AFFECTING COMPATIBILITY WITHIN SYSTEM/370 

READ DIRECT and WRITE DIRECT •••••.••...•••.•...•.••.••.. 1-1 
Store Accesses ..•.........•...•.•.••.................... 1-1 
Fetch Accesses ..•.........••••..••••...•••..•.....•..... 1-1 
Operand-Access Consistency •••.......••.•..•..•••••.•.... 1-2 
Change Bit ........................•..••.•......•••.••... 1-2 
Subchannel Interruption-Pending state ...•............... 1-2 
START I/O and START I/O FAST RELEASE .................... 1-2 

This appendix summarizes those changes 
included in the System/370 architecture 
that may affect whether or not a program 
written according to the original 
System/370 architecture will operate on 
models implementing the architecture 
described in this publication. Not 
included here are descriptions of 
compatible extensions, such as new 
facilities incorporated in System/370 
that make use of unassigned operation 
codes and formats. 

READ DIRECT AND WRITE DIRECT 

When the instruction INVALIDATE PAGE 
TABLE ENTRY is installed, the following 
changes apply: 

• Both READ DIRECT and WRITE DIRECT 
are changed to use real instead of 
logical addresses. 

• Program-event recording does not 
apply to the storage alteration 
performed by READ DIRECT. 

STORE ACCESSES 

The following changes are made as to 
when an access to storage for storing 
can take place. 

• When the execution of the instruc­
tion is nullified or suppressed 
because of certain program 
exceptions, an interlocked-update 
reference may occur at the operand 
location. Originally no storage 
access was permitted. In some of 
these situations, the channel may 
observe intermediate results which 
differ from the final result. See 
the section "Exceptions to Nullifi­
cation and Suppression" in Chapter 
5, "Program Execution." 

• 

• 

• 

When the mask in STORE CHARACTERS 
UNDER MASK i s zero, an 
interlocked-update reference may 
occur at the byte location desig­
nated by the operand address. 
Originally no storage access was 
permitted. 

When the result of comparison in 
COMPARE AND SWAP or COMPARE DOUBLE 
AND SWAP is unequal, an 
interlocked-update reference may 
occur at the operand location. 
Originally no storage access was 
permitted. 

When the result of the store opera­
tion is defined to be 
unpredictable, such as for STORE 
CLOCK with the clock in the error 
state, the store access may be 
omitted. 

Whether or not a store access takes 
place is visible to the program in four 
ways: an access exception may be indi­
cated, the change bit may be set, a PER 
storage-alteration event may be indi­
cated, and, for stores that are part of 
an interlocked-update reference, the 
channel may observe the distinct 
accesses for fetching and storing. The 
fetch and store parts of an 
interlocked-update reference appear 
interlocked to other CPUs. 

FETCH ACCESSES 

Originally the definition required that, 
with the exception of some compare 
instructions, access exceptions on 
fetching be indicated for the unused 
portion of an operand. The changed 
definition permits the indication of the 
access exception for the unused parts to 
be unpredictable, except that an access 
exception still must be indicated for 
TEST UNDER MASK, INSERT CHARACTERS UNDER 
MASK, and COMPARE LOGICAL CHARACTERS 
UNDER MASK when the mask is zero. 

Changes Affecting Compatibility within System/370 I-I 



OPERAND-ACCESS CONSISTENCY 

Originally the access for the operand of 
LOAD MULTIPLE was specified to be 
doubleword-concurrenti that is, all 
bytes within a doubleword appear to all 
CPUs to be accessed concurrently. This 
definition is changed to require double­
word concurrency only if the operand is 
designated on a word boundary. 

The restriction is removed that, during 
the padding portion of a MOVE LONG 
execution, another CPU can observe the 
operand to be stored only once and only 
in the left-to-right sequence. 

CHANGE BIT 

Originally the System/370 architecture 
specified that the change bit be set to 
one each time information is stored in 
the corresponding storage block. This 
definition is changed as follows: 

• The change bit now is necessarily 
set to one only when the contents 
of the corresponding storage block 
are changed. In situations where 
execution of the instruction can be 
completed without making a store 
access, such as in MOVE (MVC) with 
coincident operands or in OR (01) 
with an immediate operand of zeros, 
the change bit may be unaffected. 
However, even when the change bit 
is not set, any applicable access 
exceptions or PER storage-
alteration events are still 
indicated. 

• The change bit may be set to one as 
a result of those situations 
described in the section "Store 
Accesses" in this appendix. 

• Because of CPU retry, the change 
bit may be set to one for locations 
which the program has not accessed. 

SUBCHANNEL INTERRUPTION-PENDING STATE 

Originally only status associated with 
the termination of an 110 operation at 

1-2 System/370 Principles of Operation 

the subchannel could cause the subchan­
nel to enter the interruption-pending 
state. Status not associated with the 
termination of an I/O operation at the 
subchannel was held pending at the 
device, and the subchannel would be 
available. The changed definition 
allows status not associated with the 
termination of an I/O operation at the 
subchannel to be accepted into the 
subchannel. As a result of this change, 
a subchannel that is shared among multi­
ple devices may cause condition code 2 
to be returned to a START I/O, START I/O 
FAST RELEASE, or TEST 110 even if no 
previous START I/O or START I/O FAST 
RELEASE had been executed specifying the 
same device. This busy state persists 
until the interruption condition is 
cleared. 

START I/O AND START I/O FAST RELEASE 

Originally the System/370 architecture 
specified START 110 and START I/O FAST 
RELEASE as having the operation codes 
9COO and 9C01, respectively, with bits 
8-14 of the operation code ignored by 
the CPU. Now, however, when the 
suspend-and-resume facility is 
installed, bits 8-14 of the operation 
code for START I/O and START I/O FAST 
RELEASE are n~ longer ignored by the 
CPU. 

Operation codes 9CXO, 9CX2, 9CX4, 9CX6, 
9CX8, 9CXA, 9CXC, and 9CXE (wi th X 
representing any hex digit) all were 
executed as START I/O. Similarly, oper­
ation codes 9CX1, 9CX3, 9CX5, 9CX7, 
9CX9, 9CXB, 9CXD, and 9CXF all were 
executed as START I/O FAST RELEASE. 
When the suspend-and-resume facility is 
installed, only operation code 9COO is 
executed as START I/O, and only opera­
tion code 9COl is executed as START I/O 
FAST RELEASE; operation code 9C02 is 
executed as RESUME I/O, and all opera­
tion codes in the range 9C03 through 
9CFF cause an operation exception to be 
recognized. 



A 
A (ADD) binary instruction 7-7 
absolute address 3-5 
absolute storage 3-5 
access-control bits in storage key 3-6 
access exceptions 6-28,6-33 

priority of 6-33 
recognition of 6-28 

access key 3-8 
for channel-program execution 3-9 
for CPU 3-8 

access to storage 5-24 
(See also reference) 

AD (ADD NORMALIZED) instruction 9-6 
example A-36 

ADD (A,AR) binary instructions 7-7 
ADD DECIMAL (AP) instruction 8-5 

example A-30 
ADD HALFWORD (AH) instruction 7-7 

example A-8 
ADD LOGICAL (AL,ALR) instructions 7-8 
ADD NORMALIZED (AD,ADR,AE,AER,AXR) 

instructions 9-6 
example A-36 

ADD UNHORMALIZED (AU,AUR,AW,AWR) 
instructions 9-7 

example A-36 
address 3-2 

absolute 3-5 
arithmetic 3-6,5-5 

unsigned binary 7-3 
base (See base address) 
branch (See branch address) 
channel 13-8,13-15 
channel-set 4-43 
comparison 12-1 

controls for 12-1 
effect on CPU state 4-2 

CPU (See CPU address) 
device 13-8,13-15 
effective (See effective address) 
failing-storage (See failing-storage 
address) 

format 3-3 
generation 5-5 

for storage addressing 3-2 
I/O (See I/O address) 
instruction (See instruction 
address) 

invalid 6-15 
logical (See logical address) 
numbering of for byte locations 3-2 
PER (See PER address) 
prefixing (See prefix) 
primary virtual (See primary virtual 
address) 

real 3-5 
secondary virtual (See secondary 
virtual address) 

storage 3-2 
summary information 3-38 
translation (See dynamic address 
translation, prefix) 

types 3-5 
virtual 3-5 
wraparound (See wraparound) 

address space 3-12 
control bit 

in PSW 4-7 
use in address translation 3-22 

created by OAT 3-20 
number (See ASN) 

addressing exception 6-15 
as an access exception 6-28,6-33 

ADR (ADD NORMALIZED) instruction 9-6 
AE (ADD NORMALIZED) instruction 9-6 

example A-36 
AER (ADD NORMALIZED) instruction 9-6 
AFT (ASH first table) 3-14 
AFTE (ASN-first-table entry) 3-14 
AFTO (ASN-first-table origin) 3-13 
AFX (ASH-first-table index) 3-13 

invalid bit 3-14 
translation exception 6-18 

AH (ADD HALFWORD) instruction 7-7 
example A-8 

AKM (authorization key mask) 5-22 
AL (ADD LOGICAL) instruction 7-8 
alert, I/O-error (in limited channel 

logout) 13-82 
alert (class of machine-check condition) 

11-12 
allowed interruptions 6-6 
ALR (ADD LOGICAL) instruction 7-8 
alter-and-display controls 12-2 
alteration 

general-register (PER event) 4-20 
storage (PER event) 4-19 

AND (N,NC,NI,NR) instructions 7-8 
examples A-8 

AP (ADD DECIMAL) instruction 8-5 
example A-30 

AR (ADD) binary instruction 7-7 
architectural mode 1-1 

compatibility 1-3 
arithmetic 

address (See address arithmetic) 
binary 7-3 

examples A-2 
decimal 8-2 

examples A-5,A-30 
floating-point 9-1 

examples A-5,A-36 
logical (unsigned binary) 7-3 

examples A-4 
ASCII character code, handled by archi­
tecture iv 

ASN (address-space number) 3-12 
as part of DAS 5-14 
authorization 3-17 
first table (AFT) 3-14 

index (AFX) 3-13 
origin (AFTO) 3-13 

in entry-table entry 5-22 
second table (AST) 3-14 

index (ASX) 3-13 
origin (ASTO) 3-14 

translation 3-13 
exceptions 6-35 
specification exception 6-18 

translation-control bit 3-13,5-18 
assembler language A-7 

instruction formats in (See instruc­
tion lists and page numbers in 
Appendix B) 

assigned storage locations 3-41 

Index X-I 



AST (ASN second table) 3-14 
ASTE (ASN-second-table entry) 3-14 
ASTO (ASN-second-table origin) 3-14 
ASX (ASN-second-table index) 3-13 

invalid bit 3-14 
translation exception 6-18 

asynchronous fixed-logout-control bit 
11-29 

asynchronous logout 11-28 
asynchronous machine-check 

extended-logout-control bit 11-29 
AT (authority table) 5-18 
ATL (authority-table length) 3-14 
ATO (authority-table origin) 3-14 
attached segment-table or page-table 

entry 3-32 
attachment of I/O devices 13-2 
attention (unit status) 13-64 
AU (ADD UNNORMALIZED) instruction 9-7 

example A-36 
AUR (ADD UNNORMALIZED) instruction 9-7 
authority table (AT) 5-18 

designation 3-14 
authorization 

ASN 3-17 
index (AX) 3-17,5-18 
key mask (AKM) 5-22 
mechanisms 5-17 

authorization mechanisms, summary of 
5-20 

auxiliary storage 3-2,3-20 
availability (characteristic of a 

system) 1-4 
available state (I/O system) 13-10 
AW (ADD UNNORMALIZED) instruction 9-7 
AWR (ADD UNNORMALIZED) instruction 9-7 
AX (authorization index) 5-18 
AXR (ADD NORMALIZED) instruction 9-6 

B 
B field of instruction 5-5 
backed-up bit (machine-check condition) 

11-19 
backup, processing (synchronous 
machine-check condition) 11-19 

BAL (BRANCH AND LINK) instruction 7-9 
examples A-8 

BALR (BRANCH AND LINK) instruction 7-9 
examples A-8 

BAS (BRANCH AND SAVE) instruction 7-9 
example A-8 

base address 5-5 
register for 2-4 

basic control (See BC mode) 
basic operator facilities 12-1 
basic sense command 13-51 
BASR (BRANCH AND SAVE) instruction 7-9 

example A-8 
BC (basic-control) mode 4-4 

program conversion to EC mode 10-46 
PSW format in 4-8 

BC (BRANCH ON CONDITION) instruction 
7-10 

example A-10 
BCR (BRANCH ON CONDITION) instruction 

7-10 
BCT (BRANCH ON COUNT) instruction 7-11 

example A-I0 
BCTR (BRANCH ON COUNT) instruction 7-11 

example A-I0 
binary 

(See also fixed point) 

X-2 System/370 Principles of Operation 

arithmetic 7-3 
examples A-2 

negative zero 7-2 
number representation 7-2 

examples A-2 
overflow 7-3 

example A-2 
sign bit 7-2 

binary-to-decimal conversion 7-17 
example A-16 

bit 3-2 
numbering of within a group of bytes 

3-3 
block-concurrent storage references 

5-31 
block-multiplexer channel 13-5 
block-multiplexing-control bit 13-5 

effect on CLEAR I/O instruction of 
13-17 

effect on START I/O FAST RELEASE 
instruction of 13-27 

block of I/O data 13-37 
incorrect length for 13-70 
self-describing 13-42 

block of storage 3-5 
(See also page) 
testing for usability of 10-50 

borrow 7-37 
boundary alignment 3-3 

for instructions 5-3 
branch address 5-6 
BRANCH AND LINK (BAL,BALR) instructions 

7-9 
examples A-8 

BRANCH AND SAVE (BAS,BASR) instructions 
7-9 

examples A-8 
branch-and-save facility D-2 
BRANCH ON CONDITION (BC,BCR) 

instructions 7-10 
example A-10 

BRANCH ON COUNT (BCT,BCTR) instructions 
7-11 

example A-10 
BRANCH ON INDEX HIGH (BXH) instruction 

7-11 
examples A-II 

BRANCH ON INDEX LOW OR EQUAL (BXLE) 
instruction 7-11 

examples A-12 
branching 

branch address generation 5-6 
to perform decision making, loop 
control, and subroutine linkage 5-6 

buffer storage (cache) 3-2 
burst mode (channel operation) 13-4 
bus-out check (bit in I/O-sense data) 

13-51 
busy 

as unit status (I/O) 13-65 
in I/O operations 13-7 
in SIGNAL PROCESSOR 4-40 

BXH (BRANCH ON INDEX HIGH) instruction 
7-11 

examples A-II 
BXLE (BRANCH ON INDEX LOW OR EQUAL) 

instruction 7-il 
examples A-12 

bypassing POST and WAIT A-42 
byte 3-2 

numbering of in storage 3-2 
byte index (BX) 3-21 
byte-multiplex mode (channel operation) 

13-4 



byte-multiplexer channel 13-4,13-30 
byte-oriented-operand facility 3-5 

C 
C (COMPARE) binary instruction 7-12 
cache 3-2 
CAr (channel-available interruption) 

13-29,13-61 
carry 7-3 
CAW (channel-address word) 13-37 

assigned storage locations for 3-42 
in IPl 4-36 

CBC (checking-block code) 11-2 
invalid 11-2 

in registers 11-9 
in storage 11-6 
in storage keys 11-7 

near-valid 11-2 
valid 11-2 

CC (chain-command) flag in CCW 
13-7,13-38 

CCW (channel-command word) 13-38 
address of in CAW 13-37 
address of in CSW 13-63 

contents of 13-75 
validity flag for 13-82 

chaining of 13-40 
commands (See command chaining of 

cews) 
data (See data chaining of CCWs) 

command codes (See commands) 
command retry of 13-53 
count field in (See count field) 
data-address field in 13-39 
flags in 13-49 
format of 13-38 
in rPl 4-36 

assigned storage locations for 
3-41 

prefetching of 13-40,13-42 
role of in I/O operations 13-5 

CD (chain-data) flag in CCW 13-6,13-38 
CD (COMPARE) floating-point instruction 

9-8 
CDR (COMPARE) floating-point instruction 

9-8 
examples A-37 

CDS (COMPARE DOUBLE AND SWAP) instruc­
tion 7-12 

examples A-40 
CE (COMPARE) floating-point instruction 

9-8 
central processing unit (See CPU) 
CER (COMPARE) floating-point instruction 

9-8 
CH (COMPARE HAlFWORD) instruction 7-14 

example A-12 
chain-command (CC) flag in CCW 

13-7,13-38 
chain-data (CD) flag in cew 13-6,13-38 
chaining 13-40 

command (See command chaining of 
CCWs) 

data (See data chaining of CCWs) 
flags in CCW for 13-6,13-38 

chaining check (channel status) 13-72 
change bit in storage key 3-7 
change recording 3-10 
channel 2-6,13-3 

block-multiplexer 13-5 
byte-multiplexer 13-4,13-30 

control failure (bit in 
external-damage code) 11-25 

equipment error detected by 13-14 
I/O-system reset, as part of subsys­

tem reset 4-34 
masks 6-14 

difference between EC and BC modes 
4-4 

in BC-mode PSW 4-8 
multiplexer 13-5 
not operational (I/O-system state) 

13-12 
bit in external-damage code 11-25 

programming error dptected by 13-14 
selector 13-4 
timeout used by 13-4 
working (I/O-system state) 13-11 

channel address 13-8,13-15 
channel-address word (See CAW) 
channel-available interruption (CAl) 

13-29,13-61 
channel-command word (See CeW) 
channel commands (See commands) 
channel-control check (channel status) 

13-72 
channel-data check (channel status) 

13-71 
channel end (unit status) 13-67 
channel identification (rD) 13-32 

assigned storage locations for 3-44 
in IOeA (I/O-communication area) 
13-80 

channel indirect data addressing 13-45 
facility D-2 
IDA flag used for 13-38 
role of in I/O operations 13-6 

channel logout (See full channel 
logout) 

(See also limited channel logout) 
channel model 13-32 
channel power-on reset 4-35 
channel program 13-5 

resumption of 13-55 
serialization 5-34 
suspension of 13-46 

channel set 2-6 
address 4-43 
resetting of connections for 4-34 
switching 4-43 
switching facility D-2 

channel status 13-70 
chaining check 13-72 
channel-control check 13-72 
channel-data check 13-71 
incorrect length 13-70 
interface-control check 13-72 
program check 13-70 
program-controlled interruption (PCI) 

13-70 
protection check 13-71 

channel-status word (See CSW) 
channel-to-channel adapter 13-2 

publication referenced v 
channel-type code (specified by STIDC) 

13-32 
characteristic (of floating-point 

number) 9-1 
characters, represented by eight-bit 

code iv 
check bits 3-3,11-2 
check stop 4-3,11-10 

as signal-processor status 4-42 
control bit 11-14,11-28 
during manual operation 12-1 

Index X-3 



effect on CPU timer 4-28 
entering of 11-14 
indicator 12-2 
malfunction alert for 6-12 
system 11-11 

checking block 11-2 
checking-block code (See CaC) 
checkpoint 11-3 

in tracing 4-13 
checkpoint synchronization 11-3 

action 11-4 
operations 11-4 

CL (COMPARE LOGICAL) instruction 7-14 
CLC (COMPARE LOGICAL) instruction 7-14 

example A-13 
CLCL (COMPARE LOGICAL LONG) instruction 

7-15 
example A-14 

CLEAR CHANNEL (CLRCH) instruction 13-16 
termination of I/O operation by 

13-59 
CLEAR I/O (CLRIO) instruction 13-17 

termination of I/O operation by 
13-59 

clear-I/O facility D-2 
clear reset 4-34 
clearing operation 

by clear-reset function 4-34 
by load-clear key 12-3 
by system-reset-clear key 12-5 
by TEST BLOCK instruction 10-50 

eLI (COMPARE LOGICAL) instruction 7-14 
example A-13 

CLM (COMPARE LOGICAL CHARACTERS UNDER 
MASK) instruction 7-15 

example A-14 
clock (See TOD clock) 
clock comparator 4-27 

as part of facility 0-2 
external interruption 6-11 
save areas for 3-44 
validity bit for 11-23 

clock unit 4-26 
CLR (COMPARE LOGICAL) instruction 7-14 

example A-14 
CLRCH (CLEAR CHANNEL) instruction 13-16 
CLRIO (CLEAR I/O) instruction 13-17 
code 

ASCII, handled by architecture iv 
channel-type 13-32 
checking-block (See CBC) 
command (See commands) 
condition (See condition code) 
decimal digit and sign 8-2 
EBCDIC 

chart for G-l 
handled by architecture iv 

eight-bit, handled by architecture 
i v 

exception-extension 6-15 
external-damage 11-24 

validity bit for 11~22 
instruction-length (See ILC) 
interruption (See interruption code) 
monitor (See monitor code) 
operation 5-2 
PER (See PER code) 
region 11-26 

validity bit for 11-22 
sequence (in limited channel logout) 
13-82 

version 10-48 
command chaining of CCWs 13-43 

X-4 System/370 Principles of Operation 

chain-command (CC) flag for in CCW 
13-7,13-38 

during IPL 4-36 
command code in CCW (See commands) 
command-retry facility D-2,13-53 
commands (I/O) 13-48 

basic sense 13-51 
chaining of 13-43 
code in CCW for 13-39 
control 13-50 
no-operation 13-50 
read 13-49 
read backward 13-50 
rejection of 13-51,13-55 
retry of 13-53 
sense 13-51 
sense ID 13-52 
transfer in channel 13-53 
write 13-49 

commercial instruction set D-l 
common-segment bit 3-25 
communication area, I/O (See IOCA) 
COMPARE (C,CR) binary instructions 7-12 
COMPARE (CD,CDR,CE,CER) floating-point 
instructions 9-8 

examples A-37 
COMPARE AND SWAP (CS) instruction 7-12 

examples A-40 
COMPARE DECIMAL (CP) instruction 8-5 

example A-31 
COMPARE DOUBLE AND SWAP (CDS) instruc­
t;on 7-12 

examples A-40 
COMPARE HALFWORD (CH) instruction 7-14 

example A-12 
COMPARE LOGICAL (CL,CLC,CLI,CLR) 

instructions 7-14 
examples A-13 

COMPARE LOGICAL CHARACTERS UNDER MASK 
(CLM) instruction 7-15 

example A-14 
COMPARE LOGICAL LONG (CLCL) instruction 

7-15 
example A-14 

comparison 
address (See address comparison) 
decimal 8-5 

example A-31 
floating-point 9-8 

examples A-37 
logical 7-4 

examples A-13 
signed-binary 7-4 
TOO-clock 4-27 

compatibility 1-3 
among systems in the same architec­
tural mode 1-3 

of BC-mode PSW with System/360 4-5 
of I/O operations 13-7 

compatibility differences 
between System/360 and System/370 

in channel prefetching H-2 
in command retry H-2 
in I/O operation codes H-l 
in logout H-2 
in USASCII-8 mode H-1 
in validity of data H-2 

within System/370 
in change bit 1-2 
in fetch accesses I-I 
in operand-access consistency 1-2 
in REAL DIRECT and WRITE DIRECT 
I-I 



in START I/O and START I/O FAST 
RELEASE 1-2 

in store accesses I-I 
in subchannel interruption-pending 
state 1-2 

completion 
of I/O operations 13-54 
of instruction execution 5-9 
of unit of operation 5-10 

conceptual sequence 5-24 
as related to storage-operand 
accesses 5-32 

conclusion 
of data transfer (I/O) 13-56 
of I/O operations 13-54 
of instruction execution 5-8 

CONCS (CONNECT CHANNEL SET) instruction 
10-4 

concurrency of access for storage refer­
ences 5-31 

condition code 4-7 
deferred (See deferred condition 

code) 
for I/O operations 13-12 
in BC-mode PSW 4-8 
in EC-mode PSW 4-7 
summary C-l 
tested by BRANCH ON CONDITION 

instruction 7-10 
used for decision making 5-6 
validity bit for 11-22 

conditional-swapping facility 0-2 
conditional swapping instructions (See 

COMPARE AND SWAP instruction, COMPARE 
DOUBLE AND SWAP instruction) 

conditions for interruption (See inter­
ruption) 

configuration 2-2 
of storage 3-5 

CONNECT CHANNEL SET (CONCS) instruction 
10-4 

connection of channels (See channel 
set) 

connective (See logical connective) 
consistency (storage operand) 5-30 

examples A-44,A-47 
console device 12-1 
control 4-2 

as an I/O command 13-50 
instructions 10-2 
manual (See manual operation) 

control register 2-4,4-8 
save areas 3-45 
validity bit 11-23 

control-register assignment 4-10 
(CRx.y indicates control register x, 
bit position y) 

CRO.O: 
block-multiplexing-control bit 
13-5,13-17,13-27 

CRO.1: 
SSM-suppression-control bit 
6-25,10-46 

CRO.2: 
TOD-clock-sync-control bit 
4-24,4-27 

CRO.3: 
low-address-protection-control bit 
3-9 

CRO.4: 
extraction-authority-control bit 

5-17 
CRO.5: 

secondary-space-control bit 
3-23,5-18 

CRO.7: 
storage-key exception-control bit 
3-7,6-26 

CRO.8-12: 
translation format 3-23 

CRO.14: 
vector-control bit 4-11 

CRO.16: 
malfunction-alert subclass-mask 
bit 6-13 

CRO.17: 
emergency-signal subclass-mask bit 

6-11 
CRO.18: 

external-call subclass-mask bit 
6-12 

CRO.19: 
TOO-clock sync-check subclass-mask 
bit 6-13 

CRO.20: 
clock-comparator subclass-mask bit 

6-11 
CRO.21: 

CPU-timer subclass-mask bit 6-11 
CRO.22: 

service-signal subclass-mask bit 
6-13 

CRO.24: 
interval-timer subclass-mask bit 
6-12 

CRO.25: 
interrupt-key subclass-mask bit 
6-12 

CRO.26: 
external-signal subclass-mask bit 

6-12 
CRl.0-7: 

primary segment-table length 
(PSTL) 3-24 

CR1.8-25: 
primary segment-table origin 

(PSTO) 3-24 
CR1.31: 

space-switch-event-control bit 
3-24,6-25 

CR2.0-31: 
channel masks 6-14 

CR3.0-15: 
PSW-key mask (PKM) 5-18 

CR3.16-31: 
secondary ASN (SASN) 3-13,5-14 

CR4.0-15: 
authorization index (AX) 

3-17,5-18 
CR4.16-31: 

primary ASN (PASN) 3-13,5-14 
CR5.0: 

subsystem-linkage-control bit 
5-18,5-21 

CR5.8-24: 
linkage-table origin (LTO) 5-21 

CR5.25-31: 
linkage-table length (LTL) 5-21 

CR7.0-7: 
secondary segment-table length 

(SSTL) 3-24 
CR7.8-25: 

secondary segment-table origin 
(SSTO) 3-24 

CR8.16-31: 
monitor-mask bits 6-21 

CR9.0: 

Index X-5 



PER successful-branching-event­
mask bit 4-16 

CR9.1: 
PER instruction-fetching-event­

mask bit 4-16 
CR9.2: 

PER storage-alteration-event-mask 
bit 4-16 

CR9.3: 
PER general-register-alteration­

event-mask bit 4-16 
CR9.16-31: 

PER general-register-mask bits 
4-16 

CR10.8-31: 
PER starting address 4-16 

CR11.8-31: 
PER ending address 4-16 

CR14.0: 
check-stop-control bit 11-28 

CR14.1: 
synchronous machine-check 
extended-logout-control bit 
11-29 

CR14.2: 
I/O extended-logout-control bit 

11-29 
CR14.4: 

recovery subclass-mask bit 11-28 
CR14.5: 

degradation subclass-mask bit 
11-28 

CR14.6: 
external-damage subclass-mask bit 

11-28 
CR14.7: 

warning subclass-mask bit 11-28 
CR14.8: 

asynchronous machine-check 
extended-logout-control bit 
11-29 

CR14.9: 
asynchronous fixed-logout-control 
bit 11-29 

CR14.12: 
ASN-translation-control bit 

3-13,5-18 
CR14.20-31: 

ASN-first-table origin (AFTO) 
3-13 

CR15.8-28: 
machine-check extended-logout 
address 11-29 

control unit 2-6,13-3 
sharing of 13-5 

control unit busy (unit status) 13-29 
control-unit end (unit status) 

13-29,13-64 
conversion 

binary-to-decimal 7-17 
example A-16 

decimal-to-binary 7-16 
example A-16 

decimal-to-hexadecimal F-1 
floating-point-number 

basic example A-7 
examples with instructions A-38 

hexadecimal-to-decimal F-1 
of hexadecimal and decimal fractions 

F-7 
of hexadecimal and decimal integers 

F-6 

X-6 System/370 Principles of Operation 

of program from BC to EC mode 10-46 
CONVERT TO BINARY (CVB) instruction 

7-16 
example A-16 

CONVERT TO DECIMAL (CVD) instruction 
7-17 

example A-16 
count field 

in CCW 13-38,13-40 
in CSW 13-63,13-77 

counter updating (example) A-41 
counting operations 7-11 
CP (COMPARE DECIMAL) instruction 8-5 

example A-31 
CPU (central processing unit) 2-3 

address 4-38 
assigned storage locations for 

3-42 
when stored during external inter-

ruptions 6-10 
checkpoint 11-3 
effect of power-on reset on 4-35 
hangup due to string of interruptions 

4-3 
identification (10) 10-48 
model number 10-48 
registers 2-3 

save areas for 3-44 
reset 4-33 

signal-processor order 4-39 
retry 11-3 
serialization 5-33 
signaling 4-38 
state 4-2 

check-stop 4-3 
load 4-3 
no effect on TOO clock 4-24 
operating 4-2 
stopped 4-2 

version code 10-48 
CPU-identity field for DAS tracing 

(assigned storage location) 3-45 
CPU timer 4-28 

as part of facility 0-2 
external interruption 6-11 
save areas for 3-44 
validity bit for 11-23 

CPU-timer and clock-comparator facility 
0-2 

CR (See control register) 
CR (COMPARE) binary instruction 7-12 
CS (COMPARE AND SWAP) instruction 7-12 

examples A-40 
CSW (channel-status word) 

assigned storage locations for 3-42 
format of 13-62 
information provided by 13-73 

CCW address 13-75 
count 13-77 
deferred condition code 13-74 
status 13-78 
subchannel key 13-73 
suspended indication 13-74 

current PSW 4-3,5-6 
(See also PSW) 
stored during interruption 6-2 

CVB (CONVERT TO BINARY) instruction 
7-16 

example A-16 
CVD (CONVERT TO DECIMAL) instruction 

7-17 
example A-16 



D 
D (DIVIDE) binary instruction 7-17 

example A-16 
D field of instruction 5-5 
damage 

code (external) 11-24 
validity bit for 11-22 

external 11-18 
mask bit for 11-28 

instruction-processing 11-17 
interval-timer 11-17 
processing 11-20 
service-processor 11-18 
system 11-16 
timing-facility 11-17 

DAS (dual-address-space) facility 
D-2,5-13 

authorization mechanisms 5-17 
summary of 5-20 

tracing (See tracing) 
DAT (See dynamic address translation) 
DAT mode (bit in PSW) 4-6 

use in address translation 3-22 
data 

format for 
decimal instructions 8-1 
floating-point instructions 9-2 
general instructions 7-2 

I/O-sense 13-51 
prefetching of for output operation 

13-40 
transfer (I/O), conclusion of 13-56 

data block (See block of I/O data) 
data chaining of CCWs 13-6,13-42 

as cause of chaining check 13-72 
CCW prefetch for 13-42 
chain-data (CD) flag in CCW 

13-6,13-38 
effect on compatibility of 13-8 

data check (bit in I/O-sense data) 
13-51 

data exception 6-18 
DD (DIVIDE) floating-point instruction 

9-9 
DDR (DIVIDE) floating-point instruction 

9-9 
DE (DIVIDE) floating-point instruction 

9-9 
decimal 

arithmetic 8-2 
comparison 8-5 
digit codes 8-2 
divide exception 6-19 
instructions 8-1 

examples A-30 
number representation 8-1 

examples A-5 
operand overlap 8-3 
overflow 

exception 6-19 
mask in BC-mode PSW 4-8 
mask in EC-mode PSW 4-7 

sign codes 8-2 
tables for conversion to hexadecimal 

F-1 
decimal-to-binary conversion 7-16 

example A-16 
deferred condition code (in CSW) 13-63 

contents of 13-74 
for SIOF function 13-29 

degradation (machine-check condition) 
11-18 

subclass-mask bit for 11-28 

degradation, storage (machine-check 
condition) 11-21 

delay code in I/O-communication area 
13-83 

delay in storing 5-29 
delayed (machine-check condition) 11-19 
delayed access exception (machine-check 
condition) 11-19 

deletion of malfunctioning unit 11-4 
DER (DIVIDE) floating-point instruction 

9-9 
examples A-37 

designation 
authority-table 3-14 
effective segment-table 3-27 
entry-table 5-21 
linkage-table 5-21 

in AST entry 3-15 
page-table 3-25 
primary segment-table 3-24 
secondary segment-table 3-24 
segment-table 3-24 

in AST entry 3-14 
destructive overlap 5-32,7-25 
detect field (in limited channel logout) 

13-81 
device 2-6,13-2 

console 12-1 
not-ready state of 13-10 
status of 13-51 
used for IPL 4-36 

device address 13-8,13-15 
device busy (unit status) 13-29 
device end (unit status) 13-29,13-67 
device error 13-15 
device-working state (I/O-system state) 

13-10 
DIAGNOSE instruction 10-5 
digit codes (decimal) 8-2 
digit selector (in EDIT) 8-7 
direct-access storage 3-2 
direct control 4-23 

facility D-2 
disabling for interruptions 6-6 
disabling of interval timer 4-29 
disallowed interruptions 6-6 
DISCONNECT CHANNEL SET (DISCS) instruc-
tion 10-6 

DISCS (DISCONNECT CHANNEL SET) instruc­
tion 10-6 

displacement (in relative addressing) 
5-5 

display (manual controls) 12-2 
DIVIDE (D,DR) binary instructions 7-17 

example A-16 
DIVIDE (DD,DDR,DE,DER) floating-point 

instructions 9-9 
examples A-37 

DIVIDE DECIMAL (DP) instruction 8-5 
example A-31 

divide exception 
decimal 6-19 
fixed-point 6-20 
floating-point 6-20 

divisible instruction execution 5-25 
doubleword 3-3 
doubleword-concurrent storage references 

5-31 
DP (DIVIDE DECIMAL) instruction 8-5 

example A-31 
DR (DIVIDE) binary instruction 7-17 
dual-address-space facility (See DAS) 
dump (standalone) 12-5 
dynamic address translation (DAT) 3-20 

Index X-7 



E 

by LOAD REAL ADDRESS instruction 
10-21 

control of 3-22 
explicit and implicit 3-27 
mode bit in PSW 4-6 

use in address translation 3-22 
sequence of table fetches 5-27 

early exception recognition 6-9 
EBCDIC (Extended Binary-Coded-Decimal 
Interchange Code) 

architecture designed for iv 
character code, chart for G-1 

EC (extended-control) mode 4-4 
control bit in PSW 4-6,4-8 
PSW format in 4-6 

ECC (error checking and correction) 
11-2 

ED (EDIT) instruction 8-6 
examples A-31 

EDIT (ED) instruction 8-6 
examples A-31 

EDIT AND MARK (EDMK) instruction 8-9 
example A-33 

editing instructions 8-3 
(See also ED instruction, EDMK 
instruction) 

EDMK (EDIT AND MARK) instruction 8-9 
example A-33 

effective address 3-6 
used for storage interlocks 5-25 

effective segment-table designation 
3-27 

EKM (entry key mask) 5-22 
emergency signal (external interruption) 

6-11 
signal-processor order 4-39 

enabling for interruptions 6-6 
ending of I/O operations 13-54 
ending of instruction execution 5-8 
entry in trace table 4-14 
entry index (EX) 5-21 
entry key mask (EKM) 5-22 
entry table (ET) 5-22 

designation 5-21 
EPAR (EXTRACT PRIMARY ASN) instruction 

10-6 
epoch (for TOO clock) 4-25 
equipment check 

bit in I/O-sense data 13-51 
in signal-processor status 4-41 

error 
alert (in limited channel logout) 

13-82 
channel-equipment 13-14 
channel-programming 13-14 
checking and correction 11-2 
device 13-15 
from DIAGNOSE instruction 10-5 
indirect storage 11-21 
intermittent 11-5 
PSW-format 6-9 
solid 11-5 
state of TOO clock 4-25 
storage 11-20 
storage-key 11-21 

ESAR (EXTRACT SECONDARY ASH) instruction 
10-7 

ET (entry table) 5-22 
ETL (entry-table length) 5-21 
ETO (entry-table origin) 5-21 

X-8 System/370 Principles of Operation 

event 6-14 
monitor 7-23 
PER 4-15 
space-switch 6-25 

EX (entry index) 5-21 
translation exception 6-20 

EX (EXECUTE) (See EXECUTE instruction) 
exception-extension code 6-15 
exceptions 6-14 

access (collective 
program-interruption name) 
6-28,6-33 

addressing 6-15 
AFX-translation 6-18 
ASN-translation (collective 
program-interruption name) 6-35 

ASN-translation-specification 6-18 
ASX-translation 6-18 
data (decimal) 6-18 
decimal-divide 6-19 
decimal-overflow 6-19 
delayed access (machine-check condi-
tion) 11-19 

during translation 3-31 
EX-translation 6-20 
execute 6-19 
exponent-overflow 6-19 
exponent-underflow 6-19 
fixed-point-divide 6-20 
fixed-poi nt-overflow 6-20 
floating-point-divide 6-20 
LX-translation 6-20 
operation 6-21 
page-translation 6-22 
PC-translation-specification 6-22 
primary-authority 6-23 
privileged-operation 6-23 

for I/O instructions 13-36 
protection 6-23 
PSW-related 6-9 
recognition of, early and late 6-9 
secondary-authority 6-24 
segment-translation 6-24 
significance 6-25 
special-operation 6-25 
specification 6-26 
trace (collective 
program-interruption name) 6-35 

translation-specification 6-27 
unnormalized-operand 6-27 
vector-operation 6-28 

EXCLUSIVE OR (X,XC,XI,XR) instructions 
7-18 

examples A-17 
EXECUTE (EX) instruction 7-19 

effect of address comparison on 12-1 
example A-18 
exceptions while fetching target 6-8 
PER event for target of 4-19 

execute exception 6-19 
exigent machine-check conditions 11-11 
explicit address translation 3-27 
exponent 9-1 

(See also floating point) 
overflow 9-1 

exception 6-19 
underflow 9-1 

exception 6-19 
mask in BC-mode PSW 4-8 
mask in EC-mode PSW 4-7 

extended control (See EC mode) 
extended facility D-3 
extended floating-point number 9-2 
extended logout 



110 (See IOEL) 
machine-check 11-28 

address 11-29 
validity bit for 11-23 

extended-precision floating-point facil­
ity D-3,9-1 

extended real addressing 
bits in page-table entry 3-26 
facility D-3 

external call 
external interruption 6-11 
pending (signal-processor status) 

4-41 
signal-processor order 4-39 

external damage 11-18 
subclass-mask bit for 11-28 

external-damage code 11-24 
assigned storage locations for 3-44 
validity bit for 11-22 

external interruption 6-10 
clock-comparator 4-27,6-11 
CPU-timer 4-28,6-11 
direct conditions 6-10 
emergency-signal 6-11 
external-call 6-11 
external-signal 6-12 
interrupt-key 6-12 
interval-timer 4-29,6-12 
malfunction-alert 6-12 
mask in BC-mode PSW 4-8 
mask in EC-mode PSW 4-6 
parameter 6-10 

assigned storage locations for 
3-42 

pending conditions 6-10 
priority of conditions 6-10 
service-signal 6-13 
TOD-clock-sync-check 6-13 

external mask 
bit in BC-mode PSW 4-8 
bit in EC-mode PSW 4-6 

external secondary report (bit in 
external-damage code) 11-24 

external signal (external interruption) 
6-12 

external-signal facility D-3,4-23 
externally initiated functions 4-30 
EXTRACT PRIMARY ASN (EPAR) instruction 

10-6 
EXTRACT SECONDARY ASN (ESAR) instruction 

10-7 
extraction-authority-control bit 5-17 

F 
facilities D-1 
failing-storage address 11-26 

assigned storage locations for 3-44 
validity bit for 11-22 

failure, vector-facility 11-18 
fast-release facility (110) D-3,13-27 
fetch protection 3-8 

bit in storage key 3-6 
fetch reference 5-29 

access exceptions for 6-30 
fetching 

handling of invalid CBC in storage 
keys during 11-8 

of DAT-table entries 5-27 
of instructions 5-26 
of PSWs during interruptions 5-33 

of storage operands 5-29 
field 3-3 
field separator (in EDIT) 8-7 
FIFO (first in first out) queuing, exam-
ple for lock and unlock A-44 

fill byte (in EDIT) 8-6 
fixed-length field 3-3 
fixed logout 

assigned storage locations for 3-44 
channel 13-80 
machine-check 11-28 

fixed point 
(See also binary) 
divide exception 6-20 
overflow exception 6-20 

flags 

mask in BC-mode PSW 4-8 
mask in EC-mode PSW 4-7 

field-validity (in limited channel 
logout) 13-82 

in CCW 13-38 
significance of 13-49 

floating interruption conditions 
6-7,11-27 

clearing of 4-34 
floating point 

(See also exponent) 
comparison 9-8 
conversion 

basic example A-7 
examples with instructions A-38 

data format 9-2 
divide exception 6-20 
facility D-4 
instructions 9-1 

examples A-36 
numbers 9-1 

examples A-5 
registers 2-4 

save areas for 3-45 
validity bit for 11-22 

shifting (See normalization) 
format 

address 3-3 
basic sense data (110) 13-51 
CAW (channel-address word) 13-37 
CCW (channel-command word) 13-38 
CSW (channel-status word) 13-62 
decimal data 8-1 
floating-point data 9-2 
general data 7-2 
lID-address 13-15 
lI~-instruction 13-15 
IDAW (indirect-data-address word) 
13-45 

information 3-3 
instruction 5-3 
PSW 

in BC mode 4-8 
in EC mode 4-6 

sense-ID data 13-52 
fraction 9-1 

conversion of between hexadecimal and 
decimal F-7 

free-pool manipulation, programming 
example A-46 

full channel logout 13-80 
address of IOEL in 13-80 
fixed 13-80 
lID-extended (See IOEL) 

fullword (See word) 

Index X-9 



G 
general instructions 7-2 

examples A-8 
general registers 2-4 

alteration-event-mask bit 4-16 
alteration of (PER event) 4-20 
PER-mask bits 4-16 
save areas for 3-45 
validity bit for 11-23 

guard digit 9-3 

H 
halfword 3-3 
halfword-concurrent storage references 

5-31 
HALT DEVICE (HDV) instruction 13-19 

termination of I/O operation by 
13-57 

halt-device facility D-4,13-19 
HALT I/O (HIO) instruction 13-23 

termination of I/O operation by 
13-57 

HALVE (HDR,HER) instructions 9-10 
example A-38 

HDR (HALVE) instruction 9-10 
example A-38 

HDV (HALT DEVICE) instruction 13-19 
header, tracing 4-13 
HER (HALVE) instruction 9-10 
hexadecimal (hex) representation 5-4 

tables F-1 
HIO (HALT I/O) instruction 13-23 

I 
I field of instruction 5-4 
I/O (input/output) 2-4,13-2 

effect on CPU timer 4-28 
effect on interval timer 4-29 

I/O address 13-8 
assigned storage locations for 3-44 
format of 13-15 
in channel-status word (CSW) 13-75 
in I/O-communication area 13-83 
storing of 13-62 
validity flags for 13-82 

I/O-communication area (See IOCA) 
I/O device (See device) 
I/O-error alert (in limited channel 
logout) 13-82 

I/O extended-logout (See IOEL) 
I/O instructions 13-15 

condition code for 13-12 
exception handling for 13-36 
format of 13-15 
role of in I/O operations 13-5 
timeout (bit in external-damage code) 

11-25 
I/O interface 

inoperative 13-82 
OEMI publication referenced v 
position on (effect on interruption 
priority) 13-62 

I/O interruption 6-13 
action for 13-62 
channel-available (See 
channel-available interruption) 

pending 13-10 
priority of 13-62 
program-controlled (See PCI) 

X-10 System/370 Principles of Operation 

timeout (bit in external-damage code) 
11-25 

I/O-interruption code 6-14 
I/O-interruption conditions 13-7,13-60 
I/O mask 

in BC-mode PSW 4-8 
in EC-mode PSW 4-6 

I/O operations 13-2 
chaining of 13-40 
channel compatibility of 13-7 
conclusion of 13-54 
execution of 13-37 
immediate 13-55 
pending 13-27 
resumption of 13-26,13-55 
start-I/O-fast queuing of 13-28 
storage-area designation for (See 
storage-area designation for I/O 
operations) 13-2 

suspend-control bit used in suspend­
ing 13-37 

suspension of 13-28,13-46 
termination of (See termination of 

I/O operations) 
I/O-queuing facility D-4 
I/O-sense data 13-51 
I/O-system reset 13-12 

as part of program reset 4-34 
as part of subsystem reset 4-34 
effect on channel set 4-43 

I/O-system state 13-9 
available (AAA) 13-10 
channel not operational (NXX) 13-12 
channel working (WXX) 13-11 
device not operational (AAN) 13-11 
device working (AAW) 13-10 
interruption pending in channel (IXX) 
13-11 

interruption pending in device (AAI) 
13-10 

interruption pending in subchannel 
(AIX) 13-11 

subchannel not operational (ANX) 
13-11 

subchannel working (AWX) 13-11 
lAC (INSERT ADDRESS SPACE CONTROL) 
instruction 10-7 

IC (INSERT CHARACTER) instruction 7-20 
IC (instruction counter) (See instruc­
tion address) 

ICM (INSERT CHARACTERS UNDER MASK) 
instruction 7-20 

examples A-19 
ID (See CPU identification, channel 
identification, sense ID) 

IDA (indirect-data-address) flag 13-38 
IDAW (indirect-data-address word) 13-45 

format 13-45 
31-bit facility D-5,13-46 

ILC (instruction-length code) 6-7 
assigned storage locations for 3-43 
for program interruptions 6-14 
for supervisor-call interruption 

6-36 
in BC-mode PSW 4-8 

IML (initial microprogram loading) 
controls 12-2 

immediate I/O operation 13-55 
immediate operand 5-4 
implicit address translation 3-27 
impljcit tracing 4-11 
imprecise program interruptions 6-7 
incorrect length (channel status) 13-70 
index 



for address generation 5-5 
instructions for branching on 7-11 
into ASN first and second tables 
3-13 

into authority table 5-18 
into entry and linkage tables 5-21 
register for 2-4 

indicator 
check-stop 12-2 
load 12-3 
manual 12-3 
test 12-5 
wait 12-6 

indirect-data-address flag 13-38 
indirect-data-address word (See IDAW) 
indirect data addressing (See channel 
indirect data addressing) 

indirect storage error 11-21 
information format 3-3 
inhibition of unit of operation 5-10 
initial CPU reset 4-34 

signal-processor order 4-39 
initial microprogram loading (IML), 
signal-processor order 4-39 

initial-microprogram-loading (IML) 
controls 12-2 

initial program loading (See IPL) 
initial program reset 4-34 

signal-processor order 4-39 
inoperative (signal-processor status) 
4-42 

input/output (See I/O) 
INSERT ADDRESS SPACE CONTROL (lAC) 
instruction 10-7 

INSERT CHARACTER (IC) instruction 7-20 
INSERT CHARACTERS UNDER MASK (ICM) 
instruction 7-20 

examples A-19 
INSERT PSW KEY (IPK) instruction 10-8 
INSERT STORAGE KEY (ISK) instruction 

10-8 
INSERT STORAGE KEY EXTENDED (ISKE) 
instruction 10-9 

INSERT VIRTUAL STORAGE KEY (IVSK) 
instruction 10-10 

installation 2-2 
instruction address 

as a type of address 3-6 
handling by DAT 3-22 
in BC-mode PSW 4-8 
in EC-mode PSW 4-7 
in entry-table entry 5-22 
validity bit for 11-22 

instruction-length code (See ILC) 
instruction-processing damage 11-17 

resulting in processing backup 11-19 
resulting in processing damage 11-20 

instructions 
(See also instruction lists and page 
numbers in Appendix B) 

backing up of 11-19 
classes of 2-3 
control 10-2 
damage to 11-17,11-20 
decimal 8-1 

examples A-30 
divisible execution of 5-25 
ending of 5-8 
examples of use A-7 
execution of 5-6 
fetching of 5-26 

access exception for 6-30 
PER event for 4-19 
PER-event mask for 4-16 

floating-point 9-1 
examples A-36 

format of 5-3 
I/O 13-15 

general 7-2 
examples A-8 

I/O (See I/O instructions) 
interruptible (See interruptible 
instructions) 

length of 5-3 
list of B-1 
modification by EXECUTE instruction 

7-19 
prefetching of 5-27 
privileged 4-6 

for control 10-2 
for I/O 13-15 

semiprivileged 4-6,10-2 
sequence of execution 5-2 
stepping of (rate control) 12-4 

effect on CPU state 4-2 
effect on CPU timer 4-28 

unprivileged 4-6,7-2 
vector 2-4 

integer 
binary 7-2 

address as 5-5 
examples A-2 

conversion of between hexadecimal and 
decimal F-6 

decimal 8-2 
integral boundary 3-3 
interface (See I/O interface) 
interface-control check (channel status) 
13-72 

interlocked update (in tracing) 4-13 
interlocked-update storage reference 
5-29 

interlocks for virtual storage refer-
ences 5-25 

intermittent errors 11-5 
internal storage 2-3 
interrupt key 12-2 

external interruption 6-12 
interruptible instructions 5-9 

COMPARE LOGICAL LONG 7-16 
effect on interval timer 4-29 
MOVE LONG 7-25 
PER event affecting the ending of 

4-17 
stopping of 4-2 
TEST BLOCK 10-51 
vector instructions 5-9 

interruption 6-2 
(See also masks) 
action 6-2 

I/O 13-62 
machine-check 11-12 

CAl (channel-available interruption) 
13-29,13-61 

classes of 6-5 
effect on instruction sequence 5-8 
external (See external interruption) 
machine-check (See machine-check 

interruption) 
masking of 6-6 
pending 6-6 

external 6-10 
I/O 13-10 
machine-check 11-13 
relation to CPU state 4-2 

priority of (See priority) 
program (See program interruption) 

imprecise 6-7 

Index X-11 



program-controlled (See PCI) 
restart 6-35 
string (See string of interruptions) 
supervisor-call 6-36 

interruption code 6-5 
external 6-10 
I/O 6-14 
in BC-mode PSW 4-8 
machine-check (MCIC) 3-44,11-15 
program 6-14 
summary of 6-2 
supervisor-call 6-36 

interruption conditions 6-2 
clearing of 4-33 
floating 6-7,11-27 
I/O 13-7,13-60 

interruption parameter, external 
(assigned storage locations) 3-42 

interval timer 4-29 
damage 11-17 
external interruption 6-12 
manual control for 12-3 
subclass-mask bit 6-12 
update reference 5-33 

intervention required (bit in I/O-sense 
data) 13-51 

invalid 
address 6-15 
bit in ASN-first-table entry 3-14 
bit in ASN-second-table entry 3-14 
bit in linkage-table entry 5-21 
bit in page-table entry 3-26 
bit in segment-table entry 3-25 
cac 11-2 

in registers 11-9 
in storage 11-6 
in storage keys 11-7 

channel programs 13-70 
operation code 6-21 
order (signal-processor status) 4-42 
translation address 3-31 
translation format 3-24 

exception recognition 3-31 
INVALIDATE PAGE TABLE ENTRY (IPTE) 
instruction 10-11 

effect of when CPU is stopped 4-2 
inverse move (See MOVE INVERSE instruc­
tion, move-inverse facility) 

IOCA (I/O-communication area) 13-80 
address of IOEL (I/O extended logout) 

in 13-80 
channel ID in 13-32,13-80 
I/O address in 13-62,13-83 
I/O extended logout in (See IOEL) 
measurement byte in 13-62,13-83 

IOEL (I/O extended logout) 13-80 
address of 13-80 

assigned storage locations for 
3-44 

control bit for 11-29 
facility D-4 
maximum length of 13-32 

IPK (INSERT PSW KEY) instruction 10-8 
IPL (initial program loading) 4-35 

assigned storage locations for 3-41 
effect on CPU state 4-3 

IPTE (INVALIDATE PAGE TABLE ENTRY) 
instruction 10-11 

ISK (INSERT STORAGE KEY) instruction 
10-8 

ISKE (INSERT 
instruction 

IVSK (INSERT 
instruction 

STORAGE KEY EXTENDED) 
10-9 

VIRTUAL STORAGE KEY) 
10-10 

X-12 System/370 Principles of Operation 

K 
K (kilo) iv 
key 

access (See access key) 
for I/O (See subchannel key) 

manual (See manual operation) 
PSW (See PSW key) 
storage (See storage key) 
subchannel (See subchannel key) 

key-controlled protection 3-8 
exception for 6-23 

key handling, provided by DAS 5-16 
key mask 

L 

authorization 5-22 
entry 5-22 
PSW (PKM) 5-18 

L (LOAD) binary instruction 7-20 
example A-20 

L fields of instruction 5-4 
LA (LOAD ADDRESS) instruction 7-21 

examples A-20 
LASP (LOAD ADDRESS SPACE PARAMETERS) 
instruction 10-12 

late exception recognition 6-9 
LCDR (LOAD COMPLEMENT) floating-point 
instruction 9-11 

LCER (LOAD COMPLEMENT) floating-point 
instruction 9-11 

LCR (LOAD COMPLEMENT) binary instruction 
7-21 

LCTL (LOAD CONTROL) instruction 10-20 
LD (LOAD) floating-point instruction 

9-10 
LDR (LOAD) floating-point instruction 

9-10 
LE (LOAD) floating-point instruction 

9-10 
left-to-right addressing 3-2 
length 

field 3-3 
instruction 5-3 
of I/O block 13-70 

(See also count field) 
register-operand 5-4 
second operand same as first 5-4 
variable (storage operand) 5-4 

LER (LOAD) floating-point instruction 
9-10 

lH (LOAD HALFWORD) instruction 7-22 
examples A-20 

LIFO (last in first out) queuing, exam­
ple for lock and unlock A-43 

light (See indicator) 
limited channel logout 

assigned storage locations for 3-44 
facility D-4 
format of 13-80 
storing of 13-62 

link information 
for BRANCH AND LINK instruction 7-9 
for BRANCH AND SAVE instruction 7-9 

linkage for subroutines 5-6 
provided by DAS 5-15 

linkage index (LX) 5-21 
linkage table (LT) 5-21 

designation (LTD) 5-21 
in AST entry 3-15 



length (LTL) 5-21 
origin (LTO) 5-21 

LM (LOAD MULTIPLE) instruction 7-22 
LNDR (LOAD NEGATIVE) floating-point 
instruction 9-11 

LNER (LOAD NEGATIVE) floating-point 
instruction 9-11 

LNR (LOAD NEGATIVE) binary instruction 
7-22 

LOAD (L,LR) binary instructions 7-20 
example A-20 

LOAD (LD,LDR,LE,LER) floating-point 
instructions 9-10 

LOAD ADDRESS (LA) instruction 7-21 
examples A-20 

LOAD ADDRESS SPACE PARAMETERS (LASP) 
instruction 10-12 

LOAD AND TEST (LTDR,LTER) floating-point 
instructions 9-11 

LOAD AND TEST (LTR) binary instruction 
7-21 

load-clear key 
LOAD COMPLEMENT 
floating-point 

LOAD COMPLEMENT 
7-21 

12-3 
(LCDR,LCER) 
instructions 9-11 
(LCR) binary instruction 

LOAD CONTROL (LCTL) instruction 10-20 
LOAD HALFWORD (LH) instruction 7-22 

examples A-20 
load indicator 12-3 
LOAD MULTIPLE (LM) instruction 7-22 
LOAD NEGATIVE (LNDR,LNER) floating-point 
instructions 9-11 

LOAD NEGATIVE (LNR) binary instruction 
7-22 

load-normal key 12-3 
LOAD POSITIVE (LPDR,LPER) floating-point 
instructions 9-12 

LOAD POSITIVE (LPR) binary instruction 
7-22 

LOAD PSW (LPSW) instruction 10-20 
LOAD REAL ADDRESS (LRA) instruction 

10-21 
LOAD ROUNDED (LRDR,LRER) instructions 

9-12 
load state 4-2,4-3 

during IPL 4-35 
load-unit-address controls 12-3 
loading, initial (See IML, IPL) 
location 3-2 

(See also address) 
not available in configuration 6-15 

location 80 (for interval timer) 4-29 
location 84 (in tracing) 4-13 
lock A-42 

example with FIFO queuing A-45 
example with LIFO queuing A-44 

logical 
arithmetic (unsigned binary) 7-3 
comparison 7-4 
connective 

AND 7-8 
EXCLUSIVE OR 7-18 
OR 7-30 

data 7-2 
logical address 3-6 

handling by DAT 3-22 
logout 

channel 13-80 
extended machine-check 11-28 

address 11-29 
length of 11-23 
validity bit for 11-23 

fixed 

assigned storage locations for 
3-44 

channel (See full channel logout) 
machine-check 11-28 

I/O extended (See IOEL) 
limited channel (See limited channel 
logout) 

logout pending (bit in CSW) 13-63 
long floating-point number 9-2 
long I/O block 13-70 
loop control 5-6 
loop of interruptions (See string of 
interruptions) 

low-address protection 3-9 
control bit 3-9 
exception for 6-23 

LPDR (LOAD POSITIVE) floating-point 
instruction 9-12 

LPER (LOAD POSITIVE) floating-point 
instruction 9-12 

LPR (LOAD POSITIVE) binary instruction 
7-22 

LPSW (LOAD PSW) instruction 10-20 
LR (LOAD) binary instruction 7-20 
LRA (LOAD REAL ADDRESS) instruction 

10-21 
LRDR (LOAD ROUNDED) instruction 9-12 
LRER (LOAD ROUNDED) instruction 9-12 
LT (linkage table) 5-21 
LTD (linkage-table designation) 5-21 
LTDR (LOAD AND TEST) floating-point 
instruction 9-11 

LTER (LOAD AND TEST) floating-point 
instruction 9-11 

LTL (linkage-table length) 5-21 
LTO (linkage-table origin) 5-21 
LTR (LOAD AND TEST) binary instruction 

7-21 
LX (linkage index) 5-21 

invalid bit 5-21 
translation exception 6-20 

M 
M (mega) iv 
M (MULTIPLY) binary instruction 7-28 

example A-24 
machine check 11-2 

(See also malfunction) 
extended logout (MCEL) 11-28 

address 11-29 
length of 11-23 
validity bit for 11-23 

handling of malfunction detected as 
part of I/O 11-5 

interruption 6-14,11-11 
action 11-12 
code (MCIC) 3-44,11-15 
floating conditions 11-27 
mask in BC-mode PSW 4-8 
mask in EC-mode PSW 4-6 
subclass masks in control register 

11-27 
logout 11-28 

control bits for 11-29 
mask, in EC-mode PSW 4-6 
mask in BC-mode PSW 4-8 

main storage 3-2 
(See also storage) 
effect of power-on reset on 4-35 
shared (in multiprocessing) 4-38 

malfunction 11-2 
correction of 11-2 

Index X-13 



effect on manual operation 12-1 
from DIAGNOSE instruction 10-5 
indication of 11-5 
machine-check handling for when 
detected as part of I/O 11-5 

malfunction alert (external 
interruption) 6-12 

when entering check-stop state 11-11 
manual indicator 12-3 

(See also stopped state) 
manual operation 12-1 

controls 
address-compare 12-1 
alter-and-display 12-2 
IML 12-2 
interval-timer 12-3 
load-unit-address 12-3 
power 12-3 
rate 12-4 
TOD-clock 12-5 

effect on CPU signaling 4-40 
keys 

interrupt 12-2 
load-clear 12-3 
load-normal 12-3 
restart 12-4 
start 12-4 
stop 12-4 
store-status 12-5 
system-reset-clear 12-5 
system-reset-normal 12-5 

masks 6-6 
(See also I/O interruption, inter­
ruption) 

channel 6-14 
in BRANCH ON CONDITION instruction 
7-10 

in COMPARE LOGICAL CHARACTERS UNDER 
MASK instruction 7-15 

in INSERT CHARACTERS UNDER MASK 
instruction 7-20 

in PSW 
BC mode 4-8 
EC mode 4-6 

in STORE CHARACTERS UNDER MASK 
instruction 7-35 

monitor 6-21 
PER-event 4-16 
PER general-register 4-16 
program-interruption 6-15 
subclass 

external-interruption 6-10 
machine-check-interruption 11-27 

mathematical assists, publication refer-
enced v 

maximum negative number 7-2 
MC (MONITOR CALL) instruction 7-23 
MCEL (See machine check, extended 

logout) 
MCIC (machine-check-interruption code) 

3-44,11-15 
MD (MULTIPLY) floating-point instruction 

9-13 
MDR (MULTIPLY) floating-point instruc­
tion 9-13 

example A-38 
ME (MULTIPLY) floating-point instruction 

9-13 
measurement byte 

assigned storage locations for 3-44 
in I/O-communication area 13-83 
storing of 13-62 

MER (MULTIPLY) floating-point instruc­
tion 9-13 

X-14 System/370 Principles of Operation 

message byte (in EDIT) 8-7 
MH (MULTIPLY HALFWORD) instruction 7-29 

example A-24 
microprogram (initial loading of) 12-2 
mode 

BC (See BC mode) 
burst (channel operation) 13-4 
byte-multiplex (channel operation) 

13-4 
EC (See EC mode) I 

primary-space 3-22 
as part of DAS 5-14 

real 3-22 
secondary-space 3-22 

as part of DAS 5-14 
translation 3-22 

mode requirements for DAS 5-17 
model, channel 13-32 
model number (in CPU ID) 10-48 
modifier bits (in CCW command code) 

13-39 
MONITOR CALL (MC) instruction 7-23 
monitor-class number 6-21 

assigned storage locations for 3-43 
monitor code 6-21 

assigned storage locations for 3-43 
monitor event 6-21 
monitor masks 6-21 
monitoring 

for PER events (See PER) 
with MONITOR CALL 6-21,7-23 

MOVE (MVC,MVI) instructions 7-23 
examples A-18,A-21 

move instructions provided by DAS 5-15 
MOVE INVERSE (MVCIN) instruction 7-24 

example A-22 
move-inverse facility D-4,7-24 
MOVE LONG (MVCL) instruction 7-24 

examples A-22 
MOVE NUMERICS (MVN) instruction 7-27 

example A-23 
MOVE TO PRIMARY (MVCP) instruction 

10-22 
MOVE TO SECONDARY (MVCS) instruction 

10-22 
MOVE WITH KEY (MVCK) instruction 10-24 
MOVE WITH OFFSET (MVO) instruction 7-27 

example A-23 
MOVE ZONES (MVZ) instruction 7-28 

example A-24 
MP (MULTIPLY DECIMAL) instruction 8-10 

example A-34 
MR (MULTIPLY) binary instruction 7-28 

example A-24 
multiple-access storage references 5-31 
multiplexer channel 13-5 
MULTIPLY (M,MR) binary instructions 

7-28 
examples A-24 

MULTIPLY (MD,MDR,ME,MER,MXD,MXDR,MXR) 
floating-point instructions 9-13 

example A-38 
MULTIPLY DECIMAL (MP) instruction 8-10 

example A-34 
MULTIPLY HALFWORD (MH) instruction 7-29 

example A-24 
multiprocessing 4-37 

facility D-4 
manual operations for 12-6 
programming considerations for 

A-40,8-3 
programming examples A-40 
timing-facility interruptions for 

4-26 



TOO clock for 4-23 
multiprogramming examples A-40 
MVC (MOVE) instruction 7-23 

examples A-18,A-21 
MVCIN (MOVE INVERSE) instruction 7-24 

example A-22 
MVCK (MOVE WITH KEY) instruction 10-24 
MVCL (MOVE LONG) instruction 7-24 

examples A-22 
MVCP (MOVE TO PRIMARY) instruction 

10-22 
MVCS (MOVE TO SECONDARY) instruction 

10-22 
MVI (MOVE) instruction 7-23 

example A-21 
MVN (MOVE NUMERICS) instruction 7-27 

example A-23 
MVO (MOVE WITH OFFSET) instruction 7-27 

example A-23 
MVZ (MOVE ZONES) instruction 7-28 

example A-24 
MXD (MULTIPLY) floating-point instruc­
tion 9-13 

MXDR (MULTIPLY) floating-point instruc­
tion 9-13 

MXR (MULTIPLY) floating-point instruc­
tion 9-13 

N 
N (AND) instruction 7-8 
NC (AND) instruction 7-8 
near-valid CBC 11-2 

in storage 11-5 
negative zero 

binary 7-2 
decimal 8-3 

example A-5 
new PSW 4-3 

assigned storage locations for 3-41 
fetched during interruption 6-2 

NI (AND) instruction 7-8 
example A-8 

no-operation 
as an I/O command (control) 13-50 
instruction (BRANCH ON CONDITION) 
7-10 

noninterlocked-update storage reference 
5-29 

nonshared subchannel 13-5 
nonvolatile storage 3-2 
normalization 9-2 
not-available state (I/O system) 13-9 
not operational 

as CPU state 4-40 
effect on channel set 4-43 

as I/O-system state 13-11 
as TOO-clock state 4-25 

not ready 
(signal-processor status) 4-42 
as I/O-device state 13-10 

not set (TOO-clock state) 4-24 
NR (AND) instruction 7-8 
nullification 

exceptions to 5-11 
for exigent machine-check conditions 

11-11 
of instruction execution 5-9 
of unit of operation 5-10 

numbering 
of addresses (byte locations) 3-2 
of bits 3-3 

numbers 

binary 7-2 
examples A-2 

CPU-model 10-48 
decimal 8-1 

examples A-5 
floating-point 9-1 

examples A-5 
hexadecimal F-l,5-4 

numeric bits 8-1 
moving of 7-27 

o 
o (OR) instruction 7-29 
OC (OR) instruction 7-29 
OEM! (original equipment manufacturers' 

information) for I/O interface, publi­
cation referenced v 

01 (OR) instruction 7-29 
example A-25 
example of problem with A-40 

old PSW 6-2 
assigned storage locations for 3-41 

one's complement binary notation 7-2 
used for SUBTRACT LOGICAL instruction 

7-37 
op code (See operation code) 
operand 5-2 

access of 5-28 
address generation for 5-5 
immediate 5-4 
length of 5-2 
overlap 

for decimal instructions 8-3 
for general instructions 7-2 

register for 5-4 
sequence of references for 5-28 
storage 5-4 
types of (fetch, store, update) 5-28 
used for result 5-2 

operating state 4-2,4-2 
operation 

code (op code) 5-2 
invalid 6-21 

exception 6-21 
I/O (See I/O operations) 
unit of 5-9 

operational state (I/O system) 13-9 
operator facilities 2-6,12-1 

basic 12-1 
operator intervening (signal-processor 
status) 4-41 

OR (O,OC,OI,OR) instructions 7-29 
example of problem with OR immediate 

A-40 
examples A-25 

orders (signal-processor) 4-38 
conditions precluding response to 

4-40 
CPU reset 4-39 
emergency signal 4-39 
external call 4-39 
initial CPU reset 4-39 
initial microprogram load 4-39 
initial program reset 4-39 
program reset 4-39 
restart 4-39 
sense 4-38 
start 4-39 
stop 4-39 
stop and store status 4-39 

overflow 
binary 7-3 

Index X-1S 



example A-2 
decimal 6-19 
exponent (See exponent overflow) 
fixed-point 6-20,7-3 

overlap 
destructive 7-25 
operand 

for decimal instructions 8-3 
for general instructions 7-2 

operation 5-24 
overrun (bit in I/O-sense data) 13-51 

P 
PACK (PACK) instruction 7-30 

example A-25 
packed decimal numbers 8-1 

conversion of to zoned format 7-40 
conversion to from zoned format 7-30 
examples A-5 

padding byte 
for COMPARE LOGICAL LOHG instruction 

7-15 
for MOVE LONG instruction 7-24 

page 3-21 
page-frame real address (PFRA) 3-26 
page index (PX) 3-21 
page-invalid bit (in page-table entry) 

3-26 
page size 3-23 

2K-byte optional D-5 
page swapping 3-20 
page table 3-26 

designation 3-25 
length (PTL) 3-25 
lookup 3-31 
origin (PTO) 3-25 

page-translation exception 6-22 
as an access exception 6-28,6-33 

parameter 
external-interruption 6-10 

assigned storage locations for 
3-42 

translation 3-22 
parity bit 11-2 
partial completion of instruction 
execution 5-9 

PASH (primary address-space number) 
3-13 

as part of DAS 5-14 
pattern (in EDIT) 8-6 
PC (PROGRAM CAll) instruction 10-25 
PC-cp (PROGRAM CAll instruction, to 
current primary) 10-26 

PC number 5-16,10-25 
translation 5-21 

PC-ss (PROGRAM CAll instruction, with 
space switching) 10-26 

PC-translation-specification exception 
6-22 

PCI (program-controlled interruption) 
13-44 

channel status for 13-70 
flag in CCW for 13-38 

pending I/O operations 13-27 
number of (in I/O-communication area) 

13-83 
pending interruption (See interruption 

pending) 
PER (program-event recording) 4-15 

address 4-17 
assigned storage locations for 

3-43 

X-16 System/370 Principles of Operation 

code 4-17 
assigned storage locations for 

3-43 
events 4-15 
general-register-alteration event 

4-20 
mask bits 4-16 

instruction-fetching event 4-19 
masks 

bit in PSW 4-6 
general-register 4-16 
PER-event 4-16 

priority of indication 4-17 
program-interruption condition 6-22 
storage-alteration event 4-19 
storage-area designation 4-18 

ending address 4-16 
starting address 4-16 
wraparound 4-18 

successful-branching event 4-19 
PFRA (page-frame real address) 3-26 
piecemeal steps of instruction execution 

5-25 
PKM (PSW-key mask) 5-18 
point of damage 11-14 
point of interruption 5-9 

for machine check 11-14 
POST (SVC), example of routine to bypass 

A-42 
postnormalization 9-2 
power controls 12-3 
power-on reset 4-35 
powers of 2, table of E-1 
precision (floating-point) 9-1 
preferred sign codes 8-2 
prefetching 

access exceptions not recognized for 
6-30 

for I/O 13-40 
handling of invalid CBC in storage 

keys during 11-8 
of CCWs (channel-command word) 13-42 
of OAT-table entries 5-27 
of instructions 5-27 

prefix 3-11 
store-status save area for 3-45 

prenormalization 9-2 
primary address space 3-12 

as part of DAS 5-14 
primary ASH (PASH) 3-13 

as part of DAS 5-14 
primary authority 3-18 

exception 6-23 
primary segment table 

designation (PSTD) 3-24 
length (PSTl) 3-24 
origin (PSTO) 3-24 

primary-space mode 3-22 
as part of DAS 5-14 

primary virtual address 3-5 
effective segment-table designation 
for 3-27 

priority 
of access exceptions 6-33 
of ASH-translation exceptions 6-35 
of external-interruption conditions 

6-10 
of interruptions (CPU) 6-36 
of interruptions (I/O) 13-62 
of PER events 4-17 
of program-interruption conditions 
6-30,6-30 

of trace exceptions 6-35 
privileged instructions 4-6 



control 10-2 
for I/O 13-15 

privileged-operation exception 6-23 
problem state 4-6 

bit in BC-mode PSW 4-8 
bit in EC-mode PSW 4-6 
bit in entry-table entry 5-22 

processing backup (synchronous 
machine-check condition) 11-19 

processing damage (synchronous 
machine-check condition) 11-20 

processor (See CPU) 
program 

exceptions 6-14 
execution of 5-2 
initial loading of 4-35 
interruption 6-14 

for I/O instructions 13-36 
imprecise 6-7 
priority of 6-30 

reset 4-34 
signal-processor order 4-39 

PROGRAM CALL (PC) instruction 10-25 
trace entry 4-14 

program check (channel status) 13-70 
program-controlled interruption (See 

PCl) 
program-event recording (See PER) 
program events (See PER events) 
program mask 

in BC-mode PSW 4-8 
in EC-mode PSW 4-7 
validity bit for 11-22 

program-status word (See PSW) 
PROGRAM TRANSFER (PT) instruction 10-31 

trace entry 4-14 
protection (storage) 3-7 

during tracing 4-13 
fetch (See fetch protection) 
key-controlled (See key-controlled 
protection) 

low-address (See low-address 
protection) 

segment (See segment protection) 
protection check (channel status) 13-71 
protection exception 6-23 

as an access exception 6-28,6-33 
PSTD (primary segment-table designation) 

3-24 
PSTL (primary segment-table length) 

3-24 
PSTO (primary segment-table origin) 

3-24 
PSW (program-status word) 2-3,4-3 

assigned storage locations for 3-41 
BC-mode 4-8 
current 4-3,5-6 

stored during interruption 6-2 
EC-mode 4-6 
exceptions associated with 6-9 
format error 6-9 
in IPL 4-36 
in program execution 5-6 
store-status save area for 3-44 
validity bits for 11-22 

PSW key 
in BC-mode PSW 4-8 
in EC-mode PSW 4-6 
used as access key 3-8 
validity bit for 11-22 

PSW-key-handling facility 0-4 
PSW-key mask (PKM) 5-18 
PT (PROGRAM TRANSFER) instruction 10-31 

PT-cp (PROGRAM TRANSFER instruction, to 
current primary) 10-31 

PT-ss (PROGRAM TRANSFER instruction, 
with space switching) 10-31 

PTL (page-table length) 3-25 
PTLB (PURGE TLB) instruction 10-36 
PTO (page-table origin) 3-25 
publications, other related documents v 
PURGE TlB (PTLB) instruction 10-36 
PX (page index) 3-21 

Q 
queuing 

FIFO, example for lock and unlock 
A-44 

LIFO, example for lock and unlock 
A-43 

R 

start-I/O-fast 13-28 
facility 0-4 

R field of instruction 5-4 
range (of floating-point numbers) 9-1 
rate control 12-4 
ROD (READ DIRECT) instruction 10-36 
read (1/0 command) 13-49 
read backward (I/O command) 13-50 
READ DIRECT (RDD) instruction 10-36 
read-write-direct facility 4-23 
real address 3-5 
real mode 3-22 
real storage 3-5 
receiver check (signal-processor status) 
4-42 

recovery 
as class of machine-check condition 

11-12 
extension facility 0-4 
system 11-17 

subclass-mask bit for 11-28 
redundancy 11-2 
reference 

bit in storage key 3-6 
multiple-access 5-31 
recording 3-10 
sequence for storage 5-24 

(See also sequence) 
single-access 5-30 

region code 11-26 
assigned storage locations for 3-44 
validity bit for 11-22 

register 
base-address 2-4 
control 2-4 
designation of 5-4 
floating-point 2-4 
general 2-4 
index 2-4 
prefix 3-11 
save areas 3-44,11-24 
validation of 11-9 
validity bits for 11-22 
vector-facility 2-4 

remote operating stations 12-1 
repressible machine-check conditions 

11-12 
reset 4-30 

clear 4-34 
CPU 4-33 
effect on CPU state 4-2 

Index X-17 



effect on TOO clock 4-24 
I/O-system 13-12 

as part of subsystem reset 4-34 
initial CPU 4-34 
initial program 4-34 
power on 4-35 
program 4-34 
selective (I/O) 13-12 
subsystem 4-34 
summary of functions 4-32 
summary of functions performed by 
manual initiation of 4-31 

system-reset-clear key 12-5 
system-reset-normal key 12-5 

RESET REFERENCE BIT (RRB) instruction 
10-36 

RESET REFERENCE BIT EXTENDED (RRBE) 
instruction 10-37 

resolution 
of clock comparator 4-27 
of CPU timer 4-28 
of interval timer 4-29 
of TOD clock 4-24 

restart 
interruption 6-35 
key 12-4 
signal-processor order 4-39 

result operand 5-2 
RESUME I/O (RIO) instruction 13-26 
resumption of channel-program execution 

13-55 
retry 

CPU 11-3 
I/O command 13-53 

RIO (RESUME I/O) instruction 13-26 
rounding (decimal) 8-10 

example A-35 
RR instruction format 5-3 
RRB (RESET REFERENCE BIT) instruction 

10-36 
RRBE (RESET REFERENCE BIT EXTENDED) 

instruction 10-37 
RRE instruction format 
RS instruction format 
running (state of TOO 
RX instruction format 

S 

5-3 
5-3 

clock) 
5-3 

4-24 

S (SUBTRACT) binary instruction 7-36 
S (suspend) flag in CCW 13-7,13-38 
S instruction format 5-3 
SAC (SET ADDRESS SPACE CONTROL) instruc­
tion 10-38 

SASN (secondary address-space number) 
3-13 

as part of DAS 5-14 
save areas for registers 3-44,11-24 
SCK (SET CLOCK) instruction 10-39 
SCKC (SET CLOCK COMPARATOR) instruction 

10-39 
SO (SUBTRACT NORMALIZED) instruction 

9-14 
SDR (SUBTRACT NORMALIZED) instruction 

9-14 
SE (SUBTRACT NORMALIZED) instruction 

9-14 
secondary address space 3-12 

as part of DAS 5-14 
changing from by DAS 5-15 

secondary ASN (SASN) 3-13 
as part of DAS 5-14 

secondary authority 3-18 

X-18 System/370 Principles of Operation 

exception 6-24 
secondary segment table 

designation (SSTD) 3-24 
length (SSTL) 3-24 
origin (SSTO) 3-24 

secondary-space-control bit 3-23,5-18 
secondary-space mode 3-22 

as part of DAS 5-14 
secondary virtual address 3-6 

effective segment-table designation 
for 3-27 

segment 3-21 
segment index (SX) 3-21 
segment-invalid bit (in segment-table 
entry) 3-25 

segment protection 3-9 
exception for 6-23 
facility D-4 

segment size 3-23 
1M-byte optional D-5 

segment table 3-25 
designation (STD) 3-24 

effective 3-27 
primary 3-24 
secondary 3-24 

lookup 3-30 
segment-translation exception 6-24 

as an access exception 6-28,6-33 
selective reset (I/O) 13-12 
selector channel 13-4 
self-describing block of I/O data 13-42 
semiprivileged 5-13 

instructions 4-6 
descriptions of 10-2 

program authorization 5-17 
summary of 5-20 

programs 4-6,5-17 
sense 

as an I/O command 13-51 
as signal-processor order 4-38 
basic 13-51 

sense data (I/O) 13-51 
sense ID (I/O command) 13-52 
sequence 

conceptual 5-24 
instruction-execution 5-2 
of storage references 5-24 

OAT-table entries 5-27 
instructions 5-26 
operands 5-28 
storage keys 5-28 

sequence code (in limited channel 
logout) 13-82 

SER (SUBTRACT NORMALIZED) instruction 
9-14 

serialization 5-33 
channel-program 5-34 
CPU 5-33 
in completion of store operations 
5-29 

in tracing 4-13 
service-processor damage 11-18 
service processor inoperative 
(signal-processor status) 4-42 

service-signal external interruption 
6-13 

subclass-mask bit for 6-13 
service-signal facility D-4 
SET ADDRESS SPACE CONTROL (SAC) instruc­
tion 10-38 

SET CLOCK (SCK) instruction 10-39 
SET CLOCK COMPARATOR (SCKC) instruction 

10-39 
SET CPU TIMER (SPT) instruction 10-40 



SET PREFIX (SPX) instruction 10-40 
SET PROGRAM MASK (SPM) instruction 7-31 
SET PSW KEY FROM ADDRESS (SPKA) instruc-
tion 10-41 

SET SECONDARY ASN (SSAR) instruction 
10-41 

trace entry 4-14 
set state (of TOD clock) 4-24 
SET STORAGE KEY (SSK) instruction 10-45 
SET STORAGE KEY EXTENDED (SSKE) instruc-
tion 10-45 

SET SYSTEM MASK (SSM) instruction 10-46 
SH (SUBTRACT HALFWORD) instruction 7-37 
shared control unit and subchannel 13-5 
shared storage (See storage sharing) 
shared TOD clock 4-23 
SHIFT AND ROUND DECIMAL (SRP) instruc­
tion 8-10 

examples A-34 
SHIFT LEFT DOUBLE (SLDA) instruction 

7-31 
example A-26 

SHIFT LEFT DOUBLE LOGICAL (SLDL) 
instruction 7-32 

SHIFT LEFT SINGLE (SLA) instruction 
7-32 

example A-26 
SHIFT LEFT SINGLE LOGICAL (SLL) instruc­
tion 7-33 

SHIFT RIGHT DOUBLE (SRDA) instruction 
7-33 

SHIFT RIGHT DOUBLE LOGICAl (SRDL) 
instruction 7-33 

SHIFT RIGHT SINGLE (SRA) instruction 
7-34 

SHIFT RIGHT SINGLE LOGICAL (SRL) 
instruction 7-34 

shifting, floating-point (See normal-
ization) 

short floating-point number 9-2 
short I/O block 13-70 
SI instruction format 5-3 
sign bit 

binary 7-2 
floating-point 9-1 

sign codes (decimal) 8-2 
signal-in lines 6-12 
SIGNAL PROCESSOR (SIGP) instruction 

10-46 
orders 4-38 
status 4-41 

signed binary 
arithmetic 7-3 
comparison 7-4 
integer 7-2 

examples A-2 
significance 

exception 6-25 
loss 9-2 

in floating-point addition 9-7 
mask 

in BC-mode PSW 4-8 
in EC-mode PSW 4-7 

starter (in EDIT) 8-7 
SIGP (See SIGNAL PROCESSOR instruction) 
single-access reference 5-30 
SID (START I/O) instruction 13-27 
SID and SIOF functions 13-27 
SIOF (START I/O FAST RELEASE) instruc­
tion 13-27 

size notation iv 
size of segment and page 3-23 

optional D-5 
skip flag in CCW 13-38 

skipping (during I/O) 13-43 
SL (SUBTRACT LOGICAL) instruction 7-37 
SLA (SHIFT LEFT SINGLE) instruction 

7-32 
example A-26 

SLDA (SHIFT LEFT DOUBLE) instruction 
7-31 

example A-26 
SLDL (SHIFT LEFT DOUBLE LOGICAL) 

instruction 7-32 
SLI (suppress-length indication) flag in 

CCW 13-38 
SLL (SHIFT LEFT SINGLE LOGICAL) instruc-
tion 7-33 

SLR (SUBTRACT LOGICAL) instruction 7-37 
solid errors 11-5 
source 

field in limited channel logout 
13-81 

vector-facility (machine-check condi­
tion) 11-19 

source of interruption, identified by 
interruption code 6-5 

SP (SUBTRACT DECIMAL) instruction 8-11 
space-switch event 6-25 

as aid in program-problem analysis 
5-17 

control bit 
in ASTE 3-15 
in translation 3-24 

special-operation exception 6-25-
specification exception 6-26 
SPKA (SET PSW KEY FROM ADDRESS) instruc-
tion 10-41 

SPM (SET PROGRAM MASK) instruction 7-31 
SPT (SET CPU TIMER) instruction 10-40 
SPX (SET PREFIX) instruction 10-40 
SR (SUBTRACT) binary instruction 7-36 
SRA (SHIFT RIGHT SINGLE) instruction 

7-34 
SRDA (SHIFT RIGHT DOUBLE) instruction 

7-33 
SRDL (SHIFT RIGHT DOUBLE LOGICAL) 

instruction 7-33 
SRL (SHIFT RIGHT SINGLE LOGICAL) 

instruction 7-34 
SRP (SHIFT AND ROUND DECIMAL) instruc­
tion 8-10 

examples A-34 
SS instruction format 5-3 
SSAR (SET SECONDARY ASN) instruction 

10-41 
SSAR-cp (SET SECONDARY ASN instruction, 
to current primary) 10-42 

SSAR-ss (SET SECONDARY ASH instruction, 
with space switching) 10-42 

SSE instruction format 5-3 
SSK (SET STORAGE KEY) instruction 10-45 
SSKE (SET STORAGE KEY EXTENDED) instruc-
tion 10-45 

SSM (SET SYSTEM MASK) instruction 10-46 
SSM-suppression-control bit 6-25,10-46 
SSTD (secondary segment-table desig-
nat ion) 3-24 

SSTL (secondary segment-table length) 
3-24 

SSTO (secondary segment-table origin) 
3-24 

ST (STORE) binary instruction 7-34 
standalone dump 12-5 
standard epoch (for TOD clock) 4-25 
STAP (STORE CPU ADDRESS) instruction 

10-48 
start (CPU) 

Index X-19 



function 4-2 
key 12-4 
signal-processor order 4-39 

START I/O (SIO) instruction 13-27 
start-I/O-fast queuing 13-28 

facility D-4 
initiation of pending I/O operations 
13-29,13-55 

START I/O FAST RELEASE (SIOF) instruc­
tion 13-27 

state 
CPU (See CPU state) 
I/O-system (See I/O-system state) 
TOD-clock 4-24 

status 
for SIGNAL PROCESSOR 4-38,10-47 
in CSW 13-63 

contents of 13-78 
of channel (See channel status) 
of device (See unit status) 
program (See PSW) 
resulting from signal-processor 
orders 4-41 

storing of 4-37 
manual key for 12-5 

status modifier (unit status) 13-64 
STC (STORE CHARACTER) instruction 7-34 
STCK (STORE CLOCK) instruction 7-35 
STCKC (STORE CLOCK COMPARATOR) instruc-
tion 10-47 

STCM (STORE CHARACTERS UNDER MASK) 
instruction 7-35 

examples A-26 
STCTL (STORE CONTROL) instruction 10-48 
STD (segment-table designation) 3-24 
STD (STORE) floating-point instruction 

9-14 
STE (STORE) floating-point instruction 

9-14 
STH (STORE HALFWORD) instruction 7-36 
STIDC (STORE CHANNEL ID) instruction 

13-32 
STIDP (STORE CPU ID) instruction 10-48 
STL (segment-table length) 3-24 
STM (STORE MULTIPLE) instruction 7-36 

example A-27 
STNSM (STORE THEN AND SYSTEM MASK) 

instruction 10-50 
STO (segment-table origin) 3-24 
stop 

function 4-2 
key 12-4 
signal-processor order 4-39 

stop and store status (signal-processor 
order) 4-39 

stopped (signal-processor status) 4-41 
stopped state 

of CPU 4-2 
effect on completion of store 
operations 5-29 

of TOD clock 4-24 
storage 3-2 

absolute 3-5 
address wraparound (See wraparound) 
addressing 3-2 

(See also address) 
alteration manual controls 12-2 
alteration PER event 4-19 

mask for 4-16 
assigned locations in 3-41 
auxiliary 3-2,3-20 
block 3-5 

testing for usability of 10-50 
buffer (cache) 3-2 

X-20 System/370 Principles of Operation 

clearing of (See clearing operation) 
concurrency of access for references 
to 5-31 

configuration of 3-5 
direct-access 3-2 
display 12-2 
error 11-20 

indirect 11-21 
failing address in (See 
failing-storage address) 

interlocked update 5-29 
interlocks for virtual references 
5-25 

internal 2-3 
main 3-2 
noninterlocked update 5-29 
nonvolatile 3-2 
operand 5-4 

reference to (fetch, store, 
update) 5-29 

update reference 5-29 
operand consistency 5-30 

examples A-44,A-47 
prefixing for 3-11 
real 3-5 
sequence of references to 5-24 
size 

notation for iv 
of segment and page in 3-23 

size of segment and page D-5 
validation of 11-6 
virtual 3-20 
volatile 3-2 

effect of power-on reset on 4-35 
storage-area designation 

for I/O operations 13-39 
as specified in data-chained CCWs 

13-42 
as specified in IDAWs 13-45 

for PER events 4-18 
storage-control unit (in limited channel 

logout) 13-81 
storage degradation (machine-check 
condition) 11-21 

storage key 3-6 
error in 11-21 
sequence of references to 5-28 
testing for usability of 10-50 
validation of 11-7 

storage-key exception-control bit 
3-7,6-26 

storage-key-instruction extensions 3-7 
facility D-5 

storage-key 4K-byte-block facility 
D-5,3-7 

storage-logical-validity bit 11-23 
storage protection 3-7 
storage sharing 

by address spaces 3-20 
by CPUs and channels 3-5 
examples A-40 
in multiprocessing 4-38 

STORE (ST) binary instruction 7-34 
STORE (STD,STE) floating-point 

instructions 9-14 
STORE CHANNEL ID (STIDC) instruction 

13-32 
STORE CHARACTER (STC) instruction 7-34 
STORE CHARACTERS UNDER MASK (STCM) 

instruction 7-35 
examples A-26 

STORE CLOCK (STCK) instruction 7-35 
STORE CLOCK COMPARATOR (STCKC) instruc­
tion 10-47 



STORE CONTROL (STCTl) instruction 10-48 
STORE CPU ADDRESS (STAP) instruction 

10-48 
STORE CPU ID (STIDP) instruction 10-48 
STORE CPU TIMER (STPT) instruction 

10-49 
STORE HAlFWORD (STH) instruction 7-36 
STORE MULTIPLE (STM) instruction 7-36 

example A-27 
STORE PREFIX (STPX) instruction 10-49 
store reference 5-29 

access exceptions for 6-30 
store status 4-37 

key 12-5 
signal-processor order for 4-39 

STORE THEN AND SYSTEM MASK (STNSM) 
instruction 10-50 

STORE THEN OR SYSTEM MASK (STOSM) 
instruction 10-50 

STOSM (STORE THEN OR SYSTEM MASK) 
instruction 10-50 

STPT (STORE CPU TIMER) instruction 
10-49 

STPX (STORE PREFIX) instruction 10-49 
string of interruptions 4-3,6-37 

caused by clock comparator 4-27 
caused by CPU timer 4-28 

SU (SUBTRACT UNNORMALIZED) instruction 
9-15 

subchannel 13-4 
not operational (I/O-system state) 

13-11 
working (I/O-system state) 13-11 

subchannel key 
in CAW 13-37 
in CSW 13-63 

contents of 13-73 
validity flag for 13-82 

used as access key 3-9 
used for IPL 4-36 

subclass-mask bits 6-6 
external-interruption 6-10 
machine-check 11-27 

subroutine linkage 5-6 
subsystem-linkage-control bit 5-18,5-21 
subsystem reset 4-34 
SUBTRACT (S,SR) binary instructions 

7-36 
SUBTRACT DECIMAL (SP) instruction 8-11 
SUBTRACT HALFWORD (SH) instruction 7-37 
SUBTRACT LOGICAL (SL,SLR) instructions 

7-37 
SUBTRACT NORMALIZED (SD,SDR,SE,SER,SXR) 

instructions 9-14 
SUBTRACT UNNORMALIZED (SU,SUR,SW,SWR) 

instructions 9-15 
successful-branching PER event 4-19 

mask for 4-16 
SUPERVISOR CALL (SVC) instruction 7-38 
supervisor-call interruption 6-36 
supervisor state 4-6 
suppress-Iength-indication (SLI) flag in 

CCW 13-38 
suppression 

exceptions to 5-11 
of instruction execution 5-9 
of unit of operation 5-10 

SUR (SUBTRACT UNNORMALIZED) instruction 
9-15 

suspend-and-resume facility D-5,13-7 
suspended (bit in CSW) 13-63,13-74 
suspension of channel-program execution 
13-28,13-46 

suspend (S) flag in CCW 13-7,13-38 

suspend-control bit in CAW 
13-7,13-37 

suspended bit in CSW 13-63 
meaning of 13-74 

SVC (SUPERVISOR CALL) instruction 7-38 
SW (SUBTRACT UNHORMALIZED) instruction 

9-15 
swapping 

by COMPARE (DOUBLE) AND SWAP 
instructions 7-12 

by EXCLUSIVE OR instruction 7-18 
switching of channel sets 4-43 
SWR (SUBTRACT UNNORMALIZED) instruction 

9-15 
SX (segment index) 3-21 
SXR (SUBTRACT NORMALIZED) instruction 

9-14 
synchronization 

checkpoint 11-3 
of CPU timer with TOD clock 4-28 
of TOD clocks 4-24,4-26 

synchronous logout 11-28 
synchronous machine-check 
extended-Iogout-control bit 11-29 

synchronous machine-cheek-interruption 
conditions 11-19 

system 
manual control of 12-1 
organization of 2-1 

system check stop 11-11 
system damage 11-16 
system mask (in PSW) 4-3 

validity bit for 11-22 
system recovery 11-17 
system reset (See reset) 
system-reset-clear key 12-5 
system-reset-normal key 12-5 

T 
table of powers of 2 E-l 
tables 

ASN (See ASN first table, ASN second 
table) 

authority (See authority table) 
DAT (See page table, segment table) 
entry (See entry table) 
hexadecimal F-1 
linkage (See linkage table) 
page (See page table) 
segment (See segment table) 
translation 3-25 

target instruction 7-19 
TB (TEST BLOCK) instruction 10-50 
TCH (TEST CHANNEL) instruction 13-33 
termination 

of 1/0 operations 
(See also conclusion of I/O oper-
ations) 

by channel or device 13-56 
by CLEAR CHANNEL 13-59 
by CLEAR 1/0 13-59 
by HALT DEVICE 13-57 
due to equipment malfunction 

13-59 
of instruction execution 5-9 

for exigent machine-check condi­
tions 11-11 

of unit of operation 5-10 
for exigent machine-check condi­
tions 11-11 

termination code (in limited channel 
logout) 13-82 

Index X-21 



TEST AND SET (TS) instruction 7-38 
TEST BLOCK (TB) instruction 10-50 
test-block facility 0-5,10-50 
TEST CHANNEL (TCH) instruction 13-33 
TEST I/O (TIO) instruction 13-34 

function performed by CLEAR I/O 
instruction 13-17 

test indicator 12-5 
TEST PROTECTION (TPROT) instruction 

10-52 
TEST UNDER MASK (TM) instruction 7-38 

examples A-27 
testing for storage-block and 

storage-key usability 10-50 
TIC (transfer-in-channel) I/O command 

13-53 
time-of-day clock (See TOO clock) 
timeout 

bits in external-damage code 11-25 
channel 13-4 

timer 
CPU (See CPU timer) 
interval (See interval timer) 

timing facilities 4-23 
timing-facility damage 11-17 

for TOO clock 4-25 
TIO (TEST I/O) instruction 13-34 
TLB (translation-lookaside buffer) 3-31 

entries 3-32 
attachment of 3-32 
clearing of 3-36 
effect of translation changes on 

3-36 
usable state 3-32 

summary 3-33 
TM (TEST UNDER MASK) instruction 7-38 

examples A-27 
TOO clock 4-23 

effect of power-on reset on 4-35 
effect on clock-comparator inter­

ruption 6-11 
effect on CPU-timer decrementing 

4-28 
effect on CPU-timer interruption 

6-11 
effect on interval-timer decrementing 

4-29 
effect on interval-timer inter-
ruptions 6-12 

manual control of 4-24,12-5 
unique values of 4-25 
validation of 11-9 

TOO-clock sync check (external inter-
ruption) 6-13 

TOD-clock-sync-control bit 4-24,4-27 
TOD-clock-synchronization facility 4-26 
TPROT (TEST PROTECTION) instruction 

10-52 
TR (TRANSLATE) instruction 7-39 

example A-28 
trace-entry formats 4-14 
trace exceptions 6-35 
tracing 4-11 

for program-problem analysis 5-17 
header 4-13 

transfer-in-channel (TIC) I/O command 
13-53 

TRANSLATE (TR) instruction 7-39 
example A-28 

TRANSLATE AND TEST (TRT) instruction 
7-40 

example A-28 
translation 

address 3-20 

X-22 System/370 Principles of Operation 

(See also dynamic address trans-
lation) 

ASH 3-12 
exception identification 3-43 
facility D-S 
format 3-23 
lookaside buffer (See TlB) 
modes 3-22 
parameters 3-22 
PC-number 5-21 
specification exception 6-27 
tables for 3-25 

trial execution 
for editing instructions and TRANS­

LATE instruction 5-12 
for PER 4-16 

TRT (TRANSLATE AND TEST) instruction 
7-40 

example A-28 
true zero (floating-point number) 9-1 
TS (TEST AND SET) instruction 7-38 
two's complement binary notation 7-2 

examples A-2 

U 
underflow (See exponent underflow) 
unit check (unit status) 13-68 
unit exception (unit status) 13-69 
unit of operation 5-9 
unit status 13-63 

attention 13-64 
busy 13-65 
channel end 13-67 
control-unit end 13-64 
device end 13-67 
status modifier 13-64 
unit check 13-68 
unit exception 13-69 
validity flag for 13-82 

universal instruction set 0-4 
unlock A-42 

example with FIFO queuing A-45 
example with LIFO queuing A-44 

unnormalized floating-point number 9-2 
unnormalized-operand exception 6-27 
UNPACK (UNPK) instruction 7-40 

example A-30 
UNPK (UNPACK) instruction 7-40 

example A-30 
unprivileged instructions 4-6,7-2 
unsigned binary 

arithmetic 7-3 
integer 7-2 

examples A-4 
in address generation 5-5 

update reference 5-29 
usable TLB entry 3-32 

V 
valid CBC 11-2 
valid segment-table or page-table entry 

3-32 
validation 11-5 

of registers 11-9 
of storage 11-6 
of storage key 11-7 
of TOO clock 11-9 

validity bits, in 
machine-check-interruption code 11-21 



validity flags (in limited channel 
logout) 13-82 

variable-length field 3-3 
vector facility 0-5,2-4 

effect of power-on reset on 4-35 
vector-facility failure (machine-check 
condition) 11-18 

vector-facility source (machine-check 
condition) 11-19 

vector-operation exception 6-28 
vector operations, publication refer-

enced v 
version code 10-48 
virtual address 3-5 
virtual storage 3-20 
volatile storage 3-2 

effect of power-on reset on 4-35 

W 
WAIT (SVC), example of routine to bypass 

A-42 
wait indicator 12-6 
wait-state bit 

in BC-mode PSW 4-8 
in EC-mode PSW 4-6 

warning (machine-check condition) 11-18 
subclass-mask bit for 11-28 

word 3-3 
word-concurrent storage references 5-31 
wraparound 

of instruction addresses 5-5 
of PER addresses 4-18 
of register numbers 

for LOAD MULTIPLE instruction 
7-22 

for STORE MULTIPLE instruction 
7-36 

of storage addresses 3-2 

for MOVE INVERSE instruction 7-24 
for MOVE LONG instruction 7-25 

of TOO clock 4-24 
WRD (WRITE DIRECT) instruction 10-54 
write (I/O command) 13-49 
WRITE DIRECT (WRD) instruction 10-54 

x 
X (EXCLUSIVE OR) instruction 
X field of instruction 5-5 
XC (EXCLUSIVE OR) instruction 

examples A-17 
XI (EXCLUSIVE OR) instruction 

example A-18 
XR (EXCLUSIVE OR) instruction 

Z 
ZAP (ZERO AND ADD) instruction 

example A-36 
zero 

7-18 

7-18 

7-18 

7-18 

8-12 

instruction-length code 6-7 
negative (See negative zero) 
normal meaning for byte value 
true (floating-point number) 

iv 
9-1 

8-12 ZERO AND ADD (ZAP) instruction 
example A-36 

zone bits 8-1 
moving of 7-28 

zoned decimal numbers 8-1 
examples A-5 

3 
31-bit IDAW (indirect-data-address word) 
facility 13-46 

Index X-23 





.... 
t:: 
Q) 

E 
0. 
':; 
g . 
Cl E 
,~ 0 
.... -o .!!! 
II>.J:. - .... 

'co -
E ~ 
't:l 0 
~ .... 
10 Q) 

g ~ 
;'t:l 
10 Q) 

.J:. E 
,<=: E 
~ ::l 
II> Cl 

E ~ 
Q).J:. 

1i 0 e ... 
0. 0 

Sl ~ 
~ :~ 
(J ~ 
t:: Q) 

rl ~ 
II> ... 
Q) ::l 

o.~ 
~ C. 

Sl 
::l 

'. Q) 

~ ~ 
I:) Q) 

<:0: 

IBM System/370 
Principles of Operation 

Order No. GA22-7000-10 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the front cover or title page.) 



GA22-7000-10 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--------- - ------- - ---- - - ---------- ..... -
® 

Please Do Not Staple 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department E57 
P.O. Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 

." 

CD 
z 
o 
Cf) 
W 
-....J 
o 

1 

~ 

G) 

:x:­
I\.) 
I\.) 

1 

-...,J 

o 
o 
o 

1 ...... 
o 



.... 
c: 
Q) 

E 
.9-
:J 
g . 
Cl E .= 0 .... -o .~ 
en ..s:::. - .... 

'ct; -
E ~ 
-0 0 
~ .... 
CQ Q) 

~ g-
'5-0 
CQ Q) 

..s:::. E 

.t: E 
~ :J 
en Cl 

E Q; 
Q) ..s:::. 

:0 " e L-

0. 0 

51 ~ 
:J .;; 
CQ .-
u ~ 
c: Q) 
CQ en 
U cL 
en ... 
~ ~ 
0. en 
CQ Q) 

en c. 
51 
:J 

~ ~ o Q) 

<0:: 

IBM System/370 
Principles of Operation 

Order No. GA22-7000-10 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the front cover or title page.) 



GA22-7000-10 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--------- - ------- - ---- - - -----------,-
<R> 

Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department E57 
P.O. Box 390 
Poughkeepsie, New York 12602 

Please Do Not StaPle 

FOld and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

~ 
3' -co 
c. 
:5 
c 
u: 
):= 

G 
):= 
I'...: 
I'...: 

I .... 
C 
C 
C 

I 

c 



------- ------ ---- - ---
==-=~=,§\ 


