SA22-7085-1

IBM System/370
' Extended Architecture

Principles of Operation

IBM System/370
Extended Architecture

Principles of Operation

Publication Number
SA22-7085-1

File Number
§$370-01

Second Edition (January 1987)

This major revision obsoletes SA22-7085-0 and Technical Newslet-
ters SN22-0682 and SN22-0688.

For a summary of changes to the last edition, see the last
saection of the Preface.

Except for minor stvle alterations, changes are identified by a
vertical line to the left of the change.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM System/37080, 30xx, and 4300
Processors Bibliography, 6C20-00801, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any func-
tionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre-
sentative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Central Systems Architecture,
Department E57, PO Box 390, Poughkeepsie, NY, USA 12602. IBM may
use or distribute whatever information vou supply in any way it
believes appropriate without incurring any obligation to you.

(c) Copyright International Business Machines Corporation 1983,
1987

This publication provides, for reference

purposes, a detailed definition of the
machine functions performed by systems
operating in the System/370 extended-

architecture (370-XA) mode.

The publication applies only to systems
operating in the 370-XA mode. The IBM
Svystem/370 Principles of Operation,
GA22-7000, should be consulted regarding
the functions of the architecture which
apply to systems operating in the
System/370 mode.

The publication describes each function
at the level of detail needed to prepare
an assembler-language program that
relies on that function. It does not,
however, describe the notation and
conventions that must be employed in
preparing such a program, for which the
user must instead refer to the appropri-
ate assembler-language publication.

The information in this publication is
provided principally for use by
assambler-language programmers, although
anyvone concerned with the functional
details of systems operating in the
370-XA mode will find it useful.

This publication is written
ence and should
introduction or a
the user has a

as a refer-
not be considered an
textbook. It assumes
basic knowledge of data-
processing systems. IBM publications
relating to systems operating in the
370-XA mode are listed and described in
the IBM Systems/370, 30xx, and 4300
Processors Bibliography, GC20-0001.

All facilities discussed
cation are not
every model.

in this publi-
necessarily available on
Furthermore, in some
instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain
capabilities may be described or implied
that are not offered on any model.
Examples of such capabilities are the
use of a 1l6-bit field in the subsystem-
identification word to identify the
channel subsystem, the size of the CPU
address, and the number of CPUs sharing
main storage. The allowance for this

type of extendibility should not be
construed as implying any intention by
IBM to provide such capabilities. For

information about the characteristics
and availability of facilities on a
specific model, see the functional char-
acteristics publication for that model.
The availability of facilities is summa-

rized in the IBM Svstem/370 System
Summary: Processors, GA22-7001.

Largely because this publication is
arranged for reference, certain words

PREFACE

and phrases appear, of necessity, earli-
er in the publication than the principal
discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index,
which indicates the location of the key
description.

The information presented in this publi-
cation 1is grouped in 17 chapters and
saveral appendixes:

Chapter 1, Introduction, highlights some
of the major facilities of systems oper-
ating in the 370-XA mode.

Chapter 2, 0Organization, describes the
major groupings within the system -- the
central processing unit (CPU), storage,
and input/output -- with some attention
given to the composition and character-
istics of those groupings.

Chapter 3, Storage, explains the infor-
mation formats, the addressing of stor-
age, and the facilities for storage
protection. It also deals with dynamic
address translation (DAT), which,
coupled with special programming
support, makes the use of a virtual
storage possible in systems operating in
the 370-XA mode. Dynamic address trans-
lation eliminates the need to assign a
program to a fixed location in real
storage and thus reduces the addressing
constraints on system and problem
programs.

Chapter &, Control, describes the facil-
ities for the suwitching of system
status, for special externally initiated
operations, for debugging, and for

timing. It deals specifically with CPU
states, control modes, the program-
status word (PSW), control registers,

program-event recording,
ties, resets, store
program loading.

timing facili-
status, and initial

Chapter 5, Program Execution, explains
the role of instructions in program
execution, looks in detail at instruc-
tion formats, and describes briefly the
use of the program-status word (PSW), of
branching, and of interruptions. It
also details the aspects of program
execution on one CPU as observed by
other CPUs and by channel programs.

Chapter 6, Interruptions, details the
mechanism that permits the CPU to change
its state as a result of conditions
external to the system, within the
system, or within the CPU itself. Six
classes of interruptions are identified
and described: machine-check interrup-
tions, program interruptions, super-
visor-call interruptions, external

iii

interruptions, input/Zoutput interrup-
tions, and restart interruptions.

Chapter 7, General Instructions,
contains detailed descriptions of

logical and binary-integer
and of all unprivileged
except the decimal
instructions.

data formats
instructions
and floating-point

Chapter 8, Decimal Instructions,
describes in detail decimal data formats
and the decimal instructions.

Chapter 9, Floating-Point Instructions,
contains detailed descriptions of

floating-point data formats
floating-point instructions.

Chapter 10, Control Instructions,
contains detailed descriptions of all of

and the

the semiprivileged and privileged
instructions except for the 1/0
instructions.

Chapter 11, Machine-Check Handling,
describes the mechanism for detecting,
correcting, and reporting machine
malfunctions.

Chapter 12, Operator Facilities,

describes the basic manual functions and
controls available for operating and
controlling the system.

Chapters 13-17 of this publication
provide a detailed definition of the
functions performed by the channel
subsystem and the logical interface

betuesen the CPU and the channal subsys-
tem.

Chapter 13, I/0 Overview, provides a
brief description of the basic compo-
nents and operation of the channel
subsystem.

Chapter 14, I/0 Instructions, contains
the description of the 370-XA 1I/0
instructions.

Chapter 15, Basic 170 Functions,
describes the basic I/0 functions
performed by the channel subsystem,
including the initiation, control, and

conclusion of I/0 operations.

Chapter 16, I/0 Interruptions,
I/0 interruptions and
conditions.

covers
interruption

Chapter 17, I/0 Support Functions,
describes such functions as channel-
subsystem usage monitoring, resets,

initial-program loading, reconfigura-
tion, and channel-subsystem recovery.

The Appendixes include:

- Information about number represen-—
tation
- Instruction-use examples

iv

. Lists of the instructions arranged

in several sequences

. A summary of the condition-code
settings

. A summary of the differences be-
tween the System/370 and 370-XA
modes

. A table of the powers of 2

. Tabular information helpful in
dealing with hexadecimal numbers

. An EBCDIC chart

SIZE NOTATION

In this publication, the letters K, M,
and 6 denote the multipliers 210, 220,
and 239, respectively. Although the
letters are borrowed from the decimal
system and stand for kilo (103), mega
(10¢), and giga (10%), they do not have
the decimal meaning but instead repre-
sent the power of 2 closest to the
corresponding power of 10. Their mean-
ing in this publication is as follows:

Symbol Value

K (kilo) 1,026 = 21¢
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 23°

The following are some examples of the

use of K, M, and G:
2,048 is expressed as 2K.

4,096 is expressed as %K.

65,536 is expressed as 64K
(not 65K).

224 is expressed as 16M.

23! js expressed as 26G.

When the words "thousand” and "million™
are used, no special power-of-2 meaning
is assigned to them.

BYTES, CHARACTERS, AND CODES

Although the System/360 architecture was
originally designed- to support the
Extended Binary-Coded-Decimal Inter-
change Code (EBCDIC), the 1instructions
and data formats of the architecture are
for the most part independent of the
external code which is to be processed
by the machine. For most instructions,
all 256 possible combinations of bit
patterns for a particular byte can be
processed, independent of the character
which the bit pattern is intended to

represent. For instructions which use
the zoned format, and for those feuw
instructions which are dependent on a
particular external code, the instruc-
tion TRANSLATE may be used to convert
data from one code to another code.
Thus, a machine operating in the 370-XA
mode can process EBCDIC, ASCII, or any
other code which can(be represented in
eight or fewer bits per character.

otheruise
for a byte
Thus, when a
a zero, the

In this publication, wunless
specified, the value given
denotes a binary value.
byte 1is said to contain
value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC

character "0," which would be F0 hex.

OTHER PUBLICATIONS

The I/0 interface is
publication IBM System/360 and
Svystem/370 I/0 Interface Channel to
Control Unit Original Equipment Manufac-
turers' Information, GA22-6974.

described in the

in the
Vector Oper-

Vector operations are described
publication IBM Systems/370
ations, SA22-7125.

The 370-XA interpretive-execution facil-
ity is described in the publication IBM
370-XA Interpretive Execution,
SA22-7095.

SUMMARY OF CHANGES

The following changes, additions, and
significant clarifications have been
made to the description of the CPU:

The definition for INVALIDATE PAGE TABLE
ENTRY is changed to remove the require-
ment that the update to the byte of the
page-table entry be an interlocked
update. This makes the definition
consistent with the System/7370 defi-
nition.

The instruction MOVE INVERSE is included
as an optional facility.

The instructions COMPARE AND FORM CODE-
WORD and UPDATE TREE are included as
part of the basic architecture.

Several sections of the document have
been changed to take the vector facility
into account. As a result, this publi-
cation now describes:

. The effect
facility

of reset on the vector

. The vector-control bit, control

register 0, bit 14

. Two new program interruptions:
-- Vector operation
=~ Unnormalized operand

. Two new machine-check interrup-

tion—-code (MCIC) bits:

-- Vector-facility failure ((MCIC
bit 6)
-- Vector-facility source (MCIC

bit 13)
The following changes, additions, and
significant clarifications have been
made to the description of the channel
subsystem:

timers are no
be synchronized with

The channel-subsystem
longer required to
the TOD clock.
The following definitions have been
clarified:

4 Channel-subsystem-timer synchroni-
zation when multiple channel-
subsystem timers exist

. The conditions causing certain
sequence—-code values to be stored

in the subchannel logout

. The method of terminating an I/0
operation when the interface-
control-check condition is recog-
nized as the result of a device-
status check

L4 The circumstances under which the N
condition (which results from a
path-not-operational condition) is
reset

- The conditions which cause the N
bit to be stored as one in the SCSW

- The transition of a subchannel from
the start-pending or resume-pending
state to the subchannel-and-
device-active or device-active
state

. The transition of a subchannel from
the device-active state to a state
in which the device is not active

. Active allegiance

- Dedicated allegiance (clarifying
that command retry is excluded as a

condition for dedicated alle-
giance)
. The actions taken by the channel

subsystem for a device which is
operating in multipath mode when
control unit busy is recognized

The definition of
expanded to allow
to accept alert

working allegiance is
the channel subsystem
status on a path not

specified by the LPM when the device is
operating in multipath mode.

The definition of the clear-pending bit
now covers the situation in which the
channel subsystem may be unable to
determine whether the clear signhal was
issued to the device.

vi

The meaning of the halt-pending, start-
pending, and resume-pending bits is
changed in situations following the
detection of a channel-control-check
(CCC) or interface-control-check (IFCC)
condition while the halt or start func-
tion is being performed.

CHAPTER 1. INTRODUCTION o« o e
Highlights of 370-XA .« e e . .

Compatibility . .
Compatibility among Systems in
370-XA Mode . . .

Compatibility between Systems ln

System/370 Mode and in 370-XA
Mode . .
Control~- Program Compatlbxllty
Problem-State Compatibility
System Program e e e e e e e
Availability e e e e e e e e .

CHAPTER 2. ORGANIZATION
Main Storage e e e .
CPU e e e e e e e e .
PSHW .« e . “ e e .
General Reglsters .
Floating-Point Register
Control Registers . .
Vector Facility . . .
1/0
Channel Subsystem . .
I/0 Devices and Control Uni
Operator Facilities « e .

o ¢ ¢ ¢ Ne ¢ o s
¢ & ¢ 4
.r’-o«ooauccct
« ¢ 0 & & & & s & e

CHAPTER 3. STORAGE .
Storage Addressing .« .
Information Formats
Integral Boundaries
Address Types and Formats
Address Types e e
Absolute Address . .
Real Address « e e .
Virtual Address .
Primary Virtual Address
Secondary Virtual Address
Logical Address e e e
Instruction Address . .
Effective Address .
Address Size and Nraparound
Address Wraparound .« e s
Storage Key e e e e e e e .
Protection . .
Key- Controlled Protectlon
Fetch-Protection-Override
Control e e e e e e =
Page Protection . .
Low—-Address Protection
Reference Recording .« .
Change Recording . .
Prefixing e e e e .
Address Spaces . . .
ASN Translation - . .
ASN-Translation Controls
ASN-Translation Tables .
ASN-First-Table Entries
ASN-Second-Table Entries
ASN-Translation Process .
ASN-First-Table Lookup .
ASN-Second-Table Lookup
Recognition of Exceptions
during ASN Translation
ASN Authorization . .
ASN-Authorization Controls
Control Register % « e .
ASN-Second-Table Entry .
Authority-Table Entries

¢ ¢ ¢ 0
o ¢ o o ¢ ¢ ¢ 0
¢ o ¢ ¢ ¢ o 0 s e

¢ o & o ¢ ¢ ¢ & s &

¢« o o e

¢ & &

-
-
-

o ¢ 8 & s+ ¢ o
¢ & & ¢ & ¢ & ¢ & o

¢ & 4 & ¢ & & & ¢ & & ¢t & e &

« ¢ & e ¢ 0

* 8 &t 6 8 & e 4 e 0

¢ ¢ ¢ 8 & 8 ¢ & ¢ ¢+ & s ¢ & & 4 0

¢ ¢ 8 & 0 e 4 & & & & s ¢ s

¢« & o & o 0

L
(SR8, P)

[S T L UL T T I T

L L L I I
VIVIVID D UNRHOO LRGUIVIVIVVIVIVIDDDDUNNKE UIUTUITVTRWWWWNN -

HWH W N A H NN NH A EHHUHUHWWH W NN NNN
{

{ N N TN TN N N N NS A |

e o o o ok ok b ook ot et ot

CHUH U UHHHHH NN NN H W

i
b b et
NN

3-18
3-18
3-18
3-18
3-18
3-19

ASN-Authorization Process
Authority-Table Lookup .
Recognition of Exceptions

during ASN Authorization
Dynamic Address Translation

Translation Control .
Translation Modes
Control Register 0
Control Register 1
Control Register 7

Translation Tables .
Segment-Table Entries
Page-Table Entries . .
Summary of Segment-Table

Page-Table Sizes . .

Translation Process .

Effective Segment- Table
Designation - . .

e o+ 8 & ¢ o

¢« o & o &

¢ ¢ Qe ¢ o ¢ o ¢ o 0
3
« s Q¢ ¢ ¢ ¢ & ¢ 0 &

Inspectlon of Control Reg\ster
0

« e e

Segment Table Lookup . .
Page-Table Lookup

Formation of the Real Address

Recognition of Exceptions

during Translation .
Translation-Lookaside Buffer
Use of the

Translation-lLookaside Buffer

Modification of Translation
Tables « e e e e e e e
Address Summary . .
Addresses Translated . .
Handling of Addresses .
Assigned Storage Locations

CHAPTER 4. CONTROL e e e e

Stopped, Operating, Load, and
Check-Stop States . .
Stopped State . .
Operating State .
Load State . . .
Check-Stop State .

Program-Status Word
Program-Status—-Word F

.
.
.
-

-

« o 0 0 & 0

tlottoittli
3

-.d-..g......
o

Control Registers . .
Tracing .
Control- Reg1ster Allo n
Trace Entries « . .
Operation .« . .

Program—Event Record1ng
Control-Register Allocati
Operation . « e e

Identxfucatlon of Cause
Priority of Indication
Storage-Area Designation
PER Events « . . e . e
Successful Branchlng .
Instruction Fetching .
Storage Alteration .« .
General-Register Alterati
Indication of PER Events
Concurrently with Other
Interruption Conditions

cOtcaOotﬂ-oco-‘
.

o

Timing . e e e s .
Time-of- Day Clock o e e .
Format « e e e e e e e .
States . . .

Changes in 010ck State

CONTENTS

.

¢ ¢ o & & & o o & s ¢« ¢ ¢ ¢ &

« 2 ¢ ¢ ¢ ¢ o s

« o o s & ¢

e e 4 e ¢ « s 40

-

-

9 & & & $ &€ 6 ¢ & 6 6 & & & 0 0 4 0 & & & 0

R T T TR B |

3-19
3-20

3-21
3-21
3-22
3-22
3-23
3-23
3-26
3-24
3-24
3-25

3-25
3-26

3-26

3-29
3-29
3-29
3-30

3-30
3-30
3-31
3-34

3-36
3-36

W
i
M N
oo~

UL
NN OORBAPVINUWUHNNN -

[I | lb-&‘k-&‘b-‘i\b#&\-&‘-&\ R

b ot ot ot ot |

]
et
Do

HpDDLDDLDDD

4-15
4-15

4-16
6-18
4-18
4-18
4-19
4-19

vii

Setting and Inspecting the
Clock . « .« e e .
TOD-Clock Synchronlzat1on .
Clock Comparator e e e e .
CPU Timer « e e e s .
Externally Initiated Functlons
Resets e e e e e e e e
CPU Reset .
Initial CPU Reset
Subsystem Reset .
Clear Reset . . .
Power-0n Reset . .
Initial Program Loading
Store Status e e e e e
Multiprocessing « e e e e
Shared Main Storage
CPU-Address Identlflcatlon
CPU Signaling and Response .
Signal-Processor Orders .
Conditions Determining Response
Conditions Precluding
Interpretation of the Order

-
.
-

¢ ¢ ¢ o 0

R T B A R R]
¢ ¢ 6 e o e 4 4 0 & s+ ¢ s ¢ & &

-
-
.
-
-
-
.
-
-
.
-
-
.

Code e e e e e e e e e e e
Status Bits e e e e e e e .
CHAPTER 5. PROGRAM EXECUTION
Instructions e e e e e e
Operands « . . .« .
Instruction Format .

Register Operands

Immediate Operands
Storage Operands .
Address Generation .« .
Bimodal Addressing .
Sequential Instruction-— Address

« e ¢ ¢ o 0

¢ e 2 e 0 e

PR T B Y T]
« 4 6 ¢ T e & ¢ s

L T B R Y B)

Generation e e e e e e e
Operand-Address Generation - .
Formation of the Intermediate
Value
Formation of the Address . .
Branch-Address Generation .

Formation of the Branch Address
Instruction Execution and
Sequencing e e e e .
Decision Making .
Loop Control « e
Subroutine Linkage
Interruptions .
Tvypes of Instruct1on

Completion . e .

Suppression . .

Nullification .

Termination . . .

Interruptible Instructlon

Point of Interruption .

Execution of Interruptible
Instructions . « e .

Excaptions to Nu111f1catton and
Suppression . . .

Storage Change and Restoratlon
for DAT-Associated Access
Exceptions

Modification of DAT Table
Entries «« .

Trial Execution for Edlting
Instructions and TRANSLATE

Interlocked Update for

PR I]
P Y B BT

ndi

¢ ¢ ¢ [Tle o o

R]

ng
S

s e & ¢ & & 4 0 ¢ ¢ o

o ¢ 0 4 e

Nullification and Suppression
Authorization Mechanisms “ e e .
Mode Requirements .

Extraction-Authority Control

PSW-Key Mask e e e e e e e
Secondary-Space Control . .
Subsystem-Linkage Control .

viii

4-20
§-21
§-21
§-22
4-23
4-23
4-26
4-27
=27
4-27
4-28
4-28
4-29
4-29
4-29
4-29
4-30
4-30
6-32

SN
L]
vt (PR
W

| |

oot
1] 1 |
DN emmmeEEaNNON OONT T TR RPN

[T N T O O A A S AN RS k{!U'lU'lU! [RN

[e e |

g Ut gttt

w»
i
—
E-)

5-15
5-15

5-15
5-15
5-16
5-16
5-16
5-16
5-17

ASN-Translation Control .
Authorization Index « .
PC-Number Translation . .
PC-Number Translation Control
PC-Number Translation Tables
Linkage-Table Entries -
Entry-Table Entries . .
PC-Number-Translation Process
Linkage-Table Lookup « e .
Entry-Table Lookup e e .
Recognition of Exceptions
during PC-Number Translation
Sequence of Storage References

| Conceptual Sequence o e .

| Overlapped Operation of

| Instruction Execution .

| Divisible Instruction

| Execution .
Interlocks for Virtual Storage
References e e e e e e e
Instruction Fetching “ e e .
DAT-Table Fetches e e e e .
Storage-Key Accesses e e e .

Storage-Operand References
Storage-Operand Fetch

References . . .
Storage-Operand Store
References - . .
Storage-0Operand Update
References . “ . .
Storage-Operand Conststency
Single—-Access References .

Multiple-Access References
Block-Concurrent References
Consistency Specification
Relation between Operand
Accesses . e e e e .
Other Storage References .
Serialization e e e e e e .
CPU Serialization « e e .
Channel-Program Serialization

CHAPTER 6.

INTERRUPTIONS .
Interruption Action e e .
Interruption Code e e e .
Enabling and Disabling .« .

Handling of Floating Interrup
Conditions © e e e e e .
Instruction-Length Code .

Zero ILC - .
ILC on Instructlon Fetchlng

utaﬁ-:occ

Exceptions .
Exceptions Assoctated wlth the
PSW - e . . - .

Early Exceptlon Recognltlon
Late Exception Recognition
External Interruption . e .
Clock Comparator
CPU Timer . .
Emergency Slgnal
External Call .
Interrupt Key .
Malfunction Alert
Service Signal .
T0D-Clock Sync Check
I7/0 Interruption .
Machine-Check Interruptlon
Program Interruption « e .
| Exception—-Extension Code
Program-Interruption CondItro
Addressing Exception - .
AFX-Translation Exception
ASN-Translation-Specification
Exception e e e e e e e .

D Y B B
¢« ¢ ¢ s 2 0 e
e ¢ e & 0 4 s e
« 6 ¢ 0 2 e e v 0

¢ ¢ 6 4 0 e & & 5 s ¢

ns

¢« ¢ e P B 'Y

aonOanao

U T N T TR Y SR Y Y TR SR BN B

(SR8
1
W
N =

[N NN)
tft
VIUTN =

(- N~ -]
i1t

ti1 111ttt e o

P X I I I
w TR N N = et et d © O O D O O 0000 00 oN O\ ONON

o Lo - - W X N N N N R e R X]

Packed Format « e e e
Decimal Codes « e e .

Decimal Operations “ e e e e
Decimal-Arithmetic Instructions
Editing Instructions . . .
Execution of Decimal Instructlons
Other Instructions for Decimal

BRANCH AND LINK - .
BRANCH AND SAVE
BRANCH AND SAVE AND SET MODE
BRANCH AND SET MODE - . .
BRANCH ON CONDITION . .

BRANCH ON COUNT - .

ASX-Translation Exception . 6-15 COMPARE LOGICAL CHARACTERS UNDER
Data Exception . . « « . 6-15 MASK . e e e e . 7121
Decimal-Divide Exceptton . . 6-16 COMPARE LOGICAL LONG e e e o« . 122
Decimal-Overflow Exception . 6-16 CONVERT TO BINARY « e o e o o 1-23
Execute Exception . . . 6-16 CONVERT 70 DECIMAL s e e o . 1-24
Exponent-Overflow Exceptlor 6-16 DIVIDE e e e e s e e e e e e . 1-24
Exponent-Underflow Exception 6-16 EXCLUSIVE OR « e 4 s s e« e« « o« 1-25
EX-Translation Exception « . 6-17 EXECUTE . e e e e e e . 1-26
Fixed-Point-Divide Exception 6-17 INSERT CHARACTER « e e e e e . 1=27
Fixed-Point-Overflow Exception 6-17 INSERT CHARACTERS UNDER MASK . 7-27
Floating-Point-Divide INSERT PROGRAM MASK e v e« . T7-27
Exception . . « . . 6-17 LOAD “ e e e s e e e e e e o . 7-28
LX-Translation Exceptlon .« . 6-17 LOAD ADDRESS “ e e e e 4 e e . 1-28
Monitor Event e s e e« e« « . 6-18 LOAD AND TEST et e s e e . . 7-28
Operand Exception « v« « . 6-18 LOAD COMPLEMENT s e e e o . 1-28
Operation Exception . . . 6-19 LOAD HALFWORD “ e e e e e e . 7-29
Page-Translation Exceptlon . 6-19 LOAD MULTIPLE c e e e e e e . 1-29
PC~Translation-Specification LOAD NEGATIVE “ e e s e e e« . 71=29
Exception e e e e e e e . . 6-19 LOAD POSITIVE « e e e e+ o o 1-30
PER Event e e 6-20 MONITOR CALL e v e e e e e .« . 7-30
Primary—-Authority Exception 6-20 MOVE . Y A !
Privileged-Operation Exception 6-20 | MOVE INVERSE B A)
Protection Exception . . . 6-21 MOVE LONG « e e e e e e e e . 132
Secondary—Authority Exceptlon 6-21 MOVE NUMERICS « + s+ « « « o &« 7-35
Segment-Translation Exception 6-21 MOVE WITH OFFSET « e o +« « « . 1-35
Significance Exception . . 6-22 MOVE ZONES c e e 4 e e e e e . 7-36
Space-Switch Event « e e« . 622 MULTIPLY . e e s e e« o « - 7-36
Special-0Operation Exception 6-22 MULTIPLY HALFNORD e v v e e o 1-37
Specification Exception .« . 6-23 OR e - Y/
Trace-Table Exception .« . b6-24 PACK - . « e e « + e« o« . 1-38
Translation-Specification SET PROGRAM MASK « e e e« « « . 7-39
Exception . . « e e . 6-24 SHIFT LEFT DOUBLE « e« <« 139
Unnormalized- Operand Exceptlon 6-24 SHIFT LEFT DOUBLE LOGICAL « « 7-60
Vector-Operation Exception . 6-25 SHIFT LEFT SINGLE . « « « 7-40
Collective Program—-Interruption SHIFT LEFT SINGLE LOGICAL « « 7-640
Names « . . 6-25 SHIFT RIGHT DOUBLE . .« « 71-641
Recoanition of Access ExceptIOns 6-25 SHIFT RIGHT DOUBLE LOGICAL « « 7-6%1
Multiple Program-Interruption SHIFT RIGHT SINGLE . « < . 7161
Conditions c e e e e e e e . 6-27 SHIFT RIGHT SINGLE LOGICAL « . 162
Access Exceptions « + « « . 6-29 STORE Y A Y4
ASH-Translation Exceptions . 6-31 STORE CHARACTER e e e e e . 1-42
Trace Exceptions e e . . . 6-31 STORE CHARACTERS UNDER MASK . 71-62
Restart Interruption e e v e« 6-31 STORE CLOCK e -
Supervisor-Call Interruption . . 6-31 STORE HALFWORD T A 1]
Priority of Interruptions .« . 6-32 STORE MULTIPLE B A 1
SUBTRACT . . c e e e e e e . 1-64
CHAPTER 7. GENERAL INSTRUCTIONS - SUBTRACT HALFNORD e« +« <« « < 11-65
Data Format « e e . e e - SUBTRACT LOGICAL v e s s e+ e . 1-65
Binary-Integer Representatlon - SUPERVISOR CALL « s s e e e . 1-65
Binary Arithmetic - TEST AND SET e R 1]
Signed Binary Arxthmetic . - TEST UNDER MASK v e e e« . 766
Addition and Subtraction . - TRANSLATE . « e e e e < o 1-67
Fixed-Point Overflow - e . - TRANSLATE AND TEST c e e e e o 1-67
Unsigned Binary Arithmetic . - UNPACK . c e e e e e e e e . 1-48
Signed and Logical Comparison - | UPDATE TREE e e e e . « « . 149
Instructions e e e e e e e e . -
ADD e e e e e e e e e . - CHAPTER 8. DECIMAL INSTRUCTIONS -
ADD HALFWORD e e e e . . Decimal~Number Formats « e e . -
ADD LOGICAL “ e e e .- . Zoned Format « . . -
AND . . « e e e . . -

o ¢ e s
|

€ ¢ o 0
R I)
Pt

P ettt NSNNNNN NN NN

PO) ot ot fook ok ok foob ook oo fok ot fk b |]
F2 S OO UL D UGN 00O 0008 D P UGN EN N e

[T S T S S N B D D TR TR S S S S S S R TR S SR T SN R B)

SN NN AN NN N N N NN

f COOO0000000000 00 00 0 00 00 00 00 00 08
l

SOOUTUNIVIWU HUWNION

BRANCH ON INDEX HIGH . . Operands e e e e e e e e e . -
BRANCH ON IMDEX LOW OR EQUAL Instructions e e e e e e e e e -
COMPARE . . . ADD DECIMAL C e e e e e e e -
COMPARE AND FORM CODEMORD . COMPARE DECIMAL c e e e e e -
COMPARE AND SWAP DIVIDE DECIMAL e e e e e e e -
COMPARE DOUBLE AND SNAP . . EDIT . I, -
COMPARE HALFWORD e e e e e EDIT AND MARK e e e e e e -
COMPARE LOGICAL - e e . . MULTIPLY DECIMAL e e e e e . . 81

SHIFT AND ROUND DECIMAL . - . 8-10 CPU Retry .- . « e e .
SUBTRACT DECIMAL e e e e« < « 8-11 Effects of CPU Retry .« . .
ZERO AND ADD « e v e e e « - . 8-12 Checkpoint Synchronization
Handling of Machine Checks
CHAPTER 9. FLOATING-POINT during Checkpoint
INSTRUCTIONS . . « e e e e . 9-1 Synchronization « . . .
Floating-Point Number Checkpoint- Synchron1zatlon
Representation “ e v e e e e . 9-1 Operations e e e e e .
Normalization e e e . 9-2 Checkpoint-Synchronization
Floating-Point- Data Format . 9-2 Action . « e e e .
Instructions e e e e e e e e e 9-4 Channel- Subsystem Recovery .
ADD NORMALIZED e e e e e e e 9-6 Unit Deletion « e .
ADD UNNORMALIZED « e e e e e . 9-7 Handling of Machlne Checks . .
COMPARE e e e e e e e e e e . 9-8 Validation . e e .
DIVIDE e e et e e e e e e e e . 9-8 Invalid CBC in Storage « . .
HALVE e e e e e e e e e e e . 9-10 Programmed Validation of
LOAD . . e e e e e e e e e . 9-10 Storage . .
LOAD AND TEST v e e e e s . 911 Invalid CBC in Storage Keys
LOAD COMPLEMENT e e e e . . 9-11 Invalid CBC in Registers - .
LOAD NEGATIVE P R O Check-Stop State e e e e e e .
LOAD POSITIVE e e e e e e e . 9-12 System Check Stop e e e .
LOAD ROUNDED « e e s e e e e . 9-12 Machine-Check Interruption .« .
MULTIPLY e e e e s e e e e e . 9-13 Exigent Conditions “ e e e .
STORE . c + e e e o « 9-14 Repressible Conditions . .
SUBTRACT NORMALIZED e L Interruption Action « e e .
SUBTRACT UNMNORMALIZED e« « .« 9-15 Point of Interruption « e .
Machine-Check~Interruption Code
CHAPTER 10. CONTROL INSTRUCTIONS 10-1 Subclass e e e e e e e e e
DIAGNOSE . c e e e« « « 10-4 System Damage e e e e e
EXTRACT PRIMARY ASN e « « « « 1l0-5 Instruction-Processing Damage
EXTRACT SECONDARY ASN . . « 10-5 System Recovery « e e
INSERT ADDRESS SPACE CONTROL . 10-6 Timing-Facility Damage . .
INSERT PSW KEY . « . 10-7 External Damage . « .o
INSERT STORAGE KEY EXTENDED . 10-7 | Vector-Facility Fallure .
INSERT VIRTUAL STORAGE KEY « « 10-7 Degradation e e e e e e e
INVALIDATE PAGE TABLE ENTRY . 10-8 Warning « . . . « . .
LOAD ADDRESS SPACE PARAMETERS 10-10 Channel Report Pendlng . .
LOAD CONTROL e e e e e e e 10-17 Service-Processor Damage .
LOAD PSW « .. e e e e e . 10-17 Channel-Subsystem Damage .
LOAD REAL ADDRESS c e e v e 10-18 | Vactor-Facility Source -
MOVE TO PRIMARY « e e e e 10-19 Time of Interruption Occurrence
MOVE TO SECONDARY c e e e . 10-19 Backed Up e e e e e e e
MOVE WITH KEY e e e e e e 10-20 Synchronous
PROGRAM CALL e e e e e e e 10-21 Machine-Check-Interruption
PROGRAM TRANSFER e e e e . 10-28 Conditions e e e e e e e .
PURGE TLB 10-33 Processing Backup « e e e
RESET REFERENCE BIT EXTEND D 10-33 Processing Damage « . e e
SET ADDRESS SPACE CONTROL . 10-33 Storage-Error Type . . -
SET CLOCK . c e e e e 10-34 Storage Error Uncorrected
SET CLOCK COMPARATOR “ e e 10-35 Storage Error Corrected .
SET CPU TIMER « e e e e e e 10-35 Storage-Key Error Uncorrected
SET PREFIX . . e . 10-36 Storage Degradation .
SET PSW KEY FROM ADDRESS . . 10-36 Machine-Check Interruption- Code
SET SECONDARY ASN “ e . 10-37 Validity Bits e e e e e e
SET STORAGE KEY EXTENDED . . 10-40 PSW-MWP Validity . . .
SET SYSTEM MASK “ e e e e 10-40 PSW Mask and Key Valldlty
SIGNAL PROCESSOR . « e e e 10-40 PSW Program-Mask and
STORE CLOCK COMPARATOR . e . 10-42 Condition-Code Validity .
STORE CONTROL « e e e e e . 10-42 PSW-Instruction—-Address
STORE CPU ADDRESS e e e e . 10-42 Validity
STORE CPU ID e e e e e e e 10-42 Failing-Storage- Address
STORE CPU TIMER e e e e e . 10-43 Validity .
STORE PREFIX .- . e e e e . 10-43 External-Damage- Code Valvdlty
STORE THEN AND SYSTEM MASK . 10-44 Floating-Point-Register
STORE THEN OR SYSTEM MASK . 10-44 Validity . . .
TEST BLOCK c e e e e e e e 10-44 General-Register Valldlty
TEST PROTECTION e e e e . 10-46 Control-Register Validity
TRACE e e e e e e e e e e 10-48 Storage Logical Validity .
Indirect Storage Error - .
CHAPTER 11. MACHINE-CHECK Delayed Access Exception .
HANDLING .« e “ e e e e e . 11-1 CPU-Timer Validity c e e .
Machine-Check Detectlon . . 11-2 Clock-Comparator Validity
Correction of Machine Malfunctlons 11-2 Machine-Check Extended
Error Checking and Correction 11-2 Interruption Information - .

[O T T T T T S X S S R S A o

b b fd ot (b b (b ok ok kb o b e b
WN OO NNY TN D

bt b et et et b
b ok b fod ot b fa ||

[Y I e e e el
OO VWV OW00

N
o

U
N
o

NN
oo

NN
o

P IR ol T I S S e S o Sy S S e Y Sy
b ok ot et et e b ek fed b ek (e ek b freh e b b ok e
i

Register-Save Areas « e .
External-Damage Code . e e
Failing-Storage Address .
Handling of Machine-Check
Conditions . . e e e .
Floating Interruptlon
Conditions e e e e e e .
Floating
Machine-Check-Interruption
Conditions . .
Floating 1I/0 Interrupttons
Machine-Check Masking .« .
Channel-Report-Pending
Subclass Mask e e e e e
Recovery Subclass Mask .
Degradation Subclass Mask

External-Damage Subclass Mask

Warning Subclass Mask .
Machine-Check Logout .

Summary of Machine-Check Maskxng

CHAPTER 12.

Manual Operation e e e e e
Basic Operator Facilities .
Address—-Compare Controls .

Alter-and-Display Controls
Architectural-Mode Indicator
Architectural-Mode-Selection
Controls e e e .
Check-Stop Indlcator
IML Controls . - .
Interrupt Key . .
Load Indicator R .
Load-Clear Key . .
Load-Normal Key .
Load-Unit-Address Cont
Manual Indicator .
Power Controls .
Rate Control . .
Restart Key . .
Start Key . . .
Stop Key . .
Store-Status Key -
System-Reset-Clear Key
System-Reset—-Normal Key
r

DR I T B)

ntrol

« & ¢ 0
¢ 4« & o ¢ o ¢« OG0t 0 0 e

€ e ¢ 6 ¢ ¢ ¢ ¢ fLe s 0 000

xl‘l‘lttottttt

Test Indicator - .

TOD-Clock Control

Wait Indicator . .
Multiprocessing Configurati

CHAPTER 13. 1I/0 OVERVIEW
Comparison with System/370
The Channel Subsystem . .
Subchannels . .
Attachment of I/0 Devrces
Channel Paths .« e
Control Units . .
I/0 Devices e e e .
I1/0 Addressing e e e
Channel-Path Identifier

-

Yo ¢+ o ¢ ¢ ¢ ¢ & s ¢ 0 0

O s s
=

Subchannel Number
Device Number . . .« .
Device Identifier . . .
Execution of I/0 Operations
Start-Function Initiation
Path Management e e e e
Channel-Program Execution
Conclusion of I/0 Operations
I/0 Interruptions « e e .

CHAPTER 14.

I/0 INSTRUCTIONS

Introduction e e e e e e e e
I7/0-Instruction Formats . .
I/0-Instruction Execution .

OPERATOR FACILITIES

-

P)

€ 8 6 ¢ 6 ¢ & & & & 8 ¢ 0 0 ¢

¢ & & 6 ¢ ¢ ¢ 8 8t 4 o st ¢ ¢ 0 s

L Y B)

R S T A T B SR B N |

¢ ¢ 6 & ¢ & 6 4 & & & 4 8 6 & 0 s

« 0o v

11-22
11-22
11-23

11-23
11-23

11-23
11-23
11-24

11-24
11-24
11-24
11-2¢4
11-24
11-24
11-24

12-1
12-1
12-1
12-1
12-2
12-2

12-2
12-2
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5
12-6

13-1
13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-5
13-5
13-5
13-5
13-5
13-6
13-6
13-6
13-7
13-7
13-9

14-1
14-1
14-1
14-1

Serialization .- .
Operand Access . .
Condition Code . .
Program Exceptions
Instructions e e e
CLEAR SUBCHANNEL .
HALT SUBCHANNEL .
MODIFY SUBCHANNEL
RESET CHANNEL PATH
RESUME SUBCHANNEL
SET ADDRESS LIMIT
SET CHAHNNEL MONITOR
START SUBCHANNEL .
STORE CHANNEL PATH STATUS
STORE CHANNEL REPORT WORD
STORE SUBCHANNEL . .
TEST PENDING INTERRUPTION
TEST SUBCHANNEL e e e e .

CHAPTER 15. BASIC I/0 FUNCTIONS
Control of Basic I/0 Functions
Subchannel-Information Block
(SCHIB) . e e
Path-Management- Control Nord
Subchannel-Status Word . .
Model-Dependent Area .
Summary of Modifiable Flelds
Channel-Path Allegiance « . .
Working Allegiance - . .
Active Allegiance .« . .
Dedicated Allegiance . .
Channel-Path Availability .
Control-Unit Type e e e e e
Clear Function « e . e e e
Clear-Function Path Management
Clear-Function Subchannel

R T T T S BT TR S S S]

-
-
-
-
-
-
-
-
-
.
-

« ¢ ¢ 5 & 8 & 8 ¢ & 8 0 0
¢ 0 6 6 6 0 4t e e ¢ 0 0

¢ ¢ s e & & 6 ¢ & & &8 & 4 ¢ s 0 00

-
-
-

Modification . . .

Clear-Function Slgnallng and

Completion e e e e e e e
Halt Function .« e

Halt-Function Path Management
Halt-Function Signaling and

Completion c e e e e e e
Start Function and Resume
Function e e e e e e e e e

Start-Function and
Resume-Function Path
Management . « e .

Execution of I/0 Operatlons .

Blocking of Data -

Operation-Request Block (ORB)

Channel-Command Word « e e .

Command Code e e e e e e e .

Designation of Storage Area

Chaining e e e e e e e e e .

Data Chaining e e e e e e
Command Chaining e e e e .
Skipping . « e e e e e e
Program- Controlled Interruption
CCW Indirect Data Addressing
Suspension of Channel-Program
Execution .
Commands .« .
Write .« .
Read - e .
Read Backward

Control
Sense .
Sense ID
Transfer in Channel
Command Retry e e e e .
Concluding I/0 Operations durln
Initiation e e e e e e e .

- .

LR A R S)

« ¢ 0 e 0 0 e
R R T S T T)

-
-
-
-
-
-
- -
-

« 6« ¢ ¢ ¢ s s 0

9

¢ e & s & T ¢ s 0 4 0

14-1
14-1
14-2
14-2
14-2
14-3
14-4
14-6
14-7
14-8
14-9
14-10
14-12
14-13
14-14
16-14
14-15
14-16

15-1
15-2

15-2
15-2
15-8
15-8
15-8
15-11
15-11
15-12
15-12
15-12
15-13
15-13
15-13

15-14

15-14
15-15
15-15

15-16
15-18

15-18
15-20
15-21
15-21
15-23
15-25
15-26
15-27
15-29
15-30
15-31
15-31
15-32

15-33
15-35
15-36
15-37
15-37
15-38
15-39
15-40
15-41
15-62

15-42

xi

Immediate Conclusion of I/0
Operations . « e e .
Concluding IZ/0 Operatlons during
Data Transfer .- . e e v e .
Channel-Path—-Reset Functlon .
Channel-Path-Reset-Function
Signaling . e e e e e .
Channel-Path- Reset
Function-Completion Signaling

CHAPTER 16. 1I/0 INTERRUPTIONS .

Interruption Conditions e e
Intermediate Interruption
Condition . . .

Primary Interruptlon Cond\tlon
Secondary Interruption Condition

Alert Interruption Condition .
Priority of Interruptions « e .
Interruption Action .

Interruption-Response Block (IRB)
Subchannel-Status Word « e e e .

Subchannel Key e e s e e e

Suspend Control (S) . . .

Extended-Status-Word Format
(L) . -

Deferred Condltion Code (CC)
Format (F) e e e e e e e
Prefetch (P) .« e .
Initial-Status- Interruptlon
Control (I) . . . e .
Address-Limit- Checklng
Control (A) e e e e e e
Suppress-Suspended
Interruption (U) -
Subchannel-Control Fleld
Zero Condition Code (Z)
Extended Control (E) .
Path Not Operational (N)
Function Control (FC)
Activity Control (AC)
Status Control (SC)
CCW-Address Field .
Device-Status Field
Attention . .
Status Modifler
Control-Unit End
Busy . . .
Channel End .
Device End . .
Unit Check .
Unit Exception .
Subchannel-Status Fleld
Program-Controlled
Interruption .« .
Incorrect Length .

.

L T TR T S]

. e 0

« ¢ & 4 ¢ 0 0 e 0 s
.
8 8 & 4 & & & 9 ¢ & 0 4 & 8 6 4 s s 0

.
¢ & 4 & ¢ 6 4 & 8 &+ ¢ & ¢

Program Check -
Protection Check
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check « e e
Count Field . « . .
Extended-Status word . .
Extended-Status Format 0
Subchannel Logout .
Extended-Report Word
Failing-Storage Address
Extended-Status Format 1
Extended-Status Format 2
Extended-Status Format 3
Extended-Control Word . .

CHAPTER 17. 1I/0 SUPPORT FUNCTIONS
Channel-Subsystem Monitoring .« .

« & ¢ o
.
R I B S Y) ¢ e & 4 0

¢ ¢ 0 4 & 2 e ¢ ¢ 4 &t s s & & & 0 e

« ¢ 0

xii

15-43

15-63
15-45

15-45
15-45

16-1
16-2

16-4
16-4
16-4
16-46
16-4
16-5
16-6
16-6
16-7
16-8

16-8
16-8
16-1¢0
16-10

16-11
16-11

16-11
16-11
16-11
16-11
16-12
16-12
16-13
1616
16-18
16-23
16-23
16-23
16-24
16-25
16-25
16-26
16-26
16-27
16-28

16-28
16-28
16-28
16-30
16-30
16-31
16-32
16-32
16-33
16-36
16-36
16-36
16-41
16-41
16-61
16-41
16-42
16-44

17-1
17-1

Channel-Subsystem Timing .
Channel-Subsystem Timer
Measurement Block Update .
Measurement Block “ e .
Measurement-Block Origin
Measurement-Block Key .
Measurement-Block Index
Measurement-Block-Update Mo
Measurement-Block-Update
Enable [. . e .
Time-Interval- Measurement
Accuracy . . « e e e e
Device-Connect- Trme Measurement
Device-Connect-Time-Measurement

L Y Y A)

Qe ¢ o ¢« o 0 0
]

Mode « s e e e e « e e .
Device~-Connect-Time- Measurement
Enable e e e « e e e .
Signals and Resets
Signals .

Halt Slgnal .
Clear Signal
Reset Signal

Resets .
Channel- Path Reset
I/0-System Reset .

Externally Initiated Functlon

Initial Program Loading

Reconfiguration of the I/0

System e e e e e e e .

Status Verification - e .

Address-Limit Checking . .

Configuration Alert « . .

Incorrect-Length-Indication
Suppression . . e e e e e .
Channel-Subsystem Recovery .- .
Channel Report . . .

Channel-Report Nord (CRN) .

APPENDIX A. NUMBER REPRESENTATION
AND INSTRUCTION-USE EXAMPLES
Number Representation « . .

Binary Integers e e e .
Signed Binary Integers .
Unsigned Binary Integers

Decimal Integers .« e e

Floating-Point Numbers

Conversion Example . .

Instruction-Use Examples

Machine Format e e .

Assembler-Language Format
Addressing Mode in Examples

L I S)

-
-
-
-

¢ ¢ ¢ 0t e e
L T B Y S
L N A A)

¢ ¢ ¢ & & o 0 0

.
-
-
-

D I B A

DR I
D T I

a e 0 e

« e s 0 e
« e ¢ ¢ & e ¢ 2 & s e

PR)

General Instructions « e e e s
ADD HALFWORD (AH) e e e e .
AND (N, NC, NI, NR) .« .

. .

NI Example « e e .
Linkage Instructions (BAL, BALR
BAS, BASR, BASSM, BSM) . .

LR Y Y Y]

Other BALR and BASR Examples
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR) .
BRANCH ON INDEX HIGH (BXH) . .

BXH Example 1 “ e e e e e

BXH Example 2 e e e e e
BRANCH ON INDEX LON OR EQUAL

(BXLE) . . e e e e e e e e

BXLE Example 1 e e e e e e e

BXLE Example 2 . e e e .
COMPARE HALFWORD (CH) e .
COMPARE LOGICAL (CL, CLC, CLI,

CLR) - . e e e e e e e e .

CLC Example e e e e e e e .

CLI Example e e e e e e e .

CLR Example e e e e e e e e

17-1
17-2
17-2
17-2
17-4
17-4
17-4
17-5

17-5

17-5
17-5

17-6

17-6
17-6
17-6
17-7
17-7
17-7
17-7
17-7
17-8

17-11
17-11

17-13
17-14
17-14
17-14

17-15
17-15
17-16
17-17

UL U |
DWW WRNNN OO w 00000 NNNNUVRRNNN -

(11> >>>>>>>Jl>>>>>>>>>

[O T S R N B |
T o e N e e el ekl

D> D> DI

e

COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) . .
COMPARE LOGICAL LONG (CLCL)
CONVERT TO BINARY (CVB) . .
CONVERT TO DECIMAL (CVD) .- .
DIVIDE (D, DR) « e e e e e .
EXCLUSIVE OR (X, XC, XI, XR)
XC Example e e e e e e e
XI Example e e e e e e e
EXECUTE (EX) . .
INSERT CHARACTERS UNDER MASK
(ICM) . e e e e s
LOAD (L, LR) - e .
LOAD ADDRESS (LA)
LOAD HALFWORD (LH)
MOVE (MVC, MVI) .
MVC Example . .
MVI Example . .
MOVE INVERSE (MVCIN)
MOVE LONG (MVCL) . .
MOVE NUMERICS (MVN)
MOVE WITH OFFSET (MVO)
MOVE ZONES (MVZ) « e .
MULTIPLY (M, MR) . .
MULTIPLY HALFWORD (MH)
OR (0, 0C, 0I, GOR) . .
01 Example e e e e s
PACK (PACK) . .
SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA)
STORE CHARACTERS UNDER MASK
(STCM) .« e .« ..
STORE MULTIPLE (STM)
TEST UNDER MASK (TM)
TRANSLATE (TR} .« .
TRANSLATE AND TEST (TRT

D T T T T N]

-

L Y B)
e ¢ e & & & 4 .

s ¢ & 6 & & ¢ ¢ 0

¢ 0 ¢ 0 & 4 6 & & & & & ¢ 4 4
& 4 ¢ ¢ & & 2 8 € 4 ¢ ¢ 1 s« 00
O 6 6 8 8 & € & ¢ & 0 ¢ ¢ ¢ ¢ ¢ ¢ 2 ¢

¢ ¢ ¢ 4 s e e ¢ & o s

¢ s e

UNPACK C(UNPK) . . .
Decimal Instructions .
ADD DECIMAL (AP) . .
COMPARE DECIMAL (CP) .
DIVIDE DECIMAL (DP) .
EDIT (ED) - . . .
EDIT AND MARK (EDMK) .
MULTIPLY DECIMAL (MP) .
SHIFT AND ROUND DECIMAL (SR

oaocoaavtoa

R T S S T SR ST T B SR SR B)
¢ ¢ & 5 e ¢ 6 &+ 0 0 0 s

)

t'Uot-c-ctltcocn

Decimal Left Shift .

Decimal Right Shift . .

Decimal Right Shift and Round

Multiplvying by a Variable

Power of 10 « e e e e e e
ZERO AND ADD (ZAP) « e e e e
Floating-Point Instructions . .
ADD NORMALIZED (AD, ADR, AE,
AER, AXR) . e e e e .
ARDRgNNORMALIZED (AU, AUR, AW,

W - e . e e e e e .
COMPARE (CD, CDR, CE, CER) .- .
DIVIDE (DD, DDR, DE, DER) .- .
HALVE (HDR, HER) e e e e e e
MULTIPLY (MD, MDR, ME, MER, MXD,

MXDR, MXR) e e e e e e e e .

A-16
A-14
A-16
A-16
A-16
A-17
A-17
A-18
A-18

A-19
A-20
A-20
A-20
A-21
A-21
A-21
A-22
A-22
A-23
A-23
A-24
A-26
A-24
A-25
A-25

A-25

A-26
A-26

A-26
A-27
A-27
A-28
A-28
A-30
A-30
A-30
A-31
A-31
A-31
A-33
A-34
A-36
A-34
A-35
A-35

A-35
A-36
A-36
A-36
A-36
A-37
A-37
A-38

A-38

Floating-Point-Number Conversion
Fixed Point to Floating Point
Floating Point to Fixed Point

Multiprogramming and
Multiprocessing Examples .« . .
Example of a Program Failure
Using OR Immediate e e e e .
Conditional Swapping
Instructions (CS, CDS)
Setting a Single Bit .
Updating Counters .

Bypassing POST and NAIT
BYPASS POST Routine .
BYPASS WAIT Routine .

LOCK/UNLOCK . - e e .
LOCK/UNLOCK wlth LIFO Queuing

for Contentions e e e e e e
LOCK/UNLOCK with FIF0 Queuing
for Contentions e e e e e
Free-Pool Man1pu1at\on “ e e .

L T S T B B
I A)

APPENDIX B. LISTS OF INSTRUCTIONS
APPENDIX C. CONDITION-CODE
SETTINGS e e e e e e e e e e
APPENDIX D. COMPARISON BETWEEN
SYSTEM/370 AND 370-XA MODES .

New Facilities in 370-XA Mode -
Bimodal Addressing « e e e e
31-Bit Logical Addressing . .
31-Bit Real and Absolute

Addressing e e e e e e e e e
Page Protection « e e e e e e
Tracing . .
Incorrect- Length Indlcatlon

Suppression e e e e e e .
Status Verification « e .

Comparison of Facilities . .

Summary of Changes « . . .
Changes in Instructions Prov
Input/Qutput Comparison .
Comparison of PSW Formats
Changes in Control-Register

Assrgnment « e e . e e .
Changes in Assigned Storage

Locations . e e e .
SIGNAL PROCESSOR Changes e e .
Machine-Check Changes .« . .
Changes to Addressing Nraparound
Changes to LOAD REAL ADDRESS .
Changes to 31-Bit Real Operand

ded

Addresses e e e e e e e e e e
APPENDIX E. TABLE OF POWERS OF 2
APPENDIX F. HEXADECIMAL TABLES
APPENDIX G. EBCDIC CHART . ..
INDEX e e e e e e e e e e e e

A-38
A-39
A-39

A-40
A-40

A-640
A-61
A-61
A-62
A-62
A-42
A-42

A-43

A-44
A-45

o
f
-

(2]
i
[

1o O UUUG?UU OoOD OgoUo
OVOWYW N NNSRANNN NN

o oo
[m m] []
t 1 1 - [l B]
L - T -)

X
[}
(e

xiii

CHAPTER 1. INTRODUCTION

Highlights of 370-XA .. .cieeeeteireneeencaccocccosnccnnnnans 1-1
CompPatibi ity ittt it eteeeenencreccscnsesecsocssannnas 1-3
Compatibility among Systems in 370-XA Modecccccee 1-3
Compatibility between Systems in System/370 Mode
and in 370-XA Modeceieieteeeeenacacsoccncnnacasnecns 1-4
Control-Program Compatibility ...t eeccencann 1-4
Problem-State Compatibility ...ciiierieenereennncennenn 1-4
System Programc.iieeerteeeeoeceosrecesraceeaoacennnnnes 1-5
Avai labi Ll ity .ottt ittt ittt eceenceasencnnosoenoneennnnan 1-5

This publication describes the architec-
ture of systems operating in the IBM
System/370 extended-architecture (370-
XA) mode.

The architecture of a system defines its
attributes as seen by the programmer,
that is, the conceptual structure and
functional behavior of the machine, as
distinct from the organization of the
data flow, the logical design, the phys-
ical design, and the performance of any
particular implementation. Several
dissimilar machine implementations may
conform to a single architecture. When
the execution of programs on different
machine implementations procuces the
results that are defined by a single
architecture, the implementations are
considered to be compatible.

HIGHLIGHTS OF 370-XA

The 370-XA mode has evolved from the
System/370 architecture, with special
attention paid to the implementation of
large systems. It incorporates a number
of significant new facilities beyond
System/370. Some facilities available
in the System/370 mode are changed or
not provided in the 370-XA mode. A
detailed comparison of the differences
in the facilities and functions which
are offered in the System/370 mode and
Bn the 370-XA mode appears in Appendix

The most significant change from

System/7370 is in the I/0 facilities

provided by the channel subsystem. It

iqcludes these significant new capabili-
ies:

. Path-independent addressing of I/0
devices, which permits the initi-
ation of I/0 operations with any
device without regard to which CPU
is executing the I/0 instruction or
how the I/0 device is attached to
the channel subsystem. Any I/0

interruption can be handled by any
CPU enabled for it.

Path management, whereby the chan-
nel subsystem determines what paths
are available for selection, choos-
es a path, and manages any busy
conditions encountered while
attempting to initiate I/0 process-
ing with the associated devices.
These functions are performed with-
out interaction with the program.

Dvnamic reconnection, which permits
any I/70 device using this capabili-
ty to reconnect to any available
channel path to which it has access
in order to continue execution of a
chain of commands. This capability
complements the path-management
capability; together, they permit
the channel subsystem and the I/0
device to choose the first avail-
able path to initiate or continue
execution of a chain of operations.

Programmable interruption sub-—
classes, which permit the
programmed assignment of I/0-

interruption requests from individ-
ual I/70 devices to any one of eight
maskable interruption queues.

An additional CCW format for the
direct use of 31-bit addresses in
channel programs. The new CCW
format, called format 1, is
provided in addition to the
System/7370 CCW format, now called
format 0. The format of the CCUWs
is specified when an I/0 operation
is initiated.

Address-limit checking, which
provides an additional storage-pro-
tection facility to prevent data
access to storage locations above
or below a specified absolute
address. The absolute address-
limit value can be set by an 1/0
instruction, and individual sub-
channels can be set up by another
I/0 instruction to allow data
accesses to locations only at or

Chapter 1. Introduction 1-1

The following is a
extensions
mode:

1-2

above, or
address.

only below, the limit

Monitoring facilities, which can be
invoked by the program to cause the
channel subsystem to measure and
accumulate, in main storage, key
I/0-resource usage parameters for
individual subchannels. The accu-
mulated data-transfer time for a
channel-program execution can be
passed to the program with the
ending status for that channel
program.

Status—-verification facility,
reports inaopropriate
of device-svatus bits
a device.

which
combinations
presented by

A set of 13 new I1/0 instructions,
with associated control blocks,
which are provided for the control
of the channel subsystem.

summary of the other
incorporated in the 370-XA

Bimodal addressing provides tuwo
modes of operation: a 24-bit
addressing mode for the execution
of old programs and a 31-bit
addressing mode. The mode is
controlled by a bit in the PSW, and
unprivileged instructions are
provided that examine and set the
moda. These instructions conven-
iently permit combining old
programs, which must operate in the
24-bit addressing mode, and new
programs, which can take advantage
of the 3l-bit addressing mode.

31-bit logical addressing extends
the virtual address space from the
16M bytes addressable with 24-bit
addresses to 2G bytes
(2,147,483,648 bytes). In the
31-bit mode, address &rithmetic
and all logical addresses specified
by instructions, as well as the
address appearing in the program-
status word (PSW), are expanded to
31 bits. Addresses appearing in
control registers and permanently
assigned storage locations are 31
bigs, independent of the addressing
mode.

31-bit real and absolute addressing
provides addressability for up to
2G bytes of main storage. Associ-
ated with this extension, a number
of formats are changed to provide
for 31-bit address fields. These
include the dynamic-address—
translation and other table
entries, the associated control
registers, and the prefix register.
The 3l-bit-real-and-absolute-
addressing facility replaces the
extended-real-addressing facility
of System/370, where page-table-

370-XA Principles of Operation

entry bits 13 and 14 are used to
extend the real address to 26 bits.

The 370-XA protection facilities
reflect the adoption of the 4K-byte
block as the basic unit of storage

allocation. Only one storage key
is allocated to a 4K-byte
protection block of storage; that

is, the System/370 2K-byte block is
not provided. Associated with the
6K-byte protection block is a
control, called the fetch-
protection-override control, that
eliminates fetch protection for
locations 0-2047 so as to permit
access to status and control infor-
mation located in the first 2K

bytes of storage. Page protection,
which is controlled by a bit in the
page-table entry, replaces segment
protection introduced for later
models of System/370. The page-
protection facility permits estab-
lishing read-only pages. As in
System/370, low-address protection
provides additional protection for
the contents of storage locations 0
through 511.

The tracing facility assists in the
determination of system problems by
providing an on-going record in
storage of significant events.
Branch tracing and ASN tracing may
implicitly form entries in the
trace table, whereas entries may be

explicitly formed by the TRACE
instruction. Each of the three
types of tracing is separately
controllable. A separate trace

table is associated with each CPU.
This facility replaces the MVS-
oriented Systems/370 dual-address-
space tracing.

The two orders set prefix and store
status at address provide addi-
tional capability for communication
between CPUs by means of the SIGNAL
PROCESSOR instruction.

The DIVIDE (DXR) instruction
provides for an extended-precision
dividand, divisor, and quotient and
thus rounds out the set of
extended-precision floating-point
instructions.

The COMPARE AND FORM CODEWORD and
UPDATE IREE instructions are
provided to facilitate sorting
applications.

The following is a summary of the facil-

ities appearing

in the System/370 mode

but not provided in the 370-XA mode:

The System/370 I1/0 instructions and
I/0 interruptions, including all 10
System/370 I/0 instructions, chan-
nel masks in control register 2,
the block-multiplexing control in
control register 0, and channel-set

switching with the associated two
instructions. These facilities are

raplaced by the 370-XA channel
subsystem.
. The System/370 formats containing

24-bit addresses, which have been
replaced by formats providing for

31-bit addresses. These include
tables and control registers asso-
ciated with dynamic address

translation and the
space facility.

dual-address-

. The basic-control mode and the
associated PSW format, as well as
the controls and information

mech-
370-XA mode, only
the functions and format of the
System/370 extended-control mode
are available.

. The interval
location &0.

formats of the interruption
anism. In the

timer at storage

. The 2K-byte block associated with a
storage key and the instructions
INSERT STORAGE KEY, RESET REFERENCE
BIT, and SET STORAGE KEY.

. Direct control, including the
instructions READ DIRECT and WRITE
DIRECT and the external signals.

. Certain System/370 machine-check
and I/0-recovery facilities. In
the 370-XA mode, these conditions
either are encoded differently or
the associated error-recording and
recovery functions are performed by
the machine without a need for
bringing the associated information
to the attention of the progranm.
The facilities include the I/0
extended logout and the associated
control in control register 14,
machine-check extended logout and
the associated controls in control
registers 14 and 15, limited-
channel-logout extensions, and some
machine-check indications.

Additionally, the 370-XA mode differs
from the System/370 mode in that (1) the
control-register assignment has been
changed, (2) storage addresses for chan-
nel programs in the 24-bit mode cause an
I/70 program check instead of wraparound,
(3) the extended-key instructions and
TEST BLOCK are subject to the 24-bit and
31-bit addressing modes, and (4) it is
unpredictable whether prefixing is
applied to addressing of dynamic-
address-translation tables.

Except for the facilities

identified as not provided,
mode includes all facilities that are
defined in the System/370 Principles of
Operation. Most of the facilities that
are considered features in the
System/370 mode (because they are

specifically
the 370-XA

optional or unavailable on some models)
are a standard part of the 370-XA mode.

Specifically, the 370-XA mode incorpo-
rates dynamic address translation,
including the common-segment bit and the
instructions INVALIDATE PAGE TABLE ENTRY
and TEST PROTECTION introduced for later
models of System/370. The table formats
are modified to accommodate 31-bit real
addresses, and, in contrast to the
facility in the System/370 mode, this
facility is available only with 1M-byte
segments and 4K-byte pages, reflecting
the larger virtual and real storage
available on systems operating in the
370-XA mode.

Similarly, the 370-XA
of the functions (except for DAS
tracing) of the System/370 dual-
address-space facility. The 370-XA mode
thus permits establishing addressability
for up to 65,536 address spaces of 26
bytes each. A number of control-
register and table formats, however, are
changed to accommodate the 31-bit
address fields.

mode includes all

The System/370 multiprocessing facili-
ties, which include prefixing, CPU-
address identification, CPU signaling
and response, and TOD-clock synchroniza-
tion, are a basic part of the 370-XA
mode. Thus, the instructions SET
PREFIX, STORE PREFIX, STORE CPU ADDRESS,
and SIGNAL PROCESSOR are operative even
when no other CPU is in the configura-
tion.

Even though the System/7370 I/0 facili-
ties have generally been replaced by the
channel subsystem in the 370-XA mode,
and although a new channel-command-word
(CCW) format is introduced to accommo-
date 3l-bit addresses, the System/370
24-bit format, including the command

codes and flags, 1is carried into the
370-XA mode. Similarly, the 370-XA mode
incorporates the functions of the

suspend-and-resume facility available on

the later System/7370 models. Compat-
ibility with System/370 is maintained
also in the physical attachment of I/0
control units via the Systems/370 1I/0

interface.

COMPATIBILITY

COMPATIBILITY AMONG SYSTEMS IN 370-XA
MODE

Although systems operating in the 370-XA
mode may differ in implementation and
physical capabilities, logically they
are upward and downward compatible.
Compatibility provides for simplicity in
education, availability of system
backup, and ease in system growth.

Chapter 1. Introduction 1-3

Specifically, any program written for
the 370-XA mode gives identical results
on any system operating in that mode,

provided that the program:
1. Is not time-dependent.

2. Does not depend on system facili-
ties (such as storage capacity, I/0
equipment, or optional facilities)
being present when the facilities
ife not included in the configura-

jon.

3. Does not depend on system facili-
ties being absent when the facili-
ties are included in the
configuration. For example, the
program must not depend on inter-
ruptions caused by the use of
operation codes or command codes
that are not installed in some
models. Also, it must not use or
depend on fields associated with
uninstalled facilities. For exam-
ple, data should not be placed in
an area used by another model for
logout. Similarly, the program
must not use or depend on unas-
signed fields in machine formats
(control registers, instruction
formats, etc.) that are not explic-
itly made available for program
use.

4. Does not depend on results or func-
tions that are defined to be unpre-
dictable or model-dependent. This
includes the requirement that the
program should not depend on the
assignment of device numbers and
CPU addresses.

5. Does not depend on results or func-
tions that are defined in the
functional-characteristics publica-
tion for a particular model to be
deviations from the architecture.

6. Takes into account any changes made

to the architecture that are iden-
tified as affecting compatibility.

COMPATIBILITY BETWEEN SYSTEMS IN
SYSTEM/370 MODE AND IN 370-XA MODE

Control-Program Compatibility

Control programs written
cannot be directly
those systems to

for System/370
transferred from
systems operating in
the 370-XA mode. This is because in the
370-XA mode the basic-control mode is
not present, new facilities for I/0 are
included, and the dynamic-address-

translation facility is modified. (See
Appendix D for a detailed comparison
between the System/370 and 370-XA
modes.)

1-4 370-XA Principles of Operation

To provide full

control-program compat-
ibility for

the Systems/7370 mode, all

models which provide the 370-XA mode
also offer manual controls that place
the machine in the System/370 mode.

When the system 1is in
operation of the system
in the JIBM System/370
Operation, GA22-7000.

this mode, the
is as described
Principles of

Problem-State Compatibility

A high degree of compatibility exists at
the problem-state level in going forward
from systems operating in the System/370
mode to systems operating in the 370-XA
mode. Because the majority of a user's
applications are written for the problem
state, this problem-state compatibility
is useful in many installations.

A problem-state program written for
System/370 operates on a system in the
370-XA mode, provided that the program:

1. Complies with the
described in
ibility
Mode.?

limitations
the section "Compat-
among Systems in 370-XA

2. 1Is not dependent on control-program
facilities which are unavailable on
the system.

3. Takes into account other changes
made to the Systems370 architec-
tural definition that affect com-
patibility between the System/370
mode and the 370-XA mode. These
changes are described in Appendix

Programming Note

This publication
various operation codes, to bit posi-
tions in instructions, channel-command
words, registers, and table entries, and
to fixed locations in the low 512 bytes
of storage. Unless specifically noted,
the remaining operation codes, bit posi-
tions, and low-storage locations are
reserved for future assignment to new
facilities and other extensions of the
architecture.

assigns meanings to

To ensure that existing programs operate
if and when such new facilities are
installed, programs should not depend on
an indication of an exception as a
result of invalid values that are
currently defined as being checked. If
a value must be placed in unassigned
positions that are not checked, the

program should enter =zeros. When the
machine provides a code or field, the
program should take 1into account that

—

new codes and bits may be assigned in
the future. The program should not use
unassigned low-storage locations for
keeping information since these
locations may be assigned in the future
in such a way that the machine causes
this location to be changed.

SYSTEM PROGRAM

The system is designed to operate with a
control program that coordinates the use
of system resources and executes all I/0
instructions, handles exceptional condi-
tions, and supervises scheduling and
execution of multiple programs.

AVATLABILITY

Availability 1is the capability of a
system to accept and successfully proc-
ess an individual job. Systems operat-
ing in the 370-XA mode permit
substantial availability by (1) allowing
a large number and broad range of jobs
to be processed concurrently, thus
making the system readily accessible to
any particular job, and (2) limiting the
effect of an error and identifying more
precisely its cause, with the result
that the number of 3jobs affected by
errors is minimized and the correction
of the errors facilitated.

Several design aspects make this possi-
ble.

. A program is checked for tha
correctness of instructions and
data as the program is executed,
and program errors are indicated
separate from equipment errors.
Such checking and reporting assists
in locating failures and isolating
effects.

0 The protection facilities, in
conjunction with dynamic address
translation, permit the protection
of the contents of storage from
destruction or misuse caused by
erroneous c¢r unauthorized storing
or fetching by a program. This
provides increased security for the
user, thus permitting applications
with different security require-
ments to be processed concurrently
with other applications.

Dynamic address translation allous
isolation of one application from
another, still permitting them to
share common resources. Also, it
permits the implementation of
virtual machines, which may be used
in the design and testing of new
versions of operating systems along
with the concurrent processing of
application programs. Addition-—
ally, it provides for the
concurrent operation of incompat-
ible operating systems.

Multiprocessing and the channel
subsystem permit better use of
storage and processing capabili-
ties, more direct communication
between CPUs, and duplication of
resources, thus aiding in the
continuation of system operation in
the event of machine failures.

MONITOR CALL, program-event record-
ing, and the timing facilities
permit the testing and debugging of
programs without manual inter-
vention and with little effect on
the concurrent processing of other
programs.

On most models, error checking and
correction (ECC) in main storage,
CPU retry, and command retry
provide for circumventing intermit-
tent equipment malfunctions, thus
reducing the number of equipment
failures.

An enhanced machine-check handling

mechanism provides model-
independent fault isolation, which
reduces the number of programs

impacted by uncorrected errors.
Additionally, it provides model-
independent recording of machine-
status information. This leads to
greater machine-check handling
compatibility between models and
improves the capability for loading
and operating a program on a
different model when a system fail-
ure occurs.

A small number of manual controls
are required for basic system oper-
ation, permitting most operator-
system interaction to take place
via a unit operating as an 1I/0
device and thus reducing the possi-
bility of operator errors.

Chapter 1. Introduction 1-5

P TN

CHAPTER 2. ORGANIZATION

Main Storageciiereeertecrercrcreansccorssscscvssnsvncans 2-2
CPU ittt ittt eenceceeceaaceansnssscnsscsscsosnsonossnosananssess 2-2
0 2-3
General Registersciieiecenncceeascccncsnccacennacecnss 2-3
Floating-Point Registerscciiitiiicrecrcccencnccnnsns 2-3
Control Registerscceeeereiececceccnnncacsscnnnsnnson 2-3
Vector Facility ...ttt erieececrceeceonnsccansonnncens 2-5
70 2-5
Channel Subsystem ciiiiiiiieeieeeecannacnsaconnnnees 2-5
I7/0 Devices and Control Units iiitiiiercnnnananns 2-5
Operator Facilitiesciieererieenecececcansccsncsnsnannoa 2-5

Logically, a system consists of main
storage, one or more central processing
units (CPUs), operator facilities, a

channel subsystem, and I/0 devices. I/0 CcPU
devices are attached to the channel
subsystem through control wunits. The

connection between the channel subsystem
and a control unit is called a channel
path. The physical identity of these
functions may vary among implementa-
tions, called "models.™ The figure
"Logical Structure of a 370-XA System CPU Main Storage
with Two CPUs" depicts the logical
structure of a two-CPU multiprocessing
system.

Specific processors may differ in their
internal characteristics, the installed
facilities, the number of subchannels,
channel paths, and control wunits which Channel

can be attached to the channel Subsystem
subsystem, the size of main storage, and
the representation of the operator

facilities. The differences in internal eso
characteristics are apparent to the
observer only as differences in machine Channel Paths
performance.
/7 / /
I /
cu oU
| /
] T 1/ 000
[——L_looo
cu
|

Urv717
co0o0

Logical Structure of a 370-XA System
with Two CPUs

Chapter 2. Organization 2-1

A system viewed without regard to its
I/0 devices is referred to as a config-
uration. All of the physical equipment,
whether in the configuration or not, is
referred to as the installation.
Model-dependent reconfiguration controls
may be provided to change the amount of
main storage and the number of CPUs and
channel paths in the configuration. In

some instances, the reconfiguration
controls may be used to partition a
single configuration into multiple

configurations. Each of the configura-
tions so reconfigured has the same
structure, that is, main storage, one or
more CPUs, and one or more subchannels
and channel paths in the channel subsys-
tem. Each configuration is isolated in
that the main storage in one configura-
tion is not directly addressable by the
CPUs and the channel subsystem of anoth-
er configuration. It is, however,
possible for one configuration to commu-
nicate with another by means of shared
I/0 devices or a channel-to-channel
adapter. At any one time, the storage,
CPUs, subchannels, and channel paths
connected together in a svstem are
referred to as being in the configura-
tion. Each CPU, subchannel, channel
path, and main-storage location can be
in only one configuration at a time.

MAIN STORAGE

Main storage, which is directly address-
able, provides for high-speed processing
of data by the CPUs and the channel
subsystem. Both data and programs must
be loaded into main storage from input
devices before they can be processed.
The amount of main storage available on
the system depends on the model, and,
depending on the model, the amount in
the configuration may be under control
of model-dependent configuration
controls. The storage is available in
multiples of 4K-byte blocks. At any
instant in time, the channel subsystem
and all CPUs in the configuration have
access to the same blocks of storage and
refer to a particular block of main-
storage locations by using the same
absolute address.

Main storage may include a faster-access
buffer storage, sometimes called a
cache. Each CPU may have an associated
cache. The effects, except on perform-
ance, of the physical construction and
the use of distinct storage media are
not observable by the program.

crPy

The central processing unit (CPU) is the
controlling center of the system. It

2-2 370-XA Principles of Operation

contains the sequencing and processing
facilities for instruction execution,
interruption action, timing functions,
initial program loading, and other
machine-related functions.

The physical implementation of the CPU
may differ among models, but the logical
function remains the same. The result
of executing an instruction is the same
for each model, providing that the
prggram complies with the compatibility
rules.

The CPU, in executing instructions, can
process binary integers and floating-
point numbers of fixed length, decimal
integers of variable length, and logical
information of either fixed or variable
length. Processing may be in parallel
or in series; the width of the process-
ing elements, the multiplicity of the
shifting paths, and the degree of simul-
taneity in performing the different
types of arithmetic differ from one CPU
to another without affecting the logical
results.

Instructions which the CPU executes fall
into five classes: general, decimal,
floating-point, control, and I/0
instructions. The general instructions
are used in performing binary integer
arithmetic operations and logical,
branching, and other nonarithmetic oper-
ations. The decimal instructions
operate on data in the decimal format,
and the floating-point instructions on
data in the floating-point format. The
privileged control instructions and the
I/0 instructions can be executed only
when the CPU is in the supervisor state;
the semiprivileged control instructions
can be executed in the problem state,
subject to the appropriate authorization
mechanisms.

To perform its functions, the CPU may
use a certain amount of internal
storage. Although this internal storage
may use the same physical storage medium
as main storage, it is not considered
part of main storage and is not address-
able by programs.

The CPU provides registers which are
available to programs but do not have
addressable representations in main
storage. They include the current
program-status word (PSW), the general
registers, the floating-point registers,
the control registers, the prefix regis-
ter, and the registers for the clock
comparator and the CPU timer. Each CPU
in an installation provides access to a
time-of-day (TOD) clock, which may be
local to that CPU or shared with other
CPUs in the installation. The instruc-
tion operation code determines which
type of register is to be wused in an
operation. See the figure "General,
Floating-Point, and Control Registers"
later in this chapter for the format of
those registers.

e

PSW

The program-status word (PSW) includes
the instruction address, condition code,
and other information used to control
instruction sequencing and to determine
the state of the CPU. The active or
controlling PSW is called the current
PSW. It governs the program currently
being executed.

The CPU has an interruption capability,
which permits the CPU to switch rapidly
to another program in response to excep-
tional conditions and external stimuli.

When an interruption occurs, the CPU
places the current PSW in an assigned
storage location, called the old-PSW

location, for the particular class of
interruption. The CPU fetches a new PSHW
from a second assigned storage location.
This new PSW determines the next program
to be executed. When it has finished
processing the interruption, the inter-
rupting program may reload the old PSW,
making it again the current PSHW, so that
the interrupted program can continue.

There are six classes
external, I/0, machine check, program,
restart, and supervisor call. Each
class has a distinct pair of old-PSW and
new-PSW locations permanently assigned
in real storage.

of interruption:

GENERAL REGISTERS

Instructions may designate information
in one or more of 16 general registers.
The general registers may be used as
base-address registers and index regis-
ters in address arithmetic and as accu-
mulators in general arithmetic and
logical operations. Each register
contains 32 bits. The general registers
are identified by the numbers 0-15 and
are designated by a four-bit R field in
an instruction. Some instructions
provide for addressing multiple general
registers by having several R fields.
For some instructions, the use of a
specific general register 1is implied
rather than explicitly designated by an
R field of the instruction.

For some operations, two adjacent gener-
al registers are coupled, providing a
64-bit format. In these operations, the
program must designate an even-numbered
register, which contains the leftmost

(high-order) 32 bits. The next higher-
numbered register contains the rightmost
(low~order) 32 bits.

In addition to their use as accumulators
in general arithmetic and logical oper-
ations, 15 of the 16 general registers
are also used as base-address and index
registers in address generation. In
these cases, the registers are desig-
nated by a four-bit B field or X field
in an instruction. A value of =zero in
the B or X field specifies that no base
or index is to be applied, and, thus,
general register 0 cannot be designated
as containing a base address or index.

FLOATING-POINT REGISTERS

Four floating-point registers are avail-
able for floating-point operations.
They are identified by the numbers 0, 2,
4, and 6 and are designated by a four-
bit R field in floating-point instruc-
tions. Each floating-point register is
64 bits long and can contain either a
short (32-bit) or a long (64-bit)
floating-point operand. A short operand
occupies the leftmost bit positions of a
floating-point register. The rightmost
portion of the register is ignored in
operations that use short operands and
remains unchanged in operations that
produce short results. Two pairs of
adjacent floating-point registers can be
used for extended operands: registers 0
and 2, and registers 4 and 6. Each of
these pairs, identified by the numbers 0
and 4, provides for a 128-bit format.

CONTROL REGISTERS

The CPU has 16 control
having 32 bit positions. The bit posi-
tions in the registers are assigned to
particular facilities in the system,
such as program-event recording, and are
used either to specify that an operation
can take place or to furnish special
information required by the facility.

registers, each

The control registers
the numbers 0-15 and are designated by
four-bit R fields in the instructions
LOAD CONTROL and STORE CONTROL. Multi-
ple control registers can be addressed
by these instructions.

are identified by

Chapter 2. Organization 2-3

Control General Floating-Point Registers

Registers Registers
R Register
Field Number |32 bits—2] | e—32 bits—>]| | e——————66 bits————]|
0000 0
0001 1
0010 2
0011 3
.
0100 4
0101 5
-
0110 6 L
0111 7
1000 8
1001 9
— Note: The brackets
1010 10 indicate that the two
registers may be coupled
as a double-register
pair, designated by
1011 11 specifying the lower-
— numbered register in
the R field. For ex-
b — ample, the general-
1100 12 register pair 14 and
15 is designated by
1110 binary in the R
field.
1101 13 B
1110 14
1111 15

General, Floating~Point, and Control Registers

2-% 370-XA Principles of Operation

P

Precn-N

VECTOR FACILITY

Depending on the model, a vector facili-

ty may be provided as an extension of
the CPU. When the vector facility is
provided on a CPU, it functions as an
integral part of that CPU. The func-

tions of the vector facility and its
regi s are described in the publica-
ti6n IBM) System/370 Vector Operations,

15A22-7125.
!'\\._.-"',":-’:;:”

o

o

N

1/0

Input/output (I/0) operations involve
the transfer of information between main
storage and an I/0 device. I/0 devices
and their control units attach to the
channel subsystem, which controls this
data transfer.

CHANNEL SUBSYSTEM

The channel subsystem directs the flow
of information between I/0 devices and
main storage. It relieves CPUs of the
task of communicating directly with I/0
devices and permits data processing to
proceed concurrently with 170
processing. The channel subsystem uses
ohe or more channel paths as the commu-
nication link in managing the flow of
information to or from 1I/0 devices. As
part of 170 processing, the channel
subsystem also performs the path-
management function of testing for
channel-path availability, selecting an
available channel path, and initiating
execution of the operation with the I/0
device. Within the channel subsystem
are subchannels.

One subchannel is provided for and dedi-
cated to each I/0 device accessible to
the channel subsystem. Each subchannel
contains storage for information
concerning the associated I/0 device and
its attachment to the channel subsystem.
The subchannel also provides storage for
information concerning 1/0 operations
and other functions involving the asso-
ciated I/0 device. Information
contained in the subchannel can be
accessed by CPUs using 1/0 instructions
as well as by the channel subsystem and
serves as the means of communication
between any CPU and the channel subsys-
tem concerning the associated I1/0
device. The actual number of subchan-

nels provided depends on the model and
the configuration; the maximum number of
subchannels is 65,536.

I/0 devices are attached through control
units to the channel subsystem via chan-

nel paths. Control units may be
attached to the channel subsystem via
more than one channel path, and an I/0

device may be attached to more than one
control unit. 1In all, an individual I/0
device may be accessible to the channel
subsystem by as many as eight different
channel paths, depending on the model
and the configuration. The total number
of channel paths provided by a channel
subsystem depends on the model and the
configuration; the maximum number of
channel paths is 256.

170 DEVICES AND CONTROL UNITS

I7/0 devices include such equipment as
card readers and punches, magnetic-tape
units, direct-access storage, displays,
keyboards, printers, teleprocessing
devices, communications controllers, and
sensor-based equipment. Many 170
devices function with an external
medium, such as punched cards or magnet-
ic tape. Some 170 devices handle only
electrical signals, such as those found
in sensor-based networks. In either
case, I/0-device operation 1is regulated
by a control unit. In all cases, the
control-unit function provides the
logical and buffering capabilities
necessary to operate the associated 170
device. From the programming point of
view, most control-unit functions merge
with I/0-device functions. The
control-unit function may be housed with
the I/0 device or in the CPU, or a sepa-
rate control unit may be used.

OPERATOR FACILITIES

The operator facilities provide the
functions necessary for operator control
of the machine. Associated with the
operator facilities may be an operator-
console device, which may also be used
as an 170 device for communicating with
the program.

The main functions provided by the oper-
ator facilities include resetting,
clearing, initial program loading,
start, stop, alter, and display.

Chapter 2. Organization 2-5

—

—

CHAPTER 3.

STORAGE

Storage Addressingc.cciiirereccccncrcnnscnscascncnnnens 3-2
Information Formatsccieeeecrenceerccncen cecvenone ee3-2
Integral Boundariesceieeererececeenccsoceccncacenons 3-3

Address Types and Formatsccuieieeneeecnnsseenconcccnnns 3-4
Address Typescceiiieceeesscsnaccoscocacsccancncssnens 3-4

Absolute Addressccceiieeceeeecccnccscconsccccnnnns 3-4
Real Addresscceeeceercsaveccccsncccsnonnses .
Virtual Addressccciiirereceeecccncnnancccnananns 3-5
Primary Virtual Addressc.ceceeneiencenenonoononnes 3-5
Secondary Virtual Addressccceeeeeecrecccecccnonces 3-5
Logical Addressccieeeececceceen chssscssesssncsns 3-5
Instruction Addressceeieeceecccenccnancccncnncencns 3-5
Effective Addressccieeineeceenccneccconcnannnns 3-5
Address Size and Wraparound cesssestserteseesaenne 3-5
Address Wraparoundcciieenencnccoceccooncnnena 3-6

Storage Key ...ttt eseeccceococens ceeven ceresecsscenen 3-8

Protectioniiiiiiiieeieiincecacoceoscencccnascsnannens 3-8
Key-Controlled Protection citecareanctstsnterenesenen 3-9

Fetch-Protection-Override Controlccecceeeececacas 3-10
Page Protectionicceeieinecvencccecnce cevessssnane cee3-10
Low-Address Protectionciiiirieieererccccccnannens 3-11

Reference Recordingeceeveececccnecen Ceveeresvecseone 3-11

Change Recordingcceeerieeceeccnasescccsnsecccsscscnnssne 3-11

Prefixingc...... ceecrseserevevaun tevesreevtecersromnen 3-12

Address SPaCESticceceeceneenaceaaccncaoasacsssceacccaceses 3-13

ASN Translation cecessesessassencsesnensaens ceccmsea 3-14
ASN-Translation Controlsciieeneienneenncncccncncnse 3-14
ASN-Translation Tables cecceressseessencesrensvemons 3-15

ASN-First-Table Entriesciiciinrrecrerecnnccneneanns 3-15
ASN-Second-Table Entries cevsevrevsresernenne 3-15
ASN-Translation Processiciiieccceceenncancasccnmnns 3-16
ASN-First-Table Lookup ...ciieecececcccccccnnens creessed—17
ASN-Second-Table LookUpc i eneenneenccconcccanes 3-17
Recognition of Exceptions during ASN Translation 3-18

ASN Authorizationccciiieiierieeeeecencocnccccncecancoens 3-18

ASN-Authorization Controlsccviieererencoscvavoannes 3-18
Control Register §eiieetieeriececocennsencancennons 3-18
ASN-Second-Table Entry ... iieeeeeeeeeocccccnconnns 3-18
Authority-Table Entriesccecieeercnccccccncccccnnns 3-19

ASN-Authorization Processcceceenecccccnsns ceesescen 3-19
Authority-Table Lookup it rerereeccnocnonanns 3-20
Recognition of Exceptions during ASN

Authorizationiiiicreieeievoacoccsoccovsnsenons 3-21

Dynamic Address Translationc.ciiciererecncoccnccnocanns 3-21

Translation Control (...t iiiretreerecccecscsnnccnnss 3-22
Translation Modes ...cceiieieecececcceccccnsccccacnscsnss 3-22
Control Register 0ciiteccetccsccccccvscccncsnnocnns 3-23
Control Register 1cicieiieiececnconccccnnconsnnnse 3-23
Control Register 7ciececccccccscscocnscsnscovcnsnnns 3-24

Translation Tablesiiiitieiieiierensesssvecocssonnns 3-24
Segment-Table Entriesccviieicvcecanns cecseecevannes 3-2¢4%
Page—-Table Entriesciii it iieinnntconnocnnnnnnnes 3-25
Summary of Segment-Table and Page-Table Sizes 3-25

Translation Processcc.cieececccecencaccscscascsnnnnannas 3-26
Effective Segment-Table Designationccccevcevecees 3-26
Inspection of Control Register 0ccitereccrccccces 3-29
Segment-Table Lookupciieierecerceecosscsnnoccosnnsns 3-29
Page-Table Lookupcciciictierercecenosnnonnnnnnns 3-29
Formation of the Real Addressccceeiciennneccannns 3-30
Recognition of Exceptions during Translation 3-30

Translation-Lookaside Bufferccccceccnceccvcccccnas 3-30
Use of the Translation-lLookaside Bufferc.ccveceee 3-31
Modification of Translation Tablesccceccececcens 3-34

Address Summaryc.ccecceccncccoccnns ceecsseccesesnenconns 3-36
Addresses Translatedcii ittt ierererecccsansanens 3-36
Handling of Addressesccccceua. ceccetosesenee cecerecns 3-37

Assigned Storage Locationsciieiiiieereenncens teecene 3-38

Chapter 3. Storage 3-1

This chapter discusses the
tation of information in
as well as addressing, protection, and
reference and change recording. The
aspects of addressing which are covered
include the format of addresses, the
concept of address spaces, the various
tvpes of addresses, and the manner in
which one type of address is translated
to another type of address. A list of
permanently assigned storage locations
appears at the end of the chapter.

represen—
main storage,

Main storage provides the system with
directly addressable fast-access storage
of data. Both data and programs must be
loaded into main storage (from input
devices) before they can be processed.

Main storage may include one or
smaller faster-access buffer storages,
sometimes called caches. A cache is
usually physically associated with a CPU
or an I/0 processor. The effects,
except on performance, of the physical
construction and use of distinct storage
media are not observable by the program.

more

Fetching and storing of data by a CPU
are not affected by any concurrent
channel-subsystem activity or by a
concurrent reference to the same storage
location by another CPU. When concur-
rent requests to a main-storage location
occur, access hormally is granted in a
sequence that assigns highest priority
to references by the channel subsystem,
the priority being rotated among CPUs.
If a reference changes the contents of
the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvola-
tile. If it is volatile, the contents
of main storage are not preserved when
power is turned off. If it is nonvola-
tile, turning power off and then back on
does not affect the contents of main
storage, provided all CPUs are in the
stopped state and no references are made
to main storage when power 1is being
turned off. In both types of main stor-
age, the contents of the storage key are
not necessarily preserved when the power
for main storage is turned off.

Note: Because most references in this
publication apply to virtual storage,
the abbreviated term "storage"™ is often
used in place of "virtual storage." The
term "storage™ may also be used in place

of "main storage," "absolute storage,"
or "real storage"™ when the meaning is
clear. The terms "main storage™ and

"absolute storage"™ are used to describe
storage which is addressable by means of
an absolute address. The terms describe
fast-access storage, as opposed to
auxiliary storage, such as: provided by

direct-access storage devices. "Real
storage™ is synonymous with "absolute
storage™ except for the effects of

prefixing.

3-2 370-XA Principles of Operation

STORAGE ADDRESSING

Storage is viewed as a
string of bits. For most operations,
accesses to storage proceed in a left-
to-right sequence. The string of bits
is subdivided into units of eight bits.
An eight-bit unit is called a byte,
which is the basic building block of all
information formats.

long horizontal

Each byte location in storage is identi-
fied by a unique nonnegative integer,
which is the address of that byte
location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left
and proceeding in a left-to-right

sequence. Addresses are either 24-bit
or 31-bit unsigned binary integers and
are described in the section "Address

Size and Wraparound™ in this chapter.

INFORMATION FORMATS

Information is transmitted between stor-
age and a CPU or the channel subsystem
one byte, or a group of bytes, at a
time. Unless otherwise specified, a
group of bytes in storage is addressed
by the leftmost byte of the group. The
number of bytes in the group is either
implied or explicitly specified by the
oparation to be performed. MWhen used in
a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are
numbered in a left-to-right sequence.
The leftmost bits are sometimes referred
to as the "high-order™ bits and the
rightmost bits as the "low-order™ bits.
Bit numbers are not storage addresses,
however. Only bytes can be addressed.
To operate on individual bits of a byte
in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0
through 7, from left to right.

The bits in an address are numbered 8
through 31 for 24-bit addresses and 1
through 31 for 31-bit addresses. Within
any other fixed-length format of multi-
ple bytes, the bits making up the format
are consecutively numbered starting from

.

For purposes of error detection, and in
some models for correction, one or more
check bits may be transmitted with each
byte or with a group of bytes. Such
check bits are generated automatically
by the machine and cannot be directly
controlled by the program. References
in this publication to the length of

2N

data fields and registers exclude
mention of the associated check bits.
All storage capacities are expressed in
number of bytes.

When the length of &
fiaeld is implied by the operation code
of an instruction, the field is said to
have a fixed length, which can be one,
two, four, or eight bytes. lLarger
fields may be implied for some
instructions.

When the length of a storage-operand
field is not implied but is stated
explicitly, the field is said to have a
variable length. Variable-length oper-
ands can vary in length by increments of
one byte.

storage-operand

When information is placed in storage,
the contents of only those byte
locations are replaced that are included
in the designated field,. even though the
width of the physical path to storage
may be greater than the length of the
field being stored.

INTEGRAL BOUNDARIES

Certain units of information
an integral boundary in

must be on
storage. A

boundary is called integral for
of information when

a unit
its storage address
is @ multiple of the length of the unit
in bytes. Special names are given to
fields of two, four, and eight bytes on
an integral boundary. A halfword 1is a

group of two consecutive bytes on a
two-byte boundary and is the basic
building block of instructions. A word

is a group of four consecutive bytes on
a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an
eight-byte boundary. (See the figure
"Integral Boundaries with Storage
Addresses.")

When storage addresses designate half-
words, words, and doublewords, the bina-
ry representation of the address
contains one, two, or three rightmost
zero bits, respectively.

Instructions must be on two-byte inte-
gral boundaries, and CCWs, IDAWs, and
the storage operands of certain
instructions must be on other integral
boundaries. The storage operands of
most instructions do not have boundary-
alignment requirements.

Chapter 3. Storage 3-3

¥

Storage Addresses

« ¢ 9

Bytes 0 1 2 3 4 5 6 8

T T T T
Halfwords 0 2 4 6 8

| 1 1 1

1 1 1 | | 1
Words 0 4 8

[] L 1 I (] 1

T T T T T T T
Doublewords 0 8

] 1 L i 1 1 1

Integral Boundaries with Storage Addresses

Programming Note

For fixed-field-length operations with
field lengths that are a power of 2,
significant performance degradation is
possible when storage operands are not
positioned at addresses that are inte-
gral multiples of the operand length.
To improve performance, frequently used
storage operands should be aligned on
integral boundaries.

ADDRESS TYPES AND FORMATS

ADDRESS TYPES

For purposes of addressing main storage,
three basic types of addresses are
recognized: absolute, real, and
virtual. The addresses are distin-
guished on the basis of the transf-
ormations that are applied to the
address during a storage access.
Address translation converts virtual to
real, and prefixing converts real to
absolute. In addition to the three
basic address types, additional types
are defined which are treated as one or
another of the three basic types,
depending on the instruction and the
current mode.

Absolute Address

An absolute address is the address
assigned to a main-storage location. An

3-6 370-XA Principles of Operation

absolute address is used for a storage
access without any transformations
performed on it.

The channel subsystem and all CPUs in
the configuration refer to a shared
main-storage location by using the same
absolute address. Available main stor-
age is usually assigned contiguous abso-
lute addresses starting at 0, and the
addresses are always assignhed in
complete 4K-byte blocks on integral
boundaries. An exception 1is recognized
when an attempt is made to use an abso-
lute address in a block which has not
been assigned to physical locations. On
some models, storage-reconfiguration
controls may be provided which permit
the operator to change the correspond-
ence between absolute addresses and
physical locations. However, at any one
time, a physical location is not associ-
ated with more than one absolute
address.

Storage consisting of byte locations
saequenced according to their absolute
addresses is referred to as absolute
storage.

Real Address

A real address identifies a location in
real storage. When a real address 1is
used for an access to main storage, it
is converted, by means of prefixing, to
an absolute address.

At any instant there is one real-address
to absolute-address mapping for each CPU
in the configuration. When a real
address is used by a CPU to access main

TN

storage, it is converted to an absolute
address by prefixing. The particular
transformation is defined by the value
in the prefix register for the CPU.

Storage consisting of byte locations

sequenced according to their real
addresses is referred to as real
storage.

Virtual Address

A virtual address identifies a location
in virtual storage. When a virtual
address is used for an access to main
storage, it is translated by means of
dvynamic address translation to a real
address, which is then further converted
by prefixing to an absolute address.

Primary Virtual Address

A primary virtual address is a virtual
address which is to be translated by
means of the primary segment-table
designation. Logical addresses and
instruction addresses are treated as
primary virtual addresses when in the
primary-space mode. The first-operand
address of MOVE T0 PRIMARY and the
second-operand address of MOVE T0
SECONDARY are always treated as primary
virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual
address which is to be translated by
means of the secondary segment-table
designation. Logical addresses are
treated as secondary virtual addresses
when in the secondary-space mode. The
second-operand address of MOVE TO PRIMA-
RY and the first-operand address of MOVE
TO SECONDARY are always treated as
secondary virtual addresses.

Logical Address

Except where otherwise specified, the
storage-operand addresses for most
instructions are logical addresses.
Logical addresses are treated as real
addresses in the real mode, treated as
primary virtual addresses in the
primary—-space mode, and treated as
secondary virtual addresses in the
secondary-space mode. Some instructions
have storage-operand addresses or stor-
age accesses associated wWith the
instruction which do not follow the
rules for logical addresses. In all

such cases, the instruction definition
contains a definition of the type of
address.

Instruction Address

Addresses used to fetch instructions
from storage are called instruction
addresses. Instruction addresses are
treated as real addresses in the real
mode, treated as primary virtual
addresses in the primary-space mode, and
treated as either primary virtual
addresses or secondary virtual addresses
in the secondary-space mode. The
instruction address in the current PSW
and the target address of EXECUTE are
instruction addresses.

Note: When the CPU is in the
secondary-space mode, it . is unpredict-
able whether instructions, including the
target of EXECUTE, are fetched from the
primary address space or the secondary
address space. For details, see the
section "Translation Modes" and the
associated programming notes under the
section "Dynamic Address Translation™ in
this chapter.

Effective Address

In some situations, it is convenient to
use the term "Yeffective address.™ An
effective address 1is the address which
results from address arithmetic, before
address translation, if any, is
performed. Address arithmetic is the
addition of the base and displacement or
of the base, index, and displacement.

ADDRESS SIZE AND WRAPAROUND

Two sizes of addresses are provided:
24-bit and 31-bit. A 24-bit address can
accommodate a maximum of 16,777,216
(16M) bytes; with a 31-bit address,
2,147,6483,648 (2G) bytes of storage can
be addressed.

The bits of the address are numbered
8-31 and 1-31, respectively, correspond-
ing to the numbering of base-address and
index bits in a general register:

24-bit Address

31-Bit Address

Chapter 3. Storage 3-5

A 24-bit virtual address is expanded to
31 bits by appending seven zeros on the
left before it is translated by means of
the DAT process, and a 2%4-bit real
address is similarly expanded to 31 bits
before it is transformed by prefixing.
A 24-bit absolute address is expanded to
31 bits before main storage is accessed.
Thus, the 24-bit address always desig-
nates the first l6M-byte block of the
2G-byte storage addressable by a 31-bit
address.

Unless specifically stated to the
contrary, the following definition
applies in this publication: whenever
the machine generates and provides to
the program an address, a 3l-bit value
imbedded in a 32-bit field is made
available (placed in storage or loaded
into a register). For 24-bit addresses,
bits 0-7 are set to =zeros, and the
address appears in bit positions 8-31;
for 31-bit addresses, bit 0 is set to
zero, and the address appears in bit
positions 1-31.

The size of effective addresses is
controlled by bit 32 of the PSW, the
addressing-mode bit. When the bit is
zero, the CPU is in the 24-bit address-—
ing mode, and 24-bit operand and
instruction effective addresses are
specified. When the bit is one, the CPU
is in the 3l-bit addressing mode, and
3J1-bit operand and instruction effective
addresses are specified (see the section
"Address Generation" in Chapter 5, "Pro-
gram Execution").

The size of the real addresses yielded
by the ASN-translation, PC-number-trans-
lation ASN-authorization, and tracing
processes, and the real (or absolute)
addresses yielded by the DAT process, is
always 31 bits.

The size of the data address in a CCW is
under control of the format-control bit
in the operation-request block desig-
nated by a START SUBCHANNEL instruction.

The CCUls with 26-bit and 31-bit
addresses are called format-0 and
format-1 CCWs, respectively. Format-0

and format-1 CCWs are described in Chap-
ter 15, "Basic I/0 Functions.”

3-6 370-XA Principles of Operation

Address Wraparound

The CPU performs address generation when
it forms an operand or instruction
address or when it generates the address
of a table entry from the appropriate
table origin and index. It also
performs address generation when it
increments an address to access succes-
sive bytes of a field. Similarly, the
channel subsystem performs address
genaration when it increments an address
(1) to fetch a CCW, (2) to fetch an
IDAW, or (3) to transfer data.

When, during the generation of the
address, an address is obtained that
exceeds the value allowed for the
address size (2249 - 1 or 23! - 1), one
of the following two actions is taken:

1. The carry out of the high-order bit
position of the address is ignored.
This handling of an address of
excessive size is called
wraparound.

2. An interruption condition is recog-
nized.

The effect of wraparound is to make an
address space appear circular; that is,
address 0 appears to follow the maximum
allowable address. Address arithmetic
and wraparound occur before transforma-
tion, if any, of the address by DAT or
prefixing.

Addresses generated by the CPU always
wrap, except for addresses generated for
DAT-table entries. For DAT-table
entries, it is unpredictable whether the
address wraps or whether an addressing
exception is recognized.

For channel-program execution, when the
generated address exceeds the value for
the address size (or, for the read-
backward command is decremented below
0), an I/0 program—check condition 1is
recognized.

The figure "Address-Space Wraparound”
identifies what limit values apply to
the generation of different addresses
and how addresses are handled when they
exceed the allowed value.

<

PRE

Handling When
Address| Address Would
Address Generation for Type Wrap
Instructions and operands when AM is L,I,R,V W24
zero
Successive bytes of instructions and I,L,v? W24
operands when AM is zero
Instructions and operands when AM is L,I,R,V W31
one
Successive bytes of instructions and I,L,v? W31
operands when AM is one
DAT-table entries when used for A or R2 X31
implicit translation
DAT-table entries when used for LRA A or R2 X31
ASN-first-table, ASN-second-table, R W31
authorization-table, linkage-table,
and entry-table entries
I/0 measurement block A P31
For a channel program with format-0
CCls:
Channel-program address in ORB A P24
Successive CCUs A P24
Successive IDAWs A P24
Successive bytes of I/0 data A P24
(without IDAWSs)
Successive bytes of I/0 data A P31
(with IDAWSs)
For a channel program with format-1
CCWs:
Channel-program address in ORB A P31
Successive CCUWs A P31
Successive IDAUWSs A P31
Successive bytes of I/0 data A P31
(without IDAWs)
Successive bytes of I/0 data A P31
(with IDAWSs)

Address Wraparound (Part 1 of 2)

Chapter 3.

Storage

3-7

Explanation:
1

224 and 231,

real.
A Absolute address.
AM Addressing mode bit in the PSW.
I Instruction address.

Logical address.

address exceeds 224
address exceeds 231

R Real address.
v Virtual address.

X31 When the address exceeds 23! - 1,

Real addresses do not apply in this case since the in-
structions which designate operands by means of real ad-
dresses cannot designate operands that cross boundaries

It is unpredictable whether the address is absolute or

P24 An I/0 program-check condition is recognized when the
- 1 or is decremented below zero.
P31 An I/0 program-check condition is recognized when the
- 1 or is decremented below zero.

W24 MWrap to location 0 after location 224 - | and vice versa.
W31 MWrap to location 0 after location 23! - 1 and vice versa.
it is model-dependent
whether the address wraps to location 0 after location
231 - 1 or whether an addressing exception is recognized.

Address Wraparound (Part 2 of 2)

STORAGE KEY

A storage key is associated with each
4K-byte block of storage that is avail-

able in the configuration. The storage
key has the following format:

ACC |FiR|C

0 % 6

The bit positions in the storage key are
allocated as follows:

Access-Control Bits (ACC):
ence is subject to
protection, the four access-control
bits, bits 0-3, are matched with the
four-bit access key when information is
stored, or when information is fetched
from a location that is protected
against fetching.

Fetch-Protection Bit (E): 1If

If a refer-
key-controlled

a refer-

ence is subject to key-controlled
protection, the fetch-protection bit,
bit 4, controls whether key-controlled

protection applies to fetch-type refer-
ences: a zero indicates that only
store—-type references are monitored and
that fetching with any access key is
permitted; a one indicates that key-
controlled protection applies to both
fetching and storing. No distinction is
made between the fetching of
instructions and of operands.

Reference Bit (R): The reference bit,
bit 5, normally is set to one each time
a location in the corresponding storage
block is referred to either for storing
or for fetching of information.

3-8 370-XA Principles of Operation

Change Bit (C): The change bit, bit 6,
is set to one each time information is
stored at a location in the correspond-
ing storage block.

Storage keys are not part of addressable

storage. The entire storage key is set
by SET STORAGE KEY EXTENDED and
inspected by INSERT STORAGE KEY
EXTENDED. Additionally, the instruction

RESET REFERENCE BIT EXTENDED provides a
means of inspecting the reference and
change bits and of setting the reference
bit to zero. Bits 0-% of the storage
key are inspected by the INSERT VIRTUAL
STORAGE KEY instruction. The contents
of the storage key are unpredictable
during and after the execution of the
usability test of the TEST BLOCK
instruction.

PROTECTION

Three protection facilities are provided
to protect the contents of main storage
from destruction or misuse by programs
that contain errors or are unauthorized:
key-controlled protection, page
protection, and low-address protection.
The protection facilities are applied
independently; access to main storage is
only permitted when none of the facili-
ties prohibit the access.

Key-controlled protection affords
protection against improper storing or
against both improper storing and fetch-
i?g, but not against improper fetching
alone.

KEY-CONTROLLED PROTECTION The keys are said to match when the four
access—control bits of the storage key
are equal to the access key, or when the

When key-controlled protection applies access key is zero.

to a storage access, a store is permit-

ted only when the storage key matches The protection action is summarized in
the access key associated with the the figure "Summary of Protection
request for storage access; a fetch is Action."

permitted when the keys match or when
the fetch-protection bit of tie storage
key is zero.

Conditions Is Access to
Storage Permitted?
Fetch-Protection
Bit of
Storage Key Key Relation Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Explanation:

Match The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

Chapter 3. Storage 3-9

When the access to storage is initiated
by the CPU and key-controlled protection
applies, the PSW key 1is the access key,
except that, for the second operand of
MOVE WITH KEY and MOVE TO PRIMARY and
the first operand of MOVE TO SECONDARY,
the access key is specified in a general
register. The PSW key occupies bit
positions 8-11 of the current PSW.

When the access to storage is for the
purpose of channel-program execution,
the subchannel key associated with that
channel program is the access key. The
subchannel key for a channel program is
specified in the operation-request block

(ORB). When, for purposes of channel-
subsystem monitoring, an access to the
measurement block is made, the

measurement-block key is the access key.
The measurement-block key is specified
by the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because
of key-controlled protection, the unit
of operation is suppressed or the
instruction is terminated, and a program
interruption for a protection exception
takes place. When a channel-program
access is prohibited, the start function
is ended, and the protection-check
condition is indicated in the associated
interruption-response block (IRB). MWhen
a measurement-block access is
prohibited, the I/70 measurement-block
protection-check condition is indicated.

When a store access is prohibited
because of key-controlled protection,
the contents of the protected location
remain unchanged. When a fetch access
is prohibited, the protected information
is not loaded into a register, moved to
another storage location, or provided to

an I/0 device. For a prohibited
instruction fetch, the instruction is
suppressed, and an arbitrary

instruction-length code is indicated.

Keyv—-controlled protection is independent
of whether the CPU is in the problem or
the supervisor state and, except as
described below, does not depend on the
type of CPU instruction or channel-
command word being executed.

Except where otherwise specified, all
accesses to storage locations that are
explicitly designated by the program and
that are used by the CPU to store or
fetch information are subject to key-
controlled protection.

Accesses to
BLOCK are not
protection.

the second operand of TEST
subject to key-controlled

All storage accesses by the channel
subsystem to access the I/0 measurement
block, or by a channel program to fetch
a CCW or IDAW or to access a data area
designated during the execution of a
CCW, are subject to key-controlled
protection. However, if a CCW, an IDAMW,

3-10 370-XA Principles of Operation

or output data is prefetched, a
protection check is not indicated until
the CCW or IDAW is due to take control
or until the data is due to be written.

Key-controlled protection is not applied
to accesses that are implicitly made for
any of such sequences as:

. An interruption
. CPU logout

. Fetching of table entries for
dynamic—address translation, PC-
number translation, ASN transla-
tion, or ASN authorization

. Tracing
. A store-status function
. Storing in real locations 1864-191

when TEST PENDING INTERRUPTION has
an operand address of zero

. Initial program loading

Similarly, protection does not apply to
accesses initiated via the operator
facilities for altering or displaying
information. However, when the program
explicitly designates these locations,
they are subject to protection.

Fetch-Protection-Override Control

Bit 6 of control register 0 is the
fetch-protection-override control. When

the bit is one, fetch protection is
ignored for locations at effective
addresses 0-2047. Fetch-protection

override applies to instruction fetch
and to the fetch accesses of
instructions whose operand addresses are
logical, virtual, or real. It does not
apply to fetch accesses made for the
purpose of channel-program execution or
for the purpose of channel-subsystem
monitoring. When this bit is set to
zero, fetch protection of locations at
effective addresses 0-2047 is determined
by the state of the fetch-protection bit
of the storage key associated with those
locations.

Fetch-protection override has no effect
on accesses which are not subject to
key-controlled protection.

PAGE PROTECTION

The page-protection facility controls
access to virtual storage by using the
page-protection bit in each page-table
entry. It provides protection against
improper storing.

P

The page-protection bit, bit 22 of the
page-table entry, controls whether stor-
ing is allowed into the corresponding
4K-byte page. When the bit is zero,
both fetching and storing are permitted;
when the bit is one, only fetching is
permitted. When an attempt is made to
store into a protected page, a program
interruption for protection takes place.
The contents of the protected location
remain unchanged.

Page protection applies to all store-
type references that use a virtual
address.

LOW-ADDRESS PROTECTION

The low-address—-protection facility
provides protection against the

destruction of
used by the

main—-storage information

CPU during interruption
processing. This is accomplished by
prohibiting instructions from storing
with effective addresses in the range 0
through 511. The range criterion is
applied before address transformation,
if any, of the address by dynamic
address translation or prefixing.

Low-address protection is under control
of bit 3 of control register 0, the
low-address-protection-control bit.
When the bit is zero, locw-address
protection is off; when
low—-address protection is on.

If an access is prohibited because of
low-address protection, the contents of
the protected location remain unchanged,
a program interruption for a protection
exception takes place, and the unit of
operation is suppressed or the instruc-
tion terminated. B
Any attempt by the program to store by
using effective addresses in the range 0
through 511 are subject to low-address
protection. Low-address protection is
applied to the store accesses of
instructions whose operand addresses are
logical, virtual, or real. Low-address
protection is also applied to the trace
table.

Low—-address protection is not applied to
accesses made by the CPU or the channel
subsystem for such sequences as inter-
ruptions, the storing of the I/0-
interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the
store-status
applied to

functions, nor is it
data stores during I/0 data
transfer. However, explicit stores by a
program at any of these locations are
subject to low-address protection.

the bit is one,

initial-program-loading and:

Programming Note

Low-address protection and key-
controlled protection apply to the same
store accesses, except that:

protection does not
apply to storing performed by the
channel subsystem, whereas key-
controlled protection does.

. Low-address

. Key-controlled protection does not
apply to tracing or the second
oparand of TEST BLOCK, whereas

low-address protection does.

REFERENCE RECORDING

Reference recording provides information
for use in selecting pages for replace-
ment. Reference recording uses the
reference bit, bit 5 of the storage key.
The reference bit is set to one each
time a location in the corresponding
storage block is referred to either for
fetching or storing information, regard-
less of whether DAT is on or off.

Reference recording is always active and

takes place for all storage accesses,
including those made by any CPU, any
operator facility, or the channel

subsystem. It takes
accesses made by the machine, such as
those which are part of interruptions
and I/0-instruction execution.

place for implicit

occur for
following
they directly refer
without accessing a

Reference recording does not
operand accesses of the
instructions since
to a storage key
storage location:

INSERT STORAGE KEY EXTENDED

INSERT VIRTUAL STORAGE KEY

RESET REFERENCE BIT EXTENDED (ref-
erence bit is set to zero)

SET STORAGE KEY EXTENDED (reference
bit is set to a specified
value)

The record provided by the reference bit

is substantially accurate. The refer-
ence bit may be set to one by fetching
data or instructions that are neither

designated nor used by the program, and,
under certain conditions, a reference
may be made without the reference bit
being set to one. Under certain unusual
circumstances, a reference bit may be
set to =zero by other than explicit
program action.

CHANGE RECORDING

Change recording provides information as
to which pages have to be saved in

Chapter 3. Storage 3-11

auxiliary storage when they are replaced
in main storage. Change recording uses
the change bit, bit 6 of the storage
key.

The change bit is set to one each time a
store access causes the contents in the
corresponding storage block to be
changed. A store access that does not
change the contents of storage may or
may not set the change bit to one.

The change bit is not
attempt to
prohibited.

set to one for an
store if the access is
In particular:

1. For the CPU, a store access is
prohibited whenever an access
exception exists for that access,
or whenever an exception exists
which is of higher priority than
the priority of an access exception
for that access.

2. For the channel subsystem, a store
access is prohibited whenever a
key-controlled-protection violation
exists for that access.

Change recording is always active and
takes place for all store accesses to
storage, including those made by any

CPU, any operator facility, or the chan-
nel subsystem. It takes place for
implicit references made by the machine,
such as those which are part of inter-
ruptions.

Change recording does not take place for
the operands of the following
instructions since they directly modify
a storage key without modifying a stor-
age location:

RESET REFERENCE BIT EXTENDED

SET STORAGE KEY EXTENDED
bit is set to a
value)

(change
specified

Change bits which have been changed from
zeros to ones are not necessarily
restored to zeros on CPU retry (see the
section "“CPU Retry" in Chapter 11,
"Machine—-Check Handling™). See the
section "Exceptions to Nullification and

Suppression” in Chapter 5, "Program
Execution," for a description of the
handling of the change bit in certain

unusual situations.

PREFIXING

Prefixing provides the ability to assign
the range of real addresses 0-4095 (the
prefix area) to a different block in
absolute storage for each CPU, thus

3-12 370-XA Principles of Operation

permitting more than one CPU

sharing
main storage to operate

concurrently

with a minimum of interference, espe-
cially in the processing of
interruptions.

Prefixing causes real addresses in the

range 0-4095 to correspond to the block
of 4K absolute addresses identified by
the value in the prefix registér for the

CPU, and the block of real addresses
identified by the value in the prefix
register to correspond to absolute

addresses 0-4095. The remaining real
addresses are the same as the corre-
sponding absolute addresses. - This
transformation allows each CPU to access
all of main storage, including the first
4K bytes and the locations designated by
the prefix registers of other CPUs.

The relationship between real and abso-
lute addresses is graphically depicted
in the figure "Relationship between Real
and Absolute Addresses."

19-bit

The prefix is a quantity

contained in bit positions 1-19 of the
prefix register. The register has the
following format:

/ Prefix 177777777777

0 1 20 31

The contents of the register can be set
and inspected by the privileged

instructions SET PREFIX ~ and
PREFIX, respectively. O0On
corresponding to

STORE
setting, bits
bit positions 0 and
20-31 of the prefix register are
ignored. On storing, zeros are provided
for these bit positions. When the
contents of the prefix register are
changed, the change is effective for the
next sequential instruction.

When prefixing is applied, the real
address is transformed into an absolute
address by using one of the following
rules, depending on bits 1-19 of the
real address:

1. Bits 1-19 of the address, if all
zeros, are replaced with bits 1-19
of the prefix.

2. Bits 1-19 of the address, if equal
to bits 1-19 of the prefix, are
replaced with zeros.

3. Bits 1-19 of the address, if not
all =zeros and not equal to bits
1-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the address

remain unchanged.

Prefixing

ll I{

Prefixing

I
—_~ l I ->
| § { '
Q
l D | t 1 -
g |
| < | | %i
L l I L I “s _-t
T [l T | N | T
3 No Change —‘————-[> + | * ‘ !
|
H | : 3 <}———-l- No Change I
v |
+ | %] 3 | & l +
| Lﬂ | N |
l % I |
| | | ' - |
Address Address ¥
1 I | L | o Address
4096 | ‘ 4096 | I { 2056
1 «—Address L __________ | | l— Address L ________ _J |« Address
0 0 0
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B
(@D §§a1 addresses in which bits 1-19 are equal to the prefix for this CPU (A or
(2) Absolute addresses of the block that contains for this CPU (A or B) the real

locations 0-4095.

Relationship between Real and Absolute Addresses

Only the address presented to storage is
translated by prefixing. The contents
of the source of the address remain
unchanged.

The distinction between real and abso-
lute addresses is made even when the
prefix register contains all =zeros, in
which case a real address and its corre-
sponding absolute address are identical.

ADDRESS SPACES

An address space is a consecutive

sequence of integer numbers (virtual
addresses), together with the specific
transformation parameters which allow

each number to be associated with a byte
location in storage. The sequence
starts at zero and proceeds left to
right.

used by a CPU
first

When a virtual address is
to access main storage, it is

means of dynamic address
(DAT), to a real address,
by means of prefixing, to an
absolute address. DAT uses two levels
of tables (segment tables and page
tables) as transformation parameters.
The designation (origin and length) of a
segment table is found for use by DAT in
a control register.

converted, by
translation
and then,

At any instant the CPU can translate
virtual addresses of two address
spaces -—- the primary address space,
consisting of primary virtual addresses,
and the sacondary address space,
consisting of secondary virtual
addresses. The segment table defining

the primary address space 1is specified
by control register 1 and that defining
the secondary address space by control
register 7.

Each address space is assigned an
address-space number (ASN). An ASN-
translation mechanism is provided which,
given an ASN, can locate (by using a
two-level table lookup) the designation

Chapter 3. Storage 3-13

of the segment table which defines the
address space. Certain instructions use
ASN translation and load the resulting
segment-table designation into the
appropriate control register.

By using the ASN-translation mechanism,
any one of up to 64K address spaces can
be selected to become the primary or
secondary address space.

The ASNs for the primary and secondary

address spaces are assigned positions in
control registers. The ASN for the
primary address space, called the prima-
ry ASN, is assigned bits 16-31 of
control register 4, and that for the
secondary address space, called the
secondary ASN, is assigned bits 16-31 of
control register 3. The registers have
the following formats:

Control Register 4

PASN
16 31

Control Register 3

SASN
16 31

An instruction that uses ASN translation
and loads the primary or secondary
segment-table designation into the
appropriate control register also loads
the corresponding ASN into the appropri-
ate control register.

Note: Virtual storage consisting of
byte locations ordered according to
their virtual addresses in an address
space is usually referred to as
"storage."™

ASN TRANSLATION

ASN translation is the process of trans-
lating the 16-bit ASN to locate the
address-space-control parameters. ASN
translation 1is performed as part of
PROGRAM CALL with space switching
(PC-ss), PROGRAM TRANSFER with space
switching (PT-ss), and SET SECONDARY ASN
with space switching (SSAR-ss). ASN
translation is also performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASN which is trans-
lated replaces the primary ASN in
control register 4. For 55AR-ss, the
ASN which 1is translated replaces the
secondary ASN in control register 3.
These two translation processes are
called primary ASN translation and
secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS

3-14 370-XA Principles of Operation

SPACE PARAMETERS. The ASN-translation
process is the same for both primary and
secondary ASN translation; only the uses
of the results of the process are
different.

The ASN-translation process uses tuwo
tables, the ASN first table and the ASN
second table. They are used to locate
the address-space-control parameters and
a third table, the authority table,
which is used when ASN authorization is
performed.

For the purposes of this translation,
the 16-bit ASN is considered to consist
of two parts: the ASN-first-table index
(AFX) 1is the leftmost 10 bits of the
ASN, and the ASN-second-table index
(ASX) is the six rightmost bits. The
ASN has the following format:

ASN

AFX ASX
i 10 15

The AFX is used to select an entry from
the ASN first table. The origin of the
ASN first table is designated by the
ASN-first-table origin in control regis-
ter 14. The ASN-first-table entry
contains the origin of the ASN second
table. The ASX 1is used to select an
entry from the ASN second table. This
entry contains the address-space-control
parameters.

ASN-TRANSLATION CONTROLS

ASN translation is controlled by the
ASN-translation-control bit and the
ASN-first-table origin, both of which
reside in control register 14. The
register has the following format:

Control Register 14

T AFTO

12 31

ASN-Translation Control (1): Bit 12 of

control register 14 1is the ASN-
translation-control bit. This bit
provides a mechanism whereby the control
program can indicate whether ASN trans-
lation can occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

LOAD ADDRESS SPACE PARAMETERS

SET SECONDARY ASHN

PROGRAM CALL with space suitching

PROGRAM TRANSFER with space switch-
ing

P

P

Otherwise, a special-operation exception
is recognized. The ASN-translation-
control bit is examined in both the
problem and the supervisor states.

ASN-First-Table 0Origin (AFT0): Bits
13-31 of control register 14, with 12
zeros appended on the right, form a

3J1-bit real address that designates the
beginning of the ASN first table.

ASN-TRANSLATION TABLES

The ASN-translation process consists in
a two-level lookup using two tables: an
ASN first table and an ASN second table.
These tables reside in real storage.

ASN-First-Table Entries

The entry fetched from the ASN first
table has the following format:

I ASTO 0000
0 1 28 31

The fields in the entry are allocated as
follows:

AFX-Invalid Bit (I): Bit 0 controls
whether the ASN second table associated
with the ASN-first-table entry is avail-
able. When bit 0 1i1s zero, ASN trans-
lation proceeds by using the designated
ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table 0Origin (ASTO): Bits
1-27, with four zeros appended on the
right, are used to form a 31-bit real

address that designates the beginning of
the ASN second table. -

Bits 28-31 of the AFT entry must be
zeros; otherwise, an ASN-translation-
specification exception is recognized as
part of the execution of the instruction
using that entry for ASN translation.

ASN-Second-Table Entries

The entry fetched from the ASN
table has the following format:

second

" Authority-Table

I ATO 00
0 1 31
AX ATL 0000
32 48 60 63
r STD 1
X STO 17777 STL
64 84 39 95
i LTD |
v LTO LTL
96 121 127

The fields in the entry are allocated as
follows:

ASX-Invalid Bit (I): Bit 0 controls
whether the address space associated
with the ASN-second-table entry . is
available. When bit 0 is zero, ASN

translation proceeds. When the bit is

one, the ASN translation cannot
continue.

Authority-Table Origin (ATO0): Bits
1-29, with two =zeros appended on the
right, are used to form a 31-bit real

address that designates the beginning of
the authority table.

Authorization Index (AX): Bits 32-47
are used as a result of primary ASN
translation by PROGRAM CALL and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The AX field is
ignored for secondary ASN translation.

Length (ATL): Bits
48-59 specify the length of the authori-
ty table in units of four 'bytes, thus
making the authority table 'variable in
multiples of 16 entries. The length of
the authority table, in units of four
bytes, is one more than the | ATL value.

The contents of the ATL field are used
to establish whether the entry desig-
nated by a particular AX falls within

the authority table.

Segment-Table Designation (S5TD): Bits
64-95 are used as a result of ASN trans-
lation to replace the primary-segment-
table designation (PSTD) or the
secondary-segment-table designation
(55TD). For SET SECONDARY ASN, the STD
field is placed in the SSTD, bits 0-31
of control register 7. For PROGRAM
CALL, the STD field is placed in the

PSTD, bits 0-31 of control register 1.
Each of these actions may occur inde-
pendently for LOAD ADDRESS SPACE

PARAMETERS. For PROGRAM TRANSFER, the
STD field is placed in both the PSTD and
S$STD, bits 0-31 of control registers 1
and 7, respectively. The contents of

Chapter 3. Storage 3-15

the entire STD field are placed
appropriate control registers
being inspected for validity.

in the
without

Space-Switch-Event Control (X): Bit 0
of the segment-table designation is the
space-switch-event-control bit. When,
in PC-ss or PT-ss, this bit is one in
control register 1 either before or
after the execution of the PC-ss or
PT-ss, a program interruption for a

space-switch event occurs after the
execution of the instruction is
completed. MWhen, in LOAD ADDRESS SPACE

PARAMETERS, this bit is one during
primary ASN translation, this fact is
indicated by the condition code.

Linkage-Table Designation (LTD): Bits

96-127 are used as a result of primary
ASN translation. The linkage-table-
designation field contains the
subsystem-linkage-control bit (V) (bit
96), the linkage-table origin (LTO)
(bits 97-120), and the linkage-table
length (LTL) (bits 121-127). The

contents of the LTD field are placed in
control register 5 as a result of prima-
ry ASN translation.

Bits 30, 31, and 60-63 of the AST entry
must be zeros; otherwise, an ASN-
translation-specification exception is
recoghized as part of the execution of
the instruction using that entry for ASN
translation.

Programming Note

The unused portion of the STD field,

bits 84-88 of the AST entry, uwhich
corresponds to bits 20-24 of the PSTD
and SSTD, should be set to zeros. These

bits are reserved for future expansion,
and programs which place nonzero values
in these bit positions may not operate
compatibly on future machines.

3-16 370-XA Principles of Operation

ASN-TRANSLATION PROCESS

This section describes the ASN-
translation process as it is performed
during the execution of PROGRAM CALL
with space switching, PROGRAM TRANSFER
with space switching, and SET SECONDARY
ASN with space suwitching. ASN trans-
lation for LOAD ADDRESS SPACE PARAMETERS
is the same, except that AFX-translation
and ASX-translation exceptions do not
occur; such situations are instead indi-
cated by the condition code.
Translation of an ASN is performed by
means of two tables, an ASN first table
and an ASN second table, both of which
reside in main storage.

The ASN first index is used to select an
entry from the ASN first table. This
entry designates the ASN second table to
be used.

The ASN second index is used to select
an entry from the ASN second table.
This entry contains the address-space-
control parameters.

If the I bit is one in either the ASN-
first-table entry or ASN-second-table
entry, the entry 1is invalid, and the

ASN-translation process cannot be

completed. An AFX-translation exception
or ASX-translation exception is recog-
nized.

Whenever access to main storage is made
during the ASN translation process for
the purpose of fetching an entry from an
ASN first table or ASN second table,
key-controlled protection does not
apply.

The ASN translation process
the figure "ASN Translation."™

is shown in

ASN
CR14 T AFTO AFX [ASX
(x4096) (x4%) (x16)

ASN First Table

4
EIRS

R I ASTO 0
(x16)

P ap——

. ASN Second Table
+

¥

R I ATO 0 AX ATL |O STD LTD

R: Address is real

ASN Translation

ASN-First-Table Lookup available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The AFX portion of the ASN, in conjunc- .

tion with the ASN-first-table origin, is Bit 0 of the four-byte AFT entry speci-

used to select an entry from the ASN fies whether the corresponding AST is
second table. available. If this bit is one, an AFX-

translation exception is recognized. 1If
The 31-bit real address of the ASN- bit positions 28-31 of the AFT entry do
first-table entry is obtained by append- not contain =zeros, an ASN-translation-
ing 12 =zeros on the right to the AFT specification exception is recognized.
origin contained in bit positions 13-31 When no exceptions are recognized, the
of control register 14 and adding the entry fetched from the AFT is used to

AFX portion with two rightmost and 19 access the AST.
leftmost zeros appended. This addition
cannot cause a carry into bit position
0. All 31 bits of the address are used,
regardless of whether the current PSW ASN-Second-Table Lookup
specifies the 24-bit or 31-bit address-
ing mode.
The ASX portion of the ASN, in conjunc-
All four bytes of the ASN-first-table tion with the ASN-second-table origin

entry appear to be fetched concurrently contained in the ASN-first-table entry,
as observed by other CPUs. The fetch is used to select an entry from the ASN
access is not subject to protection. second table.

When the storage address which is gener-
ated for fetching the ASN-first-table The 31-bit real address of the ASN-
entry designates a location which is not second-table entry is obtained by

Chapter 3. Storage 3-17

appending four zeros on the right to
bits 1-27 of the ASN-first-table entry
and adding the ASX with four rightmost
and 21 leftmost zeros appended. A
carry, if any, into bit position 0 is
ignored. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the 24-bit or 31l-bit
addressing mode.

The 16 bytes of the ASN-second-table
entry appear to be fetched word-
concurrent as observed by other CPUs,

with the leftmost word fetched first.
The order in which the remaining three

words are fetched is unpredictable. The
fetch access is not subject to
protection. When the storage address

which 1is generated for fetching the
ASN-second-table entry designates a
location which is not available in the
configuration, an addressing exception
is recognized, and the operation is
suppressed.

Bit 0 of the 16-byte ASN-second-table
entry specifies whether tha address
space is accessible. If this bit is

one, an ASX-translation exception 1is
recognized. If bit positions 30, 31,
and 60-63 of the ASN-second-table entry
do not contain zZeros, an ASN-
translation—-specification exception is
recognized.

Recoagnition of Exceptions during ASN
Translation

The exceptions which
during the ASN-translation process are
collectively referred to as ASN-
translation exceptions. A list of these
exceptions and their priorities is given
in Chapter 6, "Interruptions."

can be encountered

ASN AUTHORIZATION

ASN authorization is
testing whether the program associated
with the current authorization index is
permitted to establish a particular
address space. The ASN authorization is
performed as part of PROGRAM TRANSFER
with space switching (PT-ss) and SET
SECONDARY ASN with space switching
(SSAR~-ss) and may be performed as part
of LOAD ADDRESS SPACE PARAMETERS. ASN
authorization 1is performed after the
ASN-translation process for these
instructions.

the process of

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can
be established as the primary ASN and is
called primary-ASN authorization. When
performed as part of LOAD ADDRESS SPACE
PARAMETERS or S5SAR-ss, the ASHN authori-

3-18 370-XA Principles of Operation

zation tests whether the ASN can be
established as the secondary ASN and is
called secondary-ASN authorization.

The ASN authorization
means of an authority table in real
storage which is designated by the
authority-table-origin and authority-
table-length fields in the ASN-second-
table entry.

is performed by

ASN-AUTHORIZATION CONTROLS

ASN authorization uses the authority-
table origin and the authority-table
length from the ASN-second-table entry,
together with an authorization index.

Control Register %

For PT-ss and 5S5AR-ss5, the
contents of control register 4
the authorization index. For LOAD
ADDRESS SPACE PARAMETERS, the value
which will become the new contents of
control register ¢ is used. The regis-
ter has the following format:

current
include

AX
0 15

Authorization Index (AX): Bits 0-15 of
control register % are used as an index
to locate the authority bits in the
authority table.

ASN-Second-Table Entry

The ASN-second-table entry which 1is
fetched as part of the ASN translation
process contains information which is
used to designate the authority table.

An entry in the ASN second table has the
following format:

ATO 00
0 1 31
ATL 0000
32 48 60 64
Authority-Table Origin (AT0): Bits
1-29, with two zeros appended on the
right, are used to form a 31-bit real

address that designates the beginning of
the authority table.

Authoritvy-Table Length (ATL): Bits
48-59 specify the length of the authori-
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four
bvtes, is equal to one more than the ATL
value. The contants of the length field
are used to establish whether the entry
designated by the authorization index
falls within the authority table.

Authority-Table Entries

The authority table consists of entries
of two bits each; accordingly, each byte
of the authority table contains four
entries in the following format:

PSIPS|PS|PS
0 7

The fields are allocated as follows:

Primary Authority (P): The left bit of
an authority-table entry controls wheth-
er the program with the authorization
index corresponding to the entry is
permitted to establish the address space
as a primary address space. If the P
bit is one, the access is permitted. If
the P bit is =zero, the access is not
permitted.

Secondary Authority (S): The right bit
of an authority-table entry controls
whether the program with the correspond-

ing authorization index is permitted to
establish the address space as a second-
ary address space. If the S bit is one,
the access is permitted. If the S bit
is zero, the access is not permitted.

ASN-AUTHORIZATION PROCESS

This section describes the ASN-
authorization process as it is performed
during the execution of PROGRAM TRANSFER
with space switching and SET SECONDARY
ASN with space switching. For these two
instructions, the ASN-authorization
process 1S performed by using the
authorization index currently in control
register 4. Secondary authorization for
LOAD ADDRESS SPACE PARAMETERS is the
same, except that the value which will
become the new contents of control
register 4 is used for the authorization
index, and a secondary-authority excep-
tion does not occur. Instead, such a
situation is indicated by the condition
code.

The ASN-authorization process is
performed by wusing the authorization
index, in conjunction with the
authority-table origin and length from
the AST entry, to select an authority-
table entry. The entry is fetched, and
either the primary- or secondary-
authority bit is examined, depending on
whether the primary- or secondary-ASN-
authorization process is being
performed. The ASN-authorization proc-
ess is shown in the figure ASN
Authorization.™

Chapter 3. Storage 3-19

CR& AX

(x1/4%)

ASN Second Table

ASN-Second-Table Entry

I ATO 0 AX

ATL

0 STD LTD

(x4%)

¥
l Authority Table
>+
>
R PlS

For primary ASN authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

For secondary ASN authorization (SSKR-ss only):
Secondary-authority exception if S bit
zero or table length exceeded.

For secondary ASN authorization (LASP only):
Set condition code 2 if S bit zero or

table length exceeded.

R: Address is real

ASN Authorization
Authority-Table Lookup

The authorization index, in conjunction
wi th the authority-table origin
contained in the ASN-second-table entry,
is used to select an entry from the
authority table.

The authorization index is contained in

bit positions 0-15 of control register
Bit positions 1-31 of the AST entry
contain the 31-bit real address of the

authority table (AT0), and bit positions
48-59 contain the length of the authori-
ty table (ATL).

The 31-bit real address of a byte in the
authority table is obtained by appending
two zeros on the right to the

3-20 370-XA Principles of Operation

authority-table origin and adding the 14
leftmost bits of the authorization index
with 17 zeros appended on the left. A
carry, if any, into bit position 0 is
ighored. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the 24-bit or 3l-bit
addressing mode.
As part of the authority-table-entry-
lookup process, bits 0-11 of the author-
jzation index are compared against the
authority—-table length. If the compared
portion is greater than the authority-
table length, a primary-authority
exception or secondary-authority excep-
tion is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE

PARAMETERS, when the authority-table
length is exceeded, condition code 2 is
set.

The fetch access to the
authority table is not subject to
protection. When the storage address
which is generated for fetching the byte
designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The byte contains four
entries of two bits each.
two bits of the
bits 14 and 15
are used to

byte in the

authority-table
The rightmost
authorization index,
of control register 4,
select one of the four

entries. The left or right bit of the
entry is then tested, depending on
whether the authorization test is for a

primary ASN or a secondary ASN. The
following table shows the bit which is
selected from the byte as a function of

bits 14 and 15 of the authorization
index and the instruction PT-ss,
SS5AR-ss, or LOAD ADDRESS SPACE PARAME-
TERS.
Bit Selected from
Authority-Table Byte
for Test
Authorization-
Index Bits S Bit
P Bit (5SAR-ss
14 15 (PT-ss) or LASP)
0 0 0 1
0 1 2 3
1 0 [5
1 1 6 7

If the selected bit is one, the
authorized, and the appropriate
address-space-control parameters from
the AST entry are loaded into the appro-

ASN is

priate control registers. If the
selected bit is =zero, the ASN is not
authorized, and a primary-authority

excaption or secondary-authority excep-
tion is recognized for PT-ss or S$S5AR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the ASN is not author-
ized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered
during the primary- and secondary-ASN-
authorization processes and their prior-
ities are described in the definitions
of the instructions in which AtN author-
ization is performed.

Programming Note

The primary- and secondary-authority
exceptions cause nullification in order
to permit dynamic modification of the
authority table. Thus, when an address
space is created or "swapped in," the
authority table can first be set to all
zeros and the appropriate authority bits
set to one only when required.

DYNAMIC ADDRESS TRANSLATION

Dvnamic address translation (DAT)
provides the ability to interrupt the
execution of a program at an arbitrary
moment, record it and its data in auxil-
iary storage, such as a direct-access

storage device, and at a later time
return the program and the data to
different main-storage locations for

resumption of execution. The transfer
of the program and its data between main
and auxiliary storage may be performed
piecemeal, and the return of the infor-
mation to main storage may take place in
response to an attempt by the CPU to
access it at the time it is needed for
execution. These functions may be
performed without change or inspection
of the program and its data, do not
require any explicit programming conven-
tion for the relocated program, and do
not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating
system, the dynamic-address-translation
facility may be used to provide to a
user a system wherein storage appears to
be larger than the main storage which is
available in the configuration. This
apparent main storage is referred to as

‘virtual storage, and the addresses used

to designate locations in the virtual
storage are referred to as virtual
addresses. The virtual storage of a
user may far exceed the size of the main
storage which is available in the
configuration and normally is maintained
in auxiliary storage. The virtual stor-
age occurs in blocks of addresses,
called pages. Only the most recently
referred-to pages of the virtual storage
are assigned to occupy blocks of phys—
jical main storage. As the user refers
to pages of virtual storage that do not
appear in main storage, they are brought
in to replace pages in main storage that
are less likely to be needed. The swap-
ping of pages of storage may be
performed by the operating system with-
out the user's knowledge.

The sequence of virtual addresses asso-
ciated with a virtual storage is called
an address space. With appropriate
support by an operating system, the
dynamic—-address-translation facility may
be used to provide a number of address

Chapter 3. Storage 3-21

spaces. These address spaces
used to provide degrees of isolation
between users. Such support can consist
of a completely different address space
for each wuser, thus providing complete
isolation, or a shared area
provided by mapping a portion of each
address space to a single common storage

may be

area. Also, instructions are provided,
which permit a semiprivileged program to
access re A0Uress. space..

vhamic address translation provides for
the translation of virtual addresses
from two different address spaces with-
out requiring that the translation
parameters in the control registers be
changed. These two address spaces are
called the primary address space and the
secondary address space.

In the process of replacing blocks of
main storage by new information from an
external medium, it must be determined
which block to replace and whether the
block being replaced should be recorded
and preserved in auxiliary storage. To
aid in this decision process, a refer-
ence bit and a change bit are associated
with the storage key.

Dynamic address translation may be spec-
ified for instruction and data addresses
generated by the CPU but is not avail-
able for the addressing of data and of
CCWs and 1IDAWs in I/0 operatiops: The

CCN-indirect-gata-?gd;gsslngg&ou;;xmi5
rovide o al /0 operations _in._..a
virtual-storage environment.

Address computation
in either the 24-bit or 31-bit address-
ing mode. When address computation is
parformed in the 24-bit addressing mode,
seven zeros are appended on the left to
form a 31-bit address. Therefore, the
resultant logical address is always 31
bits in length. All real and absolute
addresses are 31 bits in length.

can be carried out

Dynamic address translation is the proc-
ess of translating a virtual address
during a storage reference into the
corresponding real address. When DAT is
off, the logical address is treated as a
real address. When DAT 1is on, the
virtual address may be either a primary
virtual address or a secondary virtual
address. Primary virtual addresses are
translated by means of the primary
segment-table designation and secondary
virtual addresses by means of the
secondary segment-table designation.
After selection of the appropriate
segment-table designation, the trans-
lation process is the same for both
tvpes of virtual address.

In the process of translation, two types
of units of information are
recognized -- segments and pages. A

3-22 370-XA Principles of Operation

may be.

segment is a block of sequentigl virtual
Sagres es spannin tes and begin-
ning a% a IE—Byke boundary. A page is a
block of sequential virtual addreésses

spanning 4 and beginning at a
4K-byte boundary.

The virtual address, accordingly, is
divided into three fields. Bits 1-11
are called the segment index (5X), bits
12-19 are called the page index (PX),
and bits 20-31 are called the byte index

(BX). The virtual address has the
following format:

/ SX PX BX

0 1 12 20 31

Virtual addresses are translated into
real addresses vy means of two =
lation tables: a segmen ble and a
page faSEe. These retlect the current
aESTghment of real storage. The assign-
ment of real storage occurs in units of
pages, the real locations being assigned
contiguously within a page. The pages
need not be adjacent in real storage

even though assigned to a set of sequen-
tial virtual addresses.

TRANSLATION CONTROL

Address translation is controlled b% two
Dits 1n. the PoW a se o 1ts,

reterre 0 as the translation parame-
ters, in control regigters 0, 1, and 7.

1tional controls are located in the
translation tables.
Iranslation Modes
The two bits in the PSW that control
dynamic address translation are bit 5,

the DAT-mode bit, and bit 16, the
address—-space-control bit. When the
DAT-mode bit is zero, DAT is off, the
CPU is said to be in the real mode, and
instruction and logical addresses are
treated as real addresses. When the
DAT-mode bit is one (DAT is on) and the
address—-space-control bit is zero, the
CPU is said to be in the primary-space
mode, and instruction and logical
addresses are treated as primary virtual
addresses. When DAT is on and the
address—-space-control bit is one, the
CPU is said to be in the secondary-space
mode, and logical addresses are treated
as secondary virtual addresses. The
various modes are shown in the figure .
"Translation Modes.”

Handling of Addresses
PSW Bit
Logical Instruction
5 {16 DAT Mode Addresses Addresses
0 - Off Real mode Real Real
1 o On Primary-space mode Primary Primary
virtual virtual
1 1 On Secondary-space mode Secondary See note
virtual
Translation Modes
Note: When the CPU is in the zero and execution of MOVE TO PRIMARY,

secondary-space mode, it is unpredict-
able whether instruction addresses are
treated as primary virtual or secondary

virtual addresses. However, all copies
of an instruction used in a single
execution are fetched from a single

space, and the machine
interpretation of
as primary virtual
only betuween
performing a
function.

can change the
instruction addresses
or secondary virtual
instructions and only by

checkpoint-synchronizing

-

Programming Notes

1. Predictable program operation is
ensured in the secondary-space mode
only when the instructions are
fetched from virtual-address

locations which translate to the
same real address by means of both
the primary and secondary segment

tables. Thus, a program should not
enter the secondary-space mode
unless the aforementioned condi-

tions exist.

2. The requirement limiting when the
CPU can change the address space
used for fetching instructions
eliminates problems with CPU retry,
DAT pretesting, and trial execution
of instructions for the purposes of
determining PER events.

Control Register 0

Six bits are provided
ter 0 which are

in control regis-
used in controlling

dynamic address translation. The bits
are assigned as follows:

D TF

5 8 13
Secondary-Space Control (D}: Bit 5 of
control register 0 is the secondary-
space-control bit. When this bit is

MOVE TO SECONDARY, or SET ADDRESS SPACE
CONTROL is attempted, a special-
operation exception is recognized. When
this bit 1is one, it indicates that the
secondary segment table is attached when
the CPU is in the primary-space mode.

Translation Format (IF): Bits 8-12 of
control register 0 specify the trans-
lation format, with only one combination
of the five control bits valid; all
other combinations are invalid.

The control bits are encoded as follows:

Bits of Control Register 0
8 9 10 11 12 Valid
1 0 1 1 0 Yes
All others No
When an invalid bit combination is

detected in bit positions
translation—-specification
recognized as part of the
an instruction using
tion.

8-12, a
exception is
execution of
address transla-

Control Register 1

Control register 1 contains the primary

segment-table designation (PSTD). The

register has the following format:
Primary Segment-

X Table Origin PSTL

0 1 20 25 31

Space-Switch-Event-Control Bit (X):

When bit 0 of control register 1 is one
and execution of PROGRAM CALL with space
switching (PC-ss) or PROGRAM TRANSFER
with space switching (PT-ss) is
completed, a space-switch-event program
interruption occurs. The space-switch-
event-control bit is also examined by

Chapter 3. Storage 3-23

LOAD ADDRESS SPACE PARAMETERS, and, if
it is one, condition code 3 is set.

Primary Segment-Table Origin (PSTO):
Bits 1-19 of control register i, with 12
zeros appended on the right, form an
address that designates the beginning of
the primary segment table. It is unpre-
dictable whether the address is real or
absolute. This table is called the
primary segment table since it is used
to translate virtual addresses in the
primary address space.

Primary Segment-Table Length (PSTL):
Bits 25-31 of control register 1 specify
the length of the primary segment table
in units of 64 bytes, thus making the
length of the segment table variable in
multiples of 16 entries. The length of
the primary segment table, in units of
64 bytes, is one more than the PSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a primary virtual address falls with-
in the primary segment table.

Bits 20-24 of control register 1 are not
assigned and are ighored.

Control Register 7

Control register 7 contains the second-
ary segment-table designation (SSTD).
The register has the following format:

Secondary Segment-
Table Origin SSTL

0 1 20 25 31

Secondary Segment-Table Origin (S5570):
Bits 1-19 of control register 7, with 12
zeros appended on the right, form an
address that designates the beginning of
the secondary segment table. It is
unpredictable whether the address is
real or absolute. This table is called
the secondary segment table since it is
used to translate virtual addresses in
the secondary address space.

Secondary Segment-Table Length (SSTL):
Bits 25-31 of control register 7 specify
the length of the secondary segment
table in units of 64 bytes, thus making
the length of the segment table variable
in multiples of 16 entries. The length
of the secondary segment table, in units
of 66 bytes, is one more than the SSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a secondary virtual address falls
within the secondary segment table.

3-24 370-XA Principles of Operation

Bits 0 and 20-24 of control register 7
are not assigned and are ignored.

Programming Nofes

1. The validity of the information
loaded into a control register,
including that pertaining to dynam-
ic address translation, is not
checked at the time the register is
loaded. This information is
checked and the program exception,
if any, 1is indicated at the time
the information is used. ‘

2. The information
dynamic address translation is
considered to be used when an
instruction is executed with DAT on
or when INVALIDATE PAGE TABLE ENTRY
or LOAD REAL ADDRESS is executed.,
The information is not considered
to be used when the PSW specifies
translation but an I/70, external,
restart, or machine-check inter-
ruption occurs before an instruc-
tion is executed, or when the PSW
specifies the wait state.

TRANSLATION TABLES

The translation process consists in a
two-level lookup using two tables: a
segment table and a page table. These
tables reside in real or absolute stor-
age.

Segment-Table Entries

The entry fetched from the segment table
has the following format:

0 Page-Table Origin I|C|PTL
0 1 26 28 31

The fields in the segment-table entry
are allocated as follows:

Page-Table Origin (PT0): Bits 1-25,
with six zeros appended on the right,
form the address that designates the
beginning of a page table. It is unpre-
dictable whether the address is real or
absolute.

Segment-Invalid Bit 1): Bit 26

controls whether the segment associated
with the segment-table entry is avail-
able. When the bit 1is zero, address
translation proceeds by using the
segment-table entry. When the bit is
one, the segment-table entry cannot be
used for translation.

pertaining to .

~=r

Common-Segment Bit (C): Bit 27 controls
the use of the translation-lookaside-
buffer (TLB) copies of the segment-table
entry and of the page table which it
designates. A zero identifies a private
segment; in this case, the segment-table
entry and the page table it designates
may be used only in association with the
segment—table origin that designates the
segment table in which the segment-table
entry resides. A one identifies a
common segment; in this case, the
segment-table entry and the page table
it designates may continue to be used
for translating addresses corresponding
to the segment index, even though a
different segment table is specified.

Page-Table Length (PTL): Bits 28-31
specify the length of the page table in
units of 64 bytes (16 entries). The
length of the page table, in units of 64
bytes, is one more than the PTL value.
The contents of the length field are
used to establish whether the entry
designated by the page-index portion of
the virtual
page table.

Bit 0 of the segment-table entry must be

zero; if it is not zero, a translation-

specification exception is recognized as

part of the execution of an instruction

:§ing that entry for address transla-
ion.

Page-Table Entries

The entry fetched from the page table
entry has the following format:

0 PFRA 0\I|P|CO|s7z7777777
0 1 20 24 31
The fields in the page-table entry are

allocated as follous:

address falls within the

Page-Frame Real Address (PFRA): Bits
1-19 provide the leftmost bits of a real
storage address. When these bits are
concatenated with the 12-bit byte-index
field of the virtual address on the
right, a 31-bit real address is
obtained.

Page-Invalid Bit (I): Bit 21 controls
whether the page associated with the
page-table entry is available. When the
bit is zero, address translation
proceeds by using the page-table entry.
When the bit is one, the page-table
entry cannot be used for translation.

Page-Protection Bit (P): Bit 22 con-
trols whether store accesses can be made
in the page. This protection mechanism
is in addition to the key-controlled-
protection and low-address-protection
mechanisms. The bit has no effect on
fetch accesses. If the bit is zero,
stores are permitted to the page,
subject to the other protection mech-
anisms. If the bit is one, stores are
disallowed. An attempt to store when
the page—-protection bit is one causes a
protection exception to be recognized.

Bit positions 0, 20, and 23 of the entry
must contain Zeros; othernise, a
translation-specification exception is
recognized as part of the execution of
an instruction using that entry for
address translation. Bit positions
264-31 are unassigned and are not checked
for zeros; thus, they are available for
programming use.

Summary of Seament-Table and Page-Table
Sizes

The sizes of segment tables and page
tables are summarized in the figure
"Sizes of Segment Tables and Page
Tables."

Chapter 3. Storage 3-25

Segment-Table Parameters

Corresponding
Virtual Segment Table Segment-
Address Number of Table
Size Addressable Maximum Usable Increment
(Bits) Segments Size (Bytes)|{Length Code (Bytes)
241 16 64 0 -—
31 2,048 8,192 127 64
Page-Table Parameters?
Corresponding
Page Table Page-
Number of Table
Pages Maximum Usable Increment
in Segment |Size (Bytes)|lLength Code (Bytes)
256 1,024 15 64

Explanation:
1

A virtual address specified by the program in the

24-bit addressing mode consists of a 24-bit value
embedded in a 31-bit address.

address

Sizes of Segment Tables and Page Tables

size.

TRANSLATION PROCESS

The page-table size is independent of the virtual

Effective Segment-Table Designation

This section describes the translation The segment-table designation used for a-
process as it is performed implicitly particular address translation is called
before a virtual address is used to the effective segment-table designation.
access main storage. The process of Accordingly, when a primary virtual
translating the operand address of LOAD address is translated, control register
REAL ADDRESS and TEST PROTECTION is the 1 is used as the effective segment-table
same, except that segment-translation designation, and when a secondary virtu-
and page-translation exceptions do not al address is translated, control
occur; such situations are instead indi- register 7 is used as the effective
cated in the condition code. segment-table designation.

Translation of the operand address of

LOAD REAL ADDRESS also differs in that The segment—-index portion of the virtual .
the CPU may be in the real mode and the address is used to select an entry from
translation-lookaside buffer is not the segment table, the starting address

used.

Translation
performed by

real or a

controlled by the DAT-mode bit

address-spac

PSW. The translation

fied by the
control regi

of a virtual address
means of a segment table be used.
and a page table both of which reside in

bsolute storage. It

e-control bit,

translation
sters 1 and 7.

and length of which are specified by the
effective segment-table designation.

is This entry designates the page table to

is The page-index portion of the virtual
and the address is used to select an entry from

both in the the page table. This entry contains the

parameters

3-26 370-XA Principles of Operation

tables are speci- leftmost bits of the real address that
in represents the translation of the virtu-

al address and provides the page-
protection bit. ,
The byte-index field of the virtual
address is used unchanged as the right-
most bit positions of the real address.

LN

If the I bit is one in
segment-table entry or the page-table
entry, the entry is invalid, and the
translation process cannot be completed
for this virtual address. A segment-
translation or a page-translation
exception is recognized.

either the

In order to eliminate the delay associ-
ated with references to translation
tables in real or absolute storage, the
information fetched from the tables
normally is also placed in a special
buffer, the translation-lookaside buffer
(TLB), and subsequent translations
involving the same table entries may be

performed by using the information
recorded in the TLB. The operation of
the TLB is described in the section
"Translation-Lookaside Buffer" in this

chapter.

absolute
address-

Whenever access to real or
storage is made during the
translation process for the purpose of
fetching an entry from a segment table
or page table, key-controlled protection
does not apply.

The translation process, including the

effect of the TLB, is shown graphically
in the figure "Translation Process."”

Chapter 3. Storage 3-27

Control Register 1 Control Register 7

Virtual Address
PSTD SSTD $X PX BX

Q] (x%) (x%)

[=]
h
&
v

¥
Effective STD v
STO STL
(x4096)
¥
l Segment Table
>+
E] >
R7A PTO PTL
(x64)
¥
¥
€ 3|2
| Translation
Lookaside
¥ Buffer (TLB)
. Page Table
3|+
1
¥
E] >
R7A PFRA PFRA
+ L[
¥ 4
II T 1 T
Real Address
R/7A: Address is either real or absolute

Translation Process (Part 1 of 2)

3-28 370-XA Principles of Operation

Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, and control register 7
provides the secondary segment-table designation for translation of a

secondary virtual address.

2] Information, which may include portions of the virtual address and the

— effective segment-table origin, is used to search the TLB.

—

3] If a match exists, the page-frame real address from the TLB is used in

~—! forming the real address.

4] If no match exists, table entries in real or absolute storage are fetched.

The resulting fetched entries, in conjunction with the search information,

are used to translate the address and may be used to form an entry in the

TLB.
Translation Process (Part 2 of 2)

Inspection of Control Register 0

The interpretation of the
address for translation purposes
requires that there be a valid trans-
lation format specified by bits 8-12 of
control register 0. If bits 8-12
contain an invalid code, a translation-
specification exception is recognized.

virtual

Segment-Table Lookup

The segment-index portion of the virtual
address, in conjunction with the
segment-table origin contained in the
effective segment-table designation, is
used to select an entry from the segment
table.

The 31l-bit address of the segment-table

entry in real or absolute storage is
obtained by appending 12 zeros to the
right of bits 1-19 of the effective

segment-table designation and adding the
segment index with two rightmost and 18
leftmost zeros appended. When a carry
into bit position 0 occurs during the
addition, an addressing exception may be
recognhized or the carry may be ignored,
causing the table to wrap from 23! - 1
to zero. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the 24-bit or 31-bit
addressing mode.

As part of the segment-table-lookup
process, bits 1-7 of the virtual address
are compared against the segment-table
length, bit positions 25-31 of the
effective segment-table designation, to
establish whether the addressed entry is
within the segment table. If the value
in the segment-table-length field is
less than the value in the corresponding
bit positions of the virtual address, a

| The
| entry

segment—-translation exception
nized.

All four bytes of the segment-table
entry appear to be fetched concurrently
as observed by other CPUs. The fetch
access is not subject to protection.
When the storage address generated for
fetching the segment-table entry desig-
nates a location which is not available
in the configuration, an addressing
exception is recognized, and the unit of
operation is suppressed.

is recog-

Bit 26 of the entry fetched from the
segment table specifies whether the
corresponding segment is available.
This bit is inspected, and, if it is
one, a segment-translation exception is
recognized. If bit 0 of the entry is
ohe, a translation-specification excep-
tion is recognized.

When no exceptions are recognized in the
process of segment-table lookup, the
entry fetched from the segment table
designates the beginning and specifies
the length of the corresponding page
table.

The common—-segment bit, bit 27 of an
entry fetched from the segment table, is
used only for the purpose of forming a
TLB entry (see the section "Use of the
Translation-Lookaside Buffer™ later in
this chapter).

Page-Table Lookup

The page-index portion of the virtual
address, in conjunction with the
page-table origin contained in the
segment-table entry, is used to select

an entry from the page table.

31-bit address of the
in real or

page-table
absolute storage is

Chapter 3. Storage 3-29

obtained by appending six zeros to the
right of the page-table origin and
adding the page index, with two right-
most and 21 leftmost =zeros appended. A
carry into bit position 0 may cause an
addressing exception to be recognized,
or the carry may be ignored, causing the
page table to wrap from 23! - 1 to zero.
All 31 bits of the address are used,
regardless of whether the current PSHW
specifies the 24-bit or 3l-bit address-
ing mode.

As part of the page—-table-lookup
process, the four leftmost bits of the
page index are compared against the
page-table length, bits 28-31 of the
segment-table entry, to establish wheth-
er the addressed entry is within the
table. If the value in the page-table-
length field is less than the value in
the four leftmost bit positions of the
page-index field, a page-translation
exception is recognized.

All four bytes of the
appear to be fetched concurrently as
observed by other CPUs. The fetch
access is not subject to protection.
When the storage address generated for
fetching the page-table entry designates
a location which is not available in the
configuration, an addressing exception
is recognized, and the unit of operation
is suppressed.

page-table entry

The entry fetched from the page table
indicates the availability of the page
and contains the leftmost bits of the
page-frame real address. The page-
invalid bit is inspected to establish
whether the corresponding page is avail-
able. If this bit is one, a page-
translation exception is recognized. 1If
bit position 0, 20, or 23 contains a
one, a translation-specification excep-
tion is recognized.

Formation of the Real Address

s s =l

When no exceptions in the translation
process are encountered, the page-frame
real address obtained from the page-
table entry and the byte-index portion
of the virtual address are concatenated,
with the page-frame real address forming
the leftmost part. The result is the
real storage address which corresponds
to the virtual address. All 31 bits of
the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

Recognition of Exceptions during ITrans-—
lation

Invalid addresses and invalid formats

3-30 370-XA Principles of Operation

can cause exceptions to be recognized
during the translation process.
Exceptions are recognized when informa-
tion contained in control registers or
table entries is used for translation
and is found to be incorrect.

The information pertaining to DAT is
considered to be used when an instruc-
tion 1is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD REAL
ADDRESS is executed. The information is
not considered to be used when the PSW
specifies DAT on but an 1I/0, external,
restart, or machine-check interruption
occurs before an instruction is
executed, or when the PSW specifies the
wait state. Only that information
required in order to translate a virtual
address is considered to be in use
during the translation of that address,
and, in particular, addressing
exceptions that would be caused by the
use of the PSTD or the SSTD are not
recoognized when the translation of an
address uses only the SSTD or only the
PSTD, respectively.

A list of translation exceptions, with
the action taken for each exception and
the priority in which the exceptions are
recognized when more than one is appli-
cable, is provided in the section
"Recognition of Access Exceptions™ in
Chapter 6, "Interruptions."

TRANSLATION-LOOKASIDE BUFFER

To enhance performance, the dynamic-
address-translation mechanism normally
is implemented such that some of the
information specified in the segment and
page tables is maintained in a special
buffer, referred to as the translation-
lookaside buffer (TLB). The CPU neces-
sarily refers +to a DAT-table entry in
real or absolute storage only for the
initial access to that entry. This
information may be placed in the TLB,
and subsequent translations may be
performed by using the information in
the TLB. The presence of the TLB
affects the translation process to the
extent that a modification of the
contents of a table entry in real or
absolute storage does not necessarily
have an immediate effect, if any, on the
translation.

The size and the structure of the TLB
depend on the model. For instance, the
TLB may be implemented in such a way as
to contain only a few entries pertaining

to the currently designated segment
table, each entry consisting of the
leftmost portion of a virtual address

and its corresponding page-frame real
address and page-protection bit; or it
may contain arrays of values where the
page-frame real address and page-—
protection bit are selected on the basis

of the effective segment-table origin
and the leftmost bits of the virtual
address. Entries within the TLB are not
explicitly addressable by the program.
In a multiple-CPU configuration, each
CPU has its own TLB.

The description of the logical structure
of the TLB covers the implementation by
all systems operating in the 370-XA
mode. The TLB entries are considered as
being of two types: TLB segment-table
entries and TLB page-table entries. A
TLB entry is considered as containing
within it both the information obtained
from the table entry in real or absolute
storage and the attributes used to fetch
the entry from storage. Thus, a TLB
segment-table entry would contain the
following fields:

STO X

PTO

PTL c

STO The segment-table origin in effect

when the entry was formed
S$X The segment index used to select
the entry
PTO The page-table origin fetched from
the segment-table entry in real or
absolute storage
PTL The page—-table length fetched from
the segment-table entry in real or
absolute storage

C The common—-segment bit
from the segment-table
real or absolute storage

fetched
entry in

A TLB page-table entry would contain the
following fields:

PTO PX |PFRA}l P
PTO The page-table origin in effect
when the entry was formed
PX The page index used to select the
entry
PFRA The page-frame real address

fetched from the page-table entry
in real or absolute storage.

P The page-protection
from the page-table
or absolute storage

bit fetched
entry in real

Depending on the implementation, not all
of the above items are required in the
TLB. For example, if the implementation
combines into a single TLB entry (1) the
information obtained from a page-table
entry and (2) the attributes of both the
page-table entry and the segment-table

entry, then the page-table-origin and

page-table-length fields are not
required.
Note: The following sections describe

the conditions under which information
may be placed in the TLB and information
from the TLB may be used for address
translation, and they describe how
changes to the translation tables affect
the translation process. Information is
not necessarily retained in the TLB
under all conditions for which such
retention is permissible. Furthermore,
information in the TLB may be cleared
under conditions additional to those for
which clearing is mandatory.

Use of the Translation-lookaside Buffer

The formation of TLB
effect of any manipulation of the
contents of a table entry in real or
absolute storage by the program depend
oh whether the entry is valid, on wheth-
er the entry is attached to a particular
CPU, on whether a copy of the entry can
be placed in the TLB of a particular
CPU, and on whether a copy in the TLB of
the entry is usable.

entries and the

The valid state of a table entry denotes
that the segment or page associated with
the table entry is available. An entry
is valid when the segment-invalid bit or
page-invalid bit in the entry is zero.

The attached state of a table entry
denotes that the CPU to which it is
attached can attempt to use the table

entry for implicit address translation.
The table entry may be attached to more
than one CPU at a time. When a table
entry is described as attached, the term
"to a CPU" is implied.

The usable state of a TLB entry denotes
that the CPU can attempt to use the TLB
entry for implicit address translation.
Also, the usable state of a TLB
segment-table entry is a factor in
determining whether a page-table entry
is attached.

A segment-table entry or a page-table
entry may be placed in the TLB only when
the entry is attached and valid and
would not cause a translation-
specification exception if used for
translation. Except for these
restrictions, the entry may be placed in
the TLB at any time.

A segment-table entry is attached when
all of the following conditions are met:

1. The current PSW specifies DAT on.
2. The current PSW contains no errors

which would cause an early excep-
tion to be recognized.

Chapter 3. Storage 3-31

J. The current translation format,
bits 8-12 in control register 0, is
valid.

4. The entry meets the requirements in
a or b below.

a. The entry is within the segment
table designated by tite primary
segment-table designation in
control register 1.

b. The entry is within the segment
table designated by the second-
ary segment-table designation
in control register 7 and
either of the following
requirements is met:

. The CPU is in the
secondary-space mode.

. The secondary-space con-
trol, bit 5 of control
register 0, is one.

A page-table entry is attached when it
is within the page table designated by
either a usable TLB segment-table entry
or by an attached and valid segment-
table entry which would not cause a
translation-specification exception if
used for translation.

A TLB segment-table entry is in the
usable state when all of the following
conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors
which would cause an early excep-
tion to be recognized.

3. The current translation format,
bi}s 8-12 in control register 0, is
valid.

4. The TLB segment-table entry meets
at least one of the following re-
quirements:

. The common-segment bit is one
in the TLB entry.

. The segment-table-origin field
in the TLB entry is the same as
the current PSTO.

. The segment-table-origin field
in the TLB entry is the same as
the current 5570, and either
PSW bit 16 is one or bit 5 of
control register 0 is one.

A TLB segment-table entry may be used
for implicit address translation only
when the entry is in the usable state,
the segment index of the entry matches
the segment index of the virtual address
to be translated, and either the
common—-segment bit is one in the TLB
entry or the segment-table-origin field

3-32 370-XA Principles of Operation

in the TLB entry matches the segment-
table origin used to select it.

A TLB page-table entry 1is in the usable
state when all of the following condi-
tions are met:

1. The TLB page-table entry is
selected by a usable TLB segment-
table entry or by an attached and
valid segment-table entry which
would not cause a translation-
specification exception if used for
translation.

2. The page-table-origin field in the
TLB page-table entry matches the
page-table-origin field in the
segment-table entry which selects
it.

J. The page-index field in the TLB
page-table entry is within the
range permitted by the page-table-
length field in the segment-table
entry which selects it.

A TLB page-table entry may be used for
implicit address translation only when
the TLB entry is in the usable state as
selected by the segment—table entry
being used and only when the page index
of the TLB page-table entry matches the
page index of the virtual address being
translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB
contents. Translation in this case is
performed by the use of the designated
tables in real or absolute storage.

Selected page-table entries are cleared
from the TLB by means of the INVALIDATE
PAGE TABLE ENTRY instruction. All
information in the TLB is necessarily
cleared only by execution of PURGE TLB,
SET PREFIX, or CPU reset.

Programming Notes

1. Although a table entry may be
copied into the TLB only when the
table entry is both valid and
attached, the copy may remain in
the TLB even when the table entry
itself is no longer valid or
attached.

2. No entries can be copied into the
TLB when DAT is off because the
table entries at this time are not
attached. In particular, trans-
lation of the operand address of
LOAD REAL ADDRESS, with DAT off,
does not cause entries to be placed
in the TLB.

Conversely, when DAT is on, infor-
mation may be copied into the TLB
from all translation-table entries

PI-T N

that could be used for address 3. More than one copy of a table entry

translation, given the current may exist in the TLB. For example,
translation parameters, the setting some implementations may cause a
of the address-space-control bit, copy of a valid table entry to be
and the setting of the secondary- placed in the TLB for each
space-control bit. The loading of segment-table origin by which the
the TLB does not depend on whether entry becomes attached.
the entry 1is used for translation
as part of the execution of the 4., The states and use of the DAT
current instruction, and such load- entries in both storage and in the
ing can occur when the wait state TLB are summarized in the figure
is specified. "Summary of DAT Entries."
State or Function Conditions to Be Met
STE is attached by means * DAT on
of PSTD (applies only to * No early PSW exception
STE in storage) e TF valid
~ STE in segment table defined by
PSTD in CR1
STE is attached by means * DAT on
of SSTD (applies only to * No early PSW exception
STE in storage) s TF valid
¢ STE in segment table defined by
SSTD in CR7
« PSW bit 16 one or bit 5 of CRO
one
STE in storage is usable * STE in segment table defined and
for a particular instance attached by STD being used for
of implicit translation the translation

® STE selected by SX

STE can be placed in TLB * STE attached
STE I bit zero
No TS

DAT on

No early PSW exception .

TF valid

STE selectable by an STD:

- C bit one, or

- ST0 matches PST0, or

- STO matches S$S5T0, and PSW bit
16 one or bit 5 of CRO one

STE in TLB is usable

s ¢ ¢ 0

STE in TLB is usable for * DAT on
a particular instance of * No early PSW exception
implicit translation * TF valid

STE selected by STD being used
for the translation:

- STO matches, or

- € bit one

e SX matches

PTE is attached (applies e PTE in page table defined by
only to PTE in storage) usable STE in the TLB, or de-
fined by an STE that can be
placed in the TLB

PTE in storage is usable * PTE attached by means of STE
for a particular instance being used for the translation
of implicit translation * PTE selected by PX

Summary of DAT Entries (Part 1 of 2)

Chapter 3. Storage 3-33

State or Function

Conditions to Be Met

« No TS

a particular instance of
implicit translation

PTE can be placed in TLB * PTE attached
PTE I bit zero

PTE in TLB is usable * PTE selectable by a usable STE
in the TLB or by an STE that
can be placed in the TLB:

- PTO matches and

- PX within PTL

PTE in TLB is usable for ¢ PTE selected by STE being used
for the translation:
- PTO matches and
-~ PX within PTL

* PX matches

Explanation:

C bit Common-segment bit in STE.
I bit Invalid bit in table entry.

PTE Page-table entry.
PTL Page-table length.
PTO Page-table origin.
PX Page index.

specification exception.

PSTD Primary segment-table designation.
PSTO Primary segment-table origin.

SSTD Secondary segment-table designation.
5570 Secondary segment-table origin.

STD Segment—-table designation.

STE Segment-table entry.

STO Segment-table origin.

SX Segment index.

TF Translation format {control register 0, bits 8-12).
TS Translation—-specification exception. The condition

"No TS"™ means that attempted use of the associated
DAT-table entry would not cause a translation-

Summary of DAT Entries (Part 2 of 2)

Modification of Translation Jables

When an attached and invalid table entry
is made valid and no usable entry for
the associated virtual address is in the
TLB, the change takes effect no later
than the end of the current unit of
operation. Similarly, when an unat-
tached and valid table entry is made
attached and no usable entry for the
associated virtual address is in the
TLB, the change takes effect no later
than the end of the current unit of
operation.

When a valid and attached table entry is
changed, and when, before the TLB is
cleared of entries which qualify for
substitution for that entry, an attempt
is made to refer to storage by using a
virtual address requiring that entry for
translation, unpredictable results may
occur, to the following extent. The use
of the new value may begin between
instructions or during the execution of
an instruction, including the instruc-

3-34¢ 370-XA Principles of (peration

tion that caused the change. Moreover,
until the TLB is cleared of entries
which qualify for substitution for that
entry, the TLB may contain both the old
and the new values, and it is unpredict-
able whether the old or new value is
selected for a particular access. If
both old and new values of a segment-
table entry are present in the TLB, a
page-table entry may be fetched by using
one value and placed in the TLB associ-
ated with the other value. If the new
value of the entry is a value which
would cause an exception, the exception
may or may not cause an interruption to
occur. If an interruption does occur,
the result fields of the instruction may
be changed even though the exception
would normally cause suppression or
nullification.

Entries are cleared from the TLB in
accordance with the following rules:

1. All entries are cleared from the
TLB by the execution of PURGE TLB
and SET PREFIX and by CPU reset.

£ N

Selected entries are cleared from
all TLBs in the configuration by
the execution of INVALIDATE PAGE

TABLE ENTRY by any of the CPUs in
the configuration.

Some or all TLB entries may be
cleared at times other than those

required by PURGE TLB, SET PREFIX,
CPU reset, and INVALIDATE PAGE
TABLE ENTRY.

Programming Notes

1.

Entries in the TLB may continue to
be used for translation after the
table entries from which they have
been formed have become unattached
or invalid. These TLB entries are
not necessarily removed unless
explicitly cleared from the TLB.

A change made to an attached and
valid entry or a change made to a
table entry that causes the entry

to become attached and
reflected in the translation proc-
ess Tfor the next instruction, or
earlier than the next instruction,
unless a TLB entry qualifies for
substitution for that table entry.
However, a change made to a table
entry that causes the entry +to
become unattached or invalid is not
necessarily reflected in the trans-

valid is

lation process until the TLB is
cleared of entries which qualify
for substitution for that table

entry.

Exceptions associated with dynamic
address translation may be estab-
lished by a pretest for operand
accessibility that is performed as
part of the initiation of instruc-

tion execution. Consequently, a
segment-translation or page-
translation exception may be

indicated when a table
invalid at the start
even if the

validated the

entry is
of execution
instruction would have

table entry it uses
and the table entry would have
appeared valid if the instruction
was considered to process the oper-
ands one byte at a time.

A change made to an attached table
entry, except to set the I bit to
zero or to alter the rightmost byte
of a page-table entry, may produce
unpredictable results if that entry
is used for translation before the
TLB is cleared of all copies of

that entry. The use of the new
value may begin between
instructions or during the
execution of an instruction,

instruction that
change. When an

including the
caused the

instruction, such as MOVE (MVC),
makes a change to an attached table
entry, including a change that
makes the entry invalid, and subse-
quently uses the entry for
translation, a changed entry is
being used without a prior clearing
of the entry from +the TLB, and the
associated unpredictability of
result values and of exception
recognition applies.

Manipulation of attached table
entries may cause spurious table-
entry values to be recorded in a

TLB. For example, if changes are
made piecemeal, modification of a
valid attached entry may cause a

partially updated
recorded, or, if an intermediate
value is introduced in the process
of the change, a supposedly invalid
entry may temporarily appear valid
and may be recorded in the TLB.
Such an intermediate value may be
introduced if the change is made by
an I/0 operation that 1is retried,
or if an intermediate value 1is
introduced during the execution of
a single instruction.

entry to be

As another example, if a segment-
table entry is changed to designate
a different page table and used
without clearing the TLB, then the
new page-table entries may be
fetched and associated with the old
page-table origin. In such a case,
execution of INVALIDATE PAGE TABLE

ENTRY designating the new page-
table origin will not necessarily
clear the page-table entries

fetched from the new page table.

To facilitate the manipulation of
translation tables, INVALIDATE PAGE
TABLE ENTRY is provided, which sets
the I bit in a page-table entry to
one and clears all TLBs in the

configuration of entries formed
from that table entry.
INVALIDATE PAGE TABLE ENTRY is

useful for setting the I bit to one
in a page-table entry and causing
TLB copies of the entry to oe
cleared from the TLB of each CPU in
the configuration. The following
aspects of the TLB operation should
be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the
programming notes following INVALI-
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE
should be executed before
making any change to a page-
table entry other than changing
the rightmost byte; otherwise,
the selective clearing portion
of INVALIDATE PAGE TABLE ENTRY
may not clear the TLB copies of
the entry.

TABLE ENTRY

Chapter 3. Storage 3-35

b. Invalidation of all the
page-table entries within a
page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of
the copies, if any, of the
segment-table entry designating
the page table. When it is
desired to invalidate and clear
the TLB of a segment-table
entry, the rules in note 5
below must be followed.

c. When a large number of
page-table entries are to be
invalidated at a single time,
the overhead involved in using
PURGE TLB and in following the
rules in note 5 below may be
less than in issuing INVALIDATE
PAGE TABLE ENTRY for each
page-table entry.

5. Manipulation of table entries
should be in accordance with the
following rules. If these rules
are complied with, translation is
performed as if the table entries
from real storage were always used
in the translation process.

a. A valid table entry must not be
changed while it is attached to
any CPU except either to inval-
idate the entry, by using
INVALIDATE PAGE TABLE ENTRY or
to alter bits 24-31 of a page-
table entry.

b. When any change is made to a
table entry other than a change
to bits 24-31 of a page-table
entry, each CPU which may have
a TLB entry formed from that
entry must execute PURGE TLB or
SET PREFIX or perform CPU
reset, after the change occurs
and prior to the use of that
entry for implicit translation
by that CPU, except that the
purge is unnecessary if the
change was made by using INVAL-
IDATE PAGE TABLE ENTRY.

c. When any change is made to an
invalid table entry in such a
way as to allow intermediate
valid values to appear in the
entry, each CPU to which the
entry is attached must execute
PURGE TLB or SET PREFIX or
perform CPU reset, after the
change occurs and prior to the
use of the entry for implicit
3d3ress translation by that

PU.

d. When any change is made to a
segment-table or page-table
length, each CPU +to which that
table has been attached must
execute PTLB after the length

3-36 370-XA Principles of Operation

has been changed but before
that table becomes attached
again to the CPU.

Note that when an invalid page-
table entry is made valid without
introducing intermediate valid
values, the TLB need not be cleared
in a CPU which does not have any
usable TLB copies for that entry.
Similarly, when an invalid
segment-table entry is made valid
without introducing intermediate
valid values, the TLB need not be
cleared in a CPU which does not
have any usable TLB copies for that
segment-table entry and which does
not have any usable TLB copies for
tte page—table entries attached by
it.

The execution of PURGE TLB and SET
PREFIX may have an adverse effect
on the performance of some models.
Use of these instructions should,
therefore, be minimized in conform-
ity with the above rules.

ADDRESS SUMMARY

ADDRESSES TRANSLATED

Most addresses that are explicitly spec-
ified by the program and are used by the
CPU to refer to storage for an instruc-
tion or an operand are logical addresses
and are subject to implicit translation
when DAT is on. Analogously, the corre-
sponding addresses indicated to the
program on an interruption or as the
result of executing an instruction are
logical. The operand address of LOAD
REAL ADDRESS is explicitly translated,
regardless of whether the PSHW specifies
DAT on or off.

Translation is not applied to quantities
that are formed from the values speci-
fied in the B and D fields of an
instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, MONITOR CALL,
and the shifting instructions. This
also includes the addresses in control
registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage
keys (operand addresses in SET STORAGE

KEY EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses.

Similarly, the addresses implicitly used
by the CPU for such sequences as inter-
ruptions are real addresses.

The addresses used by channel programs
to transfer data and to refer to CCWs or
IDAWs are absolute addresses.

The handling of storage addresses asso-
ciated with DIAGNOSE is model-dependent.

including
and prefix-—

The processing of addresses,
dynamic address translation

ing, is discussed in the section
"Address Types"” in this chapter.
Prefixing, when provided, is applied

after the address has been translated by
means of the dynamic-address-translation

facility. For a description of prefix-
ing, see the section "Prefixing™ in this
chapter.

HANDLING OF ADDRESSES

The handling of addresses is summarized
in the figure "Handling of Addresses."
This figure lists all addresses that are
encountered by the program and specifies
the address type.

Virtual Addresses

s Operand address in LOAD REAL ADDRESS
TO SECONDARY

exception

Instruction Addresses

Instruction address in PSHW
Branch address
Target of EXECUTE

gram interruption for PER

[

PROGRAM CALL
Logical Addresses

wise specified

TRANSLATE AND TEST

COMPARE LOGICAL LONG
CODEWORD and UPDATE TREE
operand address is nonzero

Real Addresses

e 0 & 6 ¢ 0 ¢ 8 s

e Address of storage operand for INSERT VIRTUAL STORAGE KEY
e Addresses of storage operands for MOVE TO PRIMARY and MOVE

® Address stored in the word at real location 144 on a program
interruption for page-translation or segment-translation

Address stored in the word at real location 152 on a pro-

Address placed in general register by BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE AND SET MODE, and

* Addresses of storage operands for instructions not other-
* Address placed in general register 1 by EDIT AND MARK and
* Addresses in general registers updated by MOVE LONG and

s Addresses in general registers updated by COMPARE AND FORM
* Address for TEST PENDING INTERRUPTION when the second-

* Address of storage key for INSERT STORAGE KEY EXTENDED,
RESET REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED
Address of storage operand for TEST BLOCK

Page-table origin in INVALIDATE PAGE TABLE ENTRY
Page-frame real address in page-table entry
Trace-entry address in control register 12
ASN-first-table origin in control register 14
ASN-second-table origin in ASN-first-table entry
Authority-table origin in ASN-second-table entry
Linkage-table origin in control register 5

Entry-table origin in linkage-table entry

The translated address generated by LOAD REAL ADDRESS

Handling of Addresses (Part 1 of 2)

Chapter 3. Storage 3-37

¢ 6066 60 ¢ 0 ¢

-
L J
*

-

Permanently Assigned Real Addresses

Address of the doubleword into which TEST PENDING INTERRUP-
TION stores when the second-operand address is zero
Addresses of PSWs, interruption codes, and the associated
information used during interruption

Addresses used for machine-check logout and save areas

Addresses Which Are Unpredictably Real or Absolute

Segment-table origin in control registers 1 and 7
Page-table origin in segment-table entry

Address of segment-table entry or page-table entry provided
by LOAD REAL ADDRESS

Absolute Addresses

Prefix value

Channel-program address in ORB

Data address in CCW

IDAN address in a CCW specifying indirect data addressing
CCW address in a CCW specifving transfer in channel

Data address in IDAW

Measurement—-block origin specified in SET CHANNEL MONITOR
Address limit specified in SET ADDRESS LIMIT

Addresses used by the store-status—-at-address SIGNAL
PROCESSOR order

Failing-storage address stored in the word at real loca-
tion 248

CCW address in SCSW

Permanently Assigned Absolute Addresses

Addresses used for the store-status function
Addresses of PSW and first two CCWs used for initial pro-
gram loading

Addresses Not Used to Reference Storage

PER starting address in control register 10

PER ending address in control register 11

Address stored in the word at real location 156 for a
monitor event

Address in shift instructions and other instructions speci-
fied not to use the address to reference storage

Handling of Addresses (Part 2 of 2)

ASSIGNED STORAGE LOCATIONS 0-7

The figure "Assigned Storage Locations™

shous
assigned

the format and

extent of the

locations in storage. The

locations are used as follows.

0-7

(Absolute Address)

8-15

Restart New PSW:

(Real Address)

The new PSW is
fetched from locations 0-7
during a restart interruption.
(Absolute Address)

Initial-Program-lLoading

Bytes 8-15 read during the
Initial-Program-lLoading PSW: initial-program—-loading (IPL)
The first eight bytes read initial-read operation are

during the initial-program-
loading (IPL) initial-read oper-

locations 8-15. The
contents of these locations are

stored at

ation are stored at locations ordinarily used as the next CCW
0-7. The contents of these in an IPL CCHW chain after
locations are used as the new completion of the IPL initial-

PSW at the completion of the IPL
operation. These locations may
also be used for temporary stor-
age at the initiation of the IPL
operation.

3-38 370-XA Principles of Operation

read operation.

8-15

16-23

264-31

32-39

40-47

48-55

56-63

88-95

96-103

106-111

(Real Address)

Restart 0ld PSW: The current
PSW 1s stored as the old PSW at
locations 8-15 during a restart
interruption.

(Absolute Address)

Initial-Program—-Loading CCW2:
Bytes 16-23 read during the
initial-program loading (IPL)
initial-read operation are
stored at locations 16-23. The
contents of these locations may
be used as another CCW in the
IPL CCW chain to follow IPL
CCWl.

(Real Address)

External 0ld PSW: The current

PSW 1s stored as the old PSH at
locations 264-31 during an
external interruption.

(Real Address)

Supervisor-Call 0ld PSW: The
current PSW is stored as the old
PSW at locations 32-39 during a
supervisor-call interruption.

(Real Address)

Program 0ld PSW: The current
PSW 1s stored as the old PSW at
locations 40-47 during a program
interruption.

(Real Address)

Machine-Check 0ld PSW: The
current PSW is stored as the old
PSW at locations 648-55 during a
machine-check interruption.

(Real Address)

Inputs/0utput 0ld PSW: The
current PSW is stored as the old
PSW at locations 56-63 during an
I/0 interruption.

(Real Address)

External New PSW: The new PSW
is fetched from locations 88-95
during an external interruption.

(Real Address)

Supervisor-Call New PSH: The
new PSW is fetched from
locations 96-103 during a

supervisor-call interruption.
(Real Address)
Program New PSW: The new PSW is

fetched from locations 104¢-111
during a program interruption.

112-119

120-127

128-131

132-133

134-135

136-139

140-143

(Real Address)

Machine-Check New PSW:
PSW is fetched from
112-119 during a

interruption.

(Real Address)

The new
locations
machine-check

Input/Qutput New PSW: The new
PSW 15 fetched from locations
120-127 during an I/0 inter-
ruption.

(Real Address)

External-Interruption Parameter:

During an external interruption
due to service signal, the
parameter associated with the

interruption is stored at

locations 128-131.
(Real Address)

CPU Address: During an external
interruption due to malfunction

alert, emergency signal, or
external call, the CPU address
associated with the source of
the interruption is stored at
locations 132-133. For all
other external-interruption

conditions, zeros are stored at

locations 132-133.

(Real Address)
External-Interruption Code:
During an external interruption,
the interruption code is stored
at locations 134-135.

(Real Address)

Supervisor-Call-Interruption

Identification: During a
supervisor-call interruption,
the instruction—-length code is
stored in bit positions 5 and 6
of location 137, and the inter-

ruption code is stored at
locations 138-139. Zeros are
stored at location 136 and in

the remaining bit positions of
location 137.

(Real Address)
Program-Interruption Identifi-
cation: During a program inter-
ruption, the instruction-length
code is stored in bit positions
5 and 6 of location 141, and the
interruption code is stored at
locations 1642-163. Zeros are
stored at location 140 and in
the remaining bit positions of
location 141.

Chapter 3. Storage 3-39

166-1647

148-149

150-151

3-40

(Real Address)

Translation-Exception Identifi-
cation: During a program inter-
ruption due to a segment-
translation exception or a
page-translation exception, the
segment—~index and page~index

portion of . the virtual address
causing the exception 1is stored
at locations 144-1647. This

address is sometimes referred to

as the translation—-exception
address. The rightmost 12 bits
of the address are unpre-
dictable. Bit 0 of location 144

is set to zero if the trans-
lation was relative to the
primary segment table designated

by control register 1, or it is
set to one if the translation
was relative to the secondary

segment table designated by
control register 7.

During a program interruption
due to an AFX-translation, ASX-
translation, primary-authority,
or secondary-authority excep—
tion, the ASN being translated
is stored at locations 146-147.
Zeros are stored at locations
146-145.

During a program interruption
for a space-switch event, the
old PASN, which is in bits 16-31
of control register 4% before the
execution of a space-switching
PROGRAM CALL or PROGRAM TRANSFER
instruction, is stored at
locations 146-147. The old
space-switch-event-control bit
is stored in bit position 0, and
zeros are stored in bit posi-
tions 1-15 of locations 1644-145.

During a
due to an
translation

program interruption
LX-translation or EX-
exception, the PC

number is stored in bit posi-
tions 12-31 of the word at
locations 146-147. Bits 0-1l1
are set to =zeros.

(Real Address)

Monitor-Class Number: During a

program interruption due to a
monitor event, the monitor-class
number is stored at location
149, and =zeros are stored at
location 148.

(Real Address)

PER Code: During a program
interruption due to a PER event,

the PER code is stored in bit
positions 0-3 of location 150.
Zeros are stored in bit posi-
tions 4-7 of location 150 and
?;t positions 0-7 of location

370-XA Principles of Operation

152-155

156-159

1864-187

188-191

216-223

216-223

2264-231

226-231

232-239

(Real Address)
PER Address: During a program
interruption due to a program

event, the PER address is stored
at locations 152-155. Bit 0 of
location 152 is set to =zero.

(Real Address)

Monitor Code: During a program
interruption due to a monitor
event, the monitor code is

stored at locations 156-159.
(Real Address)
Subsystem—Identification Word:
During an I/0 interruption, the
subsystem-identification word is
stored at locations 184-187.

(Real Address)

I/0-Interruption Parameter:
During an I/0 interruption, the
interruption parameter from the
associated subchannel 1is stored
at locations 188-191.

(Absolute Address)

Store-Status CPU-Timer Save

Area: During the execution of
the store-status operation, the
contents of the CPU timer are

stored at locations 216-223.
(Real Address)

Machine-Check CPU-Timer Save
Area: During a machine-check
interruption, the contents of
the CPU timer are stored at
locations 216-223.

(Absolute Address)

Store-Status Clock-Comparator
Save Area: During the execution
of the store-status operation,
the contents of the clock compa-
rator are stored at locations
226-231.

(Real Address)

Machine-Check Clock-Comparator
Save Area: During a machine-
check interruption, the contents
of the clock comparator are
stored at locations 224-231.

(Real Address)

Machine-Check-Interruption Code:
During a machine-check interrup-
tion, the machine-check-inter-
ruption code is stored at
locations 232-239.

266-267

248-251

256263

256-271

2664-267

352-383

(Real Address)

External-Damage Code: During a
machine-check interruption due
to certain external-damage
conditions, depending on the
model, an external-damage code
may be stored at locations
264-2647.

(Real Address)

Failing-Storage Address:
a machine-check
failing-storage address may be
stored at locations 248-251.
Bit 0 of location 2648 is set to
zero.

During
interruption, a

(Absolute Address)

Store-Status PSW Save Area:
During the execution of the
store-status operation, the

contents of the current PSW are
stored at locations 258-263.

(Real Address)

Fixed-lLogout Area: Depending on

the model, 1logout information
may be stored at locations
256-271 during a machine-check

interruption.
(Absolute Address)

Store-Status

Prefix Save Area:
During the

execution of the
store-status operation, the
contents of the prefix register
are stored at locations 266-267.

(Absolute Address)

Store-Status Floating-Point-
Register Save Area: During the
execution of the store-status
operation, the contents of the
floating-point registers are
stored at locations 352-383.

352-383

386-647

386-447

448-511

448-511

(Real Address)

Machine-Check Floating-Point-
Register Save Area: During a
machine-check interruption, the
contents of the floating-point
registers are stored at
locations 352-383.

(Absolute Address)

Store-Status General-Register
Save Area: During the execution
of the store-status operation,
the contents of the general
registers are stored at
locations 384-447.

(Real Address)

Machine-Check General-Register
Save Area: During a machine-
check interruption, the contents
of the general registers are
stored at locations 384-447.

(Absolute Address)

Store-Status Control-Register
Save Area: During the execution
of the store-status operation,
the contents of the control
registers are stored at
locations %448-511.

(Real Address)

Machine-Check Control-Register
Save Area: During a machine-
check interruption, the contents
of the control registers are
stored at locations 448-511.

Chapter 3. Storage 3-41

Hex Dec

0 0 Initial-Program-Loading PSW; or Restart New PSW
4

8 Initial-Program-Loading CCWl; or Restart 0ld PSW
[12

10 16 Initial-Program Loading CCW2

14 20

18 24 External Old PSW

1c 28

20 32 Supervisor-Call 0ld PSW
2% 36

28 40 Program Old PSW

2C 44

30 48 Machine-Check 0ld PSW
34 52

38 56 Input/Output 01d PSKW
3C 60

40 64

44 68

48 72

4C 76

50 80

5% 84

58 88 External New PSW
5C 92

60 96 Supervisor-Call New PSW

64 100

68 104 Program New PSW

6C 108

70 112 | Machine~-Check New PSW
7¢ 116

78 120 Input/Output New PSW
7C 124

Assigned Storage Locations (Part 1 of 3)

3-42 370-XA Principles of Operation

PN

e

Hex Dec

80 128 External-Interruption Parameter

8¢ 132 CPU Address External-Interruption Code

88 136 |0 0 0 0 00 00 O0O0O0 D0 OJILC|O} SVC-Interruption Code

8C 140 |0 0 0 0 0 0 0 0 0 6 0 0 O/ILCIO}|] Program-Interruption Code

90 144 Translation—Exception Identification

94 148 Monitor-Class Number PER Cde|0 0 0 0 0 0 0 0 0 0 00

98 152 PER Address

9C 156 Monitor Code

A0 160

AG 164

A8 168

AC 172

B0 176

B4 180

B8 184 Subsystem-Identification Word

BC 188 I/0-Interruption Parameter

co 192

C4é 196

c8 200

CC 204

D0 208

D¢ 212

D8 216 Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer
Save Area

DC 220

E0 224 Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

Ee¢ 228

E8 232 Machine-Check Interruption Code

EC 236

FO 240

F&¢ 244 External-Damage Code

F8 248 Failing-Storage Address

FC 252

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage

3-43

Hex Dec

100 256 Store-Status PSW Save Area; or Fixed-Logout Area (Part 1)
106 260

108 264 Store~-Status Prefix Save Area; or Fixed-Logout Area (Part 2)
10C 268 Fixed-Logout Area (Part 3)

110 272

158 344

15C 348

166 352 Store-Status Floating-Point-Register Save Area; or Machine-
164 356 Check Floating-Point-Register Save Area

168 360

16C 364

170 368

174 372

178 376

17¢ 380

180 384 Store-Status General-Register Save Area; or Machine-Check
184 388 General-Register Save Area

188 392

18C 396

1B4 436

1B8 440

1BC 444

1C0 448 Store-Status Control-Register Save Area; or Machine-Check
166 6452 Control-Register Save Area

1C8 456

1CC 460

iF¢ 500

1F8 504

1FC 508

Assigned Storage Locations (Part 3 of 3)

3-44 3I70-XA Principles of Operation

VLN

CHAPTER &.

Stopped, Operating, Load, and Check-Stop States %-2
Stopped State00 ceesscserecvacne ceesccecrencas 4-2
Operating Statecc0cv.. ceveven teceeesrevesernenes ceot-2
Load Statecicieeeirercecescecenncascsconoscssoncsccosnoe 43
Check-Stop State crecsscsnne ceesessreenesnes %-3

Program-Status Wordccc...v... cesecetvecasesesacstennnees 4-3
Program-Status~Word Formatccciieeeececacccccneccns 4-5

Control Registerscccecevececncccnccnes cesveressoencns eeG-6

TPACING t i ttecerereresessesescscssscceravesencsccacsansvses %-8
Control-Register Allocation ceenes ceecevessseeenest—8
Trace Entries ... eieecerovarccsatsoenconasnsssncscnces 9-9
Operationciieierecnecvacnnas ceeesesecesecsncascsnane 4-10

Program-Event Recording cesecnne ceccrenenas . !
Control-Register Allocationciciieceeecccccnccncnnccsns 4-11
Operation ceesevcesreersrrceneeress e raeense N e Y4

Identification of Causeceteeecccnccncecocsscocnnne 4-12
Priority of Indication ...cceecvceccccnenn cevsecsesecnns 4-13
Storage—Area Designationcieeenieieinnencacnccncannens 4-14
PER Eventscevceeeccccnne ceesrecscenssan cecsenensenn .4-14
Successful Branching .(..cicieietierececercscccasascanas 4-14
Instruction Fetchingcccceeieerececccncas . a1
Storage Alterationcieiieiriiierireccccancsnnaneast-1lb
General—-Register Alterationcieiiceececccene eees®=15
Indication of PER Events Concurrently with Other
Interruption Conditionscicieiterecreccccccccannnans 4-16
Timing ..ccieerceracconnns cesesesererssrseanennns . e X
Time-of-Day Clockiciiiireeercceccnccncncssccssncnnans 4-18
Formatcc000. cesessescnnnenee ceeccssessescrencnean 4-18
B o - o - X %4~19
Changes in Clock Statecicerererencscevccncccocns eeo@-19
Setting and Inspecting the Clock crteceneenene ¢-20
TOD-Clock Synchronizationccccvene cecneee cesevecccas §-21
Clock Comparator veeesane teececvaa cececctnnns eeod-21
CPU Timer ..cecececencccnnns cessessn cesecne ceseenen ceeeat—22

Externally Initiated Functionsccveeiececences ceceene .4-23

Resets cessesessecnenesreeens ceevsesesssesrsvennen 4-23
CPU Resetc... ceeveevessees cesevresvesroveonennes 4-26
Initial CPU Resetciereierirrerreceneccocscnsncncnns 4-27
Subsystem Reset teeesesan ceeesessscsensssennenes 4-27
Clear Reset ...icieererecececcanncaconcens teetssesnenns §-27
Power~0On Resetcvccceee eeteessestessseesassernnen 4~28

Initial Program Loadingcccceereencccascecrccacnnnes 4-28

Store Status ... cesrecnenn ceccecvsesens ceveees&-29

MultiprocessSing .c.veeeeeeereccsccescnnsenssssscscsnconsssscencsass 4-29
Shared Main Storage ...civeeeecseerorccnvens ceresecene eesG-29
CPU-Address Identification ceescccccscssanns 4-29

CPU Signaling and Responseccceecee ceececnevssccsenenan %-30
Signal-Processor Ordersceccecececcccccscasscsccsascccans 4-30
Conditions Determining Responseccveveveccans cevesen 4-32

Conditions Precluding Interpretation of the
Order Code t.iccireesnceovsccscsvosonosnavencnonnssonses@-32
Status Bitsccveenn ceesveccsas ceecssessescsccsannen 4-33

CONTROL

Chapter 4. Control 6-1

This chapter describes in detail the
facilities for controlling, measuring,
and recording the operation a2f one or
more CPUs.

STOPPED, OPERATING, LOAD, AND CHECK-STOP
STATES

The stopped, operating, load, and
check-stop states are four mutually
exclusive states of the CPU. When the
CPU is in the stopped state,
instructions and interruptions, other
than the restart interruption, are not
executed. In the operating state, the
CPU executes instructions and takes
interruptions, subject to the control of
the program—-status word (PSW) and
control registers, and in the manner
specified by the setting of the
operator-facility rate control. The CPU
is in the load state during the
initial-program-loading operation. The
CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states
can be effected by use of the operator
facilities or by acceptance of certain
SIGNAL PROCESSOR orders addressed to
that CPU. The states are not controlled
or identified by bits in the PSKH. The
stopped, load, and check-stop states are
indicated to the operator by means of
the manual indicator, load indicator,
and check-stop indicator, respectively.
These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is
in the operating state or the load
state. The TOD clock is not affected by
the state of any CPU.

STOPPED STATE

The CPU changes from the operating state
to the stopped state by means of the
stop function. The stop function is
performed when:

. The stop key is activated while the
CPU is in the operating state.

. The CPU accepts a stop or stop-
and-store-status order specified by
a SIGNAL PROCESSOR instruction
addressed to this CPU while it is
in the operating state.

. The CPU has finished the execution
of a unit of operation initiated by
performing the start function with
the rate control set to the
instruction-step position.

When the stop function is performed, the
transition from the operating to the

=2 370-XA Principles of Operation

stopped state occurs at the end of the
current unit of operation. When the
wait-state bit of the PSW is one, the
transition takes place immediately,
provided no interruptions are pending
for which the CPU is enabled. In the
case of interruptible instructions, the
amount of data processed in a unit of
operation depends on the particular
instruction and may depend on the model.

Before entering the stopped state by
means of the stop function, all pending
allowed interruptions are taken while
the CPU is still in the operating state.
They cause the old PSW to be stored and
the new PSW to be fetched before the
stopped state is entered. While the CPU
is in the stopped state, interruption
conditions remain pending.

The CPU 1is also placed in the stopped
state when:

. The CPU reset is completed. Houwev-
er, when the reset operation is
performed as part of initial
program loading for this CPU, then
the CPU is placed in the load state
and does not necessarily enter the
stopped state.

. An address comparison indicates
equality and stopping on the match
is specified.

The execution of resets is described in
the section "Resets™ in this chapter,
and address comparison is described in
the section "Address-Compare Controls"”
in Chapter 12, "Operator Facilities."

If the CPU is in the stopped state when
an INVALIDATE PAGE TABLE ENTRY instruc-
tion is executed on another CPU in the
configuration, the invalidation may be
performed immediately or may be delayed
until the CPU leaves the stopped state.

OPERATING STATE

The CPU changes from the stopped state
to the operating state by means of the
start function or when a restart inter-
ruption (see Chapter 6) occurs.

The start function is performed if the
CPU is in the stopped state and (1) the
start key associated with that CPU is
activated or (2) that CPU accepts the
start order specified by a SIGNAL
PROCESSOR instruction addressed +to that
CPU. The effect of performing the start
function is unpredictable when the
stopped state has been entered by means
of a reset.

When the rate control is set to the
process position and the start function
is performed, the CPU starts operating
at normal speed. When the rate control

PN

is set to the instruction-step position
and the wait-state bit is =zero, one
instruction or, for interruptible
instructions, one unit of operation is
executed, and all pending allowed inter-
ruptions are taken before the CPU
returns to the stopped state. When the
rate control is set to the instruction-
step position and the wait-state bit is
one, the start function causes ho
instruction to be executed, but all
pending allowed interruptions are taken
before the CPU returns +to the stopped
state.

LOAD STATE

The CPU enters the load state when the
load—-normal or load-clear key is acti-
vated. (See the section "Initial
Program Loading™ in this chapter. See

also the section "Initial Program Load-
ing™ in Chapter 17, "1/0 Support Func-
tions.") If the initial-program-loading
operation is completed successfully, the
CPU changes from the load state to the
operating state, provided the rate
control is set to the process position;
if the rate control is set to the
instruction—-step position, the CPU
changes from the load state to the
stopped state.

CHECK-STOP STATE

The check-stop state, which the CPU
enters on certain tvpes of machine
malfunction, is described in Chapter 11,
"Machine-Check Handling." The CPU
leaves the check-stop state when CPU
reset is performed. :

Programming Notes

1. Except for the relationship between
execution time and real time, the
execution of a program is not
affected by stopping the CPU.

2. When, because of a machine malfunc-
tion, the CPU is unable to end the
execution of an instruction, the
stop function is ineffective, and a
reset function has to be invoked
instead. A similar situation
occurs when an unending string of
interruptions results from a PSW
with a PSW-format error of the type
that is recognized early, or from a

persistent interruption condition,

such as one due to the CPU timer.
3. Pending 1I/0 operations may be
initiated, and active I/0 oper-
ations continue to suspension or
completion, after the CPU enters
the stopped state. The inter-
ruption conditions due to
suspension or completion of 1I/0
operations remain pending when the
CPU is in the stopped state.

PROGRAM-STATUS WORD

The current program-status word (PSW) in
the CPU contains information required
for the execution of the currently
active program. The PSW is 64 bits in
length and includes the instruction
address, condition code, and other
control fields. 1In general, the PSW is
used to control instruction sequencing
and to hold and indicate much of the
status of the CPU in relation to the
program currently being executed. Addi-
tional control and status information is
contained in control registers and
permanently assigned storage locations.

The status of the CPU can be changed by
loading a new PSW or part of a PSW.

Control is switched during an
ruption of the CPU by
current PSW, so as to
status of the CPU,
new PSW.

inter-

storing the
preserve the
and then loading a

Execution of LOAD PSW, or the successful
conclusion of the initial-program-
loading sequence, introduces a new PSW.
The instruction address is updated by
sequential instruction execution and
replaced by successful branches. Other
instructions are provided which operate
on a portion of the PSW. The figure
"Operations on PSW Fields™ summarizes
these instructions.

A new or modified PSW becomes active
(that is, the information introduced
into the current PSW assumes control
over the CPU) when the interruption or

the execution of an instruction that
changes the PSW is completed. The
interruption for PER associated with an
instruction that changes the PSW occurs
under control of the PER mask that is
effective at the beginning of the opera-
tion.

Bits 0-7 of the PSW are collectively
referred to as the system mask.

Chapter 4. Control 6-3

Condition
Address- Code and
Problem Space Program Addressing
System Mask PSHW Key State Control Mask Mode
(PSW Bits (PSW Bits (PSW (PSW (PSW Bits (PSW
0-7) 8-11) Bit 15) Bit 16) 18-23) Bit 32)
Instruction Saved| Set |Saved| Set |Saved| Set |Saved]| Set |Saved] Set |Saved| Set
BRANCH AND LINK No No No No No No No No AM No AM No
BRANCH AND SAVE No No No No No No ‘No No No No Yes No
Bkaggg AND SAVE AND SET No No No No No No No No No No Yes Yes!
BRANCH AND SET MODE No No No No No No No No No No Yes!| Yes?
INSERT PROGRAM MASK No No No No No No No No Yeas No No No
INSERT PSW KEY No No Yes No No No No No No No No No
INng;RS?DRESS SPACE No No No No No No Yes No No No No No
c
PROGRAM CALL No No No No Yes Yes No No No No Yes Yes
PROGRAM TRANSFER No No No No No Yes2| No No No No No Yes
SET ADDRESS SPACE CONTROL No No No No No No No Yes No No No No
SET PROGRAM MASK No No No No No No No No No Yes No No
SET PSW KEY FROM ADDRESS No No No Yes No No No No No No No No
SET SYSTEM MASK No Yes No No No No No No No No No No
STORE THEN AND SYSTEM MASK| Yes ANDs!| No No No No No No No No No No
STORE THEN OR SYSTEM MASK Yes ORs No No No No No No No No No No

Explanation:

Cannot be changed from one to zero.

The action takes place only if the associated R field

. In the 31-bit addressing mode,

AM

addressing mode,

the general register

bits 1-7 of the 31-bit address,
ANDs

replaces the current system mask.
ORs

in the instruction is nonzero.

The action depends on the addressing mode, bit 32 of the current PSW.

In the 24-bit
the condition code and program mask are saved in the leftmost byte of

the addressing mode, along with
replace the leftmost byte of the register.

The logical AND of the immediate field in the instruction and the current system mask

The logical OR of the immediate field in the instruction and the current system mask
replaces the current system mask.

Operations on PSW Fields

Programming Note

A summary
or set the problem
mode, and
contained
Linkage"
Execution."

the
Chapter

in
in

of the operations
state,
instruction

section

5,

4-%¢ 370-XA Principles of Operation

which save
addressing
address
"Subroutine
"Program

is

PROGRAM-STATUS-WORD FORMAT

I{E Prog
0|RI0 0 OfT{0|X] Key |1{M|WIP|S|O|C C] Mask |0 0 0 0 0 0 0 O
0 5 8 12 16 18 20 24 31
A Instruction Address
32 63
PSW Format

The following is a summary of the func-—

tions of the PSW fields. (See the
figure "PSW Format.™)

PER Mask (R): DRit 1 controls whether
the CPU is enabled for interruptions
associated with program-event recording
(PER). When the bit is =zero, no PER
event can cause an interruption. When
the bit is one, interruptions are
permitted, subject to the PER-event-mask

bits in control register 9.

DAT Mode (I): Bit 5 controls
implicit dynamic address translation of
logical and instruction addresses used
to access storage takes place. When the
bit is zero, DAT is off, and logical and
instruction addresses are treated as
real addresses. When the bit is one,
DAT 1is on, and the dynamic-address-
translation mechanism is invoked.

I/0 Mask (I0): Bit 6 controls whether
the CPU is enabled for I/0 interrup-
tions. When the bit is zero, an I/0 in-
terruption cannot occur. When the bit
is one, I/0 interruptions are subject to
the I/0-interruption subclass-mask bits
in control register 6. When an I/0-
interruption subclass-mask bit 1is zero,
an I/0 interruption for that 1I/0-
interruption subclass cannot occur; when
the I/0-interruption subclass-mask bit
is one, an I/0 interruption for that
I70-interruption subclass can »ccur.

External Mask (EX): Bit 7
whether the CPU is enabled for inter-
ruption by conditions included in the
external class. When the bit is zero,
an external interruption cannot occur.
When the bit is one, an external inter-
ruption is subject +to the corresponding
external subclass-mask bits in control
register 0; when the subclass-mask bit
is zero, conditions associated with the
subclass cannot cause an interruption;
when the subclass-mask bit 1is one, an
interruption in that subclass can occur.

whether

controls

PSW Key: Bits 8-11 form the access key
for storage references by the CPU. If
the reference is subject to key-

controlled protection, the PSW key is
matched with a storage key when informa-
tion is stored or when information is
fetched from a location that is
protected against fetching. However,
for accesses to the second operand of
MOVE TO PRIMARY and MOVE WITH KEY, the
third operand is used instead of the PSKW
key. The third operand is also used
instead of the PSW key for accesses to
the first operand of MOVE TO SECONDARY.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for inter-
ruption by machine-check conditions.
When the bit is =zero, a machine-check
interruption cannot occur. When the bit
is one, machine-check interruptions due

to system damage and instruction-
processing damage are permitted, but
interruptions due to other machine-

check-subclass conditions are subject to
:he ?zbclass-mask bits in control regis-
er .

Wait State (W): When bit 14 is one, the
CPU is waiting; that is, no instructions
are processed by the CPU, but inter-

ruptions may take place. When bit 14 is
zero, instruction fetching and execution
occur in the normal manner. The wait
indicator is on when the bit is one.

Problem State (P): When bit 15 is one,
the CPU 1is in the problem state. When
bit 15 is zero, the CPU is in the super-
visor state. In the supervisor state,
all instructions are valid. In the
problem state, only those instructions
are valid that provide meaningful infor-
mation to the problem program and that
cannot affect system integrity; such
instructions are called unprivileged
instructions. The instructions that are
never valid in the problem state are
called privileged instructions. When a
CPU in the problem state attempts to
execute a privileged instruction, a
privileged-operation exception is recog-
nized. Another group of instructions,
called semiprivileged instructions, are
executefl by a CPU in the problem staté
only if specific authority tests aré
mety otherwise, a privileged-operation

Chapter 4. Control 6-5

exception or a special-operation excep-
tion is recognized.

Address-Space Control (S): Bit 16, in
conjunction with PSW bit 5, controls the
translation mode. See the section
"Translation Modes™ under "Translation
Control™ in Chapter 3, “Storage.™

Condition Code (CC): Bits 18 and 19 are
the two bits of the condition code. The
condition code is set to 0, 1, 2, or 3,
depending on the result obtained in
executing certain instructions. Most
arithmetic and logical operations, as
well as some other operations, set the
condition code. The instruction BRANCH
ON CONDITION can specify any selection
of the condition-code values as a crite-
rion for branching. A table in Appendix
C summarizes the condition-code values
that may be set for all instructions
which set the condition code of the PSK.

Program Mask: Bits 20-23 are the four
program-mask bits. Each bit is associ-

ated with a program exception, as
follows:
Program-
Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception

results in an interruption. When the
mask bit is =zero, no interruption
occurs. The setting of the exponent-

underflow-mask bit or the significance-
mask bit also determines the manner in
which the operation is completed when
the corresponding exception occurs.

Addressing Mode (A): Bit 32 controls
the size of effective addresses and
effective-address generation. When the
bit is zero, 24-bit addressing is speci-
fied. When the bit is one, 31-bit
addressing is specified. The addressing
mode does not control the size of PER
addresses or of addresses used to access
DAT, ASN, linkage, entry, and trace
tables. See the section "Address Gener-
ation™ in Chapter 5, "Program
Execution,™ and the section "Address
Size and Wraparound" in Chapter 3, "Sto-
rage."

Instruction Address: Bits 33-63 form
the instruction address. This address
designates the location of the leftmost
byte of the next instruction to be
executed, unless the CPU is in the wait
state (bit 14 of the PSW is ona).

Bit positions 0, 2-4%,
unassiogned and must contain zeros. A
specification exception is recognized
when these bit positions do not contain

17, and 24-31 are

%4-6 370-XA Principles of Operation

zeros. When bit 32 of the PSW specifies
the 24-bit addressing mode, bits 33-39
of the instruction address must be
zeros; otherwise, a specification excep-
tion is recognized. A specification
exception is also recognized when bit
position 12 does not contain a one.

CONTROL REGISTERS

The control registers provide for main-
taining and manipulating control infor-
mation outside the PSW. There are
sixteen 32-bit control registers.

All control-register bit positions in
all 16 control registers are installed,
regardless of whether the bit position
is assigned to a facility. One or more
specific bit positions in control regis-
ters are assigned to each facility
requiring such register space.

The LOAD CONTROL instructjon causes all®
control-register positions® within those

registers designated®by the instruction

to be loaded from storage® The

instructions LOAD ADDRESS SPACE PARAME-

TERS, SET SECONDARY ASN, PROGRAM CALL,

and PROGRAM TRANSFER provide specialized

functions to place information into

certain control-register positions.

Information loaded into the control
registers becomes active (that is,
assumes control over the system) at the
completion of the instruction causing
the information to be loaded.

At the time the registers are loaded,
the information is not checked for

exceptions, such as invalid
translation-format code or an address
designating an unavailable or a

protected location. The validity of the
information is checked and the
exceptions, if any, are indicated at the
time the information is used.

Lo %

The STORE CONTROBL instruction causes all
control-register positions, within those
registers designated by the instruction,
to be placed in storage. The
instructions EXTRACT PRIMARY ASN,
EXTRACT SECONDARY ASN, and PROGRAM CALL
provide specialized functions to obtain

information from certain control-
register positions.
Only the general structure of the

control registers is described here; the
definition of a particular control-
register position appears in the
description of the facility with which
the register position is associated.
The figure "Assignment of Control-
Register Fields"™ shows the control-
register positions which are assigned
and the initial value of the field upon
execution of initial CPU reset. All

46 A

control-register positions not listed in
the figure are initialized to zero.

Programming Notes

ring to the entry "control-

assignment" in the Index.

To ensure that
operate correctly if and
facilities using

control-register

existing

register

programs

when new
additional
positions

are

installed, the program should load
1. The detailed definition of a zeros in unassigned control-
particular control-register bit register positions.
position can be located by refer-

Ctrl Initial
Reg |Bits Name of Field Associated with Value
0 1 SSM-suppression control SET SYSTEM MASK 0
0 2 TOD-clock-sync control T0D clock 0
0 3 Low-address-protection control Low-address protection 0
0 4 Extraction-authority control Dual-address-space control 0
0 5 Secondary-space control Dual-address-space control 0
0 6 Fetch-protection override Key-controlled protection 0
0 8-12|Translation format Dynamic address translation 0
0 14 Vector controll Vector operations 0
0 16 Malfunction-alert subclass mask Interruptions 0
0 17 Emergency-signal subclass mask Interruptions 0
0 18 External-call subclass mask Interruptions 0
0 19 TOD-clock sync-check subclass mask |Interruptions 0
0 20 Clock-comparator subclass mask Clock comparator 0
0 21 CPU-timer subclass mask CPU timer 0
0 22 Service-signal subclass mask Service signal 0
0 24 Unused? 1
0 25 Interrupt-key subclass mask External interruptions 1
0 26 Unused? 1
1 0 Space-suitch-event control Dual-address-space control 0
1 1-19|Primary segment-table origin Dynamic address translation 0
1 [25-31{Primary segment-table length Dynamic address translation 0
3 0-15|PSH-key mask Dual-address—-space control 0
3 {16-31|Secondary ASN Dual-address-space control 0
4 0-15jAuthorization index Dual-address—-space control 0
% 116-31}Primary ASN Dual-address—space control 0
5 0 Subsystem-linkage control Dual-address—-space control 0
5 1-24|Linkage-table origin PC-number translation 0
5 125-31}|Linkage-table length PC—number translation 0
6 0-7 (I/0-interruption subclass mask 1/0 0
7 1-19|Secondary segment-table origin Dynamic address translation 0
7 |25-31}]|Secondary segment-table length Dynamic address translation 0
8 (16-31|Monitor masks MONITOR CALL 0
9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
9 2 Storage—-alteration-event mask Program—-event recording 0
9 3 GR-alteration-event mask Program-event recording 0
9 |16-31|PER general-register masks Program—event recording 0
10 1-31|PER starting address Program—-event recording 0
11 1-31|PER ending address Program-event recording 0

Assignment of Control-Register Fields (Part 1 of 2)

Chapter 4. Control

4-7

. address is

Ctrl Initial
Reg |Bits Name of Field Associated with Value
12 0 Branch-trace control Tracing 0
12 1-29]|Trace-entry address Tracing 0
12 30 ASN-trace control Tracing 0
12 31 Explicit-trace control Tracing 0
14 0 Unused? 1
14 1 Unused? 1
14 3 Chann§1~report~pending subclass 170 machine~check handling 0

mas
14 4 Recovery subclass mask Machine-check handling 0
14 5 Degradation subclass mask Machine-check handling 0
14 6 External-damage subclass mask Machine-check handling 1
14 7 Warning subclass mask Machine-check handling 0
14 12 ASN-translation control ASN translation 0
14 {13-31]ASN-first-table origin ASN translation 0

Explanation:

The fields not listed are unassigned.
control-register positions is zero.

1

System/7370 definition.

The initial value for all unlisted

Bit 14 of control register 0, the vector-control bit, is described in the
publication IBM Svstems/370 Vector QOperations, SA22-7125.

This bit is not used but is initialized to one for consistency with the

Assignment of Control-Register Fields (Part 2 of 2)

TRACING

Tracing assists in the determination of
system problems by providing an ongoing
record in storage of significant events,
Tracing consists ‘of three separately
controllable - functior& which cause
entries to be made in a trace table:
branch tracirg, ASN tracingi and expliocsr
it tracing. Branch tracing and ASN
tracing together are referred to as
implicit tracing.

When branch tracing is dn, an entry 5
made . in - the -trace- table for each
execution of certain branch instructions
when they cause branching. The branch
placed in the trace entry.
The trace entry also indicates the
dddressing mode in effect after branch-
ing. The branch instructions that are
traced are:

BRANCH AND LINK -(BALR only) when
the R, field is not zero

BRANCH AND SAVE ¢BASRfonly) when
the R, field is not =zero

'BRANCH AND '~ SAVE AND SET -MOBE when
the R, field is not zero

When' ASN tracifig is on, an entry is made
in the trace table for each execution of
the following instructions:

PROGRAM CAEL
FROGRAM TRANSFER
“SET ‘SECONDARY ABN

4-8 370-XA Principles of Operation

When explicit tracinmg is on, executiom
of TRACE causes an entry to be made in
the trace table. This entry includes
bits 16-63 from the TOD clock, the
second operand of the TRACE instruction,
and the contents of a range of general
registers.

CONTROL-REGISTER ALLOCATION

The information to control tracing is
contained in control register 12 and has
the following format:

B Trace-Entry Address AlE
0 1 30 31

Branch-Trace-Control Bit (B): Bit 0 of
control register 12 controls wuwhether
branch tracing is turned on or off. If
the bit is zero, branch tracing is off;
if the bit is one, branch tracing is on.

Trace-Entry Address: Bits 1-29 of
control register 12, with two zero bits
appended on the right, form the rea
adgress of the next trace entry to be
made.l

N- ce-Control Bit (A): Bit 30 of

control register 12 controls whether ASN

A

tracing is turned on or off. If the bit trace table,
is zero, ASN tracing is off; if the bit
is one, ASN tracing is on. the TRACE ins

Explicit-Trace-Controd Bit (E):
of control register
explicit tracing
If the bit is
off$ which causes

is turned

bit is one,

instruction creates an entry

31-Bit Branch

the execution of the TRACE

Bit 31

12 contrcls whether
on or
zerop explicit iracing i§
the TRACE instruction
to be executed as a no-operatiof;

off. TRACE ENTRIES

if the

in the

1 Branch Address

0 1

24-Bit Branch

31

00000000 Branch Address

0 8

SET SECONDARY ASHN

31

00010000{00000000

New SASN

0 8 16

PROGRAM CALL

31

except that

truction is one.

PSW

00100001 |Key PC Number

GR 14 After

0 8 12

PROGRAM TRANSFER

32

63

PSW

00110001 Key (0000 New PASN

R, Before

0 8 12 16

TRACE

32

63

0111| N 00000000

TOD-Clock Bits 16-63

0 4 8 16

TRACE Operand

/

)

64

Trace-Entry Formats

(Ri) - (Rs
/
96

95 + 32(N+1)

Chapter 4. Control

no entry
made when bit 0 of the second operand of

is

Trace entries are of six types, as shoun
in the figure "Trace-Entry Formats."

6-9

Branch Address: The branch address is
the address of the next instruction to
be executed when the branch is taken.
When the 31-bit addressing mode is in
effect after branching, bit positions
1-31 of the trace entry for a branch
instruction contain the branch address.
When the 24-bit addressing mode is in
effect after branching, bit positions
8-31 contain the branch address.

New SASN: Bit positions 16-31 of the
trace entry for SET SECONDARY ASN
contain the ASN value loaded into
control register 3 by the instruction.

PSW Key: Bit positions 8-11 of the
trace entries made on execution of
PROGRAM CALL and PROGRAM TRANSFER
ggatain the PSW key from the current

PC Number: Bit positions 12-3% of the
trace entry made on execution of PROGRAM
CALL contain the value of the rightmost
20 bits of the second-operand address.

GR14 After: Bit positions 32-63 of the
trace entry made on execution of PROGRAM
CALL contain the information which is
placed in general register 14: the
addressing bit, the return address, and
the problem-state bit.

New PASN: Bit positions 16-31 of the
trace entry made on execution of PROGRAM
TRANSFER contain the new PASN (which may
be zero) specified by the instruction.

R2 Before: Bit positions 32-63 of the
trace entry made on execution of PROGRAM
TRANSFER contain the contents of the
general register designated by the R,
field of the instruction. Bits 0-30 of
the general register designated by the
R, field replace bits 32-62 of the PSW.
Bit 31 of the same general register
;gﬁlaces the problem-state bit of the

Number of Registers (N): Bits 4-7 of
the trace entry for TRACE contain a
value which is one less than the number
of general registers which have been
provided in the trace entry. The value
of N ranges from zero, meaning the
contents of one general register are
provided in the trace entry, to 15,
meaning the contents of all 16 general
registers are provided.

TJOD-Clock Bits 16-63: Bits 16-63 of the
trace entry for TRACE are obtained from
bit positions 16-63 of the T0D clock, as
would be provided by a STORE CLOCK
instruction executed at the time the
TRACE instruction was executed.

TRACE Operand: Bits 64-95 of the trace
entry for TRACE contain a copy of the 32
bits of the second operand of the TRACE
instruction for which the entry is made.

4~10 370-XA Principles of Operation
r

(R1)-(R3): The four-byte fields start-
ing with bit 96 of the trace entry for
TRACE contain the contents of the gener-
al registers whose range is specified by
the R, and R, fields of the TRACE
instruction. The general registers are
stored in ascending order of register
numbers, starting with general register
Ry and continuing up to and including
general register R;, with general regis-
ter 0 following general register 15.

Programming Note

The size of the trace entry for TRACE in
units of words is 3 + (N + 1}, The
maximum size of an entry is 19 worgs, or
76 bytes.

OPERATION

When an instruction which 1is subject to
tracing is executed, and the correspond-
ing tracing function 1is turned on, a
trace entry of the appropriate format is
made. The real address of the trace
entry is formed by appending two =zero
bits on the right to the value in bit
positions 1-29 of control register 12.
The address in control register 12 is
subsequently increased by the size of
the entry created.

No trace entry is stored if the incre-
menting of the address in control regis-
ter 12 would cause a carry to be
propagated 1into bit position 19 (that
is, the trace-entry address would be in
the next 4K-byte block). If this would
be the case for the entry to be made, a
trace-table exception is recognized.
For the purpose of recognizing the
trace-table exception in the case of a
TRACE instruction, the maximum length of
76 bytes is used instead of the actual
length.

The storing of a trace entry is not
subject to key-controlled protection
(nor, since the trace-entry address is
real, is it subject to page protection),
but it is subject to low-address
protection; that 1is, if the address of
the trace entry due to be created is in
the range 0-511 and bit 3 of control
register 0 is one, a protection excep-
tion 1is recognized, and instruction
execution is suppressed. If the address
of a trace entry is invalid, an address-
ing exception is recognized, and
instruction execution is suppressed.

The three exceptions associated with
storing a trace entry (addressing,
protection, and trace table) are collec-
tively referred toc as trace exceptions.

AN

EN

If a program interruption takes place
for a condition which is not a trace-
exception condition and for which

execution of an instruction is not
completed, it is unpredictable whether
part or all of any trace entry due to be
made for such an interrupted instruction
is stored in the trace table. Thus, for
a condition which would ordinarily cause
nullification or suppression of instruc-
tion execution, storage locations may
have been altered beginning at the
location designated by control register
12 and extending up to the length of the
entry that would have been created.

The order in which information is placed
in a trace entry 1is unpredictable.
Furthermore, as observed by other CPUs
and by channel programs, the contents of
a byte of a trace entry may appear to
change more than once before completion

of the instruction for which the entry
is made.
The trace-entry address in control

register 12 is updated only on
completion of execution of an instruc-
tion for which a trace entry is made.

A serialization and
ronization function is
the operation begins and again after the
operation is completed.

checkpoint—-synch-

PROGRAM-EVENT RECORDING

The program—-event-recording (PER) facil-
ity is provided to assist in debugging
programs. It permits the program to be

alerted +to the following types of
events:
. Execution of a successful branch

instruction.

. Fetching of an instruction from the
designated storage area.

- Alteration of the contents of the

designated storage area.

. Alteration of the contents of
designated general registers.

The program can selectively specify that
one or more of the above types of events
be recognized. The information concern-

ing a PER event is provided to the
program by means of a program inter-
ruption, with the cause of the
interruption being identified in the

interruption code.

CONTROL-REGISTER ALLOCATION

The information for controlling PER
resides in control registers 9, 10, and

performed before

11 and has the following format:

Control Register 9

EM Gen.-Reg. Masks
0 4 16 31

Control Register 10

Starting Address

Control Register 11

Ending Address

0 1 31

PER-Event Masks (EM): Bits 0-3 of
control register 9 specify which types
of events are recognized. The bits are
assigned as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event
Bit 2: Storage-alteration event
Bit 3: General-register—alteration
event
Bits 0-3, when ones, specify that the

corresponding types of events be recog-
nized. When a bit is zero, the corre-
sponding type of event is not
recogni zed.

PER General-Register Masks: Bits 16-31
of control register 9 specify which
general registers are designated for
recognition of the alteration of their
contents. The 16 bits, in the sequence
of ascending bit numbers, correspond one
for one with the 16 registers, in the
sequence of ascending register numbers.
When a bit is one, the alteration of the
associated register is recognized; when
it is zero, the alteration of the regis-
ter is not recognized.

PER Starting Address: Bits 1-31 of
control register 10 are the address of
the beginning of the designated storage
area.

PER Ending Address: Bits 1-31 of
control register 11 are the address of

the end of the designated storage area.

Programming Notes

1. Models nmay operate at reduced
performance while the CPU is
enabled for PER events. In order
to ensure that CPU performance is

Chapter 4. Control 6-11

not degraded because of the opera-
tion of the PER facility, programs
that do not use it should disable
the CPU for PER events by setting
either the PER mask in the PSW to
zero or the PER-event masks in
control register 9 to zero, or
both. No degradation due to PER
occurs when either of these fields
is zero.

2. Some degradation may be experienced
on some models every time control
registers 9, 10, and 11 are loaded,
even when the CPU is disabled for
PER events (see the programming
note under "Storage—Area Desig-
nationm).

OPERATION

PER is wunder control of bit 1 of the
PSW, the PER mask. When the PER mask, a
particular PER-event mask bit, and, for
general-register-alteration events, a
particular general-register mask bit are
all ones, the CPU is enabled for the
corresponding type of event; otherwise,
it is disabled.

An -dinterruption due to a PER event
normally occurs after the execution of
the .instruction responsiblé for the
event. The occurrence of the event does
not affect the execution of the instruc-
tion, which may be either completed,
partially completed, terminated,
suppressed, or nullified.

When the CPU is disabled for a partic-
ular PER event at the time it occurs,
either by the PER mask in the PSW or by
the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or
to the PER control fields in control
registers 9, 10, and 11 affects PER
starting with the execution of the imme-
diately following instruction. If a PER

event occurs during the execution of an
instruction which changes the CPU from
being enabled to being disabled for that
typedof event, that PER event is recog-
nized.

may be recognized in a triaf

AL 'of an instruction, and subse-
quently the instruction, DAT-table
entries, and operands may be refetched
for the actual execution. If any
refetched field was modified by another
CPU or by a channel program between the
trial execution and the actual
exacution, it is unpredictable whether
the PER events indicated are for the
trial or the actual execution.

For special-purpose instructions that
are not described in this publication,

4~12 370-XA Principles of Operation

the operation of PER may not be exactly
as described in this section.

Identification of Cause

A program interruption for PER sets bit
8 of the interruption code to one and
places identifying information in real
storage locations 150-155. The informa-
tion stored has the following format:

Locations 150-151:

PERC}] 000000000000
0 4 15

Locations 152-155:

0 PER Address
0 1 31

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit posi-
tions 0-3 of real location 150, the PER
codae. The bit position in the PER code
for a particular type of event is the
same as the bit position for that event
in the PER-event-mask field in control
register 9. When a program interruption
occurs, more than one type of PER event

can be concurrently indicated. Addi-
tionally, if another program-
interruption condition exists, the

interruption code for the program inter-
ruption may indicate both the PER events
and the other condition. Zeros are
stored in bit positions 6-7 of location
igg and in bit positions 0-7 of location

PER Address: The ':PER .addres¥ a
Tocations 152-155 contalns the instruc-
tion addre§§ used to'” fetch the instruc—=;
tion in’" execuflon wheh one or "more PERY
events were recognizéd. When the
instruction is the target of EXECUTE,
the instruction address used to fetch
the EXECUTE instruction is placed in the
PER~address field. A zero is stored in
bit position 0 of real location 152.

instruction
address in the program old PSW is the

Instruction Address: The

-address of the instruction which would®

g8 execited hex® uniess another
program condition is also indicated, in
which case the instruction address is
that determined by the instruction
ending due to that condition.

ILC: The ILC indicates the length of
the instruction designated by the PER
address, except when a concurrent spec-
ification exception for the PSW intro-

RN

duced by LOAD PSW or a supervisor-call
interruption sets an ILC of 0.

Priority of Indication

When a program interruption
more than one PER event has been recog-
nized, all recognized PER events are
concurrently indicated in the PER code.
Additionally, if another program-—
interruption condition concurrently
exists, the interruption code for the
program interruption indicates both the
PER condition and the other condition.

In the case of an instruction-fetching
event for SUPERVISOR CALL, the program
interruption occurs immediately after
the supervisor-call interruption.

If a PER event
execution of

occurs and

is recognized during the
an instruction which also
introduces a new PSW with the type of
PSW-format error which 1is recognized
early (see the section "Exceptions Asso-
ciated with the PSW" in Chapter 6,
"Interruptions™), both the specification
exception and PER are indicated concur-
rently in the interruption code of the

program interruption. However, for a
PSW-format error of the type which is
recognized late, only PER is indicated

in the interruption
cases, the invalid PSW
program old PSW.

code. In both
is stored as the

. norma ffagt . the' ending - of. ingtruc®
PR execution® However, in the follow-

ing cases, execution of an interruptible
instruction is not completed normally:

. When the instruction is
interrupted for an asynchronous
condition (I/0, external, restart,
or repressible machine-check condi-
tion), a program interruption for
the PER event occurs first, and the
other interruptions occur subse-
quently (subject to the mask bits in
the new PSW) in the normal priority
order.

due to be

. When the stop function is performed,
a program interruption indicating
the PER event occurs before the CPU
enters the stopped state.

- When any program exception is recog-
nized, PER events recognized for
that instruction execution are indi-
cated concurrently.

the model, in certain
situations, recognition of a PER
event may appear to cause the
instruction to be interrupted prema-
turely without concurrent indication
of a program exception, without an
interruption for any asynchronous

. Depending on

condition, or without the CPU enter-
ing the stopped state.

Programming Notes

1. In the following cases, an instruc-
tion can both cause a program
interruption for a PER event and
change the value of masks control-
ling an interruption for PER
events. The original mask values
determine whether a program inter-
ruption takes place for the PER
event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-
fetching event and disable the
CPU for PER interruptions.
Additionally, STORE THEN AND
SYSTEM MASK can cause a
storage-alteration event to be
indicated. In all these cases,
the program old PSW associated
with the program interruption
for the PER event may indicate
that the CPU was disabled for
PER events.

b. An instruction—-fetching event
may be recognized during
execution of a LOAD CONTROL
instruction that changes the
value of the PER-event masks in
control register 9 or the
addresses in control registers
10 and 11 controlling indi-
cation of instruction-fetching
events.

2. No instruction can both change the
values of general-register-altera-
tion masks and cause a general-
register-alteration event to be
recognized.

3. When a PER interruption occurs
during the execution of an inter-
ruptible instruction, the ILC indi-

cates the length of that
instruction or EXECUTE, as appro-
priate. When a PER interruption

occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates
the length of these instructions or
EXECUTE, as appropriate, unless a
concurrent specification exception
on LOAD PSW calls for an ILC of 0.

4. When a PER interruption is caused
by branching, the PER address iden-
tifies the branch instruction (or
EXECUTE, as appropriate), whereas
the old PSW points to the next
instruction to be executed. When
the interruption occurs during the
execution of an interruptible
instruction, the PER address and

Chapter 4. Control 6-13

the instruction address in the old
PSW are the same.

STORAGE-AREA DESIGNATION

Two types of PER events -- instruction

fetching and storage alteration —-

involve the designatien-of -an*area in.

stoPade.d The storage area starts at the
location designated by the starting
address in control register 10 and
extends up to and including the location
designated by the ending address in
control register 11. The area extends
to the right of the starting address.

An instruction-feteching ‘event occurs
whenever the . first byte of > an instruc#*
tion or the first byte of the target of
an EXECUTE instruction is fetched frow
the - -designated areat A
alteration " avent ‘occurs when a store
86CesSs . is made to the desvgnated area by
usingvan-operand addmgssy that is defined
to be.a. logie¢al or a ‘virtual addressi A
torage alteration event does not occur
for a store access made with an operand
address defined to be a real address.

The set of addresses designated for
instruction—-fetching and storage-
alteration events wraps around at
address 2,147,483,647; that is, address
0 is considered to follow address
2,147,483,647. When the starting
address is less than the ending address,
the area is contiguous. When the start-
ing address is greater than the ending
address, the set of locations designated
includes the area from the starting
address to address 2,147,%83,647 and the
area from address 0 to, and including,
the ending address. When the starting
address is equal to the ending address,
only that one location is designated.

Address comparison for instruction-
fetching and storage-alteration events
is always performed using 31-bit
addresses. This is accomplished in the
24-bit addressing mode by extending the
virtual, logical, or instruction address
on the left with seven zero bits before
comparing it with the starting and
ending addresses.

Programming Note

In some models, performance of address-
range checking is assisted by means of
an extension to each page-table entry in
the TLB. In such an implementation,
changing the contents of control regis-
ters 10 and 11 when the instruction-
fetching or storage-alteration—-event
mask is one, or setting either of these

4-14 370~-XA Principles of Operation

storage-—«

PER-event masks to one, may cause the
TLB to be cleared of entries. This
degradation may be experienced even when
the CPU is disabled for PER events.
Thus, when possible, the program should
avo;g loading control registers 9, 10,
or .

PER EVENTS

Successful Branching

A successful-branching event occurs
whenever one of the following instruc-
tions causes branching:

BRANCH AND LINK (BAL, BALR)

BRANCH AND SAVE (BAS, BASR)

BRANCH AND SAVE AND SET MODE
(BASSM)

BRANCH AND SET MODE (BSM)

BRANCH ON CONDITION (BC, BCR)

BRANCH ON COUNT (BCT, BCTR)

BRANCH ON INDEX HIGH (BXH)

BRANCH ON INDEX LOW OR EQUAL (BXLE)

A successful-branching event also occurs
whenever one of the following
instructions is completed:

PROGRAM CALL (PC)
PROGRAM TRANSFER (PT)

A successful-branching event causes a
PER successful-branching event to be
recognized if bit 0 of the PER-event
@asks is one and the PER mask in the PSW
is one.

A PER successful-branching event is

indicated by setting bit 0 of the PER
code to one.

Instruction Fetching

An instruction-fetching event occurs if
the first byte of the instruction is
fetched from the storage area designated
by control registers 10 and 11. An
instruction-fetching event also occurs
if the first byte of the target of
EXECUTE is within the designated storage
area.

An instruction-fetching event causes a
PER instruction-fetching event to be
recognized if bit 1 of the PER-event
masks is one and the PER mask in the PSW
is one.

The PER instruction-fetching event is
indicated by setting bit 1 of the PER
code to one.

Storage Alteration

A storage-alteration event occurs when-
ever a CPU, by using a logical or virtu-
al address, makes a store access without
an access exception to the storage area
ggsignated by control registers 10 and

The contents of storage are considered
to have been altered whenever the CPU
executes an instruction that causes all
or part of an operand to be stored with-
in the designated storage area. Alterf-
ation is considered to take plage
whenever storing is considered to take
place for purposes of indicating
protection exceptions, except that
recognition does not occur for the stor-
ing of data by a channel program. (See
the section "Recognition of Access
Exceptions™ in Chapter 6, "Interrup-
tions.") Storing constitutes alteration
for PER purposes even if the value
stored is the same as the original
value.

Implied locations that are referred to
by the CPU in the process of performing
an interruption are not monitored. Such
locations include PSW and interruption-
code locations. These locations, howev-
er, are monitored when information is
stored there explicitly by an instruc-
tion. Similarly, monitoring does not
apply to the storing of data by a chan-
nel program.

The I/0 instructions are considered to
alter the second-operand location only
when storing actually occurs.

When an interruptible vector instruction
which performs storing is interrupted,
and PER storage alteration applies to

storage locations corresponding to
elements due to be changed beyond the
point of interruption, PER storage

alteration is indicated if any such
store actually occurred and may be indi-
cated even if such a store did not
occur. PER storage alteration is
reported for such locations only if no
access exception exists at the time that
the instruction is executed.

Storage alteration does not apply to
instructions whose operands are speci-
fied to be real addresses. Thus, stor-
age alteration does not apply to
INVALIDATE PAGE TABLE ENTRY, RESET
REFERENCE BIT EXTENDED, SET STORAGE KEY
EXTENDED, TEST BLOCK, and TEST PENDING
;NTERRU?TION (when the effective address
is zero).

A storage-alteration event causes a PER
storage-alteration event to be recog-
nized if bit 2 of the PER-event masks is
one and the PER mask in the PSW is one.

A PER storage-alteration event is indi-

cated by setting bit 2 of the PER code
to one.

General-Register Alteration

A general-register-alteration event

occurs whenever the contents of a gener-
al register are replaced.

The contents of a general register are
considered to have been altered whenever
a new value is placed in the register.
Recognition of the event 1is not contin-
gent on the new value being different
from the previous one. The execution of
an RR-format arithmetic, logical, or
movement instruction is considered to
fetch the contents of the register,
perform the indicated operation, if any,
and then replace the value in the regis-
ter. A register can be designated by an
RR, RRE, RS, or RX instruction or
implicitly, such as in TRANSLATE AND
TEST and EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to
alter the contents of the four registers
speci fying the two operands, including
the cases where the padding byte is
used, when both operands have zero
length. However, when condition code 3
is set for MOVE LONG, the general regis-
ters containing the operand lengths may
or may not be considered as having been
altered.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or
general-register pair, designated by R,,
only when the contents are actually
replaced, that 1is, when the first and
second operands are not equal.

It is unpredictable whether general-
register-alteration events are indicated
for instructions of the vector facility.

A general-register—alteration event
causes a PER general-register-alteration
event to be recognized if bit 3 of the
PER-event masks is one, the PER mask in
the PSW is one, and the corresponding
bit in the PER general-register mask is
one.

The PER general-register-alteration

event is indicated by setting bit 3 of
the PER code to one.

Chapter 4. Control 6-15

Programming Note

The following are some examples of
general-register alteration:

1. Register-to-register load instruc-
tions are considered to alter the
register contents even when both
operand addresses. designate the
same register.

2. Addition or subtraction of zero and
multiplication or division by one
a;g considered to constitute alter-
ation.

3. Logical and fixed-point shift oper-
ations are considered to alter the
register contents even for shift
amounts of zero.

4. The branching instructions BRANCH
ON INDEX HIGH and BRANCH ON INDEX
LOW OR EQUAL are considered to
alter the first operand even when
zero is added to its value.

INDICATION OF PER EVENTS CONCURRENTLY
WITH OTHER INTERRUPTION CONDITIONS

The following rules govern the indi-
cation of PER events caused by an
instruction that also causes a program
exception, a monitor event, a space-
switch event, or a supervisor-call
interruption.

1. The indication of an .instruction-
fetching event does not depend on
whether the execution of the
instruction was completed, termi-
nated, suppressed, or nullified.
The event, however, is not indi-
cated when an access exception
prohibits access to the first half-
word of the instruction. When the
first halfword of the instruction
is accessible but an access excep-
tion applies to the second or third
halfword of the instruction, it is
unpredictable whether the
instruction-fetching event is indi-
cated. Similarly, when an access

4~16 370~XA Principles of Operation

exception prohibits access to all
or a portion of the target of
EXECUTE, it is unpredictable wheth-
er the instruction-fetching events
for EXECUTE and the target are
indicated.

2. When the operation
partially completed, the event is
indicated, regardless of whether
any program exception, space-switch
event, or monitor event 1is also
recognized.

is completed or

3. Successful branching, storage
alteration, and general-register
alteration are not indicated for an
operation or, in case the instruc-

tion is interruptible, for a unit
of operation that is suppressed or
nullified.

4. When the execution of the instruc-
.tion is terminated, general-
register or storage alteration is
indicated whenever the event has
occurred, and a model may indicate
the event if the event would have
occurred had the execution of the
instruction been completed, even if
altering the contents of the result
field is contingent on operand
values.

5. When LOAD PSW, SET SYSTEM MASK,
STORE THEN OR SYSTEM MASK, or
SUPERVISOR CALL causes a PER condi-
tion and at the same time intro-
duces a new PSW with the type of
PSW-format error that is recognized
immediately after the PSW becomes
active, the interruption code iden-
tifies both the PER condition and
the specification exception. When
LOAD PSW or SUPERVISOR CALL intro-
duces a PSW-format error of the
type that is recognized as part of
the execution of the follouwing
instruction, the PSW is stored as
the old PSW without the specifica-
tion exception being recognized.

The indication of PER events concurrent-
ly with other program-interruption
conditions is summarized in the figure
"Indication of PER Events with Other
Concurrent Conditions."™

£

PER Event
Tvpe
of Instr |Storage GR
Concurrent Condition Ending|Branch{Fetch JAlter. [Alter.
Specification
0dd instruction address S No No No No
in the PSKW
Instruction access
First halfword N or S No No No No
Second, third halfwords N or S No U No No
Specification
EXECUTE target address odd S No U No No
EXECUTE target access N or S No U No No
Other nullifying N No Yes Nol Nol
Other suppressing] No Yes Nol Nol
All terminating T No Yes Yes? Yes?2
All completing C Yes Yes Yes Yes
Explanation:
1 Although PER events of this type are not indicated for

the current unit of operation of an interruptible in-
struction, PER events of this type that were recognized
on completed units of operation of the interruptible
instruction are indicated.

This event may be indicated, depending on the model, if
the event has not occurred but would have been indicated
if execution had been completed.

in the case of the interruptible in-
the unit of operation is completed.

in the case of the interruptible in-
unit of operation is nullified.

in the case of the interruptible in-
the unit of operation is suppressed.

is indicated with the other program-th ¢
a

the contents of the designated storage location or

or an attempt was made
first byte is located

C The operation or,
structions,
N The operation or,
structions, the
S The operation or,
structions,
T The execution of the instruction is terminated.
Yes The PER event
fnterruption condition if the event has occurred;
1S5,
general register were altered,
to execute an instruction whose
in the designhated storage area.
No The PER event is not indicated.
U It is unpredictable whether the

PER event is indicated.

Indication of PER Events with Other Concurrent Conditions

Programming Notes

1.

necessary,

cations from
The execution of the interruptible following
instructions MOVE LONG, TEST BLOCK, cation of the
and COMPARE LOGICAL LONG can cause during

events for
ation
Additionally,
the storage-alteration event.

Interruption of such an
may cause
cated more

general-register alter- instructions:
instruction fetching.

MOVE LONG can cause

and

a.
is
instruction
execution,
er it is

instruction
a PER event to be indi-
than once. It may be

Chapter 4. Control

for a program
to remove the redundant event indi-
the PER data.
rules govern
applicable
execution

therefore,

The instruction-fetching
indicated

regardless of wheth-
the initial execution
or a resumption.

b. The general-register-alteration
event s indicated on the
initial execution and on each
resumption and does not depend
on whether or not the register
actually is changed.

c. The storage-alteration event is
indicated only when data has
been stored in the designated
storage area by the portion of
the operation starting with the
last initiation and ending with
the last byte transferred
before the interruption. No
special indication 1is. provided
on premature interruptions as
to whether the event will occur
again upon the resumption of
the operation. When the desig-
nated storage area is a single
byte location, a storage-
alteration event can be
recognized only once in the
execution of MOVE LONC.

2. The following is an outline of the
general action a program must take
to delete multiple entries in the
PER data for an interruptible
instruction so that only one entry
for each complete execution of the
instruction is obtained:

a. Check to see if the PER address
is equal to the instruction
address in the old PSW and if
the last instruction executed
was interruptible.

b. If both conditions are met,
delete instruction-fetching and
register-alteration events.

c. If both conditions are met and
the event is storage
alteration, delete the event if
some part of the remaining
destination operand is within
the designated storage area.

TIMING

The timing facilities include three

facilities for measuring time: the TOD

g!ock, the clock comparator, and the CPU
imer.

In a multiprocessing configuration, a

single TOD clock may be shared by more

than one CPU, or each CPU may have a

separate TOD clock. However, each CPU

2@5 a separate clock comparator and CPU
imer.

4-18 370-XA Principles of Operation

TIME-OF-DAY CLOCK

The time-of-day (T0D) clock provides a
high-resolution measure of real time
suitable for the indication of date and
time of day. The cycle of the clock is
approximately 143 years.

In an installation with more than one
CPU, each CPU may have a separate TOD
clock, or more than one CPU may share a
clock, depending on the model. In all
c?sea, each CPU has access to a single
clock.

Format

The TOD clock is a binary counter with
the format shown in the following illus-
tration. The bit positions of the clock
are numbered 0 to 63, corresponding to
the bit positions of a 64-bit unsigned
binary integer.

1 microsecond——
¥

0 51 63

In the basic form, the TOD clock is
incremented by adding a one in bit posi-
tion 51 every microsecond. I