
Systems Network Architecture 

LU 6.2 Reference: 
Peer Protocols 

SC31-6808-0 



0 

0 

0 

========== = :=:. 55 ====-=':'= 
® 

Systems Network Architecture 

LU 6.2 Reference: 
Peer Protocols 

SC31 ·6808-0 



·, ,-.... 

First Edition (September 1988) 

Changes are made periodically to this publication; these changes will be incorporated into new editions 
of this publication. It is possible that this material may contain references to, or information about, 
IBM products (machines and programs) or services that are not announced in your country. Such references 
or information must not be construed to mean that IBM intends to announce such IBM products or services 
in your country. 

IBM may have patents or pending patent applications covering subject matter described in this document. 

c 

The furnishing of this document does not of itself constitute or imply a grant of Ii) any license under(~,, 
any patents, patent applications, trademarks, copyrights, or other similar rights of IBM or of any third 
partyJ or (ii) any right to refer to IBM in any advertising,or other promotional or marketing activities. 
IBM assumes no responsibility for any infringement of patents or other rights that may result from use of 
the subject matter described in this document or for the manufacture, use, lease, or sale of machines or 
programs described herein, outside of any responsibilities assumed via the agreement for the purchase of 
IBM machines and the agreement for IBM li,censed programs. 

Licenses U'lder IBM's utility patents are available on reasonable and nondiscriminatory terms and condi­
tions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing 
should be directed in writing to the IBM Director of Commercial Relations, International Business 
Machines Corporation, Armonk, New York, 10504. 

The following sentence does not apply to the United Kingdom or any country where such prov1s1ons are 
inconsistent with local law: International Business Machines provides this publication "As Is" without 
warranty of any kind, either express or implied, including, but not limited to, the implied warranties of 
merchantability or fitness for a particular p\Jrpose. Hithin the United States, some states do not allow 
disclaimer of express or implied warranties in certain transactionsJ therefore, this statement may not 
apply to you. 

Publications are not stocked at the address given belows requests for IBM publications should be made to 
your IBM representative or to the IBM branch office serving your locality. 

A form for reader's comments is provided at the back of this publication. If the form has been removed,(~' 
comments may be addressed to IBM Corporation, Networking Architecture, Department E96, P.O. Box 1:?195, 
Research Triangle Park, North Carolina 27709, U.S.A. IBM may use or distribute any of the information 
you supply in any way it bel_ieves appropriate without incurring any obligation whatever. You may, of 
course, continue to use the information you supply. 

le) Copyright International Business Machines Corporation 1988. All rights reserved. 



()PREFACE 

0 

CJ 

This is one of two books that describe, at the implementation level, the Systems Network Archi­
tecture (SNA) logical unit ILUl type 6.2 protocols. This book concerns the SSCP-independent LU 
6.2 protocols (or ~ protocols, not requiring mediation by a system services control point 
during LU-LU session initiation J; the second book, SNA Format and Protocol Reference Manual: 
Architecture Logic for LU Type 6.2, SC30-3269, concernstheSSCP-dependent LU 6.2 protocols 
(those protocols involvmg ""iiiedialion by a system services control point during LU-LU session 
initiation). LU-LU protocols not related to session-initiation and -termination are common to 
both SSCP-dependent and -independent LU 6.2 protocols; these common protocols will be updated in 
the future only in this book, which therefore has precedence over the other book for information 
on these protocols. 

This book does not describe any specific machines or programs that may implement SNA, nor does 
it describe any implementation-specific subsets or deviations from the architectural description 
that may appear within any IBM SNA product. These matters, as well as information on SNA prod­
uct installation and system definition, are described in the appropriate publications for the 
particular IBM SNA machines or programs to be used. 

The following books should be read in conjunction with this one. 

COREQUISITE PUBLICATIONS 

• SNA Format and Protocol Reference Manual: Architecture Logic for LU Type 6. 2, 
SC30-~reference information on SSCP-dependent protocols for LU 6.2. 

• SNA Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084--reference informa­
tion on LU type 6.2 verbs for programme;:s-;;riting transaction programs to run on SNA. 

• SNA Formats, GA27-3136-information on LU 6.2 and other SNA formats. 

PREREQUISITE PUBLICATIONS 

• 

• 

SNA Concepts and Products, GC30-3072-basic information on SNA for those readers wanting 
iiilher an overview or a foundation for further study. 

SNA Technical Overview, GC30-3073-addi tional details on SNA, especially on functions and 
control sequences; bridges the gap between the most elementary overview of SNA and the 
detailed descriptions of the formats and protocols. 

RELATED PUBLICATIONS 

• 

• 

• 

1 

SAA Common Pf?9ramming Interface: Communications Reference, SC26-4399--description of Sys­
tems Application Architecture•s 1 Communications Interface, which provides a high-level pro­
gramming interface to LU 6.2. 

SNA Format and Protocol Reference Manual: Architectural Logic, SC30-3112-comprehensive 
'lnlormahon oothe formats and protocols of SNA type 1, 2.0, 4, and 5 no.des. 

SNA-Sessions Between Logical Units, GC20-1868--reference information on SNA formats and 
protocols for LU types other than type 6.2, 

Systems Application Architecture is a trademark of International Business Machines Corpo­
ration. 

Preface iii 



• 

• 

• 

SNA ~ 2.1 Node Reference !abbreviated T2.l Node Reference), SC30-3422~reference informa-
tion on type 2.r nOCte protocols. -- --

SNA Format and Protocol Reference Manual: Distribution Services, SC30-3098--reference 
Inlormation or1"lormats and protocols for SNA OistribUtion Services. 

Document Intercna~ Architecture--Concepts and Structures, SC23-0759--reference information 
on Document Inter ange Architecture. ~-

iv SNA LU 6.2 Reference: Peer Protocols 

c 

c 



C~.. · CONTENTS 
\ 
I 

, 

0 

0 

0 

CHAPTER 1. INTRODUCTION 

Use and Organization of This Book 
General Concepts 

Definition of an SNA Network 
Nodes •••••• 
NAUs and Node Types 
The Path Control Network 

Other Definitions and Notational Conventions 

CHAPTER 2. OVERVIEH OF THE LU 

Introduction • • • • • • • • 
Concepts and Terms • • • • • 

Distributed Transaction Processing 
Transaction Programs 
Control Operator 
Resources 
Protocol Boundaries 
Names •••••• 

Roles • • • • • 
Transaction Program References 
LU References 
Mode Names • • • • • • • 
Internal Identifiers 

Conversation Characteristics 
Send/Receive Protocol 
Sender/Receiver Concurrency 
Mapping ••••• 

Session Allocation 
Session Multiplicity 
Session Pool 
Session Selection 
Session Contention Polarity 
Session Limits 

Starting and Ending Sessions 
Phases ••••••••• 

Session Usage Characteristics 
Session Activation Polarity 
Session-Level Pacing 
Profiles 

Security 
Error Handling 

Kinds of Errors 
Application Errors 
Local Resource Failure 
Recoverable System Errors 
Program Failures 
Session Failure 
Conversation Failures 
LU Failure 

Program Error Recovery Support Functions 
Confirmation • • • • • 
Program Error Indication 
Sync Point •••••• 
Abnormal Conversation Deallocation 

LU Error Recovery.Functions--Abnormal Session Deactivation 
Base and Optional Function Sets • • • • • • • 

Application Program Interface Implementations 
Principal Base Functions 

Basic Conversations 
Mapped Conversations 

Principal Optional Functions 
Mapping • • • • • • 
Sync Point • • • • • 
Program Initialization Parameters (PIP) 
Security ••••••••••••••• 

•'. 

1-1 

1-1 
1-3 
1-3 
1-3 
1-4 
1-5 
1-5 

2-1 

2-1 
2-1 
2-1 
2-1 
2-3 
2-3 
2-4 
2-4 
2-5 
2-5 
2-6 
2-6 
2-6 
2-6 
2-6 
2-6 
2-7 
2-7 
2-7 
2-7 
2-7 
2-7 
2-8 
2-8 
2-8 
2-8 
2-8 
2-8 
2-9 
2-9 

2-10 
2-10 
2-10 
2-10 
2-11 
2-11 
2-11 
2-11 
2-11 
2-11 
2-11 
2-11 
2-11 
2-11 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 

Contents v 



Performance Options • • • • • 
Message Units and their Transformations 

Mapped-Conversation Message Units 
Basic-Conversation Message Units 

GDS Variables · 
Logical Record • • • • • • • 
Buffer Record • • • • • • • 

Conversation Message-Unit Sequences 
Conversation Message 
Conversation Exchange 

Session Message Units 
Function Management Headers 
Basic Information Unit 

Session Message-Unit Sequences 
Mapped-Conversation Message-Unit Transformation 
Basic-Conversation Message-Unit Transformation 
Data Exchange with the CP ••••••• 

LU-CP Records • • • • • • • • • • • • • • • 
External Flow Sequences for the Base F1.a1Ction Set 

Notation ••••••••• 
Verbs and Parameters 
Data Transfer Description 

Error-Free Flows 
Allowable Combinations of Sequences 
Exception Flow 
Error Flows 

LU Struci:ure 
SNA layers 

Component Overview 
Functional Summary by Function 

Example Transaction Program 
Message-Unit Transfer 

Sending Data • • • • • • 
Receiving Data • • • • • 

Transaction Program Initiation and Termination 
Invoking a Remote Transaction Program 
Initiating the Initial Local Transaction Program 
Terminating a Transaction Program 

Conversation Allocation and Deallocation 
Selecting a Session 
Bidding 
Newly Active Session 
Deallocation 

Session Activation and Deactivation 
Starting a Session 

Initializing Session Limits 
Session Initiation 
Session Activation 

Session Outage 
Ending a Session 

Operator Request 
Session Shutdown: 
Session Deactivation 

Functional Summary by Component 
Presentation Services 
Half-Session 
Resources Manager 
Session Manager 

Functions of Components of the Node External to the LU 
Buffer Manager: • • • • • • • • • 
Type 2.1 Node Control Point IT2.l CPl: 
Node Operator Facility lNOFl: 
Initiator Process: ••••• 

Functions of Service Transaction Programs 
Control-Operator F1.a1Ctions 
SNA Distribution Services 
Docunent Interchange Services 

Optional Functions 
Mapping F1.a1Ction 
Sync Point Function 

Sync Point Control 
Logging 
Resources Manager 
Protection Managers 

vi SNA LU 6.2 Reference: Paar Protocols 

2-12 
2-13 
2-13 
2-13 
2-13 
2-13 
2-14 
2-14 
2-14 
2-14 
2-14 
2-14 
2-15 
2-15 
2-15 
2-15 
2-17 
2-17 
2-18 
2-19 
2-19 
2-19 
2-19 
2-22 
2-24 
2-24 
2-27 
2-27 
2-27 
2-29 
2-30 
2-30 
2-30 
2-31 
2-32 
2-32 
2-32 
2-32 
2-32 
2-32 
2-33 
2-33 
2-33 
2-33 
2-33 
2-33 
2-33 
2-33 
2-34 
2-34 
2-34 
2-34 
2-34 
2-34 
2-34 
2-35 
2-35 
2-35 
2-35 
2-35 
2-35 
2-36 
2-36 
2-36 
2-36 
2'.'"36 
2-36 
2-36 
2-36 
2-37 
2-38 
2-38 
2-38 
2-38 

c~ 

c 

c~ 



0 

() 

() 

0 

Sync Point Protocol 
Commitment and Back-Out 
Resynchronization 

Data Structures • • • • • • • 
LU-Accessed Network Resources 
Processes and Dynamic Resources 
Resource Relationships in a Distributed Transaction 

LU Startup and Shutdown • • • • • • • • • • • • 
LU Process Creation and Termination • • • • • 
Control-Operator Transaction Program Initiation 
Control-Operator Actions 
Running State 
Example ••••••• 

Protocol Boundary Summary 
Transaction Program Verbs and Interprocess Signals 

PS-TP Protocol Boundary: Transaction Program Verbs 
Intercomponent Structures 

SH-CP Protocol Boundary 
SH-HS Protocol Boundary 
SH-NDF Protocol BoU"ldary 
SH-BH Protocol Boundary 
HS-PC Protocol Boundary 
HS-BH Protocol Boundary 
PS-HS Protocol Boundary 
PS-RH Protocol Boundary 
PS-BH Protocol Boundary 
RH-HS Protocol Boundary 
RH-SH Protocol Boundary 
RH-Initiator Process Protocol Boundary 
RH-BH Protocol Boundary • • • • • • 

Component Interactions and Sequence Flows 
Notation • • • . • 

CHAPTER 3. LU RESOURCES MANAGER 

General Description 
Resources Manager Functions 
LU Component Interactions 
Resources Manager Data Base 

Control Blocks Maintained by the Resources Manager 
Control Blocks Accessed by the Resources Manager 

Creation of Presentation Services and Transaction Programs 
Allocating a New Conversation 
Obtaining a Session 
Immediate Session Processing 

Attaching a Transaction Program 
Races for the Use of a Session 
Terminating a Conversation 
Activating a New Session 
Changing the Maximum Session Limit 
Session Outage 

.• 

Creation and Termination of Presentation Services 
High-Level Procedures • • • • • • • • • • 

RH: PROCESS • • • • • • • • • • 
PRDCESS_INITIATOR_TD_RH_RECDRD: PROCEDURE 
PRDCESS_HS_TD_RH_RECDRD: PROCEDURE 
PRDCESS_PS_TD_RH_RECDRD: PROCEDURE 
PROCESS SH TD RH RECORD: PROCEDURE 

Low-Level-Pr~edur;s ••••••• 
ACTIVATE_NEEDED_SESSIDNS: PROCEDURE 
ACTIVATE_SESSION_RSP_PROC: PROCEDURE 
ALLOCATE_RCB_PROC: PROCEDURE 
ATTACH_CHECK: PROCEDURE 
ATTACH_LENGTH_CHECK: PROCEDURE 
ATTACH_PRDC: PROCEDURE 
ATTACH_SECURITY_CHECK: PROCEDURE 
BID_PROC: PROCEDURE 
BID_RSP_PROC: PROCEDURE 
BIDDER_PROC: PROCEDURE 
BIS_RACE_LOSER: PROCEDURE 
CHANGE_SESSIONS_PROC: PROCEDURE 
CHECK_FDR_BIS_REPLY: PROCEDURE 
COHPLETE_LUH_ID: PROCEDURE 
CDNNECT_RCB_AND_SCB: PROCEDURE 

2-38 
2-38 
2-38 
2-40 
2-40 
2-40 
2-43 
2-43 
2-43 
2-43 
2-43 
2-44 
2-45 
2-46 
2-46 
2-46 
2-46 
2-46 
2-46 
2-46 
2-46 
2-47 
2-47 
2-47 
2-47 
2-47 
2-47 
2-47 
2-47 
2-47 
2-48 
2-48 

3-1 

3-1 
3-2 
3-2 
3-4 
3-4 
3-4 
3-5 
3-5 
3-5 
3-9 

3-10 
3-11 
3-13 
3-15 
3-16 
3-18 
3-18 
3-19 
3-19 
3-20 
3-20 
3-22 
3-23 
3-24 
3-24 
3-25 
3-26 
3-26 
3-28 
3-30 
3-32 
3-33 
3-35 
3-37 
3-38 
3-39 
3-40 
3-41 
3-42 

Contents vii 



CREATE_RCB: PROCEDURE • • • • • • 
CREATE_SCB: PROCEDURE • • • • • • 
CREATE_TCB_AND_PS: PROCEDURE 
DEACTIVATE_FREE_SESSIONS: PROCEDURE 
DEACTIYATE_PENDING_SESSIONS: PROCEDURE 
DEQUEUE_HAITING_REQUEST: PROCEDURE 
FIRST_SPEAKER_PROC: PROCEDURE 
FREE~SESSION_PROC: PROCEDURE 
GET_SESSION_PROC: PROCEDURE 
PS_ABEND_PROC: PROCEDURE 
PS_CREATION_PROC:.PROCEDURE 
PS_TERMINATION_PROC: PROCEDURE 
PURGE_QUEUED_REQUESTS: PROCEDURE 
QUEUE_ATTACH_PROC: PROCEDURE 
RH_ACTIYATE_SESSION_PROC: PROCEDURE 
RH_DEACTIVATE_SESSION_PROC: PROCEDURE 
RTR_R<l_PROC: PROCEDURE 
RTR_RSP_PROC: PROCEDURE 
SECURITY_PROC: PROCEDURE 
SEND_ACTIVATE_SESSION: PROCEDURE 
SEND_ATTACH_TO_PS: PROCEDURE 
SEND_BIS: PROCEDURE •.••• 
SEND_BIS_REPLY: PROCEDURE 
SEND_BIS_RQ: PROCEDURE 
SEND_DEACTIVATE_SESSION: PROCEDURE 
SEND_RTR_PROC: PROCEDURE 
SESSION_ACTIVATED_ALLOCATION: PROCEDURE 
SESSION_ACTIVATED_PROC: PROCEDURE 
SESSION_ACTIVATION_POLARITY: PROCEDURE 
SESSION_DEACTIVATED_PROC: PROCEDURE 
SESSION_DEACTIVATION_POLARITY: PROCEDURE 
SET_RCB_AND_SCB_FIELDS: PROCEDURE 
SHOULD_SEND_BIS: PROCEDURE . • . . . • 
START_TP_PROC: PROCEDURE •••.•.• 
START_TP_SECURITY_VALID: PROCEDURE 
SUCCESSFUL_SESSION_ACTIVATION: PROCEDURE 
TEST_FOR_FREE_FSP_SESSION: PROCEDURE 
UNSUCCESSFUL_SESSION_ACTIVATION: PROCEDURE 

Finite-State Machines .••..... 
#FSH_SCB_STATUS . . . . . . . . • . 
FSH_SCB_STATUS_BIDDER: FSH_DEFINITION 
FSH_SCB_STATUS_FSP: 'FSH_DEFINITION 
#FSH_BIS .•••.•..•. 
FSH_BIS_BIDDER: FSH_DEFINITION 
FSH_BIS_FSP: FSH_DEFINITION 
#FSH_RCB_STATUS • • • . . • 
FSH_RCB_STATUS_BIDDER: FSH_DEFINITION 
FSH_RCB_STATUS_FSP: FSH_DEFINITION 

Local Data Structures 
LU_NAHE 
HODE_NAHE 
HS_ID 
RCB_ID 
TCB_ID 
SENSE_ CODE 
PREVIOUS_TIHE 
RESPONSE_ CODE 

CHAPTER 4. LU SESSION MANAGER 

General Description 
Overview of Session Initiation 
Overview of Session Termination 
Session outage and Session Reinitiation 
PLU and SLU 

SH Protocol Bolndaries 
PB with RH 
ACTIVATE_ SESSION 
DEACTIVATE_ SESSION 
ABEND_NOTIFICATION .• 
ACTIVATE_SESSION_RSP 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 
PB with HS 

viii SHA LU 6.Z Reference: Peer Protocols 

.• 

3-43 

3-44 ("·. 
3-45 
3-46 / 
3-47 
3-48 
3-49 
3-50 
3-52 
3-54 
3-55 
3-57 
3-59 
3-60 
3-61 
3-62 
3-63 
3-64 
3-65 
3-65 
3-66 
3-66 ~ 
3-67 ( ·. 
3-6 7 \____,,' 
3-68 
3-69 
3-70 
3-70 
3-71 
3-72 
3-74 
3-75 
3-76 
3-77 
3-79 
3-80~. 
3-82l . 
3-83 "-. _ _/ 
3-84 
3-84 
3-85 
3-86 
3-87 
3-87 
3-88 
3-89 
3-89 
3-90 
3-91 ~· 
3-91 \. 
3-91 "-· 
3-91 
3-91 
3-91 
3-92 
3-92 
3-92 

4-1 

4-1 
4-2 
4-2 
4-3 
4-3 
4-4 
4-5 
4-5 
4-5 
4-5(" 
4-5\ 
4-6 '---. 
4-6 
4-7 



C\ 
i 

./ 

0 

0 

INIT_HS 
INIT_HS_RSP 
ABORT_HS 
ABEND NOTIFICATION 
PB with NOF 
RM CREATED 
PB-with SS 
ASSIGN_PCID 
ASSIGN_PCID_RSP 
INIT_SIGNAL 
INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL 
SESSST_SIGNAL 
SESSEND SIGNAL 
PB with-ASM 
Message Unit IMUJ 
PC_HS_DISCONNECT 
SESSION_ROUTE_INOP 
ASSIGN_LFSID 
ASSIGN_LFSID_RSP 
FREE_LFSID 
LFSID_IN_USE 
LFSID IN USE RSP 

TH and RH Parai;;eters 
RU Parameters 

Network-Qualified Name 
Local Name ••.•• 
Mode Name ••.•• 
LU-LU Verification Data 
Specification of RU Parameters 

Implementation-Dependent Parameters 
Installation-Specified Parameters 

Session-Control RU's 
BIND 
RSPIBINDJ 
UNBIND 
RSPIUNBINDJ 

SM and Buffer Management 
SM Flows .•••• 
Flows .••••••. 
Introduction to Formal Description 

SM: PROCESS . • • • • . • ••• 
PROCESS_RECORD_FROM_RM: PROCEDURE 
PROCESS_RECORD_FROM_HS: PROCEDURE 
PROCESS_RECORD_FROM_SS: PROCEDURE 
PROCESS_RECORD_FROM_ASM: PROCEDURE 
BIND_RQ_STATE_ERROR: PROCEDURE 
BIND_RSP_STATE_ERROR: PROCEDURE 
BIND_SESSION_LIMIT_EXCEEDED: PROCEDURE 
BUILD_AND_SEND_ACT_SESS_RSP_NEG: PROCEDURE 
BUILD_AND_SEND_ACT_SESS_RSP_POS: PROCEDURE 
BUILD_AND_SEND_BIND_RQ: PROCEDURE 
BUILD_AND_SEND_BIND_RSP_NEG: PROCEDURE 
BUILD_AND_SEND_FREE_LFSID: PROCEDURE 
BUILD_AND_SEND_INIT_HS: PROCEDURE 
BUILD_AND_SEND_INIT_SIG: PROCEDURE 
BUILD_AND_SEND_PC_HS_DISCONNECT: PROCEDURE 
BUILD_AND_SEND_SESS_ACTIVATED: PROCEDURE 
BUILD_AND_SEND_SESS_DEACTIVATED: PROCEDURE 
BUILD_AND_SEND_SESSEND_SIG: PROCEDURE 
BUILD_AND_SEND_SESSST_SIG: PROCEDURE 
BUILD_AND_SEND_UNBIND_RQ: PROCEDURE 
BUILD_AND_SEND_UNBIND_RSP: PROCEDURE 
BUILD_BIND_RSP_POS: PROCEDURE 
CLEANUP_LU_LU_SESSION: PROCEDURE 
CORRELATE_BIND_RSP: PROCEDURE 
CORRELATE_UNBIND_RQ: PROCEDURE 
GET_FQPCID: PROCEDURE 
INITIALIZE_LULU_CB_ACT_SESS: PROCEDURE 
INITIALIZE_LULU_CB_BIND: PROCEDURE 
LU_MODE_SESSION_LIMIT_EXCEEDED: PROCEDURE 
PREPARE_TO_SEND_BIND: PROCEDURE 
PROCESS_ABEND_NOTIFICATION: PROCEDURE 
PROCESS_ABORT_HS: PROCEDURE 

4-7 
4-7 
4-7 
4-7 
4-8 
4-8 
4-9 
4-9 
4-9 
4-9 

4-10 
4-10 
4-10 
4-10 
4-11 
4-11 
4-11 
4-11 
4-12 
4-12 
4-12 
4-12 
4-13 
4-14 
4-18 
4-18 
4-18 
4-18 
4-18 
4-18 
4-18 
4-18 
4-19 
4-19 
4-24 
4-27 
4-28 
4-28 
4-30 
4-31 
4-47 
4-48 
4-49 
4-50 
4-50 
4-51 
4-52 
4-54 
4-57 
4-58 
4-58 
4-59 
4-60 
4-60 
4-61 
4-61 
4-62 
4-63 
4-64 
4-64 
4-65 
4-65 
4-66 
4-67 
4-67 
4-68 
4-69 
4-70 
4-70 
4-71 
4-72 
4-73 
4-74 
4-74 

Contents ix 



PROCESS_ACTIVATE_SESSION: PROCEDURE 
PROCESS_BIND_RQ: PROCEDURE 
PROCESS_BIND_RSP: PROCEDURE 
PROCESS_CINIT_SIGNAL: PROCEDURE 
PROCESS_DEACTIVATE_SESSION: PROCEDURE 
PROCESS_INIT_HS_RSP: PROCEDURE 
PROCESS_INIT_SIGNAL_NEG_RSP: PROCEDURE 
PROCESS_LFSID_IN_USE: PROCEDURE 
PROCESS_MU: PROCEDURE • . • • • • • 
PROCESS_SESSION_ROUTE_INOP: PROCEDURE 
PROCESS_UNBIND_RQ: PROCEDURE 
RESERVE_CONSTANT_BUFFERS: PROCEDURE 
RESERVE_VARIABLE_BUFFERS: PROCEDURE 
UNRESERVE_BUFFERS: PROCEDURE 
FSM_STATUS: FSM_DEFINITION 

Local Data Structures 
LOCAL .•.••••. 
LULU_CB .•••.•.• 

CHAPTER 5.0. OVERVIEH OF PRESENTATION SERVICES 

General Description 
PS Component Functions 

TP: ..•.• 
PS.INITIALIZE: 
PS.VERB_ROUTER: 
PS.MC, PS.SPS, ..• , PS.COPR: 
PS.CONY: .•....... 

Data Base Structure • . • . • 
Initialization and Termination CPS.INITIALIZEJ 

Processing an FMH-5CAttachJ Request 
Processing a START_TP request 

Limited-Instance TP processing 
Verb Processing CPS.VERB_ROUTERJ 

HAIT Verb Processing 
GET_TYPE Verb Processing 
GET_TP_PROPERTIES Verb Processing 

Hi~-level Procedures 
PS: PROCESS • . . . . • • . • . • 
PROCESS_FMH5: PROCEDURE 
PROCESS_START_TP: PROCEDURE 
RECEIVE_PIP_FIELD_FROM_HS: PROCEDURE 
PS_ATTACH_CHECK: PROCEDURE 
PS_PIP_CHECKS: PROCEDURE .••.. 
ATTACH_ERROR_PROC: PROCEDURE 
PS_VERB_ROUTER: PROCEDURE 
DEALLOCATION_CLEANUP_PROC: PROCEDURE 
GET_TP_PROPERTIES_PROC: PROCEDURE 
HAIT_PROC: PROCEDURE . . . . •. 

Low-level Procedures • . . . . . . 
PS_PROTOCOL_ERROR: PROCEDURE 
INITIALIZE_ATTACHED_RCB: PROCEDURE 
TEST FOR RESOURCE POSTED: PROCEDURE 

Undefi~ed Protocol Machines 
UPM_EXECUTE: PROCEDURE 
UPM_ATTACH_LOG: PROCEDURE 
UPM_RETURN_PROCESSING: PROCEDURE 

Local Data Structures 
PS_PROCESS_DATA 
TCB_LIST _PTR 
RCB_LIST_PTR 
LUCB_LIST_PTR 
SENSE_DATA 

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS 

General Description 
PS.CONV Functions 
Component Interactions 
PS.CONY Data Base Structure 

LU Control Block CLUCBJ and Associated Lists 
Transaction Control Block CTCBJ 
PS PROCESS DATA 
Re;ource C~trol Block CRCBJ 

x SNA LU 6.2 Reference: Peer Protocols 

,• 

4-75 c··. 4-76 
4-78 , 
4-79 
4-80 
4-81 
4-81 
4-82 
4-82 
4-83 
4-83 
4-84 
4-84 
4-85 
4-86 
4-89 
4-89 
4-90 

5.0-1 

5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-2 
5.0-4 
5.0-4 
5.0-5 
5.0-6 
5.0-7 

c 

5.0-1 r' 
5.0-7 \ 
5 • o-7 "------" 
5.0-8 
5.0-8 

5.0-10 
5.0-11 
5.0-12 
5.0-12 
5.0-13 
5.0-15 
5.0-16 
5.0-18 
5.0-18 c 
5.0-19 
5.0-20 --- . 
5.0-20 
5.0-20 
5.0-21 
S.0-22 
S.0-22 
S.0-22 
S.0-23 
S.0-24 
S.0-24 
S.0-24 
S.0-24 
S.0-24 
S.0-25 

S.1-1 

5.1-1 
S.1-1 
5.1-1 
S.1-1 
5.1-2 
S.l-3 
5.1-3 
5.1-4 



() 

0 

0 

Verb Parameters • • • . • . 
PS-RM Records • • . . • . 
PS-HS Records • • . . • . 
Tracking Logical Record Length • • • • • 
Maintaining and Checking the Basic Conversation State 
Verb Processing 

Verb Checking 
ALLOCATE 
POST_ON_RECEIPT 
REQUEST_TO_SEND 
SEND ERROR 

Protoc;;l Errors 
Conversation Failures 

High-Level Procedures 
PS_CONV: PROCEDURE 
ALLOCATE_PROC: PROCEDURE 
CONFIRM_PROC: PROCEDURE 
CONFIRMED_PROC: PROCEDURE 
DEALLOCATE_PROC: PROCEDURE 
FLUSH_PROC: PROCEDURE 
GET_ATTRIBUTES_PROC: PROCEDURE 
POST_ON_RECEIPT_PROC: PROCEDURE 
PREPARE_TO_RECEIVE_PROC: PROCEDURE 
RECEIVE_AND_HAIT_PROC: PROCEDURE 
RECEIVE_IMMEDIATE_PROC: PROCEDURE 
REQUEST_TO_SEND_PROC: PROCEDURE 
SEND_DATA_PROC: PROCEDURE 
SEND_ERROR_PROC: PROCEDURE 
TEST PROC: PROCEDURE 

Low-Le~el Procedures 
COMPLETE_CONFIRM_PROC: PROCEDURE 
COMPLETE_DEALLOCATE_ABEND_PROC: PROCEDURE 
CONVERSATION_FAILURE_PROC: PROCEDURE 
CREATE_AND_INIT_LIMITED_MU: PROCEDURE 
DEALLOCATE_ABEND_PROC: PROCEDURE 
DEALLOCATE_CONFIRM_PROC: PROCEDURE 
DEALLOCATE_FLUSH_PROC: PROCEDURE 
DEQUEUE_FMH7_PROC: PROCEDURE 
END_CONVERSATION_PROC: PROCEDURE 
GET_DEALLOCATE_FROM_HS: PROCEDURE 
GET_END_CHAIN_FROM_HS: PROCEDURE 
OBTAIN_SESSION_PROC: PROCEDURE 
PERFORM_RECEIVE_EC_PROCESSING: PROCEDURE 
PERFORM_RECEIVE_PROCESSING: PROCEDURE 
PREPARE_TO_RECEIVE_CONFIRM_PROC: PROCEDURE 
PREPARE_TO_RECEIVE_FLUSH_PROC: PROCEDURE 
PROCESS_DATA_PROC: PROCEDURE 
PROCESS FMH7 LOG DATA PROC: PROCEDURE 
PROCEss:FMH7:PROC: PROCEDURE 
RCB_ALLOCATED_PROC: PROCEDURE 
RECEIVE_AND_TEST_POSTING: PROCEDURE 
RECEIVE_RM_OR_HS_TO_PS_RECORDS: PROCEDURE 
SEND_CONFIRMED_PROC: PROCEDURE 
SEND_DATA_BUFFER_MANAGEMENT: PROCEDURE 
SEND_ERROR_DONE_PROC: PROCEDURE 
SEND_ERROR_IN_RECEIVE_STATE: PROCEDURE 
SEND_ERROR_IN_SEND_STATE: PROCEDURE 
SEND_ERROR_TO_HS_PROC: PROCEDURE 
SEND_REQUEST_TO_SEND_PROC: PROCEDURE 
SET_FMH7_RC: PROCEDURE , ••• , • 
TEST_FOR_POST_SATISFIED: PROCEDURE 
HAIT_FOR_CONFIRMED_PROC: PROCEDURE 
HAIT_FOR_RM_REPLY: PROCEDURE 
HAIT_FOR_RSP_TO_R~TO_SEND_PROC: PROCEDURE •••••• 
HAIT_FOR_SEND_ERROR_DONE_PROC: PROCEDURE 

Finite-State Machines •••• , ••• 
FSM_CONVERSATION: FSM_DEFINITiON 
FSM_ERROR_OR_FAILURE: FSM_DEFINITION 
FSM_POST: FSM_D~FINITION • • . • , 

CHAPTER 5.2. PRESENTATION SERVICES--HAPPED CONVERSATION VERBS 

5.1-4 
5.1-5 
5.1-5 
5.1-6 
5.1-6 
5.1-6 
5.1-6 
5.1-7 
5.1-7 
5.1-7 
5.1-7 
5.1-9 
5.1-9 

5.1-10 
5.1-10 
5.1-11 
5.1-12 
5.1-14 
5.1-15 
5.1-16 
5.1-17 
5.1-17 
5.1-18 
5.1-19 
5.1-21 
5.1-23 
5.1-24 
5.1-25 
5.1-26 
5.1-28 
5.1-28 
5.1-29 
5.1-29 
5.1-30 
5.1-31 
5.1-32 
5.1-33 
5.1-34 
5.1-34 
5.1-35 
5.1-36 
5.1-37 
5.1-38 
5.1-40 
5.1-41 
5.1-42 
5.1-43 
5.1-44 
5.1-46 
5.1-48 
5.1-50 
5.1-51 
5.1-53 
5.1-54 
5.1-55 
5.1-56 
5.1-57 
5.1-58 
5.1-58 
5.1-59 
5.1-60 
5.1-61 
5.1-62 
5.1-63 
5.1-64 
5.1-65 
5.1-65 
5.1-67 
5.1-68 

5.2-1 

General Description 5.2-1 
PS.MC Functions 5. 2-1 

Contents xi 



Component Interactions 
PS.MC Data Base Structure 

Transaction Control Block ITCB) 
LU Control Block ILUCBl 

Transaction Program Control Block ITPCBl 
Resource Control Block IRCBl 

Conversation Data Stream Formatting 
Construction of GDS Variables 

GDS Variables with Multiple Logical Records 
FM Header Data • • • • • • • • • • • • • • • 

Examples of Mapped Conversation Verb Processing 
Establishing a Mapped Conversation 
Terminating a Mapped Conversation 

Data Mapping and the Mapper 
Block Mapping 
Mapping Example 
Map Names 

Map Name GDS Variables 
Mapper Invocation 
Mapper Parameters 

Supplied Information 
Returned Information 

Send Mapping 
Receive Mapping 

MC_TEST_PROC 
Mapped Conversation Errors 

Mapper Errors 
Error Data GOS Variables 
Protocol Violations 
Service Errors 
Service Errors Detected in Received Data 
Processing of a Service Error Detected by Partner LU 

Formal Descriptions 
PS_MC: PROCEDURE ..... 
MC_ALLOCATE_PROC: PROCEDURE 
MC_CONFIRM_PROC: PROCEDURE 
MC_CONFIRMED_PROC: PROCEDURE 
MC_DEALLOCATE_PROC: PROCEDURE 
MC_FLUSH_PROC: PROCEDURE 
MC_GET_ATTRIBUTES_PROC: PROCEDURE 
MC_POST_ON_RECEIPT_PROC: PROCEDURE 
MC_PREPARE_TO_RECEIVE_PROC: PROCEDURE 
MC_RECEIVE_AND_HAIT_PROC: PROCEDURE 
MC_TEST_PROC: PROCEDURE ..•.. 
RECEIVE_INFO_PROC: PROCEDURE 
PROCESS_ERROR_OR_FAILURE_RC: PROCEDURE 
PROCESS_DATA_COMPLETE: PROCEDURE 
PROCESS_MAPPER_RETURN_CODE: PROCEDURE 
PROCESS_DATA_INCOMPLETE: PROCEDURE 
MC_REQUEST_TO_SEND_PROC: PROCEDURE 
MC_SEND_DATA_PROC: PROCEDURE 
MC_SEND_ERROR_PROC: PROCEDURE 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC: PROCEDURE 
RCVD_SVC_ERROR_PURGING: PROCEDURE 
PROCESS_ERROR_DATA: PROCEDURE 
GET_SEND_INDICATOR: PROCEDURE 
SEND_SVC_ERROR_PURGING: PROCEDURE 
UPM_MAPPER: PROCEDURE 
PROTOCOL_ERROR_PROC: PROCEDURE 

Local Data Structures 
ERROR_DATA_STRUCTURE 
SEND_BUFFER 

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS 

Errors, Failures, and Recovery 
Sync Point Concepts 
Processing by PS.SPS 

LUH States 
Flow Optimization 
Sync Point and Other LU Components 
Sync Point Logic 
Classification Phase 
Prepare Phase 

x11 SNA LU 6.2 Reference: Peer Protocols 

5.2-2 
5.2-4 c: 5.2-4 
5.2-4 
5.2-4 
5.2-4 
5.2-5 
5.2-5 
5.2-5 
5.2-7 
5.2-7 
5.2-7 
5.2-7 
5.2-8 
5.2-8 
5.2-8 
5.2-8 
5.2-9 
5.2-9 

5.2-10 
5.2-10 
5.2-10 r-' 5.2-10 

~,__/ 5.2-11 
5.2-11 
5.2-12 
5.2-12 
5.2-14 
5.2-14 
5.2-14 
5.2-14 
5.2-17 
5.2-19 
5.2-20 
5.2-21 
5.2-21 ~ 

5.2-22 l_/ 5.2-23 
5.2-23 
5.2-24 
5.2-25 
5.2-26 
5.2-27 
5.2-28 
5.2-30 
5.2-31 
5.2-33 
5.2-35 

(' 5.2-36 
5.2-37 \___ 
5.2-38 
5.2-40 
5.2-41 
5.2-42 
5.2-43 
5.2-44 
5.2-45 
5.2-46 
5.2-47 
5.2-48 
5.2-48 
5.2-48 

5.3-1 

5.3-1 
5.3-2 
5.3-3 
5.3-4 
5.3-5 ~ 
5.3-6 (__,, 
5.3-9 
5.3-9 
5.3-9 



c~) 

0 

Request Commit Phase 
Committed Phase 
Forget Phase 

Illustrative Sync Point Flows 
Forcing the Log 
Errors during Sync Point 

PROG_ERRDR_* 
BACKED_OUT 
DEALLOCATE ABEND * 
RESOURCE_FAILURE=*• Recovery, and Heuristic Decisions 

Backout Processing . . • . • • • • • • • • 
Heuristic Decisions and Reliable Resources 
Resynchronization Logic 

Validation of Log IDs 
Session Outage during Attach 
Lost Sync Point Messages 
Resynchronization Action 
Resynchronization Operator Messages 
Order of Resynchronization 
Errors' and Failures during Resynchronization 
Reset State and Erasing of Log Records 

Log Name Processing 
Procedures Used by Sync Point 

PS_SPS: PROCEDURE 
PREPARE 
REQUEST_COMMIT 
COMMITTED 
FORGET 
HEURISTIC_MIXED 

Session Flows Created by Sync Point 
Session Flows Created by Errors during Sync Point 
Backout .•..•.•...••••••...• 

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS 

Introduction 
Function Summary 
Structure Summary 

Concepts and Terms 
Operator 
Scope of Control-Operator Functions 
LU-Accessed Network Resources 
Session Characteristics 

Session Identification 
Single vs. Parallel Sessions 
Contention Polarity 

Session Limits and Counts 
Session Bringup and Takedown 

Phases • • . • • 
Control-Operator Functions 

CLU,mode) entry •.... 
Distributed Operator Control 

Local Functions and Services 
LU Definition Verbs 
Local Session-Control Verbs 

Distributed Functions and Services 
Change Number of Sessions Verbs 
Functional Relationships for Distributed Verb Processing 
Operation Phases 
CNOS Transaction . . • • .•. 
CNOS External Message-Unit Flows 
The CNOS Process Relationships 

Processes 
Shared Data 
Transaction-Handling Process Relationships 

Single Verb Issuance 
Simultaneous Verb Issuances at Partner LUs 
Simultaneous Verb Issuances at the Same LU 

CNOS Race Resolution 
Command Race . • • • • • • 
Locking the CLU,mode) Entry 
Race Flows 

No Race 
Single-Failure Races 

5.3-9 
5.3-9 
5.3-9 

5.3-11 
5.3-15 
5.3-15 
5.3-15 
5.3-15 
5.3-15 
5.3-15 
5.3-16 
5.3-18 
5.3-18 
5.3-18 
5.3-20 
5.3-22 
5.3-25 
5.3-30 
5.3-31 
5.3-32 
5.3-32 
5.3-32 
5.3-35 
5.3-35 
5.3-35 
5.3-36 
5.3-36 
5.3-36 
5.3-37 
5.3-37 
5.3-41 
5.3-41 

5.4-1 

5.4-1 
5.4-1 
5.4-1 
5.4-1 
5.4-1 
5.4-3 
5.4-3 
5.4-3 
5.4-3 
5.4-3 
5.4-3 
5.4-4 
5.4-4 
5.4-4 
5.4-4 
5.4-5 
5.4-5 
5.4-5 
5.4-5 
5.4-5 
5.4-6 
5.4-6 
5.4-6 
5.4-7 
5.4-9 

5.4-10 
5.4-11 
5.4-11 
5.4-12 
5.4-13 
5.4-13 
5.4-13 
5.4-14 
5.4-14 
5.4-14 
5.4-15 
5.4-15 
5.4-16 
5.4-16 

Contents xi ii 



Double-Failure Race 
Recovery from Conversation Failure 

Base and Optional Support 
Base-Function-Set Support 
CNOS Minimum Support Set 
Parallel-Session Optional Functions 

Component Interrelationships 
Transaction Programs . . • • . . . 

Control-Operator Transaction Program 
CNOS Service Transaction Program 

PS.COPR Components • . . • • • • • • 
CNOS Verb Router • • • • • • . . . 

Local Control-Operator Verb Processing 
LU Definition Verb Processing 
Local Session-Control Verb Processing 

INITIALIZE_SESSION_LIHIT 
RESET_SESSION_LIMIT 
ACTIVATE_SESSION . • • . . . 
DEACTIVATE SESSION . • • . . 

Session-Limit Se~ices at the Source LU 
Privilege Checking . . . • 
CNOS Conversation Allocation 
GDS Variable 
CNOS Record Flows 
Errors . . . . . . . . . • 
Update ILU,mode) Entry 
Request Changes in Session Count 
Return to the Transaction Program 

Session-Limit Services at the Target LU 
CNOS Reply . . • • . . . • . . . 
Session-Limit Parameter Negotiation 
Errors . . • . . . . . . • . 
Other Interactions . . . • . 

Session-Limit Data Lock Manager 
Locking the ILU,mode) Entry 

Verb-Routing Procedure • . • 
PS_COPR: PROCEDURE .•.•• 

Verb Handlers • • . • • 
INITIALIZE_SESSION_LIMIT_PROC: PROCEDURE 
RESET_SESSION_LIHIT_PROC: PROCEDURE 
CHANGE_SESSION_LIHIT_PROC: PROCEDURE 
ACTIVATE_SESSION_PROC: PROCEDURE 
DEACTIVATE_SESSION_PROC: PROCEDURE 
DEFINE_PROC: PROCEDURE ••••• 
DISPLAY_PROC: PROCEDURE 
DELETE_PROC: PROCEDURE • • • • . 
LOCAL_SESSION_LIHIT_PROC: PROCEDURE 
LOCAL_VERB_PARAHETER_CHECK: PROCEDURE 
SVCMG_VERB_PARAHETER_CHECK: PROCEDURE 
CHANGE_ACTION: PROCEDURE •• , , • , 

Source-LU CNOS Procedures • • • • • • 
SOURCE_SESSION_LIHIT_PROC: PROCEDURE 
VERB_PARAHETER_CHECK: PROCEDURE 
SOURCE_CONVERSATION_CONTROL: PROCEDURE 
SOURCE_CONVERSATION: PROCEDURE 
RESULT_CHECK_ALLOCATE: PROCEDURE 
RESULT_CHECK_SEND_COMHAND: PROCEDURE 
RESULT_CHECK_RECEIVE_REPLY: PROCEDURE 
RESULT_CHECK_RECEIVE_DEALLOCATE: PROCEDURE 
CHECK_CNOS_REPLY: PROCEDURE 

Target-LU CNOS Procedures • • • • • • 
X06Fl: PROCEDURE . • • • • • • , , , 
PROCESS_SESSION_LIHIT_PROC: PROCEDURE 
TARGET_COMMAND_CONVERSATION: PROCEDURE 
RESULT_CHECK_RECEIVE_COHMAND: PROCEDURE 
RESULT_CHECK_RECEIVE_SEND: PROCEDURE 
CHECK_CNOS_COHHAND: PROCEDURE 
NEGOTIATE_REPLY: PROCEDURE 
CLOSE_ONE_REPLY: PROCEDURE 
TARGET_REPLY_CONVERSATION: PROCEDURE 
RESULT_CHECK_SEND_REPLY: PROCEDURE 
SESSION_LIHIT_DATA_LOCK_MANAGER: PROCEDURE 

CHAPTER 6.D. HALF-SESSION 

xiv SNA LU 6.2 Reference: Peer Protocols 

.. 

5.4-19 
5.4-20 c 
5.4-20 ' 
5.4-20 . , 

c 

5.4-21 
5.4-21 
5.4-22 
5.4-22 
5.4-22 
5.4-22 
5.4-23 
5.4-24 
5.4-24 
5.4-24 
5.4-24 
5.4-24 
5.4-25 
5.'t-25 
5.4-25 
5.4-25 
5.4-27 
5.'t-27 
5.'t-27 
5.'t-27 
5.'t-27 
5.4-27 
5.'t-28 
5.'t-28 
5.4-28 
5.4-28 
5.'t-28 
5.4-30 
5.4-30 
5.4-30 
5.4-30 
5.4-32 r-·-,\ 
5.4-32 ( 
5. 't-33 \..___/ 
5.4-33 
5.4-3't 
5.4-35 
5.4-36 
5.'t-37 
5.'t-38 
5.4-39 
5.4-'tO 
5.4-41 
5.4-42 
5.4-43 
5.4-43 
5.4-45 
5.4-45 
5.4-47 
5.4-48 
5.4-49 
5.4-51 
5.4-52 
5.4-53 
5.4-54 
5.4-55 
5.4-56 
5.4-56 
5.4-57 
5.4-60 
5.4-61 
5.4-61 
5.4-62 
5.4-63 
5.4-64 

5.4-64 ("· 
5.4-65 
5.4-66 . 

6.0-1 



General Description 
Protocol Boundaries between HS and Other Components 
Formal Description 

HS: PROCESS 
PROCESS LU LU SESSION: PROCEDURE 

Data Stru~tu;es­
LOCAL 
CT 
COMMON_CB 

CHAPTER 6.1. DATA FLOH CONTROL 

Introduction 
Overview of DFC Functions 
DFC Structure 

Initialization 
Send 
Receive 
Termination 

Protocol Boundaries 
Function Management Profile 19 
Usage Associated with FM Profile 19 

Conditional End Bracket ICEBl 
FM Header Usage 
Usage of DRl • • . . . . . . 
Sending RQE with BB from Contention Loser 
Usage of RQEl, CEB, LUSTATI0006l 
Usage of SIGNALIX'OOOlOOOl' l 
Sequence Numbering of Requests and Responses 
Stray SIGNALs and Responses 

Sending SIGNAL and Responses 
RQD required on CEB 
Receiving SIGNAL Requests 
Receiving Responses 

SEND_ERROR Processing 
Detailed Description of DFC Functions 
Request/Response Formatting 
Chaining Protocol . . . • • . 
Request/Response Correlation 
Request/Response Mode Protocols 
Bracket Protocols 

Bracket Rules • . • . • 
Send/Receive Mode Protocols 
Queued Response Protocol 
PS Send and Receive Records 
DFC Request and Response Formats 
DFC Request and Response Descriptions 

BIS IBRACKET INITIATION STOPPED) 
LUSTAT I LOGICAL UNIT STATUS) 
RTR IREADY TO RECEIVE) 
SIG ISIGNALJ ••..•• 

High-Level Procedures 
DFC_INITIALIZE: PROCEDURE 
DFC_SEND_FROM_PS: PROCEDURE 
DFC_SEND_FROM_RM: PROCEDURE 
TRY_TO_RCV_SIGNAL: PROCEDURE 
DFC_RCV: PROCEDURE 
DFC_RCV_FSMS: PROCEDURE 
DFC SEND FSMS: PROCEDURE 

Low-L;vel Procedures tin Alphabetical Order) 
BUILD_HS_TO_PS_HEADER: PROCEDURE 
CT_UPDATE: PROCEDURE 
DFC_SEND_TO_PS: PROCEDURE 
FORMAT_ERROR: PROCEDURE 
FORMAT_ERROR_EXP_RSP: PROCEDURE 
FORMAT_ERROR_NORM_RSP: PROCEDURE 
FORMAT_ERROR_RQ_DFC: PROCEDURE 
FORMAT_ERROR_RQ_FMD: PROCEDURE 
GENERATE_RM_PS_INPUTS: PROCEDURE 
INITIALIZE_TH_RH: PROCEDURE 
INVALID_SENSE_CODE: PROCEDURE 
OK_TO_REPLY: PROCEDURE 
PROCESS_RU_DATA: PROCEDURE 
RCV_STATE_ERROR: PROCEDURE 

6.0-1 
6.0-2 
6.0-3 
6.0-3 
6.0-5 
6.0-7 
6.0-7 
6.0-8 
6.0-8 

6.1-1 

6.1-1 
6.1-1 
6.1-1 
6.1-1 
6.1-1 
6.1-2 
6.1-2 
6.1-2 
6.1-3 
6.1-4 
6.1-4 
6.1-4 
6.1-4 
6.1-5 
6.1-5 
6.1-5 
6.1-5 
6.1-5 
6.1-7 
6.1-7 
6.1-8 
6.1-8 
6.1-8 
6.1-9 
6.1-9 
6.1-9 
6.1-9 

6.1-10 
6.1-10 
6 .1-11 
6.1-11 
6.1-12 
6.1-12 
6.1-14 
6.1-16 
6.1-16 
6.1-16 
6.1-17 
6.1-17 
6.1-18 
6.1-19 
6.1-ZO 
6.1-Zl 
6.1-Z3 
6.1-Z4 
6.1-Z5 
6.1-Z7 
6.1-Z8 
6.1-Z8 
6.1-Z9 
6.1-30 
6.1-31 
6.1-32 
6.1-32 
6.1-33 
6.1-34 
6.1-36 
6.1-38 
6.1-38 
6.1-39 
6.1-40 
6.1-41 

Contents xv 



REPLY_TO_BID: PROCEDURE 
SEND_BID_POS_RSP: PROCEDURE 
SEND_FMD_MU: PROCEDURE 
SEND_RSP_IF_REQUIRED: PROCEDURE 
SEND_RSP_MU: PROCEDURE 
SEND_RSP_TO_RM_OR_PS: PROCEDURE 
SIGNAL_STATUS: PROCEDURE 
STRAY_RSP: PROCEDURE 
TRANSLATE: PROCEDURE 

Finite-State Machines 
FSM_BSM_FMP19: FSM_DEFINITION 
FSM_CHAIN_RCV_FMP19: FSM_DEFINITION 
FSM_CHAIN_SEND_FMP19: FSM_DEFINITION 
FSM_QRl_CHAIN_RCV_FMP19: FSM_DEFINITION 
FSM_RCV_PURGE_FMP19: FSM_DEFINITION 

CHAPTER 6.2. TRANSMISSION CONTROL 

INTRODUCTION 
Initialization Phase •....• 

CRYPTOGRAPHY VERIFICATION CCRVJ 
Normal Operation . • • . • • • • 

TC Procedures Invoked from Other Components of 
Sequence Numbering of Requests and Responses 
Sessions Hith Cryptography 
Request and Response Control Modes 
Buffer Management 
Session-Level Pacing 
Session-Level Pacing Algorithms 

Session-level Adaptive Pacing Algorithm 
OPERATION OF THE SENDER . . . • • 
OPERATION OF THE RECEIVER 
Session-level Fixed Pacing Algorithm 

Segment Reassembly Function 
Formal Description 

TC.INITIALIZE: PROCEDURE 
TC.EXCHANGE_CRV: PROCEDURE 
TC.BUILD_CRV: PROCEDURE 
TC.CRV_FORMAT_CHECK: PROCEDURE 
SEND_MU: PROCEDURE 
SEND_PACING: PROCEDURE 
SEND_TO_PC: PROCEDURE 
TC.RCV: PROCEDURE 
TC.SEGMENT_RCV_CHECKS: PROCEDURE 
TC.BIU_RCV_CHECKS: PROCEDURE 
MU_PACING_CHECKS: PROCEDURE 
RECEIVE_PACING: PROCEDURE 
SEGMENT_REASSEMBLY: PROCEDURE 
RCV_PACING_RSP: PROCEDURE 
BUFFERS_RESERVED_PROCESSING: PROCEDURE 
TC.DECIPHER_RU: PROCEDURE 
IPM_RU . . . . . 

APPENDIX A. NODE DATA STRUCTURES 

Control Blocks 
LUCB 

PARTNER_ LU 
MODE 

TRANSACTION_ PROGRAM 
RCB ..•.. 

RECEIVED_INFO 
SCB 
TCB 

Interprocess Signals 
ABORT_HS 
INIT_HS_RSP 
CONFIRMED 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 
BID 
BID_RSP 
BIS_RQ 

xvi SNA LU 6.2 Reference: Peer Protocols 

the Half-Session 

6.1-42 
6.1-42 (~ 
6.1-43 . 

_/ 6.1-44 
6.1-45 
6.1-46 
6.1-47 
6.1-48 
6.1-49 
6.1-50 
6.1-50 
6.1-51 
6.1-53 
6.1-55 
6.1-56 

6.2-1 

6.2-1 
6.2-3 
6.2-3 
6.2-6 
6.2-6 
6.2-6 
6.2-6 
6.2-7 
6.2-7 
6.2-7 
6.2-8 
6.2-8 
6.2-9 
6.2-9 

6.2-12 
6.2-12 
6.2-13 
6.2-13 
6.2-15 
6.2-17 
6.2-18 
6.2-20 
6.2-21 
6.2-22 
6.2-23 
6.2-24 
6.2-25 
6.2-26 
6.2-27 
6.2-28 
6.2-29 
6.2-31 
6.2-32 
6.2-33 

A-1 

A-1 
A-1 
A-2 
A-3 
A-5 
A-6 
A-7 
A-8 
A-9 
A-9 
A-9 

A-10 
A-10 
A-10 

c 

A-10 c~· 
A-11 
A-11 -~ 

A-11 
A-12 



() 

() 

() 

C1 

0 

BIS_REPLY 
FREE_ SESSION 
RTR_RQ 
RTR_RSP 
INIT_HS 
ACTIVATE_SESSION_RSP 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 
SEND_ERROR 
ALLOCATE_RCB 
CHANGE_ SESSIONS 
DEALLOCATE_RCB 
GET_SESSION 
RM_ACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 
TERMINATE_ PS 
UNBIND_PROTOCOL_ERROR 
BID_HITHOUT_ATTACH 
BRACKET_FREED 
ENCIPHERED_RD2 
HS_PS_CONNECTED 
RM_HS_CONNECTED 
YIELD_SESSION 
START_TP 
START_TP_REPLY 
SEND_RTR 
ACTIVATE_SESSION 
DEACTIVATE_SESSION 
CONVERSATION_FAILURE 
RCB_ALLOCATED 
RCB_DEALLOCATED . 
RM_SESSION_ACTIVATED 
SESSION_ALLOCATED 
ASSIGN_PCID 
ASSIGN_PCID_RSP 
INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL 
INIT_SIGNAL 
SESSST_SIGNAL 
SESSEND_SIGNAL 
PC_HS_DISCONNECT 
SESSION_ROUTE_INOP 
ABEND_NOTIFICATION 
ASSIGN_LFSID 
FREE_LFSID 
LFSID_IN_USE_RSP 
ASSIGN_LFSID_RSP 
LFSID IN USE 

Process-Cr~tion Parameters 
HS_CREATE_PARMS 
PS_CREATE_PARMS 
RM_CREATE_PARMS 
SM_CREATE_PARMS 
RM_ CREATED 

Request RUs 
CRV_RQ_RU 

Miscellaneous Structure Types 
LFSID • 
MU 
PC_ CHARACTERISTICS 
SEND_PARM 
SESSION_ INFORMATION 
SNF • • • 

Miscellaneous Enumeration Types 

APPENDIX B. BUFFER MANAGER 

Introduction • • 
Types of Buffers 
Buffer Manager Protocol Boundary 

LU to BM 
ADJUST_BUF_POOL 
CREATE_BUF_POOL 
DESTROY_BUF_POOL 

A-12 
A-12 
A-12 
A-13 
A-13 
A-13 
A-14 
A-14 
A-14 
A-15 
A-15 
A-16 
A-16 
A-16 
A-17 
A-17 
A-17 
A-17 
A-18 
A-18 
A-18 
A-18 
A-19 
A-19 
A-20 
A-20 
A-20 
A-21 
A-21 
A-21 
A-21 
A-22 
A-22 
A-22 
A-23 
A-23 
A-23 
A-23 
A-24 
A-24 
A-24 
A-24 
A-25 
A-25 
A-25 
A-25 
A-26 
A-26 
A-26 
A-26 
A-27 
A-27 
A-27 
A-27 
A-27 
A-27 
A-28 
A-28 
A-29 
A-32 
A-32 
A-32 
A-33 
A-33 

B-1 

B-1 
B-1 
B-5 
B-5 
B-6 
B-7 
B-8 

Contents xvii 



xviii 

FREE_BUFFER 
GET BUFFER 

BM to-LU 
BUFFERS_RESERVED 

APPENDIX N. FSH NOTATION 

APPENDIX T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS 

INDEX 

SNA LU 6.2 Reference: Peer Protocols 

8-9 
8-10 
8-11 
8-11 

N-1 

T-1 

X-1 

c 

c 

c 



0 

0 

0 

0 

LIST OF ILLUSTRATIONS ---

CHAPTER l. INTRODUCTION 

Figure 1-1. Overview of the SNA Network 
Figure 1-2. Examples of Nested Nodes 

CHAPTER 2. OVERVIEW OF THE LU 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

·Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

2-1. Placement of LUs within the SNA Network !Example) 
2-2. Exchanges between Paired Distributed Components and between Adjacent Layers 
2-3. LU-LU Verification • • • • • • 
2-4. Relationships of Sequences of Message Units I Example) 
2-5. Relationship of Data Records to Logical Records I Example) 
2-6. Relationship of Conversation Message to BIU Chain !Example) 
2-7. Start Conversation with Synchronization Level of NONE 
2-8. Conversation Turnaround without Confirmation • • • 
2-9. Finish Conversation without Confirmation • • • 

2-10. Start Conversation with Synchronization Level of CONFIRM 
2-11. Continue Conversation: Confirmation without Turnaround 
2-12. Conversation Turnaround with SYNC_LEVEL = CONFIRM, using LOCKSISHORTl 
2-13. Conversation Turnaround with SYNC_LEVEL =CONFIRM, using LOCKSILONGJ 
2-14. Finish Conversation, SYNC_LEVEL = CONFIRM 
2-15. Possible Next Sequence in Error-Free Cases 
2-16. One-Hay Conversation without Confirmation 
2-17. Two-Hay Conversation with Confirmation 
2-18. Conversation Turnaround following REQUEST_TO_SEND !without Confirmation) 
2-19. SEND_ERROR Issued by Sender • • 
2-20. SEND_ERROR Issued by Receiver • 
2-21. SEND_ERROR Issued by both Sender and Receiver ISEND_ERROR Race) 
2-22. DEALLOCATE ABEND Issued by Sender 
2-23. DEALLOCATE ABEND Issued by Receiver 
2-24. Overview of LU 6.2 Components 
2-25. Structure of a Presentation Services Process 
2-26. Example of Communicating Transaction Programs 
2-21.·Map Name Usage by Mapped Conversations 
2-28. Relationship of LU Components for Sync Point Functions 
2-29. LU Static Data Structures I Example) • • • • 
2-30. LU Dynamic Data Structures and Processes !Example) 
2-31. Data Structure Relationships among LUs for a Distributed Transaction 

2-32. 
2-33. 
2-34. 
2-35, 
2-36. 
2-37. 

I Example) • • 
LU Process Creation and Termination Hierarchy 
Complete Conversation Example--Local LU 
Complete Conversation Example--Remote LU 
Session Deactivation--Local LU 
Session Deactivation--Remote LU , • • , • • 
ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), CONFIRM lby First 
Speaker)--Local LU , , , , • , • • • • •• , 

Figure 2-38. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), CONFIRM lby First 
Speaker )--Remote LU , • • • , , • , , , , , , • • 

Figure 2-39. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), RECEIVE_AND_HAIT (by 
Bidder )--Local LU , . . . . . . . . . . . . . . . . . 

Figure 2·40. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), RECEIVE_AND_HAIT (by 
Bidder )--Remote LU • • • • • • • • • • • • • • • . • • 

Figura 2-41. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), CONFIRM lby Bidder), 
Attach Error --Local LU • , • , • • • • • • 

Figure 2-42. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), CONFIRM lby Bidder), 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

2-43. 
2-44. 
2-45. 
2-46. 
2-47. 
2-48. 
2-49. 
2-50. 
2-51. 
2-52. 

Attach Error--Remote LU • , , • • , , • , , 
ALLOCATEIRETURN_CONTROL=IMMEDIATE), Successful--Local LU 
ALLOCATEIRETURN_CONTROL=IMMEDIATE), Successful--Remote LU 
ALLOCATEIRETURN_CONTROL=IMMEDIATEJ, Unsuccessful--Local LU 
ALLOCATEIRETURN CONTROL=IMMEDIATE), Unsuccessful--Remote LU 
DEALLOCATEITVPE;FLUSH) IRQEll--Local LU 
DEALLOCATEITVPE=FLUSH) IRQEll--Remote LU 
DEALLOCATECTVPE=FLUSH) IRQDll--Local LU 
DEALLOCATEITVPE=FLUSH) IRQDll--Remote LU 
DEALLOCATE I TVPE=FLUSH) l·RQEl), SEND_ERROR, -RSP Sent--Local LU 
DEALLOCATEITVPE=FLUSH) IRQEl), SEND_ERROR, -RSP Sent--Remote LU 

1-2 
1-4 

2-2 
2-5 
2-9 

2-16 
2-17 
2-18 
2-20 
2-20 
2-20 
2-20 
2-21 
2-21 
2-21 
2-22 
2-22 
2-23 
2-23 
2-24 
2-25 
2-25 
2-26 
2-26 
2-27 
2-28 
2-29 
2-30 
2-37 
2-39 
2-41 
2-42 

2-44 
2-45 
2-50 
2-51 
2-52 
2-53 

2-54 

2-55 

2-56 

2-57 

2-58 

2-59 
2-60 
2-61 
2-62 
2-63 
2-64 
2-65 
2-66 
2-67 
2-68 
2-69 

List of Illustrations xix 



Figure Z-53. 
Figure Z-54. 
Figure Z-55. 
Figure Z-56. 
Figure Z-57. 

Figure Z-58. 

Figure Z-59. 
Figure Z-60. 
Figure Z-61. 

Figure Z-6Z. 

Figure Z-63. 

Figure Z-64. 

Figure Z-65. 

Figure Z-66. 

Figure Z-67. 
Figure 2-68. 
Figure Z-69. 
Figure Z-70. 
Figure Z-71. 
Figure Z-7Z. 
Figure Z-73. 
Figure Z-74. 
Figure Z-75. 
Figure Z-76. 
Figure 2-77. 
Figure 2-78. 
Figure Z-79. 
Figure Z-80. 
Figure 2-81. 
Figure Z-82. 
Figure Z-83. 
Figure Z-84. 
Figure Z-85. 
Figure Z-86. 
Figure Z-87. 
Figure Z-88. 
Figure Z-89. 
Figure 2-90. 
Figure Z-91. 
Figure Z-92. 
Figure 2-93. 
Figure 2-94. 
Figure Z-95. 
Figure Z-96. 

DEALLOCATEITYPE=FLUSHJ IRQElJ, SEND_ERROR, -RSP not Sent--Local LU 
DEALLOCATEITYPE=FLUSHJ IRQElJ, SEND_ERROR, -RSP not Sent--Remote LU 
DEALLOCATEITYPE=CONFIRMJ IRQDZl3J--Local LU • • •••• 
DEALLOCATEITYPE=CONFIRMJ IRQDZl3J--Remote LU ••••••• 
DEALLOCATEITYPE=ABEND PROGJ Issued in SEND STATE, Between-Chain 
State--Local LU - • • • • • -:- • • • • • • • • • • 

DEALLOCATEITYPE=ABEND PROGJ Issued in SEND_STATE, Between-Chain 
State--Remote LU - • • • • • • • • • • • • • • 

DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE, In-Chain State--Local LU 
DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND STATE, In-Chain State--Remote LU 
DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND=STATE, -RSP Received 
State--Local LU • • . • • • • • • • • • • • • 

DEALLOCATEITYPE=ABEND PROGJ Issued in SEND_STATE, -RSP Received 
State--Remote LU - • • • • • • • • • 

DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE Crassing SEND_ERROR--Local 
LU • • • • • • • • • • • • • • • 

DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE Crossing 
SEND_ERROR--Remote LU • • • • • • • • • 

DEALLOCATEITYPE=ABEND_PROGJ Issued in RCV_STATE, Between-Chain State--Local 
LU • • • • • • • • • • 

DEALLOCATEITYPE=ABEND_PROGJ Issued in RCV_STATE, Between-Chain 
State--Remote LU 

DEALLOCATEITYPE=ABEND_PROGJ Issued in RCV STATE, In-Chain State--Local LU 
DEALLOCATEITYPE=ABEND_PROGJ Issued in RCV=STATE, In-Chain State--Remote LU 
CONFIRM IRQDZl3J--Local LU 
CONFIRM IRQD213J--Remote LU 
CONFIRM IRQEZl31--Local LU 
CONFIRM IRQEZl31--Remote LU 
CONFIRM IRQEZl3J, SEND_ERROR--Local LU 
CONFIRM IRQE213J, SEND ERROR--Remote LU 
CONFIRM IRQD213J, SEND-ERROR--Local LU 
CONFIRM IRQDZl3J, SEND-ERROR--Remote LU 
DEALLOCATEITYPE=CONFIRMJ, SEND_ERROR--Local LU 
DEALLOCATEITYPE=CONFIRMJ, SEND ERROR--Remote LU 
DEALLOCATEITYPE=CONFIRMJ Crossing SEND_ERROR--Local LU 
DEALLOCATEITYPE=CONFIRMJ Crossing SEND_ERROR--Remote LU 
RECEIVE_AND_HAIT Causing RQE,CD--Local LU 
RECEIVE_AND_HAIT Causing RQE,CD--Remote LU 
SEND ERROR before SEND DATA--Remote LU 
SEND-ERROR before SEND-DATA--Local LU 
SEND=ERROR Crossing SEND_ERROR, Both Issued in RCV_STATE--Remote LU 
SEND_ERROR Crossing SEND_ERROR, Both Issued in RCV_STATE--Local LU 
SEND ERROR before CONFIRM--Remote LU • • • 
SEND-ERROR before CONFIRM--Local LU •• 
SEND-ERROR Before DEALLOCATEITYPE=CONFIRMJ--Remote LU 
SEND-ERROR Before DEALLOCATEITYPE=CONFIRMJ--Local LU 
SEND-ERROR at End-of-Chain--Remote LU • • 
SEND-ERROR at End-of-Chain--Local LU • 
REQUEST_TO_SEND, Received in SEND_STATE--Remote LU 
REQUEST TO SEND, Received in SEND STATE--Local LU 
REQUEST-TO-SEND, Received in RCV STATE--Remote LU 
REQUEST=TO=SEND, Received in RCV=STATE--Local LU 

CHAPTER 3. LU RESOURCES MANAGER 

Figure 3-1. Overview of Component Interactions Involving the Resources Manager 
Figure 3-2. Buffer Management for FMH-5 MU •••••• 
Figure 3-3. Buffer Management for FMH-lZ MU •••••••• 
Figure 3-4. Allocation of a Resource Control Block IRCBJ 
Figure 3-5. Allocation of a Session Using BID_HITHOUT_ATTACH 
Figure 3-6. Responding to a Bid for a Session 
Figure 3-7. Immediate Allocation of a Session 
Figure 3-8. Attach Flow • • • • • • • 
Figure 3-9. Bid Races • • • • • • • • 
Figure 3-10. READY TO RECEIVE IRTRJ Flow 
Figure 3-11. End of a Conversation 
Figure 3-lZ. Activation of a Session 
Figure 3-13. Decreasing the Number of Sessions 
Figure 3-14. Session-Outage Flow • • • • • • 

xx SNA LU 6.Z Reference: Peer Protocols 

Z-70 
Z-71 
Z-7Z 
Z-73 

Z-74 

Z-75 
Z-76 
Z-77 

Z-78 

Z-79 

Z-80 

2-81 

z-8Z 

Z-83 
Z-84 
2-85 
Z-86 
2-87 
2-88 
2-89 
2-90 
2-91 
2-92 
2-93 
2-94 
2-95 
2-96 

2-97 c· 2-98 
2-99 / 

2-100 
2-101 
2-102 
2-103 
2-104 
2-105 
Z-106 
2-107 
2-108 
2-109 
Z-110 
2-111 
2-112 
2-113 

3-1 
3-3 
3-3 
3-4 
3-6 
3-8 
3-9 

3-10 
3-11 
3-12 
3-13 
3-14 
3-16 

c 

3-18 c~ 



c) 

CHAPTER 4. LU SESSION MANAGER 

4-1. 
4-2. 
4-3. 
4-4. 
4-5. 
4-6. 
4-7. 
4-8. 
4-9. 

Protocol Boundaries between LU Session Manager and Other Node Components 
Records Exchanged between SM and Other Components 
TH Parmeters for MUs That SM Sends. 
TH Parameters for MUs That SM Receives 
RH Parameters for MUs That SM Sends 
RH Parameters for MUs That SM Receives 
Format of User Data 
Reinitiation Responsibility 
SM Initialization 
Session Initiation by Local LU 
Session Initiation by Local LU: PCID Collision Detected 
Session Activation by Partner LU: BINDIFQPCIDJ Is Received 
Session Activation by Partner LU: BIND Is Received 
Session Deactivation by Local LU • • 
Session Deactivation by Partner LU • • 
SM receives SESSION_ROUTE_INOP Hhile a Session Is Active 
SM Receives SESSION ROUTE INOP Hhile a Session Is Haiting Activation 
SM Receives SESSION=ROUTE=INOP Hhile a Session Is 
SM Receives SESSION_ROUTE_INOP Hhile a Session Is 
Session Activation by Local LU: LFSID Assignment Failed 
Session Activation by Local LU: BIND Is Rejected with UNBIND 
Session Activation by Local LU: BIND Is Rejected with 
Session Initiation by Local LU: INIT_SIGNAL Is Rejected 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

4-10. 
4-11. 
4-12. 
4-13. 
4-14. 
4-15. 
4-16. 
4-17. 
4-18. 
4-19. 
4-20. 
4-21. 
4-22. 
4-23. 
4-24. 
4-25. 
4-26. 
4-27. 
4-28. 

ASM Checks Hhether a Specific IPATH_CONTROL_ID, LFSIDl Pair Is in Use by SM 
Termination of a Pending LU-LU Session before CINIT_SIGNAL Is Received 
Termination of a Session Pending Activation After BIND Is Sent 

4-1 
4-4 

4-14 
4-15 
4-16 
4-17 
4-22 
4-26 
4-31 
4-32 
4-33 
4-34 
4-35 
4-36 
4-36 
4-37 
4-37 
4-38 
4-39 
4-40 
4-41 
4-41 
4-42 
4-42 
4-43 
4-44 
4-45 
4-46 

SM Receives ABORT HS Hhile a Session Is Active 
A Request to Get ; Buffer Is Rejected during Session Activation 

CHAPTER 5.0. OVERVIEH OF PRESENTATION SERVICES 

Figure 5.0-1. overview of Presentation Services, Emphasizing PS.INITIALIZE and 
PS.VERB ROUTER ...•.•....••••.....• 

Figure 5.0-2. Attach Initialization and Termination of Presentation Services and 
Transaction Program • . . . • . . . . . . . . . • . . . • • 

Figure 5.0-3. START_TP Initialization and Termination of Presentation Services and 
Transaction Program . • . • . . . . . . . . . . . . . . . • . • . . 

Figure 5.0-4. Limited-Instance Transaction Program Processing in Resources Manager 

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS 

Figure 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

5.1-1. overview of Presentation Services, Emphasizing Presentation Services for 

5.1-2. 
5.1-3. 
5.1-4. 
5.1-5. 
5.1-6. 
5.1-7. 

Basic Conversations • . . . . • . • • 
LU Control Block List and Associated Lists 
Transaction Control Block ITCBl 
Resource Control Block IRCBl 
PS.CONV Requests and Associated RM Replies 
SEND_ERROR Race . . . . • . . 
SEND_ERROR Race with Deallocation 

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS 

Figure 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

5. 2-1. 

5.2-2. 
5.2-3. 
5.2-4. 
5.2-5. 
5.2-6. 
5.2-7. 
5.2-8. 
5.2-9. 

5.2-10. 

Overview of Presentation Services, Emphasizing Presentation Services for 
Mapped Conversations 
PS.MC's Use of the Basic Conversation Protocol Boundary 
GOS Variables and Logical Records 
Transformation of Data from MC SEND DATA to a GOS Variable 
An Example of Mapping - -
MC TEST PROC 
Detecti~g a Service Error as a Result of MC_RECEIVE_AND_HAIT Processing 
Detecting a Service Error as a Result of a Call to MC TEST PROC 
Receipt by PS.MC of a SVC_ERROR_PURGING Return Code 
Receipt by PS.MC of a SVC_ERROR_TRUNC or 

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS 

Figure 5.3-1. Relationships among Failures and Recovery 
Figure 5.3-2. A Typical Sync Point Tree ••..... 

5.0-2 

5.0-3 

5.0-5 
5.0-6 

5.1-2 
5.1-3 
5.1-4 
5.1-5 
5.1-5 
5.1-8 
5.1-9 

5.2-2 
5.2-3 
5.2-5 
5.2-6 
5.2-9 

5.2-13 
5.2-15 
5.2-16 
5.2-18 
5.2-19 

5.3-2 
5.3-3 

List of Illustrations xxi 



Figure 5.3-3. 
Figure 5.3-4. 
Figure 5.3-5. 
Figure 5.3-6. 

Figure 5.3-7. 
Figure 5.3-8. 
Figure 5.3-9. 
Figure 5.3-10. 
Figure 5.3-11. 
Figure 5.3-12. 
Figure 5.3-13. 
Figure 5.3-14. 
Figure 5.3-15. 
Figure 5.3-16. 
Figure 5.3-17. 
Figure 5.3-18. 
Figure 5.3-19. 
Figure 5.3-20. 
Figure 5. 3-21. 

Figure 5.3-22. 

Figure 5.3-23. 

Figure 5.3-24. 

Figure 5.3-25. 
Figure 5.3-26. 

Figure 5.3-27. 
Figure 5.3-28. 
Figure 5.3-29. 
Figure 5.3-30. 
Figure 5.3-31. 
Figure 5.3-32. 

Figure 5.3-33. 
Figure 5.3-34. 
Figure 5.3-35. 
Figure 5.3-36. 
Figure 5.3-37. 

Basic Sync Point Flows • • . • • . 
Optimized Flow: No Resource Changed 
Optimized Flow: Last Resource 
Sync Point Services for Local INonconversationall Resources, Such as 
Files • • . . . . • • • • • • • • • • • • 
Sync Point Services for Conversation Resources 
Sync Point Services for Function Shipping 
Illustrative Sync Point Flow: General Case 
Illustrative Sync Point Flow: Last-Resource Optimization 
Illustrative Sync Point Flow: No Resources Changed 
Back Out Example 1 
Back Out Example 2 
Resync after Conversation Failure 
Resync after LU Failure 
Avoiding Failure Resulting from an Attach-SON Race 
SEND_ERROR and Prepare vs. Prepare Race during Session Outage 
SEND_ERROR and Request Commit vs. Prepare Race during Session Outage 
Lost Sync Point Messages: Initiator's View .•.....• 
Lost Messages for Sync Point: Last Agent's View ..••• 
Resynchronization Action: At Initiator, Hhen Resynchronizing with the 

Last Agent .•.•...•.......•.•• 
Resynchronization Action: At Last Agent, Hhen Resynchronizing with the 
Initiator . • • • . • . . • . • • • . . • . . . . . 

Resynchronization Action: At Initiator, Hhen Resynchronizing with the 
Not-Last Agent • • . . . . . . • . . • . . . • . . . . . 

Resynchronization Action: At Not-Last Agent, Hhen Resynchronizing with 
the Initiator • • • • . . . . • • . . . . . • . . . . 

Resynchronization Action: Resync from Last Agent . • • • . . 
The Sequence of LU Control Operator Messages Generated by Sync Point 

Resynchronization . . . • . . . 
Cascaded Resynchronization Example 
Cold Start of an LU . . . • . . 
Log Name Mismatch during Resync 
Sync Point Services Calling Tree 
Heuristic Mixed in Reply to Sync Point Flow 
Verb Sequences and Sync Point Flows to the Last Agent, Hhich Has No 

Cascaded Resources . • . . • • • • . • . • • 
Sync Point with No Resources Changed 
Sync Point with Changes to Protected Resources, Request SEND 
Sync Point with Changes to Protected resources, Request RECEIVE 
Sync Point with Changes to Protected Resources, Request DEALLOCATE 
BACKOUT Logic . . • • • • • . • • • • • . • . • . 

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

5.4-1. 
5.4-2. 
5.4-3. 
5.4-4. 
5.4-5. 
5.4-6. 
5.4-7. 
5.4-8. 
5.4-9. 

5.4-10. 
5.4-11. 
5.4-12. 
5.4-13. 
5.4-14. 

Figure 5.4-15. 
Figure 5.4-16. 

Control-Operator Components in Relation to Other Components of the LU 
LU Component Relationships for Distributed Session-Control Verbs 
Sequence of Verbs and Information Exchange in CNOS Transaction Programs 
CNOS External Message-Unit Flows •..•••••• 
CNOS Process Interactions at a Single LU . • . • . 
Transaction Handling Component Relationships--Case 1 
Transaction Handling Component Relationships--Case 2 
Transaction Handling Component Relationships--Case 3 
No Race ..•...••••.•. 
Single-Failure Race Condition--Case 1 
Single-Failure Race Condition--Case 2 
Double-Failure Race Condition 
Structure of Presentation Services for the Control Operator 
Single-Session Contention Polarity Determined by 

Minimum-Contention-Hinner-Limit Parameters 
Source-LU Component Interactions for CNOS 
Target-LU Component Interactions for CNOS 

CHAPTER 6.0. HALF-SESSION 

Figure 
Figure 

6.0-1. Overview of Half-Session ••••••.•••••• 
6.0-2. Message Units Exchanged Between HS And Other Components. 

xxii SNA LU 6.2 Reference: Peer Protocols 

5.3-4 
5.3-4 c 
5.3-5 ' 

5.3-5 
5.3-7 
5.3-8 

5.3-11 
5.3-13 
5.3-14 
5.3-17 
5.3-17 
5.3-19 
5.3-20 
5.3-21 
5.3-22 
5.3-23 
5.3-24 
5.3-25 

5.3-26 

~ 
5.3-27 \_j 
5.3-28 

5.3-29 
5.3-30 

5.3-31 
5.3-32 
5.3-33 
5.3-34 
5.3-36 
5.3-38 

("· 
5.3-38\ 
5.3-39 ~--/ 
5.3-39 
5.3-40 
5.3-40 
5.3-41 

5.4-2 
5.4-1 r 
5.4-9 ( " 

5.4-10 \. , 
5.4-11 ._/ 
5.4-12 
5.4-13 
5.4-14 
5.4-16 
5.4-17 
5.4-18 
5.4-19 
5.4-23 

5.4-24 
5.4-26 
5.4-29 

6.0-1 
6.0-2 



0 

c 'i ) 

0 

CHAPTER 6.1. DATA FLOH CONTROL 

Figure 6.1-1. Overview of DFC •••••••••...•• 
Figure 6.1-2. Detailed Structure and Protocol Boundaries of DFC 
Figure 6.1-3. Use of Sequence Nunbers 
Figure 6.1-4. Case 1: "Late" SIGNAL or Response 
Figure 6.1-5. Case 2: "Early" SIGNAL 
Figure 6.1-6. Case 3: "Early" SIGNAL 
Figure 6.1-7. Mapping from SEND_DATA_RECORD to request RH 
Figure 6.1-8. Mapping from request RH to MU lsent to PS) 
Figure 6.1-9. DFC Request Formats 
Figure 6.1-10. DFC Response Formats 

CHAPTER 6.2. TRANSMISSION CONTROL 

Figure 6.2-1. Structure of TC and Flow of Data within the Half-Session 
Figure 6.2-2. Distributing the Session Cryptography Key and Session Seed to the LU 
Figure 6.2-3. SEND_MU and TC.RCV Request/Response Flow 
Figure 6.2-4. Session-Level Pacing with Solicited IPMs 
Figure 6.2-5. Session-Level Pacing with Unsolicited IPMs 

APPENDIX A. NODE DATA STRUCTURES 

APPENDIX B. BUFFER MANAGER 

Figure 
Figure 
Figure 
Figure 
Figure 

B-1. 
B-2. 
B-3. 
B-4. 
B-5. 

Send/Receive Buffer Usage I for Session Data) 
LU Interactions with BM Hhen Sending Data 
LU Interactions with BM Hhen Receiving Data 
Receiving a Solicited IPM 
Sending a Solicited IPM 

APPENDIX N. FSM NOTATION 

Figure N-1. Syntax of an FSM State-Transition Matrix 

APPENDIX T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS 

6.1-2 
6.1-3 
6.1-6 
6.1-5 
6.1-7 
6.1-7 

6.1-13 
6.1-13 
6.1-14 
6.1-15 

6.2-2 
6.2-4 
6.2-5 

6.2-10 
6.2-11 

B-4 
B-12 
B-13 
B-16 
B-17 

N-2 

List of Illustrations · xxiii 



This page intentionally left blank 

xx1v SNA LU 6.2 Reference: Peer Protocols 



() 

0 

0 

CHAPTER 1. INTRODUCTION 

USE AND ORGANIZATION OF THIS BOOK 

This book, in conjunction with the companion 
books listed in the Preface, provides a 
formal definition of Systems Network Archi­
tecture CSNAJ. It is intended to complement 
individual SNA product publications, but not 
to describe individual product implementa­
tions of the architecture. 

SNA logical unit type 6.2 !hereafter general­
ly referred to as LU 6. 2, or simply LU J is 
defined here in the form of a functionally 
layered system, represented by a formal 
description, that is decomposable into compo­
nents called protocol machines. Protocol 
machines generate output sequences in 
response to input sequences, in accordance 
with fixed rules, or protocols, governing 
distinct information transfers into, out of, 
and within the system. 

The protocol machine definition of SNA uses 
the following basic notions: 

• Finite-state machines: A finite-state 
machine CFSMJ is an abstract device hav­
ing a finite number of states (memory) 
and a set of rules whereby the machine's 
responses ·1 state transitions and output 
sequences J to all input sequences are 
well defined. 

• 

• 

Routing and checking logic: Routing and 
checking--Y-ogic perfo~a mapping of 
inputs I message units and FSM states J 
into outputs. It is used to verify 
validity of message uni ts and to route 
them to FSMs. 

Block diagrams: A block diagram repres­
ents the decomposition of a protocol 
machine into its component submachines 
!which themselves are protocol machines) 
and the signaling paths between them. 
Each block in the diagram can be further 
decomposed into its constituent subma­
chines. 

• Protocol boundaries: A protocol bouidary 
is a specification of the format and con-

tent requirements imposed on the signals 
exchanged between protocol machines with­
in the same node. 

The remainder of the book presents details of 
the SNA formats and protocols for LU 6. 2, 
arranged as follows: 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 2 provides an overview of the 
functions and structure of the LU, as 
well as the sequences and message uni ts 
exchanged between two communicating LUs. 

Chapters 3 and 4 describe LU services 
manager components; these components 
attach transaction programs as requested, 
allocate sessions to transaction pro­
grams, and coordinate the activation and 
deactivation of sessions involving LUs. 

Chapters 5.0 through 5.4 describe the 
general structure and detailed functions 
of presentation services-in particular 
the execution logic for LU 6.2 verbs. 

Chapter 6. 0 provides an overview of the 
half-session, while Chapters 6.1 and 6.2 
describe the data flow control and trans­
mission control protocols, respectively, 
within half-sessions. 

Appendix A describes the data structures 
used in the formal description and the 
relationships among the control blocks. 

Appendix B describes the basic functions 
of the buffer manager and its protocol 
boundary with the LU. 

Appendix 
of, and 
machines. 

N describes the basic concept 
notation for, finite-state 

Appendix T provides a comprehensive list 
of abbreviations and acronyms used in the 
book. 

Chapter 1. Introduction 1-1 



•.•••.•••••••.••••..•••••.•••• Other NAUs I PUs and SSCPs l ............................ . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • A. • • .A •••••••••••••••••••••••••••••••••••••• 
................................... I • • • I ..................................... . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v. . .v ..................................... . 

Upper 
End Layers 
User < t-+-> of the 

LU 

End 
User 

Upper 
Layers 

< t-t--> of the 
LU 

Upper 
Layers 

< t-t--> of the 
LU 

<-> Half-Session < > 

• 
• 
• 

<-> Half-Session < > 

LUI 

<-> Half-Session < > 

• 
• 
• 

<-> Half-Session < > 

LUZ 

• 
•................ . .............. .. 

<-> Half-Session < > 

• 
• 
• 

<-> Half-session < > 

LUi 

Figure 1-1. Overview of the SNA Network 

.- - - - -> < > Half-Session <-> 

MSG= 

I 

I 
I __. 

(session routing 
information, 
other parameters, 
and data) 

Path Control 
Network 

SNA Network 

• 
• 
• 

< > Half-Session <-> 

• 
• 
• 

< > Half-Session <-> 

• 
• 
• 

< > Half-session <-> 

1-2 SNA LU 6.2 Reference: Peer Protocols 

Upper 
Layers 
of the 

LU 

Upper 
Layers 
of the 

LU 

LUj 

LU<. 

End 
<-t-- > User 

<-+-1 > End 
User 

<~>r:l . LJ 

c 

c 



GENERAL CONCEPTS 

0 

DEFINITION OF AN SNA NETHORK 

An SNA network: 

• Enables the reliable transfer of data 
between end users !typically, terminal 
operators and application programs). 

• Provides protocols for controlling the 
resources of any specific network config­
uration. 

An SNA network consists logically of a set of 
network addressable units INAUsJ intercon­
nected by an inner path control network con­
s is ting of the path control, data link 
control, and physical layers; Figure 1-1 on 
page 1-2 shows the general relationships. 
SNA networks functionally have a layered 
organization, the outermost layers of which 
form the NAUs, A NAU consists of the upper 
layers, transaction services ITSJ and presen­
tation services I PS), and one or more' 
half-session protocol machines (consisting of 
the data flow control and transmission con­
trol layers), depending on the number of oth­
er NAUs with which it can be paired to form 
sessions. 

Those NAUs serving end users are called log­
ical units ILUs). An LU allows an end user 
to gain access to network resources (such as 
links, programs, and directories) and to com­
municate with other end users. An LU may 
also provide a service lsuch as for a control 
operator) wholly contained within the LU that 
is accessed from another LU via a session. 
Thus, in some cases, an LU-LU session has an 
end user only at one end. The presence of 
various services within an LU is a function 
of LU type, product design, and installation 
options. 

In general, there need not be a one-to-one 
relationship between end users and LUs. The 
association between end users and the set of 
LUs is an implementation design option. 

The LUs provide protocols allowing end users 
to communicate with each other and with other 
NAUs in the network. An LU can be associated 
with more than one network address I or with 
multiple, distinct local-form session identi­
fiers J; this allows two LUs I and therefore 
their end users) to form multiple, concur­
rently active sessions with each other. 

Besides LUs, two other network addressable 
units are defined: physical units IPUsJ and 
system services control points I SSCPs l. 
These NAUs, in conjunction with one another, 
with control points ICPsl in T2.l nodes, and 
with LUs, provide a variety of session, con­
figuration, management, and network-operator 
services. 

Message units are transported between NAUs by 
the path control network. These message 
units are of the general form: 

MSG = I session routing information ,other 
parameters, and data l The path control net­
work routes and delivers message units to naj 
in the same order as sent from nai. 

The message uni ts transferred within an SNA 
network generally have two components: 
end-user information and control information. 
The end-user information is passed by the SNA 
network and does not affect its state. Con­
trol information may sometimes be passed to 
the end users las in the case of the Change 
Direction indication, which allows one end 
user to transfer the right to transmit data 
to the other); however, its main purpose is 
to change the state of the SNA network, thus 
effecting a normal control change (such as a 
change to a path control routing table) or a 
recovery from an exception condition. 

NODES 

The SNA network physically consists of nodes 
interconnected via links. An SNA node is a 
grouping of SNA-defined protocol machines. 
An SNA product node may consist of addi­
tional, product-specific protocol machines 
that use one or more SNA nodes. A 
user-application node may consist of addi­
tional, installation-defined protocol 
machines that use one or more SNA product 
nodes. These relationships are shown in Fig­
ure 1-2 on page 1-4. The abstraction of 
nested nodes is a useful reminder that each 
product exists in an environment that con­
tains many design features that are not 
defined by SNA. 

For specific details of nesting of SNA nodes 
and SNA product nodes within user-application 
nodes, see SNA Concepts and Products and SNA 
Technical Qv-e;:\,iew. 

In this book, "node" is synonymous with "SNA 
node," and the qualifier will generally be 
omitted. Thus, end users and protocol 
machines not defined in SNA are external to 
the node, as that term is used hereafter. 

Various node types are defined in SNA: types 
1, 2.0, 2.1, 4, and 5. They are distin­
guished by varying capabilities, such as for 
interconnection, and by the presence or 
absence of different NAU types. 

For example, type 2 .1 nodes can connect to 
the general subarea routing network or to 
other type 2.1 nodes directly. In the former 
case, subarea nodes !discussed below) provide 
general intermediate routing within the path 
control layer, allowing complex network con­
figurations to be fashioned; in the latter 
case, two type 2 .1 nodes can interconnect 
independently of other nodes, in a 
peer-to-peer relationship. 

Type 1 and type 2 ( i.e. , 2. 0 or 2 . 1) nodes 
are also referred to as peripheral nodes, 

Chapter 1. Introduction 1-3 



: : : .___I __ SN_A Node____.r:: 

••..•.••...•.....•.••••..•. SNA Product Node 

User-Application Node 

la) Typical Case 

:::1 SNA Node 1::::::::::1 SNA Node r:: 
.......... .__~~~~~~ 

• . . . • . • . . . . . • . . . . . . . . . . . • . . SNA Product Node 

User-Application Node 

lb) Two SNA Nodes within an SNA Product Node 

:::1 SNA Node 

..• SNA Product Node .•• SNA Product Node 

User-Application Node 

le) Two SNA Product Nodes within a User-Application Node 

Figure 1-2. Examples of Nested Nodes 

because they have limited addressing and 
path-control routing capabilities. They do 
not participate in the general network rout­
ing based on a global network address space. 
Instead, they depend on "boundary function" 
support in types 4 or 5 nodes to trans form 
between the address forms, local to the 
peripheral nodes, and the network addresses 
used in the general routing portion of the 
path control network. Peripheral nodes are 
thereby insulated from changes in the global 
network address space resulting from reconf­
igurations. 

Types 4 and 5 nodes are referred to as sub­
area nodes. IA subarea represents a parti­
tioning of the network address space. It 
contains a subarea node and all the peripher....: 

1-4 SNA LU 6.2 Reference: Peer Protocols 

al nodes attached to the subarea node.) Sub­
area nodes, besides also being sources and 
sinks of data, have more general path control 
capabilities. They can perform intermediate 
routing-passing message units received from 
one node on to another--and provide adaptive 
control of traffic flow within the subarea 
routing portion of the network. 

NAUS AND NODE TYPES 

Except for a T2.l node, a node always(°"" 
includes a phys ica~ unit I PU), wh~ch controls ... 
the attached links and various other -
resources of the node. A PU has a type des­
ignation corresponding to the type 11, 2.0, 



0 

0 

4, or 5) of node in which it resides. A T2.l 
node includes the PU functions within its 
local control point I CP ) , described further 
below. 

A node typically also includes logical units 
ILUs), through which end users attach to the 
node, and thus to the SNA network. From the 
vantage of this and the companion LU 6. 2 
book, node types 2.1 and 5 are of primary 
interest, as these are the only nodes that 
include LU 6.2 implementations. This book 
focuses on the SSCP-independent LU 6.2 proto­
cols, and emphasizes interactions within the 
T2.l node to support these peer protocols. 

A subarea PU or subarea LU resides in a sub­
area node.~A peripheral-PU or peripheral LU 
resides in a peripheral node. 

Type 5 nodes each contain a system services 
control point ISSCPJ. IType 4 nodes do 
not~the primary architectural distinction 
between subarea node types. ) An SSCP sup­
ports protocols for management and control of 
a domain. A domain consists of one SSCP and 
the PUs, LUs, links, and link stations that 
the SSCP can activate. Each PU, LU, link, 
and link station in a network belongs to one 
of the domains comprising the network, and 
some can belong to more than one domain-a 
feature referred to as "shared control." 
Each SSCP provides network services within 
its domain (basically for converting local 
names to global addresses) through protocols 
supported in conjunction with the PUs or LUs 
in the domain. The multiple SSCPs in.a net­
work jointly support network services across 
domains. 

Type 2.1 IT2.ll nodes each contain a control 
point ( CP), which provides services on a more 
local scale than an SSCP provides. In par­
ticular, a T2.l CP can mediate LU-LU 
session-initiation requests !by doing 

( '> OTHER DEFINITIONS AND NOTATIONAL CONVENTIONS 
_/ 

This section describes some notational con­
ventions widely used in both the figures and 
the text. !Additional conventions are 
defined within figure legends throughout the 
book.) 

A naming convention, using qualifiers sepa­
rated by periods to denote more specific com­
ponents of a composite protocol machine, is 
used throughout the book. Component subma­
chines are shown as blocks within a larger 
block that represents the composite machine. 

In many cases, it is desirable to identify a 
qualifier by a phrase of multiple terms, in 
order to better convey the meaning of the 
qualifier. The multiple terms in the phrase 
are connected by underscores to indicate that 
they are part of a phrase rather than sepa­
rate qualifiers representing further decom­
positions. The underscore convention is also 
used in names of states and data structures. 

partner-LU address look-up in its local data 
base) in the SSCP-independent LU 6.2 context 
just as an SSCP does in the SSCP-dependent LU 
6.2 context. 

THE PATH CONTROL NETWORK 

The system consisting of all interconnected 
path control IPCJ and data link control IDLC) 
components forms the path control network. 
The input/output streams of the path control 
network consist of streams of control infor­
mation, such as addresses, and associated 
user data. 

Each node has a PC element and NAUs. The 
node and link connections of the network, and 
the PC routing algorithms, combine to provide 
the following behavior for the path control 
network: 

• An input to a PC element in node-i from a 
NAU is transmitted and routed by the path 
control network and emitted as output by 
the PC element in node-j to the destina­
tion NAU. !Since node-i and node-j can 
be the same node li=j), NAUs within the 
same node can be connected by a session.) 

• Message units with the same session iden­
tifiers are emitted by the path control 
network in the order submi Hed by the 
origin NAU. 

Just as primary-secondary DLC asymmetries and 
other DLC details are hidden from PC, so the 
routing and other concerns of the path con­
trol network are not visible at the protocol 
boundary with the NAUs; in particular, the 
path control network conceals the node inter­
connections and the NAUs need only consider 
their logical connections !i.e., sessions) 
with other NAUs. ' 

Each protocol machine in the book has a 
unique name consisting of a sequence of qual­
ifiers. For example, .IMACHINE.PRI.X_SEND, 
MACHINE.SEC.X RCVl and IMACHINE.SEC.X SEND, 
MACHINE.PRI.X=RCV) are examples of two-basic 
protocol machine pairs. This naming conven­
tion produces protocol machine names that 
carry precise information on the role of the 
protocol machine and its relative position in 
the network structure. 

Two other symbols, "I" and "&," are used in 
names and expressions. The "I" symbol indi­
cates one of several I or "either .•. or"). For 
example, MACHINE. I PRI ISEC J means "either 
MACHINE. PRI or MACHINE. SEC." The "&" symbol 
is used to indicate composition. For exam­
ple, MACHINE.IRCV&SENDl is the composite pro­
tocol machine consisting of MACHINE.RCV and 
MACHINE.SEND. 

Chapter 1. Introduction 1-5 



Some of the protocol machines defined in the 
book interact directly with undefined compo­
nents. These undefined components, called 
undefined protocol machines IUPMsl, represent 
implementation and/or installation options 
that are not architecturally prescribed (be­
ing product or user oriented). 

Hithin block diagrams, 
ventions indicate the 
between components: 

the following con­
type of interaction 

• Solid arrows indicate data flow; between 
processes, this implies send/receive 
(asynchronous) logic. 

• Dotted arrows indicate calling relation­
ships. 

• Dotted lines indicate data structure 
access. 

Message uni ts exchanged between SNA compo­
nents are also denoted by special notation, 
particularly in sequence flow diagrams. A 
message unit is either a request or a 
response, depending on the RH coding (see SNA 
Formats); these are denoted respectively by-i 
request-unit name lhere designated gener­
ically by the term "RQ"l and by RSP. 

RQIQUALl denotes a request having the proper­
ty described by QUAU for example, RQIBegin 
Chain), or simply RQIBCJ, denotes a request 

1-6 SNA LU 6.2 Reference: Peer Protocols 

whose RH is coded "Begin Chain." A similar 
convention applies to responses. For exam- C".· .. 
ple, RSPIBINDl denotes a response to the BIND 
request-a response that echoes the request 
code "BIND." 

The asterisk (lf) character is used in 
sequence flows, as well as elsewhere, to mean 
"any value" lor "don't care"). For example, 
"*BC" means "BC or ~BC"-where "~" is the 
standard symbol for "NOT." 

"Chapter 2. Overview of the LU" describes 
additional conventions used in sequence flow 
diagrams. 

The procedural logic in the formal 
description uses simple English, some 
control-structure elements (e.g., 
if/then/else) common to most high-level lan­
guages, and a few straightforward conventions 
that are generally clear in context. For 
example, a call is frequently shown in the 
form: "Call PROCEDUREIX, V, Zl"; this 
results in calling PROCEDURE and passing it 
the arguments X, v, and Z. Perhaps, the only 
control-structure needing additional explana­
tion is the select/when group: at most, one 
when-clause is executed in a given pass. 

Abbreviations commonly used in the text are 
listed at the back of the book !Appendix Tl 
for easy reference. 



C: 

CHAPTER 2. OVERVIEH OF THE LU 
~~~~ ~ ~- ~ 

INTRODUCTION 

This chapter is an overview of logical unit 
type 6.2 Chereafter referred fo simplyas 
IU'i':" TFie LU provides application programs 

CONCEPTS AND TERMS 
~~~~ ~- -~~ 

DISTRIBUTED TRANSACTION PROCESSING 

Distributed transaction processing involves 
two or more programs, usually at different 
systems, cooperating to carry out some proc­
essing function. This involves program 
intercommunication to share each other's 
local resources such as processor cycles, 
data bases, work queues, or human interfaces 
such as keyboards and displays. 

The LU supports distributed transaction proc­
essing by serving as the port between the 
programs and the path control network. It 
allows a transaction program C TP J to invoke 
remote programs and to exchange data with 
them. 

All communication provided by the LU is 
program-to-program. Any end user that is not 
a program is represented to the LU by a pro­
gram. For example, fixed-function terminals 
and their devices Ce.g., keyboards and dis­
plays) present themselves as fixed programs 
Ce.g., microcode) that use the same LU func­
tions as user-written application programs. 
Human users at workstations do not interact 
directly with the LU but rather with local 
workstation programming support, which in 
turn interacts with the LU. 

This program-to-program communication accom­
modates a variety of distributed processing 
connections, including peripheral node to 
subarea node, subarea node to subarea node, 
peripheral node to peripheral node through 
the subarea network, and direct T2.l node to 
T2.l node. For example, an application pro­
gram at an outlying site Ca terminal or a 
distributed processor) might communicate with 
a data-base management system at a central 
processor to maintain consistency between 
regional and central records. For another 
example, systems programs in workstations 
might exchange files and documents with each 
other. 

Figure 2-1 on page 2-2 illustrates the role 
of the LU in relation to an SNA network. The 

with support functions for distributed trans­
action processing. 

LU connects transaction programs to the path 
control network. The LUs activate sessions 
between themselves. The component of a ses­
sion in each LU is called a half-session. 
Two or more sessions between the same pair of 
LUs are called parallel sessions. Hul tiple 
sessions can concurrently use the same phys­
ical resources connecting the LUs. 

The logical connection between a pair of 
transaction programs is called a 
conversation. A transaction program initi­
ates a conversation with its partner with the 
assistance of the LUs. Hhile a conversation 
is active, it has exclusive use of a session, 
but successive conversations may use the same 
session. 

An LU may run many transaction programs suc­
cessively, concurrently, or both. Each 
transaction program may be connected to one 
or more other transaction programs by conver­
sations. Multiple conversations between dif­
ferent pairs of transaction programs can be 
active concurrently, with each conversation 
using a distinct session. 

Conversations corYleCt TPs in pairs, but any 
TPs directly or indirectly connected to each 
other by conversations are participating in 
the same distributed transaction. For exam­
ple, if TP A and TP B are connected by a con­
versation, and, concurrently, TP B and TP C 
are connected by a conversation, then TPs A, 
B, and C all are participating in the same 
distributed transaction. 

TRANSACTION PROGRAMS 

The direct ~ of the LU is an application 
transaction program (application TPJ. Appb­
cahon TPs are provided by the end user to 
carry out functions of distributed applica­
tions. 

A transaction program is distinguished from 
programs in general by two characteristics: 

Chapter 2. Overview of the LU 2-1 



: : :: : : : : : : : : : : : : : : : : : : :: :: :: : : : : : : : : : : :: : : : : :: : : :: :: :::::: :: : : :: : ::: : :: : : : : : : : : : : : : : : : : : : : : : :: :: : : : : : ..................................................................................................... . . . . . . . . . .. . . . . . . . . . . . .. ... . . . . . . . . . . . .. . . . . .. . . . . . . .. .. . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 
.. ······················G··G·········································· . . . .. . . . . .. .. . . . . . . . . . . . . . . ........................................ . 
: : Application : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
· · Transact1"on · · · · · · · · · · · · · · • · · · · · · · TPa · · TPb · · · · · · · · · · · · · · • · · · · · · · · · · · · · · · · • · · · · · · · · · • . . . .. . . . . . . .. . . . . . . . . . . . . . . ........................................ . 
: : Programs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
: : : : : : : : : : : : : : : : : : : : : : : : . : : . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . ......... . . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . : : : : : : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 
: : : : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . ............ . . . . . . . . . . . . ............. . . .. . . . . . . . . ............ . . . . . . . . . .. . 

NA Us 

: : : : : : : : : : : : : 
: : Path : : 
: : Control : : 
: : Network : : 

• 

LUw 

• 
• : : : : : 
• : : : : : 
• : : : : : 
• : : : : : 

: 
: 
: 
: 

: 
: 
: 
: 

• 
• 
• 
• 
• 

.. .. .. . . . .. . . . . ............... . . .. . . . . . . . . . . . ............... ............... . . . . .. . . .. . . .. . . . .. . . . . ... . .. . . . . . . . . . . . . . . . . 

.............. . ............ . . ............ . . ............ . . ............ . . ............ . . . . . . . . .. . . . . . . ............ . . ............ . . ............ . .............. . . . . . . . . . . . . . . .............. . ............ . .............. . ............ . .............. . ............ . . ............ . . ............ . .............. . ............ . 
: : : : : : : : : : : : : . . . .. . . . . : : : : : : : : :: : : :: : :: : : : : : : : : : :: : 

LUx . . . . . . . . . . . . . • • . . . . . . . . . . . . . . . I LUy I . . . . 
-~~ ............... ~~~~~~~~~~~~~ .. : ::::::: : .. ~~~~~~~~~~~~~~~ ............... !![]~~ 
I:: .....-----------_. ... ·. · · : : TPe : : 

i~7 ...... : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ~ ; ; ; ; ; ~ ~ ; : ; ; ; ; ; ; ; ; ; : ; ; ; ; ; ; ; I ; ; : ; 
......... :: :: 

TPc 

.. ~--~ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ··a·· . . . . . . . . . . . . . . . . 
: : TPd : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 

• 
• 
• 

. ............ . . . . . . . . . . . . . . . . ............ . . ............ . .............. . ............ . . ............ . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . . . . 
: ;;;;;;;;;~;;;;;;;;;;;~;;;;;;;;;;;;;;;;;;;;;;; .......... :: 

············································· G 
• ....... ....------~ :: .. :.;::: TPf ;:::;::: •••••••••••••••••••••••••••••••••• . ....... 

: : : : : : : : : : : : : . . . . . . . . : : : : : : : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• 
• 
• 
• 
• 

. .. . . . . . . . . . . . . . .. . . .. . .. . . . . . . ............. . . .. . . . . . .. . .. . . . ............. . . . . . . . . . . . .... . . . . . . . . . . . . .. . . . . . . . . .. .. . .. . . 

~l-LUz ____.] 
• 

.............. . ............ . . ............ . . ............ . . ............ . . ............ . .............. . ............ . . ............ . . . . . . . . . .. . . . . .............. . ............ . . . . . . . . . .. . . . . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . .............. . ............ . 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
::::::=======================::::::::. ::G:::::::::::::::::::::::::::::::::::::::::: . . . . . . . . . . . . . . . . . . . . . . . ... . . .. . . . . . . . . . . ........................................ . . . . . . . . . . . . . . . . . . . . . . . ... . .. . . .. . . . . . . . . ........................................ . 
·····································GPg .. TPh ......................................... . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . ........................................ . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . ........................................ . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . ........................................ . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . ........................................... . . . . . . . . . . . . . . . . . . . . . . . . ... .. . . . . . . . . . . . . ........................................ . . . . . . . . . .. . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . .. . .. . . . .. . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . . . . . . . . . . . . . . .. . . . . .. . . .. . . . . .. .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 
LEGEND: 

••••••••••••• 

Single Session 
(connecting two LUsl 

Conversationlconnecting two TPsl 

Parallel Sessions 
(connecting two LUs) 

Figure 2-1. Placement of LUs within the SNA Network I Example) 

the way it is invoked, and the communication 
functions it initiates. 

2-2 SNA LU 6.2 Reference: Peer Protocols 

A transaction program is invoked by another~~ 
transaction program by a mechanism calleL~ 
Attach. The invoking transaction program 
initiates a conversation with another named 



() 

0 

0 

0 

program. The invoked program is started run­
ning and is connected to the conversation 
with its invoker. IIn the case of the ini­
tial program of a distributed transaction, 
the LU receives a START_TP record sent by a 
process external to the LU, e.g., the node 
operator facility [NOFJ, which prompts the LU 
to invoke a transaction program. For more 
information about NOF, refer to "Functions of 
Components of the Node External to the LU" on 
page 2-35.) 

A transaction program uses the LU to communi­
cate with other transaction programs by issu­
ing transaction program verbs lwhich are 
described in SNA Transac~ Programmer's 
Reference Manua-Y---for LU Type 6.2). IIn some 
cases, internal LU components" also issue 
transaction program verbs on behalf of trans­
action programs.) 

Besides application transaction programs, 
distributed transactions can include trans­
action programs provided by the LU itself, 
called service transaction programs (service 
TPsl. These are SNA-defined transaction pro­
grams within the LU that provide utility 
services to application transaction programs 
or that manage the LUs. They are attached by 
other transaction programs and they issue 
transaction program verbs to communicate with 
other transaction programs. For example, the 
LU includes service transaction programs for 
distributed operator control of the LU, by 
which control operators can determine the 
number of parallel sessions they will share, 
and for sync point resynchronization, which 
assists distributed transaction recovery fol­
lowing transaction failure in certain circum­
stances. Other service TPs provide document 
interchange services I using Document Inter­
change Architecture [DIA l ) , which allow 
processors and workstations to synchronously 
exchange files and documents. Furthermore, 
SNA Distribution Services ISNA/DSl service 
TPs provide asynchronous distribution of 
files and documents. 

Different execution instances of the same 
transaction program could perform parts of 
the same distributed transaction at different 
LUs or parts of several different trans­
actions at the same LU. 

CONTROL OPERATOR 

The LU control operator describes and con­
trolsthe ava1labili ty of certain resources 
I see "Resources" h for example, it describes 
network resources accessed by the local LU 
and it controls the number of sessions 
between the LU and its partners. 

The LU control operator is represented to the 
LU by a control-operator transaction program 
that interacts with the LU on behai f of, or 
in lieu of, a human operator. The relation­
ship between the control-operator transaction 
program and the LU control operator is 
implementation-defined. 

The control-operator transaction program 
invokes operator functions by issuing 
control-operator verbs. These verbs are 
issued by the control-operator transaction 
program to convey operator requests to the 
internal components of the LU. 
Control-operator verbs are described in SNA 
Transaction Programmer's Reference Manual tor 
LU Type ~· 

RESOURCES 

The LU provides several kinds of resources to 
support distributed transactions. 

Conversations connect transaction programs 
and are used by the transaction programs to 
transfer messages. A conversation is acti­
vated when one transaction program attaches 
another. 

Associated with each end of a conversation 
are protocol states that each LU maintains in 
order to coordinate interaction between the 
two TPs. These indicate I for example) which 
TP is sender and which is receiver at a given 
time. 

The LU provides two types of conversations. 

Happed conversations allow the TPs to 
exchange arbitrary data records in any format 
set by the programmers. 

Basic conversations allow TPs to exchange 
reco;:ds containing a two-byte Length prefix. 

Application transaction programs typically 
use mapped conversations, and service trans­
action programs typically use only basic con­
versations; however, either conversation type 
might be used by either program type. 

Sessions provide relatively long-lived con­
nections between LUs; a session can be used 
by a succession of conversations. Sessions 
are activated by LU pairs as a result of 
operator commands and transaction-program 
requests for conversations. Session aware­
ness by the transaction program is unneces­
sary for successful communication. Host 
transaction programs need be concerned only 
with conversations, leaving the LU to manage 
sessions. 

A mode is a set of characteristics that may 
be-as5ociated with a session. These charac­
teristics typically correspond to different 
requirements for cost, performance, and so 
forth. Hodes are defined by the control 
operator as a selection of 
path-control-network facilities and LU 
session-processing parameters. 

One characteristic of mode is class of serv­
ice. The path control network Caii'OfTerClif­
ferent classes of serv.ice that correspond to 
particular physical links and routes and par­
ticular transport characteristics such as 
path security, transmission priority, and 
bandwidth 

Chapter 2. Overview of the LU 2-3 



other characteristics of mode include 
operator-selected processing parameters such 
as message-unit sizes and the number of mes­
sage uiits sent between acknowledgments !pac­
ing window sizes). 

Each mode characterizes a group of sessions 
with a particular partner LU; multiple modes 
may exist for the same partner LU. Hodes 
associated with different partner LUs are 
considered distinct, even if they represent 
similar sets of characteristic 

A combination of partner LU and mode is 
called an ILU,model pair. 

LU-accessed network resources constitute the 
relatively static environment that the LU or 
its containing node establishes as a result 
of installation definition. The principal 
components of this environment are the LU 
itself, the control point that serves the LU, 
the transaction programs that the LU can run, 
the potential partner LUs I remote LUs) with 
which the LU can communicate, and the modes 
of service available between the LUs. 

local resources are resources whose principal 
fuictions and operations are not defined by 
SNA, but which LU components use or interact 
with for some functions. These include local 
files, data bases, recovery and accounting 
logs, queues, and terminal components. For 
exaq>le, LU components interact with local 
data-base managers to coordinate distributed 
error recovery of data-base updates. Also, 
SNA distribution services uses queues to 
exchange messages between application trans­
action programs that provide document routing 
and distribution. 

Protected resources are local resources, such 
as data bases, whose state changes are logged 
so that all resources changed by a trans­
action can be restored to a consistent state 
in the event of a transaction failure. The 
LU interacts with protected resources to pro­
vide the sync point function (see "Sync Point 
Function" on page 2-371 for distributed error 
recovery. 

PROTOCOL BOUNDARIES 

In order to acconvnodate LU implementations on 
different processors and transaction programs 
wri Hen in different programming languages, 
SNA defines the LU's interface to application 
transaction programs in generic terms only. 
This specification is called the transaction 
program protocol boundary. It consists of 
l~ set of LU functions that a TP may 
request, and the possible parameter values 
that may be supplied or returned for these 
functions. 

SNA does not define a particular syntax or 
format for representing these fuictions and 
parameter values. Nevertheless, for purposes 
of discussion in SNA publications, the fuic­
tions and parameters are represented gener­
ically by transaction program verbs; these 

2-4 SNA LU 6.2 Reference: Peer Protocols 

are described in SNA Transaction Programmer's 
Reference Manual 'fOr ~ ~ ~. (---..., 

L Each LU implementation has one or more pro­
gramming environments that provide these 
functions. Each such environment is called 
an applications programming interface IAPIJ. 

The LU actually presents a partitioned proto­
col bouridary to the transaction program; for 
example, there are separate subsets of the 
verbs for mapped conversations, for basic 
conversations, and for SNA/DS. Hhen a 
hierarchical relationship exists between 
these subsets, e.g., when verbs from one set 
cause internal issuances of verbs from anoth­
er set, this partition introduces sublayers 
within the LU. 

A protocol boundary can be interpreted from 
two points of view. 

~rom bone dpointb otf vi~~ al protocol boubulndary r __ ,: 
is a oun ary e ween <wO ayers or s ayers \_ ./ 
of the node. For example, TPs exchange data 
with LUs across the TP-LU protocol boundary, 
and LUs exchange data with the path control 
network across the LU-path-control protocol 
boundary. From this viewpoint, the rules of 
exchange define protocols between adjacent 
layers. 

But from another point of view, a protocol 
boundary is a boundary between two paired lor 
peer I, but distributed, components of the 
same layer. In other words, the transaction("'"" 
program protocol boundary may be thought of \. 
as a direct boundary between one TP and ~/ 
another, and similarly, the path control pro­
tocol boundary may be regarded as a direct 
boundary between LUs. 

Figure 2-2 on page 2-5 shows the principal 
protocol boundaries between the LU and 
external components. The figure illustrates 
how the protocol boundaries divide the LU 
into layers and sublayers, and how the con­
ceptual flows between peer components are C' 
accomplished by successive adjacent-layer · 
exchanges. In this example, the application ._/· 
TP has a mapped conversation with another 
application TP and a basic conversation with 
a service TP. The figure illustrates that 
the conceptual information flow between peer 
components at each layer is reduced to con­
ceptual information flow at the next lower 
layer by actual information flow between lay-
ers and information transformation within 
layers. For example, the conceptual mapped 
conversation connection is reduced to a basic 
conversation; each basic conversation is 
reduced to a session; and finally, the ses­
sions are reduced to connections in the path 
control network lwhich itself performs fur-
ther layer transformations that are not 
shown). 

NAMES 

The LU allows transaction 
. to its resources, such as 

programs to refer('· 
other TPs and LUs 



0 

0 

0 

0 

0 

Application 
TP 
•< - -

Mapped Conversation 
Application 

TP 
- - - - - - - - - - - - - - - - - - - - - - - - - - - >• 

A 

Mapped-Conversation I~ 
Protocol Boundary •••••••••••• •••• 

LU vi 

I A 

······················································!······ 
I LU v 

•< 
A 

- - - - - - - - - - - - - - - - - - - - - - >• 

Service 
TP 

->• 

A 

Basic-Conversation 

l I Basic Conversations 

:J ---------------
··!········································ 

LA 
····!·········· ..... Protocol Boundary •••••• ••••• ••• 

v I v 
- - - - - - - - - - - - - - - - >• 

A I Sessions I A v 
----------------- - - - - - - - - >• 

1 I A 
Path-Control 
Protocol Boundary •••••••••••• •••••• ••••••••••••••••••••••••••••••••••••••••••••• • ••••••••••••••• 

!Path Control Network) 

LEGEND: 
<- - -> conceptual flows between paired components 
<~~-> actual flows between adjacent layers 
••••••• protocol boundary between layers or sublayers 

Figure 2-2. Exchanges between Paired Distributed Components and between Adjacent Layers 

and shared communication facilities, by 
installation-selected names. Thus, the pro­
grams need not be concerned with implementa­
tion and configuration details such as the 
actual network' locations or transport charac­
teristics. For example, when one transaction 
program invokes another, the invoking TP 
identifies the partner TP by a transaction 
program name, it identifies the partner LU by 
an LU name, and it identifies the desired set 
of session characteristics by a mode name. 

Names are character strings that the instal­
Iiili'On associates with particular resources. 
They are specified by the control operator 
Ion behalf of the installation managemeni:J 
subject to the SNA-imposed constraints, e.g., 
character set and length restrictions, 
described in SNA Transaction Programmer's 
Reference Manual for LU Type 6. 2 I Hi thin an 
LU 1mplementat1on;--lh9 local resource names 
may differ from those that conform to SNA; 
for example, a program directory might use 
names of a different length or character set. 
In this case, the implementation always 
translates between its internal names and the 
SNA-conforming names that are used by trans­
action programs or that are transmitted out­
side the LU.J 

The name of a particular resource is known 
within a particular environment. Hithin this 
environment, the name of each entity of a 
particular class is unique, but the same 
entity might have different names in differ­
ent envi~ts. For example, each· LU 

allows local aliases for remote resource 
names, so that local transaction programs can 
be made insensitive to name changes elsewhere 
in the network. Of course, the control oper­
ator must change the LU's relevant 
name-translation tables whenever the remote 
names are changed. 

Roles 

Hereafter, the following terms are used to 
distinguish the roles of individual TPs and 
LUs of a pair. Hith respect to location, the 
term local means residing at the LU from 
whose perspective an activity is described; 
the term remote means residing at that LU' s 
actual or potential session partner. Hith 
respect to a conversation, the source TP (or 
its LU J is the ini tiai:or of a """'COriVersation 
with the target TP lor its LUJ. 

Transaction Program References 

A source TP selects a target transaction pro­
gram by its transaction program name ITPNJ as 
defined at the source LU. In tli8 simplest 
case, this is also the name of the TP as 
defined at the target LU. Optionally, howev­
er, the source LU can allow the two names to 
be different, in which case it converts the 
TP-supplied name into the TPN recognized at 
the target LU. 

Chapter 2. Overview of the LU 2-5 



A TPN alone does not uniquely identify a 
transaction program instance. If the number 
of target transaction program instances does 
not exceed its instance limit, the target LU 
creates a new transaction program instance 
for each Attach it receives; otherwise, the 
target LU queues the Attach to await the 
freeing of a target transaction program 
instance. 

LU References 

Each LU provides a set of LU names by which 
its TPs may refer to remote LUs: these names 
are called local LU names (a local LU name 
is a local alias of aremote LU's name, not 
the local LU' s own name l. Local LU names are 
unique within each LU, but not necessarily 
outside an LU. 

The control poifts involved in session initi­
ation idenh y each LU by its 
network-qualified LU name This name consists 
of a network ID followed by a network LU 
name. The network ID is unique throuQhOUta 
set of interconnected SNA networks; the net­
work LU name is unique within a particular 
SNA network. 

The path control network routes information 
to an LU by a routing identifier rather than 
by a name. 

During session initiation, the LU supplies 
the network-qualified LU name to the control 
point. The control point provides a routing 
identifier for that network-qualified LU 
name. The correspondence between names and 
routing identifiers is established by the 
control point during session initiation. For 
more information on the relationship of LU 
names to routing identifiers I local-form ses­
sion identifiers, or LFSIDs), refer to SNA 
~ !.:._! Node Reference. 

The LUs themselves use their 
network-qualified LU names for certain pur­
poses; for example, LUs resolve some race 
conditions by exchanging and comparing their 
network-qualified LU names. 

Mode Names 

A source TP can specify that the session 
selected for a conversation have a particular 
set of characteristics, or mode. It does 
this by specifying a corresponC1iii9 mode~· 

Mode names are shared between a given pair of 
LUs and are unique at an LU relative to a 
particular partner LU. Hode names for di f­
ferent partner LUs are independent: the same 
mode name can correspond to different sets of 
session characteristics for different partner 
LUs. 

Z-6 SNA LU 6.Z Reference: Peer Protocols 

Internal Identifiers 

The LU assigns internal identifiers to con­
versations and sessions once they are acti­
vated. These are called resource IDs and· 
half-session IDs, respectively. TPs0r the 
control operatOr use these identifiers for 
subsequent references to these entities. 
These identifiers are generated by the LU and 
passed back to the transaction program or to 
the control operator in the form required for 
subsequent verbs; the transaction program or 
operator need not interpret these identi fi­
ers. 

CONVERSATION CHARACTERISTICS 

Send/Receive Protocol 

The LU normally allows TPs to exchange data 
in only one direction at a time, i.e., one TP 
sends and the other receives until the send­
ing TP surrenders the right to send. This is 
called half-duplex flip-flop protocol. The 
LUs coorchnate and enforce the send/receive 
state at each end of the conversation. LUs 
do allow some exceptions to strict alter­
nation of send and receive: the receiving 
TP, at any time, can send an error indi­
cation, putting itself in send state; it can 
send the partner an attention indication, 
e.g., to request the right to send; and it cl 
can abnormally terminate the conversation. _,/ 

Sender/Receiver Concurrency 

Different applications 
degrees of concurrency 
receiver. For example: 

require different 
between sender and 

• 

• 

On-line inquiry applications 
require real-time interaction. 

Status-reporting 
require immediate 
response. 

applications 
transmission 

might 

might 
but no 

• Document distribution applications might 
allow sending and receiving at the send­
er's and receiver's convenience, respec­
tively, which might be separated by 
arbitrary periods of time. 

For the first two cases, the LUs use direct 
conversations between the TPs. 

For the real-time interactive case, the LU 
keeps the TP-TP connection active until the 
transaction is completed; both the source and 
target TPs are concurrently active. This is 
called synchronous transfer. 

c -

The LU treats the immediate-transmission, 
no-response case as a special case of syn-c· 
chronous communication, using a one-way con-
versation. The source LU allocates ,. 
!initiates) a conversation as in the first 
case, sends the data, and deallocates I.re-



(~:1 
leases) the conversation. Hhen the message 
reaches the target LU, it ini Hates the tar­
get TP, which receives the data and likewise 
deallocates the conversation. But since the 
source TP is expecting no reply, it might 
have terminated while the data is still in 
transit through the path control network, 
before the target TP is initiated. Thus, the 
source and target TPs are not necessarily 
active at the same time. 

For the third case, the LU provides SNA Dis­
tribution Services ( SNA/DS). In th1s case, 
the sender, called the origin TP, and the 
ultimate receiver, called the destination TP, 
are typically not active at the same time. 
Therefore, the data is stored at one or more 
locations en route between periods of active 
transmission. This mode of communication is 
called asynchronous transfer. 

In SNA/DS, the origin application TP sends a 
message unit, ultimately intended for the 
destination TP, to a local service TP. The 
service TP at the origin stores the data in 
local permanent storage. Hhen the appropri­
ate time for sending the data arrives, e.g., 
when lower-cost transmission facilities 
become available or after compensating for 
time-zone differences, a service TP at the 
origin allocates a conversation to a service 
TP at the destination and sends the data. 
The receiving service TP at the destination 
LU stores the data in local permanent storage 
for later retrieval. Finally, an application 
TP at the destination retrieves the stored 
message. 

SNA/DS also allows multiple intermediate 
service TPs between origin and destination. 
The origin service TP can allocate a conver­
sation to an intermediate service TP, which 
would receive the data, store it, and later 
forward it to another intermediate service TP 
or to the ultimate destination service TP. 

Each SNA/DS service TP can also duplicate the 
data and send it to multiple destinations or 
application programs. 

Mapping 

Two communicating TPs might process the same 
information using different internal data 
formats (presentation spaces), e.g., differ­
ently organized data structures or different 
sets of individual structures and variables. 
To assist the TPs in interpreting data in 
formats suited to their internal processing 
algorithms while providing a mutually under­
stood format for the data transmitted over 
the conversation, some LUs provide an 
optional function of mapped conversations, 
called mapping. !Mapping concepts are dis­
cussed in "Mapping Function" on page Z-36.) 

SESSION ALLOCATION 

A principal function of the LU is to provide 
sessions between LUs for use by conversations 

between TPs. 

Session Multiplicity 

Only one transaction-program pair at a time 
can use a particular session. In order to 
allow multiple concurrent transactions, e.g., 
for a multiprogrammed processor or a 
multiple-user workstation, some LUs, called 
parallel-session LUs, allow two or more ses­
sions with a giverl"""partner LU. Any session 
between a pair of LUs that both provide par­
allel sessions is called a parallel session, 
even if only one such session is currently 
active. 

Some LUs, called single-session LUs, allow 
only one active LU-LU session with a given 
partner LU. A single-session LU may have 
more than one session concurrently, but each 
concurrent session is with a different part­
ner. Any session involving a single-session 
LU is called a single session, whether the 
other partner is--a-slngle-session LU or a 
parallel-session LU. 

Thus, all sessions between a pair of LUs are 
of the same type: single or parallel. Some 
LU protocols used on single sessions are dif­
ferent from those used on parallel sessions, 
but these differences are indistinguishable 
to transaction programs. 

Session Pool 

To avoid repeating session-activation proc­
essing for each conversation between the same 
pair of LUs, the LU allows successive conver­
sations to use the same session. 

Hhen the LU activates a session or when a 
session previously in use by a conversation 
becomes free, the ·LU places the session in a 
session pool. Hhen a transaction program 
initiates anew conversation, the LU allo­
cates a session from this pool, if one is 
available. 

Session Selection 

Transaction programs do not select particular 
sessions, but specify only that the conversa­
tion be allocated a session with a particular 
partner LU and with a particular mode name. 
The LU partitions the session pool by partner 
LU and mode name; the LU allocates a session 
from only those sessions for the requested 
CLU,model pair. 

Session Contention Polarity 

Another session-selection criterion concerns 
the relative priority of the LU for use of 
the session. The LUs at each end of a ses­
sion could both try to start a conversation 
at the same time. To resolve this con-

Chapter Z. Overview of the LU Z-7 



tention, the LU operator specifies, for each 
session, which LU's TP will be allowed to use 
the session in such a case; this is called 
the session contention polarity. From the 
viewpoint of the local LU, a session for 
which that LU is designated to win an allo­
cation race is called a contention-winner 
session !also referred to as a conwinner or a 
hrst-speaker session). A session that the 
local LU will surrender to the partner is 
called a contention-loser session C also 
referred to as a conloser or a bidder 
session--so called because a contention-loser 
LU will bid, i.e., request permission of the 
contention=winner LU to use the session). 

Session Limits 

The number of sessions in the session pool is 
constrained by operator-specified criteria, 
including several limits on the number of 
active sessions. 

The total LU-LU session limit is the maximum 
number of sessions that can be active at one 
time at the LU. 

The C LU,model session limit is the maximum 
number of LU-LU sessions that can be active 
at one time at an LU for that particular 
!partner LU,mode) pair. 

The automatic activation limit for a partic­
ular CLU,model pair specifies the maximum 
number of LU-LU sessions that the LU will 
activate independently of requests for con­
versations. Automatically activated sessions 
constitute the initial session pool !addi­
tional sessions, within the other limits, are 
added to the pool on demand from conversation 
requests). 

The local-LU minimum contention-winner limit 
for a particular CLU,model pair deteriii'ines 
the minimum share of the total number of ses­
sions for that CLU,mode) for which the local 
LU can be contention winner. Similarly, the 
partner-LU minimum contention-winner limit 
determines the minimum share of those --ses= 
sions for which the partner LU can be' con­
tention winner. 

Session limits are discussed in "Chapter 5.4. 
Presentation Services--Control-Operator 
Verbs" in more detail. 

STARTING AND ENDING SESSIONS 

Phases 

Starting and ending sessions involves four 
phases of activity, although some phases are 
omitted in some circunstances. 

Session-limit initialization and reset con- c 
sis ts of issuing control-operator verbs , • 
!e.g., INITIALIZE_SESSION_LIMIT, ~ 

RESET SESSION LIMIT) to specify the number of 
sessions the -LU can have with a given part-
ner, and to specify conditions for their 
activation and deactivation. 

Session initiation and termination consists 
of control-point actIVlty, such as supplying 
the network addresses corresponding to LU 
names, that mediates requests for session 
activation and deactivation. 

Session shutdown consists of the LU activity 
to terminate conversation activity on a ses­
sion prior to deactivating the session. l 

Session activation and deactivation consists 
of creating or destroylng the end-to-end log­
ical connection between the LUs.2 

SESSION USAGE CHARACTERISTICS 

Session Activation Polarity 

An LU activates a session with its partner by 
sending a message unit called BIND. The LU 

c 

that activates a session {sends BIND) is 
called the primary LU { PLU J; the LU that 
receives BIND is called the secondary LU 
CSLUJ. These terms are relative to a parti'C= ~ 
ular session: the same LU can be primary LU · 
for one session and secondary LU for another. ___ ,,/ 

The primary LU always has first use of the 
session, i.e., it can initiate the first con­
versation on the session, regardless of the 
session contention polarity. !Hhen the first 
conversation completes, the principal right 
to initiate conversations reverts to the 
contention-winner LU. ) 

Session-Level Pacing 

To prevent an LU from sending data faster 
than the receiving LU can process it {e.g., 
empty its receive buffers), the two LUs 
observe a session-level pacing protocol. At 
the time a session is activated, the LUs 
exchange the number {the pacing window size) 
and size Cthe maximum RU size) of the message 
units they can accept at one-time. The send­
ing LU will send no more message units than 
the receiver will accept Ca pacing window) 
until the receiver sends an acknowleagmeiit 
!pacing response) indicating that it can 
receive another pacing window. The pacing 
window size may be fixed for the duration of 
the session or varied adaptively in accord­
ance with load and path congestion condi­
tions. (for more information on pacing refer 
to "Chapter 6.2. Transmission Control") 

c 

1 
2 

Session shutdown protocols use data flow control RUs, e.g., BIS. 
Session activation and deactivation protocols use session control RUs, e.g., BIND, UNBIND. 

2-8 SNA LU 6.2 Reference: Peer Protocols 



,.,---..,, 
I \ 

' I \____,,1 

() 

Profiles 

Session traffic is characterized by a partic­
ular set of SNA-defined formats and proto­
cols, identified by a function management 
<FM) profile and a transm1ss1on services CTSl 

Primary LU 

1 

profile I see SNA Formats). The profile used 
depends on thEi'""kind of session and the kind 
of node: FM profile 19 and TS profile 7 are 
used by LU 6.2 for LU-LU sessions. 

Secondary LU 

BIND !RDll 
> 

RSP<BIND, PH[RDll, RD2l 
2 

r 
3a I 

I 
--or--< 

I 
3b I 

L 

4a 

--or--< 
I 

4b I 
I 
L 

LEGEND: 
RDi 

< 

random data <i=ll2l 
LU-LU password 

UNBIND 

FMH-12 !PH[RD2]) 

UNBIND 

0 

> 

> 

PH 
PH[RDil RDi enciphered using PH as cryptography key 

Figure 2-3. LU-LU Verification 

SECURITY 

The LU provides three functions to assist the 
installation in providing security: partner 
LU verification, partner end-user veri fica­
tion, and session cryptography. Partner-LU 
verification is a session-level security pro­
tocol; it involves protocols at the time the 
session is activated. Partner end-user ver­
ification is a conversation-level security 
protocol, taking place at the time a conver­
sation is started. Session cryptography is 
another session-level protocol, the parame­
ters for which are exchanged at session acti­
vation. 

Partner-LU verification is done by a 
three-flow exchange between the two LUs, with 
each LU using an LU-LU password and the Data 
Encryption Standard CDESl algorithm. This 
exchange is called LU-LU verification. LU-LU 
passwords C see SNA--:r.=ansact1on Programmer's 
Reference Manual--:ror LU Type 6.2) are estab­
lished ---,;y -- i:iiii:>lementatlon and 
installation-defined methods outside of SNA. 
LU-LU passwords are on a partner-LU basis: 
one LU-LU password is established between 
each LU pair. This password is used for all 

sessions between the LU pair. It is recom­
mended that each LU pair have a unique pass­
word; however, it is not an architectural 
requirement. 

Figure 2-3 shows the LU-LU verification pro­
tocol exchanges. In the following dis­
cussion, the numbers in parentheses 
correspond to the numbers in that figure. 

During session activation, random data <RDll 
is sent in BIND from the primary LU to the 
secondary LU (1). The secondary LU enciphers 
this random data using the LU-LU password and 
the random data as input to the DES algo­
rithm. The secondary LU returns (2) the now 
enciphered random data C PH[ RDl]) to the pri­
mary LU along with its own randomly generated 
data CRD2l in RSPCBINDl. The primary LU com­
pares the received enciphered random data 
with its own copy of the random data that it 
enciphered using its LU-LU password and the 
DES algorithm. If the two versions of the 
enciphered random data do not compare equally 
C3a), LU-LU verification fails, session acti­
vation fails, and a security violation is 
logged. If the two versions of the enci­
phered random data compare equally C 3b), the 
primary LU has verified the identity of the 

Chapter 2. Overview of the LU 2-9 



2-10 

secondary LU and LU-LU verification contin­
ues. 

Using the LU-LU password and the DES algo­
rithm, the primary LU enciphers the random 
data received from the secondary LU. The 
primary LU returns this enciphered random 
data CPH[RD2]) in a Security FH header 
IFHH-12) to the secondary LU !3b). The sec­
ondary LU compares this enciphered random 
data with its own version of the enciphered 
random data. If the two versions of the 
enciphered random data do not compare equally 
(4aJ, LU-LU verification fails, the session 
is terminated, and a security violation is 
logged. If the two versions of the enci­
phered random data compare equally ( 4b), the 
secondary LU has verified the identity of the 
primary LU, and LU-LU verification is com­
plete. 

Hhen the transmission links and LUs that make 
up the network are physically secure (as 
determined by the installation management), 
LU-LU verification may be omitted. Under 
this circumstance, LU-LU verification would 
not take place, yet the session would still 
be considered secure; therefore, access to 
secure resources would still be permitted 
following conversation-level security proto­
cols C see below). Permission to use 
conversation-level security to gain access to 
secure resources is installation defined and 
communicated to the partner LU during session 
activation in the BIND/RSPIBIND) exchange. 

Hhen the network is not considered secure, 
LU-LU verification should be omitted, and 
access to secure resources via 
conversation-level security should not be 
permitted. Denial of permission to use 
conversation-level security is installation 
defined; an indication of this denial is com­
municated to the sender of the request during 
session activation in the BIND/RSPIBINDJ 
exchange. 

End-user verification (conversation-level 
security) is used to confirm the identity of 
the partner end user (e.g., transaction pro­
gram). Hhen a TP requests access to another 
TP, it must supply adequate security informa­
tion in the request to satisfy the security 
requirements of the requested TP, or the 
request will be rejected. This could include 
a user ID and password (see access security 
information subfields in SNA Formats) sup­
plied by the end user that initiated the 
request. Hhen a user ID and password are 
supplied on the request, they are verified by 
the LU that receives them. If the end user 
has not supplied the correct user ID and 
password combination, the request is 
rejected. 

An optional additional criterion for access 
to a specific TP is permitted. This criteri­
on would be a check of an authorization list 
associated with the target transaction pro­
gram. The keys to search the authorization 
list would be combinations of the user ID and 
an optional profile supplied on the request, 
along with the name of the partner LU from 

SNA LU 6. 2 Reference: Peer Protocols 

which the request originated. The authori­
zation list could be made up of combinations 
of user ID, profile, and partner LU name. 
After the user ID is verified by the LU, the 
authorization list may be searched for access 
rights to the speci fie transaction program 
named in the request. If the additional cri­
terion is not met, the request is rejected. 

An intermediate transaction program (one 
started by another TP l that requires 
conversation-level security may need to 
access an additional TP that requires 
conversation-level security. In this case, 
an Already Verified indicator is set in the 
additional request; the user ID and optional 
profile in the first request, which initiated 
the intermediate transaction program, are 
supplied in the second request. For security 
reasons, the password that initiates the 
intermediate TP is never saved, but the user 
ID and optional profile that initiated the 
intermediate TP are·saved. The Already Veri­
fied indicator can be used only if the sender 
of the indicator is trusted by the receiver 
of the indicator to have performed the proper 
verification of the user ID and password that 
initiated the sender. This level of trust is 
installation defined at the receiver of the 
indicator and communicated to the sender of 
the indicator during session activation in 
the BIND/RSPIBINDJ exchange. 

To help prevent data from being interpreted 
or modified during transit, the LU provides 
session cryptography, whereby all user data 
is enciphered at the source LU and deciphered 
at the target LU. The encryption algorithm 
uses a cryptographic key, supplied by the 
control point, and a sesslon seed, generated 
by one of the LUs when the session is acti­
vated. (See "Chapter 6.2. Transmission Con­
trol" for a full discussion of session 
cryptography. l 

ERROR HANDLING 

Kinds of Errors 

Errors affecting transaction processing are 
classified as follows: 

Application Errors: These are errors related 
to the application data and processing, e.g., 
user input error or data-base record missing. 
Detection and recovery are the responsibility 
of the transaction programs. 

Local Resource Failure: These are failures 
'innon-SNA resources, e.g., a disk read 
error. If the resources are not protected 
resources, recovery is the responsibility of 
the transaction program or of the non-SNA 
support for the failing resource, e.g., a 
disk subsystem. If the resource is a pro­
tected resource, the TPs can use the LU sync 
point function (see "Sync Point Function" on 
page 2-371 to assist in recovery in conjunc­
tion with non-SNA support. c 



0 

0 

0 

Recoverable System Errors: These are errors 
or exceptional conditions, e.g., races 
resulting from contention for use of a ses­
sion, for which an SNA-defined recovery algo­
rithm exists. The LU performs the recovery 
algorithm; the transaction programs are 
normally not aware of these errors, except as 
they affect timing. 

Program Failures: These are errors that 
cause abnormal termination of a transaction 
program. The LU recovers from such errors by 
deallocating any active conversations for the 
TP that were not deallocated by the failed 
transaction program, thus freeing the ses­
sions for use by other transaction programs. 
Any further recovery depends on transaction 
program logic and implementation-defined 
capabilities such as error exits. 

Session Failure: These are failures caused 
by unrecoverable failure of the 
half-sessions, e.g. , invalid session proto­
cols received, or by failure of the underly­
ing network components, e.g., the links. 
This case is reported to the LUs through ses­
sion outage notification ISONJ. 

If a conversation is active on the session at 
the time of failure, the failure is mani­
fested to the transaction program as a con­
versation failure lsee belowl; otherwise, 
these errors do not affect transaction pro­
grams. LUs report the conversation failure 
to the affected transaction programs. 

Conversation Failures: These are failures 
caused by unrecoverable failure of the under­
lying session. The resulting conversation 
failure is reported to each transaction pro­
gram by a return code on a subsequent verb. 
The same session and conversation cannot be 
recovered, but the LU can activate another 
session. 

The operator or the transaction programs have 
the responsibility to recover the trans­
action. To recover from an interruption in 
transaction processing, for example, the 
source transaction program can allocate a new 
conversation, using another session, to a new 
instance of the target transaction program or 
to another transaction program. 

LU Failure: This is a failure of an LU from 
such causes as malfunction of the implement­
ing hardware or software. In many cases, 
such a failure appears to remote 
(non-failing) LUs as a session failure, and 
they recover as they would from any other 
session failure. In some cases, recovery is 
performed by the sync point function. 

Program Error Recovery Support Functions 

The LU assists TP recovery from application 
errors and local resource failures by sup­
porting the protocols discussed below to 
exchange error information and to immediately 
end messages or conversations. 

Confirmation: This function (e.g., CONFIRM 
verbl allows a TP to solicit positive or neg­
ative acknowledgment of a message unit from 
the partner TP. The interpretation of this 
positive or negative acknowledgment !CON­
FIRMED or SEND_ERROR verbs, respectively) is 
program dependent: for one application, con­
firmation might mean only that the data was 
received; for another, it might mean data was 
safely stored on disk; for a third, it might 
mean that the data represents a valid account 
record update; and so forth. 

Program Error Indication: This function 
ISEND ERROR verb) allows a TP to inform the 
partn;r TP of a program-detected error; this 
includes sending negative acknowledgment to a 
confirmation request. 

This function also causes program-to-program 
transfer of the current message unit to 
cease. If a TP detects an error while 
receiving, issuing the SEND_ERROR verb 
directs the receiving LU to ignore any addi­
tional data in transit li.e., to the end of 
the conversation message--see "Conversation 
Message" on page 2-14 l; this is called purg­
ing. Similarly, if a sending TP detects an 
error, issuing the SEND_ERROR verb informs 
the partner that the source TP has stopped 
sending. If the TP stops sending before 
reaching a predetermined application-program 
data boundary (i.e., the end of a logical 
record--see "Logical Record" on page 2-13), 
this is called truncation. 

Sync Point: Many transactions require con­
sisten:r;-regular updates of distributed 
resources such as distributed data bases. 
Hhile a transaction is in progress, however, 
the resources at different LUs can enter 
mutually inconsistent interim states. If one 
of the transaction programs encounters an 
error, some recovery action may be necessary 
to restore the resources to mutually consist­
ent states. In order to verify or restore 
consistency among distributed resources, some 
LUs provide a distributed error-recovery 
function, called sync point. (Sync point 
concepts are discussed in "Sync Point Func­
tion" on page 2-37.) 

Abnormal Conversation Deallocation: This 
function allows a TP to abnormally terminate 
a conversation. A TP might do this, for 
example, when an error is detected for which 
it has no recovery procedure and continuing 
the transaction would be meaningless. Hhen 
this is received, the LU informs the TP that 
the conversation has been abnormally termi­
nated. 

Hhen a component of the LU (e.g., an LU serv­
ice TPl abnormally terminates a conversation 
that is being used by a TP, the LU uses DEAL­
LOCATE TYPEIABEND SVCJ to terminate the con­
versation. This- allows the TP and its 
partner TP to distinguish between 
application-generated and LU-generated abnor­
mal terminations. 

Chapter 2. Overview of the LU 2-11 



2-12 

LU Error·Recover=y Functions--Abnormal Session 
DeactWation 

For some errors. the LU or operator initiates 
recovery. 

If an unrecoverable session-protocol error 
occurs, the LU abnormally deactivates the 
session. 

If the control operator detects an error, 
e.g.• an apparent deadlock or loop. it can 
force immediate abnormal deactivation of a 
session. 

Either of these cases are normally manifested 
to affected transaction programs as conversa­
tion failure. 

BASE AND OPTIONAL FUNCTION SETS 

The LU functions and protocols are organized 
into subsets. The function sets consist of a 
base function set, which provides basic com­
iiiUiii'cation serVICes common to all LU imple­
mentations, and a small number of optional 
function sets, which may be used by implemen­
tahons with more sophisticated additional 
requirements. These SNA-defined function 
sets are described in SNA Transaction Pro­
grammer's Reference Manual for LU~ 6.2. 

All LU 6. 2 implementations of a given func­
tion set provide that function in a way that 
conforms to the protocol boundary. Further­
more, an LU 6.2 implementation that provides 
one function in an option set provides all 
other functions in that option set as well. 
Thus, all LU 6.2 implementations can communi­
cate using the base set, and any two imple­
mentations supporting functions in the same 
option set can communicate using that full 
option set. 

Two kinds of optional functions exist. Send 
options determine what formats and protocols 
will be sent but do not affect what can be 
received; all formats and protocols sent 
using these options can be received by all 
LUs. Receive options determine what can be 
received as well as what can be sent. For 
receive options, the source LU and TP 
requirements are described in the BIND and 
the Attach; the receiving LU rejects the ses­
sion or conversation if it, or the specified 
TP. does not support the required options. 

All implementations of LU 6. 2 include the 
functions described in this book in their 
entirety except were options are specifically 
defined. For additional definition of 
options see SNA Transaction Programmer's Ref­
erence Manuarfor LU ~ 6.2. The principal 
~nd ophonaI func----U-ons are listed below. 

Application Program Interface Implementations 

Open-API implementations support arbitrary 
user-written transaction programs, e.g., a 

SNA LU 6.2 Reference: Peer Protocols 

data-base management system M.ll'Yling on a host 
processor. For these implementations, the (\ 
API provides verbs and parameters for all of 
the base function set• and perhaps some .._/ 
optional function sets. 

Closed-API implementations do not support 
user-written programs but provide only a 
fixed. implementation-determined set of serv­
ice transaction programs, e.g., a DIA service 
transaction program for an office work­
station. For these implementations, the API 
provides only the particular verbs and param­
eters that the transaction program set 
requires. 

Principal Base Functions 

Basic Conversations: All implementations 
pr:ovide receive support for all 
basic-conversation formats and protocols. 

Open-API implementations provide basic con­
versation verbs, but not necessarily in all 
supported programming languages. For exam­
ple, an implementation might support both 
basic- and mapped-conversation verbs in a 
systems-programming language such as Assem­
bler• but provide only mapped-conversation 
verbs in high-level languages. 

~ Conversations: All open-API implemen­
lations provide mapped conversations !prima­
rily in high-level languages). 

Principal Optional Functions 

Mapping: This is an optional function for 
mapped conversations I see "Mapping Function" 
on page 2-36). 

Sync Point: This is an optional function for 
basic --and mapped conversations I see "Sync 
Point Function" on page 2-37 J. 

Program Initialization Parameters I PIP J: 
This is the means of passing ini hal parame­
ters or environment setup information to a 
target .TP. 

Security: This is an optional function for 
verifying the identity of partner LUs and end 
users I see "Security" on page 2-9 J • and for 
protection of data in transit. 

Performance Options: Several optional func­
tions exist to maximize performance for spe­
cific transaction requirements. For example, 
an LU can optionally allow transaction pro­
grams to eliminate or accelerate certain 
acknowledgments. or to perform processing 
concurrently with certain conversation func­
tions. These are send options, so TPs writ­
ten for implementations that support these 
options will operate correctly with partner 
TPs and LUs that do not support them. 

c 

c 



C-) 

(_) 

0 

MESSAGE UNITS AND THEIR TRANSFORMATIONS --- -- ---

A message unit IMUJ is any bit-string that 
has an SNA-defined format and is transferred 
between SNA components or sublayers. 

Distributed transaction programs exchange MUs 
with each other by means of LUs. Transaction 
programs exchange application-oriented units 
of data, e.g., a customer record or a docu­
ment, over a conversation. The LUs, in turn, 
exchange session-oriented MUs via the 
path-control network. But the content and 
format of an MU most appropriate for exchange 
between transaction programs is in general 
different from that most appropriate for 
transmission on a session. Hhereas an appli­
cation program typically uses a record size 
corresponding to logical groupings of the 
data, the LU typically uses MU sizes related 
to internal buffer sizes and efficient flow 
control. Furthermore, the LU may need to add 
encoded protocol information, such as confir­
mation requests or MU sequence numbers, to 
the program-supplied data. 

The LU transforms program-oriented MUs used 
by the TP into network-oriented MUs used by 
the path control network, and vice versa. 
!Throughout this section, message-unit tran­
sformations are described from the sender's 
side, i.e., transaction program to LU to net­
work; the process is inverted at the receiv­
er. l 

The message-unit transformation takes place 
in stages. Each stage transforms some of the 
information from the higher stage into a 
SNA-defined bit string. Typically, a stage 
reblocks !regroups) the MUs from the previous 
stage into differently sized units and con­
verts the protocol information into formatted 
headers (prefixes l to the reblocked data, 
thus creating new MUs. 

MAPPED-CONVERSATION MESSAGE UNITS 

A data record, at the mapped-conversation 
protocol boundary, is a collection of data 
values that correspond to the DATA parameter 
of a single mapped-conversation MC_SEND_DATA 
verb issuance. The format of a data record 
is completely arbitrary within the con­
straints of the implementation and the trans­
action program. For example, it need not 
even be a contiguous byte string» but might 
be a collection of variables and structures. 

A mapped-conversation record ( MCR l is the 
elementary unit of information transferred 
between two TPs on a mapped conversation. A 
MCR contains the values of a data record 
represented as a string of contiguous bytes. 
It may be of arbitrary length. It contains 
no information for use by the LU; its 
internal format is significant only to the 
TP. The TP supplies needed protocol informa­
tion, such as the mapped-conversation record 
length, in separate parameters of the verb, 

using representations appropriate to the pro­
gramming language and processor being used. 

(A MCR consists of data from a single verb 
issuance by the sender, but it may be 
received in one or more parts, each with a 
single verb issuance, depending on the 
receiving TP's receive buffer size). 

BASIC-CONVERSATION MESSAGE UNITS 

GOS Variables 

Full connectivity among programs requires 
that all transaction programs interpret the 
records they transfer in the same way. To 
facilitate uniform interpretation of records 
among programs written for different process­
ors, service transaction programs and some 
internal LU components, including 
mapped-conversation support, use the formats 
defined by general data stream architecture 
to represent records !see SNA Formats! 

A general data stream IGDSJ variable consists 
of a GOS header ILLIDJ followed by the data. 
The GDSheader isadescriptive prefix con­
taining a 2-byte length prefix C LL l that 
indicates the length of the variable;-lnclud­
ing prefix, and a format identifier called 
the GOS ID that indicates the GOS-defined 
format of-the data. The LLs identify the 
boundaries of variable-length fields within a 
message unit of contiguous fields, and the 
GOS IDs identify the representation of the 
data. A GOS variable may be of arbitrary 
length. If the variable length exceeds the 
value that can be represented in the length 
prefix 1215 -1 = 32,767 bytes, including the 
prefix!, the record consists of multiple seg­
ments, each with its own length prefix. Only 
the first segment contains an ID field. The 
length prefix also contains a continuation 
bit that indicates whether the corresponding 
segment is the last (or onlyl segment in the 
GOS variable. 

All data transferred at the 
basic-conversation protocol boundary by serv­
ice TPs and other internal LU components !but 
not necessarily data transferred by applica­
tion transaction programs) is represented as 
GOS variables with SNA-defined formats (see 
SNA Formats). 

Logical Record 

A logical record is the elementary unit of 
information transferred between users of the 
basic-conversation protocol boundary. A log­
ical record consists of a 2-byte length pre­
fix C Lll followed by data. Its maximum 
length is 32,767 bytes, including the prefix. 

Chapter 2. Overview of the LU 2-13 



2-14 

The LL prefix of a logical record has the 
same format as the LL field in a GDS variable 
segment; thus, a GOS variable segment is also 
a logical record. The basic-conversation 
protocol boundary requires only the LL pre­
f ix, not a full GDS LLID. Thus, logical 
records generated by application TPs·need not 
use ID fields; if they do, the application 
assigns and interprets the ID fields; the 
basic-conversation support of the LU treats 
everything following the LL prefix of the 
logical record as user data. 

The logical record is the elementary unit for 
which the LU detects or reports truncation. 

Buffer Record 

It might be inconvenient for a transaction 
program to issue a single send or receive 
verb for each logical record. For example, 
the sender or the receiver might have limited 
buffer space or might not know ahead of time 
the maximum length of the records being sent. 
Or, ·the transaction program might prefer to 
send a group of small, related records with a 
single verb issuance. So, the unit of data 
that a program sends or receives with a sin­
gle basic-conversation verb is of 
program-determined length. This unit- is 
called a buffer record. 

No SNA-defined limit exists on the length of 
a buffer record; for example, it could exceed 
32, 76 7 bytes. The buffer-record length can 
be different for each verb issuance. 

No correspondence is necessary between the 
lengths or boundaries of logical records and 
those of buffer records, or between send 
buffer records and receive buffer records. 
Nevertheless, a rece1v1ng program may 
optionally specify that the LU begin a new 
receive buffer record for each new logical 
record received. The relationship between 
logical records and buffer records is illus­
trated in Figure 2-6 on page 2-18. 

CONVERSATION MESSAGE-UNIT SEQUENCES 

Certain sequences of message units are rele­
vant to conversation protocols. 

Conversation Message 

A basic-conversation message consists of the 
sequence of logical records transferred in 
one direction from one TP to another without 
an intervening change of direction or confir­
mation. !The Attach FM header generated from 
the ALLOCATE verb is also considered part of 
the initial basic-conversation message.) 

The end of a conversation message is deter­
mined, when sending, by a conversation state 

SNA LU 6.2 Reference: Peer Protocols 

change caused by the verbs issued. For exam-
ple, PREPARE_TO_RECEIVE, RECEIVE_AND_HAIT, ~ 
CONFIRM, SVNCPT, and DEALLOCATE end a conver- ( . 
sation message. Nhen receiving, the end of a \,,,._ .. / 
conversation message and conversation state 
change is determined from corresponding pro-
tocol information received from the sender. 
The information identifying the end of a con­
versation message and specifying the way it 
was ended is generically called the 
end-of-conversation-message indication. 

A basic-conversation message is the elementa­
ry unit for which the LU supports confirma­
tion or program-error reporting (e.g., 
SEND_ERRORJ between sender and receiver, and 
for which .it performs purging. 

A mapped-conversation message is analogous to 
a basic-conversation message; that is, it 
consists of the sequence of 
mapped-conversation records lor data records) 
transferred in one direction from one TP to 
another without an intervening change of 
direction or confirmation, as understood at 
the mapped-conversation protocol boundary. 

The unqualified term, conversation message, 
is used when the intended protocol boundary 
is clear from the context, or when both the 
mapped-conversation message and its corre­
sponding basic-conversation message are 
designated. 

Conversation Exchange 

A conversation exchange consists of the com­
plete set of mapped- or basic-conversation 
messages transferred between a pair of TPs 
using a particular conversation. 

SESSION MESSAGE UNITS 

Session message units are formatted for LU-LU 
protocols and for effective use of the path 
control network. 

Function Management Headers 

A function management I FMJ header is a mes­
sage unit generated by the LU to carry cer­
tain LU control information. The LU uses the 
following FM headers: 

• 

• 

• 

An Attach FM header IFMH-5) specifies the 
name and required characteristics, e.g., 
option sets required, of the target TP. 

An Error-Description FM header IFMH-71 
describes a transactiorl"'prog;=am error or 
Attach failure. 

A Security FM header I FMH-12 J carries 
security informahon for LU-LU veri fica- c~·. 
tion. ~ 



G 

0 

Basic Information Unit 

A basic information unit IBIUl is the message 
unit transferred between two LUs. It con­
sists of a request/response header .!..!!!!..! and a 
request/response unit .!..!!!!.!· 

The RH is a formatted prefix to the RU. It 
carries protocol information encoded from the 
TP verbs or generated internally by the LU. 
It may also appear without an RU in an IPR or 
IPM. SNA Formats gives further details. 

Request RUs carry FM headers, TP-supplied 
data I fol"matted into logical records by the 
TP in basic conversations or by the LU in 
mapped conversations), and other protocol 
information. Response RUs carry limited 
information, such as the echoed request code 
or (in negative responses) sense data, but no 
TP-supplied data. 

The LU uses the following RUs on an LU-LU 
session: 

• 

• 

Category FMD RUs, for transaction-program 
data 

Category DFC RUs, i.e., BIS, LUSTAT, RTR, 
SIG, and their responses 

• Category SC RUs, i.e., BIND, UNBIND, CRV, 
and their responses 

(for additional details, see SNA Formats.) 

EXR also flows for some path-control-detected 
errors. 

The LUs also transfer other information 
describing the BIU, such as the length and 
sequence number, which is formatted by path 
control in a transmission header ITHJ. 

SESSION MESSAGE-UNIT SEQUENCES 

The following sequences of BIUs are relevant 
to session protocols: 

A IBIUJ chain is a sequence of BIUs that con­
stitute a single unidirectional transfer. 
The chain is the most elementary unit that 
can be independently confirmed or for which 
errors can be reported using SNA-defined LU 
protocols. It corresponds to a TP-TP conver­
sation message. 

A bracket consists of the set of all chains 
transferred on a particular conversation. It 
corresponds to a TP-TP conversation exchange. 
The first data RU in a.bracket begins with an 
Attach FM header that identifies the target 
TP. 

The total session traffic comprises a 
sequence of one or more brackets. Prior to 
bracket traffic, the session is activated 
I BIND protocols). Prior to normal session 
deactivation, bracket traffic is shut down 
I BIS protocols). All session traffic stops 

when the session is deactivated (UNBIND pro­
tocols ) , whether or not any brackets are in 
transit. 

page 2-16 illustrates the cor-
between the conversation 

sequences and session 

Figure 2-4 on 
respondence 
message-unit 
message-unit sequences. In the figure: 

• 

• 

• 

The column labelled TP-TP shows the con­
versation message-unit sequences. 

!The corresponding conversation 
message-unit sequences for the partner 
TPs at LU Y are not showns they are the 
reverse of those shown for TP A and TP 
B. l 

The column labelled LU-LU shows the ses­
sion message-unit sequences. 

The column 
relationship 
sequences. 

labelled LU 
between the 

X shows the 
two sets of 

HAPPED-CONVERSATION MESSAGE-UNIT TRANSFORMA­
TION 

The mapped-conversation support in the LU 
converts a data record into a GOS variable. 

First, the LU optionally performs a 
TP-speci fied mapping transformation on the 
data record, producing a mapped-conversation 
record. If mapping transformations are not 
supported or if one is not specified, the TP 
supplies the data in HCR format li.e., a con­
tiguous byte string of TP-determined length). 

The mapped-conversation support in the LU 
then segments the HCR into units of allowed 
logical-record length and adds LLID prefixes, 
thus producing a GOS variable consisting of a 
sequence of logical records. This is illus­
trated in Figure 2-5 on page 2-17. 

BASIC-CONVERSATION MESSAGE-UNIT TRANSFORMA­
TION 

Above the basic-conversation protocol bounda­
ry, a TP, or an internal LU component such as 
the mapped-conversation support, generates a 
sequence of logical records constituting a 
conversation message. It passes this conver­
sation message to the LU as a sequence of 
buffer records, by issuing basic•conversation 
verbs. Along with the buffer records, it 
passes unformatted protocol information such 
as the ALLOCATE verb parameters, from which 
·the LU builds FM headers. 

Conceptually, the LU assembles the sequence 
of FM headers and logical records into a com­
plete conversation message. It then converts 
this conversation message into a chain of 
BIUs. Of course, the LU does not necessarily 
store a complete conversation message at one 
times when it accumulates enough buffer 
records to build one or more BIUs, it builds 

Chapter 2. Overview of the LU 2-15 



TP A 

c 
a 
N 
v 
E 
R 
s 
A 
T 
I 
a 
N 

E 
x 
c 
H 
A 
N 
G 
E 

C M 
as 
N G 
v 

C M 
as 
NG 
v 

I 

I 

TP-TP 
via 
LU 

ITP A sending) 

LU X 

Attach 
===================> \\\\\ 
===================> \\\\\\ 

• • • \ \ \ \ \ \ \ \ \ \ \ \> 
logical records \\\\\\\\\\\\> 

• • • \\\\\\\\\\\\> 

===================> \\\\\\\\\\\\> 
\\\\\\> 
\\\\\> 

LU-LU 
via 

Path Control 

session 
activation 

==================> 
• • • BIUs • • • 

<================== 

ILU X sending) 
BIU with FMH-5 

==================> 
==================> 

• • • 
BI Us 

• • • 
\\\\> ==================> 
\\\> ==================> 

CTP A receiving) 
<=================== 

• • • 
logical records 

• • • 
<=================== 

//Ill/ 
/////// 

<Ill/Ill/I/// 
<Ill///////// 
<//////////// 
<Ill/// 
<///// 

CLU X receiving) 
<================== 

• • • 
BI Us 

• • • 
<================== 

I I I 

<=== TP A, LU X alternating send/receive ===> 
I I I 

• • • • • • • • • 
!other TPsJ !other conversations) 

• • • • •• 

TP B Attach 
.----------...., <=================== 

LEGEND: 

c 
a 
N 
V C M 

a s 
E N G 
x v 
c 
H ••••• 
G ••••••••• 

ITP B receiving! 
<=================== 

• • • 
logical records 

• • • 
<=================== 

<====> messag&-unit flows 

/Ill 
<Ill///////// 
<//////////// 
<II/II/I/Ill/ 
<//////////// 
</I////////// 
<//////////// 
</I/Ill/ 
<////// 
<II/// 
<//// 

\\\\\> 
<//// 

conversion of logical records to BIUs 
conversion of BIUs to logical records 
message unit sequence boundaries 

!other brackets) 
• • • 

ILU X receiving) 
BIU with FMH-5 

<================== 
<================== 

• • • 
BI Us 

••• 
<================== 
<================== 

session 
shutdown 

==================> 
• • • BIUs • • • 

<================== 
session 

deactivation 
==================> 

• • • BIUs • • • 
<================== 

Figure 2-4. Relationships of Sequences of Message Units I Example) 

2-16 SNA LU 6.2 Reference: Peer Protocols 

c 
H 
A 
I 
N 

c 
H 
A 
I 
N 

LU y 

B 
R 
A 
c 
K 
E 
T 

B 
C R 
H A 
A C 
I K 
N E 

T 

s 
E 
s 
s 
I 
a 
N 

T 
R 
A 
F 
F 
I 
c 

C~. 
/ 

c 

/~ 
f 
l 
\__._/ 



0 

c) 

() 

!optional 

Data Record 
A 
I 

mapper transformation) 
I 
v 

!<~~~~~~~~~~~~~ Happed-Conversation Record~~~~~~~~~~~~~~~>! 

length / • • • I 

!<•~~~~~-Logical Record ~~~-~-~>I 

I 
/ ... 

I 

I<---
Logical Records 

I 
• • • I 

---->I 

I<- Logical Record ->I 

GDS Variable--------~--~---~~~---~ 

LEGEND: 
data record: data supplied by the transaction program HC_SEND_DATA verb !arbitrary format) 
length: length of the mapped-conversation record (after mapper transformation, if anyJ 
LL: logical-record Length field; the first bit is the continuation field 
ID: GDS ID field 

Figure 2-5. Relationship of Data Records to Logical Records !Example) 

those BIUs and sends them out, saving any 
residual data for the next BIU. 

To build BIUs, the LU reblocks the FH headers 
and logical records into RU-sized uni ts and 
generates the necessary RHs. The LU sets the 
RH indicators to correspond to functions or 
states specified by verb parameters; for 
example, it sets the chaining indicators 
I BCI, ECI) to indicate the first and last 
BIUs in the chain, and it sets the bracket 
indicators I BB, CEB) to indicate the first 
and last BIUs in a bracket. Hhen necessary, 
the LU also generates Attach or 
Error-Description FH headers I FHH-5 and 
FHH-7) from verb parameters and includes 
these in the BIUs. The final result is a BIU 
chain. Along with the BIU, the LU generates 
parameter values for use by path control Ito 
build the transmission header). The LU 
transfers the BIUs and the unformatted BIU 
parameters to path control for transmission 
to the partner LU. Figure 2-6 on page 2-18 
illustrates the conversion process. 

DATA EXCHANGE HITH THE CP 

The LU also exchanges message units with the 
CP. These message units are listed in "Chap­
ter 4. LU Session Hanager" and are described 
briefly below. 

LU-CP Records 

In the model described in this book, the LU 
has a direct protocol boundary with the CP in 
its node. 

The LU generates and uses session control RUs 
for session activation and deactivation. It 
sends these to the CP for routing to the 
remote LU. 

Chapter 2. Overview of the LU 2-17 



I< GOS variable / /->I<--- GOS variable >I 

I< LR -->I< LR--/ /->I< LR >I 
Attach 

IL Lil DI IL LI 
I I 

IL LII ol values data data / . • • / data 
A I I 

I !<Buffer Record>l<Buffer Record> I • • • !<Buffer Record>l<Buffer Record> I 
v 

IF M H sl 

I< Conversation Message >I 

TH 
val- IR HI RU 
ues 

I< 

·LEGEND: 

BIU >I 

TH values LIR_H~l...._ ___ R_U~----~ 
I<:---- BIU ---->I 

TH values LIR_H_l._ _ _,/ 1 
• • • 

I<----
BI Us 

-->I 

.. ·CJ 
TH values ILR_H~l.._ ___ R_u _____ _, 

I<.---- BIU ---->I 

LR: logical record LL: Length field ID: GDS ID field 

TH values IR HI R U 

I<- BIU ->I 

RH: request header RU: request unit BIU: basic information unit 
FMH-5: Attach FM header (occurs only on first conversation-message of conversation) 
Attach values: information for the Attach FM header, from the ALLOCATE verb. 
TH values: protocol information generated by the LU; the TH is built by path control. 

Figure 2-6. Relationship of Conversation Message to BIU Chain I Example) 

EXTERNAL FLOH SEQUENCES FOR THE BASE FUNCTION SET 

The correspondence is illustrated in Fig-
ure 2-7 on page 2-20 through Figure 2-23 on 
page 2-27. In the figures, the left column 

c: 

c 

c 

This section illustrates the correspondence 
between some typical basic-function-set 
transaction program verb sequences and the 
resulting flows of BIUs through the path con­
trol network. .1 The verbs are described in 
detail in SNA Transaction Programmer's Refer­
~ Manual for LU Type~). 

shows verbs issued by the invoking or 
initially-sending TP, and the right column c. 
shows verbs issued in response by the invoked 
or initially-receiving TP. The center column 

2-18 SNA LU 6.2 Reference: Peer Protocols 

shows the contents of the resulting chain IRH 
indicator settings, RU data and FM headers). 



() 

0 

(:'1 

0 

The arrows indicate direction of BIU flow. A 
group of arrows in the same direction repres­
ents a chain, but no necessary correspondence 
exists between arrows in the figures and BIUs 
in the chain. 

Each figure shows one of the following: 

• The beginning of a chain, for chains that 
begin a bracket 

• 

• 

The end of one chain and the beginning of 
the next 

The end of a chain, for chains that end a 
bracket 

"Allowable Combinations of Sequences" on page 
2-22 shows how these flows can be combined, 
or sequenced, to form complete conversations. 

Finally, "Error Flows" on page 2-24 shows 
asynchronous response cases. 

NOTATION 

The following notation is used in the fig­
ures. RH indicators: 

The flow is labeled with the indicator values 
that are carried in the RH. 

BB Begin bracket 

CEB Conditional end of bracket 

BC Begin chain 

EC End chain 

RQEl Request exception response l 

RQE2 Request exception response 2 I in this 
case, DRlI = DRll~DRl; i.e., RQE3 is 
equivalent to RQE21. 

RQDl Request definite response l 

RQD2 Request definite response 2 I in this 
case, DRlI = ORI I ~DRl; i.e., RQD3 is 
equivalent to RQD21. 

CD Change direction 

+DR2 Positive response to RQD2 

-RSPI08461 Negative response to chain 

RU contents: 

FMH-5 Attach FM header 

FMH-7 Error-description FM header 

The sense-data categories shown are: 

0864 Abnormal deallocation 

0889 Program-detected error 

data User data in FMD RU 

Verbs and Parameters 

The returned RETURN_CODE parameter of the 
RECEIVE AND HAIT verb is not shown when it is 
set t; oK; in that case, the returned 
HHAT_RECEIVED parameter is shown instead. 

DATA_* represents either setting 
TA_COMPLETE or DATA_INCOMPLETE I of 
parameter. 

Data Transfer Description 

IDA­
this 

Whenever a TP has the right to send, it 
issues SEND DATA zero or more times. Simi­
larly, a iP in receive state repeatedly 
issues RECEIVE AND HAIT, until it receives 
all of -the- data and the 
end-of-conversation-message indication. The 
receiver issues at least one receive verb; in 
the absence of errors, zero or more initial 
issuances of SEND_DATA by the source TP 
result in zero or more receive verb issuances 
lwith HHAT RECEIVED = DATA INCOMPLETE I at the 
target. The final issu;nce receives the 
end-of-conversation-message indicator as 
HHAT RECEIVED = DATA COMPLETE. Since the 
buff;r record sizes u-;ed at the sending TP 
and at the receiving TP may differ, the num­
ber of receive verb issuances does not neces­
sarily match the number of send verb 
issuances. 

All of the following figures begin or end 
with the data-transmission sequence just 
described. That sequence is represented in 
the figures as follows. 

Hhen the figure begins with I the end of! the 
data-transmission sequence, it shows lat the 
sending TP I a single SEND_DATA verb, and a 
corresponding data arrow, followed by verti­
cal I two-dot I ellipsis marks I: I. No 
RECEIVE_AND_HAIT verb is shown at the 
receiving TP. 

Hhen the figure ends with !the beginning of! 
the data-transmission sequence, it shows lat 
the receiving TP I vertical ellipsis marks 
I : I, followed by a single RECEIVE_AND_HAIT 
verb with HHAT RECEIVED = DATA COMPLETE. 
"Data" is shown -on the corresponding arrow, 
along with the end-of-conversation-message RH 
indicators. No SEND_DATA verb is shown at 
the beginning of the receiving-TP verb 
sequence. 

ERROR-FREE FLOHS 

The error-free flows for the base function 
set flows are described in terms of the verb 
sequences shown in Figure Z-7 on page 2-20 
through Figure 2-14 on page 2-ZZ. 

Chapter 2. Overview of the LU 2-19 



SEQUENCE 1 

ALLOCATE 
SVNC_LEVELCNONE J 

SEND_DATA 

BC,BB,FMH-5 

data 

Figure 2-7. Start Conversation with Synchronization Level of NONE 

SEQUENCE 2 

PREPARE_TO_RECEIVE 
TVPEIFLUSHJ 

EC,RQEl,CD,data RECEIVE_AND_HAIT 
~~~~~~~~~~> HHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_HAIT 

BC,data 
HHAT_RECEIVED=SEND 

SEND_DATA 

Figure 2-8. Conversation Turnaround without Confirmation: PREPARE_TO_RECEIVE is optional; when it 
is omitted, and a receive verb is issued from SEND state, the function of 
PREPARE_TO_RECEIVE is performed before any data is actually received. 

SEQUENCE 3 

DEALLOCATE 
TVPEIFLUSHJ 

EC,RQEl,CEB,data RECEIVE_AND_HAIT 
~~~~~~~~~~> HHAT_RECEIVED=DATA_COMPLETE 

!local deallocation) RECEIVE_AND_HAIT 
RETURN_CODE=DEALLOCATE_NORMAL 

DEALLOCATE 
TVPEILOCALJ 

(local deallocation) 

Figure 2-9. Finish Conversation without Confirmation 

SEQUENCE 4 

ALLOCATE BC,BB,FMH-5 
SVNC_LEVELICONFIRMJ~~~~~~~~~~> ITP started) 

SEND_DATA data 

Figure 2-10. Start Conversation with Synchronization Level of CONFIRM: The SVNC_LEVEL parameter on 
ALLOCATE establishes the synchronization level for the entire conversation. References 
to SVNC_LEVEL on subsequent conversation verbs refer to the SYNC LEVEL value 
established at the start of the conversation. In this sequence, that valu; is CONFIRM. 

2-20 SNA LU 6.2 Reference: Peer Protocols 

r 



c) 

() 

0 

SEQUENCE 5 

CONFIRM 

RETURN_CODE=OK 
SEND_DATA 

EC,RQD2,~CD,data RECEIVE_AND_HAIT 
~---------> HHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_HAIT 

+DR2 
<.~~~~~~~~~~-

BC ,data 

HHAT_RECEIVED=CONFIRM 
CONFIRMED 

Figure 2-11. Continue Conversation: Confirmation without Turnaround 

SEQUENCE 6A 

PREPARE TO_RECEIVE 
TYPEISYNC_LEVELJ 
LOCKSISHORTJ 

RECEIVE_AND HAIT 
EC,RQD2,CD,data 
----------> HHAT RECEIVED=DATA_COMPLETE 

RECEIVE_AND_HAIT 

+DR2 
HHAT_RECEIVED=CONFIRM_SEND 

CONFIRMED 
RETURN_CODE=OK <----------

BC,data SEND_DATA 

Figure 2-12. Conversation Turnaround with SYNC_LEVEL = CONFIRM, using LOCKS I SHORT l: Hhen the 
receiving TP issues CONFIRMED after the LU has received RQD2--indicating CONFIRM 
LOCKS! SHORT )--the LU immediately sends a CONFIRMED response I +DR2 l. This allows the 
CONFIRM sender to resume processing immediately, so that, for example, it can release 
locks on its local resources. 

SEQUENCE 6B 

IThe receiving LU processes the RQD2 internally; it does not inform the receiving TP of 
the LOCKS parameter value.) 

PREPARE TO_RECEIVE 
TYPE!SYNC_LEVELl 
LOCKS!LONGl 

RECEIVE_AND_HAIT 
EC,RQE2,CD,data 
----------> HHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=CONFIRM_SEND 

CONFIRMED 

BC ,data 
(LU omits sending +DR2l 

SEND_DATA 
RETURN_CODE=OK <----------

Figure 2-13. Conversation Turnaround with SYNC_LEVEL CONFIRM, using LOCKSILONGl: Hhen the 
receiving TP issues CONFIRMED after the LU has received RQE2--indicating CONFIRM 
LOCKS( LONG )--the LU does not send an immediate confirmation response. Instead, it 
continues processing until it has a complete BIU to send. The CONFIRM sender 
interprets receipt of BC without an intervening response as positive confirmation. 

LOCKS!LONGJ does not require the +DR2 response BIU that LOCKSISHORTl requires, but it 
can cause the CONFIRM sender to wait longer before resuming processing. 

Chapter 2. Overview of the LU 2-21 



SEQUENCE 7 

DEALLOCATE 
TYPEISYNC_LEVEL) 

EC,RQD2 1 CEB,data RECEIVE_AND_HAIT 
~~~~~~~~~~> HHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_HAIT 

+DR2 
RETURN CODE=OK <~~~~~~~~~ 

Local Deallocation 

HHAT_RECEIVED=CONFIRM_DEALLOCATE 
CONFIRMED 

DEALLOCATE 
TYPEILOCAL) 

Figure 2-14. Finish Conversation, SYNC_LEVEL = CONFIRM 

ALLOHABLE COMBINATIONS OF SEQUENCES either SYNC_LEVELINONE) or 
SYNC LEVELICONFIRM), i.e., conversa­
tion; started with sequences 1 or 4 

C--indicates a next sequence allowed 
Hhen a program issues one of the verb 
sequences shown above, that program is limit­
ed in its choice of the next verb sequence it 
can issue. The matrix in Figure 2-15 shows 
which verb sequences can follow a given verb 
sequence in the base function set. The 
matrix has the following meaning: 

only for conversations allocated with C'.,·, 
SYNC LEVELICONFIRM), i.e., conversa-
tion; started with sequence 4 

• 

• 

0 1 

0 N 

1 

2 

3 N 

4 

5 

6A 

68 

7 c 

The row numbers Cleft column) and column 
numbers I top row) in the matrix corre­
spond to the sequence numbers in Fig­
ure 2-7 on page 2-20 through Figure 2-14. 

A row corresponds to the verb sequence 
just issued; a column corresponds to the 
verb sequence issued next. 

In the matrix, row 0 or column 0 repres­
ents the state in which no conversation 
exists, i.e., the state prior to ALLOCATE 
or subsequent to DEALLOCATE. 

A letter N or C ih a cell indicates that 
the sequence corresponding to the column 
number can follow the sequence corre­
sponding to the row number. 

2 

N 

N 

c 

c 

c 

c 

N--indicates a next sequence allowed 
for conversations allocated with 

3 4 5 6A 68 7 Next-Sender 

c 

N SAME 

N c c c c SAME 

c c c c c SAME 

c c c c c SAME 

c c c c c OTHER 

c c c c c OTHER 

Figure 2-15. Possible Next Sequence in Error-Free Cases 

2-22 SNA LU 6.2 Reference: Peer Protocols 

• 

empty--indicates that the correspond­
ing sequence order is invalid 

The Next-Sender column indicates which TP 
is initial sender li.e., issues the verbs 
in the left column of the figure) for the 
next sequence: 

SAME--the initial sender of the next 
sequence is the same as the initial 
sender of the previous sequence. 

OTHER--the initial sender of the next 
sequence is the partner of the in1 -
tial sender of the previous sequence. 

Figure 2-16 on page 2-23 and Figure 2-17 on 
page 2-23 illustrate the application of these 
rules to generate allowable conversation 
sequences. 

c 



() 

c 

0 

0 

ALLOCATE 
SYNC_LEVELINONEl BC,BB,FMH-5 

----------> I TP started) 
SEND_DATA data RECEIVE_AND_HAIT ----------> HHAT_RECEIVED=DATA_* 
SEND_DATA RECEIVE_AND_HAIT 
DEALLOCATE EC,RQEI,CEB,data HHAT_RECEIVED=DATA_COMPLETE 

TYPE I FLUSH) ----------> RECEIVE_AND_HAIT 
I local deallocation) RETURN_CODE=DEALLOCATE_NORMAL 

DEALLOCATE 
TYPE I LOCAL) 

I local deallocation) 

Figure 2-16. One-Hay Conversation without Confirmation: Combines Sequences l and 3 

The sequence shown in Figure 2-16 is gener­
ated as follows: 

SEND_DATA and one additional issuance of 
RECEIVE_AND_HAIT. 

I. Begin in state O. 4. Select a column containing an N in row I. 

2. Select a column containing a lettered In this example, column 3 was chosen. 

3. 

cell in row 0. 

In this example, column l was chosen. 
This corresponds to sequence I. 

Supply an arbitrary number of 
and RECEIVE AND HAIT verbs 
sequence I, - as- allowed by 
data-transfer convention. 

SEND DATA 
foll~ing 
the the 

In this 
replaced 

example, the ellipsis was 
by one additional issuance of 

ALLOCATE BC,BB,FMH-5 
SYNC_LEVELI CONFIRM) --------->ITP started) 

5. Orient sequence 3 according to the "next 
sender" column for the previous sequence. 

6. 

In this example, the next 
so the left column of 
issued by the same TP as 
of sequence I. 

sender is SAME, 
sequence 3 is 

the left colunn 

Select a column containing an N in row 3. 
The only choice is column o, indicating 
the end of the sequence. 

PREPARE_TO_RECEIVE EC,RQE2,CD RECEIVE_AND_HAIT 
TYPEISYNC_LEVELl > HHAT_RECEIVED=CONFIRM_SEND 
LOCKSILONGl CONFIRMED 

BC,data 
RETURN_CODE=OK <---------~ 

RECEIVE_AND_HAIT 

SEND_DATA 

HHAT_RECEIVED= EC,RQD2,CEB,data 
DATA_COMPLETE <---------~ 

RECEIVE_AND_HAIT 

DEALLOCATE 
TYPEISYNC_LEVELl 

HHAT_RECEIVED= 
CONFIRM_DEALLOCATE 

CONFIRMED +DR2 
RETURN_CODE=OK 

DEALLOCATE 
TYPEILOCALl 

Figure 2-17. Two-Hay Conversation with Confirmation: Combines Sequences 4, 68, and 7. 

The sequence shown in Figure 2-16 is gener­
ated as follows: 

I. Beginning in state o, select sequences 4, 
68, and 7, returning to state 0. 

2. Supply some number of SEND_DATA and 
RECEIVE_AND_HAIT verbs following sequence 
4. 

In this example, 0 instances of SEND_DATA 
were chosen. Thus, following the data 
transfer convention, the SEND_DATA verb 

Chapter 2. Overview of the LU 2-23 



and data arrow in sequence 4 are elimi­
nated, as is the RECEIVE AND HAIT 
HHAT RECEIVED = DATA COMPLETE -and- the 
data-on the EC arrow i~ sequence 68. 

For example, the CONFIRM, SEND_DATA, and 
DEALLOCATE might generate only one BIU, c-\,·· 
even though two arrows are shown in the 
figure.) 

3. The next sender following sequence 4 is 
SAME; therefore, sequence 68 has the same 
orientation as the preceding sequence. 

5. The next sender following sequence 68 is 
OTHER; therefore, sequence 7 is reversed 
to have the opposite orientation from 
that of the preceding sequence Ii .e. , 
since the left column of sequence 68 cor­
responds to the left column of the com­
bined sequence, the left column of 
sequence 7 corresponds to the right col­
umn of the combined sequence). 

4. Supply some number of SEND_DATA and 
RECEIVE_AND_HAIT verbs following sequence 
68. 

SEND_DATA 

SEND_DATA 

In this example, only one instance of 
each was chosen, corresponding exactly to 
the number in the sequence figures. 

(This figure illustrates that the arrows 
do not necessarily correspond to BIUs. 

6. The next row number is O; therefore this 
completes the sequence. 

data 
~~~~~~~~~~~~~-> 

BC,EC,SIGNAL !expedited flowl 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=DATA_* 

REQUEST_TO_SEND 
<•~~~~~~~~~~~~~-

RE QUE ST TO SEND RECEIVED=YES 
PREPARE_TO_RECEIVE EC,RQEl,CD,data 

RECEIVE_AND_HAIT 

HHAT_RECEIVED=DATA_COMPLETE 
RECEIVE_AND_HAIT 

HHAT_RECEIVED=SEND 
SEND_DATA 

TYPE I FLUSH l 

RECEIVE_AND_HAIT BC,data 
<.~~~~~~~~~~~~~-

HHA T _RECEIVED =DAT A_* 

Figure 2-18. Conversation Turnaround following REQUEST_TO_SEND !without 
Confirmation): REQUEST TO SEND issued by the receiving TP results in an expedited-flow 
one-RU chain. The TP ;ending data is notified via the REQUEST_TO_SEND_RECEIVED 
parameter of a subsequent verb. The interpretation of REQUEST_TO_SEND_RECEIVED is 
determined by· the TP. In this example, the sending TP stops sending and issues 
RECEIVE_AND_HAIT. 

c 

EXCEPTION FLOH 

Figure 2-18 illustrates the only non-error 
case for which a TP can send while in receive 
state. This flow represents issuing the 
REQUEST_TO_SEND verb and sending the SIGNAL 
RU. 

fails an application validity check, or the 
partner sends more logical records than 
expected) it issues SEND_ERROR or DEALLOCATE (/"~, 
TYPE I ABEND l. Hhen the LU detects a trans-

This flow can be substituted for sequence 2. 
A similar sequence corresponding to sequence 
6A or 68 exists, but is not illustrated here. 

ERROR FLOHS 

Figure 2-19 on page 2-25 through Figure 2-23 
on page 2-27 illustrate flows resulting from 
transaction-program error recovery for the 
base function set. Hhen the TP detects a 
TP-defined error (e.g., the received data 

2-24 SNA LU 6.2 Reference: Peer Protocols 

act ion program error, such as an Attach fail- "------/ 
ure, it generates similar flows. 
Three cases exist: 

• Verb issued by sender 

• Verb issued by receiver 

• Verb issued by both le.g., a SEND_ERROR 
race has occurred) 

!This case is not illustrated for DEALLO-
CATE. J 

For cases not shown here, see "Component 
Interactions and Sequence Flows" on page 
2-48. 



0 

SEND_DATA 
ITP detects 
an error) 

SEND_ERROR data 

RECEIVE_AND_HAIT 

~~~~~~~~~~> HHAT_RECEIVED=DATA_INCOMPLETE 
SEND_DATA FMH-710889),data RECEIVE_AND_HAIT 

~~~~~~~~~~> HHAT_RECEIVED=PROGRAM_ERROR_TRUNC 

Figure 2-19. SEND_ERROR Issued by Sender: The SEND_ERROR verb forces sending of accumulated data 
and begins a new RU with an FMH-7. The issuing TP remains in send state; it can, for 
example, send additional TP-determined data to further describe the error. 

SEND_DATA data 

-RSPI0846) 

SEND_DATA 

!LU ends chain)<.~~~ 
EC,RQEl,CD,no data 

BC,FMH-710889),data 
<~~~~~~~~~-

RE TURN_ CODE= 
PROG_ERROR_PURGING 

RECEIVE_AND_HAIT 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=DATA_* 

ITP detects an error) 
SEND_ERROR 

Purge incoming BIUs 
to end of chain .. 

.. 
" !LU detects end of chain) 
RETURN_CODE=OK 

SEND_DATA 

Figure 2-20. SEND_ERROR Issued by Receiver: The SEND_ERROR verb causes a negative response to the 
incoming chain; the sending LU sends End-of-Chain and Change-Direction when it receives 
the response. Meanwhile, the receiver purges incoming RUs until the End-of-Chain 
indication is received, then it sends FMH-7 and leaves the issuing TP in send state so 
it can, for example, send additional TP-determined data describing the error. 

Chapter 2. overview of the LU 2-25 



SEND_DATA data 

-RSPI 0846 J ITP detects 
an error) 

SEND_ERROR ______ d_a_t_a, > 

SEND_DATA FMH-710889J,data 

I 
ILU ends chain) <_J 

EC,RQEl,CD,no data 
-------------------> 

BC,FMH-710889),data 
<-------------------

RETURN_ CODE= 
PROG_ERROR_PURGING 

RECEIVE_AND_HAIT 

> 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=DATA_* 

ITP detects an error) 
SEND_ERROR 

Purge incoming BIUs 
to end of chain 

ILU detects end of chain) 
RETURN_CODE=OK 

SEND_DATA 

Figure 2-21. SEND_ERROR Issued by both Sender and Receiver I SEND_ERROR Race J: Each LU begins 
SEND_ERROR processing as in the no-race case, but since the receiver is purging to end 
of chain, the SEND ERROR from the sender is also purged, so the receiver's SEND_ERROR 
takes precedence. -

SEND_DATA 
DEALLOCATE data 

TYPEIABEND_PROGJ > 
EC,RQDl,CEB,FMH-710864) 

--------------------> 
+DRl 

I response used<-------------------­
internally J 

RECEIVE_AND_HAIT 

HHAT_RECEIVED=DATA_* 
RECEIVE_AND_HAIT 

RETURN_ CODE= 
DEALLOCATE_ABEND_PROG 

Figure 2-22. DEALLOCATE ABEND Issued by Sender: The flow is similar to SEND_ERROR in send state. 
The +DRl response is required for internal processing. 

2-26 SNA LU 6.2 Reference: Peer Protocols 

c 



Cl 
J 

c \ ) 

0 

0 

SEND_DATA data 
~----------> 

-RSPI0846J 

SEND_DATA 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=DATA_* 

DEALLOCATE 
TYPEIABEND_PROGJ 
Purging 

II 

II 

( LU ends cha in J 
EC,RQEl,CD,no data II 

~----------> "(LU detects end of chain) 
BC,EC,RQDl,CEB,FMH-710864) 
<---------~ 

RETURN_ CODE= 
DEALLOCATE_ABEND_PROG 

+DRl 
(response used internally) 

Figure 2-23. DEALLOCATE ABEND Issued by Receiver: The flow is similar to SEND_ERROR in receive 
state. The +DRl response is required for internal processing. 

LU STRUCTURE 

Figure 2-24 on page 2-28 illustrates the 
structure of the LU. 

The upper protocol boundary of the LU is the 
transaction program protocol boundary (de­
scribed in SNA Transaction Programmer's Ref­
erence Mam:ral for LU ~ 6. 2 J. --A 
transaction program processes end user data, 
and requests LU services to communicate with 
other transaction programs. 

The lower protocol boundary of the LU is to 
the SNA path control network, which the LU 
uses to communicate with other LUs. 

The LU also has protocol boundaries with the 
CP, buffer manager, NOF, and with initiator 
processes in the same node. 

SNA LAYERS 

The LU contains instances of the following 
four SNA layers: 

Transaction services 

Presentation services 

Data flow control 

Transmission control 

Component Overview 

The LU has two groups of components, one for 
its upper protocol boundary with transaction 

programs, and one for its lower protocol 
boundary with the path control network. Each 
group consists of a set of processes contain­
ing a pair of SNA layer-instances, and a man­
ager component that creates, destroys, and 
otherwise manages these instances. 

The upper group of components contains trans­
action processes, which contain instances of 
the following SNA layers: 

Transaction services 

Presentation services 

More concretely, each transaction process 
contains an execution instance of a trans­
action program and some presentation services 
components for processing the verbs issued by 
it. (See Figure 2-25 on page 2-29.J 

This group of components is managed by the 
resources manager component IRMJ, which cre­
ates transaction processes C in response to 
Attaches received from remote LUs J, destroys 
them after they have finished executing, and 
connects them with sessions I thus enabling 
them to participate in distributed trans­
actions). 

The lower group of components contains 
half-sessions IHSsJ, which contain instances 
of the following SNA layers: 

Data flow control 

Transmission control 

Half-sessions enforce protocol rules for con­
versation data exchange, and transform mes-

Chapter 2. Overview of the LU 2-27 



I 
• 

Application 
Transaction 

Program 

A 
I 

Contr-ol­
Operator 
Transaction 
Program 

A 

I 

<--> Control Operator 

DIA 

SNADS 

RESYNC 

I 
• 

!J 
J 

BM <- - - - - - - T - - - - T -,. 1 

I 

if=!~; 
IP < > 

CP < > 

I I 
NOF<---> 

Resources 
Manager 

A 
I 
v 

Session 
Manager 

< 

11 
< 

<- J 

I 

I 

I 
I I 

v 

A 

Service 
Transaction 

Programs 
...._ __ , ___________ ~ 

II ---------!-----------~ v • 
I~ 

':I 
•J 

~-------P_r_e_s_e_n_t_a_t_i_on __ Se_r_v_i_·c_e_s ________ ~l_J 

----------------> 

A 

lv--v 

Data Flow 
Control 

• 
• 

• 

<------------------~> 

Services Manager 

Transmission 
Control 

LU-LU Half-Session 

A 

I LU ....__ ___________ ___. 

LEGEND: 
<--> Send/Receive relationship 
<- - -> Call/Return relationship 
CNOS: Change Number of Sessions 
SNADS: SNA Distribution Services 

v 
PATH-CONTROL NETHORK 

CP: Control Point IP: Initiator process 
NOF: Node Operator Facility BM: Buffer Manager 
RESYNC: Sync Point Resynchronization 
DIA: Document Interchange Architecture Services 

Figure 2-24. Overview of LU 6.2 Components (_--"" 
-------------------------------------------------~ _/ 

2-28 SNA LU 6.2 Reference: Peer Protocols 



0 

0 

Transaction Program 
r - - - - - - - - - -> 

PS Verb Router 
I A I A 

1--- -
v I v I 

I 
I ~-··m~ 

PS for PS for 
Mapped Sync Point 

Conversations Services 

any verb 
I 

issued 

v 
I A 
-

v I 
PS for 
Control 
Operator 

I 

other 
PS 

I 

verb 
handlers 

v 

PS for 

PS.MC PS.SPS PS.COPR • • • 
Basic 

Conversations 
PS.CONV 

v 

Resources Manager 

LEGEND: 
- - -> Call/Return relationship <within a process) 

Send/Receive relationship !between processes) 

I 1·_.---A.-----' 
I 
v 

Half-Session or 
Resources Manager 

<--> 
Note: PS verb router is called recursively by PS verb handlers. 

Figure 2-25. Structure of a Presentation Services Process 

sage units between the format useful to 
conversing programs and the format appropri­
ate for the path control network (this 
includes implementing session services such 
as pacing and cryptographyl. 

This group of components is managed by the 
session manager component !SMJ, which creates 
and destroys half-sessions and interacts with 
components outside the LU (e.g., the control 
point l. 

The session manager component is created by 
the node operator facility !NOF) when it 
activates the LU. The session manager compo­
nent then creates the resources manager com­
ponent. They run continuously thereafter. 
I For more information see SNA Type 2 .1 Node 
Reference and "Chapter 4. W SessionManaQ= 
er".) 

FUNCTIONAL SUMMARY BY FUNCTION 

0 

This is the first of two sections describing 
the functions and interactions of LU compo­
nents. This section is organized by func­
tion; it concentrates on functions that 
involve multiple components. For each func­
tion, it explains in approximate time 
sequence the roles of the various LU compo­
nents. The next section is organized by com­
ponent, and covers functions performed 
principally by one component. A full 
description of each component is given in its 
corresponding chapter of this book. 

For illustrations of the component inter­
actions discussed in this section, including 
a variety of cases not discussed elsewhere in 
this chapter, see "Component Interactions and 
Sequence Flows" on page 2-48. In particular, 
Figure 2-33 on page 2-50 and Figure 2-34 on 
page 2-51 illustrate the interactions, at the 
source and target LUs, respectively, for a 
typical conversation; Figure 2-35 on page 
2-52 and Figure 2-36 on page 2-53 illustrate 
typical interactions for session deacti­
vation. 

The LU manages the state and configuration of 
its local resources, including transaction 
programs, conversation resources, and 
half-sessions. It cooperates with other LUs, 
using shared sessions and conversations, to 
configure these resources to support distrib­
uted transactions. !An LU implementation 
might also manage other, non-SNA, resources 
such as processor execution cycles, storage, 
and data bases.) 

The principal functions leading to LU trans­
act ion processing are the following, not nec­
essarily performed in this order: 

• Activating sessions between two LUs 

• Invoking transaction programs 

• Initiating conversations between the 
transaction programs 

• Transferring message uni ts between the 
transaction programs 

Chapter 2. Overview of the LU 2-29 



EXAHPLE TRANSACTION PROGRAH 

Figure 2-26 on page 2-30 outlines some typi­
cal verb issuances for an example pair of 
transaction programs. 

SOURCE TP ----
HC_ALLOCATE 
HC_SEND_DATA 

" 
" 
" 

HC_RECEIVE_AND_HAIT 

" 
" 
" 

HC_DEALLOCATE 

TARGET TP ----
HC RECEIVE_AND_HAIT 

" 
" 

HC_SEND_DATA 
" 

HC_DEALLOCATE 

Figure 2-26. Example of Communicating 
Transaction Programs 

The programs, running at different LUs, issue 
complementary sequences of verbs. The LUs 
convert these executed verbs into 
message-unit flows. 

HESSAGE-UNIT TRANSFER 

First, consider transfer of message tnits. 
Assume that two transaction programs are run­
ning at their respective LUs and are con­
nected by a mapped conversation. For the 
programs to transfer data, one program must 
issue HC_SEND_DATA verbs while the other 
issues complementary HC_RECEIVE_AND_HAIT 
verbs. 

The TP invokes PS for each 
transaction-program verb it issues. PS per­

·forms the function appropriate to the specif­
ic verb. For each verb, PS verifies that the 
verb is valid in the current conversation 
state, converts the verb parameters to an 
intermediate representation, and performs 
verb-specific processing that includes issu­
ing appropriate requests to other LU compo­
nents. 

Hhen sending, the data specified on the 
HC_SEND_DATA verb along with the chaining 
indicators is put into HUs by PS and sent to 
HS. HS encodes the protocol information into 
RHs and passes the resulting BIUs lwith TH 
information) to path control. 

Hhen receiving, HS checks incoming BIUs for 
format and protocol validity and passes HUs 
containing data to PS. Hhen the TP issues a 
HC_RECEIVE_AND_HAIT verb, PS checks the verb 
for validity and passes the requested alllOU"lt 
of data and protocol information back to the 
TP. 

The following sections discuss these func­
tions in more detail. l Figure 2-4 on page 

2-30 SNA LU 6.2 Reference: Peer Protocols 

2-16, Figure 2-5 on page 2-17, and Figure 2-6 
on page 2-18 illustrate the message-uiit 
relationships discussed.) 

Sending Data 

For HC_SEND_ilATA, PS verifies that the con­
versation is in send state. If mapping is 
being performed, PS maps the 
transaction-program data record into a 
mapped-conversation record (see "Happing 
Function" on page 2-36 l. It transforms the 
HCR into a sequence of logical records of 
implementation-defined length by segmenting 
the supplied data and prefixing the appropri­
ate GOS LLID fields. It calls the basic con­
versation SEND_DATA procedure as often as 
necessary l determined by the buffer-record 
size used by the PS.He implementation) to 
send all the logical records. The c· 
mapped-conversation verb handlers in PS typi- _/, 
cally call one or more basic-conversation 
procedures to perform the function requested 
by a mapped-conversation verb. 

Hhen PS has first entered send state, it 
expects an LL at the beginning of the first 
buffer record. From then on, PS compares the 
accumulated length of the data passed on suc­
cessive issuances of HC_SEND_DATA to the 
logical-record lengths specified in the LLs, 
thus verifying that the conversation message 
sent ends at a logical record boundary. c 
PS accumulates the data from successive buff- _j 

er records in RU-sized units lthe RU size for 
a session is determined by BIND negotiation 
when the session is activated). Hhen the 
RU-size buffer is full, PS transfers the data 
to HS with an indication of whether it is the 
last of the data for a conversation message. 
Hhen PS detects the end of a conversation 
message, e.g., a PREPARE_TO_RECEIVE, 
HC RECEIVE AND HAIT, CONFIRH, SYNCPT, or 
HC_-DEALLOCATE -verb was issued, PS transfers 
its remaining accumulated data with an indi- (---...., 
cation of how the conversation message was \.__ 
ended, e.g., confirmation request, conversa- _,,,. 
tion turnaround, or deallocation. It also 
places the conversation in the appropriate 
state. 

Heanwhile, the HS process, also in send 
state, waits for data from PS. Hhen PS 
passes the data, HS fills in the RH, a 
sequence number, and other TH information. 
If session cryptography is being used, HS 
enciphers the data. 

HS encodes each RH to indicate the beginning 
or end of a bracket (corresponding to a com­
plete conversation exchange) and the begin­
ning or end of a chain l corresponding to a 
conversation message). For all but the last 
BIU in a chain, HS encodes the RH with RQEl. 

For the last BIU for the conversation mes-(" 
sage, HS encodes the RH with EC l the 
end-of-conversation-message indicator) and _,, 
other indicators selected by PS, such as CD 
le.g., HC_PREPARE_TD_RECEIVE verb issued), 
RQD2 le.g., HC_CONFIRH issued), RQDl 



C~·,,. ) 

0 

IMC DEALLOCATE TYPE[ABENDJJ issued), and CEB 
IMC=DEALLOCATE issued). HS changes the local 
session state accordingly. 

HS passes each completed BIU and the corre­
sponding TH information to path control for 
transmission to the receiving HS in the 
remote LU. 

HS enforces both fixed and adaptive 
session-level pacing. The type of pacing for 
a given session is determined during session 
initiation and is communicated to HS when 
initialized by SM. 

In fixed pacing, the sending HS sends at most 
one fixed-sized pacing window of BIUs before 
receiving a pacing response. It then 
requires a pacing response from the receiver 
before sending another window. The receiving 
HS sends a pacing response when it can 
receive another pacing window, e.g., when it 
has enough free buffers. 

In adaptive pacing, the pacing window size 
varies depending upon the availability of 
buffers at the receiving node and the demand 
for buffers at the sending node. The avail­
ability of buffers is determined and con­
trolled by the buffer manager (BM J at the 
receiving node. 

The sending HS asks the receiving HS for the 
next-window size by setting the Pacing indi­
cator to 1 IPACJ in the RH of the first mes­
sage in a window. Also in the same RH, the 
sending HS may ask for a larger window size 
by setting the Request Larger Hindow indica­
tor to 1 I RLH l. 

The receiving HS calculates the next-window 
size based upon the number of buffers given 
to it by the buffer manager and the demand 
for buffers by the sending HS. The receiving 
HS sends the next-window size to the sending 
HS in a pacing message I IPM J, which corre­
sponds to the pacing response IIPRJ in fixed 
pacing. Hhen additional buffers are avail­
able and the Request Larger Hindow indicator 
is RU~, the window size is increased. Hhen 
additional buffers are not available, the 
window size remains the same. Hhen fewer 
buffers are available, the window size is 
decreased. Hhen buffers become cri Heally 
scarce, the buffer manager prompts the 
receiving HS to send an unsolicited pacing 
message to the sending HS, which causes the 
sending HS to set its current-window size and 
next-window size to O, thus stopping the 
sending HS from sending BIUs. Hhen buffers 
again become available, the buffer manager 
prompts the receiving HS to send another pac­
ing message with a next-window size greater 
than 0 to the sending HS. This allows the 
sending HS to resume sending BIUs. For more 
information on session-level pacing see 
"Chapter 6.2. Transmission Control". 

Receiving Data 

The HS process at the receiving LU receives 
BIUs and TH information from path control. 

It sends IPRs or IPMs when it has sufficient 
buffers to receive additional BIUs. If ses­
sion cryptography is specified, it deciphers 
the data. It checks for correct session pro­
tocol. It checks BIU sequence numbers to 
detect lost or duplicate BIUs and to corre­
late responses with the correct bracket. If 
it detects any protocol error, it abnormally 
deactivates the session, i.e., it requests SM 
to issue UNBIND indicating a format or proto­
col error. 

If the BIU is satisfactory, HS sends the MUs 
containing the Security FM header or the 
Attach FM header, if present, to RM, and 
sends all other MUs to PS. HS also sends PS 
an indication of significant state changes 
that were encoded in the received RH such as 
end of a. conversation message IEnd-of-ChainJ, 
enter send state IChange-DirectionJ, confir­
mation request !Definite-Response 2131 and 
end of conversation 
IConditional-End-of-BracketJ. HS changes its 
own session state accordingly. 

Meanwhile, the receiving TP issues 
MC_RECEIVE_AND HAIT verbs to receive the con­
versation message. Each verb issuance calls 
PS. 

For each MC_RECEIVE_AND_HAIT issuance, PS 
calls the basic conversation RECEIVE_AND_HAIT 
procedure until it receives enough data I in 
the form of logical records J to satisfy the 
data length requested on the 
MC_RECEIVE_AND_HAIT verb. 

For each RECEIVE_AND_HAIT verb issuance !in­
cluding the case in which RECEIVE_AND_HAIT is 
issued directly by a transaction program, 
i.e., for a basic conversation), PS waits for 
the data from HS. PS receives data from HS 
in the form of MUs. If more MUs are received 
than are currently necessary to satisfy a 
RECEIVE_AND_HAIT, PS queues the MUs. 

Hhile parsing the MUs to satisfy the 
RECEIVE_AND_HAIT, PS keeps track of the LL 
fields, to verify that the conversation mes­
sage ends on a logical record boundary. 

Hhen the RECEIVE_AND_HAIT procedure returns 
to the MC_RECEIVE_AND_HAIT procedure, PS 
checks the length and continuation fields in 
the LLs to verify that a complete 
mapped-conversation record IMCRJ has been 
received, strips the GOS LL and ID fields, 
and reblocks the data into an MCR. IIf the 
TP receive buffer cannot contain the complete 
MCR, PS passes it to the TP in 
receive-buffer-sized segments, i.e., 
mapped-conversation buffer records. J 

If PS receives an end-of-conversation-message 
indication, it does not forward this indi­
cation to the TP until after all logical 
records and MCRs have been received. It then 
returns the end-of-conversation-message indi­
cation alone on the next MC_RECEIVE_AND_HAIT 
verb issued, and places the mapped conversa­
tion into the appropriate state. 

Chapter 2. Overview of the LU 2-31 



TRANSACTION PROGRAM INITIATION AND TERMI­
NATION 

Before the TPs can exchange message uni ts, 
the TPs must be brought into execution. 

Invoking ~ Remote Transaction Program 

Assume that a source TP is already in exe­
cution. It requests invocation of a remote 
TP by issuing the ALLOCATE verb (or 
MC_ALLOCATE, which PS.MC converts into an 
ALLOCATE J. It identifies the program to be 
invoked by specifying the remote transaction 
program name and remote LU name, and selects 
the desired transport characteristics by 
specifying a mode name. 

Using the parameters from ALLOCATE, the 
source PS builds an Attach FM header and 
sends it to HS for transmission to the part­
ner LU. Hhen the target HS receives the 
A Hach FM header, it passes it to its RM. 
This RM checks some parameters in the Attach 
FM header, including any security parameters 
in the Attach. If a format or protocol error 
is found, the Attach FM header is rejected by 
terminating the session that it arrived on. 
If no format or protocol error is found but 
the Attach contained invalid or inadequate 
information, RM sets a sense data field, cre­
ates a PS process and passes it the Atiach FM 
header with the sense data. Upon finding the 
sense da.ta, the new PS builds and sends an FM 
Header 7 containing the sense data, thus 
rejecting the Attach. If RM finds no errors, 
it creates a PS process and passes it the 
Attach FM header with no sense data. The new 
PS analyzes the Attach FM header further and, 
if an error is detected, rejects it; other­
wise, PS selects and loads the specified 
transaction program code, and calls it, plac­
ing it initially in receive state for the 
conversation. 

Once a target TP is invoked, it can act in 
turn as a source TP to invoke other TPs. If 
conversation-level security is required by 
the other TPs, the same security user ID that 
initiated the original target TP may be used, 
along with an Already Verified indicator in 
the Attach FM header, or the source TP may 
supply the required security parameters. 

Initiating the Initial Local Transaction Pro­
gram 

The first TP activated for a distributed 
transaction is initiated by a START_TP record 
received by RM from an initiator process on 
the same system. Examples of an initiator 
process are an application, the node operator 
facility CNOFJ, a TP-PS process, a 
control-point process, or RM itself. The 
START_TP record contains information such as 
the name of the TP to be started; security 
tokens of the requester, e.g., user ID, pass­
word, profile; an indication as to whether a 

2-32 SNA LU 6.2 Reference: Peer Protocols 

reply to the START_TP request is desired, and c: 
the initiating process's name and ID. .' 

__/' 

RM treats the START TP much like an Attach: 
the requested TP-PS- process is created and 
initialized; however, no conversation is 
associated with a START_TP request. 

Terminating ~ Transaction Program 

A TP ends by returning to PS.INITIALIZE. PS 
then performs any necessary final processing 
(such as deallocating the TP's remaining con­
versations), and notifies RM. If no queued 
START_TP or Attach requests exist for the TP, 
RM destroys the PS process. 

CONVERSATION ALLOCATION AND DEALLOCATION 

A source TP initiates a conversation with a 
target TP by issuing the ALLOCATE C or 
MC_ALLOCATEJ verb. 

The source PS satisfies the TP request in two 
steps. 

First, PS sends RM a request to allocate a 
conversation. RM creates a conversation 
resource and notifies PS. 

Second, PS sends RM a request to assign aa (~" 
session to the conversation. Hhen RM has 
session available for the conversation, RM \____./ 
connects the PS process of the issuing TP to 
the HS process of the session and notifies PS 
and HS. PS. places the source end of the con­
versation (where the allocation was 
requested) initially in send state. 

If a session is not immediately available, RM 
suspends the issuing process. 

After a session is assigned to the conversa­
tion at the source LU, PS sends the Attach FM 
header to HS for transmission to the target 
LU. 

Hhen HS at the target LU receives the first 
BIU of the bracket, it notifies RM. RM 
receives the Attach from HS, creates the con­
versation resource, and makes it accessible 
to HS and PS. It places the target end of 
the conversation initially in receive state. 

The following sections give further details 
of these functions. 

Selecting ~ Session 

RM maintains a list of allocation requests 
and a list of free sessions and their con­
tention polarities. If RM has an allocation 
request (i.e., from an ALLO- c: 
CATEIRETURN CONTROL = ' 
HHEN_SESSION_ALLOCATED J J and a first-speaker _/ 
!contention-winner) session is free !i.e., in 
between-brackets state), RM allocates that 
session to the conversation. If a 



c) 

( -- •, 

/ 

(\ v 

0 

first-speaker session is not free but a bid­
der C contention-loser l session is free, RM 
bids for the session. If no sessions are 
free, but the session limits have not been 
reached, RM requests that SM activate a new 
session. If no sessions are free and the 
session limits are reached, RM queues the 
allocation request to await the freeing of a 
session. 

Bidding 

RM requests HS to attempt to begin a bracket 
by sending an RU with BB; this is called 
bidding for the session. 

RM always accepts a bid received on a bidder 
session. 

If RM receives a bid on a first-speaker ses­
sion, RM accepts or rejects the bid depending 
on whether any of its own transactions need 
to allocate the session for use by their own 
conversation Ii f they do, then it sends a 
negative response to the bid; otherwise, it 
sends a positive response to the bidl. 

Optionally, a negatively-responding RM will 
inform the partner when it is again willing 
to accept a bid. 

Newly Active Session 

Hhen a session becomes newly active, it is 
initially in in-brackets state. If LU-LU 
verification is active, RM at the primary LU 
creates and sends (via HS l a Security FM 
header IFMH-121 to the secondary LU's RM for 
verification. The LU that activated the ses­
sion I the primary LU, or BIND sender) has 
first right to send-;- regardless of the ses­
sion contention polarity. If RM at the pri­
mary LU has no unsatisfied conversation 
request when a session becomes active, it 
requests HS to yield the session, i.e., to 
end the bracket. 

Deallocation 

Hhen PS requests deallocation of the conver­
sation, HS ends the current bracket, and RM 
deletes the conversation resource and places 
the session in the free-session list. 

SESSION ACTIVATION AND DEACTIVATION 

If RM has a conversation request for a ses­
sion but no session is free and the session 
limits have not been exceeded, RM requests SM 
to activate a new session. RM also requests 
session activation as a result of operator 
commands I such as INITIALIZE_SESSION_LIMITJ. 

Starting ~ Session 

Starting a session involves the following 
three activity phases: session limits 
initialization, session initiation, and ses­
sion activation. 

Initializing Session Limits: Prior to any 
transaction act1v1ty, --u;e-control operator 
sets limits on the maximum and minimum num­
ber, and contention polarity, of active ses­
sions with particular partner LUs using 
particular mode names I see "Control-Operator 
Functions" on page 2-36 for details). 

Session Initiation: Hhen SM receives a ses­
sion act1vat1on request from RM, SM sends an 
ASSIGN PCID record to the session services 
I SS J ~omponent of the CP. SS responds by 
sending to SM an ASSIGN_PCID_RSP record con­
taining the fully-qualified procedure 
correlator ID that uniquely identifies the 
potential session and the procedures related 
to that session. 

SM then sends an INIT SIGNAL record to SS, 
which directs the control point to mediate 
the initiation of the session. SS sends to 
SM a CINIT SIGNAL record containing session 
characteristics and information to be 
included in the BIND. 

SM then sends an ASSIGN LFSID record to the 
address space manager IA-SMI component of the 
CP. ASM responds with an ASSIGN_LFSID_RSP, 
which contains the local-form session identi­
fier ILFSIDI for the potential session. 
Refer to "Chapter 4. LU Session Manager" for 
more details of session initiation. 

Session Activation SM then generates a BIND 
RU containing the desired session parameters. 
If security is used, the session parameters 
include randomly generated data for LU-LU 
verification and an indication of the amount 
of conversation-level security support that 
is defined for the secondary LU. Random and 
enciphered data are sent/received only when 
LU-LU verification is active. SM sends the 
BIND to its local CP for routing to the part­
ner LU. 

SM for the LU rece1v1ng the BIND Cthe second­
ary LU or SLU J negotiates the proposed ses­
sion - parameters to acceptable valuess 
enciphers the received random data based upon 
the LU-LU password; saves the indication of 
the primary LU's conversation-level security 
support for the secondary LU; and creates a 
positive response to BIND. The positive 
response to BIND includes an indication of 
the secondary LU's conversation-level securi­
ty support for the primary LU, randomly gen­
erated data, and the enciphered version of 
the random data received in BIND. SM sends 
this positive response to BIND via its local 
CP. 

Hhen the positive response to BIND is sent or 
received, the session manager at each end 
connects a new HS process to the path control 
network. If the session uses cryptography, 
the HSs exchange cryptography-verification 

Chapter 2. Overview of the LU 2-33 



RUs. Then, each SM notifies its RM that a 
new session is available. If LU-LU verifica­
tion is active, before the new session is 
available for conversations, the primary LU's 
RM enciphers the random data received on the 
response to BIND and returns it to the sec­
ondary LU's RM for verification. 

If the LUs cannot agree on session parame­
ters, or the enciphered random data compar­
ison fails, the session activation fails. 

Session Outage 

If session outage occurs, SM notifies RM. If 
a conversation was active on the session, RM 
notifies PS, which notifies the transaction 
program of conversation failure. RM requests 
SM to activate another session if it has 
unsatisfied conversation requests or an 
unsatisfied auto-activation limit. 

Ending ~ Session 

Ending a session involves the following three 
activity phases: operator request, session 
shutdown, and session deactivation. 

Operator Request: Sessions are not deacti­
vated in the normal course of transaction 
program processing; they are deactivated 
normally only upon specific request from the 
control-operator transaction program. !Ses­
sions are deactivated abnormally because of 
protocol violations and physical connectivity 
problems.) 

Hhen the LU operator ·at either end of a ses­
sion determines that a session is to be deac­
tivated, the control-operator transaction 
program issues a control-operator verb. The 
control operator can cause sessions to end in 
two ways. 

The operator can issue a RESET_SESSION_LIMIT 
verb to reset the session limits to 0 for 
specified partner LUs and mode names. The LU 
proceeds with subsequent phases until there 
are no active sessions for the specified 
( LU,mode) pairs. 

FUNCTIONAL SUMMARY BY COMPONENT 

2-34 

This sect ion is organized by component; it 
reviews the specific functions of each prin­
cipal component, and describes functions per­
formed primarily in one component. 

Presentation Services 

PS manages transaction programs and controls 
conversation-level communication between TPs: 

SNA LU 6.2 Reference: Peer Protocols 

The operator can also issue a DEACTI-
VATE SESSION verb to deactivate a speci fie c·.·. 
session Cthis might be done, for example, to 
recover from certain error situations). This 
does not change the session limits, however, 
so the LU might activate another ses.sion to 
replace it. 

Hhen PS.COPR receives the verb, it 
session-limit-change notification 
session-deactivation request to RM. 

issues a 
or a 

Session Shutdown: Hhen RM receives a 
session-limi {-change notification, RM first 
performs drain processing. If the operator 
has requested RESET_SESSION_LIMIT with drain 
indicated, then RM performs no deactivations 
until all requests for allocation of sessions 
with the specified mode name have been satis­
fied. 

Hhen drain is complete, or when RM receives a /~ 
session-deactivation request, and an affected ( 
session next enters between-brackets state, \..._/ 
RM initiates a bracket-termination protocol. 
This consists of an exchange of 
bracket-initiation-stopped CBISJ RUs assuring 
that all brackets have completed at both ends 
of the session, i.e., that no other BIUs are 
in transit between the LUs. 

After receiving BIS, the partner LU drains 
its allocation requests and sends BIS in 
return. 

Hhen the BIS protocol is complete, the RMC. 
that initiated the BIS protocol instructs its 
SM to deactivate the session. / 

Session Deactivation: Hhen SM receives a 
session-deactivation request from RM, it 
sends UNBIND, via the local CP, and awaits a 
response. Hhen the partner SM receives an 
UNBIND, it unconditionally sends a positive 
response. Hhen the response to UNBIND is 
sent or received, the corresponding SM dis­
connects the half-session process from the 
path control network, notifies the CP that(-°". 
the session is ended, and destroys the 
half-session process. _./ 

• 
• 

Loads and calls the transaction program 
Maintains the conversation protocol 
state, e.g., send/receive state of the TP 

• Enforces correct verb parameter usage and 
sequencing constraints 

• 

• 

Coordinates specific processing for each 

verb c 
Performs mapping of transaction program 
data into mapped-conversation records 



c~ 

0 

• 

• 

• 

• 

• 

• 

Converts mapped-conversation records to 
GDS variables, and the reverse: it par­
titions the data into logical records and 
generates LLID prefixes 

Blocks data into RU-sized message uni ts 
CMUs l 

Reblocks MU data from HS into logical 
records or buffer records as required by 
the TP 

Verifies logical-record length and bound­
aries 

Truncates or purges data when errors are 
reported or detected by the TP 

Generates and issues FM headers for 
Attaches and Error-descriptions 

Half-Session 

HS controls 
between LUs: 

session-level communication 

• 

• 

• 

• 

• 

• 

• 

• 

Builds RHs and enforces correct RH param­
eter settings 

Creates chains and enforces chaining as 
the unit of LU-to-LU error recovery 

Correlates responses with the correct 
bracket 

Enforces bracket protocol and purges 
rejected brackets 

Enforces protocols for the relevant FM 
and TS profiles for the session (FM pro­
file 19 and TS profile 7) 

Generates and enforces sequence numbering 
to detect lost or duplicate BIUs 

Provides session-level pacing (none, 
fixed, or adaptive! 

Exchanges cryptography-verification RUs 
when session cryptography is being used 

• Enciphers and deciphers data when session 
cryptography is being used 

Resources Manager 

RM manages presentation services and conver­
sations 

• Creates and destroys instances of presen­
tation services 

• Creates and destroys conversation 
resources and connects them to 
half-sessions and to presentation serv­
ices 

• Finishes LU-LU verification for 
session-level security by generating and 
processing Security FM headers CFMH-12sl 

• 

• 

• 

• 

• 

Performs all conversation-level security 
checks, verifies conversation-level pass­
words, and controls access to protected 
transaction programs 

Maintains the data structures represent­
ing the dynamic relationships among con­
versation resources, half-sessions, 
transaction program instances, and trans­
action program code 

Chooses the session to be used by a con­
versation and controls contention for the 
session 

Performs drain action: allows session 
traffic to cease before requesting ses­
sion deactivation 

Requests SM to activate and deactivate 
sessions 

Session Manager 

SM manages sessions: 

• 

• 
• 

• 

• 

• 
• 

Coordinates session initiation in concert 
with the control point 

Sends and receives BIND 

Supplies and negotiates session parame­
ters during BIND exchange 

Exchanges cryptographic key and session 
seed 

Exchanges random and enciphered data and 
performs initial LU-LU verification 

Notifies RM of session outage 

Creates and destroys half-session 
instances and connects them to path con­
trol instances 

FUNCTIONS OF COMPONENTS OF THE NODE EXTERNAL 
TO THE LU 

Buffer Manager: The primary objective of the 
node buffer manager is to manage buffer 
pools. The LU uses these facilities for 
session-level pacing. The facilities pro­
vided by the node buffer manager are: 

• A mechanism to increase and decrease 
buffer resources used by a process based 
on fair sharing of limited storage 

• A mechanism that notifies buffer users 
when buffer resources are in critically 
short supply 

• A mechanism that allows processes to wait 
for buffer resources to become available 

Type 2. l Node Control Point ( T2. l CP l: The 
T2. l node control pointaiiows peer-to-peer 
connection of distributed processors by 
assisting in the activation of links and ses­
sions, e.g., it locates partner LUs, sets the 
path, assigns LFSIDs. For more information 

Chapter 2. Overview of the LU 2-35 



2-36 

on T2.l node control points refer to SNA ~ 
2.1 Node Reference. -- ---
Node ~rater Facility INOFI: NOF manages the 
activa ion and deachvahon of the LU. 

Initiator Process: An initiator process is 
any process in the LU's local system that has 
addressability to the RH component of the LU. 
The initiator process is considered privi­
leged in that it may use this addressability 
to send records to the LU that cause the LU 
to perform specific functions, e.g., to cre­
ate a transaction program that initiates a 
distributed transaction. 

FlJll:TIONS OF SERVICE TRANSACTION PROGRAMS 

Service transaction programs provide func­
hons to the end user that require communi­
cation with another LU using a special 
SHA-defined pattern of verbs. 

Service TPs form part of a distributed trans­
action similarly to other TPs. They have a 
transaction program name and are invoked by 
the Attach mechanism, and they exchange 
information with these other TPs by issuing 
transaction-program verbs. 

Service transaction programs differ from 
user-application transaction programs in that 
they are SNA-defined and are considered part 
of the LU. The names of service transaction 
programs are SNA-defined. The records that 
service TPs send and receive are SNA-defined 
GOS variables. 

Control-0perator Functions 

All LUs have an implementation- or 
installation-defined control operator trans­
action e01:9ram ICOPR TPI that represents the 
m-contro operator's interface to the LU. 
Using a program-selected means such as opera-
tor console input, this TP issues 
control-operator verbs to perform 
control-operator functions. 

Control-operator verb functions include cre­
ation and modification of the data structures 
that describe the LU and the LU-accessed net­
work resources: control points, transaction 
programs, partner LUs, and modes. Other 
control-operator verb functions limit the 
numbers and contention polarities of sessions 
with particular LUs for particular mode 
names, and also determine when sessions will 
be activated and deactivated. 

For an LU that supports parallel sessions, 
there are additional transaction services 
componeiits for the control operator. These 
LUs contain a change-number-of-sessions 
ICNOSJ service transaction program. Hhen 
processing CNOS verbs, the COPR TP at one LU 
exchanges GOS variables with the CNOS service 
TP at its partner to reach mutual agreement 
about limits on the number of parallel ses­
sions between them. 

SNA LU 6.2 Reference: Peer Protocols 

(Control-operator functions are discussed in 
further detail in "Chapter 5.4. Presentation ~' 
Services--Control-Operator Verbs" • I ('-~ . 

SHA Distribution Services 

SNA Distribution Services ISNA/DSI provides a 
set of verbs that an application TP may issue 
to request asynchronous distribution of data. 

The service is provided by a network of dis­
tribution service units IDSUsl interconnected 
by conversations and sessions. Each DSU con­
sists of PS verb handlers and a collection of 
service TPs within the LU. The service TPs 
provide data storage, routing, and distrib­
ution asynchronously with the origin or des­
tination application programs. 

SHA/DS is described in the publication SNA ~ 
Format and Protocol Reference Manual: DiS- i 
tribUtion-services. -- '"-. __ / 

Document Interchange Services 

Document Interchange Architecture IDIAI 
describes formats and protocols for synchro­
nous exchange of documents by using 
basic-conversation verbs in a prescribed way. 
Document interchange services include service 
TPs for synchronous document transfer. 

;~, 

Document interchange architecture is( 
described in the publication Document Inter-',_/ 
change Architecture--Concepts and StruclUN!S':" 

OPTIONAL FUNCTIONS 

This section describes the principal optional 
function sets. 

Happing Function 

The mapping function is an optional function 
of mapped conversations IPS.HCJ that allows a 
TP to select transformations, called maps, to 
be applied to TP data at the sending and 
receiving TP protocol boundaries. Haps are 
non-SHA-defined transformation tables---or:-pro­
cedures that can be defined by the installa­
tion at both the source and target LUs. Haps 
can specify, for example, how fields of a 
mapped-conversation record are related to the 
TP variables I data record I referred to in 
protocol-boundary verbs. 

Each LU can support multiple maps. Each map 
is identified by a map name. The maps to be 
applied are selectecT1j'y"""the transaction pro­
gram lvia verb parameters) and by other maps 
lin an implementation-defined wayJ, as shown 
in Figure 2-27 on page 2-37. c 
Three separate map-name name spaces exist , 
I terms in parentheses correspond to those in 
the figure I: 



c, 

0 

source TP sends: I 
I 

map-name-I, data-I I 

* * 
* * 
I* *I 
I ~- I Sender map lmap-I) 

* * -,-
1 
v 

transferred on conversation: 

map-name-2, data-2 

I 
I 
I 

* * 
* * 
I* *I 
I ~- I Receiver map lmap-2) 

-I­
I 
v 

target TP receives: 

map-name-3, data-3 
~~~~~~~~~>I ~~~~~~~~~~~~~~~~->! 

I 
I Send 
I Mapping 

Figure 2-27. Map Name Usage by Mapped Conversations 

I. Sender locally-known map name: This map 
name (map-name-II is known to the TPs at 
the sending LU. It identifies a map 
I map-ll at the sending LU that defines 
the transformation performed by the send­
er from the format of the sending-program 
data I data-I J to the format of the MCR 
( data-2) that is sent on the conversa­
tion. This map also defines a corre­
spondence between the sender 
locally-known map name (map-name-I J and 
the globally-known map name (map-name-2) 
described below. 

2. Globally-known map name: This map name 
(map-name-21 is known at both the sending 
and receiving LUs, and is transferred on 
the conversation between sender and 
receiver. 'It identifies a map (map-2) at 
the receiving LU. This map defines the 
transformation performed by the receiver 
from the format of the MCR received on 
the conversation I data-2 J to the format 
of the data presented to the receiving 
transaction program ( data-3 J. This map 
also defines a correspondence between the 
globally-known map name lmap-name-21 and 
the receiver locally-known map name 
lmap-name-3) described below. 

3. Receiver locally-known map name: This 
map name lmap-name-3) is""know""ii'""T"o TPs at 
the receiving LU. This identifies the 
format of the data presented to the pro­
gram ldata-3), e.g., it allows the pro­
gram to select the correct structure 
definition or format description for the 
data produced by the execution of the 
receiver map lmap-21. 

Mapping is performed by a PS.MC component 
called the mapper. 

The mapper at the sender selects the send map 
specified by the sender locally-known map 
name, which is supplied as a parameter of the 
MC_SENO_OATA verb. It performs the send map­
ping on the TP-supplied data, producing a 
mapped-conversation record. Using the sender 
map, the mapper.. also selects the 
globally-known map name. 

I 
I Receive 
I Mapping 

The LU sends the globally-known map name over 
the conversation in an SNA-defined map-name 
GOS variable (see SNA Formats), and sends the 
mapped-conversatio,,--;:.ecord in a separate GOS 
variable. 

The mapper at the receiver selects the 
receive map specified by the globally-known 
map name received. It performs the receive 
mapping on the mapped-conversation record it 
receives, resulting in data formatted for 
presentation to the TP. Using the receiver 
map, the mapper also selects the receiver 
locally-known map name. PS. MC passes the 
receiver locally-known map name and the 
reformatted data to the TP as returned param­
eter values for the next receive verb issued, 
e.g., MC_RECEIVE_ANO_HAIT. 

The receiving TP uses the receiver 
locally-known map name in a TP-determined way 
to interpret the received data. 

The TPs supply or receive a map name parame­
ter value for each send or receive verb 
issued, respectively. The LU, however, does 
not send another map-name GOS variable if the 
globally-known map name has not changed from 
that of the previous record sent. To accom­
plish this, the mapper at each LU retains the 
most recently sent and most recently received 
values of map-name-Z for the conversation 
lthe send and receive map names can be dif­
ferent ) • The retained values for each di rec­
tion persist until changed or until the end 
of the conversation, regardless of interven­
ing turnarounds. 

Sync Point Function 

The sync point function allows all TPs proc­
essing a distributed transaction to coordi­
nate error recovery and maintain consistency 
among distributed resources such as data 
bases. 

The sync 
resources. 
resources 

point functions affect protected 
These include conversation 
and implementation- or 

Chapter 2. Overview of the LU 2-37 



2-38 

installation-designated resources such as 
data bases. Any changes to a protected 
resource are logged so that they can be 
either backed c;u:f(reversed J if the trans­
action detects an error, or committed (made 
permanent) if the transaction is successful. 

The transaction programs divide the distrib­
uted transaction into discrete, synchronized 
logical uni ts of work I LUHs J, delimited by 
synchron:LZallon-points lsync points). (Cor­
responding sync poin s occur at each TP par­
ticipating in the distributed transaction. J 
LUHs are sequences of operations that are 
indivisible units for the application, i.e., 
any failure in an LUH invalidates the entire 
LUH I all LUH processing by all TPs for the 
transaction J, so the transaction is backed 
out to the previous sync point. 

The LU components for the sync point function 
are shown in Figure 2-28 on page 2-39. 

Highlights of the sync point function are 
discussed below. I See "Chapter 5. 3. Presen­
tation Services--Sync Point Services Verbs" 
for details. J 

Sync Point Control: The sync point function 
atE!ach LU is coordinated by PS.SPS. 

For each TP process participating in the dis­
tributed logical unit of work, the corre­
sponding PS.SPS tracks the state of that 
logical unit of work. To do this, PS.SPS has 
protocol boundaries with the TP and with the 
protection managers for each conversation and 
for each protected local resource allocated 
to that TP. 

Lo~ing: Hhen processing a given logical 
un1 of work, whenever a TP issues a verb 
that makes any changes to a protected 
resource, the corresponding resource pro­
tect ion manager logs the change so that, if 
necessary, the change can be backed out lat­
er. 

The log manager maintains the log entries for 
each active LUH li.e., for each active trans­
action! on non-volatile storage, using 
implementation-defined data-management func­
tions. The same log is used to record all 
log entries for all the LU resources for the 
LUH. 

Resources Manager: Hhen it creates the PS 
process, RM provides PS.SPS with access to 
the log. 

In some cases, a transaction program can ter­
minate normally before its sync point log 
entries are erased. In these cases, RM 
assumes the function of the terminated sync 
point control to complete the protocol and to 
release lforgetJ the log entries. 

Protection Managers: Each protected 
resource, e.g., a conversation or a local 
data base, has a protection manager that logs 
significant state changes dUring a logical 
unit of work, detects errors affecting the 
integrity of the changes, and commits or 

SNA LU 6.2 Reference: Peer Protocols 

backs o_ut the changes as determined by the C'. 
sync point protocol. ' 

The protection manager for a conversation is 
defined by SNA; protection managers for other 
lnon-SNAJ resources are defined by the imple­
mentation, but have a similar protocol bound-
ary to PS.SPS. The protection managers form 
a sublayer between PS verb handlers and the 
resource-control components. 

Sync Point Protocol: At the end of a logical 
uru t Ofwork, an application-designated TP 
initiates sync point. The LUs then carry out 
a protocol involving all local protected 
resources and conversations being used by the 
TP, and all partner LUs and TPs directly con­
nected by those conversations, to determine 
whether any TP or protected resource detected 
an error in the LUH, and to propagate this 
result to the other LUs and TPs. 

.~ 

Hhen a TP issues a verb that invokes the sync('---- .. · 
point function le.g., SYNCPT, BACKOUTJ its .­
PS.SPS coordinates the sync point protocol. 
PS.SPS exchanges sync point commands, in the 
form of presentation services I PS J headers 
and FM headers, over the TP's conversations 
with other TPs. Each PS.SPS component for 
the transaction performs similar exchanges, 
in turn, with its TP's conversation partners. 
The PS.SPS components also determine the sta-
tus of local non-SNA resources by exchanging 
appropriate commands across their internal 
protocol boundaries. These exchanges direct~ 
the protection managers to complete any pend~ · 
ing log entries for the LUH. 1'-.. __ j 

The sync point protocol culminates with a 
mutual decision among all TPs processing the 
LUH either to commit or to back out the LUH. 

Commitment and Back-Out: Hhen the sync point 
protocol is complete at a particular TP, the 
resource control components use the LUH log 
entries to supply the information needed 
(e.g., data base change records) to perform 
the required commitment or back out. They(-' 
then notify PS.SPS to erase the log entries\ 
for that LUH. ''-/ 

Resynchronization: An LU failure might occur 
during the sync point protocol, so that some 
LU never receives an expected LUH status 
report. To recover from this case, the other 
LUs can wait until the failing LU is reini­
tialized, and then the LUs perform a resyn­
chronization I resync J protocol to complete 
the sync point processing at each LU. Resync 
uses service transaction programs to exchange 
sync point status among the LUs. 

Hhen the failing LU is reactivated, the LU 
completes the resync transaction before run­
ning any other transaction programs that 
require sync point. The resync service TP is 
initiated by RM at some LU, typically at the 
sync point initiator; this TP attaches the 
resync ~P at its partners, which continue,----... 
propagating the resync TP throughout the LUs ' 
that had been processing the distributed~ 
transaction. 



( ) 
/ 

log 
manager 

~~~~ ~...,,.,, 
I 
v 

session 
manager 

NOTES: 

< 
< 
< 

application RESYNC 
transaction service 

program transaction 
~--A~--~ program 

I i 
.---------V'~------------------~V'~----------. 

r----- -, INote 1) 

v·----., 
• • • 

PS PS PS (Note 2) 
sync point local function-

[

!unction-- PS.CONY 

> 

L 

---

services resource 

IPS.SPSl lnon-SNA) 
A 

A 

shipping 
resource 

lnon-SNAl 
A 

shipping 
resource 
control 
lnon-SNAl 
A---~ A~-A-A 

AAAA I ~ 

~ I ==!1 I I; ;~1~v'' 
v---v v---v v---v v v 

protection protection 
manager manager 

local 
resource 
control 

lnon-SNAl 
A---A 

---

for 
function-­
shipping 
resource 
lnon-SNAl 

l __ J 

protection 
manager 

conversa­
tion 

resource 

'------A 

protection 
manager 

conversa­
tion 

resource 

~----A 

• 

PS 

< 
< ---

I -i~] 
~ 

r-V---

loca LU-LU 
re sou half-
con tr session 

'---A A 

v~l LU-LU 

.::::r;;., 
I I I 

v v v v 
log file local resource path control 

1. Function-shipping resource control recursively calls PS to communicate with the partner. 
The conversation used for communication with the partner has its own protection manager. 

2. PS components not relevant to sync point have been omitted from this figure. 

3. A distinct protection manager exists for each conversation resource created by PS. 

4. The non-SNA components are undefined protocol machines IUPMs). 

~j __ F_i_gu_r_e_2_-_2_a_. __ R_e_l_a_t_i_on_sh_ip_o_f_L_u_c_om_ponen ___ t_s_f_o_r_s_y_nc __ P_o_i_n_t_F_unc __ t_i_on_s _________________ _ 

Chapter 2. Overview of the LU 2-39 



The fir-st step of the r-esync transaction is 
to validate the. integr-ity of the LU logs, 
i.e., to deter-mine that all LUs' logs contain 
consistent entr-ies for- the same LUH. To do 
this, the r-esync ser-vice TPs exchange 
Exchange Log Name GDS var-iables on the con­
ver-sation. Next, the ser-vice TPs exchange 

DATA STRUCTURES 

The LU maintains data structur-es r-epr-esenting 
the state and configuration of its r-esour-ces. 

Some system-definition data str-uctur-e ele­
ments r-epr-esent the LU-accessed networ-k 
r-esour-ces. These structur-es descr-ibe the 
character-istics of the LU itself, the tr-ans­
action pr-ogr-ams that the LU can r-un, the 
par-tner- LUs with which the LU can communi­
cate, and the modes char-acter-izing possible 
sessions with par-ticular- par-tner- LUs. 

Other- data str-ucture elements represent the 
dynamic envir-onment cr-eated by the LU. The 
pr-incipal components of this enVironment are 
the tr-ansaction program instances in exe­
cution lr-epresented by tr-ansaction-program 
pr-ocessesJ the active sessions with other- LUs 
(r-epr-esented by half-session processes), and 
the active conversations lr-epresented by con­
ver-sation resour-ces). This environment also 
includes the r-elationships of the dyna.mic 
components to the LU-accessed network 
r-esources and to each other-. 

LU-ACCESSED NETHORK RESOURCES 

Figur-e 2-29 on page 2-41 illustrates the data 
str-uctur-es that repr-esent the LU-accessed 
network r-esources. 

The LUCB str-uctur-e land some associated lists 
not shown) describe the local LU. This 
infor-mation includes the LU's fully qualified 
name and the set of optional functions (e.g., 
parallel sessions and mapping) that the LU 
suppor-ts. The LUCB is also the anchor for­
lists of data str-uctur-es describing the other­
LU r-esour-ces • 

A TRANSACTION PROGRAM str-uctur-e land associ­
ated lists ;;,t shown J describe the tr-ans­
action pr-ograms at the local LU. This 
information includes the tr-ansaction pr-ogr-am 
name, its current availability status, and 
the set of optional functions (e.g., sync 
point, mapping, and access contr-ol) that it 
supports. 

A PARTNER_LU str-uctur-e descr-ibes a r-emote LU 
(potential par-tner- LU J. This infonnation 
includes the remote LU• s names: local LU 
name, fully-qualified LU name, and uninter-­
preted LU name. It also includes the set of 
the LU' s optional capabilities, such as par-­
allel sessions and secur-ity. The PARTNER_LU 
str-uctur-e also contains a list of mode 
descr-iptions. 

2-40 SNA LU 6.2 Refer-enca: Peer- Pr-otocols 

Compar-e States GDS var-iables to deter-mine the r, 
status of the sync point pr-otocol at the time 
of failur-e. PS.SPS then uses this infor-ma- .._/ 
tion to complete the sync point pr-otocol. 
(See SNA Forinats for- the SNA-defined for-mat 
of the-ExChange Log Name and Compar-e States 
GDS var-iables. ) 

A HODE str-ucture descr-ibes a set of session 
characteristics that a gr-oup of sessions 
shar-e. These character-istics include the 
name of the mode and the set of optional 
functions that are suppor-ted by the r-emote LU 
on a mode basis, e.g., sync point. It also 
includes the session parameter-s that charac- (°"' 
ter-ize this mode, such as maximum allowed RU 
size, session-pacing window size, and session ... / 
cr-yptography parameters. The HODE str-uctur-e 
also indirectly descr-ibes link character-­
istics: the mode name is used by the contr-ol 
point as the key to tables identifying the 
links and r-outes to be used for sessions for-
that mode. Dis.tinct partner LUs have dis-
tinct modes. The character-istics for- ses-
sions to di ffer-ent partner- LUs may be 
differ-ent even if the sessions have the same 
mode name. 

PROCESSES AND DYNAMIC RESOURCES 

Figur-e 2-30 on page 2-42 illustr-ates the 
principal data structures and pr-ocesses, and 
their- relationships, that repr-esent the 
dynamic environment. The formal description 
r-epresents these r-elationships in various 
ways such as pointers between contr-ol blocks, 
keys of elements in lists, and inter-mediate 
dynamic control blocks. 

The processes also contain state information c· 
used by LU functional componentsJ this is 
described in more detail in chapter-s con- _,. 
cer-ned with the r-elevant functional compo­
nents. 

The TP pr-ocess r-epr-esents a transaction pr-o­
gr-am instance. It identifies the transaction 
pr-ogram code that it is using. Ther-e may be 
multiple transaction pr-ogr-am pr-ocesses exe­
cuting the same tr-ansaction program code. 

The HS pr-ocess r-epr-esents a half-session. It 
identifies the remote LU and mode with which 
it is associated. A mode may be associated 
with many half-session pr-ocesses, but each HS 
process is associated with only one mode. 

The RCB structur-e r-epr-esents a conver-sation 
r-esour-ce. The RCBs are the central elements 
in the dyna!llic configuration of the LU: they 
r-epr-esent the connection of a transaction C' 
pr-ogr-am to a hal f-sessionJ this connection is ·. 
dynamically cr-eated and destr-oyed, and allows · 
an asynchronous (Send/Receive J r-elationship 
between TP and HS. The RCB identifies the 
local TP using the conver-sation and the 



0 

1--

........., 

t--

• 
• 
• 

LEGEND: 

Local LU information ( LUCB I 

Transaction 
Pr-ogram 

Code lTPGt1) 

Transaction 
Program 

Code ITPGt1J 

Transaction 
Program 

Code ITPGt11 

Vertical lines represent lists of sl.bordinate resources 

Associated Data Structure Name 
LUCB: LUCB-- PTNR--:-PARTNER_LU 
MODE: MODE TPGH: TRANSACTION_PROGRAH 

l MODE Info 

l MODE Info 

[ MODE 
Info 

r MODE Info 

l MODE Info 

l MODE Info 

[MODE 
Info 

Partner LU 
Information 

IPTNR) 

L 

J 
L 

J 

J 
Partner LU 

Information 
IPTNRJ 

L 

J 
L 

J 

Partner LU 
Information 

IPTNRI 

L 

J 
l 

J 
• 
• 
• 

t-

H 

t-

• 
• 
• 

O--F_1_·gu __ r_e __ 2_-_2_9_. __ L_u __ s_t_a_t_ic __ D_a_t_a __ s_truc ___ t_u_res ____ 1E_x_a_..., __ 1_e_> ________________________________________________ _ 

Chapter 2. Overview of the LU 2-41 



LUCB 

TPGM l ...... 1 ...... TP A 

:11##11 RCB E !***************************************: 

!"""""I 
HS K j::::: :: :: : : 

.... ··I I 
TPGM Z TP B I ...... 

I 
I 
~ .. I 111111: 1 ........... I RCB F HS M 

I 
........... 

!1111111 RCB G 111111: HS N I··· .... :: ····· .... 
I 

TPGM 3 I 
I 
I 
I 
I 

.... I .... TP C :######1#111 HS P I=========== 
I 

!n1j l1111111111111s.1j I=========== 
.. .. I RCB H HS Q .. I 
.. 

:111n1I !11111: TPGM 4 .... RCB I .. 
• :: .. 1 TP D ~11m1nf HS R 1 ........... 
• 

.. .. . .......... 
• 

!.11111 l111111m111n11 S::::::: • RCB J 
• 
• • 

• 
• 

LEGEND: 
Vertical lines represent lists of subordinate resources 
•.•• association of process to static data elements 
1111 association of processes via RCB dynamic data element 
**** association of RCB with MODE in lieu of unavailable HS 

Abbr. 
LUCB: 
TPGH: 
PTNR: 
MODE: 
TP: 
RCB: 
HS: 

Local LU information 
Transaction Program Code information 
Partner LU information 
Mode information 
Transaction program process 
Conversation resource information 
Half-session process 

Data Structure Name 
LUCB 
TRANSACTION_ PROGRAM 
PARTNER_ LU 
MODE 

RCB 

Figure Z-30. LU Dynamic Data Structures and Processes (Example) 

MODE U 

MODE 

MODE L 

MODE 

MODE V 

MODE 

MODE Z 

PTNR H 

PTNR X 

PTNR Y 

PTNR 

• 
• 
• 

• 
• 
• 

c-=: 

half-session being used, if any. Because a 
session might not be immediately available 
when a TP allocates a conversation, the RCB 
also identifies the remote LU IPARTNER_LUJ 

and mode name OtoDE J for the desired session. C 
Hal'.IY conversation resources, hence RCBs, may 
be associated with the same local TP, but 
each RCB may be associat~ with only one 

Z-42 SNA LU 6.2 ·Reference: Peer Protocols 



( . 
~/ 

CJ 

local TP, one partner LU, one mode, and one 
half-session. 

Figure 2-30 on page 2-42 illustrates several 
of the possible relationships among these 
structures. In the figure: 

• Active TP B for transaction program code 
2 has two active conversations: 

• 

• 

• 

RCB F connects it to remote LU H via 
session K with mode name U. 

RCB G connects it to remote LU Y via 
session P with mode name V. 

LU H has two free sessions, M and N, each 
with mode name L. 

Remote LU X has a single mode name with 
no active sessions. 

No active TP instances exists for trans­
action program 3. 

• Two active TP instances exist for trans­
action program 4: TPs C and D. 

LU STARTUP AND SHUTDOHN 

LU startup consists of three phases: creat­
ing the LU processes, initiating the control 
operator transaction program, and setting the 
LU definition and session limits. The LU 
then initiates programs and activates ses­
sions in response to further operator, trans­
action program, or partner-LU actions. 

To shut down the LU, the steps are reversed, 
but some can be omitted. The minimum 
required to terminate communication is to 
reset the session limits. 

LU PROCESS CREATION AND TERMINATION 

Figure 2-32 on page 2-45 shows the process 
creation and termination hierarchy for the 
LU. The node operator facility INOFl creates 
the SM process. As part of SM's initial 
processing, it creates the RM process and 
then informs NOF of RM's successful creation. 
These processes continue running thereafter. 

The TP and HS processes are discussed in 
"Running State" on page 2-44. 

CONTROL-OPERATOR TRANSACTION PROGRAM INITI­
ATION 

As a result of receiving a START_TP record 
from NOF, RM creates a PS process and initi­
ates the control-operator TP. 

• 

• 

Two conversations G and H exist with 
remote LU Y, each using a different mode 
name. 

Two conversations I and J use separate 
sessions Rand T, both with mode name z. 

RESOURCE RELATIONSHIPS IN A DISTRIBUTED 
TRANSACTION 

In contrast to Figure 2-30, which illustrates 
the data structures for several transactions 
from the perspective of a single LU, Fig­
ure 2-31 on page 2-44 illustrates the 
relationships among data structures at 
several LUs from the perspective of a single 
distributed transaction. In this case, the 
paired half-sessions connect LUs, and the 
paired conversation resources, represented by 
RCBs, connect transaction program instances . 

CONTROL-OPERATOR ACTIONS 

The control operator specifies the LU defi­
nition describing the LU-accessed network 
resources: the transaction programs, partner 
LUs, and modes. IAn implementation might 
provide this function without requiring 
explicit operator interaction, e.g., the LU 
definition might be specified at 
system-definition time.) 

The operator initializes session limits with 
the partner LUs by issuing the INITIAL­
IZE_SESSION_LIMIT verb for the relevant mode 
names. For parallel-session mode names, this 
verb activates an LU-LU session using the 
SNA-defined mode name SNASVCMG Ii f not 
already active) and establishes mutually 
agreeable session limits for other mode names 
by exchanging CNOS GOS variables on that ses­
sion. This verb optionally causes activation 
of a predetermined number of sessions for the 
specified mode name. 

When sessions are to be deactivated, the con­
trol operator issues RESET_SESSION_LIMIT for 
the mode name. For a parallel-session con­
nection, this causes another CNOS GOS vari­
able exchange to elicit the partner LU' s 
cooperation in the session shutdown. In any 
case, this verb causes the LU to eventually 
cease initiating new transaction programs and 
activating new sessions ldrainl. As sessions 
become unused, RM and SM deactivate them. 

The LU initiates no further actions to shut 
down the LU. Any further actions are at the 
initiative of NOF. 

Chapter 2. Overview of the LU 2-43 



TPGH TPGH TPGH 

TP TP 

====================== ============================ 

LU B LU C 

TPGH 

========================================================== 

LU A LU D 

LEGEND: 
~~~ Association of a process with its data structures 
••••••Conversation (connection between transaction program instances [TPs]) 
====== Session (connection between LUsJ 
TPGH: Transaction program data structure I represents transaction program code) 
RCB: Resource control block I represents a conversation) 
TP: Transaction program process instance 
HS: Half-session process instance 

Figure 2-31. Data Structure Relationships among LUs for a Distributed Transaction I Example) 

RUNNING STATE 

Once the LO-LU session limits have been set, 
the LU is ready to process transactions. 

RM creates a transaction-program process when 
it receives an Attach or an initial TP invo­
cation request ISTART_TPh it destroys that 
process when PS indicates that the TP has 
completed and all its conversations have been 
deallocated. 

2-44 SNA LU 6.2 Reference: Peer Protocols 

Either RH or the partner LU can request ses-
sion activation~ in either case, SH performs 
the relevant processing. SH creates an HS 
process for an LU-LU session and connects it 
to a path control instance whenever it sends 
or receives BIND. SH destroys that process 
when it has sent or received a positive 
response to UNBIND, has disconnected the 
half-session from path control lby sending 
PC_HS_DISCDt.ffECT, RSPIUNBINDh or UNBIND to c··,· .. 
the CP h and has notified the CP that the 
session is ended lby sending SESSEND_SIGNALJ. 



(_J 

0 

Resources 
Manager 
Process 

IRM) 
A 

I 

r 
I ·------> 

l 

r • 
• 

• 
Transaction 
Program I 
Presentation 
Services 
Process I--' 

1·-i~~~~~~~~ 
NOF•----> 

LEGEND: 

Session 
Manager 
Process 

ISMJ 

• 
• 

• 

v~ 
LU-LU 

Half-Session 
Process 

•--> process creation I The arrow points from creator to created.) 
NOF: Node operator facility 

Figure 2-32. LU Process Creation and Termination Hierarchy 

EXAMPLE 

Figure 2-35 on page 2-52 and Figure 2-36 on 
page 2-53 illustrate typical interactions at 

the local and remote LUs, respectively, for 
an LU shutdown sequence. "Chapter 5.4. Pres­
entation Services--Control-Operator Verbs" 
describes LU startup .and shutdown in more 
detail. 

Chapter 2. Overview of the LU 2-45 



PROTOCOL BOUNDARY sutl1ARY 

This section lists the external message uni ts 
and internal records exchanged by LU compo­
nents. See "Appendix A. Node Data Struc­
tures" for full descriptions of these 
structures. 

TRANSACTION PROGRAM VERBS AND INTERPROCESS 
SIGNALS 

PS-TP Protocol Boundary: Transaction Program 
Verbs 

Basic-Conversation.Verbs 

ALLOCATE 
CONFIRM 
CONFIRMED 
DEALLOCATE 
FLUSH 
GET_ATTRIBUTES 
POST_ON_RECEIPT 
PREPARE_TO_RECEIVE 
RECEIVE_AND_HAIT 
RECEIVE_IMMEDIATE 
REQUEST_TO_SEND 
SEND_DATA 
SEND_ERROR 
TEST 

Mapped-Conversation Verbs 

MC_ALLOCATE 
MC_CONFIRM 
MC CONFIRMED 
MC=DEALLOCATE 
MC_FLUSH 
MC_GET_ATTRIBUTES 
MC_POST_ON_RECEIPT 
MC_PREPARE_TO_RECEIVE 
MC_RECEIVE_AND_HAIT 
MC_RECEIVE_IMMEDIATE 
MC_REQUEST_TO_SEND 
MC_SEND_DATA 
MC_SEND_ERROR 
MC_ TEST 

Type-Independent Verbs 

BACK OUT 
GET_TP_PROPERTIES 
GET_TVPE 
SYNC PT 
HAIT 

Control-Operator Verbs 

ACTIVATE_ SESSION 
CHANGE_ SESSION_ LIMIT 
DEACTIVATE_ SESSION 
INITIALIZE_ SESSION_ LIMIT 
PROCESS_SESSION_LIMIT 
RESET_SESSION_LIMIT 

INTERCOHPONENT STRUCTURES 

SH-CP Protocol Boundary 

SH to CP Interprocess Signals 

ASSIGN_LFSID 
ASSIGN_PCID 
FREE_LFSID 
INIT SIGNAL 
LFSID IN USE RSP 
MU (contains-the following RUsJ 

BIND 
UNBIND 
RSPIBINDJ 
RSPIUNBINDJ 

PC_HS_DISCONNECT 
SESSEND_SIGNAL 
SESSST_SIGNAL 

CP to SM Interprocess Signals 

ASSIGN_LFSID_RSP 
ASSIGN_PCID_RSP 
CINIT_SIGNAL 
INIT_SIGNAL_NEG_RSP 
LFSID_IN_USE 
MU (contains the following RUsJ 

BIND 
UNBIND 
RSPIBINDJ 

SESSION_ROUTE_INOP 

~ Protocol Boundary 

SM to HS Interprocess Signals 

INIT_HS 

HS to SM Interprocess Signals 

ABEND_NOTIFICATION 
ABORT_HS 
INIT_HS_RSP 

SH-NOF Protocol Boundary 

SH to NOF Interprocess Signal 

RM_ CREATED 

~ Protocol Boundary 

SM-BM Calls3 

3 Each buffer manager protocol boundary lhere and following) is a synchronous (calling) invo­
cation of the buffer manager by the components of the LU~ the names in the list refer to 
request identifiers modeled as parameters in the Call. 

2-46 SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c. 



('·, 
\_____,! 

( "'\ 
_,/ 

ADJUST POOL 
FREE_BUFFER 
GET_BUFFER 
RESERVE_BUFFER 

HS-PC Protocol Boundary 

HS to PC Interprocess Signal 

MUloutgoing data) 

PC to HS Interprocess Signal 

MUI incoming data) 

HS-BM Protocol Boundary 

HS-BM Calls 

ADJUST_POOL 
FREE_BUFFER 
GET_BUFFER 
TRANSFER_BUFFER 

PS-HS Protocol Boundary 

PS to HS Interprocess Signals 

CONFIRMED 
REQUEST_TO_SEND 
MUISEND_DATA_RECORD) 
SEND_ERROR 

HS to PS Interprocess Signals 

CONFIRMED 
MUI incoming data) 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 

PS-RM Protocol Boundary 

PS to RM Interprocess Signals 

ABEND_NOTIFICATION 
ALLOCATE RCB 
CHANGE_ SESSIONS 
DEALLOCATE_RCB 
GET_SESSION 
RM_ACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 
TERMINATE_PS 
UNBIND_PROTOCOL_ERROR 

RM to PS Interprocess Signals 

MUIFMH-5) 
CONVERSATION_FAILURE 
RCB_ALLOCATED 
RCB DEALLOCATED 
RM_SESSION_ACTIVATED 
SESSION_ALLOCATED 
START_TP 

PS-BM Protocol Boundary 

PS-BM Calls 

FREE_BUFFER 
GET BUFFER 

RM-HS Protocol Boundary 

RM to HS Interprocess Signals 

BID_RSP 
BID_HITHOUT_ATTACH 
BIS_REPLY 
BIS_RQ 
BRACKET FREED 
ENCIPHERED_RD2 
HS_PS_CONNECTED 
RM_HS_CONNECTED 
RTR_RQ 
RTR_RSP 
YIELD_SESSION 

HS to RM Interprocess Signals 

BID 
BID RSP 
BIS:::RQ 
BIS_REPLY 
FREE_ SESSION 
MUlFMH-5 or FMH-12) 
RTR_RQ 
RTR_RSP 

RM-SM Protocol Boundary 

RM to SM Interprocess Signals 

ABEND_NOTIFICATION 
ACTIVATE_SESSION 
DEACTIVATE_ SESSION 

SM to RM Interprocess Signals 

ACTIVATE_SESSION_RSP 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 

RM-Initiator Process Protocol Boundary 

RM to Initiator Process Interprocess Signal 

START_TP_REPLY 

Initiator Process to RM Interprocess 
Signals 

SEND_RTR 
START_TP 

RM-BM Protocol Boundary 

RM-BM Calls 

FREE_BUFFER 

Chapter 2. Overview of the LU 2-47 



COMPONENT INTERACTIONS AND SEQUENCE ~ 

2-48 

The following figures illustrate both the 
internal protocol-boundary sequence flows 
among LU components and the external flows 
between two LUs that result from 
basic-conversation verb issuances. 

Each flow is illustrated by a pair of figures 
on facing pages. Each separate figure 
represents the complete flow as seen by a 
single LU. The figure labeled local LU 
represents the LU that initiates the"""SeCjUenee 
being illustrated; the figure labeled remote 
LU represents the partner LU. For"""'C'aSeS 
illustrating a race between two LUs, the LUs 
are distinguished as first speaker (FSPJ and 
bidder. The flows through the path control 
network are shown in the column nearest the 
center margin, and are replicated in each 
figure; numerals in parentheses in the mar­
gins between facing parts of the same flow 
correlate corresponding steps in the facing 
figures. Hhen flows cross in the 
path-control network, the crossing is illus­
trated on the sending side of the delayed 
flow. 

NOTATION 

For the interpretation of labels 
arrows, see the following !which, 
cases have been abbreviated): 

on the 
in some 

• For verb and verb-parameter names 
(TP-PSJ, SNA Transaction Programmer's 
Reference Manual for LU Type ~ 

• For protocol-boundary records and message 
units CTP-PS, PS-RM, RM-SMJ, "Protocol 
Boundary Summary" on page 2-46 

• For RU names CSM-SM, HS-HSJ, SNA Formats 

• For RH indicators ISM-SM, HS-HSJ, SNA 
Formats 

The following abbreviations for chaining 
indicators are also used: 

FIC (first in chainl = !BC,~ECJ 

SNA LU 6.2 Reference: Peer Protocols 

MIC (middle in chain! = 1 ~Bc,~Ec J 

LIC (last in chain! = c ~Bc, EC J 

OIC (only in chain l = !BC, EC J 

• For data elements of RUs ISM-SM, HS-HSJ, 
SNA Formats 

In cases where a component returns parameters 
in a verb, the parameters (e.g., RCJ, but not 
the verb, are named on the flow arrow. 

The following conventions and abbreviations 
apply to all sequence flows in the book. 

n---->o 

o---o--->o 

o- - - ->o 

{ } 

.•. or 

ASH 
BM 
CP 
HS 
IP 
LU 
NOF 
PC 
RM 
SM 
SS 

asynchronous (send/receive logic) 
intercomponent flow 
asynchronous !send/receive logic) 
intercomponent flow with 
intermediate-component processing 
creation or destruction of a 
process (action shown in 
parenthesis) or synchronous 
(call) invocation of another 
component (e.g., the buffer 
manager) 
Braces surrounding alternatives 
indicate inclusion required. 
Brackets surrounding alternatives 
indicate inclusion optional. 
Ellipses indicate possible 
repetitions or unshown 
continuations. 
CP address space manager 
buffer manager 
control point 
half session 
initiator process 
logical unit 
node.operator facility 
path control 
LU resources manager 
LU session manager 
CP session services 

Numbers to the left of the flows correspond 
to enumerated annotations in the text outside 
(usually following l the figures. Footnotes 
appear in some figures to relate minor points 
such as signal omissions or simplification. 

c 

~-_,, 

c 



0 This page intentionally left blank 

0 

Chapter 2. Overview of the LU 2-49 



TP PS RM SH HSI FSP) ( to partner LU) 
ALLOCATEIHHEN_ 

SESSION_ALLOCATEDl. ALLOCATE_RCB 
o- - - - - - - - -> >o 

.RCB~ALLOCATEDIOKJ I 
o<----------'-
1 GET _SESSION >. ACTIVATE_SESSION ><>1 _____ s_I_N_o_2 _________ > (a) 

l +RSPIBINDl2 

o<.----------------- lb J 
1 INIT _HS • 
----->o 

ACTIVATE_ 
SESSION_ 

SESSION_ALLOCATEDIOKJ RSP(+) 

INIT_ I CRV3 
HS_ ---------------> lcl 

RC=OK RSPl+J +RSPICRVJ3 
I dJ 

RH_HS_CONNECTED 

ENCIPHERED_RD24 BC,-EC,RQEl,-BB,FHH-124 
t--------------> > ( e J 

HS_PS_CONNECTED 

SEND_DATA MUIFMH-5,data,NOT_END_OF_DATAJ. -BC,RQEl,FMH-5,data 
- - - - - - - ->0---------------------->·o-------------> Ill 

~<~c:o~ _____ _J 

SEND_DATA MUldata,NOT_END OF DATAJ RQEl,data 
- - - - - - - ->0---------------------->o-------------> 12) 

~<- ~c:o~ ____ _J 

L~~~~~~>~: ____ M_u_1_d_a_t_a_,_P_R_E_N_R_E ___ T_o ___ R_c_v ___ F_L_u_s_H_i ____ >~---E_c_,_R_Q_E_1_._c_o_._~_ta ___ > 131 

.RC=OK, 

.HHAT_RECEIVED= 
DATA_ COMPLETE MUI data ;oEALLOCATE_FLUSH) BC,EC,RQEl,CEB,data 

o<- - - - - - - - -o<---------------------·o<------------
~E = E :v:-~N~-~A= T ->~ o<-· __ F_R_E_E ___ s_e_s_s_I_o_N ____ __.I 
.RC=DEALLOCATE NORMAL 
o<- - - - - - : - _J 

~E~L:O=A~E~L~C~L2>· DEALLOCATE_RCB 
>o 

o<- ~c:o~ ____ -~<-R_c_s __ DE_A_L_L_o_c_A_T_E_o_~l ____ s_R_A_c_K_E_T ___ F_R_E_E_o ___ >o 

Notes: 
--r-siission-activation flows to CP and path control have been omitted; 

see "Chapter 4. LU Session Manager" for details. Buffer manager calls have been omitted. 
2 BIND/RSPIBINDJ flows through the CP (not shown). 
3 CRV/RSPICRVJ flows only when session-level cryptography is being used. 
4 Flows only when LU-LU verification is being used. 

Figure 2-33. Complete Conversation Example--Local LU 

2-50 SNA LU 6.2 Reference: Peer Protocols 

14) 

c 



(') 
/ 

0 

0 

la) 

lb) 

le) 

Id) 

le) 

11) 

121 

I 3 l 

I to partner LU) IBidder)HS SH RH PS TP 

BIND2 l 

>o 
+RSPIBINDJ2 I < 

.INIT_HS I o< 
CRV3 

>o 
+RSPICRVJ3 I INIT_ 

< H~ . • I RSPI+) .SESSION_ACTIVATED • 
> >o 

RM_HS_CONNECTED I o< 
BC,~EC,RQEl,~BB,FMH-124 MUIFMH-12>4 

> >o 

~BC,RQEl,FMH-5,data BID 
----------------------~•>n---------------------~>o 

RQEl,data 

BID_RSPI +) I 
o<:----------------------~ 

~l ___ M_u_1_FM_H-__ s_> _____________ ~"""""---M-u_1_FM_H_-_s_> ____ >o- _1~n~t~a~e2 _ ->o 

o<--H_s ___ P_s ___ c_oNN __ E_c_T_E_D ________ ~ ~<~E=E=V=-~~-~A=T_J 

MUldata,NOT_END_OF_DATA) 
RC=OK,HHAT_RECEIVED= 

DATA_INCOMPLETE 
----------------------~>n---------------------------------------->o- - - - - - - - ->o 

EC,RQEl,CD,data MUldata,PREPARE_TO_RCV_FLUSHl 

~<~E=E=V=-~N~-~A=T_J 
RC=OK,HHAT_RECEIVED= 

DATA_COMPLETE. 
----------------------~>0---------------------------------------->o- - - - - - - - ->o 

~<~E=E=V=-~~-~=T_J 
l~C=OK, • 
~H~T:R:c:I~E~=~E~~~ 

o<-------M_u_1d_a_t_a_,_N_o_T ___ EN_D ___ o_F ___ D_A_TA __ > ____________ -o·<-s:N~-~A~A- - - _J 

L RC=OK . • 
- - - - - - - ->o 

14) <:--Bc __ ,E_c_._R_Q_E_1_.c_E_B_,_d_a_t_a ______ -o<-------MU--I d_a_t_a_._D_E_A_L_Loc __ A_T_E ___ F_L_us_H __ l -----------o· ~=A=L~~T=I ~L~S~) _J 

Notes: 

I 
. DEALLOCATE_RCB I 
o< 
I RCB_DEALLOCATED >o- ~c=~ ____ ->o 

FREE_ SESSION 
~---------------------->o 

BRACKET_FREED I 
o<----------------------~-

---r-s8ssion-activation flows to CP and path control have been omitted. 
2 BIND/RSP I BIND ) flows through the CP I not shown ) • 
3 CRV/RSPICRVJ flows only when session-level cryptography is being used. 
4 Flows only when LU-LU verification is being used. 

Figure 2-34. Coq>lete Conversation Example--Remote L.U 

Chapter 2. Overview of the LU 2-51 



Uo partner LU J . . 
RESET_SESSION_LIHITl 
0- - - - - - - - ->o 

(if parallel session, CNOS exchange occurs hara) 
o<:-----------------------------------------------------------------> l•J 

CHANGE_SESSIONSZ • 
a--------------->o 

(drain action J3 

BIS_RQ 

-··- I 0-----------------------·>a...---------------------~> (1) 

each session < BIS_REPLV BIS,RQ,BC,EC,RQE3,~BB,~CEB 

for the l o<------------------------0< (2) 
specified 
mode name. IDEACTIVATE_SESSION° 4 uNBINDS 

~----------------~2'--------------------------------> (a) 
+RSPIUNBINDJ5 

4 o<------------------------------~ lb) 

Notes: 

l For specific-session deactivation, sl.bstitute DEACTIVATE_SESSION and eliminate the CNOS exchange. 
2 For specific-session deactivation, sl.bstitute RH_DEACTIVATE_SESSION and eliminate the drain action 
3 Drain action: wait until no allocation requests, allowed by drain state, are pending, 

then wait until session is in between-brackets state, i.e., +RSPICEBJ is sent or received. 
4 Session-deactivation flows to CP have been omitted. 
5 UNBIND/RSPIUNBINDJ flows through the CP lnot shown) 

Figura 2-35. Session Deactivation--Local LU 

2-52 SNA LU 6.2 Reference: Paar Protocols 

~. 

( . 

'-----'' 

c 



c 

c:) 

l) 

() 

Ito partner LU) IBidderlHS SH RH PS 

lif parallel session, CNOS exchange occurs here) 

BIS,RQ,BC,EC,RQEl,~BB,~CEB. BIS_RQ 
(1) ~~~~~~~~~~~~~•>n-~~~~~~~~~~~~>o 

I drain action >3 

BIS,RQ,BC,EC,RQE3,~BB,~CEB. BIS_REPLY 
(2) < < 

UNBIND5 .SESSION_DEACTIVATED 
la) ~~~~~~~~~~~~~~~~~.>o-~~~~~~~>o 

+RSPIUNBINDl 5 
(b) < :~~~~~~~~~~~~--! 4 

Notes: 

3 Drain action: wait until no allocation requests allowed by drain state are pending, 
then wait until session is in between-brackets state, i.e., +RSPICEBl is sent or received. 

4 Session-activation flows to PU and CP have been omitted. 
5 UNBIND/RSPIUNBINDl flows through the CP lnot shown). 

Figure 2-36. Session Deactivation--Remote LU 

CNOS TP 

Chapter 2. Overview of the LU 2-53 



TP PS RM HSIFSPJ I to partner LU J 

ALLOCATE ALLOCATE_RCB 
~-------- >o 

.RCB_ALLOCATEDIOKJ I 
o<---------------'· 
I GET_SESSION HS_PS_CONNECTED >o 

~<~c=o~ - - - - _s~ION_ALLOCATEDIDKJI 

L_s:N~-~A~A- __ ->~ 
~<~c:o~ _____ J 
L_c~N~I~M- - - - - MUIAttach,data,CONFIRMJ .orc,BB,RQD2l3,FHH-5,data 

>0------------------------> (1) 

c 

RC=OK CONFIRMED +RSP 
o<- - - - - - - - -o<--------------------------------n<----------------------~ ( 2) 

Figure 2-37. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATEDJ, CONFIRM lby First Speaker)--Local LU 

c 

2-54 SNA LU 6.2 Reference: Peer Protocols 



(_) Ito partner LUJ HSIBidderJ RH PS TP 

OIC,BB,RQD2l3,FMH-5 1 ,data BID 
Ill ----------------------~>·n-------------->o 

BID_RSPI+) I 
o<--------------~ 

0 
I MUIAttachl,data~0._MU __ 1_A_t_t_a_c_h_,d_a_t_a_J_>o- _ ~i~i~i~t~J- ->o 
~< Hs_Ps_cONNECTED I ~<~e:e:v:-~N~-~A:T J 

I RC=OK,HHAT_RECEIVED= 
MUCdata,CONFIRHJ DATA_*COMPLETE 

.._------------------------------>o- - - - - - - - ->o 
~<~E=E=V=-~~-~A:TJ 
RC=OK,HHAT_RECEIVED= 

L - - - - _c~~I~~o 
( 2) 

<-------------+_R_s_P ________ ·o<-----------c_o_N_F_I_R_M_E_o ____________ ,~<- _c~~I~M:o_ - J 

L RC=OK . 
- - - - - - - ->o 

Note: 

l The FMH-5 contains the Attach 

Figure 2-38. ALLOCATECRETURN_CONTROL=HHEN_SESSION_ALLOCATEDJ, CONFIRM lby First SpeakerJ--Remote LU 

0 

Chapter 2. Overview of the LU 2-55 



TP PS RH HSIBiddarJ l to partner LU J 

ALLOCATE ALLOCATE_RCB 
0- - - - - - - - -> >o 

RCB_ALLOCATEDIOK) I 
o<~~~~~~~--

1 GET_SESSION BID_HITHOUT_ATTACH. 
~-~~~~~~~->o~~~~~~~:>o-~~~~~~~~~~~> (1) 

LUSTAT,BB,RQDl 

RC=OK SESSION_ALLOCATEDI OK J BID_RSPI + J +RSP 

Figure 2-39. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATEDJ, RECEIVE_AND_HAIT lby BiclderJ--Local LU 

(~ 

\ . · .. ./ 

2-56 SNA LU 6.2 Reference: Peer Protocols 



C' 
) 

I to partner LU) HSIFSP) RH PS TP 

LUSTAT,88,RQDl BID 
(1) ----------------------->n-------------->o 

+RSP BID_RSPI +) I 
(2) <-------------------------0<:---------------' 

OIC,RQEl,CD,FHH-5,data HUIAttach,data) MUIAttach,data) !initiate) 
( 3) -----------------------> >o-------------->o- - - - - - - - ->o 

~<Hs_Ps_cONNecreo I ~<~E~e:v:-~N~-~A:r J 

I RC=OK,HHAT_RECEIVED= 
~ldata,PREPARE_TO_RCV_FLUSH) >o- __ o~T~-~O~P:E~~o 

~<~E~E:v:-~N~-~A:rJ 
l__RC=OK, 
~H~T:R:c:I~E~=~E~~o 

Figure 2-40. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATED), RECEIVE_AND_HAIT lby Bidder)--Remote 
LU 

Chapter 2. Overview of the LU 2-57 



TP PS RH HSIBidderJ I to partner LU J 

ALLOCATE ALLOCATE_RCB 
o- - - - - - - - ->·o-------->o 

RCB_ALLOCATEDIOKJ I 
o<-------~-

BID_HITHOUT_ATTACH. LUSTAT,88,RQDl 1 GET_SESSION 
~---------~n-------->·a-------------> llJ 

RC=OK SESSION_ALLOCATED(OKJ BID_RSPl+J +RSP 
o<- - - - - - - - -o<--------<>< < I 2 J 
L ~E~D=D~T~ - - ->~ I HS_PS_CONNECTED ~ 

~<-R==~- - - - - _J 
L :o~F=R~ ___ ->n· ____ MU_I A_t_t_a_c_h_,_d_a_t_a_,c_ON_F_I_RH_J __ ·><i..--0_1_c_,_R_Q_o_2_1_3_,F_H_H_-_s_,_da_ta __ > 13 J 

RECEIVED_ERROR -RSPI0846J 
o<----------------0<:~------------ (4) 

RC=ALLOCATION_ERROR. HUIFMH-7,data 1 ,DEALLOCATE_FLUSHJ OIC,CE8,RQE1,FMH-7,data 1 
o<- - - - - - - - -o<----------------o<:~------------ 15) 

~E~L~O=A ~E~L~C~L2> DEALLOCATE_RCB >o<-F-RE_E ___ s_e_ss_ION __ ~I 

o<-R==~K- ____ -~<-RC_B ___ D_E_A_L_L_o_cA_T_E_D_~'-8-RA_C_K_E_T ___ F_R_E_ED __ 0 

Note: 
--.--Optional log data 

Figure 2-41. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATEDJ, CONFIRM lby Bidder), Attach Error 
--Local LU 

2-58 SNA LU 6.2 Reference: Peer Protocols 

c 



(") 
\_____/ 

0 

I to partner LU) HSIFSP) RH PS 

LUSTAT,BB,RQDl BID 
I 1) >o 

+RSP BID_RSPI+) I I 2 l < < 

HUIAttach,data, 
OIC,RQD2l3,FHH-5,data HUI Attach,data) error sense code). 

13) > > >o 
• HS_PS_CONNECTED I _J o< 

HUldata,CONFIRH). 

-RSPI0846l SEND_ERROR 
I 4 l < o< 

>o 

OIC,CEB,RQE1,FHH-7,data 1 • HUIFHH-7,data 1 ,DEALLOCATE_FLUSH) 
(5) <•~~~~~~~~~~~~~,o<~~~~~~~~~~~~~~~~-' 

I FREE_SESSION . DEALLOCATE_RCB 
>o<.~~~~~~~---

BRACKET_FREED 1 RCB_DEALLOCATED 
o<~~~~~~~~-~~~~~~~~>o 

Note: 
~ptional log data 

Figure 2-42. ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATEDJ, 
Error--Remote LU 

CONFIRM 

TP 

(by Bidder), Attach 

Chapter 2. Overview of the LU 2-59 



TP PS RH HSI FSP) 

. ALLOCATE ALLOCATE_RCBlimmediate> 
o- - - - - - - - -> >o 

FSP session available 
~<~c:~ _____ -C:,~cB_ALLOCATEDIOK> I 

I HS_PS_CONNECTED >o 

• 
• 
• 

I to partner LU) 

[The flow continues as in the ALLOCATEIRETURN_CONTROL=HHEN_SESSION_~LLOCATED> case.) 

Figure 2-43. ALLOCATEIRETURN_CONTROL=IMMEDIATE>, Successful--Local LU 

2-60 SNA LU 6.2 Reference: Peer Protocols 

(' 
\ . 
"-·· 

c 



c) 

c) 

C., 
I 

/ 

0 

I to partner LU J HS RH PS TP 

lno activity at remote LUJ 

from here on just like ALLOCATEIRETURN_CONTROL=HHEN_SESSION_ALLOCATEDJ 

Figure 2-44. ALLOCATEIRETURN_CONTROL=IHHEDIATEJ, Successful--Remote LU 

Chapter 2. Overview of the LU 2-61 



TP PS RH 

ALLOCATE ALLOCATE_RCBlimmediatel 
o- - - - - - - - -> >o 

(no first-speaker 
session available) 

.RCB_ALLOCATED 
RC=UNSUCCESSFUL lt..r1successfull 

o<- - - - - - - - -o<~~~~~~~~ 

HS 

Figure 2-45. ALLOCATEIRETURN_CONTROL=IHHEDIATEJ, Unsuccessful--Local LU 

2-62 SNA LU 6.2 Reference: Peer Protocols 

I to partner LU l 

c 

c 



C.) 
-- (to partner LU) HS RH PS TP 

lno activity at remote LU) 

Figure 2-46. ALLOCATEIRETURN_CONTROL=IHMEDIATE), Unsuccessful--Remote LU 

c) 

0 

Chapter 2. Overview of the LU 2-63 



TP PS RH HS I to partner LU) 

.DEALLOCATEIFLUSHJ HUIDEALLOCATE_FLUSHJ LIC,CEB,RQEl 
o- - - - - - - - ->·0-----------------x------------> 11) 

FREE_ SESSION 

DEALLOCATE_RCB 
>o 

RC=OK RCB_DEALLOCATED 
o<- - - - - - - - -o< 

I BRACKET_FREED >o 

Figure 2-47. DEALLOCATEITVPE=FLUSHJ IRQElJ--Local LU 

C' 

2-64 SNA LU 6.2 Reference: Peer Protocols 



. c) ( to partner LU) HS RH PS TP 

. RECEIVE_AND_HAIT . 
o<---------o 

LIC,CEB,RQEl RCVD_DATAIDEALLOCATE_FLUSH) RC=DEALLOCATE_NORHAL 
(1) ~----------~>0---------------->o- - - - - - - - ->o 

I FREE_sessION >~<-oe_A_L_L_oc_Ar_e ___ R_c_s_ .... ~:A:L~~r:-:O:A: .J 

BRACKET_FREED RCB_DEALLOCATED RC=OK 
o<--------------->o- - - - - - - - ->o 

Figure 2-48. DEALLOCATE(TYPE=FLUSH) IRQEl)--Remote LU 

(_,, 

0 

Chapter 2. Overview of the LU 2-65 



TP PS RM HS I to partner LU) 

.DEALLOCATEIFLUSHJ 
0- - - - - - - - ->&-------------------------------~'ft-----------------------~•> 11) 

FREE_ SESSION +RSP 
o<---------------0<------------------------ 12) 

DEALLOCATE_RCB 
>o 

RC=OK RCB_DEALLOCATED 
o<---------o< 

I BRACKET_FREED. >o 

NOTES: 
1 RQDl is required under certain sequence number wrap conditions. 

Figure 2-49. DEALLOCATEITVPE=FLUSHJ IRQDlJ--Local LU 

c 
2-66 SNA LU 6.2 Reference: Peer Protocols 



I to partner LU) HS RH PS TP 

• RECEIVE_AND_HAIT . 
o<- - - - - - - - -o 

LIC,CEB,RQDl MUIDEALLOCATE_FLUSHl RC=DEALLOCATE_NORMAL. 
(1) -----------~.><>---------------~>o- - - - - - - - ->o 

( 2) 
<:-------+_R_s_P ____ _,I ~<-D-EA_L_L_oc_A_r_e ___ Rc_s __ ~~~L:o:A~E=L~C~L- J 

I FREE_SESSION 
>o 

BRACKET_FREED o<:-------~l'--R_c_B __ D_E_A_L_L_o_c_A_T_ED~>o- _R:=~K- ___ ->o 

Figure 2-50. DEALLOCATEITYPE=FLUSHl IRQDll--Remote LU 

c~ 

0 

Chapter 2. Overview of the LU 2-67 



TP PS RH HS lto partner LU) 

SEND_DATA HUldata,NOT_END_OF_DATA> FIC,data 
0- - - - - - - - ->&---------------->t'I-------------> (l) 

• RC=OK J 
o<--------
l_D~A~L~~T~C~L~~,>~·----HU-<_da_t_a_,_o_E_A_LL_oc_A_T_E ___ F_Lus_H_>__ LIC,CEB,RQEl,data ,, >":" 

• FREE_SESSION I 
o<•------~ 

DEALLOCATE_RCB -RSPI0846) 
._------->o o<--------•-------- I Z) 

RC=OK RCB_DEALLOCATED 

1 This stray response 
is discarded) 

BRACKET_FREED 
o<- - - - - - - - -o<---------'------~>o 

Figure 2-Sl. DEALLOCATEITYPE=FLUSHJ IRQElJ, SEND_ERROR, -RSP Sent--Local LU 

2-68 SNA LU 6.2 Reference: Peer Protocols 

------> (3) 



c/ 

() 

0 

( 1) 

( to partner LU) HS RH PS TP 

. RECEIVE_AND_HAIT . 
o<- - - - - - - - -o 
. RC=OK, 

------------>0---------------->o HHAT RECEIVED= . 
FIC,data HUCdata,NOT_END_OF_DATA) 

l_D~T~=~~~P:E~E->~ 

(2) <-----R_s_P_c_o_a4_6_> _____ o<~---s_E_N_~_E_R_R_o_R _______ ~:~ __ J 
( 3) 

LIC,CEB,RQEl,data HUCdata,DEALLOCATE_FLUSHI RC=DEALLOCATE_NORHAL 
------------>n---------------->o- - - - - - - - ->o I c purge c1ata > . I 

FREE_SESSION >~<DEALLOCATE_RCB .<~E~L:~A~E~L~~L2.J 

o< 
BRACKET_FREED I RCB_DEALLOCATED ~ _R:=~- - - - ->~ 

Figure 2-52. DEALLOCATECTYPE=FLUSHI IRQEll, SEND_ERROR, -RSP Sent--Remote LU 

Chapter z. Overvi8111 of the LU Z-69 



TP PS RH HS ( to partner LU J 

SEND_DATA HUldata,NOT_END_OF_DATAJ FIC,dai:a 
0- - - - - - - - ->o----------------->·~------------> (l) 

• RC=OK J 
o<--------
LD:A~L~~T= I ~L~~~0• ____ HU_I da_t_a_,_o_E_A_L_Loc_A_r_e ___ F_L_us_H_> ->o--L_1_c_,_c_e_s_,_RQ_E_1_,_d_a_t_a ____ > 1 2 , 

• FREE_SESSION I 
o<:--------~-

DEALLOCATE_RCB 

RC=OK RCB_DEALLOCATED BRACKET_FREED 

Figure 2-53. DEALLOCATEITYPE=FLUSHJ IRQElJ, SEND_ERROR, -RSP not Sent--Local LU 

c 
2-70 SNA LU 6.2 Reference: Peer Protocols 



I to partner LU) HS RM PS TP 

• RECEIVE_AND_HAIT • 
o<---------o 

FIC,data HUldata,NOT_END_OF_DATAJ • RC=OK, 
(1) --~~~~~~~~~~~>o-~~~~~~~~~~~~~~->o HHAT_RCVD= • 

L D~T~-~~~L~T~ -~ 
HUI data ,DEALLOCATE_FLUSH) J 

>ol-F_R_E_E __ -S-ESS~I-ON~~>o~~~~~~~~~<- ~E~D:E~R~R- _ 

LIC,CEB,RQEl,data 
I 2) 

I purge data) • 

~C:D~A:L~~T~-~~~:L 
o<DEALLOCATE_RCB ·~~A:L~~T~l:o:A:>_J 

c, I RCB_DEALLOCATED >o- -R~=~- ___ ->o BRACKET_FREED 
o< 

Figure 2-54. DEALLOCATEITVPE=FLUSH) IRQEl), SEND_ERROR, -RSP not Sent--Remote LU 

0 

0 

Chapter 2. Overview of ihe LU 2-71 



TP PS RM HS I to par-tner LU) c 
DEALLOCATEICONFIRM>. ttUIDEALLOCATE_CONFIRMJ 
0- - - - - - - - ->n---------------->·n------------> 11) 

CONFIRMED +RSP o<:----------------0<------------ IZ> I DEALLOCATE_RCB • FREE_SESSION I - >o<---------'-

RC=OK RCB_DEALLOCATED BRACKET_FREED o<- --------o<--------------->o 
Figure Z-55. DEALLOCATEITYPE=CONFIRMl IRQDZl3l--Local LU 

c 

c· 
Z-72 SNA LU 6.2 Rafarmice: P-r Protocols 



C--· 
/ 

C--... 
.. 

0 

'1 J 

I to partner LU) HS RH 

EC,CEB,RQDZl3 HUIDEALLOCATE_CONFIRH) 

PS TP 

• RECEIVE_AND_HAIT 
o<---------o 
RC=OK,HHAT_RECEIVED= 
. CONFIRH_DEALLOCATE 

----------------------~> >o- - - - - - - - ->o 

( 2 J <.------------+_R_s_P-------o< CONFIRHED . <- :~F=~E~ - - J 

I FREE_SESSION >o l. _R:=~- ___ ->o 

~<DEALLOCATE_RCB ·~:A:L~~T:1:o:A:>J 

o< BRACKET_FREED I RCB_DEALLOCATED >o- _R:=~- ___ ->o 

Figure 2-56. DEALLOCATEITYPE=CONFIRHJ IRQD213>--Remote LU 

Chapter 2. Overvi.., of the LU 2-73 



TP PS RM HS ( to partner LU ) 

DEALLOCATE 
(ABEND_PROG) HUIFMH-7,datal,oEALLOCATE_FLUSH) .OIC,CEB,RQD1,FMH-7(0864),data 1 

0- - - - - - - - ->·0------------------------------>o-----------------------> 11) I DEALLOCATE_RCB • FREE_SESSION 
~--------------->o<--------------n<----------------------- 12) 

+RSP 

o<-R~=~- ____ -o<RCB_DEALLOCATED I BRACKET_FREED 
>o 

Note: 
--Y-<>ptional log data 

Figure 2-57. DEALLOCATEITYPE=ABEND_PROG) Issued in SEND_STATE, Between-Chain State--Local LU 

2-74 SNA LU 6.2Reference: Peer Protocols 



0 

(1) 

( 2) 

( to partner LU l HS RH 

OIC,CEB,RQD1,FMH710864J,data 1 • MU!FMH-7,data 1,DEALLOCATE_FLUSHJ 

PS TP 

. RECEIVE_AND_HAIT . 
o<- - - - - - - - -o 

RC=DEALLOCATE_ 
ABEND_PROG 

~~~~~~~~~~~~~>n-~~~~~~~~~~~~~~~~>o- - - - - - - - ->o 

<•~~~~~~~+_R_s_P~~~--'' ~~._E_A_LL_OC~A_r_E ___ R_CB~~~<~E~L~O=A~E~L~~L2.J 
I RCB_DEALLOCATED >o- _R:=~- ___ ->o 

FREE_ SESSION 
~~~~~~~~>o 

BRACKET_FREED I 
.<•~~~~~~~--' 

Note: 
--roptional log data 

Figure 2-58. DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE, Between-Chain State--Remote LU 

Chapter 2. Overview of the LU 2-75 



TP PS RH HS I to partner LU J 

SEND_DATA HUldata,NOT_END_OF_DATAJ FIC,data 
0- - - - - - - - -> ...... ---------------> ...... ------------> 11) 
• RC=OK J 
o<- - - - - - - -lDEALLOCATE • 
l~B~N~-~R~2 _ ->·o·-____ MU_1_c1a_t_a_,_F_Lus_H_1 _____ >ct---RQ_E_1_,_c1a_t_a ________ > 121 

MUIFMH-7,DEALLOCATE_FLUSHJ LIC,CEB,RQDl,FMH-7108641 
1-----------------·>ft-------------> 13) 

DEALLOCATE_RCB FREE_SESSION +RSP 
>o< <------------ I 4 J 

o<-R~=~- - - - _ -o<-RC_B ___ D_E_A_L_L_OC_A_T_E_D_~l_B_RA_C_K_E_T ___ F_R_E_E_D __ >o 

Figure 2-59. DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE, In-Chain State--Local LU 

r 
I 

\~ __ ,/ 

2-76 SNA LU 6.2 Reference: Peer Protocols 



C·., 
) 

/ 

0 

11) 

121 

'3) 

'41 

HS RH PS TP · 

• RECEIVE_AND_HAIT • 
o<- - - - - - - - -o 

FIC,data MUldata,NOT_END_OF_DATA) RC=OK,HHAT_RECEIVED= 
----------------------->n------------------------------>o DATA_INCOMPLETE 

RQEl,data MUldata,NOT_END_OF_DATA) 

L - - - - - - - ->o 

~<~E~E:v~-~N~-~A:r_J 
RC=OK,HHAT_RECEIVED= 

DATA_INCOMPLETE 
------------------------->cl..------------------------------~>o- - - - - - - - ->o 

~<~E~E:v~-~N~-~A:r_J 
RC=DEALLOCATE_ 

LIC,CEB,RQDl,FMH-7108641 MUIFMH-7,DEALLOCATE_FLUSHI ABEND_PROG 

FREE_ SESSION 
,__------------->o 

BRACKET_FREED I 
o<------

Figure 2-60. DEALLOCATEITYPE=ABEND_PROG) Issued in SEND_STATE, In-Chain State--Remote LU 

Chapter 2. Overview of the LU 2-77 



TP PS RH HS l to partner LU J 

l'IJldata,NOT_ENO_OF_DATAJ FIC,data 

DEALLOCATE_RCB • FREE_SESSION 
'--------------->o<--------------""" 

o<-R~=~ - - - - - -o<-Rc_e ___ D_E_A_L_L_oc_A_T_E_D __ .... l __ B_RA_c_K_E_T ___ F_R_E_ED_>o 

Note: 
--Y-0ptional log data 

Figure 2-61. DEALLOCATECTYPE=ABEND_PROGJ Issued in SEND_STATE, -RSP Received State--Local LU 

c 
2-78 SNA LU 6.2 Reference: Peer Protocols 



c) 

0 

(to partner LUJ HS RH 

FIC,data tfJ(data,NOT_END_OF_DATAJ 

PS TP 

• RECEIVE_AND_HAIT • 
o<---:...-----0 
RC=OK,HHAT_RECEIVED= 
• DATA_INCottPLETE 

(l) ------------------------->ci------------------------------~>o- - - - - - - - ->o 

( 2) <---------R_sP_(_o_84_6_>_-n<;------s_E_N_o __ E_R_R_o_R ______ '°: <- - ~'"2-:~ _J 
LIC,CEB,RQDl,FMH-7(0864) tfJ(fMH-7,data 1,DEALLOCATE_FLUSHJ RC=DEALLOCATE_NORMAL 

( 3) ------------------------->ci------------------------------~>o- - - - - - - - ->o . (~~) J 
.__F_R_E_E __ s_E_ss_I_ON_~>c'.,<DEALLOCATE_RCB ·<- ~E~L~~A~E- -

I RCB_DEALLOCATED >o- __ ~c=~ __ ->o BRACKET_FREED 
o< 

Notes: 

1 Optional log data 

This TP gets no indication that the DEALLOCATE is of type ABEND 
because everything (including FM headers) is discarded when ~rging. 

Figure 2-62. DEALLOCATECTYPE=ABEND_PROGJ Issued in SEND_STATE, -RSP Received State--Remote LU 

Chapter 2. Overview of the LU 2-79 



TP PS RH HS ( to partner LU) 

SEND_DATA tlJldata,NOT_END_OF_DATA) FIC,data 
0- - - - - - - - ->ft'------------------------------->0------------------------> (1) 
• RC=OK J 
o<- - - - - - - -lDEALLOCATE 

IA8END_PROG) 
-------

tlJ( data• FLUSH) 

tlJIFMH-7,DEALLOCATE_FLUSH) LIC,CEB,RQDl,FMH-710864) ..._ ______________________________ > > (3) 

DEALLOCATE_RC8 • FREE_SESSION -RSPI 0846) 
._-------------->o< o<----------------------~ 141 

o<-R:=~- - __ - -o<-RC_B ___ D_E_A_L_L_OC_A_T_E_D ___ , __ B_RA_c_K_E_T ___ F_R_E_ED~>o 

Figure 2-63. DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE Crossing SEND_ERROR--Local LU 

2-80 SNA LU 6.2 Reference: Peer Protocols 

C' 
, 

c 

c 



c/ 

c 

0 

f to partner LU J HS RM PS TP 

• RECEIYE_AND_NAIT • 
o<---------o 

FIC,clata MUldata,NOT_END_OF_DATAJ RC=OK,HHAT_RECEIVED= 
(1) ------------->c..--------------->o DATA_ INCOMPLETE 

L - - - - - - - ->o 
-RSPf 0846 J • 

< 
:-----s_E_N_D ___ E_RR_o_R _______ ~:<~E~D=E~R~R- - - ~ 

RQEl, data Mlllclata,NOT_END_OF_DATAJ 
f 2) -------+----------------:..,..----------------------------->o 

I purge data J 
LIC,CEB, RQD1,FMH-7f0864J MUIFMH-7,DEALLOCATE_FLUSHJ RC=DEALLOCATE_NORHAL 

(3) > n------------------------------>o- - - - - - - - ->o 
• (purge FMH-7) _I 

14) <--- .._F_R_E_E __ s_E_ss __ I_ON __ ~>~<DEALLOCATE_RCB ·<~E~L~~A~E~L~~L~ 

I RCB_DEALLOCATED ~ _R:=~- - - - -~ BRACKET_FREED 
o< 

NOTE: TPN on right gets no indication that DEALLOCATE ABEND occurred 
because everything (including FMHsJ are discar~d when in purge state. 

Figure 2-64. DEALLOCATEITYPE=ABEND_PROGJ Issued in SEND_STATE Crossing SEND_ERROR--Remote LU 

Chapter 2. Overview of the LU 2-81 



TP PS RM HS ( to partner LU) 

in RCV state 
.DEALLOCATE 
• I ABEND_PROG) SEND_ERROR 
o- - - - - - - - ->0-----------------------------~>o 

MUldata,NOT_END_OF_DATA> FIC,data 

MUIPREPARE_TO_RCV_FLUSH> LIC,RQEl,CD,no data 
13) 

MUIFMH-7,DEALLOCATE_FLUSH) OIC,CEB,RQDI,FMH-'.-710864) 

DEALLOCATE_RCB . FREE_SESSION +RSP 
>o< <----------------------~ 15) 

o<-R==~K- - - - - -o<-R-CB ___ o_E_A_L_L_o_c_A_TE_D __ ~l..__B_R_A_cK_E_T ___ F_R_E_E_D __ >o 

Figure 2-65. DEALLOCATEITYPE=ABEND_PROG) Issued in RCV_STATE, Between-Chain State--Local LU 

2-82 SNA LU 6.2 Reference: Peer Protocols 



C_j I to partner LU) HS RH PS TP 

FIC,data HUldata,NOT_END_OF_DATAJ SEND_DATA 
(1) < < <- - - - - - - - -o 

L - ~c:~ - -- -~ 
-RSPI0846J HUIRECEIVE_ERROR) 

~~ _':~-~·~·- _ J ( 2) > 
LIC,RQEl,CD,no data HUIPREPARE_TO_RCV_FLUSHJ 

(3) < < 

OIC,CEB,RQDl,FHH-710864) HUIFMH-7,DEALLOCATE_FLUSHJ .RC=DEALLOCATE_ABEND 

FREE_SESSION 
...._~~~~~~>o 

BRACKET_FREED I 
.<.~~~~~~~-

Figure 2-66. DEALLOCATEITYPE=ABEND_PROGJ Issued in RCV_STATE, Between-Chain State--Remote LU 

,,,----, . 
i 
I I 
\______,,·· 

0 

Chapter 2. Overview of the LU 2-83 



TP' PS RH HS ( to partner LU J 

.RECEIYE_AND_HAIT 
0- - - - - - - - ->o 
RC=OK,HHAT_RECEIYED= 

DATA_INCotlPLETE MlJ(data,NOT_END_OF_DATAJ FIC,data 
o<- - - - - - - - -o<;-------------------------------0<----------------- (l) 

lDEALLOCATE 
lABEND_PROGJ SEND_ERROR 
- - - - - - - -><>-------------------------------><>--------------------> ( 2) 

• -RSPl0846J 

MUlPREPARE_TO_RCY_FLUSHJ • LIC,RQEl,CD,no data 
o<--------------------------0< (3) 

... l ______ MU __ l_F_M_H-_7_,_o_E_A_L_Loc __ A_T_E ___ FL_us __ H_>_>. OIC ,CEB ,RQDl, FMH-7( 0864) > ( 4) 

DEALLOCATE_RCB FREE_SESSION +RSP 
>o<;--------o<-------------- (SJ 

o<-R~=~- ____ -o<~R-CB ___ D_E_A_L_Loc __ A_T_E_D_~l_B_R_Ac_K_E_T ___ F_R_EE_D_>o 

Figure 2-67. DEALLOCATEITYPE=ABEND_PROG) Issued in RCY_STATE, In-Chain State--Local LU 

c 

c 

(_~: 

2-84 SNA LU 6.2 Reference: Peer Protocols 



c ( to partner LU J HS RM PS TP 

FIC,data MUldata,NOT_END_OF_DATAJ SEND_DATA 
(lJ < o< o<- - - - - - - - -o 

L - ~c~~ - - - ->~ 
-RSPI0846J MUIRECEIVE_ERRORJ 

(2) > 
>o J LIC,RQEl,CD,no data MUIPREPARE_TO_RCV_FLUSHJ ~<- _s:N~-~A~A- _ ( 3 J < < 

RC=DEALLOCATE 
OIC,CEB,RQD1,FMH710864J MUIFMH-7,DEALLOCATE_FLUSHJ ABEND_PROG 

(4) > >o- - - - - - - - ->o 

c/~ 
+RSP I DEALLOCATE_RCB ~~=A:L~~T:1:o:A:J_J (5) < o< 

I RCB_DEALLOCATED RC=OK 
>o- - - - - - - - ->o 

FREE_SESSION 
~~~~~~~->o 

BRACKET_FREED I 
o<.~~~~~~~~-

Figure 2-68. DEALLOCATEITYPE=ABEND_PROGJ Issued in RCV_STATE, In-Chain State--Remote LU 

Chapter 2. Overview of the LU 2-85 



TP PS RH HS ( to partner LU) 

SEND_DATA 
0- - - - - - - - ->o 

o<- ~c:°'2 - - - - J 
CONFIRM MU( data ,CONFIRM l 

o--------

RC=OK CONFIRMED +RSP 
o<- - - - - - - - -o<:~----------------------------~o<:~--------------------~ (2) 

Figure 2-69. CONFIRM IRQD2l3l--Local LU 

c 

2-86 SNA LU 6.2 Reference: Peer Protocols 



c 

0 

(to partner LU) HS RH 

OIC,RQD2l3,clata MUldata,CONFIRHJ 

PS TP 

RECEIVE_AND_HAIT 
o<---------o 

RC=OK,HHAT_RECEIVED= 
DATA_*COHPLETE 

(1) -----------~:>o---------------->o- ------- ->o 
o<~E=E~V=-~N~-~A~T_j 
l~C=OK, 
~H~T:R:c:r~E~==~~!RH 

( 2) <:-------+_RS_P---~<:----c_ON_F_I_R_ME_o ________ o<- _c~N~I~=D - - _J 
L _ ~c:o~ ___ ->o 

Figure 2-70. CONFIRM IRQD213J--Remote LU 

Chapter 2. Overview of the LU 2-87 



TP PS RH HS ( to partner LU J 

• SEND_DATA 
o- - - - - - - - ->o 
• RC=OK J 
o<-------- • 

TVPE=CONFIRH, • • tREPARE_TO_RECEIYE. • • 

L~~S:L~~J- _ ->HU(data,PREPARE_TD_RCY_CONFIRH_LONGJ DIC,RQE2l3,CD,data 
> (l) 

RC=OK CONFIRMED FIC,data 
o<- - - - - - - - -o<~~~~~~~~~~~~~~~--o<:~~~~~~~~~~~~ 

t_R:c:I~E:A~D:~I~>~ 
.RC=OK,HHAT_RECEIYED= 

DATA_INCOMPLETE MUldata,NOT_END_DF_DATAJ 
o<- - - - - - - - -o<~~~~~~~~~~~~~~~--' 

Figure 2-71. CONFIRM IRQE213J--Local LU 

2-88 SNA LU 6.2 Reference: Peer Protocols 

( 2 J 



I to partner LU J HS RM PS TP 

RECEIVE_AND_HAIT 
o<- - - - - - - - -o 
RC=OK,HHAT_RECEIVED= 

OIC,RQE2l3,CD,data MUldata,PREPARE_TO_RCV_CONFIRMJ DATA_COMPLETE 
11) ----------------------~>n-----------------------------~>o- - - - - - - - ->o 

~<~E~e:v:-~N~-~A=T_J 
RC=OK,HHAT_RECEIVED= 

L_ __ c~~I~M=S=N~>~ 
o<.-----------c_ON_F_I_R_M_e_o ____________ ~~<-C~N~I~M=D- - - _J 

L_ ~c:o~ ____ ->~ C' 1 2 1 <:----------F_r_c_,d_a_t_a ________ -o<-----MU __ 1_d_a_ta __ ,N_o_r ___ e_N_o __ o_F ___ o_A_r_A_1 ____ -a· <-s:N~-~A~A ___ _J 

/ L_ ~c:o~ ____ ->~ 

Figure 2-72. CONFIRM IRQE213J--Remote LU 

c! 

C) 
/ 

Chapter 2. Overview of the LU 2-89 



TP PS RH HS I to partner LU) 

• SEND_DATA 
0- - - - - - - - ->o 

~<~c:o~ _____ J . . tREPARE_TO_RECEIVE • • 
TYPE=CONFIRH . . • 
L~C~S=L~N= l _ - ->.HUI data ,PREPARE_ TO_RCV _CONFIRH_LONG ~·0· __ 0_1_c_._R_Q_E_z_l 3_,_c_o_._da_ta ___ > 11) 

MUIRECEIVE_ERRORl -RSPI0846l 
o<-----------------0<------------- ( z) 

RC='derived 
from FMH-7' MUIFMH-7,data,NOT_ENO_OF_DATA) FIC,FHH-7,data 

o<- - - - - - - - -o< o<------------- ( 3) 

Figure Z-73. CONFIRM IRQEZl3l, SEND_ERROR--Local LU 

c 

c 
Z-90 SNA LU 6.2 Reference: Peer Protocols 



(- ) 
_ _/ 

() 

0 

I to partner LU) HS RH 

OIC,RQE2l3,CD,data HUCdata,PREPARE_TO_RCV_CONFIRHl 

PS TP 

RECEIVE_AND_HAIT 
o<---------o 
RC=OK,HHAT_RECEIVED= 

DAT A_ COMPLETE 
( 1l -------------><>----------------->o- - - - - - - - ->o 

~<~E~E=V=-~N~-~A=T_J 
RC=OK,HHAT RECEIVED= 
L_ ___ c~~I~H=S=~~ 

12) <·---------R_s_P_1_o_s_4_6_> __ o<:------s_E_N_o ___ E_R_R_o_R _______ ~<- _s:N~-=R~O~ - _J 

L_ _ ~c:o~ ___ ->~ 
( 3 ) <-----F_I_c_._F_H_H_-_1_,_d_a_ta_1_0<.-H-U_1 _FH_H_-_1_._da_t_a_1_._N_o_T __ EN_o ___ o_F ___ o_A_T_A_> __ ,~<- - s:N~-~A~A - - _J 

L_ _ ~c:o~ _ _ _ ->~ 
Note: 
.....-i=he data consists of optional log data from the SEND_ERROR verb and the TP 

data from the SEND_DATA verb or the data from the SEND_DATA verb alone. 

Figure 2-74. CONFIRM IRQEZl3l, SEND...,ERROR--Remote LU 

Chapter Z. Overview of the LU 2-91 



TP PS 

• SEND_DATA 
0- - - - - - - - ->o 

~<~c:~ -----J 
LS~N~-~A~A- - - ->~ 

RH 

• RC=OK J o<-------- • 

HS (to partner LUJ 

L CONFIRH l'IJ(data CONFIRM) OIC,RQD2l3.~co,data -------->0°--------'------->a---------------> (1) 

RC=' derived 
from FMH-7' 

l'IJIRECEIVE_ERRORJ 

. 
HUIFHH-7,data,NOT_END_OF_DATAl 

-RSPI0846J 
(2) 

FIC,FMH-7,data 
o<- - - - - - - - -o<:----------------n<------------ I 3 J 

Figure 2-75. CONFIRM IRQD213J, SEND_ERROR--Local LU 

2-92 SNA LU 6.2 Reference: Peer Protocols 

c 



c 

('· 
'-------/ 

( --- '· ', 

\_ __ ) 

0 

I to partner LU) HS RM 

MUldata,CONFIRM) 

PS TP 

RECEIVE_AND_HAIT 
o<- - - - - - - - -o 
RC=OK,HHAT_RECEIVED= 

DATA_INCOMPLETE 
11) ~~~~~~~~~~~~>n-~~~~~~~~~~~~~~~>o- - - - - - - - ->o 

-RSPC0846) 
( 2) < 

FIC,FMH-7,data 
( 3) < 

Figure 2-76. CONFIRM IRQD213), 

~<~E=E=V=-~N~-~A=T_j 

LC=OK,HHAT_RECEIVED= 
CONFIRM 

- - - - - - - ->o 

•~~~~~~~~~~~~~~~~~<- _s:N~-=R~O~ _ _j 
SEND_ERROR 

o< L _ ~c:o~ ___ ->~ 
•~~~~~~~~~~~~~~~~~<- _s:N~-~A~A- _ _j 

MUIFMH-7,data,NOT_END_OF_DATA) 
o< 

L RC=OK . 
- - - - - - - ->o 

SEND_ERROR--Remote LU 

Chapter 2. Overview of the LU 2-93 



TP .PS RH HS (to partner LU) 

• SEND_DATA 
0- - - - - - - - ->o 
• RC=OK J 
o<--------
~E~L~~A~E~ c~~IR·H>io-)--tlJ-( c1a_t_a_._0E_A_L_L_oc_AT_E ___ CON __ F_IR_H_> __ >&_E_c_.R-Q_o_2_1_3_,c_E_B_._c1a_ta ___ > ( 1) 

HUIRECEIVE_ERROR) -RSP(0846) 
o< <------------ (2) 

RC='derived 
from FHH-7' MUIFHH-7,clata,NOT_END_OF_DATA) FIC,FHH-7,data 

o<- - - - - - - - -o< <------------ ( 3) 

c 
Figure 2-77. DEALLOCATElTYPE=CONFIRH), SEND_ERROR--Local LU 

c 
2-94 SNA LU 6.2 Reference: Peer Protocols 



c, 

0 

11) 

I to partner LU) HS RH 

EC,RQD2l3,CEB,data MUldata,DEALLOCATE_CONFIRH> 

PS TP 

RECEIVE_AND_HAIT . 
o<- - - - - - - - -o 
RC=OK,HHAT_RECEIVED= 

DATA_ COMPLETE 
---------------------~>·n-----------------------------~>o- - - - - - - - ->o 

~<~E=E=V=-~N~-~A:TJ 
RC=OK,HHAT RECEIVED= 

L_c~N~I~M:D:A:L~c~;~ 
( 2) <:-------------R_s_P_1_o_a_4_6_> ___ o<-----s_E_N_D ___ ER_R_o_R _________________ ~<- - s:N~-=R~O~ - J 

L_ _ ~c:o~ ___ ->~ 
FIC,FMH-7,data MUIFMH-7,data,NOT_END_OF_DATA> SEND DATA J 

( 3) <----------------------0<-------------------------------~<- - - - -_ - - -

L_ _ ~c:o~ ___ ->~ 

Figure 2-78. DEALLOCATEITYPE=CONFIRMJ, SEND_ERROR--Remote LU 

Chapter 2. Overview of the LU 2-95 



TP PS RH HS I to partner LU) 

. SEND_DATA 
o- - - - - - - - ->o 

~<~c:~ - - - - - J 
L S~N~-~A~A- __ ->·o· __ HU_1_c1a_ta_,NO_r ___ E_N_o __ o_F __ o_A_T_A_> ___ >o----d_a_ta--------> 11 > 

~<~c:o~ _____ J 
~E~L~O=A~E:c~N~I~~o)--HU-1_d_a_ta_,o_E_A_L_L_oc_AT_E ___ c_ON_F_I_RH_> __ ~~·~E-C_,R_Q_o_2_1_3_,_c_EB_,d_a_t_a~ 

HUIRECEIVE_ERROR) -RSPI0846) 
o<----------------o<---------1-------- I 2) 

'-----> 13) 

RC='derived . 
from FHH-7'. HUIFHH-7,data,NOT_END_OF_DATA> FIC,FMH-7,data 

o<- - - - - - - - -o<.---------------~,o<------------- 14) 

Figure 2-79. DEALLOCATEITYPE=CONFIRM> Crossing SEND_ERROR--Local LU 

c 
2-96 SNA LU 6.2 Reference: Peer Protocols 



c / 

0 

(1) 

( 2) 

(3) 

14) 

Cto partner LUJ HS RH 

data MUCdata,NOT_END_OF_DATAJ 

PS TP 

• RECEIVE_AND_HAIT . 
o<- - - - - - - - -o 

RC=OK,HHAT_RECEIVED= 
DATA_INCOHPLETE 

~~~~~~~~~~~~>o-~~~~~~~~~~~~~~~->o- - - - - - - - ->o 

-RSPI0846J SEND_ERROR SEND_ERROR 
< ~~~~~~~~~~~-o<:~~~~~~~~~~~~~~~~o<- - - - - - - - -o 

EC,RQD2l3,CEB,data HUldata,DEALLOCATE_CONFIRMJ 
~~~~~~~~~~~~>o-~~~~~~~~~~~~~~~->o 

ldata purged) • 

L _ ~c:o~ ___ ->~ 
FIC,FHH-7,data 

< 
HUIFMH-7,data,NOT_END_OF_DATAJ ~<- _s~N~-~A~A- - J 

L _ ~c:o~ _ _ _ ->~ 
Figure 2-80. DEALLOCATEITYPE=CONFIRHJ Crossing SEND_ERROR--Remote LU 

Chapter 2. Overview of the LU Z-97 



TP PS RH HS ( to partner LU J 

SEND_DATA 
0- - - - - - - - ->o 
• RC=OK J o<-------- . L _ s:N~-~A~A __ ->ft. ___ HU_' cta_t_a_,_NO_r ___ eN_D ___ o_F ___ D_A_r_A_1 __ >·ft----F-1_c_,c1a_· t-·------> 111 

• RC=OK J 
o<--------L R:c:1~e:~D:H~I~>·n·--HU-1_c1a_t_a_,_P_R_E_PA_R_e ___ r_o __ R_c_v ___ F_Lus_H_1 __ ><..,_---L-I_c_,_c_D_,R_Q_E_1_,_c1a_t_a __ > 121 

Figure 2-81. RECEIVE_AND_HAIT Causing RQE,CD--Local LU 

2-98 SNA LU 6.2 Reference: Peer Protocols 



( to partner LU) HS RH 

FIC,data HUldata,NOT_END_OF_DATA) 
(l) 

( z) 

Figure Z-8Z. RECEIVE_AND_HAIT Causing RQE,CD--Remote LU 

0 

PS TP 

• RECEIVE_AND_HAIT • 
o<- - - - - - - - -o 
RC=OK,HHAT_RECEIVED= 

DATA_INCOHPLETE 

Chapter 2. Overview of the LU 2:-.9.9 



TP PS RM HS I to partner LU J 

SEND_DATA 
o- - - - - - - - ->o 
• RC=OK J 
o<--------

SEND_DATA MUCdata,NOT_ENO_OF_DATAJ .FIC,data 
0- - - - - - - - -><>----------------><>-------------> 11) 
• RC=OK J 
o<- - - - - - - -

l _ ~-~·~·--->·n: ____ MU_c c1a_t_a_,_NO_T ___ E_No ___ o_F ___ o_A_T_A_J __ >n~ M_I_c_,_d_a_ta ____ _ 

• RC=OK J I 
ol<- - - - - - - - llJIRECEIVE_ERR0Rl-RSPI08461 

- s:N~-~A~A - - ->·o~-<~~~~~~M~U~c-P_ -R_E~P~A~R~E~-~r~o-__ -R_c~v~-~F~L~U~S~H~)~~~->~-<~-L-I~c~.~c~o~.~R-Q_ -E_ -1_ -._no~~-d~-a~-t-a~~--~~--=~--: : : : 
C discard data J 

RC=PROG_ERROR_ 
PURGING MUI FMH-7,data,NOT_END_OF _DATA J FIC,FMH-7,data 

o<- - - - - - - - -o< <------------0 15) 

~E:e:v:-~N~-~A=T->~ 
RC=OK,HHAT_RECEIVED= 

~<- ~A~A:I~C~M~L:T:J 

Figure 2-83. SEND_ERROR before SEND_DATA--Remote LU 

2-100 SNA LU 6.2 Reference: Peer Protocols 



(1) 

12) 

c· ( 3) 

( 4) 

(5) 

( to partner LU) HS RH 

FIC,data MU!data,NOT_END_OF_DATA) 

PS TP 

RECEIVE_AND_HAIT • 
o<- - - - - - - - -o 
RC=OK,HHAT_RECEIVED= 

DATA_*COHPLETE 
----------------------~>0-----------------------------~>o- - - - - - - - ->o 

-RSP(0846J SEND_ERROR SEND_ERROR 
< o< <--------

MIC,data MUldata,NOT_END_OF_DATA) 
> >o purged 

LIC,CO,RQEl,no data MUIPREPARE_TO_RCV_FLUSH) RC=OK 
> >o- - - - - - - - ->o 

FIC,FMH-7,data MUIFMH-7,data,NOT_END_OF_DATAl :<_ "."':"':·~·~ - - ~ < o< 

I_ _R:=~- - - - ->~ 

(_~) Figure 2-84. SEND_ERROR before SEND_DATA--Local LU 

c 

0 

Chapter 2. Ovarvi.., of the LU 2-101 



TP PS RM HS I to partner LU) 

SEND_DATA -RSPI0846) 
o- - - - - - - - ->o (l) 

• RC=OK J 
o<- - - - - - - -

MUCdata,PREPARE_TO_RCV_FLUSH) LIC,RQEl,CD,data tREPARE_TO_RECEIVE 
ITYPE=FLUSHJ 
- - - - - - - ->o---------------->,0--1------------> ( 2) 

• RC=OK J 
o<--------L _ S~N~-~R~o~ _ ->n-· ______ s_e_N_o ___ E_RR_o_R ______ >o 

MUIRECEIVE_ERRORJ 
o<------------------0< 

I purged) 
MUIFMH-7,datal FIC ,FMH-7 ,data 

o<------------------0<------------~ 13) 
I purged) I 

... _-_R_s_P_1o_a_4_6_> _______ • 
- > 14) 

RC=OK MUIPREPARE_TO_RCV_FLUSHJ LIC,RQEl,CD,no data 
o<- - - - - - - - -o<------------------0<------------~ (5) 

l _ ':~-~·~· --_,, ... ~ ___ MU_1_F_M_H-_1_,d_a_t_a_,_N_oT ___ E_N_o ___ o_F ___ oA_T_A_\n-_F_I_c_,_F_M_H-_1_._d_a_t_a _____ > ( 6) 

~<- ~c:~ - - - -J 
Figure 2-85. SEND_ERROR Crossing SEND_ERROR, Both Issued in RCV_STATE--Remote LU 

2-102 SNA LU 6.2 Reference: Peer Protocols 

c 



c/ I to partner LU) HS RH PS TP 

-RSPI0846J SEND_ERROR SEND_ERROR 
llJ <:~~~~~~~~~~~~~o<~~~~~~~~~~~~~~~~-n<- - - - - - - - -o 

LIC,RQEl,CO,data HUldata,PREPARE_TO_RCV_FLUSHJ RC=OK 
( 2) ~~~~~~~~~~~~~> >o- - - - - - - - ->o 

I purge) 

FIC,FHH-7,data HUIFMH-7,data,NOT_END_OF_DATAJ SEND_DATA 
13) <:~~~~~~~~~~~~~o<~~~~~~~~~~~~~~~~o<- - - - - - - -

L __ ~c~o~ __ ->~ 
-RSPI0846) HUIRECEIVE_ERRORJ 

14) 

LIC,CD,RQEl,no data HUIPREPARE_TO_RCV_FLUSHJ SEND_DATA 
151 <:~~~~~~~~~~~~~o<:~~~~~~~~~~~~~~~~-n<- - - - - - - - -o 

( 6) 
FIC,FMH-7,data 

I discard data) 

HUIFMH-7,data,NOT_END_OF_DATAJ 
.RC= 
.PROG_ERROR_PURGING. 

n-~~~~~~~~~~~~>n-~~~~~~~~~~~~~~~~>o- - - - - - - - ->o 

Figure 2-86. SEND_ERROR Crossing SEND_ERROR, Both Issued in RCV_STATE--Local LU 

Chapter 2. Overview of the LU 2-103 



TP PS RH HS I to partner LU ) 

SEND_DATA HUldata,NOT_END_OF_DATAl FIC,data 
0- - - - - - - - ->0---------------->o-------------> (1) 

• RC=OK J 
o<- - - - - - - -

-RSPI0846) 
< l HUIRECEIVE_ERROR) 

o<.-o 

_c~~I~H- - - ->o---HU_l_P_R_E_P_AR_E ___ T_o ___ Rc_v ___ F_L_US~H_> ___ ~:.-------------LIC,CD,RQEl,no data 

I purge data ) 

OIC,CD,RQEl,FHH-7 
< 

Figure 2-87. SEND_ERROR before CONFIRH--Remote LU 

2-104 SNA LU 6.2 Reference: Peer Protocols 

( 2) 

> ( 3) 

14) 

(~: 

(' 
\ __ j 



( to partner LU) HS RH PS TP 

• RECEIVE_AND_HAIT • 
o<---------o 

FIC,data HU!data,NOT_END_OF_DATA> RC=OK,HHAT_RECEIVED= 
Cl) >·o-~~~~~~~~~~~~~~--->i_ _ ~A~A:I~~~L=~: 

~~~~~~~~~~~---.o<·~~~~-S-EN_o ___ E_R_R_o_R~~~~~~---l.~ ~':"':'~~·- - ~ -RSPI0846) 
( 2) < 

LIC,CD,RQEl,no data HUIPREPARE_TO_RCV_FLUSH> RC=OK 
( 3) > >o- - - - - - - - ->o 

C, 
OIC,CD,RQEl,FHH-7 

( 4) < 
~~~~~~~~~~~---,~ HUIFHH-7,data,~PARE_TO_RCV_FLUSHl~~~E~V~-~-~T~ 

Figure 2-88. SEND_ERROR before CONFIRH--Local LU 

(~ 

Chapter 2. Overview of the LU 2-105 



TP PS RH HS I to partner LU) 

SEND_DATA HUldata,NOT_END OF DATA) nc,clata 
0- - - - - - - - ->o-~~~~~~~~~~~~~~~->cr-~~~~~~~~~~~> 11) 

~<- ~c:o~ ____ J 

I HUI RECEIVE_ERROR) -RSPI 0846) 

~E~L~o:·~· .'.. ~~'~o:_<~~~~~HU~~l~P-R:E_P~A~R~E~-~T~o-__ -R_ -c_v~-~F~L~US~~H~)~~~~->-o< LIC ,co ... ,,,~ daia > : : : 

!purge data) 

OIC,CD,RQEl,FHH-7 
(4) 

Figure 2-89. SEND_ERROR Before DEALLOCATEITYPE=CONFIRHJ--Remote LU 

2-106 SNA LU 6.Z Reference: Peer Protocols 



c i Ito ~artner LU) HS RH PS TP 

• RECEIVE_AND_HAIT • 
o<---------o 

FIC,data HUldata,NOT_END_OF_DATA) RC=OK,HHAT_RECEIVED= 
Ill > ~ -D~T~-=~~P~E~~o 

-RSPI0846) SEND_ERROR ~<- ::-~·=·~~- -~ ( 2) < < 

LIC,CD,RQEl,no data 1'1UIPREPARE_TO_RCV_FLUSH) RC=OK 
(3) > >o- ... - - - - - - ->o 

OIC,CD,RQEl,FHH-7 HUIFHH-7,PREPARE_TO_RCV_FLUSHJ :<~~E~V~~~~T~ c! (4) < < 

Figure 2-90. SEND_ERROR Before DEALLOCATEITYPE=CONFIRH)--Local LU 

0 

0 

Chapter 2. Overview of the LU 2-107 



TP PS RH HS ( to partner LU l 

SEND_DATA 
0- - - - - - - - ->o 
• RC=OK J 
o<--------
l_R~C~I~E:~D:~IT • MlJldata,PREPARE_TO_RCV_FLUSHl OIC,RQEl,CD,clata 

> (1) 

tlJ(RECEIVE_ERRORl -RSP(0846l 
o< <----------------------- (21 

.RC='derived 
from FHH-7' tlJ(fHR-7,clata,NOT_END_OF_DATAl FIC,FHH-7,clata 

o<- - - - - - - - -o< <---.-------------------- (3) 

Figure 2-91. SEND_ERROR at End-of-Chain--Remote LU 

c 

C' 
/ 

2-108 SNA LU 6.2 Reference: Peer Protocols 



( to partner LU J HS RM PS TP 

• RECEIYE_AND_HAIT • 
o<---------o 

RC=OK,HHAT_RECEIYED= 
OIC,RQEl,CD,data tlJ(data,PREPARE_TO_RCY_FLUSHJ DATA_CottPLETE 

(1) ----------------------~:'a------------------------------~ - - - - - - - ->o 
SEND_ERROR • <-S~N~-~R~O~ __ J -RSP(0846J 

( 2) <:----------------------<>< 

L ~c:~ -- -- -~ 
HUIFMH-7,data,NOT_END_OF_DATAJ ·<-S~N~-~A~A- _ - J FIC,FMH-7,data 

(3) <----------------------~< 

L RC=OK • 
- - - - - - - ->o 

Figure 2-92. SEND_ERROR at End-of-Chain--Local LU 

0 

() 

0 
Chapter 2. Overview of the LU 2-109 



TP PS RH HS (to partner LUJ c:· 
SEND_DATA HUldata,NOT_END_OF_DATAJ FIC,data 

o--------- > (lJ 

~<- ~c:~ ----J 

REQUEST_TO_SEND SIGNAL 
o< < (2) 

I +RSP 
> ( 3) 

SEND_DATA HUldata,NOT_END_OF_DATAJ •' HIC,data 
- - - - - - - -> > (4) 

RC=OK, REQUEST TO ~ 
o~=N~-~E~E~V=D~v:s 

l SEMl_DATA HU(data,NOT_END_OF_DATAJ HIC,data c 
------- > (5) 

~<-R~=~- - - - - J 

~R~C~I~E:"':"':~I~,: MUldata,PREPARE_TO_RCV_FLUSHJ LIC,RQEl,CD 
> > ( 6) 

c 
Figure Z-93. REQUEST_TO_SEND, Received in SEND_STATE--Remote LU 

2-110 SNA LU 6.2 Reference: Pear Protocols 



c) ( to partner LU) HS RM PS TP 

FIC,data MUldata,NOT_END_OF_DATAl RECEIVE_AND_HAIT 
(1) > >o<- - - - - - - - -o 

~ RC=OK,HHAT_RCVD= • 
DATA_INCOHPLETE • 
- - - - - - - ->o 

SIGNAL REQUEST_TO_SEND ~<-R=~E:T:T~-=E~D ~ ( 2) < o< 
+RSP RSP_TO_REQUEST_TO_SEND RC=OK 

( 3) > >o- - - - - - - - ->o 

. J MIC,data MUldata,NOT_END_OF_DATA) 
( 4) > >o 

~<~e:e:v:-~N~-~A:r 

(~ RC=OK,HHAT_RECEIVED= 
MIC,data MUldata,NOT_END_OF_DATAl DATA_INCOMPLETE 

( 5) > >o- - - - - - - - ->o 

~~·~·~~~~-~~T~ 
RC=OK,HHAT_RECEIVED= 

LIC,RQEl,CD MUldata,PREPARE_TO_RCV_FLUSHl DATA_ COMPLETE 
( 6) > >o- - - - - - - - ->o 

C'; 
~<~e:e:v:-~N~-~A:r.J 
~C=OK, • 
H~T:R:c:I~E~==E~~o 

Figure 2-94. REQUEST~TO_SEND, Received in SEND_STATE--Local LU 

() 

Chapter z. Overview of the LU Z-111 



TP PS RH HS C to partner LU) 

SEND_DATA MUldata,NOT_END_OF_DATAl FIC,data 
0- - - - - - - - ->0---------------->o-------------> 11) 

~<- ~c:o~ ____ J 

l ~C~I:'."~~I~>D: __ MU_c_c1a_ta_,P_R_E_P_A_R_E __ r_o ___ R_c_v ___ F_L_us_H_l ->·o-----L_1_c_._RQ_E_1_,_c_o _____ > ( 2) 

REQUEST_TO_SEND SIGNAL 
o<·----------------,0<------------- 13) 

RC=OK,HHAT_RECEIVED= 
DATA_INCOMPLETE, 
REQUEST_TO_SEND_ 

I +RSP 
~-------------> 14) 

RECEIVED=YES MUldata,NOT_END_OF_DATAl FIC,data 
o<- - - - - - - - -o<----------------0< CSJ 

Figure 2-95. REQUEST_TO_SEND, Received in RCV_STATE--Remote LU 

2-112 SNA LU 6.2 Reference: Peer Protocols 

c~ 

c 

c: 



0 Ito eartner LUJ HS Rtt PS TP 

RECEIVE_AND_HAIT • 
o<---------o 

FIC,data tlJldata,NOT_END_OF_DATAJ 
11) >oRC=OK,HHAT_RECEIVED= 

L - ~A~A=I~~~L=!! 
SIGNAL RE~EST_TO_SEND ~<-R=~E~T:T~-~E~D_J -< 

LIC,RQEl, CD tlJldata,PREPARE_TO_RCV_FLUSHJ 
I 2 J > .. >o 

13) < 
+RSP RSP_TO_RE~EST_TO_SEND RC=OK 

(4) > >o- - - - - - - - ->o 

c/ ~<~E:E:v:-~N~-~=T_J 
~C=OK,HHAT_RECEIVED= 

DATA_INCOHPLETE 
- - - - - - - ->o 

~<~E=E=V=-~N~-~=T_J 
L RC=OK, • 
H~A~-~E:E:v:o:s:~~ 

FIC,data MUldata,NOT_END_OF_DATAJ :~- ~E~D:D~T~ __ ~ 
(5) < < L RC=OK . 

- - - - - - - ->o c\ 
./ Figure 2-96. REQUEST_TO_SEND, Received in RCV_STATE--Local LU 

0 

Chapter 2. Overview of the LU 2-113 



C' 
, 

This page intentionally left blank 

c 
2-114 SNA LU 6.2 Reference: Peer Protocols 



c~J 

0 

0 

CHAPTER 3. LU RESOURCES MANAGER 

Transaction 
Program 

I ! 

l , •I I ! 

l RTR ~j 

Presentation 
Services 

IPSl 

Loca 1-TP •_J 
Initiator J 

t 
Initiator J 

J 

j.._~~~~~~~1_, Re•ov_u_r_c_e_s~~~ Session 

I Manager <~-> Manager 
> ILU SVC MGR RM) ILU.SVC_MGR.SMl 

~~~-·~~~~~~~~L_u_.s_vc~-MG~R~ 
I 

v 

l 
I 

Data Flow I 
Control 

IDFCl I 
Buffer 

> Half-session L - - - - - - -> Manager 

Transmission 

J Control 
ITC) 

Figure 3-1. Overview of Component Interactions Involving the Resources Manager 

GENERAL DESCRIPTION 

Hhen one transaction program wishes to commu­
nicate with another, the LU may activate, 
manage, and later deactivate a conversation. 
This chapter describes the management of con­
versation resources lor simply "conversa­
tions"). 

An LU contains a services manager, which in 
turn contains a resources manager, RM. The 
resources manager stores information about 
active transaction programs, conversations, 
and LU-LU sessions in control blocks, some of 
which are the TCB, RCB, and SCB I see "Re-

sources Manager Data Base" on page 3-4 for 
additional information). 

The resources manager interacts with other 
components in the node. These components are 
shown in Figure 3-1. They are PS I "Chapter 
5.0. Overview of Presentation Services" and 
"Chapter 5.1. Presentation Serv­
ices--Conversation Verbs"), SM I "Chapter 4. 
LU Session Manager" ) , HS I "Chapter 6. 0. 
Half-Session"), BM I "Appendix B. Buffer Man­
ager"), transaction-program-initiating proc­
ess and Ready-to-Receive initiating process. 

Chapter 3. LU Resources Manager 3-1 



RESOURCES MANAGER FUNCTIONS 

The resources manager (RM) coordinates the 
following functions: 

• 

• 

• 
• 

• 

Creating new instances, and destroying 
existing instances, of presentation serv­
ices 

Attaching new instances, and destroying 
existing instances, of transaction pro­
grams 

Activating and deactivating conversations 

Choosing sessions to be used by a conver­
sation and, if necessary, requesting 
!bidding for) use of the session 

Requesting the session manager (SM) to 
activate a new session or to deactivate 
an existing session 

• Coordinating normal cessation of conver­
sation assignments to a particular ses-

LU COMPONENT INTERACTIONS 

Other components in the LU with which the 
resources manager interacts are the presenta­
tion services IPSJ component associated with 
each transaction program instance attached to 
the LU, each half-session IHS) that is avail­
able for use by the resources manager, and 
the session manager (SM). Examples of the 
type of interactions that take place are giv­
en below. 

Hhen presentation services is requested by 
its transaction program ITP) to initiate a 
conversation with another TP, it requests the 
resources manager to assist in the request. 
The resources manager is responsible for such 
tasks as choosing a session on which to ini­
tiate the conversation; checking that the 
synchronization level and security level on 
the request correspond to what the target LU 
supports for this LU; and performing other 
functions necessary for acquiring a session 
for use by the requested conversation, such 
as creating the appropriate control blocks 
(see "Resources Manager Data Base" on page 
3-4 for more on control blocks). After the 
resources manager has completed processing of 
the request that it received from presenta­
tion services, it sends a reply to PS inform­
ing it of the outcome of the request. 

One type of unsolicited information that the 
resources manager sends to presentation serv­
ices is an Attach FM header ( FMH-5). Hhen 
the resources manager receives an Attach from 
a remote LU via one of its half-sessions, it 
checks certain fields, including all security 
fields, carried in the Attach. Depending 
upon the installation-defined limit on the 
number of TP instances for the target trans­
action program (instance limit, see TRANS-

3-2 SNA LU 6.2 Reference: Peer Protocols 

• 

• 

• 

• 

sion targeted for 
BRACKET INITIATION 
colsl 

deactivatioo 
STOPPED--BIS 

(using 
pro to-

Completing LU-LU verification ( FMH-12 
processing J 

Replying to requests lbidsJ for use of a 
session that are received from remote 
resources managers 

Providing services for support of the 
sync point log ( the content and use of 
which is described in "Chapter 5.3. Pres­
entation Services--Sync Point Services 
Verbs" )--these services are not formally 
defined in this book 

Coordinating and managing 
conversation~level security 

ACTION_PROGRAM on page A-5), RM does one of 

r~. 
( . 
\,_ ... 

two things: If the number of instances of c 
the target transaction program has not yet / 
reached its limit, RM creates a new instance ~ 
of presentation services and sends the 
Attach, along with other information, to the 
new PS ("Attaching a Transaction Program" on 
page 3-10 and "Creation and Termination of 
Presentation Services" on page 3-18 provide 
additional details). If the instance limit 
has been reached, RM queues the Attach 
request. The Attach remains queued until a 
target TP-PS instance sends RM notification, 
via a TERMINATE_PS record, of its readiness 
to accept another Attach request (or, if none (_~. 
is queued, to be destroyed) • . .. 

Data that the resources manager wishes to 
send to another resources manager in the net­
work is first sent to the local HS component 
of one of the sessions connecting the two 
LUs. Likewise, the resources manager 
receives from HS all data destined for the 
resources manager that comes in over a ses­
sion. Examples of the kind of data that 
flows between the resources manager and HS 
are bids for the use of a session, replies to 
bid requests, and Attach FM headers. 

Hhen the resources manager receives a request 
from presentation services for a session and 
finds that no free sessions have the required 
characteristics, the resources manager sends 
a request to SM asking it to activate a new 
session. Similarly, the resources manager 
sends to the session manager a request that a ('. 
session be deactivated upon notification by _ 
PC.COPR ("Chapter 5.4. Presentation Serv­
ices--Control-Operator Verbs") that too many 
sessions are active. SM replies to the 



c_j 

C--, 
' 

' 

() 

HS 

resources manager after it has carried out 
the requested function. See "Activating a 
New Session" on page 3-15 and "Changing the 
Maximum Session Limit" on page 3-16 for more 
details on session activation and deacti­
vation. 

Other components in the node, ou~side of the 
LU, with which the resources manager inter­
acts are the buffer manager, local-TP initi­
ator, and RTR initiator. 

The primary objective of node buffer manage­
ment is to provide storage, allocation, and 
management for session-level pacing and to 
avoid unnecessary data movement from one 
buffer to another. 

For most of its work, RM uses transient stor­
age, not managed by the node buffer manager, 

MUI FMH-51 

Resources 
Manager 

I Format or protocol 
error detected) 

that is used for records that are local to 
the node and not sent outside the node. This 
transient storage is short-lived storage that 
is implicitly allocated by the creation of 
local records and freed when the records are 
destroyed. Node buffer management does not 
manage such transient storage. 

Incoming message units that may be queued for 
extended periods of time before being proc­
essed use storage managed by the buffer man­
ager. FMH-5 records may be queued for an 
instance-limited TP for an indefinite period 
of time. (For more information on 
instance-limited TPs refer to "Attaching a 
Transaction Program" on page 3-10. J FMH-7 
records may be queued for a TP that is not 
receiving. Storage for FMH . records is man­
aged by the buffer manager. 

Buffer 
Manager 

FREE_BUFFERIMUIFMH-5JJ 
~--------------~ 

Figure 3-2. Buffer Management for FMH-5 MU 

HS 

MUIFMH-121 

Resources 
Manager 

!Process FMH-12.) 

FREE_BUFFERIMUIFMH-1211 

Buffer 
Manager 

~--------------~ 

Figure 3-3. Buffer Management for FMH-12 MU 

Hhen RM receives an FMH-5 record, it is con­
tained in an MU. Normally, RM sends the 
FMH-5 MU to PS for further processing, but if 
RM detects a format or protocol error in the 
FMH-5 record, it discards the record by spec­
ifying the FMH-5 MU in a FREE_BUFFER call to 
the buffer manager I see Figure 3-2 I. The 
FREE_BUFFER call informs the buffer manager 
that the storage for the discarded FMH MU is 
available. In the same way, when RM finishes 
processing FMH-12 MUs, it informs the buffer 
manager using FREE_BUFFER (see Figure 3-31. 

Ce~tain independent processes, called initi­
ating processes, interact with RM for the 
purpose of starting an initial transaction 
program, i.e., the originator of a distrib­
uted transaction, or sending an RTR request 
to a partner LU, which allows the partner LU 
to initiate a conversation via a bid. These 
initiating processes include examples such as 
an application, a combined TP-PS process, a 
control-point process, the node operator 
facility INOFJ, and RM itself. An initiating 
process is normally a privileged process. 

Chapter 3. LU Resources Manager 3-3 



RESOURCES MANAGER DATA BASE ----

The resources manager needs information about 
such things as the transaction programs cur­
rently attached to the LU, the conversations 
associated with each transaction program, and 
the sessions available for use by a conversa­
tion between transaction programs. This 
information is stored in a group of control 
blocks found in the LU I see "Appendix A. Node 
Data Structures" for the control block defi­
nitions J. The resources manager initializes 
entries in some control blocks, while it only 
accesses or updates information -in entries 
already existing in other control blocks. 

CONTROL BLOCKS MAINTAINED BY THE RESOURCES 
MANAGER 

Information about transaction programs is 
contained in the transaction control block 
I TCB l. One TCB exists for each active TP-PS 
process associated with the LU. Each TCB 
contains a TCB identifier ITCB IDJ, which 
uniquely identifies the transaction program 
being represented by the TCB. The TCB_ID is 
also used in all communication between the 
resources manager and presentation services 
servicing the transaction program. For exam­
ple, when presentation services sends a 
record to the resources manager, it provides 
its TCB_ID so that the resources manager will 
know, of all the TP-PS processes it manages, 
which presentation services to send a reply 
to. Presentation services is informed of its 
TCB_ID when the TP-PS process is created by 
the resources manager. Hhen the resources 
manager receives an· Attach header I FMH-5 l 
from a remote resources manager, it creates a 
new TCB, creates a new instance of presenta­
tion services to be associated with the 
transaction program being attached, and sends 
the TCB_ID of the new TCB to presentation 
services. Thus, attaching a transaction pro­
gram results in creation of a new TP-PS proc-

Transaction 
Program 

ALLOCATE 

Presentation 
Services 

ess for that transaction program, with which 
a presentation services component is always 
associated. 

Associated with each TCB is a group of 
resource control blocks I RCBs J. One RCB 
exists in the group for each conversation 
associated with the transaction program. 
Besides the RCB_ID, an RCB contains several 
other pieces of information, such as the 
TCB_ID of the TP-PS process that is using the 
conversationJ the LU name, mode name, and 
half-session identifier I HS_ID l of the ses­
sion on which a conversation is running; and 
a field in which presentation services stores 
data that it receives from the transaction 
program. 

The final control block maintained by the 
resources manager is the session control 
block ISCBJ. One SCB exists for each active 
session between the LU and a partner LU. 
Information contained in an SCB includes a 
half-session identifier IHS_IDl and the part­
ner LU name I LU NAME J and mode name 
IMODE_NAMEJ for the ;ession. 

CONTROL BLOCKS ACCESSED BY THE RESOURCES MAN­
AGER 

In addition to those control blocks managed 
by the resources manager, other control 
blocks exist that are managed by another com­
ponent but are accessed and updated by the 
resources manager. 

One of these control blocks is MODE. There 
is one MODE control block for each mode name 
that is defined for the particular LU. The 
MODE entry contains information that is fixed 
on a mode name basis such as session counts 
and session limits. 

Resources 
Manager 

ALLOCATE_RCB 

RCB_ALLOCATEDIRCB_IDJ 

Figure 3-4. Allocation of a Resource Control Block IRCBJ 

3-4 SNA LU 6.2 Reference: Peer Protocols 

c 



CREATION OF PRESENTATION SERVICES AND TRANSACTION PROGRAMS 

0 

0 

- --

Hhen the resources manager receives a message 
unit IMUJ containing an Attach from HS for a 
TP that has not reached its instance limit, 
it creates a new TCB I representing the new 
instance of a TP-PS process) and RCB !repres­
enting the transaction program's initial con­
versation). It passes the IDs of the control 
blocks to the newly-created presentation 
services process I see "Attaching a Trans­
action Program" on page 3-10 J. Once the 
transaction program is attached, it can ini­
tiate conversations with other transaction 
programs. 

A TP-PS process can also be created as the 
result of a local request generated by a 
independent, initiating process running on 
the same system as RH. To start a trans­
action program locally, the initiating proc­
ess creates a START_TP record !refer to page 
A-191. The START TP record contains informa­
tion such as the name of the TP to be 
started; security tokens, e.g., user ID, 
password, and profile; and, if a reply to the 
START_TP request is desired, the identifica­
tion of the initiating process. The START_TP 
record is sent to RH via a queue also used to 
receive SEND RTR records. RH treats a 
START TP much-like an Attach (i.e., it cre­
ates the PS process and sends it the START_TP 
record J, except that no conversation or RCB 
is associated with the request, and a reply 
!see START_TP_REPLY on page A-201 is 
optionally permitted. 

ALLOCATING A NEH CONVERSATION 

Hhen the transaction program is ready to 
start a new conversation, it issues an ALLO­
CATE verb to presentation services. In gen­
eral, presentation services separates the 
ALLOCATE request into two distinct functions, 
i.e., allocating an RCB and obtaining a ses­
sion. Presentation services requests the 
resources manager to create a new RCS via an 
ALLOCATE RCB record. The ALLOCATE RCS con­
tains i~formation about the type of session 
that will be needed for the conversation. RH 
stores the session-related information in the 
new RCS and sends presentation services an 
RCB ALLOCATED record, which contains the ID 
of -the RCS. See Figure 3-4 for the flows 
that take place. 

OBTAINING A SESSION 

Once presentation services I PS J is informed 
of the ID of the new RCB, it requests that an 
LU-LU session be allocated to the conversa­
tion. After RH has allocated an LU-LU ses­
sion to satisfy the request from PS, PS 
creates an Attach FH header ( FHH-51 I in a 
buffer obtained from the buffer manager) and 
places its address in the RCB. PS then 
returns to the transaction program. I see 
"Chapter 5.1. Presentation Serv-

ices--Conversation 
details J. 

Verbs" for specific 

Presentation services asks for a session to 
be allocated by sending a GET_SESSION record 
to the resources manager. The GET _SESSION 
contains the RCB ID of the conversation that 
is to use the se~ion. 

An LU attempts to allocate a session that it 
considers available. A session that is 
available is between brackets, is not cur­
rently in conversation, and is not in the 
process of being terminated. A session that 
is available is referred to as being free. 
The set of free sessions at an LU is referred 
to as the free-session pool. The LU removes 
free sessions from the free=session pool when 
they are needed for conversations and returns 
them to the free-session pool when they are 
available. 

The resources manager at either end of a ses­
sion connecting two LUs may attempt to allo­
cate that session to a conversation. If both 
resources managers attempt to allocate the 
same session at the same time, there must be 
some way to resolve the contention for the 
session. For this reason, one of the LUs is 
designated the "first speaker" (or "con­
tention winner" I and the other LU is desig­
nated the "bidder" (or "contention loser" J 
for the session. The assignment of 
first-speaker and bidder status is estab­
lished during session activation and remains 
in effect for the duration of the session. 
If more than one session exists between a 
pair of LUs, one LU may be the first speaker 
for some sessions and the bidder for the oth­
ers. If an LU is the first speaker for a 
particular session, that session is said to 
be a first-speaker session for the LU. 

The resources manager in a bidder LU must 
request the resources manager in the 
first-speaker LU for permission to use a ses­
sion. This is called "bidding" for a ses­
sion. The first-speaker LU may either grant 
or deny the request for the session from the 
bidder LU by sending a positive or negative 
bid response. 

There are two forms of negative bid response 
associated with a parallel session. They are 
distinguished by the sense code in the nega­
tive bid response. The first form I sense 
code X'0813'1 is the rejection of a bid with 
no restriction on bidding for the same ses­
sion again. The second form (sense code 
X'D814' I is the rejection of a bid with the 
restriction that no further bids on the ses­
sion are permitted until the first-speaker LU 
sends a Ready-to-Receive IRTRJ record. This 
second form of bid rejection reserves the 
session for the first-speaker LU's use until 
it is ready to receive bids again for the 
session. The first-speaker LU may send RTR 
on the reserved session whenever the session 
is between brackets. Hhen the RTR is sent is 
implementation or installation defined. This 

Chapter 3. LU Resources Manager 3-5 



1 

4 

5 

2 

3 

4 

5 

book models an initiator interface to RM that 
may be used to prompt RM to send the RTR. 
This prompt is modeled as a SEND_RTR record 
that is created and sent to RM by an RTR ini­
tiating process. 

Hhen a bid is rejected, the bidding LU may 
try to bid on the same session (depending 
upon the sense code in the negative bid 
response) or another session that is between 

Presentation Resources 
Services Manager 

GET_SESSIONIRCB_IDJ 
>o 

brackets} 
ets, RM 

if no sessions are between brack­
will queue the session allocation 

request to await the freeing of a session. 

If the resources manager in a first-speaker 
LU wishes to allocate a free session to a 
conversation, it may do so immediately, with­
out requesting permission from the resources 
manager in the other LU. 

HS 

HS_PS_CONNECTED 
First- >o 
Speaker 

Flows SESSION_ALLOCATED 
o< 0 

-OR-

BID_HITHOUT_ATTACH 
>o 

• 
• 
• 

Bidder 
Flows +BID_RSP 

o< 0 

HS_PS_CONNECTED 
>o 

SESSION_ALLOCATED 
o< 0 

c~ 

Figure 3-5. Allocation of a Session Using BID_HITHOUT_ATTACH 

The resources manager will always allocate a 
first-speaker session in preference to a bid­
der session, to avoid the bidding procedure. 
Figure 3-5 illustrates the flows that take 
place when the resources manager attempts to 
allocate a session. The records used in the 
figure are defined in "Appendix A. Node Data 
Structures" in more detail. The following 
description refers to the numbers in the fig­
ure. 

1. Presentation services sends a GET_SESSION 
record to the resources manager. The 
RCB_ID identifies an RCB that was previ­
ously allocated by the resources manager. 

2. If no first-speaker session is available, 
the resources manager must bid for use of 
a session. It sends BID_HITHOUT_ATTACH 
to the half-session. The bid will flow 

3-6 SNA LU 6.2 Reference: Peer Protocols 

on the session to the resources manager 
at the partner LU. Between the time that 
the bid is sent and the bid response is 
received, the resources manager retains 
enough information to be able to proceed 
with session allocation when the bid 
response arrives. This information 
includes saving the HS_ID of the session 
and the GET_SESSION record in the RCB. 

3. The BID_RSP arrives from the remote 
resources manager via the half-session. 
The positive response indicates that the 
bid for use of the session has been 
accepted and the resources manager can 
complete the session allocation. Not 
shown in this figure is the processing of 
a -BID RSP. In this case, the resources c 
manage; would attempt allocation of a . 
different session, if possible. 



c \ ) 

C> 

0 

4. An HS_PS_CONNECTED record is sent by RM 
to the half-session to inform the 
half_session that it has been connected 
to a TP-PS process. 

S. A SESSION_ALLOCATED record is sent by RM 
to presentation services to inform it 
that a session has been allocated to the 
conversation, satisfying the GET_SESSION 
request. 

Chapter 3. LU Resources Manager 3-7 



___________ (----\ 
Resources Presentation \_____/ 

HS Manager Services 

BID 
l 

BID_RSP 
2a o< 

MUI Attach I 
3 

MUI Attach I 
4 

-OR-

2b [ -BID_RSP 

Figure 3-6. Responding to a Bid for a Session 

Figure 3-6 illustrates the flows that take 
place when a Bid request is received by the 
resources manager. The records used in the 
figure are defined in "Appendix A. Node Data 
Structures" in more detail. The following 
description refers to the numbers in the fig­
ure. 

l. 

2a. 

A BID record is received from the 
half-session. The half-session sends a 
BID record to RM whenever the partner LU 
sends BB, regardless of whether the 
partner LU is bidder or first speaker. 

If RM responds with a +BID_RSP, the 
request by the remote resources manager 
to use the session is accepted and proc-

3-8 SNA LU 6.2 Reference: Peer Protocols 

2b. 

3. 

4. 

] 

essing continues 
Attach FM header. 
13 and 4J. 

with receipt of the 
from the half-session(~'""': 

, __ ,,/ 
If RM responds with a -BID_RSP, the 
request by the remote resources manager 
to use the session is rejected. 

A message unit 
FMH-51AttachJ is 
half-session to RM. 

IMUJ that includes 
sent from the 

RM creates a new TP-PS and sends the MU 
to PS. See "Attaching a Transaction 
Program" on page 3-10 for further 
details. 

c 



C-----------Presentation Resources 

( --.. \ 
) 

() 

First-Speaker 
Session 

Available 

First-Speaker [ 
Session 

Not Available 

Services Manager 

ALLOCATE_RCB 
IIMMEDIATE_SESSION=YESl 

RCB_ALLOCATEDIRCB_IDl 

RCB_ALLOCATED 
IRETURN_CODE = UNSUCCESSFUL) 

-OR-

o< o 

Figure 3-7. Immediate Allocation of a Session 

IMMEDIATE SESSION PROCESSING 

Presentation services can request the 
resources manager to allocate both an RCB and 
a session with one record. ALLO­
CATE RCBI IMMEDIATE SESSION=YES l embodies the 
function of both ALLOCATE RCB and GET SESSION 
in that when the proces;ing comple~s sue-

HS 

HS_PS_CONNECTED 

~1 

l 
cessfully, both an RCB and an SCB are allo­
cated. ALLOCATE RCBIIMMEDIATE SESSION=YESl 
instructs the res~urces manage; to allocate 
an RCB only if a first-speaker half-session 
is currently available. If such a 
half-session is not available, no allocation 
is performed. See Figure 3-7 for the specif­
ic steps involved. 

Chapter 3. LU Resources Manager 3-9 



HS 

MU C Attach I 

HS_PS_CONNECTE_D 

Resources 
Manager 

Presentation 
Services 

MU !Attach, TCB_ID, RCB_ID, 
SENSE_DATA I. 

Figure 3-8. Attach Flow 

ATTACHING A TRANSACTION PROGRAM 

3-10 

One transaction program requests via an 
Attach FM header IFMH-51 that another trans­
action program be attached to a conversation. 
The resources manager handles the receipt of 
the message unit IMUI that contains the 
Attach. Only one Attach is sent per conver­
sation. RM processes the Attach and later 
sends it to PS_INITIALIZE in the TP-PS proc­
ess for further processing. 

RM is responsible for checking certain fields 
of the Attach, such as the transaction pro­
gram name field. RM" performs all security 
checks of the Attach. CPS INITIALIZE later 
checks the remaining field-; I. It notifies 
presentation services of the result of the 
checking through a field in the MU that RM 
sends to PS. 

If the Attach violates established protocol 
(e.g., by sending an Already Verified indi­
cation to a partner LU that does not accept 
it, by sending multiple passwords on a single 
Attach, or by indicating a synchronization 
level of syncpoint when the level for the 
session is confirm-only!, RM instructs SM to 
generate and return an UNBIND and RM does not 
create a new instance of the TP-PS process. 
For all other errors found in the Attach 
(e.g., invalid user IO, invalid parameter 
length I, PS is responsible for returning an 
FMH-7 or for instructing SM, via RM, to 
return an UNBIND. These actions notify the 
transaction program that initiated the Attach 
of the error. 

If, after checking the Attach, no protocol 
error is found and the requested TP 's 
instance count !number of TP-PS instances! is 

SNA LU 6.2 Reference: Peer Protocols 

less than its instance limit (as defined in 
the TRANSACTION_PROGRAM control block I, the 
resources manager creates a new instance of 
the TP-PS process; it creates a new TCB and 
RCB; and it connects the TP-PS process to the 
half-session. RM notifies the half-session,,,.,.--°" 
via an HS PS CONNECTED record, that it has/ ' 
been conn~ted to a TP-PS process. Finally,~ 
RM sends the MU containing the Attach to the __,,, 
new instance of the TP-PS process. The MU 
contains the Attach FM header, the FMH-7 
sense data field lif applicable!, and the IDs 
of the new TCB and RCB. Figure 3-8 depicts 
the steps-involved in Attach processing. 

If, after checking the Attach, no protocol 
error is found and the TP 's instance count 
equals or exceeds the TP's instance limit, 
the resources manager creates a new RCB, con-~~ 
nects the RCB with the half-session, informs( 
the half-session of the RCB connection, and'----..­
queues the MU containing the Attach to await 
an instance of the requested TP to become 
free. 

TP instances are free when all processing and 
conversations have been completed and the TP 
and its associated PS are ready to accept a 
new Attach or, if no Attach is queued for 
this TP, are ready to be destroyed. PS 
informs RM that it is free via the TERMI­
NATE_PS record. 

Upon receipt of the TERMINATE_PS record, RM 
checks for a request queued for the trans­
action program. If it finds a queued 
request, RM updates the associated TCB and 
sends the request to the TP-PS instance; oth­
erwise, RM destroys the TP-PS process. 



c 

0 

Resources 
Manager 

First-Speaker 

BID_HITHOUT_ATTACH 

Create RCB 
RCB.HS_ID = HS_ID 
SCB.RCB_ID = RCB_ID 
STATECFSM_RCB_STATUS) = IN_USE 
STATECFSM_SCB_STATUSJ = IN_USE 

BID 

HS 

' 

/ 

STATECFSM_SCB_STATUSJ = IN_USE, so: 

' 

/ 

••• HS 

/ 
/ 

' / 
'\ / 

x 
/ '\ 

/ ' ' ' 

-BID_RSP .-RSPCBID,0813(0814). 

Bidder 

Resources 
Manager 

BID_HITHOUT_ATTACH 

Create RCBl 
RCBl.HS_ID = HS_ID 
SCB.RCB_IO = NULL 
STATECFSM_RCBl_STATUSJ 
STATECFSM_SCB_STATUS) 

BID 
>o 

Create RCB2 
RCB2.HS_ID HS_ID 
SCB.RCB_ID = RCB_ID 
STATECFSM_RCB2_STATUSJ 
STATECFSM_SCB_STATUSJ 
ATTACH l.S sent to PS 

-BID_RSP 

= PENDING_ATTACH 
= FREE 

= IN_USE 
= IN_USE 

n--------~--~> >o---------~->o 

Figure 3-9. Bid Races 

RACES FOR THE USE OF A SESSION 

It is possible for the resources manager on 
each end of a session to simultaneously 
choose that session to -service separate 
GET_SESSION records, causing a bid race. The 
resources manager on the first-speaker side 
of the session always wins such a bid race. 
Hhen it receives the bid from the bidder RM, 
it recognizes that the session is already in 
use and generates a negative RSPC BID). Hhen 
the bidder RM receives the negative RSPCBIDJ, 
it checks the free-session pool to see if 
another session is available and retries the 
GET_SESSION processing on that session. Fig­
ure 3-9 illustrates an example of a bid race 
and shows the RCB and SCB settings that allow 
a race condition to be detected. 

The negative RSPCBIDJ that is generated for a 
bid rejection can have a sense code of either 

RCBl.HS_ID NULL 
STATECFSM RCBl STATUS) FREE 
Retry on anoth;r session 

0813 !Bracket Bid Reject-No RTR Forthcoming) 
or 0814 (Bracket Bid Reject-RTR Forthcom­
ing). Either -RSPCBID,0813) or 
-RSPCBID,0814) may be sent, the decision 
being an implementation-dependent choice. 

An implementation may permit a transaction 
program to reserve a session before a conver­
sation is started on that session. A bid for 
a reserved session is always rejected with a 
-RSPIBID,0814), since the transaction program 
might never begin a conversation on the 
reserved session Cif, for example, the trans­
action program terminated abnormally). The 
resources manager, by sending an RTR, 
informs the partner LU that it can bid on the 
session again. 

Chapter 3. LU Resources Manager 3-11 



First-Speaker Bidder 

Resources 
Manager HS ••• HS 

Bid without Attach Bid without 
>o o< 

' / 
x 

Bid / ' o< 0 

-RSP CBID, 0814) 

• 
• 
• 

RTR 

+RSPI RTR) 
o< 

Bid 
o< 

-OR-

[ -RSPIRTR, 0819) 
o< 

Figure 3-10. READY TO RECEIVE IRTRJ Flow 

3-12 

Figure 3-10 depicts possible RTR flows. In 
the situation where there is a bid race and 
-RSPIBID,08141 is sent, the resources manager 
at the bidder side of the session cannot bid 
again for that session until it has received 
an RTR from the first-speaker RM. Upon 
receipt of a -RSPIBID,0814J, the bidder 
resources manager updates a field in the SCB 
to remember that -RSPIBID,08141 was received 
and retries the Bid on another session. From 
this point until the RTR is received, whenev­
er a conversation ends and the session 
becomes free, the session is not returned to 
the free session pool I as Ts the normal 
case J, thereby preventing the session from 
being chosen for bidding. 

Hhen the current conversation ends, the 
first-speaker RM returns the session to the 
free-session pool and checks to see if any 
waiting requests can be satisfied by that 
session. The resources manager may use the 
session to service multiple GET_SESSION 
requests before sending the promised RTR. 

At some implementation-defined or 
installation-controlled point, the resources 

SNA LU 6.2 Reference: Peer Protocols 

Bid 

C' 
Resources 

Manager 

Attach 

>o 

>o 

~ 
>o 

l 0 

0 

/--,, 
I 

] 
\._/ 

0 

manager at the first-speaker side sends an ,­
RTR to the resources manager at the bidder( ' 
side. This is a notification to the bidder''-. 
RM that it can now use the session. Hhen the _,, 
first-speaker RM sends the RTR, it removes 
the session from the free session pool to 
prevent that session from being chosen to 
service a request before the bidder RM has 
had a chance to respond to the RTR. 

Hhen the bidder RM receives the RTR, it 
places the session in the free session pool 
(for the first time since receiving the 
-RSPIBID,0814) to the BidJ. It then checks 
to see if a GET_SESSION record is waiting to 
be serviced, if so RM then sends a +RSPIRTRJ 
I indicating that it intends to use the ses­
sion) and a Bid to the first-speaker 
resources manager. If no GET SESSION records 
are waiting, the bid~r sends a 
-RSPCRTR,0819). This indicates to the 
first-speaker RM that the bidder does not 
need the session. At this time, the~ 
first-speaker places the session back intc-
the free session pool and checks for any\___/ 
waiting requests. 



Presentation 
Services 

DEALLOCATE_RCBIRCB_ID) 

RCB_DEALLOCATED 

DEALLOCATE_RCBCRCB_IDJ 

RCB_DEALLOCATED 

Resources 
Hanager 

• 
• 
• 

-OR-

• 
• 
• 

HS 

FREE_ SESSION 

FREE_ SESSION 

Note: DEALLOCATE RCB and FREE SESSION are independent records and can be sent to the resources 
iiiaiia""ger in any order. 

Figure 3-11. End of a Conversation 

C: TERMINATING ~ CONVERSATION 

() 

After the resources manager has established a 
conversation between two transaction pro­
grams, it is not called upon to do any other 
processing for that conversation until the 
transaction programs are ready to end the 
conversation I see Figure 3-11). The 
resources manager is informed of the end of 
the conversation via two independent records. 

One record is DEALLOCATE_RCB, sent from pres­
entation services. The other is 
FREE SESSION, sent from HS to inform the 
reso;:;rces manager that the session is now 
available for use by another conversation. 
Hhichever record is received first triggers 
the resources manager to disconnect PS and 
HS. 

Chapter 3. LU Resources Hanager 3-13 



c\ 
--PRIMARY-- --SECONDARY--

Presentation Resources Session Network Resources Presentation 
Services Manager Manager HS ••• HS Services Manager Services 

GET_SESSION 
>o 

ACTIVATE_SESSION 
>o 

• 
(Normal BIND protocols) 

• 
• 

ACTIVATE_SESSION_RSP SESSION_ACTIVATED 
o< 0 >o 

RM_HS_CONNECTED RM_HS_CONNECTED 
~·. >o o< 0 I 
"---

r l 1 < SESSION_ALLOCATED 

l ~< 0 

-OR-

f . 
ENCIPHERED_RD2 

>o 
FMH-12 

>o 
2 < . MU CFMH-12) ~~ l iESSION_ALLOCATE; 

>o (~ _ _/ 

o< o 

-OR-

r 
ENCIPHERED_RD2 

>o 
FMH-12 /-'--.. 

3 < >o ( 

l 
MU CFMH-12) "---

>o 
FREE_ SESSION 

>o 

-OR-

f 
YIELD_SESSION 

>o 
4 < LUST AT 

l >o 
FREE_ SESSION 

>o 

Figure 3-12. Activation of a Session 

3-14 SNA LU 6.2 Reference: Peer Protocols 



C-1 

_,/ 

0 

ACTIVATING A NEH SESSION 

The resources manager allocates sessions to 
be used by conversations. Presentation serv­
ices requests the session be allocated with a 
GET_SESSION record. RH chooses sessions from 
the free session pool to satisfy the 
GET_SESSION request. If the pool is empty 
and the session limits allow the activation 
of a new session, the resources manager sends 
an ACTIVATE_SESSION record, containing the LU 
name and mode name of the desired session, to 
the session manager ISM, "Chapter 4. LU Ses­
sion Manager" 1. Figure 3-12 on page 3-14 
illustrates the steps involved in activating 
a session. 

Al though RH will not request session acti­
vation if it would cause the session limits 
to be exceeded, SH is ultimately responsible 
for checking to see that the number of active 
sessions is not greater than the maximum num­
ber of sessions allowed for that C LU name, 
mode name) pair. Some conditions le.g., a 
BIND race) will cause RH to request a session 
activation that would exceed the session lim­
its. In this case, the activation request 
from RH is rejected with a negative ACTI­
VATE_SESSION_RSP record. 

If the session can be activated, normal BIND 
protocols take place. Hhen the session has 
been successfully activated, the SH component 
sends the resources manager a positive ACTI­
VATE_SESSION_RSP record informing RH of the 
SCB_ID of the new session. 

In the following discussion, the numbers in 
parentheses correspond to the numbers in Fig­
ure 3-12. 

Hhen a new session is activated, RH sends an 
RH_HS_CONNECTED record to the new 
half-session. This record informs the new 
half-session that RH is aware of its exist­
ence and is ready to accept records from it. 
A new session comes up in-bracket, with the 
resources manager on the primary side of the 
session having control of the session. This 

is true even if the resources manager on the 
secondary side of the session was the one 
that issued the ACTIVATE_SESSION record that 
caused the session to be activated lvia INIT­
SELF 1. Upon receipt of a positive ACTI­
VATE_SESSION_RSP lor SESSION_ACTIVATED in the 
case of activation by the partner LU), RH 
creates and initializes an SCB based on the 
information carried in the ACTI­
VATE_SESSION_RSP !or SESSION_ACTIVATEDJ. 

If the newly activated session is a primary 
half-session, RH determines if any requests 
are waiting to be serviced. If LU-LU verifi­
cation is not active and a request is waiting 
111, RM uses the new session to service the 
request and sends a SESSION_ALLOCATED record 
to presentation services. If LU-LU verifica­
tion is active and a request is waiting 12), 
RH will generate and send to the half-session 
an ENCIPHERED_RD2 record containing an 
FHH-12. Parameters within the ENCIPHERED RD2 
record inform HS not to end the bracket-nor 
to yield control of the session. RH then 
uses the new session to service the request 
and sends a SESSION_ALLOCATED record to pres­
entation services. If no requests are wait­
ing and LU-LU verification is active 131, RH 
will generate and send to the half-session an 
ENCIPHERED_RD2 record containing an FHH-12 
and parameters that inform the half-session 
to relinquish control of the session and to 
end the bracket. If no requests are waiting 
and LU-LU verification is not active 14), RH 
sends a YIELD SESSION record to HS, thus 
yielding its right to use the session and 
ending the bracket. 

The resources manager at the partner LU (sec­
ondary half-session) is notified of the ses­
sion activation by a SESSION_ACTIVATED record 
from its SH component. If LU-LU verification 
is active, the secondary LU's resources man­
ager will await receipt of a message unit 
IMUJ that contains the FMH-12. Hhen the MU 
is received and verified by the secondary LU, 
normal processing continues. 

Chapter 3. LU Resources Manager 3-15 



~---c-NOS-----------------------------------------------------------c-NOS---------------------C' 
Transaction Resources Session Resources Transaction 

Program Manager Manager HS n• HS Manager Program 

Change Nunber of Sessions 

Change Number of Sessions 

CHANGE_SESSIONS 
I Decrease) 

BIS_RQ 

BIS_REPLY 

DEACTIVATE_ SESSION 
.------>o 

>o ••• 
• 
• 
• 

0 ••• o< 

.(Normal 

. UNBIND 
Protocols) 

CHANGE_SESSIONS . I Decrease) 
o< 

BIS_RQ 
>o 

BIS_REPLY 

Figure 3-13. Decreasing the Number of Sessions C' ----------- _/ 

CHANGING THE MAXIMUM SESSION LIMIT -- ---

The MODE control block (see page A-3) con­
tains several session limit fields. These 
fields limit the number and polarity 
I first-speaker or bidder) of sessions that an 
LU can have with the partner LU and mode name 
represented by the MODE control block. The 
limit fields include: 

• SESSION_LIHIT--maximun number of ses­
sions. 

• HIN CONHINNERS_LIHIT-minimum number of 
potential first-speaker sessions, which 
limits the maximun number of bidder ses­
sions. The SESSION_LIHIT less the number 
of bidder sessions must be greater than 
or equal to HIN_CONHINNERS_LIHIT. 

• 

• 

HIN CONLOSERS LIMIT-minimum ~r of 
pot;,,tial bidder sessions, which limits 
the maximum number of first-speaker ses­
sions. The SESSION LIMIT less the number 
of first-speaker se;sions must be greater 
than or equal to HIN_CONLOSERS_LIHIT. 

AUTO_ACTIVATIONS_LIHIT-the number of 
session that are activated independent of 

3-16 SNA LU 6.2 Reference: Peer Protocols 

demand (explicit request>. All such ses- f' 
sions are first-speaker sessions. \ 

..... _ _...·· 

The change-number-of-sass ions C CNOS) trans­
action program C "Chapter 5.4. Presentation 
Services--Control-Operator Verbs") can cause 
these session limits to change. The CNOS 
transaction programs at the two LUs come to 
an agreement on what the new session li_mi ts 
are to be via an exchange of Change Number of 
Sessions GDS variables C see SNA Formats). 
After an agreement on the new session limits 
is reached, each CNOS transaction program 
sends a CHANGE_SESSIONS record to its 
resources manager. The CHANGE_SESSIONS noti­
fies the resources manager that a change in 
the session limits has occurred. 

I~1,tf.e new session limits imply that new ses­
siDns may be activated, RH checks for any 
waiting session allocation requests. It cre­
ates multiple ACTIVATE_SESSION records, one 
for each waiting request, and sends them tor 
the session manager C see "Activating a New 
Session" on page 3-15 for more on session'-----_,' 
activation). The resources manager does not, 
however, request that 110re sessions be acti-



c 

vated than can be accommodated by the new 
session limits. The excess requests are 
retained for later processing. 

The resources manager makes certain that at 
least the number of sessions equal to the 
AUTO ACTIVATIONS LIMIT are active. After 
this - number of sessions is active, RM 
requests session activation only to satisfy 
waiting requests. For example, if 
AUTO_ACTIVATIONS_LIMIT = 2 and five requests 
are waiting, but the new session limits imply 
that seven sessions could be concurrently 
active, the resources manager sends to the 
session manager only five ACTIVATE_SESSION 
records. 

When the session limits are decreased, one of 
the LUs is designated, 
CHANGE SESSION LIMIT verb's 
parameter, as being "responsible" 
vating sessions, as necessary to 

by the 
RESPONSIBLE 
for deacti­
satisfy the 

new session 
CHANGE_SESSION.RESPONSIBLE is 

limits. 
set to YES if 

the resources manager is responsible to deac­
tivate sessions. 

The resources manager computes in TERMI­
NATION_COUNT the number of sessions that its 
local LU is responsible to deactivate. RM 
chooses sessions to deactivate from the pool 
of free sessions with that LU and mode name, 
sending a BIS on each of the sessions that it 
has chosen and removing the entry for that 
session from the free session pool. The BIS 
is sent to inform the receiving resources 
manager that the sending RM will not initiate 
any subsequent brackets, and is sent only 
while the sending half-session is between 
brackets. When RM receives a BIS Reply 
I BIS_REPLY on page A-12 J in response to its 
BIS, it decrements the TERMINATION COUNT and 
sends to the session manager ; DEACTI-

VATE_SESSION record for that session. The 
session manager then performs the normal 
UNBIND protocols. The exchange of BIS and 
its reply precedes a normal UNBIND (i.e., 
types X'Ol', X'02', or X'03' J. See Fig­
ure 3-13 on page 3-16 for the steps involved. 

If not enough free sessions can be deacti­
vated to bring the TERMINATION_COUNT to o, RM 
waits for sessions that are currently in use 
to become free before it sends any more BISs. 

The value of the DRAIN SELF field in the MODE 
control block determin;s whether RM will send 
BIS immediately when a session becomes free. 
If DRAIN_ SELF = NO I i.e. , waiting session 
allocation requests are not to be satisfied 
before session deactivation J, RM will send 
BIS as soon as a session becomes free. If 
DRAIN_SELF =YES li.e., waiting session allo­
cation requests are to be satisfied before 
session activation), RM will send BIS only if 
no waiting requests can be satisfied by the 
free session. In the same way, DRAIN_SELF 
determines when BIS Reply is sent in reply to 
a BIS from the partner LU; i.e., if 
DRAIN_SELF = NO and the session is free, BIS 
Reply is sent immediately; otherwise, BIS 
Reply is sent only when no waiting requests 
can be satisfied by the session on which a 
BIS was received and the session is free. 
The LU control operator may also explicitly 
request that a session be activated or deac­
tivated. RM is notified of these 
control-operator requests with an 
RM ACTIVATE SESSION or RM DEACTIVATE SESSION 
re~ord. Th; resources man;ger is responsible 
for sending ACTIVATE_SESSION or DEACTI­
VATE_SESSION records I preceded by the usual 
exchange of BIS and its reply for normal 
deactivation) to the session manager to sat­
isfy these control-operator requests. 

Chapter 3. LU Resources Manager 3-17 



Presentation 
Services 

Resources 
Manager 

Network 
Services 

SESSION_DEACTIVATEDISONJ 

CONVERSATION_FAILUREIRCB_IDJ 

• 
• 
• 

DEALLOCATE_RCBIRCB_IDJ 

RCB_DEALLOCATED 

Figure 3-14. Session-Outage Flow 

SESSION OUTAGE 

An active session between two LUs sometimes 
fails. The session outage may be caused by a 
failure of one or both of the LUs, or by a 
failure in the path between the LUs. In the 
event of a session outage, the resources man­
ager receives a SESSION_DEACTIVATEDIREASON = 
SON) from the session· manager. If the ses-

CREATION AND TERMINATION OF PRESENTATION SERVICES 

3-18 

The resources manager is responsible for cre­
ating and terminating instances of presenta­
tion services. (Presentation services, in 
turn, is responsible for starting up and tak­
ing down the transaction program with which 
it is to be associated.) 

SNA LU 6.2 Reference: Peer Protocols 

c: 

sion is being used by a conversation, RH ~\ 
sends a CONVERSATION_FAILURE record to pres- ( , 
entation services to inform it of the outage, '----../ 
and receives from PS a DEALLOCATE_RCB at some 
point. Regardless of whether the session is 
in use, RH destroys the associated SCB. Fig-
ure 3-14 illustrates a session-outage flow. 

r 
Hhen a transaction program finishes its proc- ~­
essing, presentation services notifies the 
resources manager via a TERHINATE_PS record. 

c 



c 

CJ 

~ 
( . 

~J 

0 

HIGH-LEVEL PROCEDURES 

RM 

FUNCTION: This process initializes the RM process giving RM addressability to pools 
!groups) of control blocks le.g., LUCB, PARTNER_LU, MODE, TRANSACTION_PROGRAM, 
RCB, TCB, SCB), receives all input to the resources manager and routes the 
input to the appropriate procedure for processing. 

INPUT: A record is received asynchronously from session manager ISM), half-session 
CHS), presentation services IPS), and an initiator process. 

OUTPUT: Refer to the procedures that are called from this process for the outputs 
resulting from records received from other processes. 

NOTES: 1. An LUCB and TRANSACTION_PROGRAM (for initialization) are defined for this LU 
before RM is created. 

2. An initiator process may send records to RM when a transaction program is to 
be started locally or when READY-TO-RECEIVE is to be sent on a session. 

3. RM assumes that the LU, partner LUs, modes, and local transaction programs 
have been defined to the LU. RM also assumes that this definition is not 
changed by other components while RM is referencing the defined data. 

4. Throughout this description, RM sends records to other processes le.g., HS, 
PS, SM). If the send of a record fails, the recovery action is to destroy the 
record, log the failure in the system log, and continue processing. This send 
recovery action is not explicitly shown. 

Referenced procedures, FSMs, and data structures: 
PROCESS_SM_TO_RM_RECORD 
PROCESS_HS_TO_RM_RECORD 
PROCESS_INITIATOR_TO_RM_RECORD 
PROCESS_PS_TO_RM_RECORD 
PREVIOUS_ TIME 

page 3-23 
page 3-20 
page 3-20 
page 3-22 
page 3-92 

Initialize PREVIOUS_TIME to the current system time I for more information refer to page 3-41) 
Do forever: 

Receive a record. 
Select based on the sender of the record: 

Hhen SM 
Call PROCESS SM TO RM RECORDlrecord received) lpage 3-23). 

Hhen HS - - - -
Call PROCESS HS TO RM RECORDlrecord received) lpage 3-20). 

Hhen INITIATOR - - - -
Call PROCESS_INITIATOR_TO_RM_RECORDlrecord received) (page 3-20). 

Hhen PS 
Call PROCESS_PS_TO_RM_RECORDlrecord received) lpage 3-22). 

Chapter 3. LU Resources Manager 3-19 



PROCESS_INITIATOR_TO_RH_RECORD 

PROCESS_INITIATOR_TO_RH_RECORD 

F\MCTION: This pl"OCSdure routes records received from an initiator process to the appro­
priate pl"OCSdures for processing. 

INPUT: 

OUTPUT: 

The current record from the initiator process 

Refer to the pl"OCSdures that are called from this process for the speci fie 
outputs. 

Referenced procedures, FSHs, and data_ structures: 
SEND_RTR_PROC 
START_TP_PROC 
START_TP 
SEND_RTR 

Select based on the type of record received: 
Hhen START_TP 

Call START_TP_PROCISTART_TPJ !page 3-77). 
Hhen SEND_RTR 

Call SEND_RTR_PROCISEND_RTRJ !page 3-69). 
Otherwise 

Log the e.-ror to the system log. 
Destroy the record. 

PROCESS_HS_TO_RM_RECORD 

page 3-69 
page 3-77 
page A-19 
page A-20 

FUNCTION: This procedure routes records received from HS to the appropriate procedures 
for processing. 

INPUT: 

OUTPUT: 

NOTES: l. 

2. 

The current record from a half-session 

Refer to the procedures that are called from this process for the specific 
outputs. 

If an SCB is not found with an HS_ID matching the HS_ID in the received 
record, the record is discarded. This could occur, for exaq:>le, if session 
outage occurred before RH had processed all the records from that 
half-session. 

If •FSH BIS indicates that the session is closed, the record is discarded. 
This c~ld occur, if the resources manager in the partner LU sends a -RSPIRTRJ 
after having sent BIS_REPLY. 

Referenced procedu.-es, FSHs, and data structures: 
HS 
BID_PROC 
BID_RSP_PROC 
ATTACH_PROC 
FREE_SESSION_PROC 
RTR_RQ_PROC 
RTR_RSP_PROC 
SECURITY_PROC 
FSH_BIS_BIDDER 
FSH_BIS_FSP 
MU 
BID 
BID_RSP 
BIS_RQ 
BIS_REPLY 
FREE_ SESSION 
RTR_RQ 
RTR_RSP 
SCB 

3-20 SNA LU 6.2 Reference: Peer Protocols 

page 6.0-3 
page 3-33 
page 3-35 
page 3-30 
page 3-50 
page 3-63 
page 3-64 
page 3-65 
page 3-87 
page 3-88 
page A-29 
page A-11 
page A-11 
page A-12 
page A-12 
page A-12 
page A-12 
page A-13 
page A-8 

c 

c 



c 

c '• 

c~ 

0 

PROCESS_HS_TO_RH_RECORD 

If no corresponding SCB is found for the HS process that sent the record then INote 11 
If the record is an HU then 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the HU I Appendix B). 

Else 
Destroy the record. 
Log the error to the system log. 

Else 
If the state of #FSH_BIS i CLOSED lpage 3-871 then 

Select based on the type of record received: 
Hhen BID 

Call BID_PROCIBIDJ lpage 3-331. 
Hhen BID RSP 

Call BID_RSP_PROCIBID_RSP) lpage 3-35). 
Hhen HU 

If the MU contains an FHH-5 then 
Call ATTACH_PROCIMU) lpage 3-30). 

If the MU contains an FMH-12 then 
Call SECURITY_PROCIHUJ lpage 3-65). 

Hhen FREE SESSION 
Call FREE_SESSION_PROCIFREE_SESSIONJ lpage 3-50). 

Hhen RTR RQ 
Call RTR_RQ_PROCIRTR_RQJ lpage 3-63). 

Hhen RTR RSP 
Call RTR_RSP_PROCIRTR_RSP) (page 3-64). 

Hhen BIS RQ 
Call iFSH_BISIR, BIS_RQ, BIS_RQ.HS_IDJ lpage 3-87). 
associated with the half-session over which the BIS_RQ was received. 
l#FSM BIS initialized in CREATE SCBJ 

Hhen BIS REPLY -
Call iFSM_BISIR, BIS_REPLY, BIS_REPLY.HS_IDJ lpage 3-87) 
associated with the half-session over which the BIS_REPLY was received 
l#FSM BIS initialized in CREATE SCBJ. 

Else !Note 2) - -
If the record is an HU then 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the MU I refer to Appendix BJ. 

Log the error to the system log. 
Else 

Destroy the record. 
Log the error to the system log. 

Chapter 3. LU Res.ources Manager 3-21 



PROCESS_PS_TO_RH_RECORD 

P~R_OC __ E_ss ___ P_s ___ T_o ___ RH ___ R_E_c_oR_D________________________________________________________________ ~~ 

FUNCTION: This procedure routes records received from presentation services to the 
appropriate procedures for processing. 

INPUT: The current record from presentation services 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSHs, and data structures: 
HS 
ALLOCATE_RCB_PROC 
GET_SESSION_PROC 
PS_TERMINATION_PROC 
CHANGE_SESSIONS_PROC 
RH_ACTIVATE_SESSION_PROC 
RH_DEACTIVATE_SESSION_PROC 
SEND_DEACTIVATE_SESSION 
PS_ABEND_PROC 
RCB 
SCB 
ALLOCATE_RCB 
GET_SESSION 
DEALLOCATE_RCB 
RCB_DEALLOCATED 
BRACKET_FREED 
TERMINATE_PS 
CHANGE_ SESSIONS 
RM_ACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 
UNBIND_PROTOCOL_ERROR 
ABEND_NOTIFICATION 

Select based on type of record received: 
Hhen ALLOCATE_RCB 

Call ALLOCATE RCB PROCfALLOCATE RCB) !page 3-26). 
Hhen GET SESSION- - -

Call GET_SESSION_PROCIGET_SESSIONJ !page 3-52). 
Hhen DEALLOCATE_RCB 

Find the RCB with RCB_ID equal to DEALLOCATE_RCB.RCB_ID. 
If there is no SCB with RCB_ID equal to DEALLOCATE_RCB.RCB_ID then 

Create a BRACKET_FREED !page A-18) 
with BRACKET_ID set to RCB.BRACKET_ID. 

Send the record to HS !Chapter 6.0). 
Discard the RCB. 
Build an RCB_DEALLOCATED record and send it to PS. !Chapter 5.0). 

Hhen TERMINATE PS 
Call PS_TERMINATION_PROCITERMINATE_PSJ. !page 3-57). 

Hhen CHANGE_SESSIONS 
. Call CHANGE_SESSIONS_PROCICHANGE_SESSIONSJ. !page 3-39). 

Hhen RM_ACTIVATE_SESSION 
Call RM_ACTIVATE_SESSION_PROCIRM_ACTIVATE_SESSIONJ. !page 3-611. 

Hhen RM_DEACTIVATE_SESSION 
Call RM_DEACTIVATE_SESSION_PROCIRM_DEACTIVATE_SESSIONJ. !page 3-621. 

Hhen UNBIND_PROTOCOL_ERROR 

page 6.0-3 
page 3-26 
page 3-52 
page 3-57 
page 3-39 
page 3-61 
page 3-62 
page 3-68 
page 3-54 
page A-6 
page A-8 
page A-15 
page A-16 
page A-16 
page A-21 
page A-18 
page A-17 
page A-15 
page A-16 
page A-17 
page A-17 
page A-25 

Call SEND_DEACTIVATE_SESSIONIACTIVE,UNBIND_PROTOCOL_ERROR.HS_ID,ABNORMAL, 
UNBIND_PROTOCOL_ERROR.SENSE_CODEJ. !page 3-68). 

Hhen ABEND NOTIFICATION 
Call PS=ABEND_PROCfABEND_NOTIFICATIONJ (page 3-541. 

3-22 SHA LU 6.2 Reference: Peer Protocols 

c 

c 



0 

C--
' 
/ 

0 

PROCESS_SH_TO_RH_RECORD 

PROCESS_SH_TO_RM_RECORD 

FUNCTION: This procedure routes records received from SH to the appropriate procedures 
for processing. 

INPUT: The current record frgm SH 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSHs, and data structures: 
ACTIVATE_SESSION_RSP_PROC 
SESSION_ACTIVATED_PROC 
SESSION_DEACTIVATED_PROC 
ACTIVATE_SESSIDN_RSP 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 

Select based on the type of record received: 
Hhen ACTIVATE_SESSION_RSP 

Call ACTIVATE_SESSION_RSP_PROCIACTIVATE_SESSION_RSPJ lpage 3-251. 
Hhen SESSION_ACTIVATED 

Call SESSIDN_ACTIVATED_PROCISESSION_ACTIVATEDJ !page 3-70). 
Hhen SESSION_DEACTIVATED 

Call SESSION_DEACTIVATED_PROCISESSION_DEACTIVATEDJ (page 3-72). 

page 3-25 
page 3-70 
page 3-72 
page A-13 
page A-14 
page A-14 

Chapter 3. LU Resources Manager 3-23 



LOH-LEVEL PROCEDURES 

ACTIVATE_NEEDED_SESSIONS 

FUNCTION: This procedure activates sessions as required by the number of waiting 
requests and change-number-of-sessions ICNOS) processing. 

Sessions are activated so as to satisfy the waiting requests, but not to 
exceed the ILU, model session limit. If all waiting requests are satisfied, 
additional sessions are activated to bring the number of sessions up to the 
minimum of the MODE.AUTO_ACTIVATIONS_LIMIT and MODE.MIN_CONHINNERS_LIMIT. 

INPUT: The LU name and mode name, respectively, of the partner LU 

OUTPUT: Zero or more ACTIVATE_SESSION records to SM 

Referenced procedures, FSMs, and data structures: 
SM 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
LU_NAME 
MODE_NAME 
ACTIVATE_SESSION 
MODE 

Get addressability to the MODE control block associated with LU_NAME and 
MODE NAME. 

page 4-48 
page 3-71 
page 3-65 
page 3-91 
page 3-91 
page A-20 
page A-3 

Do fo~ each waiting request for sessions identified by LU_NAME and MODE_NAME 
while the polarity returned by SESSION_ACTIVATION_POLARTIYILU_NAME,MODE_NAMEJ 
lpage 3-71J ~ NONE. 

If polarity = FIRST_SPEAKER then 
Call SEND_ACTIVATE_SESSIONILU_NAME, MODE_NAHE, FIRST_SPEAKERJ lpage 3-651 

to send an ACTIVATE SESSION record to SM. 
Else IBIDDERJ -

Call SEND_ACTIVATE_SESSIONILU_NAME, MODE_NAHE, BIDDER) lpage 3-65). 
Do while IMODE.ACTIVE_CONHINNERS_COUNT + MODE.PENDING_CONHINNERS_COUNT) < 
the minimum of IMODE.AUTO_ACTIVATIONS_LIHIT, HODE.HIN_CONHINNERS_LIHITJ and the polarity 
returned by SESSION_ACTIVATION_POLARITYILU_NAME, HODE_NAHEJ lpage 3-711 = FIRST_SPEAKER. 

Call SEND_ACTIVATE_SESSIONILU_NAME, MODE_NAHE, FIRST_SPEAKERJ lpage 3-65). 

3-24 SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c 



(~' 

ACTIVATE_SESSION_RSP_PROC 

ACTIVATE_SESSION_RSP_PROC 

FUNCTION: This procedure handles the processing of the response to a previously issued 
ACTIVATE_SESSION request. 

The session counts in the appropriate MODE entry are updated and further proc­
essing is invoked depending on the response type. 

INPUT: ACTIVATE_SESSION_RSP from SM 

OUTPUT: SESSION ALLOCATED to PS, the mode session counts are adjusted, and pending 
activat; session requests are discarded 

NOTE: The PENDING_ACTIVATION will not be found if RM had previously requested deac­
tivation of the pending session as a result of change-number-of-sessions proc­
essing. In this case, no processing of the ACTIVATE_SESSION_RSP is performed, 
since the session is being deactivated. 

Referenced procedures, FSMs, and data structures: 
SUCCESSFUL_SESSION_ACTIVATION 
UNSUCCESSFUL_SESSION_ACTIVATION 
ACTIVATE_SESSION_RSP 
PENDING_ACTIVATION, see ACTIVATE_SESSION 
MODE 

If there exists a PENDING ACTIVATION with a correlator equal to 
ACTIVATE SESSION RSP.CORRELATOR then 

page 3-80 
page 3-83 
page A-13 
page A-ZO 
page A-3 

Get addressability to the MODE control block associated with the LU_NAME and 
MODE NAME of the PENDING ACTIVATION. 

Decre;ent MODE.PENDING CONHINNERS COUNT or MODE.PENDING_CONLOSERS_COUNT by 1, 
as appropriate to the-session polarity. 

Decrement MODE.PENDING_SESSION_COUNT by 1. 
If ACTIVATE SESSION RSP.TYPE = POS then 

Increment MODE.ACTIVE CONHINNERS COUNT or MODE.ACTIVE_CONLOSERS_COUNT by 1, 
as appropriate to th; session p~larity. 

Increment MODE.ACTIVE_SESSION_COUNT by 1. 
Call SUCCESSFUL_SESSION_ACTIVATIONIPENDING_ACTIVATION.LU_NAME, 

PENDING_ACTIVATION.MODE_NAME, ACTIVATE_SESSION_RSP.SESSION_INFORMATIONJ (page 3-80). 
Else (negative response) 

Call UNSUCCESSFUL_SESSION_ACTIVATIONIPENDING_ACTIVATION.LU_NAME, 
PENDING_ACTIVATION.MODE_NAME, ACTIVATE_SESSION_RSP.ERROR_TYPEJ lpage 3-83). 

Discard the PENDING_ACTIVATION 
Else 

Do nothing I see Note). 

Chapter 3. LU Resources Manager 3-25 



ALLOCATE_RCB_PROC 

ALLOCATE_RCB_PROC 

FUNCTION: This procedure handles the allocation of resource control blocks IRCBs). 

INPUT: 

OUTPUT: 

NOTE: 

This procedure creates the RCB_ALLOCATED record and initializes the fields of 
the record. It then calls the appropriate procedure, depending upon the ALLO­
CATE_RCB parameter settings. The procedure that this procedure calls changes 
the setting of some of the RCB_ALLOCATED fields. The RCB_ALLOCATED is then 
sent to PS to inform it of the outcome of the ALLOCATE_RCB request. 

ALLOCATE_RCB 

RCB_ALLOCATED to PS 

Hhen ALLOCATE_RCB.IMMEDIATE_SESSION is set to YES, RM is to check to see if a 
first-speaker half-session is currently available for use. If such a session 
is available, the RCB_ID is passed to PS and the request completes successful­
ly. I If IMMEDIATE_SESSION is set to NO, PS sends a separate GET_SESSION 
request to RM to request that a half-session be allocated to a particular con­
versation resource.) 

Referenced procedures, FSMs, and data structures: 
TEST_FOR_FREE_FSP_SESSION 
CREATE_RCB 
PS 
ALLOCATE_RCB 
RCB_ALLOCATED 

page 3-82 
page 3-43 
page 5.0-8 
page A-15 
page A-21 

Create an RCB_ALLOCATED record initializing RETURN_CODE to OK and RCB_ID to a null value. 
If ALLOCATE_RCB.IMMEDIATE_SESSION is set to YES then 

Call TEST FOR FREE FSP SESSIONIALLOCATE RCB, RCB ALLOCATED) lpage 3-82). 
Else - - - - - -

Call CREATE_RCBIALLOCATE_RCB, RCB_ALLOCATEDJ (page 3-43). 
Send the RCB_ALLOCATED record to PS (Chapter 5.0). 
Destroy ALLOCATE_RCB. 

ATTACH_ CHECK 

FUNCTION: This procedure checks particular fields of the passed FM header 5 CFMH-5) for 
validity. IPS is responsible for additional checks.) 

INPUT: 

OUTPUT: 

An FM header 5 and the HS ID of the half-session ISee SNA Formats for the for­
mats of FM headers) 

x•oooooooo•, if no error; or sense data returned by ATTACH_LENGTH_CHECK; or 
data returned by ATTACH_SECURITY_CHECK; or one of the following sense data 
values: 

X'080F6051' 
X'08486031' 
X'084COOOO' 
X'l0086008' 
X'l00860ll' 
X'l0086021' 
X'l0086040' 
X'l0086041' 

Security Not Valid 
TP. Not Available--Retry Allowed 
TP Not Available--No Retry 
Unrecognized FMH Command 
Invalid Logical Unit of Hark 
TP Name Not Recognized 
Invalid Attach Parameter 
Sync level Not Supported 

Referenced procedures, FSMs, and data structures: 
ATTACH_ LENGTH_ CHECK 
ATTACH_SECURITY_CHECK 

3-26 SNA LU 6.2 Reference: Peer Protocols 

page 3-28 
page 3-32 c 



c 

c 

0 

c 

0 

Select based on the Command field of the FMH-5: 
Hhen Attach !The FMH-5 is an Attach FM header) 

Call ATTACH_LENGTH_CHECKIAttachJ !page 3-28) to determine whether any 
FMH-5 fields have an invalid length. 

If ATTACH_LENGTH_CHECK indicates that a field length is invalid then 
Return with the sense data provided by ATTACH_LENGTH_CHECK. 

If a logical-unit-of-work ID ILUH IDJ is present in the Attach then 

ATTACH_CHECK 

If the logical-unit-of-work ID's network-qualified LU name has a null network ID and 
the receiving LU has a non-null network ID in its network-qualified LU name then 

Return with sense data X'l0086011'. IA null network ID in LUH is not valid unless 
this LU's network ID is also null.) 

Else ILUH ID not present! 
If the sync level specified in the Attach is SYNCPT then 

Return with sense data X'l0086011' ILUH required on sync point conversations). 
If the transaction program specified in the Attach exists at this LU then 

Select based on the sync level specified in the Attach: 
!Optional receive check--the sync level support specified 
in the FMH-5 must be compatible with the sync level 
supported by the partner LUJ. 

Hhen None or Confirm 
Do nothing. !All LUs support sync level None and Confirm. l 

Hhen Confirm, Sync Point, and Backout 
If the sessions to the remote LU do not support confirm, sync point, 
and backout then 

Return with sense data X'l0086040' I Invalid Attach Parameter). 
otherwise 

Return with sense data X'l0086040' !Unrecognized sync level). 
If the sync level specified in the Attach is not supported by 

the transaction program then 
Return with sense data X'l0086041' !Sync Level Not Supported). 

If the transaction program is temporarily disabled then 
Return with sense data X'084B6031' ITP Not Available--Retry Allowed). 

If the transaction program is permanently disabled then 
Return with sense data X'084COOOO' ITP Not Available--No Retry). 

If the transaction program requires security parameters in the Attach and the 
sending LU is not permitted by this LU to send them las communicated in Bind) then 

Return with sense data X'080F6051' (Security Not Validl. 
Call ATTACH_SECURITY_CHECKIAttachl lpage 3-32l to check that all security 

requirements are met. 
If ATTACH_SECURITY_CHECK indicates a security violation then 

Return with the data provided by ATTACH_SECURITY_CHECK. 
Else 

Return with sense data X'l0086021' ITP Name Not Recognized). 
Otherwise 

Return with sense data X'l008600B' !Unrecognized FMH-5 command fieldl. 
Return with sense data X'OOOOOOOO' indicating no error. 

Chapter 3. LU Resources Manager 3-27 



ATTACH_ LENGTH_ CHECK 

ATTACH_ LENGTH_ CHECK 

FUNCTION: This procedure checks the length fields in the passed Attach for validity. 

INPUT: An FMH-5 Attach header (see SNA Formats) 

OUTPUT: Sense data values reflecting the result of the length checks. One of the fol­
lowing sense data values is returned: 

NOTE: 

x·oooooooo• 
X'l0086000' 
X'l0086005' 
X'l0086009' 
X'l0086011' 

No error 
FMH Length Not Correct 
Access Security Information Length Invalid 
Invalid Parameter Length 
Invalid Logical Unit of Hork 

The total length of the Attach can be greater than the sum of the lengths of 
the currently defined fields, to allow for the addition of new Attach fields. 

Set BYTE_OFFSET to 5 (offset of Fixed Length Parameters field in Attach). 
If the Attach length S BYTE_OFFSET then 

Return with X'l0086000' IFMH Length Not Correct). 
If the value of the Fixed Length Parameters field < 3 then 

Return with X'l0086009' !Invalid Parameter Length). 
Set BYTE_OFFSET to BYTE_OFFSET + the value of the Fixed Length Parameters field + 1 

(offset of TP name Length field). 
If the Attach length S BYTE_OFFSET then 

Return with X'l0086000' IFMH Length Not Correct). 
Set BYTE OFFSET to BYTE OFFSET + the value of the TP name Length field + 1 

(offset-of Access Secu;ity Information Length field). 
Select based on the following comparisons: 

Hhen the Attach length < BYTE_OFFSET 
Return with X'l0086000' IFMH Length Not Correct). 

Hhen the Attach length = BYTE_OFFSET 
Return with X'OOOOOOOO' !Access Security Information and fields following not present). 

Hhen the Attach length > BYTE_OFFSET !Access Security Information present) 
Continue processing. 

If the value of the Access Security Information Length field > 0 then 
!Access Security information is present) 

If the Access Security subfield length> the allowed length 112) or 
more than three Access Security subfields are present or 
the sum of the lengths of the Access Security subfields does not equal 
the total length of the Access Security Information field then 

Return with X'l0086005' !Access Security Information Length Invalid). 
Set BYTE_OFFSET to BYTE_OFFSET + the value of the Access Security Information Length field + 1 

(offset of LUH Identifier Length field). 
Select based on the following comparisons: 

Hhen the Attach length < BYTE_OFFSET 
Return with X'l0086000' IFMH Length Not Correct). 

Hhen the Attach length = BYTE_OFFSET 
Return with X'OOOOOOOO' ILUH Identifier and following fields not present). 

Hhen the Attach length > BYTE_OFFSET ILUH Identifier present) 
Do nothing. 

If the value of the LUH Identifier Length field > 0 then ILUH Identifier present) 
If the value of the LUH Identifier Length field < 10 or > 26 then 

Return with X'l0086011' !Invalid Logical Unit of Hork). 
If the value of the LUH Identifier Length field ~ the value of the LUH Identifier 

LU name Length field + 9 then 
Return with X'l0086011' !Invalid Logical Unit of Hork). 

Set BYTE_OFFSET to BYTE_OFFSET + the value of the LUH Identifier Length field + 1 
(offset of Conversation Correlator Length field). 

Select based on the following comparisons: 
Hhen the Attach length < BYTE_OFFSET 

Return with X'l0086000' IFMH Length Not Correct). 
Hhen the Attach length = BYTE_OFFSET 

Return with X'OOOOOOOO' !Conversation Correlator not present). 
Hhen the Attach length > BYTE_OFFSET !Conversation Correlator present) 

Do nothing. 

3-28 SNA LU 6.2 Reference: Peer Protocols 

( ,_ / 



C· 

c 

ATTACH_LENGTH_CHECK 

Set BVTE_OFFSET to BVTE_OFFSET + the value of the Conversation Correlator Length field + l 
(offset of byte following ATTACH>. 

If the Attach length < BVTE_OFFSET then 
Return with X'l0086000' IFHH Length Not Correct). 

Else 
Return with X'OOOOOOOO' IAll length fields in Attach are valid). 

Chapter. 3. LU Resources Manager 3-29 



ATTACH_P~OC 

ATTACH_PROC 

FUNCTION: This procedure performs Attach processing. 

INPUT: 

OUTPUT: 

This procedure checks to see if the session is already in use. If the session 
is not in use, the appropriate subroutines are called to check certain fields 
in the Attach FM header for validity. If a partner-LU protocol error is 
found, the appropriate procedure is called to deactivate the session; other­
wise, a new conversation with a new PS process is started. 

An MU containing an FM Header 5 

None 

NOTES: 1. If the state of #FSM_SCB_STATUS !initialized in CREATE_SCB is PEND-
ING_ATTACH, the half-session is first-speaker and a prior BID was received, or 
the half-session is a secondary first-speaker or bidder and has just been 
activated. 

2. This protocol error occurs, for example, when the first-speaker half-session 
sends an Attach FM header after having positively responded to a Bid from the 
bidder half-session, or when an Attach FM header is received for which there 
was no prior Bid. 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIVATE_SESSION 
ATTACH_ CHECK 
PS_CREATION_PROC 
QUEUE_ATTACH_PROC 
PURGE_QUEUED_REQUESTS 
SEND_ATTACH_TO_PS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
CONNECT_RCB_AND_SCB 
TRANSACTION_PROGRAM 
MU 
TCB_ID 
RCB_ID 
SCB 

Set TCB ID and RCB ID to null. 
Find th; SCB corre;ponding to the HS process that sent the Attach. 
If the state of the #FSM_SCB_STATUS ~= PENDING_ATTACH then !Note 2l 

page 3-68 
page 3-26 
page 3-55 
page 3-60 
page 3-59 
page 3-66 
page 3-85 
page 3-86 
page 3-42 
page A-5 
page A-29 
page 3-91 
page 3-91 
page A-8 

Call SEND DEACTIVATE SESSIONIACTIVE, SCB.HS ID, ABNORMAL, X'20030000'), !page 3-68) 
Else - - -

Call ATTACH_CHECKIFMH_5, MU.HS_TO_RM.HS_IDJ !page 3-26) to determine if the 
Attach contains any errors. 

Select based on the sense data returned by ATTACH_CHECK. 
Hhen X'FFFFFFFF' 

Call SEND_DEACTIVATE_SESSIONIACTIVE, SCB.HS_ID, ABNORMAL, X'080F6051' ), !page 3-68) 
Call buffer managerlFREE_BUFFER, buffer address) to release the buffer containing MU 

I Appendix Bl. 
Hhen X'l0086040' 

Call SEND_DEACTIVATE_SESSIONIACTIVE, SCB.HS_ID, ABNORMAL, X'l0086040' J. !page 3-68) 
Call buffer managerlFREE_BUFFER, buffer address) to release the buffer containing MU 

I Appendix Bl. 
Hhen X'l0086011' 

Call SEND_DEACTIVATE_SESSIONIACTIVE, SCB.HS_ID, ABNORMAL, X'l00860ll' l. !page 3-68) 
Call buffer managerlFREE_BUFFER, buffer address) to release the buffer containing MU 

I Appendix Bl. 
Otherwise 

Select based on the FMH_5.COMMAND. 

3-30 SNA LU 6.2 Reference: Peer Protocols 

("' 
\.______,. 

c· 



' 0 

ATTACH_PROC 

Hhen ATTACH 
If the sense data returned by ATTACH_CHECK ~= X'l00860Zl' then 

CTP name recognized) 
Find the TRANSACTION_PROGRAM structure corresponding to the 
transaction program named in the Attach record. 

If the sense data returned by ATTACH_CHECK ~= X'OOOOOOOO' or 
TRANSACTION_PROGRAM.INSTANCE_COUNT < TRANSACTION_PROGRAM.INSTANCE_LIMIT 
then 

Call PS_CREATION_PROCCMU, TCB_IO, RCB_Io, TRANSACTION_PROGRAM,CREATE_RC). 
Cpage 3-55) 

If CREATE_RC is SUCCESS then 
Call #FSH_SCB_STATUSIR, ATTACH, UNDEFINED) (page 3-84). 
Set SCB.RCB ID to RCB ID. 
Call CONNECT_RCB_AND_SCBCRCB_ID, MU.HS_TO_RM.HS_IDJ. (page 3-4ZJ 
Call SEND_ATTACH_TO_PSCMU, TCB_ID, RCB_ID, sense code). Cpage 3-66) 

Else IPS creation failed! 

Else 

If the TRANSACTION_PROGRAM.INSTANCE_COUNT is greater than 0 and 
the sense data returned by ATTACH_CHECK=X'OOOOOOOO' then 

Call QUEUE_ATTACH_PROCCMUJ Cpage 3-60). 
Else 

Call SEND_DEACTIVATE_SESSIONCACTIVE, MU.HS_TO_RM.HS_ID, ABNORMAL, 
X'08640000' J (page 3-68). 

Call buffer managerCFREE_BUFFER, buffer address) to release the 
buffer containing MU (Appendix Bl. 

Log the creation failure in the system log. 
If the TRANSACTION PROGRAM.INSTANCE COUNT is 0 then 

Call PURGE_QUEUED_REQUESTSCTRANSACTION_PROGRAMJ Cpage 3-591. 

Call QUEUE_ATTACH_PROCCMUJ. Cpage 3-60) 
Else CTP name is not recognized) 

Set the pointer to the TRANSACTION_PROGRAM structure to null. 
Call PS CREATION PROCCMU, TCB ID, RCB ID, TRANSACTION PROGRAM, CREATE_RCJ. 

lp;ge 3-55)- (Create a PS to rej;ct the Attach. J-
If CREATE_RC is SUCCESS then 

Call #FSM_SCB_STATUS(R, ATTACH, UNDEFINED! (page 3-84). 
Set SCB.RCB ID to RCB ID. 
Call CONNECT_RCB_AND_SCBCRCB_ID, MU.HS_TO_RM.HS_IDJ. (page 3-4Z) 
Call SEND_ATTACH_TO_PSCMU, TCB_ID, RCB_ID, sense code). Cpage 3-661 

Else CPS creation failed) 
Call SEND_DEACTIVATE_SESSIONCACTIVE, MU.HS_TO_RM.HS_ID, ABNORMAL, 

X'08640000') (page 3-68). 
Call buffer managerCFREE_BUFFER, buffer address) to release the buffer 
containing MU (Appendix BJ. 

Log the creation failure in the system log. 

Chapter 3. LU Resources Manager 3-31 



ATTACH_SECURITY_CHECK 

ATTACH_SECURITY_CHECK 

3-32 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure performs all security checks on an incoming Attach. 

The received Attach (see SNA Formats) 

A code or sense data value indicating the result of the security check: 

X'FFFFFFFF' local indication of a partner-LU security protocol error 
X'l0086040' an Attach parameter is present that is not authorized by the BIND 

security indicators 
X'080F6051' a remote TP security error is found 
X'OOOOOOOO' the Attach passes all security checks 

NOTES: 1. All checks within this procedure are required receive checks for implementa­
tions that support the conversation-level security option. 

2. If the use of profiles is not supported and one is received, it is ignored. 
If the use of profiles is supported, the option of requiring profiles on every 
Attach versus on Attach only to specific resources is installation-defined. 
If a profile is required on every Attach, connectivity problems with LUs that 
cannot send profiles may result. 

An unauthorized combination of user ID and profile means that the user that 
provides the profile is not permitted to supply that profile. Profiles are 
installation defined at the receiver of the Attach. Profiles assigned to spe­
cific user IDs are installation defined at the receiver of the Attach. The 
use and interpretation of profiles is not limited to access to secure trans­
action programs. Profiles may be used to restrict access to resources in 
implementation- and installation-defined ways (e.g., as group IDsJ. 

If the Attach indicates End User Already Verified and 
this LU does not accept an Already Verified indication in an Attach from the partner LU then 

Return with sense data X'l0086040' !Invalid Attach Parameter). 
If the Attach contains security parameters and 
this LU does not accept security parameters in an Attach from the partner LU then 

Return with sense data X'l0086040' !Invalid Attach Parameter). 
If the target transa·ction program requires security parameters in an Attach and 

the Attach does not contain security parameters then 
Return with sense data X'080F6051' !Security Not ValidJ. 

If the Attach contains no security parameters then 
Return with code X'OOOOOOOO' (security fields not present nor required). 

If there are multiple security subfields of the same type in the Attach then 
Return with code X'FFFFFFFF' !partner-LU security protocol error). 

If there is a security subfield of an unrecognized type then 
Return with code X'FFFFFFFF' !partner-LU security protocol error). 

If the Attach contains a profile and does not contain a user ID then 
Return with sense data X'080F6051' !Security Not Validl. 

If the Attach contains a password and does not contain a user ID then 
Return with sense data X'080F6051' (Security-Not Validl. 

If the Attach indicates end user not already verified and 
the Attach contains a user ID and does not contain a password then 

Return with sense data X'080F6051' (Security Not Validl. 
If the Attach indicates end user not already verified and 

the Attach contains an unauthorized combination of user ID and profile or (see note 2l 
the Attach contains an invalid combination of user ID and password then 
Return with sense data X'080F6051' !Security Not Valid). 

If the Attach indicates end user is already verified and 
the Attach does not contain a user ID or the Attach does contain a password then 

Return with code X'FFFFFFFF' !partner-LU security protocol error). 
If there is limited access to the target transaction program, which is based upon the Attach's 
user ID, and/or profile, and/or the LU name of the Attach sender then 

If the user ID and/or profile and/or partner-LU name is not permitted access 
to this transaction program then 

Return with sense data X'080F6051' !Security Not Valid!. 
Return with code X'OOOOOOOO' !Attach passes all security checks). 

SNA LU 6.2 Reference: Peer Protocols 

c 



c 

c 

BID_PROC 

BID_PROC 

FUNCTION: This procedure handles bids for the use of sessions. 

INPUT: 

OUTPUT: 

NOTE: 

This procedure first checks whether the bid should be rejected because the 
local operator has reset the session limit to 0 with no draining of the part­
ner LU's requests, and this LU does not support parallel sessions to the part­
ner LU. In this case, a -BID~RSPI088Bl is sent to HS. The -BID_RSPI088BJ can 
be sent even if the partner LU is the first speaker. 

If -BID_RSPI088Bl is not sent, the procedure checks to see if the requested 
session is free. If so, it removes the session from the free-session pool and 
sends a positive BID_RSP to HS. If the session is not free, it sends a nega­
tive BID_RSP to HS. 

An implementation may allow a transaction program to reserve a session for its 
own use before the conversation begins. If a session has been reserved, a 
negative BID_RSP is sent to HS even though a conversation has not been started 
on the session. Since the transaction program might never use the reserved 
session (e.g., the transaction program terminates abnormally before the con­
versation is started), the negative response carries an X'0814' sense code 
!Bracket Bid Reject--RTR Forthcoming) to allow the session to be freed, in 
case the reserved session is not needed by a conversation. Reserving a ses­
sion is implementation dependent and is not shown here. 

BID 

BID_RSP to HS. The RTI field of the BID_RSP is set to either POS or NEG. If 
a protocol error is detected, the session is deactivated. 

If RM issues an RTR to the partner LU and receives a positive response to the 
RTR, the HS ID of the session over which the RTR flows will not be free when 
the BID is ;eceived. Hhen RM issued the RTR, it removed that session from the 
free-session pool. Hhen RM sends BIS on a session or when RM bids on a bidder 

· session, that session is removed from the free session pool. 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
SEND_DEACTIVATE_SESSION 
BID 
MODE 
BID_RSP 

page 6.0-3 
page 3-85 
page 3-86 
page 3-87 
page 3-88 
page 3-68 
page A-11 
page A-3 
page A-11 

Chapter 3. LU Resources Manager 3-33 



BID_PROC 

If the state of IFSH_BIS is BIS_RCVD or CLOSED (page 3-87) then 
Call SEND_DEACTIVATE_SESSIONIACTIVE, BID.HS_ID, ABNORMAL, X'20080000') lpage 3-68) 

!optional receive check, No Begin Bracket). 
Else 

Get addressability to the MODE control block associated with the LU and 
mode name for the session on which the BID was received. 

If parallel sessions are not supported to the partner LU and 
HODE.SESSION_LIHIT = 0 and HODE.DRAIN_PARTNER = NO and the state of 
IFSH_BIS lpage 3-87) is BIS_SENT then 

Create a BID_RSP record with RTI set to NEG and SENSE_CODE set to 
X'08880000' and send it to HS (Chapter 6.0). 

Else 
If the state of IFSH_SCB_STATUS is FREE (page 3-84) then 

Call IFSH_SCB_STATUSIR, BID, UNDEFINED) Cpage 3-84) 
Remove the session from the free-session pool. 
Create a BID_RSP record with RTI set to POS and SENSE_CODE set to 

X'OOOOOOOO' and send it to HS !Chapter 6.0). 
Else 

If this is a first-speaker session then 
Create a BID_RSP record with RTI set to NEG and SENSE_CODE set to 

X'08130000' or X'08140000' I implementation-dependent choice) 
and send it to HS !Chapter 6.0). 

If SENSE CODE was X'D8140000' then 

Else 

Remember that this LU owes RTR to its partner CRTR must be sent to the 
partner LU before it can bid again for this session). 

Call SEND DEACTIVATE SESSIONCACTIVE, BID.HS ID, ABNORMAL, X'20030000') (page 3-68) 
(optional receive check, Bracket Error). -

Destroy the BID record. 

3-34 SNA LU 6.2 Reference: Peer Protocols 

c 



c 

0 

0 

c 

0 

BID_RSP_PROC 

BID_RSP_PROC 

FUNCTION: This procedure handles the processing of responses to bids for the use of 
half-sessions. 

INPUT: 

OUTPUT: 

A bid response is usually sent to the resources manager in response to a pre­
vious bid for a bidder half-session. In this case, when the input is a posi­
tive bid response, this procedure calls the appropriate subroutines to cause 
the RCB and SCB to point to each other and to establish the PS and HS con­
nection. It then informs PS that a session has been successfully allocated 
via a SESSION_ALLOCATED record. 

Hhen the input is a negative bid response, this procedure changes the RCB so 
that it no longer points to the SCB that sent the bid response, and retries 
the GET SESSION request, which was stored in the RCB when the BID_RQ was 
issued,-on another half-session. 

A negative bid response with sense data of X'088BOOOO' is handled specially. 
This bid response is sent by an LU to indicate that the session limit has been 
reset to 0 for a single-session connection and draining of the partner is not 
allowed. Sending of -BID_RSPI088BJ is permitted only in the single-session 
case. 

A -BID_RSPC088BJ record may arrive from either a bidder or first-speaker ses­
sion. If from a bidder session, it is in response to a previous bid. If from 
a first-speaker session, no previous bid was sent. A -BID_RSPI0888) record is 
the only bid response that can arrive from a first-speaker session. 

A positive or negative BID_RSP record 

SESSION_ALLOCATED to PS, or GET_SESSION to GET_SESSION_PROC (page 3-52) 

NOTES: 1. Hhen a BID RQ record is sent to HS, the RCB is set to point to the SCB for 
which the bid is being sent; the SCB, however, does not point to the RCB until 
a positive BID_RSP record is received. 

2. A -BID_RSPI088BJ record indicates that the partner LU has reset the session 
limit to 0 and is not permitting draining of the local LU's requests. The 
session is deactivated with UNBINDICleanup). 

3. PS stores in the RCB information that helps HS to set the fields in the 
request/response header IRHJ. Part of the information states whether the data 
being sent to HS is the beginning of a conversation (in which case HS will set 
BBIJ or is part of an existing conversation lin which case the BBI is set to 
~BB). Hhen RH chooses a bidder half-session to allocate to PS, the 
BID_HITHOUT_ATTACH record that RH sends to HS also triggers HS to set BBI to 
BB. Since PS is unaware of whether RH allocated a bidder or first-speaker 
half-session land thus does not know whether the Begin Bracket, which is sent 
only once during a conversation, has already been sent), RH informs PS, in the 
SESSION_ALLOCATED record, as to whether the session assigned to the Allocate 
request is in-bracket (in conversation) or not. 

Referenced procedures, FSHs, and data structures: 
PS 
HS 
SEND_DEACTIVATE SESSION 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
GET_SESSION_PROC 
FSH_RCB_STATUS_FSP 
FSH_RCB_STATUS_BIDDER 
BID_RSP 
GET_SESSION 
SCB 
RCB 
SESSION_ALLOCATED 

page 5.0-8 
page 6.0-3 
page 3-68 
page 3-75 
page 3-42 
page 3-52 
page 3-90 
page 3-89 
page A-11 
page A-16 
page A-8 
page A-6 
page A-22 

Chapter 3. LU Resources Manager 3-35 



BID_RSP_PROC 

If BID_RSP.RTI = NEG and BID_RSP.SENSE_CODE = X'08880000' then (see Note 21 
If the partner LU does not support parallel sessions then 

Reset conwinner, conloser, and session limits for this mode to O. 
Call SEND_DEACTIVATE_SESSION!ACTIVE, BID_RSP.HS_ID~ CLEANUP, X'OOOOOOOO'J 

(page 3-68 J. 
Else !X'088B' valid only from a single-session connection) 

Else 

Call SEND_DEACTIVATE_SESSION!ACTIVE, BID_RSP.HS_ID, ABNORMAL, X'20100000'J 
(page 3-68 J. 

Find the RCB associated with the conversation where 
state of #FSM_RCB_STATUS = PENDING_SCB (page 3-891 and 
RCB.HS ID = BID RSP.HS ID. 

If BID RSP.RTI =-POS t.,;,, 
Call SET_RCB_AND_SCB_FIELDS!RCB.RCB_ID, BID_RSP.HS_IDJ (page 3-751. 
Call CONNECT_RCB_AND_SCB!RCB.RCB_ID, BID_RSP.HS_ID, REPLVJ !page 3-421. 
Find the SCB associated with the HS that received the BID_RSP. 
Create a SESSION_ALLOCATED record with RETURN_CODE set to OK, 

SEND_RU_SIZE set to SCB.SEND_RU_SIZE, 
LIMITED_BUFFER_POOL_ID set to SCB.LIMITED_BUFFER_POOL_ID, 
PERMANENT BUFFER POOL ID set to SCB.PERMANENT BUFFER POOL ID, and 
IN_CONVERSATION ;et t~ YES. !Note 31 - - -

Send the SESSION_ALLOCATED record to the PS that requested the session. 
Else (-RSP!BidJ--retry request on another session) 

Set RCB.HS_ID to a null value. 
Call #FSM_RCB_STATUS(R, NEG_BID_RSP, UNDEFINED> !page 3-89). 
!State of #FSM RCB STATUS= FREEJ. 

If BID_RSP.SENSE_CODE = X'08140000' then 
Remember that the partner LU owes an RTR on this session. 

!Bidder cannot bid again for this session until RTR received). 
Create a GET SESSION record initialized with the information from the original 

GET SESSION-record, saved in the RCB when the BID record was sent.· 
Call-GET_SESSION_PROC!GET_SESSIONJ !page 3-521. 

3-36 SNA LU 6.2 Reference: Peer Protocols 

c 

c 



c 

c 

c ) 

c 

c 

BIDDER_PROC 

BIDDER_PROC 

FUNCTION: This procedure handles the allocation processing for a bidder half-session. 

INPUT: 

OUTPUT: 

NOTE: 

The HS_ID of the bidder half-session is placed in the RCB of the conversation 
for which the session was requested. The state of #FSH_RCB_STATUS is set to 
indicate that the conversation is pending confirmation that it can use the 
SCB. This procedure then creates a BID_HITHOUT_ATTACH record and sends it to 
HS. 

GET_SESSION and HS_ID, the ID of the bidder half-session that was chosen by 
GET_SESSION_PROC lpage 3-52) 

BID_HITHOUT_ATTACH to HS. No SESSION_ALLOCATED record is sent to 
confirmation that the bidder may use the session is received 
first-speaker li.e., until a positive BID_RSP is 
RCB.#FSH_RCB_STATUS is set to FSH_RCB_STATUS_BIDDER. 

PS until 
from the 

received). 

A copy of the GET_SESSION record is created so that, if the bid for the ses­
sion fails, the request can be retried on a different session. 

Referenced procedures, FSHs, and data structures: 
HS 
FSH_RCB_STATUS_FSP 
FSH_RCB_STATUS_BIDDER 
GET_SESSION 
HS_ID 
BID_HITHOUT_ATTACH 
RCB 

Find the RCB identified by GET_SESSION.RCB_ID. 
Set RCB.HS ID to HS ID. 
Initialize-#FSH_RCB=STATUS to FSH_RCB_STATUS_BIDDER lpage 3-89). 
Call IFSH_RCB_STATUSIS, GET_SESSION, UNDEFINED) lpage 3-89). 
Save the contents of the GET SESSION record in the RCB (see Note). 
Build and send a BID_HITHOUT=ATTACH record to HS !Chapter 6.0J. 

page 6.0-3 
page 3-90 
page 3-89 
page A-16 
page 3-91 
page A-17 
page A-6 

Chapter 3. LU Resources Manager 3-37 



BIS_RACE_LOSER 

BIS RACE_LOSER 

FUNCTION: This procedure performs the processing necessary when a BIS race occurs and 
this side of the session is the race loser. 

This procedure first decrements the PENDING TERMINATION COUNT and issues a 
BIS_REPLY. It then attempts to find anothe; session f~ the free-session 
pool on which to send a BIS_RQ. 

INPUT: HS_ID, the ID of the session over which the BIS race occurred 

OUTPUT: BIS REPLY and, if there is a free session, BIS_RQ to HS, the MODE pending ter­
min;tion co1.r1ts are updated 

NOTE: Hhen the SESSION DEACTIVATION POLARITY is EITHER, free first-speaker sessions 
are deactivated in preference-to free bidder sessions. 

Referenced procedures, FSHs, and data structures: 
SEND_BIS_RQ 
SESSION_DEACTIVATION_POLARITY 
HS 
HS_ID 
LU_NAME 
MODE_NAME 
BIS_REPLY 
MODE 

page 3-67 
page 3-74 
page 6.0-3 
page 3-91 
page 3-91 
page 3-91 
page A-12 
page A-3 

Get addressability to the MODE control block associated with the partner LU and mode name 
of the session identified by HS_ID. 

Decrement MODE.PENDING_TERMINATION_CONHINNERS or MODE.PENDING_TERMINATION_CONLOSERS by 1, 
as appropriate to the session polarity. 

Create a BIS_REPLY record and send it to HS !Chapter 6.0). 
Call SESSION_DEACTIVATION_POLARITYILU_NAME, MODE_NAMEl lpage 3-74). 

to determine the polarity of an additional session to deactivate lif any). 
If there is a free session of the appropriate type then I see Note) 

Call SEND_BIS_RQIHS_IDl lpage 3-67). 
Remove the session from the free-session pool. 

3-38 SNA LU 6.2 Reference: Peer Protocols 

c 

c 



c) 

0 

(_) 

CHANGE_SESSIONS_PROC 

CHANGE_SESSIONS_PROC 

FUNCTION: This procedure performs the processing that is required when two LU service 
transaction programs exchange CHANGE_NUMBER_OF_SESSIONS requests and a new 
session limit is agreed upon. PS.COPR (Chapter 5.4) sends CHANGE_SESSIONS to 
RM after CHANGE_NUMBER_OF_SESSIONS requests have been successfully exchanged. 

INPUT: 

OUTPUT: 

A new TERMINATION_COUNT is computed based on the information in the 
CHANGE SESSIONS record. If the new TERMINATION_COUNT is greater than O, ses­
sions have to be deactivated. Pending-active sessions are deactivated first 
followed by free sessions: If the TERMINATION_COUNT is still greater than O, 
sessions will be deactivated later when they become free. 

After pending-active and free sessions have been deactiva·ted as required, 
additional sessions may be activated if the current session count (by polari­
ty, i.e., CONHINNER or CONLOSERJ is less than the minimum limits. This proce­
dure may have to request both deactivation and activation of sessions if, for 
example, the total session limit remains constant, but the mix of 
first-speaker and bidder sessions changes. 

CHANGE_ SESSIONS 

MODE.TERMINATION count set, waiting GET_SESSION records possibly rejected and 
destroyed, CHANGE_SESSIONS record destroyed 

NOTES: 1. An implementation may choose not to deactivate pending-active sessions. If, 
however, the TERMINATION_COUNT is nonzero when the session becomes active, the 
session has to then be deactivated. 

Z. The MODE pending termination counts indicate the number of sessions that this 
LU has sent BIS on. 

Referenced procedures, FSMs, and data structures: 
PS 
DEACTIVATE_PENDING_SESSIONS 
DEACTIVATE_FREE_SESSIONS 
ACTIVATE_NEEDED_SESSIONS 
CHANGE_ SESSIONS 
MODE 
GET_SESSION 
SESSION_ALLOCATED 

If CHANGE_SESSIONS.RESPONSIBLE is YES then 

page 5.0-8 
page 3-47 
page 3-46 
page 3-24 
page A-15 
page A-3 
page A-16 
page A-ZZ 

Get addressability to the MODE control block associated with CHANGE_SESSIONS.LU_NAME 
and CHANGE_SESSIONS.MODE_NAME. 

Set CONHINNER COUNT to MODE.ACTIVE CONHINNERS COUNT + MODE.PENDING CONHINNERS COUNT. 
Set CONLOSER_COUNT to MODE.ACTIVE_CONLOSERS_COUNT + MODE.PENDING_CONLOSERS_COUNT. 
Set OLD SESSION LIMIT to MODE.SESSION LIMIT - CHANGE SESSIONS.DELTA. 
Set PLATEAU to - - -

minCMODE.ACTIVE_SESSION_COUNT + MODE.PENDING_SESSION_COUNT, OLD_SESSION_LIMITJ. 
Set CONHINNER INCREMENT to the maximum of CO, MODE.MIN CONHINNERS LIMIT - CONHINNER COUNTJ. 
Set SESSION DECREMENT to the maximum of CO, PLATEAU - MODE.SESSION LIMITJ. -
Set CONLOSER_INCREMENT to the maximum of 10, MODE.MIN_CONLOSERS_LIMIT - CONLOSER_COUNTJ. 
Set NEED TO ACTIVATE to CONHINNER INCREMENT + CONLOSER INCREMENT. 
Set ROOM-FOR ACTIVATION to the ma~imum of CO, MODE.SESSION LIMIT - PLATEAU!. 
Set DECREMENT FOR POLARITY to the maximum of CO, NEED TO ACTIVATE - ROOM FOR ACTIVATION!. 
Set MODE.TERMINATION_COUNT to MODE.TERMINATION_COUNT + SESSION_DECREMENT-+ -

DECREMENT FOR POLARITY. 
If MODE.TERMINATION_COUNT > 0 then 

Call DEACTIVATE_PENDING_SESSIONSCCHANGE_SESSIONS.LU_NAME, CHANGE_SESSIONS.MODE_NAMEJ 
!page 3-47, see Note lJ. 

If MODE.TERMINATION_COUNT > 0 then 
Call DEACTIVATE_FREE_SESSIONSICHANGE_SESSIONS.LU NAME, CHANGE_SESSIONS.MODE_NAMEJ 

!page 3-46). 

Chapter 3. LU Resources Manager 3-39 



CHANGE_SESSIONS_PROC 

If MODE.SESSION_LIHIT = O, and 
IMODE.DRAIN_SELF = NO or IHODE.ACTIVE_SESSION_COUNT - lsee Note 2) 
IMODE.PENDING_TERMINATION_C~INNERS + MODE.PENDING_TERMINATION_CONLOSERS)=OJ) then 

Do for each GET_SESSION request waiting for a session with ICHANGE_SESSIONS.LU_NAME, 
CHANGE_SESSIONS.MODE_NAMEJ: 

Create a SESSION_ALLOCATED record with RETURN_CODE set to UNSUCCESSFUL_NO_RETRY 
and send it to the PS that made the request. 

Destroy the GET_SESSION request. 
Call ACTIVATE_NEEDED_SESSIONSICHANGE_SESSIONS.LU_NAME, CHANGE_SESSIONS.MODE NAME) to 
activate new sessions if possible and if needed (page 3-24). 

CHECK_FOR_BIS_REPLY 

FUNCTION: This procedure checks to see if a BIS_REPLY should be sent at the present time 
to respond to a received BIS_RQ. 

INPUT: HS_ID, the ID of the half-session that sent the BIS_RQ 

OUTPUT: BIS_REPLY to HS, or no output 

NOTE: BIS_REPLY is sent if there are no waiting GET_SESSION requests for the ses­
sion. 

Referenced procedures, FSMs, and data structures: 
SEND_BIS_REPLY 
HS_ID 
GET_SESSION 
MODE 

page 3-67 
page 3-91 
page A-16 
page A-3 

Get addressability to the MODE control block associated with the LU name and mode 
name of the session identified by HS_ID. 

If MODE.DRAlN_SELF =NO or there are no GET_SESSION records waiting for the LU name and 
mode name then 

If the session identified by HS_ID is free !between brackets) then 
Call SEND_BIS~REPLYIHS_IOJ (page 3-67J. 
Remove the session from the free-session pool. 

3-40 SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c 

c 



C: 

c~ 

c, 

0 

COMPLETE_LUH_ID 

COMPLETE_LUH_ID 

FUNCTION: This procedure creates a new LUH instance and sequence number. 

INPUT: 

OUTPUT: 

NOTES: 

TCB 

The LUH instance and sequence number set in the TCB, PREVIOUS_TIME reset 

1. Bits 0-31 of the time value is the accurate local time IS/370 time-of-day 
clock format)} the remaining bits, 32-47, may be used to provide uniqueness of 
the LUH instance field. Each LUH instance has a greater value than previously 
generated values. 

2. If the value of the first 5 bytes found in the TIME variable is equal to the 
value of the last LUH instance I found in PREVIOUS TIME), the value contained 
in bits 32 to 47 of the TIME variable is incremented by 1. Unless bits 32 to 
47 contain all binary l's, incrementing the TIME variable will create a value 
that can be used in the LUH instance field. If bits 32 to 47 contain all 
binary l's, the incrementation will cause a wrap, creating an invalid value 
less than the previous time. Under this circumstance, the TIME variable will 
again be set to the local system time. Implementations should assign bits 32 
to 47 based upon their clock data, when translating their clock into the 370 
clock format, or should treat bits 32 to 47 as a counter to be incremented by 
one whenever the TIME variable is set to the local system time. The counter 
may be initialized to binary O's. Hhen all bits 32 to 47 are set !binary l's) 
and the time function is called again, the counter should wrap lall bits 32 to 
47 as binary Ol with no carry past bit 32. 

Referenced procedures, FSMs, and data structures: 
TCB 
PREVIOUS_ TIME 
TIME, see PREVIOUS_TIME 

Repeat until a valid TIME is generated 
Set TIME variable to the local system time. 
Translate TIME variable to IBM S/370 time-of-day clock format. 

page A-9 
page 3-92 
page 3-92 

I Refer to SYSTEM/370 Principles of Operation, <GA22-7000>, for the defined format.) 
If TIMElbits 0 to 471 is less than or equal to PREVIOUS_TIME (Note ll 
and the TIME value has not wrapped.then 

Add binary 1 to the TIMElbits 32 to 471 value. !Note 21 
If TIMElbits 32 to 471 has wrapped then 

TIME is not valid. 
Else 

TIME is valid. 
Else 

TIME is valid. 
Set TCB.LUH IDENTIFIER.LUH INSTANCE to TIMElbits 0 to 471. 
Set PREVIOUS_TIME to TIMElbits 0 to 471. 
Set TCB.LUH_IDENTIFIER.LUH_SEQUENCE_NUMBER to 1. 

Chapter 3. LU Resources Manager 3-41 



CONNECT_RCB_AND_SCB 

CONNECT_RCB_AND_SCB 

FUNCTION: This procedure connects a PS and HS process, and informs HS when the con­
nection is complete. 

INPUT: RCB_ID and HS_ID, the IDs.of the RCS representing the conversation resource 
and the SCS representing the half-session 

OUTPUT: The RCS and SCB are updated; HS_PS_CONNECTED record is sent to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
RCB 
SCB 
RCB_ID 
HS_ID 
HS_PS_CONNECTED 

Find the half-session ISCBJ identified by HS_ID. 
Find the conversation IRCBJ identified by RCB_ID. 
Set RCS.SESSION IDENTIFIER to SCB.SESSION IDENTIFIER. 
Set SCS.BRACKET-10 to RCS.BRACKET ID. -
Create an HS_PS=CONNECTED record ~ith BRACKET_ID set to RCB.BRACKET_ID 

and PS_ID equal to RCS.TCB_ID. 
Send the record to HS. (Chapter 6.0J. 

3-42 SNA LU 6.2 Reference: Peer Protocols 

page 6.0-3 
page A-6 
page A-8 
page 3-91 
page 3-91 
page A-18 

c: 



0 

0 

0 

0 

CREATE_RCB 

CREATE_RCB 

FUNCTION: This procedure handles the creation of new RCBs for outgoing ALLOCATE 
requests, for incoming Attaches see IPS_CREATION_PROC on page 3-55). 

INPUT: 

OUTPUT: 

NOTE: 

ALLOCATE_RCB and RCB_ALLOCATED. 
CATE_RCB_PROC lpage 3-Z6J. 

The RCB_ALLOCATED was created by ALLO-

RCB ALLOCATED with the RCB ID field set to the ID of the new RCB, an RCB is 
cre;ted and initialized. -

#FSH_RCB_STATUS is a generic FSH that can be either FSH_RCB_STATUS_FSP or 
FSH_RCB_STATUS_BIDDER, depending on whether the conversation resource is using 
a first-speaker or a bidder half-session. Hhen a new RCB is created, it is 
not usually known which type of half-session will be available (except for 
ALLOCATE_RCBIIHHEDIATEJ, which must use a first-speaker half-session in order 
to be successful!. Therefore, when the RCB is created, the FSH is initialized 
to FSH_RCB_STATUS_FSP, and is changed later if the conversation will be run­
ning on a bidder half-session. Until this determination is made, the state of 
the #FSH_RCB_STATUS remains FREE 1011. 

Referenced procedures, FSHs, and data structures: 
FSH_RCB_STATUS_FSP page 3-90 
FSH_RCB_STATUS_BIDDER page 3-89 
ALLOCATE_RCB page A-15 
RCB_ALLOCATED page A-Zl 
TCB page A-9 
RCB page A-6 

Create RCB, initializing RCB_ID and BRACKET_ID to unique values, HS_ID to a null value, 
LU_NAHE to ALLOCATE_RCB.LU_NAHE, and HODE_NAHE to ALLOCATE_RCB.HODE_NAHE. 

Copy TCB_ID, SYNC_LEVEL, and SECURITY_SELECT from the ALLOCATE_RCB record to the RCB. 
Set RCB ALLOCATED.RCB ID to RCB.RCB ID. 
Set #FSM_RCB_STATUS =-FSH_RCB_STATUS_FSP lpage 3-90; see Note!. 
Call #FSH_RCB_STATUSIS, ALLOCATE_RCB, UNDEFINED! 
page 3-89). 

Set RCB.CONVERSATION_CORRELATOR to a unique value, RCB.SESSION_IDENTIFIER to a null value, 
RCB.TP_NAHE to the TRANSACTION_PROGRAH_NAHE in the TCB specified by ALLOCATE_RCB. 

Chapter 3. LU Resources Manager 3-43 



CREATE_SCB 

FUNCTION: This procedure creates a new SCB based on the LU_NAHE, MODE_NAHE, and SES­
SION_INFORMATION arguments. 

INPUT: LU_NAME and MODE NAME of the partner LU; and SESSION_INFORMATION, which 
describes the session attributes 

OUTPUT: A new SCB is created. 

Referenced procedures, FSMs, and data structures: 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
LU_NAME 
MODE_NAME 
SESSION_INFORMATION 
SCB 

Create an SCB, set SCB.HS ID to SESSION INFORMATION.HS ID, SCB.LU NAME to 
LU_NAME, SCB.MODE_NAME t~ MODE_NAME, SCB.RCB_ID to a ~ull value,­
SCB.SESSION_IDENTIFIER to SESSION_INFORMATION.SESSION_IDENTIFIER, 
SCB.SEND_RU_SIZE to SESSION_INFORMATION.SEND_RU_SIZE, 

page 3-85 
page 3-86 
page 3-87 
page 3-88 
page 3-91 
page 3-91 
page A-32 
page A-8 

SCB.LIMITED BUFFER POOL ID to SESSION INFORMATION.LIMITED BUFFER POOL ID, 
SCB.PERMANENT BUFFER POOL ID to SESSION INFORMATION.PERMANENT BUFFER POOL ID, 
SCB.BRACKET ID to null, SCB.RANDOM DATA-to SESSION INFORMATION.RANDOM DATA, 
and SCB.RTR=OHED to FALSE. - - -

Select based on SESSION INFORMATION.BRACKET TYPE: 
If the half-session is ; first-speaker then-

Assign finite-state machines to be used by setting 
#FSM_BIS to FSM~BIS_FSP lpage 3-88) 
and #FSM SCB STATUS to FSM SCB STATUS FSP lpage 3-86). 

Set SCB.FIRST-SPEAKER to TRUE. - -
Else !bidder ses;ion) 

Assign finite-state machines to be used by setting 
#FSM_BIS to FSM_BIS_BIDDER lpage 3-87) 
and #FSM SCB STATUS to FSM SCB STATUS BIDDER lpage 3-85). 

Set SCB.FIRST=SPEAKER to FALSE.- -

3-44 SNA LU 6.2 Reference: Peer Protocols 

c 

c 



() 

CREATE_TCB_AND_PS 

CREATE_TCB_AND_PS 

FUNCTION: This procedure creates a TCB and PS as a result of START_TP processing. 

INPUT: The START_TP request record, a non-null TRANSACTION_PROGRAM record 

OUTPUT: A new TCB and PS, and the START TP with the new TCB ID. All shared TCB fields 
are initialized in this procedu;e, When a PS creation failure occurs, the TCB 
is destroyed, START_TP.TCB_ID is set to null, and the failure is logged. 

Referenced procedures, FSMs, and data structures: 
PS 
TCB 
START_TP 
LUCB 
PS_CREATE_PARMS 
TRANSACTION_PROGRAM 
COMPLETE_LUH_ID 

Create a TCB. 
Set TCB.TCB_ID to a unique value. 
Set TCB.TRANSACTION PROGRAM NAME to START_TP.TARGET_TP_NAME. 
Set TCB.OHN_LU_ID t~ LUCB.LU_ID. 

page 5.0-8 
page A-9 
page A-19 
page A-1 
page A-27 
page A-5 
page 3-41 

Set TCB.LUH_IDENTIFIER.FULLY_QUALIFIED_LU_NAME to START_TP.FULLY_QUALIFIED_LU_NAME. 
Call COMPLETE_LUH_IDITCBJ (page 3-411. 
Set TCB.CONTROLLING_COMPONENT to TP. 
If a user ID is present in the START_TP then 

Set TCB.INITIATING_SECURITY.USERID to START_TP.SECURITY.USERID. 
Else 

Set TCB.INITIATING SECURITY.USERID to null. 
If a profile is prese~t in the START_TP then 

Set TCB.INITIATING SECURITY.PROFILE to START TP.SECURITY.PROFILE. 
Else - -

Set TCB.PROFILE to null. 
Create PS_CREATE_PARMS initializing the fields to the addresses and IDs of 
of the data structures to which PS requires access ISee page A-27). 

Create a new PS process with the PS_CREATE_PARMS as parameter !Chapter 5.0J. 
If PS was successfully created then 

Increment· TRANSACTION_PROGRAM.INSTANCE_COUNT by 1. 
Set START_TP.TCB_ID to TCB.TCB_ID. 

Else 
Destroy the TCB. 
Log the PS creation failure to the system log. 
Set START_TP.TCB_ID to a null value. 

Chapter 3. LU Resources Manager 3-45 



DEACTIVATE_FREE_SESSIONS 

DEACTIVATE_FREE_SESSIONS 

FUNCTION: This procedure requests deactivation of free sessions between this LU and the 
partner LU identified by CLU_NAME, MODE_NAMEJ. Deactivations are requested 
until either all free sessions have had deactivation requested, or this LU is 
not responsible for any more deactivations. 

INPUT: The LU NAME of the partner LU and the MODE_NAME of the sessions to be deacti­
vated -

OUTPUT: Zero or more sessions are removed from the free-session pool. 

NOTE: First-speaker sessions are deactivated befor~ bidder sessions. 

Referenced procedures, FSMs, and data structures: 
SESSION_DEACTIVATION_POLARITY 
SEND_BIS 
SCB 
LU_NAME 
MODE_NAME 

page 
page 
page 
page 
page 

Do while there exists a free session of a polarity matching that returned by 
SESSION_DEACTIVATION_POLARITYILU_NAME, MODE_NAMEJ lpage 3-741: 
!If SESSION_DEACTIVATION_POLARITY returns EITHER, a first-speaker session is 
deactivated in preference to a bidder session.) 

Find the session's corresponding SCB. 
Remove the session from the free-session pool. 
Call SEND_BISCSCB.HS_IDJ (page 3-661. 

3-46 SNA LU 6.2 Reference: Peer Protocols 

3-74 
3-66 
A-8 
3-91 
3-91 c 

c 

c 



) c 

0 

DEACTIVATE_PENDING_SESSIONS 

DEACTIVATE_PENDING_SESSIONS 

FUNCTION: This procedure requests deactivation of pending-active sessions between this 
LU and the partner LU identified by CLU_NAME, MODE_NAMEJ. Deactivations are 
requested until either all pending-active sessions have had deactivation 
requested, or this LU is not responsible for any more deactivations. 

INPUT: LU_NAME of the partner LU and the MODE_NAME of the sessions to be deactivated 

OUTPUT: MODE termination count decremented, queued RM ACTIVATE SESSION requests 
destroyed, RM_SESSION_ACTIVATED records created and-sent to PS 

NOTE: Deactivation requests for pending-active 
addresses the possiblity that the session 
RM yet knowing (via ACTIVATE_SESSION_RSPJ. 
of UNBIND sent should be Cleanup. 

sessions are type Cleanup. This 
may already be established without 

Under this circumstance, the type 

Referenced procedures, FSMs, and data structures: 
PS 
SESSION_DEACTIVATION_POLARITY 
SEND_DEACTIVATE_SESSION 
PENDING_ACTIVATION, see ACTIVATE_SESSION 
LU_NAME 
MODE_NAME 
MODE 
RM_SESSION_ACTIVATED 
RM_ACTIVATE_SESSION 

page 5.0-8 
page 3-74 
page 3-68 
page A-20 
page 3-91 
page 3-91 
page A-3 
page A-22 
page A-16 

Get addressability to the MODE control block associated with CLU_NAME, MODE NAMEJ. 
Do while there are PENDING_ACTIVATION records for first-speaker sessions 
for ILU NAME, MODE NAMEJ, and SESSION DEACTIVATION POLARITYILU NAME,MODE NAMEJ 
(page 3:74) indicates FIRST_SPEAKER o; EITHER: - - -

Call SEND_DEACTIVATE_SESSIONIPENDING, PENDING_ACTIVATION.CORRELATOR, CLEANUP, X'08A00002' J 
C page 3-68 J. 

Decrement MODE.TERMINATION_COUNT by 1. 
Do while there are PENDING ACTIVATION records for bidder sessions 
for ILU NAME, MODE NAMEJ,-and SESSION DEACTIVATION POLARITYCLU NAME,MODE NAMEJ 
(page 3:74) indicates BIDDER or EITHER: - - -

Call SEND~DEACTIVATE_SESSIONCPENDING, PENDING_ACTIVATION.CORRELATOR, CLEANUP, X'08A00002' l 
Cpage 3-68). 

Decrement MODE.TERMINATION_COUNT by 1. 
Do while the number of pending CNOS operator activation requests 
for ILU NAME,MODE NAMEJ >MODE.PENDING SESSION COUNT: 

Find; pending ~perator RM_ACTIVATE_SESSION ;equest for CLU_NAME,MODE_NAMEJ. 
Create an RM_SESSION_ACTIVATED with RETURN_CODE equal to LU_MODE_SESSION_LIMIT_EXCEEDED 

and send it to the PS that sent the request. 
Discard the pending operator RM_ACTIVATE_SESSION request. 

Chapter 3. LU Resources Manager 3-47 



DEQUEUE_HAITING_REQUEST 

DEQUEUE_HAITING_REQUEST 

FUNCTION: This procedure checks to see if any eligible GET_SESSION requests are waiting 
to be sel"'Viced. This procedure dequeues the fir-st eligible request and 
invokes.GET_SESSION_PROC (page 3-52J to process the request. 

INPUT: HS_ID, the ID of the half-session that sent the request 

OUTPUT: GET_SESSION_PROC is invoked to process the waiting request and the waiting 
request is r-emoved fr-om the waiting request list. 

Referenced procedures, FSMs, and data structures: 
GET_SESSION_PROC 
GET_SESSION 
MODE 
HS_ID 

Get addressability to the MODE of the session identified by HS_ID.· 
If there is a waiting GET_SESSION request for- a session on this MODE then 

Remove the GET_SESSION from the waiting request queue. 
Call GET_SESSION_PROCCGET_SESSIONJ Cpage 3-52J to sel"'Vice the request. 

3-48 SNA LU 6.2 Reference: Peer- Protocols 

page 3-52 
page A-16 
page A-3 
page 3-91 

c 

(. 
\...._ .. / 

c· 



c\ 

0 

FIRST_SPEAKER_PROC 

FIRST_SPEAKER_PROC 

FUNCTION: This procedure handles 
half-session. 

the allocation processing for a first-speaker 

This procedure causes the SCB associated with the first-speaker half-session 
and the RCB of the conversation for which the session was requested to be con­
nected to each other. RM creates a SESSION ALLOCATED record, which it sends 
to PS to inform PS that a session has been s~ccessfully allocated. 

INPUT: GET_SESSION and HS_ID, the ID of the first-speaker half-session that was cho­
sen by GET_SESSION_PROC (page 3-52) 

OUTPUT: SESSION_ALLOCATED to PS 

Referenced procedures, FSMs, and data structures: 
PS 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
GET_SESSION 
SESSION_ALLOCATED 
HS_ID 
SCB 

Call SET_RCB_AND_SCB_FIELDSIGET_SESSION.RCB_ID, HS_IDl (page 3-75). 
Call CONNECT_RCB_AND_SCBIGET_SESSION.RCB_ID, HS_IDl (page 3-42). 
Create a SESSION_ALLOCATED record with RETURN_CODE equal to OK. 
Get addressability to the SCB identified by HS_ID. 
Set SEND RU SIZE, LIMITED BUFFER POOL ID, and PERMANENT BUFFER POOL ID 

in the SESSION_ALLOCATED-record-to the corresponding fields i~ the-SCB. 
Set SESSION_ALLOCATED.IN_CONVERSATION to NO. 
Send the record to PS. 

page 5.0-8 
page 3-75 
page 3-42 
page A-16 
page A-22 
page 3-91 
page A-8 

Chapter 3. LU Resources Manager 3-49 



FREE_SESSION_PROC 

FREE_SESSION_PROC 

FUNCTION: This procedure handles the processing that occurs when a session becomes free. 

INPUT: 

OUTPUT: 

This procedure first checks to see if a Bid is outstanding on this session. 
If so, the session is not returned to the free-session pool. If not, the pro­
cedure checks to see if an RTR_RQ or a BIS request or reply is to be sent. If 
either RTR RQ or BIS is sent, the session is not returned to the free-session 
pool. If -neither BIS nor RTR is sent, the free-session is returned to the 
free-session pool, and a waiting session allocation request lif any) is serv­
iced. 

FREE_ SESSION 

BRACKET_FREED, BIS_RQ, BIS_REPLY, or RTR_RQ 
GET_SESSION_PROC lpage 3-52); or no output 

to HS; or GET_SESSION to 

NOTES: 1. Upon receipt of DEALLOCATE_RCB la request to deallocate the conversation) from 
PS, RM destroys the RCB associated with the conversation previously using the 
half-session I see PROCESS_PS_TO_RM_RECORD on page 3-22). If the search for 
the RCB identified by the SCB.RCB_ID fails, PS has already deallocated the 
conversation. Hhen this occurs, RM sends BRACKET_FREED to the half-session. 

2. If an RTR is owed on this session !either the partner LU owes RTR to the local 
LU or the local LU owes RTR to the partner), the bidder has to wait for an RTR 
from the first-speaker before it can again bid for the session. Therefore, 
the deallocated bidder session is not returned to the free-session pool and a 
waiting request is not serviced. 

Referenced procedures, FSMs, and data structures: 
HS page 6.D-3 
DEQUEUE_HAITING_REQUEST page 3-48 
SHOULD_SEND_BIS page 3-76 
SEND_BIS page 3-66 
SEND_DEACTIVATE_SESSION page 3-68 
FSM_SCB_STATUS_BIDDER page 3-85 
FSM_SCB_STATUS_FSP page 3-86 
FSM_RCB_STATUS_FSP page 3-90 
FSM_RCB_STATUS_BIDDER page 3-89 
FSM_BIS_BIDDER page 3-87 
FSM_BIS_FSP page 3-88 
BRACKET_FREED page A-18 
FREE_SESSION page A-12 
SCB page A-8 
RCB page A-6 
RTR_RQ page A-12 
GET_SESSION page A-16 

3-SO SNA LU 6.2 .Reference: Peer Protocols 



cl 

C'., 
/' 

0 

Find the SCB associated with the session identified by FREE_SESSION.HS_ID. 
Find the RCB identified by the SCB.RCB_ID. 
If the RCB cannot be found (Note 11 then 

FREE_SESSION_PROC 

Create a BRACKET_FREED record, initializing the BRACKET_ID to SCB.BRACKET ID. 
Send the BRACKET_FREED record to the HS that sent the FREE_SESSION. 

Set SCB.RCB ID to a null value. 
If the stat; of #FSM_SCB_STATUS is PENDING_FMH12 then !page 3-84). 

Call SEND DEACTIVATE SESSION!ACTIVE, SCB.HS ID, ABNORMAL, X'080F6051') !page 3-68). 
Optionally log an er~or in the system log. -
Return to the calling routine. 

Else 
Call #FSM_SCB_STATUS!R, FREE_SESSION, UNDEFINED) (page 3-841. 

If there is an RCB for which the state of #FSM_RCB_STATUS is PENDING_SCB, 
and RCB.HS ID = SCB.HS ID then 

Take no ;ction and r;turn to the calling routine (a Bid is pending). 
If SCB.RTR OHED is TRUE then 

If this-is a first-speaker session !i.e., this LU owes RTR) then 
If there are no waiting GET_SESSION requests for a session 
of the partner LU and of the mode of the free session then 

If RTR is to be sent now !implementation-defined choice) then 
Send RTR_RQ to HS !Chapter 6.0J. 
Set SCB.RTR OHED to false. 

Else -
Return the session to the free-session pool. 

Return to the calling routine. 
Else !bidder session; i.e., other LU owes RTRl 

Take no action and return to the calling routine !Note 2). 
Call SHOULD_SEND_BIS!SCB.HS_IDJ (page 3-76) to determine 
whether BIS should be sent now. 

If BIS should be sent now then 
Call SEND_BIS!SCB.HS_IDJ (page 3-661. 

If the state of #FSM_BIS (page 3-87) is BIS_SENT or CLOSED then 
Take no action and return to the calling routine !BIS has been sent). 

Else !the session is available for reuse) 
Return the session to the free-session pool. 
If there are waiting GET_SESSION requests for this (partner LU, model then 

Call DEQUEUE_HAITING_REQUEST!SCB.HS_IDJ Cpage 3-481. 
Destroy the FREE_SESSION record. 

Chapter 3. LU Resources Manager 3-51 



GET_SESSION_PROC 

GET_SESSION_PROC 

FUNCTION: This procedure handles the allocation of half-sessions to be used by conversa­
tion resources. 

INPUT: 

OUTPUT: 

The procedure checks for an available half-session and calls 
procedure, depending upon whether the half-session found was 
or a bidder half-session. If no half-sessions are available 
session limit has not been reached, SEND_ACTIVATE_SESSION is 
requests that SH activate a new session. 

GET_SESSION 

See called procedures for output. 

the appropriate 
a first-speaker 
and the current 

called, which 

NOTES: 1. RH does the following: atteq>ts to service the request with a first-speaker 
half-session~ if none is available, RH attempts to service the request with a 
bidder half-session; failing that, RH requests the session manager to activate 
a new session if the current session limit has not been reached. If a 
first-speaker half-session is available, that session is used to service the 
session request. If no first-speaker half-sessions are available, an imple­
mentation can choose to service the request with a free bidder half-session, 
activate a new first-speaker half-session, or both of the above. An implemen­
tation could, for example, choose to implement the following order: choose a 
free first-speaker half-sessionJ request a new first-speaker half-session be 
activatedJ and, finally, choose a free bidder half-session. !Another possi­
bility is that an implementation could service the session request with a bid­
der half-session, if no first-speaker half-sessions are available, but at the 
same time ask that a new first-speaker half-session be activated.) However, 
if there are no free first-speaker half-sessions and the session limit for the 
desired ILU name, mode name) pair has been reached, the session request is 
serviced with a bidder half-session, if available. If a bidder half-session 
is available, an implementation does not wait for a first-speaker half~session 
to become free before servicing the session request. 

2. A mode is closed if no sessions are active for the mode name and a session 
cannot be activated without operator intervention (e.g., the operator must 
increase the session limit above Ol. In this case, the GET_SESSION request is 
rejected with a return code of UNSUCCESSFUL_NO_RETRY. 

Referenced procedures, FSHs, and data structures: 
PS page 5.0-8 
FIRST_SPEAKER_PROC page 3-49 
BIDDER_PROC page 3-37 
SESSION_ACTIVATION_POLARITY page 3-71 
SEND_ACTIVATE_SESSION page 3-65 
SEND_BIS page 3-66 
GET_SESSION page A-16 
RCB page A-6 
SCB page A-8 
PARTNER_ LU page A-2 
SESSION_ALLOCATED page A-22 

3-52 SNA LU 6.2 Reference: Peer Protocols 

c· 

c: 

c 

C· 



() 

0 

Find the RCB with RCB_ID equal to GET_SESSION.RCB_ID. 
Find the PARTNER_LU identified by the RCB.LU_NAHE. 
Find the MODE identified by the RCB.LU_NAME and RCB.MODE_NAHE. 
If the mode is closed then I see Note 2) 

GET_SESSION_PROC 

Create and send a SESSION_ALLOCATED record with a return code of UNSUCCESSFUL_NO_RETRY to 
PS !Chapter 5.1). 

Destroy the GET_SESSION record. 
Else 

If the IRCB.LU_NAHE, RCB.MODE_NAME) sessions do not support the 
requested sync level then 

Create and send SESSION ALLOCATED record with a return code of SYNC_LEVEL_NOT_SUPPORTED. 
Destroy the GET_SESSION-record. 

Else 
If the IRCB.LU NAME, RCS.MODE NAME) sessions do not support the 

requested se~rity level th~ 
Downgrade the SECURITY_SELECT field of the RCB by setting it to NONE. 

If a free session exists for RCB.LU_NAME and RCB.MODE_NAME then 
Find the SCB associated with the free session. 
If SCB.FIRST_SPEAKER is YES then 

Call FIRST_SPEAKER_PROCIGET_SESSION, SCB.HS_ID) (page 3-49). 
Destroy the GET_SESSION record. 

Else (bidder half-session) 
Call BIDDER_PROCIGET_SESSION, SCB.HS_ID) lpage 3-371. 

Remove the session from the free-session pool. 
Else (no free session exists) 

If the nunber of waiting GET_SESSION requests queued for sessions 
on this mode equals or exeeds the number of pending active session requests then 

Call SESSION_ACTIVATION_POLARITYIRCB.LU_NAME, RCB.MODE_NAME) (page 3-71) 
to determine the polarity of the next activated session lif any). 

Select based on session activation polarity: 
Hhen NONE (no new sessions can be activated) 

If PARTNER_LU:PARALLEL_SESSSION is NOT_SUPPORTED and an active session 
for another mode exists !other than the mode requested by the 
GET SESSION) then 

If the session is free then 
Get addressability to the SCB of the free session. 
Remove the session from the free session pool. 
Call SEND_BISISCB.HS_ID> (page 3-661. 

Hhen FIRST SPEAKER 
Call SEND_ACTIVATE_SESSIONIRCB.LU_NAME, RCB.MODE_NAME, 

FIRST_SPEAKERJ (page 3-65). 
Hhen BIDDER 

Call SEND_ACTIVATE_SESSIONIRCB.LU_NAHE, RCB.MODE_NAHE, 
BIDDER) !page 3-65). 

Queue the GET_SESSION request to await a session. 

Chapter 3. LU Resources Manager 3-53 



PS_ABEND_PROC 

PS_ABEND_PROC 

FlJllCTION: This procedure recovers from a PS abend. 

The procedure deletes the control blocks, data structure entries, and counts 
associated with the abended PS. 

INPUT: ABEND_NOTIFICATION 

OUTPUT: Queued GET_SESSION requests from the abended PS are destroyed, RCB control 
blocks and the TCB control block associated with the abended PS are destroyed, 
the sessions that the PS was using or bidding on are unbound, the TP instance 
count associated with the abended PS is decremented, queued Attach and 
START_TP requests for the TP are recycled by updating associated control 
blocks and recalling the appropriate procedure. 

NOTE: In order to recall ATTACH PROC the state of the SCB FSH must be PEND­
ING ATTACH. Both FSH calls-are needed to change the state of the FSH from 
IN_UsE to PENDING_ATTACH. 

Referenced procedures, FSHs, and data structures: 
PS 
SH 
FSH_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSH_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
SESSION_DEACTIVATED_PROC 
ATTACH_PROC 
START_TP_PROC 
TCB 
SCB 
ABEND_NOTIFICATION 
RCB 
DEACTIVATE_ SESSION 
TRANSACTION_PROGRAM 
HU 
START_TP 
SESSION_DEACTIVATED 
MODE 
GET_SESSION 

Find the TCB representing the abencled PS. 
Destroy all queued GET_SESSION requests from the abended PS. 
If the TCB is foi.nd 

Do for each RCB associated with the abended PS: 
If the state of the associated FSM_RCB_STATUS is FREE then 

Find the MODE that corresponds to RCB.LU_NAME, RCB.MODE_NAME 

page 5.0-8 
page 4-48 
page 3-85 
page 3-86 
page 3-90 
page 3-89 
page 3-72 
page 3-30 
page 3-77 
page A-9 
page A-8 
page A-25 
page A-6 
page A-21 
page A-5 
page A-29 
page A-19 
page A-14 
page A-3 
page A-16 

If the state of the associated FSH_RCB_STATUS is IN_USE or PENDING_SCB then 
Find the SCB with HS_ID equal to RCB.HS_ID. 
Destroy the RCB. 
If the SCB is found then 

Create a DEACTIVATE_SESSION with STATUS set to ACTIVE, 
HS ID set to SCB.HS ID, TYPE set to ABNORMAL, and 
SENsE_CODE set to X~08640000'. 

Send the DEACTIVATE SESSION record to SH. 
Create a SESSION_DEACTIVATED with HS_ID set to SCB.HS_ID, 

REASON set to ABNORHAL_RETRV, and SENSE_CODE set to X'08640000'. 
Call SESSION_DEACTIVATED_PROCISESSION_DEACTIVATEDJ lpage 3-721. 

3-54 SNA LU 6.2 Refer91C&: Pear Protocols 

c 



C; 
,. 

0 

PS_ABEND_PROC 

Find the TRANSACTION_PROGRAH where TRANSACTION_PROGRAM.TRANSACTION_PROGRAM_NAME equals 
the TCB.TRANSACTION_PROGRAH_NAHE of the abended PS. 

If the TRANSACTION_PROGRAM is found then 
Decrement the TRANSACTION_PROGRAH.INSTANCE_COUNT by l. 
If there is an initiation request (Attach or START_TPl queued for the transaction 
program named by TRANSACTION_PROGRAM.TRANSACTION_PROGRAM_NAME and the 
TRANSACTION PROGRAM.INSTANCE COUNT is less than the TRANSACTION PROGRAM.INSTANCE LIMIT 
then - - -

Remove the initiation request from the queue. 
If the initiation request is an MU (containing an Attach) then 

Find the RCB with RCB_ID equal to MU.RH_TO_PS.RCB_ID. 
Set MU.HS_TO_RH.HS_ID to the RCB's HS_ID. 
Find the SCB with the HS_ID equal to the RCB's HS_ID. 
Call FSH_SCB_STATUSIR, FREE_SESSION, UNDEFINED). 
Call FSH_SCB_STATUSIR, BID, UNDEFINED) ISee Note). 
Set the SCB's BRACKET_ID and RCB_ID to null. 
Destroy the RCB. 
Call ATTACH_PROC(MUJ lpage 3-30) 

If the queued initiation request is a START_TP then 
Call START_TP_PROCISTART_TPl lpage 3-77). 

Log the abend to the system log. 
Destroy the TCB of the abended PS. 

PS_CREATION_PROC 

FUNCTION: This procedure creates a new PS process. 

INPUT: 

OUTPUT: 

This procedure is called upon receipt of an Attach. Along with creating the 
PS process, it also creates a new TCB and RCB. It returns to the calling pro­
cedure the IDs of the newly created TCB and RCB, which the calling procedure 
will send to PS along with the received HU containing an Attach. 

An MU containing an Attach, variables in which the TCB_ID and RCB_ID will be 
returned, and the pointer to the TRANSACTION_PROGRAH structure that represents 
the target transaction program 

A TCB, RCB, and new PS process created and initialized, ·CREATE RC (creation 
return code, SUCCESS or FAILURE> is set and returned to -the calling 
proceedure, if the creation fails, the TCB and RCB destroyed, if the creation 
succeeds, the transaction program instance count incremented 

Referenced procedures, FSHs, and data structures: 
PS 
COMPLETE_LUH_ID 
FSH_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
TRANSACTION_PROGRAH 
PS_CREATE_PARHS 
MU 
TCB_ID 
RCB_ID 
TCB 
SCB 
RCB 
LUCB 

page 5.0-8 
page 3-41 
page 3-90 
page 3-89 
page A-5 
page A-27 
page A-29 
page 3-91 
page 3-91 
page A-9 
page A-8 
page A-6 
page A-1 

Create a TCB with a unique TCB_ID, initializing TRANSACTION_PROGRAM_NAME to the 
transaction program name contained in the Attach, CONTROLLING_COMPONENT to TP 
and OHN_LU_ID to LUCB.LU_ID. 

If the Attach contains a user ID then 
Set TCB.INITIATING_SECURITY.USERID to the user ID contained in the Attach. 

Else 
Set TCB.INITIATING SECURITY.USERID to null. 

If the Attach containi a profile then 
Set TCB.INITIATING_SECURITY.PROFILE to the profile contained in the Attach. 

Else 
Set TCB.INITIATING_SECURITY.PROFILE to null. 

Chapter 3. LU Resources ~nager 3-55 



PS_CREATION_PROC 

If the Attach contains a logical-unit-of-work ID then 
Save the logical-unit-of-work ID from the Attach in the TCB. 

Else 
Set the TCB.LUH_IDENITFIER.FULLY_QUALIFIED_LU_NAHE to the LUCB.FULLY_QUALIFIED_LU_NAHE. 
Call COHPLETE_LUH_IDITCBl lpage 3-41). 

Find the SCB identified by HU.HS_TO_RH.HS_ID. 
Create an RCB with a unique RCB_ID, initializing RCB.TCB_ID to TCB.TCB_ID, 

RCB.LU_NAHE to SCB.LU_NAHE, RCB.HODE_NAHE to SCB.HODE_NAHE, 
TP_NAHE to the transaction program name contained in the Attach, 
RCB.BRACKET_ID to a unique value, RCB.SVNC_LEVEL to the sync level of the Attach, 
and RCB.HS_TO_PS_BUFFER_LIST to empty. 

If a conversation correlator is present in the Attach then 
Set the RCB.CONVERSATION CORRELATOR to the conversation correlator in the Attach. 

Else -
Set the RCB.CONVERSATION_CORRELATOR to null. 

If the session is a first speaker then 
Set IFSH_RCB_STATUS to FSH_RCB_STATUS_FSP lpage 3-90). 

Else 
Set IFSH_RCB_STATUS to FSH_RCB_STATUS_BIDDER lpage 3-89). 

Call IFSH_RCB_STATUSIR, ATTACH, HS) lpage 3-89). 
Set RCB.HS ID to HU.HS TO RH.HS ID. 
Create PS_CREATE_PARHS-inTtiali~ing the fields to the addresses and IDs of 
of the data structures to which PS requires access ISee page A-27). 

Create a new PS process with the PS_CREATE_PARHS as a parameter 
If PS was successfully created then 

Set CREATE_RC to SUCCESS. 
If the pointer to TRANSACTION_PROGRAH is a non-null value then 

Increment TRANSACTION_PROGRAH.INSTANCE_COUNT by 1. 
Else 

Set CREATE RC to FAILURE. 
Destroy th; TCB and RCB. 

3-56 SNA LU 6.2 Reference: Peer Protocols 

c 



( ·- .. 

' 
/ 

C. ) 
./ 

0 

PS_TERMINATION_PROC 

PS_TERMINATION_PROC 

FUNCTION: This procedure handles the termination of a PS process. 

INPUT: 

OUTPUT: 

NOTES: 

If there are no queued Attach or START_TP requests for this TP, the procedure 
destroys the PS process and discards the TCB corresponding to the PS being 
destroyed. If there are waiting requests for the TP-PS process, PS is 
normally not terminated, instead the waiting reqt,iest is sent to the PS 
instance requesting termination. 

TERMINATE_PS 

The PS process is destroyed • or an HU (containing an FMH-5J is sent to PS and 
HS_PS_CONNECTED is sent to HS, or a START_TP record is sent to the PS process 

l. TRANSACTION_PROGRAM will not exist when the PS instance was brought up to 
reject an Attach that specified an unknown transaction program name. Under 
this circumstance the instance count for a transaction program has no meaning. 

z. The TP instance count may exceed the instance limit when a PS process is 
brought up to reject an Attach that contained an error (except as noted 
above}. Hhen the instance limit is exceeded, the PS process is terminated 
regardless of any queued requests. 

Referenced procedures, FSMs, and data structures: 
PS 
HS 
TERMINATE_PS 
LUCB 
TRANSACTION_PROGRAM 
HS_PS_CONNECTED 
MU 
START_TP 
START_TP_REPLY 
TCB 
RCB 
COMPLETE_LUH_ID 

page 5.0-8 
page 6.0-3 
page A-17 
page A-1 
page A-5 
page A-18 
page A-Z9 
page A-19 
page A-ZO 
page A-9 
page A-6 
page 3-41 

Find the TCB"and TRANSACTION_PROGRAM corresponding to the PS being destroyed 
If a TRANSACTION PROGRAM is found (Note ll and 
if there are qu;ued waiting initiation requests for the TRANSACTION_PROGRAM and 
the TRANSACTION PROGRAM.INSTANCE LIMIT ~TRANSACTION PROGRAM.INSTANCE COUNT then !Note Zl 

Select based~ the first queu;d request's record type: 
Hhen MU !MU containing an Attach} 

Set the MU.RM TO PS.TCB ID to TCB.TCB ID. 
Set the TCB.CONTROLLING-COMPONENT to TP. 
If the security subfields are present in the Attach then 

Set the TCB.INITIATING SECURITY fields I PROFILE and USERIDJ to the values 
contained in the corr;sponding fields of the Attach. 

If an LUH_IDENTIFIER is present in the Attach then 
Set TCB.LUH_IDENTIFIER to the corresponding Attach field. 

Else ILUH_IDENTIFIER not in Attach} 
Set the TCB.LUH_IDENTIFIER.FULLY_QUALIFIED_LU_NAME to 

LUCB.FULLY_QUALIFIED_LU_NAME. 
Call COMPLETE_LUH_IDITCBJ !page 3-41). 

Find the RCB with RCB_ID equal to MU.RM_TO_PS.RCB_ID. 
Set RCB.TCB ID to TCB.TCB ID. 
Create an HS_PS_CONNECTED-record with BRACKET_ID set to RCB.BRACKET_ID 

and PS_ID set to RCB.TCB_ID. 
Send the HS PS CONNECTED record to HS. 
Send the MU-to-PS. 
If the send to PS fails then 

Call buffer manager IFREE_BUFFER, buffer address) to release 
the buffer containing MU. ("Appendix B. Buffer Manager") 

Chapter 3. LU Resources Manager 3-57 



PS_TERHINATION_PROC 

Hhen START_TP 

Else 

Set START_TP.TCB_ID to TCB.TCB_ID. 
Set the TCB.LUH_IDENTIFIER.FULLY_QUALIFIED_LU_NAME to 

START_TP.FULLY_QUALIFIED_LU_NAME. 
Call COMPLETE_LUH_IDITCB) lpage 3-41). 
Set the TCB.CONTROLLING_COHPONENT to TP. 
If the START_TP.SECURITY_SELECT is PGM then 

Set the TCB.INITIATING_SECURITY fields IPROFILE and USERID) to the values 
contained in the corresponding fields of the START_TP. 

Else 
Set TCB.INITIATING_SECURITY fields to null. 

If START_TP.REPLY equals YES then 
Create a START_TP_REPLY with a RESPONSE_CODE of OK 
and a TCB_ID equal to START_TP.TCB_ID. 

Send the START_TP_REPLY to the process that issued the 
START_TP request. 

Decrement the INSTANCE_COUNT of the TRANSACTION_PROGRAM lcorrespcjnding 
to the PS instance that is being destroyed) by 1. 

Destroy the TCB and destroy the PS process corresponding to TERHINATE_PS.TCB_ID. 
Destroy the TERMINATE_PS record. 

3-58 SNA LU 6.2 Reference: Peer Protocols 

c 



c 

c 

\ c 

0 

PURGE_QUEUED_REQUESTS 

PURGE_QUEUED_REQUESTS 

FUNCTION: This procedure purges Attach and START_TP requests queued for a TP-PS process 
that currently has no instances ruining C possibly they abended J and none can 
be created. 

INPUT: 

OUTPUT: 

TRANSACTION_PROGRAH 

~eued Attachs and related RCBs destroyed, associated sessions unbound, queued 
START_TPs destroyed, TP initiating process notified 

Referenced procedures, FSMs, and data structures: 
SM 
START_TP_REPLY 
TRANSACTION_PROGRAH 
MU 
START_TP 
RCB 
SCB 
DEACTIVATE_SESSION 
SESSION_DEACTIVATED 
SESSION_DEACTIVATED_PROC 

If the pointer to the TRANSACTION_PROGRAM record is not null then 

page 4-48 
page A-20 
page A-5 
page A-29 
page A-19 
page A-6 
page A-8 
page A-21 
page A-14 
page 3-72 

Do while there are waiting initiation requests for the transaction program identified 
by TRANSACTION_PROGRAM: 

Select based on the first queued request's record type: 
Hhen MU CMU containing Attach) 

Find the RCB identified by MU.RM_TO_PS.RCB_ID. 
Find the SCB identified by RCB.HS_ID. 
Destroy the RCB. 
Call buffer manager CFREE_BUFFER, buffer address) to release the buffer 
containing MU (Appendix B>. 

If the SCB is found then 
Create a DEACTIVATE_SESSION record initializing STATUS to ACTIVE, 

HS ID to SCB.HS ID, TYPE to ABNORMAL, and SENSE CODE to X'08640000'. 
Send the DEACTIVATE_SESSION record to SM. -
Create a SESSION_DEACTIVATED record initializing HS_ID to SCB.HS_ID, 

REASON to ABNORMAL_RETRY, and SENSE_CODE to X'08640000'. 
Call SESSION_DEACTIVATED_PROCCSESSION_DEACTIVATED) Cpage 3-72) 

Hhen START_TP 
If START_TP.REPLY is YES then 

Create a START_TP_REPLY record initializing RESPONSE_CODE to 
PS_CREATION_FAILURE and TCB_ID to a null value. 

Send the START_TP_REPLY to the initiating process. 
Destroy the START_TP record. 

Chapter 3. LU Resources Manager 3-59 



QUEUE_ATTACH_PROC 

QUEUE_ATTACH_PROC 

FUNCTION: For an Attach that cannot be immediately satisfied because it is to a limited 
instance TP that is currently in use, this procedure creates and initializes 
an RCB and queues the Attach request. 

INPUT: An MU containing an FMH-5 IAttachJ 

OUTPUT: A newly created RCB and the MU placed on a queue waiting for a TP to become 
available 

Referenced procedures, FSMs, and data structures: 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
MU 
RCB 
SCB 

Create an RCB with a unique RCB_ID, setting the TCB_ID to null, 
the TP_NAME to the transaction program name contained in the Attach, 
HS_ID to MU.HS_TO_RM.HS_ID, BRACKET_ID to a unique value, 
SYNC_LEVEL to the sync level of the Attach 
and the HS_TO_PS_BUFFER_LIST to empty. 

If there is a conversation correlator in the Attach then 

page 3-90 
page 3-89 
page 3-85 
page 3-86 
page A-29 
page A-6 
page A-8 

Set the RCB.CONVERSATION_CORRELATOR to the conversation correlator in the Attach. 
Else 

Set the RCS.CONVERSATION CORRELATOR to null. 
Find the SCB identified by MU.HS_TO_RM.HS_ID. 
Set RCS.LU NAME to SCB.LU NAME and RCS.MODE NAME to SCB.MODE_NAME. 
If the ses;ion is a first-speaker then -

Set #FSM_RCB_STATUS to FSM_RCB_STATUS_FSP lpage 3-90). 
Else 

Set #FSM_RCB_STATUS to FSM_RCB_STATUS_BIDDER lpage 3-89). 
Call #FSM_RCB_STATUSIR, ATTACH, HSJ lpage 3-90). 
Set SCB.BRACKET_ID to RCB.BRACKET_ID. · 
Set SCB.RCB_ID to RCB.RCB_ID. 
Set RCB.SESSION_IDENTIFIER TO SCB.SESSION_IDENTIFIER. 
Call #FSM_SCB_STATUSIR, ATTACH, UNDEFINED) lpage 3-84). 
Set the MU.RM TO PS fields as follows: RCB ID to RCB.RCB ID, 

SEND_RU_SIZE-to-SCB.SEND_RU_SIZE, LIMITED_BUFFER_POOL_ID-to SCB.LIMITED_BUFFER_POOL_ID, 
PERMANENT BUFFER POOL ID to SCB.PERMANENT BUFFER POOL ID, and SENSE CODE to X'OOOOOOOO' 
(waiting Attach ;ecord has passed all RM ;rror checksl. -

Queue the Attach MU to await the freeing of an active target TP-PS instance. 

3-60 SNA LU 6.2 Reference: Peer Protocols 



0 

c 

0 

RM_ACTIVATE_SESSION_PROC 

RM_ACTIVATE_SESSION_PROC 

FUNCTION: This procedure processes the RM_ACTIVATE_SESSION record. 

An RM_ACTIVATE_SESSION record is sent to RM by PS.COPR (Chapter 5.41 when the 
control operator issues an ACTIVATE_SESSION command. The connand directs RM 
to activate a new session to the partner LU identified by LU_NAME with the 
mode specified by MODE_NAME. 

RM replies to the RM_ACTIVATE_SESSION record with an RM_SESSION_ACTIVATED 
record. The RETURN_CODE field of RM_SESSION_ACTIVATED indicates the success 
or failure of the session activation. 

INPUT: RM_ACTIVATE_SESSION 

OUTPUT: ACTIVATE SESSION to SM, or RM SESSION_ACTIVATED with RETURN CODE = 
LU_MODE_SESSION_LIMIT_EXCEEDED to PS, or RM_ACTIVATE_SESSION saved a; a pend­
ing operator activation request 

Referenced procedures, FSMs, and data structures: 
PS 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 

Call SESSION_ACTIVATION_POLARITYIRM_ACTIVATE_SESSION.LU~NAME, 
RM_ACTIVATE_SESSION.MODE_NAMEl (page 3-71) 
to determine the polarity of the next activated session lif any). 

Select based on the activation polarity: 
Hhen NONE (session limit exceeded) 

Create an RM_SESSION_ACTIVATED record. 

page 5.0-8 
page 3-71 
page 3-65 
page A-16 
page A-22 

Set RM SESSION ACTIVATED.RETURN CODE to LU MODE SESSION LIMIT EXCEEDED. 
Send the RM SESSION ACTIVATED r;cord to PS-IChapter 5.4J. -
Destroy RM_ACTIVATE=SESSION record. 

Hhen FIRST SPEAKER 
Call SEND_ACTIVATE_SESSIONIRM_ACTIVATE_SESSION.LU_NAME, 

RM_ACTIVATE_SESSION.MODE_NAME, FIRST_SPEAKERl lpage 3-65). 
Save the RM_ACTIVATE_SESSION record as a pending operator activation request. 

Hhen BIDDER 
Call SEND_ACTIVATE_SESSIONIRM_ACTIVATE_SESSION.LU_NAME, 

RM_ACTIVATE_SESSION.MODE_NAME, BIDDER) (page 3-65). 
Save the RM_ACTIVATE_SESSION record as a pending operator activation request. 

Chapter 3. LU Resources Manager 3-61 



RH_DEACTIVATE_SESSION_PROC 

RH_DEACTIYATE_SESSION_PROC 

FUNCTION: This procedure performs the processing of the RH_DEACTIVATE_SESSION record. 

INPUT: 

OUTPUT: 

An RM_DEACTIVATE_SESSION record is sent to RH by PS.COPR !Chapter 5.4) when 
the control operator issues a DEACTIYATE_SESSION command. The command directs 
RH to deactivate the session identified by HS_ID. 

RH_DEACTIVATE_SESSION 

DEACTIVATE_SESSION to SM, BIS_RQ to HS, session possibly removed from the 
free-session pool 

Referenced procedures. FSMs. and data structures: 
SEND_DEACTIVATE_SESSION 
SEND_BIS_RQ 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
RM_DEACTIVATE_SESSION 
SCB 

page 3-68 
page 3-67 
page 3-87 
page 3-88 
page A-17 
page A-8 

Find the SCB that has an HS_ID that matches the RM_DEACTIVATE_SESSION.SESSION_ID. 
If the SCB is found then 

Select based on RM_DEACTIVATE_SESSION.TYPE: 

Else 

Hhen CLEANUP 
Call SEND_DEACTIVATE_SESSIONIACTIYE, RH_DEACTIYATE_SESSION.SESSION_ID, 

CLEANUP, X'OOOOOOOO'I (page 3-68). 
Destroy the RM_DEACTIYATE_SESSSION record. 

Hhen NORMAL 
If the session is in use then 

If state of IFSM_BIS !page 3-87) t BIS_SENT then IBIS not already sent) 
Queue the deactivation request. 

Else 
Destroy the RM_DEACTIYATE_SESSSION record. 

Else !session not in use! 
Queue the deactivation request. 
Call SEND_BIS_RQIHS_IDl !page 3-67). 
Remove the session from the free-session pool. 

Destroy the RM_DEACTIYATE_SESSION record. 

3-62 SNA LU 6.2 Reference: Peer Protocols 

c 

c 



G 

c 

c 

0 

RTR_R~PROC 

RTR_R~PROC 

FlJllCTION: This procedure handles the receipt of RTR requests from a first-speaker 
half-session. 

The session is returned to the free-session pool, and if there is a waiting 
request, the request is processed and a +RSPCRTRl is sent to the resources 
manager of the first-speaker half-session. If not, a -RSPCRTR, 0819) is sent 
to the resources manager to indicate that the resources manager of the bidder 
half-session has nothing to send. 

INPUT: RTR_RQ from HS 

OUTPUT: Positive RTR_RSP, or negative RTR_RSPCSENSE_CODE = X'08190000') to HS 

Referenced procedures, FSMs, and data structures: 
HS 
GET_SESSION_PROC 
SEND_DEACTIVATE_SESSION 
SHOULD_SEND_BIS 
SEND_BIS 
RTR_RQ 
GET_SESSION 
RTR_RSP 
SCB 

page 6.0-3 
page 3-52 
page 3-68 
page 3-76 
page 3-66 
page A-12 
page A-16 
page A-13 
page A-8 

Get addressability to the SCB representing the session on which the RTR_RQ was received. 
If SCB.RTR_OHED is TRUE !the partner LU owes an RTRl then 

If there are any GET_SESSION requests waiting for sessions with 
the partner LU and mode then 

Return the session to the free-session pool. 
Create an RTR RSP record with RTI set to POS and SENSE_CODE set to X'OOOOOOOO'. 
Send the RTR_RSP record to HS !Chapter 6.0). 
Remove a GET_SESSION record from the waiting request queue. 
Call GET_SESSION_PROCIGET_SESSIONJ !page 3-52) to process the request. 

Else !no waiting requests) 
Create an RTR_RSP record with RTI set to NEG and SENSE_CODE set to X'08190000'. 
Send the RTR_RSP record to HS (Chapter 6.0). 
Call SHOULD_SEND_BISIRTR_RQ.HS_IDJ (page 3-76) to determine whether 

BIS should be sent on this session. 
If BIS should be sent then 

Call SEND_BISIRTR_RQ.HS_IDJ (page 3-661. 
Else 

Return the session to the free-session pool. 
Set SCB.RTR_OHED to FALSE. 

Else IRTR not expected) 
Call SEND_DEACTIVATE_SESSIONIACTIVE, RTR_RQ.HS_ID, ABNORMAL, X'20030000') !page 3-68). 

Chapter 3. LU Resources Manager 3-63 



RTR_RSP_PROC 

RTR_RSP_PROC 

FUNCTION: This procedure handles the receipt of RTR responses from a bidder 
half-session. 

INPUT: 

OUTPUT: 

NOTE: 

If the input is a positive RTR_RSP, no processing is performed. If the input 
is a negative RTR_RSPISENSE_CODE = X'0819'J, the session is returned to the 
free-session pool, and the session is used to service a waiting recp.iest lif 
any). 

Positive or negative RTR_RSP from HS 

The session may be returned to the free-session pool. 

If IFSM_BIS is not in the RESET state when RTR_RSP is received, this procedure 
does not return the session to the free-session pool, since the session is in 
the process of being shut down. This can occur, for example, when the first 
speaker has sent a BIS and the bidder responds negatively to a previous RTR 
before sending its own BIS. 

Referenced procedures, FSMs, and data structures: 
DEQUEUE_HAITING_REQUEST 
SHOULD_SEND_BIS 
SEND_BIS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
RTR_RSP 

page 3-48 
page 3-76 
page 3-66 
page 3-87 
page 3-88 
page A-13 

If RTR_RSP.RTI is NEG and the state of IFSM_BIS is RESET lpage 3-871 then (see NoteJ 
Call SHOULD_SEND_BISIRTR_RSP.HS_IDJ lpage 3-761 

to determine whether BIS should be sent on this session. 
If BIS should be sent then 

Call SEND_BISIRTR_RSP.HS_IDJ lpage 3-661. 
Else 

Return the session to the free-session pool. 
Call DEQUEUE_HAITING_REQUESTIRTR_RSP.HS_IDJ lpage 3-481 to process any waiting requests. 

Destroy the RTR_RSP record. 

3-64 SNA LU 6.2 Reference: Peer Protocols 

C' 
/ 

I~ 
l \., ___ / 



Ci 

0 

SECURITY_PROC 

SECURITY_PROC 

FUNCTION: This procedure checks the FMH-12, checks that the session is in the proper 
state to receive an FMH-12, and verifies the enciphered data fouid in the 
FMH-12. 

INPUT: An MU that contains the FMH-12 (see SNA Formats) 

OUTPUT: UNBIND processing if in error, state change of FSM_SCB_STATUS if OK, the buff­
er used by the MU freed 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIVATE_SESSION 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
MU 
SCB 
LUCB 

Find the SCB identified by MU.HS_TO_RM.HS_ID. 
Remove the random data sent in the RSPIBINDJ (found in SCB.RANDOM_DATAl 

from the LUCB.PENDING RANDOM DATA LIST. 
If the state of #FSM_SCB_STATUS t PENDING_FMH12 !page 3-84) or 

page 3-68 
page 3-85 
page 3-86 
page A-29 
page A-8 
page A-1 

the FMH_l2 length t 10 or the enciphered random data received in the FMH-12 t 
this LU's enciphered version of the same random data then 

Call SEND_DEACTIVATE_SESSIONIACTIVE, SCB.HS_ID, ABNORMAL, X'080F6051') (page 3-68). 
Optionally log the error in the system log. 

Else 
Call #FSM_SCB_STATUSIR, FMH_l2, UNDEFINED) !page 3-841 
!initialized by CREATE_SCB). 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer containing MU 
I Appendix B). 

SEND_ACTIVATE_SESSION 

FUNCTION: This procedure sends an ACTIVATE SESSION record to the session manager to 
request activation of a half-sessi~n. The appropriate pending session counts 
are incremented. 

INPUT: LU_NAME, the name of the partner LU; MODE_NAME, the name of the mode; the ses­
sion polarity IFIRST_SPEAKER or BIDDER) 

OUTPUT: ACTIVATE_SESSION to SM, the pending session counts incremented 

Referenced procedures, FSMs, and data structures: 
SM 
ACTIVATE_SESSION 
PENDING_ACTIVATION, see ACTIVATE_SESSION 
MODE 
LU_NAME 
MODE_NAME 

Find the MODE control block associated with LU_NAME and MODE_NAME. 
Create an ACTIVATE SESSION record and set the subfields as follows: 

CORRELATOR to a u~ique value, LU_NAME and MODE_NAME to the LU_NAME 
and MODE_NAME inputs, and SESSION_TYPE to the session polarity input. 

Create a PENDING_ACTIVATION record initializing its subfields to the 
same values as in the ACTIVATE_SESSION fields. 

Queue the PENDING ACTIVATION. 
Increment the MODE.PENDING_SESSION_COUNT by 1. 

page 4-48 
page A-20 
page A-20 
page A-3 
page 3-91 
page 3-91 

Increment the MODE.PENDING_CONHINNERS_COUNT or MODE.PENDING_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Send the ACTIVATE_SESSION record to SM 1Chapter'4J. 

Chapter 3. LU Resources Manager 3-65 



SEND_ATTACH_TO_PS 

SEND_ATTACH_TO_PS 

FUNCTION: This procedure fills in the RM_TO_PS header information in the HU and sands it 
to the appropriate instance of PS.CONY. 

INPUT: The MU containing the FMH-5 !Attach) and the information to be inserted in the 
MU: TCB ID, RCB ID, and error sense data 

OUTPUT: The updated HU sent to PS 

Referenced procedures, FSMs, and data structures: 
PS 
SCB 
MU 
RCB_ID 
TCB_ID 

Find the SCB identified by MU.HS_TO_RM.HS_ID. 

page 5.0-8 
page A-8 
page A-29 
page 3-91 
page 3-91 

Set the MU.RM_TO_PS fields as follows: RCB_ID to input RCB_ID, TCB_ID to input TCB_ID 
SEND_RU_SIZE to SCB.SEND_RU_SIZE, LIMITED_BUFFER_POOL_ID to SCB.LIMITED_BUFFER_POOL_ID, 
PERMANENT_BUFFER_POOL_ID to SCB.PERMANENT_BUFFER_POOL_ID, 
and SENSE_CODE to the input sense data. 

Send the MU to PS !Chapter 5.0J. 
If the send fails then 

Call buffer manager CFREE_BUFFER, buffer address) to release the buffer containing MU 
C Appendix BJ. 

Optionally log the error in the system log. 

SEND_BIS 

FUNCTION: This procedure causes either BIS_RQ or BIS_REPLY to be sent on the session 
identified by HS_ID. The choice of BIS_RQ or BIS_REPLY is dependent on the 
state of #FSM_BIS. 

INPUT: HS_ID, the ID of the session 

OUTPUT: BIS_RQ or BIS_REPLY to HS 

Referenced procedures, FSMs, and data structures: 
SEND_BIS_RQ 
SEND_BIS_REPLY 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
HS_ID 

Select based on the state of #FSM_BIS (page 3-871: 
Hhen RESET 

Call·SEND_BIS_RQIHS_IDJ lpage 3-67J. 
Hhen BIS RCVD 

Call SEND_BIS_REPLYIHS_IDJ lpage 3-67). 
Otherwise 

Do nothing. 

3-66 SNA LU 6.2 Reference: Peer Protocols 

page 3-67 
page 3-67 
page 3-87 
page 3-88 
page 3-91 



( _ _/ 

c 

SEND_BIS_REPLY 

SEND_BIS_REPLY 

FUNCTION: This procedure creates a BIS_REPLY and sends it to HS. 

INPUT: HS_ID, the ID of the half-session over which the BIS_REPLY will flow 

OUTPUT: BIS_REPLY sent to HS, MODE termination count incremented 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_REPLY 
MODE 
HS_ID 

Call #FSM_BISIS, BIS_REPLY, HS_IDl (page 3~871 for the session 
identified by HS_ID. 

Create a BIS_REPLY record and send it to HS !Chapter 6.01. 

page 6.0-3 
page 3-87 
page 3-88 
page A-12 
page A-3 
page 3-91 

Get addressability to the MODE control block associated with the LU and mode 
name of the session identified by HS_ID. 

Increment MODE.PENDING_TERMINATION_CONHINNERS or MODE.PENDING~TERMINATION_CONLOSERS by 1, 
as appropriate to the session polarity. 

SEND_BIS_RGI 

FUNCTION: This procedure creates a BIS_RGI and sends it to HS. 

After the BIS_RGI is sent to the half-session, the appropriate pending termi­
nation count is incremented. 

INPUT: HS_ID, the ID of the half-session over which the BIS_RGI will flow 

OUTPUT: BIS_RGI to HS, pending termination counts adjusted, queued 
RM_DEACTIVATE_SESSION records possibly destroyed 

NOTE: The TERMINATION COUNT is not decremented if the BIS RGI was sent as a result of 
a control operator RM_DEACTIVATE_SESSION request. -

Referenced procedures, FSMs, and data structures: 
HS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_RGI 
MODE 
RM_DEACTIVATE_SESSION 
HS_ID 

page 6.0-3 
page 3-87 
page 3-88 
page A-12 
page A-3 
page A-17 
page 3-91 

Create a BIS_RGI record and send it to HS (Chapter 6.01. 
Call #FSM_BISIS, BIS_RGI, HS_IDl lpage 3-871 for the session identified by HS_ID. 
Get addressability to the MODE control block associated with the LU and mode 
name of the session identified by HS_ID. 

Increment MODE.PENDING_TERMINATION_CONHINNERS or MODE.PENDING_TERMINATION_CONLOSERS by 1, 
as appropriate to the session polarity. 

If there is a queued (pending) CNOS operator session deactivation request for the session 
identified by HS_ID then 

Discard all queued RM_DEACTIVATE_SESSION requests for the session identified by HS_ID. 
Else (see Notel 

Decrement MODE.TERMINATION_COUNT by l. 

Chapter 3. LU Resources Manager 3-67 



SEND_DEACTIVATE_SESSION 

SEND_DEACTIVATE_SESSION 

FUNCTION: This procedure sends a DEACTIVATE_SESSION record to SM. 

INPUT: 

OUTPUT: 

If the STATUS is PENDING, the appropriate pending-session counts are decre­
mented. If STATUS is ACTIVE, a SESSION DEACTIVATED record is created and SES­
SION_DEACTIVATED_PROC is called to- continue processing the session 
deactivation. SM does not send SESSION_DEACTIVATED in reply to DEACTI­
VATE_SESSION. Thus, the SESSIONS_DEACTIVATED is created in this procedure and 
SESSION_DEACTIVATED_PROC is called to perform common processing. 

STATUS !ACTIVE or PENDING), CORRELATOR IHS ID if STATUS = 
correlator used on ACTIVATE_SESSION request), TYPE (NORMAL, 
MAL), and SENSE_CODE IX'OOOOOOOO' if TYPE = NORMAL) 

ACTIVE, else 
CLEANUP, ABNOR-

DEACTIVATE_SESSION to SM, MODE pending counts 
requests destroyed, waiting GET_SESSION requests 
SION_DEACTIVATED records created 

adjusted, waiting activation 
rejected and destroyed, SES-

Referenced procedures, FSMs, and data structures: 
SESSION_OEACTIVATED_PROC 
PS 
SM 
SENSE_COOE 
MODE 
GET_SESSION 
PENDING_ACTIVATION, see ACTIVATE_SESSION 
DEACTIVATE_SESSION 
SCB 
SESSION_DEACTIVATED 
SESSION_ALLOCATED 

Select based on the value of session status: 
When PENDING 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

If there is a PENDING ACTIVATION record with a matching CORRELATOR then 
!the pending activation is known to RM) 

3-72 
5.0-8 
4-48 
3-92 
A-3 
A-16 
A-20 
A-21 
A-8 
A-14 
A-22 

Create a DEACTIVATE_SESSION record with DEACTIVATE_SESSION.STATUS set to PENDING, 
DEACTIVATE SESSION.CORRELATOR set to CORRELATOR, 
DEACTIVATE=SESSION.TYPE set to TYPE, and 
DEACTIVATE SESSION.SENSE CODE set to SENSE CODE. 

Send the DEACTIVATE_SESSION record to SM !Chapter 4). 
Get addressability to the MODE control block associated with the LU 

and mode name of the pending active session. 
Decrement MODE.PENDING_CONHINNERS_COUNT or MODE.PENDING_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Decrement MODE.PENDING_SESSION_COUNT by 1. 
Destroy the PENDING_ACTIVATION record. 
If MODE.ACTIVE SESSION COUNT + MODE.PENDING SESSION COUNT 0 then 

Do for each-GET_SESSION request waiting for a se;sion to this LU name for this 
mode name: 

When ACTIVE 

Create a SESSION_ALLOCATED record with RETURN_CODE set to 
UNSUCCESSFUL_NO_RETRY and send it to the PS !Chapter 5.1) 
that initiated the session request. 

Destroy the waiting GET_SESSION record. 

If there exists an SCB where SCB.HS_ID = CORRELATOR then I session is known to RM) 
Create a DEACTIVATE SESSION record with DEACTIVATE SESSION.STATUS set to ACTIVE, 

DEACTIVATE SESSION~HS ID set to CORRELATOR, -
DEACTIVATE=SESSION.TYPE set to TYPE, and 
DEACTIVATE SESSION.SENSE CODE set to SENSE CODE. 

Send the DEACTIVATE_SESSION to SM !Chapter 41. 
Create a SESSION_DEACTIVATED record with HS_ID set to CORRELATOR. 
If TYPE is NORMAL then 

Set SESSION_DEACTIVATED.REASON to NORMAL. 
Else 

Set SESSION_DEACTIVATED.REASON to ABNORMAL_NO_RETRY. 
Set SESSION_DEACTIVATED.SENSE_CODE to SENSE_CODE. 

Call SESSION_DEACTIVATED_PROCISESSION_DEACTIVATEDJ (page 3-72). 

3-68 SNA LU 6.2 Reference: Peer Protocols 

(~' 
\ 
"'-j 



c~:: 

() 

0 

SEND_RTR_PROC 

SEND_RTR_PROC 

FUNCTION: This procedure handles the processing that occurs when a SEND_RTR is received 
by RM. 

INPUT: 

OUTPUT: 

NOTE: 

SEND_RTR 

RTR request sent on the session identified by the SEND_RTR record and the free 
session is removed from the free-session pool} or I if SEND_RTR is in error) a 
log entry is madeJ SEND_RTR record destroyed 

The session is not free if it is in use. After the use of the session, a 
FREE_SESSION record will be received by RM and the logic to send RTR will 
again be exercised lsee FREE_SESSION_PROC on page 3-501. Hhen the session is 
in use, the SEND_RTR is ignored and discarded. 

Referenced procedures, FSMs, and data structures: 
SCB 
RTR_RQ 
SEND_RTR 

Find the SCB identified by SEND_RTR.HS_ID. 

page A-8 
page A-lZ 
page A-ZO 

If the SCB exists and the session it represents is free and first speaker then 
Create and send an RTR_RQ to the associated half-session process. 
Set SCB.RTR_OHED to FALSE. 
Remove the session from the free-session pool. 

Destroy the SEND_RTR record. 

Chapter 3. LU Resources Manager 3-69 



SESSION_ACTIVATED_ALLOCATION 

SESSION_ACTIVATED_ALLOCATION 

FUNCTION: This procedure handles the allocation processing for a newly activated 
first-speaker or bidder half-session. 

This procedure causes the SCB associated with the half-session and the RCB of 
a conversation for which a session was requested to point to each other. It 
then creates a SESSION ALLOCATED record, which it sends to PS to inform it 
that the session has be;n allocated. 

INPUT: GET_SESSION and HS_ID, the ID of the new half-session 

OUTPUT: SESSION_ALLOCATED to PS and destruction of the GET_SESSION 

Referenced procedures, FSMs, and data structures: 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
GET_SESSION 
HS_ID 
SESSION_ALLOCATED 
SCB 

If the session identified by HS_ID is a bidder session then 
For the conversation identified by GET_SESSION.RCB_IO, 
Call #FSM_RCB_STATUSIS, GET_SESSION, UNDEFINED) lpage 3-89). 

Call SET_RCB_AND_SCB_FIELDSIGET_SESSION.RCB_ID, HS_IDJ lpage 3-751. 
Call CONNECT_RCB_AND_SCBIGET_SESSION.RCB_IO, HS_Io, NORMAL) (page 3-421. 
Find the SCB identified by HS_ID 
Create a SESSION_ALLOCATED record with RETURN_CODE set to OK, 

SEND_RU_SIZE set to SCB.SEND_RU_SIZE, 
LIMITED BUFFER POOL ID set to SCB.LIMITED BUFFER POOL ID, 
PERMANENT BUFFER POOL ID set to SCB.PERMANENT BUFFER POOL IO, 
IN_CONVERSATION ;et t~ 'YES', - - -
and send the record to PS !Chapter 5.ll. 

SESSION_ACTIVATED_PROC 

page 3-75 
page 3-42 
page 5.0-8 
page 3-90 
page 3-89 
page A-16 
page 3-91 
page A-22 
page A-8 

FUNCTION: This procedure performs the processing of a SESSION ACTIVATED record from SM. 
SESSION ACTIVATED is received from SM as a result of-session activation initi­
ated by-the partner LU. 

INPUT: SESSION_ACTIVATED from SM 

OUTPUT: Active session counts incremented 

Referenced procedures, FSMs, and data structures: 
SUCCESSFUL_SESSION_ACTIVATION 
SESSION_ACTIVATED 
MODE 

Get addressability to the MODE control block associated with the LU and 
mode name of the newly activated session. 

Increment MODE.ACTIVE_CONHINNERS_COUNT or MODE.ACTIVE_CONLOSERS_COUNT by l, 
as appropriate to the session polarity. 

Increment MODE.ACTIVE_SESSION_COUNT by 1. 
Call SUCCESSFUL_SESSION_ACTIVATION!SESSION_ACTIVATED.LU_NAME, 

page 3-80 
page A-14 
page A-3 

SESSION ACTIVATED.MODE NAME, SESSION ACTIVATED.SESSION INFORMATION) lpage 3-80). 
Destroy the SESSION_ACTIVATED record.- -

3-70 SNA LU 6.2 Reference: Peer Protocols 

\, ____ _.. ... -" 

c 



c 

c 

c 

0 

SESSION_ACTIVATION_POLARITY 

SESSION_ACTIVATION_POLARITY 

FUNCTION: This procedure determines the polarity for a session activation request. 

If no session can be activated now !because MODE.SESSION LIMIT would be 
exceeded!, NONE is returned. If either a first-speaker or-bidder session 
could be activated, FIRST_SPEAKER is returned. Thus, first-speaker sessions 
are activated in preference to bidder sessions. 

INPUT: LU NAME, the name of the LU to which a session is to be activated; and 
MODE_NAME, the name of the mode 

OUTPUT: NONE, if no session can be activated; FIRST SPEAKER, if a first-speaker ses-
sion can be activated; BIDDER, otherwise -

Referenced procedures, FSMs, and data structures: 
PARTNER_LU 
LU_NAME 
MODE_ NAME 
MODE 

page A-2 
page 3-91 
page 3-91 
page A-3 

Get addressability to the PARTNER_LU control block associated with LU NAME. 
Get addressability to the MODE control block associated with LU NAME ;nd MODE_NAME. 
If the number of pending and active sessions for the MODE -

is ~MODE.SESSION LIMIT then 
Return with an indication that no additional sessions can be activated. 

If the total number of pending and active sessions for the MODE 
is > 0 and PARTNER LU.PARALLEL SESSION is SUPPORTED then 

Return with an i~dication th;t no additional sessions can be activated. 
If MODE.SESSION_LIMIT - MODE.MIN_CONLOSERS_LIMIT > 

MODE.ACTIVE CONHINNERS COUNT + MODE.PENDING CONHINNERS COUNT then 
Return with an indic;tion that a first-sp;aker sessi~n can be activated. 

Else 
Return wi'th an indication that a bidder session can be activated. 

Chapter 3. LU Resources Manager 3-71 



SESSION_DEACTIVATED_PROC 

SESSION_DEACTIVATED_PROC 

FUNCTION: This procedure handles the processing that occurs when a session is deacti­
vated. 

INPUT: 

OUTPUT: 

Hhen SESSION_DEACTIVATED.REASON = NORMAL and the session was not being used by 
a conversation, no processing !except destruction of the SCBl takes place, 
since the decision to close down a session was mutually reached by the 
resources managers of the half-sessions via BIS protocols, and all necessary 
processing has already been performed. 

Hhen SESSION DEACTIVATED.REASON = NORMAL, ABNORMAL RETRY, or ABNORMAL NO RETRY 
and the session was being used by a conversation,-this procedure sends ; CON­
VERSATION FAILURE record to PS. If the session was not in use, the session is 
removed f;om the free-session pool. Regardless of whether the session was in 
use, this procedure deletes the SCB entry for that half-session. 

SESSION_ DEACTIVATED 

CONVERSATION_FAILURE to PS, destruction of the SCB; a queued Attach may be 
purged; the active contention-winner, contention-loser, and session counts are 
adjusted; pending termination counts are adjusted; sessions are activated; if 
they cannot be satisfied, waiting requests are rejected; the session deacti­
vated TP may be started; the SESSION_DEACTIVATED record is destroyed; 
RM_ACTIVATE_SESSION records are rejected using RM_SESSION_ACTIVATED records. 

NOTES: 1. Hhen PS receives a CONVERSATION FAILURE, it generates a DEALLOCATE_RCB and 
sends it to RM, which performs th; usual RCB deallocation processing. 

2. An UNBIND type Normal not preceded by BIS protocols can occur when an SSCP has 
issued a CTERM type Forced to an LU. Under any other circumstance, an UNBIND 
type Normal not preceded by BIS protocols is a protocol violation. 

3. It is possible for two RCBs to be associated with the same SCB when SON 
occurs. This happens when RM has issued a Bid for the use of a bidder 
half-session and, prior to receiving the response to the Bid, subsequently 
receives an Attach from the first-speaker side of the session. Hhen RM 
receives the session-outage notification, it notifies the PS that was created 
as a result of the incoming Attach that a conversation failure has occurred. 
The PS associated with the RCB that is pending a response to the Bid, however, 
never learns of the session outage. RM treats the SON as a -BID_RSP and 
attempts to satisfy the session request with another session. 

Referenced procedures, FSMs, and data structures: 
PS 
GET_SESSION_PROC 
ACTIVATE_NEEDED_SESSIONS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
SESSION_ALLOCATED 
MU 
SESSION_DEACTIVATED 
CONVERSATION_FAILURE 
GET_SESSION 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 
SCB 
RCB 
MODE 
PARTNER_ LU 

3-72 SNA LU 6.2 Reference: Peer Protocols 

page 5.0-8 
page 3-52 
page 3-24 
page 3-85 
page 3-86 
page 3-90 
page 3-89 
page A-22 
page A-29 
page A-.14 
page A-21 
page A-16 
page A-16 
page A-22 
page A-8 
page A-6 
page A-3 
page A-2 

I~ 

\__,, 



If an SCB associated with the half-session identified by 
SESSION DEACTIVATED.HS ID exists then 

SESSION_DEACTIVATED_PROC 

Get addressability t~ the MODE control block associated with the LU name and 
mode name of the deactivated session. 

If the state of #FSM_SCB_STATUS (page 3-84) is IN_USE then 
If the RCB identified by the SCB.RCB_ID exists then 

If the RCB.TCB ID is not null Cin conversation) then 
Create a CONVERSATION_FAILURE record with RCB_ID set to SCB.RCB_ID. 
Select based on SESSION_DEACTIVATED.REASON: 

Hhen NORMAL 
Set CONVERSATION_FAILURE.REASON to SON. !Note 2) 

Hhen ABNORMAL_RETRY 
Set CONVERSATION_FAILURE.REASON to SON. 

Hhen ABNORMAL NO RETRY 
Set CONVERSATION_FAILURE.REASON to PROTOCOL_VIOLATION. 

Send the CONVERSATION_FAILURE record to the PS process that was 
using the deactivated session. 

Else CMU containing an Attach from the ended HS is queued awaiting a TPJ 
Find the MU queued for the transaction program identified by RCB.TP_NAME 
and where MU.RM TO PS.RCS ID = RCB.RCB ID. 

Destroy the RCB.- - -
Remove the MU from the queue. 
Call buffer manager CFREE_BUFFER, buffer address) to release the buffer 
containing MU !Appendix Bl. 

Else (session not in use by a conversation) 
Remove the session from the free-session pool. 

If there is an RCB where RCB.HS_ID = SESSION_DEACTIVATED.HS_ID and 
the state of #FSM_RCB_STATUS = PENDING_SCB (page 3-891 then 
CA bid for the deactivated session is in progress; see Note 3). 

Set RCS.HS ID to a null value. 
Call #FSM_RCB_STATUS(R, NEG_BID_RSP, UNDEFINED! !page 3-89). 
Create a GET_SESSION record from information saved in the RCB. Csee BIDDER_PROCl 
Call GET_SESSION_PROCCGET_SESSIONl !page 3-52) 

to retry the bid on another session. 
Decrement MODE.ACTIVE CONHINNERS COUNT or MODE.ACTIVE_CONLOSERS_COUNT by 1, 
as appropriate to th; session p~larity. 

Decrement MODE.ACTIVE_SESSION_COUNT by 1. 
If there is a pending deactivation for the failed session then 

Decrement MODE.PENDING TERMINATION CONHINNERS or MODE.PENDING TERMINATION CONLOSERS 
by 1, as appropriate to the sessi~n polarity. - -

If SESSION_DEACTIVATED.REASON t ABNORMAL_NO_RETRY then 
Call ACTIVATE_NEEDED_SESSIONSCSCB.LU_NAME, SCB.MODE_NAMEl (page 3-24). 

If MODE.ACTIVE SESSION COUNT + MODE.PENDING SESSION COUNT = 0 then 
If the PARTNER_LU f~r the failed session-does not support parallel sessions 

the SESSION DEACTIVATED.REASON is not ABNORMAL NO RETRY then 
If there is a waiting request on another mod; -

CALL ACTIVATE_NEEDED_SESSIONSCPARTNER_LU.LOCAL_LU_NAME,MODE.NAMEJ 
Do for each GET_SESSION request waiting for a session to CLU_NAME, MODE_NAMEl: 

Create a SESSION ALLOCATED record with RETURN CODE set to UNSUCCESSFUL NO RETRY 
and send it to the PS !Chapter 5.ll that initiated the session request~ -

Destroy the waiting GET_SESSION request. 
Do for each pending RM_ACTIVATE_SESSION request for a session to 

CLU_NAME, MODE_NAMEl: 
Create RM SESSION ACTIVATED with RETURN CODE set to ACTIVATION FAILURE NO RETRY 

and send-it to the PS !Chapter 5.1) th;t initiated the activation req~est. 
Destroy the RM_ACTIVATE_SESSION request. 

Destroy the SCB. 
Destroy the SESSION_DEACTIVATED record. 

Chapter 3. LU Resources Manager 3-73 



SESSION_DEACTIVATION_POLARITY 

SESSION_DEACTIVATION_POLARITY 
(,,-, 

.--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.\ 

FUNCTION: This procedure determines the polarity of a session to partner LU CLU_NAME, 
MODE_NAMEJ that this LU is responsible for deactivating. 

INPUT: LU_NAME, the name of the partner LU; and MODE_NAME, the name of the mode 

OUTPUT: One of the following indications to the caller: NONE, if this LU is not 
responsible for any deactivations; BIDDER, if this LU is responsible to deac­
tivate a bidder session only; FIRST_SPEAKER, if this LU is responsible to 
deactivate a first speaker session only; EITHER, if this LU is responsible to 
deactivate either a first speaker or bidder session. The TERMINATION_COUNT is 
reset to 0 if it was positive and this LU is not responsible for any deacti­
vations. 

Referenced procedures, FSMs, and data structures: 
LU_NAME 
MODE_NAME 
MODE 

page 3-91 
page 3-91 
page A-3 

Get addressability to the MODE control block associated with LU NAME and MODE_NAME. 
If MODE.TERMINATION COUNT is 0 then 

Return with an i~dication that no sessions need to be deactivated. 
Let CONHINNER_COUNT be MODE.ACTIVE_CONHINNERS_COUNT + MODE.PENDING_CONHINNERS_COUNT -

MODE.PENDING TERMINATION CONHINNERS. 
Let CONLOSER_COUNT be MODE.ACTIVE_CONLOSERS_COUNT + MODE.PENDING_CONLOSERS_COUNT -

MODE.PENDING TERMINATION CONLOSERS. 
Select based ~n the foll~ing conditions: 

Hhen CONHINNER_COUNT <= MODE.MIN_CONHINNERS_LIMIT, and 
CONLOSER COUNT <=MODE.MIN CONLOSERS LIMIT 

Set MODE.TERMINATION_COUNT to O. -
Return with an indication INONEJ that no sessions need to be deactivated. 

Hhen CONHINNER_COUNT <= MODE.MIN_CONHINNERS_LIMIT, and 
CONLOSER COUNT >MODE.MIN CONLOSERS LIMIT 

Return-with an indicati~n IBIDDERJ that a bidder session needs to be deactivated. 
Hhen CONHINNER_COUNT > MODE.MIN_CONHINNERS_LIMIT, and 

CONLOSER COUNT <= MODE.MIN CONLOSERS LIMIT 
Return-with an indicatio~ I FIRST SPEAKER) that a first-speaker session needs 

to be deactivated. -
Hhen CONHINNER_COUNT > MODE.MIN_CONHINNERS_LIMIT, and 

CONLOSER COUNT > MODE.MIN CONLOSERS LIMIT 
Return-with an indicati~n IEITHERJ that a session of either polarity needs 
to be deactivated. 

3-74 SNA LU 6.2 Reference: Peer Protocols 

"---



c 

0 

c 

0 

SET_RCB_AND_SCB_FIELDS 

SET_RCB_AND_SCB_FIELDS 

FUNCTION: This procedure initializes fields in the RCS and SCB entries having the passed 
RCS and HS IDs. 

The RCB is set to point to the associated SCB lby placing the HS_ID in the 
RCBJ, and the SCB to point to the RCS lby placing the RCS_ID in the SCBJ. The 
FSMs that maintain the status of the RCS and SCB are set to the IN_USE state. 

INPUT: RCB_ID and HS_ID, the IDs of the RCB and SCS, respectively, for which fields 
are to be set 

OUTPUT: Fields in the RCS and SCB initialized. 

NOTE: Hhen this procedure is called from BID_RSP_PROC, RCS.HS_ID has already been 
initialized. I It was initialized when the BID record for the session was gen­
erated.) Rather than test for this condition, the field is reset to the same 
value. 

Referenced procedures, FSMs, and data structures: 
FSM_SCB_STATUS_SIDDER 
FSM_SCB_STATUS_FSP 
FSM_RCS_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
RCB_ID 
HS_ID 
SCS 
RCS 

Find the SCB associated with the half-session identified by HS_ID. 
Set SCB.RCB ID to RCS ID. 
Find the RCB associat;d with the conversation identified by RCB_ID. 
Set RCS.HS ID to HS ID (see Note I. 
If the ses;ion identified by HS_ID is a first-speaker session then 

Call #FSM SCB STATUSIS, GET SESSION, UNDEFINEDJ lpage 3-841. 
Call #FSM-RCB-STATUSIS, GET-SESSION, UNDEFINEDJ lpage 3-891. 

Else lbidder-ses;ionl -
Call #FSM SCB STATUSIR, POS_BID_RSP, UNDEFINEDJ (page 3-841. 
Call #FSM=RCB=STATUSIR, POS_SID_RSP, UNDEFINED I lpage 3-891. 

page 3-85 
page 3-86 
page 3-90 
page 3-89 
page 3-91 
page 3-91 
page A-8 
page A-6 

Chapter 3. LU Resources Manager 3-75 



SHOULD_SEND_BIS 

SHOULD_SEND_BIS 

FUNCTION: This procedure determines whether a BIS (either BIS_RQ or BIS_REPLYl should be 
sent on the session identified by HS_ID. 

INPUT: HS_ID, containing the ID of the session 

OUTPUT: TRUE, if BIS IBIS_RQ or BIS_REPLVl should be sent nowJ else FALSE 

NOTE: BIS is sent if there are no waiting requests for a session for this mode 

Referenced procedures, FSMs, and data structures: 
SESSION_DEACTIVATION_POLARITV 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
HS_ID 
LU_NAME 
MODE_NAME 
MODE 
PARTNER_ LU 
RM_DEACTIVATE_SESSION 

Find the PARTNER LU and MODE control block associated with 
the half-sessio;:; identified by HS_ID. 

If there are no waiting requests for a session for this MODE and 
PARTNER LU.PARALLEL SESSIONS is NOT SUPPORTED then 

page 3-74 
page 3-87 
page 3-88 
page 3-91 
page 3-91 
page 3-91 
page A-3 
page A-2 
page A-17 

If th;re is a waiting request for-another mode with this partner LU then 
Return to the calling routine with the value TRUE IBIS should be sent). 

SELECT based on the state of IFSM_BIS lpage 3-87): 
Hhen RESET 

Call SESSION_DEACTIVATION_POLARITVILU_NAME, MODE_NAMEl lpage 3-74) 
to determine the type of session lif any) to deactivate. 

If the deactivation polarity is EITHER, or 
the deactivation polarity matches the session polarity then 

If MODE.DRAIN_SELF is NO or there are no waiting requests for 
sessions to this LU and mode name (See Note) then 

Return to the calling routine with the value TRUE IBIS should be sent). 
If there is a pending RM_DEACTIVATE_SESSION request for this session then 

Return to the calling routine with the value TRUE IBIS should be sentJ. 
Return to the calling routine with the value FALSE IBIS should not be sent). 

Hhen BIS RCVD 
If MODE.DRAIN_SELF = NO or there are no waiting requests for sessions 

for this LU name and mode name ISee Note) then 
Return to the calling routine with the value TRUE IBIS should be sent). 

Else 
Return to the calling routine with the value FALSE IBIS should not be sent). 

Hhen BIS_SENT IBIS already sent) 
Return to the calling routine with the value FALSE IBIS should not be sent). 

3-76 SNA LU 6.2 Reference: Peer Protocols 

(~\ 

\_ .. ·· 

c 



c: 

0 

c:: 

START_TP_PROC 

START_TP_PROC 

FUNCTION: This procedure performs the processing of a received START_TP record. 

INPUT: START_TP request record 

OUTPUT: A reply IRESPONSE_CODE) to 
the START_TP updated and 
freed instance 

the START_TP and if the request can be satisfied, 
sent to the new PS process, or queued awaiting a 

NOTES: 1. A null network ID in the Fully Qualified LU Name field is invalid unless this 
LU's network ID is also null. Procedures that are able to send START_TP 
records to RM are considered privileged, protected processes with code content 
integrity. These procedures may supply the fully-qualified 
(network-qualified) LU name of the requester or an Already-Verified indication 
for security li.e., a user ID indicated as already verified, eliminating the 
need for a password). 

2. This logic requires 
and requires that 
limited-instance TP 
ing TERMINATE_PSJ. 
the Else section is 

support of the limited-instance transaction program option 
all transaction programs are able to perform as a 

!i.e., able to accept an Attach or a START_TP after send­
If either of these assumptions is not true, the logic in 
performed. 

Referenced procedures, FSMs, and data structures: 
PS 
START_TP 
TRANSACTION_PROGRAM 
LUCB 
RESPONSE_ CODE 
START_TP_REPLY 
CREATE_TCB_AND_PS 
START_TP_SECURITY_VALID 
PURGE_QUEUED_REQUESTS 

Set RESPONSE_CODE to OK. 
Find the TRANSACTION_PROGRAM corresponding to the START_TP.TARGET_TP_NAME. 
If the TRANSACTION PROGRAM cannot be found then 

Set RESPONSE_CODE to TPN_NOT_RECOGNIZED. 
Else 

If the TRANSACTION PROGRAM.STATUS is DISABLED TEMPORARY then 
Set RESPONSE CODE to TRANS PGM NOT AVAILABLE RETRY. 

If the TRANSACTION PROGRAM.STATUS-is DISABLED PERMANENT then 
Set RESPONSE CODE to TRANS PGM NOT AVAIL NO RETRY. 

page 
page 
page 
page 
page 
page 
page 
page 
page 

If the TRANSACTION_PROGRAM.VERIFY=PIP-is YES a~d RESPONSE_CODE is OK then 
If the number of PIP subfields in the START_TP is not equal to 

TRANSACTION PROGRAM.NUMBER Of PIP SUBFIELDS then 
If the TRANSACTION_PROGRAM.NUMBER_Of_PIP_SUBFIELDS is 0 then 

Set RESPONSE CODE to PIP NOT ALLOWED. 
Else - - -

Set RESPONSE CODE to PIP NOT SPECIFIED_CORRECTLY. 
If the RESPONSE_CODE is OK then 

Call START TP SECURITY VALIDCSTART TP, TRANSACTION PROGRAM! !page 3-79). 
If START_TP_SECURITY_VALID returns-indicating that-
security requirements are not met then 

Set RESPONSE CODE to SECURITY NOT VALID. 

5.0-8 
A-19 
A-5 
A-1 
3-92 
A-20 
3-45 
3-79 
3-59 

If the RESPONSE_CODE is OK and a network-qualified LU name is present in START_TP 
and the network-qualified LU name does not have the proper format !see SNA formats for 
the correct format! then 

Set RESPONSE_CODE to INVALID_FULLY_QUALIFIED_LU_NAME. 
If the RESPONSE CODE is OK then 

If a network:qualified LU name is not present in the START_TP !Note lJ then 
Set START_TP.FULLY_QUALIFIED_LU_NAME to LUCB.FULLY_QUALIFIED_LU_NAME. 

Chapter 3. LU Resources Manager 3-77 



START_TP_PROC 

If TRANSACTION_PROGRAM.INSTANCE_COUNT is less than TRANSACTION_PROGRAM.INSTANCE_LIHIT then 
Call CREATE_TCB_AND_PSCSTART_TP, TRANSACTION_PROGRAMl !page 3-451. 
If START_TP.TCB_ID is a non-null value CPS is successfully created) then 

Send a copy of the START_TP record to PS. 
If START TP.REPLY is YES then 

Creat;;; a START_TP_REPLY record, initializing START_TP_REPLY.RESPONSE_CODE to 
RESPONSE_CODE. 

If RESPONSE_CODE is equal to OK then 
Set the START_TP_REP~Y.TCB_ID to START_TP.TCB_ID. 

Send the START_TP_REPLY record to the initiating process. 
Destroy the START_TP record. 

Else 

Else 

If TRANSACTION_PROGRAH.INSTANCE_COUNT is greater ·than 0 (Note 2) then 
Queue the START_TP to await the freeing of an active target TP-PS instance. 

Else 
If START_TP.REPLY is YES then 

Create a START TP REPLY record. 
Set the START_TP_REPLY.RESPONSE_CODE to PS_CREATION_FAILURE. 
Send the START_TP_REPLY record to the initiating process. 

Destroy the START_TP record. 
Purge any queued START_TP or Attach records for this transaction program 
by calling PURGE_QUEUED_REQUESTSCTRANSACTION_PROGRAM) (page 3-591. 

Queue the START_TP to await the freeing of an active target TP-PS instance. 
Else (RESPONSE CODE is not OKl 

If START TP:REPLY is YES then 
Creat;;; a START_TP_REPLY record, initializing START_TP_REPLY.RESPONSE_CODE to 

RESPONSE CODE. 
Set the START TP REPLY.TCB ID to a null value. 
Send the START TP REPLY r~ord to the initiating process. 

Destroy the START:TP-record. 

3-78 SNA LU 6.2 Reference: Peer Protocols 

c 

C".· 
_/ 



0 

0 

START_TP_SECURITY_VALID 

START_TP_SECURITY_VALID 

FUNCTION: This procedure performs all security checks on an incoming START_TP. 

INPUT: The START_TP record containing security fields (e.g., user ID, password, and 
pr-ofilel and the pointer- to the contr-ol block of the tr-ansaction pr-ogr-am that 
the START_TP tar-gets 

OUTPUT: An indication as to the validity of the secur-ity tokens on the START_TP: TRUE 
indicates they ar-e validJ FALSE, invalid 

Refer-enced pr-ocedur-es, FSHs, and data str-uctur-es: 
START_TP 

If START_TP.SECURITY_SELECT = NONE then 
If the tr-ansaction pr-ogr-am r-equir-es secur-ity par-ameters then 

Return FALSE lsecur-ity check failed). 
Else 

Retur-n TRUE lsecur-ity check passed). 
If the START_TP contains a profile but does not contain a user- ID then 

Return FALSE. 
If the START_TP contains a password but does not contain a user- ID then 

Retur-n FALSE. 
If START TP.SECURITY SELECT is PGH then 

If th; START_TP c~ntains a user- ID but does not contain a passwor-d then 
Retur-n FALSE. 

If the START TP does not contain a user ID or a password and 
the transaction pr-ogram requir-es security par-ameter-s then 

Retur-n FALSE. 
If the tr-ansaction pr-ogr-am does not requir-e secur-ity par-ameter-s and 

the START_TP does not contain a user- ID or- a passwor-d then 
Retur-n TRUE. 

page A-19 

If the START TP contains an unauthor-ized combination of user- ID and pr-ofile or­
the START TP contains an invalid combination of user- ID and passwor-d then 

Return FALSE. 
Else ISECURITY_SELECT is ALREADY_VERIFIEDl 

If the START_TP does not contain a user- ID or does contain a password then 
Return FALSE !Already verified indication r-equir-es a user- ID and precludes a passwor-dl. 

If ther-e is limited access to the target tr-ansaction pr-ogr-am !The access author-ization is 
based upon the definition of the tr-ansaction pr-ogr-am's access r-equirements and the START_TP 
record's user- ID and/or profile and/or- LU name of the or-igin of the START_TPJ then 

If the user ID and/or- pr-ofile and/or LU name is permitted access to the r-equested 
tr-ansaction pr-ogr-am then 

Retur-n TRUE. 
Else 

Retur-n FALSE. 
Retur-n TRUE. 

Chapter 3. LU Resources Manager- 3-79 



SUCCESSFUL_SESSION_ACTIVATION 

SUCCESSFUL_SESSION_ACTIVATION 

FUNCTION: This proced.Jre handles the processing that occurs when a new session is suc­
cessfully activated. 

INPUT: 

OUTPUT: 

NOTE: 

Hhen a new session is successfully activated, RM informs the new half-session 
that RM is aware of its existence and ready to accept records from the new 
half-session. A new session comes up "in-conversation" with the primary side 
of the session in control of the conversation. This procedure checks to see 
whether the new half-session is primary or secondary. If the half-session is 
primary and a request is waiting, the support levels !i.e., sync level and 
conversation-level securityJ specified in the request are checked against the 
support levels of the session. If the support levels are compatible, and 
LU-LU verification (session-level security) is active, the FMH-12 to complete 
LU-LU verification is built and sent to the partner-LU resources manager; then 
the request is sent to SESSION_ACTIVATED_ALLOCATION lpage 3-70) to be proc­
essed. If the support levels are not compatible, the request is rejected with 
an ALLOCATION_ERROR return code. If no requests are waiting, the session is 
returned to the free-session pool. If no request is waiting and LU-LU verifi­
cation (session-level security) is active, the FMH-12 is built and sent to the 
partner-LU resources manager, and this FMH-12 relinquishes control of the ses­
sion; otherwise, a YIELD SESSION record is created and sent to HS to inform 
the secondary half-sessi~n that the primary is relinquishing control of the 
conversation. The YIELD SESSION record is translated into a· FREE SESSION 
record by the secondary i,;lf-session and sent to its RM. -

If the new half-session is a secondary half-session and LU-LU verification is 
active, the FSM that maintains the status of the SCB is set to indicate that 
the next record it expects to receive is an FMH-12 ISecurityJ. If the new 
half-session is a secondary half-session and LU-LU verification is not active, 
the FSM that maintains the status of the SCB is set to indicate that the next 
record it e~pects to receive is either an Attach or a FREE_SESSION. IIt will 
receive an Attach if the primary half-session decides to use the session; it 
will receive a FREE_SESSION if the primary has no GET_SESSION requests waiting 
to be servicedJ. 

LU_NAME and MODE_NAME, the LU name and mode name of the newly activated ses­
sion; and SESSION INFORMATION !page A-32J, which describes the attributes of 
the activated ses;ion 

GET_SESSION to SESSION_ACTIVATED_ALLOCATION lpage 3-70J, YIELD SESSION to HS, 
SESSION ALLOCATED to PS, waiting GET SESSION records destroyed, ,.n 
RM_SESSION_ACTIVATED record possibly c;eated to respond to a CN9S 
RM_ACTIVATE_SESSION record that will be dequeued from the PEND­
ING_CNOS_ACTIVATION_LIST and destroyed 

PS stores information in the RCB that tells HS what bit settings to use when 
HS sends data out over a link. Part of the information indicates whether the 
data being sent to HS is the beginning of a conversation or part of an exist­
ing conversation. Since a new session comes up in-conversation la fact 
unknown by PSJ, RM changes the information in the RCB to indicate to HS that 
the next record it receives from PS will not be the start of a conversation. 

Referenced procedures, FSMs, and data structures: 
CREATE_SCB 
SESSION_ACTIVATED_ALLOCATION 
PS 
HS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
LU_NAME 
MODE_NAME 
SESSION_INFORMATION 
RM_HS_CONNECTED 
SCB 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 

3-80 SNA LU 6.2 Reference: Peer Protocols 

page 3-44 
page 3-70 
page 5.0-8 
page 6.0-3 
page 3-85 
page 3-86 
page 3-91 
page 3-91 
page A-32 
page A-18 
page A-8 
page A,..16 
page A-22 c 



C) 
, 

C: 

GET_SESSION 
YIELD_SESSION 
SESSION_ALLOCATED 
ENCIPHERED_RD2 

SUCCESSFUL_SESSION_ACTIVATION 

page A-16 
page A-19 
page A-22 
page A-18 

Call CREATE_SCBILU_NAME, MODE_NAME, SESSION_INFORMATION) lpage 3-44). 
Create an RM_HS_CONNECTED record and send it to the HS 

identified by SESSION_INFORMATION.HS_ID. 
If this is a primary half-session then 

Call #FSM_SCB_STATUSIR, SESSION_ACTIVATED, PRI) lpage 3-84). 
Do until the activated session is used to service a waiting request, or 
the session is yielded: 

If a GET_SESSION request is waiting for a session to this partner LU and 
on this mode then 

If the session does not support the security level specified by the 
waiting request then 

Downgrade the specified security level to NONE. 
If the session does not support the sync level specified by the 
waiting request then 

Create a SESSION ALLOCATED record with RETURN CODE set to 
SYNC_LEVEL_NOT_SUPPORTED and send it to the PS (Chapter 5.1) associated 
with the waiting request. 

, Destroy the waiting GET_SESSION request. 
Else (session support is OK) 

If LU-LU verification is active I random data is present in the SCB) then 
Create an ENCIPHERED RD2 containing an FMH-lZ (refer to SNA Formats) 
initialized with the enciphered version of the random data present in the SCB. 

Set ENCIPHERED ROZ.SEND PARM.ALLOCATE to NO. 
Set ENCIPHERED=RDZ.SEND=PARM.FMH to YES. 
Set ENCIPHERED ROZ.SEND PARM.TYPE to FLUSH. 
Send the ENCIPHERED_RDZ-to the HS !Chapter 6.0J representing 

the newly activated session. 
Call SESSION ACTIVATED ALLOCATIONIGET SESSION, SCB.HS_IDJ (page 3-70). 
Destroy the ;aiting GET_SESSION reque~t. 

Else lno waiting requests) 
Call #FSM_SCB_STATUSIS, YIELD_SESSION, UNDEFINEDJ lpage 3-84J. 
If LU-LU verification is active I random data is present in the SCBJ then 

Create an ENCIPHERED_RDZ containing an FMH-12 initialized with the enciphered 
version of the random data present in the SCB. 

Set ENCIPHERED ROZ.SEND PARM.ALLOCATE to NO. 
Set ENCIPHERED-RDZ.SEND-PARM.FMH to YES. 
Set ENCIPHERED=RDZ.SEND=PARM.TYPE to DEALLOCATE_FLUSH lyields the session). 
Send the ENCIPHERED_RD2 to the HS !Chapter 6.0l representing 

the newly activated session. 
Else 

Create a YIELD SESSION record and send it to the HS !Chapter 6.0J 
representing ihe newly activated session. 

Else (secondary half-session) 
If LU-LU verification is active I random data is present in the SCBJ then 

Call #FSM_SCB_STATUSIR, SESSION_ACTIVATED, SECUREl (page 3-841. 
Else 

Call #FSM_SCB_STATUSIR, SESSION_ACTIVATED, SECJ lpage 3-84). 
If an RM_ACTIVATE_SESSION request is pending then 

Create an RM SESSION ACTIVATED record with RETURN CODE set to OK and send 
it to the PS IChapt;;r 5.4) that originally issued 
the RM_ACTIVATE_SESSION record to RM. 

Destroy the pending RM_ACTIVATE_SESSION request. 

Chapter 3. LU Resources Manager 3-81 



TEST_FOR_FREE_FSP_SESSION 

TEST_FOR_FREE_FSP_SESSION 

FUNCTION: This procedure tests for a free first-speaker half-session. If one is found, 
a new RCB is created and the support levels (conversation-level security and 
sync level! provided by the session are checked to see if they are compatible 
with those requested in the ALLOCATE_RCB. If they are not compatible, the 
RETURN CODE on the RCB ALLOCATED record is set to indicate an unsuccessful 
allocation, or, in the ~ase of a security incompatibility, the security level 
is downgraded to a compatible level. If the support levels are compatible, 
the half-session is allccated to the RCB, the ID of the RCB is placed in the 
passed RCB_ALLOCATED record. 

If a free first-speaker half-session is not found, the RETURN_CODE in the 
passed RCB_ALLOCATED record is changed to indicate an unsuccessful allocation. 

INPUT: ALLOCATE_RCB and RCB_ALLOCATED I the latter created by ALLOCATE_RCB_PROCl 

OUTPUT: RCB ALLOCATED with the RCB_ID field set to the ID of the allocated RCB, or 
with the RETURN_CODE set to UNSUCCESSFUL 

Referenced procedures, FSMs, and data structures: 
CREATE_RCB 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
ALLOCATE_RCB 
RCB_ALLOCATED 
RCB 
SCB 

If a free first-speaker session exists for ALLOCATE_RCB.LU_NAME and 
ALLOCATE RCB.MODE NAME then 

Call CREATE_RCB(ALLOCATE_RCB, RCB_ALLOCATEDl (page 3-431. 
If the security level requested in the RCB.SECURITY_SELECT 

is not supported by the partner LU then 
Downgrade the requested level of security to NONE. 

page 3-43 
page 3-75 
page 3-42 
page A-15 
page A-21 
page A-6 
page A-8 

If the sync level requested in ALLOCATE_RCB is not supported by the partner LU then 
Set RCB ALLOCATED.RETURN CODE to SYNC LEVEL NOT SUPPORTED. 

Else - - - - -
Call SET_RCB_AND_SCB_FIELDSIRCB_ID, HS_IDl lpage 3-751. 
Call CONNECT_RCB_AND_SCBIRCB_ID, HS_IDl !page 3-421. 
Set the following fields in the RCB_ALLOCATED: RETURN_CODE to OK, 

SEND RU SIZE to SCB.SEND RU SIZE, LIMITED BUFFER POOL ID to 
SCB.LIMITED_BUFFER_POOL_ID,-and PERMANENT=BUFFER=POOL=ID to 
SCB.PERMANENT_BUFFER_POOL_ID. 

Remove the session from the free-session pool. 
Else (no free first-speaker sessions). 

Set RCB_ALLOCATED.RETURN~CODE to UNSUCCESSFUL. 

3-82 SNA LU 6.2 Reference: Peer Protocols 



c 
UNSUCCESSFUL_SESSION_ACTIVATION 

UNSUCCESSFUL_SESSION_ACTIVATION 

FUNCTION: This procedure handles the processing that occurs when a new session could not 
be activated by the ses.sion manager. 

INPUT: 

OUTPUT: 

This procedure checks to see if any session has been activated for this 
ILU_NAME, MODE_NAMEJ pair. If so, no action is taken by this procedure. The 
lone or morel previously allocated sessions will eventually be availa~le for 
use by the transaction programs that requested a session. Similarly, if no 
sessions have been activated for this (LU_NAME, MODE_NAMEJ pair, but there are 
outstanding lpendingJ session activation requests that the session manager has 
not yet responded to, no action is taken. Some of the pending requests may 
succeed in activating sessions, and these sessions can eventually be used by 
other transaction programs. 

If, on the other hand, no session has been successfully activated for this 
LU NAME and MODE NAME and there are no other pending activation requests for 
this LU_NAME and MODE_NAME !i.e., all session activation requests have been 
responded to by the session manager), the procedure will send a SES­
SION ALLOCATED record to all instances of presentation services that have 
requ;sted sessions for this LU_NAME and MODE_NAME. 

The RETURN CODE field of the SESSION ALLOCATED record is set to UNSUCCESS­
FUL_RETRY ~r UNSUCCESSFUL_NO_RETRY dep;,...ding on the ERROR_TYPE parameter. 

LU NAME and MODE NAME of the LU to which session activation was unsuccessful; 
and ERROR_TYPE, indicating RETRY or NO_RETRY 

SESSION_ALLOCATED 
RM SESSION ACTIVATED 
re~ords de;troyed 

to PS, HAITING REQUEST 
records created and sent to 

records destroyed, 
PS, RM_ACTIVATE_SESSION 

Referenced procedures, FSMs, and data structures: 
PS 
ACTIVATE_NEEDED_SESSIONS 
LU_NAME 
MODE_NAME 
GET_SESSION 
MODE 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 
SESSION_ALLOCATED 

page 
page 
page 
page 
page 
page 
page 
page 
page 

5.0-8 
3-24 
3-91 
3-91 
A-16 
A-3 
A-16 
A-22 
A-22 

Get addressability to the MODE control block associated with LU_NAME and MODE NAME. 
If MODE.ACTIVE SESSION COUNT is D and MODE.PENDING SESSION COUNT is 0 then 

Do for each-waiting-request for a session - -
to this partner ILU_NAMEJ using this mode IMODE_NAMEJ: 

Create a SESSION ALLOCATED record with RETURN CODE set to 
UNSUCCESSFUL_RETRY or UNSUCCESSFUL_NO_RETRY ;ccording to 
ERROR_ TYPE. 

Send the SESSION ALLOCATED record to the PS !Chapter 5.lJ 
that issued the-original request. 

Destroy the waiting request. 
If this partner LU does not support parallel sessions and 
there are other waiting GET_SESSION requests for a session to this partner 
for a different mode then 

Try to activate a session for the other mode to satisfy a waiting request by 
calling ACTIVATE_NEEDED_SESSIONSILU_NAME, MODE_NAME for the mode 
with waiting requests) (page 3-24). 

Do while the number of pending RM_ACTIVATE_SESSION operator requests is greater than 
the MODE.PENDING SESSION COUNT: 

Create an RM SESSION ACTIVATED record with RETURN CODE set to 
ACTIVATION_FAILURE_RETRY or ACTIVATION_FAILURE_NO_RETRY according to ERROR_TYPE. 

Send the RM_SESSION_ACTIVATED record to the PS !Chapter 5.lJ 
that issued the original request. 

Destroy the pending RM_ACTIVATE_SESSION request. 

Chapter 3. LU Resources Manager 3-83 



FINITE-STATE MACHINES 

•FSH_SCB_STATUS 

•FSH_SCB_STATUS is a generic FSH . that main­
tains the state of a half-session. There is 
one •FSH SCB STATUS for each session known to 
the res;;urc;s manager. •FSH_SCB_STATUS is 
initialized to either FSH SCB STATUS BIDDER 
or FSH_SCB_STATUS_FSP, ~di,;g on the ses­
sion polarity, when the resources manager 
becomes aware of the existence of a new ses­
sion. This initialization occurs in CRE­
ATE_SCB lpage 3-441. 

The states of FSH SCB STATUS BIDDER and 
FSH_SCB_STATUS_FSP are: 

• SESSION ACTIVATION--the initial state, 
following activation of the session 

3-84 SNA LU 6.2 Reference: Peer Protocols 

• FREE--the session is free for use by a 
conversation 

• PENDING ATTACH--the session is in the 
in-bracket state and the local LU is 
waiting for an Attach FM header from the 
remote LU 

• IN USE--the session is in use by a con­
versation 

• PENDING FHH12--the session is waiting for 
the Security FH header from the remote LU 
before beginning normal Attach processing 

The first input denotes whether a record has 
been sent IS) or received IRl by RM, and the 
second input denotes the particular record 
type. PRI I primary), SEC I secondary), and 
SECURE (session-level security) are 
half-session attributes. 1,,----... 

\'-

c 



c 

C\ 
/ 

C\ 
) 

FSH_SCB_STATUS_BIDDER 

FSH_SCB_STATUS_BIDDER 

FUNCTION: To remember the status of a bidder half-session 

NOTES: 1. The initial state of this FSH is SESSION_ACTIVATION. 

2. Hhen HS on the bidder side of a session receives an MU containing an Attach, 
HS generates a separate BID and sends it to RH. RH !bidder side) always sends 
a positive BID_RSP to HS !unless a protocol error has occurred). HS !bidder 
side) discards the BID RSP and then sends the Attach HU to RH. RH on the 
first-speaker side doe; not generate the BID record, and does not expect a 
BID_RSP, since a first-speaker half-session always gains access to the ses­
sion. 

3. A YIELD_SESSION changes the FSH from SESSION_ACTIVATION state to the IN_USE 
state. A FREE_SESSION record is expected from the half-session to then cause 
RH to change the state to FREE. 

STATE NAMES----> SESSION FREE PENDING IN PENDING 
ACTIVATION ATTACH USE FHH12 

INPUTS STATE NUMBERS--> 01 02 03 04 05 

R, POS_BID_RSP 4 4 / / / 

R, BID / 3 / / / 
R, ATTACH / / 4 / / 
R, FHH_l2 / / / / 3 

R, FREE_ SESSION / / 2 2 / 

s, YIELD_SESSION 4 / / / / 

R, SESSION_ACTIVATED, PRI - / / / / 
R, SESSION_ACTIVATED, SEC 3 / / / / 
R, SESSION_ACTIVATED, SECURE 5 / / / / 

Chapter 3. LU Resources Manager 3-85 



FSH_SCB_STATUS_FSP 

FSH_SCB_STATUS_FSP 

FUNCTION: To remember the status of a first-speaker half-session 

NOTES: 1. The initial state of this FSH is SESSION_ACTIVATION. 

2. A VIELD_SESSION changes the FSH from SESSION_ACTIVATION state to the IN_USE 
state. A FREE_SESSION record is expected from the half-session to then cause 
RH to change the state to FREE. 

STATE NAHES----> SESSION FREE PENDING IN PENDING 
ACTIVATION ATTACH USE FHH12 

INPUTS STATE NUHBERS--> 01 02 03 04 05 

s. GET_SESSION 4 4 / / I 

R, BID I 3 I I I 
R, ATTACH I I 4 I I 
R, FHH_l2 I I I I 3 

R, FREE_ SESSION I I 2 2 I 

s. VIELD_SESSION 4 I I / I 

R, SESSION_ACTIVATED, PRI - I I I I 
R, SESSION_ACTIVATED, SEC 3 I I I I 
R, SESSION_ACTIVATED, SECURE 5 I I I I 

3-86 SNA LU 6.2 Rafarm'1Ca: P-r Protocols 

( 
\. 

c 



c/ 

0 

#FSH_BIS The states of FSH_BIS_BIDDER and FSH_BIS_FSP 
are: 

#FSH_BIS is a generic FSH that maintains the 
state of the BIS protocol for a half-session. 
There is one #FSH BIS for each session known 
to the resources manager. #FSH_BIS is ini­
tialized to either FSH BIS BIDDER or 
FSH_BIS_FSP, depending on the-ses-;ion polari­
ty, when the resources manager becomes aware 
of the existence of a new session. This 
initialization occurs in CREATE_SCB lpage 
3-44 ). 

• RESET--the initial state~ BIS has been 
neither sent nor received 

• BIS SENT--the local LU has sent BIS 
• BIS RCVD--the local LU has received BIS 
• CLOSED--the local LU has both sent and 

received BIS 

The first input denotes whether a record has 
been sent IS) or received IRJ by RH, and the 
second input denotes the particular record 
type. 

FSH_BIS_BIDDER 

FUNCTION: To remember the status of a bidder half-session with respect to BIS_RQ and 
BIS_REPLY 

NOTES: 1. The initial state of this FSH is RESET. 

2. After BIS_RQ and BIS_REPLY have been exchanged over a session, this FSM will 
be in the CLOSED state, indicating that the session is being deactivated. The 
CLOSED state is a terminating state, in that the FSH will not leave this state 
until it lalong with its corresponding SCB) is. destroyed. 

Referenced procedures, FSMs, and data structures: 

INPUTS 

s, BIS_RQ 

SEND_DEACTIVATE_SESSION 
CHECK_FOR_BIS_REPLY 
BIS_RACE_LOSER 
SEND_DEACTIVATE_SESSION 
HS_ID 

STATE NAMES----> 

STATE NUMBERS--> 

R, BIS_REPLY 

R, BIS_RQ 
s, BIS_REPLY 

OUTPUT FUNCTION 
CODE 

RESET 

01 

2 
>IERRORl 

31Bl 
I 

BIS 
SENT 
02 

I 
41Al 

41 c) 

I 

BIS 
RCVD 
03 

I 
>IERRORl 

>I ERROR) 
4 

page 3-68 
page 3-40 
page 3-38 
page 3-68 
page 3-91 

CLOSED 

04 

I 
I 

I 
I 

A Call SEND_DEACTIVATE_SESSIONIACTIVE, HS_ID, NORMAL, x·oooooooo• J tpage 3-68). 

B Call CHECK_FOR_BIS_REPLYIHS_IDl lpage 3-40). 

c Call BIS_RACE_LOSERIHS_IDl lpage 3-38). 

ERROR Call SEND_DEACTIVATE_SESSIONIACTIVE, HS_ID, ABNORMAL, X'20100000') lpage 3-68). 

Chapter 3. LU Resources Manager 3-87 



FSM_BIS_FSP 

F,..SM ___ B_r_s ___ Fs_P---------------------------------------. (~' 
FUNCTION: To remember the status of a first-speaker half-session with respect to BIS_RQ 

and BIS_REPLY 

NOTES: 1. The initial state of this FSM is RESET. 

2. After BIS_RQ and BIS_REPLY have been exchanged over a session, this FSM will 
be in the CLOSED state, indicating that the session is being deactivated. The 
CLOSED state is a terminating state, in that the FSM will not leave this state 
until it !along with its corresponding SCBJ is destroyed. 

Referenced procedures, FSMs, and data structures: 

INPUTS 

s, BIS_RQ 

SEND_DEACTIVATE_SESSION 
CHECK_FOR_BIS_REPLY 
HS_ID 

STATE NAMES----> 

STATE NUMBERS--> 

R, BIS_REPLY 

R, BIS_RQ 
s, BIS_REPLY 

OUTPUT FUNCTION 
CODE 

RESET BIS 
SENT 

01 02 

2 / 
>I ERROR J 41AJ 

31B) -
/ / 

A Call SEND_DEACTIVATE_SESSIONIACTIVE, HS_ID, NORMAL, 

B Call CHECK_FOR_BIS_REPLYIHS_IDJ !page 3-401. 

BIS 
RCVD 
03 

/ 
>I ERROR! 

>I ERROR J 
4 

page 3-68 
page 3-40 
page 3-91 

CLOSED 

04 

/ 
/ 

/ 
/ 

X' 00000000' ) I page 3-68 J. 

ERROR Call SEND_DEACTIVATE_SESSIONIACTIVE, HS_ID, ABNORMAL, X'20100000' J !page 3-68). 

3-88 SNA LU 6.2 Reference: Peer Protocols 

c 

~·· 

L 



r-'\ 
\ __ ) 

Ci 

IFSM_RCB_STATUS 

IFSM_RCB_STATUS is a generic FSM that main­
tains the state of a conversation resource. 
There is one IFSM_RCB_STATUS for each conver­
sation known to the resources manager. Nhen 
resources manager creates the conversation 
resource, IFSM RCB STATUS is initialized to 
either FSM_RcB_STATUS_BIDDER or 
FSM_RCB_STATUS_FSP, depending on the polarity 
of the underlying session. This initializa­
tion occurs in BIDDER_PROC (page 3-37), CRE­
ATE_RCB (page 3-43J, and PS_CREATION_PROC 
(page 3-55 J. 

FSM_RCB_STATUS_BIDDER 

The states of FSM RCB STATUS BIDDER and 
FSM_RCB_STATUS_FSP are: 

• FREE--the initial state; the conversation 
is inactive 

• IN USE--the conversation is in progress 
• PENDING SCB !BIDDER onlyJ--the conversa­

tion is awaiting allocation of a session, 
pending receipt of RSPIBidJ 

The first input denotes whether a record has 
been sent (SJ to RM by PS or received IRJ by 
RM from HS, and the second input denotes the 
particular record type. HS (half-session J 
represents the sender of the Attach. 

FUNCTION: To remember the status of a conversation resource associated with a bidder 
half-session 

NOTES: 1. The initial state of this FSM is FREE. 

2. The RCB may be in the FREE state when a DEALLOCATE RCB is issued if RM discov­
ers that an ALLOCATION_ERROR exists before it attempts to get a session for 
the transaction program. The ALLOCATION_ERRORs that can occur in this situ­
ation are ALLOCATION_FAILURE_* and SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

STATE NAMES----> FREE IN PENDING 
USE SCB 

INPUTS STATE NUMBERS--> 01 02 03 

s, GET_SESSION 3 / / 

R, POS_BID_RSP / / 2 
R, NEG_BID_RSP / / l 

R, ATTACH, HS 2 / / 

s, DEALLOCATE_RCB - l / 

Chapter 3. LU Resources Manager 3-89 



FSH_RCB_STATUS_FSP 

FSH_RCB_STATUS_FSP 

FUNCTION: To remember the status of a conversation resource associated with a 
first-speaker half-session 

NOTES: 1. The initial state of this FSH is FREE. 

z. The RCB may be in the FREE state when a DEALLOCATE_RCB is issued if RH discov­
ers that an ALLOCATION_ERROR exists before it attempts to get a session for 
the transaction program; The ALLOCATION_ERRORs that can occur in this situ­
ation are ALLOCATION_FAILURE_* and SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

STATE NAHES----> FREE IN 
USE 

INPUTS STATE NUHBERS--> 01 oz 

s, ALLOCATE_RCB - / 
s, GET_SESSION z / 

R, ATTACH, HS 2 / 

s, DEALLOCATE_RCB - 1 

3-90 SNA LU 6.Z Reference: Peer Protocols 

c 



LOCAL DATA STRUCTURES ----
(, 

LU_NAHE 

LU_NAHE: LU name of a partner LU 

(~ .•. 
_/ 

HODE_NAHE 

HODE_NAHE: mode name 

HS_ID: half~session identifier 

RCB_ID 

RCB_ID: conversation resource identifier 

TCB_ID 

TCB_ID: TP-PS process identifier 

Chapter 3. LU Resources Manager 3-91 



SENSE_ CODE 

SENSE_CODE: 4-byte sense data 

PREVIOUS_ TIME 

PREVIOUS_TIME: 48-bit time value 

RESPONSE_ CODE 

RESPONSE_CODE: possible values: OK, PIP_NOT_ALLOHED, PIP_NOT_SPECIFIED_CORRECTLY, 
TPN_NOT_RECOGNIZED, TRANS_PGM_NOT_AVAILABLE_RETRY, 
TRANS_PGM_NOT_AVAIL_NO_RETRY, SECURITY_NOT_VALID, 
PS_CREATION_FAILURE, INVALID_FULLY_QUALIFIED_LU_NAME); 

3-92 SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c 



CHAPTER 4. LU SESSION MANAGER 

() 

Node 
Operator < 
Facility 

Resources 
Manager 

(') 
/ Session <-

c Services A 
0 p I 
N 0 v 
T I 
R N Address 

<~: 
< 

119] 0 T Space 
L Manager 

Session 
Manager r V • 

I 
> LU-LU j (' <_J Half-Session J \ __ ) Node 

Buffer 

0 

Manager 
LU 

Note: Only the components having a protocol boundary with LU session manager are shown. 

Figure 4-1. Protocol Boundaries between LU Session Manager and Other Node Components 

GENERAL DESCRIPTION 

This chapter describes the session manager 
ISMJ component within an LU. Figure 4-1 
shows the LU session manager and its relation 
to other components within the node. The 
arrows joining the components represent the 
protocol boundaries that exist between SH and 
the other components. 

The LU session manager initiates and termi­
nates sessions in response to requests from 
the resources manager and from the remote LU. 

The initiation and termination of sessions 
involves exchanging records between the LU 
and the local control point ( CP J, and 
exchanging session-control RUs between the LU 
and a partner LU. The exchange of 

session-control RUs performs the actual acti­
vation and deactivation of the sessions. The 
exchange of records between the LU and CP 
precedes and follows the activation and deac­
tivation of the sessions. 

Session-control requests and responses are 
sent on the expedited flow with the RU cate­
gory indicating session control I SC I. Full 
details of the formats are given in SNA ~ 
mats. 

The LU resources manager IRMJ in one of the 
partner LUs directs the activation or deacti­
vation of an session. Upon completion of the 
activation or deactivation, SH in each of the 

Chapter 4. LU Session Manager 4-1 



two LUs informs its local RM that the session 
has been activated or deactivated. 

OVERVIEH OF SESSION INITIATION 

RM directs the LU to activate a session by 
sending SM an ACTIVATE_SESSION record across 
an internal protocol boundary. SM processes 
the ACTIVATE_SESSION record and initiates the 
session. The SM components in the two LUs 
activate the session by exchanging a BIND 
request and response. SM's processing of the 
ACTIVATE SESSION record, which constitutes 
its part- of the session initiation, includes 
the following: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Check if by activating the session a ses­
sion limit would be exceeded. 

Send the ASSIGN PCID record to the ses­
sion services CSSl component of the con­
trol point requesting a fully qualified 
procedure cor.relator identifier CFQPCIDJ, 
which will uniquely identify the session 
and procedures related to the session. 
The FQPCID is assigned by the node initi­
ating the session. 

Receive the ASSIGN PCID RSP record from 
SS. This record c;ntai~s a Fully Quali­
fied PCID CFQPCIDl control vector. 

Send an INIT SIGNAL record to SS. The 
request dire~ts the control point to 
mediate the initiation of the session. 

Receive a CINIT SIGNAL record from SS . 
That record cont;ins the path control ID 
and characteristics (e.g., maximum send 
and receive BTU sizes) for the session 
and the information on what to include in 
the BIND. 

Send an ASSIGN LFSID record to the 
address space ma..;.ger CASMl component of 
the control point. This record asks ASH 
to assign a local-form session identifier 
CLFSIDl for the ses>ion. The LFSID log­
ically connects a half-session CHS) with 
the path control !PC). 

Receive an ASSIGN LFSID RSP record with 
the LFSID for the ;essio~ from ASH. 

Send the BIND with the desired parameters 
for the session to the partner (second­
ary) LU. 

Receive the RSPCBINDl with 
session parameters from 
Check the admissibility of 
parameters. 

the negotiated 
the partner. 

the negotiated 

Obtain buffers for the session from the 
node's buffer manager CBMl. These buff­
ers will be used by the half-session HS. 

Create and initialize the HS for this 
LU's side of the session. 

• Nati fy RM that the requested session is 
active. 

4-2 SNA LU 6.2 Reference: Peer Protocols 

The partner LU of the one initiating the ses-
sion is directed to activate the session by c 
means of receiving the BIND. Its processing 
following receipt of the BIND includes the ·· 
following: 

• 

• 

• 

• 

• 

Obtain buffers for the session from BM • 
These buffers will be used by HS. 

Build a negotiated BIND response that 
specifies the agreed-to parameters for 
the session, and send the BIND response 
to the partner !primary) LU. 

Create and initialize the HS for this 
LU's side of the session. 

Nati fy SS that a new session is acti­
vated . 

Inform RM that a session has been acti­
vated at the request of the remote LU . 

(' 
The parameters used for the session and car- \ .. __ , 
ried in the BIND request and response have -­
the following sources: 

• Fixed parameters: These have fixed val­
ues for all BIND requests and responses 
for LU 6.2 sessions. 

• 

• 

• 

Implementation-dependent parameters: 
These have values that are determined 
during the implementation of the node. 

Installation-specified parameters: These~ 
have values that are determined by the\_ , 
user at the node's installation. .-~/ 

CINIT parameters: These have values tak­
en from the CINIT_SIGNAL record and sent 
in the BIND. 

OVERVIEH OF SESSION TERMINATION 

RM directs the LU to deactivate a session by 
sending SM a DEACTIVATE_SESSION record across (.----..... ___ ... · 
an internal protocol boundary. The two LUs _ 
deactivate their session by exchanging an 
UNBIND request and response and destroying 
their local half-sessions. SM' s processing 
of the DEACTIVATE SESSION record, which con­
stitutes its part~f the session termination, 
includes the following: 

• 

• 

• 

• 

Send an UNBIND to the partner LU and 
receive the RSPCUNBINDJ. SM deactivates 
the session upon sending the UNBIND, 
before getting the RSPCUNBINDJ. 

Notify SS that the session has been deac­
tivated. 

Destroy the HS for this LU's side of the 
session. 

Inform BM that buffers previously 
reserved for the session are no longer c 
needed. 



0 

0 

0 

0 

The partner LU of the one terminating the 
session is directed to deactivate the session 
by means of the UNBIND. Its processing fol­
lowing receipt of the UNBIND is similar to 
the processing just outlined. SH at the 
UJleIND receiver informs RH that it has deac­
tivated a session at the request of the 
remote LU. 

SESSION OUTAGE AND SESSION REINITIATION 

An active session between two LUs may be 
interrupted by a failure of one or both of 
the LUs, by an abort of one or both of their 
HSs, or by a failure of the path that con­
nects the LUs. This interruption causes a 
session outage• and notification to the LU of 
the session outage is referred to as 
session-outage notification, or SON. Hhen SH 
receives a SESSION_ROUTE_INOP record from 

ASH, it notifies RH, SS, and BH and destroys 
the HS for each session affected by the ses­
sion outage. 

Hhen session outage occurs, RH may direct SH 
to reinitiate the sessions. See "Chapter 3. 
LU Resources Manager" and "Chapter S.4. Pres­
entation Services--Control-Operator Verbs" 
for more details. 

PLU AND SLU 

PLU and SLU refer to the role of an LU in 
providing, respectively, primary or secondary 
half-session control for a session. The PLU 
sends the INIT_SIGNAL record, receives the 
CINIT SIGNAL record, sends the BIND, and 
receives the RSPIBIND). Conversely, the SLU 
receives the BIND and sends the RSPIBIND). 

Chapter 4. LU Session Manager 4-3 



SM PROTOCOL BOUNDARIES 

This section describes the protocol bounda­
ries ( PBs) that SH has with various LU and 
other node components. SM interacts with 
them by exchanging records. Figure 4-2 shows 
the protocol boundaries and lists the record 
names associated with them. The procedures 
and finite-state machines IFSHsl of this 
chapter describe SH' s protocols for sending 

and receiving these records. See "Appendix 
A. Node Data Structures" for a definition of 
the formats of these records. 

In addition, SH interacts with the node's 
buffer manager. See "SM and Buffer Manage­
ment" on page 4-28 for a detailed description 
of this protocol boundary. 

LU Resources Manager 
< 

< -(C~)=============~~ID~J-----------~->l~~~~~~~~~~~~--' _ Half-Session 

LU Session 
Manager IE)~~~~~~~~~~~~>I Node Operator Facility 

< 

< 

Records that SH sends: 

IAJ ACTIVATE_SESSION_RSP 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 

(CJ INIT_HS 

IEJ RM_CREATED 

IFJ MU (contains the following RUsl 
BIND 
UNBIND 
:tRSPIBINDJ 
:tRSPIUNBINDJ 

PC_HS_DISCONNECT 
ASSIGN_LFSID 
FREE_LFSID 
LFSID_IN_USE_RSP 

IH) ASSIGN_PCID 
INIT_SIGNAL 
SESSST_SIGNAL 
SESSEND_SIGNAL 

CP Address Space Manager 

CP Session Services 

Records that SM receives: 

IBJ ACTIVATE_SESSION 
DEACTIVATE_SESSION 
ABEND_NOTIFICATION 

ID l INIT_HS_RSP 
ABORT_HS 
ABEND_NOTIFICATION 

IGJ MU (contains the following RUsl 
BIND 
UNBIND 
:tRSPIBINDJ 

SESSION_ROUTE_INOP 
ASSIGN_LFSID_RSP 
LFSID_IN_USE 

III ASSIGN_PCID_RSP 
INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL 

Figure 4-2. Records Exchanged between SM and Other Components 

4-4 SNA LU 6.2 Reference: Peer Protocols 

C' 
_/ 



c·--/ 
"--' 

PB HITH RM 

This section describes the records that SM 
exchanges with RM. 

The following table lists each record and the 
page number of its description. 

ACTIVATE_ SESSION 

Flow: From RM to SM 

ACTIVATE_SESSION instructs SM to activate a 
session with a specified partner LU using a 

DEACTIVATE_ SESSION 

Flow: From RM to SM 

DEACTIVATE_SESSION instructs SM to deactivate 
a specific session. SM correlates this 
request to a specific session either by HS_ID 
(a half-session process identifier l, if RM 

ABEND_NOTIFICATION 

Flow: From RM to SM 

ABEND NOTIFICATION informs SM that RM has 
abended. SM will bring down all of its ses-

ACTIVATE_SESSION_RSP 

Flow: From SM to RM 

ACTIVATE SESSION RSP tells RM whether or not 
SM was .;-ble to ;atisfy RM's request to acti­
vate a session. If positive, ACTI­
VATE SESSION RSP contains a half-session 
proc;ss identifier, which will be used by RM 

Record 

ACTIVATE_SESSION 
DEACTIVATE_SESSION 
ABEND_NOTIFICATION 
ACTIVATE_SESSION_RSP 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 

Page 

4-5 
4-5 
4-5 
4-5 
4-6 
4-6 

given mode name. RM expects a response (pos­
itive or negative) to this request. 

has already been informed that the session is 
activated, or by the CORRELATOR parameter, 
which matches that from an ACTIVATE_SESSION 
record. 

sions, and will inform all affected compo­
nents in the node. 

to identify the session. If negative, ACTI­
VATE_SESSION_RSP uses an ERROR_TYPE parameter 
to inform RM whether another attempt to acti­
vate a session might succeed. 

Chapter 4. LU Session Manager 4-5 



SESSION_ACTIVATED 

Flow: From SM to RM 

SESSION ACTIVATED tells RM that SM has acti­
vated a- session at the request of a partner 
LU. 

SESSION_DEACTIVATED 

Flow: From SM to RM 

SESSION DEACTIVATED tells RM that SM has 
deactiv;;ted a session either at the request 

4-6 SNA LU 6.Z Reference: Peer Protocols 

of a partner LU, because of a detected proto­
col violation, or following a link failure. 

c~ 

c 



PB HITH HS 

This section describes the records that SM 
exchanges with HS. 

The following table lists each record and the 
page number of its description. 

INIT_HS 

Flow: From SM to HS 

INIT_HS gives HS all the session information 
it needs to begin to perform its functions. 
This information includes the values of the 
negotiated session parameters (see details in 
the later description of the BIND request and 

INIT_HS_RSP 

Flow: From HS to SM 

INIT HS RSP tells SM whether or not the HS is 
succ;ssfully initialized. The only reason an 

ABORT_HS 

Flow: From HS to SM 

ABORT_HS informs SM that a HS has abnormally 
terminated because of a protocol violation. 
SM will bring down the session and inform the 

ABEND_NOTIFICATION 

Flow: From HS to SM 

ABEND_NOTIFICATION informs SM that HS has 
abnormally terminated. SM will bring down 
all sessions associated with the HS, and will 

Record 

INIT_HS 
INIT_HS_RSP 
ABORT_HS 
ABEND_NOTIFICATION 

Page 

4-7 
4-7 
4-7 
4-7 

response RUsl and the buffer pool identifiers 
for the buffers obtained by SM on behalf of 
this HS. The buffer identifier is a pointer 
to a buffer manager control block for the 
buffer pool. 

HS activation could fail is the failure of 
the cryptography verification. 

partner LU, and the RM and SS components in 
its own node of the condition. 

inform RM and SS in this node of the condi­
tion. 

Chapter 4. LU Session Manager 4-7 



PB HITH NOF 

This section describes the records that SM 
exchanges with NOF. 

RM_ CREATED 

Flow: From SM to NOF 

RM CREATED informs NOF that SM has success­
fully created an RM process so that NOF can 
start its first transaction program on the 

4-8 SNA LU 6.2 Reference: Peer Protocols 

The following table lists each record and the 
page number of its description. 

Record Page 

RM_ CREATED 4-8 

LU. This record is sent by SM only once dur­
ing it's initialization stage. 

( 
\, ' 
'--.. J' 



l
~-- .. 

\ 
I 

/ 

0 

0 

PB HITH SS 

This section describes the records that flow 
between SH and the session services component 
of the CP. 

The following table lists each record and the 
page number of its description. 

ASSIGN_PCID 

Flow: From SH to SS 

ASSIGN_PCID record is sent by the session 
manager to the session services I SS I compo­
nent of the node control point. ASSIGN_PCID 
asks SS to create a fully qualified procedure 
correlator I FQPCID J that will serve as a 
unique identifier for this session. This 
record is sent after SH receives a request to 
activate a session from RM or when it 
receives a BIND that does not contain an 

ASSIGN_PCID_RSP 

Flow: From SS to SH 

ASSIGN_PCID_RSP record is sent to the session 
manager by the session services component of 
the node control point. This record is sent 
after SS receives a request from the session 
manager to assign an FQPCID control vector 
for the session. 

Hhen SH receives the ASSIGN PCID RSP record, 
it compares the PCID portio~ of the received 

INIT_SIGNAL 

Flow: From SH to SS 

INIT_SIGNAL requests that the CP assist in 
the initiation of a session between the LU 
sending the request I the PLUJ and the LU 
named in the request I the SLU J. The 
INIT SIGNAL requires a response from the con­
troC point. 

Record 

ASSIGN_PCID 
ASSIGN_PCID_RSP 
INIT_SIGNAL 
INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL 
SESSST_SIGNAL 
SESSEND_SIGNAL 

Page 

4-9 
4-9 
4-9 
4-10 
4-10 
4-10 
4-10 

FQPCID control vector. ASSIGN PCID asks SS 
to create an FQPCID that will serve as a 
local session identifier. In this latter 
case, FQPCID will never be sent to the part­
ner LU. ASSIGN_PCID requires a response from 
SS. SH cannot accept any other signal 
related to any session until a response to a 
sent ASSIGN_PCID is received. 

FQPCID with those of all of its active and 
pending-active sessions. If a duplicate PCID 
is found, SH sends another ASSIGN PCID record 
to SS indicating that it has discovered a 
PCID collision. This will continue until SS 
returns an ASSIGN_PCID_RSP record with an 
FQPCID whose PCID portion is not duplicated. 

The INIT_SIGNAL request contains, among other 
parameters, the fully qualified network names 
of the PLU and the SLU, the mode name for the 
session, and the FQPCID for the session. 

The CP returns either a CINIT SIGNAL record 
or an INIT_SIGNAL_NEG_RSP record. 

Chapter 4. LU Session Manager 4-9 



INIT_SIGNAL_NEG_RSP 

Flow: From SS to SM 

INIT _SIGNAL_NEG_RSP is sent by SS to SM in 
response to an INIT SIGNAL record. 
INIT_SIGNAL_NEG_RSP tells -the PLU that a 

CINIT_SIGNAL 

Flow: From SS to SM 

CINIT_SIGNAL is sent by SS to SM in response 
to an INIT _SIGNAL record. CINIT _SIGNAL 
instructs the PLU to send a BIND to the SLU 
and provides the information that the PLU 
needs in order to generate the BIND RU. See 
the description of BIND in this chapter for 
the rules of how the PLU chooses the BIND 
parameters. 

SESSST_SIGNAL 

Flow: From SM to SS 

SESSST_SIGNAL notifies SS that a session has 
been successfully activated. This record is 
sent to SS after SM sends a positive response 
to BIND. 

SESSST SIGNAL is sent by SM only from the SLU 
side. On the PLU side, it is not necessary 

SESSEND_SIGNAL 

Flow: From SM to SS 

SESSEND SIGNAL notifies SS that a session has 
been s~cessfully deactivated or that an 
attempt to activate a session has failed. 
The former case applies to both PLU and SLU; 
the latter case applies only to the PLU in 
the situation when CP sent a CINIT _SIGNAL 

4-lD SNA LU 6.2 Reference: Peer Protocols 

request to activate a session is rejected. 
SM will then inform RM that it couldn't acti­
vate a session. 

The PLU uses the FQPCID control vector field 
in the CINIT SIGNAL record to correlate it to 
a previously-sent INIT_SIGNAL. This field is 
always present in the CINIT_SIGNAL. The 
Class-of-Service/Transmission_Priority con­
trol vector ICOS_TPf) may be present in the 
CINIT_SIGNAL record. If it is present, the 
PLU puts it in the BIND without modification. 

because SS assumes after sending a ,~--, 
CINIT SIGNAL record that the session will be\, 
activ;;ted. If the session activation fails "·-~-­
after the CINIT_SIGNAL is received, the PLU's 
SM sends a SESSEND_SIGNAL record to SS. 

record to the PLU but the PLU could not suc­
cess fully complete the session activation. 

SESSEND SIGNAL carries the FQPCID control(---~ 
vector field and the sense data 1nformat1on. ,_./ 



,,,,...--... 
\ __ ) 

0 

PB HITH ASH 

This section describes the records that flow 
between the SH and the Address Space Manager 
component of the CP. 

The following table lists each record and the 
page number of its description. 

MESSAGE UNIT IMUl 

Flow: From SM to ASH and from ASH to SH 

Message unit I MU l records carrying the TH, 
RH, and session-activation and 
session-deactivation RUs are exchanged 
between SM and the address space manager com­
ponent of the control point in both 
directions. 

SM receives a BIND MU in a session buffer 
that may be reused by the SM to send the 
response to the BIND, whether it be a 

PC_HS_DISCONNECT 

Flow: From SM to ASH 

PC HS DISCONNECT record is sent by SH to ASH 
after- SM receives -RSPIBINDl. 
PC_HS_DISCONNECT instructs ASM to free the 
LFSID I local-form session identifier) used 
for the session. The reason why this record 
is sent only after a -RSPI BIND l is received 

SESSION_ROUTE_INOP 

Flow: From ASM to SM 

SESSION ROUTE INOP tells SM to terminate each 
session - with -an LULU_CB control block entry 
that has the PATH_CONTROL_ID parameter equal 

Record 

HU 
PC_HS_DISCONNECT 
SESSION_ROUTE_INOP 
ASSIGN_LFSID 
ASSIGN_LFSID_RSP 
FREE_LFSID 
LFSID_IN_USE 
LFSID_IN_USE_RSP 

Page 

4-11 
4-11 
4-11 
4-12 
4-12 
4-12 
4-12 
4-13 

±RSPIBINDl or an UNBIND. All other MU types 
arrive at SM in a link buffer that SH frees 
immediately. For a description of buffer 
types, refer to "SM and Buffer Management" on 
page 4-28. 

BIND, RSPIBINDJ, UNBIND, and RSPIUNBINDl RUs 
are described in greater detail later in this 
chapter. The format of MU records is defined 
in Appendix A. 

is that in all other cases SM sends either an 
UNBIND or a RSPIUNBINDl before the session is 
terminated. Both of these MUs contain a 
FREE LFSID field, which SM sets to instruct 
ASM to free the LFSID. 

to the corresponding value received in the 
SESSION_ROUTE_INOP record. 

Chapter 4. LU Session Manager 4-11 



ASSIGN_LFSID 

Flow: From SH to ASH 

ASSIGN_LFSID is sent by SH to the address 
space manager component of the control point 
after SM receives the CINIT_SIGNAL record. 
The purpose of this record is to request ASH 
to assign an LFSID for the session. 

ASSIGN_LFSID_RSP 

Flow: From ASM to SM 

ASSIGN_LFSID_RSP is received by SM from the 
address space manager component of the con­
trol point in response to ASSIGN_LFSID. 
ASSIGN_LFSID_RSP carries the LFSID for the 

FREE_LFSID 

Flow: From SH to ASM 

FREE_LFSID is sent by SM to the address space 
manager component of ·the control point when 
SM gets an ASSIGN_LFSID_RSP record from ASM 

LFSID_IN_USE 

Flow: From ASM to SM 

LFSID_IN_USE is received by SM from the 
address space manager component of the con­
trol point when ASM needs SM to check whether 
a certain IPATH_CONTROL_ID, LFSIDJ pair is in 
use by the session manager. ASM may need to 
check if SM is using an LFSID because of the 
following race condition. Upon sending an 
UNBIND, the UNBIND sender may reuse an LFSID 
for a subsequent BIND that arrives at the 

4-12 SNA LU 6.2 Reference: Peer Protocols 

ASSIGN_LFSID requires a response from ASH. 
SH cannot accept any other signal related to 
any session until a response to a sent 
ASSIGN_LFSID is received. 

session, except when ASM was unable to assign 
it. In this latter case, ASH sets the sense 
data field in the record to a nonzero value. 

but SM is unable to send a BIND because of an 
error encountered during initiation, such as 
lack of a BIND buffer. 

partner LU before the partner has fully proc­
essed the preceding UNBIND and freed the 
LFSID for re-use on its side. In this case, 
the receiving ASM checks on the LFSID status 
with its SM (using this signal queued behind 
the pending UNBIND) to accommodate the race 
condition. See SNA ~ ~ Node Reference 
for further detaiIS: 

~. ..._ ___ / 



0 

0 

LFSID_IN_USE_RSP 

Flow: From SH to ASH 

LFSID_IN_USE_RSP is sent by SH to the address 
space manager component of the control point 
in response to the LFSID_IN_USE record. It 

contains a parameter that indicates whether a 
IPATH_CONTROL_ID, LFSIDJ pair in question is 
used by SH. 

Chapter 4. LU Session Manager 4-13 



TH AND RH PARAMETERS 

See Figure 4-3 and Figure 4-4 on page 4-15 
for a description of TH parameters and Fig­
ure 4-5 on page 4-16 and Figure 4-6 on page 
4-17 for a description of RH parameters in 

Field 
Offset in TH Name Value 

Byte 0 Bits 0-3 FID (Note) A 
Bit 4 BBIUI BBIU 
Bit 5 EBIUI EBIU 
Bit 6 ODAI 0 
Bit 7 EFI EXP 

Byte 1 Bits 0-7 reserved 00000000 BIND I UNBIND 

Byte 2 Bits 0-7 DAF' 00000000 

Byte 3 Bits 0-7 OAF' 00000000 

Bytes 4-5 SNF unique 
sequence 
number v 

Byte 0 Bits 0-3 FID I Note) A 
Bit 4 BBIUI BBIU 
Bit 5 EBIUI EBIU 
Bit 6 ODAI 0 
Bit 7 EFI EXP 

MUs that SM sends and receives. The meaning 
of the individual TH and RH bits is described 
in SNA Formats. 

Byte 1 Bits 0-7 reserved 00000000 RSPIBIND) I 
RSPIUNBIND J 

Byte 2 Bits 0-7 DAF' 00000000 

Byte 3 Bits 0-7 OAF' 00000000 

Bytes 4-5 SNF sequence 
number 
from the 
request v 

Note: The FID type is set by path control IPCJ. 

Figure 4-3. TH Parmeters for MUs That SM Sends. 

c 

c· 
4-14 SNA LU·6.2 Reference: Peer Protocols 



C .. 
/ 

' 0 

Field 
Off set in TH Name Value 

Byte 0 Bits 0-3 FID !Note l) A 
Bit 4 BBIUI !Note ll 
Bit S EBIUI !Note l) 
Bit 6 ODAI !Note l) 
Bit 7 EFI !Note l) 

Byte l Bits 0-7 reserved !Note ll BINDjUNBIND 

Byte 2 Bits 0-7 OAF' !Note l) 

Byte 3 Bits 0-7 OAF' !Note l) 

Bytes 4-5 SNF unique 
sequence 
number; 
copied in 
the RSP, 
if sent 
INote 4) v 

Byte 0 Bits 0-3 FID !Note l) A 
Bit 4 BBIUI !Note l) 
Bit 5 EBIUI I Note 2) 
Bit 6 ODAI I Note 1) 
Bit 7 EFI I Note l) 

Byte l Bits 0-7 reserved I Note l) RSPCBIND) !Note 41 

Byte 2 Bits 0-7 DAF' I Note l) 

Byte 3 Bits 0-7 OAF' !Note l) 

Bytes 4-5 SNF I Note 3) v 

Notes: 
r:-Tliis parameter is'checked by either PC or ASH not by SH. 
2. If a +RSPIBIND) is received with EBIUI = ~EBIU, SH sends an UNBIND except when SH has already 

lost its awareness of the session, in which case it merely discards the received response. 
3. The SNF parameter correlates the response with the previously sent BIND. 
4. The session clean-up is done when the UNBIND is sent by SH; SH does not wait for the RSPIUNBIND). 

Figure 4-4. TH Parameters for HUs That SH Receives 

Chapter 4. LU Session Manager 4-15 



Field 
Offset in RH Name 

Byte 0 Bit 0 RRI 
Bits 1-2 RU 

Category 
Bit 3 reserved 
Bit 4 FI 
Bit 5 SDI 
Bit 6 BCI 
Bit 7 ECI 

Byte 1 Bit 0 DRlI 
Bit 1 reserved 
Bit 2 DR2I 
Bit 3 ERI 
Bit 4 reserved 
Bit 5 RLHI 
Bit 6 QRI 
Bit 7 PI 

Byte 2 Bit 0 BBI 
Bit 1 EBI 
Bit 2 CDI 
Bits 3-6 reserved 
Bit 7 CEBI 

Byte 0 Bit 0 RRI 
Bits 1-2 RU_CTGY 

Category 
Bit 3 reserved 
Bit 4 FI 
Bit 5 SDI 
Bit 6 BCI 
Bit 7 ECI 

Byte 1 Bit 0 DRlI 
Bit 1 reserved 
Bit 2 DR2I 
Bit 3 RTI 
Bits 4-5 reserved 
Bit 6 QRI 
Bit 7 PI 

Byte 2 Bits 0-7 reserved 

Value 

RQ 
SC 

0 
FMH 
~so 

BC 
EC 

DRl 
0 
~DR2 

~ER 

0 
~RLH 

~QR 

~PAC 

~BB 

~EB 

~co 

0000 
~CEB 

RSP 
SC 
SC 
0 
FMH 
INoteJ 
BC 
EC 

DRl 
0 
~DR2 

! 
00 
~QR 

~PAC 

00000000 

A 

BINDIUNBIND 

v 

A 

RSPIBINDJI 
RSPIUNBIND) 

v 

Note: SDI is set to SD when a -RSPIBINDIUNBIND> is sent by SM~ otherwise, it is set to ~so. 

Figure 4-5. RH Parameters for MUs That SM Sends 

4-16 SNA LU 6.2 Reference: Peer Protocols 



C' 

0 

c) 

0 

Field 
Offset in RH Name Value 

Byte 0 Bit 0 RRI (Note ZJ A 
Bits 1-Z RU (Note ZJ 

Category (Note ZJ 
Bit 3 reserved CNote ZJ 
Bit 4 FI CNote ZJ 
Bit 5 SDI -so 
Bit 6 BCI CNote ZJ 
Bit 7 ECI CNote ZJ 

Byte 1 Bit 0 DRlI !Note ZJ BIND I UNBIND 
Bit 1 reserved !Note ZJ 
Bit z DRZI !Note ZJ 
Bit 3 ERI !Note ZJ 
Bit 4 reserved !Note ZJ 
Bit 5 RLHI !Note ZJ 
Bit 6 QRI !Note ZJ 
Bit 7 PI !Note ZJ 

Byte Z Bit 0 BBI !Note ZJ 
Bit 1 EBI !Note ZJ 
Bit Z CDI !Note ZJ 
Bits 3-6 reserved !Note ZJ 
Bit 7 CEBI !Note ZJ v 

Byte 0 Bit 0 RRI !Note ZJ A 
Bits 1-2 RU (Note 2) 

Category CNote ZJ 
Bit 3 reserved !Note ZJ 
Bit 4 FI !Note ZJ 
Bit 5 SDI !Note 1J 
Bit 6 BCI (Note 2) 
Bit 7 ECI (Note 2) 

RSPCBINDJ !Note 31 
Byte 1 Bit 0 DRlI !Note ZJ 

Bit 1 reserved !Note ZJ 
Bit z DRZI !Note ZJ 
Bit 3 RT! :!: 
Bits 4-5 reo;erved CNote ZJ 
Bit 6 QRI !Note 2) 
Bit 7 PI CNote ZJ 

Byte Z Bits 0-7 reserved !Note ZJ v 

Notes: 
y:---sjj"I is set to SD when a -RSPCBINDl is received by SM; otherwise, it is set to -so. 
z. This parameter is checked by either PC or ASH, not by SH. 
3. The session clean-up is done when the UNBIND is sent by SM; SH does not wait for the RSPCUNBIND). 

Figure 4-6. RH Parameters for HUs That SH Receives 

Chapter 4. LU Session Manager 4-17 



RU PARAMETERS 

4-18 

The following sections define some parameters 
that are common to many interprocess records 
and session-control field-formatted RUs. 

NETWORK-QUALIFIED NAME 

A network-qualified name is the name by which 
an LU is known throughout an interconnected 
SNA network. An interconnected network com­
prises one or more individual subnetworks. A 
network-qualified name consists of a network 
identifier I identifying the individual sub­
network) and a network LU name. 
Network-qualified names are unique throughout 
an interconnected network. 

LOCAL NAME 

A local name is any name by which a trans­
act ion program at one LU knows another LU. A 
local name requires interpretation lor trans­
formation) by SH in order to yield the net­
work qualified name of the partner LU. A 
local name may be the same as a 
network-qualified name. 

MODE NAME 

The CP has information about the LU partner 
that aids in the construction of the BIND 
parameters (carried in CINIT SIGNAL). The CP 
and SM derive additional information from the 
mode name. The local LU supplies the mode 
name in the INIT_SIGNAL record. 

LU-LU VERIFICATION DATA 

Random data and enciphered data are used for 
LU-LU verification. Random data is randomly 
generated data of symbol-string type G. 
Enciphered data is the enciphered version of 
the random data. 

If LU-LU verification is active, BIND and 
RSPIBIND) will contain 8 bytes of random data 
generated by the sender for LU-LU veri fica­
tion. RSPIBIND) will also contain 8 by.tes of 
enciphered data for the same purpose. The 
secondary LU submits the random data received 
in the BIND along with the LU-LU password 
I refer to "Security" on page 2-9) to the Data 
Encryption Standard IDES) algorithm to obtain 
enciphered data. This enciphered data is 
inserted in the RSPIBINDJ along with new ran­
dom data. Hhen the primary LU receives the 

SNA LU 6.2 Reference: Peer Protocols 

RSPIBINDJ, it compares the received enci­
phered data with a copy of the same random 
data that it has also enciphered using its 
copy of the LU-LU password and the DES algo­
rithm. If they are identical, the primary LU 
has verified that the SLU has the correct 
LU-LU password. 
Up to this point in the LU-LU verification 
process, processing has been done by the SH 
of each LU. SH in the primary and secondary 
LUs send to their respective RMs a record 
that contains the random data from the 
RSPIBINDJ. The primary LU's RH enciphers the 
random data using the LU-LU password and the 
DES algorithm, inserts it in a Security ·FM 
header I refer to "Chapter 3. LU Resources 
Manager" in Chapter 3 J and sends it to the _ 
secondary's RH. The received enciphered data ( """ 
is compared with the secondary LU's version 
of the enciphered data. If they are identi- '- -·· 
cal, the secondary LU has verified that the 
primary LU has the correct LU-LU password, 
which completes the process. 

SPECIFICATION OF RU PARAMETERS 

Throughout the descriptions of the RUs in 
this chapter, reference is made to the spec­
ification of a parameter. "Specification"(""­
refers to a speci fie value that is supplied · 
for the parameter when the RU is being built, /, 
prior to its being sent. 

Implementation-Dependent Parameters 

Throughout the descriptions of the RUs in 
this chapter, reference is made to 
implementation-dependent parameters. 
"Implementation-dependent" means that the 
particular value, or values, that a parameter ~­
of an RU can take is determined by each ( · ... ·' 
implementation. "-- -· 

Installation-Specified Parameters 

Throughout the descriptions of the RUs in 
this chapter, reference is made to 
installation-specified parameters. 
"Installation-spec1 fied" means that the par­
ticular value, or values, that a parameter of 
an RU can take is determined by the installa­
tion owner or manager. 
Installation-specified values can be estab­
lished during system definition of a node, or 
later during its operation. The method for 
establishing values of installation-specified 
parameters is implementation-dependent. 



SESSION-CONTROL RU'S 

0 

0 

() 

0 

This section 
requests and 
receives. 

describes the session-control 
responses that SH sends and 

Each RU description includes the RU flow and 
a discussion of the function and use of the 
RU. Refer to SNA Formats for specifications 
of the RU formatS: 

The table below lists each session control RU 
that pertains to session activation and deac-

BIND 

Flow: From PLU to SLU !Expedited) 

BIND is sent from a PLU to an SLU to activate 
a session between the LUs. The BIND indi­
cates definite-response requested. 

The BIND carries the PLU's suggested parame­
ters for the session. The specifications of 
the BIND parameters are based on required LU 
6.Z values. on the PLU's 
implementation-dependent support, on the 
installation-specified values currently in 
effect for the parameters• or on the CINIT • 
depending on the particular parameter. 

The SLU uses the BIND parameters to help 
determine whether it will send back a 
+RSPIBINDJ, an UNBIND, or a -RSPIBINDJ. The 
SLU's use of UNBIND or -RSPIBINDJ to reject a 
BIND is based on whether the SLU is a 
current-level or back-level node. Control 
information in either LU is updated only when 
a positive response is returned. A success­
ful BIND causes a half-session to be created 
at both PLU and SLU. 

If the LU receives a BIND after sending a 
BIND• and either ( 1) parallel sessions 
between the two LUs are not supported, or !Zl 
the current number of active sessions within 
the mode-name group is 1 less than the ses­
sion limit for that group, then a BIND race 
has occurred. The BIND race is resolved by 
comparing the network-qualified LU names in 
the BINDs. Network-qualified LU names are 
unique throughout a network; therefore. one 
will always compare greater than the other in 
the EBCDIC collating sequence of the two 
names. The LU that sent the BIND containing 
the greater of the two network-qualified LU 
names is the wimer I its BIND is accepted). 
The other LU is the loser ( its BIND is 
rejected). 

The comparison is made by comparing the two 
names as EBCDIC character strings, 
left-justified, and filled on the right with 
space CX'40') characters, if necessary. 

tivation, and 
description. 

RU 

the 

BIND SESSION !BIND) 
RSPIBINDl 

page 

UNBIND SESSION !UNBIND) 
RSPIUNBINDJ 

number 

Page 

4-19 
4-Z4 
4-Z7 
4-Z8 

of its 

Network-qualified LU names contain no leading 
or embedded space characters. 

The LU winning the BIND race sends back an 
UNBIND or a -RSP( BIND l. The other LU sends 
back a +RSP( BIND)• unless the BIND is not 
acceptable for other reasons, such as invalid 
format. 

The BIND and its response do not have an ERP 
type. The distinction between simple acti­
vation and resynchronizing reactivation fol­
lowing a failure is made after the session 
has been activated. In some cases, resync 
protocols are used; in others. end-user pro­
tocols are invoked, see "Chapter 5.3. Presen­
tation Services--Sync Point Services Verbs" 
in Chapter 5.3. 

The SLU does not necessarily reject the BIND 
because of any incompatibility it may have 
with the BIND parameters. Rather• if the 
BIND is otherwise acceptable I for example. 
there are no format errors and the session 
limit is not exceeded J. the SLU returns a 
positive response with an extended format 
that carries the complete set of session 
parameters. The specifications for the 
parameters can match those received in the 
BIND• or they can differ• where the SLU 
chooses different options. The parameters 
for which the SLU may choose different 
options are referred to as negotiable parame­
ters. 

The PLU receives +RSPI BIND) and checks the 
parameter specifications. If acceptable, 
they are used for the activated session. 
Otherwise, the PLU sends UNBIND. 

A description of the parameters in the BIND 
follows. 

Format: This specifies the format of the 
BIND. Only one format is defined: Format O. 

Chapter 4. LU Session Manager 4-19 



4-20 

~ This specifies the type·of BIND. The 
{ype-is always specified as negotiable. The 
+RSPIBINDl has the same general format as the 
BIND. The negotiable type of BIND permits 
the SLU to retum a positive response in 
l!lhich the negotiable parameters may differ 
from those in the request. 

FM Profile: This specifies the FM profile to 
be used for the session. FM profile 19 is 
the only one defined for LU 6.2. The FM pro­
file is supplemented by the FM usage parame­
ters of the BIND. 

TS Profile: This specifies the TS profile to 
be used for the session. TS profile 7 is the 
only one defined for LU 6.2. The TS profile 
is supplemented by the TS usage parameters of 
the BIND. 

FM Usage IPLUl--Chaining Use: This specifies 
lFie PLU's use of chains that it sends to the 
SLU. Multiple-RU chains is the only use 
defined for LU 6 . 2. Cha ins may consist of 
one or more RUs. The maximum-size RU that 
the PLU sends and the verbs that the trans­
action program issues to the PLU determine 
the number of RUs that make up the chain. 

FM Usage IPLUl-Request Control Mode: This 
specifies the PLU's protocol for sending 
chains. Immediate-request mode is the only 
protocol defined for LU 6. 2. The PLU waits 
for a response to a defini te-·response chain 
before it sends another chain. 

FM Usage IPLUl--Chain Response Protocol: 
This specifies the PLU's protocol for 
requesting responses to chains. Definite- or 
exception-response requested is the only pro­
tocol defined. A chain indicating 
definite-response requested requires a 
response from the SLU; the response may be 
positive or negative. A chain indicating 
exception-response requested requires a 
response from the SLU only when the response 
is negative; a positive response is not 
returned. 

FM Usayh IPLUl-Send End Bracket: This.spec­
ifies at the PLU does not send EB chains. 

FM Usage ISLUl--Chaining Use: This specifies 
lFie SLU's use of chains that it sends to the 
PLU. Multiple-RU chains is the only use 
defined for LU 6.2. Chains may consist of 
one or more RUs. The maximum-size RU that 
the SLU sends and the verbs that the trans­
action program issues to the SLU determine 
the number of RUs that make up the chain. 

FM Usf!i19 ISLUl-Request Control Mode: This 
Sjieci ies the SLU' s protocol tor sending 
chains. Immediate-request mode is the only 
protocol defined for LU 6.2. The SLU waits 
for a response to a definite-response chain 
before it sends another chain. 

FM Usage ISLUJ--Chain Response Protocol: 
This specifies thS SLU 's protocol for 
requesting responses to chains. Definite- or 
exception-response requested is the only pro­
tocol defined. A chain indicating 
defini ta-response requested requires a 

SNA LU 6.2 Reference: Peer Protocols 

response from the PLUJ the response may be,.------. 
positive or negative. A chain indicati"f ' 
exception-response requested requires =::.'--. ... ./ 
response from the PLU only when the response 
is negative; a positive response is not 
returned. 

FM Usagh ISLUl-Send End Bracket: This spec­
ifies t at the SLU does not send EB chains. 

FM Usage ICommonl--Hhole BIU Required Indica­
tor :--rFie PLU speci hes Whether it supports 
receiving segmented BIUs on the session. BIU 
segmenting affects the specifications of the 
maximum-size RUs sent by the PLU and SLU. 
This field is set according to whether the 
segment reassembly support is specified in 
the node this LU belongs to. This support is 
installation-specified. 

FM Usage ICommonl-FM Header Usage: This 
speci hes that FM headers are used on the,...--~ 
session. ~_, 

FH Usage I Common )-Bracket Usage and Reset 
state: This specifies that bracketsareUSed 
~e session and that the bracket reset 
state for the session is in-bracket I INB); 
that is, the session is in the in-bracket 
state following successful activation. 

FM Usage ICommonl-Bracket Termination Rule: 
This specifies that rule 1, conditionai-tei=­
mination, will be used on the session. The 
sender of the end-bracket I CEB) chain deterr­
mines whether the bracket is to end condi · 
tionally or unconditionally. If conditional, , 
the receiver is allowed to reject the~-../ 
end-bracket chain and thereby keep the ses­
sion in the in-bracket state. 

FM Usage (Common)--BIND Queuing: This speci­
fies whether the SLU is permi Hed to 'queue 
I hold) the BIND for an indefinite period 
without sending a response. Hhether the 'PLU 
permits the SLU to queue the BIND and delay 
its response is implementation-dependent. 
All sessions for which this LU is a PLU haver...-...._, 
the same specification for this parameter. ( 

\.__.· 
FM Usage I Common )-Normal-Flow Send/Receive 
Mode: This specifies that the send/receive 
protocol for FMD requests on the normal flow 
is half-duplex flip-flop. 

FM Usage ICommonl-Recovery Responsibility: 
This specifies the responsibility for recov­
ery from an error within the session. Sym­
metric recovery is the only value defined for 
LU 6.2. The sender of a negative resj:>Onse is 
responsible for recovery, regardless of 
whether the sender is the PLU or SLU. 

FM Usage ICommonl-Contention Hirner/Loser: 
This specifies whether the PLU or SLU will be 
the contention wimer for the session. The 
contention wimer is the brackets first 
speaker, and the contention loser is the bid­
der. The specification of contention winner 
or loser depends on whether the session is I · 
parallel or single session, as indicated b::,...___ . 
the PS usage parameter, Parallel Session Sup- / 
port, in the BIND. 



C" 

() 

For a parallel session, the PLU specifies 
that it is the contention winner if, for the 
mode name, the number of active sessions for 
which the PLU is the contention winner is 
less than its maximum; otherwise, the PLU 
specifies the SLU as the contention winner. 
The PLU's maximum number of contention-winner 
sessions is determined from the last 
change-number-of-sessions protocol executed 
by the two LUs. 

For a single session, the PLU specifies that 
it is the contention winner if, for the mode 
name, the SLU is to be the contention loser; 
otherwise, the PLU specifies the SLU as the 
contention winner. For each mode name asso­
ciated with a single-session LU, the con­
tention winner I PLU or SLU) for the session 
is installation-specified. !Refer to Fig­
ure 5.4-14 on page 5.4-241. 

FM Usage I Common )-Control Vectors Included 
Indicator: This specifies that at least one 
control vector is present in the BIND. 

FM Usage I Common )-Half-Duplex Flip-Flop 
Reset States: This specifies the half-duplex 
flip-flop reset states for the PLU and SLU 
following successful activation of the ses­
sion. The reset states are send for the PLU 
and receive for the SLU; that is, the PLU 
sends first. 

TS Usage--Staging for Secondary TC to Primary 
TC: This specifies whether pacing of 
normal-flow requests from the SLU to the PLU 
occurs in one stage or more than one stage. 
One-stage pacing is always specified for LU 
6.2. See "Chapter 6.2. Transmission Control" 
for details on session-level pacing. 

TS Usa~Secoridary TC's Send Hindow Size: 
This inSallation-speci fied value is set to 
the desired receive window size of the PLU. 

TS Usage--Adaptive Session-Level Pacing: 
This spec1f1es that the PLU supports adaptive 
session-level pacing for the session. See 
"Chapter 6.2. Transmission Control" for 
details on adaptive session-level pacing. 

TS Usage--Secondary TC's Receive Hindow Size: 
This installation-specified value-I'S set to 
the desired send window size of the PLU. 

TS Usage--Maximum-Size RU Sent by SLU: If 
segment reassembly 1s--supported, an 
installation-dependent value is put in the 
BIND for the mode name. Otherwise, this 
parameter in BIND is set by SM to a minimum 
of 11) that installation-dependent value and 
I 2) path control's maximum receive size RU 
for the PLU node. 

TS Usage--Maximum-Size RU Sent by PLU: If 
segment generation 1s--supported, an 
installation-dependent value is put in the 
BIND for the mode name. Otherwise, this 
parameter in BIND is set by SM to a minimum 
of 11) that installation-dependent value and 
12) path control's maximun send size RU for 
the PLU node. 

TS Usage--Staging for Primary TC to Secondary 
TC: This specrnes whether -pacing of 
normal-flow requests from the PLU to the SLU 
occurs in one stage or more than one stage. 
One-stage pacing is always specified for LU 
6.2. 

TS Usage--Primary TC's Send Hindow Size: 
This installation-dependent value TsSet to 
the desired send window size of the PLU. 

TS Usage--Primary TC's Receive Hindow Size: 
This installahon-dependent value is set to 
the desired receive window size of the PLU. 

PS Profile--PS Usage Format: This specifies 
the PS usage format. The basic format is the 
only PS usage format defined. 

PS Profile--LU Type: 
as the LU type.---

This specifies type-6 

PS Usage--LU Type-6 Level: This specifies 
the level of--urt"ype-6. Level 2 is the LU 
type-6 level defined for LU 6.2. 

PS Usage--Security Manager Receive Function: 
This specifies whether the PLU supports a 
security manager for receiving a user-ID, 
password or already-verified indication, or 
profile-ID on FMH-5 Attach commands from the 
SLU. 

PS Usage--Already Verified Indicator Accept­
ance: This specifies whether the PLU will 
accept the User-ID Already Verified indi­
cation on FMH-5 Attach commands from the SLU. 

PS Usage--Synchronization Level: This speci­
fles the level of synchronization support for 
the session. One of two levels of support 
may be specified: 

1. Confirm 
2. Confirm, Sync point, and Backout 

The level of support specified for the ses­
sion determines the synchronization levels 
that can be specified for a conversation 
allocated to the session. The synchroniza­
tion level, "none" lnot listed above), can be 
specified for a conversation allocated to any 
session; therefore, "none" is not explicitly 
specified for the session. 

All LU implementations support the Confirm 
level; support for Sync point and Backout is 
implementation-dependent. If the PLU imple­
mentation supports Sync point and Backout, 
the specification of support-level 1 versus 
support-level 2 is installation-specified for 
each mode name. All sessions with the same 
mode name have the same specification for 
this parameter; however, the specification 
may di ff er for different mode names. See 
"Chapter 5. 3. Presentation Services--Sync 
Point Services Verbs" for details about Sync 
point and Backout. 

PS Usage--Responsibility for Session Reiniti­
ation: This specifies ther=esponsibil1ty for 
reinitiation of a session following a session 
outage. This parameter applies only to ses­
sions for which parallel sessions and change 

Chapter 4. LU Session Manager 4-21 



4-22 

number of sessions !CNOSl are not supported. 
Four levels of responsibility are defined: 

1. Operator controls. 
2. Primary half-session reinitiates. 
3. Secondary half-session reinitiates. 
4. Either half-session may reinitiate. 

Operator controlled reini tiation means nei­
ther LU will automatically attempt to reini­
tiate the session. The particular level of 
responsibility for reini tiation of the ses­
sion--operator controlled or otherwise--can 
be either implementation-dependent or 
installation-specified. 

Other events may cause a session to be acti­
vated, independent of the reini tiation 
responsibility. For example, if the 
resources manager has queued a request for 
allocation of a conversation, the resources 
manager will request activation of a session 
when the SM informs the resources manager 
that the current session has been deacti­
vated. 

PS Usage--Parallel-Session Support: This 
specifies that the PLU supports parallel ses­
sions between the PLU and SLU. 

PS Usage--Change-Number-Of-Sessions Support: 
This specifies whether the PLU and SLU sup­
port the change-number-of-sessions ICNOSl 
protocol, which includes exchange of the 
Change Number Of Sessions GOS variable. Sup­
port for CNOS is implementation-dependent; 
however, if parallel sessions are supported, 
CNOS is also supported. lf the PLU implemen­
tation supports CNOS, the indication of sup­
port versus no support is 
installation-specified for each partner SLU. 
All sessions with the· same SLU have the same 
specification for this parameter; however, 
the specification may differ for different 
SLUs. 

Cryptography Options: This specifies whether 
session-level mandatory cryptography is sup­
ported for the session, and, if so, the 
cryptography options to be used. Support for 
session-level mandatory cryptography is 
implementation-dependent. If the mode name 
indicates support for session-level mandatory 
cryptography, then the PLU specifies in BIND 
that it is supported; otherwise, the PLU 
specifies it is not supported. All sessions 
with the same mode name have the same spec­
ification for this parameter; however, the 
specification may differ for different SLUs. 

The cryptography options include a length 
parameter. The PLU indicates that 
session-level cryptography is not to be used 
for the session by specifying 0 for the 
length of the cryptography options. 
Session-level mandatory cryptography is the 
only session-level cryptography defined. ·see 
"Sessions with Cryptography" in "Chapter 6.2. 
Transmission Control" for additional informa-
tion. . 

Primary LU Name: This specifies the name of 
the PLU tor the session. 

SNA LU 6.2 Reference: Peer Protocols 

This parameter is not used by SM. Instead, 
SM uses the network-qualified PLU name car-~ 
ried in the user data to identify the PLU tl'-_j 
the SLU. 

User Data: This specifies, in a structured 
format, further parameters for the session. 

Figure 4-7 shows the format of the user data 
and the preceding length. The user-data key 
is always specified as X'OO', which indicates 
structured subfields follow. 

...-~~--.-~~~~~~~~~~/~~~~~~~ 

length Key Subfield 1 ••• Subfield n 
X'OO' 

I 
I ' I ' I ' I ' I length I Key Value 

Figure 4-7. Format of User Data 

Each subfield includes a length and is ide~~ 
ti fied by a subfield key following tH, . 
length. Hhen more than one subfield are __ __./ 
included, they appear in ascending order by 
subfield number. 

The structured subfields that the PLU sends 
in BIND are: 

Key Name 

X'OO' Unformatted Data 
X'OZ' Mode Name ~-

X'03' Session-Instance ID (....__, X'04' Network-Qualified PLU Name 
X'll' Random Data 

A TZ .1-node implementation that contains a 
single LU and a single link connection, does 
not support parallel sessions and CNOS, does 
not support the synchronization level for 
Sync point and Backout, and does not support 
LU-LU verification may omit all User-Data 
subfields. The PLU omits all User Data sub­
fields either by specifying 0 for the length 
of the user data, or by specifying 1 for the 
length and specifying user data consisting 
only of the user-data key; the choice is 
implementation-dependent. 

In general, the PLU may omit one or more sub­
fields; see the descriptions of individual 
subfields for more information. If it does, 
the entire subfield, including its length, ics ...... 
omitted. 

Details of each subfield follow. --./ 



c· 

• 

• 

• 

Subfield X'OO'-Unformatted Data: This 
subfield carries installation-specified 
data. Support for this subfield is 
implementation-dependent. 

Subfield X'02'-Mode Name: Mode name 
specifies the type of--service required 
for the session. Mode names are 
installation-specified. The same mode 
names are configured at both the PLU and 
SLU for all sessions between the two LUs. 
The installation-specified configuration 
for each mode name associates that mode 
name with the set of session properties 
to be used for all sessions for that mode 
name. The particular set of session 
properties associated with a mode name is 
implementation-dependent. 

A mode name may be null; that is, a null 
mode name is a valid mode name. l'flen 
specifying a null mode name, the PLU may 
omit the Mode Name subfield entirely. 
Alternatively, the PLU may specify only 
the length and number for the null mode 
name, in which case the length is 1, or 
it may specify a mode name of all space 
IX'40') characters, which is equivalent 
to a null mode name. The particular form 
that the PLU uses to represent a null 
mode name is implementation-dependent. 

A T2.l-node implementation that contains 
a single LU and a single link connection, 
and that does not support parallel ses­
sions and CNOS, may omit the Mode Name 
subfield entirely. 

Subfield X' 03 '-Session-Instance Identi­
fier: The session-instance ID is used to 
uniquely identify the session from among 
the sessions where this LU is one of the 
partners. Using the session-instance ID, 
control operators at the PLU and SLU can 
coordinate the diagnostics I traces, for 
example) or clean-up procedures for a 
speci fie session. The session-instance 
ID is used also during resynchronization 
of a conversation after session outage. 

The LU that is the primary LU for a given 
session generates the session-instance 
ID. The first byte of the 
session-instance ID is set to X'Ol' to 
indicate that a PCID portion of the 
FQPCID control vector will be used for 
session identification. 

If the SLU does not use the FQPCID con­
trol vector lsee below) for session iden­
tification, it will use the PLU-generated 
session-instance ID subfield to create a 
unique session identifier I see Subfield 
X'03' in the RSPIBIND) for more informa­
tion). 

• Subfield X'04'--Network-Qualified PLU 
Name: The network-qualified PLU name 

• 

allows the PLU to identify itself to the 
SLU. The network-qualified PLU name is 
installation-specified at both the PLU 
and SLU. 

An LU resolves BIND-race conditions by 
comparing the network-qualified PLU name 
it sent in the BIND with the 
network-qualified PLU name it received in 
a BIND sent by the partner LU. BIND race 
conditions are discussed in· more detail 
in the first part of this description of 
the BIND. 

A T2.l-node implementation that contains 
a single LU and a single link connection, 
does not support parallel sessions and 
CNOS, does not support the synchroniza­
tion level for Sync point and Backout, 
and does not support LU-LU verification 
may have no network-qualified PLU name. 
In this case, the PLU omits the 
Network-Qualified PLU Name subfield from 
the BIND. 

Subfield X'll '-Random Data: This sub­
field is used when LU-LU verification is 
active. See "LU-LU Verification Data" on 
page 4-18 for more information on the 
function of random data. 

User Request Correlation: Always omitted. 

Secondary LU Name: This specifies the SLU 
name used To route the BIND to the intended 
SLU for the session. 

A T2.l-node implementation that contains a 
single LU and a single link connection, does 
not support parallel sessions and CNOS, and 
is connected over the single link to another 
T2.l-node implementation containing a single 
LU and single link connection may omit the 
SLU name. The PLU omits the SLU name by 
specifying 0 for the length of the SLU name. 

Control Vectors: The following control vec­
tors may be included in the BIND: 

• Fully Qualified PCID IFQPCID) control 
vector: This is a unique session identi­
fier, always set in the BIND. Its value 
is given to SM by the session services 
component of the control point. A BIND 
that includes the FQPCID control vector 
is called an extended BIND, a BIND that 
does not include the FQPCID control vec­
tor is considered to have come from a 
back-level node. 

• Class-of-Service/Transmission-Priority 
control vector ICOS/TPFJ: This specifies 
the class of service for the session. It 
is included in the BIND if it is present 
in the CINIT. 

Chapter 4. LU Session Manager 4-23 



4-24 

RSPIBINDJ 

Flow: From SLU to PLU !Expedited) 

A !positive or negative) response to BIND is 
sent from an .SLU to a· PLU. A negative 
response is sent only when rejecting a BIND 
request that did not contain an FQPCID con­
trol vector. IHhen a BIND with an FQPCID con­
trol vector is rejected, an UNBIND is sent.J 
A -RSPI BIND J consists of sense data and the 
BIND request codeJ the remaining fields 
described below appear only on +RSPIBINDJ. 

A back-level partner LU may send BIND or 
RSPIBINDJ without control vectors and without 
indicating support for adaptive pacing. The 
receive support required for such back-level 
partners is shown in the procedural logic of 
the formal description. The rest of this 
section deals only with current-level sup­
port. 

Hhen the SLU receives a BIND that is accepta­
ble I for example, there are no format errors 
and the SLU's session limit is not exceeded), 
the SLU sends back a +RSPIBINDJ containing 
the complete set of session parameters. The 
specifications for the parameters can match 
those received in the BIND request, or they 
can differ, where the SLU chooses different 
options. The parameters for which the SLU 
may choose different options are referred to 
as negotiable parameters. 

The specifications for the matching parame­
ters are taken directly from the BIND. The 
specifications for the negotiable parameters 
are determined by the SLU based on its 
implementation-dependent support, on the 
installation-specified values currently in 
effect for the parameters, or on the BIND, 
depending on the particular parameter. 

The following description of the RSPI BIND l 
parameters indicates the specifications that 
are used for the session and, where applica­
ble, how they are determined. See the 
description of the corresponding parameters 
in the BIND for details of the function and 
use of the parameters. 

Format: The SLU specifies format O. 

Type: The SLU specifies negotiable. 

FM Profile: The SLU specifies FM profile 19. 

TS Profile: The SLU specifies TS profile 7. 

FM Usage IPLUJ-Chaining Use: The SLU speci­
Ties multiple-RU Chains. --

FM Usage IPLUJ-..:crr:st Control Mode: 
SLU specifies i iate-request mode. 

The 

FM Usage IPLUJ-Chain Response Protocol: The 
SLU specifies definite- or exception-response 
requested. 

SNA LU 6.2 Reference: Peer Protocols 

FM U~f!j)e IPLUJ-Send End Bracket: 
speci ies EB is not sent. 

The SLU 

FM Usage ISLUJ-Chaining ~ The SLU speci­
fies multiple-RU chains. 

FM Usage ISLUJ-Request Control Mode: The 
SLU specifies immediate-request mode. 

FM Usage ISLUJ-Chain Response Protocol: The 
SLU specifies definite- or exception-response 
requested. 

FM Usage I SLU )-Send End Bracket: The SLU 

c 

specifies EB is not sent. c 
FM Usage ICommonJ-Hhole BIU Required Indica- -' 
tor :-Tlie SLU speci hes whether it supports 
receiving segmented RUs on the session. This 
support is installation-specified. 

FM Usage I Common J-FM Header Usage: The SLU 
specifies FM headers are used-.---

FM Usage I Common >-Bracket Usage and Reset 
state:-The SLU specifies braCkets are used 
ancfthe bracket reset state is in-bracket 
IINBJ. ~ 

FM Usage ICommonJ-Bracket Termination Rule: l /: 
The SLU specifies rule 1, conditional termi- _. 
nation. 

FM Usage ICommonJ--BIND Queuing: This field 
1s ~used for RSPI BIND J since queuing of 
RSPIBINDJ is not allowed. 

FM Usage I Common )-Normal-Flow Send/Receive 
Mode: The SLU specifies half-duplex 
flip-flop. 

FM Usage ICommon)-Recovery Responsibility: 
The SLU specifies symmetric responsibility. 

FM Usage ICommon)-Contention Hinner/Loser: 
This speci ficahon depends on whether the 
session is a parallel or single session, as 
indicated by the PS usage parameter, Parallel 
Session Support, in the RSPI BIND). For a 
parallel session, the specification is taken 
from the BIND--the SLU accepts, and does not 
change, the specification of the LU that is 
to be the contention winner for a parallel 
session. 

For a single session, the SLU specifies that 
it is the contention winner if, for the mode 
name, the installation-defined specification 
is that the SLU is to be the contention win­
ner J otherwise, the specification is taken 
from the BIND. 

FM Usage I Common )-Control Vectors Included~ 
Inchcator: This specifies whether at least'-.__./ 
one control vector is present in the 
RSPC BIND). An FQPCID control vector will be 
present if it was present in the BIND. 



(,/: 

c::/ 

C; 

FM Usage ICommon)~Half-Duplex Flip-Flop 
Reset""""Stales: The SLU specifies send for the 
PCTrand receive for the SLU. 

TS Usage--Staging for Secondary TC to Primary 
TC: Copied from thi3BIND request:"~ 

TS Usage--Secondary TC's Send Hindow Size: 
If adaptive pacing is supportecn;y-both this 
LU and the partner LU then this parameter is 
set to 0. The initial value of Secondary 
Send Hindow Size will be l when session traf­
fic first starts flowing. The value of this 
parameter may change while the session is 
active. 

If adaptive pacing is not supported by both 
ends of the session, then this value is taken 
from the BIND, as follows: If the BIND spec­
ifies one-stage pacing from the SLU to the 
PLU, this specification is taken from the 
Primary TC' s Receive Hindow Size field; oth­
erwise, this specification is taken directly 
from the Secondary TC' s Send Hindow Size 
field. 

TS Usage--Adaptive Session-Level Pacing: 
Copied from the BIND. That is, if adaptive 
pacing is requested, it will be used on this 
session. If not requested, fixed pacing will 
be used. 

TS Usage--Secondary TC's Receive Hindow Size: 
If adaptive pacing is supported by both this 
LU and the partner LU, then this parameter is 
set to 0. The initial value of Secondary 
Receive Hindow Size will be l when session 
traffic first starts flowing. The value of 
this parameter may change while the session 
is active. 

If adaptive pacing is not supported by both 
ends of the session, then this value is based 
on the BIND for · the session and an 
installation-specified value associated with 
the mode name (this value is always greater 
than 0, as enforced by the control operator 
component of the LUJ, as follows: 

• If the BIND for the session specifies a 
secondary TC's receive window size of O, 
this specification is taken from the 
installation-specified value. 

• If BIND specifies a window size other 
than o, this specification is taken from 
the minimum of the value in BIND and the 
installation-specified value. 

TS Usage--Maximum-Size RU Sent by SLU: The 
upper and lower bounas-- are set to 
installation-specified values. If the SLU's 
node does not support the segment generation 
or the PLU does not support segment regener­
ation, then SLU resets the upper bound to the 
minimum of the current upper bound and the 
path control's maximum RU size. The SLU 
specifies a value between a lower bound and 
the upper bound, as follows: 

• If the value specified in the BIND is 
between the lower and upper bounds, the 
value in the RSPCBINDJ is taken from the 
BIND. 

• If the value specified in BIND is less 
than the lower bound, the SLU sets the 
value in the RSPCBINDJ to the lower 
bound. 

• If the value specified in BIND is greater 
than the upper bound, the SLU sets the 
value in the RSPCBINDl to the upper 
bound. 

TS Usage--Maximum-Size RU Sent by PLU: The 
SLU determines a valuelletween-a lower bound 
and an upper bound, in the same manner 
described above for the maximum-size RU sent 
by the SLU, except that when modifying an 
upper bound, it takes into account only the 
PLU' s capability to reassemble I rather than 
to generate) segments. 

TS Usage--Staging for Primary TC to Secondary 
TC: Copied from thi3BIND. 

TS Usage--Primary TC's Send Hindow Size: If 
adaptive pacing is supported by both this LU 
and the partner LU, then this parameter is 
set to O. The initial value of Primary Send 
Hindow Size will be l when session traffic 
first starts flowing. The value of this 
parameter may change while the session is 
active. 

If adaptive pacing is not supported by both 
ends of the session, then this value is taken 
from the BIND, as follows: If the BIND spec­
ifies one-stage pacing from the PLU to the 
SLU, this specification is taken from the 
Secondary TC's Receive Hindow Size field; 
otherwise, this specification is taken 
directly from the Primary TC' s Send Hindow 
Size field. 

TS Usage---Primary TC's Receive Hindow Size: 
If adaptive pacing is supported by both this 
LU and the partner LU, then this parameter is 
set to 0. The initial value of Primary 
Receive Hindow Size will be l when session 
traffic first starts flowing. The value of 
this parameter may change while the session 
is active. 

If adaptive session pacing is not supported 
by both ends of the session, then this value 
is taken from the BIND. 

PS Profile--PS Usage Format: 
fies basic format:--

The SLU speci-

PS Profile--LU Type: 
type-6. --

The SLU specifies LU 

PS Usage---LU Type-6 Level: The SLU specifies 
level Z. 

PS Usage--Security Manager Receive Function: 
The SLU specifies whether it supports a secu­
rity manager for receiving a user-ID, pass­
word or already-verified indication, and 
profile-ID on FMH-5 Attach commands from the 
PLU. 

PS Usage--Already Verified Indicator Accept­
ance: The SLU specifies whether it will 
accept the User-ID Already Verified indi­
cation on FMH-5 Attach commands from the PLU. 

Chapter 4. LU Session Manager 4-25 



PS Usa9e--S~ronization Level: The SLU 
Sjieci hes t synchronizatrciii'level for the 
session, as follows: 

• If a session between the SLU and PLU is 
already active for the mode name, the SLU 
specifies the same level of support as 
specified for the' active session. 

• If no sessions between the SLU and PLU 
are active for the mode name and the BIND 
specifies Confirm, Sync p0int, and Back­
out, the SLU specifies the 
installation-specified value associated 
with the mode name for the session. 

• If no sessions between the SLU and PLU 
are active for the mode name and the BIND 
specifies Confirm, the SLU specifies Con­
firm. 

PS Usa~esponsibility for Session Reiniti­
alion: SLU spec1f1eS""lhe resp0ns1b1l1ty 
~ reinitiation based on the 
installation-specified responsibility and on 
the specification in the BIND. This parame­
ter applies only to sessions for which paral­
lel sessions and change nunber of sessions 
(CNOS) are not supp0rted. 

The matrix in Figure 4-8 shows how the SLU 
derives the specification for the RSPIBIND>. 
The row headings of the matrix give the 
installation-specified responsibility and the 
column headings give the responsibility spec­
ified in the BIND. The cells of the matrix 
give the responsibility that the SLU speci­
fies in the RSPlBIND>. 

Row headings indicate 
installation-specified responsibility. 

Column headings indicate 
responsibility specified in BIND. 

'---> 

v 

Operator 

Primary 

Secondary 

Either 

- Cells indicate responsibility 
specified in RSPIBIND). 

Oper- Pri- Sec- Either 
a tor mary ondary 

Oper- Oper- Oper- Oper-
a tor a tor a tor a tor 

Oper- Pri- Either Pri-
a tor mary mary 

Oper- Either Sec- Sec-
a tor onclary ondary 

Oper- Pri- Sec- Either 
a tor mary onclary 

Figure 4-8. Reinitiation Responsibility 

4-26 SNA LU 6.2 Raferance: Peer Protocols 

PS Usair-Parallel-Session Support: The SLU C' 
spec1 hes parallel-session support for the . 
session, as follows: _ __, 

• If a session between the SLU and PLU is 
already active, the SLU specifies the 
same support as specified for the active 
session. 

• If no sessions between the SLU and PLU 
are active and the BIND specifies paral­
lel sessions are supported, the SLU spec­
ifies the installation-specified value 
associated with the PLU. 

• If no sessions between the SLU and PLU 
are active and the BIND specifies paral­
lel sessions are not supported, the SLU 
specifies parallel sessions are not sup­
ported. 

PS Usag&-Chac;n-Number'-Of-Sessions Support: {'­
The SLU spec1 ies supp0rt for the use of \ 
change-number-of-sessions I CNOS) protocols, '---, 
as follows: 

• If a session between the SLU and PLU is 
already active, the SLU specifies the 
same support as specified for the active 
session. 

• If no sessions between the SLU and PLU 
are active and the BIND specifies CNOS is 
supp0rted, the SLU specifies the 
installation-specified value associated(~ 
with the PLU. \_ . 

___ _/ 

• If no sessions between the SLU and PLU 
are active and the BIND specifies CNOS is 
not supported, the SLU specifies CNOS is 
not supp0rted. 

Cryptography Options: Taken from the BIND. 

Primary~~ Always omitted. 

User Data: The SLU specifies further parame-
ters ~the session by means of the User /-----,, 
Data structured subfields. If the SLU ( 
receives a BIND containing a subfield it does \__ __ ____.. 
not recognize, it ignores the subfield and 
does not send it in the RSPlBIND). 

The User Data subfields that the SLU sends in 
the RSPlBIND> are: 

Number 

· X'OO' 
X'02' 
X'03' 
X'OS' 
X'll' 
X'l2' 

Name 

Unformatted Data 
Mode Name 
Session-Instance ID 
Network-Qualified SLU Name 
Random Data 
Enciphered Data 

A T2.l-node implementation that contains a 
single LU and a single link connection, does 
not support parallel sessions and CNOS, does 
not support the synchronization level for ('­
Sync p0int and Backout, and does ·not support 
LU-LU verification may omit all User Data ... / 
subfields. 



() 

C. 
"'. 

.' 

0 

cl 

0 

In general, the SLU may omit one or more sub­
fieldsJ see the descriptions of individual 
subfields for more information. If it does, 
the entire subfield, including its length, is 
omitted. 

Details of each subfield follow. 

• Subfield X'OO'--Linformatted Data: This 
subfield carries installation-specified 
data. Support for this subfield is 
implementation-dependent. 

• Subfield X'OZ'-Mode Name: Taken from 
the BIND, if present there. Otherwise, a 
Mode Name subfield consisting of eight 
space IX' ftO) characters will be set in 
the RSPIBINDl. 

• Subfield X' 03' --Session Instance Identi­
fier: If this sUbfield was omitted from 
liieBIND, it will also be omitted from 
the RSPIBINDJ. If it was present in the 
BIND then SLU sets it in the RSPIBINDl as 
follows: 

If the first byte of this subfield in 
the BIND is set to X '01' the SLU 
returns the abbreviated session 
instance identifier IPCID portion of 
the FQPCID) with the first byte set 
to X'OZ'. That will indicate that 
both PLU and SLU will use the FQPCID 
control vector to uniquely identify 
the session. 

Otherwise I the first byte of this 
subfield in the RSPIBIND J is set to 
X' 00' ) , the value is taken from the 
BIND, except that the SLU changes the 
value of the first byte, if neces­
sary, to make the session-instance ID 
unique. The SLU sets the first byte 
to X'FO' if the PLU's network quali­
fied LU name is greater than its own. 
Otherwise, it sets the first byte to 
X'OO'. 

Before sending a RSPIBINDJ, the SLU 
checks that the negotiated session iden­
tifier is different from that of all 
active sessions in which this SLU partic­
ipates. If the identifier is not unique, 
the BIND is rejected. 

UNBIND 

Flow: From LU to LU IE>cpeditedl 

UNBIND requests the partner LU to deactivate 
the session. The UNBIND indicates 
definite-response requested. After SH sends 
an UNBIND, it does not keep any information 
pertaining to the session. 

A description of parameters in the UNBIND 
follows. 

• Subfield X'OS'--Network-Qualified SLU 
Name: The network-qualified SLU name 
allows the SLU to confirm its identify to 
the PLU. The network-qualified SLU net­
work name is installation-specified at 
both the SLU and PLU. 

All TZ.1-node products can receive a BIND 
with the Network-Qualified PLU Name sub­
field omitted. If the SLU receives such 
a BIND, it uses a unique default 
network-qualified PLU name in order to 
locally identify the PLU. 

A TZ.1-node implementation that contains 
a single LU and a single link connection, 
does not support parallel sessions and 
CNOS, does not support the synchroniza­
tion level for Sync point and Backout, 
and does not support LU-LU verification 
may have no network-qualified SLU name. 
In this case, the SLU omits the 
Network-Qualified SLU Name subfield from 
the RSPI BIND J. 

• Subfield X' 11 '-Random Data: This sub­
field is used When LU-LiT'Viirification is 
active. See "LU-LU Verification Data" on 
page ft-18 for more information on the 
function of random data. 

• Subfield X'lZ'-Enciphered Data: Hhen 
the primary LU receives the RSPIBIND), it 
compares the received enciphered data 
with its copy of the enciphered data that 
it has enciphered using the same random 
data, its copy of the LU-LU password, and 
the DES algorithm. If they are identi­
cal, the primary LU has verified that the 
SLU has the correct LU-LU password. 

User Request Correlation Field: Copied from 
'theBIND. ---

Secondary LU~ Always omitted. 

Control Vectors: The following control vec­
tors may be included in the RSPIBIND): 

• Fully Qualified 
vector: Copied 
entJ otherwise, 
RSPIBIND). 

PCID IFQPCID) control 
from the BIND, if pres­

not included in the 

~ This specifies the type of session 
deactivation requested. The LU specifies 
normal deactivation when it is deactivating 
the session normally, that is, not as a 
result of an error condition. In this case, 
the two LUs stop all activity on the session 
prior to deactivating it. Activity is 

Chapter 4. LU Session Manager 4-27 



stopped by exchanging BIS requests. See 
"Chapter 6 .1. Data Flow Control" for a 
description of the BIS request, and "Chapter 
3. LU Resources Manager" for details of its 
use. 

UNBINDICleanupJ is sent in response to a BIND 
that was not accepted. 

The other types of session deactivation are 
associated with error conditions. 

Sense Data: Identifies the reason for the 
UNBIND-:----Tfiis field is included in the UNBIND 
if the UNBIND type is X'FE' (Session Fail­
ure!. 

Control Vectors: The following control vec~ 
tors may be included in the UNBIND: 

• FQPCID control vector: Hhen SH sends an 
UNBIND, it includes an FQPCID control 
vector except when it received a BIND or 
a RSPI BIND J for the session without it. 
SM is always prepared to receive an 
UNBIND without an FQPCID control vector 
if a sender is a back-level LU. 

• Extended Sense Data IESDJ control vector: 
This control vector is included if and 
only if the FQPCID control vector is 
included and the UNBIND type is not X'Ol' 
(Normal End of Session). 

NOTE 1: The general architecture allows for 
some other UNBIND types not to use the ESD 
control vector. However, the session manager 
generates only three different UNBIND types: 

RSPIUNBINDJ 

Flow: From LU to LU IExpeditedJ 

The LU rece1v1ng the UNBIND tries to send 
back a ±RSPIUNBINDJ. If SM can correlate an 
UNBIND to one of its active or pending-active 
sessions, it uses a buffer it pre-reserved at 
session activation for the RSP( UNBIND J. If 
SM cannot correlate an UNBIND to one of its 
active or pending-active sessions, it asks 
the BM for a demand buffer to be used for the 
RSP I UNBIND J. If such a buffer cannot be 
obtained, RSPIUNBINDJ is not sent. 

SH AND BUFFER MANAGEMENT 

4-28 

Hhen SM gets a request to activate a session 
(from either RM or the partner LUJ, it asks 
the buffer manager IBM! to reserve the buff­
ers needed for the session. 

• Hhen SH is initialized, it asks the BM to 
reserve a permanent buffer pool. This 

SNA LU 6.2 Reference: Peer Protocols 

Normal, Cleanup, and Invalid Session 
Paramenters. Out of those three, Normal isf' 
the only one that does not require an ESD \'---_,, 
control vector when an FQPCID control vector 
is included. 

NOTE 2: Although SM generates only three 
UNBIND types, it is able to receive an UNBIND 
of any defined type. See SNA Formats for a 
list of all possible UNBIND~pes. 

NOTE 3: RM and SS need to be informed of the 
reason for the session deactivation. Since 
only UNBIND type X'FE' carries sense data in 
the RU, SH sets a default value for the other 
UNBIND types. The default sense data are 
assumed, as follows: 

UNBIND TYPE SENSE DATA --- --- ----
X'07' VR_INOP X'80200001' 

X'08' ROUTE_EXT_INOP X'80200004' 

X'09' HIERARCHICAL_RESET X'80030001' 

X'OA' SSCP_GONE X'08A00001' 

X'OB' VR_DEACTIVATED X'80200003' 

X'OC' LU_FAIL_UNRECOV X'80030003' 

X'OE' LU_FAIL_RECOV X'80030004' 

X'OF' CLEANUP X'08A00002' (' 
X'll' GH_NODE_CLEANUP X'08A00003' \'·--~./ 

The LU sends a -RSPIUNBINDJ if the format of 
the UNBIND is in error. Otherwise, the LU 
sends back a +RSPIUNBINDJ, even if it has no 
HS to which it can correlate the UNBIND. A 
-RSPCUNBIND J includes sense data indicating 
the format error. 

• 

buffer pool is shared by all HS processes 
created by SH. HS uses the buffer~ in,,,,.---,, 
the pool to send responses, exped1 ted 
requests, and IPM acknowledgments. \_ / 

Hhen SH creates a new HS lpart of session 
activation J, it requests BM to increase 



(/ 

• 

• 

the number of buffers in the pool; thus 
as the number of half-sessions using the 
buffer pool increases, the number of 
buffers available increases. Hhen SM 
destroys a HS, it requests BM to decrease 
the number of buffers in the pool. 

Hhen SM sends a BIND, it asks the BM for 
a demand buffer, which is used to build 
the BIND. Hhen SM receives a BIND, it 
always gets it in a permanent buffer that 
can be reused to send the UNBIND or 
-RSPIBINDL Hhen SM receives a 
RSPIBIND), an UNBIND, or a RSPIUNBINDJ, 
it gets it in a demand buffer, which is 
always freed and not reused by SM. 

After session parameters are negotiated, 
SM reserves dynamic and limited buffer 
pools that will be used by HS for the 
session. The dynamic buffer pool is used 
for receive pacing buffers, while the 
limited buffer pool is used to send 
normal-flow requests. 

• 

• 

• 

At session activation, SM reserves a 
buffer that will be used when an UNBIND 
or a RSPCUNBIND) has to be sent. By pre­
reserving this buffer, SM can always 
issue an UNBIND or RSPI UNBIND), even if 
BM runs out of other buffer space. 

At session deactivation time SM requests 
BM to decrease the number of buffers in 
the permanent buffer pool. 

Hhen SM destroys a HS, the dynamic and 
limited buffer pools that were estab­
lished at session activation time are 
automatically destroyed. 

If any of the required buffers cannot be 
reserved, SM does not proceed with session 
activation and sends either an ACTI­
VATE_SESSION_RSPI negative) record to RM, or 
an UNBIND or -RSPIBIND) with type Cleanup to 
the partner LU, depending upon who requested 
the session. For more details on BM, see 
"Appendix B. Buffer Manager". 

Chapter 4. LU Session Manager 4-29 



SM FLOHS 

This section shows sequence flows that can 
occur between SH and other components of the 
LU, the node's control point, the node's 
buffer manager, and other LUs. These flows 
illustrate some examples of session initi­
ation and termination. The flows illustrate 

4-30 SNA LU 6.2 Reference: Peer Protocols 

the records listed in "SH Protocol Bounda­
ries" on page 4-4. 

See "Component Interactions and Sequence 
Flows" on page 2-48 for a description of the 
conventions used in the flows. 



C·--\ 
/ 

FLONS 

LU 

RM SM HS BM NOF 

I create) 
l . o<------------------------------------0 

~. <~~~~~~~-1 
RM_ CREATED 

'--------------------------------~>o 

2 

3 

4 l-~~~~~~~:~~~~~~:~~~~~~~:manent) 
o<~~~~~~~~~~~-~~~~-~~~-_J 

!Receive and process signals) 

Figure 4-9. SM Initialization 

The following notes correspond to the numbers 
in Figure 4-9. 

l. NOF creates SM during node ini tializa­
tion. 

2. SM creates RM. 

3. SM sends RM_CREATED record to inform NOF 
that the RM has been created. 

4. SM reserves a permanent buffer pool for 
its own use and to be shared by all HSs 
that it creates; see "SM and Buffer Man­
agement" on page 4-28 for details. 

Chapter 4. LU Session Manager 4-31 



LU CP 
~-" 

RM SM HS BM SS ASM PC LU ~~ 
• • • 

ACTIVATE -
SESSION ASSIGN_PCID 

1 > >o 
ASSIGN_PCID_RSP I o< 

I INIT_SIGNAL 
2 >o 

. ICP proceeds with 
CINIT_SIGNAL session activation.) 

o< 0 

I ASSIGN_LFSID 
3 >o 

ASSIGN_LFSID_RSP I o< 

l-~~~~~~:~~~~~~:~~~=~~~~:anent buffer pool ID) 
4 

+RSP J (~ 
o<---------------------

l_~~~~=~~~>~ 
"~ / 

5 

I BIND 
6 >o 

+RSPCBIND l 
o< 0 

7 l-~~=~~==~~~:~~~=~~~~=~!~,limitedl 
+RSPCbuffer pool IDs) J 

o<----------------------

I INIT_HS . F CRV 

] 8 ACTIVATE - >o c SESSION_ INIT_HS_ 
RSPl+l RSPC+l +RSPICRVJ 
o< o< < 0 

L_ 

Figure 4-10. Session Initiation by Local LU 

4-32 

The following notes correspond to the numbers 
in Figure 4-10. 

1. RM sends ACTIVATE_SESSION to SM request­
ing a session be activated with the spec­
ified partner LU; RM expects a response. 
SM requests SS to create an FQPCID, which 
will uniquely identify the session. SM 
will verify that this PCID does not col­
lide with a PCID for any of its active or 
pending-active sessions. (See Fig­
ure 4-11 on page 4-33 for collision han­
dling logic. l 

2. SM sends an INIT_SIGNAL record to SS 
requesting the CP's assistance in acti­
vating the session. SS, if successful, 
returns a CINIT_SIGNAL, which contains a 
path control ID, the maximum BTU size, 
segmenting capabilities, and lif mode 
name to COS/TPF mapping is supported l a 
COS/TPF control vector. SS, if unsuc­
cessful, returns an INIT_SIGNAL_NEG_RSP 
(not shown) indicating a failure (see SNA 
Type~ Node Reference for details). 

SNA LU 6.2 Reference: Peer Protocols 

3. SM sends an ASSIGN_LFSID to ASM request-
ing an LFSID for the session. ASM 
returns an ASSIGN LFSID RSP record, which ~, 

contains the requ;:;sted LFSID. l_/ 
4. SM increases the number of buffers in the 

permanent buffer pool. All HSs created 
by this SM share this buffer pool. HS 
uses these buffers for sending responses, 
expedited requests, and IPM acknowledg­
ments. 

5. SM creates an HS for the session. 

6. 

7. 

8. 

SM sends the BIND to ASM, which ASM will 
send to the partner LU; a RSPCBIND) is 
returned to SM from ASM. 

SM obtains a dynamic buffer pool, and a 
limited buffer pool for HS when it knows 
the maximum RU sizes from the RSPIBIND). 
HS uses the dynamic buffers for receive 
pacing buffers, while the limited buffers 
are used to send normal-flow requests. 

SM sends an INIT HS record to the HS it 
created. This record gives HS all the 
session information it needs to begin to 



_,.,.......___ 
( . 

\ .... __ .... / 

1 

2 

RM 

perform its functions. This information 
includes the values of the negotiated 
session parameters, and buffer pool IDs 
C returned by buffer manager on the CRE­
ATE_BUF _POOL calls). If cryptography is 
used, the LUs exchange CRV and its 

LU 

SM HS BM SS 

ACTIVATE_ 
SESSION ASSIGN_PCID 
n-~~~~>n-~~~~~~~~~~~~~~~~~>o 

ASSIGN_PCID_RSP I 
o<~~~~~~~~~~~~~~~~~~ 

CPCID collision detected) I ASSIGN_PCID 
~-~~~~~~~~~~~~~~~~~->o 

ASSIGN_PCID_RSP I 
o<~~~~~~~~~~~~~~~~~---'· 

I INIT_SIGNAL 
~~~~~~~~~~~~~->o 

response. The HS sends an INIT_HS_RSP to 
SM to indicate successful initialization. 
SM then sends an ACTIVATE_SESSION_RSP in 
response to the original ACTIVATE_SESSION 
record. This record indicates whether SM 
was able to satisfy RM's request. 

CP 

ASH 

(Session initiation proceeds as in 
Figure 4-10 on page 4-32.) 

Figure 4-11. Session Initiation by Local LU: PCID Collision Detected 

The following notes correspond to the numbers 
in Figure 4-11. 

1. RM sends an ACTIVATE_SESSION record to 
SM. SM sends an ASSIGN_PCID to SS 
requesting· a unique FQPCID be assigned 
for the session. SS sends an 
ASSIGN PCID RSP to SM, which contains the 
FQPCID- that was assigned. SM compares 

the FQPCID with the FQPCIDs of all its 
active and pending-active sessions. In 
this case, a collision is found. SM 
sends another ASSIGN PCID to SS, indicat­
ing that an FQPCID -collision was found. 
This continues until SS returns an 
ASSIGN_PCID_RSP with an FQPCID that is 
unique. 

2. Session initiation continues normally. 

Chapter 4. LU Session Manager 4-33 



LU CP 

RM SM HS BM SS ASH PC LU 
• • • 

BIND!FQPCID) 
l o< 

l-~~~~~~:~~~~~~:~~~~~~~~~anent buffer pool IDJ 
2 

+RSP J 
o<--------------~------

3 L~~~~~~~~>~ 
I +RSP!BIND!FQPCID)J 

4 >o 

I INIT_HS 
5 >o 

r-
CRV 

6 o< 
.INIT_HS I +RSP!CRV) 

7 RSPI+) 

o< 1-
I SESSST_SIGNAL 

8 SESSION_ >o 

0 

~ 0 

r" 
I 
\, 

ACTIVATED I 9 o< 

Figure 4-12. Session Activation by Partner LU: BIND!FQPCIDJ Is Received 

4-34 

The following notes correspond to the numbers 
in Figure 4-12. 

1. SM receives BIND via ASM; the BIND 
includes an FQPCID control vector. 

2. SM adjusts !increases) the number of 
buffers in the permanent buffer pool. 
The buffers in this pool are shared by 
all HSs created by SM. 

3. SM creates the HS for the session. 

4. SM send the RSPIBINDJ to ASM. Since the 
BIND included the FQPCID control vector, 
the FQPCID will also be included in the 
RSPI BIND l. The FQPCID is used by the 
partner LU to correlate the BIND and 
RSPI BIND). 

5. SM sends an INIT HS record to the HS it 
created. This r-;cord gives HS all the 

SNA LU 6.2 Reference: Peer Protocols 

session information it needs to begin to 
perform its functions. This information /-~ 
includes the values of the negotiated( 
session parameters, and buffer pool IDs ·'-- j 

of the buffers obtained from BM. --

6. If cryptography is used, the LUs exchange 
CRV and its response. 

7. SM receives a INIT _HS_RSP from HS indi­
cating that HS was successfully initial­
ized. 

8. 

9. 

SM sends 
that the 
activated 
LU. 
SM sends 
that the 
activated 
LU. 

a SESSST _SIGNAL to notify SS 
session has been successfully r~ 
at the request of the partner I 

"'--- ./ 
SESSION_ACTIVATED to notify RM 
session has been successfully 
at the request of the partner 

C. , 



0 

Figure 4-13. Session Activation by Partner LU: BIND Is Received 

The following notes correspond to the numbers 
in Figure 4-13. 

1. SM receives BIND from a back-level part­
ner LU J the BIND does not include an 
FQPCID control-vector. 

2. Since no FQPCID was in the BIND, SM sends 
ASSIGN_PCID to SS requesting an FQPCID to 
be assigned to this session. SS returns 
the FQPCID in the ASSIGN_PCID_RSP record. 

3. SM adjusts !increases) the number of 
buffers in the permanent buffer pool that 
is shared by all HSs created by SM. 

4. 

5. 

SM creates the HS for the session. 

SM sends the RSPCBINDJ 
Since the BIND did not 
the FQPCID is not 
RSPCBINDJ. 

to the partner LU. 
contain an FQPCID, 
appended to the 

6 • SM sends an INIT HS record to the HS it 
created. This r-;cord gives HS all the 
session information it needs to begin to 
perform its functions. This information 
includes the values of the negotiated 
session parameters, and buffer pool IDs 
of the buffers obtained from BM. 

7. If cryptography is used, the LUs exchange 
CRV and its response. 

8. SM sends a SESSST _SIGNAL to notify SS 
that the session has been successfully 
activated at the request of the partner 
LU. 

9. SM sends SESSION_ACTIVATED to notify RM 
that the session has been successfully 
activated at the request of the partner 
LU. 

Chapter 4. LU Session Manager 4-35 



LU 

RM SM HS BM SS 

DEACTIVATE -SESSION 
l >o 

I UNBIND 
2 

I SESSEND_SIGNAL 
>o 

l ADJUST_BUFFER_POOLlpermanent buffer pool 
3 ---------------------->o 

L~~~~~~~~ 

Figure 4-14. Session Deactivation by Local LU 

l 

2 

3 

RM 

The following notes correspond to the numbers 
in Figure 4-14. 

1. RM sends DEACTIVATE SESSION record to SM 
requesting that th; session be deacti­
vated. 

2 • SM sends UNBIND to the partner LU. At 
this point, SM deactivates the session; 

LU 

SM HS BM 

UNBIND 
o< 

SS 

I ±RSPIUNBINDJ. 
SESSION 

;~•cnvAml 
L-~~~~~~~~~~~~~~~~~>o 

SESSEND_SIGNAL 

ID) 

CP 

ASH PC LU 
• • • 

0 >o 

RSPIUNBINDl 
o< 0 

it does not wait for the RSPIUNBINDl. SM 
sends a SESSEND_SIGNAL record to notify 
SS that the session is no longer active. 

3. SM adjusts !decreases) the number of 
buffers in the permanent buffer pool; the 
dynamic and limited buffer pools are 
automatically destroyed when the HS is 
destroyed 

CP 

ASM PC LU 

l-~~~~~:~~~~=~:~~~~~~~~:anent buffer pool IDJ 

4 L~~~~~~~~~~ 

Figure 4-15. Session Deactivation by Partner LU 

The following notes correspond to the numbers 
in Figure 4-15. 

1. SM receives UNBIND from the partner LU 
and returns a RSPIUNBINDJ. 

2. SM sends SESSION_DEACTIVATED to notify RM 
that the session is deactivated. 

4-36 SNA LU 6.2 Reference: Peer Protocols 

3. SM sends SESSEND_SIGNAL to notify SS that 
the session has ended. 

4. SM adjusts !decreases) the number of 
buffers in the permanent buffer pool; the 
dynamic and limited buffer pools are 
automatically destroyed when the HS is 
destroyed. 

c 

(~ 

c 

( -·----
____ _,..' 



0 

1 

3 

4 

LU CP 

RM SM HS BM SS ASM 

(session traffic) 

SESSION_ROUTE INOP 
SESSION_ o<.~------------------------0 

DEACTIVATED I 
o<----~-

1 SESSEND_SIGNAL 
'--~~~~~~~~~~~>o 

l-~~~~~:~~~~~~:~~~~~~~~:anent 
L~~~~~~~~~ 

buffer pool ID > 

PC 

Figure 4-16. SM receives SESSION_ROUTE_INOP Hhile a Session Is Active 

1 

z 

3 

The following notes correspond to the numbers 
in Figure 4-16. 

1. ASM sends SESSION_ROUTE_INOP to SM indi­
cating that a route is no longer active, 
and all sessions using this route need to 
be deactivated. 

z. For each of this SM's active sessions 
that use the affected route, SM sends 
SESSION_DEACTIVATED to notify RM that the 
session is deactivated. 

ACTIVATE o< -SESSION_ I RSPI-> 
o< 0 

I SESSEND_SIGNAL 
L-~~~~~~~~~~~~~~~~->o 

3. SM sends SESSEND_SIGNAL to notify SS that 
the session has ended. 

4. SM adjusts !decreases) the number of 
buffers in the permanent buffer pool; the 
dynamic and limited buffer pools will be 
automatically destroyed when the HS is 
destroyed. SM destroys the HS for the 
session. 

PC LU 
• • • 

l-~~~~~~:~~~~~~:~~~~~~~~:anent buffer pool ID) 

L~~~~~~~~~~ 

Figure 4-17. SM Receives SESSION_ROUTE_INOP Hhile a Session Is Haiting Activation 

The following notes correspond to the numbers 
in Figure 4-17. 

1. After SM has sent out the BIND, and 
before a RSPIBIND> is returned, ASH sends 

SM a SESSION ROUTE INOP, informing SM 
that the sessi~n ca~t be activated. 

Z. SM returns a negative ACTI-
VATE SESSION RSP informing RM that the 
requ;sted se;sion could not be activated. 

Chapter 4. LU Session Manager 4-37 



l 
2 

3 

4 

Rtt 

SH then cleans up by sending a 
SESSEND_SIGNAL to inform SS that the ses­
sion initiation is being stopped. 

LU 

SH HS BM 

. . 
1ss 

3. SH adjusts (decreases) the number of 
buffers in the permanent buffer pool. 

CP 

ASH 1 PC 

. . . 
ACTIVATE_ . SESSION_ROUTE -INOP . . 
SESSION . -.. . . - >o . . . . . . . . 

I Initiation sequence precedes as in Figure 4-10 on page 4-32.J . . . . . . BIND . . . ...- ] . . . . . . . . . . . . 
ACTIVATE o< . . -SESSION_ I . -RSPl-J . . . 
o< . . 

I SESSEND_SIGNAL . . . >o . . . l-~~~~~:~~~~~~:~~~~~~~~anent buffer pool ID J . . . . . L~~~~~~~~~ . . . . . . . . . SESSION_ROUTE -INOP . . . . o< . . . I ignored> . . . . . . 

c: 

r 
"-- .... / 

c 
Figure 4-18. SH Receives SESSION ROUTE INOP Hhile a Session Is Haiting Activation, Resulting in a 

BIND Crossing SESSioN_ROUTE_INOP 

The following notes correspond to the numbers 
in Figure 4-18. 

l. ASH sends a SESSION_ROUTE_INOP to SH J 
this record is sent to all SHs in the 
node by ASH whenever a link is brought 
down. 

2. SH receives an ACTIVATE_SESSION record 
and begins the initiation sequence. A 
BIND for the session is sent to ASH. 

3. SH receives the SESSION_ROUTE_INOP that 
was sent in step 1. SH brings down all 

4-38 SNA LU 6.2 Reference: Peer Protocols 

currently active and pending-active ses­
sions that use the affected l"'Ol.ite. In 
this case, this includes the session that 
is currently being activated. 

4. SH receives a SESSION_ROUTE_INOP in ('· 
response to the BIND it sent. The corre-
sponding session is no longer ___ ,,. 
pending-active, since the previous SES­
SION_ROUTE_INOP forced the session to be 
deactivatedJ thus, the SESSION_ROUTE_INOP 
is ignored. 

c 



(_~ 

l 

2 

3 

4 

LU 

RM SM HS BM 

ACTIVATE -SESSION ASSIGN_PCID 
> 

ASSIGN_PCID_RSP 
o< 

I INIT_SIGNAL 

o<.~~~~~~~~~~~~~~ 

I ignored) 

CINIT_SIGNAL 

CP 

SS ASH 

SESSION_ROUTE_INOP 
0 

>o 

I 
--->o 

.ICP proceeds with 
session activation, and 
a route is successfully 
reactivated. J 

(Session activation proceeds as in Figure 4-10 on page 4-32.l 

Figure 4-19. SM Receives SESSION ROUTE_INOP Hhile a Session Is Haiting Activation, Resulting in an 
INIT_SIGNAL Crossing SESSION_ROUTE_INOP 

The following notes correspond to the numbers 
in Figure 4-19. 

1. ASM sends a SESSION ROUTE INOP for a cur­
rently active sessi;n, -

2. SM receives an ACTIVATE SESSION record 
and begins the session initiation 
sequence. SM sends an INIT_SIGNAL to SS. 

3. After SM sends the INIT_SIGNAL to SS, and 
before ss· returns a CINIT_SIGNAL, SM 
receives the SESSION_ROUTE_INOP that was 
sent in step 1. In this case, no ses-

s1ons are active or pending_active la 
session is not pending-active until a 
BIND has been sent) that use the affected 
route, so the SESSION_ROUTE_INOP is 
ignored. 

As SM is processing the SES­
SION_ROUTE_INOP, the CP proceeds with the 
session activation. During the acti­
vation, the CP is able to reactivate the 
route that was down. 

4. SS sends a CINIT SIGNAL to SM in response 
to the preceding-INIT_SIGNAL. 

Chapter 4. LU Session Manager 4-39 



LU 

RM SM 

ACTIVATE_ 
SESSION 

l 

o< 

I 

o< 

I 
2 ACTIVATE o< 

SESSION_ 

I RSPl-l 
? o< 

4 I 

HS BM 

ASSIGN_PCID 

ASSIGN_PCID_RSP 

INIT_SIGNAL 

CINIT_SIGNAL 

ASSIGN_LFSID 

ASSIGN_LFSID_RSPlsense datal 

SESSEND_SIGNAL 

SS 

>o 

CP 

ASH 

ICP proceeds with 
session initiation. l 

>o 

I 

c~ 

c 

Figure 4-20. Session Activation by Local LU: LFSID Assignment Failed 

The following notes correspond to the numbers 
in Figure 4-20. 

1. RM sends SM an ACTIVATE_SESSION. SM 
sends an ASSIGN_PCID to SS; SS returns an 
ASSIGN PCID RSP to SM that contains the 
requested -PCID. · SM then sends an 
INIT SIGNAL to SS; the CP determines 
wher; the partner LU is and returns a 
CINIT_SIGNAL or an INIT_SIGNAL_NEG_RSP 
(not shown! as described for Figure 4-10 
on page 4-32. SM then sends an 

4-40 SNA LU 6.2 Reference: Peer Protocols 

2. 

3. 

4. 

ASSIGN_LFSID to SS requesting an LFSID 
for the session. (~) 
SM receives an ASSIGN LFSID RSP that con- "--..../ 
tains sense data indicating why an LFSID 
could not be assigned. 

SM sends a negative ASSIGN SESSION RSP to 
inform RH that the sessi~ could -not be 
activated. 

SH sends a SESSEND_SIGNAL to inform SS 
that the session initiation failed. 



() 

() 

0 

0 

l 

2 

3 

4 

RM 

ACTIVATE_ 
SESSION 

LU 

SM 

o----->o 

CP 

HS BM SS 

!Initiation sequence proceeds as in Figure 4-10 on page 4-32.) 
BIND 

ASH PC LU 
• • • 

o-----------------------------------------------~>·n------------>n------------>o 

UNBIND 
o<.~-------------------------------------------------·o<-------------n·<:-------10 I RSPIUNBIND) 

ACTIVATE ~------------------------------------------------~>·o------------>o------------>o 

SESSION_- I 
RSPl-l o< 

SESSEND_SIGNAL ~l ________________________________ ~>o 
l-~~~~~~:~~~~~~:~~~~~~~:anent buffer ~ool 

L~~~~~~~~~~ 

ID) 

Figure 4-21. Session Activation by Loeal LU: BIND Is Rejected with UNBIND 

~M 

The following notes correspond to the numbers 
in Figure 4-21. 

1. SM receives an ACTIVATE_SESSION record 
and begins the initiation sequence by 
sending BIND to the partner LU. 

2. SM receives an UNBIND from the partner LU 
rejecting the BIND. 

LU 

SM H~ BM 

ACTIVATE -
SESSION 

- >o 

1ss 

I Initiation sequence proceeds as in Figure 4-10 on 
BIND 

3. SM sends a RSPIUNBIND) to the partner LU. 

4. SM sends a negative ACTIVATE_SESSION_RSP 
to inform RM that the session could not 
be activated. SM then cleans up the ses­
sion by sending a SESSEND_SIGNAL to 
inform SS that the session activation 
failed, adjusts !decreases) the number of 
buffers in the permanent buffer pool. 

CP 

ASM 1 PC LU 
• • • 

page 4-32.) 

l - -.....-o---------------------------------------------------.r>-------------~n------------>o 

2 

3 ACTIVATE_ 
SESSION_ 
RSPI-) 

-RSPIBIND) 
o<.~-------------------------------------------------0-------------·-o-----------~10 

PC_HS_DISCONNECT 
i----------------------------------------------------·....-n-----------~>o 

4 o<---------f 
SESSEND_SIGNAL 

i--------------------------------~>o 

ADJUST_BUFFER_POOL!permanent buffer pool ID) 
---------------------->o 
ldestroyl. 

--------->o 

0 Figure 4-22. Session Activation by Local LU: BIND Is Rejected with -RSPIBIND). 

Chapter 4. LU Session Manager 4-41 



1 

2 

3 

RM 

The following notes correspond to the nunbers 
in Figure 4-22. 

1. SM receives an ACTIVATE_SESSION record 
and begins the initiation by sending BIND 
to the partner LU. 

2. SM receives a -RSPIBINDJ from the partner 
LU. 

LU 

SM HS BM 

ACTIVATE -SESSION ASSIGN_PCID 
> 

ASSIGN_PCID_RSP 
o< 

INIT _SIGNAL 

SS 

I 
'-----------------~>o 

3. 

4. 

SM sends a PC_HS_DISCDNllECT instn.icting 
ASH to free the LFSID. 

SM sends a negative ACTIVATE_SESSION_RSP 
to inform RH that the session could not 
be activated. SM then cleans up the ses­
sion by sending a SESSEND_SIGNAL to 
inform SS that the session activation 
failed, adjusts (decreases) the nunber of 
buffers in the permanent buffer pool. SM 
destroys the correspondinsi HS. 

CP 

ASH 

.ICP cannot proceed 

INIT_SIGNAL_NEG_RSP 
ACTIVATE_ o<:~~-----~----~--~-n 
SESSION_ I 
RSPl-J 
o<----~ 

successfully with 
session activation.) 

,,--......,,, 
Figure 4-23. Session Initiation by Local LU: INIT_SIGNAL Is Rejected r .__ __________________________________ __. \.. __ .. ' 

RM 

1 

2 

The following notes correspond to the numbers 
in Figure 4-23. 

1. SM receives an ACTIVATE SESSION record 
and begins the ini tiatioo by sending an 
INIT_SIGNAL record to SS. 

2. SM receives an INIT_SIGNAL_NEG_RSP from 
SS informing SM that the CP was unsuc-

LU 

SM HS BM 

LFSID_IN_USE 

SS 

cessful with the session activation. 
I See. SNA ~ !.:..! ~ Reference for 
details. J 

3. SM sends a negative ACTIVATE_SESSION_RSP 
to inform RH that the session could not 
be activated. 

CP 

ASM 

o<:~~~---------~--~---------o I LFSID_IN_USE_RSP 
~-------~~~---------------->o 

Figure 4-24. ASH Checks Hhether a Specific IPATH_CONTROL_IO, LFSIDJ Pair Is in Use by SM 

2. SM returns an LFSID_IN_USE_RSP to ASH 
with the status of the pair. (See SNA 

c:: 

The following notes correspond to the numbers 
in Figure 4-24. 

1. ASH sends an LFSID IN USE record to check 
if the specified IPATH_CONTROL_ID, LFSIDJ 
pair is in use by SM. 

~ 2 .1 Node Reference for addi tioiialc 
diScusS1on 0Tth1s exChange. ) 

_/ 

4-42 SNA LU 6.2 Reference: Peer Protocols 



() 

1 

2 

3 

4 

LU CP 

RM SM HS BM SS ASM 

ACTIVATE_ 
SESSION ASSIGN_PCID 
o----->o-----------~~~~~~~>o 

DEACTIVATE_ 
SESSION 

ASSIGN_PCID_RSP I 
o<:~~~~~~~~~~~~~~~~~--'-

1 INIT_SIGNAL 
~-~~~~~~~~~~~~~~~~~->o 

n----->o 
CINIT_SIGNAL 

o<.~----------------~o I SESSEND_SIGNAL 
~-----~---~~~~---~~->o 

CP proceeds with 
session activation. J 

(\. 
'----/ Figure 4-25. Termination of a Pending LU-LU Session before CINIT_SIGNAL Is Received 

CJ 

The following notes correspond to the numbers 
in Figure 4-25. 

1. SM receives an ACTIVATE_SESSION record 
and begins the initiation sequence by 
sending an INIT_SIGNAL to SS. 

2. Hhile SM is waiting for the CINIT_SIGNAL 
from SS in response to the INIT _SIGNAL, 
RM sends SM a DEACTIVATE_SESSION, which 
caused SM to change the state of the ses­
sion to RESET. 

3. SM receives the CINIT SIGNAL for the ses­
sion RM has since rec;iested to be deacti­
vated} thus, the FQPCID does not match 
the FQPCID of any active or 
pending-active session. 

4. SM sends a SESSEND SIGNAL to inform SS 
that the session a~tivation was termi­
nated. 

Chapter 4. LU Session Manager 4-43 



l 

z 

3 

4 

LU 

RH SH 

ACTIVATE -SESSION 
>o 

!Initiation 

DEACTIVATE_ 
SESSION 
n----->o 

HS 

proceeds as 

CP 

BH SS ASH PC LU 
• • • 

in Figure 4-10 on page 4-3Z.J 
BIND 

I .----n----------~-----~o 
UNBIND 

'-------n----n--->o 
SESSEND_SIGNAL 

'------------------~>o 
l-~~~~~~:~~~~~~:~~~~~~~~~nent buffer pool IDJ 

L~~~~~~~~;~ 
±RSPIBINDJ or UNBIND 

5 o<.~----------------------~ 
(ignored) 

Figure 4-Z6. Termination of a Session Pending Activation After BIND Is Sent 

The following notes correspond to the numbers 
in Figure 4-Z6. 

1. SM receives an ACTIVATE_SESSION record 
and begins the initiation sequence with 
BIND. 

2. Hhile SH is waiting for the RSPIBINDJ 
from ASH, RM sends SM a DEACTI­
VATE_SESSION, which causes SH to change 
the state of the session to RESET. 

3. SM sends an UNBIND to ASH to stop the 
session SM is currently in the process of 
activating. 

4-44 SNA LU 6.Z Reference: Peer Protocols 

4. 

5. 

SM sends 
that the 
cessful. 
number of 
pool. SH 

a SESSEND_SIGNAL to inform SS 
session activation was unsuc­

SH also adjusts !decreases) the 
buffers in the permanent buffer 
destroys the corresponding HS. 

SH receives the RSPIBINDJ from ASH. 
Since SM has already issued an UNBIND for 
the session and has released the FQPCID, 
SH does not have any active or 
pending-active session with an FQPCID 
that matches the FQPCID on the received 
UNBINDi thus it ignores UNBIND. 

c 

( 
'------' 

\ ( ----
I 

I 
_/ 

C·,_ 
/ 



0 

() 

PC LU 
• • • 

ABORT_HS 
l o<:-----n 

2 
I UNBIND 

SESSION '--------------------------~>-------~•:i-------->o 

3 
DEACTIVATED I 
o<-----'· 

I SESSEND_SIGNAL 
'------------------->o 

l-~~~~~::~~~~~~:~~~~~~:Snent .buffer pool IDl 

L~~~~~~~~!; ±RSPIUNBINDl 
o<-------0-------0 

lnot passed to SM) 

Figure 4-27. SM Receives ABORT_HS Hhile a Session Is Active 

The following notes correspond to the numbers 
in Figure 4-27. 

1. During an active session, HS detects an 
error and sends an ABORT_HS record to SM. 

2. SM sends an UNBIND to ASH. At this 
point, SM brings down the session, with­
out waiting for the RSPIUNBIND). 

3. SM sends a SESSION DEACTIVATED to inform 
RM that the session-is being deactivated. 
SM sends a SESSEND SIGNAL to inform SS 
that the session is being deactivated. 
SM adjusts (decreases) the number of 
buffers in the permanent buffer pool. 
The dynamic and limited buffer pools will 
automatically be destroyed when the HS is 
destroyed; SH destroys the corresponding 
HS. 

Chapter 4. LU Session Manager 4-45 



1 

2 

3 

4 

5 

RH 

ACTIVATE_ 
SESSION 

LU 

SH HS 

> 

o< 

I 

BM 

ASSIGN_PCID 

ASSIGN_PCID_RSP 

INIT_SIGNAL 

CINIT_SIGNAL 

CP 

SS ASH 

.ICP proceeds with 
session initiation.) 

o<:~--------------------------------n I ASSIGN_LFSID 
--------------------------------------------------~>o 

ASSIGN_LFSID_RSP I 
o<•~------------------------------------------------'-

l _~~~~~:~~~~~~:~~~~~~~~anent buffer pool ID J 

o<=~~~-----------------_J 
I FREE_LFSIP 

ACTIVATE_ ------------------------------------------------->o 
SESSION_ I 
RSPl-J 
o<--------~ I SESSEND_SIGNAL. 

----------------------------------~>o 

Figure 4-28. A Request to Get a Buffer Is Rejected during Session Activation 

~ 
I 

~----/ 

The following notes correspond to the numbers 
in Figure 4-28. 

1. RH sends an ACTIVATE SESSION. The ses­
sion initiation sequimce proceeds as in 
Figure 4-10 on page 4-32. 

2. SH receives a negative response to its 
request to increase the number of buffers 
in the permanent buffer pool. At this 
point session initiation cannot continue, 
so SH brings down the session. 

4-46 SNA LU 6.2 Reference: Peer Protocols 

3. SH sends a FREE LFSID record to ASH. ASH 
normally would get this information from 
the UNBIND, but since a BIND was not 
issued, an UNBIND also is not issued. 

4. SH sends a negative ACTIVATE_SESSION_RSP 
to inform RH that the session activation 
failed. ("-

5. SH sends a SESSEND_SIGNAL to inform SS'---'' 
that the session initiation failed. 



INTRODUCTION TO FDRHAL DESCRIPTION 

(_)· 

(:: 

The remainder of this chapter contains the 
formal description of SH. This description 
consists of procedural logic, finite-state 
machines (fSHsJ, and data structures used 
only by SH. The highest level is the root 
procedure of the calling tree, named SH (same 
as the overall component J. The SH root pro­
cedure calls the other procedures. 

The procedures are arranged in the following 
order: first is the highest-level routine SH, 
followed by the routines called by 
SH--PROCESS_RECORD_FROH_RH, PROC­
ESS_RECORD_FROH_HS, PROCESS_RECORD_FROH_ss, 
PROCESS_RECORD_FROM_ASM--followed by the 
remaining procedures in alphabetical order. 

Chapter 4. LU Session Manager 4-47 



SH 

4-48 

SH.----------------.C~ 
FUNCTION: 

INPUT: 

OUTPUT: 

LU session manager ISHJ is responsible for creating the RH process and for 
activating and deactivating sessions between this LU and another LU. There is 
one SH process per LU in the node, and it is created and destroyed when the LU 
is created and destroyed. SH receives records from the resources manager 
IRHJ, the half-session IHSJ, the address space manager IASHJ, and the session 
services ISSJ processes. Hhen the records are received, they are routed to 
the appropriate procedures where they are processed. SH uses process data 
(called LOCAL) that can be accessed by any procedure in the SH process. 

At SH creation time: SH CREATE PARMS (contains information about the node and 
the LU associated with SMJ. At-run time: records from RH, HS, ASH, or SS. 

At SH creation time: RH process is created and the node operator facility 
INOFJ is informed of that, if successful. Otherwise, the SH process ends 
abnormally. A pool of buffers needed by SH is reserved. If buffers are not 
available, SH ends abnormally. 

At run time: received records are routed to appropriate procedures in SH. ~­
LOCAL .SENSE_CODE is initialized. \ 

'--------------------------------------------------' '----· 
Referenced procedures, FSHs, and data structures: 

RH 
PROCESS_RECORD_FROH_RH 
PROCESS_RECORD_FROH_HS 
PROCESS_RECORD_FROH_ASH 
PROCESS_RECORD_FROH_SS 
SH_CREATE_PARHS 
RH_CREATE_PARHS 
RH_ CREATED 
LOCAL 
LUCB 
PARTNER_LU 
HOOE 
LULU_CB 

Creation-Time Logic 

Set up addressability to the control blocks used by SH. The SH 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

process data ILOCALJ is a data area that may be referenced by any procedure 
or FSH in SH. LOCAL is referenced only within SH. 
The LU control block ILUCBJ, partner-LU control block IPARTNER_LU in 
LUCB.PARTNER LU LISTJ, and mode control block IHODE in PARTNER LU.HOOE LIST) 
are used but-not created by SH. - -
The LU-LU control block ILULU_CB in LOCAL.LULU_CB_LISTJ is 
created and used only by SH. 

Create RH CREATE PARMS record. 
Set RH CREATE PARHS.LUCB LIST PTR to SH CREATE PARHS.LUCB LIST PTR. 
Set RH=CREATE=PARHS.LU_ID to SH_CREATE_PARHS.LU_ID. 
Create RH process while passing RH_CREATE_PARMS to it. 
If RH process is created successfully then 

Create RH CREATED record. 
Set RH CREATED.LU ID to SH CREATE PARMS.LU ID. 
Send RM_CREATED t~ the NOF-comp~nt of th; node. 

Else Can attempt to create an RH process failed) 
Abend. 

SNA LU 6.Z Reference: Peer Protocols 

3-19 
4-49 
4-50 
4-51 
4-50 
A-Z7 
A-Z7 
A-Z7 
4-89 (~ A-1 
A-Z \'-~ .. ~/ 
A-3 
4-90 



() 

0 

() 

Call buffer managerlCREATE_BUF_POOL. permanent. buffer size. capacity 
of pool) to obtain a permanent buffer pool. Buffer pool size is set 
to the maximum RU size, capacity of pool is set to 5 (number of 
buffers put in the pool). Permanent buffer pool ID is 
returned by buffer manager. This buffer pool will be shared by all 
HSs created by this SH, and is used for storing normal flow responses, 
IPM acknowledgments, and expedited flows. The number of buffers 
is increased each time a new HS is created, and decreased each time 
a HS is destroyed !Appendix 8). 

If buffers are not available then 
Abend. 

Run-Time Logic 

Do until SH process is destroyed. 
Set LOCAL.SENSE CODE to X'OOOOOOOO' to indicate that there is no error 
when an incoming record is received. 
Select based on one of the following conditions: 

Hhen record is received from RM 
Call PROCESS RECORD FROM RMIRM TO SM RECORD) (page 4-49). 

Hhen record is ;eceived fro; HS - - -
Call PROCESS_RECORD_FROM_HSIHS_TO_SM_RECORD) !page 4-50), 

Hhen record is received from ASH 
Call PROCESS_RECORD_FROM_ASMIASM_TO_SM_RECORD) (page 4-51). 

Hhen record is received from SS 
Call PROCESS_RECORD_FROM_SSISS_TO_SM_RECORD) (page 4-50). 

PROCESS_RECORD_FROM_RM 

FUNCTION: 'Route records received from RM to appropriate procedures. 

INPUT: Record from RM: ACTIVATE_SESSION, DEACTIVATE_SESSION, or ABEND_NOTIFICATION 
record 

OUTPUT: Record from RM forwarded to appropriate procedure 

Referenced procedures, FSHs, and data structures: 
PROCESS_ACTIVATE_SESSION 
PROCESS_DEACTIVATE_SESSION 
PROCESS_ABEND_NOTIFICATION 
ACTIVATE_ SESSION 
DEACTIVATE_ SESSION 
ABEND_NOTIFICATION 

Select based on record from RM: 
Hhen ACTIVATE SESSION 

Call PROCEsS_ACTIVATE_SESSIONIACTIVATE_SESSION) 
I page 4-75). 

Hhen DEACTIVATE_SESSION 
Call PROCESS_DEACTIVATE_SESSIONIDEACTIVATE_SESSION) 

I page 4-80 ) • 
Hhen ABEND_NOTIFICATION IRM process has abended) 

Call PROCESS_ABEND_NOTIFICATIONIABEND_NOTIFICATIONJ 
(page 4-74). 

page 4-75 
page 4-80 
page 4-74 
page A-20 
page A-21 
page A-25 

SM 

Chapter 4. LU Session Manager 4-49 



PROCESS_RECORD_FROM_HS 

PROCESS_RECORD_FROM HS 

FUNCTION: Route records received from the half-session {HS) process to the appropriate 
procedures. 

INPUT: Record from HS: INIT_HS_RSP record, ABORT_HS record, or ABEND_NOTIFICATION 
record 

OUTPUT: Record from HS forwarded to appropriate procedure 

Referenced procedures, FSMs, and data structures: 
PROCESS_INIT_HS_RSP 
PROCESS_ABORT_HS 
PROCESS_ABEND_NOTIFICATION 
INIT_HS_RSP 
ABORT_HS 
ABEND_NOTIFICATION 

Select based on record from HS: 
Hhen INIT_HS_RSP 

Call PROCESS_INIT_HS_RSPIINIT_HS_RSPJ 
( page 4-81) • 

Hhen ABORT HS 
Call PROCESS_ABORT_HSIABORT HS) 

( page 4-74 ). 
Hhen ABEND_NOTIFICATION IHS process has abendedl 

Call PROCESS_ABEND_NOTIFICATIONIABEND_NOTIFICATION) 
( page 4-74 ). 

PROCESS_RECORD_FROM_SS 

page 4-81 
page 4-74 
page 4-74 
page A-10 
page A-9 
page A-25 

FUNCTION: Route records received from session services ISS) to the appropriate proce­
dures. 

INPUT: Record from SS: INIT_SIGNAL_NEG_RSP record, or CINIT_SIGNAL record 

OUTPUT: Record from HS forwarded to appropriate procedure 

Referenced procedures, FSMs, and data structures: 
PROCESS_INIT_SIGNAL_NEG_RSP 
PROCESS_CINIT_SIGNAL 
INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL 

Select based on record from SS: 
Hhen INIT SIGNAL NEG RSP 

Call PROCESS_INIT=SIGNAL_NEG_RSPIINIT_SIGNAL NEG RSPl 
I page 4-81 ) • 

Hhen CINIT_SIGNAL 
Call PROCESS_CINIT_SIGNALICINIT_SIGNALJ 

I page 4-79 J. 

4-50 SNA LU 6.2 Reference: Peer Protocols 

page 4-81 
page 4-79 
page A-23 
page A-23 



0 

() 

0 

PROCESS_RECORD_FROM_ASH 

PROCESS_RECORD_FROM_ASH 

FUNCTION: Route records received from the address space manager IASH) to the appropriate 
procedures. 

INPUT: HU, SESSION_ROUTE_INO, or LFSID_IN_USE 

OUTPUT: Record passed to appropriate procedure 

Referenced procedures, FSHs, and data structures: 
PROCESS_HU 
PROCESS_SESSION_ROUTE_INOP 
PROCESS_LFSID_IN_USE 
HU 
SESSION_ROUTE_INOP 
LFSID_IN_USE 

Select based on record from ASH: 
Hhen HU 

Call PROCESS_HUCMUl 

Hhen SESSION_ROUTE_INOP 
lpage 4-821. 

page 4-82 
page 4-83 
page 4-82 
page A-2' 
page A-24 
page A-26 

Call PROCESS_SESSION_ROUTE_INOPISESSION_ROUTE_INOP) 
I page 4-83 ) • 

Hhen LFSID_IN_USE 
Call PROCESS_LFSID_IN_USEILFSID_IN_USEl 

( page 4-82 ) • 

Chapter 4. LU Session Manager 4-51 



BIND_RQ_STATE_ERROR 

BIND_RQ_STATE_ERROR 
0 

..--~~~~~~~~~~~~~~~~~~~~~~~~~~--.\___, 

FUNCTION: Determine if there is a state error on receipt of a BIND. 

INPUT: MU record containing BIND 

OUTPUT: TRUE if error detected} otherwise, FALSE. 
the appropriate sense data value. 

If TRUE, LOCAL.SENSE_CODE is set to 

Referenced procedures, FSMs, and data structures: 
BIND_SESSION_LIMIT_EXCEEDED 
LOCAL 
MU 
PARTNER_ LU 
MODE 
BIND RU 
LUCB 

page tt-.57 
page tt-89 
page A-Z9 
page A-Z 
page A-3 
SNA Formats 
page A-1 

Locate the PARTNER_LU control block using the User Data PLU Name field in BIND. 
If PARTNER_LU control block cannot be located then 

Set LOCAL.SENSE CODE to X'0835xxxx' lxxxx is offset to PLU Name field). 
Return with a v;lue of TRUE (error). 

Check for FQPCID collisions. The FQPCIDs of two sessions at this LU 
collide if their PCID parts are the same. If such collision is fcx.nd then 

Set LOCAL.SENSE CODE to X'083B0001'. 
Return with a v;lue of TRUE lerror). 

If the levels of session security between LUs do not match then 
Set LOCAL.SENSE CODE to X'080F6051' !Security violation). 
Return with a v;lue of TRUE (error). 

Locate the MODE control block using the User Data Mode Name field in BIND. 
If MODE control block cannot be located then 

Set LOCAL.SENSE CODE to X'0835xxxx' lxxxx is offset to Mode Name field). 
Return with a ~lue of TRUE (error). 

The following determines the session type for this LU so that the check for 
whether the sessioh limit will be exceeded may· be made. 

If parallel sessions are not supported with the partner LU and 
MODE.MIN_CONHINNERS_LIMIT = l then 

Set local session_type to FIRST_SPEAKER. 
Else (use value in BIND request) 

If BIND specifies the secondary as contention winner then 
Set local session_type to FIRST_SPEAKER. 

Else 
Set local session_type to BIDDER. 

Call BIND SESSION LIMIT EXCEEDEDIPARTNER LU.FULLY QUALIFIED LU NAME, MODE, 
local se;sion_tyj;e) lp;ge tt-57). - - - -

If the session limit will be exceeded then 
Return with a value of TRUE ILOCAL.SENSE_CODE is set by BIND_SESSION_LIMIT_EXCEEDED). 

If partner-LU does not support parallel sessions. and there is another 
session pending with the partner-LU a BIND race condition exists. 
BIND winner is determined by comparing LU names. the LU that sent the 
BIND containing the greater of the two network-qualified LU names is 
the BIND winner. 

If BIND specifies that an alternate code set is to be used and 
the alternate code ID is other than ASCII_* then 

Set LOCAL.SENSE CODE to X'0835007'. 
Return with a v;lue of TRUE (error). 

( , ____ / 

c, 

Do consistency checks Ion PS usage field~. for parallel; sessions using either the 
same partner-LU or the same I partner-LU,' mode name) J>i1irl 1 ~see BIND request in ~ 

If there is a consistency error then · 
Set LOCAL.SENSE CODE to X'0835xxxx' lxxxx is offset to i"1CO"sistent field). 
Return with a v;lue of TRUE lerror). 

Formats). C' 

tt-5Z SNA LU 6.Z Reference: Peer Protocols 



C' 
I 

/ 

0 

0 

BIND_R~STATE_ERROR 

Do consistency checks on conversation-level security indicators 
for parallel sessions using the same PARTNER_LU. 

If there is a consistency error then 
Set LOCAL.SENSE_CODE to X'080F6051' !Security violation). 
Return with a value of TRUE (error). 

If this LU's cryptography support capability does not match that specified in BIND then 
Set LOCAL.SENSE_CODE to X'0835001A'. 
Return with a value of TRUE (error). 

If cryptography is supported with the partner LU, but the cryptography 
component Cthat enciphers and deciphers) is not active then 

Set LOCAL.SENSE_CODE to X'08480000' (cryptography function inoperative). 
Return with a value of TRUE (error). 

Check the SESSION_ID parameter: 
If a PARTNER_LU indicates that an FQPCID control vector will be used for 
session identification instead of session instance ID User Data subfield 
Cby setting the first byte to X'Ol' in the User Data SESSION_ID subfield) then 

Use a short IX'02') user data session ID subfield in the RSPIBIND). 
!This procedure checks that in this case the FQPCID control vector is indeed 
present in the BIND.) 

Else lthe first byte of SESSION_ID is not equal to X'Ol'), 
Negotiate the SESSION_ID value: 
If the BIND sender's name is greater than the BIND receiver's name then 

Set the first byte of the SESSION_ID to X'FO'. 
Else Cthe BIND sender's name is not greater than that of the BIND receiver) 

Set the first byte of the SESSION_ID to X'OO'. 

In order to check the uniqueness of SESSION_ID, 
the negotiated SESSION_ID is compared to SESSION_IDs 
for all sessions where the BIND exchange has already occurred. 

If the negotiated SESSION_ID is not unique then . 
Set LOCAL.SENSE CODE to X'0852000l'. 
Return with a v;lue of TRUE (error). 

If the PLU does not support receiving of segments and the lower bound 
RU size for the specified mode name > the maximum send BTU size THEN 

Return with a value of TRUE (error). 
Set LOCAL SENSE_ CODE to '08350006'. 

If this node does not support segment generation and the lower bound 
RU size for the specified mode name > the maximum send BTU size THEN 

Return with a value of TRUE !error). 
Set LOCAL.SENSE_CODE to '0877002A'. 

If this node does not support segment reassembly and the lower bound 
RU size for the specified mode name > the maximum receive BTU size THEN 

Return with a value of TRUE !error). 
Set LOCAL.SENSE_CODE to '0877002B'. 

Return with a value of FALSE (no error). 

Chapter 4. LU Session Manager 4-53 



BIND_RSP_STATE_ERROR 

BIND_RSP_STATE_ERROR 

FUNCTION: Perform state error checking on a received +RSPIBINDJ. 

INPUT: MU containing a +RSPIBINDJ, LULU_CB control block 

OUTPUT: TRUE if error) otherwise, FALSE. If an error is found, LOCAL.SENSE_CODE is 
set. 

Referenced procedures, FSHs, and data structures: 
LU_HODE_SESSION_LIHIT_EXCEEDED 
MU 
LULU_CB 
LOCAL 
PARTNER_ LU 
BIND RU 
MODE 

If the BIND specified that an alternate code set will not be used and 
the RSPIBINDJ specifies that an alternate code set may be used then 

Set LOCAL.SENSE CODE to X'08350006'. 
Return with a v;lue of TRUE (error). 

If the RSPIBINDJ specifies that an alternate code set may be used and that 
an alternate code process ID is anything but ASCII-8 then 

Set LOCAL.SENSE CODE to X'08350006'. 
Return with a v;lue of TRUE lerrorJ. 

Pacing and maximum RU size checks 

If the pacing staging indicators in the RSPIBINDJ are not the same as 
those specified in the BIND then 

page 4-72 
page A-29 
page4-90 
page 4-89 
page A-2 
SNA Formats 
page A-3 

Set LOCAL.SENSE_CODE to X'08350008', if secondary to primary staging is not the same, 
or to X'0835000C', if primary to secondary staging is not the same. 

Return with a value of TRUE (error). 

If the RSPIBINDl indicates that adaptive pacing will not be used on this session then 
If the secondary send window size in the RSPIBINDJ 
is not the same as that specified in the BIND then 

Set LOCAL.SENSE CODE to X'08350008'. 
Return with a v;lue of TRUE (error). 

If the secondary receive window size in the RSPIBINDl is greater than that 
specified in the BIND then la window size of O is treated as 
infinitely large for these comparisons) 

Set LOCAL.SENSE CODE to X'08350008'. 
Return with a v;lue of TRUE (error). 

If the primary send window size in the RSPIBINDJ is greater than that 
specified in the BIND then la window size of 0 is treated as 
infinitely large for these comparisons) 

Set LOCAL.SENSE CODE to X'0835000C'. 
Return with a v;lue of TRUE (error). 

If the primary receive window size in the RSPIBINDJ is not the same as 
that specified in the BIND then 

Set LOCAL.SENSE CODE to X'0835000D'. 
Return with a v;lue of TRUE (error). 

Determine if the secondary or primary send maxilllllll RU sizes are within installation­
defined bounds. If path control for the PLU does not support the segment 
reassembly, then secondary send maximum RU size must not exceed the maximum size 
allowed on the link. 

If the secondary or primary send maximun RU sizes are not within the installation­
defined bowlds then 

Set LOCAL.SENSE CODE to X'0835000A' • if the secondary send RU size is outside 
the bouids, or-to X'0835000B'• if that is true for the primary send RU size. 

Return with a value of TRUE lerrorl. 

4-54 SNA LU 6.2 Reference: Peer Protocols 

(~ __ ,/ 



c~/ 

0 

BIND_RSP_STATE_ERROR 

PS usage checks 

If there are other active sessions to this partner-LU and 
the levels of conversation security between sessions to this partner-LU 
do not match then 

Set LOCAL.SENSE_CODE to X'080F6051'. 
Return with a value of TRUE (error). 

If there are other active sessions for this (partner-LU, mode name) pair and 
the values of the RSPIBIND) fields for synchronization level and session 
reinitiation do not equal those of the other active sessions then 

Set LOCAL.SENSE CODE to X'08350018'. 
Return with a v;lue of TRUE (consistency error). 

Else lno other sessions active for this [partner-LU, mode name] pair) 
If the RSPIBIND) specifies a synchronization level of Confirm, Sync Point, 
and Backout and the BIND specified only Confirm then 

Set LOCAL.SENSE CODE to X'08350018'. 
Return with a v;lue of TRUE lerror). 

If the RSPIBIND) specifies parallel sessions not supported then 
If the RSPIBINDl specifies session reinitiation responsibility as not 
operator controlled and the BIND specified operator controlled then 

Set LOCAL.SENSE CODE to X'08350018'. 
Return with a v;lue of TRUE !error). 

If the RSPIBINDl specifies session reinitiation responsibility as 
secondary will reinitiate and the BIND specified primary will 
reinitiate then 

Set LOCAL.SENSE CODE to X'08350018'. 
Return with a v;lue of TRUE !error). 

If the RSPIBINDl specifies session reinitiation responsibility as 
primary will reinitiate and the BIND specified secondary will 
reinitiate then 

Set LOCAL.SENSE CODE to X'08350018'. 
Return with a v;lue of TRUE (error). 

If the values of the RSPCBINDl fields for parallel sessions support and 
change number of sessions support are not the same as specified in the BIND then 

Set LOCAL.SENSE_CODE to X'08350018'. 
Return with a value of TRUE (error). 

Chapter 4. LU Session Manager 4-55 



BIND_RSP_STATE_ERROR 

Contention winner- checks 

If the RSPIBINDJ specifies par-allel sessions suppor-ted then 
If the value of the RSPIBINDJ contention winner- field is not 

same as that specified in the BIND then 
Set LOCAL.SENSE_CODE to X'08035007'. 
Retur-n with a value of TRUE ler-r-or-J. 

Else lpar-allel sessions not suppor-tedJ 

the 

If the RSPIBINDJ contention winner- is specified as the pr-imar-y and the 
BIND was specified as the secondar-y then 

Set LatAL.SENSE_CODE to X'08350007'. 
Retur-n with a value of TRUE ler-ror-J. 

If the RSPIBINDJ specifies the pr-imar-y as the contention winner- then 
Set local session_type to FIRST_SPEAKER. 

Else 
Set local session_type to BIDDER. 

Call LU_MODE_SESSION_LIHIT_EXCEEDEDIPARTNER_LU.FULLY_QUALIFIED_LU_NAME, 
HOOE, local session_type, active) !page 4-72). 

If the session limit will be exceeded then 
Retur-n with a value of TRUE ler-ror-J. ILOCAL.SENSE_CODE is set by 
LU_HODE_SESSION_LIHIT_EXCEEDEDJ. 

Cryptogr-aphy checks I r-equi red J. 

If the RSPIBINDJ cr-yptogr-aphy field values ar-e not the same as those specified 
in the BIND then 

Set LOCAL.SENSE_CODE to X'0835xxxx' lxxxx is an offset to that cr-yptography field 
in the RSPIBINDJ that is different from the corresponding value in the BIND). 

Return with a value of TRUE lerr-or). 

User data subfield checks 

If the user--data mode name in the RSPIBINDJ is not the same as that 
specified in the BIND then 

Set LOCAL.SENSE_CODE to X'0835xxxx' lxxxx is an offset to the Mode Name subfield). 
Retur-n with a value of TRUE lerr-or-J. 

If LU-LU ver-ification is active ILULU_CB.RANDOH is nonempty) then 
If enciphered data is absent or incor-rect (see page 4-24) then 

Set LOCAL.SENSE CODE to X'080F6051'. 
Retur-n with a v;lue of TRUE ler-ror-J. 

If the user--data session-instance identifier- in the RSPIBINDJ is not 
specified cor-rectly or- if the negotiated value of the session ID is not unique then 

I see page 4-24 and the SNA Formats ) • 
Set LOCAL.SENSE CODE to X'08~xxxx' lxxxx is an offset to the session ID subfield>. 
Return with a v;lue of TRUE !error-). 

URC checks 

If the URC in the RSPIBINDJ is not the same as that specified 
in the BIND then 

Retur-n with a value of TRUE lerr-or-J. 

Retur-n with a value of FALSE lno er-r-or-J. 

4-56 SNA LU 6.2 Refer-ence: Peer- Pr-otocols 



C:· 

0 

BIND_SESSION_LIHIT_EXCEEDED 

BIND_SESSION_LIHIT_EXCEEDED 

FUNCTION: Determine whether or not session limits are exceeded for a received BIND. 

INPUT: PARTNER_LU.FULLY_QUALIFIED_LUNAHE, HOOE, session_type IFIRST_SPEAKER or BID­
DERJ 

OUTPUT: TRUE if limits exceeded; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set 
to_appropriate sense data value. 

Referenced procedures, FSHs, and data structures: 
LU_HODE_SESSION_LIHIT_EXCEEDED 
LOCAL 
MODE 
PARTNER_LU 

If session limit is being negotiated and the proposed 
session limit is > than the current session limit 
IHODE.CNOS NEGOTIATION IN PROGRESS= TRUEJ then 

If activ; session co~nt-is ~ the proposed limit then 
Set LOCAL.SENSE CODE to X'08050000'. 
Set local retur~ code to TRUE. 

Else 
If the sum of active session count and pending session 
count is >= the proposed session limit then 

Set LOCAL.SENSE CODE to X'08050000'. 
Set local check:winner _flag to TRUE.• 

Else (session limits not being negotiated) 

page 4-72 
page 4-89 
page A-3 
page A-2 

Call LU_MODE_SESSION_LIMIT_EXCEEDEDIPARTNER_LU.FULLY_QUALIFIED_LU_NAME, HOOE, 
inputted session_type, state_conditionlACTIVEJJ lpage 4-721. 

If the session limit is exceeded then 
Set local return code to TRUE ILOCAL.SENSE_CODE set by LU MODE_SESSION_LIMIT_EXCEEDEDJ 

Else 
Call LU_MODE_SESSION_LIHIT_EXCEEDEDIPARTNER_LU.FULLY_QUALIFIED_LU_NAME, 

MODE, inputted session_type, 
state~conditionCAT_LEAST_BIND_SENTIJ !page 4-721. 

If the session limit is exceeded then 
local check_winner_flag is set to TRUE. 

Check for BIND race condition 

If local check_winner_flag is true then 
Determine which LU is the BIND race winner. A comparison is made between the 

SLU name and PLU name IPARTNER_LU.FULLY_QUALIFIED_LU_NAMEI 
using the EBCDIC collating sequence. 
The "greater" one is the winner. Before the comparison is made, the shorter 
name is padded with space IX'40'J characters so that the lengths are equal. 

If this LU is the winner then 
Set local return code to TRUE. 

Else 
Reset LOCAL.SENSE CODE to x·oooooooo·. 
Set local return ~ode to FALSE. 

Return with the value of local return code. 

Chapter 4. LU Session Manager 4-57 



BUILD_AND_SEND_ACT_SESS_RSP_NEG 

BUILD_AND_SEND_ACT_SESS_RSP_NEG 
(" .---------------------------------------------.'---/ 

FUNCTION: Build and send ACTIVATE_SESSION_RSP (negative) to RH. 

INPUT: Correlator (in LULU_CB or ACTIVATE_SESSION) to activate-session request and 
error type ( retry or no retry) 

OUTPUT: ACTIVATE_SESSION_RSP to RH 

Referenced procedures, FSHs, and data structures: 
RH 

. ACTIVATE_SESSION_RSP 
ACTIVATE_ SESSION 
LULU_ CB 

Create an ACTIVATE_SESSION_RSP record. 
Set ACTIVATE_SESSION_RSP.CORRELATOR to passed correlator. 
Set ACTIVATE_SESSION~RSP.TYPE to NEG. 
Set ACTIVATE_SESSION_RSP.ERROR_TYPE to passed error type. 

Send an ACTIVATE_SESSION_RSP record to RH. 

BUILD_AND_SEND_ACT_SESS_RSP_POS 

page 3-19 
page A-13 
page A-20 
page 4-90 

FUNCTION: Build and send ACTIVATE_SESSION_RSP (positive) to RH. This completes (from 
the SH's standpoint) the session initiation activity triggered by the ACTI­
VATE_SESSION record received by SH from RH. 

INPUT: LULU_CB control block 

OUTPUT: ACTIVATE_SESSION_RSP created and sent to RH 

Referenced procedures, FSMs, and data structures: 
RH 
LULU_CB 
ACTIVATE_SESSION_RSP 

Create an ACTIVATE_SESSION_RSP record. 
Set ACTIVATE_SESSION_RSP.CORRELATOR to LULU_CB.CORRELATOR. 
Set ACTIVATE_SESSION_RSP.TYPE to POS !positive response). 

Set ACTIVATE SESSION RSP.SESSION INFORMATION.HS ID to LULU CB.HS ID. 
Set ACTIVATE=SESSION=RSP.SESSION=INFORHATION.HALF_SESSION_TvPE t~ PRI. 

page 3-19 
page 4-90 
page A-13 

Set ACTIVATE_SESSION_RSP.SESSION_INFORHATION.BRACKET_TYPE to LULU_CB.SESSION_TYPE. 

Set ACTIVATE SESSION RSP.SESSION INFORMATION.SEND RU SIZE to 
the negotiated maxi~ send RU ;ize. - -

Set ACTIVATE_SESSION_RSP.SESSION_INFORHATION.PERHANENT_BUFFER_POOL_ID to 
the ID of the permanent buffer pool. 

Set ACTIVATE SESSION RSP.SESSION INFORMATION.LIMITED BUFFER POOL ID to 
the ID of the limit~ buffer ~l. - - -

Set ACTIVATE_SESSION_RSP.SESSION_INFORMATION.SESSION_IDENTIFIER to 
LULU_CB.SESSION_ID. 

Send random data to RH. This is used to build the FHH-12. 

Set ACTIVATE_SESSION_RSP.SESSION_INFORMATION.RANDOH_DATA to LULU_CB.RANDOH. 
Send ACTIVATE_SESSION_RSP TO RH. 

4-58 SNA LU 6.2 Reference: Peer Protocols 

(~ 

c 



(_~' 

C, 

0 

BUILD_AND_SEND_BIND_RQ 

FUNCTION: 

INPUT: 

OUTPUT: 

Build and send a BIND 

LULU_CB control block 

A BIND request to ASH 

Referenced procedures, FSMs, and data structures: 
LUCB 
LULU_CB 
MU 
BIND RU 
ASH 

Call buffer managerlGET_BUFFER, demand, buffer size, no waitJ 
to get a demand buffer to contain the BIND. Buffer size is the 
length of BIND including control vectors plus length of MU overhead. 
(Appendix BJ. 

Set MU.HEADER_TYPE to BIND_RQ,_SEND. 
Set MU.BIND_RQ_SEND.LU_ID to this LU's identifier. 
Set MU.BIND_RQ,_SEND.SENDER.TYPE to SM. 
Set MU.BIND_RQ,_SEND.LFSID to LULU_CB.LFSID. 
Set MU.BIND_RQ,_SEND.TRANSMISSION_PRIORITY to NETHORK. 
Set MU.BIND_RQ_SEND.PATH_CONTROL_ID to LULU_CB.PATH_CONTROL_ID. 
Set MU.BIND_RQ,_SEND.HS_ID to this half-session's identifier. 
Set an MU.TH.SNF field to a unique value. 
Set the remaining TH and RH fields in MU 

to the specified values (see page 4-14 and SNA Formats). 
Set BIND RU to the appropriate values (see page 4-19J. 
Insert the random data into the LUCB.PENDING RANDOM DATA LIST. 
Set MU.DCF to IRH + RUJ length. - - -

Send a BIND MU to ASH. 

\ 
\ 

BUILD_AND_SEND_BIND_RQ 

page A-1 
page 4-90 
page A-29 
SNA Formats 
T2.l Node Reference 

\ 

\ 

Chapter 4. LU Session Manager 4-59 



BUILD_AND_SEND_BIND_RSP_NEG 

BUILD_AND_SEND_BIND_RSP_NEG ...----------------.c.· 
FUNCTION: Build and send a -RSPIBINDJ. 

INPUT: Buffer where a -RSPIBINDJ will be stored 

OUTPUT: -RSPIBINDJ HU to ASH 

Referenced procedures, FSHs, and data structures: 
MU 
BIND_RSP_SEND, see MU 
LOCAL 
ASH 

Set MU.HEADER_TYPE to BIND_RSP_SEND. 

Set MU.BIND_RSP_SEND.SENDER.ID to this LU's identifier. 
Set MU.BIND RSP SEND.SENDER.TYPE to SM. 
Set MU.BIND-RSP-SEND.LFSID to the LFSID received in the BIND MU. 
Set MU.BIND:RSP:SEND.PATH_CONTROL_ID to the PATH_CONTROL_ID 

received in the BIND MU. 
Set MU.BIND_RSP_SEND.TRANSMISSION_PRIORITY to LOH. 
Set MU.BIND_RSP_SEND.FREE_LFSID to YES. 
Set MU.BIND_RSP_SEND.HS_ID to NULL. 

Set TH and RH fields in the RSPIBINDJ MU to appropriate values 
(see page 4-14 and SNA Formats). 

Set the RU portion oTthe RSP I BIND J MU to LOCAL. SENSE_ CODE followed by 
BIND request code. 

Set MU.DCF to IRH + RUJ length. 

Send -RSPIBINDJ MU to ASH. 

BUILD_AND_SEND_FREE_LFSID 

page A-29 
page A-29 
page 4-89 
T2.l Node Reference 

FUNCTION: Build and send a FREE_LFSID record to the control point. This is necessary 
when SH asked ASH to give SH an LFSID for a session, and SH received 
ASSIGN_LFSID_RSP, but could not send a BIND !because, for example, SM cannot 

c 

get a buffer for it). In this case, SH explici Uy asks ASH to free the LFSID {~' 
by sending the FREE_LFSID record to it. If SH sends a BIND successfully, it 
later sends an UNBIND or a RSPIUNBINDJ to ASH and sets the FREE LFSID variable \.._ / 
to YES in them. -

INPUT: LULU_CB control block 

OUTPUT: FREE_LFSID record to the ASH component of the control point 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
FREE_LFSID 
ASH 

Create a FREE_LFSID record. 

Set FREE_LFSID.PATH_CONTROL_ID to LULU_CB.PATH_CONTROL ID. 
Set FREE_LFSID.LFSID to LULU_CB.LFSID. 

Send FREE_LFSID record to ASH. 

4-60 SNA LU 6.2 Reference: Peer Protocols 

page 4-90 
page A-25 
T2.l Node Reference 

c 



C./ 
_,. 

c-

BUILD_AND_SEND_INIT_HS 

BUILD_AND_SEND_INIT_HS 

FUNCTION: Build an INIT_HS !initialize half-session) record and send it to the 
half-session designated by the passed LULU_CB. 

INPUT: LULU_CB, first 26 bytes of the negotiated BIND image 

OUTPUT: INIT_HS record to HS ILU-LU half-session) 

Referenced procedures, FSMs, and data structures: 
HS 
LULU_ CB 
INIT_HS 
LOCAL 

Create INIT_HS record. 
Set the following fields in the INIT_HS record: PATH_CONTROL_ID, LFSID, 

HALF SESSION TYPE, DYNAMIC POOL ID, DEM LIM POOL ID, and 
TRANSMISSION:PRIORITY by c~yinQ the co;responding fields 
from the LULU CB control block. 

Set INIT_HS.SHORT_BIND_IMAGE to the passed 26 bytes of the BIND image. 

If adaptive pacing was negotiated for the session then 
Reset all the window size parameters in INIT_HS.SHORT_BIND_IMAGE 

ISEC SEND HINDOH SIZE, PRI SEND HINDOH SIZE, SEC RCV HINDOH SIZE, and 
PRI_RCV_HINDOH_SIZEJ to 1.- - - - - -

page 6.0-3 
page 4-90 
page A-13 
page 4-89 

Send INIT HS record to HS !the LU-LU half-session identified by LULU_CB.HS_IDJ. 
If send f;ils !because the HS has ABEND) then 

Destroy INIT_HS record. 
Set LOCAL.SENSE CODE to X'0812000D' luse the same sense code as if 

there were ins~fficient buffers to activate a session). 

BUILD_AND_SEND~INIT_SIG 

FUNCTION: Build and send an INIT_SIGNAL record to the control point. 

INPUT: LULU_CB control block 

OUTPUT: INIT_SIGNAL record to the SS c~nent of the control point 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
LUCB 
INIT_SIGNAL 
SS 

Create an INIT_SIGNAL record. 

Set INIT_SIGNAL.SM_PROCESS_ID to this LU's identifier. 
Set INIT_SIGNAL.FQPCID to LULU_CB.FQPCID. 
Set INIT_SIGNAL.SLU_NAME to LULU_CB.FQ_PARTNER_LU_NAME. 
Set INIT SIGNAL.PLU NAME to LUCB.FULLY QUALIFIED LU NAME. 
Set INIT=SIGNAL.MODE_NAME to LULU_CB.HODENAME. - -

Send an INIT_SIGNAL record to SS. 

page 4-90 
page A-1 
page A-23 
T2.l Node Reference 

Chapter 4. LU Session Manager 4-61 



BUILD_AND_SEND_PC_HS_DISCONNECT 

BUILD_AND_SEND_PC_HS_DISCONNECT 

FUNCTION: Build and send a PC_HS_DISCONNECT record to ASH. This is done only after a 
PLU receives a -RSPCBINDJ. If, instead, SH receives an UNBIND, it sends a 
RSP!UNBINDJ, asking ASH to free LFSID, thus disconnecting PC and HS. 

INPUT: LULU_CB control block 

OUTPUT: PC_HS_DISCONNECT record to ASH 

Referenced procedures, FSHs, and data structures: 
PC_HS_DISCONNECT 
LULU_CB 
ASH 

Create a PC_HS_DISCONNECT record. 

Set PC_HS_DISCONNECT.PATH_CONTROL_ID to LULU_CB.PATH_CONTROL_ID. 
Set PC_HS_DISCONNECT.LFSID to LULU_CB.LFSID. 

Send a PC_HS_DISCONNECT record to ASH. 

4-62 SNA LU 6.2 Reference: Peer Protocols 

page A-24 
page 4-90 
T2.l Node Reference ----



BUILD_AND_SEND_SESS_ACTIVATED 

BUILD_AND_SEND_SESS_ACTIVATED 

FUNCTION: Build and send SESSION ACTIVATED to RH to indicate that a new session has 
become active and to gi;e RH the information about this session. 

INPUT: 

OUTPUT: 

LULU_CB control block 

SESSION_ACTIVATED to RH 

Referenced procedures, FSHs, and data structures: 
RH 
LULU_ CB 
SESSION_ACTIVATED 

Create a SESSION_ACTIVATED record. 

Set SESSION ACTIVATED.SESSION INFORMATION.HS ID to LULU CB.HS ID. 
Set SESSION=ACTIVATED.SESSION=INFORHATION.HALF_SESSION_TvPE t~ SEC. 

page 3-19 
page 4-90 
page A-14 

Set SESSION_ACTIVATED.SESSION_INFORHATION.BRACKET_TYPE to LULU_CB.SESSION_TYPE. 

Set SESSION_ACTIVATED.SESSION_INFORHATION.SEND_RU_SIZE to the 
negotiated maximum send RU size. 

Set SESSION_ACTIVATED.SESSION_INFORHATION.PERHANENT_BUFFER_POOL_ID to 
LULU_CB.PERH_POOL_ID. 

Set SESSION_ACTIVATED.SESSION_INFORHATION.LIHITED_BUFFER_POOL_ID to 
LULU_CB.DEM_LIM_POOL_ID (ID of limited buffer pool). 

Set SESSION_ACTIVATED.SESSION_INFORMATION.SESSION_IDENTIFIER to 
LULU_CB.SESSION_ID. 

Send random data to RM to verify the FMH-12's enciphered data received 
by RH. 

Set SESSION_ACTIVATED.SESSION_INFORMATION.RANDOM_DATA 
to LULU_CB.RANDOH. 

Set SESSION ACTIVATED.LU NAME to LULU CB.LOCAL PARTNER_LU_NAME. 
Set SESSION=ACTIVATED.MODE_NAHE to LULU_CB.MODENAME. 

Send a SESSION_ACTIVATED record to RM. 
If send fails IRH has abended) then 

Destroy SESSION_ACTIVATED record. 

Chapter 4. LU Session Manager 4-63 



BUILD_AND_SEND_SESS_DEACTIVATED 

BUILD_AND_SEND_SESS_DEACTIVATED 

FUNCTION: Build and send SESSION DEACTIVATED to RH to indicate that an active session 
has been deactivated. -

INPUT: HS_ID !process identifier of half-session deactivated), REASON (reason for 
deactivation J, SENSE_CODE 

OUTPUT: SESSION_DEACTIVATED record to RH 

Referenced procedures, FSHs, and data structures: 
RH 
SESSION_DEACTIVATED 

Create a SESSION_DEACTIVATED record. 

page 3-19 
page A-14 

Set SESSION_DEACTIVATED.HS_ID to the value of HS_ID passed to this routine. 
Set SESSION_DEACTIVATED.REASON to the value of REASON passed to this routine. 
If REASON is not NORMAL then 

Set SESSION_DEACTIVATED.SENSE_CODE to value of SENSE_CODE passed to this ·routine. 

Send a SESSION_DEACTIVATED record to RH. 
If send fails IRM has abendedJ then 

Destroy SESSION_DEACTIVATED record. 

BUILD_AND_SEND_SESSEND_SIG 

FUNCTION: Build and send a SESSEND_SIGNAL record to the control point. This record can 
be sent by both PLU and SLU when the session is brought down. The PLU sends 
it, however, only if it has previously received a CINIT_SIGNAL record. The 
SLU sends it only if it has already sent a SESSST_SIGNAL record to SS. 

INPUT: LULU_ cs·, LOCAL. SENSE_CODE 

OUTPUT: SESSEND_SIGNAL record to the SS component of the control point 

Referenced procedures, FSHs, and data structures: 
page 4-90 

c 

LULU_CB 
LOCAL 
SESSEND_SIGNAL 
SS 

page 4-89 ,,-~,. 

page A-24 ("-

4-64 

Create a SESSEND SIGNAL record. 
Set SESSEND_SIGNAL.SENSE_CODE to LOCAL.SENSE CODE. 
Set SESSEND SIGNAL.FQPCID to LULU CB.FQPCID. 
Set SESSEND=SIGNAL.PATH_CONTROL_ID to LULU_CB.PATH_CONTROL ID. 

Send a SESSEND SIGNAL record to SS. There is no need to check to see 
if the send f;iled because if the send did fail SS has abended, and 
the whole node will be down. 

SNA LU 6.2 Reference: Peer Protocols 

T2. l Node Reference 



c 

0 

c 

0 

BUILD_AND_SEND_SESSST_SIG 

BUILD_AND_SEND_SESSST_SIG 

FUNCTION: Build and send a SESSST SIGNAL record to the control point. This record is 
sent by the SLU when it ;eceives the INIT_HS_RSP record from the half-session 
process, The PLU does not need to send it, since its local SS sends a 
CINIT_SIGNAL to SH and assumes that the session will be activated. 

INPUT: LULU_CB 

OUTPUT: SESSST_SIGNAL record to the SS component of the control point 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
SESSST_SIGNAL 
SS 

Create a SESSST_SIGNAL record. 
Set SESSST SIGNAL.PATH CONTROL ID to LULU_CB.PATH_CONTROL_ID. 
Send a SESSST_SIGNAL r;cord to-SS. 

BUILD_AND_SEND_UNBIND_RQ 

FUNCTION: Build and send an UNBIND. 

INPUT: Buffer where UNBIND will be stored, CLEANUP type, sense code 

OUTPUT: UNBIND MU to ASH 

Referenced procedures, FSMs, and data structures: 
MU 
UNBIND_RQ_SEND, see MU 
LOCAL 
LULU_CB 
ASM 

Set MU.HEADER_TYPE to UNBIND_RQ_SEND. 

Set MU.UNBIND_RQ_SEND.SENDER.ID to LOCAL.LU_ID. 
Set MU.UNBIND_RQ_SEND.SENDER.TYPE to SM. 
Set MU.UNBIND RQ SEND.LFSID to LULU CB.LFSID. 
Set MU.UNBIND=RQ=SEND.PATH_CONTROL_ID to the 

LULU CB.PATH CONTROL ID. 
Set MU.UNBIND=RQ_SEND~TRANSMISSION_PRIORITY to 

LULU_CB.TRANSMISSION_PRIORITY. 
Set MU.UNBIND_RQ_SEND.FREE_LFSID to YES. 
Set MU.UNBIND_RQ_SEND.HS_ID to LULU_CB.HS_ID. 

Set TH and RH fields in the UNBIND MU to appropriate values 
(see page 4-14 and SNA Formats). 

Set the RU portion o'f"the UNBIND MU to appropriate values 
(see page 4-27 and SNA Formats). Use the inputted type and 
sense code values to set corresponding fields in the UNBIND RU. 

Set MU.DCF to CRH + RU) length. 

Send UNBIND MU to ASH. 

page 4-90 
page A-24 
T2.l Node Reference 

page A-29 
page A-29 
page 4-89 
page 4-90 
T2.l Node Reference 

Chapter 4. LU Session Manager 4-65 



BUILD_AND_SEND_UNBIND_RSP 

BUILD AND_SEND UNBIND_RSP 

.....-----------------.(' 
'-. _ __.-

FUNCTION: Build and send a RSPCUNBIND J. 

INPUT: MU record containing UNBIND 

OUTPUT: A RSPIUNBINDJ MU to ASM 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
MU 
MU_NEH, see MU 
ASM 

page 4-90 
page A-29 
page A-29 
T2.l Node Reference 

If either UNBIND arrived as an EXR or a length error was detected locally then 
A -RSPIUNBINDJ will be built. 

Else 
A +RSP!UNBINDJ will be built. 

Call buffer manager(GET_BUFFER, demand, buffer size, no wait! 
to get a demand buffer to build RSPIUNBINDJ (+or -J in. Set buffer 
size to the length of RSPIBINDJ plus length of MU overhead. 
I Appendix BJ. 

If buffer was gotten successfully then 
Set MU NEH.HEADER TYPE to UNBIND RSP SEND. 
Set MU=NEH.UNBIND=RSP_SEND.LU_ID-to ihis LU's identifier. 
Set MU_NEH.UNBIND_RSP_SEND.SENDER.TYPE to SM. 

If UNBIND was correlated to a particular session then 
Set MU NEH.UNBIND RSP SEND.HS ID to LULU CB.HS ID. 
Set MU=NEH.UNBIND=RSP=SEND.TRANSMISSION_PRIORlTY to 

LULU CB.TRANSMISSION PRIORITY (LOH, MEDIUM, or HIGH only!. 
Else - -

Set MU_NEH.UNBIND_RSP_SEND.HS_ID to NULL. 
Set MU_NEH.UNBIND_RSP_SEND.TRANSMISSION_PRIORITY to LOH. 

Set MU NEH.UNBIND RSP SEND.FREE LFSID to YES. 
Copy the PATH_CONTROL=ID, LFSID-and TH.SNF fields from MU into MU_NEH. 
Set the remaining TH and RH fields in MU_NEH 
to the specified values !see page 4-14 and SNA Formats!. 

If an RSPIUNBINDJ is positive then 
Set the only byte present in the RSPIUNBINDJ RU 

to the UNBIND request code. 
Else IRSP!UNBINDJ is negative) 

Set the RU portion of the RSPIUNBINDJ MU to the sense data !that describes 
an UNBIND error) followed by the UNBIND request code. 

Set MU.DCF to IRH + RUJ length. 

Send RSPIUNBINDJ MU to ASM. 

Else !Buffer was not obtained! 
Do nothing, RSP(UNBINDJ will not be sent. 

4-66 SNA LU 6.2 Reference: Peer Protocols 

c 



C--,1 

-/ 

0 

BUILD_BIND_RSP_POS 

FUNCTION: Build +RSPIBINDJ. 

INPUT: MU record containing the received BIND, LULU_CB control block 

OUTPUT: MU_NEH record containing a +RSPIBIND) 

Referenced procedures, FSMs, and data structures: 
MU 
MU_NEH, see MU 
LOCAL 
LULU_CB 

Call buffer managerlGET_BUFFER, demand, buffer size, no wait) 
to get a demand buffer to build the +RSPIBINDJ in. The buffer size is 
set to the length of the RSPIBINDJ including control vectors plus length 
of MU overhead !Appendix BJ. 

If buffer request failed then 
Set LOCAL.SENSE CODE to X'0812000D' to indicate insufficient buffers 

to activate a ;ession. 
Else 

Set MU NEH.HEADER TYPE to BIND RSP SEND. 
Set MU=NEH.BIND_RSP_SEND.LU_ID-to LOCAL.LU_ID. 
Set MU NEH.BIND RSP SEND.SENDER.TYPE to SM. 
Set MU-NEH.BIND-RSP-SEND.TRANSMISSION PRIORITY to NETHORK. 
Set MU=NEH.BIND=RSP=SEND.FREE_LFSID t~ NO. 
Set MU NEH.BIND RSP SEND.HS ID to LULU CB.HS ID. 
Copy the PATH_CONTROL_ID, LFSID and TH~SNF fields from MU into MU_NEH. 
Set the remaining TH and RH fields in MU_NEH 

to the specified values (see page 4-14 and SNA Formats). 
Set RSPIBINDJ RU to the appropriate values (see page 4-24). 
Insert the random data found in the received BIND RU 

into the LUCB.PENDING RANDOM DATA LIST. 
Set MU.DCF to IRH + RUJ length. -

CLEANUP_LU_LU_SESSION 

FUNCTION: Clean up LU-LU session. 

INPUT: LULU_CB of session to be cleaned up 

BUILD_BIND_RSP_POS 

page A-29 
page A-29 
page 4-89 
page 4-90 

OUTPUT: LU-LU session cleaned up: SESSEND_SIGNAL sent to SS, if appropriate; the 
buffers reserved for this session by SM released; the half-session process for 
this session destroyed, if it exists; an outstanding random data entry removed 
from the pending random data list, if it is there 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_SESSEND_SIG 
UNRESERVE_BUFFERS 
LULU_CB 

If a SESSST_SIGNAL was previously sent or a CINIT_SIGNAL was received 
on this session then 

Call BUILD_AND_SEND_SESSEND_SIGILULU_CBJ lpage 4-64). 

Call UNRESERVE BUFFERSILULU CB) to unreserve the buffers reserved for 
this session - (page 4-85)~ 

Destroy this session's half-session process if it exists. 

Remove an entry from the list of pending random data, if the random data 
for this session is there. 

Remove the LULU_CB from the list so the LU-LU awareness is gone. 

page 4-64 
page 4-85 
page 4-90 

Chapter 4. LU Session Manager 4-67 



CORRELATE_BIND_RSP 

4-68 

CORRELATE_BIND_RSP 

FlMCTION: 

INPUT: 

OUTPUT: 

Check if the received RSPIBINDJ correlates with a previously sent BIND. 

MU containing the RSPIBINDJ 

TRUE, if RSPIBINDJ correlatess FALSE, otherwise 

Referenced procedures, FSMs, and data structures: 
MU page A-29 

A correlation of a RSPIBINDJ to BIND is a complicated procedure, par­
tially because a number of race conditions may occur. The 
PATH_CONTROL_ID and LFSID fields in the RSPIBINDJ MU must match those 
in the sent BIND MU and the session in question must be in the state 
where a response to BI~D is expected, but this is ncit enough. Only if 
no -RSP!BINDls are sent and every +RSPIBINDJ carries an FQPCID control 
vector can each RSPIBINDJ be properly correlated to a previously sent 
BIND. In doing the correlation, the following problems occur: 

• A partner LU may include the FQPCID control vectors in the 
+RSPIBINDJ/and use an UNBIND to reject a BIND; or if it is a 
back-level LU, not use FQPCID and send -RSP!BINDJ to reject a 
BIND. A back-level LU returns an SNF that is used for corre­
lation; a current-level LU does not have to return the matched 
SNF. 

• A length error may be found while checking whether or not the 
RSP!BINDJ contains the FQPCID control vector. Since the presence 
of an FQPCID is in question, an SNF parameter cannot be used for 
correlation, because the RSP!BINDJ could arrive from an LU that 
didn't use it. 

• Unlike BIND pacing, RSPIBINDJ pacing is not required; it is possi­
ble that the ASM could not reassemble the RSP!BINDJ that arrived 
from another node. In this case, ASH sends only the first segment 
of the RSPIBINDJ MU .to the session manager. SM recognizes it by 
checking the End of BIU Indicator in the TH. In this case, SM 
also does not know whether an FQPCID control vector was present in 
the RSP I BIND ). 

In view of the above •. the following rules are used to check for the 
RSPIBINDJ correlation: 

1. PATH_CONTROL_ID and LFSID in the received RSPIBINDJ must match the 
PATH_CONTROL and LFSID values for a pending-active session and the 
activation process of that session must be in a state where a 
RSPIBINDJ is expected. If such a pending-active session is not 
found, no other consideration is given to this RSPIBINDJ. 

2. The SNF fields in the BIND and -RSPIBINDJ must match. 

3. If it is known that +RSPIBINDJ lacks an FQPCID control vector, the 
SNF fields in the BIND and RSPIBINDJ must match. 

4. If it is known that +RSPIBINDJ carries an 
the FQPCID must match ihe one in the BIND. 
compared. 

FQPCID control vector. 
The SNF fields are not 

5. If it cannot be determined whether the FQPCID control vector is 
present in +RSPIBINDJ, a RSPIBINDJ is accepted as correlated under 
the first rule above. The SNF fields are not compared. 

SNA LU 6.2 Reference: Peer Protocols 

c 



0 

CORRELATE_UNBIND_RQ 

CORRELATE_UNBIND_RQ 

FUNCTION: Check if the received RSP<UNBINDl correlates with a known session. 

INPUT: HU containing the UNBIND 

OUTPUT: TRUE, if UNBIND correlates; otherwise, FALSE 

Referenced procedures, FSMs, and data structures: 
MU page A-29 

A correlation of an UNBIND to a known session is a complicated proce­
dure, although not as complicated as a correlation of a RSPIBINDl to a 
BIND. The PATH_CONTROL_ID and LFSID fields in the UNBIND MU header 
must match those used to activate the session in question, but this is 
not enough to complete the correlation. Only if every UNBIND carries 
an FQPCID control vector can each UNBIND be properly correlated to the 
right session. In doing the correlation, the following problems 
occur: 

• A partner LU may include the FQPCID control vector in the UNBIND 
or, if it is a back-level LU, not use FQPCID control vectors. 

• 

• 

A length error can be found while trying to find out whether or 
not the RSPll:JNBINDl contains the FQPCID control vector. 

The local LU may already have sent an UNBIND of its own and the 
ILFSID, PATH_CONTROL_IDl pair is in use for another session. 

In view of the above, the following rules are used to check for the 
UNBIND correlation: 

1. PATH_CONTROL_ID and LFSID in the received UNBIND must match the 
PATH CONTROL_ID and LFSID for a pending-active or active session. 
If s~ch a session is not found, the UNBIND does not correlate. 

2. If the UNBIND arrives as an EXR IRH.SDI=SD), or if it contains 
length errors, or if it is known that the UNBIND lacks an FQPCID 
control vector, then UNBIND is accepted as correlated under the 
first rule above. 

3. If it is known that the UNBIND carries an FQPCID control vector, 
the FQPCID must match the FQPCID of the session. 

Chapter 4. LU Session Manager 4-69 



GET_FQPCID 

GET_FQPCID 

FlMCTION: Get the fully-qualified procedure correlatiCJn identifier I FQPCID) from the 
sessign services ISS) component of the cCJntrol point. Repeat requests if a 
duplicate FQ PCID was received. An FQ PCID is cgnsidered duplicate if its 
PCID matches that for another active or pending-active sessiCJn at this LU. 

INPUT: LULU_CB 

OUTPUT: ASSIGN_PCID to SS, LULU_CB.FQPCID initialized 

Referenced procedures, FSMs~ and data structures: 
LULU_ CB 
ASSIGN_PCID 
ASSIGN_PCID_RSP 
SS 

Do until a valid PCID is found. 
Create an ASSIGN_PCID record. 
Set ASSIGN_PCID.SM_PROCESS_ID to this LU_ID. 
Set ASSIGN_PCID.DUPLICATE_PCID to NO. 

Send ASSIGN_PCID to SS. 

Receive ASSIGN_PCID_RSP from SS. 

page 4-90 
page A-22 
page A-23 
T2.l Node Reference ----

Find an LULU_CB with the FQPCID whose PCID field matches that of an FQPCID 
for another session at this LU. 

If found then 
Create another ASSIGN_PCID record. Set all parameters in it to the same 
values as before except that ASSIGN_PCID.DUPLICATE_PCID is set to YES. 

Send a new ASSIGN_PCID record -to SS. 

Receive ASSIGN_PCID_RSP from SS. 

Hhen an acceptable FQPCID is received, save it in LULU_CB.FQPCID. 
Destroy ASSIGN_PCID record. 

INITIALIZE_LULU_CB_ACT_SESS 

FUNCTION: Initialize an LULU_CB for an LU-LU sessiCJn being activated as a result of an 
ACTIVATE_SESSION received from RM. 

INPUT: ACTIVATE_SESSION record, LULU_CB 

OUTPUT: The following parameters in LULU_CB are initialized: LOCAL_PARTNER_LU_NAME, 
FQ_PARTNER_LU_NAME, MODENAME, and SESSION_TYPE 

Referenced procedures, FSMs, and data structures: 
ACTIVATE_ SESSION 
LULU_CB 
PARTNER_ LU 

Locate the PARTNER_LU control block using ACTIVATE_SESSION.LU_NAME. 

Set LULU_CB.FQ_PARTNER_LU_NAME to PARTNER_LU.FULLY_QUALIFIED_LU_NAME. 
Set LULU_CB.LOCAL_PARTNER_LU_NAME to PARTNER_LU.LOCAL_LU_NAME. 
Set LULU_CB.MODENAME to ACTIVATE_SESSION.MODE_NAME. 
Set LULU_CB.SESSION_TYPE to ACTIVATE_SESSION.SESSION_TYPE. 

4-70 SNA LU 6.2 Reference: Peer Protocols 

page A-20 
page 4-90 
page A-2 

c~ 

c 

c 



c 

c: 

0 

0 

0 

INITIALIZE_LULU_CB_BIND 

INITIALIZE_LULU_CB_BIND 

FUNCTION: Initialize an LULU CB for an LU-LU session being activated as a result of 
receiving a BIND. 

INPUT: 

OUTPUT: 

MU Ccontaining BINDJ, LULU_CB 

LULU_CB linitializedJ 

Referenced procedures, FSHs, and data structures: 
GET_FQPCID 
MU 
PARTNER_LU 
LULU_CB 
LOCAL 
BIND RU 

Locate the PARTNER_LU control block using the user data PLU name in BIND. 
Set LULU_CB.LOCAL_PARTNER_LU_NAME to PARTNER_LU.LOCAL_LU_NAME. 
Set LULU_CB.FQ_PARTNER_LU_NAME to LOCAL.USER_DATA.PLUNAME.NAME. 
Set LULU CB.MODENAME to user data mode name in BIND. 
Set LULU=CB.HALF_SESSION_TYPE =SEC IBIND receiver is secondary). 

If parallel sessions are not supported with the partner LU and 
MODE.MIN CONHINNERS LIMIT = 1 then 

Set LULU_CB.SESSION_TYPE to FIRST_SPEAKER. 

Else Cnegotiation is not allowed in this case) 
If BIND specifies secondary as contention winner then 

Set LULU_CB.SESSION_TYPE to FIRST_SPEAKER. 
Else 

Set LULU_CB.SESSION_TYPE to BIDDER. 

Set LULU_CB.PATH_CONTROL_ID to the PATH_CONTROL_ID from the BIND. 
Set LULU_CB.PC_CHARACTERISTICS to MU.BIND_RU.PC_CHARACTERISTICS. 
Set LULU_CB.LFSID to MU.BIND_RU.LFSID. 

If the FQPCID control vector is present in the BIND then 
Save it in LULU CB.FQPCID. 

Else -
Call GET_FQPCIDILULU_CBJ to get FQPCID. !page 4-701. 
Save FQPCID in LULU_CB.FQPCID. 

page 4-70 
page A-29 
page A-2 
page 4-90 
page 4-89 
SNA Formats 

Chapter 4. LU Session Manager 4-71 



LU_MODE_SESSION_LIMIT_EXCEEDED 

LU_MODE_SESSION_LIHIT_EXCEEDED 

FUNCTION: Determine whether or not session limits associated with a given 
name) pair are exceeded for the given state condition IFSH_STATUS 
session). 

ILU, mode 
for this 

INPUT: PARTNER_LU.FULLY_QUALIFIED_LU_NAHE, MODE, session type IFIRST_SPEAKER or BID­
DERJ, state_condition !ACTIVE, AT_LEAST_BIND_SENT, or AT_LEAST_INIT_SENTJ 

OUTPUT: TRUE if session limits exceeded; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE 
is set to appropriate sense data. 

NOTE: If parallel sessions are not supported with the partner LU and the total ses­
sion limit will not be exceeded, a session-activation request specifying this 
LU as first speaker is accepted. For example, a BIND is received specifying 
the SLU as first speaker !contention winner). The SLU does not support paral­
lel sessions with the BIND sender and SESSION_LIHIT=l, MIN_CONHINNERS_LIMIT=O, 
and MIN CONLOSERS LIMIT=l I these values are associated with the mode name 
specified in the BIND). Even though the MIN_CONHINNERS_LIMIT of 0 will be 
exceeded, the BIND is accepted. 

Referenced procedures, FSMs, and data structures: 
LOCAL 
MODE 

If state condition = ACTIVE then 
Set BIDDER SESSION COUNT to the number of active bidder sessions. 
Set FSP SESSION CoUNT to the number of active first-speaker sessions. 
CA session is c~nsidered active if either a RSPCBINDl was received 
if PLU; or a BIND was received, if SLUJ. 

Else 
If state condition = AT LEAST BIND SENT then 

Set BIDDER SESSION COUNT a~ FSP SESSION COUNT 
to the nu;ber of bidder and fir;t-speak;r sessions, respectively, 
for which a BIND is either sent or received. 

Else !state condition = AT LEAST INIT SENTJ 
Set BIDDER_SESSION_COUNT a~ FSP=SESSION_COUNT 

to the number of bidder and first-speaker sessions, respectively, 
for which either an INIT SIGNAL is sent, if PLU, or a BIND 
is received, if SLU. -

Set TOTAL LIMIT to MODE.SESSION LIMIT. 
Set FSP LIMIT to MODE.MIN CONHINNERS LIMIT. 
Set BIDDER_LIMIT to MODE.MIN_CONLOSERS_LIMIT. 

Select based on one of the following conditions: 

page 4-89 
page A-3 

Hhen FSP SESSION COUNT + BIDDER SESSION COUNT ~ TOTAL_LIMIT 
Set LOCAL.SENSE CODE to X'08050000' !total session limit will be exceeded). 

Hhen FSP SESSION COUNT ~ TOTAL LIMIT - BIDDER LIMIT and 
session:type = FIRST_SPEAKER ;nd parallel se;sions are supported with 
the partner LU (see Note). 

Set LOCAL.SENSE_CODE to X'08050001' !first speaker session limit will be 
exceeded). 

Hhen BIDDER_SESSION_COUNT - TOTAL_LIMIT - FSP_LIMIT and session_type = BIDDER 
Set LOCAL.SENSE CODE to X'08050001' !bidder session limit will be exceeded). 

Otherwise -
Set LOCAL.SENSE_CODE to X'OOOOOOOO' !session limit will not be exceeded). 

If LOCAL.SENSE_CODE = X'OOOOOOOO' then 
Return with a value of FALSE (session limit will not be exceeded). 

Else 
Return with a value of TRUE I session limit will be exceeded). 

4-7Z SNA LU 6.Z Reference: Peer Protocols 

c 

c .. 



C'•, 
) 

c~ 

PREPARE_TO_SEND_BIND 

FUNCTION: 

INPUT: 

Get the address (LFSID structure) for the session. 
process. Reserve buffers for the session. 

LULU_CB control block 

PREPARE_TO_SEND_BIND 

Create a half-session 

OUTPUT: ASSIGN_LFSID record sent to ASMl HS process createdl if an error occurs, 
LOCAL.SENSE_CODE set 

Referenced procedures, FSMs, and data structures: 
RESERVE_CONSTANT_BUFFERS 
LULU_CB 
ASSIGN_LFSID 
ASSIGN_LFSID_RSP 
LOCAL 
ASH 

Create an ASSIGN LFSID record. 
Set ASSIGN_LFSID~PATH_CONTROL_ID to LULU_CB.PATH_CONTROL_ID. 
Set ASSIGN LFSID.SM PROCESS ID to this LU's identifier. 
Set ASSIGN=LFSID.PROCESS_ID=TYPE to SM. 
Send ASSIGN_LFSID to ASM. 

Receive ASSIGN_LFSID_RSP from ASM. 

page 4-84 
page 4-90 
page A-25 
page A-26 
page 4-89 
T2.l Node Reference ----

If ASSIGN LFSID RSP.SENSE CODE is not X'OOOOOOOO' then !ASM couldn't assign LFSIDl 
Set LOCAL.SENSE CODE to-ASSIGN LFSID RSP.SENSE CODE. 

Else !LFSID is ;ssignedJ - -
Set LULU CB.LFSID to ASSIGN LFSID RSP.LFSID. 
Create this half-session's proces;, 
Call RESERVE_CONSTANT_BUFFERS!LULU_CBJ to adjust the permanent 
buffer pool, and to get a demand buffer for the UNBIND 
( page 4-84 J • 

Destroy ASSIGN_LFSID_RSP record. 

Chapter 4. LU Session Manager 4-73 



PROCESS_ABEND_NOTIFICATION 

PROCESS_ABEND_NOTIFICATION 

FUNCTION: Process an abend notification record from a child process IRM or HS). 

If HS abends, the FSM is called to clean up the session for the HS lif that 
session still exists). 

If RM abends, the FSM is called once for each active or pending-active session 
known to SM, to clean up all of themJ after that, SM itself abencls. 

INPUT: ABENO_NOTIFICATION record 

OUTPUT: None 

Referenced procedures, FSMs, and data structures: 
LOCAL 
LULU_CB 
FSM_STATUS 
ABEND_NOTIFICATION 

Select based on ABEND_NOTIFICATION.ABENDING_PROCESS parameter: 
Hhen RM_PROCESS_VARIABLE IRM process abendsl 

For each active and pending session 
li.e., for each LULU CB in LOCAL.LULU CB LIST) 

Call FSM_STATUSIABEND_NOTIFICATION: LULU_CBl (page 4-86). 

Hhen HS_PROCESS_VARIABLE IHS process abendsl 

page 4-89 
page 4-90 
page 4-86 
page A-25 

Determine which LU-LU session is to be terminated by searching through 
the LOCAL.LULU CB LIST control block list for an LULU CB with a half-session 
identifier IHS:IDl matching that of the half-session identifier in the 
ABENO NOTIFICATION record IABEND NOTIFICATION.PROCESS IOJ. 

If the-LULU CB is located then - -
Call FSM:STATUSIABEND_NOTIFICATION, LULU_CBl (page 4-86). 

PROCESS_ABORT_HS 

FUNCTION: Process an ABORT_HS record received from LU-LU half-session. 

If the ABORT_HS record points to a known session, call the FSM to perform the 
session deactivation. Otherwise IABORT_HS does not correlate to any session), 
ABORT_HS is ignored. This situation can occur when SM has.already destroyed 
HS, but ABORT_HS is still waiting on the queue. 

INPUT: ABORT_HS record 

OUTPUT: None 

NOTE: A half-session cannot send ABORT_HS until it is initialized. 

Referenced procedures, FSMs, and data structures: 
FSM_STATUS 
LOCAL 
ABORT_HS 
LULU_CB 

page 4-86 
page 4-89 
page A-9 
page 4-90 

Determine which LU-LU session is being aborted by searching through the 
LOCAL.LULU_CB_LIST control block list for an LULU_CB with a half-session 
identifier IHS_IDl matching that of the half-session that sent the ABORT_HS 
record IABORT_HS.HS_IOJ. 

If the LULU_CB is located then 
Call FSM_STATUSIABORT_HS, LULU_CBl (page 4-86). 

4-74 SNA LU 6.2 Reference: Peer Protocols 

c 



c I ) 

c 

c 

0 

PROCESS_ACTIVATE_SESSION 

PROCESS_ACTIVATE_SESSION 

FUNCTION: Process an ACTIVATE_SESSION record received from RM. That includes checking 
for a session limit to be exceeded !since RM does not know whether the session 
limit is exceeded when it sends ACTIVATE_SESSION to SM), creating and initial­
izing of the LULU_CB control block, getting an FQPCID for the session from SS, 
and sending an INIT_SIGNAL record to SS. 

INPUT: ACTIVATE_SESSION record 

OUTPUT: LULU_CB created and initialized, ACTIVATE_SESSION record and LULU_CB passed 
to the FSM 

Referenced procedures, FSMs, and data structures: 
LU_MODE_SESSION_LIMIT_EXCEEDED 
BUILD_AND_SEND_ACT_SESS_RSP_NEG 
INITIALIZE_LULU_CB_ACT_SESS 
GET_FQPCID 
FSM_STATUS 
ACTIVATE_SESSION 
PARTNER_ LU 
MODE 
LULU_CB 
SS 

page 4-7Z 
page 4-58 
page 4-70 
page 4-70 
page 4-86 
page A-ZO 
page A-Z 
page A-3 
page 4-90 
TZ.l Node Reference 

Locate the PARTNER_LU and MODE control blocks using the LU_NAME and MODE_NAME from 
the passed ACTIVATE_SESSION record. 

If LU_MODE_SESSION_LIMIT_EXCEEDEDIPARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE, 
ACTIVATE SESSION.SESSION TYPE, 
state_co~ditionlAT_LEAST=INIT_SENT)) then (page 4-7Z). 

IThe number of active and pending-active sessions is already 
equal to the limit set for this [partner LU, model pair) 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGIACTIVATE_SESSION.CORRELATOR, RETRY) 
(page 4-58). 

Else la session limit is not exceeded) 
Create an LU-LU control block (LULU CB) and initialize its fields. 
Call GET_FQPCIDILULU_CB) (page 4-70J~ 
get FQPCID and save in LULU_CB. 

Call INITIALIZE_LULU_CB_ACT_SESSIACTIVATE_SESSION, LULU_CBJ 
lpage 4-70). 

Call FSM_STATUSIACTIVATE_SESSION, LULU_CB) (page 4-86). 

Chapter 4. LU Session Manager 4-75 



PROCESS_BIND_RQ 

PROCESS_BIND_RQ 

FUNCTION: Check BIND for semantic and state errors, create a half-session process, 
reserve required buffers. If no errors occur, build and send a +RSPIBINDJ, 
update and save active session parameters, and initialize the half-session. 

INPUT: MU record containing BIND 

Before passing a BIND to SH, the address space manager checks that the length 
of the BIND RU corresponds to the lengths of all fields in the BIND. If not, 
the BIND is rejected with the appropriate sense data. ASH also checks that 
the total length of the Structured User Data subfields field in the BIND cor­
responds to the lengths of the individual subfields, that the lengths of the 
NS PLU and SLU Name fields do not exceed 17 bytes, the length of the URC field 
does not exceed 12 bytes, the length of the data portion of the FQPCID control 
vector is between 9 and 26 bytes, and that at least one control vector is 
present in the BIND if the Control Vector Included indicator in the BIND is 
set to 1. 

OUTPUT: If an error is found, an UNBIND or a -RSPIBINDJ is sent to ASH; if no error 
is found, LULU_CB is created and initialized, the half-session process is cre­
ated and initialized, the appropriate buffers are reserved, the SESSION_TYPE 
and SESSION_ID parameters in LULU_CB are updated as a result of the BIND nego­
tiation, and a +RSPIBIND) is sent to ASH. 

Referenced procedures, FSMs, and data structures: 
BIND_RQ_STATE_ERROR 
INITIALIZE_LULU_CB_BIND 
RESERVE_VARIABLE_BUFFERS 
RESERVE_CONSTANT_BUFFERS 
CLEANUP_LU_LU_SESSION 
BUILD_AND_SEND_INIT_HS 
BUILD_AND_SEND_UNBIND_RQ 
BUILD_BIND_RSP_POS 
BUILD_AND_SEND_BIND_RSP_NEG 
FSM_STATUS 
LOCAL 
MU 
BIND_RQ_RCV" see MU 
MU_NEH, see MU 
LULU_CB 
PARTNER_ LU 
ASM 

Check BIND request for semantic errors and if an error exists, 
set LOCAL.SENSE_CODE to the sense.data reflecting the error. 
Semantic errors are field content errors (e.g., a field does not 
contain an allowable value). These errors are state-independent. 

Call BIND_RQ_STATE_ERRORIHUJ lpage 4-52) 
to check for state errors. If an error is found, LOCAL.SENSE_CODE 
contains the sense data indicating the type of error. 

If no errors are found then 
Set PARTNER_LU.ACTIVE_SESSION_PARAMETERS.PARALLEL_SESSIONS = 

BIND_RQ_RCV.PARALLEL_SESSIONS. 
Create an LULU CB control block and initialize its fields. 
Call INITIALIZE_LULU_CB_BINDIMU, LULU_CB) (page 4-71). 
Create LU-LU half-session with unique identifier I save identifier in 

LULU CB. HS ID ). 
Call BUILD~BIND_RSP_POSIMU, LULU_CB, MU_NEH_PTR) (page 4-67). 

page 4-52 
page 4-71 
page 4-84 
page 4-84 
page 4-67 
page 4-61 
page 4-65 
page 4-67 
page 4-60 
page 4-86 
page 4-89 
page A-29 
page A-29 
page A-29 
page 4-90 
page A-2 
T2.l Node Reference 

Call RESERVE_CONSTANT_BUFFERSILULU_CBJ to adjust the permanent buffer pool 
and to get a demand buffer for an UNBIND !page 4-84). 

If buffers were gotten then 
Call RESERVE_VARIABLE_BUFFERSILULU_CB, BIND_RQ_RCVJ 

to reserve pacing buffers for the session (page 4-84). 
If all buffers were gotten then 

Save a negotiated 8-byte session identifier in LULU_CB.SESSION_ID. 
Call BUILD_AND_SEND_INIT_HSILULU_CB, first 26 bytes of negotiated BIND image) 

I page 4-61 J. 

4-76 SNA LU 6.2 Reference: Peer Protocols 

c: 

c~ 



cl 

If no errors are found during the BIND processing and all required buffers 
are available then 

Send MU_NEH containing a positive RSPIBINDJ to ASM. 
Call FSM_STATUSIMU_NEH, LULU_CBJ (page 4-86). 

Else I there are errors, session will not be brought upJ 
If the FQPCID control vector is present in the BIND then 

Call BUILD_AND_SEND_UNBIND_RQIMU, CLEANUP type, LOCAL.SENSE_CODEJ 
( page 4-65 ) • 

Else IFQPCID is not present in BIND or 
errors in BIND do not allow checking whether it is present or notl 

If a demand buffer was gotten for the RSPIBINDJ then 
Call buffer managerlFREE_BUFFER, buffer address) to free 

the demand buffer !Appendix BJ. 
Call BUILD_AND_SEND_BIND_RSP_NEGIMUJ lpage 4-60). 

If LULU_CB control block was created for the session then 
Call CLEANUP_LU_LU_SESSIONCLULU_CBJ !page 4-67). 

PROCESS_BIND_RQ 

Chapter 4. LU Session Manager 4-77 



PROCESS_BIND_RSP 

4-78 

PROCESS_BIND_RSP 

FUNCTION: Check if the received RSPCBIND) correlates with the previously sent BIND. If 
it does, delete pending random data used in LU-LU verification for the session 
Cif present) and after additional processing lin case of a positive response) 
call the FSM. If it does not correlate, the RSPCBIND) is considered to be a 
stray one and is ignored Cno action taken). 

INPUT: MU record containing the RSPCBIND) 

OUTPUT: If the RSPCBIND) correlates and LU-LU verification is active for the session, 
the corresponding random data needed for the verification is removed from the 
list of pending random data. 

Referenced procedures, FSMs, and data structures: 
CORRELATE_BIND_RSP 
RESERVE_VARIABLE_BUFFERS 
BIND_RSP_STATE_ERROR 
BUILD_AND_SEND_INIT_HS 
FSM_STATUS 
LOCAL 
LULU_CB 
MU 
BIND_RSP_RCV, see MU 
PARTNER_ LU 

Call CORRELATE_BIND_RSPCMU) Cpage 4-681. 
to check whether a RSPCBIND) correlates to an outstanding BIND. 

If it correlates then 
Set PARTNER_LU.ACTIVE_SESSION_PARAMETERS.PARALLEL_SESSIONS = 

BIND RSP RCV.PARALLEL SESSIONS. 
Remov; an-entry from the list of pending random data, if the random data 
for this session is there. 

If the RSPCBINDJ is positive and no length errors were found while 
correlating it to a previously sent BIND then 

Check RSPCBIND) for semantic errors and if an error exists, 
set LOCAL.SENSE_CODE with the sense data reflecting error. 
Semantic errors are field content errors (e.g., a field does not 
contain an allowable value). These errors are state-independent. 

Call BIND_RSP_STATE_ERRORCHU, LULU_CB) Cpage 4-54) 
to check for state errors. If an error is found, LOCAL.SENSE_CODE 
contains the sense data indicating the type of error. 

If no errors were found then 
Call RESERVE_VARIABLE_BUFFERSCLULU_CB, BIND_RSP_RCVJ to reserve 
buffers for this session Cpage 4-841. 

page 4-68 
page 4-84 
page 4-54 
page 4-61 
page 4-86 
page 4-89 
page 4-90 
page A-29 
page A-29 
page A-2 

Call BUILD_AND_SEND_INIT_HSCLULU_CB, first 26 bytes of negotiated BIND image) 
C page 4-61 J. 

Call FSH_STATUSCMUCRSPCBIND)), LULU_CB) (page 4-86). 

SNA LU 6.2 Reference: 'Peer Protocols 

(--, 

""'--



() 

PROCESS_CINIT_SIGNAL 

PROCESS_CINIT_SIGNAL 

FUNCTION: Process a received CINIT_SIGNAL record. First, this signal must be correlated 
with a previously sent INIT_SIGNAL record. The correlation is based on the 
value of FQPCID. If the correlation fails, the session has already been 
brought down by RH and a SESSEND_SIGNAL record is built and sent to SS. 

Otherwise (i.e., CINIT_SIGNAL is correlated to a pending-active session), the 
session count is checked, the link buffer size is checked to be sufficiently 
large, LULU_CB is initialized with the additional parameters received in the 
CINIT_SIGNAL record, LFSID is obtained, the half-session process is created, 
and the buffers for the session are reserved. If no errors are found, the 
BIND is sent. 

INPUT: CINIT_SIGNAL record 

OUTPUT: LULU_CB updated, SESSEND_SIGNAL sent if the CINIT SIGNAL record could not be 
correlated to a previously sent INIT_SIGNAL, a BIND sent if no errors are 
found 

NOTE: Some of the buffers for the session cannot be obtained before the RSPIBINDJ is 
received because the lengths of these buffers depend upon the negotiated RU 
sizes and window sizes I see Figure 4-10 on page 4-32). 

Referenced procedures, FSHs, and data structures: 
BUILO_AND_SEND_BIND_RQ 
LU_HODE_SESSION_LIHIT_EXCEEDED 
PREPARE_TO_SEND_BIND 
FSH_STATUS 
CINIT_SIGNAL 
INIT_SIGNAL 
PARTNER_ LU 
HOOE 
LULU_CB 
LOCAL 
SESSEND_SIGNAL 
SS 

Try to correlate CINIT SIGNAL to a previously sent INIT_SIGNAL 
using the FQPCID para;eter. 

If a CINIT SIGNAL does not correlate with any outstanding INIT_SIGNAL then 
Create ; SESSEND SIGNAL record. 

page 4-59 
page 4-72 
page 4-73 
page 4-86 
page A-23 
page A-23 
page A-2 
page A-3 
page 4-90 
page 4-89 
page A-24 
T2.l Node Reference ----

Set SESSEND SIGNAL.SENSE CODE to X'OOOOOOOO' (sense data is immaterial in this case). 
Set SESSEND-SIGNAL.FQPCID to CINIT SIGNAL.FQPCID. 
Set SESSEND=SIGNAL.PATH_CONTROL_ID-to CINIT_SIGNAL.PATH_CONTROL_ID. 
Send a SESSEND_SIGNAL record to SS. 

Chapter 4. LU Session Hanager 4-79 



( 

PROCESS_CINIT_SIGNAL 

Else (CINIT_SIGNAL correlated, a pending session is identified) 
Call LU_MODE_SESSION_LIHIT_EXCEEDEDIPARTNER_LU.FULLY_QUALIFIED_LU_NAHE, MODE, 

LULU_CB.SESSION_TVPE, 
state_condition(AT_LEAST_BIND_SENTll lpage 4-72) 
to check whether session limit is exceeded. Count only active sessions and those 
pending-active sessions where BIND has already been sent. If error 
is found, the called routine sets LOCAL.SENSE_CODE. 
IBIND has a priority over CINIT_SIGNAL, which, in turn, has a priority over 
ACTIVATE_SESSION.l 

Check whether the link buffer size is sufficiently large 
to satisfy the lower bound value for the RU sizes 
specified in the MODE control block. 

Check if an active session already exists with this partner, 
and that the partner supports parallel sessions. If error is 
found, set LOCAL.SENSE_CODE to X'08050000'. 

If no errors were discovered when the above checks were made then 
Call PREPARE_TO_SEND_BINDILULU_CB) lpage 4-73) 
to initialize additional fields in LULU CB, 
obtain LFSID, create a half-session p~ss, 
and get buffers (see Note). 

If all is ready to send a BIND I i.e., no errors found) then 
Call BUILD_AND_SEND_BIND_R~ILULU_CBl (page 4-59), 

Call the FSH whether or not an error was found while processing a cor­
related CINIT_SIGNAL record. The FSH will take appropriate action 
depending upon whether or not LOCAL.SENSE_CODE is set to X'OOOOOOOO'. 

Call FSH_STATUSICINIT_SIGNAL, LULU_CBl (page 4-86). 

PROCESS_DEACTIVATE_SESSION 

FUNCTION: 

INPUT: 

OUTPUT: 

Process· a DEACTIVATE_SESSION record received from RH. 

DEACTIVATE_SESSION record 

If the DEACTIVATE SESSION record points to a known session, call the FSH to 
deactivated that ;ession. 

C.·· 
/ 

'------------------------------------------------------------------------------------------'(..,--'• 
Referenced procedures, FSHs, and data structures: 

FSH_STATUS 
DEACTIVATE_ SESSION 
LULU_CB 

If RH is deactivating a pending-active session IDEACTIVATE_SESSION.STATUS = 
PENDING) then 

page 4-86 
page A-21 
page 4-90 

Attempt to locate the LU-LU half-session control block ILULU_CBl using the 
DEACTIVATE_SESSION.CORRELATOR field. 

Else IRH is deactivating an active session--from its perspective) 
Attempt to locate the LU-LU half-session control block ILULU_CBl using the 

DEACTIVATE_SESSION.HS_ID field. 

If an LULU CB has been located then 
Call FSH_STATUSIDEACTIVATE_SESSION, LULU_CB) lpage 4-86). 

4-80 SNA LU 6.2 Reference: Peer Protocols 

\_ ___ 

C\ 
·' 

···" 



C-----
1 

/ 

() 

PROCESS_INIT_HS_RSP 

PROCESS_INIT_HS_RSP 

FUNCTION: Process an INIT_HS_RSP record received from a half-session. 

INPUT: INIT_HS_RSP record 

OUTPUT: If the INIT HS RSP record points to a known session, call the FSM to complete 
the session-activation 

Referenced procedures, FSMs, and data structures: 
FSM_STATUS 
INIT_HS_RSP 
LULU_CB 

Attempt to locate the LU-LU half-session control block (LULU CBJ associated 

page 4-86 
page A-10 
page 4-90 

with the half-session that sent the INIT HS RSP. Search the list of LULU CBs 
for one with a half-session identifier IHS_IDJ matching that of the half-;ession 
the INIT HS RSP was received from. 

If an LULU_CB is located then 
Call FSM_STATUSIINIT_HS_RSP, LULU_CBJ (page 4-861. 

PROCESS_INIT_SIGNAL_NEG_RSP 

FUNCTION: Process a received INIT_SIGNAL_NEG_RSP record from the SS component of the 
control point. 

INPUT: 

OUTPUT: 

If an outstanding request to activate a session that corresponds to this 
record from SS is found, call FSM in order to terminate it. 

INIT_SIGNAL_NEG_RSP record 

If an outstanding request to activate a session can be found that correlates 
·with the INIT_SIGNAL_NEG_RSP record, call the FSM to terminate the session. 

Referenced procedures, FSMs, and data structures: 
FSM_STATUS 
INIT_SIGNAL_NEG_RSP 
INIT_SIGNAL 
LULU_CB 
SS 

page 4-86 
page A-23 
page A-23 
page 4-90 
T2.l Node Reference ----

Attempt to correlate the INIT SIGNAL NEG RSP with a sent INIT_SIGNAL. 
Search for an LULU_CB control-block ;her; LULU_CB.FQPCID INIT_SIGNAL_NEG RSP.FQPCID. 

If the received record is correlated successfully then 
Call FSM_STATUSIINIT_SIGNAL_NEG_RSP, LULU_CBJ lpage 4-861. 

Chapter 4. LU Session Manager 4-81 



PROCESS_LFSID_IN_USE 

PROCESS_LFSID_IN_USE 

FUNCTION: Process a received LFSID_IN_USE record. This record is sent to SM by ASH so 
that ASH will know whether a given ILFSID, PATH_CONTROL_IDJ pair is currently 
in use. ASH must know before it sends a BIND to an appropriate LU. If the 
pair is in use, ASH will hold the BIND in order to avoid certain race condi­
tions. 

INPUT: LFSID_IN_USE record 

OUTPUT: LFSID_IN_USE_RSP record to ASH 

Referenced procedures, FSMs, and data structures: 
page A-26 
page A-25 

LFSID_IN_USE 
LFSID_IN_USE_RSP 
ASH T2.1 Node Reference --------

Find an active or pending-active session with a given ILFSID, PATH_CONTROL_IDJ pair. 

Create an LFSID IN USE RSP record. 
Set LFSID_IN_USE_RSP.PATH_CONTROL_ID to LFSID_IN_USE.PATH_CONTROL_ID. 
Set LFSID_IN_USE_RSP.LFSID to LFSID_IN_USE.LFSID. 

If a session with a given ILFSID, PATH_CONTROL_IDJ pair was found then 
Set LFSID IN USE RSP.ANSHER to YES. 

Else - - -
Set LFSID_IN_USE_RSP.ANSHER to NO. 

Send the LFSID_IN_USE_RSP record to ASH. 

PROCESS_MU 

FUNCTION: Process an MU record. 

INPUT: MU containing BIND, RSP I BIND J , or UNBIND 

OUTPUT: MU is forwarded to the appropriate procedure. If the buffer holding the MU is 
not reused by SM, the buffer is freed. 

Referenced procedures, FSMs, and data structures: 
PROCESS_BIND_RQ 
PROCESS_BIND_RSP 
PROCESS_UNBIND_RQ 
MU 

Select based on MU.HEADER_TYPE 
Hhen BIND_RQ_RCV 

Call PROCESS_BIND_RQIMUJ lpage 4-76J. 
Hhen BIND_RSP_RCV 

Call PROCESS_BIND_RSPIMUJ (page 4-78). 
lfien UNBIND_RQ_RCV 

Call PROCESS_UNBIND_RQIMUJ lpage 4-83). 

If buffer holding the MU was not reused while processed then 
Call buffer managerlFREE_BUFFER, MU pointer) to free the MU buffer. 

4-82 SNA LU 6.2 Reference: Peer Protocols 

page 4-76 
page 4-78 
page 4-83 
page A-29 

c 



0 

c 

0 

0 

PROCESS_SESSION_ROUTE_INOP 

PROCESS_SESSION_ROUTE_INOP 

FUNCTION: Process a SESSION_ROUTE_INOP record received from ASH. 

INPUT: SESSION_ROUTE_INOP record 

OUTPUT: The FSM is called for each session using the path control that has failed. 

Referenced procedures, FSMs, and data structures: 
FSM_STATUS 
SESSION_ROUTE_INOP 
LULU_CB 

page 4-86 
page A-24 
page 4-90 

Reset all LU-LU sessions that are using the path control process that failed. 
This is done by locating all the LU-LU session control blocks ILULU CBsl 
that have a path control identifier IPC_IOl matching that of the path 
control process that failed. For each LULU_CB located, 
Call FSM_STATUSISESSION_ROUTE_INOP, LULU_CBl !page 4-861 
to reset that session. 

PROCESS_UNBINO_RQ 

FUNCTION: Process a received UNBIND. SM always receives the entire UNBIND MU, since the 
PIU is not longer than 99 bytes and thus no reassembly by the ASH is needed. 
If a received UNBIND correlates to one of the active or pending-active ses­
sions, the FSM is called to clean up the session. 

INPUT: MU record containing UNBIND 

OUTPUT: Hhether or not UNBIND correlates, a RSPIUNBINDl is sent. 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_UNBIND_RSP 
CORRELATE_UNBIND_RQ 
FSM_STATUS 
MU 
UNBIND_RQ_RCV, see MU 
LULU_CB 

Call CORRELATE_UNBIND_RQIMUl !page 4-691. 
to check whether an UNBIND correlates with an existing session. 

Call BUILD_AND_SEND_UNBIND_RSPIMUl !page 4-66) to send 
a RSPIUNBINDl regardless of whether UNBIND correlated or not. 
A negative response will be sent if UNBIND was received as an EXR 

or contained length errors. 
Otherwise, +RSPIUNBINDJ will be sent. 

If UNBIND correlated to an active or pending-active session then 
Call FSM_STATUSIMUIUNBIND_R~RCVJ, LULU_CB) 

!page 4-86) to terminate that session. 

page 4-66 
page 4-69 
page 4-86 
page A-29 
page A-29 
page 4-90 

Chapter 4. LU Session Manager 4-83 



RESERVE_CONSTANT_BUFFERS 

RESERVE_CONSTANT_BUFFERS 
/~---­

..-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~( 

FUNCTION: Increment the size of the permanent buffer pool. Get a demand buffer for an 
UNBIND. 

INPUT: LULU_CB control block 

OUTPUT: The buffers are reserved. 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
LOCAL 

Call buffer managerlADJUST_BUF_POOL, permanent buffer pool ID, change 
to adjust I increase) the number of buffers in the permanent buffer 
pool. Change amount is set to 1, which means that the size is 
incremented by a value determined by the buffer manager 
(Appendix B). 

If additional buffers are available then 
Set LULU CB.PERM POOL ADJUSTED UP to YES. 
Call buffer managerlGET_BUFFER~ demand, buffer size, no wait) 

to get a demand buffer to build an UNBIND. Buffer size is set 
to the maximum size of an UNBIND RU plus length of MU overhead 
I Appendix B) . 

If one of the buffer requests was unsuccessful then 
Set LOCAL.SENSE_CODE to X'0812000D' I insufficient buffers exist 

to activate a session). 
Return. 

RESERVE_VARIABLE_BUFFERS 

FUNCTION: Reserve a dynamic buffer pool, and a limited buffer pool. 

INPUT: LULU_CB, bind image !either BIND_RQ_RCV or BIND_RSP_RCVJ 

OUTPUT: Reserve pacing buffers for the session. 

Referenced procedures, FSMs, and data structures: 
MU 
BIND_RQ_RCV, see MU 
BIND_RSP_RCV, see MU 
LULU_CB 
LOCAL 

4-84 SNA LU 6.2 Reference: Peer Protocols 

page 4-90 
page 4-89 

page A-29 
page A-29 
page A-29 
page 4-90 
page 4-89 

~-



r; 
~/ 

C-, 
/ 

0 

u 

c 

RESERVE_VARIABLE_BUFFERS 

If BIND RSP RCV.ADAPTIVE PACING = SUPPORTED then 
Call-buffer managerCCREATE_BUF_POOL, varying dynamic, pool owner, 
capacity of pool, buffer size, initial number of buffers) to reserve 
the dynamic buffer pool for the receive pacing buffers. Pool owner 
is set to LULU_CB.HS_ID, capacity of pool and buffer size are set to 
the negotiated values from the BIND, dynamic pool ID is returned 
by the buffer manager !Appendix Bl. 

If buffers were reserved then 

Else 

Call buffer managerCCREATE_BUF_POOL, limited, pool owner, capacity 
of pool, buffer size) to reserve the limited buffer pool for 
the send pacing buffers. Pool owner is set to LULU_CB.HS_ID, 
capacity of pool and buffer size are set to the negotiated 
values from the BIND, limited pool ID is returned by the buffer 
manager !Appendix BJ. 

Call buffer managerCCREATE_BUF_POOL, fixed dynamic, pool owner, 
capacity of pool, buffer size) to reserve the dynamic buffer pool 
for the receive pacing buffers. Pool owner is set to LULU_CB.HS_ID, 
capacity of pool and buffer size are set to the negotiated values 
from the BIND, dynamic pool ID is returned by the buffer manager 
!Appendix BJ. 

If buffers were reserved then 
Call buffer managerCCREATE_BUF_POOL, limited, pool owner, capacity 
of pool, buffer size) to reserve the limited buffer pool for the 
send pacing buffers. Pool owner is set to LULU_CB.HS_ID, capacity 
of pool and buffer size are set to the negotiated values from the 
BIND, limited pool ID is returned by the buffer manager 
(Appendix Bl. 

If any of the buffer requests were unsuccessful then 
Set LOCAL.SENSE CODE to X'0812000D' !insufficient buffers exist to 
activate sessi~nJ. 

UNRESERVE_BUFFERS 

FUNCTION: Unreserve (i.e., releases previously reserved buffers) appropriate buffers for 
the session 

INPUT: LULU_CB, permanent buffer pool ID 

OUTPUT: Buffers are unreserved 

If the size of the permanent buffer pool was increased when this 
session was activated then 

Call buffer managerCADJUST_BUF_POOL, permanent buffer pool ID, change 
amount) to reduce the number of buffers in the permanent buffer pool. Set 
change amount to the value (negative) the permanent buffer pool was 
increased by when this session was activated (Appendix Bl. 

If a demand buffer for UNBIND was previously reserved then 
Call buffer manager!FREE_BUFFER, UNBIND buffer address) to free the 

demand buffer gotten for the UNBIND !Appendix BJ. 

The limited buffer pool, and the dynamic buffer pool, will be destroyed 
when the owning HS is destroyed. 

Chapter 4. LU Session Hanager 4-85 



Fstt_STATUS 

Fstt_STATUS 

FUNCTION: 

INPUT: 

OUTPUT: 

NOTE: 

This Fstt maintains the state of an LU-LU session from initiation through ter­
mination. State name abbreviations and their meanings are as follows: 

• RESET = reset 
• PEND CINIT = pending receipt of CINIT_SIGNAL record 
• PEND BIND RSP = pending receipt of a RSPIBINDJ 
• PEND INIT HS RSP PLU = pending receipt of INIT_HS_RSP when this LU is a 

PLU 
• PEND INIT HS RSP SLU = pending receipt of INIT_HS_RSP when this LU is an 

SLU 
• ACTIVE = active 

The record to be processed and the LU-LU half-session control block !LULU CBJ. 
These inputs denote RUs, interprocess records li.e., from HS, RH, ss, or ASH 
[sea Appendix A]J, results of earlier sense data settings !OK, if 
LOCAL.SENSE_CODE was set to OOOOOOOOJ NG, otherwise), and session roles CPLU 
or SLUJ of the local LU. 

The output depends upon the state of the FSH and upon the type of the input 
record. LULU_CB can be updated. An HU can be created and sent to ASH. See 
particular output code for the details. 

Error type is "retry" if LOCAL.SENSE_CODE has one of the following sense data 
values Ian asterisk means any hexadecimal digit allowed): 

• 0801**** 
• 0805**** 
• 0812**** 
• 0837**** 
• 0839**** 
• 0842*-* 
• 0845**** 
• 0848**** 
• 0856**** 
• 0857**** 
• 8001**** 
• 8002**** 
• 8003**** 
• 8013**00 
• 8013**03 
• 8013**04 
• 8013**05 
• 8013**06 

For any other value of LOCAL.SENSE_CODE error type is "no retry." 

4-86 SNA LU 6.2 Reference: P-r Protocols 

c 

\_ __ j 

c 



Referenced procedures, FSHs, and data structures: 
CLEANUP_LU_LU_SESSION 
BUILD_AND_SEND_UNBIND_RQ 
BUILD_AND_SEND_INIT_SIG 
BUILD_AND_SEND_ACT_SESS_RSP_NEG 
BUILD_AND_SEND_PC_HS_DISCONNECT 
BUILD_AND_SEND_SESSST_SIG 
BUILD_AND_SEND_SESS_ACTIVATED 
BUILD_AND_SEND_FREE_LFSID 
BUILD_AND_SEND_SESS_DEACTIVATED 
BUILD_AND_SEND_ACT_SESS_RSP_POS 
LULU_CB 
LOCAL 
ACTIVATE_SESSION 
DEACTIVATE_ SESSION 
ABORT_HS 
INIT_HS_RSP 
ABEND_NOTIFICATION 
MU 
BIND_RQ_RCV, see MU 
BIND_RSP_RCV, see MU 
UNBIND_RQ_RCV, see MU 
UNBIND_RSP_RCV, see MU 

page 4-67 
page 4-65 
page 4-61 
page 4-58 
page 4-6Z 
page 4-65 
page 4-63 
page 4-60 
page 4-64 
page 4-58 
page 4-90 
page 4-89 
page A-ZO 
page A-Zl 
page A-9 
page A-10 
page A-ZS 
page A-Z9 
page A-Z9 
page A-Z9 
page A-Z9 
page A-Z9 

FSH_STATUS 

All MUs sent from this FSM will be in the MU_NEH buffer to distinguish 
them from the MU, which may contain the input signal and will be freed 
after the processing is done. 

MU_NEH, see MU 

INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL 
SESSION_ROUTE_INOP 

STATE NAMES----> 

INPUTS STATE NUMBERS--> 

ACTIVATE_SESSION 

INIT_SIGNAL_NEG_RSP 
CINIT_SIGNAL,OK 
CINIT_SIGNAL,NG 

+RSPI BIND J ,OK 
+RSPI BIND J ,NG 
-RSPIBINDJ 

BIND 

+INIT_HS_RSP 
-INIT_HS_RSP 

DEACTIVATE_SESSION 
UNBIND 
SESSION_ROUTE_INOP 
ABORT_HS 

RM_ABEND 
HS_ABEND 

OUTPUT FUNCTION 
CODE 

RESET PEND 
CINIT 

01 oz 

ZA / 

/ 18 
/ 3 
/ lL 

/ / 
/ / 
/ / 

5 / 

/ / 
/ / 

/ lC 
/ / 
/ / 
/ / 

/ IC 
/ / 

A Call BUILD_AND_SEND_INIT_SIGILULU_CBJ 

PEND PEND 
BIND !NIT 
RSP HS 

RSP 
PLU 

03 04 

/ / 

/ / 
/ / 
/ / 

4 / 
lR / 
lE / 

/ / 

/ 65 
/ lH 

lP lP 
lG lG 
lK lK 
/ lU 

ID ID 
IT IT 

I page 4-6I J. 

page A-Z9 

page A-Z3 
page A-Z3 
page A-Z4 

PEND ACTIVE 
!NIT 
HS 
RSP 
SLU 
05 06 

/ / 

/ / 
/ / 
/ / 

/ / 
/ / 
/ / 

/ / 

6J / 
lN / 

/ lP 
lC lI 
lC IM 
lV lQ 

ID lD 
ID IF 

Chapter 4. LU Session Manager 4-87 



FSH_STATUS 

B Determine the error type by examining the sense data in the INIT_SIGNAL_NEG_RSP 
record ( see Note ) • 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type) 
(page 4-58). 

Call CLEANUP_LU_LU_SESSIONCLULU_CBl I page 4-67). 

c Call CLEANUP_LU_LU_SESSIONILULU_CBl !page 4-67). 

D Call BUILD_AND_SEND_UNBIND_RQCMU_NEH, CLEANUP, X'081Z0000') 
( page 4-65 ) • 

Call CLEANUP_LU_LU_SESSIONILULU_CBl I page 4-67 I. 

E Call BUILD_AND_SEND_PC_HS_DISCONNECTCLULU_CBI !page 4-6Zl. 
Determine the error type by examining the sense data in the RSPCBIND l 
record lsee Note). 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, error type) 
I page 4-58). 

Call CLEANUP_LU_LU_SESSIONILULU_CBl I page 4-6 7). 

F Call BUILD_AND_SEND_UNBIND_RQCHU_NEH, CLEANUP, X'081ZOOOO'I 
I page 4-65 I . 

Call BUILD_AND_SEND_SESS_DEACTIVATEDILULU_CB.HS_ID, ABNORMAL_RETRY, X'081Z0000') ( 

I page 4-641. \. _____ .· 
Call CLEANUP_LU_LU_SESSIONILULU_CBI I page 4-6 7 ). 

G Determine the error type by examining the sense data in the UNBIND 
record (see Note). 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type) 
(page 4-58). 

Call CLEANUP_LU_LU_SESSIONILULU_CBI I page 4-67 I. 

H Call BUILD_AND_SEND_UNBIND_RQCMU_NEH, FORMAT_OR_PROTOCOL_ERROR, 
INIT_HS_RSP.SENSE_CODEI !page 4-651. 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, NO_RETRYI 
I page 4-581. 

Call CLEANUP_LU_LU_SESSIONILULU_CBI !page 4-671. 

I Determine the reason for session deactivation. If the UNBIND type is Normal or 
BIND Forthcoming, the reason is NORMAL. If the UNBIND type is Invalid Session 
Parameters, or LU Failure Unrecoverable, or Format or Protocol Error, 
the reason is ABNORMAL NO RETRY. 
For all other UNBIND type;, the reason is ABNORMAL_RETRY. 

Call BUILD_AND_SEND_SESS_DEACTIVATEDILULU_CB.HS_ID, REASON, 
sense data from UNBIND) (page 4-64). 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ I page 4-6 7). 

J Call BUILD_AND_SEND_SESSST_SIGILULU_CBI !page 4-651. 
Call BUILD_AND_SEND_SESS_ACTIVATEDILULU_CBI lpage 4-631. 

K Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, RETRY l 
lpage 4-581. 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ (page 4-67). 

L If LFSID for the session was received but the session activation stopped 
because of an error then 

Call BUILD_AND_SEND_FREE_LFSIDILULU_CB) (page 4-60). 
IThis is the only place where 
it has to be done by sending a FREE_LFSID record to ASH. 
If a BIND has already been sent then an instruction to free LFSID goes 
to ASM on an UNBIND or a RSPCUNBINDJ MU header. l 

Determine the error type by examining the sense data that describes 
the condition that prevents session activation (see Note). 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, error type) 
I page 4-58). 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ (page 4-67). 

H Call BUILD_AND_SEND_SESS_DEACTIVATEDILULU_CB.HS_ID, ABNORMAL_RETRY, X'800ZOOOO') 
I page 4-64 ) • 

Call CLEANUP _LU_LU_SESSIONI LULU_CB l !page 4-67). I 
~ 

4-88 SNA LU 6.2 Reference: Peer Protocols 



FSM_STATUS 

N Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, FORMAT_OR_PROTOCOL_ERROR, 
INIT_HS_RSP.SENSE_CODEJ I page 4-65 J. 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ I page 4-67 J. 
(_) 

p Determine an UNBIND type based on the DEACTIVATE_SESSION.TYPE parameter. 
UNBIND type is NORMAL, CLEANUP, or FORMAT_OR_PROTOCOL_ERROR when 
DEACTIVATE_SESSION.TYPE is NORMAL, CLEANUP, or ABNORMAL; correspondingly. 
Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, UNBIND type, DEACTIVATE_SESSION.SENSE_CODEJ 

I page 4-65 J • 
Call CLEANUP_LU_LU_SESSIONILULU_CBJ (page 4-67). 

Q Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, FORMAT_OR_PROTOCOL_ERROR, 
ABORT_HS.SENSE_CODEJ !page 4-65). 

Call BUILD_AND_SEND_SESS_DEACTIVATEDILULU_CB.HS_ID, ABNORMAL_NO_RETRY, 
ABORT_HS.SENSE_CODEJ (page 4-64). 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ ( page 4-6 7 J. 

R Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, INVALID_PARMS, LOCAL.SENSE_CODEJ 
lpage 4-65, LOCAL.SENSE_CODE describes the error 
that was discovered while processing the RSPIBINDJJ. 

Determine the error type based on LOCAL.SENSE_CODElsee Note!. 
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, error type) 

(page 4-58 J. 
Call CLEANUP_LU_LU_SESSIONILULU_CBJ !page 4-671. 

s Call BUILD_AND_SEND_ACT_SESS_RSP_POSILULU_CBJ (page 4-581. 

T Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, CLEANUP, X'08120000' J 
I page 4-65 l . 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, RETRY J 
(page 4-58). 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ (page 4-671. 

C--
i 

_/ 

u Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, FORMAT_OR_PROTOCOL_ERROR, 
ABORT_HS.SENSE_CODEJ lpage 4-65). 

Determine the error type by examining the sense data in the ABORT_HS 
record I see Note!. 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, error type) 
I page 4-58 J. 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ I page 4-6 7J • 

v Call BUILD_AND_SEND_UNBIND_RQIMU_NEH, FORMAT_OR_PROTOCOL_ERROR, 
ABORT_HS.SENSE_CODEJ !page 4-65). 

Call CLEANUP_LU_LU_SESSIONILULU_CBJ I page 4-6 7 J. 

,,,---- . 
~/-LOCAL DATA STRUCTURES 

LOCAL 

LOCAL I this control block is accessible by any procedure in SMJ 
LULU_CB_LIST list of LU-LU half-session control blocks (page 4-90) 
SENSE_CODE I this field is set with a sense data value whenever an error is found! 
LU_ID ISM process IDJ 
PLUNAME 

NAMElprimary LU name) 

Chapter 4. LU Session Manager 4-89 



LULU_CB 

LULU_CB 

The LU-LU session control block is used by session manager CSHl to keep information about 
an LU-LU session. One LULU_CB exists for each LU-LU session. 

LULU_CB 

The following fields are always set to the correct value when the 
LULU_CB is created and initialized !independent of what caused it to 
be created). 

LOCAL PARTNER LU NAME: locally known name for the partner LU 
FQ_PARTNER_LU_NAME: partner LU's network qualified name 
MODENAME: mode name for this LU-LU session 
HALF_SESSION_TYPE: possible values: PRI, SEC 
SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER 

CORRELATOR field is set when an ACTIVATE SESSION !from RM) causes the 
creation of the LULU CB. It is used- by RM to correlate ACTI­
VATE_SESSION_RSP to ACTIVATE_SESSION. 

CORRELATOR 

PATH_CONTROL_ID: path control ID for this session 
LFSID: local address for this session 
TRANSMISSION_PRIORITY: this session's transmission priority 

HS_ID 

HS_ID~this field contains the process identifier for the 
half-session process I HS). Hhen the half-session process does 
exist, this field is set to a null value. 

FQPCID: this session's Fully Qualified PCID control vector 
PC_CHARACTERISTICS: see page A-32 
SESSION ID: session instance identifier 
PERM POOL ADJUSTED UP: indicates whether the permanent buffer 
pool was-adjusted-for this HS. 

PERM_POOL_ID: permanent buffer pool ID. 
DEM_LIM_POOL_ID: limited buffer pool ID. 
DYNAMIC_POOL_ID: dynamic buffer pool ID. 

LU-LU 
not 

SENT BIND RQ fields are set when a BIND request is sent. A copy of 
the ;ent BIND RU is saved because it is needed to perform error check­
ing on the received RSPCBINDl. 

SENT BIND RQ 
sNF: TH sequence number of sent BIND !used to correlate RSPIBINDl 
BIND_RQ_RU: saved BIND RU 

RAND OH 

RANDOM holds the random data used for LU-LU verification sent 
partner LU in BIND or RSPIBINDl, and the random data received 
RSPCBIND l. 

to a 
in a 

4-90 SNA LU 6.2 Reference: Peer Protocols 



c/ CHAPTER 5.0. OVERVIEW OF PRESENTATION SERVICES 

GENERAL DESCRIPTION 

Presentation services I PS l is the component 
of the LU with which transaction programs 
interact directly. Each execution instance 
of a transaction program at the LU is served 
by its own PS process. This PS process is 
responsible for processing the transaction 
program's requests for LU services. The 
transaction program requests these services 
by issuing verbs. 

The verbs, along with their supplied lby the 
user l and returned I by the LU l parameters, 
are fully described in SNA Transaction Pro­
grammer's Reference Manual for LU Type 6. 2, 
which defines both the servl'Ces that theLU 
provides and a syntax for transaction program 
requests for those services. The basic serv­
ices are SNA-defined and are provided by all 
LU implementations, but the syntax of 
requests for the services within individual 
implementations are implementation-defined. 

The services requested by verbs usually 
involve communication over a conversation 
with a transaction program at a remote LU. 
The supplied parameters of a verb therefore 
usually include an identifier of the conver­
sation for which the verb is being issued. 
The data exchanged by conversing transaction 
programs is carried on a session assigned to 
the conversation. 

PS interacts with various other LU compo­
nents. The LU resources manager IRMl creates 
PS after rece1v1ng an Attach or START_TP 
record. In addition, RM assigns the 
half-sessions to PS for conversation traffic, 
and destroys PS after PS informs RM lvia the 
TERMINATE PS record) that the PS instance can 
be destroyed. To carry out transaction pro­
gram verb requests, PS exchanges data with 
the half-session that RM has previously 
assigned for conversation traffic. PS also 
interacts with the transaction program; in 
this book, the transaction program and PS are 
modeled within the same process, which may 
not be the case in actual implementations. 
The PS instance is driven by the verbs issued 
by the transaction program ITPJ. 

Throughout the PS chapters, a number of ref­
erences are made to LU 6.2 verbs, and LU 6.2 
verb parameters. See SNA Transaction Program­
mer's Reference Manual for LU Type 6. 2 for 
detailed information abou:r-the verbs and verb 
parameters. 

PS COMPONENT FUNCTIONS 

Figure 5.0-1 on page 5.0-2 shows the compo­
nents of PS. PS. INITIALIZE loads and calls 
the TP. The TP then issues verbs, which are 
processed by the other PS components. The TP 
ends by returning to PS.INITIALIZE. The 
functions and interactions of the PS compo­
nents are further described below. 

TP: 

• Interacts directly with local end users 
and resources. 

• Requests LU services (for interaction 
with remote respurcesl by issuing verbs. 

PS. INITIALIZE: 

• Receives program initialization parame-
ters IPIP data l. 

• Loads and calls the TP. 
• Instructs RM I after the TP completes and 

returns) to destroy this PS process. 

PS.VERB_ROUTER: 

• Checks every verb for compatibility with 
the type of the conversation on which it 
was issued. 

• Routes valid verb-issuances to the appro­
priate verb-processing component. 

PS.MC, PS.SPS, ... , PS.COPR: 

• Process non-basic verbs that request 
optional special services I these compo­
nents and their associated services are 
described 1n separate chapters of this 
bookl. 

• Translate non-basic verbs into basic 
verbs. 

PS.CONV: 

• Processes basic conversation verbs. 
• Checks each basic conversation verb for 

compatibility with the state of the con­
versation on which it was issued. 

• Performs lin co-operation with, or at the 
request of, other verb-processing compo­
nents) all basic conversation services. 

All the components of the PS process I includ­
ing the transaction program execution 
instance) interact synchronously I using 
call/return logic J. PS may exehange informa­
tion with other LU components by means of 

Chapter 5.0. Overview of Presentation Services 5.0-1 



I 
............................... · ............... : .................... · ............................... · 1 
• • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • Transact ion Program •••••••••.••••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
~--------------------·,~----------------------------' 

A 

•••••••••••• 1 •••••••••••••••••••••••••••• 1 •••••••••••••••••••••••••••••••• r- - - - - - - - -, ... . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 
•••••••••••• 1 .•.••••••••••••••••••••••••. v ................................ v ................... 1 •... 

. ::::l J:::1:::: 
• • . . PS.VERB_ROUTER ••..•.• 
• • • • • •• 1 •... . . . . . . . . . ..... . 

PS.INITIALIZE 

~------~ 

.••..• 1 •.••••••••••.••.• 1 ..••••..•••..••••• 1 ••••.•••.•••••••.•• 1 •.••••••• 1 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . ... 
••.••• 1 .••..••.....•..•• 1 ••.....•...••••.•. 1 ..•.•..•••..•...•.. 1 .••...••. 1 ..•• 

•••••• 1 ••••••••••••••••• v .................. v ................... v ......... 1 •••• 
...... ........... r--------. 
. . . . . . I .......... . 
...... 1 .•••.•..... . . . . . . . ......... . PS.MC2 

...... 1 .••••••.••• 

. . . . . . I .......... . 

...--------. ...... . 

PS.SPS3 • • • PS.COPR4 

• •. 1 .... 

. .. 1 •••• 

. .• 1 .... 

. . . . . . . 
• •. 1 .•.. 

. . . . . . . .......... '----·- ..... .___. ·-. . . . .. . 

. . . . . . I .................. I ................. I ................... I ......... I ... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

...... 1 ....•.........•••• 1. ................ L - - - - - - - - - .L _ - - - J •••• 

. . . . . . v ....•••........... v .........................•...........•.............. 

::::1································································1:::::::: . . . . . . • . . • • • • • • • • • . • • . . . . . • • PS.CONV 1 • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . 
•••...••.•.. A .••.•....•..•.• A .•.••••••••.••.. A .••.•••.•.•..••• A •.•••.••••.•••••••.•.•••••••••...... 

: : : : : : : : : : : : : : : : : : : : : I : : : : : ! : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : '.:~~'.~ '.'.~: ~~'.~~: , ~ i: : : 
v v v v 

Resources Manager Half- Half-
Session Session 

l See "Chapter 5.1. Presentation Services--Conversation Verbs" 
2 See "Chapter 5.Z. Presentation Services--Mapped Conversation Verbs" 
3 See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" 
4 See "Chapter 5.4. Presentation Services--Control-Operator Verbs" 

Note: A dashed line denotes a synchronous li.e., a Calli protocol boundary between components, 
while a solid line denotes an asynchronous (i.e., a Sendl protocol boundary. 

Figure 5.0-1. Overview of Presentation Services, Emphasizing PS.INITIALIZE and PS.VERB_ROUTER 

DATA BASE STRUCTURE 

c~ 

asynchronous interprocess communication (us­
ing send/receive logic). 

PS uses several data structures to record C, 
information neeqed to provide services to the 
transaction program. These data structures 
include PS_PROCESS_DATA, the transaction con-

5.0-2 SNA LU 6.2 Reference: Peer Protocols 



(_) 

c/', 

( ·· .•. 

/ 

1 

2 

3 

4 

5 

6 

7 

trol block ITCB), and the resource control 
block list I RCB LIST). This chapter 
describes the use -of these data structures 
by the PS.INITIALIZE and PS.VERB_ROUTER com­
ponents. Use of data structures by other PS 
components is described in detail in the cor­
responding chapters. 

PS_PROCESS_DATA on page 5.0-24 contains data 
that is accessible by all components of the 
PS process. This data includes pointers to 
lists of shared control blocks, and to single 
control blocks describing the local LU and 
this PS process. These pointers are initial­
ized using information contained in the 
PS_CREATE_PARMS data structure passed from RM 
when it creates the PS process, and they 
remain unchanged thereafter. 

The transaction control block ITCB, page A-9) 
contains information speci fie to the trans­
action program instance, such as the list of 
resources allocated to it, the security user 
ID I see SNA Formats for additional informa-

Half-

tion) carried in the Attach, and the security 
profile I see SNA formats for additional 
information) oPTionaUy carried in the 
Attach. The TCB also contains the CONTROL­
LING_COMPONENT field, which is maintained by 
PS.VERB_ROUTER, and records whether the verb 
was issued by the TP or by a verb-processing 
component Ion behalf of the TP). The TCB is 
created by RM when the PS process is created 
and destroyed by RM when the PS process is 
destroyed. 

The resource control block IRCB, page A-6) 
contains information specific to a particular 
resource, such as the state of a conversation 
or the conversation type. One RCB exists for 
each active resource (e.g., for each active 
conversation l. The RCB is created and 
destroyed by RM at the request of PS as part 
of the processing of the ALLOCATE and DEALLO­
CATE verbs. Certain fields of the RCB are 
shared between PS and RM, while other fields 
are used exclusively by PS. 

Session 
Resources 
Manager PS.INITIALIZE 

Transaction 
Program 

Attach 

[ 

[ 

(create PS process) 
o- - - - - - - - - - - ->o 

MU containing FMH-51Attachl 
and, optionally, data 

Call TPIRCB_ID, PIPl, 
0-

(return) 
o<-

DEALLOCATE_RCB 

l o< 0 

RCB_DEALLOCATED 
>o 

TERMINATE_PS 
o< 0 

!destroy PS process) 
0- ------ - - - - ->o 

.... > PIPn l 
->o 

ITP executes) 

-o 

Figure 5.0-2. Attach Initialization and Termination of Presentation Services and Transaction Program 

Chapter 5.0. Overview of Presentation Services 5.0-3 



S.0-4 

INITIALIZATION AND TERMINATION 
I PS. INITIALIZE l 

The PS.INITIALIZE component performs initial­
ization and termination of PS and the TP. 
Initialization occurs in response to receipt 
of an Attach from another LU, or to a locally 
initiated start-up request. These are dis­
cussed individually in the following 
sections. 

Processing~ FMH-51AttachJ Request 

Figure 5.0-2 on page 5.0-3 shows the protocol 
boundary flows that are used by PS.INITIALIZE 
for initialization and termination of the PS 
process when the TP is invoked because of 
receipt of an FMH-51AttachJ. The steps below 
correspond to the numbers in the figure. 

1. Resources manager receives an Attach for 
a transaction program known locally by 
the LU. 

2. RM creates the PS process, passing it 
initialization parameters contained with­
in the PS_CREATE_PARMS I see page A-27 J 
structure, including the LUCB_LIST_PTR, 
the TCB LIST PTR and the RCB LIST PTR. 
These p.;-rameters are used to 'ini ti;lize 
the PS_PROCESS_DATA structure. 

3. PS next receives from RM an FMH-5 IAt­
tachJ, accompanied by the TCB ID of this 
instance of PS, the RCB ID of the initial 
conversation I the conversation on which 
the Attach flowed J, and sense data con­
taining the result of RM's checking of 
the Attach. If the sense data indicates 
no error was found by RM, PS.INITIALIZE 
performs additional checking of the 
Attach. This includes a check of the 

SNA LU 6.2 Reference: Peer Protocols 

4. 

5. 

6. 

7. 

transaction program's support of the con,­
versation type le.g., basic or mapped) (---.,_· 
and program initialization parameters 
IPIP data). If the Attach is valid and ""--~ 
no additional data is contained in the 
MU, PS.INITIALIZE calls the buffer manag-
er to free the MU buffer. If the Attach 
is in error I as determined by RM or 
PS.INITIALIZE) the conversation requested 
in the Attach is terminated. Depending 
on the error detected, the session may be 
deactivated, or the conversation ended 
with DEALLOCATE TYPEIABEND_PROGJ. 

The Attach indicates whether PIP data 
follows. If the Attach is correct, the 
PIP data lif any) is received as a single 
GOS variable, and is then separated into 
a list of individual PIP subfields. This 
flow will occur if PIP data is present 
and the data cannot be contained in the 
MU containing the FMH-51AttachJ. 

An execution instance of the transaction 
program named in the Attach is then cre­
ated. This TP is called with arguments 
of the RCB ID of the initial conversation 
and the list of PIP subfields I if pres­
ent). 
Hhen the TP completes processing 
I normally or abnormally J, it returns to 
PS. INITIALIZE. PS. INITIALIZE terminates 
and deallocates I in an 
implementation-dependent way) the TP's 
remaining active conversations lif any~ 
the list of conversations that are still 
active is found in the RESOURCES LIST of 
the TCBJ. -

Finally, PS.INITIALIZE sends a TERMI­
NATE_PS (see page A-17) record to the 
resources manager and waits to be termi­
nated. On receipt of the TERMINATE_PS 
record, RM destroys the PS process. 

(' 
\ _ _/ 

c 

c 



c .. 

C-, \ 

1 

2 

3 

4 

5 

6 

START_TP 
Sender 

START_TP 

Resources 
Manager PS.INITIALIZE 

Transaction 
Program 

o---------------------->o 

(create PS process) 
o- - - - - - - - - - - ->o 

START_TPCoptional PIP data) 
o---------------------~>o 

Call TPlnull RCB_ID, 
PIPl, PIP2, .•• , PIPn) 

o- - - - - - - - - - - - - ->o 

ITP executes) 

I return) 
o<- - - - - - - - - - - - - -o 

DEALLOCATE_RCB 

0 l 
>o 

RCB_DEALLOCATED 

TERMINATE_PS 
o<--------------------~ 

!destroy PS process) 
o- - - - - - - - - - - ->o 

Figure 5.0-3. START_TP Initialization and Termination of Presentation Services and Transaction 
Program 

Processing ~ START TP request 

Figure 5.0-3 shows the protocol boundary 
flows that are used by PS. INITIALIZE for 
initialization and termination of the PS 
process when the TP is invoked because of 
receipt of a START_TP request. The steps 
below correspond to the numbers in the fig­
ure. 

1. Resources manager receives a START_TP 
request and begins processing the record. 
This processing includes validating the 
START_TP record, and verifying that the 
correct number of PIP parameters have 
been included. 

2. RM creates the PS process, passing it 
initialization parameters contained with­
in the PS CREATE PARMS structure, includ­
ing the LuCB_LIST_PTR, the TCB_LIST_PTR 
and the RCB_LIST_PTR. These parameters 
are used to initialize the 
PS_PROCESS_DATA structure. 

3. PS receives the START TP from RM, accom­
panied by the TCB ID of this instance of 
PS, and sense data containing the result 
of RM' s checking of the START_ TP. All 
checking of the. START_TP is completed in 
the resources managerJ PS does no addi­
tional checking. The START_TP includes 
the PIP data to be passed to the trans­
action program, if any is required. 

4. PS.INITIALIZE creates an execution 
instance of the transaction program named 
in the START_TP record, calls the trans­
action program, and passes the list of 
PIP subfields C if present). 
PS.INITIALIZE passes a null RCB ID to the 
transaction program because the START_TP 
request does not have a conversation 
associated with it. 

5. Hhen the TP completes processing 
C normally or abnormally), it returns to 
PS. INITIALIZE. PS. INITIALIZE terminates 
and deallocates C in an 
implementation-dependent way) the TP's 
remaining active conversations C if anyJ 
the list of conversations that are still 

Chapter 5.0. overview of Presentation Services 5.0-5 



1 

2 

3 

4 

6. 

active is fcn.nd in the RESOURCES_LIST of 
the TCB). 

Finally, 
NATE_PS 

PS.INITIALIZE sends a TERHI­
( see page A-17 J record to the 

resources manager and waits to be termi­
nated. On receipt of the TERMINATE_PS c~'. 
record, RM destroys the PS process. _ 

Any Node 
Process 

Resources 
Manager PS.INITIALIZE 

Transaction 
Program 

Attach or START_TPllJ 

• 
• 
• 

12) 
I 

(n-lJ 

• 
• 
• 

!create PS process[l]) 
o- - - - - - - - - - - ->o 

Attach or START_TP 

Call TPIRCB_ID, PIP data) 0- - - - - - - - - - - - - -~ 
• 
• ITP executes) 

Attach or START_TPlnJ • 

c 
5 >o 

(create PS process[n]J 
6 0------------~ 

7 

Attach !optional PIP dataJ 
o-~~~~~~~~~~--~ 

• Call TPIRCB_ID, PIP dataJ 
o- - - - - - - - - - - - - ->o 

Attach or START_TPln+ll 
o-~~~~~~~~~~-~ !Instance limit reached; 

request queued by 
resources manager) 

• 
• 
• 

ITP executes) 

Figure 5.0-4. Limited-Instance Transaction Program Processing in Resources Manager 

5.0-6 

LIMITED-INSTANCE TP PROCESSING 

Figure 5.0-4 shows the processing that occurs 
in the resources manager for initialization 
of the PS processes when a limited-instance 
TP lone having a limit of n concurrent 
instances) is invoked because of receipt of 
an Attach request. The steps below corre­
spond to the numbers in the figure. 

1. Resources manager receives an Attach or 
START_TP request and begins processing 
the record. 

2. RM creates the PS process, passing it 
initialization parameters contained with­
in the PS CREATE .PARMS structure, includ­
ing the LUCB_LIST_PTR, the TCB_LIST_PTR 
and the RCB_LIST_PTR. These parameters 
are used to initialize the 
PS PROCESS DATA structure. 

SNA LU 6.2 Reference: Peer Protocols 

3. 

4. 

PS receives an Attach or START_TP record 
from RM, accompanied by the TCB ID of 
this instance of PS, and sense data con­
taining the result of RM's checks of the 
Attach or START_TP. PS continues proc­
essing the Attach or START_TP. 

PS.INITIALIZE creates an execution 
instance of the transaction program named 
in the Attach or START_TP record, calls 
the transaction program, and passes the 
list of PIP subfields lif present). 
PS.INITIALIZE calls this TP with the 
appropriate parameters from the Attach or 
START_TP. 

5. Resources manager may receive additional 
Attaches or START_TP records for the same 
transaction program. Processing of addi­
tional requests for the transaction pro- (_~. 
gram will continue until the instance .-- . 
limit n is reached. 



() 

() 

6. RM creates additional instances of PS 
until the instance limit n has been 
reached. PS creates and cafls I similar 
to the processing above) additional 
instance of the transaction program. 

7. RM queues additional requests for a 
transaction program · once the instance 
limit n has been reached. Hhen an exe­
cuting -instance of the transaction pro­
gram completes its processing, resources 
manager initiates the oldest queued 
request. 

VERB PROCESSING IPS.VERB_ROUTER) 

PS.VERB ROUTER routes verbs to the appropri­
ate PS- verb-processing component. It also 
processes type-independent conversation verbs 
such as HAIT and GET_ TYPE . The supplied 
RESOURCE parameter of most verbs identifies 
the conversation for which the verb is being 
issued. The value in the RESOURCE parameter 
matches one in TCB.RESOURCES_LIST, the list 
of resources allocated to the TP. 

PS. VERB ROUTER also maintains the CONTROL­
LING_COMPONENT field of the TCB. The value 
of CONTROLLING COMPONENT is TP if the verb 
has been issu;-d directly by the transaction 
program. The value is SERVICE_COMPONENT if 
the verb has been issued by another PS compo­
nent as part of its verb processing. 

HAIT Verb Processing 

The HAIT verb, unlike most verbs, can be 
issued for multiple conversations in addition 

to being issued for a single conversation. 
It allows a TP to wait until specified condi­
tions are satisfied I "posted") for any of 
several conversations. HAIT processing 
includes: 

• 

• 

• 

Checking that all the resource IDs are 
valid and that at least one resource is 
eligible for posting 

Determining whether a resource is already 
posted land, if one is, returning imme­
diately) 

Awai ting, if no posting condition has 
been satisfied, the arrival of data that 
will cause a resource to be posted 

GET TYPE Verb Processing 

GET_TYPE processing is handled locally in 
PS. VERB ROUTER by copying the conversation 
type from the appropriate RCB into a returned 
parameter of the verb. 

GET TP PROPERTIES Verb Processing 

GET TP PROPERTIES processing is handled 
locally in PS.VERB_ROUTER by copying the 
requested information from the appropriate 
control blocks into the returned parameters 
of the verb. 

Chapter 5.0. Overview of Presentation Services 5.0-7 



HIGH-LEVEL PROCEDURES 

5.0-8 

PS 

FUNCTION: Presentation services IPSl provides verb-processing services to a transaction 
program execution instance ITPl. PS invokes, terminates, and is driven by the 
TP; PS and the TP are parts of the same process. 

INPUT: 

OUTPUT: 

This procedure receives an initialization record IHU or START_TP) from the 
resources manager IRHl and, based on record type, invokes the appropriate pro­
cedure. If the initialization record is valid, PS invokes the transaction 
program named in the record. Hhen the TP returns to PS, PS informs the 
resources manager that the TP has completed lby calling DEALLO­
CATION_CLEANUP _PROCJ, and waits for a subsequent HU or START_TP. 

PS_CREATE_PARHS record, and an MU or START_TP from RH 

Process data is initialized and the appropriate procedure is called to ini­
tialize the transaction program. 

NOTES: 1. If no additional initiation requests for the same TP Cthat just terminated) 
can be passed to a PS instance by RH, RH will destroy the instance upon 
receiving its TERHINATE_PS record. 

2. If no record is present, PS will be suspended until a record is received. 

3. DEALLOCATION CLEANUP PROC sends a TERMINATE PS record to RH, alerting it to 
the termination of its TP and the reusability of this PS instance. 

Referenced procedures, FSHs, and data structures: 
PS_PROCESS_DATA 
DEALLOCATION_CLEANUP_PROC 
PROCESS_FHH5 
PROCESS_START_TP 
LUCB 
MU 
PS_CREATE_PARHS 
START_TP 
TCB 

Establish the PS environment. 

page 5.0-24 
page 5.0-18 
page 5.0-10 
page 5.0-11 
page A-1 
page A-29 
page A-27 
page A-19 
page A-9 

Initialize the fields of PS_PROCESS_DATA with the values contained in PS_CREATE_PARHS and 
LUCB_PTR so it points to the LUCB for this LU I identified by PS_CREATE_PARHS.LU_IDJ, 
TCB_PTR so it points to the TCB for this TP I identified by PS_CREATE_PARHS.TCB_IDl. 

PS_INITIALIZE is imbedded in the root procedure in the PS calling 
tree. 

Do this processing 1.a1til destroyed by RH lsee Note ll. 
Receive record from RH IFHH-5 or START_TP; see Note 2). 
Select based on record from RH: 

Hhen HU 
Call PROCESS_FHH51HU) lpage 5.0-10). 

Hhen START_TP 
Call PROCESS_START_TPISTART_TPJ lpage 5.0-111. 

Call DEALLOCATION_CLEANUP_PROC lpage 5.0-18; see Note 31. 

SNA LU 6.2 Reference: Peer Protocols 



0 

c \ / 

0 

During the processing in this chapter, a number of error conditions 
may be encountered. The following logic executes only if one of the 
detectable errors listed have been recognized. The following error 
condition may be detected: 

• A Camot-Occur condition ( >J that does occur in an FSH 

RM 
ABEND_NOTIFICATION 

Create and initialize an AB~ND_NOTIFICATION record indicating PS abended. 
Send the ABEND_NOTIFICATION record to RH. 

page 3-19 
page A-25 

Chapter 5.0. Overview of Presentation Services 

PS 

5.0-9 



PROCESS_FHHS 

5.0-10 

PROCESS_FHH5 

FUNCTION: This procedure loads and calls an instance of the transaction program named in 
a received FMH-51Attachl. 

INPUT: 

OUTPUT: 

An incoming FHH-51Attachl request is routed to this procedure to initialize 
the transaction program. As shown in SNA Formats, the FMH-51Attach) contains 
the name of the transaction program to ~ invoked and an indicator of whether 
program initialization parameters IPIP datal will accompany the Attach. PROC­
ESS_FMH5 receives the PIP data lif any) from the half-session, and validates 
fields of the FMH-51Attachl. · 

If the FHH-51Attachl is valid, PS invokes the transaction program named in the 
FMH-51 Attach l. 

If the FMH-51AttachJ contains an error, ATTACH_ERROR_PROC is called. 

MU containing an FHH-51Attachl, SENSE_DATA from RH's Attach checks, and possi­
bly PIP data following the Attach 

The attached I loaded) TP is passed the RCB_ID representing the conversation 
between the attached program and the attaching program, and PIP data, if pres­
ent. 

NOTES: 1. If RM finds the Attach invalid, the Attach is accompanied by sense data lin 
the MU_HITH_ATTACHl with one of the following values: 

X'080F6051' 
X'l0086000' 
X'l0086005' 
X'l0086009' 
X'l008600B' 
x' 10086011' 
X'l0086021' 
X'l0086040' 
X'084B6031' 
X'084COOOO' 
X'l0086040' 
X'l0086041' 

Security not valid 
FMH length not correct 
Access Security Information field length invalid 
Invalid parameter length 
Unrecognized FMH comma,nd 
LUH length invalid 
TPN not recognized 
Invalid Attach parameter 
Transaction program not available--retry 
Transaction program not available--no retry 
Sync level not supported by LU 
Sync level not supported by TP 

otherwise, RM's sense data in the MU_HITH_ATTACH = X'OOOOOOOO'. 

2. As an alternative to invoking the transaction program immediately upon receipt 
of the FMH-51AttachJ, PS may optionally await the receipt of data indicating 
end-of-chain before dispatching the transaction program. If the end-of-chain 
indicator cannot be received in a single pacing window, then buffer management 
and pacing would force the TP to be started. Once started, an additional pac­
ing window can be used to send more data. 

Referenced procedures, FSMs, and data structures: 
ATTACH_ERROR_PROC 
INITIALIZE_ATTACHED_RCB 
PS_ATTACH_CHECK 
PS_PIP_CHECKS 
RECEIVE_PIP_FIELD_FROM HS 
UPH_EXECUTE 
TCB 
RCB 
MU_HITH_ATTACH, see MU 
CODE, see SENSE_DATA 

SNA LU 6.2 Reference: Peer Protocols 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

5.0-15 
5.0-20 
5.0-12 
5.0-13 
5.0-12 
S.0-22 
A-9 
A-6 
A-29 
5.0-25 

c 

c 



PROCESS_FHH5 

Set CODE to the Attach check CODE passed up from RH. 

Find the RCB for the conversation identified by the RCB_ID parameter. 
Call INITIALIZE_ATTACHED_RCB(RCB, HU_HITH_ATTACH) !page 5.0-20). 

Put the HU_HITH_ATTACH in the front of the RCB.HS_TO_PS_BUFFER_LIST. 

If CODE indicates a valid Attach then (continue with PS Attach checks) 
Call PS_ATTACH_CHECK(RCB, CODE) lpage 5.0-12). 
If PIP data is expected for the TP then IPIP data follows Attach) 

Call RECEIVE_PIP_FIELD_FROH_HS(RCB, Attach PIP data, CODE) (page 5.0-12). 
Call PS_PIP_CHECKS(Attach PIP data, CODE) !page 5.0-131. 

If CODE indicates a valid Attach then 
Call UPH_EXECUTEITCB.TRANSACTION_PROGRAH_NAHE, RCB.RCB_ID, Attach PIP data) 

(page 5.0-22l see Note 2). 
Else !error with the Attach) 

Call ATTACH_ERROR_PROC(RCB, CODE) !page 5.0-15). 

PROCESS_START_TP 

FUNCTION: This procedure loads and calls an instance of the transaction program named in 
a received START_TP. 

INPUT: 

OUTPUT: 

A START_TP request is routed to this procedure to complete the necessary proc­
essing to initialize the transaction program. The START_TP contains the name 
of the transaction program to be invoked, and any program initialization 
parameters IPI~) data. 

START_TP information and the TCB.TRANSACTION_PROGRAH_NAHE I from 
PS_PROCESS_DATA) 

The TP is passed the PIP data, if present. The START_TP record is destroyed. 

Referenced procedures, FSHs, and data structures: 
UPH_EXECUTE 
START_TP 
TCB 

Save PIP data from START_TP to pass to UPH_EXECUTE. 
Destroy the START_TP record. 

page 5.0-22 
page A-19 
page A-9 

Call UPH_EXECUTEITCB.TRANSACTION_PROGRAH_NAHE, null RCB_ID, saved PIP data) (page 5.0-22). 

Chapter 5.0. Overview of Presentation Services 5.0-11 



RECEIVE_PIP_FIELD_FROM_HS 

RECEIVE_PIP_FIELD_FROH_HS 

5.0-12 

FUNCTION: During invocation of the transaction program, this procedure receives a pro­
gram initialization parameters (PIP dataJ by issuing a RECEIVE_AND_NAIT verb. 
If this verb issuance succeeds in receiving a complete logical record contain­
ing a PIP Data GDS variable, the received PIP field is returned. If it 
fails, a protocol violation has been committed by the partner LU} the session 
is deactivated and the transaction program is not invoked. 

INPUT: 

OUTPUT: 

NOTE: 

The RCB for the TP's initial conversation, the PIP Data GDS variable from the 
half-session, and the current status of the Attach processing contained in 
CODE 

PIP data and the value of CODE indicating if a protocol error has occurred 

This error occurs if the partner indicates in the Attach that PIP data fol­
lows, but no data follows, or the data that follows is not PIP data, or the 
PIP data field was truncated. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_AND_TEST_POSTING 
RCB 
CODE, see SENSE_DATA 

Create, initialize, and issue a RECEIVE AND HAIT on this conversation with: 
RECEIVE AND HAIT.POST CONDITIONS.FILL ;et to LL. 
RECEIVE=AND=HAIT.POST=CONDITIONS.MAX_LENGTH set to X'7FFF'. 

page 5.1-50 
page A-6 
page 5.0-25 

Call RECEIVE_AND_TEST_POSTING(RCB, RECEIVE_AND_HAIT verb parameters) (page 5.1-SOJ to 
get the PIP data to pass to the TP. 

If the DATA parameter of the RECEIVE_AND_HAIT verb contains the complete PIP data 
(see SNA Formats for formatJ then 

Return the Attach· PIP data. 
Else I Error with PIP data~ see Note) 

Set CODE to X'l008201D'. 

PS_ATTACH_CHECK 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure validates additional fields of the received Attach. These 
additional checks are performed only if the Attach checks in RM did not detect 
an error. 

Attach information (from RMJ, the current value of CODE IX'OOOOOOOO'J, and 
program initialization parameter IPIPJ data from HS. 

CODE remains x•oooooooo• if no invalid fields are foundJ otherwise> the appro­
priate sense data. If all the data is exhausted from the MU containing the 
Attach, this procedure calls the buffer manager to free the MU buffer. 

Referenced procedures, FSMs, and data structures: 
RCB 
TCB 
MU 
CODE, see SENSE_DATA 

SNA LU 6.2 Reference: Peer Protocols 

page A-6 
page A-9 
page A-29 
page 5.0-25 

c 

~ 

\ __ _/ 

c. 



PS_ATTACH_CHECK 

Get the first MU from the RCB.HS_TO_PS_BUFFER_LIST. 
Set the TRANSACTION_PROGRAM_NAME. to the entry in the TCB that is indicated on the Attach. 
Select, in order, based on the following conditions lof Attach fields): 

Errors that cause the session to be deactivated 

Hhen the Logical Unit of Hork Identifier fields are incorrectly specified 
(see SNA formats for proper formatJ 

Set-CODE to X'l0086011'. 

Errors that cause an FMH-7 to be generated 

Hhen the transaction program does not support the conversation type !Basic or Mapped) 
specified in the Attach 

Set CODE to X'l0086034'. 

Otherwise lno problems detected). 
Do nothing. 

All data in the MU has been processed, so free the MU buffer. 

If all the data in the MU has been processed then 
Save the type field lend-of-chain type) from the HU buffer. 
Call buffer manager IFREE_BUFFER, buffer address). 

PS_PIP_CHECKS 

FUNCTION: This procedure checks if PIP data was required with the Attach and whether the 
number of PIP parameters expected matches the number sent, or if PIP data was 
sent and should not have been sent. If a previous error was detected with the 
Attach ICODE ~= X'OOOOOOOO' ), that value is returned and the PIP checks are 
not performed. 

INPUT: 

OUTPUT: 

The received PIP data and the current value of code 

If the current value of CODE is not X'OOOOOOOO', the error code is returned 
without making the PIP checksJ otherwise, the PIP checks are performed with 
CODE remaining X'OOOOOOOO' if no errors are found, or updated to the appropri­
ate sense data in the case of error. 

Referenced procedures, FSHs, and data structures: 
TCB 
TRANSACTION_PROGRAM 
CODE, see SENSE_DATA 

page A-9 
page A-5 
page 5.0-25 

Chapter 5.0. Overview of Presentation Services 5.0-13 



PS_PIP_CHECKS 

5.0-14 

Set the TRANSACTIDN_PROGRAH_NAHE to the entry in the TCB that is indicated an the Attach. 
Select, in order, based an the following conditions: 

Errors that cause the session to be deactivated 

~ CODE indicates a previously detected error 
Keep the value of CODE 1.S1Changed. 

Errors that cause an FMH-7 to be generated 

~ the TP is configured to require checking the nunber of PIP fields 
If TRANSACTION_PROGRAH.NUMBER_OF_PIP_SUBFIELDS is 0 and Attach 
indicates PIP data is present then 

Set CODE to X'l0086031' IPIP not allowed), 
Else (specific nunber of PIP fields expected) 

If TRANSACTION_PROGRAH.NUMBER_OF_PIP_SUBFIELDS differs from the nunber in 
received PIP data, or the Attach indicates PIP data not present then 

Set CODE to X'l0086032' lwrong number of PIP fields). 
Else 

If the format of PIP data is invalid then lsee SNA Formats for format) 
Set CODE to X'l008201D' IPIP format invalid-::pi=otocol violation). 

Hhen the TP is not ·configured to require checking the number of PIP fields 
If the format of PIP data is invalid then (see SNA Formats for format) 

Set CODE to X'l008201D' IPIP format invalid-::pi=otocol violation). 

Otherwise lno problems detected). 
Do nothing. 

SNA LU 6.2 Reference: Peer Protocols 

c· 

(--........ 

'--~--/ 

c 



( ·- ,' 

_., 

C l 
/ 

ATTACH_ERROR_PROC 

ATTACH_ERROR_PROC 

FUNCTION: This procedure handles the processing required when an invalid FMH-5 !Attach) 
is received. 

INPUT: 

Depending upon the type of Attach error (as reflected in the passed SENSE_CODE 
parameter), PS either generates an CFMH-7, CEBJ or causes the session over 
which the Attach fl<>Wed to be deactivated. 

Hhen the Attach contains an error that violates defined protocols, PS sends a 
request to RH indicating that the session is to be deactivated. 

For all other Attach errors, PS first issues a SEND_ERROR record to the 
half-session. PS then creates an FMH-7 error message that contains sense data 
identifying the type of Attach error encountered. END_CONVERSATION_PROC is 
called to instruct RH to terminate the conversation and the PS process. 

The RCS corresponding to the conversation over which the invalid Attach was 
received, and the sense data specifying the type of Attach error 

OUTPUT: The session is deactivated or an FMH-7 
half-session and the conversation is ended. 
and sent with the FMH-7.) 

error message is sent to the 
!Error data is optionally logged 

Referenced procedures, FSHs, and data structures: 
HS 
PS_PROTOCOL_ERROR 
GET_END_CHAIN_FROM_HS 
SEND_ERROR_TO_HS_PROC 
UPH_ATTACH_LOG 
END_CONVERSATION_PROC 
SEND_DATA_BUFFER_MANAGEMENT 
RCB 
MU 
CODE, see SENSE_DATA 

Select based on the value of CODE: 

page 6.0-3 
page 5.0-20 
page 5.1-36 
page 5.1-58 
page 5.0-22 
page 5.1-34 
page 5.1-54 
page A-6 
page A-29 
page 5.0-25 

Hhen X'l008200E', X'l0086000', X'l0086005', X'l0086009', X'l0086011', X'l0086040', 
X'l008201D' !Deactivate the session) 

Call PS_PROTOCOL_ERRORIRCB.HS_ID, CODEJ (page 5.0-20). 
Call END_CONVERSATION_PROCIRCBJ !page 5.1-34). 

Otherwise !Generate an FMH-71 
Call SEND_ERROR_TO_HS_PROCIRCBl !page 5.1-581. 
Call GET_END_CHAIN_FROM_HSCRCBl lpage 5.1-361. 
Select based on the end-of-chain type received: 

Hhen DEALLOCATE FLUSH 
Log the erro; in system error log. 

Hhen DEALLOCATE CONFIRM, CONFIRM, PREPARE TO RCV CONFIRM, PREPARE TO RCV FLUSH 
Call UPM_ATTACH_LOGCCODE, LOG_DATAl lp;ge-5.0:22) to generate log-dat; 
describing the detected Attach error. 

If the log data is non-null then 
Log error in local system error log. 
Put into the send MU an FMH-7 (see SNA Formats for format) indicating that 

log data follows and sense data I from CODE l· 1s included. 
Call SEND_DATA_BUFFER_MANAGEMENTIError log GOS variable, RCBJ !page 5.1-541. 

!See SNA Formats for Error log GOS format.) 
Else -

Put into the SEND MU an FMH-7 lsee SNA Formats for format) indicating that 
no log data follaws and sense data-rfrom CODEl is included. 

Set MU.PS_TO_HS.TYPE to DEALLOCATE_FLUSH and send the MU record to HS. 
Call END_CONVERSATION_PROCIRCBJ (page 5.1-34). 

Chapter 5.0. Overview of Presentation Services 5.0-15 



PS_YERB_ROUTER 

PS_VERB_ROUTER 

5.0-16 

FUNCTION: This procedure receives all verbs issued by the TP and routes them to the 
appropriate PS component Ce.g., basic conversation verbs to PS.CONY, and 
control-operator verbs to PS.COPRJ for processing. 

INPUT: The current transaction program verb 

OUTPUT: The RESOURCE parameter of the verb is checked to see if it is valid before 
proceeding with additional processing. The return code of the TRANS­
ACTION_PROGRAM_VERB may be updated to OK or to indicate a detected error. 
Also, the CONTROLLING_COMPONENT is updated to indicate TP or SERY­
ICE_COMPONENT. Refer to the PS components that are called from this process 
for the specific outputs. 

NOTES: l. As a general rule, basic verbs must be issued on basic conversations. This 
check enforces that ruleJ however, there are some exceptions. Non-basic 
verb-processing components reside above PS.CONY (see Figure 5.0-1 on page 
5.0-2J, and typically issue basic conversation verbs in carrying out the fuic­
tions of non-basic verbs. Hhen the TP issues a mapped conversation verb, 
PS.VERB_ROUTER routes the verb to PS.MC. PS.MC begins processing the verb, 
and then, in general, issues one or more basic conversation verbs, which are 
processed by PS.CONV. As an alternative, for performance reasons, mapped 
verbs can be routed directly to the proper PS.CONY procedure to avoid addi­
tional procedure calls. 

2. If the TP issues a verb that is incompatible with the specified resource, such 
as a mapped conversation verb specifying a basic conversation, the TP has com­
mitted a programming error. PS_VERB_ROUTER informs the TP of the error by 
means of a return code. 

Referenced procedures, FSMs, and data structures: 
PS_CONY 
GET_TP_PROPERTIES_PROC 
HAIT_PROC 
PS_MC 
PS_COPR 
PS_SPS 
RCB 
TCB 

Select based on type of the TP verb issued: 

page 
page 
page 
page 
page 
page 
page 
page 

Verbs Processed by Presentation Services for Conversations 

Hhen ALLOCATE 
Call PS_CONVlverb parameters) Cpage 5.1-lOJ. 

Hhen CONFIRM, CONFIRMED, DEALLOCATE, FLUSH, GET_ATTRIBUTES, POST_ON_RECEIPT, 
PREPARE_TO_RECEIYE, RECEIVE_AND_HAIT, RECEIVE_IMMEDIATE, REQUEST_TD_SEND, 
SEND_DATA, SEND_ERRDR, or TEST 

5.1-10 
5.0-18 
5.0-19 
5.2-20 
5.4-32 
5.3-35 
A-6 
A-9 

If the supplied RESOURCE parameter of the verb identifies a conversation assigned 
to this transaction li.e., occurs in TCB.RESDURCES_LISTJ, then 

Find the RCB for the conversation identified by the supplied RESOURCE parameter. 
If the RCB.CONVERSATION_TVPE is BASIC_CDNYERSATIDN or 

I the RCB.CONVERSATIDN_TYPE is MAPPED_CDNYERSATIDN and 
TCB.CDNTRDLLING_CDMPDNENT is SERVICE_COMPDNENTJ (see Note lJ then 

Call PS_CDNVlverb parameters) lpage 5.1-lOJ. 
Else (see Note 2) 

Set the RETURN_CDDE of the verb to PRDGRAM_PARAMETER_CHECK. 

SNA LU 6.2 Reference: Peer Protocols 

C' _ _/ 



c 

() 

0 

Verbs Processed by Presentation Services for Mapped Conversations 

Hhen MC ALLOCATE 
Call-PS_MC(verb parameters) lpage 5.2-20). 

Hhen MC_CONFIRM, MC_CONFIRMED, MC_DEALLOCATE, MC_FLUSH, MC_GET_ATTRIBUTES, 
MC_POST_ON_RECEIPT, MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_HAIT, 
MC_REQUEST_TO_SEND, MC_SEND_DATA, MC_SEND_ERROR, or MC_TEST 

If the verb's supplied RESOURCE parameter identifies a conversation assigned 
to this transaction li.e., occurs on TCB.RESOURCES LISTJ, then 

Find the RCB for the conversation identified by RESOURCE. 
If RCS.CONVERSATION TYPE is MAPPED CONVERSATION, 

then (it should be~ because this ~erb is a mapped verb) 
Set TCB.CONTROLLING COMPONENT to SERVICE COMPONENT. 
Call PS_MClverb par;meters) lpage 5.2-20). 
Set TCB.CONTROLLING_COMPONENT back to TP. 

Else (see Note 2) 
Set the RETURN_CODE of the verb to PROGRAM_PARAMETER_CHECK. 

Else 
Set the RETURN_CODE of the verb to PROGRAM_PARAMETER_CHECK. 

Verbs Processed by Presentation Services for the Control Operator 

PS_VERB_ROUTER 

Hhen INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, RESET_SESSION_LIMIT, SET_LUCB, 
SET_PARTNER_LU, SET_MODE, SET_MODE_OPTION, SET_TRANSACTION_PROGRAM, 
SET_PRIVILEGED_FUNCTION, SET_RESOURCE_SUPPORTED, SET_SYNC_LEVEL_SUPPORTED, 
SET_MC_FUNCTION_SUPPORTED_TP, GET_LUCB, GET_PARTNER_LU, GET_MODE, GET_LU_OPTION, 
GET_MODE_OPTION, GET_TRANSACTION_PROGRAM, GET_PRIVILEGED_FUNCTION, GET_RESOURCE_SUPPORTED, 
GET_SYNC_LEVEL_SUPPORTED, GET_MC_FUNCTION_SUPPORTED_LU, GET_MC_FUNCTION_SUPPORTED_TP, 
LIST_PARTNER_LU, LIST_MODE, LIST_LU_OPTION, LIST_MODE_OPTION, LIST_TRANSACTION_PROGRAM, 
LIST_PRIVILEGED_FUNCTION, LIST_RESOURCE_SUPPORTED, LIST_SYNC_LEVEL_SUPPORTED, 
LIST_MC_FUNCTION_SUPPORTED_LU, LIST_MC_FUNCTION_SUPPORTED_TP, PROCESS_SESSION_LIMIT, 
ACTIVATE SESSION, or DEACTIVATE SESSION 

Set TCB.CONTROLLING COMPONENT-to SERVICE COMPONENT. 
Call PS_COPRlverb p;rametersl (page 5.4-32J. 
Set TCB.CONTROLLING_COMPONENT back to TP. 

Type-Independent Conversation Verbs 

Hhen SYNCPT or BACKOUT 
Set TCB.CONTROLLING_COMPONENT to SERVICE_COMPONENT. 
Call PS_SPS (page 5.3-35). 
Set TCB.CONTROLLING_COMPONENT to TP. 

Hhen GET TP PROPERTIES 
Call GET=TP_PROPERTIES_PROC(verb parameters) (page 5.0-18). 

Hhen GET TYPE 
Set the RETURN CODE of the GET TYPE verb to OK. 
If the verb's ;upplied RESOURCE parameter identifies a conversation 
assigned to this transaction then 

Find the RCB for the conversation identified by RESOURCE. 
Copy RCB.CONVERSATION_TYPE into the verb's returned TYPE parameter. 

Else 
Set the RETURN_CODE of the GET_TYPE verb to PROGRAM_PARAMETER_CHECK. 

Hhen HAIT 
Set TCB.CONTROLLING_COMPONENT to SERVICE_COMPONENT. 
Call HAIT_PROClverb parameters) (page 5.0-19). 
Set TCB.CONTROLLING_COMPONENT back to TP. 

Chapter 5.0. Overview of Presentation Services 5.0-17 



DEALLOCATION_CLEANUP_PROC 

5.0-18 

DEALLOCATION_CLEANUP_PROC 

.-----------------.( __ , 

FUNCTION: This procedure, which manages the destruction of this process, is invoked 
after the TP has ended. It calls UPM RETURN PROCESSING on page 5.0-23 to 
deallocate the process's remaining conve~sation;, and sends DEALLOCATE_RCB to 
RM to get rid of RCBs and any other resources allocated to the process. 
Finally, it sends a TERMINATE_PS record to RM. 

INPUT: 

OUTPUT: 

TCB.RESOURCES_LIST (from PS_PROCESS_DATAl 

DEALLOCATE_RCB and TERMINATE_PS to RM 

Referenced procedures, FSMs, and data structures: 
RM 
UPM_RETURN_PROCESSING 
FSM_CONVERSATION 
TCB 
RCB 
TERMINATE_PS 

Oo for each RCB ID on the TCB.RESOURCES_LIST. 
Find the RCB for the conversation identified in the RCB ID parameter. 
If the state of FSM_CONVERSATION is not RESET or is not END_CONV then 

Call UPM_RETURN_PROCESSINGIRCB IDJ lpage 5.0-23). 

Send a TERMINATE_PS record to RM. 

GET_TP_PROPERTIES_PROC 

page 3-19 
page 5.0-23 
page 5.1-65 
page A-9 
page A-6 
page A-17 

~ 

(~ 
.-------------------------------------------------. •--.~/ 

FUNCTION: This procedure handles requests for information about a transaction program. 

Information about the transaction program is retrieved from the appropriate 
control blocks and placed in the returned parameters of the GET_TP_PROPERTIES 
verb. 

INPUT: The TCB, LUCB I from PS_PROCESS_DATAJ, and the GET_TP_PROPERTIES verb 

OUTPUT: GET_TP_PROPERTIES verb's returned parameters containing information about the 
transaction program I~ 

L--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---1'~--

Referenced procedures, FSMs, and data structures: 
LUCB 
TCB 

Set the GET_TP_PROPERTIES returned parameters as follows: 
OHN_TP_NAME to TCB.TRANSACTION_PROGRAM_NAME, 
OHN_TP_INSTANCE to TCB.TCB_ID, 
OHN_FULLY_QUALIFIED_LU_NAME to LUCB.FULLY_QUALIFIED_LU_NAME, 
SECURITY_PROFILE to TCB.INITIATING_SECURITY.PROFILE, 
SECURITY USER ID to TCB.INITIATING SECURITY.USERID, 
the RETURN_COOE of the GET_TP_PROPERTIES verb to OK. 

SNA LU 6.2 Reference: Peer Protocols 

page A-1 
page A-9 



(
·•·· 

/ 

c 

() 

HAIT_PROC 

HAIT_PROC 

FUNCTION: This procedure processes HAIT verbs. First, it validates the resources speci­
fied in the verb's RESOURCE_LIST parameter. Hhile checking this list, this 
procedure creates a sublist of it called TEMP_RESOURCE_LIST. This sublist 
contains only those resources from RESOURCE_LIST that are currently activated 
for posting. Activated for posting means the TP has· issued a POST_ON_RECEIPT 
on the conversation (or resource) and the posting has not been satisfied. <If 
none of the resources specified in the supplied RESOURCE_LIST parameter is 
activated for posting, this procedure sets the RETURN_CODE field of the HAIT 
to POSTING_NOT_ACTIVE.l 

After creating the TEMP_RESOURCE_LIST, this procedure next checks to see if 
any of the resources in the list have already been posted. If none of the 
resources has been posted, this procedure waits for one of the resources to 
become posted. 

INPUT: HAIT verb parameters, incoming conversation data 

OUTPUT: The verb's returned parameters are set as follows. RETURN_CODE indicates 
whether the HAIT completed successfully. If the verb completed successfully, 
RESOURCE_POSTED indicates which resource has been posted. 

Referenced procedures, FSMs, and data structures: 
TEST_FOR_RESOURCE_POSTED 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
TCB 
RCB 

Check that all resources in the supplied RESOURCE_LIST parameter are validly 
allocated to this transaction program (i.e., occur in TCB.RESOURCES_LISTJ, 
and that at least one of them has posting active. 

If any resource is invalid then 

page 5.0-21 
page 5.1-51 
page A-9 
page A-6 

Set the RETURN CODE of the HAIT verb to PROGRAM PARAMETER CHECK, and return. 
If no resource ha; been activated for posting then- -

Set the RETURN_CODE of the HAIT verb to POSTING_NOT_ACTIVE, and return. 

At this point I since all resources are valid and one or more have 
"posting active"), it is safe to wait for a resource to become posted. 
If some resource is already posted, there is no need to wait. 

For each resource that has posting active, 
Call TEST_FOR_RESOURCE_POSTED!RCB, RC) (page 5.0-21) 
If the returned RC is not UNSUCCESSFUL then 

Set the RETURN_CODE of the HAIT verb to RC, and return. 

Since no active resource is posted yet, wait until one is. 

Initialize RC to UNSUCCESSFUL. 
Do Hhile RC remains UNSUCCESSFUL. 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDS!TEMP_RESOURCE_LIST containing list of RCB_IDsl 
(see FUNCTION above for details~ page 5.1-51). 

Set RCB to the RCB for the conversation on which the data has arrived. 
Call TEST_FOR_RESOURCE_POSTED!RCB, RCJ (page 5.0-21). 

Set the returned RESOURCE_POSTED parameter to RCB.RCB_ID. 
Set the RETURN_CODE of the HAIT verb to the returned value RC. 

Chapter 5.0. Overview of Presentation Services 5.0-19 



LOH-LEVEL PROCEDURES c 

5.0-20 

PS_PROTOCOL_ERROR 

FUNCTION: This procedure processes receive error conditions that require the session to 
be deactivated. 

INPUT: 

OUTPUT: 

An UNBIND PROTOCOL ERROR record is sent to the resources manager to request 
deactivation of th; session that committed the protocol violation. 

The HS ID for the half-session that committed the protocol violation, the 
TCB_ID I from PS_PROCESS_DATAl, and the sense data to be sent on the UNBIND 

UNBIND_PROTOCOL_ERROR Ito RM) with the TCB ID for this PS process and the 
input HS ID and sense data 

Referenced procedures, FSMs, and data structures: 
RM 
PS_PROCESS_DATA 
HS_ID 
SENSE_CODE, see SENSE_DATA 
UNBIND_PROTOCOL_ERROR 

Initialize an UNBIND PROTOCOL ERROR record lpage A-171 
with this TCB ID, HS ID, and-SENSE CODE. 

Send the UNBIND_PROTOCOL_ERROR to RM. 

INITIALIZE_ATTACHED_RCB 

page 3-19 
page 5.0-24 
page 3-91 
page 5.0-25 
page A-17 

FUNCTION: This procedure initializes the PS.CONY specific fields in the RCB for the 
resource specified in the received Attach. The shared fields in the RCB are ,~ 
initialized by RM. 

INPUT: 

OUTPUT: 

This procedure is invoked when RM forwards Attach information to PS. 

RCB of the conversation and Attach information I received from RM) 

The PS.CONY specific fields in the specified RCB are initialized. RM initial­
izes all the shared data in the RCB. The states of FSM CONVERSATION, 
FSH_POST, and FSM_ERROR_OR_FAILURE are initialized to the prope; states. The 
receive buffer, HS_TO~PS_BUFFER_LIST of the RCB, is purged. If the conversa­
tion is MAPPED, the MAPPED fields of the RCB are initialized. 

Referenced procedures, FSHs, and data structures: 
RCB page A-6 

SNA LU 6.2 Reference: Peer Protocols 

c 



(~ ... 
j 

() 

() 

INITIALIZE_ATTACHED_RCB 

Initialize the RCB fields as follows: 
CONVERSATION TYPE to the TYPE value in the Attach, 
LIMITED BUFFER POOL ID to the ID value in the Attach, 
PERMANENT BUFFER POOL ID to the ID value in the Attach, 
SEND RU SIZE to the SIZE value in the Attach, 
POST-CONDITIONS.FILL to LL, 
POST-CONDITIONS.MAX LENGTH to O, 
LOCKS to SHORT, -
Rll_TO_SEND_RCVD to NO. 
Purge the receive buffer IRCB.HS_TO_PS_BUFFER_LISTJ. 

Initialize the states of the FSMs as follows: 
FSM CONVERSATION to RCV, 
FSM=ERROR_OR_FAILURE to NO_REQUESTS, 
FSM_POST to RESET. 

If RCB.CONVERSATION_TYPE is MAPPED CONVERSATION then 
Purge the MAPPED receive buffer-IRCB.MC_RECEIVE_BUFFERJ. 
Initialize the RCB fields as follows: 

MC_Rll_TO_SEND_RCVD to NO, 
MAPPER_SAVE_AREA to an implementation-defined value, 
MC_MAX_SEND_SIZE according to a implementation-defined algorithm. 

TEST_FOR7 RESOURCE_POSTED 

FUNCTION: This procedure determines if the resource corresponding to the passed RCB has 
been posted. Depending on the type of conversation indicated by the RCB, this 
procedure issues either a TEST ITEST =POSTED! or an MC_TEST (TEST= POSTED) 
verb, which is processed by PS. CONV I "Chapter 5 .1. Presentation Serv­
ices--Conversation Verbs") or PS.MC ("Chapter 5.2. Presentation Serv­
ices--Mapped Conversation Verbs"), respectively. The RETURN_CODE field in the 
returned verb indicates whether posting has occurred for the specified conver­
sation. 

INPUT: 'The entry in the RCB_LIST corresponding to the resource for which this proce­
dure is to determine if posting has occurred 

OUTPUT: The return code returned for the issued TEST or MC_TEST verb 

Referenced procedures, FSMs, and data structures: 
TEST_PROC 
MC_TEST_PROC 
RCB 

Select based on RCB.CONVERSATION_TYPE: 
Hhen basic 

Create TEST record and initialize as follows: 
RESOURCE is RCB.RCB_ID, TEST is POSTED. 

Call TEST_PROCITEST verb parameters) (page 5.1-26) to test posting. 
Hhen mapped 

Create MC_TEST record and initialize as follows: 

page 5.1-26 
page 5.2-28 
page A-6 

RESOURCE is RCB.RCB ID, TEST is POSTED. 
Call MC_TEST_PROC(MC=TEST verb parameters) (page 5.2-28) to test posting. 

Return to the caller the RETURN_CODE from the TEST or MC_TEST verb. 

Chapter 5. 0. Overview of Presentation Services 5.0-21 



UNDEFINED PROTOCOL MACHINES 

UPM_EXECUTE 

FUNCTION: 

INPUT: 

OUTPUT: 

This UPM loads and executes a transaction program. 

The name of the transaction program, the resource ID Ito be passed to the 
transaction program), and a list of PIP data Ito be passed to the transaction 
program) 

None 

Not defined by SNA 

UPM_ATTACH_LOG 

~~~~~~~~~~~~~~~~---(" 

5.0-22 

FUNCTION: 

INPUT: 

OUTPUT: 

This UPM is invoked upon discovery of an error in an FMH-5 !Attach). It 
returns log data describing the error. This data is logged in the local sys­
tem error log and is sent back to the conversation partner in an Error-Log GOS 
variable accompanying an FMH-7. 

Attach error sense data 

Log data !may be null I 

Not defined by SNA 

SNA LU 6.2 Reference: Peer Protocols 

c 



C··~.· 
/ 

c 

() 

UPH_RETURN_PROCESSING 

UPH_RETURN_PROCESSING 

FUNCTION: 

INPUT: 

OUTPUT: 

This UPH is invoked when a TP ends and returns to PS without having deallo­
cated all its resources. It terminates and deallocates a remaining active 
resource in an implementation-specific way. Two of the many ways in which an 
implementation could do this are to-: 

• Issue DEALLOCATE TYPEIABEND_SVC) for the still-allocated resource. 

• Issue DEALLOCATE TYPEISYNC LEVEL) if the resource is in SEND state and 
data in PS's send buffer is-on a logical record boundary. If the attempt 
to synchronize fails, or the data was not on a logical record boundary, 
then issue DEALLOCATE TYPEIABEND_SVC). 

Regardless of what other actions are taken, this UPH causes FSH_CONVERSATION 
lpage 5.1-65) to enter the reset state. 

The RCB_ID of the still-allocated resource 

See above. 

Not defined by SNA 

Chapter 5.0. Overview of Presentation Services 5.0-23 



LOCAL DATA STRUCTURES ---------

PS_PROCESS_DATA 

PS_PROCESS_DATA is available to all procedures in the presentation services process. The 
structure is initialized by the PS process lpage 5.0-8) and remains uichanged for the 
lifetime of the PS process. 

PS_PROCESS_DATA 
LUCB_LIST_PTR: 
LU_ID: 
LUCB_PTR: 
TCB_LIST_PTR: 
TCB_ID: 
TCB_PTR: 
RCB_LIST_PTR: 

Pointer to the LUCB_LIST 
ID of this PS's LU 
Pointer to the LUCB for this PS's LU 
Pointer to the TCB_LIST 
ID of this PS 
Pointer to the TCB for this PS 
Pointer to the-RCB_LIST of this PS 

TCB_LIST_PTR ,/~ 

.__ ___________________________________________ __.~'--·- / 

TCB_LIST_PTR: Pointer to the list of TCBs for TP-PS processes at this LU . 

.._ ___________________ R_c_s __ LI_s_r ___ P_T_R ______________________ I(~-
RCB_LIST_PTR: Pointer to the RCB_LIST for this TP-PS process. 

LUCB_LIST_PTR 

LUCB_LIST_PTR: Pointer to the list of LUCBs for LUs known to this LU. 

5.0-24 SNA LU 6.Z Reference: Peer Protocols 



SENSE_ DATA 

C::: SENSE_ DATA 

SENSE_DATA: 4-byte sense data 

() 

C\) 
/ 

Chapter 5.0. Overview of Presentation Services 5.0-25 



This page intentionally left blank c 

,,,-----., 
( 
\, __ .. 

5.0-26 SNA LU 6.2 Reference: Peer Protocols 



PRESENTATION SERVICES--CONVERSATION VERBS 

GENERAL DESCRIPTION 

0 

0 

A PS process handles requests for LU serv­
ices. A transaction program I TP I execution 
instance makes these requests by issuing 
verbs. The verbs are divided into catego.­
ries, and PS is divided into components. 
Each verb-processing component of PS proc­
esses the verbs of one speci fie category. 
Presentation services for basic conversations 
IPS.CONVI is the component of PS that proc­
esses verbs of the basic conversation catego­
ry. Figure 5.1-1 on page 5.1-2 provides an 
overview of PS, showing the relationship of 
PS.CONV to the other PS components. 

The basic conversation verbs correspond to 
the most basic services provided by the LU. 
Other PS components, such as PS. MC I "Chapter 
5.2. Presentation Services--Mapped Conversa­
tion Verbs" I and PS.COPR ("Chapter 5.4. Pres­
entation Services--Control-Operator Verbs") 
use basic conversation verbs in providing 
their higher-level functions. "Open-API" 
implementations may choose to expose only the 
mapped conversation verbs to user-application 
transaction programming, while leaving the 
lower-level basic conversation verbs 
"closed." 

See Chapter 5.0 for an overview of PS and its 
components, and of the relationship of PS to 
the other components of the LU. Refer to SNA 
Transaction Programmer's Reference Manual for 
LU Type 6.2 for a complete description of the 
basic conversation verbs. 

PS.CONV FUNCTIONS 

The functions of PS.CONV include: 

• Requesting the allocation and deallo­
cation of conversation resources. 

• Maintaining and checking the basic con­
versation state. 

• Transferring. conversation data between 
the half-session and transaction program 
variables. 

• Tracking logical record lengths. 

COMPONENT INTERACTIONS 

PS.CONV interacts with PS.VERB_ROUTER I "Chap­
ter 5.0. Overview of Presentation Services" I, 

the resources manager ( "Chapter 3. LU 
Resources Manager" I, and one or more 
half-session components ("Chapter 6.0. 
Half-Session" I. 

All verb service requests are routed through 
PS.VERB ROUTER, which forwards basic conver­
sation ~erbs to PS.CONV. After PS.CONV has 
performed the requested service, control is 
returned to the caller, with updated values 
in those variables that are the verb's 
returned parameters, or in which it requested 
a result to be returned. 

PS.CONV interacts with the resources manager 
I RM I to request allocation and deallocation 
of LU resources, such as conversations and 
associated control blocks, and to report pro­
tocol errors. Since PS.CONV and RM are mod­
eled as different processes, this interaction' 
occurs by means of asynchronous interprocess 
communication (send/receive logic!. RM also 
informs PS.CONV if a conversation being used 
by PS.CONV fails for some reason. 

PS.CONV interacts with one half-session proc­
ess for each active conversation used by 
PS.CONV. Each half-session serves a single 
conversation at a time. Since the TP may 
have active conversations with several part­
ners simultaneously, PS.CONV may be interact­
ing with a number of different half-session 
processes. 

PS.CONV interacts with the buffer manager to 
get and free storage used to send and receive 
data. PS.CONV requests a buffer I for an MUJ 
from the buffer manager when data must be 
sent. PS.CONV copies the data from the TP 
verb into the buffer before passing the buff­
er to HS for sending out of the LU. Hhen 
PS. CONV is passed a buffer I holding an 
inbound MUI from HS, it passes the data as 
requested to the TP. Hhen all the data has 
been passed to the TP, PS.CONV requests the 
buffer manager to free that buffer storage. 

PS.CONV DATA BASE STRUCTURE 

PS. CONV uses a number of control blocks and 
data structures. The most important ones are 
described here. See "Appendix A. Node Data 
Structures" for full details. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-1 



, .............................................. : .. ························· ............... , ......... ! 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Tl"ansact1on Pl"ogram ••••••••••••••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• 
A I 

................................................................................................. 
•••••••••••• 1 ••••••••••••••••••••••••••.• 1 •••••••••••••••••••••••••••••••• r---------, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 
•••••••••••• 1 •••••••••••••••••••••••••••• v ................................ v ................... 1 •••• 

---• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 1 •••• .... l j ...... . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • PS.VERB_ROUTER •••••••••••••••••••••••••••••• 
•• ••• •• • ••• • •• • •• ... • •• •• •• • • •• •• •• • • • •••••• •••••• •• •••••••• •• • • •••••• ••••• ••• •• •• • • •• • 1 •••• . . . . . . . . . . . . . . . -•- . . 
. . . . . . . . . . . . . . . : : : : .. I · ................ I · ............... · · 1 .. · · .. · ... · · · · · · ... I · ... · . : : : I : : : : 

PS.INITIALIZE 

: : : : : : I : : : : : : : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : I : : : : : : : : : I : : : : ...................................................... ······ ............ . 
••••• • 1 ••••••••.•••••.•• v ... · ............... v ..............•.... v ......... 1 •••• 

.--------. ...... . 
•• •• • • 1 ••••••••••• •• • 1 •••• 

• • •• •• 1 ••••••••••• .. .. .. . . . . . .. .... 
•• •• •• 1 ••••••••••• 

PS.MC 1 PS.SPS2 • • • PS.COPR3 
• •• 1 •••• ....... 
• •• 1 •••• 

•• •• .• 1 •••••.••.••.•..•......• • •• 1 •••. . . . . . . . . . . . . . . . . . _.. . .... .____., __ ___, ---•••••• 1 •••••••••••••••••• 1 ••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• .. . . .. . . . . . . . . .. ... .. .. . .. .. ............. .... ... . .... ....... . . .. . . .. . .. . . 
•••••• 1 •••••••••••••••••• 1 ••••••••••••••••• L - - - - - - - - - .l _ - - - J •••• 

• • • • PS.CONY •••••••• . ... . ...... . 

~~~~:I: v:::::::::::::::::: v::::::::::::::::::::::::::::::::::::::::::: :I~~~~~~~~ c 
~-------~ ~--------------------------------' ....... . 

•• ••• • • ••••• A ••••••••••••••• A •••••••••••••••• A •••••••••••••••• A .•••••••••••.••••••••••••••••••••••• 

: : : : : : : : : : : : : : : : : : : : : i : : : : : ! : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~~'.~'.~'.'.~: ~~'.~'.: '. ~~ ~: : : 
• • • 

v v v v 
Resoul"ces Manage!" Half- Half-

Session Session 

l See "Chapter 5.2. Pl"esentation Sel"Vices--Mapped Convel"sation Vel"bs" 
2 See "Chaptel" 5.3. Pl"esentation Sel"Vices--Sync Point Sel"Vices Vel"bs" 
3 See "Chapter 5.4. Pl"esentation Sel"Vices--Contl"ol-Opel"atol" Vel"bs" 

Note: A dashed line denotes a synchl"onous (call/l"etul"nl pl"otocol boundal"y between components, 
while a solid line denotes an asynchl"onous (sencll!"eceiveJ pl"otocol boundal"y. 

Figul"e 5.1-1. Ovel"View of Pl"esentation Sel"Vices, Emphasizing Pl"esentation Sel"Vices for Basic 
Convel"sations 

5.1-2 

LU Contl"ol Block ILUCBJ and Associated Lists -- -------
The LU contl"Ol block I LUCB--see Figul"e 5.1-2 
on page 5.l-3J is used by PS.CONY. One LUCB 
exists for each LU in the node. The LUCB is 
identified by the LU ID, which is a unique 
identifiel" fol" each LU in the node. Each 
LUCB contains infonnation such as the 
network-qualified LU name. 

SNA LU 6.2 Refenance: Peer Pl"otocols 

Associated with each LUCB is a TRANS­
ACTION_PROGRAH_LIST. The TRANS­
ACTION_PROGRAM_LIST fol" an LU contains an 
entl"Y for each transaction pl"ogram known 
locally by the LU. The infonnation in a 
TRANSACTION_PROGRAt1_LIST entry includes ther~ 
transact i~ pN>gra~ name and whether it supJ / 
ports va1"1ous optional featul"es (e.g., sync\..__. 
point, mapped convel"sationsJ. 



c. 
LUCBl 

LUCB_LIST 

LU_ID 

LUCBn LU_ID 

TRANSACTION_PROGRAM_LIST PARTNER_ LU_ LIST 
'-----> 

TPN LU_NAME ... 
. .. 

. c:,: 1--T-P-N--r-....---....----i 
LU_NAME ... • 

C: 
/ 

cf 

~ 
v MODE_ LIST 

MODE_NAME 

MODE_NAME 

Figure 5.1-2. LU Control Block List and Associated Lists 

Another list associated with each LUCB is the 
PARTNER_LU_LIST I see Figure 5.1-Z on page 
5.1-3). The PARTNER_LU_LIST contains one 
entry for each potential partner LU of the LU 
represented by the LUCB. The PARTNER_LU 
entry contains information that is fixed for 
the specific partner LU, such as the local 
and network-qualified names of the partner 
LU. 

Associated with each PARTNER_LU entry is a 
MODE_LIST I see Figure 5.1-Z), which has one 
entry for each mode name that is defined for 
possible use with the particular partner LU 
name. The HOOE entry contains information 
that is fixed on a mode basis, such as the 
mode name and maximum mode session limit. 

Transaction Control Block ITCBJ 

The transaction control block I TCB--see Fig­
ure 5.1-3 on page 5.1-41 contains information 
associated with the combined TP-PS process. 
One TCB exists for each TP-PS process. Each 

... 

... 
. 
. 

TCB contains a TCB IO, which is a unique 
identifier of the TP-PS process being repres­
ented by the TCB. The TCB ID is used in all 
communication between the resources manager 
and the PS serving the transaction program. 
For example, when PS sends a record to the 
resources manager, it provides its TCB ID so 
that the resources manager will know, of all 
the TP-PS processes it manages, which one to 
send a reply to. 

Associated with each TCB is the 
RESOURCES_LIST, a list of the resources used 
by the TP-PS process. The RESOURCES_LIST has 
one entry for each resource (e.g., for each 
conversation) associated with the transaction 
program. 

PS PROCESS DATA 

PS_PROCESS_DATA (page 5.0-24) contains data 
that is available to all procedures in the PS 
process. It contains information about this 
particular TP-PS process, such as the LU ID 

Chapter 5.1. Presentation Services--Convel"sation Vel"bs 5.1-3 



RESOURCES_LIST 
TCB_LIST >....----..... 

RCB_ID 
TCBl TCB_ID 

TCBn TCB_ID • 
RCB_ID 

Figure 5.1-3. Transaction Control Block ITCB) 

5.1-4 

and the pointer to the RCB_LIST. It is ini­
tialized by the root procedure of the PS 
process lpage 5.0-8) from parameters received 
in PS_CREATE_PARMS. PS_CREATE_PARMS is 
passed to PS from RH when the PS process is 
created. 

Resource Control Block IRCB) 

One resource control block I RCB--see Fig­
ure 5.1-4 on page 5.1-5) represents each 
active conversation allocated to a trans­
action program. The RCBs for all active con­
versations in an LU are kept in the RCB_LIST. 
RCBs are added to or removed from the 
RCB_LIST by the LU resources manager, at the 
request of PS.CONV. RCBs are also linked to 
the RESOURCES_LIST for the particular TP-PS 
process to which they are allocated. The TCB 
for the process has an associated 
RESOURCES LIST which contains a list of RCBs 
I specified by the RCB.:._ID J. The list of RCBs 
represents the resources, such as conversa­
tions, allocated to the process. 

An RCB for a conversation contains informa­
tion pertaining to a particular conversation, 
such as its resource ID, state, and charac­
teristics (established when the conversation 
is allocated). Components of PS will update 
certain fields of the RCB as the conversation 
is used. 

The RCB is identified by a unique RCB ID. 
This ID accompanies most transaction program 
verb issuances las the RESOURCE parameter) to 
identify the conversation to which the verb 
is to be applied. The RCB also contains the 
TCB ID of its owning TP-PS process, and the 
HS ID of the local half-session that carries 
the conversation's data. Other fields asso­
ciated with the RCB are discussed in more 
detail below. 

FSH CONVERSATION lpage 5.1-65) is a 
-finite-state machine that tracks the 
state of the conversation associated with 
the RCB. The state of FSH_CONVERSATION 
is the state of the conversation from the 
viewpoint of the local TP. For example; 
the conversatloil clian9esfrom receive to 
send state when the transaction program 
is notified by a HHAT_RECEIVED = SEND 
from a receive verb. The state of the 

SNA LU 6.2 Reference: Peer Protocols 

conversation does not change until 
PS.CONV has actually notified the trans­
action program, even though the send 
indication may have arrived from the(~. 
half-session sometime earlier. 

THE SEND HU I page A-29) is associated with 
the RCB and is used to store data that 
has been generated by verb processing 
Ii .e., for the SEND DATA verb J but that 
has not yet b~n sent to the 
half-session. 

FSH_ERROR_OR_FAILURE lpage 5.1-671 is a 
finite-state machine that tracks errors 

'··- .~/ 

or failures on the conversation associ­
ated with the RCB. The state of 
FSH_ERROR_OR_FAILURE records the receipt~ 
of the error or failure I forwarded fro1~ 
RH or HSJ until the appropriate notifica-'-·-' 
tion can be returned to the TP in verb 
parameters. 

FSH_POST lpage 5.1-68) is a finite-state 
machine that tracks the posting condition 
of a conversation associated with the 
RCB. The state of FSH POST records 
whether the conditions spe~ified to sat­
isfy have been lstate POSTED) or have not 
been (state PEND_POSTEDJ satisfied. 

r,,.--'·. 
HS_TO_PS_BUFFER_LIST contains a list of 

that have been received from 
half-session but not yet passed to 
transaction program. 

HUJ 
the.....___,., 
the 

SECURITY _SELECT initially contains the type 
of end-user verification: NONE, SAHE, or 
PGH. This value might be downgraded from 
PGH to NONE or SAHE to NONE I see "Chapter 
3. LU Resources Manager" for details of 
when RH downgrades end-user verifica­
tion!. The Attach is built using the 
SECURITY_SELECT value. 

VERB PARAMETERS 

The TP requests LU services by issuing verbs. 
A verb and its parameters are passed as 
parameters to PS CONV lpage 5.1-10). The,.,.~". 
service requested-is identified by the verf 
name and the supplied parameter fields• and'----./ 
some results of the service I along with any 
other pertinent incoming data) are returned 



c '• " ,,. 

RCB_LIST 

RCBl RCB_ID 

RCBn RCB_ID • •-1---~ 

SEND_MU 

FSM_CONVERSATION 

~~I< SECURITY_SELECT 

>~I--~ v 
FSM_ERROR_OR_FAILURE 

Figure 5.1-4. Resource Control Block IRCBJ 

to the TP in the returned parameter fields. 
Each verb issuance has: 

• 
• 

• 

An indicator of which verb is being 
issued le.g., ALLOCATE, CONFIRM) 
Some supplied parameters, including ltyp­
icallyJ an identifier of the conversation 
on which the verb is being issued 
Some returned parameters, including I typ­
ically J a ·return code telling whether the 
requested service was performed success­
fully 

Some examples of exceptions to these parame­
ter rules are the following. ALLOCATE does 
not supply a conversation ID I although it 
does return one), while HAIT supplies a list 
of conversation IDs. CONFIRMED and FLUSH do 
not need any returned parameters. The basic 
conversation verbs and their parameters are 
fully described in SNA Transaction Program­
mer's Reference Manual for LU Type ~· 

PS-RM RECORDS 

PS.CONV sends records to RM and receives 
records from RM. PS sends several types of 
records to RM. Each contains a TCB ID iden­
tifying the PS process that sent the record, 
and possibly additional fields. Records sent 
from RM to PS are usually sent in reply to a 
request sent from PS to RM, as shown in Fig­
ure 5.1-5. 

HS_TO_PS_BUFFER_LIST 

MU 

HU 

PS.CONV Request 

ALLOCATE_RCB 
GET_SESSION 
DEALLOCATE_RCB 

RM Reply 

RCB_ALLOCATED 
SESSION_ALLOCATED 
RCB_DEALLOCATED 

Figure 5.1-5. PS.CONV Requests and 
Associated RH Replies 

The only exception is CONVERSATION_FAILURE, 
which RH sends unsolicited to PS.CONV when a 
conversation being used by PS.CONV fails. 

PS-HS RECORDS 

PS. CONV sends 
receives HUs 
half-session. 

MUs to a 
and other 

half-session and 
records from a 

An HU contains a field, identifying the par­
ticular type of HU, and additional fields in 
the case of SEND DATA RECORD. 
SEND_DATA_RECORD is used to send dat; and RH 
information to the half-session when the 
local transaction program is in send state 
for the conversation. Included in the 
SEND_DATA_RECORD is the transaction program 
data to be sent and an encoding of the RH 
bits I see SNA Formats) that are to be set by 
the half-sesslon When the data is sent to the 
remote LU. Data to be sent to a half-session 
is added to the existing send MU buffer by 
PS.CONY until the maximum send RU size is 
exceeded, thus forcing the buffer ISEND_MUJ 
to be passed to the half-session for trans­
mission. The transaction program can also 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-5 



5.1-6 

issue a verb that forces the data to be 
passed to the half-session for transmission 
(e.g., CONFIRM, RECEIVE_AND_HAIT, or DEALLO­
CATE J. 

Other MU types are sent from PS to the 
half-session only when the local transaction 
program is in receive state. These include 
CONFIRMED, used to reply positively to a pre­
vious CONFIRM records RE~EST TO SEND, used 
to request the send indicator -fr~ the part­
ner transaction programs and SEND_ERROR, used 
to send -RSP(0846J to the partner LU. 

MU and other records can also be sent from HS 
to PS, in which case, the BRACKET_ID field in 
the passed record is used to identify which 
half-session sent the record to PS.CONY. 

TRACKING LOGICAL RECORD LENGTH 

Transaction programs using a basic conversa­
tion must ensure that the data they exchange 
is formatted into logical records. The 
length of a logical record is given by the 
low-order 15 bits of the first two bytes of 
the record. The high-order bit is the "con­
tinuation bit", which is used for GDS vari­
ables by PS. HC ( see "Chapter 5. 2. 
Presentation Services--Happed Conversation 
Verbs"). The value in the Length field 
includes the length of the field itselfJ thus 
the length value is normally in the range 
2-32767. A length value of 0 is invalid 
while a length value of 1 is used to indicate 
a PS header (see "Chapter 5.3. Presentation 
Services--Sync Point Services Verbs" for more 
details). 

Hhen sending data, the· transaction program is 
responsible for correctly setting the Length 
bytes of each logical record. The amount of 
data sent by a SEND_DATA verb need have no 
relation to a logical records i.e., the 
transaction program may send partial logical 
records in SEND_DATA verbs, and may include 
multiple logical records in one verb. 

PS.CONY performs some checking of the logical 
record Length field supplied by the trans­
action program. The value of the Length 
field must be greater than 1, unless 
TCB.CONTROLLING COHPONENT = SERV­
ICE COHPONENT, that is, unless some PS serv­
ice- component (e.g., PS.He or PS.SPSJ is 
sending a PS header in the record on behalf 
of a transaction program. 

Certain verbs (e.g., CONFIRM) may be validly 
issued only at logical record boundaries 
(i.e.,, between logical records). PS.CONY 
enforces this rule by remembering how many 
bytes remain to be sent in the current log­
ical record. SEND ERROR and DEALLOCATE 
TYPEIABENDJ are the ~ly verbs that can pre­
maturely truncate a logical record. 

PS. CONV also tracks the value of the Length 
field for logical records received from the 
partner transaction program. Logical records 
with a Length of 1 are passed to PS_SPS. 
PS.CONY maintains a count of the number of 

SNA LU 6.2 Reference: Peer Protocols 

bytes remaining in the current logical 
record. PS.CONY performs an optional receive(~ 
check to determine if the partner LU has vio-\_ 
lated PS protocols by allowing the partner 
transaction program to invalidly truncate the 
logical record. Only an FHH-7 can validly 
truncate a logical record. 

Finally, when a receive verb is issued speci­
fying FILL! LL J, PS uses the receive cOU'lt 
remainder I i.e., the number of bytes in the 
logical record not received) to determine how 
many bytes of received data to pass to the 
transaction program. 

MAINTAINING AND CHECKING THE BASIC CONVERSA­
TION STATE 

PS.CONY maintains the current state of each 
conversation in FSH_CONVERSATION !page(~ 
5.1-65). As noted earlier, the state of 
FSH CONVERSATION is the state of the conver- \...___../ 
sation as viewed by the local transaction 
program'. 

The state of the .conversation may change as a 
result of verbs issued by the transaction 
programJ e.g., PREPARE_TO_RECEIVE changes the 
state from send to receive. These inputs 
have DIRECTION=S in FSH_CONVERSATION. The 
state may also change as a result of data or 
indicators received from the hal f-sessioru 
e.g., receiving the send indicator changes 
the state of the conversation from receive t~ 
send. These inputs have DIRECTION=R irl. 
FSH_CONVERSATION. ,, __ __/ 

The current state of the conversation deter­
mines the verbs that can be validly issuedJ 
e.g., a SEND_DATA verb cannot be issued in 
receive state. 

VERB PROCESSING 

Details of PS.CONV's pr-Ocessing of some verbs(-._, 
are described here. See also "Chapter 2. 11....__, 
Overview of the LU" for more flow diagrams 
corresponding to the processing of these and 
other verbs. 

Verb Checking 

PS. CONY performs a number of send checks on 
verbs issued by the transaction program. 
These include: 

• Parameter checks, such as checking that: 

The parameters specified on the ALLO­
CATE are supported by the LU. 
The verb conforms to the SYNC_LEVEL 
of the conversation (as specified on 
ALLOCATE). 
The DATA parameter on SEND_DATA con-~ 
tains a valid Length field I see'- .. 
"Tracking Logical Record Length" J. _,, 

• State checks, such as checking that: 



The verb can be issued in the current 
conversation state (see "Maintaining 
and Checking the Basic Conversation 
state" on page 5.1-6). 
The transaction program has completed 
the current logical record, if neces­
sary (see "Tracking Logical Record 
Length" on page 5.1-6). 

ALLOCATE 

Processing of the ALLOCATE verb by PS.CONY 
includes: 

• Requesting that RM allocate a resource 
control block (RCBJ. 

• Requesting that RM allocate a session for 
the conversation. 

• Creating an Attach FMH-5. 

The order of performing the last two items 
depends on the supplied RETURN_CONTROL param­
eter of the ALLOCATE verb, as described 
below. 

A conversation resource is represented by a 
resource control block IRCB--see "PS.CONY 
Data Base Structure" on page 5.1-1). PS.CONY 
requests the creation of an RCB by sending an 
ALLOCATE_RCB record to the resources manager 
!RM) and waiting for an RCB_ALLOCATED record 
in reply. If RETURN_ CONTROL( IMMEDIATE J is 
specified, the ALLOCATE_RCB (page A-15) 
record is a 'composite request for the cre­
ation of an RCB and the allocation of a 
first-speaker session. This situation is 
indicated to RM by setting ALLO­
CATE_RCB. IMMEDIATE_SESSION = YES. 

After the RCB has been created, PS.CONY 
requests the resources manager to allocate a 
session for use by the conversation (if a 
session has not already been allocated as a 
result of IMMEDIATE SESSION = YES). PS.CONY 
does this by sending a GET_SESSION record to 
RM and waiting for a SESSION_ALLOCATED record 
in reply. 

The type of end-user verification is 
requested in the ALLOCATE as NONE, SAME, or 
PGM. See SNA Transaction Programmer's Refer­
ence Manua-r-for LU Type 6.2 for a morec;;m:: 
plete descrip:f1oi1"""of'"'the--Security parameter 
relating to end-user verification. 

PS.CONY creates an Attach FMH-5 based on the 
parameter settings in the ALLOCATE verb and 
in the RCB. The Attach is stored in the MU 
buffer, to be sent later. Hhen processing an 
ALLOCATE verb, the Attach is created after 
assignment of the session; thus, any security 
downgrades that are required will have been 
completed prior to building the Attach in PS. 

POST ON RECEIPT 

The POST_ON RECEIPT verb establishes the 
posting conditions for the conversation. The 

post conditions (FILL = BUFFER or LL, and 
LENGTH l are retained in the RCB associated 
with the conversation. The posting status 
(reset, pending post, or posted) of a conver­
sation is maintained by FSM_POST. Hhenever 
PS.CONY receives data, end-of-chain type 
(e.g., SEND, CONFIRM), or both from the 
half-session, the posting conditions are 
checked, and the state of FSM_POST is updated 
if necessary. If POST ON RECEIPT has been 
issued, the state of FSM POsT may be checked 
by calling TEST_PROC on-page 5.1-26. This 
procedure is used by the HAIT verb to deter­
mine whether the post conditions have been 
satisfied for any of several conversations. 

REQUEST TO SEND 

Hhen the transaction program issues a 
REQUEST TO SEND verb, PS.CONY checks the con­
versa ti-;;n -state to see if the verb can be 
validly issued, and checks that the conversa­
tion is still active. If so, PS.CONY sends a 
REQUEST_TO_SEND record to the appropriate 
half-session process and then waits for a 
RSP TO REQUEST TO SEND record from the 
half-s;ssion. -By-waiting for a response from 
the half-session before returning to the 
transaction program, PS.CONY prevents the 
transaction program from flooding the network 
with expedited-flow FMD RUs. 

On receipt of a REQUEST_TO_SEND record from a 
half-session (request for send control 
ini tialted by partner transaction program), 
PS.CONY sets RCB.RQ.__TO_SEND_RCVD to YES, and 
notifies the transaction program at the ear­
liest opportunity. 

SEND ERROR 

Processing of the SEND_ERROR verb by PS.CONY 
includes: 

• If the TP issuing the verb is in receive 
state: 

• 

Sending a SEND_ERROR record to the 
half-session. This causes a 
-RSP(0846) to be sent to the partner 
LU. 
Haiting until an end-of-chain type is 
received from the partner LU. The 
half-session purges all data until 
the end-of-chain type is received. 

If the TP issuing the verb is in send 
state: 

Creating an FMH-7 with the sense data 
based on the SEND_ERROR type and the 
current state of the conversation. A 
-RSPC0846) is not sent when the con­
versation is in send state as done 
with the conversation when it is in 
receive state. 
Creating an Error Log GOS variable 
(see SNA Formats for format), if log 
data 1spresent. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-7 



If both sides of a conversation issue 
SEND_ERROR, the side that was in receive 
state always wins the SEND_ERRDR race and 
obtains send control of the conversation. 
Figure 5.1-6 on page 5.1-8 shows a flow dia­
gram for a simple SEND_ERRDR race. 

Figure 5.1-7 on page 5.1-9 shows a SEND_ERRDR 
race with deallocation. In this case, nei­
ther error gets reported to the other side. 
This problem could be avoided by following 
the SEND_ERRDR with a PREPARE_TD_RECEIVE, as 
shown in the previous figure. 

SEND_DATA 
o--------->o 

RC=DK 
o<---------o 

On receipt of a RECEIVE_ERRDR record from the ('· .. 
half-session las a result of the partner LU 
sending a -RSP[0846JJ, PS.CONY sends an .­
end-of-chain type to the half-session, if it 
has not already done so. It then receives 
the expected FMH-7 and notifies the trans­
action program, at the earliest opportunity, 
with a return code based on the FMH-7 sense 
data. If it receives an Error Log GOS vari-
able appended to the FMH-7, the.LU logs the 
data without passing it on to the transaction 
program. 

SEND_ERRDR 
o< - - - - - - ..:. -o ( 

\ 
"---· 

SEND_ERROR -RSPI0846J MUISEND_ERRDRJ 
o--------- >o 0 <-----------------0 

RC=OK 
o<---------o 

• PREPARE_TD_RECEIVE. I 
o--------->o 

RC=DK 
o<---------o 

purge 

I 
HUISEND_DATA_RECORDJ v 
o--------------->o 

FMH7,RQE1,EC,CD MU 

~<J RC=OK 
0- - - - .- - - - >o 

RECEIVE_ERRDR • 
o<---------------10 

RECEIVE_AND_HAIT , 
o--------->o 
RC=PROG_ERRDR_PURGING 
o<---------o 

(~ 

Figure 5.1-6. SEND_ERROR Race 
\_ __ _,' 

c 
5.1-8 SNA LU 6.2 Reference: Peer Protocols 



C .. 

( ·.,, 

/ 

C> 

SEND_DATA SEND_ERROR 
o--------- >o o<--------o 

RC=OK 
o<---------o 

SEND_ERROR -RSPI0846) MUISEND_ERROR) 
o--------->o o <------------------n 

RC=OK 
o<---------o 

DEALLOCATE TYPEIFLUSH) 
o--------->o 

RC=OK 
o<---------o 

MUISEND_DATA RECORD) 
n-~~~~~~-->o 

FHH7,RQE1,EC,CEB 

RECEIVE_ERROR 
o< o 

I ignored by PS_CONV) 

Figure 5.1-7. SEND_ERROR Race with Deallocation 

PROTOCOL ERRORS 

PS.CONY contains a number of optional receive 
checks to determine if the partner LU has 
violated SNA-defined protocols. Examples of 
protocol violations checked by PS.CONY 
include: 

• Sending data when in receive state 
• Invalidly truncating a logical record 

I see "Tracking Logical Record Length" on 
page 5.1-6 ) 

• Sending an incorrectly formatted FHH-7 

Hhen PS.CONY detects a protocol error, it 
requests that RH deactivate the session and 
sets FSH_ERROR_OR_FAILURE lsee page 5.1-67) 
to indicate that a conversation failure !pro­
tocol error) occurred. PS.CONY notifies the 
transaction program of the conversation fail­
ure by returning a RESOURCE_FAILURE return 

I 
purge 

I 
v 

HU 

RC=OK 
o-------->o 

code on the next verb that allows a 
RESOURCE_FAILURE return code. 

CONVERSATION FAILURES 

PS.CONY is notified of a conversation failure 
by the CONYERSATION_FAILURE record, sent by 
RH. The conversation failure may result from 
either session outage or a protocol vio­
lation. 

On receipt of a CONVERSATION FAILURE I see 
page A-21 l record, ps-:-coNV sets 
FSH_ERROR_OR_FAILURE to indicate either 
CONY_FAILURE_SON or 
CONY FAILURE PROTOCOL ERROR. PS.CONY noti­
fies-the tra~saction program of the conversa­
tion failure by returning a RESOURCE FAILURE 
return code on the next verb that allows a 
RESOURCE_FAILURE return code. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-9 



HIGH-LEVEL PROCEDURES 

5.1-lD 

PS_CONV 

FUNCTION: This procedure receives conversation verbs issued by the TP or by other PS 
components, and calls the appropriate procedures to process them. 

INPUT: Transaction program verb and parameters 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_PROC 
CONFIRM_PROC 
CONFIRMED_PROC 
DEALLOCATE_PROC 
FLUSH_PROC 
GET_ATTRIBUTES_PROC 
POST_ON_RECEIPT_PROC 
PREPARE_TO_RECEIVE_PROC 
RECEIVE_AND_HAIT_PROC 
RECEIVE_IMMEDIATE_PROC 
REQUEST_TO_SEND_PROC 
SEND_DATA_PROC 
SEND_ERROR_PROC 
TEST_PROC 

Select based on the transaction program verb: 
Hhen ALLOCATE 

Call ALLOCATE_PROCIALLOCATE verb parameters) lpage 5.1-11). 
Hhen CONFIRM 

Call CONFIRM_PROCICONFIRM verb parameters) (page 5.1-12). 
Hhen CONFIRMED 

Call CONFIRMED_PROCICONFIRMED verb parameters) (page 5.1-14). 
Hhen DEALLOCATE 

Call DEALLOCATE_PROCIDEALLOCATE verb parameters) lpage 5.1-15). 
Hhen FLUSH 

Call FLUSH_PROCIFLUSH verb parameters) (page 5.1-16). 
Hhen GET ATTRIBUTES 

page 5.1-11 
page 5.1-12 
page 5.1-14 
page 5.1-15 
page 5.1-16 
page 5.1-17 
page 5.1-17 
page 5.1-18 
page 5.1-19 
page 5.1-21 
page 5.1-23 
page 5.1-24 
page 5.1-25 
page 5.1-26 

Call GET ATTRIBUTES PROCIGET ATTRIBUTES verb parameters) lpage 5.1-17). 
Hhen POST ON RECEIPT - -

Call POST=ON_RECEIPT_PROCIPOST_ON_RECEIPT verb parameters) (page 5.1-17). 
Hhen PREPARE_TO_RECEIVE 

Call PREPARE_TO_RECEIVE_PROCIPREPARE_TO_RECEIVE verb parameters) lpage 5.1-18). 
Hhen RECEIVE AND HAIT 

Call RECEIVE_AND_HAIT_PROCIRECEIVE_AND_HAIT verb parameters) (page 5.1-19). 
Hhen RECEIVE IMMEDIATE 

Call RECEIVE_IMMEDIATE_PROCIRECEIVE_IMMEDIATE verb parameters) (page 5.1-21). 
Hhen REQUEST_TO_SEND 

Call REQUEST_TO_SEND_PROCIREQUEST_TO_SEND verb parameters) lpage 5.1-23). 
Hhen SEND DATA 

Call SEND_DATA_PROCISEND_DATA verb parameters) (page 5.1-24). 
Hhen SEND_ERROR 

Call SEND_ERROR_PROCISEND_ERROR verb parameters) lpage 5.1-25). 
Hhen TEST 

Call TEST_PROCITEST verb parameters) (page 5.1-26). 

SNA LU 6.2 Reference: Peer Protocols 

c: 

~·. 
! 
\ 

(--~.-. 

/ 



c~ 

ALLOCATE_PROC 

ALLOCATE_PROC 

FUNCTION: This procedure handles allocation of new resources to the transaction program. 

If the ALLOCATE parameters are valid, this procedure requests that RM create a 
new resource control block IRCBl. If the supplied RETURN_CONTROL parameter 
specifies IMMEDIATE, PS at this time also requests RM to acquire a session for 
use by the conversation resource. If the RETURN_CONTROL is set to 
HHEN_SESSION_ALLOCATED, PS sends a separate GET_SESSION request to RM at a 
later time. 

INPUT: ALLOCATE verb with parametersJ RCB_ALLOCATED record received from RM 

OUTPUT: The ALLOCATE_RCB record is initialized and sent to RM and the RCB ALLOCATED 
record I from RMl is destroyed. If an error is found in the ALLOCATE, the 
return code is updated. 

NOTE: If the ALLOCATE specifies SECURITYISAMEl, but the original conversation was 
not initialized with security, then the security is downgraded to NONE on the 
ALLOCATE_RCB before sending the request to the resources manager. 

Referenced procedures, FSMs, and data structures: 
PS 
RM 
RCB_ALLOCATED_PROC 
HAIT_FOR_RM_REPLY 
ALLOCATE_RCB 
MODE 
RCB_ALLOCATED 

Check ALLOCATE parameters for validity Csee ALLOCATE verb in 
SNA Transaction Programmer's Reference Manual for _!!! Type ~). 

If ALLOCATE parameters are valid then 
If MODE control block exists then 

Create and initialize ALLOCATE_RCB request record with the 
parameters of the ALLOCATE. 

SEND ALLOCATE_RCB request to RM. 
Call HAIT_FOR_RM_REPLY to receive RCB_ALLOCATED from RM lpage 5.1-621. 
Call RCB_ALLOCATED_PROCIRCB_ALLOCATEO, ALLOCATEllpage 5.1-481. 

Else 
Set the RETURN_CODE of the ALLOCATE verb to PARAMETER_ERROR. 

Else 
Set the RETURN_CODE of the ALLOCATE verb to PROGRAM_PARAMETER_CHECK. 

page 5.0-8 
page 3-19 
page 5.1-48 
page 5.1-62 
page A-15 
page A-3 
page A-21 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-11 



CONFIRl"l_PROC 

c_ON_F_I_Rl"l ___ P_R_oc ____________________________________ ~ C'\ 

5.1-12 

FUNCTION: This procedure handles the CONFIRl"I verb processing. 

If it is appropriate for the transaction program to issue a CONFIRl"I for the 
specified conversation li.e., the SYNC_LEVEL of the conversation for which the 
CONFIRM was issued is CONFIRl"I or SYNCPT and any data issued by the transaction 
program is on a logical record boundary 1, this procedure retrieves any records 
from HS and RM. Appropriate action is taken depending upon which, if any, 
record was received las reflected by the state of FSM_ERROR_OR_FAILURE1. 

INPUT: CONFIRl"I verb parameters 

OUTPUT: An RQ_,TO_SEND_RCVD indication could be passed up to the TP at this time if the 
RCB.RQ_,TO_SEND_RCVD field has been set to show receipt of a RQ_,TO_SEND. The 
RCB.RQ_,TO_SEND_RCVD field is reset to NO. The return code of the CONFIRM verb 
is updated. See Notes for additional outputs. 

NOTES: 1. If a CONVERSATION FAILURE has been received from the resources manager, PS 
returns to the tra~saction program after setting the RETURN_CODE parameter of 
the CONFIRl"I to RESOURCE_FAILURE. 

2. If a RECEIVE ERROR has been received from HS, PS sends a SEND_DATA record with 
the MU.PS_TO_HS.TYPE field set to PREPARE_TO_RCV_FLUSH to HS. IAny data in 
the RCB send buffer was purged when the RECEIVE_ERROR record was received. 1 
If an MU is not present, one is created and initialized prior to sending to 
HS. PS then waits for the expected FMH-7 error message to arrive. The 
RETURN_CODE parameter of the CONFIRM is set based on the sense data carried in 
the FMH-7. 

3. If there are no error or failure conditions, COMPLETE_CONFIRl"l_PROC is called 
to complete the processing of the CONFIRl"I. 

Referenced procedures, FSMs, and data structures: 
HS 
COMPLETE_CONFIRM_PROC 
CREATE_AND_INIT_LIMITED_MU 
DEQUEUE_FMH7_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 

page 6.0-3 
page 5.1-28 
page 5.1-30 
page 5.1-34 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

If RCB.SYNC_LEVEL is NONE or the send data is not at a logical record boundary then 
If RCS.SYNC LEVEL is NONE then 

Set the RETURN_CODE of the CONFIRM verb to PROGRAM_PARAMETER_CHECK. 
Else (not on logical record boundary! 

Set the RETURN_CODE of the CONFIRl"I verb to PROGRAM_STATE_CHECK. 
Else 

If exa"cuting FSM_CONVERSATIONIS, CONFIRM, RCBJ (page 5.1-651 would cause 
a state-check l>J condition then 

Set the RETURN_CODE of the CONFIRM verb to PROGRAM_STATE_CHECK. 
Else 

Call RECEIVE_Rl"l_OR_HS_TO_PS_RECORDSlempty SUSPEND_LIST1 (page 5.1-511. 

Select based on the state of FSM_ERROR_OR_FAILURE (page 5.1-671: 
Hhen CONV FAILURE PROTOCOL ERROR (see Note 11 

Set th; RETURN=CODE of the CONFIRM verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_RC, RCB1 (page 5.1-651. 

Hhen CONV_FAILURE_SON lsee Note 11 
Set the RETURN_CODE of the CONFIRM verb to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB1 lpage 5.1-651. 

SNA LU 6.2 Reference: Peer Protocols 

C' 
___ / 

c: 



0 

0 

0 

CONFIRM_PROC 

Hhen RCVD_ERROR (see Note 21 
If a send MU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUl (page 5.1-301. 
Set MU.PS TO HS.TYPE to PREPARE TO RCV FLUSH and send the MU record to HS. 
Call RECEIVE=RM_OR_Hs_TO_Ps_RECORDSISuSPEND_LIST containing RCB_IDl !page 5.1-511. 
If state of FSM_ERROR_OR_FAILURE (page 5.1-671 is CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE !page 5.1-671 is CONV_FAILURE_SON then 

Set the RETURN_CODE of the CONFIRM verb to RESOURCE_FAILURE_RETRY. 
Else 

Set the RETURN CODE of the CONFIRM verb to RESOURCE FAILURE NO RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBl (page 5.l-6Sl.­

Else 
Call DEQUEUE_FMH7_PROCICONFIRM verb parameters, RCBl !page 5.1-341. 

Hhen NO_REQUESTS (see Note 31 
Call COMPLETE_CONFIRM_PROCICONFIRM verb parameters, RCBJ !page 5.1-281. 

Set the REQUEST_TO_SEND_RECEIVED of the CONFIRM verb to RCB.RQ_TO_SEND_RCVD. 
Set RCB.REQUEST_TO_SEND_RECEIVED to ND. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-13 



CONFIRHED_PROC 

5.1-14 

CONFIRHED_PROC 

.--------------~· 
'-----' 

FUNCTION: This procedure handles CONFIRMED verb processing. 

PS first retrieves any records from HS and RH. Appropriate action is taken 
depending upon which, if any, record was received. 

INPUT: CONFIRMED verb parameters 

OUTPUT: The return code of the CONFIRMED verb is set. The states of FSM CONVERSATION 
and FSM_ERROR_OR_FAILURE may change. See Notes for additional outputs. 

NOTES: 1. If a CONVERSATION_FAILURE record has been received from the resources manager, 
PS retums to the transaction.program without sending any data to HS. Since 
CONFIRMED verb does not support a RESOURCE_FAILURE retum code, the conversa­
tion failure cannot be reported to the transaction program at this time. PS 
remembers the failure lvia FSM_ERROR_OR_FAILUREJ and reports it to the trans­
action program at a later time li.e., when the transaction program issues a 
verb that supports a RESOURCE_FAILURE return codeJ. 

2. If a CONVERSATION_FAILURE record has not been received, PS sends a CONFIRMED 
record to HS. 

Referenced procedures, FSMs, and data structures: 
PS_PROTOCOL_ERROR 
SEND_CONFIRMED_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If executing FSM_CONVERSATIONIS, CONFIRMED, RCBJ !page 5.1-651 would 
cause a state-check l>J condition then 

Set the RETURN_CODE of the CONFIRMED verb to PROGRAM_STATE_CHECK. 
Else 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTI !page 5.1-511. 
Select based on the state of FSM_ERROR_OR_FAILURE (page 5.l-67J: 

Hhen NO REQUESTS (see Note 2J 
Call-SEND_CONFIRMED_PROCIRCBI !page 5.l-53J. 

Hhen RCVD_ERROR 
Call PS_PROTOCOL_ERROR IRCB.HS_ID, X'l0010000' J !page 5.0-20J. 

Hhen CONV_FAILURE_PROTOCOL_ERROR or CONV_FAILURE_SON I see Note 11 
Do nothing. 

Call FSM_CONVERSATIONIS, CONFIRMED, RCBI (page 5.1-651. 
Set the RETURN_CODE of the CONFIRMED verb to OK. 

SNA LU 6.2 Reference: Peer Protocols 

page 5.0-20 
page 5.1-53 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page A-6 

( 
...... ___ ." 

c. 



C., 
I 

/ 

0 

DEALLOCATE_PROC 

DEALLOCATE_PROC 

FUNCTION: This procedure handles the deallocation of resources. 

If the resource specified in the DEALLOCATE is a valid resource and the con­
versation is in a pertinent state, PS calls the appropriate deallocation pro­
cedure to continue processing the DEALLOCATE. 

INPUT: DEALLOCATE verb parameters 

OUTPUT: The return code of the DEALLOCATE is set here or in one of the called proce­
dures, and FSM_CONVERSATION may change states. Also, the pertinent deallo­
cation procedure is called. Nhen appropriate, PS sends DEALLOCATE_RCB to RM. 

Referenced procedures, FSMs, and data structures: 
DEALLOCATE_ABEND_PROC 
DEALLOCATE_CONFIRM_PROC 
DEALLOCATE_FLUSH_PROC 
END_CONVERSATION_PROC 
FSM_CONVERSATION 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
Select based on the following conditions: 

page 5.1-31 
page 5.1-32 
page 5.1-33 
page 5.1-34 
page 5.1-65 
page A-6 

Nhen the TYPE parameter of DEALLOCATE is FLUSH, or the TYPE parameter is SYNC_LEVEL 
and RCB.SYNC LEVEL is NONE 

If executi~g FSM_CONVERSATIONIS, DEALLOCATE_FLUSH, RCBl (page 5.1-65) would 
cause a state-check(>) condition then 

Set the RETURN CODE of the DEALLOCATE verb to PROGRAM_STATE_CHECK. 
Else -

Call DEALLOCATE FLUSH PROCIDEALLOCATE verb parameters, RCBl lpage 5.1-33). 
Nhen the TYPE paramet;r is -CONFIRM 

If executing FSM_CONVERSATIONIS, DEALLOCATE_CONFIRM, RCBl lpage 5.1-65) would 
cause a state-check (>)condition then 

Set the RETURN_CODE of the DEALLOCATE verb to PROGRAM_STATE_CHECK. 
Else 

If RCB.SYNC_LEVEL is CONFIRM or SYNCPT then 
Call DEALLOCATE_CONFIRM_PROCIDEALLOCATE verb parameters, RCBl lpage 5.1-32). 

Else · 
Set the RETURN_CODE of the DEALLOCATE verb to PROGRAM_PARAMETER_CHECK. 

Nhen the TYPE parameter is SYNC_LEVEL and RCB.SYNC_LEVEL is CONFIRM 
If executing FSM_CONVERSATIONIS, DEALLOCATE_CONFIRM, RCB) lpage 5.1-65) would 
cause a state-check I>) condition then 

Set the RETURN CODE of the DEALLOCATE verb to PROGRAM STATE CHECK. 
Else - - -

Call DEALLOCATE_CONFIRM_PROCIDEALLOCATE verb parameters, RCB) lpage 5.1-32). 
Nhen the TYPE parameter is SYNC_LEVEL and RCB.SYNC_LEVEL is SYNCPT 

If executing FSM_CONVERSATIONIS, DEALLOCATE_DEFER, RCBl lpage 5.1-65) would 
cause a state-check I>) condition then 

Set the RETURN_CODE of the DEALLOCATE verb to PROGRAM_STATE_CHECK. 
Else 

If the data sent by TP is on a logical record boundary then 
Call FSM_CONVERSATIONIS, DEALLOCATE_DEFER, RCB) lpage 5.1-65). 
Set the RETURN_CODE of the DEALLOCATE verb to OK. 

Else 
Set the RETURN CODE of the DEALLOCATE verb to PROGRAM STATE CHECK. 

Nhen the TYPE parameter-is ABEND_PROG, ABEND_SVC, or ABEND_TIMER -
If executing FSM_CONVERSATIONIS, DEALLOCATE_ABEND, RCB) (page 5.1-65) would 
cause a state-check (>)condition then 

Set the RETURN CODE of the DEALLOCATE verb to PROGRAM STATE CHECK. 
Else - - -

Call DEALLOCATE_ABEND_PROCIDEALLOCATE verb parameters, RCBJ lpage 5.1-31). 
Nhen the TYPE parameter is LOCAL 

If executing FSM_CONVERSATIONIS, DEALLOCATE_LOCAL, RCBl lpage 5.1-65) would 
cause a state-check I>) condition then 

Set the RETURN_CODE of the DEALLOCATE verb to PROGRAM_STATE_CHECK. 
Else 

Set the RETURN CODE of the DEALLOCATE verb to OK. 
Call FSM CONVERSATIONIS, DEALLOCATE LOCAL, RCBl I page 5.1-65). 
Call END=CONVERSATION_PROCIRCBl !page 5.1-34). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-15 



FLUSH_PROC 

FLUSH_PROC 

FUNCTION: This procedure handles the FLUSH verb processing. 

INPUT: 

OUTPUT: 

The procedure first receives records from RM and HS. Appropriate action is 
taken depending upon the type of the received record as indicated by the 
FSM_CONVERSATION and FSM_ERROR_OR_FAILURE states. 

FLUSH verb parameters, records from RM and HS 

The send MU.PS_TO_HS.TVPE field is set according to the state of 
FSM.CONVERSATION, and the return code on the FLUSH verb is set. If a sending 
MU is present and contains data, the MU will be sent to HS. See Notes for 
additional outputs. 

NOTES: 1. If PS has received a RECEIVE ERROR from HS, or no error records have been 
received, PS sends any data r;maining in the RCB send buffer to HS with the 
MU.PS TO HS.TYPE field of the SEND DATA set to FLUSH, PREPARE TO RCV FLUSH, or 
DEALLOCATE_FLUSH, depending on the state of the conve;sation: IIf a 
RECEIVE_ERROR was received, any data in PS's send buffer has already been 
purged.) 

2. If FSM ERROR OR FAILURE indicates that a conversation failure has occurred, PS 
return; to the-transaction program without sending any data to HS. Since 
FLUSH does not support RESOURCE_FAILURE return code, the error cannot be 
reported to the transaction program at this time. PS remembers the error (via 
FSM_ERROR_OR_FAILUREl and reports it to the transaction program at a later 
time li.e., when PS receives a record from the transaction program that sup-

L-~~~~~~p_o_r_t_s~a~R_E_s_o_u_R_c_E-~FA_I_L_U_R_E~r_e_t_u_rn~_c_od_e~)-·~~~~~~~~~~~~~~~~~~~--' c:=_~ 

5.1-16 

Referenced procedures, FSMs, and data structures: 
_HS 

CREATE_AND_INIT_LIMITED_MU 
END_CONVERSATION_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

Find RCB for the conversation identified in the RESOURCE parameter. 
If executing FSM_CONVERSATIONIS, FLUSH, RCBl lpage 5.1-65) would 
cause a state-check I>) condition then 

Set the RETURN CODE of the FLUSH verb to PROGRAM STATE CHECK. 
Else - - -

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTl lpage 5.1-51). 
If the state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is RCVD_ERROR 
or NO REQUESTS then I see Note ll 

Sel;ct based on the state of FSM_CONVERSATION lpage 5.1-65): 
Hhen SEND STATE 

If a s~d MU buffer exists and the MU contains data then 
Send the MU record to HS. 

Hhen PREP TO RCV DEFER 
If a s;nd-MU buffer does not exist then 

page 6.0-3 
page 5.1-30 
page 5.1-34 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MU) (page 5.1-30). 
Set MU.PS_TO_HS.TYPE to PREPARE_TO_RCV_FLUSH and send the MU record to HS. 

Hhen DEALL DEFER 
If a s~d MU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MU) (page 5.1-30). 
Set MU.PS TO HS.TYPE to DEALLOCATE FLUSH and send the MU record to HS. 

If the state of-FSM_CONVERSATION is DEALL_DEFER then 
Call END_CONVERSATION_PROCIRCB) (page 5.1-34). 

Call FSM_CONVERSATIONIS, FLUSH, RCBl lpage 5.1-65). 
Set the RETURN_CODE of the FLUSH verb to OK. 

SNA LU 6.2 Reference: Peer Protocols 

c~ 



GET_ATTRIBUTES_PROC 

GET_ATTRIBUTES_PROC 

FUNCTION: This procedure handles requests for information about a conversation. 

Information about the conversation resource is retrieved from the pertinent 
control blocks, and placed in the returned parameters of the GET_ATTRIBUTES 
verb. 

INPUT: GET_ATTRIBUTES verb parameters 

OUTPUT: GET_ATTRIBUTES verb returned parameters containing information about the con­
versation 

Referenced procedures, FSMs, and data structures: 
FSM_CONVERSATION 
PARTNER_LU 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
Set the returned parameters of the GET_ATTIBUTES verb as follows: 

PARTNER_FULLY_QUALIFIED_LU_NAME to PARTNER_LU.FULLY_QUALIFIED_LU_NAME, 
PARTNER_LU_NAME to RCB.LU_NAME, 
MODE_NAME to RCB.MODE_NAME, 
SYNC LEVEL to RCS.SYNC LEVEL, 
Set the RETURN_CODE of-the GET_ATTRIBUTES verb to OK. 

Call FSM_CONVERSATIONIS, GET_ATTRIBUTES, RCBJ !page 5.1-651. 

POST_ON_RECEIPT_PROC 

page 5.1-65 
page A-2 
page A-6 

FUNCTION: This procedure performs the processing of the POST_ON_RECEIPT verb. 

This procedure updates FSM_CONVERSATION and FSM POST, saves the post condi­
tions in the RCB, and retrieves any records originated in RM and HS. The data 
just received from RM or HS may cause the resource to be posted. 

INPUT: 

OUTPUT: 

POST_ON_RECEIPT verb parameters 

The return code of the 
state, then the state of 
does not change 

verb is updated. If the verb is issued in a valid 
FSM_POST is changed. FSM_CONVERSATION is called but 

states. Also, POST CONDITIONS.FILL and 
POST_CONDITIONS.MAX_LENGTH in the RCB are updated to the posting conditions. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATION 
FSM_POST 
RCB 

page 5.1-51 
page 5.1-65 
page 5.1-68 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-17 



POST_ON_RECEIPT_PROC 

5.1-18 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If executing FSM_CONVERSATIONIS, POST_ON_RECEIPT, RCBJ lpage 5.1-65). 
would cause a state-check I>) condition then 

Set the RETURN_CODE of the POST_ON_RECEIPT verb to PROGRAM_STATE_CHECK. 
Else 

Call FSM_CONVERSATIONIS, POST_ON_RECEIPT, RCBJ lpage 5.1-65). 
Call FSM_POST lpage 5.1-68) and pass it a POST_ON_RECEIPT signal. 
Set RCB.POST_CONDITIONS.FILL to the FILL parameters of the POST_ON_RECEIPT verb. 
Set RCB.POST_CONDITIONS.MAX LENGTH to the LENGTH parameters of the POST_ON_RECEIPT verb. 
Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTJ lpage 5.1-51!. 
Set the RETURN_CODE of the POST_ON_RECEIPT verb to OK. 

PREPARE_TO_RECEIVE_PROC 

FUNCTION: This procedure handles the PREPARE_TO_RECEIVE verb. Depending on the TYPE of 
the PREPARE TO RECEIVE I FLUSH, CONFIRM or SYNC LEVEL) and the SYNC LEVEL of 
the conver;ation !NONE, CONFIRM, or SYNCPTJ, -the processing of the PRE­
PARE_TO_RECEIVE is continued by other procedures. 

. INPUT: PREPARE_TO_RECEIVE verb parameters 

OUTPUT: If the PREPARE_TO_RECEIVE specifies TYPE = SYNC_LEVEL and the SYNC_LEVEL of 
the conversation is SYNCPT, the RETURN CODE is set to OK and FSM CONVERSATION 
is updated to indicate that completion-of the PREPARE_TO_RECEIVE processing is 
deferred until a FLUSH, CONFIRM, or SYNCPT verb is issued. Otherwise, proc­
essing is continued by other procedures. 

Referenced procedures, FSMs, and data structures: 
PREPARE_TO_RECEIVE_CONFIRM_PROC 
PREPARE_TO_RECEIVE_FLUSH_PROC 
FSM_CONVERSATION 
RCB 

page 5.1-41 
page 5.1-42 
page 5.1-65 
page A-6 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If the data sent by TP is not on a logical record boundary then 

Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb to PROGRAM_STATE_CHECK. 
Else 

Select based on the following conditions: 
Hhen the TYPE parameter of the PREPARE_TO_RECEIVE verb is FLUSH, or the TYPE is 

SYNC_LEVEL and the conversation sync level is NONE 
If executing FSM_CONVERSATIONIS, PREPARE_TO_RECEIVE~FLUSH, RCBJ lpage 5.1-65). 

would cause a state-check l>J condition then 
Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb to PROGRAM_STATE_CHECK. 

Else 
Call PREPARE_TO_RECEIVE_FLUSH_PROCIPREPARE_TO_RECEIVE verb parameters, RCBJ 

I page 5.1-42 l. 
Hhen the TYPE parameter of the PREPARE_TO_RECEIVE verb is CONFIRM 

If executing FSM_CONVERSATIONIS, PREPARE_TO_RECEIVE_CONFIRM, RCBJ (page 5.1-65). 
would cause a state-check l>J condition then 

Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb to PROGRAM_STATE_CHECK. 
Else 

If sync level of the conversation is CONFIRM or SYNCPT then 
Call PREPARE_TO_RECEIVE_CONFIRM_PROCIPREPARE_TO_RECEIVE verb parameters, RCBJ 

I page 5.1-41). 
Else 

Set the RETURN CODE of the PREPARE TO RECEIVE verb to PROGRAM PARAMETER CHECK. 
Hhen the TYPE parameter-of the PREPARE_TO_RECEIVE verb is SYNC_LEVEL and the con~ersation 

sync level is CONFIRM 
If executing FSM_CONVERSATIONIS, PREPARE_TO_RECEIVE_CONFIRM, RCBJ lpage 5.1-65). 
would cause a state-check (>) condition then 

Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb to PROGRAM_STATE_CHECK. 
Else 

Call PREPARE_TO_RECEIVE_CONFIRM_PROCIPREPARE_TO_RECEIVE verb parameters, RCBJ 
!page 5.1-41). 

SNA LU 6.2 Reference: Peer Protocols 

c 

( 
\ ' . '---~~ 



C:• 

PREPARE_TO_RECEIVE_PROC 

Hhen the TYPE parameter of the PREPARE_TO_RECEIVE verb is SYNC_LEVEL and the conversation 
sync level is SYNCPT 

If executing FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_DEFER, RCBJ lpage 5.1-65). 
would cause a state-check (>)condition then 

Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb to PROGRAM_STATE_CHECK. 
Else 

Call FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_DEFER, RCBJ !page 5.1-65). 
Set RCS.LOCKS to the LOCKS parameter in the PREPARE_TO_RECEIVE verb. 
Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb parameter to OK. 

RECEIVE_AND_HAIT_PROC 

FUNCTION: This procedure handles the RECEIVE_AND_HAIT verb. 

INPUT: 

OUTPUT: 

If the conversation is in an appropriate state (i.e., RECEIVE_AND_HAIT can be 
issued when the conversation is in the send or receive. state), processing of 
the record continues. PS first receives any records from RM and HS. Appro­
priate action is taken depending upon which, if any, record was received (as 
reflected by the state of FSM_ERROR_OR_FAILUREJ. 

RECEIVE_AND_HAIT verb parameters 

The DATA field is cleared before receiving data from HS. RCB.RQ_TO_SEND_RCVD 
is updated. If a RQ_TO_SEND has been received, an indication will be passed 
up to the TP at this time, and the field in the RCB is updated. The state of 
FSM_CONVERSATION may change. See below for additional outputs. 

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS 
returns to the transaction program after setting the RETURN_CODE parameter to 
RESOURCE FAILURE. The setting of RESOURCE_FAILURE is done after all data cur­
rently b~ffered is passed up to the transaction program. 

2. If a RECEIVE ERROR has been received from HS, PS sends a SEND_DATA record with 
the MU.PS_TO=HS.TYPE field set to PREPARE_TO_RCV_FLUSH to HS. (Any data in 
the RCB send buffer was purged when the RECEIVE_ERROR record was received.) 
PS then waits for the expected FMH-7 error message to arrive. The RETURN_CODE 
parameter of the RECEIVE_AND_HAIT is set based on the sense data carried in 
the FMH-7. 

3. If the conversation is in the SEND state, PS sends the MU record, containing 
all saved data from the transaction program, with the MU.PS_TO_HS.TYPE field 
set to PREPARE_TO_RCV_FLUSH to HS. Regardless of the state of the conversa­
tion, PS initializes the post conditions, waits for information to arrive to 
cause the conversation to become posted, and returns to the transaction pro­
gram with the received information. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
DE~UEUE_FMH7_PROC 

RECEIVE_AND_TEST_POSTING 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

page 6.0-3 
page 5.1-30 
page 5.1-34 
page 5.1-50 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-19 



RECEIVE_AND_HAIT_PROC 

5.1-20 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If executing FSM_CONVERSATIONCS,RECEIVE_AND_HAIT, RCB) would 
cause a state-check (>)condition then 

Set the RETURN_CODE of the RECEIVE_AND_HAIT verb to PROGRAM_STATE_CHECK. 
Else 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSCempty SUSPEND_LISTl (page 5.1-51). 
If the state of FSM_ERROR_OR_FAILURE is RCVD_ERROR then Csee Note 2) 

If the state of FSM_CONVERSATION is SEND_STATE then (see Note 3) 
If a send MU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MU) Cpage 5.1-30). 
Set MU.PS TO HS.TYPE to PREPARE TO RCV FLUSH and send the MU record to HS. 

If the FMH7 Is ~ot in the RCB.HS_TO_PS_BUFFER_LIST then 
Call RECEIVE_RM_OR_HS_TO_PS_RECORDSCSUSPEND_LIST containing RCB_IDl (page 5.1-51). 

If the state of FSM_ERROR_OR_FAILURE is CONV_FAILURE_SON or 
CONV FAILURE PROTOCOL ERROR then Csee Note ll 

If-the state of FSM-ERROR OR FAILURE is CONV FAILURE SON then 
Set the RETURN_CODE of-th; RECEIVE_AND_HAIT verb to RESOURCE_FAILURE_RETRY. 

Else 
Set the RETURN_CODE of the RECEIVE_AND_HAIT verb to RESOURCE_FAILURE_NO_RETRY. 

Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBl (page 5.1-65). 
Else 

Call DEQUEUE_FMH7_PROCIRECEIVE_AND_HAIT verb parameters, RCB) (page 5.1-34). 
Else 

Call FSM_CONVERSATIONCS, RECEIVE_AND_HAIT, RCBl (page 5.1-65). 
Initialize the DATA parameter of the RECEIVE_AND_HAIT verb to null. 
Call RECEIVE~AND_TEST_POSTINGIRCB, RECEIVE_AND_HAIT verb parameters) Cpage 5.1-50). 

Set REQUEST_TO_SEND_RECEIVED of the RECEIVE_AND_HAIT verb to RCB.RQ_TO_SEND_RCVD. 
Set RCB.RQ_TO_SEND_RCVD to NO. 

SNA LU 6.2 Reference: Peer Protocols 



C· .. ., 
) 

/ 

C: 

RECEIVE_It91EDIATE_PROC 

RECEIVE_IMMEDIATE_PROC 

FUNCTION: This procedure performs the processing of the RECEIVE_IMMEDIATE verb. It 
receives any information available from the specified conversation, but does 
not wait for information to arrive. 

INPUT: 

OUTPUT: 

The procedure first receives any records from the RM_TO_PS and HS TO PS 
queues. Appropriate action is taken depending upon which, if any, reco~ ;;as 
received Cas reflected by the state of FSH_ERROR_OR_FAILUREJ. 

RECEIVE_IMMEDIATE verb parameters 

The RCB.POST_CONDITIONS.MAX_LENGTH and FILL are updated to reflect the values 
on the verb. The DATA field of the RECEIVE IMMEDIATE verb is cleared before 
the data is received from HS. After receive processing is performed, the 
state of FSM POST is reset and the data is returned to the TP. The 
RETURN CODE a~d REQUEST TO SEND RECEIVED fields of the RECEIVE IMMEDIATE 
record-are also set to i~di~te the result of the verb. See below-for addi­
tional output. 

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS 
returns to the transaction program after setting the RETURN_CODE field in the 
RECEIVE_IMMEDIATE to RESOURCE_FAILURE. 

2. If a RECEIVE ERROR has been received from HS, PS waits for the expected FMH-7 
error messag; to arrive. The RETURN_CODE field in the RECEIVE_IMMEDIATE is 
set based on the sense data carried in the FMH-7. 

3. If no error or failure condition has occurred, PS calls PER­
FORM_RECEIVE_PROCESSING Cpage 5.1-401, which checks to see if any information 
has arrived on the specified conversation and passes the received information 
lif any) to the transaction program. 

Referenced procedures, FSMs, and data structures: 
DEQUEUE_FMH7_PROC 
PERFORM_RECEIVE_PROCESSING 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSH_CONVERSATION 
FSM_ERROR_OR_FAILURE 
FSM_POST 
RCB 

page 5.1-34 
page 5.1-40 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page 5.1-68 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-21 



RECEIVE_IMMEDIATE_PROC 

s.1-22 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If executing FSH_CONVERSATIONlS, RECEIYE_IMMEDIATE, RCB) would 
cause a state-check l>l condition then 

SET the RETURN_CODE of the RECEIYE_IMHEDIATE verb to PROGRAH_STATE_CHECK. 
Else 

Call RECEIYE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTl (page 5.1-511. 
If the state of FSH_ERROR_OR_FAILURE is RCYD_ERROR then 

If the FMH7 is not in the RCB.HS_TO_PS_BUFFER_LIST then 
Call RECEIYE_RM_OR_HS_TO_PS_RECORDSlSUSPEND_LIST containing RCB_IDl (page 5.1-511. 

If the state of FSH_ERROR_OR_FAILURE is CONY_FAILURE_SON or 
CONY_FAILURE_PROTOCOL_ERROR then 

If the state of FSH_ERROR_OR_FAILURE is CONY_FAILURE_SON then 
Set the RETURN_CODE of the RECEIYE_IMMEDIATE verb to RESOURCE_FAILURE_RETRY. 

Else 
Set the RETURN_CODE of the RE.CEIYE_IMMEDIATE verb to RESOURCE_FAILURE_NO_RETRY. 

Call FSM_CONYERSATIONlR. RESOURCE_FAILURE_Rc. RCB) !page 5.1-65). 
Else 

Call DEQUEUE_FMH7_PROClRECEIYE_IMMEDIATE verb parameters, RCBl (page 5.1-341. 
Else (see Notes land 3) 

Call FSH_CONYERSATION(S, RECEIYE_IMMEDIATE, RCBJ (page 5.1-651. 
Set RCB.POST_CONDITIONS.MAX_LENGTH to the RECEIYE_IMMEDIATE verb MAX_LENGTH value. 
Set RCB.POST_CONDITIONS.FILL to the RECEIYE_IMHEDIATE verb FILL value. 

Initialize the DATA parameter of the RECEIYE_IMMEDIATE verb to null. 
Call PERFORM_RECEIYE_PROCESSINGIRCB, RECEIYE_IHHEDIATE verb parameters) lpage 5.1-401. 
Call FSM_POST !page 5.1-681 and pass it a RECEIYE_IHHEDIATE signal. 

Set HAX_LENGTH of the RECEIYE_IHHEDIATE verb to the length of data returned. 
Set REQUEST_TO_SEND_RECEIYED of the RECEIYE_IMHEDIATE verb to RCB.RQ_TO_SEND_RCYD. 
Set RCB.RQ_TO_SEND_RCYD to NO. 

SNA LU 6.2 Reference: Peer Protocols 

C'· 
I 

/ 



REQUEST_TO_SEND_PROC 

REQUEST_TO_SEND_PROC 

FUNCTION: This procedure handles REQUEST_TO_SEND verb processing. 

INPUT: 

If the conversation is in the RECEIVE state, PS completes the processing of 
the REQUEST_TO_SEND record, as described below. 

REQUEST_TO_SEND verb parameters 

OUTPUT: The REQUEST_TO_SEND return code is updated, and a REQUEST_TO_SEND will be 
sent. See below for additional outputs. 

NOTES: 1. Since REQUEST_TO_SEND does not support a RESOURCE_FAILURE return code, error 
conditions cannot be relayed to the transaction program at this time. PS 
remembers the error (via FSM_ERROR_OR_FAILURE) and reports it to the trans­
action program at a later time !i.e., when a verb is issued by the transaction 
program that supports a RESOURCE_FAILURE return code). 

2. A REQUEST TO SEND record is not sent to HS if the partner transaction program 
has already issued a DEALLOCATE for the specified conversation. 

3. A REQUEST_TO_SEND record is not sent to HS if the partner transaction program 
has already issued a PREPARE_TO_RECEIVE for the specified conversation. 

4. If no records have been received from HS, or records have been received 
not indicate DEALLOCATE or PREPARE_TO_RCV, this procedure 
REQUEST_TO_SEND to HS and waits for the expected RSP_TO_REQUEST_TO_SEND 
returning to the transaction program. 

but do 
sends 

before 

Referenced procedures, FSMs, and data structures: 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
SEND_REQUEST_TO_SEND_PROC 
HAIT_FOR_RSP_TO_R~TO_SEND_PROC 

FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCS 

Find the RCS for the conversation identified in the RESOURCE parameter. 
If executing FSM_CONVERSATION!S, RECEIVE_IMMEDIATE, RCS) would cause 
a state-check (>)condition then 

Set the RETURN CODE of the REQUEST TO SEND verb to PROGRAM STATE CHECK. 
Else - - - - -

Call RECEIVE_RM_OR_HS_TO_PS_RECORDS!empty SUSPEND_LIST) (page 5.1-51). 

page 5.1-51 
page 5.1-58 
page 5.1-63 
page 5.1-65 
page 5.1-67 
page A-6 

If the state of FSM ERROR OR FAILURE is NO REQUESTS or RCVD ERROR (see Note 1) then 
Select based on the re~ei~ed end-of-chain type for the c~nversation: 

Hhen DEALLOCATE FLUSH or DEALLOCATE CONFIRM (see Note 2) 
Do nothing. - -

Hhen PREPARE TO RCV FLUSH or PREPARE_TO_RCV_CONFIRM !see Note 3) 
Do nothing. - -

Otherwise (see Note 4) 
Call SEND_REQUEST_TO_SEND_PROCIRCS) (page 5.1-58). 
Call HAIT_FOR_RSP_TO_R~TO_SEND_PROCIRCS) (page 5.1-63). 

Set the RETURN_CODE of the REQUEST_TO_SEND verb to OK. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-23 



SEND_DATA_PROC 

5.1-24 

SEND_DATA_PROC 

.----------------.(: 
FUNCTION: 

INPUT: 

OUTPUT: 

This procedure handles the receipt of data from the transaction program. 

If the resource specified in the SEND_DATA is valid and the conversation is in 
the SEND state, processing of the record continues. PS first retrieves any 
records from RM and HS. Appropriate action is taken depending upon which, if 
any, record was received. 

SEND_DATA verb parameters and a possible R~TO_SEND may have been received on 
this conversation. 

The RETURN_CODE of the SEND_DATA verb is set. The states of FSM_CONVERSATION 
and FSM_ERROR_OR_FAILURE may changed. If R~TO_SEND_RCVD has been received, 
an indication is stored in the RCB.R~TO_SEND_RCVD field. This YES/NO indi­
cation will be passed up to the TP and then the RCB.R~TO_SEND_RCVD field is 
reset to indicate that no R~TO_SENDs are outstanding. See Notes for addi­
tional outputs. 

NOTES: 1. If a CONVERSATION_FAILURE record has been received from the resources manager, ,,-----... 
PS returns to the transaction program after setting the RETURN_CODE parameter f 

of the SEND_DATA to RESOURCE_FAILURE. \_ __ _,, 

2. If a RECEIVE ERROR has been received from HS, PS sends a SEND_DATA record with 
the MU.PS_TO=HS.TYPE field set to PREPARE_TO_RCV_FLUSH to HS. !Any data in 
the RCB send buffer was purged when the RECEIVE_ERROR record was received. ) 
PS then waits for the expected FMH-7 error message to arrive. The RETURN CODE 
parameter of the SEND_DATA is set based on the sense data carried i~ the 
FMH-7. 

3. If no error or failure condition has occurred, PS scans the data in the passed 
SEND DATA for logical record boundaries. !PS maintains in the RCB a count of 
the ~umber of bytes of data remaining to be sent from the transaction program 
to finish the current logical record.) If there is enough data to send to HS, 
PS sends it. 

/,,,------.__ 

\ .._ ___________________________________________ __.,...__~ ..... -
Referenced procedures, FSMs, and data structures: 

HS 
CREATE_AND~INIT_LIMITED_MU 

DEQUEUE_FMH7_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
SEND_DATA_BUFFER_MANAGEMENT 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If executing FSM_CONVERSATION(S, RECEIVE_IMMEDIATE, RCBl would cause a 
state-check I>) condition then 

Set the RETURN_CODE of the SEND_DATA verb to PROGRAM_STATE_CHECK. 
Else 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LIST) lpage 5.1-51). 
Select based on the state of FSM ERROR OR FAILURE 

Hhen CONV FAILURE PROTOCOL ERROR or-CONV FAILURE SON (see Note 11 
If the-state of FSM_ERROR_OR_FAILURE Ts CONV_FAILURE_SON then 

page 
page 
page 
page 
page 
page 
page 
page 
page 

Set the RETURN_CODE of the SEND_DATA verb to RESOURCE_FAILURE_RETRY. 
Else 

6.0-3 
5.1-30 
5.1-34 
5.1-51 
5.1-54 
5.1-65 
5.1-67 
A-29 
A-6 

Set the RETURN_CODE of the SEND_DATA verb to RESOURCE_FAILURE_NO RETRY. 
Call FSM_CONVERSATIONtR, RESOURCE_FAILURE_RC, RCB) ·1page 5.1-651. 

SNA LU 6.2 Reference: Peer Protocols 

(_: 



c 

C' 
/ 

0 

0 

0 

SEND_DATA_PROC 

Hhen RCVD ERROR (see Note 21 
If a s;nd MU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUCRCB, created MU) !page 5.1-30). 
Set MU.PS TO HS.TYPE to PREPARE TO RCV FLUSH and send the MU record to HS. 
Call RECEIVE=RM_OR_HS_TO_PS_RECORDSCSUSPEND_LIST containing RCB_IDJ (page 5.1-51). 

If the state of FSM ERROR OR FAILURE is CONV FAILURE SON or 
CONV FAILURE PROTOCOL ERROR-I see Note lJ th;n -

If-the state of FSM-ERROR OR FAILURE is CONV FAILURE SON then 
Set the RETURN_CODE of-th; SEND_DATA verb-to RESOURCE_FAILURE_RETRY. 

Else 
Set the RETURN_CODE of the SEND_DATA verb to RESOURCE_FAILURE_NO_RETRY. 

Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBl !page 5.1-65). 
Else 

Call DEQUEUE_FMH7_PROCCSEND_DATA verb parameters, RCBJ !page 5.1-341. 
Hhen NO REQUESTS (see Note 3) 

Set the RETURN CODE of the SEND DATA verb to OK. 
If MAX_LENGTH ~f the SEND_DATA ~erb is greater than 0 then 

Perform the LL processing (see Note 3). 
If LL is not valid li.e., values X'OOOO', X'8000', and X'8001' are not valid; 

X'OOOl' is valid only for PS headers--see SNA Formats) then 
Set the RETURN_CODE of the SEND_DATA verilto PROGRAM_PARAMETER_CHECK. 

Else 
Call SEND DATA BUFFER MANAGEMENTIDATA from SEND DATA verb, RCBJ lpage 5.1-54). 

Set REQUEST_TO_SEND_RECEIVED of the SEND_DATA verb to RCB.R°Q_TO_SEND_RCVD. 
Set RCB.RQ_TO_SEND_RCVD to NO. 

SEND_ERROR_PROC 

FUNCTION: This procedure handles the SEND_ERROR verb processing. 

INPUT: 

OUTPUT: 

NOTES: 1. 

If the resource specified in the SEND_ERROR is valid and the conversation is 
in an appropriate state, processing of the SEND_ERROR continues. PS first 
retrieves any records from RM and HS. Appropriate action is taken depending 

·upon which, if any, record was received las reflected by the state of 
FSM_ERROR_OR_FAILUREl. 

SEND_ERROR verb parameters 

The return code of the SEND_ERROR verb is updated. If the RCB indicates that 
a RQ_TO_SEND_RCVD has been received, it will be passed up to the TP at this 
time and the RCB.RQ_TO_SEND_RCVD field will be reset to NO. The state of 
FSM_CONVERSATION may be changed. See below for additional outputs. 

If a CONVERSATION FAILURE has been received from the resources manager, PS 
returns to the tra~saction program after setting the RETURN_CODE parameter of 
the SEND_ERROR to RESOURCE_FAILURE. 

2. If RECEIVE ERROR has been received from HS or no error records have been 
received, further processing of the SEND_ERROR is performed, depending upon 
the state of the conversation. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
SEND_ERROR_DONE_PROC 
SEND_ERROR_IN_RECEIVE_STATE 
SEND_ERROR_IN_SEND_STATE 
SEND_ERROR_TO_HS_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

page 5.1-51 
page 5.1-55 
page 5.1-56 
page 5.1-57 
page 5.1-58 
page 5.1-65 
page 5.1-67 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-25 



SEND_ERROR_PROC 

5.1-26 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If executing FSM CONVERSATIONIS, SEND ERROR, RCBJ would cause a 
state-check (>)-condition then -

SET the RETURN CODE of the SEND ERROR verb to PROGRAM STATE CHECK. 
Else - - - -

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTJ lpage 5.1-51). 
Select based on the state of FSM_ERROR_OR_FAILURE lpage 5.1-67): 

Hhen CONV FAILURE PROTOCOL ERROR or CONV FAILURE SON I see Note ll 
Call FSM_CONVERSATIONIS~ SEND_ERROR, RCBJ (page 5.1-651. 
If the state of FSM_ERROR_OR_FAILURE is CONV_FAILURE_SON then 

Set the RETURN_CODE of the SEND_ERROR verb to RESOURCE_FAILURE_RETRY. 
Else 

Set the RETURN_CODE of the SEND_ERROR verb to RESOURCE_FAILURE_NO RETRY. 
Call FSM CONVERSATIONIR, RESOURCE FAILURE RC, RCBJ lpage 5.1-651. 

Hhen NO_REQUESTS or RCVD_ERROR (see Note 2) -
Select based on the state of FSM_CONVERSATION (page 5.1-65): 

Hhen SEND STATE 
Call SEND_ERROR_IN_SEND_STATEISEND_ERROR verb parameters, RCBJ !page 5.1-57). 

Hhen RCVD CONFIRM, RCVD CONFIRM SEND, or RCVD CONFIRM DEALL 
Call SEND_ERROR_TO_HS_PROCIRCBJ (page 5.1-58>. -
Call FSM_CONVERSATIONIS, SEND_ERROR, RCBJ !page 5.1-651. 
Call SEND_ERROR_DONE_PROCISEND_ERROR verb parameters, RCBJ !page 5.1-55). 

Hhen RCV STATE 
Call SEND_ERROR_IN_RECEIVE_STATEISEND_ERROR verb parameters, RCBJ (page 5.1-56). 

Set REQUEST_TO_SEND_RECEIVED of the SEND_ERROR verb to RCB.RQ.._TO_SEND_RCVD. 
Set RCB.RQ_TO_SEND_RCVD to NO. 

TEST_PROC 
(r-,\ 

~--------------------------------------------· 

FUNCTION: This procedure performs the processing of a TEST record. 

INPUT: 

The procedure first receives any records from RM 
er the conversation has been posted or whether 
has been received from the remote transaction. 
records the result of the test. 

TEST record 

and HS. It then tests wheth­
REQUEST_TO_SEND notification 

The RETURN_CODE field of TEST 

OUTPUT: The RETURN_CODE field of TEST records the result of the test. If the TP is 
informed that a RQ.._TO_SEND has been received, then the RCB.RQ.._TO_SEND_RCVD /~ 

.__ _______ f_ie_l_d_i_s_r_e_s_e_t_t_o_N_o_. -----------------------------'\,,,_ . .--

Referenced procedures, FSMs, and data structures: 
DEQUEUE_FMH7_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
TEST_FOR_POST_SATISFIED 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
FSM_POST 
RCB 

SNA LU 6.2 Reference: Peer Protocols 

page 5.1-34 
page 5.1-51 
page 5.1-60 
page 5.1-65 
page 5.1-67 
page 5.1-68 
page A-6 



c, 

TEST_PROC 

Find the RCB for the resource identified in the RESOURCE field of the TEST record. 
Set the RETURN_CODE of the TEST verb of TEST to OK. 
Call RECEIVE_RM_OR_HS_TO_PS_RECORDSCempty SUSPEND_LIST) Cpage 5.1-51). 
Select based on the TEST parameter of the TEST verb: 

Hhen POSTED 
If executing FSM_CONVERSATIONCS, TEST_POSTED, RCS) !page 5.1-65) 
would cause a state-check C>) condition then 

Set the RETURN_CODE of the TEST verb to PROGRAM_STATE_CHECK. 
Else 

If state of FSM POST is RESET then 
Set the RETURN_CODE of the TEST verb to POSTING_NOT_ACTIVE. 

Else 
Select based on the state of FSM_ERROR_OR_FAILURE lpage 5.1-67): 

Hhen CONV_FAILURE_SON 
Set the RETURN CODE of the TEST verb to RESOURCE FAILURE RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB) (page-5.1-65). 

Hhen CONV_FAILURE_PROTOCOL_ERROR 
Set the RETURN_CODE of the TEST verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB) (page 5.1-65). 

Hhen RCVD ERROR 
If the-FMH7 is not in the RCB.HS_TO_PS_BUFFER_LIST then 

Call RECEIVE_RH_OR_HS_TO_PS_RECORDSISUSPEND_LIST containing RCB_ID) 
!page 5.1-51). 

If state of FSM_ERROR_OR_FAILURE (page S.1-671 is CONV_FAILURE_SON or 
CONV FAILURE PROTOCOL ERROR then 

If-state of FSH_ERROR_OR_FAILURE lpage 5.1-67) is CONV_FAILURE_SON then 
Set the RETURN_CODE of the TEST verb to RESOURCE_FAILURE_RETRY. 

Else 
Set the RETURN_CODE of the TEST verb to RESOURCE_FAILURE_NO_RETRY. 

Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-65). 
Else 

Call DEQUEUE_FHH7_PROCCTEST verb parameters, RCBI Cpage 5.1-34). 
Hhen NO REQUESTS 

Call-TEST_FOR_POST_SATISFIEDIRCBI Cpage 5.1-601. 
Select on state of FSM_POST: 

Hhen PEND POSTED 
Set th; RETURN_CODE of the TEST verb to UNSUCCESSFUL. 

Hhen POSTED 
If an FMH-7 is the next thing to process then 

Call DEQUEUE_FMH7_PROCITEST verb parameters, RCBI 
(page 5.1-341. 

Else 
Set the RETURN_CODE subcode to NOT_DATA or DATA as 
appropriate. 

If the state of FSM_CONVERSATION is not END_CONV then lpage 5.1-651. 
Call FSM_CONVERSATIONIS, TEST, RCBI Cpage 5.1-65). 

Call FSM_POST Cpage 5.1-68) and pass it a TEST signal. 
Hhen REQUEST TO SEND RECEIVED 

If executing-FSM_CONVERSATIONIS, TEST_R~TO_SEND_RCVD, RCB) Cpage 5.1-65) 
would cause a state-check (>)condition then 

Set the RETURN_CODE of the TEST verb to PROGRAH_STATE_CHECK. 
Else 

If RCB.R~TO_SEND_RCVD is YES then 
Set RCB.R~TO_SEND_RCVD to NO. 

Else 
Set the RETURN_CODE of the TEST verb to UNSUCCESSFUL. 

Call FSM_CONVERSATIONIS, TEST_R~TO_SEND_RCVD, RCB) Cpage 5.1-65). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-27 



LOH-LEVEL PROCEDURES 

5.1-28 

COHPLETE_CONFIRH_PROC 

FUNCTION: This procedure completes the processing of a CONFIRM verb. 

It is called by CONFIRM_PROC (page 5.1-12) when no error or failure condi­
tions are indicated by FSM_ERROR_OR_FAILURE !page 5.1-67). The action of this 
procedure is dependent on the state of the conversation, as described below. 

INPUT: CONFIRM parameters and the RCB corresponding to the resource specified in the 
CONFIRM verb 

OUTPUT: The MU.PS_TO_HS.TVPE field is set before sending the MU to HS. See Notes for 
additional outputs. 

NOTES: 1. If FSM_CONVERSATION is in the SEND_STATE, an MU with MU.PS_TO_HS.TYPE field 
set to CONFIRM is sent to HS. 

2. If FSM CONVERSATION is in the PREPARE_TO_RECEIVE_DEFER state, an MU with 
MU.PS_TO_HS.TVPE field set to PREPARE_TO_RCV_CONFIRM is sent to HS. 

3. If FSM CONVERSATION is in the DEALLOCATE DEFER state, an MU with 
MU.PS_TO=HS.TVPE field set to DEALLOCATE_CONFIRH-is sent to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
HAIT_FOR_CONFIRMED_PROC 
FSM_CONVERSATION 
MU 
RCB 

If a send MU buffer does not exist then 
Call CREATE AND INIT LIMITED MU(RCB, created MU) (page 5.1-30). 

Select based o~ th; state of FSM_CONVERSATION (page 5.1-65): 
Hhen SEND STATE (see Note ll 

Set MU:Ps TO HS.TYPE to CONFIRM and send the MU record to HS. 
Hhen PREP_TO=RCV_DEFER (see Note 2) 

page 6.0-3 
page 5.1-30 
page 5.1-61 
page 5.1-65 
page A-29 
page A-6 

Set MU.PS TO HS.TYPE to PREPARE TO RCV CONFIRM SHORT or PREPARE_TO_RCV_CONFIRM_LONG as 
indicated by RCS.LOCKS and send the MU record-to HS. 

Hhen DEALL DEFER (see Note 3) 
Set MU.PS_TO_HS.TVPE to DEALLOCATE_CONFIRM and send the MU record to HS. 

Call FSM_CONVERSATIONCS, CONFIRM, RCBl (page 5.1-65). 
Call HAIT_FOR_CONFIRMED_PROC(CONFIRM verb parameters, RCBl !page 5.1-61). 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c 

c 



0 

0 

COMPLETE_DEALLOCATE_ABEND_PROC 

COMPLETE_DEALLOCATE_ABEND_PROC 

FUNCTION: This procedure completes the processing of a DEALLOCATE verb that specifies 
TYPE = ABEND. 

If an MU buffer for storage of data sent by the transaction program currently 
exists, PS sends it to the HS and another MU buffer is obtained for storing 
the FMH-7J otherwise, a new MU buffer is obtained for storing the FMH-7. PS 
creates an FMH-7 and places it in the newly-created MU. The FMH-7 carries 
sense data indicating DEALLOCATE_ABEND. If any log data is associated with 
the DEALLOCATE, PS creates an Error Log GDS variable (see SNA Formats) and 
places it in·the MU to be sent to the partner LU. PS also places the GDS var­
iable lminus the LL and GDS ID fields) in the local LU's system error log. PS 
then sends the MU, containing the FMH-7 and optional Error Log GDS variable, 
to HS. 

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

OUTPUT: One or more MUs are sent to HS. 
logged. 

Any log data supplied with the DEALLOCATE is 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
SEND_DATA_BUFFER_MANAGEMENT 
MU 

Set sense data based on the TYPE parameter of the DEALLOCATE verb as follows: 
to X'08640000' if ABEND_PROG, or 
to X'08640001' if ABEND_svc, or 
to X'8640002'if ABEND TIMER. 

If a send MU buffer exists then 
Send the MU record to HS. 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUJ lpage 5.1-30). 
If LOG_DATA parameter has been supplied then 

page 6.0-3 
page 5.1-30 
page 5.1-54 
page A-29 

Store the FHH-7 indicating log data present and sense data in the MU. 
Create an Error Log GDS variable lsee SNA Formats for format). 
Call SEND_DATA_BUFFER_MANAGEMENTIError-rog·GDS variable, RCBJ lpage 5.1-54) 

to concatenate the error log GDS variable to the FMH-7 in the MU. 
Log the Error Log GDS variable in the system error log. 

Else 
Store the FHH-7 with sense data but no log data present in the MU. 

Set MU.PS_TO_HS.TYPE to DEALLOCATE_FLUSH and send the MU record to HS. 

CONVERSATION_FAILURE_PROC 

FUNCTION: This procedure processes CONVERSATION_FAILURE records. 

INPUT: A CONVERSATION_FAILURE record 

OUTPUT: FSH ERROR OR FAILURE is set to the appropriate state. PS remembers the con­
ver;ation-failure until that information can be relayed to the transaction 
program. If posting is active, FSM~POST is called to change the state to 
POSTED. 

Referenced procedures, FSMs, and data structures: 
FSM_ERROR_OR_FAILURE 
FSM_POST 
CONVERSATION_FAILURE 
RCB 

page 5.1-67 
page 5.1-68 
page A-21 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-29 



CONVERSATION_FAILURE_PROC 

5.1-30 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If the RCB for the CONVERSATION FAILURE record is found, then 

If CONVERSATION FAILURE.REASON is PROTOCOL VIOLATION then 
Call FSM_ERROR_OR_FAILURE (page 5.1-67)-and pass it a CONV_FAIL_PROTOCOL signal. 

Else 
Call FSM_ERROR_OR_FAILURE !page 5.1-67) and pass it a CONV_FAIL_SON signal. 

If the state of FSM POST is PENO POSTED then 
Call FSM_POST (p;ge 5.1-68) a~d pass it a POST .signal. 

CREATE_ANO_INIT_LIMITED_MU 

FUNCTION: This procedure creates and 
buffer pool associated with 
RCS. 

initializes an MU in a buffer from the limited 
the LIMITED_BUFFER_POOL_ID value stored in the 

INPUT: The RCS corresponding to the conversation for which the MU is being requested. 

OUTPUT: Appropriate fields in the MU are initialized, the MU is returned to the call­
ing procedure. 

NOTE: As a result of a race condition, the half-session for this PS may have been 
destroyed and PS has not received the CONVERSATION_FAILURE record from RM. 
Hhen the. half-session is destroyed, the POOL for the buffers is also 
destroyed; thus, the attempt to retrieve a POOL buffer will fail with a 
BAD_POINTER return code. The calling tree structure of the PS process 
requires that a buffer be present, so a demand buffer is obtained before 
returning from this procedure. Later, this demand buffer will be freed when 
PS attempts to send the buffer to HS and discovers that HS has been destroyed. 

Referenced procedures, FSMs, and data structures: 
MU 
RCS 

Get buffer for MU-buffer size 1s RCB.SEND_RU_SIZE. 

Call buffer manager !GET_SUFFER, limited buffer pool ID, wait) to create a 
MU buffer; the buffer from this pool will be equal to the SEND_RU_SIZE 
value stored in the RCS !Appendix Bl. 

If the buffer manager return code is BAD_POINTER !see Note) then 

page A-29 
page A-6 

Call buffer manager !GET_SUFFER, demand, buffer size, wait) to create a buffer 
for the MU record; specify the buffer size to be RCB.SEND_RU_SIZE plus the 
length of the MU overhead !Appendix S). 

Initialize fields in the MU 

Set MU.HEADER TYPE to PS TO HS. 
Set MU.PS TO HS.BRACKET ID to RCS.BRACKET ID. 
Set MU.PS-TO-HS.PS TO HS VARIANT to SEND DATA RECORD. 
Set MU.PS-TO-HS.ALLOCATE-to NO. - -
Set MU.PS-TO-HS.FMH to NO. 
Set MU.PS-TO-HS.TYPE to FLUSH. 
Set MU.DCF t~ indicate the length of data and the RH field. 

The MU is available for storing data from the TP. 

SNA LU 6.2 Reference: Peer Protocols 

~ 
( 
\ 
"-... 



() 

DEALLOCATE_ABEND_PROC 

DEALLOCATE_ABEND_PROC 

FUNCTION: 

INPUT: 

This procedure is invoked when the TYPE parameter of DEALLOCATE verb is 
ABEND_PROG, ABEND_SVC, or ABEND_TIMER. 

PS first receives any records from RM and HS. Appropriate action is taken 
depending upon which, if any, record was received and.upon the state of the 
conversation. The state of the conversation and the information in the 
HS TO PS BUFFER LIST determine whether or not a SEND ERROR MU is sent to HS 
prior-to-sending the FMH-7 that is created as a result-of the DEALLOCATE ITYPE 
=ABEND_*). Receipt of certain types of information (e.g., notification that 
the conversation has been deallocated by the partner transaction program) 
causes PS to return to the transaction program without taking any action. 

DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

OUTPUT: Depending upon the state of the conversation and the information contained in 
the HS TO PS BUFFER LIST, an FMH-7 !possibly preceded by a SEND_ERROR MUJ is 
created a~d ~ent to-HS, or no output is created. All received MUs are purged 
from the HS_TO_PS_BUFFER_LIST before returning to the transaction program. 

Referenced procedures, FSMs, and data structures: 
COMPLETE_DEALLOCATE_ABEND_PROC 
END_CONVERSATION_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
SEND_ERROR_TO_HS_PROC 
HAIT_FOR_SEND_ERROR_DONE_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTJ lpage 5.1-51). 

page 5.1-29 
page 5.1-34 
page 5.1-51 
page 5.1-58 
page 5.1-64 
page 5.1-65 
page 5.1-67 
page A-6 

If the state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is NO_REQUEST or RCVD_ERROR then 
Select based on the state of FSM_CONVERSATION lpage 5.1-65): 

Hhen RCV_STATE 
If DEALLOCATE_FLUSH has not been received on the conversation then 

Call SEND_ERROR_TO_HS_PROCIRCBJ lpage 5.1-58). 
Call HAIT_FOR_SEND_ERROR_DONE_PROCIDEALLOCATE parameters, RCBJ (page 5.1-64). 

Hhen RCVD_CONFIRM, RCVD_CONFIRM_SEND, or RCVD_CONFIRM_DEALL 
Call SEND_ERROR_TO_HS_PROCIRCBJ (page 5.1-58). 
Call COMPLETE DEALLOCATE ABEND PROCIDEALLOCATE verb parameters, RCBJ lpage 5.1-29). 

Hhen SEND STATE,-PREP TO RCV DEFER, or DEALL DEFER 
Call COMPLETE DEALLOCATE ABEND PROCIDEALLOCATE verb parameters, RCBJ (page 5.1-29). 

Set the RETURN_CODE of-the DEALLOCATE v;rb to OK. 
Call FSM_CONVERSATIONIS, DEALLOCATE_ABEND, RCBJ lpage 5.1-65). 
Call END_CONVERSATION_PROCIRCBJ lpage 5.1-34). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-31 



DEALLOCATE_CONFIRM_PROC 

DEALLOCATE_CONFIRM_PROC 
(' 

5.1-32 

..----------------------------------------------. \_ 

FUNCTION: This procedure is invoked when DEALLOCATE TYPECCONFIRMJ or DEALLOCATE 
TYPECSYNC_LEVELJ is issued for a conversation whose SYNC_LEVEL is CONFIRM. 

INPUT: 

OUTPUT: 

PS first retrieves any records from HS. Appropriate action is taken depe~ing 
upon which, if any, record was received. 

DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

See below. 

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS 
returns to the transaction program after setting the RETURN_CODE parameter of 
the DEALLOCATE to RESOURCE_FAILURE. 

2. If a RECEIVE ERROR has been received from HS, PS sends a SEND DATA record with 
the MU.PS_TO=HS.TYPE field set to PREPARE_TO_RCV_FLUSH to HS. !Any data in 

..___, 

the RCB send buffer was purged when the RECEIVE_ERROR record was received.) (-~ 

PS then waits for the expected FMH-7 error message to arrive. The RETURN_CODE 
parameter of the CONFIRM is set based on the sense data carried in the FMH-7. \" __ ,--

3. If no error or failure condition has occurred, PS sends an MU with the 
MU.PS_TO_HS.TYPE field set to DEALLOCATE_CONFIRM to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
DEQUEUE_FMH7_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
HAIT_FOR_CONFIRMED_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

page 6.0-3 
page 5.1-30 
page 5.1-34 
page 5.1-51 
page 5.1-61 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

If the data sent by TP is not at a logical record boundary then 
Set the RETURN_CODE of the DEALLOCATE verb to PROGRAM_STATE_CHECK. 

Else 
Call FSM_CONVERSATIONCS, DEALLOCATE_CONFIRM, RCBJ !page 5.1-65). 
Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTJ !page 5.1-51). 
Select based on the state of FSM_ERROR_OR_FAILURE !page 5.1-67): 

Hhen CONV FAILURE PROTOCOL ERROR !see Note ll 
Set th; RETURN=CODE of the DEALLOCATE verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM CONVERSATIONCR, RESOURCE FAILURE RC, RCBJ (page 5.1-65). 

Hhen CONV FAILURE SON I see Note ll - -
Set th; RETURN=CODE of the DEALLOCATE verb to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_RC, RCBJ (page 5.1-65). 

Hhen RCVD ERROR (see Note 2) 
If a s;nd MU buffer does. not exist then 

Call CREATE_AND_INIT_LIMITED_MUCRCB, created MUJ (page 5.1-30). 
Set MU.PS_TO_HS.TYPE to PREPARE_TO_RCV_FLUSH and send the MU to record HS. 
If the FMH7 is not in the RCS.HS TO PS BUFFER LIST then 

Call RECEI~E_RM_OR_HS_TO_PS_RECORDSlSUSPEND_LIST containing RCB_IDJ (page 5.1-51). 
Else 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSCempty SUSPEND_LISTJ (page 5.1-51). 
If the state of FSM_ERROR_OR_FAILURE (page 5.1-67) is CONV_FAILURE_SON or 

CONV FAILURE PROTOCOL ERROR then 
If-the state of FSM=ERROR_OR_FAILURE (page 5.1-67) is CONV_FAILURE_SON then 

Set the RETURN_CODE of the DEALLOCATE verb to RESOURCE_FAILURE_RETRY. 
Else 

Set the RETURN_CODE of the DEALLOCATE verb to RESOURCE FAILURE NO RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBJ !page S.l-65). 

Else 
Call DEQUEUE_FMH7_PROCCDEALLOCATE verb parameters, RCBJ !page 5.1-34). 

SNA LU 6.2 Reference: Peer Protocols 



(_,;' 

0 

DEALLOCATE_CONFIRM_PROC 

Hhen NO REQUESTS I see Note 3J 
If a-send MU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUJ Cpage 5.1-30). 
Set MU.PS TO HS.TYPE to DEALLOCATE CONFIRM and send the MU record to HS. 
Call HAIT=FOR_CONFIRMED_PROCCDEALLOCATE verb parameters, RCBJ Cpage 5.1-61). 

DEALLOCATE_FLUSH_PROC 

FUNCTION: This procedure is invoked when a DEALLOCATE is received that specifies TYPE = 
FLUSH, or TYPE = SYNC_LEVEL and the SYNC_LEVEL of the conversation is NONE. 

After checking that the data for the conversation is on a logical record 
boundary, the procedure accepts any records from RM and HS. Appropriate 
action is taken, depending upon which, if any, record was received (as 
reflected by the state of FSM_ERROR_OR_FAILUREJ. 

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

OUTPUT: DEALLOCATE return code is set. See Notes for additional outputs. 

NOTES: 1. Since the conversation is currently being ended, as a result of processing the 
DEALLOCATE, if a RECEIVE_ERROR has been received from HS, it will be ignored 
by PS. 

2. If CONVERSATION_FAILURE record has been received from RM, no further records 
are sent to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
END_CONVERSATION_PROC 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM~CONVERSATION 

FSM_ERROR_OR_FAILURE 
MU 
RCB 

If the data sent by TP is not at a logical record boundary then 
Set the RETURN_CODE of the DEALLOCATE verb to PROGRAM_STATE_CHECK. 

Else 
Call RECEIVE_RM_OR_HS_TO_PS_RECORDSlempty SUSPEND_LISTJ Cpage 5.1-51). 

page 6.0-3 
page 5.1-30 
page 5.1-34 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

If state of FSM ERROR OR FAILURE is RCVD ERROR or NO REQUESTS Csee Note ll then 
If a send MU-buffe; d~es not exist th;n -

Call CREATE_AND_INIT_LIMITED_MUCRCB, created MU) Cpage 5.1-30). 
Set MU.PS TO HS.TYPE to DEALLOCATE FLUSH and send the MU record to HS. 

Else C see Note 2 l -
Do nothing. 

Set the RETURN_CODE of the DEALLOCATE verb to OK. 
Call FSM_CONVERSATIONIS, DEALLOCATE_FLUSH, RCBJ !page 5.1-65). 
Call END_CONVERSATION_PROCCRCBJ (page 5.1-34). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-33 



DEQUEUE_FHH7_PROC 

DEQUEUE_FHH7_PROC 

----------------:..(~ 

5.1-34 

FUNCTION: This procedure is invoked upon receipt of a RECEIVE_ERROR from HS. The next 
element expected in the HS_TO_PS_BUFFER_LIST is an FMH-7. If the next element 
in the buffer is an FMH-7, it is removed from the buffer and processed I the 
RETURN_CODE parameter of the passed verb parameters is set based upon the 
sense data carried in the FMH-7). If the next element is not an FMH-7, the 
partner LU has violated the protocol and the session over which the protocol 
violation occurred is deactivated in an implementation-dependent fashion. 

INPUT: 

OUTPUT: 

The transaction program verb parameters currently being processed and the RCB 
corresponding to the resource specified in parameters of the verb 

The state of FSM_POST is changed to RESET. If the record in the buffer is an 
FMH-7, then is processed; otherwise, the return code and FSM_CONVERSATION are 
set to indicate the protocol violation, and the session is deactivated. 

Referenced procedures, FSMs, and data structures: 
PROCESS_FMH7_PROC 
PS_PROTOCOL_ERROR 
FSM_CONVERSATION 
FSM_POST 
RCB 

Call FSH_POST lpage 5.1-681 and pass it a RECEIVE_IMMEDIATE signal. 
If the first entry in RCB.HS_TO_PS_BUFFER_LIST is an FMH-7 then 

Remove the first entry of RCB.HS_TO_PS_BUFFER_LIST. 
Call PROCESS_FMH7_PROCIRCB, TP verb parameters) lpage 5.1-461. 

Else (as an implementation-dependent option) 
Call PS_PROTOCOL_ERROR IRCB.HS_ID, X'l008201D'J (page 5.0-20). 
Set the RETURN_CODE parameter of the verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_Rc, RCBJ (page 5.1-65). 

END_CONVERSATION_PROC . 

page 5.1-46 
page 5.0-20 
page 5.1-65 
page 5.1-68 
page A-6 

FUNCTION: This procedure creates a DEALLOCATE_RCB and sends it to RM. RM's processing 
of this record includes removing the RESOURCE from the RESOURCE_LIST, destroy­
ing the RCB, and returning a RCB_DEALLOCATED to inform PS that the processing 
is complete. 

INPUT: 

OUTPUT: 

Before the DEALLOCATE RCB record is sent to RM, all MUs for the conversation 
are freed. This - includes any that might be present in the 
HS_TO_PS_BUFFER_LIST (received MUsJ, or stored in the RCB (current send MUJ. 

The RCB corresponding to the resource being deallocated, and RCB_DEALLOCATED 
records from RM. 

DEALLOCATE RCB record is sent to RM after all received MUs lif present) and 
sending MU-I if present) have been freed. 

Referenced procedures, FSMs, and data structures: 
HS 
RM 
HAIT_FOR_RM_REPLY 
MU 
RCB 
DEALLOCATE_RCB 
RCB_DEALLOCATED 

SNA LU 6.2 Reference: Peer Protocols 

page 6.0-3 
page 3-19 
page 5.1-62 
page A-29 
page A-6 
page A-16 
page A-21 

(' 



C> 

END_CONVERSATION_PROC 

Do for each MU in the RCB.HS_TO_PS_BUFFER_LIST !Purge receive buffers) 
Call buffer manager IFREE_BUFFER, buffer address) !Appendix Bl. 

If a send MU buffer exists then !Purge the send buffer) 
Call buffer manager IFREE_BUFFER, buffer address) !Appendix Bl. 

Create and initialize the DEALLOCATE RCB record and send it to HS. 
Call HAIT_FOR_RM_REPLYIRCB) to recei;e RCB_DEALLOCATED from RM (page 5.1-62). 
Destroy the RCB_DEALLOCATED record received from RM. 

GET_DEALLOCATE_FROM_HS 

FUNCTION: This procedure removes from the RCB receive buffer a DEALLOCATE MU. If the 
receive buffer is empty, PS waits until an MU whose MU.HS_TO_PS.TYPE field is 
set to DEALLOCATE is received from HS. 

This procedure is invoked only when the next element expected in the RCB 
receive buffer is a DEALLOCATE MU. This situation occurs, for example, when 
PS has received an FMH-7 whose sense code indicates an allocation error. The 
FMH-7 is followed by a notification that the conversation is being deallo­
cated. It is PS's responsibility, rather than the transaction program's, to 
receive and process the deallocation notification. 

INPUT: The transaction program verb ITRANSACTION_PGM_VERBl currently being processed 
and the entry in the RCB_LIST corresponding to the resource specified in the 
current TRANSACTION_PGM_VERB 

OUTPUT: The DEALLOCATE MU is removed from the HS_TO_PS_BUFFER_LIST receive buffer. 

Referenced procedures, FSMs, and data structures: 
GET_END_CHAIN_FROM_HS 
PS_PROTOCOL_ERROR 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
Rcs· 

Call GET_END_CHAIN_FROM_HSIRCBl !page 5.1-36). 

Remove the DEALLOCATE from the buffer. 

Select based. on the following conditions: 
Hhen the end-of-chain type is DEALLOCATE_FLUSH or DEALLOCATE_CONFIRM 

Do nothing. 
Hhen the state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is 

CONV FAILURE PROTOCOL ERROR or CONV FAILURE SON 
Do -nothing: - - -

Otherwise las an implementation-dependent option) 
Call PS_PROTOCOL_ERROR IRCB.HS_ID, X'l008201D' l !page 5.0-20). 
Set the RETURN_CODE parameter of the verb to RESOURCE_FAILURE_NO_RETRY. 
Call RCB.FSM_CONVERSATIONIR, RESOURCE_FAILURE~RC, RCBl (page 5.1-65). 

page 5.1-36 
page 5.0-20 
page 5.1-65 
page 5.1-67 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-35 



GET_END_CHAIN_FROH_HS 

S.l-36 

GET_END_CHAIN_FROH_HS 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure is invoked after PS sends a SEND ERROR record to HS I as a 
result of either lJ a SEND~ERROR, DEALLOCATE ITYPE = ABEND_PROG, ABEND_SVC, 
ABEND TIMERJ issued for the conversation while it is in the receive state or 
2J an-invalid Attach resulting in an FMH-7 being sent). This procedure waits 
for a MU whose MU.HS_TO_PS.TYPE field indicates an end-of-chain type is 
received from HS. End-of-chain types include CONFIRM, PREPARE_TO_RCV_CONFIRM, 
PREPARE_TO_RCV_FLUSH, DEALLOCATE_CONFIRM, and DEALLOCATE_FLUSH. 

The RCB corresponding to the conversation for which the end-of-chain type is 
desired 

RCB.Rll..TO_SEND_RCVD may be updated. All records received from HS are 
destroyed or FREEd, as appropriate for the record. The fields in the RCB are 
reset after the end-of-chain type is received. See Notes for additional out­
puts. 

NOTES: 1. Receipt of a CONVERSATION_FAILURE record will be regarded as an implied 
end-of-chain type. ~-

2. If a REQUEST_TO_SEND record is received, PS stores that information in the RCB '---- -­
to be relayed to the transaction program at_a later time, and continues to 
wait for the end-of-chain type. 

3. If a RECEIVE ERROR record is received, no action is taken. PS continues to 
wait for the-end-of-chain type to arrive. This situation occurs if, imme­
diately prior to issuing the SEND_ERROR or DEALLOCATE ITVPE = ABEND_*), the 
transaction program issued a PREPARE_TO_RECEIVE ITVPE = FLUSH) or PRE­
PARE_TO_RECEIVE ITYPE = SVNC_LEVELJ and the SVNC_LEVEL of the conversation is 
NONE, and the partner transaction program lwhile still in RECEIVE state) 
issues a SEND_ERROR or DEALLOCATE ITYPE = ABEND_*), 

4. Hhen PS sends SEND_ERROR to HS, it begins to purge any data it receives from 
HS until a record indicating end-of-chain type is received. 

Referenced procedures, FSMs, and data structures: 
CONVERSATION_FAILURE_PROC 
PS_PROTOCOL~ERROR 

FSM_CONVERSATION 
MU 
RCB 

Determine if end-of-chain type is already in buffer. 

If end-of-chain type has not been received for this conversation then 
Do for each MU in the RCB.HS_TO_PS_BUFFER_LIST while an end-of-chain 

type has not arrived: 
If MU.HS_TO_PS.TYPE is an end-of-chain type then 

Save the end-of-chain type for later processing. 
Call buffer manager IFREE_BUFFER, buffer address). 

Hait for the end-of-chain type to arrive. 

Do while the end-of-chain type has not been received: 
Find a CONVERSATION_FAILURE, REQUEST_TO_SEND, RECEIVE_ERROR, or MU 
record for this conversation. 

Select based on the record found: 
Hhen CONVERSATION_FAILURE lsee Note lJ 

Call CONVERSATION_FAILURE_PROC with RECORD !page 5.1-29). 
The CONVERSATION_FAILURE is treated as an end-of-chain indication. 

Hhen REQUEST_TO_SEND lsee Note 2J 
Set RCB.Rct..TO_SEND_RCVD to YES. 
Destroy the REQUEST_TO_SEND record. 

Hhen RECEIVE_ERROR lsee Note 3J 
Destroy the RECEIVE_ERROR record. 

SNA LU 6.2 Reference: Peer Protocols 

page 5.1-29 
page 5.0-20 
page 5.1-65 
page A-29 
page A-6 

' _,. 
' I 



() 

0 

GET_END_CHAIN_FROH_HS 

Hhen HU {see Note 41 
If HU.HS_TO_PS.TYPE is an end-of-chain type then 

Save the end-of-chain type for later processing. 
Call buffer manager CFREE_BUFFER, buffer address). 

Otherwise 
Call PS_PROTOCOL_ERROR CRCB.HS_ID, X'l0010000') !page 5.0-20). 
Call FSH_CONVERSATIONIS, CONFIRMED, RCBl {page 5.1-651. 

Update the fields in the RCB to reflect the receipt of the end-of-chain type. 

OBTAIN_SESSION_PROC 

FUNCTION: This procedure handles the acquisition of a session for use by a conversation 
resource. 

INPUT: 

OUTPUT: 

This procedure sends a GET_SESSION record to the resources manager and waits 
for a SESSION_ALLOCATED reply. 

The RCB corresponding to the conversation that is to use the obtained session 
and the ALLOCATE verb are passed as a parameters to this procedure. SES­
SION_ALLOCATED is received from RH. 

A GET_SESSION record is sent to RM, and the SESSION ALLOCATED record is 
destroyed. If a session is obtained, an MU is created, and the PERMA­
NENT_BUFFER_POOL_ID, and LIHITED_BUFFER_POOL_ID fields are set along with the 
send HU.PS TO HS.ALLOCATE field; otherwise, these fields remain as initial­
ized. Als~, the RETURN_CODE on the ALLOCATE verb can be updated to reflect 
detected errors. 

NOTES: 1. The resources manager returns to PS an ALLOCATE FAILURE return code to a ses­
sion allocation request when no sessions having-the specified ILU name, mode 
name) pair are active and a condition {either temporary or permanent, as 
reflected in the return codel exists such that no sessions can currently be 
activated. 

2. · The resources manager returns to PS a SYNC_LEVEL_NOT_SUPPORTED return code to 
a session allocation request when a session having the specified ILU name, 
mode name) pair is active, but the synchronization level specified by the 
transaction program on ALLOCATE is not supported by the partner LU. 

Referenced procedures, FSHs, and data structures: 
RH 
CREATE_AND_INIT_LIMITED_MU 
HAIT_FOR_RH_REPLY 
HU 
RCB 
GET_SESSION 
SESSION_ALLOCATED 

page 3-19 
page 5.1-30 
page 5.1-62 
page A-29 
page A-6 
page A-16 
page A-22 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-37 



OBTAIN_SESSION_PROC 

S.1-38 

Create and initialize the GET_SESSION record and send it to RM. 
Call HAIT_FOR_RM_REPLY lpage 5.1-62) to receive SESSION_ALLOCATED. 
Select based on the RETURN_CODE of the SESSION_ALLOCATED record: 

Hhen OK 
Set RCB.SEND_RU_SIZE to SESSION_ALLOCATED.SEND_RU_SIZE. 
Set RCB.LIHITED_BUFFER_POOL_ID to SESSION_ALLOCATED.LIHITED_BUFFER_POOL_ID. 
Set RCB.PERMANENT_BUFFER_POOL_ID to SESSION_ALLOCATED.PERMANENT_BUFFER_POOL_ID. 
Call CREATE_AND_INIT_LIHITED_HUIRCB, created HU) lpage 5.1-30). 
If SESSION_ALLOCATED.IN_CONVERSATION is YES then 

Set the send HU.PS_TO_HS.ALLOCATE to NO. 
Else 

Set the send HU.PS_TO_HS.ALLOCATE to YES. 
Otherwise 

Set the RETURN_CODE of the ALLOCATE verb to ALLOCATION_ERROR. 
Select based on the RETURN_CODE of the SESSION_ALLOCATED record: 

Hhen UNSUCCESSFUL_RETRY 
Set the subcode of the ALLOCATE verb to ALLOCATION_FAILURE_RETRY. 

Hhen UNSUCCESSFUL_NO_RETRY 
Set the subcode of the ALLOCATE verb to ALLOCATioN_FAILURE_NO_RETRY. 

Hhen SYNC_LEVEL_NOT_SUPPORTED 
Set the subcode of the ALLOCATE verb to SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

Destroy SESSION_ALLOCATED record. 

PERFORH_RECEIVE_EC_PROCESSING 

FUNCTION: This procedure processes the end-of-chain type that has been received and (' 
saved for this conversation. \___ __ ,, 

INPUT: 

OUTPUT: 

This procedure is called only if the end-of-chain type received is a value 
other than NOT_END_OF_DATA. 

The RCB corresponding to the resource specified in the verb parameters, and 
RECEIVE verb parameters 

The return code field of the RECEIVE verb is updated to the appropriate value. 
The state of FSH_CONVERSATION may be changed. 

Referenced proced1:1res, FSHs, and data structures: 
PS_PROTOCOL_ERROR 
FSH_CONVERSATION 
RCB 

SNA LU 6.Z Reference: P-r Protocols 

page 5.0-ZO 
page 5.1-65 
page A-6 



0 

C\ 
) 

C~ 
/ 

0 

PERFORH_RECEIVE_EC_PROCESSING 

Select based on the following conditions: 
Hhen the data sent by the TP is not on a logical record boundary 

Call PS_PROTOCOL_ERROR IRCB.HS_ID, X'l0010000') lpage 5.0-20). 
Set the RETURN_CODE of the RECEIVE verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB) lpage 5.1-65). 

Hhen RCB.SYNC_LEVEL is NONE and the end-of-chain type is CONFIRM, 
PREPARE TO RCV CONFIRM, or DEALLOCATE CONFIRM 

Call PS_PROTOcOL_ERROR IRCB.HS_ID, X'l0010000') lpage 5.0-20). 
Set the RETURN_CODE of the RECEIVE verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR• RESOURCE_FAILURE_Rc. RCB) (page 5.1-65). 

Otherwise 
Select based on the end-of-chain type received: 

Hhen CONFIRM 
Set the RETURN CODE of the RECEIVE verb to OK. 
Set the HHAT_RECEIVED parameter of the RECEIVE verb to CONFIRM. 
Call FSM_CONVERSATIONIR, CONFIRM_INDICATOR, RCB) lpage 5.1-65). 

HHEN PREPARE_TO_RCV_CONFIRM 
Set the RETURN CODE of the RECEIVE verb to OK. 
Set the HHAT_RECEIVED parameter of the RECEIVE verb to CONFIRM_SEND. 
Call FSM_CONVERSATIONIR, CONFIRH_SEND_INDICATOR, RCB) lpage 5.1-65). 

HHEN PREPARE_TO_RCV_FLUSH 
Set the RETURN_CODE of the RECEIVE verb to OK. 
Set the HHAT_RECEIVED parameter of the RECEIVE verb to SEND. 
Call FSM_CONVERSATIONIR, SEND_INDICATOR, RCB) lpage 5.1-65). 

HHEN DEALLOCATE_CONFIRH 
Set the RETURN_CODE of the RECEIVE verb to OK. 
Set the HHAT_RECEIVED parameter of the RECEIVE verb to CONFIRH_DEALLOCATE. 
Call FSM_CONVERSATIONIR, CONFIRH_DEALLOCATE_INDICATOR, RCB) (page 5.1-65). 

HHEN DEALLOCATE FLUSH 
Set the RETURN_CODE of the RECEIVE verb to DEALLOCATE_NORMAL. 
Call FSM_CONVERSATIONIR, DEALLOCATE_NORMAL_RC, RCB) lpage 5.1-65). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-39 



PERFORH_RECEIVE_PROCESSING 

PERFORH_RECEIVE_PROCESSING 

S.1-40 

FUNCTION: This procedure checks the RCB.HS_TO_PS_BUFFER_LIST receive buffer to see if 
any information has arrived for the conversation specified in the passed 
RECEIVE verb parameters and, if so, updates the verb parameters to reflect 
that information. Examples of the type of information that can be received 
include a request for confirmation, notification that the partner transaction 
program has deallocated the conversation, and conversation data. 

INPUT: 

If no information has been received for the specified conversation, the 
RETURN_CODE parameter is set to UNSUCCESSFUL and control is returned to the 
calling procedure. 

The RCB corresponding to the resource specified in the verb parameters, and 
RECEIVE verb parameters 

OUTPUT: The information is copied from the HU into the RECEIVE verb data buffer to be 
passed up to the TP. If the data in the HU is exhausted, the HU is freed and 
the next HU in the receive buffer, if present, will begin to be processed. 

NOTES: 1. PS performs an optional receive check to determine if the partner LU has vio­
lated protocols by allowing the partner transaction program to invalidly trun­
cate the logical record the program was in the process of sending li.e., the 
partner transaction program issued a verb, such as CONFIRM, before completing 
the current logical record). Only an FMH-7 can validly be received before the 
current logical record is completed, in which case the FMH-7 contains sense 
data indicating data truncation. 

2. PS performs an optional receive check to determine if the partner LU has vio­
lated the protocols by allowing the partner transaction program to issue a 
request for confirmation on a conversation whose SYNC_LEVEL is NONE. 

Referenced procedures, FSMs, and data structures: 
PERFORH_RECEIVE_EC_PROCESSING 
PROCESS_FMH7_PROC 
PROCESS_DATA_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

Set MU_PTR to the first HU in the RCB.HS_TO_PS_BUFFER_LIST. 

If the MU_PTR is not NULL or end chain indicator is not NOT_END_OF_DATA then 
Do while the MU_PTR is not NULL and posting condition is not satisfied: 

If an FMH 7 is contained in the MU then 
If no data has been copied to pass ~o the TP then 

page 5.1-38 
page.5.1-46 
page 5.1-43 
page 5.1-65 
page 5.1-67 
page A-29 

.page A-6 

Call PROCESS_FMH7_PROCIRCB, RECEIVE verb parameters) lpage 5.1-46). 
Set the MU_PTR to the next MU in the RCB.HS_TO_PS_BUFFER_LIST. 

Else 
If the MU has more data to be received then 

Call PROCESS_DATA_PROCIRCB, RECEIVE verb parameters, DATA_NEEDED> lpage 5.1-43). 

If the data in the MU has all been received then 
If MU.HS TO PS.TYPE is NOT END OF DATA then 

Call buffer manager IFREE_BUFFER, buffer address) (Appendix 8). 
Set MU_PTR to the next MU in the RCB.HS_TO_PS_BUFFER_LIST. 

Else 
End-of-chain type has been received; posting is satisfied. 

If no data is being returned to the TP and an FMH_7 was not processed and the end-of-chain 
type was not NOT_END_OF_DATA then 

Call PERFORM_RECEIVE_EC_PROCESSINGIRCB, RECEIVE verb parameters) lpage 5.1-38). 
End-of-chain type is returned to the TP. 

Else IMU_PTR is NULL or end-of-chain type is not NOT_END_OF_DATA) 
Select based on the state of FSM_ERROR_OR_FAILURE !page 5.1-67): 

Hhen CONV FAILURE PROTOCOL ERROR 
Set t.,; RETURN=CODE of the RECEIVE verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB) !page 5.1-65). 

SNA LU 6.2 Reference: Peer Protocols 

c 



c. 

c ) 

PERFORH_RECEIVE_PROCESSING 

Hhen CONY FAILURE SON 
Set th; RET\JRN=CODE of the RECEIVE verb to RESOURCE_FAILURE_RETRY. 
Call FSH_CONVERSATIONIR. RESOURCE_FAILURE_Rc. RCB) (page 5.1-65). 

Otherwise 
If the RECEIVE verb is a RECEIVE_IMMEDIATE verb and no data is being 

returned to the TP then 
Set the RET\JRN_CODE of the RECEIVE_IMMEDIATE verb to UNSUCCESSFUL. 

Else 
Set the RETURN_CODE parameter of the RECEIVE verb to OK. 

PREPARE_TO_RECEIVE_CONFIRM_PROC 

FUNCTION: This procedure continues the processing of a PREPARE_TO_RECEIVE when TYPE = 
SYNC_LEVEL and the SYNC_LEVEL of the conversation is CONFIRM. 

INPUT: 

OUTPUT: 

NOTES: 

PREPARE_TO_RECEIVE verb parameters and the RCB corresponding to the resource 
specified in the PREPARE_TO_RECEIVE 

Depending on the state of FSM ERROR OR FAILURE, the MU.PS TO HS.TYPE field may 
be set prior to sending the MU to HS. -See Notes for additio~al outputs. 

1. If a CONVERSATION FAILURE has been received from the resources manager, PS 
returns to the tra~saction program after setting the RETURN_CODE parameter of 
the PREPARE_TO_RECEIVE verb to RESOURCE_FAILURE. 

2. If a RECEIVE_ERROR has been received from HS, PS sends the current send MU 
record with the MU.PS_TO_HS.TYPE field set to PREPARE_TO_RCV_FLUSH to HS. 
(Any data in the RCB send buffer was purged when the RECEIVE_ERROR record was 
received. l PS then waits for the expected FMH-7 error message to arrive. The 
RETURN_CODE parameter of the CONFIRM is set based on the sense data carried in 
the FMH-7. 

3. If no error or failure condition has occurred, PS sends the current send MU 
with the MU.PS_TO_HS.TYPE field set to PREPARE_TO_RCV_CONFIRM to HS and waits 

·for a CONFIRMED reply. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
DEQUEUE_FMH7_PROC 
RECEIVE_RH_OR_HS_TO_PS_RECORDS 
HAIT_FOR_CONFIRMED_PROC 
FSM_CONVERSATION 
FSM ERROR OR FAILURE 
MU- - -, 
RCB 

Call FSH_CONVERSATIONIS, PREPARE_TO_RECEIVE_CONFIRM, RCBJ lpage 5.1-65). 
Call RECEIVE_RH_OR_HS_TO_PS_RECORDSlempty SUSPEND~LIST) (page 5.1-51). 

Select based on state of FSM_ERROR_OR_FAILURE lpage 5.1-671: 
Hhen CONV_FAILURE_PROTOCOL_ERROR (see Note ll 

page 6.0-3 
page 5.1-30 
page 5.1-34 
page 5.1-51 
page 5.1-61 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

Set the RETURN CODE of PREPARE TO RECEIVE verb to RESOURCE FAILURE NO RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE=FAILURE_RC, RCBJ lpage 5~1-65). 

Hhen CONY FAILURE SON I see Note lJ 
Set th; RETURN=CODE of PREPAR·E_TO_RECEIVE verb to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBJ lpage 5.1-65). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-41 



PREPARE_TO_RECEIVE_CONFIRH_PROC 

5.1-42 

Hhen RCVD_ERROR (see Note 2) 
If a send ttU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUJ lpage 5.1-30). 
Set MU.PS_TO_HS.TYPE to PREPARE_TO_RCV_FLUSH and send the f'.1l.I record to HS. 
Call RECEIVE_RH_OR_HS_TO_PS_RECORDSISUSPEND_LIST containing RCB_IDllpage 5.1-51). 
If state of FSH_ERROR_OR_FAILURE lpage 5.1-67) is CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of .FSM_ERROR_OR_FAILURE lpage 5.1-671 is CONV_FAILURE_SON then 

Set the RETURN_CODE of PREPARE_TO_RECEIVE verb to RESOURCE_FAILURE_RETRY. 
Else 

Set the RETURN_CODE of PREPARE_TO_RECEIVE to verb RESOURCE_FAILURE_NO_RETRY. 
Call FSH_CONVERSATIONIR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-65). 

Else 
Call ·DEQUEUE_FMH7_PROCIPREPARE_TO_RECEIVE verb parameters, RCBl lpage 5.1-34). 

l'lhen NO REQUESTS lsee Note 3) 
Set Mu.PS_TO_HS.TYPE to PREPARE_TO_RCV_CONFIRH_SHORT or PREPARE_TO_RCV_CONFIRM_LONG as 

indicated by RCB.LOCKS. 
Call HAIT_FOR_CONFIRMED_PROCIPREPARE_TO_RECEIVE verb parameters, RCB) lpage 5.1-61). 

PREPARE_TO_RECEIVE_FLUSH_PROC 

FUNCTION: This procedure continues the processing of a PREPARE_TO_RECEIVE when TYPE = 
FLUSH, or TYPE = SYNC_LEVEL and the SYNC_LEVEL of the conversation is NONE. 

INPUT: PREPARE_TO_RECEIVE verb parameters and the RCB corresponding to the resource 
specified in the PREPARE_TO_RECEIVE 

OUTPUT: The RETURN_CODE is set to OK, the state of FSM_CONVERSATION is changed and an 
MU may be sent to HS. See below for additional output. 

NOTES: 1. If a RECEIVE_ERROR has been received from HS, PS sends a SEND_DAT~ record with 
the MU.PS_TO_HS.TYPE field set to PREPARE_TO_RCV_FLUSH to HS. IAny data in 
the RCB send buffer was purged when the RECEIVE_ERROR record was received. l 
PS then waits for the expected FMH-7 error message to arrive. The RETURN_CODE 
parameter of the CONFIRM is set based on the sense data carried. in the FMH-7. 

2. If a conversation failure has occurred, no action is taken. PS reports the 
error to the transaction program at a later time. 

Referenced procedures, FSHs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATION 
FSH_ERROR_OR_FAILURE 
MU 
RCB 

Call RECEIVE_RM_OR_Hs_ro_PS_RECORDSlempty SUSPEND_LISTJ (page 5.1-51). 

page 6.0-3 
page 5.1-30 
page 5.1-51 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

If the state of FSH_ERROR_OR_FAILURE lpage 5.1-67) is RCVD_ERROR or NO_REQUESTS then 
If a send MU buffer does not exist then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUJ lpage 5.1-30). 
Set MU.PS_TO_HS.TYPE to PREPARE_TO_RECEIVE_FLUSH and send the MU record to HS. 

Set the RETURN_CODE of the PREPARE_TO_RECEIVE verb to.OK. 
Call FSH_CONVERSATIONIS, PREPARE_TO_RECEIVE_FLUSH, RCBJ lpage 5.1-65). 

SNA LU 6.2 Reference: Peer Protocols 

c· 



PROCESS_DATA_PROC 

PROCESS_DATA_PROC 

FUNCTION: This procedure handles the processing of MUs from the HS_TO_PS_BUFFER_LIST. 

INPUT: 

OUTPUT: 

The procedure first checks to see if the data in the MU being processed is a 
PS header or a logical record having an invalid LL value, in order to take 
appropriate action. 

If this data is not a PS header or an invalid LL, then further processing of 
the data in the MU occurs as described below. 

The RCB corresponding to the resource specified in the passed RECEIVE verb 
parameters, the MU (contained in the RCB.HS_TO_PS_BUFFER_LIST), and the 
RECEIVE verb parameters. 

The parameters of the RECEIVE_VERB are updated. 

NOTES: 1. If the data in the MU being processed begins on a logical record boundary 
(i.e., the last data passed to the transaction program was a complete conver­
sation record or the last remaining portion of a logical record, or no data 
has been passed to the transaction program since it last entered the receive 
statel and both bytes of the next logical record's LL field are present in the 
MU, data is moved from the MU parameter to the DATA parameter of the passed 
RECEIVE verb. 

2. If the data in the MU being processed begins on a logical record boundary, but 
only the first byte of the next 2-byte LL field is present in the MU, this 
procedure checks to see if any other information has been received following 
the first byte of the LL. If the LL has been truncated by receipt of an 
FMH-7, the LL byte is placed in the DATA parameter of the passed RECEIVE verb 
and control is returned to the transaction program. (The FMH-7 is processed 
when the transaction program issues another verb.) If the LL has been trun­
cated invalidly by receipt of information other than an FMH-7, the partner LU 
has committed a protocol violation and the session over which the conversation 
is occurring is deactivated. If no information follows the first byte of the 
LL, it is saved in the buffer and control is returned to the transaction pro­
gram. (The first byte of the LL is not passed to the transaction program. 
Until the second byte of the 2-byte LL field arrives, PS does not know if the 
LL is associated with a logical record or with a PS header. l 

3. If the data in the passed MU does not begin on a logical record boundary 
Ci.e., part, but not all, of a logical record has already been passed to the 
transaction program), data is moved from the MU to the DATA parameter of the 
passed RECEIVE verb. 

MUs from the RCB.HS_TO_PS_BUFFER_LIST are passed in, one at a time, 
for this procedure to copy the data from the MU into the RECEIVE_* 
verb DATA parameter to be returned to the transaction program. 

Hhile processing the MU, information on the location in the MU, 
location in the logical record, and number of bytes remaining in the 
current logical record is continually updated as the data is copied 
from the MU to the RECEIVE_* verb DATA" parameter. 

As the data is copied into the RECEIVE * verb, one or more of the fol­
lowing RECEIVE_* verb parameters must ;lso be set accordingly: 

• HHAT_RECEIVED 

• RETURN_CODE 

• LENGTH of data returned 

See SNA Transaction Programmer's Reference Manual 
a coiiijjlete list and definition of the possible 
Notes 1, 2, and 3 for additional information. 

for LU~~ for 
values. Also, see 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-43 



PROCESS_FMH7_LOG_DATA_PROC 

5.1-44 

PROCESS_FMH7_LOG_DATA_PROC 

FUNCTION: This procedure is invoked upon encountering an FMH-7 with LOG_DATA following 
it in the HS_TO_PS_BUFFER_LIST. 

INPUT: 

OUTPUT: 

The RETURN_CODE parameter of the passed transaction program verb is set based 
upon the sense data carried in the FMH-7. This procedure simulates a 
RECEIVE AND HAIT verb and causes receive processing to take place. The 
RECEIVE=AND=HAIT processing waits for one or more logical records, which con­
sists of the log data, to arrive from HS. If the sense data carried in the 
FMH-7 indicates a type of DEALLOCATE_ABEND_*• this procedure retrieves the 
deallocation notification from the receive buffer before returning to the 
transaction program. 

The RCB corresponding to the resource to which the FMH-7 applies, the 
FMH_SENSE_DATA associated with the error, and the transaction program verb 
currently being processed 

The RETURN_CODE parameter of the verb is set based upon the sense data carried 
in the passed FMH-7. The one or more logical records containing the. Error Log 
GDS variable are placed (minus the LL and GOS ID fields) in the system error 
log of the local LU. 

NOTES: 1. This error occurs when the FMH-7 specifies that log data follows, but either 
no log data is present, or the logical record containing the log data is 
invalidly truncated by receipt of a CONFIRM (for example). If the error that 
occurred is that the log data was invalidly truncated, the error has already 
been detected by the PERFORM_RECEIVE_PROCESSING procedure, which has already 
appropriately set the return code of the current verb to reflect this error. 

2. Hhen the sense data in the FMH-7 indicates a type of DEALLOCATE_ABEND_*, a 
deallocation notification is expected. If this expected notification is not 
received, a protocol violation has occurred. The procedure 
GET_DEALLOCATE_FROM_HS performs the appropriate processing, which includes 
placing the conversation in END_CONV state. 

Referenced procedures, FSMs, and data structures: 
GET_DEALLOCATE_FROM_HS 
PS_PROTOCOL_ERROR 
SET_FMH7_RC 
RECEIVE_AND_TEST_POSTING 
FSM_ERROR_OR_FAILURE 
RCB 

GET THE ERROR LOG DATA 

Create a RECEIVE_AND_HAIT. and initialize as follows: 
Set RECEIVE AND HAIT.RESOURCE to RCB.RCB ID. 
Set RECEIVE=AND=HAIT.FILL to LL. -
Set RECEIVE_AND_HAIT.MAX_LENGTH to X'7FFF'. 
Set RECEIVE AND HAIT.DATA to NULL. 

page 5.1-35 
page 5.0-20 
page 5.1-59 
page 5.1-50 
page 5.1-67 
page A-6 

Call RECEIVE_AND_TEST_POSTING!RCB, RECEIVE_AND_HAIT verb parameters) lpage 5.1-50) to 
receive the log data following the FMH_7. 

If the RETURN CODE of the RECEIVE AND HAIT verb is OK and the HHAT_RECEIVED indicator 
is DATA COMPLETE then - -

If th; GOS ID is X'l2El' then 
Record the log data to the system log. 

Else (see Note 1.) 
Record the error receiving the LOG_DATA to the system log. 
Call PS_PROTOCOL_ERRORIRCB.HS_ID, X'l008201D') (page 5.0-20). 
Call FSM_ERROR_OR_FAILURE SIGNAL!CONV_FAIL_PROTOCOL) (page 5.1-67). 

SNA LU 6.2 Reference: Peer Protocols 

/--......__ 

( 
"--- ·-' 



0 

C~ 

i 
/ 

0 

c 

0 

PR0CESS_FHH7_LOG_DATA_PROC 

Else (see Note 1.) 
If the RETURN CODE of the RECEIVE AND HAIT verb is RESOURCE_FAILURE_RETRY then 

Record a SON error occurred r~eivTng log data to the system log. 
Else 

Record a PROTOCOL ERROR occurred to the system log. 
Destroy the created RECEIVE_AND_HAIT verb. 

Set the states of the FSHs 

If the passed sense data is X'08640000', X'08640001', or X'8640002' then lsee Note 2.J 
If the state of FSH_ERROR_OR_FAILURE is NO_REQUESTS then 

Call GET_DEALLOCATE_FROM_HSlverb parameters, RCBJ lpage 5.1-35). 
Call SET_FMH7_RCIRCB, FMH_7 sense data, verb parameters) Cpage 5.1-59). 

Else 
Select based on the state of FSH_ERROR_OR_FAILURE lpage 5.1-67): 

Hhen CONV_FAILURE_PROTOCOL_ERROR 
Call SET FMH7 RCIRCB, FMH 7 sense data, verb parameters) lpage 5.1-59). 
Call FSM=ERROR_OR_FAILURE-Cpage 5.1-67) and pass it 

a CONV_FAIL_PROTOCOL signal. 

Hhen CONV_FAILURE_SON 
Call SET FMH7 RCIRCB, FMH 7 sense data, verb parameters) (page 5.1-59). 
Call FSM=ERROR_OR_FAILURE-lpage 5.1-67) and pass it 

a CONV_FAIL_SON signal. 

Otherwise 
Call SET_FMH7_RCIRCB, FMH_7 sense data, verb parameters) lpage 5.1-59). 

Set all the RCB receive processing fields to their initial values (processing begins 
anew following receipt of an FMH-7). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-45 



PROCESS_FMH7_PROC 

PROCESS_FMH7_PROC 

5.1-46 

FUNCTION: This procedure is 
HS_TO_PS_BUFFER_LIST. 

invoked upon encoultering an FMH-7 in the 

INPUT: 

OUTPUT: 

The RETURN_CODE parameter of the passed transaction program verb is set based 
upon the sense data carried in the FMH-7. If the FMH-7 indicates that log 
data follows, this procedure simulates a RECEIVE_AND_HAIT verb and causes 
receive processing to take place. The RECEIVE_AND_HAIT processing waits for a 
logical record, which consists of the log data, to arrive from HS. If the 
sense data carried in the FMH-7 indicates a type of DEALLOCATE_ABEND_* this 
procedure retrieves the deallocation notification from the receive buffer 
before returning to the transaction program. 

The RCB corresponding to the resource to which the FMH-7 applies, the MU con­
taining the received FMH-7 (contained in the RCB.HS_TO_PS_BUFFER_LISTJ, and 
the transaction program verb currently being processed 

The RETURN_CODE parameter of the verb is set, based upon the sense data car­
ried in the passed FMH-7; if log data follows the FMH-7, PS retrieves the log­
ical record containing the Error Log GOS variable and places it (minus the LL 
and GOS ID fields) in the system error log of the local LU. 

NOTES: 1. Logical record processing begins anew following receipt of an FMH-7. 

2. Hhen the sense data in the FMH-7 indicates a type of DEALLOCATE_ABEND_*• a 
deallocation notification is expected. If this expected notification is not 
received, a protocol violation has occurred. The procedure 
GET_DEALLOCATE_FROM_HS performs the appropriate processing, which includes 
placing the conversation in END_CONV state. 

Referenced procedures, FSMs, and data structures: 
GET_DEALLOCATE_FROM_HS 
PROCESS_FMH7_LOG_DATA_PROC 
PS_PROTOCOL_ERROR 
SET_FMH7_RC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

Set the MU_PTR to the first entry in the HS_TO_PS_BUFFER_LIST. 

Validate the FMH-7. 

As an implementation-dependent option perform receive checks of the FMH-7. 
If an error is found then 

page 5.1-35 
page 5.1-44 
page 5.0-20 
page 5.1-59 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

Call PS_PROTOCOL_ERRORIRCB.HS_IS, X'nnnnnnnn'J Cpage 5.0-20) with X'nnnl'Y'lnnn' set to: 
X'l0086000' (Request Error--FMH Length Incorrect) or 
X;l00S200E' !Request Error--Invalid Concatenation BitJ. 

Set the RETURN_CODE parameter of the verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBJ (page 5.1-65), 
Set RCB.POST_CONDITIONS.MAX_LENGTH to O. 

Process:lng necessary as a result of the FMH-7 

Else 
Set all the RCB receive processing fields to their initial values (see Note lJ. 
If the.data in the MU has all been received then 

Remember if the FMH-7 has log data present and the sense data value. 
Save the end-of-chain type for later processing. 
Call buffer manager IFREE_BUFFER, buffer address) (Appendix 8). 

Set the MU_PTR to the first entry in the HS_TO_PS_BUFFER_LIST. 

SNA LU 6.2 Reference: Peer Protocols 

c= 

c. 



c 

c 

0 

0 

C~ 
/ 

PROCESS_FMH7_PROC 

Get the log data if present. 

If the FMH_7 indicates log data is present then 
Call PROCESS_FMH7_LOG_DATA_PROCCRCB, FMH_7 sense data, verb parameters) !page 5.1-441. 

Else 
If FMH_SENSE_DATA is X'08640000', .X'08640001', or X'08640002' then Csee Note 2.J 

If the state of FSM_ERROR_OR_FAILURE is NO_REQUESTS then 
Call GET_DEALLOCATE_FROM_HSCverb parameters, RCBJ (page 5.1-35). 
Call SET_FMH7_RCIRCB, FMH_7 sense data, verb parameters) !page 5.1-591. 

Else 
Select based on the state of FSM_ERROR_OR_FAILURE !page 5.1-671: 

Hhen CONV_FAILURE_PROTOCOL_ERROR 
Call SET_FMH7_RCIRCB, FMH_7 sense data, verb parameters) (page 5.1-59). 
Call FSM_ERROR_OR_FAILURE (page 5.1-671 and pass 
it a CONV_FAIL_PROTOCOL signal. 

Hhen CONY FAILURE SON 
Call SET_FMH7_RCIRCB, FMH_7 sense data, verb parameters) lpage 5.1-591. 
Call FSM_ERROR_OR_FAILURE (page 5.1-671 and pass 
it a CONY_FAIL_SON signal. 

Otherwise 
Call SET_FMH7_RCIRCB, FMH_7 sense data, verb parameters) (page 5.1-59). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-47 



RCB_ALLOCATED_PROC 

RCB_ALLOCATED_PROC 

5.1-48 

FUNCTION: This procedure performs further processing of an ALLOCATE request. It is 
invoked when PS receives an RCB_ALLOCATED record from the resources manager. 

INPUT: 

OUTPUT: 

This procedure sets the RETURN_CODE parameter of the ALLOCATE verb based upon 
the return code field of the RCB_ALLOCATED record. If the return code is OK, 
it finishes initializing the new RCB Ci.e., those fields not already initial­
ized by RM). In addition, if the RETURN_CONTROL parameter of ALLOCATE is 
HHEN_SESSION_ALLOCATEO, PS requests that a session be obtained for this con­
versation. 

If the return code in RCB_ALLOCATED is OK, then RH has created an RCB and 
entered a RESOURCE entry in the RESOURCE_LIST for the appropriate TCB. 

RCB_ALLOCATED record and ALLOCATE verb parameters 

The ALLOCATE return code and RESOURCE are set. If no errors occur obtaining 
the session, then PS creates an FHH-5 Attach header and either stores it in 
the send buffer in the RCB or optionally flushes it, which requires setting 
the HU.PS_TO_HS.TYPE field to FLUSH. An HU is created and 
HU.PS_TO_HS.ALLOCATE set to YES if ALLOCATECIMMEDIATE) is specified. 

NOTES: 1. If RETURN CONTROL = IMMEDIATE, RM has allocated both an RCB and a session as a 
result of-receiving ALLOCATE_RCB from PS. 

2. A return code of UNSUCCESSFUL in reply to an ALLOCATE IRETURN_CONTROL = IMME­
DIATE) indicates that no first-speaker half-sessions are currently available. 

3. The resources manager returns to PS a SYNC_LEVEL_NOT_SUPPORTED return code to 
a session allocation request when a session having the specified CLU name, 
mode name) pair is active, but the synchronization level specified by the 
transaction program on ALLOCATE is not supported by the partner LU. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
OBTAIN_SESSION_PROC 
FSM_CONVERSATION 
RCB_ALLOCATED 
RCB 
MU 
TCB 

SNA LU 6.2 Reference: Peer Protocols 

page 6.0-3 
page 5.1-30 
page 5.1-37 
page 5.1-65 
page A-21 
page A-6 
page A-29 
page A-9 

c 



c/ 

(_/ 

() 

RCB_ALLOCATED_PROC 

Select based on the RETURN_CODE of the RCB_ALLOCATED record: 
Hhen OK 

Set the RETuRN CODE of the ALLOCATE verb to OK. 
Find the RCB f~r the conversation identified by the RCB ID in the RCB ALLOCATED record. 
Set the RESOURCE parameter of the ALLOCATE verb to RCB identifier. -
Set the fields in the RCB to their initial values. 

If the RETURN_CONTROL parameter of the ALLOCATE verb is IMMEDIATE then (see Note lJ 
Call CREATE_AND_INIT_LIMITED_MUCRCB, created MUJ lpage 5.1-30). 

Set MU.PS TO HS.ALLOCATE to YES. 
Else - -

Call OBTAIN_SESSION_PROCCRCB, ALLOCATE verb parameters) !page 5.1-371. 
If the RETURN_CODE of the ALLOCATE verb is OK then 

.Build an FMH-5 Attach !see SNA Formats) with the data in ALLOCATE. 
If the FMH-5 is to be flushecf°Cas an implementation-dependent option) then 

Send the MU record to HS. 
Else (error found during ALLO~ATE processing) 

Call FSM CONVERSATIONCR, ALLOCATION ERROR RC, RCBJ (page 5.1-65). 
Hhen UNSUCCESSFUL C see Note 2 ) - -

Set the RETURN_CODE of the ALLOCATE verb to UNSUCCESSFUL. 
Hhen SYNC LEVEL NOT SUPPORTED 

Find the RCB-for-the conversation identified by the RCB_ID in the RCB_ALLOCATED record. 
Initialize the allocated RCB. 
Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCBJ !page 5.1-65). 
Set the RETURN_CODE of the ALLOCATE verb to ALLOCATION_ERROR with a subcode of 

SYNC_LEVEL_NOT_SUPPORTED_BY_LU (see Note 3). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-49 



RECEIVE_AND_TEST_POSTING 

RECEIVE_AND_TEST_POSTING 

-------------( 

5.1-50 

FUNCTION: This procedure transfers data from the received MUs into· the RECEIVE_AND_HAIT 
data buffer while checking for posting to be satisfied. 

INPUT: RCB of the conversation, and the RECEIVE_AND_HAIT verb 

OUTPUT: Buffer area of the verb is filled with the requested amount of data. If data 
is to be returned to the TP, RECEIVE_AND_HAIT.MAX_LENGTH is set to the amount 
of data being returned. RECEIVE_AND_HAIT.RETURN_CODE and 
RECEIVE_AND_HAIT.HHAT_RECEIVED are initialized. Also, the FSH_POST undergoes 
state transitions, along with updates to the RCB.POST_CONDITIONS.MAX_LENGTH 
and RCB.POST_CONDITIONS.FILL fields. 

Referenced procedures, FSHs, and data structures: 
PERFORH_RECEIVE_PROCESSING 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
TEST_FOR_POST_SATISFIED 
FSH_POST 
RCB 

TEST POSTING 

Call FSM_POST (page 5.1-68) and pass it a POST_ON_RECEIPT signal. 

page 5.1-40 
page.5.1-51 
page 5.1-60 
page 5.1-68 
page A-6 

Set RCB.POST_CONDITIONS.FILL to the FILL parameter on the RECEIVE_AND_HAIT verb. 
Set RCB.POST_CONDITIONS.MAX_LENGTH to the MAX_LENGTH parameter on the RECEIVE_AND_HAIT verb. 
Call TEST_FOR_POST_SATISFIEDIRCBl lpage 5.1-60). 
Call PERFORM_RECEIVE_PROCESSINGIRCB, RECEIVE_AND_HAIT verb parameters) lpage 5.1-40). 

If the state of FSM_POST is PEND_POSTED then 
Do while the state of FSM POST is PEND POSTED. 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDS(SUSPEND_LIST containing RCB_IDl lpage 5.1-51). 
Call TEST_FOR_POST_SATISFIEDIRCB) !page 5.1-60). 
Call PERFORM_RECEIVE_PROCESSINGIRCB, RECEIVE_AND_HAIT verb parameters) (page 5.1-40). 

Set RECEIVE_AND_HAIT.MAX_LENGTH to indicate the amount of data returned to the TP. 
Call FSH_POST (page 5.1-68) and pass it a RECEIVE_IMMEDIATE signal. 

SNA LU 6.2 Reference: Peer Protocols 

"----. 



(~; 

c \ I 
/ 

RECEIVE_RH_OR_HS_TO_PS_RECORDS 

RECEIVE_RH_OR_HS_TO_PS_RECORDS 

FUNCTION: This procedure receives records from RH and all HS processes and updates the 
appropriate RCB. If SUSPEND_LIST is not empty, this procedure waits until at 
least one record assoc.iated with an RCB in SUSPEND_LIST is received. 

INPUT: 

OUTPUT: 

NOTES: l. 

All records passed up fro~ HS to PS will be processed at this time. Records 
from HS that do not have RCB associated with them are destroyed or freed by 
the buffer manager. 

CONFIRMED and RSP_TO_REQUEST_TO_SEND are not received in this procedure. Hhen 
a TP is expecting one of these responses, PS does not return control to the TP 
until the response is received in the LU. This processing is done in separate 
procedures. 

SUSPEND_LIST containing RCB_IDs of conversations awaiting incoming records. 

Records received from HS are stored in the HS_TO_PS_BUFFER_LIST for the appro­
priate conversation. 

CONVERSATION FAILURE 
Other records from 
expected from RM. 

is the only possible record that can 
RM are received by other procedures 

arrive from 
when a reply 

RM. 
is 

2. This "continuous purging" of records is required by PS for records received 
from HS that do not have an RCB associated with them. 

3. This "continuous purging" of records is required by PS for records received 
from HS after receipt of a PROTOCOL_VIOLATION or SON record. 

Referenced procedures, FSMs, and data structures: 
CONVERSATION_FAILURE_PROC 
PS_PROTOCOL_ERROR 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
CONVERSATION_FAILURE 
CONFIRMED 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 
MU 

page 5.1-29 
page 5.0-20 
page 5.1-65 
page 5.1-67 
page A-6 
page A-21 
page A-10 
page A-10 
page A-10 
page A-11 
page A-29 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-51 



RECEIVE_RH_OR_HS_TO_PS_RECORDS 

5.1-52 

Set HORE RECORDS to TRUE. 
If the sUsPEND_LIST is empty then 

Set SUSPEND_FLAG to ND_SUSPEND. 
Else 

Set SUSPEND_FLAG to SUSPEND. 

Do while MORE_RECORDS is TRUE: , 
Select based on the value of SUSPEND_FLAG: 

Hhen SUSPEND 
Find record in RH_TO_PS_Q or HS_TO_PS_Q and SUSPEND. 

Hhen NO_SUSPEND 
Find record in RM_TO_PS_Q or HS_TO_PS_Q. 

If a record.is found then 
If the record is a CONVERSATION FAILURE then 

Remove the CONVERSATION_FAILURE record from the RH_TO_PS_Q (see Note 1). 
Find the RCB for the conversation identified by the RCB_ID parameter. 

If the RCB is found then 
Call CONVERSATION_FAILURE_PROClCONVERSATION_FAILUREl lpage 5.1-29). 

Else 
Destroy the CONVERSATION_FAILURE record. 

Else 
Remove the record from the HS_TO_PS_Q. 
Select based on record TYPE: 

Hhen REQUEST_TO_SEND 
Find RCB in the RCB_LIST for the BRACKET_ID specified. 
If the RCB is found then 

Set RCB.RQ_TO_SEND_RCVD to YES. 
Destroy the REQUEST_TO_SEND record. 

Hhen RECEIVE_ERROR 
Find RCB in the RCB_LIST for the BRACKET_ID specified. 
If the RCB is found then 

Call FSM ERROR OR FAILUREIRECEIVE ERROR, RCBJ} 
Destroy the-RECEIVE_ERROR record. -

Hhen RSP_TO_REQUEST_TO_SEND, CONFIRMED 
Destroy the record lsee Note 3J. 

Hhen MU 
Find the RCB for the conversation with the BRACKET_ID specified in the MU. 
If the RCB for this conversation is found then 

If the state of FSH_CONVERSATION lpage 5.1-65) is RCV_STATE or 
the state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is RCVD_ERROR then 

Add the MU to the RCB.HS_TO_PS_BUFFER_LIST. 
Else 

Call buffer manager IFREE BUFFER, buffer address) (Appendix BJ. 
If the state of FSH_CONVERSATION is END_CONV then 

Call PS_PROTOCOL_ERRORIRCB.HS_ID, X'20040000' J lpage 5.0-20). 
Else (see Note 2) 

Call buffer manager IFREE BUFFER, buffer address) (Appendix BJ. 

If SUSPEND_FLAG is SUSPEND & the RCB ID for the record just 
processed was 

found in the SUSPEND LIST then 
Set SUSPEND_FLAG to NO_SUSPEND. 

Else (no record found) 
Set MORE_RECORDS to FALSE. 

SNA LU 6.2 Reference: Peer Protocols 

c. 

c 



c \ I 

C: 

SEND_CONFIRMED_PROC 

SEND_CONFIRMED_PROC 

FUNCTION: This procedure creates a CONFIRMED .HU and sends it to HS. 

INPUT: The RCB associated with the half-session to which the CONFIRMED is to be sent 

OUTPUT: A CONFIRMED HU sent to HS 

Referenced procedures, FSMs, and data structures: 
HS 
HU 
RCB 

page 6.0-3 
page A-29 
page A-6 

Call buffer manager IGET_BUFFER, permanent buffer pool ID,· no wait) to create an 
MU for the CONFIRMEDJ specify the buffer size to be CONFIRMED_MAX_LEN plus the length 
of the HU overhead. 

If a permanent buffer is not available then 
Call buffer manager IGET_BUFFER, demand, buffer size, no wait) to create an MU for 
the CONFIRMED; specify the buffer size to be CONFIRMED_MAX_LEN plus the length of 
the HU overhead. 

Set MU.HEADER TYPE to PS TO HS. 
Set MU.PS TO HS.BRACKET ID to RCS.BRACKET ID. 
Set HU.PS:To:Hs.PS_TO_HS_VARIANT to CONFIRMED. 

Send this CONFIRMED record io HS. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-53 



SEND_DATA_BUFFER_HANAGEMENT 

SEND_DATA_BUFFER_MANAGEMENT 

S.1-54 

----------(' 
Fl.KTION: 

INPUT: 

OUTPUT: 

This procedure determines if there is enough data to be sent to HS. 

PS continues to send data to HS until the amount of data remaining to be sent 
is less than or equal to the maximum send RU size, in which case PS stores the 
data in the MU in the RC8 until more data is issued by the transaction program 
or the buffer is forced to be sent le.g., FLUSH, CDl to the partner. If the 
data in the buffer is exactly equal to the maximum send RU size, PS stores the 
data to be sent later. 

Data to be sent to HS, and the RCB corresponding to the resource specified in 
the current TRANSACTION_PGM_VERB 

If enough data has been sent by the transaction program, one or more MUs are 
sent to HS. Otherwise, the data is stored in the MU in the RCB to be sent at 
a later time. Data is copied into the send MU.RU field while the send MU.DCF 
field is incremented to indicate the amount of data present in the send MU. 

NOTES: 1. After the MU has been completely filled with data, the presence of additional 
data determines if the MU will be sent to HS. If no more data is present, it /--..., 
will be held by PS until more data arrives or the direction of the conversa- \_ ___ ,. 
tion forces the MU to be sent. In the latter case, all information le.g., 
CONFIRM) can be stored in the RH bits. 

2. Additional MUs are not requested unless data is present to store in the MU. 
This will prevent utilizing storage for the MU until it is absolutely neces­
sary. 

Referenced procedures, FSMs, and data structures: 
HS 
CREATE_AND_INIT_LIMITED_MU 
RCB 
MU 

If a send MU buffer doesn't exist then 
Call CREATE AND INIT LIMITED MUIRCB, created MUJ lpage 5.1-30). 

Else - - - -
If the send MU is full and there is more data to send lsee Note lJ then 

Send the MU buffer to HS. 
Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUl lpage 5.1-30). 

Do while there is more data to send: 
Copy the data into the MU record. 

If the MU is full and there is more data to send then 
Send the MU buffer to HS. 
If there is more data to send I see Note 2) then 

Call CREATE_AND_INIT_LIMITED_MUIRCB, created MUJ lpage 5.1-30). 
Else CHU not full or no more data) 

Save the MU to send later I see Note 1). 

SNA LU 6.2 Reference: Peer Protocols 

page 6.0-3 
page 5.1-30 
page A-6 
page A-29 

c/. 



c~: 

SEND_ERROR_DONE_PROC 

SEND_ERROR_DONE_PROC 

FUNCTION: This procedure performs further processing of the SEND_ERROR verb. 

It creates an FMH-7 record and selects the sense data to be inserted in the 
FMH-7 based upon the type of SEND_ERROR, the state of the conversation, and 
whether the outgoing logical record is complete. If the transaction program 
is in send state and has completed the current logical record, sense data 
indicating that no truncation of data has taken place is inserted into the 
FMH-7. If the transaction program is in send state and has not completed the 
current logical record, sense data indicating data truncation has occurred is 
inserted into the FMH-7. Finally, if the transaction program is in receive 
state, sense data indicating that data sent by the partner transaction program 
is being purged by the half-session is inserted into the FMH-7. 

Sense data X'08890000' and X'08890100' have either of two meanings, depending 
upon whether the transaction program is in send or.receive state. 

INPUT: SEND_ERROR verb parameters and the RCB corresponding to the resource specified 
in the SEND_ERROR 

OUTPUT: An FMH-7 is created and stored in the RCB send buffer. If any log data is 
associated with the SEND ERROR, PS creates an Error Log GDS variable (see SNA 
Formats) and stores the- GOS .variable in the RCB send buffer following the 
FMH-7. PS also places the GOS variable (minus the LL and GDS ID fields) in 
the system error log at the local LU. PS returns to the transaction program 
with the RETURN_CODE parameter in the SEND_ERROR set to OK. 

Referenced procedures, FSMs, and data structures: 
HS 
SEND_DATA_BUFFER_MANAGEMENT 
FSM_CONVERSATION 
RCB 
MU 

Select based on the following conditions: 

page 
page 
page 
page 
page 

Hhen TYPE parameter of SEND_ERROR verb is PROG and state of FSM_CONVERSATION 
(page 5.1-65) is SEND_STATE 

If data sent by the TP is at a logical record boundary then 
Set SENSE DATA to X'08890000'. 

Else -
Set SENSE DATA to X'08890001'. 

Hhen TYPE param;ter of SEND_ERROR verb is PROG and state of FSM_CONVERSATION 

6.0-3 
5.1-54 
5.1-65 
A-6 
A-29 

lpage 5.1-65) is RCV_STATE, RCVD_CONFIRM, RCVD_CONFIRM_SEND, or RCVD_CONFIRM_DEALL 
Set SENSE DATA to X'08890000'. 

Hhen TYPE of-SEND_ERROR is SVC and state of FSM_CONVERSATION lpage 5.1-65) is SEND_STATE 
If data sent by the TP is at a logical record boundary then 

Set SENSE DATA to X'08890100'. 
Else -

Set SENSE DATA to X'08890101'. 
Hhen TYPE param;ter of SEND_ERROR is SVC and state of F~M_CONVERSATION lpage 5.1-65) is 

RCV STATE, RCVD CONFIRM, RCVD CONFIRM SEND, or RCVD CONFIRM DEALL 
s;t SENSE DATA to x · 08890100 • • - - -

If LOG_DATA par;meter of SEND_ERROR is not null then 
Create an FMH-7 indicating that LOG_DATA will be present. 
Create Error log GOS variable with the LOG_DATA. 
Call SEND_DATA_BUFFER_MANAGEMENT (Error log GOS variable, RCBJ (page 5.1-54). 

ISee SNA Formats for Error log GOS format.) 
Log the-Brror in the system error log. 

Else 
Create an FMH-7 indicating that LOG_DATA will not be present. 

If FLUSH verb is not implemented or the FMH-7 is to be flushed immediately 
(as an implementation-dependent option) then 

Send the MU record to HS. 

Set the RETURN CODE of the SEND_ERROR verb to OK. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-55 



SEND_ERROR_IN_RECEIVE_STATE 

5.1-56 

SEND_ERROR_IN_RECEIVE_STATE 

FUNCTION: This procedure if invoked when the transaction program issues a SEND_ERROR for 
a conversation that is in the RECEIVE state. Further processing of the 
SEND_ERROR is dependent upon what information, if any, has been received from 
HS and stored in the HS_TO_PS_BUFFER_LIST, as described below. 

INPUT: SEND_ERROR verb parameters and the RCB corresponding to the resource specified 
in the SEND_ERROR record 

OUTPUT: See below. 

NOTES: 1. If an MU with the MU.HS_TO_PS.TYPE parameter set to DEALLOCATE has been 
received from HS, PS returns to the transaction program after setting the 
RETURN_CODE parameter of the SEND_ERROR to DEALLOCATE_NORMAL. 

2. If the first MU in the RCB.HS_TO_PS_BUFFER_LIST is not a DEALLOCATE, or if the 
RCB.HS_TO_PS_BUFFER_LIST is empty, PS sends a SEND_ERROR record to HS. PS 
then creates an FMH-7 and stores it in the RCB send buffer. 

Referenced procedures, FSMs, and data structures: 
SEND_ERROR_TO_HS_PROC 
HAIT_FOR_SEND_ERROR_DONE_PROC 
FSM_CONVERSATION 
MU 
RCB 

Set MU_PTR to the first entry in the RCB.HS_TO_PS_BUFFER_LIST. 

page 5.1-58 
page 5.1-64 
page 5.1-65 
page A-29 
page A-6 

If the end-of-chain type for this conversation is DEALLOCATE_FLUSH then (See Note 1) 
If MU PTR is not NULL then 

Call buffer manager IFREE_BUFFER, buffer address) !Appendix BJ. 
Set the RETURN CODE of the SEND ERROR verb to DEALLOCATE NORMAL. 
Call FSM_CONVERSATIONCR, DEALLoCATE_NORMAL_RC, RCBJ lpag; 5.1-65). 

Else ISee Note 2) 
Call SEND_ERROR_TO_HS_PROCCRCBJ Cpage 5.1-58). 
Call HAIT_FOR_SEND_ERROR_DONE_PROCCSEND_ERROR verb parameters, RCBJ Cpage 5.1-64). 

SNA LU 6.2 Reference: Peer Protocols 

,-----..., 
'i 
'-..__ . ./ 



LI 

SEND_ERROR_IN_SEND_STATE 

SEND_ERROR_IN_SEND_STATE 

FUNCTION: This procedure is invoked when the transaction program issues a SEND_ERROR 
verb for a conversation that is in the SEND state. 

If the state of FSM_ERROR_OR_FAILURE indicates that no RECEIVE_ERROR record 
has been received from HS, any data in PS's send buffer is sent to HS and an 
FMH-7 is created and stored in a newly created MU. 

If the state of FSM ERROR OR FAILURE indicates that a RECEIVE ERROR record has 
been received from HS, PS s;nds an MU with the MU.PS_TO_HS.TYPE field set to 
PREPARE TO RCV FLUSH to HS. IAny data in the RCB send buffer was purged when 
the RECEIVE_ERROR record was received.) PS then waits for the expected FMH-7 
to arrive. The RETURN_CODE parameter of the SEND_ERROR is set based upon the 
sense data carried in the FMH-7. 

INPUT: SEND_ERROR verb parameters and the RCB corresponding to the resource specified 
in the SEND_ERROR 

OUTPUT: Any data in PS's buffer is sent to HS and an FMH-7 is created and stored in 
the RCB. Send processing begins anew after sending an FMH-7; therefore, the 
send processing fields of the RCB are reset to their initial values. 

Referenced procedures, FSMs, and data structures: 
HS 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
SEND_ERROR_DONE_PROC 
DEQUEUE_FMH7_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

If the state of FSM_ERROR_OR_FAILURE is NO_REQUESTS then 
If a send MU buffer is present then 

Send the MU record to HS. 

Call FSM_CONVERSATIONIS, SEND_ERROR, RCB) (page 5.1-65). 
Call SEND ERROR DONE PROCISEND ERROR verb parameters, RCBl lpage 5.1-55). 

Else lthe st;;te is-RCVD-ERROR) -
Set MU.PS_TO_HS.TYPE-to PREPARE_TO_RCV_FLUSH and send the MU record to HS. 

page 6.0-3 
page 5.1-51 
page 5.1-55 
page 5.1-34 
page 5.1-65 
page 5.1-67 
page A-29 
page A-6 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDSISUSPEND_LIST containing RCB_ID) lpage 5.1-51). 
If the state of FSM ERROR OR FAILURE is CONV FAILURE SON or 

CONV_FAILURE_PROTOCOL_ERROR-then - -
If the state of FSM ERROR OR FAILURE is CONV FAILURE SON then 

Set the RETURN_CODE of-th; SEND_ERROR verb to RESOURCE_FAILURE_RETRY. 
Else 

Set the RETURN CODE of the SEND ERROR verb to RESOURCE FAILURE NO RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB) lpage 5.1-65). 

Else 
Call DEQUEUE_FMH7_PROCISEND_ERROR verb parameters, RCBl lpage 5.1-34). 

Set the RCB send processing fields to their initial values. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-57 



SEND_ERROR_TO_HS_PROC 

5.1-58 

SEND_ERROR_TO_HS_PROC 

FUNCTION: This procedure creates a SEND_ERROR MU and sends it to HS. 

INPUT: The RCB associated with the HS to which the SEND_ERROR MU is to be sent 

OUTPUT: A SEND_ERROR is created to be sent to HS 

Referenced procedures, FSMs, and data structures: 
HS 
MU 
RCB 

page 6.0-3 
page A-29 
page A-6 

Call buffer manager (GET BUFFER, buffer size) to create an MU for the SEND ERROR; 
specify the buffer size-to be SEND_ERROR_MAX_LEN plus the length of the MU 
overhead. 

Set MU.HEADER_TYPE to PS_TO_HS. 
Set MU.PS_TO_HS.BRACKET_ID to RCB.BRACKET_ID. 
Set MU.PS_TO_HS.PS_TO_HS_VARIANT to SEND_ERROR. 

Send this SEND_ERROR record to HS. 

SEND_REQUEST_TO_SEND_PROC 

FUNCTION: This procedure creates an MU containing a REQUEST_TO_SEND and sends it to HS. 

INPUT: The RCB associated with the half-session to which the REQUEST_TO_SEND is to be 
sent 

OUTPUT: A REQUEST_TO_SEND is created to be sent to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
MU 
RCB 

page 6.0-3 
page A-29 
page A-6 

Call buffer manager IGET BUFFER, buffer size) to create an MU for the REQUEST TO SEND; 
specify the buffer size-to be REQUEST_TO_SEND_MAX_LEN plus the length of the-MU­
overhead. 

Set MU.HEADER_TYPE to PS_TO_HS. 
Set MU.PS_TO_HS.BRACKET_ID to RCB.BRACKET_ID. 
Set MU.PS_TO_HS.PS_TO_HS_VARIANT to REQUEST_TO_SEND. 

Send this REQUEST_TO_SEND record to HS. 

SNA LU 6.2 Reference: Peer Protocols 



c 

SET_FHH7_RC 

SET_FHH7_RC 

FUNCTION: This procedure sets the RETURN_CODE parameter of the passed transaction pro­
gram verb based upon the passed sense data. 

INPUT: The RCB corresponding to the resource to which the FMH-7 applies, the received 
FMH-7 sense data, and the transaction program verb parameters currently being 
processed 

OUTPUT: The RETURN_CODE parameter of the verb is set, based upon the sense data passed 
from the received FMH-7. 

NOTE: Hhen the sense data in the FMH-7 indicates an allocation error, a deallocation 
notification is expected. If this expected notification is not received, a 
protocol violation has occurred. The procedure GET_DEALLOCATE_FROM_HS per­
forms the appropriate processing, which includes placing the conversation in 
END_CONV state. 

Referenced procedures, FSMs, and data structures: 
PS_PROTOCOL_ERROR 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

Select based on the sense data in FMH-7: 
Hhen ALLOCATION ERROR code 

Get the DEALLOCATE from the RCS.HS TO PS BUFFER LIST. 
If the state of FSM CONVERSATION i~ .,;;t END CONV then 

page 5.0-20 
page 5.1-65 
page 5.1-67 
page A-6 

Set RETURN CODE p;rameter of the verb to the corresponding value (see SNA Formats to 
find the value corresponding to a given sense dataJ. 

Call FSM_CONVERSATIONIR, ALLOCATION_ERROR, RCBJ (page 5.1-65). 
Hhen RESOURCE FAILURE NO RETRY 

Set RETURN=CODE pa;am;ter of the TP verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBJ lpage 5.1-65). 

Hhen PROG ERROR NO TRUNC or PROG ERROR PURGING 
If state of FSM=ERROR_OR_FAILURE lp;ge 5.1-67) is RCVD_ERROR then 

Set RETURN_CODE parameter of the verb to PROG_ERROR_PURGING. 

Else · 
Set RETURN_CODE parameter of the verb to PROG_ERROR_NO_TRUNC. 

Call FSM_CONVERSATIONIR, PROGRAM_ERROR_RC, RCBJ lpage 5.1-65). 
Hhen PROG ERROR TRUNC 

Set RETuRN_CODE parameter of the verb to PROG_ERROR_TRUNC. 
Call FSM_CONVERSATIONIR, PROGRAM_ERROR_RC, RCBJ (page 5.1-65). 

Hhen SVC ERROR NO TRUNC or SVC ERROR PURGING 
If st;te of-FSM_ERROR_OR_FAILURE (page 5.l-67J is RCVD_ERROR then 

Set RETURN_CODE parameter of the verb to SVC_ERROR_PURGING. 

Else 
Set RETURN_CODE parameter of the verb to SVC_ERROR_NO_TRUNC. 

Call FSM_CONVERSATIONIR, SERVICE_ERROR_RC, RCBJ lpage 5.1-65). 
Hhen SVC ERROR TRUNC 

Set RETURN_CODE parameter of the verb to SVC_ERROR_TRUNC. 
Call FSM_CONVERSATIONCR, SERVICE_ERROR_RC, RCBJ (page 5.1-65). 

Hhen DEALLOCATE ABEND 
Set RETURN_CODE parameter of the verb to DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_SVC, 

DEALLOCATE ABEND TIMER, or to DEALLOCATE ABEND RC 
as shown i~ SNA Formats under X'0864' S~se Code. 

Call FSM CONVERSATIONIR, DEALLOCATE ABEND RC, RCBJ. 
Otherwise (;s an implementation-depend;nt option): 

Call PS_PROTOCOL_ERRORIRCB.HS_ID, FMH-7 sense data) (page 5.0-20). 
Set RETURN_CODE parameter to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBJ (page 5.1-65). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-59 



TEST_FOR_POST_SATISFIED 

TEST_FOR_POST_SATISFIED (' -------------------------------------------------'-..-

5.1-60 

FUNCTION: This procedure tests whether the post conditions specified in the RCB have 
been satisfied. 

INPUT: The RCB corresponding to the resource to be tested 

OUTPUT: The state of FSH_POST is set to POSTED if the post conditions are satisfied. 

Referenced procedures, FSHs, and data structures: 
FSH_POST 
MU 

page 5.1-68 
page A-29 

Testing for posting involves examining the data !logical records) in 
the received HUs to see if the data will satisfy the conditions speci­
fied in the RECEIVE * verb. Receipt of any of the following can cause 
posting to be satisfied: 

• End-of-Chain type received 

• Conversation Failure record from RH--Session-Outage Notification 
ISONl 

• Conversation Failure record from RH--Protocol Violation 

• FHH-7 

• Complete logical record with FILL=LL 

• Remainder of partial returned logical record with FILL=LL 

• Enough data in the buffer to satisfy the FILL=BUFFER condition 

• An invalid LL in the received data 

During the testing process, the data in the received HUs is traversed 
one logical record at a time until any one of the conditions listed 
above is recognized. Information on the location in the HU, location 
in the logical record, and number of bytes remaining in the current 
logical record is continually updated as the data is examined. 

A logical record is preceded by a 2-byte length field. These length 
bytes are not passed to the transaction program until both bytes are 
present in the receive buffer. If only the first byte is in the 
receive buffer, it is saved until the second byte arrives. Hith both 
bytes present, the length field is checked for validity. Hhile wait­
ing for the second length byte to arrive, a number of conditions can 
validly tM.a'lcate the logical record, i.e., receipt of: 

• Conversation Failure--Session-Outage Notification (SON) 

• Conversation Failure--Protocol Violation 

• FHH-7 

SNA LU 6.2 Reference: Peer Protocols 

C' 
-

c 

c 



(_.-· .. 
j 

(_/! 

C', 

HAIT_FOR_CONFIRMED_PROC 

HAIT_FOR_CONFIRMED_PROC 

FUNCTION: This procedure is invoked · after an MU indicating CONFIRM has been sent to HS 
and a CONFIRMED record is expected in reply. 

INPUT: 

HS can send other records to PS while PS is waiting for the expected CONFIRMED 
record. Appropriate action is taken, depending upon the record received (see 
below I. 

The transaction program verb 
HS, and the RCB corresponding 
program verb 

that caused the CONFIRM indicator to be sent to 
to the resource specified in the transaction 

OUTPUT: See below. 

NOTES: 1. If a REQUEST TO SEND record is received, PS stores that information in the RCB 
to be relay;d to the transaction program at a later time, and continues to 
wait for the expected CONFIRMED record. 

z. If a RECEIVE ERROR record is received, PS waits for the FMH-7 corresponding to 
the RECEIVE ERROR to arrive from HS. The RETURN_CODE of the passed trans­
action prog;am verb is set based upon the sense data carried in the FMH-7. 
Control is then returned to the transaction program. 

3. If the expected CONFIRMED is received, PS returns control to the transaction 
program. 

4. If the transaction program has issued a DEALLOCATE ITYPE = SYNC LEVELi 
SYNC LEVEL of the conversation is CONFIRM, FSM CONVERSATION ~ill be 
PEND-DEALL state when the CONFIRMED record ar;ives. The CONFIRMED 
caus;s the requested deallocation to be completed. 

and the 
in the 
record 

Referenced procedures, FSMs, and data structures: 
PS 
CONVERSATION_FAILURE_PROC 
DEQUEUE_FMH7_PROC 
END_CONVERSATION_PROC 
PS_PROTOCOL_ERROR 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 
FSH_CONVERSATION 
FSH_ERROR_OR_FAILURE 
CONFIRMED 
CONVERSATION_FAILURE 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RCB 

Do while CONFIRMED response has not been received: 
Get the first record for this conversation. 
Select based on the type of the rec9rd: 

Hhen CONVERSATION FAILURE then 
Call CONVERSATION_FAILURE_PROC with record (see page 5.1-291. 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

If state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is CONV_FAILURE_SON then 
Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_RETRY. 

Else 
Set RETURN_CODE parameter of the verb to RESOURCE FAILURE NO RETRY. 

Call FSH CONVERSATIONIR, RESOURCE FAILURE RC, RCBJ lpage 5.1-65). 
Response-condition is satisfied. - -

5.0-8 
5.l-Z9 
5.t-34 
5.1-34 
5.0-20 
5.1-51 
5.1-65 
5.1-67 
A-10 
A-21 
A-10 
A-10 
A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-61 



HAIT_FOR_CONFIRMED_PROC 

Hhen REQUEST.TO SEND lsee Note ll 
Set RCB.RQ_TO_SEND_RCVD to YES. 
Destroy the REQUEST_TO_SEND record. 

Hhen RECEIVE_ERROR lsee Note. 2) 
Call FSM_ERROR_OR_FAILUREIRECEIVE_ERROR, RCB) (page 5.1-67). 
Call RECEIVE_RM_OR_HS_TO_PS_RECORDSISUSPEND_LIST contains RCB ID) lpage 5.1-38). 
If state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is CONV_FAILURE_SON or 

CONV FAILURE PROTOCOL ERROR then 
If-state of FSM_ERROR_OR_FAILURE lpage 5.1-67) is CONV_FAILURE_SON then 

Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBl (page 5.1-65). 

Else 
Call DEQUEUE_FMH7_PROCICONFIRM verb parameters, RCB) (page 5.1-34). 

Response condition is satisfied. 
Destroy the RECEIVE_ERROR record. 

Hhen CONFIRMED (see Note 3) 
Set RETURN_CODE parameter of the verb to OK. 
If state of FSM CONVERSATION is PEND DEALL then I see Note 4) 

Call FSM CONVERSATIONIR, DEALLOCATION INDICATOR, RCBl lpage 5.1-65). 
Call END=CONVERSATION_PROCIRCBl lpage-5.1-341. 

Response condition is satisfied. 
Destroy the CONFIRMED record. 

otherwise 
Call PS_PROTOCOL_ERRORIRCB.HS_ID, X'lOOlOOOO' J lpage 5.0-201. 
Call FSM_CONVERSATIONIR, CONFIRMED, RCBJ (page 5.1-65). 

HAIT_FOR_RM_REPLY 

FUNCTION: This procedure waits for an expected reply from the resources manager. 

INPUT: At least one record from the RM_TO_PS_Q 

OUTPUT: A record received from the resources manager 

NOTES: 1. CONVERSATION_FAILURE is the only record that can arrive unexpectedly from the 
resources manager. 

2. Any record from the resources manager, other than CONVERSATION FAILURE, must 
be the expected reply. No more than one reply from the resour~es manager is 
outstanding at any time. 

C' 

r-· 
( 

'------------------------------------------------' '-..../ 

5.1-62 

Referenced procedures, FSMs, and data structures: 
RM 
CONVERSATION_FAILURE_PROC 
CONVERSATION_FAILURE 

Do while record from RM has not arrived: 
Hait for a record to arrived from RM. 
If the record from RM is a CONVERSATION FAILURE then lsee Note ll 

page 3-19 
page 5.1-29 
page A-21 

Call CONVERSATION FAILURE PROCICONVERSATION FAILURE record! (page 5.1-291. 
Else (see Note 2) - - -

Record received from RM, return the record. 

SNA LU 6.2 Reference: Peer Protocols 



c 

c 

0 

0 

c 

HAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 

HAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 

FUNCTION: This procedure is invoked after PS has issued a REQUEST_TO_SEND to HS. The 
next record that is expected from HS is RSP_TO_REQUEST_TO_SEND. 

INPUT: 

OUTPUT: 

HS can send records to PS 
RSP_ro_REQUEST_TO_SEND record. 
the record received (see below). 

while PS is waiting for 
Appropriate action is taken, 

the expected 
depending upon 

The RCB corresponding to the conversation for which the REQUEST_TO_SEND was 
issued is passed as a parameter to this procedure} HS_TO_PS_RECORDs are 
received from HS. 

See below. 

NOTES: 1. If a REQUEST_TO_SEND is received, PS stores that information in the RCB and 
continues to wait for the RSP_TO_REQUEST_TO_SEND. 

2. Since REQUEST_TO_SEND does not support the RESOURCE_FAILURE return code, if a 
RECEIVE_ERROR is received, the information is stored in FSM_ERROR_OR_FAILURE 
to be presented to the transaction program when it issues a verb that does 
support the RESOURCE_FAILURE return code. 

3. Hhen RSP TO REQUEST TO SEND is received, control is returned to the trans-
action p-;;,g;am. - -

4. Any data received from HS before the RSP TO REQUEST TO SEND arrives is stored 
in the HS_TO_PS_BUFFER_LIST. PS - c~ntinues- to wait for the 
RSP_TO_REQUEST_TO_SEND. However, if an MU with TYPE field set to DEALLO­
CATE FLUSH is received, the RSP TO REQUEST TO SEND will not be received by PS, 
so PS returns control to the tr;ns;ction p-;;,g;am. 

Referenced procedures, FSMs, and data structures: 
CONVERSATION_FAILURE_PROC 
PS_PROTOCOL_ERROR 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
COVERSATION_FAILURE, see CONVERSATION_FAILURE 
MU . 
REQUEST_TO_SEND 
RECEIVE_ERROR, see RSP_TO_REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND, see RECEIVE_ERROR 
RCB 

page 5.1~29 
page 5.0-20 
page 5.1-65 
page 5.1-67 
page A-21 
page A-29 
page A-10 
page A-11 
page A-10 
page A-6 

Do while the response has not been received I response condition not satisfied): 
Get the first record for this conversation. 
Select based on the type of the record: 

Hhen CONVERSATION FAILURE then 
Call CONVERSATION_FAILURE_PROC with record lpage 5.l-29J. 
Response condition is satisfied. 

Hhen REQUEST_TO_SEND I see Note lJ 
Set RCB.RQ_TO_SEND_RCVD to YES. 
Destroy the REQUEST_TO_SEND record. 

Hhen RECEIVE ERROR I see Note 2) 
Call FSM_ERROR_OR_FAILURECRECEIVE_ERROR, RCBJ Csee page 5.1-67) 
Destroy the RECEIVE_ERROR record. 

Hhen RSP TO REQUEST TO SEND Csee Note 3) 
Respo~se-conditi~n is satisfied. 
Destroy the RSP_TO_REQUEST_TO_SEND record. 

Hhen MU Csee Note 4J 
Add the MU to the RCS.HS TO PS.BUFFER LIST. 
Set MU to the last entry-of-HS=TO_PS_BUFFER_LIST. 
If the end-of-chain type has been received and is DEALLOCATE_FLUSH then 

Response condition is satisfied. 
Otherwise 
Call PS_PROTOCOL_ERRORCRCB.HS_ID, FMH-7 Sense Data) lpage 5.0-20). 
Call FSM_CONVERSATIONIS, CONFIRMED, RCB) Cpage 5.1-65). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-63 



HAIT_FOR_SEND_ERROR_DONE_PROC 

HAIT_FOR_SEND_ERROR_DONE_PROC 

FUNCTION: This procedure is invoked after a SEND_ERROR MU has been sent to HS. The 
SEND_ERROR was sent to HS as a result of the transaction program issuing a 
SEND ERROR or DEALLOCATE CTYPE = ABEND PROG, ABEND_SVC, or ABEND_TIMERJ for a 
conv;rsation that is in receive state.-

INPUT: 

OUTPUT: 

The procedure calls GET_END_CHAIN_FROM_HS Cpage 5.1-36) to await the arrival 
from HS of a record indicating the end-of-chain type. Appropriate action is 
taken depending on the type of record received. 

Transaction program verb parameters and the RCB corresponding to the resource 
specified in the verb 

See below. 

NOTES: 1. If the record received from HS is an MU with the MU.HS TO PS.TYPE field set to 
DEALLOCATE_FLUSH, the conversation is deallocated and-th; return code of the 
verb is set to indicate the deallocation. 

2. If the record received from HS is an MU with the MU.HS_TO_PS.TYPE field set to 
DEALLOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRM, or PREPARE_TO_RCV_FLUSH, 
the processing of the verb is continued. 

3. FSM_ERROR OR FAILURE is reset to NO REQUESTS because, in certain SEND ERROR 
race case;, ; RCVD_ERROR condition i; not reported to the transaction p~gram. 
Normally, FSM_ERROR_OR_FAILURE is reset to NO_REQUESTS by SET_FMH7_RC (page 

C" 
.· 

\. __ ___ 

5.1-59) when the error is reported to the TP. ~. 

S.1-64 

Referenced procedures, FSMs, and data structures: 
GET_END_CHAIN_FROM_HS 
SEND_ERROR_DONE_PROC 
COMPLETE_DEALLOCATE_ABEND_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

Call GET_END_CHAIN_FROM_HSCRCB) Cpage 5.1-36). 

Select based on the state of FSM_ERROR_OR_FAILURE lpage 5.1-671: 
Hhen CONV FAILURE SON 

Set th; RETURN-CODE of the verb to RESOURCE FAILURE RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCBJ (page 5.1-651. 

Hhen CONV FAILURE PROTOCOL ERROR 
Set t~ RETURN-CODE of the verb to RESOURCE FAILURE NO RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBJ (pa9e S.1-651. 

Otherwise 

page 5.1-36 
page 5.1-55 
page 5.1-29 
page 5.1-65 
page 5.1-67 
page A-6 

Select based on the following conditions: 
Hhen end-of-chain type is DEALLOCATE_FLUSH lsee Note 1) and the verb is SEND_ERROR 

Set the RETURN CODE of the verb to DEALLOCATE NORMAL. 
Call FSM_CONVERSATIONIR, DEALLOCATE_NORMAL_Rc: RCBJ lpage 5.1-65). 

Hhen end-of-chain type is DEALLOCATE_FLUSH and the verb is DEALLOCATE 
Set the RETURN CODE of the verb to OK. 

Hhen end-of-chain-type is DEALLOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRH, 
or PREPARE_TO_RCV_FLUSH (see Note 21 and the verb is SEND_ERROR 

Purge the end-of-chain type received on this conversation. 
Call SEND_ERROR_DONE_PROCISEND_ERROR verb parameters, RCB) 

I page 5.1-55 J. 
Call FSM_CONVERSATIONIS, SEND_ERROR, RCBJ lpage 5.1-65). 

Hhen end-of-chain type is DEALLOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRH, 
or PREPARE_TO_RCV_FLUSH, and the verb is DEALLOCATE 

Call COMPLETE_DEALLOCATE_ABEND_PROCCDEALLOCATE verb parameters, RCB) 
(page 5.1-29). 

Call FSH_ERROR_OR_FAILURE lpage 5.1-671 and pass it a RESET signal lsee Note 3). 

SNA LU 6.2 Reference: Peer Protocols 

\ 
"-/' 

c: 



CJ FINITE-STATE MACHINES 

c 

0 

c 

c 

FSM_CONVERSATION 

FUNCTION: This finite-state machine maintains the status of a conversation resource. 
The states nave the following meanings: 

INPUT: 

NOTE: 

• RESET = conversation initial state, the program can allocate it 

• SEND STATE = the program can send data, request confirmation, or request 
sync-point 

• RCV_STATE = receive, the program can receive information from the remote 
program 

• RCVD CONFIRM = received confirm, PS received the confirm indicator from 
the HS 

• RCVD_CONFIRM_SEND = received confirm send, PS received the confirm send 
indicator from HS 

·• RCVD CONFIRM DEALL = received confirm deallocate, PS received the confirm 
deallocate f;om HS 

• 

• 

PREP_TO_RCV_DEFER = prepare to receive defer, the program issued a PRE­
PARE_TO_RECEIVE verb with SYNCPT 

DEALL_DEFER = deallocate defer, the program issued DEALLOCATE verb with 
SYNC PT 

• PEND_DEALL = pending deallocate, the program issued DEALLOCATE verb with 
CONFIRM 

The inputs are marked with S if they result from an action of the local trans­
action program and with R if they result from a record sent to PS by HS. The 
RCB is passed to provide the information needed to perform the state transi­
tion of the FSM_CONVERSATION and its output function. 

PEND DEALL is an intermediate state. PS does not return control to the trans­
acti~n program when the conversation is in this state. 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_ERROR_OR_FAILURE 
MU 
RCB 

page 6.0-3 
page 5.1-67 
page A-29 
page A-6 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-65 



FSH_CONVERSATION 

STATE NAMES----> RESET SEND RCV RCVD RCVD RCVD PREP DEALL PEND END 
STATE STATE CONFIRM CONFIRM CONFIRM TO DEFER DEALL CONY 

SEND DEALL RCV 
DEFER 

INPUTS STATE NUMBERS--> 01 02 03 04 05 06 07 08 09 010 

s, ALLOCATE 2 / / / / / / / / / 
R, ATTACH 3 / / / / / / / / / 

s, SEND_DATA / - > > > > > > / > 
s. PREP_TO_RCV_FLUSH / 3 > > > > > > / > 
s, PREP_TO_RCV_CONFIRM / 3 > > > > > > / > 
s, PREP_TO_RCV_DEFER / 7 > > > > > > / > 
s. FLUSH / - > > > > 3 l / > 
s, CONFIRM / - > > > > 3 9 / > 

s, SEND_ERROR / - 2 2 2 2 > > / > 
s. RECEIVE_AND_HAIT / 31A) - > > > > > / > 

s, POST_ON_RECEIPT / > - > > > > > / > 
s. HAIT / > - > > > > > / > 
s, TEST_POSTED / > - > > > > > / > 
s. TEST_Rll_TO_SEND_RCVD / - - > > > - - / > 
s, RECEIVE_IMMEDIATE / > - > > > > > / > 
s, REQUEST_TO_SEND / > - - > > > > / > 

R, SEND_INDICATOR / / 2 / / / /. / / / 
R, CONFIRM_ INDICATOR / / 4 /. / / / / / / 
R, CONFIRM_SEND_IND / / 5 / / / / / / / 
R, CONFIRM_DEALLOC_IND / / 6 / / / / / / / 

s. CONFIRMED / > > 3 2 10 > > / > 

R, PROGRAH_ERROR_RC / 318) -18) / / / 318) 318) 318) / 
R, SERVICE_ERROR_RC / 318) -18) / / / 318) 318) 318) / 

R, DEALLOC_NORMAL_RC / 10 10 / / / / / / / 
R, DEALLOC_A8END_RC / 1018) 10181 / / / 1018) 1018) 1018) / 
R, RESOURCE_FAILURE_RC / 10181 1018) / / / 1018) 1018) 1018) / 
R, ALLOCATION_ERROR_RC / 1018) 1018) / / / 1018) 1018) 10181 / 

s, DEALLOCATE_FLUSH / l > > > > > > / > 
s, DEALLOCATE_CONFIRM / 9 > > > > > > / > 
s. DEALLOCATE_DEFER / 8 > > > > > > / > 
s. DEALLOCATE_A8END / l l l l l l l / > 
s, DEALLOCATE_LOCAL / > > > > > > > / 1 

R, DEALLOCATED_IND / / / / / / / / l / 

s, GET_ATTRI8UTES / - - - - - - - / -

OUTPUT FUNCTION 
CODE 

A 
Set HU.PS_TO_HS.TYPE to PREPARE_TO_RCV_FLUSH and send the HU record to HS. 

8 
Call FSH_ERROR_OR_FAILURE (page 5.1-67) and pass it a RESET signal. 

5.1-66 SNA LU 6.2 Reference: Peer Protocols 



cl 

c 

FSM_ERROR_OR_FAILURE 

FSM_ERROR_OR_FAILURE 

FUNCTION: 

NOTE: 

This finite-state machine remembers if any error or failure MU records (either 
from HS to PS or RM to PS) have been received by PS. This knowledge is main­
tained until the information reflected by the records can be passed to the 
transaction program. The meanings of the states are as follows: 

• NO_REQUESTS = the initial state of the FSM 

• RCVD_ERROR = a RECEIVE_ERROR was received 

• CONV_FAILURE_PROTOCOL_ERROR = a conversation protocol error record was 
received 

• CONV_FAILURE_SON = a session outage notification for the conversation was 
received 

The inputs are the error and failure records from the HS and RM. 

Referenced procedures, FSMs, and data structures: 

INPUTS 

RCB 
MU 

STATE NAMES----> 

STATE NUMBERS--> 

SIGNALICONV_FAIL_PROTOCOLJ 
SIGNALICONV_FAIL_SONJ 

RECEIVE_ERROR 

SIGNAL! RESET l 

OUTPUT 
CODE 

A 

FUNCTION 

NO 
REQUESTS 

01 

3 
4 

2C Al 

If the send MU buffer exists then 

RCVD 
ERROR 

02 

3 
4 

I 

1 

page A-6 
page A-29 

CONV CONV 
FAILURE FAILURE 
PROTOCOL SON 

- ERROR 
03 04 

I I 
I I 

- -
- -

Set the values in the send MU to their initial values !purge the data 1n the MU) 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-67 



FSH_POST 

5.1-68 

FSM_POST 

FUNCTION: This finite-state machine maintains the posting status of a conversation. The 
meanings of the states are as follows: 

NOTES: 

INPUTS 

1. 

• RESET = the initial state of the FSH 

• PEND_POSTED =state after the FSM-received a POST_ON_RECEIPT input 

• POSTED = state to show that post conditions were satisfied 

If POST ON RECEIPT is 
prior POsT:ON_RECEIPT 
post satisfied are 
POST_ON_RECEIPT. 

issued after posting has already been activated li.e., a 
has been issued), the post conditions used to test for 
reinitialized to those carried in the most recent 

2. RECEIVE_IHMEDIATE resets posting. If posting is activated and the conversa­
tion has been posted, this FSM is reset. If posting is activated and the con­
versation has not been posted, posting is canceled and this FSM is reset. 

3. The initial state of this FSM is RESET. 

STATE NAMES----> RESET PEND POSTED 
POSTED 

STATE NUMBERS--> 01 02 03 

POST_ON_RECEIPT 2 - [Note ll 2 [Note ll 
TEST - - l 
HAIT - - l 
RECEIVE_IMMEDIATE - l [Note 21 l [Note 21 

SIGNAL! POST l / 3 -

SNA LU 6.2 Reference: Peer Protocols 

(-, 
\ ____ ~-

c 



(_/ CHAPTER 5. 2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS 

GENERAL DESCRIPTION 

c, 

A transaction program CTPJ requests LU serv­
ices by issuing verbs. The verbs request 
several different kinds of services, and are 
therefore divided into several different cat­
egories !see SNA Transaction Programmer's 
Reference Manuar-for LU Type 6.2 for a com­
plete description oT the wrbs l. Each 
verb-processing component of PS processes the 
verbs of one specific category. Presentation 
services for mapped conversations IPS.MCJ is 
the PS component that processes the verbs of 
the mapped conversation category (basic con­
versation verbs are processed by "Chapter 
5 .1. Presentation Services--Conversation 
Verbs" in Chapter 5 .1 l . 

PS.MC FUNCTIONS 

The primary function of PS.MC is reformatting 
the data contained in the DATA parameters of 
the MC SEND DATA and MC RECEIVE AND HAIT 
verbs. Its ;ubsidiary functions in-;;lud;; the 
processing of errors related to this refor­
matting, and the translation of mapped con­
versation verbs into basic conversation verbs 
in support of services unrelated to format­
ting. 

Hhen the TP issues a mapped conversation 
verb, PS. MC processes the verb and performs 
the services that it requests. PS.MC does 
not, however, perform all the services 
requested by every mapped conversation verb. 
PS.MC performs only those services related to 
data formatting. If the verb requests addi­
tional conversation services that are not 
related to data formatting, then PS.MC, by 
issuing one or more basic conversation verbs, 
causes PS.CONV to perform those services. 

In general, the TP is faced with two format­
ting problems. The data format that it pre­
fers for computational processing differs 
from the formats in which data is presented 
to I or byl: 

• Local end users and resources 

• Half-sessions lfor communication with 
remote end users and resources). 

PS.MC solves the formatting problem for local 
end users and resources by routing all data 
presented to lor byl them through a component 
called "the Mapper" IUPM_MAPPER on page 

The mapped conversation verbs are issued on 
mapped conversations, and basic conversation 
verbs are issued on basic conversations. 
Both the basic and the mapped conversation 
verbs request communication services for 
transaction programs. A mapped conversation, 
however, is easier for the communicating 
transaction programs to use because it also 
provides data formatting services that the 
programs would have to perform for themselves 
if they were using a basic conversation. 

5.2-46), which transforms data into lwhen 
receiving) or out of lwhen sending) formats 
preferred by end users. For communication 
with conversation partners, TP data must be 
made to conform to the format that SNA 
defines for the conversation data stream. On 
basic conversations, the conversing TPs must 
perform this formatting for themselves, but 
on mapped conversations, PS.MC adds lwhen 
sending) and strips lwhen receiving) the 
data-stream details required by the format. 

The functions that PS.MC performs for the 
transaction program are summarized below: 

• Adding and stripping conversation 
data-stream formatting details (see "Con­
versation Data Stream Formatting" on page 
5.2-5) 

• Data mapping I see "Data Mapping and the 
Mapper" on page 5.2-8) 

• 

• 

• 

Allowing function management headers 
IFMHsJ to flow on the mapped conversation 
(see "FM Header Data" on page 5.2-71 

Detecting service errors committed by 
the partner transaction program (see 
"Service Errors Detected in Received 
Data" on page 5.2-14) 

Processing service errors committed by 
the local transaction program and 
detected by the partner LU I see "Process­
ing of a Service Error Detected by Part­
ner LU" on page 5. 2-17 J. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-1 



I 
.............................................. : ................................................ · ... · 1 
• • • • • . • • . • • • • • • • • • . • • • • • . • • • • . • . • . • Transaction Program .•.••••.••••••••••••••••••••••••.•••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• 
A I 

: : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~ .. :.".: . .: . .: . .: . .: . .: . .: . .:. ~ : : : : 
............................................................................................... 
••••• •• • • • •• 1 •••••••••••••••••••••••••••• v •••............•.....•.......... v ............••..•.• 1 •••• .. 

PS.INITIALIZE 

· ·· 1 r·· · · · · • ••• ~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 •••• 
. • . . . . . • • . • • • • • . • . • . • . . . • PS. VERB_ROUTER • • • . . • . • • • • • • • • • • • . . • • • • • • • .•• 
••. • •• •• • • •••• •• • • •• •• •• ••••• •• • . • ••• ••• • •• •••••• •• •••••• •••••• •• ••• ••• 1 •••• . . . . . ... . . . ..... . 
• ••• • • 1 ••••••••••••••••• 1 •••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• . ... . . . .. . . . . . . . . . ... . . . .. . . .. .. ......... . . .. . .. . .. .. ....... ... ... . . . . .. . 
• ••• •• 1 ••••••••••••••••• 1 •••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• ......................................................................... 
••••• • 1 ••••••••••••••••• v .................. v .........•...•....• v .•....... 1 •••• ...... ........... .----------.. ..---------. . . . . ... 
•••••• 1 ••••••••••• • •• 1 .... 
...... 1 ......... .. ................. PS.MC PS.SPS2 • • • PS.COPR3 

• .. 1 •••• 

...... 1 .......... . • •• 1 .... . . . . . . . . . ... . . . . . 

...... 1 ......... .. • .. 1 •••• .. . .. . . .......... '----·- ..... .___. .____... . . . . .. . 
• . ••• • 1 •••••.•.•••••••••• 1 ••••••••••••••••• 1 ••••.•••••••••••••• 1 ••••••••• 1 •••• . . .. . . . . . ......... .. .. .. . ... ... .. ... ... . . . . . . .... .. .. .... .. . .... .. .. . . . . . 
...... 1 .................. 1 ................. L - - - - - - - - - .1 _ - - - J •••• 

. . . . . . v ....•......•...... v .............•.•..•...••.••..•.•••.•..•...•••••••.•. 

. . . . . . . . . . • . . . . . . . . . . . . . • • . • PS.CONV 1 ••• : • • • • • • • • • • • • • • • • • • • • • • • ••••••• . . .. .. . . . . ... .. . . . .. . . ..... .. .. ...... ... . .. . . . . . . .. .. .. .. .. ... . . .. . . .. . . ... . 
: : :: 1 ·· ........................................................... ···1 ::: : :: :: 

~~~~~~~~.... . ...... . 
.. . . . . . . . . . . A .•.....••...... A •.••.••..•..•... A ..•...•..•...... A ...•..........••....•...••...•...•.• 

: : : : : : : : : : : : : : : : : : : : : i : : : : : ! : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~~~~'.'.~: ~~'.~~~: '. ~ ~: : : 
v v v v 

Resources Manager Data Flow Data Flow 
Control Control 

l See "Chapter 5.1. Presentation Services--Conversation Verbs" 
2 See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" 
3 See "Chapter 5.4. Presentation Services--Control-Operator Verbs" 

Note: A dashed line denotes a synchronous lor call/return) protocol boundary between PS components, 
while a solid line denotes an asynchronous lor send/receive) protocol boundary. 

Figure 5. 2-1. Overview of Presentation Services, Emphasizing Presentation Services for Mapped 
Conversations 

COMPONENT INTERACTIONS 

5.2-2 

In terms of layering, non-basic-conversation 
verb-processing components I such as PS.MC) 
reside below the TP but above the PS.CONY 

SNA LU 6.2 Reference: ·Peer Protocols 

sublayer of presentation services. PS.MC 
conuM.nicates primarily with the TP and 
PS.CONY. Figure 5.2-2 on page 5.2-3 illus-

( -,,, 

\ ....... ___ .,,,. 



(,, 

Transaction Program 

A 1 
1 

..-------- -------------~!~--------------------------~~ 
..•••.•....• 1 •.••••••.•••.••••..•.•••.• 

............ I ......................... . 

1 
1 
1 
v 

r---------, 
I ................ . 
v ................ . 

:::::::'.::::::: ::::L PS.VERB_ROUTER J:: 
............... .... ·-----~--··----------~•----------· .. 

PS.INITIALIZE 

I 
v 

z 
z 
z 
z 
v 

..............•. 1 ................... 1 ........ I 

........... · .. · . I ....... · . · · · · · ... · . I ..... · · . I 

................ v ................... v ....... . 
........ .--------.. 

PS.MC PS.SPS • • • 

'-----·- ..... .__ ___ ,. ____ __, .... _____ .. 
~ :::::::::::::: I ::::::::::::::::: l ::::::: 
3 .....•..•.•..• L--------- ____ J 
3 
v 

::::1 PS.C- i:::::::: 
._ ______ ___, '--------~-------------------------' ....... . 

. . . . . . . . . . . . A ....... · ........ A .......•........ A ................ A .•...........................•...•.. 

: : : : : : : : : : : : : : : : : : : : : i : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : '~'.~~·'.~: ~~,~~: '. '.~ ~: : : 
v v v v 

Resources Manager Data Flow Data Flow 
Control Control 

Note: See "Component Interactions" on page 5.Z-2 for an explanation of the flows 
shown in this figure. 

Figure 5.2-Z. PS.MC's Use of the Basic Conversation Protocol Boundary 

trates the flow of processing. PS.MC accepts 
issuances of mapped conversation verbs from 
the TP, but issues basic conversation verbs 
to PS.CONV. Hhenever a verb is issued by any 
component I for example, the TPJ, 
PS.VERB_ROUTER !Chapter 5.0J gains control 
and is responsible for routing the verb to 
the appropriate PS component for processing. 

Hhen the TP issues a mapped conversation verb 
I flow 1 in Figure 5. 2-2 J, the verb is 
inspected by PS.VERB_ROUTER. PS.VERB_ROUTER 
determines that the verb is a mapped conver­
sation verb and calls PS.MC, passing to it 
the received verb I flow 2 J. PS.MC may issue 

a basic conversation verb during its process­
ing of the mapped conversation verb. If it 
does, then it calls PS.CONV and passes the 
verb to it ( flow 3 J. PS. CONV processes the 
basic conversation verb, after which control 
returns along the same path to PS.MC. 

A transaction program may support only mapped 
conversations or only basic conversations. 
Alternatively, it may support both types of 
conversation. In the latter case, the trans­
action program may have mapped conversations 
and basic conversations allocated concurrent­
ly. The PS.VERB_ROUTER requires the TP to 
issue only mapped conversation verbs on 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-3 



mapped conversations and only basic conversa­
tion verbs on basic conversations. However, 

PS.MC DATA BASE STRUCTURE 

5.Z-4 

In order to perform its functions, PS 
requires information about the transaction 
program that it is serving and about the 
resources currently allocated to that trans­
action program. This information, which is 
described in "PS.CONY Data Base Structure" on 
page 5.1-1 , is stored in lists of control 
blocks in the LU lsee Appendix A for complete 
definitions of the lists and of the entities 
that may be found in the lists). Some of the 
fields in these control blocks are especially 
important to PS.MC. Those fields are 
described below. 

TRANSACTION CONTROL BLOCK ITCBJ 

Each transaction control block ITCBJ contains 
information about one execution instance of a 
transaction program. PS.MC identifies the 
TCB describing the particular transaction 
program instance that it is serving by means 
of the TCB_ID that RM passed to PS when the 
transaction program instance was created. 
The TCB fields used by PS.MC contain such 
information as the name of the transaction 
program that PS is serving and the LU_ID of 
the LU in which the PS resides. 

LU CONTROL BLOCK ILUCBJ 

PS.MC accesses the appropriate LUCB using a 
unique LU_ID, which is stored in the TCB to 
which PS.MC has access. The LUCB fields in 
which PS.MC is particularly interested con­
tain information about whether the LU sup­
ports various mapped conversation options, 
such as handling of FM header data. 

Transaction Program Control Block ITPCB) 

Each LUCB also contains a pointer to a list 
of transaction program control blocks 
ITPCBs). For a given LU, the list contains a 
TPCB for each transaction program that is 
capable of running at the LU. The informa­
tion contained in a TPCB includes the name of 
the transaction program and whether it sup­
ports various optional features. PS.MC, in 
particular, is interested in whether or not 
the TP supports mapped conversations. 

RESOURCE CONTROL BLOCK IRCBJ 

PS.MC also requires information about all the 
mapped conversations allocated to the trans-

SNA LU 6.Z Reference: Peer Protocols 

PS.VERB_ROUTER allows PS.MC to issue basic ~ 
conversation verbs on a mapped conversation. ( _____ ~·, 

action program. This information is found in 
the resource control block I RCB), one for 
each resource associated with any transaction 
programs running at an LU. As in the case of 
the TCB, PS.MC is interested in only those 
RCBs containing information about mapped con­
versation resources allocated to its own 
transaction program. It does not need infor­
mation about resources that are not mapped 
conversations or are allocated to other 
transaction programs. 

PS.MC accesses an RCB by means of the RCB_ID. r 
The transaction program supplies an RCB_ID in\ 
the RESOURCE parameter of a verb in order to '- ··' 
indicate the particular conversation resource 
on which the verb is being issued. Hhenever 
a new resource is allocated, the resources 
manager ("Chapter 3. LU Resources Manager" in 
Chapter 3) creates a new RCB_ID and returns 
it to the transaction program in the RESOURCE 
parameter of the MC_ALLOCATE verb. The RCB 
also contains the TCB ID of the transaction 
program instance that has allocated the 
resource. RCB information is initialized 
when the conversation is allocated. r-". 
The following RCB fields are especially\,~..-./ 
important to PS.MC. 

MC MAX SEND SIZE contains the length of the 
- - l~ngest logical record that can be 

sent on the conversation, and is 
used to segment outgoing data (see 
"Construction of GDS Variables" on 
page 5.Z-5). 

·MAPPER SAVE AREA contains information used in 
- d;ta mapping, such as the currently(--~ .. 

effective map names I see "Map 
Names" on page 5.Z-8). The mapper\.~ __ _,., 
may also, however, use data stored 
in this area to perform 
implementation-defined I as opposed 
to SNA-map-name-defined) data map­
ping. The mapper also uses this 
area to save any error data or 
indicators of events that occurred 
during data mapping. 

MC_RECEIVE_BUFFER contains information that 
has arrived from a conversation 
partner but that has not yet been 
received by the transaction pro­
gram. 

(_~: 



(,CONVERSATION _DA_T_A _ST_R_E_A_M FORMATTING 

() 

Hhen a transaction program sends data on a 
basic conversation, it must ensure that that 
data conforms to the format of the conversa­
tion data stream. A transaction program that 
allocates a mapped conversation, however, 
does not need to perform this task, because 
PS.MC assumes responsibility for editing the 
data to make it conform to the format of the 
conversation data stream. Transaction pro­
grams communicating over a mapped conversa­
tion may supply their data in any format. 

All data flowing on any conversation is for­
matted into logical records. A logical 
record consists of a 2-byte logical record 
length field I LLJ followed by a data field. 
A transaction program sending data over a 
basic conversation must take care to include 
the LL fields in its data, and to complete 
the logical record that it is sending before 
leaving SEND state. 

A TP sending data over a mapped conversation 
has neither of these concerns, because PS.MC 
computes and inserts the LLs for it. The TP 
simply supplies the data in the DATA parame­
ter of MC_SEND_DATA. PS.MC then maps the 
data and formats the mapped data into one or 
more complete logical records. 

CONSTRUCTION OF GOS VARIABLES 

PS.MC formats all data flowing on a mapped 
conversation into general data stream !GOS) 
variables (see Figure 5.2-3). A GOS variable 
consists of one or more complete logical 
records. The data field of the first logical 
record in a GOS variable begins with a 2-byte 
GOS ID that identifies the type of informa­
tion contained in the variable. The informa­
tion itself begins in the third byte of the 
data field of the first logical record, and 
continues throughout the data fields of the 
variable• s remaining logical records, which 
do not contain the GOS ID. 

GOS Variable 
!Consisting of 1 Logical Record) 

LL GOS ID data 

Logical Record 

LL data 

Figure 5.2-3. GOS Variables and Logical 
Records 

The following types of GOS variables flow on 
mapped conversations: 

• Map Name 
• Application Data 
• User Control Data 
• Error Data 
• Error Log 
• Null Data 

(See SNA Formats for descriptions of all the 
valid-"tY'pes of GOS variables and their GOS ID 
values. J 

Map Name GOS variables are generated from the 
MAP _NAME parameter of MC_SEND_DATA C see "Map 
Names" on page 5. 2-8 for details J. Applica­
tion Data and User Control Data GOS variables 
(collectively called data GOS variables) are 
generated from data supplied via the DATA 
parameter of MC_SEND_DATA. If this verb is 
issued with FMH_DATAI YES J, the data is put 
into a User Control Data GOS variable; other­
wise, it is put into an Application Data GOS 
variable. Error Data GOS variables are gen­
erated when the TP issues MC_SEND_ERROR or 
when PS detects an error (see "Mapped Conver­
sation Errors" on page 5.2-12 for details). 

Null Data GOS variables are optionally gener­
ated when the TP, after entering SEND state, 
leaves SEND state w i thou i; sending any data . 
(Instead of issuing MC_SEND_DATA, the TP 
issues MC_CONFIRM, MC_PREPARE_TO_RECEIVE, or 
some other verb that removes the TP from SEND 
state. J The partner must be notified of 
this change in state. The RH that conveys 
this state-change notification !CD for 
MC PREPARE TO RECEIVE, or RQD2 for 
MC=CONFIRMJ c~n flow to the partner by means 
of a null-data FMD request, a LUSTAT request, 
or a Null Data GOS variable created by PS.MC. 
An Application Data GOS variable with a null 
data field cannot be used for this purpose, 
because that would erroneously indicate that 
the TP had issued MC_SEND_DATA with 
LENGTH!OI, when the TP has not issued 
MC_SEND_DATA at all. 

GOS Variables with Multiple Logical Records 

Only data GOS variables may consist of multi­
ple logical records; Error and Map Name GOS 
variables each consist of a single logical 
record. Hhether a data GOS variable will 
have more than one logical record is deter­
mined by the value of MC_MAX_SEND_SIZE, which 
is the length of the longest logical record 
that may be sent on the mapped conversation. 
MC_MAX_SEND_SIZE may vary from mapped conver­
sation to mapped conversation, or it may be 
the same for all mapped conversations. 
MC_MAX_SEND_SIZE is stored in the resource 
control block associated with the conversa­
tion (see "PS.CONV Data Base Structure" on 
page 5.1-1 and "PS.MC Data Base Structure" 
on page 5.2-4 for further details). 

If the length of the data returned from the 
mapper does not exceed MC_MAX_SEND_SIZE, 
PS.MC creates a GOS variable containing a 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-5 



data• 

v 

mapping 

v 

mapped data 

-- OR --

I I I I v v v v 

LL GOS ID data .__L_L ......... _G_o_s_I_o___. __ d_a_t_a_...__LL_.___da_t_a_.__ _ ___._L_L_.__d_a_t_a__.I (-~,, 

''----~~~~~~r--~~~~--~~--\vr--~~- v 
logical .record logical record logical record logical record 

~~~~~~-v·~~~~~~-

GDS variable containing 
one logical record 

GOS variable containing multiple logical records 

• This data is supplied by the transaction program in an MC_SEND_DATA verb. 

Note: The DATA field of the first, or only, logical record in a GOS variable begins with a 2-byte 
GOS ID. Subsequent logical records in the same GOS variable do not carry a GOS ID value. 

Figure 5.2-4. Transformation of Data from MC_SEND_DATA to a GOS Variable 

5.2-6 

single logical record. MC MAX SEND SIZE is 
used only to determine tiOw -many - logical 
records to create from the data; it is not 
used to determine whether enough data exists 
to be sent to the partner LU. ISee Fig­
ure 5.2-4.) 

If PS.MC determines that multiple logical 
records are required, the LL fields of all 
but the last logical record have the 
high-order bit turned on to indicate that 
the data is continued lri the next logical 
record. PS.MC continues to create logical 
records containing data returned from the 
mapper until the end of the data is reached. 
The high-order bit of the LL field of the 
last logical record in the outgoing GOS vari-

SNA LU 6.2 Reference: Peer Protocols 

able is turned off by the mapper. Fig­
ure 5.2-4 illustrates the transfer of 
outgoing data from its beginning in the DATA 
parameter of MC_SEND_DATA to its final posi­
tion in a logical record in a GOS variable. 

l'lhen the TP is receiving data, this process 
is reversed. PS.MC continues to receive data 
from PS.CONY until it receives a logical 
record in which the high-order bit of the LL 
field is off. At this point, PS.MC has a 
complete dala GOS variable. Next, PS.MC 
strips the GOS ID and LLs from the received 
data, and maps the data according to the cur­
rently effective map name. The mapped data 
goes into application transaction program 
variables. 

C·. 
_,/ 



( -··· •.. 

....... ./ 

I 

' 

c I 

In either case, exactly one data GOS variable 
is created as a result of each issuance of 
MC_SEND_DATA, and exactly one GOS variable is 
received as a result of each issuance of 
MC_RECEIVE_AND_HAIT. 

FM HEADER DATA 

In LU 6.2, FM header data is normally proc­
essed by PS rather than by the transaction 
program. All FMHs except FMH-5 Ito initiate 
a conversation) and FMH-7 Ito report a PS or 
transaction program error) are trapped as 
errors. In LU 6 .1, however, an FMH-5 could 
be used for transaction program functions 
(for example, transaction program parameters 
were sometimes encoded in an FMH-51, and 
could flow at any time during a conversation. 
Therefore, in order to allow transaction pro­
grams that were written for LU 6.1 to run on 
LU 6.2, PS.MC provides a way for transaction 

EXAMPLES OF MAPPED CONVERSATION VERB PROCESSING 
~~~~ ~ ~~~ ~~ 

As discussed in "PS.MC Functions" on page 
5.2-1, one function of PS.MC is to translate 
mapped conversation verbs and their parame­
ters into basic conversation verbs and param­
eters I the other functions relate 
specifically to the mapping of data). The 
functions of PS.MC that relate to verb trans­
lation are illus·trated and described below. 
I The data-mapping-related functions are 
described in detail in "Data Mapping and the 
Mapper" on page 5.2-8. I 

ESTABLISHING A MAPPED CONVERSATION 

A mapped conversation is established when the 
transaction program issues MC_ALLOCATE. 
PS.MC, upon receipt of MC_ALLOCATE from the 
transaction program, performs some initial 
process~ng. If the processing succeeds, then 
PS.MC issues the basic conversation verb 
ALLOCATE, with TYPEIMAPPED_CONVERSATIONJ, to 
PS.CONV. PS.CONV copies the supplied TYPE 
value into the Resource Type field in the 
FMH-5 that it creates as a result of the 
ALLOCATE. Then, after completing its normal 
ALLOCATE processing, returns control to 
PS.MC. 

Hhen the FMH-5 arrives at the target LU, it 
causes the conversation partner transaction 
program to be attached I or invoked J. Hhen 
the partner program is attached, it is only 
for the mapped conversation with the trans­
action program that has just invoked it. It 
may, however, request additional mapped con­
versations by issuing MC_ALLOCATE verbs of 
its own. 

Once PS.MC returns control to the transaction 
program after processing of the MC_ALLOCATE 

programs to prevent PS from intercepting the 
FM header data that they are trying to 
exchange. 

If the TP wants to send application data con­
taining FM headers to its partner, the TP 
issues MC SEND DATA with FMH DATAIYESJ. This 
causes PS. MC to create a User Control Data 
GOS variable to contain the data. Hhen FM 
header data is contained in a User Control 
Data GOS variable, the sending PS and the 
receiving PS do not process it; they allow it 
to flow directly to the receiving TP. PS.MC 
notifies the receiving TP of the presence of 
FM headers in the received data on the 
MC RECEIVE AND HAIT verb (see SNA Transaction 
Programmer's Reference Manual for LU Type 
6.2) that the receiving TP issues to receive 
the data. 

Currently, the sole use of User Control Data 
GOS variables on mapped conversations is this 
processing of FM header data. 

is complete, the transaction program may 
issue mapped conversation verbs on the con­
versation whose ID was returned in the 
RESOURCE_ID parameter of the MC_ALLOCATE. 

PS.VERB_ROUTER prohibits the transaction pro­
gram from issuing basic conversation verbs 
specifying the resource ID of this mapped 
conversation. Hhen the transaction program 
issues a mapped conversation verb, however, 
PS.VERB_ROUTER allows PS.MC, as part of its 
processing of that verb, to issue a basic 
conversation verb on the same mapped conver­
sation. See Chapter 5.0 for a further dis­
cussion of this topic. 

TERMINATING A MAPPED CONVERSATION 

Hhen the transaction program determines that 
its processing related to a mapped conversa­
tion has completed, or that the mapped con­
versation should be ended for other reasons, 
it causes the conversation to be terminated 
by issuing MC_DEALLOCATE. PS, MC processes 
this by issuing DEALLOCATE to PS.CONY. How­
ever, if the MC_DEALLOCATE specified a deal­
location type of ABEND I see SNA Transaction 
Programmer's Reference Manual for LU ~ 
6.2J, PS.MC first translateS"theABENDva!Ue 
to ABEND_PROG before setting the type of 
deallocation. This reflects the fact that it 
is the transaction program, rather than 
PS.MC, that caused the DEALLOCATE to be 
issued. For all other types of deallocation, 
PS.MC sets the TYPE field of the DEALLOCATE 
to the value specified in that field of the 
MC_DEALLOCATE. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-7 



DATA MAPPING AND THE MAPPER 

5.2-8 

The transaction program sends data to its 
·partner by issuing MC_SEND_DATA. The partner 
transaction program receives this data by 
issuing MC_RECEIVE_AND_HAIT. Hhenever PS. MC 
processes either of these verbs, it passes 
the data through a component called the 
mapper I page 5. 2-46 J. All mapped conversa­
tion data is thµs mapped twice: once when 
sent, and once when received. PS.MC's proc­
essing of MC SEND DATA is called send 
mapping; its processing ~ 
MC RECEIVE AND HAIT is called receive 
mapping. -The - particular mappings that the 
mappers perform are determined by the map 
name supplied by the sending transaction pro­
gram. 

BLOCK MAPPING 

PS.MC performs block mapping, where a block 
is the amount of data contained in one data 
GDS variable I see "Construction of GDS Vari­
ables" on page 5.2-5 for definitions and 
descriptions of GDS variables). Typically, a 
data GDS variable I or block J resides in a 
transaction program buffer variable dedicated 
to network communication. The ultimate 
source or destination of the data, however, 
is usually one or more other transaction pro­
gram variables that are significant to the 
transaction program application. A map pro­
vides an algorithm for transferring data 
between transaction program application vari­
ables and the transaction program buffer var­
iable, and for performing any changes in the 
format or representation of the data that 
this transfer may require. Thus, in receive 
mapping, the received data is mapped out of a 
block and into application variables, while 
in send mapping~ the data is mapped out of 
application variables and into a block before 
being sent to the conversation partner. 

MAPPING EXAMPLE 

Figure 5.2-5 on page 5.2-9 shows a high-level 
overview of the transformations that map name 
and data undergo during mapping by the send­
ing and receiving transaction programs. Map­
ping is symmetric, in that receive mapping is 
basically the inverse of send mapping. 

The transaction program sending data on a 
mapped conversation supplies a map name with 
each issuance of MC_SEND_DATA. The map name 
supplied by the sending transaction program 
determines the kind of mapping that occurs. 
In the figure, transaction program A issues 
MC_SEND_DATA, supplying MAP_NAMElmap-name-11 
and DATAldata-lJ. PS.MC, as part of its 
processing of this verb, then invokes the 
mapper. PS.MC passes · to the mapper 
map-name-1 and data-1. 

The output from the mapper is map-name-2 and 
data-2. Data-2 may be a different size from 

SNA LU 6.2 Reference: Peer Protocols 

data-1 and may be in an entirely different 
format. After reformatting data-2 into a GDS 
variable lby breaking it into logical records 
according to MC_MAX_SEND_SIZE, and prefixing 
a GDS IDJ, PS.MC sends map-name-2 and data-2 
to the partner LU. 

Hhen the data arrives, the PS.MC component at 
the partner LU processes the 
MC RECEIVE AND HAIT by repeatedly issuing 
RECEIVE AND HAIT with a fill value of LL. 
PS.MC accumulates the data, one logical 
record at a time, until it receives a logical 
record whose LL field indicates that it is 
the final logical record of the insoming data 
GDS variable. At this point, PS.MC has one 
complete data GDS variable. It then strips 
the GDS ID and LLs, and invokes the mapper, 
passing it map-name-2 and data-2. Here, at c 
the receiving LU, the map name and data once __ ,. 
again go through a transformation. The 
receiving mapper transforms map-name-2 and 
data-2 into map-name-3 and data-3, and 
returns these to the receiving transaction 
program in the MAP _NAME and DATA parameters 
of MC_RECEIVE_AND_HAIT I only the amount of 
data requested by the transaction program is 
passed to it; any remaining data that is not 
requested and returned is discarded). Data-3 
may again differ in size and format from 
data-2, or from data-1. Map-name-3, similar-
ly, may be different from map-name-2 and,,...------..._, 
map-name-1. In the simplest case, the three ( . 
map names are identical. -. _ __.... 

"Send Mapping" on page 5. 2-10 "Receive Map­
ping" on page 5.2-11 show more details of the 
processing of MC_SEND_DATA and 
MC_RECEIVE_AND_HAIT. 

MAP NAMES 

Hith every issuance of MC_SEND_DATA, the 
transaction program supplies a map name to 
PS.MC and the mapper. Similarly, on every 
issuance of MC_REC!OIVE_AND_HAIT, the mapper 
returns a map name to the transaction pro­
gram. The sending transaction program may 
supply the same map name repeatedly, and the 
same map name may be received repeatedly by 
the receiving transaction program, but the 
sending PS.MC. does not send consecutive 
duplicate map _names. Instead, the locally 
known map name supplied by the transaction 
program is translated into a globally known 
map name and stored in the MAPPER_SAVE_AREA 
as the currently effective map name. This 
map name is similarly stored by the receiving 
PS.MC. The sending PS.MC sends fand the 
receiving PS.MC receives) a new map name only 
when the currently effective map name 
changes. The currently effective map name 
changes when the map name supplied by the 
sending transaction program is translated 
into a globally known map name that differs 
from the currently effective one stored in 
the MAPPER_SAVE_AREA. Hhen the mapper dis­
covers this difference, it updates the cur-

/---....._ 

( 
'-··· 



c '· ) 

c:. 

TPIAl 
!Sending LU) 

PS.MC 
I MAPPER) 

map-name-1, data-1 

I Receiving LU) 
PS.MC 

I MAPPER) 
TPl8l 

map-name-2, data-2 

map-name-3, data-3 

Map-name-1 and data-1 are supplied by the sending transaction program on MC SEND DATA. Map-name-2 
and data-2 flow from sending PS.MC to receiving PS.MC as GDS variables. Map-nam-;-3 and data-3 are 
passed to the receiving transaction program via MC_RECEIVE_AND_HAIT 

See "Mapping Example" for an explanation of the flows shown in this figure. 

Figure 5.2-5. An Example of Mapping 

rently effective map name in its 
MAPPER SAVE AREA, and informs PS.MC of this 
change-by .=--eturning an indicator and the new 
map name. 

The mapper can translate map names in many 
different ways. It may, for example, trans­
late the supplied map name to null, thereby 
preventing the data from being transformed. 
The mapper may also translate two different 
locally known map names to the same globally 
known map name. For instance, if the trans­
action program issues MC_SEND_DATA with map 
name A followed by another MC_SEND_DATA with 
map name 8, the mapper may map both map names 
to map name C. Moreover, the mapper may 
translate the same locally known map name 
differently on different occasions. If the 
transaction program issues MC_SENO_DATA with 
map name A and the mapper translates it to 
map name 8, then when the transaction program 
again issues MC_SEND_DATA with map name A, 
the mapper may, because of information known 
only to itself, translate this map name to 
map name C. Nevertheless, the translation of 
map names by the mapper is subject to some 
constraints. For example, the mapper never 
translates a null map name to a nonnull map 
name. 

Map Name GOS Variables 

To complete its processing of a change in the 
effective map name, the sending PS.MC must 
notify the receiving PS.MC of the change. It 
does this by sending to the receiving PS.MC a 
Map Name GOS variable containing the new 
effective map name. In this situation, a 
single MC_SEND_OATA causes two GOS variables 

to be created: a Map Name GOS variable and a 
data GOS variable. 

Similarly, the receiving mapper saves, in its 
MAPPER_SAVE_AREA, the map name received in a 
Map Name GDS variable. Hhen subsequent data 
GDS variables are received with no interven­
ing Map Name GOS variables, the mapper uses 
the saved map name in mapping the new data. 
Once a Map Name GDS variable is received, 
that map name remains in effect until another 
map name is received or the mapped conversa­
tion ends. 

Hhen the effective map name is null lwith a 
length of zero), mapping is said to be "off"; 
that is, any data passed to the mapper is 
returned unchanged. At the beginning of all 
mapped conversations, the effective map names 
are initialized to null. This happens prior 
to any flow of Map Name GOS variables. A Map 
Name GDS variable containing a null map name 
is sent to the partner only to change the 
effective map name back to null after it has 
not previously been null. If the transaction 
program always supplies a null map name, no 
Map Name GDS variable is ever sent to the 
partner LU. 

MAPPER INVOCATION 

PS.MC invokes the mapper whenever any of the 
following occurs: 

• The transaction program sends or receives 
data I that is, issues MC_SEND_DATA or 
MC_RECEIVE_AND_HAIT). The data may be 
application data or FM header data; both 
of these types of data may be mapped. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-9 



5.2-10 

• PS.MC receives, from PS.CONY, information 
indicating that the partner transaction 
program has received and processed all 
the recently sent map names. This 
includes information such as a positive 
reply to CONFIRM or to SYNCPT, or any 
information that the partner transaction 
program issued from SEND state (see 
explanation below). 

The mapper is also invoked during the error 
processing triggered by the events listed 
below. This processing is more thoroughly 
described in "Mapper Errors" on page 5.2-12. 

• 

• 

• 

• 

• 

The transaction program issues 
MC_SEND_ERROR. 

PS.MC issues SEND_ERROR with a type value 
of SVC (see SNA Transaction Programmer's 
Reference Manual for LU Type ~). 

The transaction program or the sync point 
manager ("Chapter 5.3. Presentation Serv­
ices--Sync Point Services Verbs" l issues 
BACKOUT. 

A return code of SVC_ERROR_* 1s received 
from PS.CONY. 

A return code of PROG_ERROR_* is received 
from PS.CONY. 

A positive reply to CONFIRM or to SYNCPT 
informs the mapper that any map names it has 
caused to be sent to the partner have been 
received and processed by it. For example, 
if the mapper causes a Map Name GOS variable 
to be sent to the partner LU, and is informed 
that a positive reply to CONFIRM has been 
received, and is next invoked because the 
partner LU detected an· error while in RECEIVE 
state, the mapper knows, because of the 
intervening confirmation, that the error 
processing at the partner did not cause the 
map name to be purged. The mapper does not 
cause a duplicate map name to be sent in this 
case. 

In addition, receipt of data from the partner 
also indicates that all the recently sent map 
names have been processed, because the part­
ner cannot have sent data unless it has 
entered SEND state, and it cannot have 
entered SEND state I from RECEIVE state, which 
is the state it was in when it was receiving 
and processing the data sent by the trans­
action program J unless it has finished 
receiving and mapping all the data that the 
transaction program was sending. Moreover, 
not only receipt of data, but receipt of any 
information whatsoever that the partner 
issued from SEND state (such as a SEND indi­
cator, CONFIRM, or even an error noti fica­
tion J indicates to the mapper that the 
partner has received and processed the most 
recently sent map names. 

MAPPER PARAMETERS 

Each time PS. MC invokes the mapper, it sup­
plies required information to the mapper. 

SNA LU 6.2 Reference: Peer Protocols 

This information includes, in addition to the 
map name and the data to be mapped, such c 
information as whether send or receive map-
ping is to be performed. Also, based upon · 
the reason for the mapper invocation, infor­
mation may be returned by the mapper to 
PS.MC. The mapper also uses other data 
structures in the RCB to· store currently 
effective map names and incoming data. The 
information used and returned by the mapper 
is listed below. For a further description 
of mapper input and output, see the formal 
description of the UPM_MAPPER on page 5.2-46. 

Supplied Information 

• Reason for the mapper invocation 

Data mapping 

Errors 

Positive confirmation 

• Data polarity 

Send 

Receive 

• FMH data indicator 

• Input map name 

• Input data 

• Error code 

Returned Information 

• Output map name 

• Output data (mapped data) 

• Mapper return code 

SEND MAPPING 

Hhen the transaction program is sending data 
li.e., when PS.MC is processing 
MC_SEND_DATAJ, the mapper is responsible for: 

• Mapping the data supplied by the trans­
action program lin the verb's DATA param­
eter J in accordance with the MAP NAME 
parameter supplied by the transa~tion 
program 

• Mapping the locally known map name sup­
plied by the transaction program to a 
globally known map name corresponding to 
the format of the mapped data 

• Determining whether to send a Map Name 
GOS variable to the partner LU, and pre­
venting duplicate Map Name GOS variables 
from flowing consecutively to the partner 
LU 



• Determining whether to resend a Map Name 
GDS variable to the partner LU, in the 
event of an error 

PS.Me's processing of MC SEND_DATA is 
described below. For example, the trans­
action program issues MC_SEND_DATA with 
MAP_NAMEIAl and DATAldata-ll. PS.MC invokes 
the mapper, informing it that send mapping is 
to be performed. PS.MC also passes to the 
mapper the supplied map name and data. 

The mapper translates map name A to map name 
B and maps data-1 to data-2, to be sent to 
the partner LU. The translated map name, 
since it differs from the currently effective 
map name I which is stored in the 
MAPPER_SAVE_AREA and is initially null l is 
returned to PS.MC. The translated data is 
also returned. 

Hhen control is returned to PS.MC from the 
mapper call, PS.MC first determines whether 
the mapper succeeded in mapping the supplied 
data I it could have failed if the trans­
action program had provided a map name 
unknown to the mapper). Since the mapping 
was successful, PS.MC next determines whether 
a new map name has been returned. In this 
case, the mapper has returned the output map 
name, because the translated map name B di'f­
fers from the currently effective map name. 
Therefore, PS.MC updates the currently effec­
tive map name to B and creates a Map Name GDS 
variable Ito be sent to the partner) contain­
ing map name B. PS.MC next formats the data 
returned by the mapper as a an Application 
Data or User Control Data GDS variable, by 
segmenting it into logical records and pre­
fixing the GDS ID. PS.MC uses the 
MC MAX SEND SIZE field in the RCB to deter­
mi~e the si~e of the logical records. 

Finally, PS.MC issues SEND_DATA, with a DATA 
parameter containing the Map Name and data 
GDS variables. Hhen the SEND_DATA completes 
successfully, PS.MC returns control to the 
transaction program, indicating that the 
MC SEND DATA was also successful. 

Hhen the transaction program again issues 
MC_SEND_DATA, again specifying a map name of 
A, PS.MC again invokes the mapper. As in the 
previous invocation, the mapper translates 
map name A to map name B. Since it has 
already caused PS.MC to send map name B to 
the partner LU, it does not return an output 
map name to PS.MC. 

Since no map name was returned from the 
mapper, PS.MC does not create a Map Name GOS 
variable. It processes the output data as 
above, creating an Application Data or User 
Control Data GDS variable containing the 
data. Finally, it issues SEND_DATA with a 
DATA parameter containing only the data GDS 
variable. An OK return code is returned on 
the SEND DATA, and PS.MC returns a return 
code of OK on the MC_SEND_DATA. 

RECEIVE MAPPING 

Hhen the transaction program is receiving 
data (i.e., when PS.MC is processing 
MC_RECEIVE_AND_HAITJ, the mapper is responsi­
ble for 

• Mapping the data received from the part­
ner LU in accordance with the currently 
effective map name, 

• 

• 

Mapping the currently effective map name 
to a locally known map name corresponding 
to the format of the mapped data, and 
returning this map name and the mapped 
data to the transaction program, and 

Optionally, checking incoming Map Name 
GOS variables from the partner LU for 
duplication and symbol-string consisten­
cy. 

An example of PS.Mt's processing of 
MC_RECEIVE_AND_HAIT is described below. 

First, PS.MC issues the basic conversation 
verb RECEIVE_AND_HAIT to PS.CONV, specifying 
a fill value of LL (see SNA Transaction Pro­
grammer's Reference Manuii'r for LU Type 6. 2 ) 
to request that PS.CONV retUrn one logiCal 
record. After the RECEIVE_AND_HAIT completes 
successfully, PS.MC finds that the data 
received consists of a Map Name GDS variable. 
Knowing that a data GOS variable is to follow 
the map name, PS.MC again issues 
RECEIVE_AND_HAIT to PS.CONV, again retriev­
ing one logical record. The data received in 
the second RECEIVE_AND_HAIT is application or 
FM header data, but the high-order bit of the 
LL field in the logical record indicates that 
more data follows that is to be associated 
with the data just received~ that is, the 
data GDS variable consists of multiple log­
ical records (see "Construction of GDS Vari­
ables" on page 5.2-5). PS.MC continues to 
request data from PS.CONV until the 
high-order bit of the LL field of the 
received logical record is off, indicating 
that .the entire data GDS variable has been 
received. In the example, this occurs on the 
third RECEIVE_AND_HAIT. 

PS.MC has now received a map name and data to 
be mapped. It invokes the mapper and 
receives from the mapper the map name and 
mapped data to be passed to the transaction 
program. PS.MC passes to the transaction 
program the amount of data that the trans­
action program has requested, and discards 
any remaining data. 

MC TEST PROC 

An implementation of the mapped conversation 
verbs includes an entry point, MC_TEST_PROC, 
which can be used to determine whether a com­
plete data GDS variable has been received 
from the remote TP without causing the call­
ing program to wait if data is not available 
immediately. This entry point is called by 
the implementation of the HAIT verb, which 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-11 



enables a TP to wait for arrival of data on 
any of a list of basic and mapped conversa­
tions. 

An MC_POST ON RECEIPT verb must be issued 
before a c;;;ll- to MC PROC TEST is effective. 
Thus, MC POST ON RECEIPT- must be issued 
before a -HAIT- v;rb that includes a mapped 
conversation in its list. Then a sequence of 
calls can be made to MC_TEST_PROC, which 
returns the code OK when a complete data GOS 
variable is available. 

In order to determine whether a complete data 
GOS variable has been received from the 
remote TP, MC TEST PROC has to issue a 
RECEIVE AND HAIT verb, so that it can examine 
the dat;;;. Several RECEIVE_AND_HAIT verbs may 
be required before a complete data GOS vari­
able is received. As the pieces of the data 
GOS variable are received, they are placed in 
an RCB field, MC_RECEIVE_BUFFER, where they 
are held until the local TP issues an 
MC_RECEIVE_AND_HAIT verb. 

To make sure that the RECEIVE ANO HAIT verbs 
that it issues do not cause waits for data to 
be received from the remote TP, MC_TEST_PROC 
calls a similar entry point of PS.CONV, 
TEST_PROC, to determine whether a logical 
record has already been received. Only when 
such a record is available does it issue a 
RECEIVE_AND_HAIT verb. 

An example of the use of MC_TEST_PROC is 
illustrated in Figure 5. 2-6 on page 5. 2-13 
and described below. This figure begins with 
the TP issuing an MC_POST_ON_RECEIPT verb for 
a specified mapped conversation. It then 
issues a HAIT verb, which causes the 
PS. VERB ROUTER to call MC TEST PROC for the 
speci fi;d conversation, a; well as others. 
MC TEST PROC first checks the 
MC=RECEIVE_BUFFER in the RCB associated with 
the conversation to see if it holds a com­
plete data GOS variable. In this example, 
PS.MC does not have a data GOS variable 
ready. Therefore, MC TEST PROC calls 
TEST_PROC to determine whethe;:- PS.CONV has 
any data ready to be received. PS.CONV 
returns to PS.MC with a code indicating that 
data is available, HHAT_RECEIVED = 
DATA COMPLETE. PS.MC issues RECEIVE ANO HAIT 
to r;trieve the waiting data. After-inspect­
ing the data, PS.MC discovers that it is not 

MAPPED CONVERSATION ERRORS 

5.2-12 

MAPPER ERRORS 

In send mapping, the supplied map name is not 
checked for symbol-string consistency; its 
symbol-string restrictions, if any, are 
implementation-defined. The mapper trans­
lates the supplied map name to a globally 
known map name that conforms to the 
symbol-string definitions in the SNA Trans­
action Programmer's Reference Manual for LU 
Type 6.2. PS.MC, therefore, also performs no 

SNA LU 6.2 Reference: Peer Protocols 

sufficient to complete the current data GOS 
variable. PS.MC stores the received data in 
MC_RECEIVE_BUFFER, issues POST_ON_RECEIPT to 
request that PS.CONV reinitiate posting, and 
returns the code UNSUCCESSFUL to 
PS.VERB ROUTER. PS.VERB ROUTER resumes test­
ing thi; resource and all others specified in 
the HAIT verb for receipt of a complete data 
GOS variable. 

In this example, had the call to TEST_PROC 
returned any code other than OK--DATA, PS.MC 
would not issue RECEIVE AND HAIT but would 
return to PS. VERB_ROUTER - the- same code that 
it received from TEST_PROC. On the other 
hand, had the data returned by 
RECEIVE_AND_HAIT completed a data GOS vari­
able, MC TEST PROC would not have issued 
POST ON RECEIPT but would have returned the 
code-OK:-DATA to PS.VERB_ROUTER. 

Hhen MC_TEST PROC is called, 
MC_RECEIVE_BUFFER is in one of the following 
states: 

• It is empty. 
• It contains the initial logical records 

of a data GOS variable (perhaps preceded 
by an associated map name GOS variable), 
but does not yet contain the remaining 
logical records of the data GOS variable, 
which must be received before the data 
can be passed to the transaction program. 

• It contains a complete data GOS variable 
that is ready to be mapped and passed to 
the transaction program. 

Once a complete data GOS variable has been 
received, PS.MC requests no more information 
from PS.CONV until it passes to the trans­
action program the data already in 
MC_RECEIVE_BUFFER. 

MC_RECEIVE_BUFFER may contain many different 
types of information. It may contain tran­
sient information, such as a return code or a 
SEND indicator, which is returned to the 
transaction program as soon as processing of 
the current verb is completed. It may con­
tain part or all of a data GOS variable. 
These logical records remain in the list 
until the incoming data GOS variable is com­
plete and is retrieved by RECEIVE_ANO_HAIT. 

checking of the globally known map name 
returned by the mapper; the mapper is respon­
sible for supplying map names that conform to 
SNA-defined formats. In receive mapping, 
however, the mapper does check the map name 
received in a Map Name GOS variable for 
symbol-string consistency. The mapper 
informs PS.MC via a return code of 
MAP_NOT_FOUNO when the map name violates 
SNA-defined symbol-string types, or when the 
map name conforms to defined symbol-string 
types but is unknown to the mapper (see SNA 

c~\ 



(_) 

0 ' I 

c ) 

TP PS.VERB_ROUTER PS.MC PS.CONY 

MC_POST_ON_RECEIPT POST_ON_RECEIPT !FILL = LLl 

o~-------------------------- o<- - - - - - - - - - - - - - o 

HAIT 

.• 

Call MC_TEST_PROC 

IMC RECEIVE BUFFER does not hold 
a-complet; data GDS variable) 

Call TEST_PROC 

return code = OK--DATA 
o<- - - - - - - - - - - - - - o 

!PS.CONY has datal 

RECEIVE_AND_HAIT !FILL= LLJ. 
o---------------------------->o 
.HHAT_RECEIVED = DATA_COMPLETE. 
o<- - - - - - - - - - - - - - o 

!more data to be received) 

POST_ON_RECEIPT !FILL = LL) 

return code = UNSUCCESSFUL 
o<- - - - - - - - - - - - - - - -o<- - - - - - - - - - - - - - o 

Continue testing for posting by 
any resource specified in the verb 

See "MC_TEST_PROC" on page 5.2-11 for an explanation of the flows shown in this figure. 

Note: Only those parameters pertinent to the example are shown. 

Figure 5.2-6. MC_TEST_PROC 

Formats for definitions of the valid 
symbol-string types). 

The mapper also performs an optional receive 
check to determine if it has received a map 
name that is the duplicate of the map name 
last received. If it has, then the mapper 
informs PS.MC, which ends the mapped conver­
sation. See "Protocol Violations" on page 
5.2-14 for details. 

If notification of an error is received, 
PS.MC passes the error notification to the 
transaction program as a return code. In 
addition, PS.MC invokes the mapper to inform 
it of the error. The mapper then determines 
whether a map name needs to be re-sent, since 
the MC_SEND_ERROR issued by the partner 
transaction program or PS.MC might have 

caused the map name to be purged on receipt. 
If notification of an error is received and 
the mapper has previously caused PS.MC to 
send a map ·name to the partner LU, the mapper 
checks to see if any information has been 
received that would indicate that the partner 
LU has received and processed the map name. 
Examples of the type of information that 
would indicate this are an affirmative reply 
to CONFIRM or to SYNCPT, received data, or a 
SEND indicator. If none of the above has 
been received, the mapper causes a map name 
to be re-sent to the partner LU. The map 
name that is sent is based upon the map name 
supplied by the transaction program on the 
next MC_SEND_DATA. 

The mapper needs to be informed of any errors 
that occur on a mapped conversation, and of 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-13 



5.2-14 

any issuances of BACKOUT that occur on a 
mapped conversation whose synchronization 
level is SYNCPT, because these events may 
require the mapper to re-send the currently 
effective map name. In the case of an error 
detected by the partner LU, a map name that 
the mapper has sent to the partner may have 
been purged by the partner as a result of its 
error processing. Therefore, the mapper has 
to determine whether it needs to re-send the 
map name that may have been purged. In the 
case of BACKOUT, the entire mapped conversa­
tion . is required to revert to the status it 
had at the last issuance of SYNCPT. If the 
currently effective map name has changed 
since then, the mapper needs to resend the 

.map name that was in effect at the last issu­
ance of SYNCPT. 

ERROR DATA GOS VARIABLES 

A GOS variable that is not created as a 
direct result of action taken by the trans­
action program is the Error Data GOS vari­
able. Hhen PS.MC detects an error in the 
data being received from the partner LU, it 
issues a SEND_ERROR TYPEI SVC J followed by a 
SEND_DATA. The DATA parameter of the 
SEND DATA contains the Error Data GOS vari­
able: which describes the exact nature of the 
error encountered. The transaction program 
serviced by the PS.MC that received the data 
and detected the error is not informed of the 
error. The transaction program that issued 
the data in which an error was found is told 
of the error via a return code derived from 
the information contained in the Error Data 
GOS variable I see "Processing of a Service 
Error Detected by Partner LU" on page 
5. 2-17 J . An example · of the type of error 
that PS.MC might encounter in received data 
is receipt of a User Control Data GOS vari­
able when FM header data is not supported by 
the transaction program or the LU. 

~ROTOCOL VIOLATIONS 

PS.MC performs optional receive checks to 
determine if the partner LU has committed a 
protocol violation. An example of a protocol 
violation PS.MC can detect is the receipt of 
a Map Name GOS variable followed by something 
other than a data GOS variable I map names 
have to be followed by dataJ. 

Hhen PS.MC detects a protocol violation such 
as the one above, it issues DEALLOCATE with 
TYPEIABEND SVCJ and returns a return code of 
RESOURCE FAILURE NO RETRY to the transaction 
program. - Cor.=-espondingly, when PS.MC 
receives a return code of DEALLO-
CATE ABEND_SVC or DEALLOCATE_ABEND_TIMER from 
PS.CONV, it translates the return code to 
RESOURCE_FAILURE_NO_RETRY, and passes it to 
the transaction program. 

If, however, the protocol violation occurred 
because the mapped conversation ended' prema­
turely at the partner LU I i.e., the partner 
LU has issued a deallocation notification 

SNA LU 6.2 Reference: Peer Protocols 

that indicates a protocol error), then PS.MC/"· 
simply logs the error and passes the 
RESOURCE_FAILURE_NO_RETRY return code to the\__.. 
transaction program. Since the mapped con­
versation has already been deallocated at the 
partner LU, PS.MC cal'VlOt issue the DEALLOCATE 
ITYPE=ABEND_SVCJ that it normally issues.when 
it detects a protocol violation. 

SERVICE ERRORS 

The TP, upon detecting an error on a mapped 
conversation, issues MC_SEND_ERROR with 
TYPEIPROGJ. This indicates that the type of 
error detected was a program error li.e., was 
an error discovered by a TPJ. Another cate­
gory of errors may be detected by the LU 
rather than the TP. These errors are called 
service errors because they are detected by a 
presentation services component within the/--, 
LU. I \.._,_/ 
As a service component, PS.MC checks for cer­
tain types of service errors. If a partner 
TP requests a function, such as handling of 
function management header I FMH) data, that 
is not supported by the local LU or trans­
action program, PS.MC performs service error 
processing and advises the partner LU of the 
lack of support for that function. 

Another service error that PS.ldC may detect 
is receipt of a map name from the partner LU,.---...\ 
that is not known by the mapper. Similarly( 
the mapper may find that the data and the map.,___/° 
name it has received from the partner LU are 
incompatible, i.e., that the data cannot be 
mapped using the received map name. 

PS.MC also handles receipt of a service error 
notification from a partner LU when it is the 
partner that discovered the service error. 

The following sections describe the process-
ing that PS.MC performs when it detects a 
service error, and the processing that,,----.__ 
results when PS.MC learns that the partnerC 
detected an error. ___ / 

SERVICE ERRORS DETECTED IN RECEIVED DATA 

As mentioned earlier, one type of error that 
PS.MC may detect is receipt of an invalid map 
name. Figure 5.2-7 on page 5.2-15 illus­
trates this service error. In the figure, 
PS.MC has issued a RECEIVE AND HAIT to 
PS. CONV as a result - ci'°f the 
MC_RECEIVE_AND_HAIT issued by the TP. The 
data returned in the RECEIVE_AND_HAIT is a 
Map Name GOS variable. PS.MC stores the map 
name and issues another RECEIVE_AND_HAIT in 
order to receive the data that follows the 
map name. In this example, PS.MC receives a 
complete data GOS variable in the 

RECEIVE_AND_HAIT I and therefore does note_ .. ·.-. 
retrieve any more data from PS.CONVJ. _ 

PS.MC invokes the mapper, passing it the 
received map name and data. Instead of map­
ping the data, however, the mapper returns to 



\ ( '', 

I 
,/ 

(_)· 

0 

TP PS.MC MAPPER PS.CONV 

MC_RECEIVE_AND_HAIT RECEIVE_AND_HAIT IFILL= LLl 
o-~~~~~~~~~~~~> >o 

HHAT_RECEIVED = DATA_COMPLETE 
o<------------------------------0 

(data is a map name GOS variable) 
RECEIVE_AND_HAIT IFILL =LL) 

HHAT_RECEIVED = DATA_COMPLETE 
o<------------------------------0 

ldata is a complete data GOS variable) 

INPUT_DATA=data-1 
INPUT_MAP_NAME=map-name-1 

RETURN_CODE=MAP_NOT_FOUND 
o< - - - - - - - - - - - - - - o 

SEND_ERROR ITYPE = SVC) 

RETURN_CODE = OK 
o<------------------------------0 

SEND_DATA IDATA =Error Data GOS variable) 

RETURN_CODE = OK 
o<------------------------------0 

PREPARE_TO_RECEIVE ITYPE = FLUSH) 

RETURN_CODE = OK 
o<------------------------------0 

RECEIVE_AND_HAIT 

HHAT_RECEIVED = DATA_COMPLETE 
o<------------------------------0 

• 
• • 

See "Service Errors Detected in Received Data" for an explanation of the flows shown in this figure. 

Figure 5.2-9 on page 5.2-18 is the complement of this figure, showing the processing that occurs 
when an LU is informed of an error committed at that LU. Note: Only those parameters pertinent to 
the example are shown. 

Figure 5.2-7. Detecting a Service Error as a Result of MC_RECEIVE_AND_HAIT Processing 

PS.MC a return code indicating that the map 
name received is invalid. The mapper has 
detected a service error and informed PS.MC 
of the error. 

PS. MC now has to inform the partner that a 
service error occurred and to return SEND 
control of the mapped conversation to the 
partner TP. PS.MC first issues SEND_ERROR 
with TYPEISVCl. This tells the partner LU 
only that an error occurred; it does not 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-15 



PS.VERB_ROUTER PS.MC PS.CONY (~ 

Call MC_TEST_PROC TEST 

RETURN_CODE = OK 
o~----------------------0 

RECEIVE_AND_HAIT IFILL = LL) 

HHAT_RECEIVED = DATA_COMPLETE 
o~----------------------0 

PS.MC examines the data 
and detects an error) 

SEND_ERROR ITYPE =SVC) 

RETURN_CODE = OK 
~-----------------------0 

SEND_DATA IDATA = Error Data GOS variable) 

RETURN_CODE = OK 
o~------------------ - - 0 

PREPARE_TO_RECEIVE ITYPE = FLUSH) 

RETURN_CODE = OK 
o~----------------------0 

POST_ON_RECEIPT IFILL = LLl 

RETURN_CODE = UNSUCCESSFUL 
~-----------------o~----------------------0 

(~ 
.. __ / 

See "Service Errors Detected in Received Data" for an explanation of the flows shown in this figure. 

Note: Only those parameters pertinent to the example are shown. 

Figure 5.Z-8. Detecting a Service Error as a Result of a Call to MC_TEST_PROC 

5.2-16 

indicate to the partner the exact nature of 
the error. In order to convey this important 
information to the partner, PS.MC creates an 
Error Data GOS variable. The GOS variable 
carries an indication that the received map 
name was not found in the mapper's library of 
map names; the invalid map name is also 
returned to the partner LU in the Error Data 
GOS variable so that the partner LU will know 
exactly which map name was unknown. PS.MC 
then issues a SEND_DATA carrying the Error 
Data GOS variable to PS.CONY. 

PS.MC completes its processing of the 
received service error by issuing PRE­
PARE TO RECEIVE with TVPEIFLUSHl, which 
retu~s-SEND control of the mapped conversa­
tion to the partner TP. 

SNA LU 6.2 Reference: Peer Protocols 

PS.MC does not inform its local TP of the 
service error committed by the partner LU. 
It instead returns SEND control of the mapped 
conversation to the partner TP, which is 
informed of the error, and waits for the 
partner TP to recover from the error. The 
transaction program that committed the error 
is responsible for determining what error 
recovery is to take place. Hhen the service 
error is detected as a result of an 
MC_RECEIVE_AND_HAIT, PS.MC inanediately issues 
another RECEIVE AND HAIT to wait for informa­
tion from the p~rtn;r. 

Figure 5.2-8 illustrates a slightly different 
situation 1n which a service error is[""" 
detected. This time, the error is detected, 
in data that was received as a result of a'--/ 
call to MC_TEST_PROC by the PS.VERB_ROUTER 
while it is processing a HAIT verb. Another 



c·I 

cl 

difference is that instead of the mapper. 
detecting the error, PS.MC discovers it. One 
cause of this type of error would be incoming 
data requesting a function that the receiving 
PS.MC did not support (for example, the func­
tion of handling FM header data when User 
Control Data GDS variables are not supported 
by the receiving PS.MCJ. 

In handling this error during a call to 
MC_TEST_PROC, PS.MC, as in the 
MC_RECEIVE_AND_HAIT example, issues 
SEND_ERROR, followed by SEND_DATA with an 
Error Data GDS variable, followed by PRE­
PARE TO RECEIVE with TYPEIFLUSHJ. PS.MC then 
cont Tnu;;;s, however, in a manner different 
from the MC_RECEIVE_AND_HAIT example: 
MC_ TEST _PROC returns to the PS. VERB_ROUTER, 
after passing SEND control of the mapped con­
versation to the partner I and after causing 
posting to be re-activated). The 
PS. VERB_ROUTER is informed that its MC_ TEST 
was unsuccessful, but not of the specific 
error. 

PROCESSING OF A SERVICE ERROR DETECTED BY 
PARTNER LU 

PS. MC also handles service errors that are 
detected by the partner LU. The error could 
have been detected in data sent to the part­
ner LU by the local TP. Alternatively, the 
partner LU may have detected an error while 
sending data to PS.MC. Figure 5.2-9 on page 
5.2-18 and Figure 5.2-10 on page 5.2-19 
illustrate these two cases of error notifica­
tion. 

In Figure 5.2-9 on page 5.2-18, the trans­
action program is in the midst of sending 
data to the partner transaction program. 
However, a return code of SVC ERROR PURGING 
is returned on one of the SEND_DATAs that 
PS. MC issues to PS. CONV. The 
SVC ERROR PURGING return code indicates that 
the - partn-;.r LU has detected an error in the 
data it has received. PS.MC, upon receipt of 
the SVC ERROR PURGING return code, issues a 
RECEIVE~AND_HAIT to learn the type of service 
error the partner LU encountered. The data 
returned in the RECEIVE AND HAIT consists of 
an Error Data GDS variabl-;. specifying the 
type of service error. The return code that 
PS.MC returns to the transaction program is 
derived from the information carried in the 
Error Data GDS variable. Before returning to 
the transaction program, PS.MC issues another 
RECEIVE_AND_HAIT to retrieve the SEND indica-

tor. As discussed in the previous section, 
the transaction program that caused a service 
error to be committed is responsible for 
determining what error recovery is to occur. 
PS.MC returns to the transaction program with 
a return code, in this example, of 
MAP_NOT_FOUND. The transaction program still 
has SEND control of the mapped conversation 
I the transaction program is placed in SEND 
state as a result of a remotely detected 
error, even if the transaction program was in 
RECEIVE state when it issued the verb on 
which the error is reported). 

The example shown in Figure 5. 2-7 on page 
5.2-15 and described in "Processing of a 
Service Error Detected by Partner LU" is the 
complement of the example just discussed and 
shown in Figure 5.2-9 on page 5.2-18. The 
first figure mentioned shows a transaction 
program requesting to receive data on a 
mapped conversation and the LU detecting an 
error in the data received. The second fig­
ure shows a transaction program sending data 
on a mapped conversation and being notified 
that a problem with the data was encountered 
at the partner LU. 

As was pointed out in "Block Mapping" on page 
5.2-8, PS.MC never sends a service-err-or 
notification to its partner from SEND state. 
An LU providing implementation-defined map­
ping, however, could issue such an error. 
For example, the LU may have mapped some, but 
not all, of the data issued by the trans­
action program in an MC_SEND_DATA. The part 
of the data that has been mapped is sent on 
the mapped conversation. Hhile mapping the 
remainder of the data, however, the mapper 
discovers a problem. It informs its PS.MC 
component, which then issues a service-error 
notification indicating that data truncation 
has occurred at the sending LU. An LU with 
implementation-defined mapping may also, at 
some point, need to notify its partner that 
an error was detected but no data truncation 
has occurred. 

Hhile PS.MC does not issue service errors 
from SEND state, it does handle receipt of 
notifications that the partner LU detected a 
service error while it was in SEND state. 
Figure 5.2-10 on page 5.2-19 illustrates the 
processing that PS.MC performs as a result of 
this error. If it has received any incom­
plete data prior to receiving the 
service-error notification, PS.MC purges the 
data and immediately begins to wait for new 
data to arrive. Again, the transaction pro­
gram is not informed of the error. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-17 



TP PS.MC PS.CONY 

MC_SEND_DATA SEND_DATA 

RETURN_CODE = OK RETURN_CODE = OK 
o< - - - - - - - - - - - - - - - - - - -o<- - - - - - - - - - - - - - - - - - - - - - - o 

HC_SEND_DATA 

• 
• 
• 

SEND_DATA 

RETURN CODE = svc_ERROR_PURGING 
o~----------------------0 

RECEIVE_AND_HAIT 
n-----------------------------------------~>o 

HHAT_RECEIVED = DATA_COMPLETE 
~-----------------------0 

!data is an error.data GDS variable) 

RECEIVE_AND HAIT 
o-----------------------------------------~>o 

RETURN_CODE = MAP_NOT_FOUND HHAT_RECEIVED =SEND 
o< - - - - - - - - - - - - - - - - - - -o<- - - - - - - - - - - - - - - - - - - - - - - o 

c 

c 

See "Processing of a Service Error Detected by Partner LU" for an explanation of the flows that are ,,-----...,,, 
shown in this figure. l _ _,, 
Figure 5.2-7 on page 5.2-15 is the complement of this figure, showing the processing that occurs at 
the LU that detects an error in received data. The SVC_ERROR_PURGING return code can be returned on 
several verbs. SEND_DATA is used here as an example of one of the verbs possible. 

~ Only those parameters pertinent to the example are shown. 

Figure 5.2-9. Receipt by PS.MC of a SVC_ERROR_PURGING Return Code 

5.2-18 SNA LU 6.2 Reference: Peer Protocols 

(~ 



C) 
/ 

C .. 
I 

/ 

TP PS.MC PS.CONV 

MC_RECEIVE_AND_HAIT RECEIVE_AND_HAIT IFILL = LL) 
o-~~~~~~~~~~~~~~~~~~~> >o 

.RETURN_CODE = SVC_ERROR_TRUNC/SVC_ERROR_NO_TRUNC 
~-----------------------0 

IPS.MC purges any data that it has received 
prior to the service error notification) 

RECEIVE_AND_HAIT 

• • • 
See "Processing of a Service Error Detected by Partner LU" for an explanation of the flows that are 
shown in this figure. 

The processing that occurs when a SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC return code is received by 
PS.MC while processing a call to MC_TEST_PROC differs from this figure only in that PS.MC does not 
issue a RECEIVE_AND_HAIT after receiving the return code. PS.MC returns a code of UNSUCCESSFUL to 
the PS.VERB_ROUTER. 

Note: Only those parameters pertinent to the example are shown. 

Figure 5.2-10. Receipt by PS.MC of a SVC_ERROR_TRUNC orSVC_ERROR_NO_TRUNC Return Code 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-19 



PS_MC 

5.2-20 

PS_MC 

..----------------.C 
FUNCTION: This procedure receives mapped conversation verbs issued by the transaction 

program, and routes each verb to the appropriate procedure for processing. 

PS.MC is called by PS.VERB_ROUTER (Chapter 5.0) as a result of the transaction 
program's issuing a mapped conversation verb. 

INPUT: The current transaction program verb 
PS_PROCESS_DATA is provided by the resources 
be accessed by all the procedures within PS. 

is passed with parameters} 
manager at creation time and may 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSMs, and data structures: 
MC_ALLOCATE_PROC 
MC_CONFIRM_PROC 
MC_CONFIRMED_PROC 
MC_DEALLOCATE_PROC 
MC_FLUSH_PROC . 
MC_GET_ATTRIBUTES_PROC 
MC_POST_ON_RECEIPT_PROC 
MC_PREPARE_TO_RECEIVE_PROC 
MC_RECEIVE_AND_HAIT_PROC 
MC_REQUEST_TO_SEND_PROC 
MC_SEND_DATA_PROC 
MC_SEND_ERROR_PROC 
MC_TEST_PROC 

Select based on the mapped conversation verb !issued by the TPl: 
Hhen MC ALLOCATE 

Call MC_ALLOCATE_PROC !page 5.2-21). 
Hhen MC CONFIRM 

Call MC_CONFIRM_PROC !page 5.2-21). 
Hhen MC CONFIRMED 

Call MC_CONFIRMED_PROC !page 5.2-22). 
Hhen MC_DEALLOCATE 

Call MC_DEALLOCATE_PROC !page 5.2-23). 
Hhen MC_FLUSH 

CALL MC_FLUSH_PROC !page 5.2-23). 
Hhen MC GET ATTRIBUTES 
Call MC_GET_ATTRIBUTES_PROC !page 5.2-24). 

Hhen MC POST ON RECEIPT 
Call MC_POST_ON_RECEIPT_PROC !page 5.2-25). 

Hhen MC PREPARE TO RECEIVE 
Call MC_PREPARE_TO_RECEIVE_PROC (page 5.2-26). 

Hhen MC_RECEIVE_AND_HAIT 
Call MC_RECEIVE_AND_HAIT_PROC !page 5.2-27). 

Hhen MC_REQUEST_TO_SEND 
Call MC_REQUEST_TO_SEND_PROC !page 5.2-37). 

Hhen MC_SEND_DATA 
Call MC_SEND_DATA_PROC lpage 5.2-38). 

Hhen MC_SEND_ERROR 
Call MC SEND ERROR PROC !page 5.2-40). 

Hhen MC_TEST - -
Call MC_TEST_PROC !page 5.2-28). 

SNA LU 6.2 Reference: Peer Protocols 

page 5.2-21 
page 5.2-21 
page 5.2-22 
page 5.2-23 
page 5.2-23 
page 5.2-24 
page 5.2-25 
page 5.2-26 
page 5.2-27 
page 5.2-37 
page 5.2-38 
page 5.2-40 
page 5.2-28 



C) 
.. 

C_j 

(_) 

0 

MC_ALLOCATE_PROC 

MC_ALLOCATE_PROC 

FUNCTION: This procedure handles the allocation of mapped conversations. 

INPUT: 

OUTPUT: 

MC ALLOCATE verb parameters (See SNA Transaction Programmer's Reference Manual 
for LU Type ~- J 

A return code as described in 
for LU Type 6.2. Also, if the 
OTtFiis RCB.-

SNA Transaction Programmer's Reference Manual 
allocation is successful, PS.MC returns the ID 

NOTES: 1. The SNASVCMG mode name is not allowed at the mapped conversation protocol 
boundary. 

2. A return code on ALLOCATE of PARAMETER ERROR, PROGRAM PARAMETER CHECK, 
UNSUCCESSFUL indicates that no resource ha; been allocated (and, th;refore, 
RCB has been created). Hhen the ALLOCATE returns a RETURN_CODE value of OK 
ALLOCATION_ERROR, an RCB has been created. 

or 
no 
or 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_PROC 
RCB 

page 5.1-11 
page A-6 

If the transaction program supports mapped conversations and the mode name is 
not SNASVCMG (See Note lJ then 

Call ALLOCATE_PROC(verb parameters) !Chapter 5.0J to issue an ALLOCATE verb with 
the MC_ALLOCATE verb parameters and specifying that the conversation type is mapped. 

Set the MC_ALLOCATE parameters to the values returned by the ALLOCATE verb. 

Else !allocation of a conversation is not allowed) 
Set RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

MC_CONFIRM_PROC 

FUNCTION: This procedure processes MC_CONFIRM verbs. 

INPUT: 

OUTPUT: 

MC CONFIRM verb parameters (See SNA Transaction Programmer's Reference Manual 
for LU Type~- J 

A return code as described in SNA Transaction Programmer's Reference Manual 
for LU Type 6.2. If a request t()"Send is received from the remote transaction 
program whileprocessing a CONFIRM verb, this request is also indicated to the 
local TP. 

NOTES: 1. PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC CONFIRM verb. A state check is performed by PS.CONV 
!Chapter 5.lJ during it; processing of the CONFIRM verb. 

2. The processing that PS.MC performs as a result of receiving a return code of 
SVC ERROR PURGING involves issuing the necessary RECEIVE AND HAIT verbs. A 
rec;;est to send by the remote TP may be indicated- by- one of these 
RECEIVE_AND_HAIT verbs, as well as by the CONFIRM verb. In either case, the 
indication is passed to the local TP. 

Referenced procedures, FSMs, and data structures: 
CONFIRM_PROC 
PS_SPS 
RCVD_SVC_ERROR_PURGING 
UPM_MAPPER 
RCS 

page 5.1-12 
page 5.3-35 
page 5.2-42 
page 5.2-46 
page A-6 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-21 



MC_CONFIRM_PROC 

5.2-22 

Call CONFIRM_PROCICONFIRMJlpage 5.1-12) to issue a CONFIRM verb with 
the MC_CONFIRM verb parameters. 

Set the MC_CONFIRM parameters and return code to the values returned by the CONFIRM verb. 

Select based on the return code copied into,MC_CONFIRM: 
. Hhen OK 

Call UPM_MAPPER lpage 5.2-46) to record a positive confirmation. 
Hhen PROG_ERROR_PURGING 

Call UPM_MAPPER (page 5.2-46) to record a remotely detected 
error of the type indicated by the return code from CONFIRM. 

Hhen DEALLOCATE ABEND PROG 
Set RETURN_CODE to-DEALLOCATE_ABEND. 

Hhen DEALLOCATE_ABEND_SVC or DEALLOCATE_ABEND_TIMER 
Set the RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

Hhen BACKED OUT 
Call PS_SPS lsync point manager, Chapter 5.3). 

Hhen SVC_ERROR_PURGING 
Call RCVD_SVC_ERROR_PURGING lpage 5.2-42) to 
get and process error data from the remote TP. 

Set RETURN_CODE to the value returned by RCVD_SVC_ERROR_PURGING. 
If a request to send has been received from the remote TP and not 

indicated on a prior MC_CONFIRM, MC_RECEIVE_AND_HAIT, MC_SEND_DATA, or 
MC SEND ERROR verb then 
Retu~ a request to send received indication to the local TP. 

MC_CONFIRMED_PROC 

FUNCTION: This procedure processes MC_CONFIRHED verbs. 

INPUT: MC CONFIRMED verb parameters ISee SNA Transaction Programmer's Reference Manu-
aCfor !:!! ~ ~· J -

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_CONFIRMED. A state check is performed by PS.CONV 
(Chapter 5.1) during its processing of the CONFIRMED verb. 

Referenced procedures, FSMs, and data structures: 
CONFIRMED_PROC 

Call CONFIRMED_PROCICONFIRHEDJlpage 5.1-14) to issue a CONFIRMED verb with 
the MC_CONFIRMED verb parameters. 

Set the MC_CONFIRM return code to the value returned by the CONFIRMED verb. 

SNA LU 6.2 Reference: Peer Protocols 

page 5.1-14 

c 



c:/ 

() 

(,: 

HC_DEALLOCATE_PROC 

MC_DEALLOCATE_PROC 

FUNCTION: This procedure handles the deallocation of mapped conversation resources. 

INPUT: MC DEALLOCATE verb parameters ISee SNA Transaction Programmer's Reference!!!!!: 
ual for LU ~ g. J 

OUTPUT: A return code as described in ~ Transaction Programmer's Reference Manual 
for LU Type !.:!· 

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an HC_DEALLOCATE. A state check is performed by PS.CONY 
(Chapter .5.lJ during its processing of the DEALLOCATE verb. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
RCVD_SVC_ERROR_PURGING 
DEALLOCATE_PROC 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
If the deallocation type is ABEND then 

Clear RCB.MC_RECEIVE_BUFFER. 

page .5.2-46 
page .5.2-42 
page .5.1-1.5 
page A-6 

Call DEALLOCATE_PROCIDEALLOCATEJlpage .5.1-1.5) to issue a DEALLOCATE verb with 
the MC_DEALLOCATE verb parameters, no error data, and deallocation type ABEND_PROG. 

Else 
Call DEALLOCATE_PROCIDEALLOCATEJlpage .5.1-1.51 t~ issue a DEALLOCATE verb with 

the MC_DEALLOCATE verb parameters, no error data, and deallocation type specified. 
Set the MC_DEALLOCATE parameters and return code to the values returned by the DEALLOCATE verb. 

Select based on the return code copied into MC_DEALLOCATE: 
Hhen PROG ERROR PURGING 

Set RETuRN_CODE to the code returned by DEALLOCATE. 
Call UPM_MAPPER (page .5.2-46) to record a 

remotely detected error of the type indicated by the return code 
from the DEALLOCATE verb. 

Hhen DEALLOCATE_ABEND_PROG 
Set RETURN CODE to DEALLOCATE ABEND. 

Hhen DEALLOCATE ABEND SVC or DEALLOCATE ABEND TIMER 
Set RETURN_CODE to-RESOURCE_FAILURE_NO_RETRY. 

Hhen svc_ERROR_PURGING 
Call RCVD_SVC_ERROR_PURGING lpage .5.2-42). 

MC_FLUSH_PROC 

FUNCTION: This procedure processes MC_FLUSH verbs. 

INPUT: MC FLUSH verb parameters (See SNA Transaction Programmer's Reference Manual 
for ~ Type g. 1 -

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_FLUSH. A state check is performed by PS.CONY !Chapter 
.5.lJ during its processing of the FLUSH verb. 

Referenced procedures, FSMs, and data structures: 
FLUSH_PROC 

Call FLUSH_PROCIFLUSHJlpage .5.l-16J to issue a FLUSH verb with 
the HC_FLUSH verb parameters. 

Set the MC_FLUSH return code to the value returned by the FLUSH verb. 

page .5.1-16 

Chapter .5.2. Presentation Services--Happed Conversation Verbs .5.2-23 



MC_GET_ATTRIBUTES_PROC 

5.2-24 

MC_GET_ATTRIBUTES_PROC 

FUNCTION: This procedure handles requests from the transaction program for information 
about a mapped conversation. 

INPUT: MC GET ATTRIBUTES verb parameters !See SNA Transaction Programmer's Reference 
ManuaC for LU Type ~. J 

OUTPUT: PS.MC issues a GET ATTRIBUTES !See SNA Transaction Programmer's Reference Man­
ual for LU Type 6:2) verb for thet=esource specified in MC GET ATTRIBUTES. 
PS.MC°Places---uie-uiformation returned in the GET_ATTRIBUTES- verb into the 
appropriate fields in the MC_GET_ATTRIBUTES and returns control to the trans­
action program. 

Referenced procedure.s, FSMs, and data structures: 
GET_ATTRIBUTES_PROC 

Find the RCB for the conversation identified in the RESOURCE parameter. 
Call GET_ATTRIBUTES_PROCCGET_ATTRIBUTESlCpage 5.1-17) to issue a 

GET_ATTRIBUTES verb with the MC_GET_ATTRIBUTES verb parameters. 
Set the MC_GET_ATTRIBUTES parameters and return code to the values returned 

by the GET_ATTRIBUTES verb, to the TP, such as the fully qualified LU names 
of both LUs of the conversation, the mode name, synchronization level, 
security profile, and security user ID. 

SNA LU 6.2 Reference: Peer Protocols 

page 5.1-17 

c 



(,: 

(~, 

C'; 
/ 

MC_POST_ON_RECEIPT_PROC 

MC_POST_ON_RECEIPT_PROC 

FUNCTION: This procedure processes MC_POST_ON_RECEIPT verbs. 

INPUT: 

OUTPUT: 

NOTES: 

MC· POST ON RECEIPT verb parameters ISee SNA Transaction Programmer's Reference 
Manual for -LU Type ~. l 

If the MC RECEIVE_BUFFER is empty when the MC_POST ON RECEIPT is issued, PS.MC 
issues a POST ON RECEIPT verb. Otherwise, no POST_ON_RECEIPT is necessary 
I see below ) . - -

1. If the MC RECEIVE BUFFER is not empty, the transaction program has, prior to 
issuing the curre~t MC POST ON RECEIPT, issued one or more MC POST ON RECEIPTs 
followed by one or m~re MC_TESTs. The MC_TEST processing-caus;d -PS.MC to 
receive data lvia a RECEIVE_AND_HAIT) from PS.CONV !Chapter 5.1) and PS.MC has 
stored that data in the MC_RECEIVE_BUFFER. See "MC_TEST_PROC" on page 5.2-11 
for a discussion of MC_TEST. 

2. If the information stored in the MC_RECEIVE_BUFFER indicates that a complete 
Application Data or User Control Data GOS variable has been received land that 
the data in that variable has been mapped), then PS.MC has already informed 
the transaction program via the RETURN_CODE on a previous MC_TEST that posting 
has been satisfied. The transaction program, however, has issued another 
MC_POST_ON_RECEIPT (after having issued an MC_TEST on which was returned a 
return code of OK--DATAl. PS.MC remembers the fact that an MC_POST_ON_RECEIPT 
has been issued, in case the transaction program issues another MC_TEST, but 
does not issue a POST_ON_RECEIPT to PS.CONV. 

3. If the data stored in the MC_RECEIVE_BUFFER is not complete (i.e., a Map Name 
GOS variable, but no data, has been received) or part, but not all, of the 
data in an Application or FMH Data GOS variable has been received), posting is 
still activated. PS.MC, therefore, does not issue a POST_ON_RECEIPT to 
PS.CONV. In this situation, the transaction program has issued one or more 
prior MC_TESTs, all of which have been unsuccessful. 

4. PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC POST ON RECEIPT. This state check is performed by 
PS.CONV !Chapter 5.1) d~ring-it; processing of the POST ON RECEIPT verb, if 
PS.MC issues one. As described aboye, there are certain situations in which 
'PS.MC receives an MC_POST_ON_RECEIPT from the transaction program but does not 
issue a POST ON RECEIPT to PS.CONV. In these situations, however, the 
MC_RECEIYE_BUFFER-in the RCB is not empty. This indicates that the conversa­
tion is in RECEIVE state and therefore the MC POST ON RECEIPT is valid at the 
present time. - - -

Referenced procedures, FSMs, and data structures: 
POST_ON_RECEIPT_PROC 
RCB 

If the RCB.MC_RECEIVE_BUFFER for the current conversation is empty then 

page 5.1-17 
page A-6 

Call POST_ON_RECEIPT_PROCIPOST_ON_RECEIPT) (page 5.1-17) on this conversation, 
specifying the maximum length of the data to be received before posting, 
and that posting should be done after receiving a complete logical record. 

Set the MC_POST_ON_RECEIPT parameters and return code to the values returned by the 
POST_ON_RECEIPT verb. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-25 



MC_PREPARE_TO_RECEIVE_PROC 

M~c~P-R_E_P_A_R_E __ T_o~R-E_c_E_Iv_E ___ P_R_o_c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C'' 

5.2-26 

FUNCTION: This procedure processes MC_PREPARE_TO_RECEIVE verbs. 

INPUT: 

OUTPUT: 

NOTE: 

PS.MC issues a PREPARE_TO_RECEIVE verb against the resource specified in the 
MC PREPARE TO RECEIVE. It sets the return code field in the 
MC=PREPARE=TO=RECEIVE based upon the value returned in the PREPARE TO RECEIVE. 
Some return codes, such as OK, are placed in the MC_PREPARE_TO_RECEIVE 
unchanged. Others, such as DEALLOCATE ABEND PROG, are transformed to another 
value before being placed in the MC-PREPARE TO RECEIVE. In addition, some 
return codes cause PS.MC to perform further -pr~cessing. For example, when 
PS.MC receives a return code of PROG_ERROR_PURGING to its PREPARE TO RECEIVE, 
it invokes the mapper to inform that procedure that an error was-detected by 
the j5artner transaction program. ISee "Mapper Invocation" on page 5.2-9. J 
Hhen a return code of SVC_ERROR_PURGING is received, PS.MC performs the proc­
essing necessary to determine what type of service error the PS.MC component 
at the partner LU encountered. A return code reflecting the type of error is 
returned to the local transaction program in the MC_PREPARE_TO_RECEIVE. ISee 
"Processing of a Service Error Detected by Partner LU" on page 5.2-17.J 

MC PREPARE TO RECEIVE verb parameters (See SNA Transaction Programmer's Refer-
ence Manual for LU Type ~. J --

PS.MC issues a PREPARE_TO_RECEIVE 
MC_PREPARE_TO_RECEIVE based upon 
PARE_TO_RECEIVE. 

verb and sets the return code 
the corresponding field 

field in the 
in the PRE-

PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_PREPARE_TO_RECEIVE. This state check is performed by 
PS.CONV !Chapter 5.lJ during its processing of the PREPARE_TO_RECEIVE verb. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
PREPARE_TO_RECEIVE_PROC 
RCVD_svc_ERROR_PURGING 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
Call PREPARE_TO_RECEIVE_PROCIPREPARE_TO_RECEIVEJlpage 5.1-lSJ to issue a 

PREPARE_TO_RECEIVE verb with the MC_PREPARE_TO_RECEIVE verb parameters. 
Set the MC_PREPARE_TO_RECEIVE parameters and return code to the values 

returned by the PREPARE_TO_RECEIVE verb. 

Select based on the return code copied into MC_PREPARE_TO_RECEIVE: 
Hhen IPROG_ERROR_PURGINGJ 

Call the UPM_MAPPER (page 5.2-46) to record 
the RETURN_CODE for the remotely detected error. 

Hhen IDEALLOCATE_ABEND_PROGJ 
Set RETURN_CODE to DEALLOCATE_ABEND. 

Hhen IDEALLOCATE_ABEND_svc, DEALLOCATE_ABEND_TIMERJ 
Set RETURN CODE to RESOURCE FAILURE NO RETRY. 

Hhen I SVC_ERROR_PURGING J - - -
Call RCVD_SVC_ERROR_PURGING !page 5.2-421 to 

page 
page 
page 
page 

do service error processing, specifying the return code and current RCB. 

SNA LU 6.2 Reference: Peer Protocols 

5.2-46 
5.1-18 
5.2-42 
A-6 

~' __ / 



c, 

C') 
/ 

MC_RECEIVE_AND_HAIT_PROC 

MC_RECEIVE_AND_HAIT_PROC 

FUNCTION: This procedure processes MC_RECEIVE_AND_HAIT verbs. 

INPUT: 

PS.MC first determines the status of the MC RECEIVE BUFFER. Processing of the 
MC_RECEIVE_AND_HAIT continues based upon th; status-of the buffer. 

The MC_RECEIVE_BUFFER contains any information that has been received from 
PS.CONV (Chapter 5.ll but has not yet been passed to the transaction program. 
It is in one of the following states: Cll the buffer is empty, 12) the buffer 
contains information, but the information is incomplete and more has to be 
received before it can be passed to the transaction program, or 13) the buffer 
contains information that is complete and ready to be passed to the trans­
action program. 

If the MC_RECEIVE_BUFFER is not empty, the transaction program has issued one 
or more prior MC_TEST verbs. The processing that PS.MC performed as a result 
of the MC_TESTlsl involved receiving data from PS.CONV. It is the data that 
resulted from the MC_TESTlsl that is stored in the MC_RECEIVE_BUFFER. 

MC RECEIVE AND HAIT verb parameters (See SNA Transaction Programmer's Refer­
ence Manual for LU Type ~. l 

OUTPUT: Fields in the MC_RECEIVE_AND_HAIT are set based upon the type of information 
being returned to the transaction program. 

If the MC_RECEIVE_BUFFER is empty or contains incomplete data, this procedure 
causes one or more RECEIVE_AND_HAIT verbs to be issued to PS.CONV. PS.MC con­
tinues to issue RECEIVE_AND_HAITs until it has a complete piece of informa­
tion. 

NOTES: I. PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_RECEIVE_AND_HAIT. This state check is performed by 
PS.CONV (Chapter 5.ll during its processing of the RECEIVE_AND_HAIT verb, if 
PS.MC issues one. If the MC_RECEIVE_BUFFER already contains complete informa­
tion ready to be passed to the transaction program, PS.MC does not issue a 
RECEIVE_AND_HAIT. However, the fact that the MC_RECEIVE_BUFFER is not empty 
indicates that the mapped conversation is in RECEIVE state and that the 
MC_RECEIVE_AND_HAIT is valid at the present time. 

2. RECEIVE_INFO_PROC on page 5.2-30 issues a RECEIVE_AND_HAIT to PS.CONV and 
causes processing of the information returned in the RECEIVE AND HAIT to 
occur. It is possible that when control is returned from this p;ocedure, the 
MC_RECEIVE_BUFFER is empty, even though data was returned in the 
RECEIVE AND HAIT. This is the case when PS.MC detects an error in the data 
(e.g., the data specified a function not supported). Nothing is placed in the 
buffer during this invocation of RECEIVE_INFO_PROC. For more details, see 
"Service Errors Detected in Received Data" on page 5.2-14. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_INFO_PROC 
RCB 

If the RCB.MC_RECEIVE_BUFFER contains a null entry, map name, data-continued 
indicator, or map name and data-continued indicator then 

Call RECEIVE_INFO_PROCCRCBl !page 5.2-30) 
to issue a RECEIVE AND HAIT verb. 

If the RCB.MC RECEIVE BUFFER does not contain a null entry, or contains 
mapped data ~r a ret~rn code entry then 

Select based on the contents of the RCB.MC RECEIVE BUFFER: 
Hhen the buffer element contains a HHAT-RECEIVED indicator 

Put the HHAT_RECEIVED indicator in the MC_RECEIVE_AND_HAIT verb. 
Set RETURN CODE to OK. 

Hhen the buff;r element contains a return code 
Set RETURN CODE to the buffer return code. 

Hhen the buff;r element contains mapped data 

page 5.2-30 
page A-6 

Retrieve the mapped data from the MC_RECEIVE_BUFFER and place the 
amount of data requested by the transaction program into the DATA 
field of the MC_RECEIVE_AND_HAIT. Indicate whether data was complete 
or truncated, and indicate that FMH data, if present, was complete. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-27 



MC_RECEIVE_AND_HAIT_PROC 

5.2-28 

Clear the MC RECEIVE BUFFER for the current RCB. 
If a request-to send-has been received from the remote TP and not returned on 
a prior MC_CONFIRM, MC_RECEIVE_AND_HAIT, MC_SEND_DATA, or MC_SEND_ERROR verb then 

Return a request-to-send-received indication to the local TP on the verb. 

MC_TEST_PROC 

FUNCTION: This procedure processes MC_TEST verbs. 

INPUT: 

OUTPUT: 

MC_ TEST 

PS.MC sets the RETURN CODE field in the MC_TEST based upon the outcome of the 
specified test. Depe~ding upon the type of test specified and the information 
contained in the RCB, PS.MC may issue basic conversation verbs that are proc­
essed by PS.CONV. RCB.MC_RECEIVE_BUFFER, or a return code obtained by calling 
TEST_PROC (page 5.1-26). 

NOTES: l. If RCB.MC RECEIVE BUFFER 
received,-the partner LU 
partner LU has sent data 
next logical record, but 
allowed a SEND indicator 

is not empty when a return code of OK--NOT DATA is 
has committed a protocol violation. For example, the 
with an indication that the data is continued in the 
instead of sending the remaining data, the partner LU 
to flow. 

Z. RCB.MC_RECEIVE_BUFFER may be empty at this point. This occurs when the TEST 
verb just issued returns OK--DATA but an error is detected in the data by 
RECEIVE_INFO_PROC (page 5.Z-30). For more details, see "Service Errors 
Detected in Received Data" on page 5.2-14. 

"-...... ... --

3. An INDICATOR element cannot appear in RCB.MC RECEIVE BUFFER here. If the TEST 
verb just issued returns OK--NOT_DATA, the ~onversation indicator that caused /-~, 
this return code remains in PS.CONV's buffer. PS.MC does not issue a \, __ /' 
RECEIVE_AND_HAIT to PS.CONV to get the indicator until the transaction program 
issues an MC_RECEIVE_AND_HAIT. 

4. The RCB.MC_RECEIVE_BUFFER contains data 
action ·program as a result of one 
ITEST=POSTEDJ. 

Referenced procedures, FSMs, and data structures: 
TEST_PROC 
RECEIVE_INFO_PROC 
POST_ON_RECEIPT_PROC 
PROTOCOL_ERROR_PROC 
PROCESS_ERROR_OR_FAILURE_RC 
RCB 

SNA LU 6.2 Reference: Peer Protocols 

ready to be returned to 
or more prior calls 

page 
page 
page 
page 
page 
page 

the trans­
to MC_TEST 

5.1-26 
5.2-30 
5.1-17 
5.2-47 
5.2-31 
A-6 

,,.---~, 

(_. 

r 
"'-·· 



C'. 
·' 

C .. J 

() 

HC_TEST_PROC 

Select based on the specified type of test: 
Hhen POSTED 

If RCB.HC_RECEIVE_BUFFER is empty or contains a map name or unmapped data then 
Call TEST_PROC (page 5.1-26) to determine whether the current 
conversation has been posted indicating that data, status, or a 
request for confirmation has been received from the remote TP. 

Select based on the return code from TEST_PROC: 
Hhen OK--DATA 

Call RECEIVE_INFO_PROC (page 5.2-30) to receive 
the data and place it in RCB.HC_RECEIVE_BUFFER. 

Hhen OK--NOT DATA 
If RCB.HC:RECEIVE_BUFFER is empty then 

Put the RETURN_CODE from TEST in RCB.HC_RECEIVE_BUFFER. 
Else (optional check when receiving data; See Note 1) 

Call PROTOCOL_ERROR_PROC (page 5.2-47) 
to deallocate the current conversation. 

Replace the contents of RCB.MC_RECEIVE_BUFFER with the 
RETURN CODE RESOURCE FAILURE NO RETRY. 

Hhen POSTING_NOT_ACTIVE or UNSUCCESSFUL 
Put the RETURN CODE from TEST in RCB.MC RECEIVE BUFFER. 

Otherwise - - -
Call PROCESS ERROR OR FAILURE RC !page 5.2-31) 
to process the RETURN_CODE f;om TEST. 

If RCB.HC_RECEIVE_BUFFER is empty or contains a map name or 
unmapped data (See Note 2l then 

Set RETURN CODE to UNSUCCESSFUL. 
Call POST_ON_RECEIPT_PROCIPOST_ON_RECEIPTllpage 5.1-17) to issue a. 

POST_ON_RECEIPT verb specifying posting when a complete or truncated logical 
record is received. 

Else 

Else 

Select based on the type of information in RCB.MC_RECEIVED_BUFFER 
(See Note 3 ) : 

Hhen it is mapped data 
Set RETURN CODE to OK--DATA. 

Hhen it is a RETURN_CODE 
Set RETURN CODE to that in RCB.MC RECEIVE BUFFER. 
Clear RCB.MC_RECEIVE_BUFFER. -

If there is mapped data in RCB.MC_RECEIVE_BUFFER and the local 
TP has issued a MC POST ON RECEIPT verb since this data was 
mapped then (See N~te 4J -

Set RETURN CODE to OK--DATA. 
Else -

Set RETURN_CODE to POSTING_NOT_ACTIVE. 

Hhen REQUEST TO SEND RECEIVED 
If a requ;st-to s;nd has been received from the remote TP and not 
yet returned to the local TP then 

Return a request-to-send-received indication to the local TP. 
Else 

Call TEST_PROC (page 5.1-26) to determine whether 
a request to send has been received from the remote TP and is 
being held by PS.CONV. 

If a request to send was held by PS.CONV then 
Return a request-to-send-received indication to the local TP. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-29 



RECEIVE_INFO_PROC 

RECEIVE_INFO_PROC 

5.2-30 

FUNCTION: The purpose of this procedure is to receive information from PS.CONV !Chapter 
5.1) and to place that information in the MC_RECEIVE_BUFFER. 

This procedure issues a RECEIVE_AND_HAIT for the mapped 
sponding to the passed RCB. PS.MC continues the 
RECEIVE AND HAIT in other procedures, depending upon the 
in the RECEIVE_AND_HAIT. 

conversation corre­
processing of the 
return code carried 

INPUT: The RCB corresponding to the mapped conversation specified in the TRANS­
ACTION_PGM_VERB currently being processed 

OUTPUT: See the procedures called for the specific outputs. 

Referenced procedures, FSMs, and data structures: 
PROCESS_ERROR_OR_FAILURE_RC 
PROTOCOL_ERROR_PROC 
PROCESS_DATA_COMPLETE 
PROCESS_DATA_INCOMPLETE 
UPM_MAPPER 
RCB 

Issue a basic RECEIVE_AND_HAIT verb for a complete logical record 
specifying the maximum length of the data. 

If a request to send data was received from the remote TP then 
Save an indication of the request to be returned later. 

If the RECEIVE AND HAIT was successful then 
Select based-on the HHAT RECEIVED field on the RECEIVE AND HAIT verb: 

Hhen the data received is complete - -
Call PROCESS DATA COMPLETEIRCB, RECEIVE AND HAIT) lpage 5.2-33). 

Hhen the data r;ceiv;d is incomplete - -
Call PROCESS_DATA_INCOMPLETEIRCBJ lpage 5.2-36). 

Hhen the RCB.MC_RECEIVE_BUFFER is empty 
Put the HHAT RECEIVED indicator in the MC RECEIVE BUFFER 

of the cur;ent RCB. - -
Call the UPM_MAPPER lpage 5.2-461 to save an 

indication that the end of the logical message was received. 

page 5.2-31 
page 5.2-47 
page 5.2-33 
page 5.2-36 
page 5.2-46 
page A-6 

Hhen the RCB.MC_RECEIVE_BUFFER is not empty, but does not contain data, 
Clear the MC RECEIVE BUFFER in the current RCB. 

Else 

Call PROTOCOL_ERROR_PROC lpage 5.2-47) 
to deallocate the current conversation. 

Put the RESOURCE FAILURE NO RETRY RETURN CODE in the 
MC_RECEIVE_BUFFER of th; c~rrent RCB. -

Call PROCESS_ERROR_OR_FAILURE_RC lpage 5.2-31) 

SNA LU 6.2 Reference: Peer Protocols 

(~ 
'---- _,/ 

( 
\ . 

'-.__,.,,. 



C. 
) 

C\ 
) 

PROCESS_ERROR_OR_FAILURE_RC 

PROCESS_ERROR_OR_FAILURE_RC 

FUNCTION: This procedure is invoked after PS.HC has issued a RECEIVE_AND_HAIT to which 
has been returned a RETURN_CODE value other than OK. Processing of the return 
code continues in other procedures, depending upon the return code. 

INPUT: 

OUTPUT: 

The RCB corresponding to the conversation specified in the verb being proc­
essed, and the RECEIVE_AND_HAIT return code to be processed 

A return code value is placed in RCB.HC_RECEIVE_BUFFER. 

NOTES: 1. Certain return codes are invalid if RCB.HC_RECEIVE_BUFFER is not empty, and, 
if received at such a time, indicate that the partner LU has committed a pro­
tocol violation. Depending upon the return code, PS.MC ~ay end the mapped 
conversation. 

2. A return code on RECEIVE_AND_HAIT of ALLOCATION_ERROR cannot occur if prior 
information has been received on the specified mapped conversation. 

3. A return code on RECEIVE AND HAIT of PROG ERROR PURGING or SVC ERROR PURGING 
cannot occur if HC_RECEIVE_BUFFER is not-empty~ It can occu; only- if the 
RECEIVE_AND_HAIT was issued by PS.HC while the mapped conversation was in SEND 
state. IThe partner transaction program or LU that issued the *_ERROR_PURGING 
information was in RECEIVE state.) Since the mapped conversation was in the 
SEND state locally, no information can be in RCB.HC_RECEIVE_BUFFER. 

4. The return codes that reference this note can be received at any time and are 
valid regardless of the status of RCB.MC_RECEIVE_BUFFER. 

5. A return code of * ERROR TRUNC cal'V'lot be received on the RECEIVE AND HAIT 
issued by this pr~edur; because it can only be received followi;;g a 
RECEIVE AND HAIT in which a HHAT RECEIVED value of DATA INCOMPLETE is 
returned. (This procedure is not invoked after a DATA_INCOHPLETE indicator 
has been received.) 

Referenced procedures, FSHs, and data structures: 
PS_SPS 
RCVD_svc_ERROR_TRUNC_NO_TRUNC 
RCVD_SVC_ERROR_PURGING 
UPH_MAPPER 
PROTOCOL_ERROR_PROC 
RCB 

Select based on the RECEIVE_AND_HAIT return code being processed: 
Hhen ALLOCATION ERROR ISee Note 2), PROGRAH STATE CHECK 

Put the RETURN_CODE in RCB.MC_RECEIVE_BUFFER. -
Hhen DEALLOCATE NORMAL 

If RCB.HC_RECEIVE_BUFFER is empty then 
Put the RETURN CODE in RCB.MC RECEIVE BUFFER. 

Else (optional ch;ck when receiving data; See Note 1) 
Replace the contents of RCB.HC_RECEIVE_BUFFER by the 

RETURN CODE value RESOURCE FAILURE NO RETRY. 
Optionally log implementati~n-dependent error data. 

Hhen DEALLOCATE_ABEND_PROG 
If RCB.MC_RECEIVE_BUFFER is empty then 

Put the RETURN CODE DEALLOCATE ABEND in RCB.HC_RECEIVE_BUFFER. 
Else !optional ch;ck when receivi~g data; See Note 1 ) 

Replace the contents of RCB.HC_RECEIVE_BUFFER by the 
RETURN CODE RESOURCE FAILURE NO RETRY. 

Optionally log imple..;ntation:dependent error data. 
Hhen PROG ERROR PURGING ISee Note 3J 

Put th; RETURN_CODE in RCB.MC_RECEIVE_BUFFER. 
Call UPM_MAPPER (page 5.2-46) to record a remotely detected 
error of the type indicated by the return code parameter. 

page 5.3-35 
page 5.2-41 
page 5.2-42 
page 5.2-46 
page 5.2-47 
page A-6 

Chapter 5. 2. Presentation Services--Happed Conversation Verbs 5.2-31 



PROCESS_ERROR_OR_FAILURE_RC 

5.2-32 

Hhen PROG_ERROR_NO_TRUNC 
If RCB.MC_RECEIVE_BUFFER is empty then 

Put the RETURN_CODE in RCB.MC_RECEIVE_BUFFER. 
Call UPM_HAPPER (page 5.2-46) to record a remotely detected 
error of the type indicated by the RETURN_CODE. 

Else !optional check when receiving data; See Note ll 
Call PROTOCOL_ERROR_PROC !page 5.2-47) 

to deallocate the current conversation. 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the 

RETURN CODE RESOURCE FAILURE NO RETRY. 
Hhen DEALLOCATE_ABEND_svc. DEALLOCATE_ABEND_TIMER !See Note 4) 

Replace the contents of RCB.MC_RECEIVE_BUFFER by the 
RETURN_CODE RESOURCE_FAILURE_NO_RETRY. 

Hhen RESOURCE_FAILURE_RETRY. RESOURCE_FAILURE_NO_RETRY !See Note 4) 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the RETURN_CODE. 

Hhen BACKED OUT 
If RCB.MC_RECEIVE_BUFFER is empty then 

Call PS_SPS !sync point manager. Chapter 5.3). 
Put the RETURN_CODE in RCB.MC_RECEIVE_BUFFER. 

Else !optional check when receiving data; See Note ll 
Call PROTOCOL_ERROR_PROC (page 5.2-47) 

to deallocate the current conversation. 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the 

RETURN CODE RESOURCE FAILURE NO RETRY. 
Hhen SVC_ERROR_NO_TRUNC (Se; Note 4l -

Clear the RCB.MC RECEIVE BUFFER. 
Call RCVD_SVC_ERROR_TRUNC_NO_TRUNC Cpage 5.2-4ll 
to process the RETURN_CODE. 

Hhen SVC ERROR PURGING CSee Note 3) 
Call RCVD_svc_ERROR_PURGING !page 5.2-42l to get 

and process error data from the partner LU. 
Put the RETURN_CODE in RCB.MC_RECEIVE_BUFFER. 

SNA LU 6.2 Reference:' Peer Protocols 

( -, 
____ , 

c 

c 



c 
PROCESS_DATA_COMPLETE 

PROCESS_DATA_COMPLETE 

FUNCTION: This procedure is invoked when PS.MC issues a RECEIVE AND HAIT and a value of 
DATA COMPLETE is returned in the HHAT RECEIVED field of the RECEIVE_AND_HAIT. 
The purpose of this procedure is to pr~cess the received data. 

INPUT: 

The data received in the RECEIVE_AND_HAIT is a logical record. It may be the 
first or only logical record in a GDS variable. Alternatively, it may be a 
subsequent logical record in a GOS variable containing multiple logical 
records. A subsequent logical record does not carry a GDS ID field. 

If the MC_RECEIVE_BUFFER is empty, the data in the RECEIVE AND HAIT is the 
initial or only logical record in a GDS variable. This pro~edu;e checks the 
GOS ID in the logical record and calls the appropriate procedure to process 
the data carried in the DATA field of the logical record. 

If the MC_RECEIVE_BUFFER contains a map name 
RECEIVE_AND_HAIT is again the initial or only 
able. The GDS variable following a Map Name 
application or user control data. 

but no data, the data in the 
logical record in a GDS vari­

GDS variable has to contain 

If the MC_RECEIVE_BUFFER contains incomplete data or a map name and incomplete 
data li.e., the last logical record in a GOS variable that contains multiple 
logical records has not been received), the appropriate procedure is called to 
add the data carried in the DATA field of the subsequent logical record to the 
data already contained in the MC_RECEIVE_BUFFER. If the subsequent logical 
record is the last logical record in the GOS variable, additional processing 
is performed. 

The RCB associated with the mapped conversation specified in the current verb 
issued by the transaction program and the RECEIVE_AND_HAIT Cissued by PS.MCJ 
that contains the data to be processed 

OUTPUT: Depending upon the data received, the MC_RECEIVE_BUFFER may be updated. See 
the procedures called for specific outputs. 

Referenced procedures, FSMs, and data structures: 
SEND_SVC_ERROR_PURGING 
PROTOCOL_ERROR_PROC 
PROCESS_MAPPER_RETURN_CODE 
UPM_MAPPER 
RCB 

page 
page 
page 
page 
page 

5.2-45 
5.2-47 
5.2-35 
5.2-46 
A-6 

If the MC_RECEIVE_BUFFER for the current conversation is empty (no map name) then 
Select based on the type of GOS variable in the passed data (first record): 

Hhen a Map Name GOS variable 
If the LU receiving the map name supports mapping and the TP for this 
conversation supports mapping then 

Put the unmapped map name in the MC_RECEIVE_BUFFER (data incomplete). 
Else I the LU or TP doesn't support mapping) 

Call SEND_SVC_ERROR_PURGING Cpage 5.2-45) to 
handle the invalid map name and mapping request. 

Hhen an Application Data GOS variable 
Put the passed unmapped data and an indication that FM headers are 
not included in the data in the MC RECEIVE BUFFER. 

If data is not continued in the next logical record Conly one record) then 
Call the UPM_MAPPERIRCB.MAPPER_SAVE_AREAJ !page 5.2-46) 

to map the received data, specifying that FMH data is not included. 
INo mapping will occur if no map name is found.) 

Call PROCESS_MAPPER_RETURN_CODE !page 5.2-35). 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-33 



PROCESS_DATA_COHPLETE 

S.2-34 

Hhen a User Control Data GOS variable 
If the LU for the current conversation supports FMH data and 

the TP for the current conversation supports FMH data then 
Put the passed unmapped data and an indication that FM headers are 

included in the data in the MC RECEIVE BUFFER. 
If the data is not continued in-the next record lone logical record) then 

Call the UPM_MAPPERIRCB.MAPPER_SAVE_AREAJ lpage 5.2-46) 
to get the map name and to map the received data, specifying that FMH 
data is included. (No mapping will occur if no map name is found.) 

Call PROCESS_MAPPER_RETURN_CODEIRCBJ lpage 5.2-35). 
Else I the LU or TP doesn't Support FMH-data) 

Call SEND_svc_ERROR_PURGING (page 5.2-45) 
to perform service error purging, and to notify the partner LU. 

Hhen a Null structured Data GOS variable 
Do nothing. 

Hhen an Error Data GOS variable, optionally 
Call PROTOCOL_ERROR_PROC lpage 5.2-47) 
to deallocate the current conversation. 

Put the return code in the MC RECEIVE BUFFER of the current RCB. 
Hhen the GOS ID is invalid - -

Call SEND_SVC_ERROR_PURGING lpage 5.2-45) to 
handle the invalid GOS ID lno such variable type). 

Else I the MC_RECEIVE_BUFFER is not empty) 
If the buffer element in the MC_RECEIVE_BUFFER is a map name then 

Select based on the contents of the passed RECEIVE_AND_HAIT data: 
Hhen the GOS ID indicates an Application Data variable 

Add the passed data and an indication that FM headers are 
not included in the data to the unmapped map name in the 
MC RECEIVE BUFFER. 

If the data-is not continued in the next record lone record) then 
Call the UPM_MAPPERIRCB.MAPPER_SAVE_AREA) lpage 5.2-46) 
to map the received data in the MC_RECEIVE_BUFFER. 

Call PROCESS_MAPPER_RETURN_CODE lpage 5.2-35). 
Hhen the GOS ID indicates a User Control Data GOS variable 

If the LU for the current conversation supports FMH data and 
the TP for the current conversation supports FMH data then 

Add the passed data and an indication that FM headers are included 
in the data to the unmapped map name in the MC_RECEIVE_BUFFER. 

If the data is not continued in the next record (only one record) then 
Call the UPM_MAPPERIRCB.MAPPER_SAVE_AREA) lpage 5.2-46) 

to map the received data in the MC_RECEIVE_BUFFER. 
Call PROCESS_MAPPER_RETURN_CODE lpage 5.2-35). 

Else I the LU or TP doesn't support FMH data) 
Call SEND_SVC_ERROR_PURGING lpage 5.2-45) 
to perform service error purging, and to notify the partner LU. 

Hhen the GOS ID is invalid for a map name buffer element, optionally 
Purge the MC_RECEIVE_BUFFER for the current RCB. 
CALL PROTOCOL_ERROR_PROC lpage 5.2-47) to 
deallocate the conversation. 

Put the return code in the MC RECEIVE BUFFER of the current RCB. 
Else I the buffer element indicates continued d;ta, with or without a map name) 

Add the passed data to the data contained in the MC_RECEIVE_BUFFER. 
If the data is not continued in the next logical record then 

Call the UPM_MAPPER lpage 5.2-46) to map the contents 
of the MC_RECEIVE_BUFFER la complete variable), specifying the map 
name, if any, and that FM header data is included. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 



PROCESS_MAPPER_RETURN_CODE 

PROCESS_MAPPER_RETURN_CODE 

FUNCTION: This procedure determines whether the mapper was successful in mapping data. 
It is invoked after the mapper has been called to process data received from 
-the partner transaction program. 

INPUT: The RCB corresponding to the mapped conversation over which the data to be 
mapped flowed; and a structure containing information that is both supplied 
to, and returned from, the mapper 

OUTPUT: If the mapper was able to successfully map the received data, the mapped data, 
along with a locally known map name provided by the mapper and an indication 
of the format of the mapped data, is placed in the MC_RECEIVE_BUFFER. If map­
ping was unsuccess.ful, PS.MC performs service error purging processing to 
notify the partner LU that the received data could not be mapped. (See "Serv­
ice Errors Detected in Received Data" on page 5.2-14.J 

NOTES: 1. If the mapper was successful in mapping the received data, it always provides 
to PS.MC a protocol boundary map name known to the local transaction program. 
The map name is supplied by the mapper even when it was invoked without a map 
name lin which case, the mapper uses a previously received map name). If map­
ping is off, the mapper supplies a null map name, which is passed to the 
transactiOrl"program. 

2. If the mapper encountered an error in mapping the data, it provides to PS.MC 
the map name, known to the remote LU, that was in effect when the mapper was 
invoked. PS.MC places the map name in an Error Data GOS variable, which is 
sent to the partner LU to notify it of the mapping failure. 

3. A return code of MAP NOT FOUND cannot be returned from the mapper if the 
mapper is invoked with~ut; map name. If the mapper is invoked without a map 
name, it determines that it is to use a previously received map name. If the 
map name had been unknown to the mapper, this fact would have been discovered 
as a result of the earlier mapper invocation. 

Referenced procedures, FSMs, and data structures: 
SEND_SVC_ERROR_PURGING 
PROTOCOL_ERROR_PROC 
Rcs· 

Select based on the RETURN_CODE from the mapper: 
When mapping was successful 

Put the mapped map name, an indication that FM headers are included 
in the data, and the mapped data in the MC_RECEIVE_BUFFER. 

When mapping failed to execute successfully 
Call SEND_SVC_ERROR_PURGING lpage 5.2-45) 
specifying the current RCB and the error type. 

When the provided map name was not found 
Call SEND_SVC_ERROR_PURGING !page 5.2-45) 
specifying the current RCB and the error type. 

When the map name was a duplicate (optional processing for receive onlyl 
Call PROTOCOL_ERROR_PROC !page 5.2-47) to 
deallocate the current conversation. 

page 5.2-45 
page 5.2-47 
page A-6 

Put a duplicate map name RETURN_CODE in the current MC_RECEIVE_BUFFER. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-35 



PROCESS_DATA_INCOMPLETE 

PROCESS_DATA_INCOMPLETE 

5.2-36 

FUNCTION: This procedure is invoked when PS.MC issues a RECEIVE_AND_HAIT as a result of 
a mapped conversation verb issued by the transaction program. PS.MC has exam­
ined the value returned in the HHAT RECEIVED field of the RECEIVE AND HAIT, 
determined that the value received i; DATA INCOMPLETE, and has dis~ard;d the 
incomplete logical record returned in the RECEIVE_AND_HAIT. 

This procedure purges the MC_RECEIVE_BUFFER of any data that has been received 
via one or more prior RECEIVE_AND_HAITs. It then issues a RECEIVE AND HAIT to 
determine the reason for the logical record being truncated. Processing con­
tinues based upon the RETURN_CODE value received in the RECEIVE_AND_HAIT. 

INPUT: The RCB corresponding to the resource specified in the RECEIVE_AND_HAIT in 
which DATA_INCOMPLETE was returned. 

OUTPUT: This procedure issues a RECEIVE_AND_HAIT. Depending upon the RETURN CODE val­
ue returned on the RECEIVE AND HAIT, a return code buffer eleme~t may be 
inserted into the MC_RECEIVE=BUFFER. 

NOTE: RETURN_CODE values of DEALLOCATE_ABEND_PROG, PROG_ERROR_TRUNC, and BACKED_QUT 
following a DATA_INCOMPLETE notification indicate that the partner LU has com­
mitted a protocol violation by allowing the transaction program to truncate 
data. This should never occur at the mapped conversation protocol boundary. 
The PS.MC at the partner LU is allowed to truncate a logical record with 
SVC_ERROR_TRUNC, for instance; the transaction program is not. 

Referenced procedures, FSMs, and data structures: 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 
PROTOCOL_ERROR_PROC 
PS_VERB_ROUTER 
RCB 

Clear the RCB.MC RECEIVE BUFFER. 
Call the PS_VERB=ROUTER lChapter 5.0) to issue a 

RECEIVE_AND_HAIT verb to get the RETURN_CODE that explains why the 
data was incomplete. 

If a request to send data was received from the remote TP then 
Save an indication of the request to be returned later. 

Select based on the RECEIVE AND HAIT return code: 
Hhen the return code is SVC ERROR TRUNC 

Call RCVD_SVC_ERROR_TRUNC_NO_TRUNC to do service error processing 
!page 5.2-411. 

Hhen the return code is DEALLOCATE ABEND SVC or DEALLOCATE ABEND TIMER 
Put the RETURN CODE RESOURCE FAILURE NO RETRY in the - -

MC RECEIVE BUFFER of the cu;rent RCB. -

page 5.2-41 
page 5.2-47 
page 5.0-16 
page A-6 

Hhen the RETURN_CODE is RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY 
Put the RETURN CODE in the MC RECEIVE BUFFER of the current RCB. 

Hhen the RETURN_CODE is DEALLOCATE_ABENO=PROG, optionally do the following: 
Put the RETURN CODE RESOURCE FAILURE NO RETRY in the 

MC RECEIVE BUFFER of the cu;rent RCB. -
Log-impleme~tation-dependent error data in the system error log. 

Hhen the RETURN_CODE is PROG_ERROR_TRUNC or BACKED_OUT, optionally do the following: 
Call PROTOCOL_ERROR_PROC (page 5.2-47) to deallocate the 
current conversation. 

Put the RETURN_CODE in the MC_RECEIVE_BUFFER of the current RCB. 

SNA LU 6.2 Reference: Peer Protocols 



MC_REQUEST_TO_SEND_PROC 

MC_REQUEST_TO_SEND_PROC 

FUNCTION: 

INPUT: 

NOTE: 

This procedure processes MC_REQUEST_TO_SEND verbs. 

PS.MC issues a REQUEST_TO_SEND verb against the resource specified in the 
MC_REQUEST_TO_SEND and returns control to the transaction program. 

MC_REQUEST_TO_SEND verb parameters. 

PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_REQUEST_TO_SEND verb. A state check is performed by 
PS.CONY !Chapter 5.1) during its processing of the REQUEST_TO_SEND verb. 

Referenced procedures, FSMs, and data structures: 
REQUEST_TO_SEND_PROC page 5.1-23 

Call REQUEST_TO_SEND_PROCIREQUEST_TO_SENDllpage 5.1-231 to issue 
a REQUEST_TO_SEND verb with the MC_REQUEST_TO_SEND verb parameters. 

Set the MC_REQUEST_TO_SEND return code to the value returned by the REQUEST_TO_SEND verb. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-37 



MC_SEND_DATA_PROC 

MC_SEND_DATA_PROC 

5.2-38 

FUNCTION: This procedure processes MC_SEND_DATA verbs. 

INPUT: 

OUTPUT: 

This procedure causes the mapper to be invoked. If the mapper is successful 
in mapping the data contained in the MC_SEND_DATA, or if the mapper determines 
that mapping is not being performed, the output data from the mapper is placed 
in an Application Data or User Control Data GOS variable I the variable may 
contain one or more logical records). The mapper may also return to PS.MC a 
map name that is to be sent to the partner LU, in which case PS.MC also cre­
ates a Map Name GOS variable that precedes the data GOS variable. This proce­
dure then issues a SEND_DATA containing the GOS variablels). 

PS.MC sets the return code field in the MC_SEND_DATA based upon the value 
returned in the SEND_DATA. Some return codes, such as OK, are placed in the 
MC_SEND_DATA unchanged. Others, such as DEALLOCATE_ABEND_PROG, are trans­
formed to another value before being placed in the MC_SEND_DATA. In addition, 
some return codes cause PS.MC to perform further processing. For example, 
when PS.MC receives a return code of PROG ERROR PURGING to its SEND DATA, it 
invokes the mapper to inform that procedu;e that the partner transaction pro­
gram detected an error. (See "Mapper Invocation" on page 5.2-9.) When a 
return code of SVC_ERROR_PURGING is received, PS.MC performs the processing 
necessary to determine what type of service error the PS.MC component at the 
partner LU encountered. A return code reflecting the type of error is 
returned to the local transaction program in the MC_SEND_DATA. ISee "Process­
ing of a Service Error Detected by Partner LU" on page 5.2-17.) 

MC SEND DATA verb parameters !See SNA Transaction Programmer's Reference Man­
ual for-LU Type ~·) 

PS.MC issues a SEND DATA verb. It sets fields in the MC_SEND_DATA based upon 
the corresponding v;lues returned in the SEND_DATA. 

NOTES: 1. PS.MC performs a check to determine if the conversation is in an appropriate 
state to receive an MC_SEND_DATA. This is unlike its processing of most 
mapped conversation verbs, in that PS.MC generally does not perform this state 
check, but instead allows it to be performed by PS.CONV (Chapter 5.1). PS.MC 
performs the state check, rather than deferring it, for the following reasons: 
unlike other verbs, the MC_SEND_DATA causes PS.MC to perform some amount of 
processing before issuing a basic conversation verb. By PS.MC performing the 
state check, any state errors are detected before the processing is performed. 
In addition, if the data provided in the MC_SEND_D~TA could not be mapped by 
the mapper procedure, no basic conversation verb is issued; in order to catch 
any state errors, PS.MC has to perform the state check. 

2. The processing that PS.MC performs as a result 
SVC_ERROR_PURGING involves issuing one or 
REQUEST TO SEND RECEIVED information may 
RECEIVE-AND HAITls), and, if this is the case, 
reflect-thi; information. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER . 
RCVD_SVC_ERROR_PURGING 
PS_SPS 
SEND_DATA_PROC 
SEND_BUFFER 
RCB 

SNA LU 6.2 Reference: Peer Protocols 

of receiving a return code of 
more RECEIVE AND HAIT verbs. 

be retu;ned- on the 
the MC_SEND_DATA is updated to 

page 5.2-46 
page 5.2-42 
page 5.3-35 
page 5.1-24 
page 5.2-48 
page A-6 

c 



0 

MC_SEND_DATA_PROC 

Find the RCB for the resource specified in the MC_SEND_DATA verb. 
If the resource is in a state to receive data !Chapter 5.1) then 

Call the UPM_MAPPERIRCB.MAPPER_SAVE_AREAl lpage 5.2-46) 
to map the data to be sent, specifying the map name and whether or not the data 
contains FM header data lall from the verb). 

Select based on the RETURN_CODE from the mapper: 
tf1en the mapper RETURN_CODE is MAP_NOT_FOUND 

Set the MC_SEND_DATA RETURN_CODE to MAP_NOT_FOUND. 
tfien the mapper RETURN_CODE is MAP_EXECUTION_FAILURE 

Set the MC SEND DATA RETURN CODE to MAP EXECUTION FAILURE. 
Optionally: log-implementation-dependent error data in system error log. 

tflen the mapping was successful 
If a map name was returned from the mapper then 

Create a Map Name GDS variable for the map name and put it in the SEND_BUFFER. 
Create a GDS variable that contains the data passed with the verb, 
which has been successfully mapped. The GDS variable, depending on the 
amount of data, may consist of one logical record or of multiple continued 
logical records. Only the first logical record will carry the GDS ID 
indicating either a User Control Data or an Application Data GDS variable type. 

Put, or add, the data GDS variable in, or to, the SEND BUFFER. 
Call SEND_DATA_PROC !page 5.1-24) to issue a -

SEND_DATA verb with the MC_SEND_DATA verb parameters. 
Set the MC_SEND_DATA parameters and return code to the values returned 

by the SEND_DATA verb. 

Select based on the return code copied into MC_SEND_DATA: 
Hhen OK 

Do nothing. 
Hhen DEALLOCATE ABEND PROG 

Set RETURN_CODE to-DEALLOCATE_ABEND. 
Hhen DEALLOCATE ABEND SVC or DEALLOCATE ABEND TIMER 

Set RETURN CODE to-RESOURCE FAILURE NO RETRY. 
Hhen PROG ERROR PURGING - - -

Call UPM_MAPPERIRCB.MAPPER_SAVE_AREAJ !page 5.2-46) 
to notify the mapper of the remotely detected error. 

Hhen BACKED OUT 
Call PS_SPS !Chapter 5.3J. 

Hhen SVC ERROR PURGING 
Call RCVD_SVC_ERROR_PURGING passing the current RCB and the 

SEND_DATA return code (page 5.2-421. 
If a request to send has been received from the remote TP and not 

returned on a prior MC_CONFIRM, MC_RECEIVE_AND_HAIT, MC_SEND_DATA, 
or MC_SEND_ERROR verb then 

Return a request-to-send-received indication to the local TP on 
the MC_SEND_DATA verb. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-39 



MC_SEND_ERROR_PROC 

MC_SEND_ERROR_PROC 

5.2-40 

FUNCTION: This procedure processes MC_SEND_ERROR verbs. 

INPUT: MC SEND ERROR verb parameters 
Manual for LU Type ~. l 

(See SNA Transaction Programmer's Reference 

OUTPUT: A return code indicating the result of the verb execution. An indication that 
a request to send has been received from the remote TP may also be returned. 

NOTES: 1. PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_SEND_ERROR. A state check is performed by PS.CONY 
!Chapter. 5.1) during its processing of the SEND_ERROR verb. 

2. The processing that PS.MC performs as a result of receiving a return code of 
SVC_ERROR_PURGING involves issuing one or more RECEIVE_AND_HAIT verbs. A 
request to send from the remote TP may be returned on a RECEIVE_AND_HAIT and, 
if this is the case, an indication of the request is passed to the local TP. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
RCVD_SVC_ERROR_PURGING 
PS_SPS 
SEND_ERROR_PROC 
RCB 

Find the RCB for the conversation identified in the RESOURCE parameter. 
Clear RCS.MC RECEIVE BUFFER. 
Call SEND_ERROR_PROC(SEND_ERRORllpage 5.1-25) to issue a SEND_ERROR 
verb with the MC_SEND_ERROR verb parameters. 

Select based on the return code in SEND_ERROR: 
Hhen OK 

Set RETURN_CODE to the value returned on SEND_ERROR. 
If the conversation is in send state !Chapter 5.1) then 

Call UPM_MAPPER (page 5.2-46) to record a locally detected 
error of the type PROG_ERROR_NO_TRUNC. 

Else 
Call UPM_MAPPER lpage 5.2-46) to record a locally detected 
error of the type PROG_ERROR_PURGING. 

Hhen PROG ERROR PURGING 
Set RETURN CODE to the value returned on SEND ERROR. 
Call UPM_MAPPER (page 5.2-46) to record a rem~tely detected 
error of the type indicated by the return code from SEND_ERROR. 

Hhen ALLOCATION_ERROR, DEALLOCATE_NORMAL, PROGRAM_STATE_CHECK, 
RESOURCE FAILURE RETRY, or RESOURCE FAILURE NO RETRY 

Set RETURN_CODE to the value retu;ned on SEND_ERROR. 
Hhen DEALLOCATE_ABEND_PROG 

Set RETURN_CODE to DEALLOCATE_ABEND. 
Hhen DEALLOCATE ABEND SVC or DEALLOCATE ABEND TIMER 

Set RETURN_CODE to-RESOURCE_FAILURE_NO_RETRY. 
Hhen BACKED OUT 

Call PS_SPS !Chapter 5.3). 
Set RETURN_CODE to the value returned on SEND_ERROR. 

Hhen SVC_ERROR_PURGING 
Call RCVD_SVC_ERROR_PURGING (page 5.2-42). 
Set RETURN_CDDE to the value returned on RCVD_SVC ERROR PURGING. 

If a request to send has been received from the remote TP and not 
indicated to the local TP on a prior MC_CONFIRM, MC_RECEIVE_AND_HAIT, 
MC SEND DATA, or MC SEND ERROR verb then 

Retur~ a request-t~-send-received indication to the local TP 
I see SNA Transaction Programmer's Reference Manual for LU Type~). 

SNA LU 6.2 Reference: Peer Protocols 

page 5.2-46 
page 5.2-42 
page 5.3-35 
page 5.1-25 
page A-6 

(_~ 

C' 
-



( _ _, 

RCVD_SVC_ERROR_TRUNC_NO_TRUNC 

RCVD_SVC_ERROR_TRUNC_NO_TRUNC 

FUNCTION: This procedure is invoked when a return code of SVC ERROR TRUNC or 
SVC ERROR NO TRUNC is returned by a RECEIVE_AND_HAIT verb. This r;turn code 
indicates-th;t the partner LU detected a map execution failure while sending 
data. All or only part of the data may have been sent. Any data that was 
received prior to the error is purged. Error information is optionally placed 
in the system error log, but the ' local transaction program is not informed of 
the error. 

INPUT: The RCB associated with the mapped conversation on which the service error was 
detected and the SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC return code 

NOTES: 1. If the expected Error Data GOS variable is not received, or is received but 
indicates an error condition that is invalid in the present situation, the 
partner LU has committed a protocol violation. If the protocol violation 
occurred as a result of the partner LU allowing the mapped conversation to be 
prematurely ended without having sent the error data, PS.MC simply logs the 
error. Otherwise, PS.MC ends the mapped conversation. In either case, PS.MC 
inserts a return code of RESOURCE_FAILURE_NO_RETRY in RCB.MC_RECEIVE_BUFFER. 

2. A return code of RESOURCE_FAILURE_RETRY or _NO_RETRY can occur at any time and 
does not indicate that the partner LU committed a protocol violation. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
RECEIVE_AND_HAIT_PROC 
PROTOCOL_ERROR_PROC 
RCB 
ERROR_DATA_STRUCTURE 

Call UPM_MAPPER (page 5.2-46) to record a remotely 
detected error of the type SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC 
as indicated by the input parameter. 

Call RECEIVE_AND_HAIT_PROCCRECEIVE_AND_HAITllpage 5.1-19) to issue a 
RECEIVE_AND_HAIT verb with the MC_RECEIVE_AND_HAIT verb parameters. 

Select based on the RETURN_CODE from RECEIVE_AND_HAIT: 
Hhen OK 

Interpret the data returned by the RECEIVE_AND_HAIT verb as 
an ERROR DATA STRUCTURE. 

If RECEIVE AND-HAIT returns DATA COMPLETE, the GOS ID in 
ERROR DATA STRUCTURE indicates that the structure-contains 
error-data-( see SNA Formats), and ERROR DATA STRUCTURE.ERROR CODE 
indicates a map execution failure (see SNA Formats) then -

Optionally log implementation-dependen:r-error data. 
Else I optional check when receiving data; See Note 1 ) 

Call PROTOCOL_ERROR_PROC lpage 5.2-47) 
to deallocate the current conversation. 

Put the RETURN CODE RESOURCE FAILURE NO RETRY in the 
MC RECEIVE BUFFER of the cu;rent RCB. -

Hhen RESOURCE FAILURE RETRY or RESOURCE FAILURE NO RETRY ISee Note 2J 
Put the RETURN_CODE from the RECEIVE=AND_HAIT v;rb in the 

MC RECEIVE BUFFER of the current RCB. 
Hhen PROG ERROR NO TRUNC, SVC ERROR NO TRUNC, or BACKED OUT 

(optional check when receivi~g dat;; See Note 1) -
Call PROTOCOL_ERROR_PROC (page 5.2-47) 

to deallocate the current conversation. 
Put the RETURN_CODE RESOURCE_FAILURE_NO_RETRY in the 

MC_RECEIVE_BUFFER of the current RCB. 
Hhen DEALLOCATE NORMAL, DEALLOCATE ABEND PROG, DEALLOCATE ABEND SVC, or 

DEALLOCATE_ABEND_TIMER (optional ~heck ;hen receiving data; Se; Note lJ 
Put the RETURN CODE RESOURCE FAILURE NO RETRY in the 

MC RECEIVE BUFFER of the cu;rent RCB. -
Optionally log implementation-dependent error data. 

page 5.2-46 
page 5.1-19 
page 5.2-47 
page A-6 
page 5.2-48 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-41 



RCVD_SVC_ERROR_PURGING 

5.2-42 

RCVD_SVC_ERROR_PURGING 

FUNCTION: This procedure is invoked when PS.MC issues a basic conversation verb in which 
a return code of SVC_ERROR_PURGING is returned. Unlike SVC ERROR TRUNC and 
SVC_ERROR_NO_TRUNC, the SVC_ERROR_PURGING return code can b; retu;ned on a 
verb issued while the mapped conversation is in either send or receive state. 

INPUT: The RCB corresponding to the specified conversation. 

OUTPUT: A return code reflecting the outcome of the service error processing. 

NOTES: 1. If the expected Error Data GDS variable is not received, the partner LU has 
committed a protocol violation. The checks for these violations given below 
are optional. If the protocol violation occurred as a result of the partner 
LU allowing the mapped conversation to be prematurely ended without having 
sent the error data, PS.MC simply logs the error. Otherwise, PS.MC ends the 
mapped conversation. In either case, PS.MC returns the code 
RESOURCE_FAILURE_NO_RETRY. 

2. A return code of RESOURCE FAILURE RETRY or RESOURCE FAILURE NO RETRY can occur 
at any time and does not indicate that the partner LU co;mitted a protocol 
violation. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
RECEIVE_AND_HAIT_PROC 
PROCESS_ERROR_DATA 
GET_SEND_INDICATOR 
PROTOCOL_ERROR_PROC 
RCB 
ERROR_DATA_STRUCTURE 

Call UPM_MAPPER (page 5.2-46) to record a remotely 
detected error of the type SVC_ERROR_PURGING as indicated by the 
RETURN_CODE from the last verb issued. 

Call RECEIVE_AND_HAIT_PROCIRECEIVE_AND_HAIT)lpage 5.1-19) to issue a 
RECEIVE_AND_HAIT verb with the MC_RECEIVE_AND_HAIT verb parameters. 

Select based on the return code in RECEIVE_AND_HAIT: 
Hhen OK 

Interpret the data returned by the RECEIVE_AND_HAIT verb as 
an ERROR DATA STRUCTURE. 

If RECEIVE_AND_HAIT returns DATA_COMPLETE and the GDS_ID of 
ERROR_DATA_STRUCTURE indicates that the structure contains 
error data then 

Call PROCESS_ERROR_DATA !page 5.2-43) and 
pass it the ERROR_DATA_STRUCTURE. 

Set RETURN CODE to the value returned on PROCESS ERROR DATA. 
If the RETURN CODE is not RESOURCE FAILURE NO RETRY then 

Call GET_SEND_INDICATOR !page 5~2-44). - -
Else (See Note 1) 

Call PROTOCOL_ERROR_PROC (page 5.2-47) 
to deallocate the current conversation. 

Set RETURN CODE to RESOURCE FAILURE NO RETRY. 
Hhen RESOURCE FAILURE RETRY or RESOURCE FAILURE NO RETRY (See Note 2) 

Set RETURN-CODE to-the value returned on RECEIVE AND HAIT. 
Hhen PROG ERROR NO TRUNC, SVC ERROR NO TRUNC, or BACKED-OUT !See Note 1) 

Call PROTOCOL_ERROR_PROC lpag; 5~2-47) -
to deallocate the current conversation. 

Set RETURN CODE to RESOURCE FAILURE NO RETRY. 
Hhen DEALLOCATE_NORMAL, DEALLOCATE_ABEND_PROG, 

DEALLOCATE ABEND SVC or DEALLOCATE ABEND TIMER (See Note 1) 
Optionally log-implementation-dependent error data. 
Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

SNA LU 6.2 Reference: Peer Protocols 

page 5.2-46 
page 5.1-19 
page 5.2-43 
page 5.2-44 
page 5.2-47 
page A-6 
page 5.2-48 



c_/ 

C. 
. /: 

() 

PROCESS_ERROR_DATA 

PROCESS_ERROR_DATA 

FUNCTION: This procedure is invoked during the processing that PS.MC performs as a 
result of receiving a return code of SVC_ERROR_PURGING. It is called after 
receiving the Error Data GDS variable that follows the service error notifica­
tion. The purpose of this procedure is to process the information carried in 
the Error Data GOS variable. 

INPUT: 

OUTPUT: 

The Error Data GDS variable received from the remote TP 

If the Error Data GOS variable contains no invalid values, 
returns a code that reflects the information carried in the 
logs the error information in the system error log. If the 
tains an invalid value, PS.MC ends.the mapped conversation. 

this procedure 
error data and 
error data con-

NOTE: Hhen the Error Data GOS variable indicates MAP_NOT_FOUND or 
MAP~EXECUTION_FAILURE, the map name that caused the error is carried in the 
ERROR PARM field of the Error Data GOS variable. Hhen the Error Data GOS var­
iable -indicates INVALID_GDS_ID, the GDS_ID that specifies a function not sup­
ported by the partner LU or transaction program is carried in the ERROR_PARM 
field • 

Referenced procedures, FSMs, and data structures: 
PROTOCOL_ERROR_PROC 
ERROR_DATA_STRUCTURE 

Select based on ERROR DATA STRUCTURE.ERROR CODE: 
Hhen it indicates ;n in~alid GOS ID lse; SNA Formats) 

Select based on the GOS_ID in-ERROR_DATA_STRUCTURE.ERROR_PARM: 
Hhen it indicates user control data I see SNA Formats) 

Set RETURN CODE to FMH DATA NOT SUPPORTED. 
Optionally-log impleme~tati~n-d;pendent error data. 

Hhen it indicates map name I see SNA Formats) 
Set RETURN_CODE to MAPPING_NOT_SUPPORTEO. 
Optionally log implementation-dependent error data. 

Otherwise (optional check when receiving data) 
Call PROTOCOL_ERROR_PROC (page 5.2-47) 
to deallocate the current conversation. 

Pu·t the RETURN_CODE RESOURCE_FAILURE_NO_RETRY in the 
MC_RECEIVE_BUFFER of the current RCB. 

Hhen it indicates map not found (see SNA Formats) 
Set RETURN CODE to MAP NOT FOUND. -
Optionally-log impleme~tation-dependent error data. 

Hhen it indicates map execution failure (see SNA Formats) 
Set RETURN CODE to MAP EXECUTION FAILURE. -
Optionally-log impleme~tation-dependent error data. 

Otherwise (optional check when receiving data) 
Call PROTOCOL_ERROR_PROC lpage 5.2-471 

to deallocate the current conversation. 
Put the RETURN CODE RESOURCE FAILURE NO RETRY in the 

MC_RECEIVE_BUFFER of the cu;rent RCB. -

page 5.2-47 
page 5.2-48 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-43 



GET_SEND_INDICATOR 

GET_SEND_INDICATOR 

5.2-44 

FUNCTION: This procedure is invoked during the processing that PS.MC performs as a 
result of rece1v1ng a return code of SVC ERROR PURGING. This procedure is 
called after the Error Data GOS variabl; that follows the service error 
notification has been received and processed. The purpose of this procedure 
is to receive the SEND indication that follows the Error Data GDS variable. 

INPUT: The RCB that corresponds to the specified conversation 

OUTPUT: A return code reflecting the results of the processing 

Referenced procedures, FSMs, and data structures: 
RECEIVE_AND_HAIT_PROC 
PROTOCOL_ERROR_PROC 
RCB 

Call RECEIVE_AND_HAIT_PROC!RECEIVE_AND_HAITJ(page 5.1-19) to issue a 
RECEIVE_AND_HAIT verb with the MC_RECEIVE_AND_HAIT verb parameters. 

Select based on the return code in RECEIVE_AND_HAIT: 
Hhen OK (optional check when receiving data) 

If RECEIVE AND HAIT returns HHAT RECEIVED other than SEND then 
Call PROTOCOL_ERROR_PROC lpag; 5.2-47! 

to deallocate the current conversation. 
Set RETURN CODE to RESOURCE FAILURE NO RETRY. 

Hhen RESOURCE FAILURE RETRY or RESOURCE FAILURE NO RETRY 
Set RETURN-CODE to-the value returned on RECEIVE AND HAIT. 

Hhen DEALLOCATE_NORMAL, DEALLOCATE_ABEND_PROG, - -
DEALLOCATE_ABEND_SVC, or DEALLOCATE_ABEND_TIMER 
!optional check when receiving data! 

Set RETURN CODE to RESOURCE FAILURE NO RETRY. 
Optionally-log implementati~n-dependent error data. 

Hhen PROG_ERROR_NO_TRUNC, SVC_ERROR_NO_TRUNC, or BACKED_OUT 
(optional check when receiving data! 

Call PROTOCOL_ERROR_PROC !page 5.2-47! 
to deallocate the current conversation. 

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

SNA LU 6.2 Reference: Peer Protocols 

page 5.1-19 
page 5.2-47 
page A-6 



C-~ 
/ 

0 

0 

0 

0 

SEND_SVC_ERROR_PURGING 

SEND_SVC_ERROR_PURGING 

FUNCTION: This procedure performs service error purging processing. It is invoked when 
PS.MC receives a GOS variable specifying a function not supported by either 
the LU or the transaction program associated with the mapped conversation over 
which the GOS variable flowed, or when PS.MC receives a GOS variable contain­
ing an unrecognized GOS ID, or when data mapping is being performed and the 
mapper procedure has encountered an error in mapping the received data. 

INPUT: The RCB for the conversation on which the service error occurred; an error 
code specifying the type of error encountered; and an error parameter that 
provides more information about the error 

OUTPUT: If any of the verbs issued by this procedure do not complete successfully, the 
procedure inserts into the RCB.MC_RECEIVE_BUFFER an appropriate return code. 

NOTE: If mapping is supported and the mapper does not already know about the error, 
the mapper is notified of the type of error encountered. The mapper is not 
invoked when the error encountered is a MAP NOT FOUND or MAP EXECUTION FAILURE 
condition--the mapper is already aware of the ;rror. !The-mapper di;covered 
the error.) If the error encountered indicates MAPPING_NOT_SUPPORTED, no 
mapper exists. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
PREPARE_TO_RECEIVE_PROC 
SEND_DATA_PROC 
SEND_ERROR_PROC 
PROTOCOL_ERROR_PROC 
RCB 
ERROR DATA STRUCTURE 

If the input err~r code indicates an invalid GOS IO (see SNA Formats) 
and the GDS_ID in the input error parameter does not indicate a map 
name lsee SNA Formats) then 

Ca~l UPM_MAPPER lpage 5.2-46) to record a remotely detected error 
of the type SVC_ERROR_PURGING, as indicated by the RETURN_CODE from 
the last verb issued. 

Call SEND_ERROR_PROCISEND_ERROR)lpage 5.1-25) to issue a SEND_ERROR 
verb with the'MC_SEND_ERROR verb parameters, specifying error type SVC 
and implementation-dependent error log data. 

Select based on the return code in SEND_ERROR: 
Hhen OK 

Create an ERROR_DATA_STRUCTURE la single logical record) using the 
data in the parameters ERROR_CODE and ERROR_PARM. 

Call SEND_DATA_PROC lpage 5.1-24) to issue a SEND_DATA 
verb to send the ERROR_DATA_STRUCTURE to the remote TP. 

Select based on the return code from SEND_DATA: 
Hhen OK 

Call PREPARE_TO_RECEIVE_PROC lpage 5.1-18) to issue 

page 
page 
page 
page 
page 
page 
page 

a PREPARE TO RECEIVE verb for the current conversation with the type 
parameter-set to FLUSH and locks set to SHORT. 

Hhen RESOURCE FAILURE RETRY or RESOURCE FAILURE NO RETRY 
Put the RETuRN_CODE from SEND_DATA. i~ the MC=RECEIVE_BUFFER 
of the current RCB. 

Hhen PROG ERROR PURGING, SVC ERROR PURGING, or BACKED OUT 
!this ~heck Ts optional when re~eiving data) -
Call PROTOCOL_ERROR_PROC lpage 5.2-47) 
to deallocate the current conversation. 

Put the RETURN CODE RESOURCE FAILURE NO RETRY in the 
MC_RECEIVE_BUFFER of the cu;rent RCB. -

Hhen DEALLOCATE ABEND SVC, DEALLOCATE ABEND TIMER, 
or DEALLOCATE_ABEND_PROG !optional check when receiving data) 

Optionally log implementation-dependent error data. 
Put the RETURN CODE RESOURCE FAILURE NO RETRY in the 

MC_RECEIVE_BUFFER of the cu;rent RCB. -
Hhen DEALLOCATE_NORMAL, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY 

Put the RETURN_CODE from SEND_DATA in the MC_RECEIVE_BUFFER 
of the current RCB. 

5.2-46 
5.1-18 
5.1-24 
5.1-25 
5.2-47 
A-6 
5.2-48 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-45 



UPM_MAPPER 

UPM_MAPPER 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure, referred to elsewhere in this chapter as "the mapper," per­
forms mapping of data in an implementation-defined way. The MAPPER_SAVE_AREA 
in the RCB for the current conversation contains information used in data map­
ping, such as the currently effective map names (see "Map Names" on page 
5.2-8). Refer to "Data Mapping and the Mapper" on page 5.2-8 for a detailed 
description of the processing that occurs when data is mapped. 

1. Reason why the mapper was invoked: 

• Data is to be sent to, or was received from, the partner LU. The map name 
supplied by the sending TP determines the kind of mapping to occur. 

• 
• 

An error occurred and was detected either remotely or locally • 

A positive reply to CONFIRM or to SYNCPT was received. This positive con­
firmation informs the mapper that any map names sent to the partner have 
been received and processed by it, and were not purged during error proc­
essing. 

2. The polarity indicates whether send mapping or receive mapping is to be 
performed. This parameter is used when the mapper invocation is for data map­
ping. 

3. The RH Format indicator indicates whether the passed data includes FM 
headers. The mapper requires this information in the event that the same map 
name could cause a different mapping to take place depending upon whether the 
data being mapped includes FM headers. This parameter is used when the mapper 
invocation is for data mapping. 

4. Input map name contains the locally known map name supplied by the TP on 
an MC SEND DATA, if send mapping is to be performed; or the map name that 
flows-in a-Map Name GOS variable between LUs, if receive mapping is to be per­
formed; This parameter is used only if the mapper invocation is for data map­
ping. 

5. Input data contains the data supplied by the TP on the MC SEND DATA verb 
for SEND mapping, or data that flows in a Data GOS variable f~r RECEIVE map­
ping. This parameter is used only in data mapping. 

6. Error code informs the mapper of the type of error encountered (for exam­
ple, SVC_ERROR_PURGING or PROG_ERROR_NO_TRUNCJ. This is needed when the 
mapper invocation is for an error occurrence. 

1. Output map name contains the "mapped" !global) map name that is sent to 
the partner LU if send mapping is performed, or the locally known map name 
that is passed to the TP if receive mapping was performed. This output is 
returned when the mapper invocation was for data mapping, and always after 
receive mapping. 

2. Output data contains the data that is sent to the partner LU for send map­
ping, or the data that is passed to the TP for receive mapping. This data is 
returned if the the mapper was called for data mapping. 

3. Mapper return code indicates whether the mapper successfully performed the 
mapping or encountered problems, and is returned after data mapping inv­
ocations. 

5.2-46 SNA LU 6.2 Reference: Peer Protocols 

c: 



C---.1 
_I 

() 

PROTOCOL_ERROR_PROC 

PROTOCOL_ERROR_PROC 

FUNCTION: This procedure handles protocol error processing. It is invoked when PS.MC 
detects an architectural protocol error committed at the partner LU. 

INPUT: The RCB corresponding to the mapped conversation over which the protocol vio­
lation occurred. 

NOTE: Error log data is entered into the system log by PS.CONY !Chapter 5.lJ during 
its processing of the DEALLOCATE issued by this procedure. 

Referenced procedures, FSHs, and data structures: 
DEALLOCATE_PROC 
RCB 

Call DEALLOCATE_PROCIDEALLOCATEJlpage 5.1-15) to issue a DEALLOCATE 
verb with the HC_DEALLOCATE verb parameters, specifying a deallocation 
of ABEND_SVC and indicating that the resource ID is to be discarded. 

Optionally, implementation-dependent error data may be recorded in the 
system error log. 

type 

page 5.1-15 
page A-6 

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-47 



LOCAL DATA STRUCTURES 

5.2-48 

ERROR_DATA_STRUCTURE 

ERROR_DATA STRUCTURE: an instance of a GOS variable 
LL_LENGTH: the high-order bit is set to 0 indicating a single-segment record 
GOS ID (see format of an Error Data GOS variable in SNA Formats) 
DATA 

ERROR CODE !see SNA Formats) 
ERROR-PARM (see SNA Formats) 

SEND_BUFFER 

SEND_BUFFER: a buffer containing the mapped data to be sent. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 



(_:1 
CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS 

Recovery from errors and failures is a cen­
tral consideration in the design of trans­
action programs. LU 6. 2 provides optional 
services to aid transaction programs in 
recovery from errors. A synchronization 

ERRORS, FAILURES, AND RECOVERY 

Errors and failures can be classified as: 

• Application errors--these errors may 
occur frequently; recovery is part of the 
application design. In data entry, for 
instance, field validation and requests 
for repeated input are normal portions of 
the application-logic. 

• 

• 

• 

Recoverable system errors--these errors 
occur frequently; recovery is part of the 
system logic. Bracket race errors are an 
example (see "Chapter 6.1. Data Flow Con­
trol" l; link-level retransmission is 
another. 

Transaction program failures--transaction 
programs sometimes end abnormally. In a 
well-tested system, this will not occur 
frequently. Application-level recovery 
varies by application. See "Chapter 5.1. 
Presentation Services--Conversation 
Verbs" for details of abnormal termi­
nation processing. 

Conversation failures--conversations will 
sometimes fail as a result of failure of 
the underlying sessions caused by the 
physical components over which the ses­
sions are carried. The reactivation of 
failed sessions is handled by system log­
ic; see "Chapter 4. LU Session Manager" 
for details. Application-level recovery 
from conversation failure is discussed in 
more detail in SNA Transaction Program­
mer's Reference Manual for LU Type ~· 

service is selected by the SYNC_LEVEL parame­
ter in the ALLOCATE verb. This chapter is 
primarily concerned with the sync point syn­
chronization services. 1 

• 

• 

LU failures--LUs will sometimes fail by 
themselves or as a result of the failure 
of underlying hardware or software. Much 
of the recovery from LU failures, as seen 
by other LUs, is handled by the recovery 
of sessions that have failed. Other 
aspects of this recovery are the concern 
of sync point services. 

Local resource failures--local resources 
(e.g., files) will sometimes fail. If 
the local resource that fails is not pro­
tected by the sync point service, recov­
ery is an application-level 
responsibility. 

Applications are often designed as a sequence 
of logical units of work, each unit consist­
ing of some changes to the resources under 
the control of the transaction program. Each 
logical unit of work CLUHl is recoverable by 
itself. The simplest case occurs when there 
is one LUH for a transaction program; recov­
ery can often then consist of running the 
transaction again from the beginning. LUHs 
are delimited by the start-up of a trans­
action program and by execution of each 
SYNCPT verb. The SYNC_LEVEL(SYNCPTl service 
simplifies the design of transaction programs 
that use protected resources, since changes 
to those resources will be seen by the appli­
cation transaction program as having occurred 
only after one LUH completes and before the 
next LUH begins.2 

Figure 5. 3-1 on page 5. 3-2 illustrates the 
relationships among failures and recovery. 

l 

2 

Full support of sync point services in actual implementations includes provisions for syn­
chronizing local resources as well as distributed resources accessed through conversa.tions. 
For completeness, this section sketches fully general sync point services. Details of sync 
point services for local resources are not specified by SNA, but are implementation defined. 
The sync point service is not always able to provide a consistent state for the protected 
resources. Hhen this occurs, a heuristic decision is made. This sometimes damages the LUH 
by making the states of its protected resources inconsistent. More details about this are 
provided in "RESOURCE_FAILURE_*, Recovery, and Heuristic Decisions" on page 5.3-15. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-1 



(various external causes) 

v v 

LU Causes SESSION 
-~~~~~~~~~~~~> FAILURE FAILURE 

c May cause or . . Network 
a 

I u 
s 
e 
s 

v v 

PROGRAM 
FAILURE 

(external action) 
I 
v 

LU 
RECOVERY 

v 

SESSION 
RESTART 

For SYNC_LEVEL 
of SYNCPT in 
ALLOCATE, 

Leads to 

v causes 

LUH 
BACK OUT 

Hhen required, leads to 

v v 

LlJH 
RE SYNC 

Allows 1 
v 

PROGRAM 
RESTART 

may allow 

May be needed 
prior to 

Figure 5.3-1. Relationships among Failures and Recovery 

SYNC POINT CONCEPTS 

5.3-2 

The following are some terms that are used in 
this chapter: 

• SYNCPT-A verb used by a transaction pro­
gram ITP) to invoke sync point services. 
Sync point services coordinate the 
updates of distributed resources. Coor­
dination is performed by the sending and 
receiving of presentation services l PS) 
headers by the sync point services compo­
nent. The protocol allows recovery if 
messages are lost because of transaction 
program, conversation, or LU failures. 

• 

• 

INITIATOR-The role of the local sync 
point services component when the TP 
issues the SYNCPT verb that begins the 
coordinated update of distributed 
resources. 

AGENT-The role of the sync point serv­
ices component that receives sync point 
requests from an initiator. 

SNA LU 6.2 Reference: Peer Protocols 

• 

• 

• 

CASCADED AGENT-An agent of an initiator 
that is itself an agent of another initi­
ator; in other words, an agent may allo­
cate other protected conversations. In 
this role an agent is responsible for 
propagating sync point requests to its 
cascaded agents. 

RESYNC-Recovery processing that is per­
formed by sync point services after a 
failure of a session, transaction pro­
gram, or LU . The resync exchange 
includes exchanging log names and compar­
ing LUH states. 

PRESENTATION SERVICES IPS) HEADER~The 

requests and replies that sync point 
services components exchange to perform 
SYNCPT verb processing. 

(~ 
''-..._ __ /, 



c/ PROCESSING BY _PS_._S_P_S 

C\ 
/ 

The component of LU presentation services 
that provides the sync point service is 
called PS.SPS, also called the sync point 
manager. Hhen all the resources used by a TP 
are at one LU, only one copy of PS.SPS is 
executed. Usually the situation is more com­
plicated since every conversation allocated 
with the SYNC_LEVELI SYNCPTJ option connects 
two separate TPs, which cooperate to perform 
one or more distributed uni ts of work. In 
the distributed cases, one TP is the first to 
issue the SYNCPT verb, and its local sync 
point manager becomes the sync point ini ti­
ator for the current sync point, with respect 
til"lhe sync point managers on the other ends 
of any conversation. These other sync point 
managers become agents with respect to the 
initiator, but may in turn become initiators 
with respect to additional, cascaded, sync 
point managers. 

The sync point managers maintain consistency 
of the changes to protected resources by the 
propagation throughout the network of these 
sync point commands: 

• 

TP 1 

Prepare--Solicits Request Commit. This 
command tells the agent to place its pro­
tected resources in a state that allows 
them to be fully committed to the changes 
that have been accumulated during this 

w TP 3 

TP 2 

11 TP 4 

t---
TP 5 

1---

TP 6 TP 7 

Figure 5.3-2. A Typical Sync Point Tree 

• 

• 

• 

• 

LUH, but that also allows these changes 
to be reversed, or backed out. The 
choice to commit or back out is made by 
the initiator after interaction with all 
agents. 

Request Commit--Solicits Committed. This 
command says that the issuer has suc­
ceeded in preparing all of its protected 
resources. 

Committed--Informs the soliciting sync 
point manager that all resources attached 
through this conversation are committed. 

Forget--Informs the sync point manager 
that sent Cammi tted that its log record 
for this LUH can be erased. 3 Forget also 
tells the initiating sync point manager 
that the sync point is complete and that 
control can be returned to the TP. 

Backed Out--Informs the receiving sync 
point manager that the sending sync point 
manager has backed out the LUH. 

The SNA encoding for transmission of these 
commands are described in SNA Formats under 
·presentation services (PS Jheaders for the 
first four, and FMH-7 sense data for Backed 
Out. 

3 The sync point managers keep records about LUHs on logs, held on nonvolatile storage by the 
log manager, so that LUHs can be kept consistent across failures of LUs. The logical unit 
of work ID CLUHIDJ is comprised of three components: the fully qualified LU network names 
the instance number, which is unique at the LU that creates it~ and the sequence number, 
which is incremented by 1 following a successful sync point. In addition, a conversation 
correlator is used to further qualify LUHIDs. The LUHID is created by RM for a conversation 
whenever a conversation is allocated by a TP that does not already have an LUHID associated 
with it. .A TP already has an LUHID associated with it, if it was the subject of an Attach 
by a TP that already has an LUHID. The LUHID and conversation correlator are carried in the 
FMH-5 lsee SNA Formats). 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-3 



LUH STATES 

A distributed transaction program is a tree, 
with individual TPs as nodes on the tree, and 
conversations as branches. Distributed TPs 
support distributed LUHs, consisting of local 
LUHs at the individual TPs. The distributed 
LUH has a state made up of all the local LUH 
states. For the distributed transaction pro­
gram shown in Figure 5.3-2 on page 5.3-3, the 
distributed LUH state is a vector with seven 
components: 

LUH = [LUH1,LUH2, •.• LUH7] 

where LUHi is the local. LUH state for TPi. 
The first TP to issue SYNCPT becomes the root 
of the tree for the global LUH that is ended 

1·-, 
by that verb. In the figure, the root, or"'-· 
initiator, is TP 1. 

The sync point managers at each node of the 
tree cooperate to place all the LUH compo­
nents into the same consistent state. They 
do this with four waves of sync point com­
mands. 

The Prepare wave starts at the root and 
spreads down the tree. The Request Cammi t 
wave starts at the leaves !nodes without sub­
ordinate nodes ) and spreads up the tree to 
the root. The Cammi tted wave returns down 
the tree, and the Forget wave flows up the 
tree to the root. Figure 5.3-3 shows these 
waves as they occur between the root and one 
of the nodes adjacent to the root. 

( 
---------------------------------------"--· .-' 

0 
SYNC PT 
---> 

OK 
<---

PS.SPS 
Initiator 

Prepare 

PS.SPS 
Agent 

--------> TAKE_SYNCPT * 
---> 
SYNC PT 
<--

Request Commit 
< 

Committed 
> 

Forget 
< 

NOTE: TAKE_SYNCPT is returned in the HHAT_RECEIVED field of verbs that can receive data. 

Figure 5.3-3. Basic Sync Point Flows 

PS.SPS PS.SPS 

0 
Initiator Agent 

0 
SYNC PT 
---> Prepare 

> TAKE_SYNCPT 
---> 
SYNC PT 
<---

Forget 
< 

OK 
<---

Figure 5.3-4. Optimized Flow: No Resource Changed 

5.3-4 SNA LU 6.2 Reference: Peer Protocols 

c~ 



() 

() 

0 
SYNC PT 
---> 

PS.SPS 
Initiator 

PS.SPS 
Agent 

Request Commit 
--------> TAKE_SYNCPT 

---> 
SYNC PT 
<---

Committed 

OK 
<---

implied Forget 
~---------> 

Figure 5.3-5. Optimized Flow: Last Resource 

FLOH OPTIMIZATION 

Since message flows are costly, the sync 
point managers attempt to reduce the number 
of flows. Figure 5.3-4 on page 5.3-4 illus­
trates one such case: when a sync point man­
ager agent determines that the state of the 
local LUH is reset, that is, no protected 
resources have been changed, it answers For­
get to Prepare. Intermediate agents can 
reply Forget only if all the local LUHs in 
their entire subtree are reset. 

Figure 5.3-5 shows the other flow reduction 
that can be used. The initiator can pick one 
adjacent agent to receive Request Commit 
rather than Prepare. The Request Commit can 
be sent only after all the prepared agents 

Transaction Program 

A 
I 11),13) 
v 

PS Router 
A A 

I I 3 J CT Point 
15) 

> 
nager 
S.SPSJ > 
A 

11) I 141 IZJ 
v v 

Protection Manager 
A 
I 11 J 
v 

local Resource 

log 

have sent Request Commit up their subtree to 
the initiator, making the selected agent the 
last agent. This last agent is then free to 
select one of its cascaded agents also to be 
last, and so on. 

Message flows are further reduced because the 
PS header that starts the sync point exchange 
indicates that one of three things should 
occur after the sync point message exchange 
is complete: the initiator is to be in send 
state, the initiator is to be in receive 
state, or the conversation is to be deallo­
cated. This is shown in Figure 5.3-32 on 
page 5.3-38 to Figure 5.3-36 on page 5.3-40. 
The first PS header sent has a modifier field 
that indicates the setting of the CD and CEB 
indicators of the RH that completes the sync 
point exchange. 

Manager 

Figure 5.3-6. Sync Point Services for Local INonconversationalJ Resources, Such as Files 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-5 



5.3-6 

SYNC POINT AND OTHER LU COMPONENTS 

The relationships among the transaction pro­
gram, its resources, and the sync point man­
ager are illustrated in Figure 5.3-6 through 
Figure 5.3-8. 

The following notes correspond to the numbers 
in Figure 5.3-6 on page 5.3-5. 

1. The transaction program issues a resource 
verb, which is passed, by the PS router, 
to the proper procedure to handle the 
local resource. See "Chapter 5.1. Pres­
entation Services--Conversation Verbs" 
for details. 

2. The local resource is protected, and so 
it has a protect ion manager, which exam­
ines the resource verb. If the resource 
is changed by the verb (e.g., it is a 
Hrite of some kindJ, the protection man­
ager writes a log record containing the 
before-change data.4 

3. Eventually the transaction program issues 
SYNCPT or BACKOUT. The PS router invokes 

the sync point manager, which coordinates(''. 
the action of all sync point managers , 
involved in the distributed LUH. 

4. The sync point manager interacts with the 
protection manager for each protected 
resource, exchanging PS headers indicat­
ing Prepare, Request Commit, Committed, 
and Forget to coordinate commitment. or 
an FMH-7 indicating Backed Out to coordi­
nate backout of changes• either as 
requested by the TP, or as required by a 
resource failure. 

5. Hhen all resources are prepared, the LUH 
is committed when the sync point manager 
writes Cammi tted on the log, and forces 
the log. 5 The single force of the log is 
sufficient to commit the entire LUH 
because all local resources used by a ~ 
single TP share a single log, which is! · 
also the log used by the TP 's sync point1\_ 

manager. 

Recovery that uses the log records is 
discussed later in "Resynchronization 
Logic" on page 5.3-18. 

,,,---., 
i 
\ ___ . 

4 Logging before-change data is the techiique suggested in the formal description. Other 
equivalent techniques are possible and permissible. 

5 Some writes to the log can be made to volatile log buffers. If these are lost because of ,,,----, 
failure of the LU, no damage results. Other writes (called forced writes) to the log mus~ 
be made to the nonvolatile log itself before the sync point protocol can proceed, if the LUH'~/ 
is to be kept synchronized even across LU failures. This use of the nonvolatile log is 
called forcing the log. 

SNA LU 6.2 Reference: Peer Protocols 



c/ 

Transaction Program 

~------~A.----------' 
I 11J,13J 

~------~·v·----------. 
PS Router 

'-----A A-----' 
I < 3) 

[JV Point 
nager 
S.SPSJ 
A-----' 

nJ I <4J 

C~ Protection Manage~~ 
I PS.CRPM J 

A A 

r----l ( l) _J 
Conversation 
Resource (CRJ < 141 

(1) 

Half­
Session 

(5) 

( 2) 

> Log 
Manager 

Figure 5.3-7. Sync Point Services for Conversation Resources 

The following notes correspond to t,he numbers 
in Figure 5.3-7. 

1. The transaction program uses a conversa­
tion. The conversation resource ICRI 
protection· manager is not sensitive to 
any of the conversation verbs. 

2. The CR protection manager does not write 
any log records. RM does write log 
records as part of ALLOCATE processing in 
order to be able to re-create the 
resource control blocks IRCBsJ and their 
relationship to transaction control 
blocks (TCBs) following an LU failure. 
See RCB on page A-6 for details of the 
RCS and TCB. 

3. Eventually the transaction program issues 
SYNCPT or BACKOUT. The PS router invokes 
the sync point manager to do the coordi­
nation. 

4. The sync point manager interacts with the 
protection manager for each protected 
conversation, exchanging Prepare, Request 
Commit, Committed, and Forget PS headers 
to coordinate commitment, or Backed Out 
to coordinate backout of changes, either 
as requested by the TP, or as required by 
a resource failure. 

Protected conversations are treated some­
what differently from protected local 
resources; this difference is driven by a 
Backed Out FMH-7 can be received from 
nonlocal resources. Compare States GOS 
local/nonlocal6 indicator in the RCS. A 
variables I also referred to as Compare 
States command or reply) can be exchanged 
with them to resynchronize following con­
versation failures. 

The local protection manager for the con­
versation communicates with its remote 
partner by exchanging PS headers and the 
Backed Out FMH-7 sense data. The 
half-session has no knowledge that a pro­
tected conversation is assigned to it. 

5. The sync point manager has to do addi­
tional writes to the log whenever nonlo­
cal resources are pointed to by a TCB. 
Also, additional forces of the log are 
required. Finally, the sync point manag­
er attempts resynchronization by an 
exchange of Compare States GOS variables 
with its partner sync point manager after 
resource failures. 

Local resources are those that share the sync point manager's log. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-7 



Transaction Program 

'---------A.----------' 
I n1,131 

~-------v·----------. 
PS Router 

'-----A--------~A.-----' 

(1) 

I (3) 

[JV Point 
nager 
S.SPSJ 
A.-----' 
I 141 

c:._P_r_o_t_e_c_t_i_o_n_M_a_n_a_g_e~~ 
I n) 

c::::J ( 4) 

I nl 

i---vA-----vA----i L_ PS Router ___J 

I 1 u I 141 

C~ Protection Manage~~ 
IPS.CRPMl 

A A 

I 'u 
~rsation 
urce ICRJ 
A------' 
I n) 

~--v------. 

Half-
Session 

,_J 141 

(5) 

( 2) 

( 2) 

> Log 
Manager 

Figure 5.3-8. Sync Point Services for Function Shipping 

5.3-8 

The following notes correspond to the numbers 
in Figure 5.3-8. 

1. The transaction program allocates a 
resource that is located remotely. The 
local resource manager uses a conversa-­
tion to communicate to the remote 
resource. 

2. Neither the local-resource protection 
manager nor the CR protection manager 
writes log records. The only logging is 
done by RM in order to be able to 
re-create the resource RCBs and their 
relationship to TCBs. The ALLOCATE 
issued by the local resource manager is 
understood to be for a function shipping 
situation, so the conversation's RCB is 
chained under the local resource's RCB 
rather than being chained directly to the 
TCB. At the same time, the local 
resource's RCB is marked nonlocal. 

3. Eventually the transaction program issues 
SYNCPT or BACKOUT. The PS router invokes 

SNA LU 6.2 Reference: Peer Protocols 

( 
the sync point manager to do the coordi-\ ___ _ 
nation. 

4. The sync point manager interacts with the 
protection manager for each protected 
resource, exchanging Prepare, Request 
Commit, Committed, and Forget PS headers 
to coordinate commitment, and Backed Out 
to coordinate backout of changes, either 
as requested by the TP, or as required by 
a resource failure. 

The nonlocal resources are treated the 
same as protected conversations: Backed 
Out can be received; Compare States GOS 
variables can be exchanged. 

The protection manager for the local 
resource, after dealing with local states 
(e.g., on a Prepare it may need to flus~-·~­
a local buffer), passes the PS headerf 
that it receives from the sync point manl__, / 
ager to the CR protection manager. -



5. The sync point manager has to do addi­
tional writes to the log whenever nonlo­
cal resources are pointed to by a TCB. 
Also, additional forces of the log are 
required to handle the extra error states 
introduced by the existence of remote 
logs. Finally, the sync point manager 
attempts resynchronization via exchange 
of Compare States GOS variables with 
partner sync point managers after 
resource failures. 

SYNC POINT LOGIC 

A transaction program can issue a SYNCPT verb 
as an initiator, or in reply to a 
HHAT_RECEIVED value of TAKE_SYNCPT, 
TAKE_SYNCPT_SEND, or TAKE SYNCPT DEALLOCATE 
on RECEIVE. After giving the TAKE_SYNCPT 
indication, the conversation resource rejects 
most verbs until SYNCPT, BACKOUT, or 
SEND ERROR is issued. See SNA Transaction 
Programmer's Reference Manual tor LU Type ~ 
for details. 

PS.SPS processes the SYNCPT verb in the 
phases described below. 

CLASSIFICATION PHASE 

Since SYNCPT can be issued under many circum­
stances, PS.SPS begins by scanning the 
resources allocated io ihe transaciion pro­
gram in order to determine -their states. 
Further PS.SPS processing varies according io 
the siaies of ihe local resources and TP: 

1. PREPARE RECEIVED state--Prepare was 
received from an ini tiaiing sync point 
manager. The local TP did not initiate 
sync pointing. PS.SPS prepares its local 
and down-tree protected resources and 
replies up-tree with Request Commit if 
preparation succeeds. If ii fails, ii 
replies Backed Oui. 

2. REQUEST COMMIT RECEIVED state--Requesi 
Commit was received from an initiating 
sync point manager. The local TP did not 
iniiiate sync pointing. Since ihe initi­
aiing PS.SPS has used an opiimized flow, 
which it can do only for the last 
resource that ii is attempting to coordi­
nate, the local PS.SPS coordinaies the 
commitment of its local and down-tree 
resources and replies Committed if com­
m i tmeni succeeds . If it fails , it 
replies Backed Out. 

3. SEND state--All protected conversations 
are verified to be in SEND state. Before 
issuing the SYNCPT verb, the transaction 
program puts all iis protected resources 
inio SEND state. If required, -this can 
be done by issuing REQUEST_TO_SEND and 
waiting for the right to send. 

4. Unprotected resource--Resource was allo­
cated with SYNC_LEVEU NONE I CONFIRM). 

The resource is not affected by the 
SYNCPT verb. 

At the end of the scan, PS.SPS knows if a 
resource I i.e., the one in PREPARE RECEIVED 
state) must be sent Request Commit during its 
local coordination. Request Commit must be 
sent last, after all other resources have 
been prepared. If no last resource is iden­
tified, a UPM is used to select one. The UPM 
can consider things like minimizing session 
flows !which leads to making a remote conver­
sation last whenever possible). It can also 
choose to prepare all resources, which allows 
all coordination to proceed in parallel, 
since Prepares can be sen-I: simultaneously io 
several resources. 

If any protected resources are in Receive 
state or more than one las-I: resource is iden­
ii fied, ihe sync point manager recognizes a 
state error and abnormally terminates the TP. 
Since any TP may be sync point initiator, the 
design of the disiributed TPs must be such 
that only one TP ai a time is the initiaior. 
For example, TPa is in conversation with TPb 
and TPb has a cascaded conversation wiih TPc. 
If TPa and TPc both iniiiate sync point with 
TPb ai the same time, it is an error in the 
design of ihe iransaciion program. The sync 
point service at TPb recognizes this error 
and returns BACKED OUT io TPb. TPb then 
issues the BACKOUT ~erb. Otherwise, PS.SPS 
advances to the Prepare phase. 

PREPARE PHASE 

PS.SPS now issues Prepare to all not-last 
resources. Hhen Request Commit has been 
received from all of them, the next phase is 
entered. Other replies to Prepare are dis­
cussed in "Errors during Sync Point" on page 
5.3-15. If no not-last resources exist, this 
phase is skipped and PS.SPS proceeds directly 
to the Request Commit phase. 

REQUEST COMMIT PHASE 

After rece1v1ng Request Commit from all 
not-last resources, PS.SPS issues Request 
Commit to the last resource, and waits for a 
reply, thus entering the Committed phase. 

COMMITTED PHASE 

PS.SPS completes sync point processing after 
receiving Committed from the last resource by 
sending Committed to all not-last resources, 
thus entering the Forget phase. 

FORGET PHASE 

In the Forget phase, PS.SPS waits for Forgets 
from all the not-last resources. Hhen all 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-9 



S.3-10 

Forgets have been received, PS.SPS gives the 
SYNCPT verb that was issued by the local TP a 
return code of OK. 

SNA LU 6.2 ReferW1C11: P-r Protocols 

c 

c 



ILLUSTRATIVE SYNC POINT FLOHS 

c \ . ) 

() 

() 

C> 

The following figures and comments illustrate 
the preceding discussion. 

PS.SPS 
Initiator 

---> 11) 

RESET 
v 

A 
I 

PGM PENDING 
I 

SYNC PT V 
---> 12) Prepare* 

PS.SPS 
Agent 

RESET 
v 

A 
I 

PGM PENDING 

<---

A ----->13) TAKE_ SYNC PT 
----> 
SYNC PT 
<----

v 
SPM PENDING 14) Prepare* 

Cascaded 
Agent 

A ---------~> 
I 

SPM PENDING 
I 
v 

15) Request Commit* 
V Request Commit* A <---------~ 

( 6) < 
A Request Commit 

I > 

IN DOUBT IN DOUBT 

I Committed 
< . 

v 
I 7) 

implied Forget 18) 
A > 

Committed* v 
>19) 

A Committed* 
I ---------~> 

COHHITTED COHHITTED 

Ill) 
RETURN_ CODE 
<---

I ~orget* 
Forget* V RETURN_CODE 

y <-----( 10) > 

NOTE: The * indicates sending to, or receiving from, multiple agents. 

Figure 5.3-9. Illustrative Sync Point Flow: General Case 

The following notes correspond to the numbers 
in Figure 5.3-9. 

a protected conversation drives a local 
LUH from RESET to PGM PENDING. 

1. The distributed LUH begins in RESET 
state. Any change to a. local protected 
resource or receipt by PS of any message 
unit C including the initial Attach) over 

2. The initiating TP issues SYNCPT. PS.SPS 
logs all affected conversations except 
the last as [INITIATOR, SPM PENDING] 

Chapter 5.3. Presentation Services--Sync Point Services Verbs S.3-11 



5.3-12 

while the last one is not logged yet. 7 

The log is forced once. PS.SPS sends 
Prepare to all but the last agent lwhere 
the * at the end of Prepare means all the 
agents, except possibly the last). 

3. Each agent PS.SPS returns to its trans­
action program, a HHAT_RECEIVED value of 
TAKE_SYNCPT. All TPs agree by issuing 
SYNCPT. 

4. The agent PS. SPS logs [AGENT, SPM PEND­
ING I for the conversation over which the 
Prepare is received. It logs [INITI­
ATOR-CASCADE, SPM PENDING I for all the 
cascaded conversations, if any exist 
I there might only be local resources). 
The log is forced once if and only if any 
cascaded conversations exist. 

5. All cascaded agents agree to commit. 
PS. SPS places C AGENT, IN DOUBT I on the 
log and forces the log. 

6. All agents agree to commit. [INITIATOR, 
IN DOUBTI is placed on the log if and 
only if the last resource is being opti­
mized with the last-resource sequence. 
If IN DOUBT is placed on the log, the log 
is forced and then Request Commit is sent 
to the last agent. 

7. The last agent replies Committed lif the 
optimized flow is being used for the last 
agent). [INITIATOR, COMMITTED] is logged 
and the log is forced. Committed is sent 
to all agents (except the optimized 
last). 

8. An implied Forget is sent to the last 
agent with the aid of RM and the sessiory------, 
process. The implied Forget is the nex-: 
normal-flow RU of any kind that flow~~ 
from the initiator to the last agent. 
For instance, if the agent sent Committed 
as CEB, then the next RU might be a IBB, 
Attach); or it might be a IBB, LUSTAT); 
or BIS; or a data reply to a BB that came 
from the agent's half-session. Since the 
Committed can get lost, the agent retains 
the state of the LUH across session out­
age. Since the implied Forget can get 
lost, and since the initiator may have 
erased its log, the agent carries a 
resync responsibility for itself. Only 
in this way can it erase its log. "Re­
synchronization Logic" on page 5.3-18 
describes resync in more detail. 

9. PS.SPS logs [Initiator-Cascade, Commit­
ted I for all cascade agents and forces 
the log. It then sends Cammi Hed to thr~ 
cascaded agents. ~--· 

10. All cascaded agents return Forget. 
PS.SPS resets the LUH by erasing the log; 
then PS.SPS sends Forget to the initiator~ 
and returns control to the agent TP. 

11. All agents return Forget. PS.SPS erases 
the log and returns control to the initi­
ating TP. The log does not have to be 
forced before PS.SPS sends Forget, since 
any Forgets lost during a failure can be 
reconstructed by resynchronizing wi ti~. 
cascaded agents. ( . 

'-.___./ 

7 The log records are [state of local PS.SPS relative to remote PS.SPS, state of local LUHI. 

SNA LU 6.2 Reference: Peer Protocols 



c, 

C'; 
/ 

PS.SPS 
Initiator 

---> Ill 

RESET 
v 

A 
I 

PGM PENDING 
I 

SYNC PT V 

PS.SPS 
Agent 

RESET 
v 

A 
I 

PGM PENDING 

<---

---> 121 Request Commit 
A >I 3 l TAKE_SYNCPT 

-----> 
SYNC PT 
<-----

v 
IN DOUBT ( 4) Prepare* 

Cascaded 
Agent 

A -----------> 
I 

SPM PENDING 
I 
v 

15) Request Commit* 
<-----------

16) A Committed* 
I > 

INITIATOR-CASCADE, COMMITTED 
I Forget* 
v <.---------~ 

I 71 A 
V Committed 

(8) <-----­
A 
I 

RETURN_ CODE 
-----> 

COMMITTED COMMITTED 
RETURN_ CODE I 
<--- v 

RESET 

implied Forget 191 
------> v 

NOTE: The* indicates sending to, or receiving from, multiple agents. 

Figure 5.3-10. Illustrative Sync Point Flow: Last-Resource Optimization 

The following notes correspond to the numbers 
in Figure 5.3-10. 

1. The distributed LUH begins in RESET 
state. Any change to a local protected 
resource or receipt by PS of any message 
unit !including the initial Attach! over 
a protected conversation drives a local 
LUH from RESET to PGM PENDING. 

2. The initiating TP issues SYNCPT. PS.SPS 
logs the last conversation as [INITIATOR, 
IN DOUBT]. It forces the log and sends 
Request Commit. 

3. The agent PS.SPS presents TAKE_SYNCPT to 
the agent transaction program. The TP 
agrees by issuing SYNCPT. 

4. The agent PS.SPS logs [AGENT, SPM PEND­
ING] for the conversation over which the 
Request Commit is received. It logs 
[INITIATOR-CASCADE, SPM PENDING] for all 

the cascaded conversations, if any exist 
( there might be only local resources). 
It forces the log if and only if any cas­
caded conversations exist. 

5. All cascaded agents agree to commit. The 
agent PS.SPS logs [INITIATOR-CASCADE, 
COMMITTED I and forces the log again ( in 
the example, the agent is not using the 
last-resource optimization on cascaded 
resources J. Then it sends Committed to 
all cascaded agents. 

6. The agent PS.SPS waits for all cascaded 
agents to return Forget. This is done so 
that, in case of failures and resynchro­
nization, it can return to the initiator 
an accurate report of any damage that may 
occur from heuristic decisions (discussed 
in "DEALLOCATE_ABEND_*" on page 5.3-15). 

7. All Forgets are returned. The subtree 
for which this PS.SPS is responsible is 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-13 



COMMITTED. The agent PS. SPS returns Com­
mitted to the initiator,. even if no 
down-tree resources were changed, and 
then returns control to its TP. 

8. The initiator sees the Committed. If 
there are no other participants, the ini­
tiator erases the log for the LUH and 
returns OK to the initiating transaction 
program. If there are other agents, [IN­
ITIATOR,COMMITTED l is placed on the log 

PS.SPS 
Initiator 

---> (1) 

SYNC PT 
---> 12) 

RESET 
v 

A 
I 

PGH PENDING 
I 
v 

Prepare* 

PS.SPS 
Agent 

RESET 
v 

A 
I 

PGH PENDING 

<---

A ----->13) TAKE_SYNCPT 
-----> 
SYNC PT 

v <-----
A 

SPH PENDING 

I 
SPH PENDING 

I 
Forget V RETURN_CODE 

v <::------14) > 
15) 

while the Forgets from the not-last 
agents are collected. See Figure 5.3-9 ('' 
on page 5.3-11 for this type of sequence. 

9. Implied Forget is sent to the last agent 
with the aid of the session process. 
That is, any conversation data that flows 
on the half-session is treated as an 
implied Forget. This includes a BB that 
begins a new conversation when Committed 
was sent with CEB. 

Cascaded 
Agent 

NOTE: The * indicates sending to, or receiving from, multiple agents. 

Figure 5.3-11. Illustrative Sync Point Flow: No Resources Changed 

5.3-14 

The following notes correspond to the numbers 
in Figure 5.3-11. The situation that the 
figure illustrates arises when a sync point 
is requested, but no remote resources have 
been altered during the LUH. In this case, 
the Request Commit and Committed flows are 
not necessary and are omitted. 

1. The distributed LUH begins in RESET 
state. Any change to a local protected 
resource or receipt by PS of any message 
unit !including the initial Attach) over 
a protected conversation drives a local 
LUH from RESET to PGH PENDING. 

2. The initiating TP issues SYNCPT. PS.SPS 
logs all affected conversations but the 
last as [INITIATOR, SPH PENDING], not 
logging the last one yet. It forces the 
log once, then sends Prepare to all but 
the last agent I represented by the* fol­
lowing Prepare). 

SNA LU 6.2 Reference: Peer Protocols 

3. The agent PS.SPS presents TAKE_SYNCPT to 
the agent TP, which agrees to commit. 
The rest of this flow illustrates the 
processing performed by a single agent 
where no resources have been changed. 
The generalization to cascaded LUHs is 
straightforward. 

4. The agent PS.SPS sees lby rece1v1ng For­
gets from the local resources ) that no 
resources have been changed. It resets 
the LUH by erasing the log, sends Forget 
to the initiator, and returns control to 
the agent TP. 

5. The agent returns Forget. The Request 
Commit and Committed flows were not 
neededJ the initiator PS.SPS still proc­
esses the flows from other conversations 

(~ 

\ 
'···--·' 

that may or may not require the addi- (~' 
tional flows. \.~-~/ 



c 

(_) 

FORCING THE LOG 

PS.SPS needs to force the log only once when 
all resources are local, while it uses at 
least two forces of the log as the initiator 
I SPM PENDING and COMMITTED states l and may 
use an additional force IIN DOUBT state) if 
the last resource is flow optimized. 

PS.SPS uses at least one log force as the 
agent IIN DOUBT state!, but if any cascaded 

ERRORS DURING SYNC POINT 

The preceding discussion assumed that sync 
point processing completed normally, without 
incident. This section shows how consistency 
can be maintained even when errors occur. 

The errors addressed are those caused by many 
transaction programs operating independently 
of each other, communicating only when 
required. Hith this independence, unexpected 
return codes can occur after any verb. As 
the issuer of internal verbs to the conversa­
tion resource protection manager IPS.CRPMl in 
order to exchange sync point commands with 
partner sync point managers, PS.SPS has logic 
to deal with these return codes: 

• PROG_ERROR_*, including SVC_ERROR_* 
• BACKED_OUT 
• DEALLOCATE_ABEND_* 
• RESOURCE_FAILURE_* 

Because recovery from conversation failure 
can require that a session be reactivated, 
PS.SPS gives special consideration to the 
case where this cannot be accomplished in a 
timely manner. 

PROG_ERROR_* 

PS.SPS treats PROG ERROR * as BACKED OUT. It 
is the using tran;actio~ program's ~esponsi­
bility to avoid this by correct transaction 
design. 

BACKED_OUT 

BACKED_OUT is the return code given when the 
remote transaction program issues a BACKOUT 
verb. Unlike the case of PROG ERROR *• where 
the TP that issued SEND_ERROR giv~ the TP 
that receives the PROG_ERROR_* an option, on 
BACKOUT the issuing TP expects the entire 
distributed LUH to be backed out. The TP 
that receives BACKED_OUT therefore propagates 
the backout to all other resources by also 
issuing the BACKOUT verb. 

conversations exist for this LUH, the agent 
PS.SPS has to appear to the cascaded agents 
as if it were the initiator. Therefore, the 
middle agent has to force the log ISPM PEND­
ING state) in order to reliably assume the 
resync responsibility if it should terminate 
abnormally. The middle agents do not need to 
force the log to COMMITTED state since resync 
will re-establish this state if it is lost. 

DEALLOCATE_ABEND_* 

PS.SPS may receive DEALLOCATE ABEND *· Since 
PS.SPS for the abnormally ter;inati~g TP will 
back out all of the TP's local resources, the 
local PS.SPS treats these return codes as 
BACKED_OUT. 

RESOURCE_FAILURE_*, RECOVERY, AND HEURISTIC 
DECISIONS 

Recovery from conversation failure depends 
upon the state of the conversation at the 
time of the outage: 

1. If the conversation is under the control 
of the sync point manager, it attempts to 
recover from the failure by exchanging 
Compare States GOS variables with the 
remote sync point manager as part of 
resync processing. PS.SPS does this by 
issuing ALLOCATE specifying the LU resync 
service TP X' 06FZ • as the transaction 
program. See "Resynchronization Logic" 
on page 5.3-18 for the logic that is exe­
cuted during this resynchronization 
effort. 

If resynchronization succeeds, PS.SPS 
absorbs the RESOURCE_FAILURE * return 
code and returns from the SYNCPT or BACK­
OUT verb with the appropriate SYNCPT or 
BACKOUT return code. PS gives the 
RESOURCE_FAILURE_* return code to the TP 
on the next verb I other than SYNCPT and 
BACKOUT8 ) issued against the failing 
conversation, thus making the sync point 
verb and the resource failure appear to 
have occurred in the reverse order. This 
is done for the convenience of the TP 
writer. A TP that is using protected 
resources can take advantage of this by 
issuing SYNCPT or BACKOUT whenever a con­
versation failure return code is recog­
nized. This gets the TP to a known 

8 If SYNCPT and BACKOUT returned RESOURCE_FAILURE_* there would be no way to resynchronize 
short of an IPL to drive the resync logic. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-15 



state: backed out to the last successful 
sync point call. Backed out state is 
arrived at when BACKOUT or SYNCPT is 
issued, after a resource failure, because 
a resync occurs. In this case, resync 
can only lead to backed out. The TP can 
then perform its own recovery logic from 
a known state, greatly simplifying the 
TP's recovery logic. 

Because a new session may not be imme­
diately available, the sync point manager 
and the lock manager have a protocol 
boundary that provides a capability to 
free locks on resources that may be 
needed by other TPs. Hhen the lock man­
ager needs to release locks, PS.SPS uses 
the guidance provided by the TP 's entry 
in the transaction program list in RM, 
the LU control operator, or a programmed 
operator. The choices are either to hold 
the locks or to choose to do a partial 
commit or a partial backout of those 
resources with which communication has 
been maintained. The guidance (not shown 
in this book l indicates whether commit­
ting, backing out, or holding the locks 
is to be performed when the TP fails and 
the lock manager needs to release locks. 
As PS.SPS makes this decision with only 
partial information, it is called a 
heuristic decision. 

BACKOUT PROCESSING 

5.3-16 

Hhen processing the BACKOUT verb, PS.SPS 
causes all protected ·resources in the LUH to 
be restored to their condition at the start 
of the LUH. The exception is that protected 
conversations are not deallocated, and the 
remote TPs that they started are not termi­
nated by backout processing. 

Like SYNCPT, BACKOUT is propagated to all TPs 
associated with the LUH. Also like SYNCPT, 
BACKOUT propagation requires all transaction 
programs that share a distributed unit of 
work to participate by issuing verbs, i.e. , 
BACKOUT. 

Hhen a transaction program is notified of a 
BACKOUT initiated by another transaction pro­
gram, the remote BACKOUT is complete. That 

SNA LU 6.2 Reference: Peer Protocols 

PS.SPS reports the resource state !which­
ever is chosen, HEURISTIC COMMIT or c 
HEURISTIC RESET) to the LU control opera-
tor (since the heuristic decision may · 
result in a loss of synchronization among 
the distributed resources that has to be 
repaired by operator action) and saves 
the state for comparison during resyn­
chronization. The PS.SPS that is respon­
sible for resync continues resync 
attempts until resync completes. At this 
time, PS.SPS writes another message to 
the LU control operator and erases the 
LUH's log entries. 

z. If the conversation is not under the con­
trol of the sync point manager, the 
responsibility for recovery is the trans­
action program's. However, if sync point 
is in use, the TP can typically turn the 
recovery processing over to the sync 
point manager by using the SYNCPT or ~-­
BACKOUT verb as soon as any desired proc-( 
essing has been completed. Resources '-­
that are not protected are cleaned up 
according to application program logic. 
A failure by one TP or the other to 
return control to the sync point manager 
can lead to an extended holding of locks 
on shared resources. It may also lead to 
heuristic decisions if the locks have to 
be broken. 

is, the conversation resource that reports 
BACKEO_OUT has already done so. The return 
code indicating this, BACKED_OUT, may be 
returned on several of the verbs. No backout 
of other resources in the local unit of work 
has been done. The TP must issue BACKOUT 
before it issues any other verb against pro-
tected resources. 

(~-

Of particular: interi:st is ~he case where'\... 
BACKOUT is issued in the midst of SYNCPT ·· 
processing. The locally issued BACKOUT takes 
precedence over the SYNCPT requested by the 
remote TP if the LUH stays intact. See Fig­
ure 5.3-lZ and Figure 5.3-13 for examples 
that illustrate how this is accomplished. 
For brevity, the Forget commands are not 
shown. 



A B 

Committed Sequence Backed Out Sequence l Backed Out Sequence 2 

1. A -> B- Prepare l. A -> B- Prepare l. A-> B Prepare 
2. B -> c Prepare 2. B -> c - Prepare 2. B -> c Prepare 
3. B -> D Prepare 3. B -> D - Prepare 3. B -> D Prepare 
4. c -> B Request Commit 4. c -> B- Request Commit 4. c -> B Request Commit 
5. D -> B Request Commit 5. D -> B- Backed Out 5. D -> B - Request Commit 
6. B -> A Request Comm it 6. B -> C - Backed Out 6. B -> A - Request Commit 

(~' 
7. A -> B Committed 7. B -> A - Backed Out 7. A-> B - Backed Out 
8. B -> c Committed 8. B -> C - Backed Out 
9. B -> D Committed 9. B -> D - Backed Out 

STATUS = Committed STATUS = Backed Out STATUS = Backed Out 

Figure 5.3-12. Back Out Example l 

B 

c 

D c 
Committed Sequence Backed Out Sequence l Backed Out Sequence 2 

l. A-> B- Prepare l. A-> B - Prepare l. A-> B - Prepare 
2. A -> c - Prepare 2. A-> c - Prepare 2. A-> C - Prepare 
3. B -> A- Request Commit 3. B -> A - Request Commit 3. B ->A - Request Commit 
4. c -> A- Request Commit 4. c -> A - Backed Out 4. c -> A - Request Commit 
5. A-> D - Request Commit 5. A-> B - Backed Out 5. A-> D - Request Commit 
6. D -> A- Committed 6. A-> D - Backed Out 6. D -> A - Backed Out 
7. A-> B- Committed 7. A-> B - Backed Out 
8. A-> C - Committed 8. A -> C - Backed Out 

STATUS = Committed STATUS = Backed Out STATUS = Backed Out 

Figure 5.3-13. Back Out Example 2 

0 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-17 



HEURISTIC DECISIONS ~ RELIABLE RESOURCES 

Each implementation of the sync point option 
set makes available to transaction programs 
at least one protected resource that is fully 
reliable in that it is not subject to 
heuristic decisions. This can be done in a 
variety of waysJ the simplest is to allow 
application designers to designate certain 

RESYNCHRONIZATION LOGIC 

S.3-18 

Resynchronization logic involves these steps: 

• If an IPL has occurred, RH retrieves log 
records from the lc;g manager and recon­
structs the protected TCBs and RCBs that 
were active at the time of the failure. 
It then causes PS.SPS to gain control on 
the reconstructed TCB. PS.SPS uses the 
log to restore its relevant states. For 
instance, it restores the initiator/agent 
state for each resource. PS.SPS also 
supplies log records to the protection 
managers for each resource so that they 
can back out their resources if this is 
required. 

• Hhen PS.SPS finishes resynchronizing, RH 
deallocates the TCB. 

• If the resync is occurring without an 
IPL, PS.SPS will return control to the TP 
or to the abnormal termination process­
or, depending on the caller. The abnor­
mal termination processor, of course, 
will deallocate all resources as needed. 

• Since it can happen that multiple conver­
sations connect TCBs with the same LUHIDs 
in two separate LUs, resynchronization 
uses the value in the Conversation 
Correlator field carried in Attach (see 
SNA Formats) to uniquely identify the LUH 
Whose states are to be compared. For 
example, this case occurs when TPa at LUa 
allocates a conversation with TPb at LUb. 
Then, as part of the same LUH, TPb allo­
cates a conversation with TPc at LUa. 
The conversation correlator provides a 
way for PS.SPS at LUa to distinguish the 

SNA LU 6.2 Reference: Paar Protocols 

resources as not subject to heuristic deci­
sions. However the reliable resource is pro­
vided, application designers can use data 
kept in the reliable resource to aid in 
recovery from any heuristic mismatches that 
may occur. 

part of the LUH that LUa initiated from 
the part that LUb initiated. The conver­
sation correlator is unique in a network. 
To provide uniqueness, the fully quaH- c· 
fied LU name of the LU that created the 
conversation correlator is concatenated j 

to the conversation correlator when com­
parisons are made. The fully qualified 
LU name of the partner LU is known from 
the system defini Hon of the PARTNER_LU 
data structure. 

The decision to initiate resync by either end 
is depends upon the state of the unit of 
work. The following table reflects the 
action PS.SPS takes after a conversation 
failure or an IPL of the LU. 

(-~ 
-U-N-. I-T---0-F---H-OR-lK_S_T_A_T_E_A_C_T_I_O_N_B_Y_P_S_.S_P_S ___ \,_j 

l1n local og) 

Not Found ..••••••.. No Action 
Agent, not last .•. Hait for resync 
Agent, last •••..•. Resync after time-out 
Initiator •.••••••• Initiate resync 

VALIDATION OF LOG IDS 
,~ 

The first level of resynchronization is the ( __,. 
validation of the log IDs. PS.SPS accom- -­
plishes this by exchanging Log ID GOS vari­
ables. Hhen this exchange validates the 
integrity of the LU pair's logs, PS.SPS 
exchanges Compare States. The following fig-
ures illustrate this resync logic. 

c 



C·, 
.•' 

0 

Ill SYNCPT 

~ 
~ 

----> 

~ 
~ 

<----:Session Outage Notification 

ALLOCATE 

SEND_DATA 

SEND_DATA 

RECEIVE_AND_HAIT 
( 2 J 

RECEIVE_AND_HAIT 

[ 

DEALLOCATE 
TYPECSYNC_LEVELJ 

(3) 

same LUHID as the LUH that is being resynchronized 
SYNC_LEVELCCONFIRHJ, 
TPNIX'06F2' J .•• J 

BIND ] -----> I optional J 

Attach 
---------------------------~> 

Exchange Log Name, log status lwarmJ, log name I log name) 
-~~~~~~~~~~~~~~~~~~~~~~~~-> RECEIVE_AND_HAIT 

Compare States command, CD 121 
-~~~~~~~~~~~~~~~~~~~~~~~~-> RECEIVE_AND_HAIT 

Exchange Log Name, log status lwarmJ, log name llog name) SEND_DATA 
<.---------------------------~ 
Compare States reply, CD SEND_DATA 
<:---------------------------~ 

LUSTATIX'0006'J, RQD2, CEB 
-~~~~~~~~~~~~~~~~~~~~~~~~-> RECEIVE_AND_HAIT 

13) 
+DR2 CONFIRMED 
<:---------------------------~ 

Figure 5.3-14. Resync after Conversation Failure 

The following notes correspond to the numbers 
in Figure 5.3-14. 

LUHID carried in this Attach from the 
TCB. 

1. The TP issues SYNCPT or BACKOUT, giving 
PS.SPS control. Conversation failure 
results from the session outage. PS.SPS 
detects this and begins resynchronization 
by issuing ALLOCATE specifying the resync 
transaction program, X'06F2', as the TPN. 
The optional BIND may'flow between LUs as 
a result of RM logic} RH will send BIND 
to activate a new session if an existing 
session is not available} PS.SPS does not 
know if it flows. PS.SPS retrieves the 

2. PS.SPS validates the log name and then 
executes resync logic. Each conversation 
to be resynchronized is processed in a 
separate resync conversation using a sep­
arate copy of the resync TP. 

3. PS.SPS tells the log manager to erase the 
LUH 's log records. The half-session 
sends an LUSTAT because there is no data 
to send. The LUSTAT carries the RH. 
PS.SPS is not aware of this detail. 

Chapter 5.3. Presentation Services--Sync Point Services Ver-bs 5.3-19 



~ 
~ 

~ 
~ 

( l l LU fails 

ALLOCATE 

SEND_DATA 

SEND_DATA 

same LUWID as the LUH that is being resynchronized 
SYNC_LEVEL(CONFIRMJ, 
TPN(X'06FZ'l ••. , 

BIND 

Attach 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~> 

Exchange Log Name, log status (warm), log name I log name) 
~-------------------------> RECEIVE_AND_HAIT 

Compare States command, CD IZ) 
~~~~~~~~~~~~~~~~~~~~~~----~> RECEIVE_AND_HAIT 

Exchange Log Name, log status (warm), log name I log name) SEND_DATA 
RECEIVE_AND_HAIT <.~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Compare States reply, CD SEND_DATA ( z) 

RECEIVE_AND_HAIT <•~~~~~~~~~~~~~~~~~~~~~~~~~~~-

DEALLOCATE 
TYPEISYNC_LEVELl LUSTATIX'0006' J, RQD2, CEB 

-------------------------> RECEIVE_AND_HAIT 
( 3) 

13) +DR2 

Figure 5.3-15. Resync after LU Failure 

5.3-ZO 

The following notes correspond to the numbers 
in Figure 5.3-15. 

l. The LU fails. After the LU is IPLed, RH 
reads the sync point records from the 
log, rebuilds the TCB and RCBs, and gives 
PS.SPS control. After re-establishing 
the states of the local protected 
resources in cooperation with their pro­
tection managers, PS.SPS proceeds to 
resync each LUH · in a separate conversa­
tion, since the reply can be delayed 
while cascaded resync occurs. If all the 
resync conversations are processed in 
parallel, multiple sessions will be 
used--up to one per LUH to be resynchro­
nized. This can cause as many BINDs as 
LUHs that are in resynchronization. A 
UPH determines the degree of parallelism. 
The more parallelism, the more session 
resources will be used, but the resync 
may complete faster. 

SNA LU 6.Z Reference: Peer Protocols 

CONFIRMED 

2. PS.SPS validates the log name and then 
executes resync logic. 

3. PS.SPS erases the log. If a conversation 
or LU failure occurs during resynchroni­
zation, PS.SPS repeats resynchronization 
until both logs are erased. 

SESSION OUTAGE DURING ATTACH 

If session outage occurs, the Compare States 
command that is part of resync can arrive 
ahead of the session outage notification. 
l'tien this occurs and the last-resource opti­
mization is being used, and if no special 
steps were taken, the result could be that 
one partner backs out and the other partner 
commits. The resolution of this race condi­
tion is depicted in Figure 5.3-16 on page 
5.3-21. 

c 



ALLOCATE 
SEND_DATA 
SYNC PT 

PS.SPSll) I 
*BB, Attach, data, Request Commit, CD 

SON SON 
< x 

BB, Compare StateslSession ID) 

PS.SPSI 2) 

11) 

I 2 l 

13) 

> 14) 
DEACTIVATE SESSION 

TYPE I CLEA 
UNBINDtcleanup) SESSION_! 

NUPJ 
DISession ID) 

< 
> !purged) (5) 

> !purged) 
Not Found 

NOTES: 

This shows how the failure is prevented by deactivating the session prior to 
processing the Compare States command. 

PS.SPS(l) is the PS.SPS instance that is running on behalf of the application TP. 
PS.SPSC2l is the PS.SPS instance that is processing the Compare States command. It is 
using a different session from that used by the application TP. 

Internal flows are not shown. 

Figure 5.3-16. Avoiding Failure Resulting from an Attach-SON Race 

16) 

(---' 
\ )------------------------------------------

____, 

c! 

The comments below correspond to the numbers 
in Figure 5.3-16. 

1. A transaction is allocated with a sync 
level of sync point. 

2. Data is sent and a sync point C in this 
case, for an optimized last resource) is 
requested. 

3. After the data and Request Commit are 
sent, a session outage occurs. Both 
sides of the conversation are informed of 
the outage. 

4. Hhen the sync point manager receives the 
outage indication, it sends a Compare 
States command I Exchange Log Name also 
flows but it is not shown in the dia­
gram). This flows on a different session 
from the transaction program data. This 
session can use any mode. However, the 
performance characteristics of the mode 
should be good enough to avoid undue 
delays in resynchronization. As a result 
of using a different session, the Compare 
States command can arrive ahead of the TP 
data. 

To resolve this race condition, the 
receiving sync point manager, PS.SPSl2), 
issues a DEACTIVATE_SESSION TYPEICLEANUP) 
whenever Compare States is received. The 
Session Instance Identifier field of the 
Compare States command has the session 
identifier, to allow the sync point man-

ager to deactivate the affected session. 
Hhen the session deactivation is com­
plete, any Attaches that are in transit 
are discarded and RM purges any records 
received from that half-session. Then 
the Compare States processing can pro­
ceed. If the Attach has been processed 
and the attached TP executed before the 
deactivation is complete, a log entry for 
the LUH will be found. If the Attach is 
discarded, no log entry will be found. 
In either case, both data bases will 
remain synchronized. 

5. Depending upon when the Attach and SON 
arrive, either path control, RM or LNS 
purges them because the session has been 
deactivated. 

6. The receiving sync point manager, 
PS.SPSC 2), checks the log for awareness 
of the LUH for which the Compare States 
was sent. Since the Attach has not 
arrived yet, or it was purged, no log 
entry exists. The reply to Compare 
States is therefore Not Found. 

It is possible that the incoming Attach has 
been processed and the PS process for the 
application TP was created, but the TP has 
never been dispatched when the Compare States 
arrives. In this case, the Attach arrives 
ahead of the Compare States, but as a result 
of timing conditions in the node, the Compare 
States TP !shown above as PS.SPSl2)) executes 
before the attached application TP. Then, 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-21 



before the application TP n.ns and the UM is 
logged, the half-session is deactivated 
because of the Compare States processing. 
Hhen the DEACTIVATE_SESSION processing is 
completed, PS.SPSl2) checks the log to find 
the state of the LUH. The LUH is not logged 
yet, so the reply to the Compare States is 
Not Found. In order to avoid having the 
application TP execute later and commit the 
LUH, the sync point manager that is running 
on behalf of. an application TP checks that 
the LUH was not previously backed out, 
because of a session deactivation, before it 
commits. This is accomplished by having RM 
inform the sync point manager that the 
half-session it is using was deactivated. 
The sync point manager cannot perform a Com­
mit if it is inforined of a session deacti­
vation. 

LOST SYNC POINT MESSAGES 

The logic for resync is summarized in Fig­
ure 5. 3-21 on page 5. 3-26 through Fig­
ure 5.3-25 on page 5.3-30. This logic is 
derived from Figure 5.3-19 on page 5.3-24, 

Prepare 

SON SON 
< x 
lpurged)<:~~~~~~-t----' 

Prepare 

SEND_ERROR 

I purged)<.~~~~~~+-~~~~~~~ 
> 

which shows the sync point messages that can 
be lost because of session outage, as viewed 
by the initiator. For example, when a Pre­
pare is lost because of SON, the state of the 
LUH at the sender of the Prepare (the initi­
ator), is either SPM PENDING or HEURISTIC 
RESET) the state of the LUH at the receiver 
(the agent> is either RESET or PGM PENDING. 
In the case when SEND_ERROR and Prepare are 
lost from one TP and Prepare is lost from the 
partner, the state of LUH on either side of 
the conversation is SPM PENDING or HEURISTIC 
RESET. Given this, it is possible to con­
struct the tables that guide the resynchroni­
zation actions that the sync point managers 
must take. 

Prepare vs. Prepare races lwhen both sides 
issue Prepare, and the flows cross), Prepare 
vs. Request Commit races, and Request Commit 
vs. Request Commit races also can occur as a 
result of races between session outage 
notification and SEND_ERRORs. 

An example is shown in Figure 5.3-17. 

Figure 5.3-17. SEND_ERROR and Prepare vs. Prepare Race during Session Outage 

5.3-22 

Hhen one TP issues SEND_ERROR followed by 
SYNCPT and messages are lost because of ses­
sion outage, it is possible that both part­
ners are the sync point initiator. In this 
case, each reports its state on the Compare 
States reply as if it were an agent. 

The one exception to this rule is in the case 
shown in Figure 5.3-18 on page 5.3-23. In 
this case, when resynchronizing, the original 
sender of Prepare (sync point services[ l l J 

SNA LU 6.2 Reference: Peer Protocols 

recognizes that the partner is resynchroniz-
ing I following SON, the partner (sync point 
services[ 2] J sent a Compare States command 1

'-- • 

with a state indicator of IN DOUBT J. The 
sender of Prepare then replies with a RESET 
state indicator on the Compare States reply. 

The details of resync, based on the state of 
the LUH is shown in the matrix in Fig­
ure 5.3-19 on page 5.3-24 and the logic 
depicted in Figure 5.3-23 and Figure 5.3-24. 



EJ 
SYNC PT 

sync point 
services 

11) 

Prepare 
------------+-> (purged) 

SON SON 
< x---~ 

I purged)<-------+-' 
Request Comm it 

lpurged)<--------t------~ 
'--------> 

New conversation Compare States request 
!state indicator = RESET) 

I 

sync point 
services 

(2) 

SEND_ERROR 

SYNC PT 

Compare States request 
!state indicator = IN DOUBT) 

New conversation 

<------+----------~ 

'------------~> 
Compare States reply 
lstate indicator= RESET) 
----------------~> 
Compare States reply 
!state indicator = RESET) 
<----------------~ 

(,.-~\ 

\_ ) Figure 5.3-18. SEND_ERROR and Request Commit vs. Prepare Race during Session Outage 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-23 



Sync Point Message Lost Initiator's State Hhen Agent's State 
By Session Outage It Initiates Resync Hhen Resync Occurs 

Prepare [3] SPM PENDING I RESET I 
HEURISTIC RESET [ ll PGH PENDING [2] 

Prepare vs. SEND_ERROR SPM PENDING I SPH PENDING I 
and Prepare [5] HEURISTIC RESET [l] HEURISTIC RESET [l] 

Prepare vs. SEND_ERROR SPM PENDING I IN DOUBT I 
and Request HEURISTIC RESET [l] HEURISTIC RESET [4] I 
Commitllast) [5] HEURISTIC GOMMITTED [4] 

SPH PENDING I IN DOUBT I 
Request Commit HEURISTIC RESET [ ll HEURISTIC RESET [4] I 

HEURISTIC COMMITTED [4] 

IN DOUBT I 
Committed COMMITTED HEURISTIC RESET [4] 

HEURISTIC COMMITTED [4] 

Forget COMMITTED RESET 

Request Commitllast) IN DOUBT I RESET I 
[3) HEURISTIC RESET [4] I P.GM PENDING [2) 

HEURISTIC COMMITTED [4] 

Request Commitllast) IN DOUBT I SPM PENDING I 
vs. SEND_ERROR and HEURISTIC RESET [4] I HEURISTIC RESET [ ll 
Prepare [5] HEURISTIC COMMITTED [4] 

Request CommitllastJ IN DOUBT I IN DOUBT I 
vs. SEND ERROR and HEURISTIC RESET [4] I HEURISTIC RESET [4] I 
Request CommitllastJ HEURISTIC COMMITTED [4] HEURISTIC COMMITTED (4) 

CommiHedllastJ 
IN DOUBT I 

HEURISTIC RESET (4) I COMMITTED 
HEURISTIC COMMITTED (4) 

Notes: 
1. The LUH has been backed out as a result of a heuristic request from 

the lock manager. The initiator still owes resync to the agents. 
2. The PGM PENDING state is never visible during resync, since it 

is converted to RESET. 
3. These rows assume that no Prepare vs. Prepare type races have occurred. 
4. Either HEURISTIC RESET or HEURISTIC COMMITTED can occur from IN DOUBT. 
5. The agent issues SEND_ERROR and a sync point message, making the 

agent also an initiator for this race. 

Figure 5.3-19. Lost Sync Point Messages: Initiator's View 

5.3-24 SNA LU 6.2 Reference: Peer Protocols 



( --- .... 

j 

() 

Lost Message Last Agent's State when State of receiver of 
it sends Compare States Compare States 
command command 

Implied Forget COMMITTED [Note] RESET I COMMITTED I 
HEURISTIC COMMITTED 

Note: The last agent does not have to send this Compare States command unless it needs to erase its 
log. The last agent does have to remember the COMMITTED state if it does not receive Forget, either 
implied or as part of the initiator's resync or following its own resync. (See Figure 5.3-25 on page 
5.3-30 for further details.) It is not possible to eliminate entirely this responsibility of the 
last agent without coupling the sync point resync to a single session instance. If the sync point 
resync were restricted to a single session instance, session data on that session could be treated as 
an Implied Forget. 

Figure 5.3-20. Lost Messages for Sync Point: Last Agent's View 

RESYNCHRONIZATION ACTION 

Figure 5.3-21 on page 5.3-26 through Fig­
ure 5.3-25 on page 5.3-30 show the indicated 
states that the sync point manager is either 
sending or receiving in the Compare States 
command, in relation to the action taken. 
The logic depicted in these diagrams is the 
logic needed to 'implement resynchronization 
when an IPL has taken place or after an LU or 
a session fails. 

The top left-hand corner of the tables indi­
cates the role the sync point manager has in 
the sync point exchange. In Figure 5.3-21 on 
page 5.3-26, Figure 5.3-23 on page 5.3-28, 
and Figure 5.3-25 on page 5.3-30 the 
left-hand column shows the state indication 
that is sent on the Compare States command. 
The top row shows the state that is indicated 
in the Compare states reply. In Fig­
ure 5.3-22 on page 5.3-27 and Figure 5.3-24 
on page 5.3-29, the left-hand column shows 
the state that is indicated in the Compare 
States command. The top row indicates the 
state of the LUH at the receiver; this state 
is indicated in the returned Compare States 
reply. 

The matrix entry for the column-row pair 
indicates the action to be taken based on the 
pair of state indications exchanged. The 
action to be taken includes changing the 
state of the LUH at the LU and/or sending a 
message to the control operator. C See "Re-

synchronization Operator Messages". on page 
5.3-30 for a description of the messages sent 
to the LU control operator.) For example, in 
Figure 5.3-21 on page 5.3-26, if the initi­
ator finds the state of an LUH to be IN DOUBT 
on its log, it sends a Compare States command 
to the last agent, with the state indicator 
in the command set to IN DOUBT. If the ini­
tiator receives a Compare States reply with 
the state indicator set to RESET• it backs 
out the LUH. If the Compare States reply 
indicates COMMITTED, it commits the LUH. If 
the Compare States reply indicates HEURISTIC 
MIXED, it either commits or resets the LUH, 
based on a heuristic decision. The heuristic 
decision taken depends on the transaction 
program's defined characteristics. Hhen the 
heuristic decision is taken, the LU control 
operator receives message 3. 

Figure 5.3-21 on page 5.3-26 and Fig­
ure 5.3-22 on page 5.3-27 show the actions 
when resynchronizing with the last agent. 
The last agent must be resynchronized before 
any not-last agents are resynchronized 
because the state indication the last agent 
returns on the Compare States command con­
trols the state indication sent to any 
not-last agents. Hhen a Request Commit is 
sent to the last agent, the state of the LUH 
at the initiator with respect to the last 
agent is IN DOUBT. No other resynchroniza­
tion is possible until it is known whether 
the state of the LUH at the last agent is 
RESET or COMMITTED. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-25 



\ INITIATOR 
\ RECEIVES RESET I SPM IN COMMITTED HEURISTIC HEURISTIC HEURISTIC 

\ LOG ENTRY PENDING DOUBT [3 J RESET [3] COMMITTED MIXED 
\ NOT FOUND [3] [3] 

INITIATOR\ 
SENDS \ 

\ 1 z 3 4 5 6 7 

RESET [3] 1 ...... [l] . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . ......... 
SPM PENDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . ........ 

[3] z 

HR or HC [ z J 
IN DOUBT BACK OUT . . . . . . . . . ......... COMMIT . . . . . . . . . . ........ and 

3 MSG 3 

COMMITTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . ........ 
[3 J 4 

HEURISTIC 
RESET MSG z ......... . . . . . . . . . MSG 3 . . . . . . . . . . ........ MSG 3 

5 

HEURISTIC 
COMMITTED MSG 3 . . . . . . . . . . . . . . . . . . MSG z . . . . . . . . . ......... MSG 3 

6 

HEURISTIC . . . . . . . . . .......... .. ........ . . . . . . . . . . . . . . . . . .. . . . . . . . . . . ........ 
MIXED [31 7 

Notes: 

1. All intersections with dots should not occur. States 1, z, 4, and 7 are not possible at the 
initiator. Message 4 is generated for the control operator if indications of states z, 3, 5, or 
6 are returned by the last agent on the Compare States reply. 

z. The heuristic direction is taken from the TP definition table. The TP definition table is 
created when the TP is defined to the LU. The HR !HEURISTIC RESETl or HC !HEURISTIC COMMITTED) 
action applies to local resources and cascaded resources. HEURISTIC MIXED CHMl state is reported 
to the resync initiator ·on the Compare States reply. In the case where the resync initiator was 
a cascaded agent, HM is reported to the sync point initiator in a PS header !Heuristic Mixedl 

3. These state indications should never occur. 

Figure 5.3-Zl. Resynchronization Action: At Initiator, Hhen Resynchronizing with the Last Agent 

5.3-Z6 SNA LU 6.Z Reference: Peer Protocols 

(_: 

C' 



c:·) 

c, 

() 

' LAST 

' AGENT RESET I SPM IN DOUBT COMMITTED HEURISTIC HEURISTIC HEURISTIC 
LAST 'SENDS LOG ENTRY PENDING [2] [2] RESET [5] COMMITTED MIXED 
AGENT ' NOT FOUND [5] 
RECEIVES ' 1 2 3 4 5 6 7 

RESET [5] 1 ...... [ ll .. .... .. . .. .... .. . . ........ . ........ ... .... .. ......... 
SPM 
PENDING ...... .. . ...... .. . .. .. .. . . . ....... .. ......... ... ... . . . . ........ 

[5] 2 

IN DOUBT -- [3] .. . . .. .. . . . . . .. . . . - [3] ......... ......... MSG 3 
3 

COMMITTED ... . . . . . . . .. .. . .. . . . . . ... . . . ........ .. . . .. .. . ...... ... ......... 
[5] 4 

HEURISTIC 
RESET -- [3] ... ...... ... . . . . . . MSG 3 [4] .. ....... ......... MSG 3 

5 

HEURISTIC 
COMMITTED MSG 3 [4] . . . . . . . . . . . . . . . . . . - [3] .. . . . . . . . ......... MSG 3 

6 

HEURISTIC . . . . . . . . . . . . . . . . . . ......... . ........ .. . . . . . . . . ........ . ........ 
MIXED [5] 7 

Notes: 

1. All intersections with dots should not occur. States 1, 2, 4, and 7 are not possible at the 
initiator. Message 4 is generated if indications of states 2, 3, 5, or 6 are returned by the 
last agent. 

2. If resync occurs while the last agent is still in SPM PENDING or IN DOUBT state, the agent defers 
sending the reply until it completes its cascaded protocol, which may include resynchronization 
with cascaded agents. Eventually the last agent's state will resolve to RESET, COMMITTED, or 
HEURISTIC MIXED. The HEURISTIC MIXED state is reported when SON occurs on sessions with at least 
two cascaded agents and the control operator at one of the LUs causes the LUH to be put into a 
HEURISTIC RESET state, while the operator at the other LU causes the LUH to be put i.nto a 
HEURISTIC COMMIT state. If there are no cascaded resources, the last agent changes the state of 
the LUH to reflect the state reported on the Compare States request. 

3. In these cases, the agent takes no action, except to erase its log lif the log entry was found) 
upon the completion of ·the resync flows. The end of the resync flows is defined by receipt of 
LUSTATIX'0006'J, RQD2, CEB from the initiator, or receipt of +RSPILUSTATJ from the agent. See 
Figure 5.3-14 on page 5.3-19 and Figure 5.3-15 on page 5.3-20 for more details. 

4. A HEURISTIC MIXED situation !described in Note 21 has been detected and is reported to the resync 
initiator on the Compare States reply. The HEURISTIC MIXED state indicator is not propagated to 
the cascaded agents. See Figure 5.3-23 on page 5.3-28 for this case. 

5. These state indications should never occur. 

Figure 5.3-22. Resynchronization Action: At Last Agent, Hhen Resynchronizing with the Initiator 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-27 



' INITIATOR 

' RECEIVES RESET I SPM IN-DOUBT COMMITTED HEURISTIC HEURISTIC HEURISTIC 

' LOG ENTRY PENDING (2) RESET COMMITTED MIXED (4) 

' NOT FOUND (2) 

' INITIATOR ' SENDS ' 1 2 3 4 5 6 7 

RESET -- (3) . . . . . . . . . ......... . ........ -- (3] MSG 3 MSG 3 
1 

SPM ...... [ 1) . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ........ . ........ 
PENDING (5) 2 

IN DOUBT (6) 3 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... 

COMMITTED . . . . . . . . . ......... . ........ - (3) MSG 3 -- (3) MSG 3 
4 

HEURISTIC 
RESET MSG 2 . . . . . . . . . . . . . . . . . . ......... MSG 2 MSG 3 MSG 3 

5 

HEURISTIC 
COMMITTED MSG 3 . . . . . . . . . ............ MSG 2 MSG 3 MSG 2 MSG 3 

6 

HEURISTIC . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . .. . . . . . . . . . . . . . ......... . ........ 
MIXED (6) 7 

Notes: 

1. All intersections with dots should not occur. States 2, 3, and 7 are not possible at the 
initiator. Message 4 is generated if an indication of state 2 or 3 is returned by the agent. 

2. If resync occurs while the not-last agent is still in SPM PENDING or IN DOUBT state, the agent 
defers sending the reply until it completes its cascaded protocol, which may include 
resynchronization with cascaded agents. Eventually the not-last agent's state will resolve to 
RESET, COMMITTED, or HEURISTIC MIXED. The HEURISTIC MIXED state is reported when SON occurs on 
sessions with at least two cascaded agents and the control operator at one of the LUs causes the 
LUH to be put into a HEURISTIC RESET state, while the operator at the other LU causes the LUH to 
be put into a HEURISTIC COMMIT state. If there are no cascaded resources, the last agent changes 
the state of the LUH to reflect the state reported on the Compare States request. 

3. In these cases, the agent takes no action, except to erase its log Ii f the log entry was found J 
upon the completion of the resync flows. 

4. In all the HEURISTIC MIXED IHMJ cases displayed in this matrix, while HEURISTIC MIXED is reported 
as a return code on the SYNCPT verb, HM is not propagated to agents. Rather, they are told the 
initial state of the initiator so that Message 3 is not issued for those agents that are 
synchronized with the initiator. This is illustrated by the following case: the initiator of 
resynchronization reports COMMITTED on the Compare States command, the agent has three protected 
cascaded conversations. The agent finds SPM PENDING on its log, so it initiates 
resynchronization with its cascaded agents. One of the cascaded agents reports HEURISTIC 
COMMITTED and the other reports HEURISTIC RESET on the Compare States reply. Rather than send a 
Compare States command indicating HEURISTIC MIXED to the third protected conversation, COMMITTED 
is reported. 

5. Hhen the initiator is in SPM PENDING state, it has resync responsibility. However, it reports 
its state as RESET on the Compare States command. The SPM PENDING state indicates that a resync 
is expected. If the state is actually RESET, no resync is needed. 

6. These state indications should never occur. 

Figure 5.3-23. Resynchronization Action: At Initiator, Hhen Resynchronizing with the Not-Last Agent 

5.3-28 SNA LU 6.2 Reference: Peer Protocols 

1--
\ 
\ 

l~ .. / 
_, 



\. ~LAST 
\. AGENT RESET SPM IN DOUBT COMMITTED HEURISTIC HEURISTIC HEURISTIC 

~LAST\.SENDS INOT FOUNDJ PENDING [ 2] RESET COMMITTED MIXED 
AGENT \. [2] 
RECEIVES \. 1 2 3 4 5 6 7 

RESET - [3] . . . . . . . . . ......... . ........ MSG 2 MSG 3 MSG 3 
1 

SPM 
PENDING [4] ...... [ 1] . . . . . . . . . ......... . . . . . . . . . . ........ . . . . . . . . . . ........ 

2 

IN DOUBT . . . . . . . . .. .. . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... · .. 
[4] 3 

COMMITTED . . . . .. . . . .. ......... . ........ -- [3] MSG 3 MSG 2 MSG 3 
4 

HEURISTIC 
RESET -- [3] . . .. .. . . . . .. . ........ ......... MSG 2 MSG 3 MSG 3 

5 

HEURISTIC 
COMMITTED . . . .. . . . . . ............ . ........ - [3] MSG 3 MSG 2 MSG 3 

6 

HEURISTIC . .. . .. .. . . . . . . .. . . . . . . .. . . . . . .. . . .. . . . . . . . . . ......... . ........ .......... 
MIXED [4] 7 

Notes: 

2. 

3. 

All intersections with dots should not occur. States 2, 3, and 7 are not possible at the 
initiator. Message 4 is generated if they are received. 

If resync occurs while the agent is still in SPM PENDING or IN DOUBT state, the agent defers 
sending the reply until it completes its cascaded protocol, which may include resynchronization 
with cascaded agents. Eventually the not-last agent's state will resolve from SPM PENDING to 
RESET or HEURISTIC MIXED; or IN DOUBT will resolve to RESET, COMMITTED, or HEURISTIC MIXED. If 
there are no cascaded resources, the last agent changes the state of the LUH to reflect the state 
reported on the Compare States request. 

In these cases, the agent takes no action, except to erase its log upon the completion of the 
resync flows. c4. These state indications should never occur. 

Figure 5.3-24. Resynchronization Action: At Not-Last Agent, Hhen Resynchronizing with the Initiator 

C\ 
/ 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-29 



' LAST 
' AGENT RESET I SPM IN DOUBT COHHITTED HEURISTIC HEURISTIC HEURISTIC 

LAST ' RCVS LOG ENTRY PENDING[Z] [Z] [Z] RESET[ZJ COHHITTED MIXED [Z] 
AGENT ' NOT FOUND [Z] 
SENDS ' 1 z 3 4 5 6 7 

RESET [3] ERASE LOG NO ACTION NO ACTION NO ACTION NO ACTION NO ACTION NO ACTION 
[ l] 

1 

Notes: 

1. The last agent erases its log-upon receipt of the initiator's state indication. 

Z. If the initiator is in any state other than RESET, both the last agent and the initiator ignore 
the state exchange that started from the last agent. I~ was started, at the last agent, by the 
sending of a Compare States command. The state indication exchange started by the initiator will 
perform the actual resynchronization. 

3. The last agent actually finds COMMITTED on its log. In this case, it is possible that the 
initiator has already sent the implied Forget, but the implied Forget was lost. As a result, the 
initiator has no log record that indicates that the initiator is responsible for the resync. 
After a period of time, if the initiator has not attempted to resync, the last agent takes 
responsibility. It sends RESET. If the initiator replies with any state indication other than 
RESET, it means there has been a resync race. The initiator has resync responsibility and the 
resync is forthcoming. 

Figure 5.3-Z5. Resynchronization Action: Resync from Last Agent 

5.3-30 

RESYNCHRONIZATION OPERATOR MESSAGES 

The sync point manager issues several mes­
sages to the LU control operator. Messages 
can be sent to the operator at the following 
times: following session outage, during the 
log name exchange, and during the resync 
exchange. The parameters shown in parenthe­
sis (such as TPN, for transaction program 
name) are passed in the message. In the mes­
sages that follow, reference is mac;le to a 
'waiting unit of work'. A waiting unit of 
work is an LUH for which resynchronization is 
necessary. Until the resynchronization is 
complete, resources may be locked and una­
vailable for other computations. The order 
that the messages may occur in are shown in 
Figure 5.3-26 on page 5.3-31. 

• MSG 1: A heuristic decision has been 
made for transaction program name CTPNJ, 
process ID ( PID), at time (TIME ) • and 
logical unit of work ID I LUHID l. As a 
result • resources in LUs I LU name-1, LU 
name-z, •.. •LU name-Xl may be in incon­
sistent states with respect to the local 
resource states. 

Operator Action: Take user-defined 
action, if any, to protect data integrity 
until the local and remote data can be 
synchronized. 

• MSG Z: Resources in LUs ILU name-1, •.. 
• LU name-X), previously reported to be 
exposed to state inconsistency with 
respect to local resources for trans­
action program name I TPN) • process ID 
I PID l • at time I TIME l • logical unit of 
work ID I LUHID) • have been found to be 
synchronized. 

SNA LU 6.Z Reference: Peer Protocols 

• 

• 

• 

Operator Action: Reverse the 
user-defined action taken when MSG 1 was 
acted upon. 

MSG 3: Resources in LUs ILU namel, . .. (~ 
LU nameXJ, previously reported to be 
exposed to inconsistency with respect to 
local resources for transaction program 
name I TPN l • process ID I PID ) • at time 
ITIMEJ, logical unit of work ID ILUHIDJ, 
have been found to be out of synchroniza­
tion. 

Operator Action: Take 
action to resynchronize 
remote resources. 

user-defined 
the local and 

('~-, 

I 

MSG 4: Protocol failure in resynchroni- "--- / 
zation logic during attempted resynchro­
nization of transaction program name 
ITPNJ, process ID CPIDJ, at time ITIMEJ, 
logical unit of work ID ILUHIDJ, conver­
sation correlator ICID). The local state 
was state !state name), the remote state 
was state !state name). 

Operator Action: Make inquiries to 
determine the state of the resources. 
Take user-defined action to resynchronize 
the resources. Submit APAR report. 

MSG 5: Session failure !with LU name-i, 
mode name-jl at time ITIMEJ, has resulted 
in a waiting unit of work for transaction 
program name ( TPN) • process ID ( PID l, 
with logical unit of work ID CLUHIDJ and 
conversation correlator C CID). This LUH~ 
is coupled to other LUs I LU name-m, ... J\ _. 
LU name-n J • --~-

Operator Action: Reactivate the session 
as soon as possible. 



c 

,,.-- ' 

lJ 

I Messages 

Session failure 

I 
y 

1 ,__, _Me_ss_age_5 __.I 

y y y 

Message 4 

A A 

!Messages 9,:0,11,121-----------'I 

Figure 5.3-26. The Sequence of LU Control Operator Messages Generated by Sync Point 
Resynchronization 

• 

• 

• 

• 

MSG 6: The waiting unit of work identi­
fied by transaction program name I TPN), 
process ID I PID), and logical unit of 
work ID ILUHIDJ, reported at time ITIMEJ, 
is being committed. 

Operator Action: none. 

MSG 7: The waiting unit of work identi­
fied by transaction program name I TPN), 
process ID I PID), and logical unit of 
work ID ILUHIDJ, reported at time ITIMEJ, 
is being backed out. 

Operator Action: none. 

MSG 8: Resources in LUs ILU name-1, .•• , 
LU name-X), previously reported to be 
waiting for resynchronization with 
respect to local resources for trans­
act ion program name ITPNJ, process ID 
I PID), at time I TIME J, logical unit of 
work ID I LUHID J, have been found to be 
out of synchronization. 

Operator Action: Take 
action to resynchronize 
remote resources. 

user-defined 
the local and 

MSG 9: The logical unit of work identi­
fied by transaction program name I TPN J, 
process ID IPIDJ, at time ITIMEJ, logical 
unit of work ID ILUHIDJ, has been waiting 
for HHH hours and HMM minutes. locks 
held by this resynchronization are 
enqueued by NN transactions. 

Operator Action: If desired, abnormally 
terminate the PID specified process. 
This will release locks and may result in 
heuristic mismatches when resynchroniza­
tion does complete. 

• 

• 

• 

MSG 10: 
abnormal 
command. 
warm/cold 
match. 

LU I LU name ) has returned an 
reply to the Exchange log Name 

This LU has detected a 
mismatch, or a log name mis-

Operator Action: Coordinate activation 
with the operator at the other LU. It 
may be necessary to abnormally terminate 
processes for some waiting units of work. 

MSG 11: A cold start has been attempted 
by LU I LU name J, but the local LU has 
logical uni ts of work that are awaiting 
resynchronization from the previous acti­
vation. 

Operator Action: Coordinate activation 
with the operator at the other LU. It 
may be necessary to abnormally terminate 
processes for the waiting units of work. 

MSG 12: LU ILU name) does not have the 
same memory as does the local LU of the 
previous activation between them. 

Operator Action: Coordinate activation 
with the operator at the other LU. It 
may be necessary to abnormally terminate 
processes for the waiting units of work. 

ORDER OF RESYNCHRONIZATION 

Hhen a distributed unit of work fails 
because of a session or LU failure, more than 
one resynchronization exchange may be needed 
before resynchronization is complete. Fig­
ure 5.3-27 on page 5.3-32illustrates what can 
happen. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-31 



D D 
Prepare 

Request Commit Request Commit 

(8 Fails) 
Resync flows 

Resync flows 
< > 

Figure 5.3-27. Cascaded Resynchronization Example 

The rule illustrated in the figure is the 
following: The initiator resolves in-doubt 
resources before it resynchronizes with the 
other resources involved in the logical unit 
of work. One result can be that some partic­
ipants in the distributed LUH will make 
heuristic decisions. 

ERRORS AND FAILURES DURING RESYNCHRONIZATION 

Errors and additional failures can occur dur­
ing attempted resynchronization. Repeated 
conversation failures are handled by the 
resynchronization logic, since log records 
are not erased until after the state indi­
cations have been exchanged; see Fig­
ure 5.3-14 on page 5.3-19 and Figure 5.3-15 
on page 5.3-20 for ·examples. Errors that 
occur while the sync point manager has con­
trol, such as completion of the receive timer 
that is started when resynchronization 
begins, are mapped into conversation fail­
ures, created by UNBIND, thereby falling back 
into an error recovery loop (described 
below). 

The conversation failures, created by UNBIND, 
to recover from errors detected while the 
sync point manager has control are 
UNBINDIX'FE08640002' I X'FE0864000l'J depend­
ing on the error--timer or logic error, 
respectively--rather than DEALLOCATE I ABEND J, 
since the latter is not guaranteed to work 
under double failures I the receiver of DEAL­
LOCATE has to continue to issue RECEIVE in 
order for it to workJ. 

r". 
The error recovery process is described as a I, 
loop because it iterates until one of the '- .. / 
loop exit conditions is satisfied. The error 
recovery loop has two exits: Either 11) the 
resync completes, or I 2 J the control opera­
tor, after being informed that the resync 
attempt has been going on for a long time 
lthe resync timer completes), decides to 
abnormally terminate processes that are hold-
ing locks for this LUH rather than continue 
with the sync point manager resync attempts. 
The cleanup transaction will erase the log 
record after writing suitable messages to the(, 
error log. . It may additionally force 
!unilaterally change, without agreement among\_. __ .. ./ 
partners) the states of any pending 
resources, to HEURISTIC RESET or HEURISTIC 
COMMITTED, in the same way that heuristic 
decisions may force states. 

RESET STATE AND ERASING OF LOG RECORDS 

Reset state of the LUH !equivalent to unit 
work backed out) is denoted by the absence 
a log record. 

The initiator's side can erase its log when 
all Forget flows have been completed, 
because, at this point, it is known that 
resync will never be required. Therefore the 
question of ambiguity of no record found nev­
er arises. 9 

The slaves erase their logs before sending 
Forget, so that a subsequent failure that 
results in the loss of the Forget will result 
in a resync that finds no log record. 

LOG NAME PROCESSING 

5.3-32 

The following 
processing of 

two figures illustrate the 
log names so that log mis-

matches do not occur. A log mismatch occurs(· 
if the LU control operator mounts the wrong\... _ _.,. 

9 The ambiguity is that not finding a log record could mean that the LUH has either not been 
logged yet lnot started), or is committed !completely finished). 

SNA LU 6.2 Reference: Peer Protocols 



( · .. 
_/ 

sync-point-log tape or instructs the LU to 
use the wrong log-dataset, or the LU IPLs and 
no log exists I this is referred to as a cold 
start l. Hhen this happens, the sync-point 

~ 
~ 

Ill LU IPLs Cold 

ALLOCATE 

BIND 

A Hach 

12) Exchange 

13) Exchange 
< 

14) +DR2 

new LUHID, 
SYNC_LEVELICONFIRMJ, 
TPNIX'06F2'l ••• 

Log Name, log status I co lei), 

Log Name, log statuslcoldl, 

CD 

RQD2, 

~ Figure 5.3-28. Cold Start of an LU 

c 

The following notes correspond to the numbers 
in Figure 5.3-28. 

1. The LU IPLs cold, that is, with a new log 
tape or new log dataset. No resync 
attempt occurs, since the log is empty. 
If the name of the LU's log.is changed, a 
cold IPL is required. 

PS.SPS is given control before any con­
versations with SYNC_LEVELISYNCPTl are 
allocated in order to exchange log names 
with PS.SPS in the partner LU. The sync 
point manager needs to know the partner's 
log name so log mismatches can be 
detected during resynchronization. 

log is not available for resync processing. 
The Exchange Log Name command is sent before 
the Compare States command, to detect a log 
mismatch. 

CEB 

~ 
~ 

> 

> 

> 

2. The resync TP, X'06F2', accepts the cold 
log name and returns its own LU' s log 
name. Message 11 might also be returned 
on an error reply, as shown in Fig­
ure 5.3-29 on page 5.3-34. 

3. Upon logging the log name of the partner 
PS.SPS, PS.SPS tells RM that 
SYNC_LEVELISYNCPTl conversations can now 
be allocated to the partner LU. 

4. The partner PS.SPS similarly informs its 
RM. Race conditions can cause this 
transaction to be executed twice, once in 
each direction. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-33 



r;;:-i 
~ 

r;;:-i 
~ 

(l) LU IPLs Harm, with wrong log Uog can be a disk dataset or tape volune) 

12) 

(3) 

ALLOCATE 

BIND 

Attach 

same LUHID as the UM that is being resynchronized, 
SYNC_LEVELICONFIRMl, 
TPNIX'06F2') ••• 

Exchange Log Name, log status (warm), log name I.log name) 

Compare States, CD 

Exchange Log Namelerror replyJ, RQEl, CEB 
<:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 5.3-29. Log Name Mismatch during Resync 

5.3-34 

The following notes correspond to the numbers 
in Figure 5.3-29. 

1. The LU IPLs warm, but the wrong log vol­
ume is active. However, RM and PS.SPS do 
not know this at first, and proceed with 
resync processing. 

2. The partner PS.SPS detects the mismatch 
of log names, notifies its control opera­
tor with Message 12, and returns an error 
reply. 

SNA LU 6.2 Reference: Peer Protocols 

3. PS.SPS sees the error reply and notifies 
its control operator of the mismatch with 
Message 10. Conversations with 
SYNC_LEVELI SYNCPT J cannot be allocated1....------.., 
between these LUs until the mismatch ha!, ' 
been fixed. Perhaps the correct volune....._ .. ./ 
can be activateds or the operator can use .... 
a cold IPL, al though this may di!!mage the 
consistency of protected resources. 

(--.. _ 

_ j'. 

c 



cj PROCEDURES _US_E_D ~ _SY_N_C _PO_I_NT_ 

(~, 

Cl 
/ 

PS_SPS 

FUNCTION: To coordinate sync point processing> as described in this chapter. Details 
are not formally specified. 

The sync point service is made up of a con­
trolling subcomponent I PS.SPS) that deter­
mines when presentation services headers 
should be sent> and a subcomponent ( in con­
versation resources protection manager 
[PS. CRPM] ) that builds and sends the sync 
point headers. The subcomponents that build 
and send sync point headers are: 

1. PREPARE 

2. REQUEST_COMMIT 

3. COMMITTED 

4. FORGET 

5. HEURISTIC_MIXED 

The calling tree to show the relation of the 
components of sync point services is shown in 
Figure 5.3-30 on page 5.3-36. 

A high-level overview of these subcomponents 
is described below. 

PREPARE 

The presentation services header contains a 
field li.e., Sync Point Control Modifier) by 
which the receiver is requested to take a 
speci fie action upon completion of the sync 
point flows. This is done because the initi­
ator issues SYNCPT when it is in either SEND 
state or DEFER state lsee FSM_CONVERSATION on 
page 5.1-65). DEFER state is reached two 
ways: by issuing PREPARE_TO_RECEIVE or DEAL­
LOCATE with TYPEISYNC_LEVEU when the sync 
level is SYNCPT. At the completion of the 
sync point flow, the sender of the last sync 
point command has send control; however> the 
TP may not need send control. Therefore, on 
the first command of the sequence, the Sync 
Point Control Modifier field of the PS header 
indicates the side of the conversation that 
is to have send control, or deallocation 
responsibility, after the last sync point 
command is sent. The Sync Point Control Mod­
ifier can be set to the following values: 

Request RECEIVE: The sync point ini ti­
ator requests to be in RECEIVE state upon 
completion of the sync point flow. 

Request DEALLOCATE: The sync point ini­
tiator requests that a DEALLOCATE be 
issued upon completion of the sync point 
flow. 

Request SEND: The sync point initiator 
requests to be in SEND state upon com­
pletion of the sync point flow. 

Hhen PREPARE is issued, the CD and CEB indi­
cators in PS's send buffer (see Chapter 5.1) 
may be in one of three combinations of set­
tings: 

1. ~co and ~CEB-neither PREPARE_TO_RECEIVE 
nor DEALLOCATE has been issued. 

2. CD and ~CEB-PREPARE_TO_RECEIVE has been 
issued. 

3. ~co and CEB-DEALLOCATE has been issued. 

If in state l I ~co and ~CEB), a PS header 
(Prepare) with modifier Request SEND is 
placed in the send buffer. The RQEl, CD, and 
EC indicators are turned on and the send 
buffer is sent to DFC. The Prepare then 
requires a reply. The reply will be either a 
PS header (Request Cammi t I Forget l or a 
-RSP. If a PS header is received, PREPARE 
subcomponent returns with a REQUEST_COMMIT or 
FORGET return code. It can also return 
RESOURCE_FAILURE lit is not a 
resource-specific verb). If a PS header, 
-RSPI0846l, or resource failure is not pres­
ent, a fatal error has occurred and the ses­
sion is deactivated (using X'FE' reason code 
and appropriate UNBIND sense code). If a 
-RSPI 0846) is received, the next data to 
arrive on the session is an FMH-7 and the 
return code is set according to the FMH-7 
sense data. 

If in state 2 I CD and ~CEB), a PS header 
!Prepare) with modifier Request RECEIVE is 
placed in the send buffer. The RQEl, CD, and 
EC indicators are turned on and the send 
buffer contents are transmitted to DFC. The 
PREPARE subcomponent then requires a reply. 
A PS header indicates a successful Prepare; 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-35 



SYNC POINT MANAGER 
IPS.SPS) 

CONVERSATION RESOURCE 
PROTECTION MANAGER 

IPS.CRPM) 

PREPARE REQUEST 
COMMIT 

COMMITTED FORGET HEURISTIC 
MIXED 

RESOURCES MANAGER 
IRM) 

RESYNC RESYNC TP 
----------> IX'06F2') 

Note: All relationships are via Call and Return except for the RESYNC TP, 
which is invoked as a remote service transaction program. 

~-F_i_g_u_r_e~5_._3_-_3_o_.~_s_y_n_c~P_o_i_n_t~Se~rv~i_c_e_s~c_a_l_l_i_ng~T-r_e_e~~~~~~~~~~~~~~~~~~~~~~~~~~~- ~ 

• 

5.3-36 

the return code is set accordingly. If a 
-RSPI 0846) is received, the next data to 
arrive on the session is an FMH-7 and the 
return code is set accordingly. 

If in state 3 I ~co and CEB), a PS header 
!Prepare) with modifier Request DEALLOCATE is 
placed in the send buffer. The RQEl, CD, and 
EC indicators are turned on and the send 
buffer contents are transmitted to DFC. The 
PREPARE subcomponent then requires a reply. 
A PS header indicates a successful Prepare; 
the return code is set. If a -RSPI 0846) is 
received, the next data to arrive on the ses­
sion is an FMH-7 and the return code is set 
accordingly. 

REQUEST_COMMIT 

As for Prepare, PS' s send buffer may be in 
the same three states when Request Commit is 
sent. Additional information is also known. 
PS.SPS and PS.CRPM know whether or not the 
current Request Commit is being sent in reply 
to a Prepare. PS.CRPM uses the information 
to build the PS header. PS.SPS knows whether 
or not changes have occurred in other 
resources for this LUH. 

Hhen Prepare has not been received, these 
cases apply: 

1. Hhen in state 1 I ~co and ~CEB J, the 
REQUEST_COMMIT subcomponent causes PS 
header (Request Commit, Request SEND) to 
be transmi Hed and waits for the reply. 
If Committed is received, REQUEST_COMMIT 
completes normally; however, if a 
-RSPI0846J is received, REQUEST_COMMIT 
processing waits for the FMH-7 and com­
pletes with the appropriate return code. 
Session outage is indicated in the return 
code for REQUEST_COMMIT as resource fail­
ure. 

2. Hhen in state 2 ICD and ~CEB), the 
REQUEST_COMMIT subcomponent causes a PS 

SNA LU 6.2 Reference: Peer Protocols 

header !Request Commit, Request RECEIVE! 
to be sent. The reply will be either 
Committed, SON, or a -RSPI0846) and 
FMH-7. The appropriate return code is 
set. 

3. Hhen in state 3 l~CD and CEBJ, the 
REQUEST_COMMIT subcomponent causes a PS 
header I Request Commit, Request DEALLO-

'--~ 

CATE I to be sent. The COMMITTED, SON, or~, 
-RSP I 0846 J and FMH-7 reply sets the ( 1 

return code. ', ___ ./ 

Hhen Prepare has been received, one of these 
cases applies IPS.SPS chooses): 

1. Changes have occurred in local or cas­
caded resources. PS header (Request Com­
mit, Request SENDJ is sent and the return 
code set according to the reply. 

2. No changes have occurred in either local 
or cascaded resources. The sync point (-'. 
manager does not send Request Commit; l 
Forget is sent next. '...._ _ __,, 

COMMITIED 

Committed is sent by PS.SPS as a reply to 
Request Commit. Committed is sent with RQEl, 
CD. No Sync Point Control Modifier is sent. 
If Committed is sent from the last resource, 
CD and CEB are set by PS.CRPM as specified in 
Sync Point Control Modifier from the previous 
Request Commit. 

FORGET 

Unlike the case for the PREPARE andc 
REQUEST_COMMIT subcomponents, the send buffer 
is in a known state when Committed and Forget / 
are sent. The FORGET subcomponent uses the 
information passed on the Sync Point Control 
Modifier field of Prepare to leave the con-



versation in the state desired by the trans­
action that initiated SYNCPT. 

HEURISTIC_MIXED 

As in the case for FORGET, the send buffer is 
in a known state when Heuristic Mixed is 
sent. The HEURISTIC_MIXED subcomponent 
builds and sends the PS headerlHeuristic 
Mixed) using the information passed on the 
Sync Point Control Modifier field of the Pre­
pare to leave the conversation in the state 
desired by the transaction that initiated 
SYNCPT. 

The Heuristic Mixed PS header is sent when a 
sync point agent discovers that two or more 

c~: SESSION ~ CREATED BY ~ POINT 

The following illustrates the flows that can 
be generated by SVNCPT: 

cascaded agents have gotten out of sync after 
a failure and resync. This is illustrated in 
Figure 5.3-31 on page 5.3-38. In this dia­
gram, conversation or session failures at TPb 
with TPc and TPd can lead to a heuristic 
decision at TPc that conflicts with the 
heuristic decision that is made at TPd. This 
can be avoided with properly defined failure 
recovery procedures for the LU control opera­
tor. However, if heuristic damage occurs, it 
is discovered when TPb resyncs with TPc and 
TPd. Because no failure has occurred between 
TPb and TPa, no resync occurs on that conver­
sation. The Heuristic Mixed PS header is 
used to inform the sync point initiator, TPa, 
that a heuristic decision has caused damage 
in the distributed LUH. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-37 



SYNCPT flow 
< 

SON followed by 
< 

TPa SYNC PT flow TPb 
(sync point < > (sync point 
initiator) agent) SYNCPT flow 

< 
SON followed by 

< 
PS Header(Heuristic Mixed) 

Figure 5.3-31. Heuristic Mixed in Reply to Sync Point Flow 

EJ 
SEND_DATA 
PREPARE_TO_RECEIVE 
SYNC PT 

TPc 
> (cascaded agenfl 

resync 
> 

TPd 
(cascaded agent) 

> 
re sync 

> 

data, Request Commit!Request RECEIVE), RQEl, CD 
RECEIVE_AND_HAIT 

HHAT_RECEIVED=DATA 

-or-

SEND_DATA 
SYNC PT 

-or-

SEND_DATA 
DEALLOCATE 
SYNC PT 

Committed, BC, ~Ee, ~co 

data, Request Commit( Request SEND), RQEl, CD 

Committed, RQEl, CD 

HHAT_RECEIVED=DATA 
RECEIVE_AND_HAIT 

HHAT_RECEIVED=TAKE_SVNCPT 
SYNC PT 

RC=OK 
ILUH STATE is COMMITTED) 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=DATA 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=TAKE_SVNCPT 

SYNC PT 
RC=OK 
ILUH STATE is COMMITTED) 

RECEIVE_AND_HAIT 
data, Request Commit!Request DEALLOCATE), RQEl, CD HHAT_RECEIVED=DATA 

Committed, RQEl, CEB 

RECEIVE_AND_HAIT 
HHAT_RECEIVED=TAKE_SVNCPT 

SYNC PT 
RC=OK 
ILUH STATE is COMMITTED) 

Figure 5.3-32. Verb Sequences and Sync Point Flows to the Last Agent, Hhich Has No Cascaded 
Resources 

5.3-38 SNA LU 6.2 Reference: Peer Protocols 

( ...._ 

/ 



c EJ 
SEND_DATA 

SEND_DATA 
SYNC PT 

data, PreparelRequest SEND), RQEl, CD 

Forget, RQEl, CD 

RECEIVE 
RC=OK HHAT_RECEIVED=DATA 

RECEIVE 
RC=OK HHAT_RECEIVED=DATA 

RECEIVE 
RC=OK HHAT_RECEIVED=TAKE_SVNCPT 

SYNC PT 

RC=OK ILUH STATE is COMMITTED) 
RC=OK ILUH STATE is COMMITTED) 

Figure 5.3-33. Sync Point with No Resources Changed: The Request SEND on the Prepare is a command 
to send CD on the return flow. The transaction program is not given a chance to send 

( - ·_. _________ a_n_y--d-a-ta--o-r--to--in_f_l_u_e_n_c_e __ t_he __ c_on_v_e_r_s_a_t_i_o_n __ s_t_a-te_s __ '_o_t_h_e_r __ t_h_a_n __ t_o_t_e_r_m_i_n_a_t_e _ _ . abnormally). This Request SEND is not the RH CD indicator but is in the PS header. 

EJ 
SEND_DATA 

SYNC PT 

RECEIVE 
~-----------------> RC=OK HHAT_RECEIVED=DATA 

RECEIVE 
RC=OK HHAT_RECEIVED=DATA 

data, PreparelRequest SENDJ, RQEl, CD RECEIVE 
---'-----------------> RC=OK HHAT_RECEIVED=TAKE_SYNCPT 

Request Commit, RQEl, CD SYNCPT 
<.~----------------~ 

Committed, RQEl, CD 
~----------------~> 

Forget, RQEl, CD 
<.~----------------~ RC=OK ILUH STATE is COMMITTED) 

RC=OK ILUH STATE is COMMITTED) 
SEND_DATA 

Data 
~----------------~> 

RECEIVE 

Figure 5.3-34. Sync Point with Changes to Protected Resources, Request SEND: In this flow, the 
Prepare requests that the CD be returned !Request SENDJ on the Forget. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-39 , .. 



SEND_DATA 

PREPARE_TO_RECEIVE 
SYNC PT 

RECEIVE 
------------------------------------------> RC=OK HHAT_RECEIVED=DATA 

Data, Prepare!Request RECEIVEJ, RQEl, CD 

RECEIVE 
RC=OK HHAT_RECEIVED=DATA 

RECEIVE 
----------------------------------------------> RC=OK 

HHAT_RECEIVED=TAKE_SYNCPT 
Request Commit, RQEl, CD 

<--------------------------------------------- SYNC PT 
Co mm it t ed, RQEl, CD 

Forget, BC, ~Ee 
RC=OK 

RC=OK CLUH STATE is COMMITTED) CLUH STATE is COMMITTED) 
RECEIVE 

data RC=SEND 
SEND_DATA 

Figure 5.3-35. Sync Point with Changes to Protected resources, Request RECEIVE: The Request RECEIVE 
in Prepare indicates that the flow is to be reversed. The Forget is flushed to let 
locks be released. It is not necessary to flush the Forget if the TP is sure to 
generate application data right away. 

EJ 
SE,ND_DATA 

/ , 

DEALLOCATE 
SYNC PT 

RECEIVE 
---------------------------------------> RC=OK HHAT_RECEIVED=DATA 

data, Prepare!Request DEALLOCATEJ, RQEl, CD 

Request Commit, RQEl, CD 
<----------------------------------------
Committed, RQEl, CD 

RECEIVE 
RC=OK HHAT_RECEIVED=DATA 

RECEIVE 
RC=OK HHAT_RECEIVED=TAKE_SVNCPT 

SYNC PT 

---------------------------------------> RC=OK ( LUH STATE is COMMITTED J 
RECEIVE 

RC=DEALLOCATE_NORMAL 
Forget, CEB, RQEl 

DEALLOCATE 
local deallocation 

local deallocation 
RC=OK CLUH STATE is COMMITTED) 

Figure 5.3-36. Sync Point with Changes to Protected Resources, Request DEALLOCATE: The Request 
DEALLOCATE in the PS header !Prepare) is a command to senq CEB on the return flow. 

c 

The transaction program is not given a chance to send any data or to influence the 
conversation state if the sync point completes normally. If BACKOUT or a negative 
response is received, the transaction program is not deallocated and the TP may issue ~­
BACKOUT. ( · 

5.3-40 SNA LU 6.2 Reference: Peer Protocols 



(, 

( 
'----- .• 

(_j 

c/ 

SESSION FLOHS CREATED BY ERRORS DURING SYNC 
POINT 

All base error flows may occur. These 
include application errors, local resource 
failures, program failures, session failures, 
conversation failures, and LU failures. See 
Chapter 2 for an explanation of the types of 
errors. Additionally, BACKOUT can be issued. 
This verb causes flows the same as SEND ERROR 
Ci.e., -RSPC0846l followed by FMH-7) ;xcept 

the FMH-7 is limited to carrying a sense code 
of X'0824' (Sync Point Manager Abortl. BACK­
OUT may be issued whenever a SEND_ERROR can 
be issued (i.e., ii: is independent of the 
send/receive state). 

BACK OUT 

The BACKOUT verb results in the sequence 
shown in Figure 5.3-37. 

Do until RC=OKIRESOURCE_FAILURE_*IBACKED_OUTIDEALLOCATE_* 
Issue SEND ERROR with a sense code of X'0824'. 
Issue a CONFIRM verb CBackout flows RQD2l3J. 

If send control was at the other end at the last sync point 
Issue PREPARE_TO_RECEIVE CFLUSHJ. 

Figure 5.3-37. BACKOUT Logic 

This has the advantage of propagating the 
backout even if the partner transaction has 
issued SEND ERROR. It also handles send and 
receive state variations. 

The expansion shown above places responsibil­
ities on the transaction programs: for 
instance, if entered while the partner has 
the CD bit and before the first RU of the 
chain arrives, it can hang in the SEND_ERROR 
for a long time. This is because the 
SEND ERROR doesn't cause a -RSP to flow until 
a c~in arrives. Transaction programs that 
issue BACKOUT must take the potential delay 
into account. It is the transaction pro­
gram's responsibility to make sure that the 
delay has no· undesirable results. If the 
BACKOUT process takes too long to complete, 
the session can be abnormally terminated. 
The LUH state will be repaired by resync 
processing. 

Abnormal termination after a BACKOUT verb 
results in several flows, but this is accept­
able, since it is an error case. 

Transaction programs that are cooperating 
with each other need to obey a discipline in 
issuing SYNCPT. A TP must be coded to issue 
SYNCPT when its partner TP expects a sync 
point request. However, because the CD bit 
is, in effect, a protected variable !i.e., it 
flows in the Sync Point Control Modifier 
field of the PS header and the sync point 
manager is responsible for maintaining the 
conversation in the proper state with respect 
to the CD bitJ the TPs do not·need to obey a 
convention for BACKOUT. BACKOUT may be 
issued in SEND, DEFER, RECEIVE, CONFIRM, SYNC 
POINT, or BACKED-OUT state. The SEND state 
is restored to the transaction that owned it 
at the completion of the last successful 
SYNCPT. For BACKOUT prior to the first 
SYNCPT call, the CD bit is restored to the 
Attach sender. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-41 



This page intentionally left blank 

.5.3-42 SNA LU 6.2 Reference: Peer Protocols 

,,,---. 
( . 

"'---· . 

(~ 

c 



CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS 

INTRODUCTION 

This chapter presents an overview of LU serv­
ices for the LU control operator, and in par­
ticular describes those services contained in 
the presentation services components of the 
LU and in LU service transaction programs. 

FUNCTION SUMMARY 

The control operator is represented to the LU 
by a control-operator transaction program 
which invokes operator functions by issuing 
LU-defined control-operator verbs. The 
relationship between the control-operator 
transaction program and the control operator 
is implementation-defined and is not deter­
mined by SNA. Throughout this chapter, the 
terms control-operator and control-operator 
transaction program are used synonymously. 

The control-operator transaction program dif­
fers from application transaction programs in 
its focus on control-operator concerns and 
its privileged access to the control-operator 
verbs. 

The functions available to the control oper­
ator and the control-operator verbs that 
invoke them are described in SNA Transaction 
Programmer's Reference Manua-1-for LU Type 
6. 2. That book is a prerequisite to this 
chapter. 

The control operator describes and controls 
the availability of certain resources. The 
particular functions and corresponding 
control-operator verbs are: 

• To describe the network resources 
accessed by the local LU, such as trans­
action programs, partner LUs, and mode 
names. The relevant verbs are: 

CONCEPTS AND TERMS 

This section describes some of the concepts 
and terms used throughout this chapter. 

• 

DEFINE 
DISPLAY 

To control the number of sessions between 
the LU and its partners. The relevant 
verbs are: 

INITIALIZE_SESSION LIMIT 
RESET_SESSION_LIMIT 
CHANGE_SESSION_LIMIT 
ACTIVATE_SESSION 
DEACTIVATE_ SESSION 

• To invoke local processing on behalf of a 
control-operator verb issued at a remote 
LU. The relevant verb is: 

PROCESS SESSION LIMIT I This verb is 
not available to the local operator, 
but is issued from within the LU.) 

STRUCTURE SUMMARY 

This chapter describes two LU components for 
control-operator functions: presentation 
services for the control operator IPS.COPRJ, 
a componentof-pi=esentation services, and the 
CNOS service transaction program ICNOS serv­
ice TP J. It also describes the functional 
relationship of these components to the 
installation- or implementation-defined 
control-operator transaction program, to the 
LU resources manager IRM--see Chapter 31, to 
presentation services for conversations 
I PS. CONV--see Chapter 5. 0 and Chapter 5. ll, 
and to ha! f-sessions I HS--see "Chapter 6. 0. 
Half-Session"). 

Figure 5.4-1 on page 5.4-2 shows the struc­
tural relationship of these components I see 
Chapter 2 for the complete structure of the 
LU). 

OPERATOR 

The control-operator transaction program is 
an implementation-defined transaction program 
that interacts with presentation services on 
behalf of, or in lieu of, a human operator. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-1 



r: :c~t~~i.:.::::: 
.------> .. Operator •.••• 

. • Transaction .. 

. . Program .•..•. 

CNOS 
Service 
Transaction 
Program 

···················· ........ .___....,... ______ .... 
. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. .------

.Presentation 
•.. Services .. 
•. Initiali- .. 
... zation .... 

'-----A----' 

. [ v v .. 
: •. Presentation Services Verb Router .. :: 

: : : : : : : : : : : : : : : : : : : : .............. -J~· : : 
Presentation 
Services 
for the 
Control 
Operator 
IPS.COPRJ : : : : : : : : : : : : : : : [ 

: : : : : : : : : : : : : : : . ..._ ... - ... - ... -... -... _Ir---'_ ... :: 

""l ~-· ..•. Presentation Services for ....•. 
. . • . Conversations I PS. CONV). . . . . . • . 
• • A •• 
........................ I ........... . 
.......•• Presentation Services IPSJ •• 

.....................•.......... ,__ ____ ------··-----------~ ------~ 
.---------. .i:::::::::::::: 
.••. Resource ..•. <---------' . . . . . . . . . . . . ...................... . 
...• Manager ••... <--------------~ ....................... . 
• . • . • • • • • • . IRMJ. . 

: .................. : : : : :: :: :: :: : : : : :: : : :: : : :: :: :: ::::::::::Lill§• ....... --~~-· ....... ::: : : : : : 
• . • . . . • . . • . . . • • . • . • . . • • • . . • . . . . . . . . . . . . . . . . . . . . . . • . . • • • . . • • . •.••.•. LU-LU.. . • . • . • . . •••••.. 

• • • • . • . LU Services Manager . . . . • . • • • • . . . . . • . • • . • • • • . • • • . • . . • • . • • • • • •••• Half-Session.. . . . • •.••••. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • A •••••••• 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : I : : : : : L.~~i~~i · L.~i i: : 
v 

Path Control Network 

Note: Unshaded components are described in this chapter. 

Figure 5.4-1. Control-Operator Components in Relation to Other Components of the LU 

5.4-2 

The control-operator transaction program 
interacts with presentation services by issu­
ing control-operator verbs to control the LU 
or to control the interactions of the LU with 
a partner LU. 

SNA LU 6. Z Reference: Peer Protocols 

A control-operator verb is a privileged verb 
that may be issued~ the control-operate~, 
transaction program to convey the operator! 
request to the internal components of the u'h__,, 
Control-operator verbs are described in SNA 



C. 
, 

Transaction Programmer's Reference Manual for 
LU Type ~· 

SCOPE OF CONTROL-OPERATOR FUNCTIONS 

LU control-operator-verb functions vary in 
scope. 

Control-operator local functions affect only 
that LU whose control operator issues the 
control-operator verb, or they affect a ses­
sion with another LU but take effect without 
the concurrent participation of a 
control-operator transaction program at the 
other LU. These functions include describing 
LU-accessed resources, regulating the number 
of sessions with single-session LUs, and 
activating and deactivating specific ses­
sions. 

Control-operator distributed functions affect 
the relationship between the LU at which the 
control-operator verb is issued (called the 
source LU J and another LU with which it 
shares one or more sessions !called the tar­
get LUJ. The functions take effect only with 
the cooperation of transaction programs 
representing the control operators at the two 
LUs. These functions involve primarily regu­
lating the number of parallel sessions with 
other LUs, including orderly increase from no 
sessions and decrease to no sessions; they 
are called change-number-of-sessions ICNOSJ 
functions. 

A control-operator verb for distributed func­
tions may be issued at either LU. Thus, the 
roles of source LU and target LU are relative 
to a particular verb issuance: a particular 
LU may be source LU for·one issuance and tar­
get LU for another. 

LU-ACCESSED NETHORK RESOURCES 

The control operator describes to the local 
LU those network resources accessed from the 
local LU !LU-accessed network resources). 
The following resources are described. 

• The local LU itself 

• Transaction programs available for exe­
cution at this LU 

• Partner LUs: The remote LUs with which 
this LU can have sessions 

• Modes: defined sets of characteristics 
for sessions with particular partner LUs 
(One or more modes are defined for each 
potential partner LU.J 

The control operator also controls the number 
and availability of the following resources: 

• Sessions with particular partner LUs. 

Each LU resource is identified to the opera­
tor either implici Uy or by a resource key 

such as a transaction program name, a partner 
LU name, a mode. name, or a session identifi­
er. 

Each LU resource is described by the LU defi­
nition that characterizes the way the LU can 
use it. For example, these include trans­
action program characteristics such as avail­
ability status and optional functions 
supported; LU capabilities such as parallel 
sessions; mode name attributes such as ses­
sion limits, RU size bounds, and 
cryptography; and control point capabilities 
such as !NIT llogonl formats supported. 

SESSION CHARACTERISTICS 

Session Identification 

Most control-operator verbs do not specify a 
specific session, but specify only the part­
ner LU and mode name for the session; the 
implementation selects the particular ses­
sion. Some verbs, however, can reference a 
specific session by specifying an 
implementation-supplied unique session ID. 

Single vs. Parallel Sessions 

An LU can be characterized by the number of 
sessions it allows with other LUs. A 
single-session LU can have only one LU-LU 
session with a given partner LU. A single 
session LU may have more than one session 
concurrently, but each concurrent session is 
with a different partner. A parallel-session 
LU can have one or more concurrently active 
sessions with a given partner LU, subject to 
session limits discussed below. 

The term parallel session denotes any session 
between a pair of parallel-session LUs, even 
if only one such session is currently active. 
This contrasts with the term single session, 
which denotes a session betweena pair of 
single-session LUs or between a 
single-session LU and a parallel-session LU. 
A parallel session--even a solitary parallel 
session--uses protocols different from those 
used on a single session. 

Contention Polarity 

Sessions are also characterized by their con­
tention polarity. This determines whichOf 
the two LUs has the right to control use of 
the session. If two LUs attempt to initiate 
a conversation on the same session simultane­
ously, the LU that is contention winner for 
that session will succeed and the other, the 
contention loser, will fail. 

Hhen used in reference to sessions, these 
terms are relative to the perspective of one 
of the LUs: a session for which an LU is the 
contention winner is called a 
contention-winner session from its perspec-

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-3 



5.4-4 

tive, but it is a contention-loser session 
from the perspective of the partner LU. 
Unless otherwise specified, the perspective 
used in this chapter is that of the LU at 
...tiich a relevant control-operator verb is 
issued. 

SESSION LIMITS AND COUNTS 

The number of active sessions between two LUs 
fluctuates as a result of transaction program 
demand and explicit operator action. The 
number of sessions active at any given time 
is called the session count. 

The maximum number of sessions allowed 
between LUs is set dynamically by the LU 
operators. This number is called a session 
limit. Several session limits may be speci­
l"ieCrby the operator. 

The total LU-LU session limit is the maximum 
number of W-LIT sessions allowed by the local 
LU. If this limit is 1, the LU is a 
single-session LUJ if it is greater than 1, 
the LU is a parallel-session LU. This limit 
regulates the total LU-LU session count. 

The operator can regulate the number of ses­
sions between the LU and a particular partner 
LU, and hence the number of transactions that 
can be active concurrently using that pair of 
LUs. 

The ( LU,mode l session limit specifies the 
currently allowed maximum number of sessions 
with a speci fie partner LU using a speci fie 
mode name. This limits the corresponding 
ILU,model session count, i.e., the number of 
currently active sessions with that partner 
LU, using .that mode name. One such limit and 
count exist for each mode name that is 
defined for each potential partner LU. 

In this chapter, unless otherwise specified, 
the unqualified terms "session limit" and 
"session count" refer to the ( LU,mode) ses­
sion limit and count, respectively. 

For parallel-session connections, other lim­
its regulate the !LU,mode) session count 
within the (LU,model session limit. 

The operator can assure that each LU can 
allocate a minimum share of the concurrent 
corwersations by setting limits on session 
contention polarities. 

The local-LU minimum contention-winner limit 
is the minimum number of sessions with a par­
ticular ILU,model pair for which the local LU 
is allowed to be the contention winnerJ the 
partner-LU minimum contention-winner limit is 
the minimum number of sessions with that 
I LU,mode) pair for which the partner LU is 
allowed to be the contention-wimer. Hhen 
activating a session, each LU selects a 
contention-polarity for the session that is 
consistent with these limits, i.e., it does 
not encroach on the partner's allowed con­
tention wimer sessions. 

SNA LU 6.2 Reference: Peer Protocols 

The operator can specify that a certain num-
ber of sessions be activated whenever the c 
rele':'a".'t limits allow, withou~ waiting for ' 
explicit requests for each session. _ .·· 

The automatic-activation limit is the maximum 
number of sessions thatlhe local LU may 
activate in the absence of explicit requests 
from transaction programs or the operator. 

SESSION BRINGUP AND TAKEDOHN 

Phases 

The following four phases of session bringup 
and takedown activities exist, although some 
phases are omitted in some circumstances. 

Session-limit initialization and reset con­
sists of issuing control-operator verbs to c 
specify the number of sessions the LU can 
have with a given partner, and to specify .. J 

conditions for their activation and deacti­
vation. 

Session initiation and termination consists 
of control-point activity that mediates 
requests for session activation and deacti­
vation, such as issuing INITIATE IINIT_SELF) 
and CONTROL INITIATE I CINITl or TERMINATE 
ITERM_SELFl RUs. 

Session shutdown consists of the LU activity~ 
to terminate conversation activity (brackets 
on the session by issuing BRACKET INITIATION\., ___ / 
STOPPED IBIS) RUs. 

Session activation and deactivation consists 
of exchanging the BYriiii or UNBIND request and 
response RUs between the LUs. 

Control-Operator Functions 

The operator can cause an orderly deacti- (~, 
vation of sessions between a pair of LUs by\ 
specifying that the (LU,model session limits'-.__­
be reset to O. 

The operator can also specify whether to 
drain (i.e., satisfy) pending allocation 
requests before deactivating sessions. It 
can specify drain separately for each of the 
source and target LUs. If drain is specified 
for an LU, that LU continues using sessions 
until there are no further 
transaction-program allocation requests for a 
session. If drain is not specified, the LU 
shuts down and deactivates the sessions as 
soon as the current transactions finish. 

The operator can specify session-deactivation 
responsibility, i.e., it can request that 
either the source LU or the target LU take 
responsibility for any session deactivations 
required as a consequence of a particular ( 
verb issuance. Session limit decreases might\ 
leave the current session count in excess of"-----' 
the new limits. In this case, the LU with 
session-deactivation responsibility computes 



( --. 
\ 

./ 

(_) 

c 

a termination count, which is the number of 
sessions it must deactivate to reach the new 
limits. Each LU has its own termination 
count, i.e., one LU could be responsible for 
deactivating sessions to one limit, but 
before it had done so, a subsequent verb 
could make the partner LU responsible for 
deactivating sessions from that limit to a 
newer limit. 

ILU,MODEJ ENTRY 

The LU maintains an ILU,model entry for each 
defined combination of partnerw and mode 
name. This describes the dynamic relative 
state of the local and partner LU for that 
mode name. This includes the session limits, 
session counts, drain state, and termination 
count. 

DISTRIBUTED OPERATOR CONTROL 

Change number of sessions ICNOSJ is a 
control-operator distributed function to reg­
ulate the number of parallel sessions between 
a pair of LUs and to determine when sessions 
will be activated or deactivated. A CNOS 
verb issuance causes the source LU to negoti­
ate with the target LU to establish a mutual­
ly acceptable number of parallel sessions. 

To do this, the control-operator transaction 
program at the source LU initiates a distrib-

LOCAL FUNCTIONS AND SERVICES 

Local control-operator verbs update 
definitional and operational parameters at 
the local LU without the participation of the 
operator at the remote LU. 

LU DEFINITION VERBS 

LU definition verbs are local 
control-operator verbs-ulat define or display 
the locally-known characteristics of the 
local LU and of network resources it 
accesses. These resources and the principal 
characteristics that can be defined or dis­
played are: 

• Local LU: the fully-qualified LU name 
and the optional capabilities the LU sup­
ports such as parallel sessions and map 
names 

• Partner LUs: the various names of poten­
tial partner LUs: local LU name, 
fully-qualified LU name, and uninterpret­
ed LU name; the optional capabilities of 
the partner LU such as parallel sessions; 
and the list of mode descriptions for 
that LU. 

uted transaction, using a conversation, with 
the target LU. It uses the conversation to 
send a copy of the operator command to the 
partner LU and to receive a reply from the 
partner. 

At the target LU, the transaction program 
that constitutes the partner for this trans­
action is the CNOS service transaction pro­
gram I CNOS service TP J, which issues 
complementary control-operator verbs to 
receive the command and send a negotiated 
reply. The negotiation uses an 
implementation-defined algorithm that does 
not depend on interaction with a human opera­
tor, i.e., it can run unattended, but it may 
use values supplied by that operator by ear­
lier verb issuances, e.g., from LU definition 
verbs. The CNOS service TP may, however, use 
non-interactive implementation-defined means 
to inform the operator of any changes. 

Each program then changes its session limits 
and performs its local responsibility for 
deactivati~g sessions. 

The CNOS transaction requires use of a ses­
sion. In order to allow operator commands to 
be exchanged regardless of the state of ses­
sion traffic between the LUs, an SNA-defined 
mode name, SNASVCMG, is dedicated to sessions 
for the control-operator transactions. Each 
LU supports one session of each contention 
polarity for this mode name with each active 
partner LU. Thus, an LU can always obtain a 
contention-winner session to send a CNOS com­
mand to its partner. 

• Modes: the mode name and optional func­
tions that are supported by a partner LU 
on a mode basis, such as sync point; and 
session parameters that characterize this 
mode, such as maximum RU size, pacing 
counts, and cryptography. 

• Transaction programs: the transaction 
program name, its availability, and the 
optional functions that it supports such 
as map names and sync point. 

The LU definition verbs consist of four 
DEFINE verbs I DEFINE LOCAL LU, 
DEFINE_REMOTE_LU, DEFINE_MODE; - and 
DEFINE_TP J, four DISPLAY verbs IDIS­
PLAY_LOCAL_LU, DISPLAY_REMOTE_LU, DIS­
PLAY MODE, and DISPLAY TP J, and one DELETE 
verb~ See SNA Transaction Programmer's Ref­
erence ManuaT for LU Type 6.2 for detailed 
descriptions of"tiiese verbs. --

LOCAL SESSION-CONTROL VERBS 

Local session-control verbs are local 
control-operator verbs thatSet the session 
limits, contention polarity, and drain spec­
ification for single-session mode names and 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-5 



for mode name SNASVCHG, or that activate and 
deactivate single or parallel sessions for 
any mode name. 

The local session-control verbs are the fol­
lowing. 

• INITIALIZE_SESSION_LIMIT sets the 
tLU,model session limit to allow one ses­
sion, for a single-sessions mode name, or 
to allow one session of each contention 
polarity, for the parallel-session mode 
name SNASVCMG. This allows a session to 
be activated when requested by a trans­
action program, or to be activated imme­
diately (automatic activation) if so 
specified by a previously issued LU defi­
nition verb. It also specifies the con­
tention polarity to be selected when a 
session is activated by the local LU and 

DISTRIBUTED FUNCTIONS AND SERVICES 

5.4-6 

CHANGE NUMBER OF SESSIONS VERBS 

Change number of sessions (CNOS) 
control-operator verbs specify the maximum 
number of parallel sessions between two LUs, 
and, by implication, allow or require ses­
sions to be activated or deactivated. The 
verbs also specify the minimum number of ses­
sions allowed with each contention polarity. 
The verbs further specify whether the ses­
sions are to be activated or deactivated 
immediately or according to the needs of 
transaction programs, and which LU is respon­
sible for activating or deactivating sessions 
to attain or maintain the number of sessions 
within the agreed limits. 

CNOS verbs are distributed-function 
control-operator verbs; they take effect only 
with the mutual participation of both the 
control operator at the source LU and the 
CNOS service transaction program at the tar­
get LU, which enforces constraints previously 
specified by the control operator at that LU. 

The CNOS verbs are: 

• INITIALIZE_SESSION_LIMIT 

• RESET_SESSION_LIMIT 

• CHANGE_SESSION_LIMIT 

• PROCESS_SESSION_LIMIT 

SNA LU 6.2 Reference: Peer Protocols 

the contention-polarity negotiation rule _ 
to be used when a session is activated by("· 
a remote LU. 

• RESET_SESSION_LIMIT sets the tLU,model 
session limits to 0 to cause deactivation 
of any currently active sessions and to 
disallow any further session activations. 
It also specifies the drain mode, fndi­
cating whether sessions are to be deacti­
vated immediately or only when there are 
no remaining requests for their use. 

• ACTIVATE_SESSION requests immediate acti­
vation of a session. 

• DEACTIVATE_SESSION requests deactivation 
of a specific session. IThis is the only 
control-operator verb that explicitly 
identifies a specific session.) 

tThe INITIALIZE SESSION LIMIT and 
RESET SESSION LIMIT ~erbs are included in 
both -the loc;l verbs and CNQS verbs. They 
are distinguished by the characteristics of 
their specified mode name·') 

CNOS verbs control the number of parallel 
sessions by setting the CLU,mode) session~ 
limit; this limits the correspondin1: ' 
I LU,mode) session count. '\_ __ / 

A CNOS verb identifies the particular 
CLU,mode) entry that it affects, or it indi­
cates that it affects all C LU ,mode) entries 
for a given partner LU name. In the latter 
case, it affects all the I LU ,mode) entries 
for the specified LU in the same way, e.g., 
it applies the same drain specification and 
session-deactivation responsibility to all 
sessions. 

r". 
FUNCTIONAL RELATIONSHIPS FOR DISTRIBUTED VERB\ __ ,.­
PROCESSING 

The complete processing function for a CNOS 
verb issuance is distributed among several 
components at both the source and the target 
LUs. Figure 5.4-2 on page 5.4-7 illustrates 
the relationships among the major LU compo­
nents involved in processing a CNOS verb. 
Different components are active at the source 
and target LUs; only the components active 
for the LU's role are shown for that LU. 

c 



c. Source LU Target LU 

Control Operator 
A 

I 
.--~~~-v~~~~~ 

Control Operator 
Transaction 

Program 

T 

I 
.--~~~-v~-~~~ 

PS.COPR 

Control Operator 
A 

l 
CNOS Service 
Transaction 

Program 
X'06Fl' 

T 

I 
.----~-v·-----. 

l 
> Transaction 

J Program 

l 
> PS.COPR I Source-LU 

Session-Limit 
Services) < v > 

PS.COPR 
!Target-LU 

Session-Limit 
Services) J 

I 
.--~-~-v----~ 

PS.CONY 
~~---A----~ 

ILU, 
mode) 

entries 

I LU, 
mode) 

entries 

.------v· 
Resources 

Manager 
IRMJ 
A 
I 

I 
.---~~-·v----~--. 

.PS.CONV 
~-~~-A--~-~ 

l Presentation 
> Services for 

J Conversations 

L. 
> Services 

v----. 1-r 

Source Half-Session 
• 

Session 
Manager 

ISMJ 

Target Half-Session 
• 

Half­
Session 
Services 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
LEGEND: 

- - -> Call/return relationship lwithin a process) 
<~-> Send/receive relationship (between processes) 
•.••• > Access to shared data !within the LUJ 
<••••> TransactiQl'l program interaction (between LUsJ 

Figure 5.4-2. LU Component Relationships for Distributed Session-Control Verbs 

OPERATION PHASES 

Hhen the LU control operator invokes a CNOS 
function, the source and target LUs perform 
the following f1..nCtions, in four phases. 

1. Operator Phase--Control-Operator Trans­
action Program 

At the source-LU, the control-operator 
transaction program receives a CNOS 
request from the LU control operator I in 
an implementation-defined way) and, on 
behalf of the LU control operator, issues 
a CNOS verb. The appropriate CNOS verb 

invokes PS.COPR; this begins the next 
phase. 

Further details appear in 
"Cantrol-Operator Transaction Program" on 
page 5.4-22. 

2. Negotiation Phase--PS.COPR 

PS.COPR at the source LU initiates a con­
versation with PS.COPR at the target LU, 
via the CNOS service transaction program 
at the target LU. Using the conversa­
tion, the source LU sends a change number 
of sessions GDS variable ICNOS command) 
carrying an encoding of the parameters 
that were specified in the CNOS 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-7 



5.4-8 

control-operator verb. The target LU 
receives the CNOS command, negotiates 
acceptable session limits, drain specifi­
cation, and session-deactivation respon­
sibility, and sends the acceptable values 
of the parameters back to the source LU 
in another change number of sessions GDS 
variable I~~). 

The two LUs then terminate their conver­
sation and make the agreed-upon changes 
to their respective I LU,mode) entries. 
Each LU then dei:ermines whether it is 
responsible for changing the session 
count, and if so, notifies its resources 
manager that the limits have been 
changed. 

This phase is performed synchronously 
with the transaction program issuing the 
CNOS verb, i.e., it completes prior to 
return of control to the control-operator 
i:ransaction program. Further details 
appear in "Session-Limit Services at the 
Source LU" on page 5.4-25 , "CNOS Service 
Transaction Program" on page 5.4-22, and 
"Session-Limit Services ai: the Target LU" 
on page 5.4-28. 

3. Action Phase--Resources Manager 

The resources manager (RM) at each LU 
receives the session-limits-change 
notification I CHANGE_SESSIONS) from 
PS.COPR. RM determines whether any ses­
sion activations or additional deacti­
vations are required to bring the session 
count within the new session limits. If 
so, it performs the necessary session 
shutdown and issues requests for session 
deactivation to the session manager ISM). 
For example: 

• 

• 

• 

• 

If the current session count is less 
than the minimum contention-winner 
limit and is also less than the 
automatic-activation limit, RM 
requests activations to reach the 
lower of these limits. 

If the (LU,mode) session limit is 
decreased and the current session 
count is between the previous limit 
and the new limit, RM shuts down and 
requests deactivation of the number 
of sessions necessary to reduce the 
session count from the present value 
to the new limit. 

If the ILU,model session limit was 
decreased but the current session 
count is above the previous limit, RM 
requests the additional deactivations 
necessary to reduce the session count 
from the previous limit to the new 
limit I the RM with 
session-deactivation responsibility 
for the previous limit continues to 
request the deactivations that are 
necessary to reach that limit). 

If the session count for either con­
tention polarity encroaches on the 

SNA LU 6.2 Reference: Peer Protocols 

4. 

minimum contention-winner limit for 
the opposite polarity, RM requests r·. 
deactivations sufficient to allow the \....____. 
minimum of each polarity, even if 
this would reduce the ILU,model ses-
sion count below the ILU,model limit. 

Hhen RM determines that some sessions 
must be deactivated, it might be thai: a 
sufficient number of sessions are not 
immediately free. So, each RM maintains 
a count, the termination count, of the 
number of sessions for WFUCFi it has 
session-deactivation responsibility. It 
increments this count whenever a limits 
change requires the LU to deactivate 
additional sessions. It decrements this 
count when it requests a session deacti­
vation. 

If the termination count is not o, and 
the mutually-accepted drain specification c 
so indicates, RM performs drain action, 
i.e., it continues to initiate conver:sa- · 
tions until no requests for new conversa­
tions for the specified LU name and mode 
name are pending from any transaction 
program. 

Hhen drain action is completed, or if it 
was not requested, RM selects sessions of 
appropriate contention-polarity to be 
deactivated. It then shuts down all 
traffic on each selected session: after 
each partner LU ends its last bracket, it(·-·°' 
sends the BIS RU; when the partner , 
receives this, it knows that there are no\.__./ 
more brackets in transit from its part-
ner. RM then issues requests to the ses-
sion manager to deactivate the selected 
sessions. 

This phase is performed asynchronously 
with the transaction program issuing the 
CNOS verb. I Details of these functions 
are discussed in Chapter 3.) 

Enforcement Phase--Session Manager r--
Hhenever the session manager I SM) \. ___ .~ 
receives a request to activate a session 
from RM or from the remote LU lvia the 
PU), it checks the current session counts 
and session limits to determine whether 
another session of that contention polar-
ity is allowed. IThe resources manager 
also assists in limits enforcement by 
checking the current counts and limits 
before issuing session activation 
requests.) If another session is 
allowed, SM issues the appropriate BIND 
or response to BIND; otherwise, it 
rejects the request. 

Hhenever the session manager receives a 
request to deactivate a session, it 
issues UNBIND or response to UNBIND. 

This 
with 
CNOS 
I For 
4.) 

phase is performed asynchronouslyc· 
the transaction program issuing the 
verb and after the action phase. 
details of this phase, see Chapter 



C·. 
/ 

(_ 

r' 
~) 

Control­
Operator 
Transaction 
Program 

PS.COPR at 
Source LU 

I Information 
Exchanged! 

PS.COPR at 
Target LU 

CNOS 
Service 
Transaction 
Program 

o-~~~~~~~~~,o-~~~~~~~~~~~~~~~~~~~~-o-~~~~~~~-o 

1 o * SESSION LIMIT 
I (~ctivate; PS.COPRl 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

- - - - - - - ->o 
o ALLOCATE 

TPNIX'06Fl' l 

o GET_ATTRIBUTES 
o GET_TP_PROPERTIES 

Attach 
- - - - - -> o ICNOS service 

.TP invoked! 
• (activates 

PS.COPRl 
.<- - - - - -

o GET_TYPE 

o PROCESS_SESSION 
_LIMIT 

o GET_ATTRIBUTES. 

o SEND_DATA 
DATAlcommandl 

CNOS command o RECEIVE AND HAIT 
- - - - - ->. DATA=co;mand 

Change Direction o RECEIVE_AND_HAIT 
o RECEIVE_AND_HAIT - - - - - - - - - ->. HHAT_RECEIVED=SEND 

CNOS reply 
DATA=reply <-

Deallocate-normal o RECEIVE_AND_HAIT 
RETURN_CODE= <­

DEALLOCATE_NORMAL 

o DEALLOCATE 
TYPEILOCALl 

o (updates limits; 
informs resources manager) 

o (negotiates limits! 

o SEND DATA 
DATAlreplyl 

o DEALLOCATE 
TYPEINORMALl 

o (updates limits; 
informs resources manager) 

14 o I informs operator) o (informs operator) 

Notes: 
.-----rile figure shows the verbs issued and their most significant parameters. 
• Numbers in the left column refer to the explanation in the text. 
• Arrows represent information exchange resulting from verbs issued by the two transaction 

programs. (for an explanation of the actual message units exchanged, see Figure 5.4-4 on page 
5.4-10.) 

Figure 5.4-3. Sequence of Verbs and Information Exchange in CNOS Transaction Programs 

CNOS TRANSACTION 

The control-operator transaction program and 
the CNOS service transaction program, togeth­
er with their corresponding PS.COPR compo­
nents, process a distributed transaction to 
exchange the CNOS command and reply. The 
sequence of basic conversation verbs issued 
by PS.COPR at the source and target LUs is 
shown in ,figure 5.4-3. The following com­
ments correspond to the numbered steps in 
that figure. 

1. The control-operator transaction program 
at the source LU issues one of the 

control-operator verbs INITIAL­
IZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, 
or RESET SESSION LIMIT. This activates 
PS. COPR -;.t the - source LU ( source-LU 
session-limit services, abbreviated 
SSLS l. SSLS builds the CNOS command and 
issues a sequence of conversation verbs. 

2. The source LU issues ALLOCATE to initiate 
a conversation with the target LU and to 
build an A Hach FM header to invoke the 
CNOS service transaction program !having 
TP name X' 06Fl' l. Hhen the target LU 
receives the Attach, it initiates the 
CNOS service transaction program. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-9 



3. 

4. 

5. 

6. 

The CNOS service TP issues the PROC­
ESS SESSION LIMIT verb. This activates 
PS. COPR at- the target LU C target-LU 
session-limit services, abbreviated 
TSLSJ, which issues a sequence of conver­
sation verbs complementary to those being 
issued at the source LU. 

The source LU issues GET ATTRIBUTES and 
GET_TP_PROPERTIES to get the partner's LU 
name and its own LU name to resolve races 
between contending CNOS commands. 

TSLS issues the GET TYPE verb to verify 
that this is a basic -conversation. 

Hhen the reply arrives at the source LU, 
the RECEIVE AND HAIT verb previously 
issued by SsLS- coq>letes, and SSLS 
receives the reply. 

11. TSLS issues DEALLOCATE to end the conver­
sation. This sends an indication to the 
source LU that the conversation is ended. 

Hea....,hile, SSLS issues RECEIVE AND HAIT 
to receive the deallocation notification. 

12. SSLS issues DEALLOCATE to complete its 
processing of the conversation. 

13. Now both SSLS and TSLS have a copy of the 
negotiated reply record containing the 
agreed-upon limits, drain specification, 
and deactivation responsibility. They 
each update the session limits in their 
local data structures and inform the 

TSLS issues the GET_ATTRIBUTES verb to 
verify that the attributes of the conver­
sation are those expected, and to get the 
partner LU name. The latter is used to 
resolve races between contending CNOS 
commands. resources manager. ~ 

7. SSLS issues SEND DATA to send the CNOS 
command to TSLS. 

14. Hhen SSLS and TSLS have finished process- \_. ~· 
ing the CNOS reply, they return control _ ___, 

8. 

Mea....,hile, TSLS issues RECEIVE_AND_HAIT 
to receive the command. 

SSLS issues RECEIVE AND_HAIT to receive 
the reply from SSLS. This verb has the 
added effect of sending a 
Change-Direction indication to TSLS, giv­
ing TSLS permission to send. 

to their respective callers, the trans­
action programs that issued the CNOS 
verbs. These transaction programs then 
perform any further 
implementation-defined actions, such as 
notifying the LU operators of the change. 

If, during the conversation, either LU 
detects a message unit or return code that 

Meanwhile, 
to receive 
cation. 

TSLS issues RECEIVE AND HAIT 
the Change-Directi~n indi-

does not conform to this protocol, it termi­
nates the conversation by issuing DEALLOCATE("°"".' 
TVPEIABENDJ (not shown in Figure 5.4-3), and , 
the partner responds with DEALLOCATE _, 

Notes: 

9. TSLS negotiates the proposed session lim­
it parameters and builds the CNOS reply. 

10. TSLS issues SEND DATA to send the reply 
to SSLS. 

Source LU 
Half-Sess~on 
0 

TVPECLOCALJ. 

For further information .on verb usage, see 
SNA Transaction Programmer's Reference Manual 
for LU Type ~· 

Target LU 
Half-Session 

0 

.*BB, RQEl, CD, FHH-5CAttach TPN=X'06Fl'J, GDSID=X'l210', command data 

RQEl, CEB, GDSID=X'l210', reply data 

~ch arrow represents a chain, which coinprises one or more request 1i1its. 
• FHH-5CAttach TPN=X'06Fl'J is the encoding of the Attach from the ALLOCATE verbs. 
• Request-header indication CD is the encoding of Change Direction. 
• GOS ID=X'l210' distinguishes ·the CNOS command or reply record from other GOS variables. 
• Request-header indication CEB is the encoding of Deallocate-normal. 
• These flows are generated by the CNOS transaction as illustrated in Figure 5.4-3 on page 5.4-9. 

Unless errors occur, the CNOS transaction always generates the same flow. 

Figure 5.4-4. CNOS External Message-Unit Flows 

5.4-10 SNA LU 6.2 Reference: Peer Protocols 

c 



c/ 

( -· .. 

,__../ 

c \ 

CNOS EXTERNAL MESSAGE-UNIT FLOHS 

The CNOS transaction presented in "CNOS 
Transaction" on page 5.4-9 causes other LU 
components to generate the request chains 
shown in Figure 5.4-4 on page 5.4-10. This 
is the external representation of the infor­
mation exchanged by the verbs. 

Exactly one bracket is initiated for each 
CNOS verb issued at the. source LU. The 
bracket consists of exactly two chains, each 

•••••••••••••••••••••••• 
• 
• PS.INITIALIZE 
• 
• CNOS 
• Service 
• Transaction 
• Program 
• X'06Fl' 
• 
• Target-LU 
• Session-

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• • • • • • • • • • • • • • • • •• • > ILU, 

containing 
sions GOS 
reply). 

exactly one Change Number Of Ses­
variable I CNOS command or CNOS 

A single CNOS verb generates only one chain 
in each direction, even if MODE NAMEIALL) is 
specified. In that case, the ~erb affects 
all mode names the same, e.g., there is a 
single negotiated response, and all lnew) 
session deactivations have the same drain 
status and session-deactivation responsibil­
ity. 

• ••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

PS.INITIALIZE 

Control-Operator 
Transaction 

Program 

• Limit 
lSLDLMj 

"l • I mode) • 

Source-LU 
Session­
Limit 
Services 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• Services • •••••••••••••••••• > entries < ••••••••.•••••••••• 
• PS.COPR 
• 
• PS.CONV 
• A 

< 
_J • 

• 
• 

• CNOS Target • 
• Transaction Program • 
• Process • 
······~···· ........... . 

••••••••••• •••••••••••• 

j I 
v 

I ~ 
DFC 

TC 
A 

• Target Half-Session • 
•••••••••••••••••••••••• 

• 
• 

..------> PS.COPR 

• •••••••••••••••••••••••••••••••••••• 
• 1 v v=-i ·: : L Resources Manager ( RM) _J 

••••••••••••••••••••••••••••••••••••••• 

PS.CONV 
• 
• 
• ~---~A.----~ 
• CNOS Source • 
• Transaction Program • 
• Process • 
••••••••••••••••••••••• 

• •••••••••••••••••••••• 

~ I 
v 

I j 
DFC 

TC 
A 

• Source Half-Session • 
• ••••••••••••••••••••••• 

• 
• 

<••············ ··············••> Ito source LU) 

LEGEND: 
juxtaposed boxes: Call/return relationship !within a process) 
<--> Send/receive relationship !between processes) 
••..• > Access to shared data 
•••••• Process boundaries 
<••••> Transaction program interaction (with transaction programs at other LUs) 
SLDLM session-limit-data-lock manager 

Note: Verb routers have been omitted. 

Figure 5.4-5. CNOS Process Interactions at a Single LU 

THE CNOS PROCESS RELATIONSHIPS Processes 

Ito target LU) 

The LU components that support the CNOS func­
tion are distributed among several processes, 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-11 



5.4-12 

as illustrated in Figure 5.4-5. 

The source transaction-program process con­
tains the control-operator transaction pro­
gram; this program interacts with the 
internal LU components by issuing 
control-operator verbs, specifically, INI­
TIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, 
and RESET_SESSION_LIMIT. 

The target transaction-program process con­
tains the CNOS service transaction program. 
This program interacts with the internal LU 
components by issuing the PROC­
ESS_SESSION_LIMIT verb. 

(The transaction programs also interact with 
the LU control operators in an 
implementation-defined way. l 

Each transaction-program process also con­
tains within PS.COPR a session-limit services 
component (source or tar.get), which processes 
the control-operator verbs. In processing a 
CNOS control-operator verb, session-limit 
services interacts with other LU components 
and, indirectly, with its peer in the partner 
LU, by issuing basic conversation verbs, 
e.g., ALLOCATE, SEND_DATA, RECEIVE_AND_HAIT, 
and DEALLOCATE. Session-limit services also 
accesses the ILU,model entries within the 
internal environment of the LU. 

Multiple CNOS transaction-program processes, 
and corresponding half-session processes, can 
be active concurrently at any LU. For exam-

SNA LU 6.2 Reference: Peer Protocols 

ple, both the local control operator and a 
remote control operator might issue a CNOS 
verb at about the same time. Or two remote 
operators might both issue CNOS to the same 
LU. The local LU implementation might even 
allow two control-operator transaction pro­
grams to be active at the same time. 

(Only one instance of the resources-manager 
process exists per LU.l 

Shared Data 

An ILU,model entry is a shared data structure 
owned by the LU process (not shown l. An 
( LU,mode l entry exists for each combination 
of mode name and potential partner LU. Each 
( LU,mode l entry contains the session limits 
and other CNOS parameters affected by the 
CNOS verbs, such as the drain status. I It 
also contains other fields not used by CNOS. l 

Each ILU,model entry also is associated with 
a session-limit-data lock field, that serves 
as a lock on that entry to prevent simultane­
ous changes to the entry by different 
control-operator verb issuances. The state 
of the session-limit-data lock is maintained 
by the session-limit-data-lock manager 
( SLD LM l , a PS . COPR component that each 
transaction-program process invokes to obtain 
or release exclusive use of an I LU,mode J 
entry. 

( 
\ 
'-··-

(~ 
"'--- _/ 



(, 

C: 
·' 

c 

TARGET 

••••••••••• 
• CNOS • 
• Target • 
• Trans- • 
• action • 
• Program • 
• Process • 
• (not • 
• active)• 
••••••••••• 

LU A 

I LU, 
mode) 

entries 

SOURCE 
UHl#UHUUI 
I ••••••••••• I 
I• CNOS •I 
I • Source • I 
I • Trans- • I 

< ••••• action• I 
I • Program • I 
I • Process • I 

~=••••A••••: : 
:···:~v···: ; I : 
••••••••••• ,.. I 

I •••••V••••• I 
I • Source • I 
I • Half- • I 
I • Session • I 
I •••••A••••• I 

TARGET 
nllHnlllllll 
:S ••••••••••• I 
I• CNOS •I 

LU B 

I• Target •I ILU, 
I • Trans- • I mode) 
I• action .••.• >entries 
I • Program • I 
I • Process • I 

: :••••A••••:-=-----i : I :, :··v:~····: 
I ••••••••••• 
I •••••V••••• I 
# • Target • # 
# • Half- • # 
I • Session • # 
# •••••A••••• # 

SOURCE 

• •••••••••• 
• CNOS • 
• Source • 
• Trans- • 
• action • 
• Program • 
• Process • 
• lnot • 
• active)• 
••••••••••• 

I • #11111111 • I 
I • • I 
I ••••••••••••••••••••••• I 
I # 
11#1#1#1#1#1#1#1#11111111#11111111111 

LEGEND: 
<--> 
••••• > 
111111 
•••••• 
<••••> 

Send/receive relationship !between processes) 
Access to shared data !within the LU) 
Transaction-handling boundaries 
Process boundaries 
Transaction program interaction !between LUs) 

Figure 5.4-6. Transaction Handling Component Relationships--Case l: Single Verb Issuance 

Transaction-Handling Process Relationships 

Single Verb Issuance: A single issuance of a 
CNOS verb uses unique instances of a 
control-operator transaction program process 
and half-session process at the source LU and 
of a CNOS service-transaction program proc­
esses and half-session process at the target 
LU. These processes have shared access to 
the single instances of the resources manager 
process and the set of I LU ,mode) entries at 
their respective LUs. These components, with 
the conversation between them, process a sin­
gle CNOS transaction, as illustrated in Fig­
ure 5.4-6 on page 5.4-12. 

Several different cases of process and trans­
action relationships can occur when two CNOS 

verbs are issued concurrently at a local LU, 
at two partner LUs, or at both a local and a 
partner LU. If the two verb issuances are 
not contending for the same ILU,model entry, 
both verb issuances complete concurrently lif 
no errors occur). But if the two verb issu­
ances are contending for the same I LU,mode) 
entry, one of the issuances will fail. 

To determine whether two transactions are 
contending for the same ILU,model entry, and 
if so, which one wins the contention, each 
transaction-program process invokes its 
session-limit-data-lock manager. Details of 
this contention detection and resolution are 
described in "CNOS Race Resolution" on page 
5.4-14. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-13 



LU A LU 8 

TARGET SOURCE TARGET SOURCE 
11######11~ 111111111111#11 .. 1111~.... 11111111111#111 
I ••••••••••• I I ••••••••••• I I ••••••••••• I I ••••••••••• I 
I • CNOS • I I • CNOS • I I • CNOS • I I • CNOS • I 
I • Target • I ILU, I • Source • I I • Target • I ILU, I • Source • I 
I • Trans- • I mode J I • Trans- • I I • Trans- • I mode J I • Trans- • I 
I• action ....• > entries< ...•. action• I I• action .•.•. > entries< .•••. action• I 
I • Program • I I • Program • I I • Program • I I • Program • I 
I • Process • I I • Process • I I • Process • I I • Process • I 
I• < I I > •I I• < > •1 
I •••••A••••• I I •••••A••••• I I •••••A••••• I I •••••A••••• I 

1 I 1 •••v••v•••• 1 I 1 1 I 1 •••v••v•••• 1 I 1 
I I • Rt1 • I I I I • Rt1 • I I 
I I ••••••••••• I I I I ••••••••••• I I 
I ·····v····· # I ·····v····· # I ·····v····· I I ·····v····· # 
I • Target • I I • Source • I I • Target • I I • Source • I 
I • Half- • I I • Half- • I I • Half- • I I • Half- • I 
I • Session • I I • Session • I I • Session • I I • Session • I 
I •••••A••••• I I •••••A••••• # I •••••A••••• I I •••••A••••• I 
I • I I • #11111111 • I I • I 
I•# # • • # #•I 
I • I # ••••••••••••••••••••••• # I • I 
I•# # # #•I 
I • I #1111#1111#1#111111#1111111###11#1111 # • I 
I • I # • I 
I • # # • I 
# • # # • I 
I • lll#l#llllll#l#l####l#lll#ll##l#l##l#l#l#lll#l###lll###l##l##l#lll##I • I 
# • • I 
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• I 
I I 
111#1##1#1#111111###1####11#11#11111#1#11###1#1##11#111111#111111111111111#11#1111#11111111111111 

LEGEND: 
<~~> Send/receive relationship !between processes) 
.••.• > Access to shared data !within the LUJ 
1#1111 Transaction-handling boundaries 
•••••• Process boundaries 
<••••> Transaction program interaction !between LUs) 

Figure 5.4-7. Transaction Handling Component Relationships--Case 2: Simultaneous Verb Issuances at 
Partner LUs 

5.4-14 

Simultaneous Verb Issuances at Partner LUs: 
Hhen the LU is concurrently processing a CNOS 
verb from both the local LU and from the 
partner LU, for either the same or different 
I LU ,mode) entries, both the source and the 
target processes are active at each LU, as 
illustrated in Figure 5.4-7 on page 5.4-13. 

Simultaneous Verb Issuances at the Same LU: 
If the local LU allows two CO'ntrol-operator 
transaction programs to be concurrently 
active, then if two CNOS verbs are issued 
concurrently at that LU, two source-LU' 

SNA LU 6.2 Reference: Peer Protocols 

transaction-program processes become active 
at that LU, as illustrated in Figure 5.4-8. 
If contention results, the process handling 
the later verb issuance will terminate with­
out initiating a conversation with its part­
ner. If no contention results, two source 
processes and transactions are active at the 
local LU. This case is not illustrated, but 
is similar to Figure 5.4-7 on page 5.4-13, 
with the roles of source-LU and target-LU 
appropriately reversed. 

C' 

c 

c 

c 



( --_) 

~/ 

(~. 

SOURCE 

••••••••••• 
• CNOS • 
• Source • 

LU A 

SOURCE 
1#1111111#11111 

TARGET 
1111111111111#1 

I ••••••••••• I I ••••••••••• I 
I • CNOS • I I • CNOS • I 

LU B 

ILU, I• Source •I I• Target •I ILU, 

TARGET 

• •••••••••• 
• CNOS • 
• Target • 

• Trans- • mode J # • Trans- • # I • Trans- • I mode) • Trans- • 
• action • • action ••••• > entries< ....• action•# # • action ..••. >entries 

• Program • # • Program • # I • Program • I • Program • 
• Process • I • Process • I I • Process • I • Process • 
• • 
• • 
••••••••••• ~:••••A••••: : : :••••A••••=-=-----i 

• lnot • 
• active)• 
• •••••••••• 

.(Note 1) :···;~v•••: ; I : : I : :••v;~··••: !Note 2) 

••••••••••• • I I I ••••••••••• 

I ·····v····· I I ·····v····· I 
I • Source • I I • Target • I 
I • Half- • I I • Half- • I 
I • Session • I I • Session • I 
I •••••A••••• I I •••••A••••• I 
I • 111111111 • I 
I • • I 
# ••••••••••••••••••••••• I 
I I 
111##11#11111##1111111111111111111#11 

LEGEND: 
<--> Send/receive relationship !between processes) 

Access to shared data !within the LUJ 
Transaction-handling boundaries 

••••. > 
111111 
•••••• Process boundaries 
<••••> Transaction pro~ram interaction !between LUs) 

Notes: 
~e CNOS source transaction-program process attempts to lock an ILU,mode) entry after another 

source transaction-program had locked it but had not yet unlocked it. The later process is 
denied the lock and recognizes the contention; it goes away. 

2. A target transaction-program process corresponding to the failing source process is never 
activated. 

Figure 5.4-8. Transaction Handling Component Relationships--Case 3: Simultaneous Verb Issuances at 
the Same LU 

CNOS RACE RESOLUTION 

Command Race 

Two LU control operators might simultaneously 
issue a CNOS verb affecting the same LU name 
and mode name. If such a verb is issued 
while another such verb at either the source 
or the target LU is in the negotiation 
phase, i.e., a prior instance of PS.COPR is 
active on either LU for the same ILU,mode) 
entry or entries, a command race has 
occurred, and one !but not both) of the verbs 
fails. 

If a verb ·is issued when a previous verb is 
in the action phase, i.e. , PS. COPR has 
already updated the ILU,mode) entry, but the 
resources manager and the session manager 
have not yet completed adjustments to the 
session count, an action race has occurred 
and neither verb fails. For details, see SNA 
Transaction Programmer's Reference tlcinual for 
LU Type ~ and Chapter 3 of this volume. --

Locking the ILU,mode) Entry 

Hhen a command race occurs, PS. COPR assures 
that exactly one of the commands completes 
successfully by observing a locking protocol 
for the ( LU,mode) entry. The session-limit 
services routines invoke a shared component, 
session-limit-data-lock manager ISLDLMJ, to 
prevent simultaneous access to an ILU,modeJ 
entry, to detect races, and to resolve 
double-failure race conditions. 

Source-LU session-limit services I SSLS) of 
PS.COPR tests and simultaneously sets the 
CNOS lock in the ILU,model entry by issuing 
LOCK to its SLOLM before allocating a conver­
sation to the target LU. If another instance 
of session-limit services has already locked 
the I LU ,mode J entry, SSLS returns an error 
code. It does not send the CNOS command to 
the target LU or modify the session-limit 
parameters in the ILU,mode) entry. 

If SSLS succeeds, target-LU session-limit 
services ITSLS) at the partner LU issues LOCK 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-15 



5.4-16 

to its SLDLM after receiving the CNOS command 
from the source LU. If TSLS finds the lock 
at its LU already set !for example, because a 
control-operator transaction program at its 
LU, acting as source LU, had simultaneously 
issued a CNOS verb), then TSLS sends the 
partner LU a CNOS reply with a reply-modifier 
value indicating that a command race was 
detected. It does not modify the 
session-limit parameters in the ILU,mode) 
entry. 

In some cases, two commands issued simultane­
ously from each LU could both be rejected. 
For example, each LU might issue its command 
before the other arrived. Each target 
session-limit services would then reject the 
command from the partner because its source 
session-limit services had a command out­
standing. This is called a double-failure 
race condition. To detect this case, SLDLM 
maintains another indicator, LOCK DENIED. 
This is set by TSLS when it ;ends a 
command-race-detected reply modifier. 

Hhen SSLS receives the reply from TSLS, it 
checks the reply to determine whether the 
partner LU rejected the command because it 
detected a race. If so, it also tests the 
session-limit-data lock to determine if, 
meanwhile, its LU, acting as a target LU for 
another CNOS command, has rejected a command 
from the partner LU. SLDLM determines this 
from the LOCK DENIED indicator. 
!LOCK_DENIED, together-with the receipt of a 
command-race-detected reply modifier, indi­
cates a double-failure race condition} 
either LOCK DENIED or command-race-detected 
alone does n~t represent a double failure.) 

Race Flows 

Example flows for the types of command races 
that can occur are shown in Figure 5.4-10 on 
page 5.4-17, Figure 5.4-11 on page 5.4-18, 
and Figure 5.4-12 on page 5.4-19. The flows 
for the no-race case are shown in Fig­
ure 5.4-9 for comparison. 

SNA LU 6.2 Reference: Peer Protocols 

In the figures: 

• The change number of sessions commands 
sent from each of the two LUs are on dif­
ferent conversations. 

• The columns labeled "Transaction-x" show 
the act ions performed by the CNOS 
transaction-program processes in process­
ing a CNOS verb issued by the control 
operator at LUa. 

• The columns labeled "Transact ion-y" show 
the actions performed in processing a 
CNOS verb issued by the control operator 
at LUb. 

• The column labeled "I LU ,mode) entry 
( LUb,ml" shows the changes made by the 
two transactions to the I LU,mode) entry 
for LUb, mode name m at LUa. 

• The colunn labeled "( LU,mode) entry ("" 
I LUa,m)" shows the changes in the corre- . _ _­
sponding I LU,mode) entry for LUa, mode 
name m at LUb. 

• MAX_SESS represents the session limit for. 
mode name m in the ILU,model entry. 

• SLD_LOCK represents the state I LOCKED, 
UNLOCKED, DENIED) of the 
session-limit-data lock. 

The flows shown are: 

A CHANGE_ SESSION_ LIMIT verb I abbreviated c 
CHANGE_SESSLIM) 

• 

• 

• 

• 

The CNOS commands and replies exchanged 
by the CNOS transaction-program proc­
esses, 

The internal requests I LOCK, TEST, 
UNLOCK ) and their replies I OK, REJECT, 
DENIED) 

Update actions on 
session-limit field of 
entry 

the 
the 

I LU,mode) 
ILU,model 

c 



(_ 

( 
'--/ 

l----_ 
/ 

() 

LUa LUb 

Transaction-x 
source process 

I LU,mode) 
entry 

ILUb,ml 

Transaction-y 
target process 

Transaction-y 
source process 

( LU,modeJ 
entry 

Transaction-x 
target process 

1 

2 

3 

4 

5 

6 

7 

8 

Note: 

IMAX_SESS 
SOL LOCK -

ISDL LOCK -

IMAX_SESS 

ISDL LOCK -

is n; 
is UNLOCKED) 

. CNOS 
< 

LOCK 
< •••••••••••.•. a 
J.S LOCKED l 

OK 
o .............. > 

.CNOS 

I LUa,mJ 

IMAX_SESS is n; 
SDL_LOCK is UNLOCKED) 

CHANGE_SESSLIMILUlaJ,MODElmJ,MAX_SESSljJ) 
LOCK 

o ..••...•••.••• > 
ISDL_LOCK is LOCKED) 

OK 
< ..••.••••••••• o 

command IMODElmJ,MAX_SESSljlJ . 

reply IMODE!mJ,OKJ 
~~~~~~~~~~-> 

.update I MAX_SESSI j l l 
< •••••••••••••• o 
J.S j) 

UNLOCK 
< •••••••••••••• a 
is UNLOCKED! 

.update IMAX_SESSljll 
o .•....•.••••.• > 

IMAX_SESS is jJ 
UNLOCK 

o ••••.••.••.••• > 
ISDL_LOCK is UNLOCKED) 

Numbers in the left column refer to explanations in the text. 

Figure 5.4-9. No Race: Only One LU Issues a CNOS Verb 

No Race: If only one LU issues a CNOS com­
mand, no race occurs, and the transaction is 
successful. 

Figure 5.4-9 on page 5.4-16 shows the no-race 
case. In this example: 

1. Before sending the CNOS 
source LU ILUbJ attempts 
affected I LU,modeJ entry. 

command, the 
to lock the 

2. Since no other CNOS transaction at LUb 
has the ILU,modeJ entry locked, the 
attempt is successful. 

3. LUb now issues the CNOS command. 

4. Hhen the target LU I LUa) receives the 
CNOS command, it attempts to lock the 
ILU,mode) entry. 

5. Since no other CNOS transaction at LUa 
has the ILU,model entry locked, the 
attempt is successful. 

6. LUa then negotiates and sends the CNOS 
reply. 

7. LUa then updat~s the ILU,mode entry). 

Similarly, when LUb receives the reply, 
it also updates its ILU,model entry. 

8. Both LUs unlock the I LU,modeJ entries. 
The ( LU,mode J entries are now available 
for updating by subsequent CNOS verbs. 

Single-Failure Races: In the single-failure 
cases !Figure 5.4-10 and Figure 5.4-11 on 
page 5.4-18), one transaction fails; it does 
not modify the session-limit parameters in 
the ( LU,mode J entry. The other transaction 
succeeds and changes the session-limit param­
eters. 

Figure 5.4-10 shows a single-failure race 
condition in which one transaction's command 
and reply both cross the reply of the trans­
action for a verb issued at the other LU. In 
this example, 

1. LUa 's command succeeds because LUb was 
not busy when the command arrived. 

2 . LUb ' s command fails because LUa ' s verb 
has not completed at LUa when LUb's com­
mand arrives, even though LUa's verb 
processing has completed at LUb. 

3. Hhen LUb receives the REJECT reply, it 
tests for LOCK DENIED, which is not set, 
and so determines that no command from 
LUa (for mode name ml has been rejected 

Chapter 5.4. Presentation Services--Cantrol-Operator Verbs 5.4-17 



l 

3 

Transaction-x 
source process 

LUa 

C LU,mocle J 
entry 

C LUb,mJ 

( MAX_SESS is n; 

Transaction-y 
target process 

SDL_LOCK is UNLOCKED) 

CHANGE_SESSLIMCLUCLUbJ MODECmJ MAX_SESS(iJJ 
LOCK 

o •••••••••••••• > 
CSDL_LOCK is LOCKED) 

OK 
< •••••••••••••• o 
.CNOS command CMODECmJ MAX_SESSCiJJ 

Transaction-y 
source process 

LUb 

( LU,modeJ 
entry 

CLUa,mJ 

Transaction-x 
target process 

CMAX_SESS is n; 
SDL_LOCK is UNLOCKED) 

LOCK 
< •••••••••••••• o 

CSDL_LOCK is LOCKED) 
OK 

o •..••••••••••• > 
CNOS reply CMODECmJ OKJ. 

.update CMAX_SESSCiJJ 
< •••••••••••••• o 

CMAX_SESS is i J 
UNLOCK 

< •••••••••••••• o 
CSDL_LOCK is UNLOCKED) 

CHANGE_SESSLIMCLUILUaJ MODECmJ MAX_SESSCjJJ 
LOCK 

o .............. > 
CSDL_LOCK is LOCKEDJ 

OK 
< •••••••••••••• o 

.CNOS command CMODECMJ MAX_SESSCjJJ. 
<~~~~~~~~~-a 

. LOCK 
< •.••••••• ; .••• o 

CSDL_LOCK is DENIED) 
REJECT 

o •..••••••••••. > 
CMAX_SESS is n [no change]) 

.CNOS reply CMODE!Ml RACE_REJECTl 

<.~~~~~~~~~~~~~~~~~----' 

.update CMAX_SESSCill 
o .•••.••••••••• > 

CMAX_SESS is il 
UNLOCK 

• .............. > 
CSDL_LOCK is UNLOCKED! 

CMAX_SESS is i [no change]) 
TEST 

o •••••••••••••• > 
OK 

< •••••••••••••• o 
UNLOCK 

o ....•.....•..• > 
CSDL_LOCK is UNLOCKED! 

Note: Numbers in the left column refer to explanations in the text. 

Figure 5.4-10. Single-Failure Race Condition--Case l: Command Crosses Reply 

c 

and therefore does not attempt to retry 
the command. 

transaction for a verb issued at the other c·· 
LU. In this example, __ _, 

5.4-18 

Figure 5.4-11 shows another single-failure 
race condition, in which one transaction's 
command and reply cross the command of the 

SNA LU 6.2 Reference: Peer Protocols 

l. LUb's command fails because LUa's command 
has not completed when LUb's command 
arrives. 



(_) 

LUa LUb 

.Transaction-x 
source process 

(LU,mode) 
entry 

Transaction-y 
target process 

Transaction-y 
source process 

ILU,mode) 
entry 

Transaction-x 
target process 

1 

2 

3 

I LUb,m) 

IMAX_SESS is n; 
SDL_LOCK is UNLOCKED) 

CHANGE_SESSLIMILUILUb) MODElml MAX_SESSlil) 
LOCK 

o •.••...•...•.. > 
ISDL_LOCK is LOCKED) 

OK 
< •••••••••••••• o 
.CNOS command IMODElmJ MAX_SESSliJJ 

I LUa,m) 

IMAX_SESS is n; 
SDL_LOCK is UNLOCKED! 

CHANGE_SESSLIMILUILUaJ MODElm) MAX_SESSljll 
LOCK 

o .•....•....•.. > 
ISDL_LOCK is LOCKED! 

OK 
< ••.••.••••.••• o 

.CNOS command IMODElmJ MAX_SESSljJJ. 

LOCK 
< •••.•••.•••••. o 

ISDL_LOCK is DENIED) 
REJECT 

o .............. > 
IMAX_SESS is n [no change]) 

.CNOS reply !MODE (ml RACE_REJECTJ 

IMAX_SESS is n [no change]) 
TEST 

o •••••.•.••.••. > 
OK 

< •••••.•••••••• o 
UNLOCK 

o ....•.•...•..• > 
ISDL_LOCK is UNLOCKED! 

LOCK 
< ••••••••••..•• o 

ISDL_LOCK is LOCKED) 
OK 

o .............. > 
CNOS reply .(MODE Im) OK J . 

<·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,o 

.update IMAX_SESSliJJ .UPDATE IMAX_SESSCiJJ 
o .............. > < o 

IMAX_SESS is iJ IMAX_SESS is iJ 
UNLOCK UNLOCK 

o •.••.....••... > < •....••••••••• o 
ISDL_LOCK is UNLOCKED) ISDL_LOCK is UNLOCKED! 

NOTE: Numbers in left column refer to the explanations in the text. 

Figure 5.4-11. Single-Failure Race Condition--Case 2: Command and Reply Cross Command 

2. Hhen LUb receives the REJECT reply, it 
tests LOCK DENIED and determines that no 
command fr~m LUa (for mode name m) has 
been rejected and therefore it does not 
attempt to retry the command. 

3. LUa's command succeeds because LUb's 
unsuccessful command has already com­
pleted at LUb, and has released the lock, 
before LUa's command arrives at LUb. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-19 



Transaction-x 
source process 

ILU,model 
entry 

ILUb,mJ 

Transaction-y 
target process 

( HAX_SESS is m 
SDL_LOCK is UNLOCKED J 

Transaction-y 
source process 

. I LU,model 
entry 

( LUa,mJ 

Transaction-x 
target process 

IMAX_SESS is nJ 
SDL_LOCK is UNLOCKEDJ 

l CHANGE_SESSLIMILUILUbJ MODElml MAX_SESSliJJ 
LOCK 

CHANGE_SESSLIMI LUI LUa J MODE ( m J MAX_SESSC j J J 
LOCK 

3 

4 

5 

6 

7 

8 

9 

o •••••••••••••• > 
ISDL_LOCK is LOCKEDJ 

OK 
< •••••••••••••• o 
.CNOS command IMODElml MAX_SESSliJJ 
0 

<----~ 

LOCK 
< •••••••••••••• o 

ISDL_LOCK is DENIEDJ 
REJECT 

o ••.••.•••••••• > 
IMAX_SESS is n [no change]) 

.CNOS reply 
0 

o •..••••••••••. > 
CSDL_LOCK is LOCKEDJ 

OK 
< •••••••••••••• o 

CNOS command I MODEi ml MAX_SESSC j JJ 
0 

~----------------~> 
LOCK 

< •••••••••••••• o 
ISDL_LOCK is DENIED) 

REJECT 
o .•.•..•....••. > 

CMAX_SESS is n [no change] J 
IMODElml RACE REJECTJ 

.CNOS-reply CMODElml RACE_REJECTJ 
0 

<----------------------------' '------> 
TEST TEST 

o .••••..••.••.• > o .•......•..•.. > 
DENIED DENIED 

< •••••••••••••• o < •••••••••••••• o 

I 'LUa' < 'LUb' J I 'LUb' > 'LUa' J 
this LU will not retry) this LU will retry). 

UNLOCK 
o •••.••.....•.. > 

I SDL_LOCK is UNLOCKED l 

.CNOS command IMODElml MAX_SESSljJJ. 
<----------------0 

LOCK 
< •••••••••••••• o 

ISDL_LOCK is LOCKEDJ 
OK 

o •••••••••••••• > 
.CNOS reply IMODElmJ OKJ 
0----------------> 

.update IMAX_SESSljJJ 
< •••••••••••••• o 

IMAX_SESS is jJ 
UNLOCK 

< •••••••••••••• o 
ISDL_LOCK is UNLOCKED) 

.update IHAX_SESSljJJ 
o •••••••••••••• > 

CMAX_SESS is jJ 
UNLOCK 

o .•.•...••.•.•. > 
ISDL_LOCK is UNLOCKED) 

Note: Numbers in left column refer to explanations in the text. 

Figure 5.4-lZ. Double-Failure Race Condition: Command Crosses Command, Reply Crosses Reply 

5.4-ZO 

Double-Failure Race: In the double-failure 
case !Figure 5.4-lZ on page 5.4-19), both 
transactions initially fail. The SSLS compo-

SNA LU 6.Z Reference: Peer Protocols 

nents at each LU discover the double failure 
and compare their fully-qualified LU names to 
resolve it. I For the comparison, the 



c, 

fully-qualified LU names are left-justified 
and padded to the right with space [X'40' J 
characters to make the lengths equal. ) The 
LU with LU name lower in EBCDIC collating 
sequence loses• the verb fails as in a 
single-failure race concli tion. The LU with 
LU name higher in EBCDIC collating sequence 
retries the CNOS command, i.e., it allocates 
a new conversation and sends the same CNOS 
command again. If no further errors occur, 
the verb eventually succeeds. 

Figure 5.4-12 on 
double-failure case. 

page 5. 4-19 shows 
In this example: 

a 

1. 

2. 

3. 

4. 

Operators at both LUs simultaneously 
issue CNOS verbs. 

The source processes successfully lock 
the ILU,model entries at their respective 
LUs, and issue CNOS commands. 

The commands cross in transit. 

Hhen the commands arrive, the target 
processes attempt to lock the I LU,mode I 
entries but fail because they are already 
locked by the source processes of the 
other transaction, each of which has not 
yet received the reply to its own com­
mand. The failing attempt to lock also 
sets the LOCK DENIED state of the lock. 
MAX SESSIONS r;mains temporarily at ~· 

5. Each target process sends a reply indi­
cating a race reject. These replies also 
cross in transit. 

6. Hhen the REJECT replies arrive, each 
source transaction program tests 
LOCK_DENIED and finds it set, indicating 
that a target transaction program at the 
same LU had attempted to set the lock but 
had been refused. This is a double fail­
ure: the local LU's own command has 
failed, and meanwhile the local LU has 
rejected a command from the partner LU. 

BASE AND OPTIONAL SUPPORT 

The basic and optional functions available at 
the control-operator protocol boundary are 
defined in SNA Transaction Programmer's Ref­
erence Manu.i'r for LU Typet 6. 2. This section 
relates""tliOSB "1'Unctions o-the capabilities 
of the components in the formal description. 

BASE-FUNCTION-SET SUPPORT 

All implementations support an 
implementation-defined control-operator 
transaction program that is able to issue any 
of the required I base function set> 
control-operator verbs and all optional 
control-operator verbs and parameters that 
the LU supports. 

7. Each source process compares LU names to 
determine whether it should retry. 

8. The LU with low LU name ( LUa) releases 
the lock and terminates its CNOS verb to 
avoid another race. 

9. The LU with the high LU name ILUb) 
re-issues the command. Processing con­
tinues as in the no-race case !Fig­
ure 5.4-9 on page 5.4-161. 

RECOVERY FROM CONVERSATION FAILURE 

If conversation failure, e.g., session out­
age, were to occur during CNOS processing, 
the CNOS command would not complete success­
fully at the source LU. Nevertheless, it 
might complete at the target LU, for example, 
because the reply was lost after the target 
LU had already deallocated the conversation. 
In this case, the session limits could become 
different at the two LUs. 

To prevent this discrepancy, SSLS retries any 
command that fails because of conversation 
failure. Since the original session has been 
lost, SSLS attempts to obtain a new session 
on the same or another mode name. It first 
tries to obtain a session with the mode name 
that failed, then with mode name SNASVCMG lif 
different), then with each mode name affected 
by the command, until either the command suc­
ceeds or the LU determines that no ·session 
can be allocated with any affected mode name. 
Session limits can be reset even if the local 
LU is not able to contact or complete a con­
versation with the partner LU. The 
FORCE (YES I parameter on RESET _SESSION_LIMIT 
instructs the control operator to set the 
local session limits to 0 even if the CNOS 
transaction is unable to complete successful­
ly. This permits the LU to perform some 
clean-up that is not normally possible until 
session limits are 0 and no sessions are 
active. 

The base function set, supported by all 
implementations, includes the functions cor­
responding to the LU definition verbs, i.e., 
the ability to specify the values of certain 
LU parameters that are chosen by the instal­
lation. An implementation may support issu­
ing these verbs from the control-operator 
transaction program. Alternatively, instead 
of exposing these verbs at the 
control-operator protocol boundary, the 
implementation may provide other support in 
the form of installation-time, IPL-time, or 
run-time processing of the system-definition 
values, as long as the values are initialized 
prior to first use. 

The base function set also includes local 
support of the functions of INITIAL­
IZE_SESSION_LIMIT and RESET_SESSION_LIMIT 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-21 



5.4-22 

that apply to single-session mode names, and 
includes receive support for remotely-issued 
ACTIVATE_ SESSION and DEACTIVATE_ SESSION 
verbs. 

All LUs providing an "open" protocol bouida­
ry, i.e., one to which application trans­
action programs have access, also support 
parallel sessions, including the CNOS minimum 
support I see "CNOS Minimum Support Set" on 
page 5.4-21). 

Parallel-session LUs optionally support 
optional function set parameters of the CNOS 
verbs I see "Paraliel-Session Optional Func­
tions" on page 5.4-21). 

LUs with a "closed" protocol boundary, i.e. , 
one to which application transaction programs 
do not have access, may optionally support 
parallel sessions and the corresponding CNOS 
minimum support. 

CNOS MINIMUM SUPPORT SET 

The CNOS minimum-support functions are: 

• Send I source) support for INITIAL­
IZE_SESSION_LIMIT 

• 

• 

This increases the session limit from O. 

Send support for RESET_SESSION_LIMIT 

This resets the session limit to 0. This 
does not allow the local LU to initiate 
new conversations after the verb com­
pletes, but it allows the LU to accept 
new conversations initiated by a partner 
LU. 

Receive I target J support for all CNOS 
verbs, except that: 

The target LU may unconditionally 
change RESPONSIBLEITARGETJ to RESPON­
SIBLEISOURCE J. 

The target LU may unconditionally 
change DRAIN TARGET! YES J to 
DRAIN_TARGETINOJ. 

The minimum-support CNOS components are: 

• 

• 

• 

• 

An implementation-supplied 
control-operator transaction program that 
can issue the CNOS minimum-support verbs 

The CNOS service transaction program 
ITPN=X'06Fl'l 

Presentation services for the control 
operator CPS.COPRJ, except for the 
optional functions listed in 
"Parallel-Session Optional Functions" on 
page 5.4-21 

Support for a sufficient number of 
reserved sessions using the SNA-defined 
mode name SNASVCMG 

SNA LU 6.2 Reference: Peer Protocols 

The LU provides the capability for two 
such sessions for each LU with which the c·_··. 
LU can have concurrently-active parallel 
sessions; these mode-name-SNASVCMG ses­
sions are in addition to the sessions 
provided for user transactions. For each 
potential parallel-session partner LU, 
the operator specifies an ILU,model entry 
with mode name SNASVCMG and with limits 
allowing one contention-winner and one 
contention-loser session. 

IThe SNA-defined mode name is provided so 
that PS.COPR will always be able to acti­
vate a session to send the CNOS command, 
even when all other session limits are 
o, as in the initial state, or when all 
other active sessions are in in-brackets 
state or are bidder sessions on which a 
bid request is being refused.) 

An LU that provides only the CNOS ~ 
minimum-support does not expose ( 
MIN CONHINNERS TARGET, RESPONSIBLE, or \____,. 
DRAIN_TARGET at the control-operator protocol 
boundary. In that case, the source LU sends 
MIN_CONHINNERS_TARGETlimplementation choice), 
RESPONSIBLE I SOURCE J, and DRAIN TARGET I YES J 
for those parameters that it does-not expose. 

PARALLEL-SESSION OPTIONAL FUNCTIONS 

The optional parallel-session CNOS functions c 
are: 1 

• Receive support for DRAIN_ TARGET! YES ) __ / 

• 

This means that the LU supports local 
drain, i.e., it is able to start new con­
versations after the session limit is 
reset to 0 and to defer deactivating ses­
sions until there are no more local 
requests for new conversations. 

Send support for any or all of the fol­
lowing: 

MIN_CONHINNERS_TARGET 

RESPONSIBLE I TARGET I 

DRAIN_TARGETINOJ 

This means that the LU exposes these 
parameters at the control-operator proto­
col boundary. 

• Receive support for RESPONSIBLEITARGETJ 

• 

This means the LU can be responsible for 
decreasing the session count to a nonzero 
value, i.e., it maintains an exact count 
of sessions to be terminated. 

Send support for CHANGE_SESSION_LIMIT 

This means that the LU can increase or 
decrease the session limit to a nonzero c 
value when it is currently nonzero. 

._/ 



COMPONENT INTERRELATIONSHIPS 

(,. 

C. 
/ 

c. 

C" 
) 

/ _ _,. 

This section describes the 
interrelationships of the 
control-operator functions. 

The principal components are: 

functions 
components 

and 
for 

• Presentation services for the control 
operator (PS.COPRJ 

• Control-operator transaction program 

• CNOS service transaction program 

To perform its functions, PS.COPR may invoke 
the following other LU components: 

• Resources manager I RM J, which performs 
session shutdown and invokes the session 
manager for session initi-
ation/termination and acti-
vation/deactivation 

• Presentation services for conversations, 
which uses an LU-LU half-session for the 
conversation with the partner LU 

Figure 5.4-1 on page 5.4-2 illustrates the 
relationships among these components. 

TRANSACTION PROGRAMS 

Control-Operator Transaction Program 

The control-operator transaction program is 
an implementation-defined transaction pro­
gram at the source LU that represents the LU 
control operator. It forms ·part of the 
local-LU I source-LU J transaction-program 
process. It is invoked by presentation 
services CPS. INITIALIZE J as a result of an 
implementation-defined program-initiation 
request. 

The control-operator transaction program may 
interact with a human operator, at the imple­
mentation- and/or installation-option, to 
obtain input parameters or to present 
results. It issues any of the supported 
control-operator verbs exposed at the 
control-operator protocol boundary. 

The transaction program passes to PS.COPR a 
transaction-program-verb structure specifying 
the verb type and verb parameters. Hhen 
PS.COPR processing is complete, the trans­
action program is returned the same structure 
containing the returned parameter values, 
e.g., a return code indicating success or a 
failure reason. 

CNOS Service Transaction Program 

The CNOS service transaction program is that 
SNA-defined transaction program with 

transaction-program name I TPN J X' 06Fl'. It 
represents the control operator at the target 
LU. It is invoked by presentation services 
I PS. INITIALIZE J when the target LU receives 
the Attach FM header that resulted from the 
ALLOCATE verb issued by PS.COPR at the source 
LU. 

The CNOS service transaction program performs 
the following functions. 

• 

• 

• 

It is the target for the ALLOCATE verb 
issued by the source-LU control-operator 
transaction program. By being invoked, 
it completes the activation of the con­
versation for the CNOS transaction. 
(The characteristics of the conversation 
are discussed in section "CNOS Conversa­
tion Allocation" on page 5.4-27. The 
conversation parameters from the Attach 
FM header are verified by the resources 
manager and presentation services for 
conversations before this program is 
invoked. J 

It issues the PROCESS SESSION_LIMIT verb 
before any other pro;essing. Thus, the 
CNOS service transaction program does not 
induce any undue delay, e.g., it does 
not wait on operator input. It also does 
not affect the values of the negotiable 
parameters; these values are determined 
by an algorithm within PS.COPR. 

The CNOS service transaction program 
passes to PS.COPR a 
transaction-program-verb data structure 
specifying the verb type and identifying 
the return parameters for the CNOS verb. 
Hhen PS.COPR processing is complete, the 
CNOS service transaction program is 
returned the same structure containing a 
return code indicating success or a fail­
ure reason and other parameters identify­
ing the ( LU ,mode J entry or entries 
affected by the CNOS command. The PROC­
ESS_SESSION_LIMIT verb does not provide 
the values of the session-limit parame­
ters to the CNOS service transaction pro­
gram; these values are available by 
issuing the DISPLAY verb. 

Hhen control returns from the PROC­
ESS SESSION LIMIT verb, the conversation 
with the s~rce LV has already been deal­
located and the session-limit parameters 
have been updated at the target LU. 

It performs an implementation-defined 
action to notify its control operator of 
the activity. For example, it could 
trigger an interrupt to the LU' s 
control-operator transaction program (see 
section "Control-Operator Transaction 
Program" on page 5.4-22) to allow that 
program to examine the new session-limit 
parameters and display them for the oper­
ator. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-23 



PS Verb Router 
I 
~---------------------. 
I r---------.------------,-----------------1 

f;icTIVATE_I 
v----, 

ACTIVATE_ 
SESSION_ 

PROC 

~--A 

I DEFI~;-i 
I o1sPiAv I 

~----1~---. 

RESEi:--1 

CHA~U 
..---v ~ 
INITIALIZE_ 

SESSION_ 
LIMIT 

PROC"I 

r---------J 
I 

LO~~L SESSION_ 
LIMIT_ 

PROC 
A 

I I 
Local Verb Services 

I 
v v v 

Resources PS Resources 
Manager Verb Manager 

Router 

I 

sou~~E-SESSION_ 
LIMIT_ 

PROC - - -A:J Source-LU I 
Session-Limit 
Services 

I 
v v 

PS Resources 
Verb Manager 
Router 

.-~~~1~~~---

1 

I 

PROC~[J-SESSION_ 
LIMIT_ 

PROC 
T T A 

I I 
I I 
I I 

I I Session_ ·I J 
> Limit_ <- - -

Data 
Lock_ 

Manager 

I 
Target-LU 
Session-Limit 
Services I 

~-1 ·-Presentation Services for the 
Control Operator IPS.COPR) 

I 
v v 

PS Resources 
Verb Manager 
Router 

1 These routines are verb handlers for both local- and distributed-function session-limit verbs. 

LEGEND:. 
- - -> Call/return relationship (within a process) 
<--> Send/receive relationship I between processes) 

Figure S.4-13. Structure of Presentation Services for the Control Operator 
---------------------------------------------------

PS.COPR COMPONENTS 

Figure 5.4-13 shows the structure of PS.COPR. 
Its main components are: 

• The control-operator-verb router (repres­
ented in the figure by the connecting 
arrows from the PS verb router to the 
various verb-handler routines) 

• A verb handler for each verb (e.g., ACTI­
VATE_SESSION_PROC, DEFINE_PROC, DIS­
PLAY_PROC, INITIALIZE_SESSION_LIMIT_PROC, 
PROCESS_SESSION_LIMIT_PROC) 

• 

Local session-limit services 
single-session mode names and 
mode . name SNASVCMG 
CAL_SESSION_LIMIT_PROC) 

for 
for 

ILO-

Source-LU CNOS session-limit services 
ISOURCE_SESSION_LIMIT_PROC) 

Target-LU CNOS session-limit services 
I combined with PROC­
ESS_SESSION_LIMIT_PROC) 

The session-limit-data lock manager that 
controls contention between source-LU 
session-limit services (running on behalf 

c 

(~" 

\,_. 

• Common verb-processing routines for 
groups of verbs: 

of a locally-issued verb) and target-LU 
session-limit services IM.l'Viing on behalf(' 
of a remotely-issued verb), 

_/ 

5.4-24 SNA LU 6.2 Reference: Peer Protocols 



C; 
·' 

(,· 

() 

c) 

CNOS Verb Router 

The control-operator verb router component is 
the root procedure of PS.COPR. It is invoked 
by the PS verb router I see Chapter 5. 0 J when 
a transaction program issues a 
control-operator verb. It forms part of the 
transaction-program process. It is passed 
the transaction-program-verb structure 
ITRANSACTION_PGM_ VERB J from the PS verb 
router, and passes this structure on to the 
corresponding verb handler. Upon rega1n1ng 
control from the verb handler, it returns to 
the PS verb router. 

LOCAL CONTROL-OPERATOR VERB PROCESSING 

Local-verb services comprises the verb han­
dlers for two groups of local-function verbs: 
LU definition verbs and local session-control 
verbs. 

LU DEFINITION VERB PROCESSING 

The LU definition verbs include DEFINE and 
DISPLAY (see Figure 5.4-13). These verbs 

allow an implementation to define and display 
the parameters that are•configuration depend­
ent Ii .e., the maximum number of sessions J 
and optional capabilities that are supported 
by the LU, the partner LUs, the MODES, and 
the transaction programs. 

The verb handler checks privilege to deter­
mine that the requesting control-operator 
transaction program has DEFINE or DISPLAY 
privilege, as appropriate to the verb. It 
l.Jcates the relevant -:lata structure and its 
containing structures using the keys provided 
as verb parameters. It provides a return 
code indicating whether the operation was 
performed successfully. 

The verb handler copies values from 
control-operator transaction program vari­
ables into the LU data structures, or vice 
versa; the transaction program never has 
direct access or addressability to the LU 
data structures. 

Verb Parameter Values Contention Polarity to be Used 

LU_MODE_ 
SESSION_ 
LIMIT 

0 

1 
1 

1 
1 

MINIMUM_ 
CONHINNERS_ 
SOURCE 

* 
0 
1 

0 
1 

2 or more * 

MINIMUM_ 
CONHINNERS_ 
TARGET 

* 
0 
0 

1 
1 

* 

Polarity for 
Locally Activated 
Sessions 

Polarity Negotiation 
for Remotely Activated 
Sessions 

parameter combination not allowed 

contention winner accept partner choice 
contention winner contention winner 

contention loser accept partner choice 
parameter combination not allowed 

parameter combination not allowed 

LEGEND: 

* any value 

Figure 5.4-14. Single-Session Contention Polarity Determined by Minimum-Contention-Hinner-Limit 
Parameters 

LOCAL SESSION-CONTROL VERB PROCESSING 

The session-activation verb handlers I e.g., 
ACTIVATE_SESSION_PROC J have an interprocess 
(send/receive) relationship with the 
resources manager for exchanging the 
session-activation and -deactivation records. 

The local session-limit services component 
I LOCAL SESSION LIMIT PROCJ provides the func­
tions - of the - sess:lon-limi t verbs for both 
single-session mode names and for the 
parallel-session mode name SNASVCMG, i.e., 
the SNA-defined mode name used by CNOS. 
I Even though SNASVCMG-mode-name sessions are 

parallel sessions, local verbs are used to 
ini tialize--to fixed session limi ts--and to 
reset the SNASVCMG mode name, because a ses­
sion with this mode name must be activated 
before the first CNOS command and reply can 
be sent.J This component has an interprocess 
I send/receive) relationship with the 
resources manager to notify RM of limits 
changes. 

INITIALIZE SESSION LIMIT: Hhen this verb is 
issued for a single-session mode name or for 
mode name SNASVCMG, local session-limit serv­
ices checks session-limit constraints and 
sets the ILU,modeJ session limit at the local 
LU. The partner LU does not participate in 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-25 



5.4-26 

setting the limits. Local session-limit 
services sends a change-sessions notification 
to the resources manager so that the 
resources manager may request activation of 
the allowed sessions according to its 
session-activation algorithm. 

For single-session mode names, local 
session-limit services also determines the 
contention polarity to be used when a session 
is activated by the local LU and determines 
the contention-polarity negotiation rule to 
be used when a session is activated by a 
partner LU. It determines these settings 
from the minimum-contention-winner limit 
parameters of the verb, as specified in Fig­
ure 5.4-14 on page 5.4-24. 

In the figure, the first three columns list 
possible combinations of verb parameter val­
ues. The next column !locally activated ses­
sions J specifies the corresponding 
contention-polarity choice that will be sent 
in a BIND RU issued by the local LU; the 
partner LU may negotiate contention-winner to 
contention-loser (i.e., make the partner LU 
the contention winner), but not the reverse. 
The next column (remotely activated sessions) 
specifies the contention-polarity that will 
be sent in the response issued by the local 
LU to a BIND from a partner LU. The local LU 
may change a received contention-loser into a 
contention-winner, but not the reverse. The 
last two columns also indicate those combina­
tions of verb parameter values that are 
invalid with single-session mode names. 

For the parallel-session mode name SNASVCMG, 
the verb parameters have their usual inter­
pretation, but the only accepted values are: 
C LU,mode J session limit = 2, minimum 
contention-winner limit !source) = 1, minimum 
contention-winner limit CtargetJ = 1. 

RESET SESSION LIMIT: Hhen this verb is 
issued for a single-session mode name or for 
mode name SNASVCMG, local session-limit serv­
ices checks session-limit constraints and 
sets the CLU,model session limit to 0 at the 
local LU. It also sets the drain specifica­
tion for the local and remote LUs. The part­
ner LU does not participate in setting these 
limits. Local session limit services sends a 
change-sessions notification to the resources 
manager so that the resources manager will 
deactivate the specified sessions according 
to its drain and session-deactivation algo­
rithms. 

For mode name SNASVCMG, local session-limit 
services also verifies that all other mode 
names for the specified partner LU are fully 
reset, i.e., have ILU,modeJ session limit= 0 
and drain state NO. If so, it sets the ses­
sion limits for mode name SNASVCHG to 0 and 
notifies RM to deactivate the 
SNASVCMG-mode-name sessions; otherwise, it 
does not change the limits but sets the 
appropriate return code. 

ACTIVATE SESSION: For this verb, if the TP 
has session control privilege, the verb han­
dler sends a session-activation request to 

SNA LU 6.2 Reference: Peer Protocols 

the resources manager, and receives a reply(_., 
record indicating whether the session was 
successfully activated. . 

DEACTIVATE SESSION: For this verb, if the TP 
has session control privilege, PS.COPR sends 
a session-deactivation request to the 
resources manager; the resources manager 
sends no reply, as session deactivation is 
assured. 

SESSION-LIMIT SERVICES AT THE SOURCE LU 

Source-LU session-limit services CSSLSJ proc­
esses CNOS verbs issued at the source LU. It 
forms a part of the source-LU 
transaction-program process that includes the 
control-operator transaction program. It is 
invoked via the presentation services I PS) 
verb router and PS. COPR when the ( 
control-operator transaction program issues a\. . 
CNOS verb, and returns to the ·- _,. 
control-operator transaction program via the 
routers upon completing processing. 

SSLS interacts with other LU components as 
follows (see Figure 5.4-15). 

A verb-handling routine corresponding to the 
specific verb IINITIALIZE_SESSION_LIMIT_PROC, 
CHANGE_SESSION_LIMIT_PROC, or 
RESET SESSION LIMIT PROCJ, receives the verb 
param;ters fr~m th;- PS. COPR router. It ~hen(-.\ 
invokes the common session-limit services 
routine SOURCE SESSION LIMIT PROC. It is\, _ _., 
returned the ;ame st~cture - with a return 
code, which it passes back to the PS.COPR 
router. 

SOURCE_SESSION_LIMIT_PROC is passed the CNOS 
verb parameters which it returns updated with 
a return code when its processing is com­
plete. It performs the remainder of SSLS 
processing, as follows. 

• It verifies that the program issuing the~· 
verb is privileged to issue CNOS verbs. ~'--/ 

• It allocates a conversation with the tar­
get. 

• Using that conversation, it sends a CNOS 
command record and receives a CNOS reply 
record 

• It invokes the session-limit-data-lock 
manager (see "Session-Limit Data Lock 
Manager" on page 5.4-30 l to prevent 
simultaneous updating of the same 
CLU,model entry, or entries, and to 
resolve races. 

• It updates the I LU,model entry with the 
accepted session-limit parameters. 

• If necessary, it notifies the resources 
manager to increase or decrease the cur-c-·:· 
rent number of sessions. _, 



c 

LU Control Operator 
A 
I 

~~~~~·v·~~~~~ 

r - - - - - > Control-Operator 
Transaction Program 

I 
!local initiationJ 1 

~~~~~A~~~~~ 

I TRANSACTION PGM VERB 
1,2 - -

I 
.--~~~~~~------v-------------. 

Control-Operator Verb Router IPS.COPR) 
~-1-----1 1-~ 

INITIALIZE_ CHANGE_ 
SESSION_LIMIT I SESSION_LIMIT 

RESET_ 
I SESSION_LIMIT 

·1------1-----. 

~~™''-! SESS~:;;;~~IHIT_I OC PROC 
·I I 

v 
INITIALIZE CHAN 

SESSION_LIMIT_ SESSION 
PROC PR 

I 
L - - - - - - -

I 
1--------J 

I CNOS verb 
I 

.--v-V-V--, LOCK/UNLOCK Session-Limit-Data-
sou RCE_ - - - - - - - - - - - - - -> Lock Manager 

SESS 
LIM 

PR 

Session-Limit-

ION_ 
IT_ 
oc <--------------. 
1---' 
Services-Source 
1------~ 

ALLOCATE 
GET_ATTRIBUTES 
GET_TP_PROPERTIES 
SEND_DATA 

v--v 
C LU, 
mode) 
entry 

CNOS command 
RECEIVE_AND_HAIT 

CNOS reply 
DEALLOCATE 

CHANGE_SESSIONS 

I i ,2 
.--~~~~~v·-~~~~~ 

Presentation Services 
for Conversations 

IPS.CONVJ 
~~~~~~A,-~~~~~ 

I i 
~~~~-v·-~~~ 

LU-LU Half-Session 
ISNASVCMG or 

other mode name) 
~~~~-A,-~~~ 

Resources 
Manager 

IRMJ 

• ->ATTACH TPNIX'06Fl') IFMH-5) 

LEGEND: 

• -> CNOS command CGDS ID=X'l210') 
• <- CNOS reply CGDS'ID=X'l210') 
••••••••••••••••••••••••••••••••••••>to target LU 

- - -> Call/return relationship (within a process) 
<--> Send/receive relationship !between processes) 
..... > Access to shared data (within the LUJ 
<••••> Transaction program interaction (between LUs) 

1 See Chapter 5.1 for these interactions. 
2 PS router detail has been omitted. 

c~) Figure 5.4-15. Source-LU Component Interactions for CNOS 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-27 



5.4-28 

Privilege Checking 

SSLS examines the source-LU's transaction 
program list to determine whether the 
control-operator transaction program is 
authorized to issue CNOS verbs, i.e., whether 
it has change-number-of-sessions privilege. 
If not, SSLS causes the verb to fail. 

!Since the target transaction program has a 
privileged transaction-program name, i.e., 
TPN less than X '40', presentation services 
for conversations also verifies, by checking 
the transaction-program list at the source 
LU, that the transaction program issuing the 
ALLOCATE is allowed to invoke privileged pro­
grams.) 

CNOS Conversation Allocation 

SSLS allocates a conversation with the target 
LU to exchange the CNOS command and reply. 
The conversation requires only conversation 
verbs in the base set, but an implementation 
may use verbs and parameters from the 
locally-supported "performance" option sets 
that do not require remote support (see SNA 
Transaction Programmer's Reference Manual for 
LU Type~). 

The following subsections discuss the allo­
cation parameters for the conversation. 

LU name: SSLS uses the target LU name sup­
plied by the CNOS verb. 

Mode name: SSLS uses an 
implementation-defined algorithm to select a 
mode name for the CNOS conversation; for 
example, the algorithm can select a mode name 
for which a session is currently active and 
available. If no session is available on any 
other implementation-selected mode name, SLSS 
uses the SNA-defined mode name SNASVCMG. It 
also uses SNASVCMG for the first CNOS verb 
issued by the LU, i.e., when no sessions are 
active for other mode names and the session 
limits for all mode names I except SNASVCMG) 
are all O. 

!The operator previously initializes the ses­
sion limits for mode name SNASVCMG to 
MAX SESSIONSC2), MIN CONHINNERS SOURCEll), 
and- MIN_CONHINNERS_TARGETll), so- that the 
source LU may always succeed· in activating 
one contention winner session to send the 
CNOS command and reply.) 

Type: Basic Conversation 

Transaction Program Name: SSLS establishes 
the conversation with the CNOS service 
transaction program, whose SNA-defined trans­
action program name CTPN) is X'06Fl', at the 
target LU. 

Security: The CNOS conversation uses SECURI­
TYCNONE). 

Synchronization Level: The CNOS conversation 
uses SYNC_LEVELCNONEl. 

SNA LU 6.2 Reference: Peer Protocols 

Recovery Level: The CNOS conversation uses 
RECOVERY _LEVEL C NONE ) • (~-

Program Initialization Parameters: The CNOS'­
conversation does not use program initializa­
tion parameter data, i.e., it uses PIPCNO). 

GOS Variable 

SSLS builds a CNOS command containing the 
verb and parameter information passed from 
the CNOS service transaction program and 
sends it to the target transact ion program. 
The Change Number of Sessions GOS variable 
and the CNOS command and reply are described 
in SNA Formats. It receives from the target 
transaction program a similar CNOS reply con­
taining a reply code that indicates either 
that the command was accepted or the reason 
for its rejection. 

CNOS Record Flows 

SSLS generates a conversation between the 
source-LU and the target-LU transaction pro­
grams. -The sequence of conversation verbs 
issued by SSLS, and the complementary verbs 
issued by the partner program SES­
SION_LIMIT _SERVICES_ TARGET, are shown in Fig­
ure 5.4-3 on page 5.4-9. 

Errors 

SSLS analyzes the CNOS verb parameters for 
transaction program errors, checks the return 
codes from conversation verbs for conversa­
tion errors such as session failure or proto­
col violation, and analyzes the CNOS reply 
for target-detected errors or changes to 
negotiable parameters, and determines the 
proper return code for the CNOS verb. 

If conversation failure C session outage/-,, 
occurs, the source LU retries the CNOS conl, 
mand as described in "Recovery from Conversa-'·-_., 
tion Failure" on page 5.4-ZO. 

Update CLU,mode) Entry 

If the command and reply exchange is com­
pleted without error, SSLS updates the 
session-I imi t parameters for the specified 
CLU,mode) entry using the new values of 
LU MODE SESSION LIMIT, HIN CONHINNERS SOURCE, 
MIN_CONHINNERS_TARGET, RESPONSIBLE; and 
DRAIN TARGET from the reply record. If the 
command specifies MODE_NAMEIALL), the limits 
for all mode names defined for the specified 
LU name, except the SNA-defined mode name 
SNASVCMG, are updated. SSLS then invokes the 
session-limit-data-lock manager to unlock the 
entries it locked lsee "Session-Limit Da(_,,-------. 
Lock Manager" on page 5.4-30). 

·---·~ 

The new limits are enforced by the resources 
manager (see "Chapter 3. LU Resources Manag-



r-·. 
\___ .. 

c_) 

0 

er") and by the session manager (see "Chapter 
4. LU Session Manager"). 

Request Changes in Session Count 

If the CNOS command action is Set, or if it 
designates the source LU as responsible for 
session deactivation, SSLS issues a 
CHANGE_SESSIONS request, identifying the 
affected LU name and mode names, to the 
resources manager CRMJ. If MODE_NAMECALLI is 
specified, SLSS sends a separate 
CHANGE_SESSIONS request for each mode name 
except mode name SNASVCMG. 

The CHANGE_SESSIONS request notifies RM that 
the session limit parameters have changed and 
that, as a consequence, RM may make changes 
to the number. of sessions. RM determines the 
actual changes to be made to the session 
count and issues appropriate requests to the 
session manager to activate or deactivate 
sessions. 

Return to the Transaction Program 

Hhen the above functions are completed, SSLS 
returns to the control-operator transaction 
program, passing back the appropriate return 
code in the transaction-program-verb struc­
ture. 

SESSION-LIMIT SERVICES AT THE TARGET LU 

Target-LU session-limit services CTSLSI proc­
esses the CNos·verbs issued at the target LU. 
It functions in a manner complementary to 
SSLS (see "Session-Limit Services at the 
Source LU" on page 5.4-251. It forms a part 
of the target-LU transaction-program process 
that includes the CNOS service transaction 
program. It is invoked via the presentation 
services I PS J verb router and the PS. COPR 
router when the CNOS service transaction pro­
gram issues the PROCESS SESSION LIMIT verb; 
it returns to the CNOS -service - transaction 
program upon completion of processing. 

TSLS interacts with other LU components as 
follows (see Figure 5.4-161. 

• It receives the transaction-program-verb 
structure representing the PROC-
ESS_ SESSION_ LIMIT verb 

Hhen its processing is complete, it 
returns to the CNOS service transaction 
program, passing back the 
transaction-program-verb structure 
updated with a return code and the iden­
tity of the affected ( LU,mode J entries. 
!The latter may be used by the implemen­
tation to inform the control operator of 
the changes. J 

• It determines whether the issuing trans­
action program is the CNOS service trans­
action program CTPN=X'06Fl'J and has the 

• 

• 

• 

• 

change-number-of-sessions privilege. If 
not, TSLS abnormally terminates the 
transaction program, which causes the LU 
to issue DEALLOCATE TYPE C ABEND J on the 
conversation. 

It communicates with SSLS at the source 
LU, using the conversation with which the 
CNOS service transaction program was 
attached, by issuing conversation verbs 
to presentation services for conversa­
tions. 

It receives a CNOS command from the 
source LU, changes the source LU ' s 
requested session-limit parameters to 
values acceptable to the target LU, if 
necessary, and sends a CNOS reply, with 
the same format, back to the source LU. 

It invokes 
manager (see 
Manager" on 
simultaneous 
entry. 

It updates 
entries. 

the session-limit-data-lock 
"Session-Limit Data Lock 

page 5.4-301 to prevent 
updating of any ILU,modeJ 

the affected CLU,modeJ 

• If necessary, it notifies the resources 
manager to increase or decrease the cur­
rent number of sessions. 

TSLS receives from the source-LU transaction 
program a CNOS command record containing the 
verb and parameter information passed from 
the control-operator transaction program. It 
builds a similar CNOS reply record containing 
the acceptable values of the negotiable 
session-limit parameters--see "Session-Limit 
Parameter Negotiation" on page 5.4-28--and a 
reply code, which either indicates that the 
command was accepted or gives the reason for 
its rejection, and sends it to the source LU. 

Session-Limit Parameter Negotiation 

TSLS executes an implementation-determined 
algorithm to accept or modify the negotiable 
session-limit parameters received from the 
source LU, subject to the negotiation rules 
given below. It sets the Reply Modifier 
field in the CNOS reply to indicate whether 
all the parameters were accepted as received 
or whether any were negotiated to new values, 
and sends it with the received or modified 
values to the source LU in the CNOS reply. 
(The source LU accepts any modified values 
that satisfy the negotiation rules.) 

The negotiation rules are as follows. !In 
the formulas, variables prefixed with c_ 
refer to values of verb parameters specified 
by the source LU in the CNOS command record} 
variables prefixed with R_ refer to values of 
these parameters as modified by the target LU 
and returned in the CNOS reply record. I 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-29 



r - - > 

CNOS LU-Service 
Transaction Program 

TPN=X'06Fl' 

I TRANSACTION PROGRAM VERB 
!invoked via ATTACH 

from source LUJl 
11,2 - -

I 
..--~~~~~~~-v·~~~~~~~~-. 

Control Operator Verb Router 
CPS.COPRl 

PROCESS_SESSION_LIMIT 

PROC~~ 
SESSION= I 

LIMIT_ 

LOCK/UNLOCK 

PROC 

SESSION_LIMIT SERVICES_TARGET 

GET_ATTRIBUTES 
RECEIVE_AND_HAIT 

CNOS command 
SENO_DATA 

CNOS reply 
DEALLOCATE 

I i, 2 
..--~~~~~v~~~~~~ 

Presentation Services 
for Conversations 

IPS.CONVl 

~~~~-v~~~--. 

LU-LU Half-Session 
ISNASVCMG or 

other mode name) 
~~~~-.A~~~--' 

- - - - -> 
Session-Limit-Data­

Lock Manager 

v-v 
I LU, 
model 
entry 

CHANGE_SESSIONS 

v 

Resources 
Manager 

IRMI 

c 

c: 

• ->ATTACH TPNIX'06Fll CFMH-51 
• -> CNOS command IGDSID=X'l210'l 
• <- CNOS reply IGDSID=X'l210' I 

LEGEND: 

• 
from source LU • 

<••················ 

- - -> Call/return relationship lwithin a process) 
<~~> Send/receive relationship !between processes I 
..... > Access to shared data (within the LUI 
<••••> Transaction program interaction (between LUsl 

l See Chapter 5.1 for these interactions. 
2 PS router detail has been omitted. 

Figure 5.4-16. Target-LU Component Interactions for CNOS 

5.4-30 

If the command action is Set I INITIALIZE_ or 
CHANGE_SESSION_LIMIT verb issued!: 

• If the current ILU,mode) session couit is 
O, then, based on an 
implementation-defined decision, the LU 
may refuse to accept the command by 

SNA LU 6.2 Reference: Peer Protocols 

returning an abnormal reply with 
reply-modifier value abnormal--( LU.mode/~ 
session limit is 0. The LU also has tt1 
option to issue DEALLOCATE TYPEIABEND-,~/ 
for the conversation. Both LUs then 
ignore the session-limit parameters of 
the reply; they do not change the current 



(,.. 
• 

• 

• 

• 

session-limit parameters in the 
ILU,model entry. 

The target LU may decrease 
LU MODE SESSION LIMIT to a lower number 
of-sessions, bi:;-t not too, i.e., the new 
value satisfies: 

0 < R_LU_HODE_SESSION_LIHIT ~ 

C_LU_HODE_SESSION_LIHIT. 

If the proposed source contention winners 
IC HIN CONHINNERS SOURCE) exceeds 
R_LU_HODE_SESSION=LIHIT/2, the target LU 
may change HIN_CONHINNERS_SOURCE to any 
lower value not less than 
R LU MODE SESSION LIHIT/2 rounded down­
w;rd: i.e:, then-;., value satisfies: 

C_HIN_CONHINNERS_SOURCE ~ 

R_HIN_CONHINNERS_SOURCE ~ 

HINIC_HIN_CONHINNERS_SOURCE, 
R_LU_HODE_SESSION_LIHIT/2). 

The target LU may change its own minimum 
contention-winner limit 
IR HIN CONHINNERS TARGET! to any value 
not ex-;;eeding th.;- difference between the 
total session limit and 
HIN CONHINNERS SOURCE, i.e., the new val­
ue ;atisfies: -

0 ~ R_HIN_CONHINNERS_TARGET ~ 

IR_LU_HODE_SESSION_LIHIT -
R_HIN_CONHINNERS_SOURCEJ. 

The target LU may change RESPONSIBLE to 
SOURCE. 

If the command action is Close for only one 
mode name I RESET_SESSION_LIHIT 
IHODE_NAHEIONE, .•. J issued): 

• If the ILU,model session count is 0 and 
the current drain state is NO, then, 
based on an implementation-defined deci­
sion, the target LU may refuse to accept 
the command by returning an abnormal 
reply with reply modifier abnor­
mal--ILU,model session limit is O. Both 
LUs then ignore the session-limit parame­
ters of the reply; they do not change the 
current session-limit parameters in the 
(LU,model entry. 

• 

• 

• 

The target LU may change RESPONSIBLE to 
SOURCE. 

The target LU may change its own drain 
action IDRAIN_TARGETJ from YES to NO. 

The target 
DRAIN_SOURCE. 

LU does not change 

If the command action is Close for all mode 
names !RESET SESSION LIMIT IHODE_NAHEIALLJ 
issued): - -

• If the ILU,model session count is 0 and 
the current drain state is NO for all 

mode names with the partner LU, then, 
based on an implementation-defined deci­
sion, the target LU may refuse to accept 
the command by returning an abnormal 
reply with reply modifier abnor­
mal--! LU ,mode) session limit is O. Both 
LUs then ignore the session-limit parame­
ters of the reply; they do not change the 
current session-limit parameters in the 
(LU,model entry. 

• The target LU may change RESPONSIBLE to 
SOURCE. If so, it changes all mode names 
not already at SESSION_LIHIT = 0 to the 
same !SOURCE) responsibility. 

• The target LU does not send a changed 
value for DRAIN_TARGET in the reply, but 
echoes the value received. Nevertheless, 
if the command specifies 
DRAIN_ TARGET! YES J, and the current ses­
sion limit is not zero, the target LU may 
set its local drain state for any mode 
names to either YES or NO, regardless of 
the previous drain state. If the cµrrent 
session limit is already zero and the 
drain state is no, the drain state for 
that mode is left unchanged. 

• The target 
DRAIN_SOURCE. 

Errors 

LU does not change 

If TSLS detects a condition that precludes 
performing the nominal action le.g., a race 
condition or unrecognized mode name J, but 
that does not violate architectural rules, it 
sends an abnormal reply with the appropriate 
reply modifier (see SNA Formats for 
reply-modifier codes). 

If it detects an invalid command from the 
source LU, e.g., undefined or disallowed 
parameter values, it treats this as a proto­
col violation. TSLS does not change the CNOS 
parameters or send a reply, but instead 
issues DEALLOCATE TYPEIABENDJ. TSLS also 
reports any errors detected to the CNOS serv­
ice transaction program via the 
transaction-program-verb structure. 

Other Interactions 

Other TSLS interactions are similar to the 
corresponding interactions of SSLS. 

SESSION-LIMIT DATA LOCK MANAGER 

Locking the ILU,model Entry 

The session-limit services routines invoke a 
shared , component, SES­
SION_LIHIT_DATA_LOCK_HANAGER ISLDLHJ, to pre­
vent simultaneous access to an ILU,model 
entry, to detect races, and to resolve 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-31 



5.4-32 

double-failure race conditions, as described 
in "CNOS Race Resolution" on page 5.4-14. 

SLDLM is a shared routine, invoked from both 
SSLS and TSLS, that maintains the 
session-limit data lock. A session-limit 
data lock exists for each I LU,model entry. 
It is in one of the following states: 

UNLOCKED: No CNOS component is currently 
using the ILU,mode) entry. The 
lock is reset to this state whenev­
er the process that locked it com­
pletes processing. 

LOCKED_BV _SOURCE: SSLS has locked the 
I LU,model entry to process a CNOS 
command issued at the local LU. 

SNA LU 6.2 Reference: Peer Protocols 

The lock had 
UNLOCKED state. 

previously been in 

LOCKED BV_TARGET: TSLS has locked 
I LU,mode) entry to process a 
command issued at a remote LU. 
lock had previously been 
UNLOCKED state. 

thee-

CNOS 
The 

in 

LOCK DENIED: While the 10ck was in 
LOCKED_BV_SOURCE state, TSLS 
attempted to lock it on behalf of a 
remotely-issued verb. TSLS was 
refused. 

This state allows SSLS to determine 
whether a double-failure race 
occurred. 

( 
\ ..... , ___ .. ./ 



VERB-ROUTING PROCEDURE 

c 

c 

c 

PS_COPR 

FUNCTION: This procedure receives all control-operator verbs issued by the transaction 
program and routes the input to the appropriate procedure for processing. It 
is invoked by, and returns to, the presentation-services verb router and forms 
part of the transaction-program process. 

INPUT: CNOS verb parameters-- received from caller, updated by called procedures 

OUTPUT: Updated return code and verb-specific returned parameters 

Referenced procedures, FSMs, and data structures: 
INITIALIZE_SESSION_LIMIT_PROC 
CHANGE_SESSION_LIMIT_PROC 
RESET_SESSION_LIMIT_PROC 
PROCESS_SESSION_LIMIT_PROC 
ACTIVATE_SESSION_PROC 
DEACTIVATE_SESSION_PROC 
DEFINE_PROC 
DISPLAY_PROC 
DELETE_PROC 

Select based on type of verb parameters: 
Hhen INITIALIZE_SESSION_LIMIT 

page 5.4-33 
page 5.4-35 
page 5.4-34 
page 5.4-57 
page 5.4-36 
page 5.4-37 
page 5.4-38 
page 5.4-39 
page 5.4-40 

Call INITIALIZE SESSION LIMIT PROC with the verb parameters !page 5.4-33J. 
Hhen CHANGE SESSION LIMIT - -

Call CHANGE_SESSION_LIMIT_PROC with the verb parameters !page 5.4-35). 
Hhen RESET SESSION LIMIT 

Call RESET_SESSION_LIMIT_PROC with the verb parameters (page 5.4-34). 
Hhen PROCESS SESSION LIMIT 

Call PROCESS_SESSION_LIMIT_PROC with the verb parameters !page 5.4-57J. 
Hhen DEACTIVATE SESSION 

Call DEACTIVATE_SESSION_PROC with the verb parameters (page 5.4-37). 
Hhen ACTIVATE_SESSION 

Call ACTIVATE_SESSION_PROC with the verb parameters !page 5.4-36J. 
Hhen DEFINE LOCAL LU, DEFINE REMOTE LU, DEFINE MODE, or DEFINE TP 

Call DEFINE_PROc with the-verb p;rameters (page 5.4-38). -
Hhen DISPLAY LOCAL LU> DISPLAY REMOTE LU, DISPLAY MODE, or DISPLAY TP 

Call DISPLAY_PROC with the ~erb pa~meters lpaQe 5.4-39). -
Hhen DELETE 

Call DELETE_PROC with the verb parameters (page 5.4-40). 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-33 



VERB HANDLERS 

5.4-34 

INITIALIZE_SESSION_LIMIT_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator verb router, when a 
transaction program issues an INITIALIZE_SESSION_LIMIT verb. It determines 
the connection type (single or parallel). If the connection is single-session 
or the mode name is SNASVCMG, it passes the CNOS verb parameters to 
LOCAL_SESSION_LIMIT_PROC; if the connection is parallel-session, it passes the 
CNOS verb parameters to SOURCE_SESSION_LIMIT_PROC. It passes the return code 
to the original caller. 

INPUT: INITIALIZE_SESSION_LIMIT verb parameters from caller; CNOS 
LOCAL_ or SOURCE_SESSION_LIMIT_PROC 

OUTPUT: RETURN_CODE of INITIALIZE_SESSION_LIMIT to caller 

Referenced procedures, FSMs, and data structures: 
SOURCE_SESSION_LIMIT_PROC 
LOCAL_SESSION_LIMIT_PROC 

If this transaction program is authorized to issue the CNOS verb then 
Using the LUCB, determine the type of sessions possible with 

the partner LU, either single or parallel. 

RETURN_CODE from 

page 5.4-45 
page 5.4-41 

For parallel session connections, an LU may elect not to expose the 
MIN_CONHINNERS_TARGET parameter at the control-operator protocol 
boundary. In this case, the implementation may choose any value that 
satisfies the description of this parameter in SNA Transaction Pro­
grammer's Reference Manual for LU Type ~· 

If the specified LU is not defined as a partner LU for this LU then 
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

Else 

Else 

If the type of connection is parallel-sessions 
and the mode name is no~ SNASVCMG then 

Call SOURCE_SESSION_LIMIT_PROC !page 5.4-45), 
with the verb parameters, to begin the negotiation phase of the CNOS 
process. 

Else !local control-operator verbl 
Call LOCAL_SESSION_LIMIT_PROC (page 5.4-41J, 
with the verb parameters, to perform the CNOS action solely at the 
local LU. 

Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

SNA LU 6.2 Reference: Peer Protocols 



( __ : 

(~,' 

C·, 
/ 

RESET_SESSION_LIHIT_PROC 

RESET_SESSION_LIMIT_PROC 

FUNCTION: This procedure is called by PS_COPR. the control-operator verb router. when a 
transaction program issues a RESET_SESSION_LIMIT verb. It determines the con­
nection type (single or parallel). If the connection is single-session or the 
mode name is SNASVCMG. it passes the CNOS verb parameters to 
LOCAL_SESSION_LIMIT_PROC; if the connection is parallel-session. it passes the 
CNOS verb parameters to SOURCE_SESSION_LIMIT_PROC. It passes the return code 
to the original caller. 

INPUT: RESET_SESSION_LIMIT verb parameters from caller; CNOS RETURN_CODE from LOCAL_ 
or SOURCE_SESSION_LIMIT_PROC 

OUTPUT: RETURN_CODE of RESET_SESSION_LIMIT verb to caller 

Referenced procedures. FSMs, and data structures: 
SOURCE_SESSION_LIMIT_PROC 
LOCAL_SESSION_LIMIT_PROC 
CHANGE_ACTION 

page 5.4-45 
page 5.4-41 
page 5.4-43 

If this transaction program is authorized to issue the CNOS verb then 
Using the LUCB, determine the type of sessions possible with 

the partner LU. either single or parallel. 

For parallel-session connections, an LU may elect not to expose the 
DRAIN_TARGET, and RESPONSIBLE parameters at the control-operator pro­
tocol boundary. In this case. the implementation provides default 
values for these parameters consistent with the description on page 
5.4-21. 

For single-session connections. the RESPONSIBLE parameter on the verb 
is not used. It is forced to SOURCE. 

For the SNA-defined mode name. SNASVCMG. 
DRAIN_TARGET, and RESPONSIBLE parameters on the 
They are forced to NO, NO. SOURCE, respectively. 

the DRAIN SOURCE. 
verb are n~t used. 

If the specified LU is not defined as a partner LU for this LU then 
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

Else 
If the type of connection is parallel-sessions 
and the mode name is not SNASVCHG then 

Call SOURCE_SESSION_LIMIT_PROC (page 5.4-45)• 
with the verb parameters. to begin the negotiation phase of the CNOS process. 

If FORCE = YES is specified on the RESET_SESSION_LIMIT verb then 
If the CNOS return code indicates ALLOCATION_ERROR-ALLOCATION_FAILURE_NO_RETRY. 

LU MODE SESSION LIMIT CLOSED, RESOURCE FAILURE NO RETRY or 
UNRECOGNIZED_MODE~NAME then - - -

Change RESPONSIBLE to SOURCE. 
Call CHANGE_ACTION (page 5.4-43) with the CNOS request to 
update the limits in the MODE structure(s) for the source LU and notify RH. 

Set the CNOS return code to OK-FORCED. 

Else (local control-operator verb) 
Call LOCAL_SESSION_LIMIT_PROC (page 5.4-4ll. 
with the verb parameters. to perform the CNOS action solely at the local LU. 

Else 
Set CNOS RETURN_CODE to PROGRAM_PARAHETER_CHECK. 

Chapter 5.4. Presentation Services--Control-Operator Verbs S.4-35 



CHANGE_SESSION_LIHIT_PROC 

CHANGE_SESSION_LIHIT_PROC 

..--------------.(~' 

5.4-36 

FUNCTION: This procedure is called by PS_COPR, the control-operator verb router, when a 
transaction program issues a CHANGE_SESSION_LIHIT verb. It passes the CNOS 
verb parameters to SOURCE_SESSION_LIHIT_PROC and passes the return code to 
the original caller. 

INPUT: CHANGE_SESSION_LIHIT parameters from callerJ CNOS RETURN_CODE 
SOURCE_SESSION_LIHIT_PROC 

OUTPUT: RETURN_CODE of CHANGE_SESSION_LIHIT to caller 

Referenced procedures. FSHs. and data structures: 
SOURCE_SESSION_LIHIT_PROC 

If the control-operator transaction program. at the source LU. 
is not authorized to issue the CNOS verb then 

Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

Else 
Using the LUCB, determine the type of sessions possible with 

the partner LU, either single or parallel. 

page 5.4-45 

An LU might elect not to expose the RESPONSIBLE and 
HIN_CONHINNERS_TARGET parameters at the control-operator protocol 
boundary. In this case, the implementation provides default values 
for these parameters consistent with the description on page 5.4-21 
and the parameter specification in SNA Transaction Programmer's Refer­
~ Manual for LU Type ~· 

If the specified LU is not defined as a partner for this LU then 
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

Else 

from 

If the type of connection is parallel-sessions and the mode name is not SNASCVMG then 
Call SOURCE_SESSION_LIMIT_PROC lpage 5.4-45), 
with the verb parameters. to begin the negotiation phase of the CNOS process. 

Else 
Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 



c~/ 

c 

ACTIVATE_SESSION_PROC 

ACTIVATE_SESSION_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues an ACTIVATE SESSION verb. It sends an 
RM_ACTIVATE_SESSION request to RM to activ~te a session, and receives the 
reply indicating whether the session was activated. 

INPUT: The CNOS verb IACTIVATE_SESSION), the reply from RM IRM_ACTIVATE_SESSION) 

OUTPUT: The request to RM IRM_ACTIVATE_SESSIONJ, RETURN_CODE of ACTIVATE_SESSION verb 

NOTE: This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID. 

Referenced procedures, FSMs, and data structures: 
RM 
PS_PROCESS_DATA 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 

Verify that the verb parameters specified satisfy the 
parameter values for the ACTIVATE_SESSION verb described in 
SNA Transaction Programmer's Reference Manual for LU Type ~· 

Select based on the result of parameter verification: 
Hhen transaction program is not authorized to issue ACTIVATE_SESSION 

Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 
Hhen a parameter error is identified 

Set the CNOS RETU~N_CODE to PARAMETER_ERROR. 
Hhen all parameters are correct 

Create an RM_ACTIVATE_SESSION request record. 
Set RM_ACTIVATE_SESSION.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify 

the transaction control block describing this instance of PS. 

page 3-19 
page 5.0-24 
page A-16 
page A-22 

Set RM_ACTIVATE_SESSION.LU_NAME to the LU name specified in the CNOS verb. 
Set RM_ACTIVATE_SESSION.MODE_NAME to the mode name specified in the CNOS verb. 
Send RM_ACTIVATE_SESSION request to RM. 
Receive RM_SESSION_ACTIVATED reply from RM. 
Set CNOS RETURN_CODE according to the return code in the 

RM_SESSION_ACTIVATED reply received from RM. 
IF this is a single session and conwinner received las it was requested) then 

Set the secondary code to OK.AS_SPECIFIED. 
Else 

Set the secondary code to OK.AS NEGOTIATED. 
Destroy the RM_SESSION_ACTIVATED record. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-37 



DEACTIVATE_SESSION_PROC 

5.4-38 

DEACTIVATE_SESSION_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues a DEACTIVATE_SESSION verb. It sends an 
RM_DEACTIVATE_SESSION request to RM to deactivate a session. The calling TP 
may be given control back before the session is actually deactivated. 

INPUT: The DEACTIVATE_SESSION verb 

OUTPUT: Request to RM IRM_DEACTIVATE_SESSIONJ, RETURN_CODE of DEACTIVATE_SESSION verb 

NOTE: This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID. 

Referenced procedures, FSMs, and data structures: 
RM 
PS_PROCESS_DATA 
RM_DEACTIVATE_SESSION 

Verify that the verb parameters specified satisfy the 
parameter values for the ACTIVATE_SESSION verb described in 
SNA Transaction Programmer's Reference Manual for LU Type 6.2. 

I'f""""transaction program is authorized to issue DEACTIVATE_SESSION then 
Set the CNOS RETURN CODE to OK. 
Create a RM_DEACTIVATE_SESSION request record. 
Set RM_DEACTIVATE_SESSION.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify 

the transaction control block describing this instance of PS. 

page 3-19 
page 5.0-24 
page A-17 

Set RM_DEACTIVATE_SESSION.SESSION_ID to the SESSION_ID specified in the CNOS verb. 
Set RM_DEACTIVATE_SESSION.TYPE to the TYPE specified in the CNOS verb. 
Send RM_DEACTIVATE_SESSION request to RM. 

Else 
Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

SNA LU 6.2 Reference: Peer Protocols 

( 
\ 
"----·· 



C: 
/ 

C1 

DEFINE_PROC 

DEFINE_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues any of the DEFINE verbs IDEFINE_LOCAL_LU, 
DEFINE_REMOTE_LU, DEFINE_MODE, or DEFINE_TP). It is used to initialize or 
modify attributes of the LUCB, PARTNER_LU, MODE, and TRANSACTION_PROGRAM data 
structures. 

INPUT: The DEFINE verb parameters 

OUTPUT: The attributes of the data structure are defined with the specified values. 

NOTE: This verb may be used to define any other attributes of the LU that are mean­
ingful for a given implementation. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 
TRANSACTION_ PROGRAM 

Verify that the verb parameters specified satisfy the 
parameter values for the DEFINE verb in 
SNA Transaction Programmer's Reference Manual for LU ~ ~· 

If an ABEND condition is identified then 
Set CNOS RETURN_CODE to PROGRAH_PARAHETER_CHECK. 

Else 

page A-1 
page A-2 
page A-3 
page A-5 

The parameters specified are all valid attributes of the LUCB, PART­
NER_LU, MODE, or TRANSACTION_PROGRAM data structure. 

Assign values to the attributes of the data structure according to those 
specified on the DEFINE verb. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-39 



DISPLAY_PROC 

D .. I_s_P_L_Av ___ P_R_oc __________________________________ __, ('' 

5.4-40 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues any of the DISPLAY verbs ( DISPLAY_LOCAL_LU, DIS­
PLAY_REMOTE_LU, DISPLAY_MODE, or DISPLAY_TPJ. It is used to display attri­
butes of the LUCB, PARTNER_LU, MODE, and TRANSACTION_PROGRAM data structures. 

INPUT: The DISPLAY verb parameters 

OUTPUT: The specified attributes of the data structure are displayed for the user. 

NOTE: This verb may be used to display any other attributes of the LU that are mean­
ingful for a given implementation. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_LU 
MODE 
TRANSACTION_PROGRAM 

Verify that the verb parameters specified satisfy the 
parameter values for the DISPLAY verb in 
~ Transaction Programmer's Reference Manual for LU Type 6.Z. 

If an ABEND condition is identified then 
Set CNOS RETURN_CODE to PROGRAH_PARAMETER_CHECK. 

Else 

page A-1 
page A-Z 
page A-3 
page A-5 

The parameters specified are all valid attributes of the LUCB, PART­
NER_LU, MODE MODE, or TRANSACTION_PROGRAM data structure. 

Display the requested LUCB, PARTNER_LU, MODE, or TRANSACTION_PROGRAH 
attributes as they are currently defined. 

SNA LU 6.Z RefeMll"IC8: Peer Protocols 

c 

C' 



(_ 

C_j 

DELETE_PROC 

DELETE_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues a DELETE verb. It is used to delete attributes of 
the LUCB, PARTNER_LU, MODE, and TRANSACTION_PROGRAM data structures. 

INPUT: The DELETE verb parameters 

OUTPUT: The data structure attributes are deleted. 

NOTE: This verb may be used to delete any other attributes that are meaningful for a 
given implementation. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 
TRANSACTION_PROGRAM 

Verify that the verb parameters specified satisfy the 
parameter values for the DELETE verb in 
SNA Transaction Programmer's Reference Manual for LU Type 6.2. 

If an ABEND condition is identified then 
Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

Else 

page A-1 
page A-2 
page A-3 
page A-5 

The parameters specified are all valid attributes of the LUCB, PART­
NER_LU, MODE, or TRANSACTION_PROGRAM data structure. 

Delete the LUCB, PARTNER LU, MODE, or TRANSACTION_PROGRAM attributes 
as specified on the DELETE verb. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-41 



LOCAL_SESSION_LIHIT_PROC 

LOCAL_SESSION_LIHIT_PROC 

5.4-42 

FUNCTION: This procedure is invoked by either of the following verb-specific CNOS proce­
dures: INITIALIZE SESSION LIMIT, RESET SESSION LIMIT. It processes CNOS 
control-operator v;rbs t.,;t affect only the local LU: INITIALIZE_ and 
RESET_SESSION_LIHIT for single-session connections and for mode name SNASVCMG. 

INPUT: The CNOS source LU verb parameters from the calling procedure 

OUTPUT: Return code for the CNOS verb ICNOS RETURN_CODE) 

NOTE: This procedure read-locks the HOOE for the entire procedure. 

Referenced procedures, FSHs, and data structures: 
LOCAL_VERB_PARAHETER_CHECK 
SVCHG_VERB_PARAHETER_CHECK 
CHANGE_ACTION 

Using the LUCB, determine the type of session possible 
with the partner LU, either single or parallel. 

If the type of connection is single session then 
Call LOCAL_VERB_PARAHETER_CHECK !page 5.4-42), 
with the CNOS verb parameters, to verify the verb parameters. 

Else 
Call SVCHG_VERB_PARAHETER_CHECK (page 5.4-43), with the CNOS verb 
parameters, to perform the appropriate parameter checks. 

If the check found no errors then 
Call CHANGE_ACTION !page 5.4-43), with the CNOS verb parameters, 

page 5.4-42 
page 5.4-43 
page 5.4-43 

to change the session limits at the source LU according to the parameters specified. 

SNA LU 6.2 Reference: Peer Protocols 



C': 
/ 

LOCAL_VERB_PARAHETER_CHECK 

LOCAL_VERB_PARAMETER_CHECK 

FUNCTION: This procedure performs validity checks on a CNOS verb for single-session con­
nections, and it returns the CNOS-verb RETURN_CODE for any error,. detected. 

INPUT: The CNOS source LU verb parameters, PARTNER_LU_LIST, and MODE_LIST 

OUTPUT: CNOS verb RETURN_CODE value 

Referenced procedures, FSMs, and data structures: 
LUCB 
MODE 

Verify that the specified verb parameters satisfy the single-session 
parameter values as described for this verb in 
SNA Transaction Programmer's Reference Manual for LU ~ ~· 

page A-1 
page A-3 

Attributes of the mode are verified against fields in the appropriate 
MODE structure for the specified PARTNER_LU. 

Select based on result of parameter verification: 
Hhen all parameters are correct 

Set the CNOS RETURN CODE to OK--AS SPECIFIED. 
Hhen a program paramet;r check condition is identified as defined in 

SNA Transaction Programmer's Reference Manual for LU Type~· 
Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

Hhen a parameter error is identified 
Set the CNOS RETURN_CODE for this verb to PARAMETER_ERROR. 

Hhen the MODE.SESSION LIMIT is not 0 
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_NOT_ZERO. 

Hhen all ILU,MODEJ session limits to this single session partner LU are currently 0 
and the sum of all ILU,MODEJ session limits to other partner LUs =the total 
session limit lin the LUCBJ 

Set the CNOS RETURN_CODE for this verb to LU SESSION LIMIT EXCEEDED. 
Hhen the session limit specified exceeds the LOCAL_MAX_SESSION_LIMIT in the MODE 

Set the CNOS RETURN_CODE for this verb to REQUEST_EXCEEDS_MAX_ALLOHED. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-43 



SVCMG_VERB_PARAMETER_CHECK 

SVCMG_VERB_PARAMETER_CHECK 

5.4-44 

FUNCTION: This procedure performs validity checks on a CNOS verb for mode name SNASVCMG, 
and it returns the CNOS-verb RETURN_CODE for any error detected. 

INPUT: 

OUTPUT: 

Transaction program verb parameters, PARTNER_LU_LIST, and MODE_LIST 

CNOS verb RETURN_CODE value if any errors are detected; otherwise, OK is 
returned 

Referenced procedures, FSMs, and data structures: 
LUCB 
MODE 

page A-1 
page A-3 

Verify that the verb parameters specified satisfy the parameter values appropriate 
for parallel-session connections, as described in 
SNA Transaction Programmer's Reference Manual for~ ~ ~· 

Attributes of the mode are verified against fields in the appropriate 
MODE structure for the specified PARTNER_LU. 

Select, in order, based on result of parameter verification: 
Hhen an program parameter check condition is identified as defined in 

SNA Transaction Programmer's Reference Manual for LU Type 6.2. 
Set CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. - -- --

Hhen a parameter error is identified 
Set the CNOS RETURN CODE to PARAMETER ERROR. 

Hhen the MODE.SESSION LIMIT is not 0 -
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_NOT_ZERO. 

Hhen the session limit specified could not be added without exceeding 
the session limit in the LUCB for the LU (page 5.4-4) 

Set the CNOS RETURN_CODE to LU_SESSION_LIMIT_EXCEEDED. 

CHANGE_ACTION 

FUNCTION: This procedure is called when the LU accepts a valid (and negotiated, if nec­
essary) CNOS command. This procedure updates the ILU,modeJ entries for 
affected mode names with the new session limit parameters. It decides wheth­
er this LU is responsible for taking any action to change the session count, 
and, if so, sends a CHANGE_SESSIONS request to RM. 

INPUT: 

OUTPUT: 

NOTE: 

The CNOS verb parameters specified, 
the new session limit parameters in 
is distributed; the role of the LU 
NER_LU_LIST and MODE_LIST 

if the CNOS verb is local to this LU only; 
the CNOS reply record, if the CNOS action 
to be modified (source or target), PART-

Session limits and drain state are updated in the MODE; CHANGE_SESSIONS to RM 

This procedure locks the MODE for the entire procedure. 

See SNA Transaction Programmer's Reference Manual for LU Type ~ for the 
session-limit parameters affected by each CNOS verb. 

This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID. 

Referenced procedures, FSMs, and data structures: 
RM 
CHANGE_ SESSIONS 
PARTNER_ LU 
MODE 

SNA LU 6.2 Reference: Peer Protocols 

page 3-19 
page A-15 
page A-2 
page A-3 



c 

0 

() 

c 

CHANGE_ACTION 

Select based on whether one MODE or all MODEs with the PARTNER_LU are affected 
(see the MODE LIST associated with the PARTNER_LU): 

Hhen only o~e MODE is affected 
Update the session-limit parameters for the specified (LU, model entry 

(MODE.SESSION LIMIT, MODE.MIN CONHINNERS LIMIT, MODE.MIN CONLOSERS LIMIT, 
MODE.DRAIN_SELF, MODE.DRAIN_PARTNER, MODE.RESPONSIBLE) a; they are-applicable: 

For single-session mode names and for mode name SNASVCMG, the session limit 
parameters affected are those specified on the particular CNOS verb and the 
changes are reflected in the source LU only. 

MODE.MINCONHINNERS LIMIT is set from MINCONHINNERS_SOURCE specified in 
the CNOS command. MODE.MINCONLOSERS LIMIT is set from 
MINCONHINNERS_TARGET specified in the CNOS c;mmand. 

For parallel-session connections defined with the partner LU, the session limit 
parameters affected are those specified on the CNOS reply and the changes are 
reflected as appropriate in both the source and the target LU (when this 
procedure is called from SOURCE_SESSION_LIMIT lor LOCAL_SESSION_LIMITJ and 
PROCESS_SESSION_LIMIT, respectively). 

At the source LU, MODE.MIN_CONHINNERS_LIMIT is set from 
MIN_CONHINNERS_SOURCE specified in the CNOS reply and 
MODE.MIN_CONLOSERS_LIMIT is set from MIN_CONHINNERS_TARGET specified 
in the CNOS reply. The reverse is true at the target LU. 

If the verb issued at the source LU is INITIALIZE SESSION LIMIT or CHANGE SESSION LIMIT, 
or, according to the responsible field of the CNOS reply-( applicable only when the 
CNOS function is distributed), this LU is responsible for session deactivation then 

Create a CHANGE_SESSIONS request record. 
Set CHANGE_SESSIONS.LU_NAME to PARTNER_LU.LOCAL_LU_NAME. 
Set CHANGE_SESSIONS.MODE_NAME to the affected mode name as specified on the 

CNOS verb. 
Set CHANGE SESSIONS.DELTA to the difference between the LU_MODE_SESSION_LIMIT 
specified-on the CNOS command or reply and the current MODE.SESSION_LIMIT. 

If the verb issued by the source LU is CHANGE_SESSION_LIMIT and the limit in the 
reply is less than the current session limit, or the verb issued by the source LU 
is the distributed function RESET SESSION LIMIT verb I MODE.DRAIN SELF = NO then 

If the responsible field value in the CNOS reply specifies the ~urrent LU (which 
could be source or target) then 

Set CHANGE_SESSIONS.RESPONSIBLE to YES. 
Else 

Set CHANGE SESSIONS.RESPONSIBLE to NO. 
Else I RESPONSIBLE value will not be significant to RMJ 

Set CHANGE SESSIONS.RESPONSIBLE to NO. 
Send the CHANGE_SESSIONS request to RM. 

Hhen all MODEs are affected lin which case the verb issued by the source LU is 
RESET SESSION LIMIT) 

Do the foll~ing for each MODE !except SNASVCMGJ with the PARTNER_LU 
Set MODE.DRAIN SELF and MODE.DRAIN PARTNER based on the current 
session limit-and the drain param;ters of the CNOS reply. 

Set SESSION LIMIT, MIN CONHINNERS LIMIT and MIN CONLOSERS LIMIT to 0. 
If this LU is responsible for ses;ion deactivation I MODE~DRAIN_SELF = NO then 

Create a CHANGE_SESSIONS request record as described in detail above. 
Send the CHANGE_SESSIONS request to RM. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-45 



SOURCE-LU CNOS PROCEDURES 

5.4-46 

SOURCE_SESSION_LIMIT_PROC 

FUNCTION: This procedure is invoked by any of the following verb-specific CNOS proce­
dures: INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, RESET_SESSION_LIMIT. 
It provides common overall processing of a parallel-session CNOS 
control-operator verb issued by a source LU control operator transaction pro­
gram. It invokes other procedures to check the verb parameters for validity, 
detect and resolve race conditions with any other CNOS transaction, build a 
command record, allocate a conversation with the target LU, exchange command 
and reply records with the target LU, update the PARTNER_LU_LIST and MODE_LIST 
with the new session limit parameters, and, if necessary, request the 
resources manager to activate or deactivate sessions. If errors are detected 
at any point, it skips subsequent steps and cleans up from previous steps. 
It passes a RETURN_CODE to the calling procedure indicating success or a 
failure reason. 

INPUT: 

OUTPUT: 

CNOS source LU verb parameters, from the calling procedure; the CNOS reply 
from the target LU, via SOURCE CONVERSATION CONTROL; the ILU,modeJ entries 
with the session limits in the MODE, PARTNER LU LIST and MODE LIST, and other 
CNOS parameters; the lock to control contentio~ for the PARTNER_LU_LIST and 
MODE_LIST by CNOS transaction processes, and to resolve CNOS races !maintained 
by SESSION_LIMIT_DATA_LOCK_MANAGERJ 

Return code for the CNOS verb, CNOS RETURN_ CODE; 
MODE.CNOS NEGOTIATION IN_PROGRESS and MODE.LIMIT_BEING_NEGOTIATED; procedure 
SOURCE CONVERSATION allocates and deallocates a conversation with the target 
LU and issues conversation verbs; specified ILU,modeJ entries updated via 
CHANGE_ACTION in the MODE; CHANGE_SESSIONS issued to RH--via CHANGE_ACTION 

Referenced procedures; FSMs, and data structures: 
SESSION_LIMIT_DATA_LOCK_MANAGER 
VERB_PARAMETER_CHECK 
SOURCE_CONVERSATION_CONTROL 
CHECK_CNOS_REPLV 
CHANGE_ACTION 
PARTNER_LU 
MODE 

SNA LU 6.2 Reference: Peer Protocols 

page 5.4-66 
page 5.4-47 
page 5.4-48 
page 5.4-55 
page 5.4-43 
page A-2 
page A-3 

c 

~· 

\ 
'---·-·· 



c 

c 

0 

c 

c 

SOURCE_SESSION_LIMIT_PROC 

Call VERB_PARAMETER_CHECK !page 5.4-471, 
with the verb parameters, to verify the syntax of the parameters. 

If all parameters are determined to be correct then 

Call SESSION_LIMIT_DATA_LOCK_MANAGER (page 5.4-66) 
to perform a source-LU lock on the affected CLU,modeJ entry or entries 
and prevent simultaneous access by other CNOS transactions. 

Select based on one of the following conditions: 
Hhen the state of the lock is changed from UNLOCKED to 

LOCKED_BY_SOURCE for each affected CLU,modeJ entry 

MODE is now locked against any other CNOS transaction. 

Build a CNOS command record with the parameters specified on the verb 
and consistent with the change-number-of-sessions record 
ISNA Formats). 

If the command is change or initialize session limits then 
If the MODE.SESSION_LIMIT < the new limit that is being proposed then 

Set MODE.CNOS_NEGOTIATION_IN_PROGRESS = TRUE. 
Set MODE.LIMIT_BEING_NEGOTIATED = LU_MODE_SESSION_LIMIT from verb. 
This is done so BINDs that arrive prior to the CNOS reply are not rejected. 

Do until the CHECK_CNOS_REPLY procedure does not return RETRY 

The verb completes or a permanent error occurs. 

Call SOURCE_CONVERSATION_CONTROL !page 5.4-48), 
with the CNOS command, to send on the conversation and to receive the CNOS reply. 

If the SOURCE_CONVERSATION_CONTROL returns OK la CNOS reply was 
successfully received) then 

Optionally, perform syntax checking on the CNOS reply record 
according to the description in SNA Formats. 

If the CNOS reply is syntactically correct, or the syntax 
check was not performed then 

Call CHECK_CNOS_REPLY with the CNOS reply record and the 
network-qualified LU names for the source and target LUs 
to determine the result of the negotiation (page 5.4-55). 

Else 
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

If the session limits were successfully accepted or negotiated then 
Call CHANGE_ACTION !page 5.4-43), with the CNOS reply, 

to update the limits in the MODE structure for the source LU and notify RM. 

If the command is change or initialize session limits then 
Set MODE.CNOS_NEGOTIATION_IN_PROGRESS = FALSE. 

Call SESSION_LIMIT_DATA_LOCK_MANAGER !page 5.4-661 
to perform the unlock operation on the affected ILU,modeJ entry or entries. 

Hhen the lock operation performed on any of the affected ILU,mode) entries 
was other than a state change from UNLOCKED to LOCKED_BY_SOURCE 
!because of a previous lock operation performed for a different CNOS command) 

Set the CNOS RETURN_CODE to COMMAND_RACE_REJECT. 

Hhen the mode name is not found for the PARTNER_LU 
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-47 



VERB_PARAHETER_CHECK 

VERB_PARAHETER_CHECK 

5.4-48 

FUNCTION: This procedure performs validity checks on the CNOS verb issued by the 
control-operator transaction program at the source LU, and it returns the 
CNOS-verb RETURN_CODE for any error detected. 

INPUT: Parameters from transaction program verb, PARTNER_LU_LIST and MODE_LIST 

OUTPUT: CNOS verb RETURN_CODE value if any errors are detectedJ otherwise, OK is 
returned 

NOTE: This procedure locks the MODE for the entire procedure. 

Referenced procedures, FSMs, and data structures: 
LUCB 
MODE 

page A-1 
page A-3 

Verify that the specified verb parameters satisfy the parameter values as 
described for this verb in SNA Transaction Programmer's Refererice Manual for ~ ~ !..:.!· 

Attributes of the mode name are verified against fields in the appro­
priate MODE structure for the specified PARTNER_LU. 

Select based on result of parameter verification: 
Hhen all parameters are correct 

Set the CNOS RETURN_CODE for this verb to OK--AS_SPECIFIED. 
Hhen a program parameter check condition is identified as described in 

SNA Transaction Programmer's Reference Manual for LU ~ 6.2. 
Set CNOS RETURN CODE to PROGRAM PARAMETER CHECK.- -

Hhen a parameter e;ror is identifi;d -
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

Hhen the verb issued is INITIALIZE_SESSION_LIMIT and the MODE.SESSION_LIMIT 
is not 0 for the affected MODE at the PARTNER_LU 

Set the CNOS RETURN CODE to LU MODE SESSION LIMIT NOT ZERO. 
Hhen the verb issued i; CHANGE SESSION-LIMIT a~ the-MODE.SESSION LIMIT 
is 0 for the affected MODE at-the PARTNER_LU -

Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_ZERO. 
Hhen the specified session limit could not be added without exceeding 

the session limit in the LUCB for the LU (page 5.4-41. 
Set the CNOS RETURN_CODE to LU_SESSION_LIMIT_EXCEEDED. 

Hhen the specified session limit could not be added without exceeding 
the LOCAL MAX SESSION LIMIT in the MODE 

Set the-CNOS RETURN:coDE to REQUEST_EXCEEDS_MAX_ALLOHED. 

SNA LU 6.2 Reference: Peer Protocols 

~· 
( , 

"····' 

c~ 



c 

c 

0 

c 

SOURCE_CONVERSATION_CONTROL 

SOURCE_CONVERSATION_CONTROL 

FUNCTION: This procedure controls a conversation with the target LU to send the CNOS 
command and receive the CNOS reply. It controls the selection of mode name 
for the conversation.· In the event of session outage, it retries the conver­
sation either until it succeeds or until no sessions are active for any mode 
name affected by the CNOS verb. 

INPUT: CNOS verb parameters including the name of the target LU; CNOS commandJ summa­
ry of the success or failure of the CNOS exchange across the conversation 
(provided by the SOURCE_CONVERSATION procedure) so this routine can make a 
retry decision: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO SESSION: no session is available for this mode nameJ retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

OUTPUT: CNOS reply; summary of outcome of conversation for caller 

Referenced procedures, FSMs, and data structures: 
SOURCE_CONVERSATION 
LUCB 
PARTNER_ LU 
MODE 

Do until the SOURCE_CONVERSATION procedure returns a value 
OK or FAILED, or if all possible modes are tried but no sessions 
are available on any of these 

Choose a mode name with which to allocate a conversation. The mode 
name is optionally selected from an implementation-defined list 
lif any of these sessions is immediately available) or the SNA­
defined mode name SNASVCMG. 

Choose the RETURN CONTROL value for the ALLOCATE verb 
(see~ Transaction Programmer's Reference Manual for,!:,!:! Type~). 

page 5.4-49 
page A-1 
page A-2 
page A-3 

Initially, choose mode names from the implementation defin~d list and 
use a RETURN CONTROL value of IMMEDIATE. Once these have been 
exhausted, try the SNA-defined mode ISNASVCMGJ with a RETURN_CONTROL 
value of HHEN_SESSION_ALLOCATED. If this is not successful, choose a 
mode name from those that will be affected by this CNOS command and 
use a RETURN_CONTROL value of HHEN_SESSION_ALLOCATED. 

Call SOURCE_CONVERSATION lpage 5.4-49) with the parameters 
chosen above and the CNOS command record. SOURCE_CONVERSATION will issue 
the basic conversation verbs to send the CNOS command, receive the CNOS 
reply over the conversation and obtain the network-qualified LU names for 
this and the partner LU for later comparison. 

If SON (session outage notification) is returned, the conversation is 
retried on another session for the same mode name. 

Set the return value for this routine to the value.returned from 
SOURCE_CONVERSATION. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-49 



SOURCE_ CONVERSATION 

5.4-50 

SOURCE_ CONVERSATION 

FlKTION: This procedure conducts a conversation with the target LU to send the CNOS 
command and receive the CNOS reply. It issues the conversation verbs. It 
invokes other routines to analyze the return codes to determine when and how 
to deallocate the conversation and whether retry is necessary. 

INPUT: 

OUTPUT: 

NOTE: 

LU name of the partner, mode name for the conversation on which the 
CHANGE_NUMBER_OF_SESSIONS command and reply records are exchanged; the 
RETURN_CONTROL parameter for the ALLOCATE verb; CNOS command 

CNOS reply; summary of the success or failure of a particular basic conversa­
tion verb, according to the particular RESULT_CHECK_* procedure called: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO SESSION: no session is available for this mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

The SOURCE CONVERSATION CONTROL procedure will make a retry decision based on 
this infor;ation. 

See SNA Transaction Programmer's Reference Manual for LU Type ~ for conver­
sation verbs. 

Referenced procedures, FSMs, and data structures: 
RESULT_CHECK_ALLOCATE 
RESULT_CHECK_SEND_COMMAND 
RESULT_CHECK_RECEIVE_REPLY 
RESULT_CHECK_RECEIVE_DEALLOCATE 

Conduct a conversation with the partner. 

Issue the ALLOCATE verb according to the mode name and RETURN_CONTROL values 
passed to this procedure and default values as described on page 5.4-27. 

page 5.4-51 
page 5.4-52 
page 5.4-53 
page 5.4-54 

Call RESULT CHECK ALLOCATE to examine the RETURN CODE value from the ALLOCATE 
(according-to th; RETURN_CONTROL value specified on the verb) and issue DEALLOCATE 
for the conversation if appropriate Cpage 5.4-51). 

SNA LU 6 •. 2 Reference: Peer Protocols 

c;, 
.... _./ 



() 

SOURCE_ CONVERSATION 

If the ALLOCATE verb returned OK then 
Issue a GET_ATTRIBUTES verb, with the RESOURCE parameter returned 

from the ALLOCATE, to obtain the network-qualified LU name of 
the partner LU. 

Issue a GET_TP_PROPERTIES verb to get the network-qualified LU name of 
the local LU. 

These LU names are required for comparison in the CHECK CNOS REPLY to 
determine the winner for a double-failure race. 

Issue a SEND_DATA verb to send the CNOS command. 
Call RESULT_CHECK_SEND_COMMAND !page 5.4-52) to examine 

the parameters returned from the SEND_DATA verb and perform the DEALLOCATE 
if appropriate. 

If the SEND_DATA verb returned OK then 
Issue a RECEIVE_AND_HAIT verb to receive the CNOS reply. 
Call RESULT_CHECK_RECEIVE_REPLY !page 5.4-53) to examine 

the parameters returned from the RECEIVE_AND_HAIT verb and perform the DEALLOCATE 
if appropriate. 

If the RECEIVE AND HAIT verb returned OK then 
Issue the RECEIVE AND HAIT verb to receive the DEALLOCATE from the 
partner LU. - -

Call RESULT_CHECK_RECEIVE_DEALLOCATE !page 5.4-54) to examine 
the parameters returned from the RECEIVE_AND_HAIT verb and perform the DEALLOCATE 
if appropriate. 

Set the return code for this procedure from the value returned by the last 
RESULT_CHECK_* procedure called. 

Chapter 5.4 •. ~Presentation Serviqes--Control-Operator Verbs 5.4-51 



RESULT_CHECK_ALLOCATE 

5.4-52 

RESULT_CHECK_ALLOCATE 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the ALLOCATE verb that allocates the CNOS conversation, and it clas­
sifies the outcome for use in later decisions, specifically whether to retry, 
quit, or continue. For some error conditians, the conversation will need to 
be deallocated. 

INPUT: 

OUTPUT: 

NOTE: 

RETURN_CODE, RETURN_CONTROL 

Summary of the success or failure of the ALLOCATE verb: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO_SESSION: no session is available for' this mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

This information will be used by SOURCE~CONVERSATION_CONTROL to make a retry 
decision. 

Checks are required unless designated optional. 

Select based on the RETURN_CONTROL value specified on the ALLOCATE verb: 
Hhen IMMEDIATE I implementation-selected mode name) 

Select based on the RETURN_CODE value from the ALLOCATE verb: 
Hhen OK 

Return OK to the SOURCE_CONVERSATION procedure. 
Hhen ALLOCATION_ERROR (optional check) 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate 
the conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
Hhen UNSUCCESSFUL lno session is immediately available) 

Return NO_SESSION to the SOURCE_CONVERSATION procedure. 
Otherwise !optional check) 

Return FAILED to the SOURCE_CONVERSATION procedure. 

Hhen HHEN_SESSION_ALLOCATED 

Select based on the RETURN_CODE value from the ALLOCATE verb: 
Hhen OK 

Return OK to the SOURCE_CONVERSATION procedure. 
Hhen ALLOCATION ERROR--ALLOCATION FAILURE RETRY 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return NO_SESSION to the SOURCE_CONVERSATION procedure. 
Otherwise (optional check) 

Return FAILED to the SOURCE_CONVERSATION procedure. 

SNA LU 6.2 Reference: Peer Protocols 



c 

c 

0 

C) 
/ 

RESULT_CHECK_SEND_COMMAND 

RESULT_CHECK_SEND_COMMAND 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the SEND_DATA verb that sends ·the CNOS command, and it classifies 
the outcome for use in later decisions, specifically whether to retry, quit, 
or continue. For some error conditions, the conversation may need to be deal­
located. 

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED 

OUTPUT: Summary of the success or failure of the SEND_DATA verb: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO_SESSION: no session is available for this mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

This information will later be used by SOURCE_CONVERSATION_CONTROL to make a 
retry decision. 

NOTE: Checks are required unless designated optional. 

Select, in order, based on the RETURN_CODE parameter from the SEND_DATA verb: 
Hhen OK 

If the REQUEST_TO_SEND_RECEIVED parameter returned from the SEND_DATA verb is YES then 
Issue a DEALLOCATE verb with TVPE=ABEND PROG to deallocate the conversation. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Else 
Return OK to the SOURCE_CONVERSATION procedure. 

Hhen RESOURCE FAILURE RETRY 
Issue a DEALLOCATE-verb with TVPE=LOCAL to deallocate the conversation 
locally. 

Return SON (session outage notification) to the SOURCE_CONVERSATION procedure. 

Hhen ALLOCATION_ERROR--SECURITY_NOT_VALID, 
ALLOCATION_ERROR--TP_NOT_AVAILABLE_NO_RETRY, 
or ALLOCATION_ERROR--TP_NOT_AVAILABLE_RETRY 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
Hhen ALLOCATION_ERROR--* (optionally check for any other variety of ALLOCATION_ERRORJ 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

Hhen DEALLOCATE_ABEND_PROG 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation 
locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
Otherwise 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-53 



RESULT_CHECK_RECEIVE_REPLY 

5.4-54 

RESULT CHECK RECEIVE_REPLY 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE_AND_HAIT verb that receives the CNOS reply, and it clas­
sifies the outcome for use in later decisions, specifically whether to retry, 
quit, or continue. For some error conditions, the conversation may need to be 
deallocated. 

INPUT: RETURN_CODE, REQUEST_TO_SENT_RECEIVED, HHAT_RECEIVED 

OUTPUT: Summary of the success or failure of the RECEIVE AND_HAIT verb: 

NOTE: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO SESSION: no session is available for this mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

This information will later be used by SOURCE_CONVERSATION_CONTROL to make a 
retry decision. 

Checks are required unless designated optional. 

Select based on the RETURN_CODE value returned from the RECEIVE_AND_HAIT verb: 
Hhen OK 

If the HHAT_RECEIVED parameter returned is DATA_COMPLETE then 
If the REQUEST_TO_SEND_RECEIVED parameter from the RECEIVE_AND_HAIT verb is NO then 

Return OK to the SOURCE_CONVERSATION procedure. 
Else 

Else 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
Hhen RESOURCE FAILURE RETRY 

Issue a DEALLOCATE-verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return SON I session outage notification) to the SOURCE_CONVERSATION procedure. 
Hhen ALLOCATION_ERROR--SECURITY_NOT_VALID, ALLOCATION_ERROR--TP_NOT_AVAILABLE_NO_RETRY, 
or ALLOCATION_ERROR--TP_NOT_AVAILABLE_RETRY 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Hhen ALLOCATION ERROR--* 
!optionally ~heck for any other variety of ALLOCATION_ERROR) 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Hhen DEALLOCATE_NORMAL or DEALLOCATE_ABEND_PROG !optional check) 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

otherwise 
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

SNA LU 6.2 Reference: Peer Protocols 

c 



(~1 

RESULT_CHECK_RECEIVE_DEALLOCATE 

RESULT_CHECK_RECEIVE_DEALLOCATE 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE_AND_HAIT verb that receives DEALLOCATE from the target 
LU, and it classifies the outcome for use in later decisions, specifically 
whether to retry, quit, or continue. For some error conditions, the conversa­
tion may need to be deallocated. 

INPUT: RfTURN_CODE, REQUEST_TO_SEND_RECEIVED, HHAT_RECEIVED !used only for error logl 

OUTPUT: Summary of the success or failure of the RECEIVE_AND_HAIT verb: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry on the same mode name might succeed 
• NO_SESSION: no session is available for this mode name; retry on another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

Select based on the RETURN_CODE value returned from the DEALLOCATE verb: 
Hhen DEALLOCATE NORMAL 

If the REQUEST TO SEND RECEIVED parameter from RECEIVE_AND_HAIT verb is YES then 
Issue a DEALLoCATE ~erb with TYPE=ABEND PROG to deallocate the conversation. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Else 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
Return OK to the SOURCE_CONVERSATION procedure. 

Hhen RESOURCE FAILURE RETRY 
Issue a DEALLOCATE-verb with TYPE=LOCAL to deallocate the conversation locally. 
Return SON I session outage notification) to the SOURCE_CONVERSATION procedure. 

Hhen DEALLOCATE_ABEND_PROG 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Otherwise 
Issue a DEALLOCATE verb with TYPE=ABEND PROG to deallocate the conversation. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-55 



CHECK_CNOS_REPLY 

5.4-56 

CHECK_CNOS_REPLY 

FUNCTION: This procedure is called when the conversation with the target LU completes. 
It determines whether the conversation must be retried due to a double-failure 
race condition, whether the verb must be terminated due to error, or whether 
to continue with the action phase of CNOS processing. 

It performs optional receive checks on the validity of the reply. It sets the 
return code for the CNOS verb. 

INPUT: Fields of the CNOS reply record, PARTNER_LU_LIST and MODE_LIST for current 
session limit OUTPUT.CNOS RETURN_CODE, if any errors are found} RETRY, used by 
caller to select subsequent processing 

NOTE: Checks are required unless designated optional. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 

Select based on the reply modifier field of the CNOS reply record: 
Hhen the reply modifier is MODE_NAME_NOT_RECOGNIZED 

Set the CNOS RETURN CODE to UNRECOGNIZED MODE NAME. 

page A-1 
page A-2 
page A-3 

Hhen the reply modifie; indicates an ILU,modeJ s;ssion limit of 0 
Verify that, for the PARTNER_LU MODEs specified on the original 
that the SESSION_LIMIT=O, and DRAIN_SELF=NO. 

CNOS verb, 

If these MODE attributes are correctly verified then 
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_CLOSED. 

Else 
Set the CNOS RETURN CODE to RESOURCE FAILURE NO RETRY. 

Hhen the reply modifier i; COMMANO_RACE_DETECTED 
Check the state of the lock to determine whether the race is a single- or 
double-failure race (page 5.4-301. 

Compare the network-qualified LU names for the source and target LUs 
(returned from the GET ATTRIBUTES and GET TP PROPERTIES verbs in the 
SOURCE_CONVERSATION pr~cedurel with respe~t to the EBCDIC collating sequence 
I page 5.4-14 J. 

If the race detected is a single-failure race or the LU name of the target 
LU is greater by the above comparison then 

Set the CNOS RETURN_CODE to COMMAND_RACE_REJECT. 

Else !double-failure race condition and source LU name is greater) 
Return RETRY to SOURCE SESSION LIMIT PROC. 

Hhen the reply modifier is ACCEPTED - -
Set the CNOS RETURN_CODE to OK--AS_SPECIFIED. 

Hhen the reply modifier is NEGOTIATED 
Optionally verify that the parameters in the CNOS reply were correctly 
negotiated, according to page 5.4-28. 

If the reply parameters were successfully verified or the optional 
checks were not implemented then 

Set the CNOS RETURN_CODE to OK--AS_NEGOTIATED. 

Else 
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

SNA LU 6.2 Reference: Peer Protocols 

f\ 
\ . 

....__./ 



(_,TARGET-LU ~ PROCEDURES 

(, 

c 

X06Fl 

FUNCTION: 

OUTPUT: 

NOTE: 

This procedure is the CNOS service transaction program at the target LU. It 
is invoked by PS_INITIALIZE as a result of an FMH-5 Attach header being 
received from the source LU. It issues the PROCESS SESSION LIMIT control 
operator verb to activate CNOS processing at the targ;t LU. It informs the 
target-LU operator of the CNOS action. 

Issues control-operator verb PROCESS_SESSION_LIMIT 

See SNA Transaction Programmer's Reference Manual for LU ~ 6.Z for 
contror=operator verbs. 

Issue the PROCESS_SESSION_LIMIT verb to be processed by PS_COPR 
(page 5.4-3ZJ and inform the target-LU operator of the 
resulting CNOS RETURN_CODE. 

The algorithm to inform the operator is implementation dependent. 
This algorithm may make use of DEFINE or DISPLAY control-operator 
verbs to determine the current session limits, in the MODE, and then 
display them on the operator console. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-57 



PROCESS_SESSION_LIMIT_PROC 

PROCESS_SESSION_LIMIT_PROC 

r--~~~~~~~~___,( 

5.4-58 

FUNCTION: This procedure is invoked by PS_COPR, the control-operator-verb router, when 
the CNOS service transaction program at the target LU issues a PROC­
ESS_SESSION_LIMIT control-operator verb. This procedure directs overall proc­
essing of CHANGE_NUMBER_OF_SESSIONS at the target LU. This procedure receives 
the CNOS command from the source LU and sends the CNOS reply. It invokes TAR­
GET_CONVERSATION to issue the conversation verbs and process the return codes. 

INPUT: 

OUTPUT: 

Referenced 

It invokes other procedures to check the verb and the conversation attributes 
for validity, detect and resolve race conditions with any other CNOS trans­
action, negotiate CNOS parameters, update the affected MODEs with the new ses­
sion limit parameters, and, if necessary, request the resources manager to 
activate or deactivate sessions. If errors are detected at any point, it 
skips subsequent steps and cleans up from previous steps. It passes a 
RETURN_CODE to the calling procedure in the PROCESS_SESSION_LIMIT record indi­
cating success or a failure reason. 

PROCESS_SESSION_LIMIT verb, CNOS command from the source LU via the conversa­
tion; PARTNER_LU_LIST and MODE_LIST 

Outcome of the operation to the caller in PROCESS_SESSION_LIMIT IRETURN_CODEl; 
CNOS reply sent to the source LU via the conversation; updated MODE entries 
via CHANGE ACTION; CHANGE SESSIONS record to RM, via CHANGE ACTION; SES­
SION_LIMIT _DATA lock - tested, set, and reset - via SES­
SION_LIMIT_DATA_LOCK_MANAGER 

procedures, FSMs, and data structures: 
NEGOTIATE_REPLY page 5.4-63 
CHECK_CNOS_COMMAND page 5.4-62 
CHANGE_ACTION page 5.4-43 
TARGET_COMMAND_CONVERSATION page 5.4-60 
TARGET_REPLY_CONVERSATION page 5.4-64 
SESSION_LIMIT_DATA_LOCK_MANAGER page 5.4-66 
LUCB page A-1 
PARTNER_ LU page A-2 
MODE page A-3 

SNA LU 6.2 Reference: Peer Protocols 

(~ 
.......... _ ______.,,,' 

c 



c/ 

(-. 
\ ; 
"---../ 

c, 

0 

PROCESS_SESSION_LIMIT_PROC 

Check the verb parameters to detect ABEND conditions as described in 
SNA Transaction Programmer's Reference Manual for LU Type~ for this verb. 

If either of the ABEND conditions exists then 
Set the CNOS RETURN_CODE to PROGRAM_PARAMETER_CHECK. 

Else 
Call TARGET_COMMAND_CONVERSATION (page 5.4-60) 
with the resource ID of the conversation with the partner LU to receive 
the CNOS command from the source LU. 

If an error occurs before the CNOS command can be successfully received then 
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

Else 
Call SESSION_LIMIT_DATA_LOCK_MANAGER to perform a target-LU lock 

on the appropriate (LU,modeJ entry or entries to prevent 
simultaneous access by other CNOS transactions lpage 5.4-66). 

Optionally, perform syntax checking on the CNOS command record according 
to the description in SNA Formats. 

Select, in order, based on the values of fields in the CNOS command: 
Hhen syntax errors are identified 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

Hhen the MODEs specified on the CNOS command cannot be found 
in the list of MODEs for the PARTNER_LU 

Set the reply modifier field for the CNOS reply to MODE_NAME_NOT_RECOGNIZED. 
Hhen the MODEs specified on the CNOS command have SESSION_LIMIT=O, and 

DRAIN SELF=NO then 
The-LU may refuse to accept the command by returning an abnormal reply 
modifier field specifying an ILU,model session limit of 0 
!this is implementation defined). 

Otherwise 

Select based on result of SESSION LIMIT DATA LOCK MANAGER: 
Hhen the state of the LOCKs ha~e cha~ged from UNLOCKED 

to LOCKED BY TARGET 
Call CHECK=CNOS_COMMAND (page 5.4-62), with the CNOS command, 

to perform optional receive checks (if errors are found, 
the conversation is deallocated!. 

If the checks were not performed or no errors were detected then 
Call NEGOTIATE_REPLY (page 5.4-63), with the CNOS command 

record, in order to generate the negotiated values of the 
CNOS parameters. 

Otherwise lif any LOCK has been rejected) 
Set the reply modifier field for the CNOS reply to COMMAND_RACE_DETECTED. 

If the conversation has not been deallocated then 
Build the CNOS reply record consistent with the original CNOS command, the reply modifier 
field reflecting the identified errors, and the negotiated CNOS limits, as 
appropriate (see SNA Formats!. 

If the command is change or initialize session limits then 
If the modifier field of the CNOS reply is accepted or negotiated then 

If the new limit > MODE.SESSION LIMIT then 
Set MODE.CNOS NEGOTIATION IN-PROGRESS to TRUE. 
Set MODE.LIMIT_BEING_NEGOTIATED to LU_MODE_SESSION_LIMIT. 

Call TARGET_REPLY_CONVERSATION (page 5.4-64J 
with the CNOS reply record to be sent to the source LU. 

If the CNOS reply is successfully sent across the conversation then 
Set the CNOS RETURN CODE for the PROCESS SESSION LIMIT verb according 

to the modifier fi;ld of the CNOS reply: -
If the reply modifier field indicates that the CNOS limits were either ACCEPTED 
or NEGOTIATED then 

Else 

Call CHANGE_ACTION lpage 5.4-43) with the CNOS reply record 
to change the session limits at the target LU. 

Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-59 



PROCESS_SESSION_LIMIT_PROC 

5.4-60 

If the command is change or initialize session limits then 
Set MODE.CNOS_NEGOTIATION_IN_PROGRESS to FALSE. 

Call SESSION LIMIT DATA LOCK MANAGER !page 5.4-66) to UNLOCK the affected 
ILU,modeJ e~try o; ent;ies. 

SNA LU 6.2 Reference: Peer Protocols 

(' 
' / 



() 

TARGET_COHMAND_CONVERSATION 

TARGET_COMHAND_CONVERSATION 

FUNCTION: This procedure checks the attaching conversation for validity and returns the 
partner LU name to the caller. If the conversation is valid, this procedure 
receives the CNOS command from the source LU. If an error is detected, it 
terminates the conversation with DEALLOCATE TYPEIABEND_PROG). 

INPUT: Resource ID of the conversation with the partner !source) LU, conversation 
attributes via GET_ATTRIBUTES 

OUTPUT: Partner LU name, from conversation via GET_ATTRIBUTES; CNOS command, from the 
source LU via the conversation; 

NOTE: See SNA Transaction Programmer's Reference Manual for ~ Type ~ for conver­
satiooverbs. 

Referenced procedures, FSMs, and data structures: 
RESULT_CHECK_RECEIVE_COMMAND 
RESULT_CHECK_RECEIVE_SEND 

page 5.4-61 
page 5.4-61 

Issue a GET_TYPE verb !according to the input parameters provided) to verify that the 
type of conversation is BASIC. 

Issue a GET_ATTRIBUTES verb (according to the input parameters provided) to verify 
that the connection type is parallel sessions and that the SYNC_LEVEL 
is NONE !optional receive check). 

The GET_ATTRIBUTES verb returns the name of the source LU. The target then uses 
this information to determine the type of sessions possible with the source LU as 
a conversation partner. 

If the above conversation attributes are not verified to be correct then 
!optional checkJ 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG and return from this procedure. 

Else 

The LOG_DATA parameter of the DEALLOCATE verb, if used, is supplied by the 
implementation. For its format, see ERROR LOG GOS VARIABLE in 
SNA Formats. 

Issue a RECEIVE_AND_HAIT verb to receive the CNOS command. 
Call RESULT CHECK RECEIVE COMMAND to examine the parameters returned and perform 

the DEALLOCATE, if appropriate lpage 5.4-611. 

If RESULT_CHECK_RECEIVE_COMMAND returns OK then 
Issue a RECEIVE AND HAIT verb to receive the SEND indicator. 
Call RESULT_CHECK_RECEIVE_SEND to examine the parameters returned and perform 

the DEALLOCATE, if appropriate !page 5.4-61J. If RESULT_CHECK_RECEIVE_SEND 
returns OK, the CNOS command was successfully received. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-61 



RESULT_CHECK_RECEIVE_Cotf1AND 

5.4-62 

R,..E_su_L_T __ c_H_E_c_K ___ R_Ec_E_I_v_E __ c_OHH __ AN_D _____________________________ (' 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE AND HAIT verb that receives the CNOS commandJ it deter­
mines whether to issu; DEALLOCATE, and what TYPE to specify. 

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED, HHAT_RECEIVED 

NOTE: Checks are required unless designated optional. 

Select based on the RETURN_CODE parameter returned from RECEIVE_AND_HAIT: 
Hhen OK 

If HHAT_RECEIVED = DATA_COMPLETE then 
If the REQUEST_TO_SEND_RECEIVED parameter from the RECEIVE_AND_HAIT 
verb is YES then 

Issue a DEALLOCATE verb with TYPE=ABEND PROG to deallocate the conversation. 
Else -

Return OK to TARGET_COMMAND_CONVERSATION. 
Else (optional check) 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 
When RESOURCE_FAILURE_RETRY, DEALLOCATE_NORMAL or DEALLOCATE_ABEND_PROG !optional check> 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
When RESOURCE_FAILURE_NO_RETRY 

Issue a DEALLOCATE verb with TYPE=ABEND PROG to deallocate the conversation. 
Otherwise I optional check) -

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 

RESULT_CHECK_RECEIVE_SEND 

FUNCTION: 

INPUT: 

NOTE: 

This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE AND HAIT verb that receives SENDJ it determines whether 
to issue DEALLOCATE, ;nd ;hat TYPE to specify. 

RETURN_CODE, REQUEST_TO_SEND_RECEIVED, HHAT_RECEIVED 

Checks are required unless designated optional. 

c 

c 

(~ ,__ ______________________________________________________________________________________ __,\ 

Select based on the RETURN_CODE parameter returned from the RECEIVE_AND_HAIT: 
When OK 

If HHAT RECEIVED = SEND & REQUEST TO SEND RECEIVED = NO then 
Retu;n OK to TARGET COMMAND CONVERSATION. 

Else - -
Issue a DEALLOCATE verb with TYPE=ABEND PROG to deallocate the conversation. 

When RESOURCE_FAILURE_RETRY, DEALLOCATE_NORMAL, or 
DEALLOCATE_ABEND_PROG (optional check) 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally. 
otherwise 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 

SNA LU 6.2 Reference: Peer Protocols 

,_ 



( ·.; 

_., 

c 

CHECK_CNOS_COMMAND 

CHECK_CNOS_COMMAND 

FUNCTION: This procedure performs receive checks at the target LU on the CNOS command 
received from the source LU. If errors are detected, DEALLOCATE ABEND 
replaces a CNOS reply. 

INPUT: CNOS command parameters 

NOTE: Checks are required unless designated optional. 

Referenced procedures, FSMs, and data structures: 
MODE 

Optionally check the verb parameters, encoded as fields in the 
CNOS command, for ABEND conditions as described in 
SNA Transaction Programmer's Reference Manual for LU Type 6.2. 

page A-3 

Since the session limits of the SNA-defined mode name, SNASVCMG, may 
not be changed, a mode name of SNASVCMG in the CNOS command consti­
tutes another ABEND condition. 

Some parameter checks may require 
currently exist. For these, see 
the specified PARTNER_LU. 

knowledge of mode attributes that 
the appropriate MODE structure for 

If any ABEND condition is identified then 
Issue a DEALLOCATE verb with TYPE=ABEND PROG 
to deallocate the conversation. -

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-63 



NEGOTIATE_REPLY 

NEGOTIATE_REPLY 

5.4-64 

FUNCTION: This procedure generates the negotiated values of the CNOS limits for the CNOS 
reply, including the reply modifier field. 

This procedure assumes that the session limit parameters in the command are 
valid. 

INPUT: Source-LU specified CNOS verb parameters, PARTNER_LU_LIST, and MODE_LIST 

OUTPUT: Session limit parameters for reply 

NOTE: This procedure does not change the CNOS limits in the MODE. 

Referenced procedures, FSMs, and data structures: 
CLOSE_ONE_REPLY 
PARTNER_LU 
MODE 

If the CNOS verb issued at the source LU is INITIALIZE_SESSION_LIMIT 

page 5.4-64 
page A-2 
page A-3 

or CHANGE SESSION LIMIT lwhen the action field of the CNOS command is SETI then 
Negotiate the LU_MODE_SESSION_LIMIT, MIN_CONHINNERS_SOURCE, 

and MIN_CONHINNERS_TARGET parameters las described in 
SNA Transaction Programmer's Reference Manual for LU Type ~I according to 
an implementation-dependent algorithm. 
If any of the session limits are going to be less than the current 
limits, RESPONSIBLE may also be negotiated from TARGET to SOURCE. 

Else I RESET SESSION LIMIT verbl 
If the c~mmand affects only one MODE at the PARTNER LU then 

Call CLOSE_ONE_REPLY lpage 5.4-641 
with the CNOS command record to build the CNOS reply record. 

Else lall mode names affected, and only RESPONSIBLE may be negotiated) 
If RESPONSIBLE is target then 

If RESPONSIBLE parameter is negotiated for this LU then 
Negotiate the RESPONSIBLE parameter from TARGET to SOURCE. 
Set the reply modifier field of the CNOS reply to NEGOTIATED. 

Else 
Set the reply modifier field of the CNOS reply to ACCEPTED. 

SNA LU 6.2 Reference: Peer Protocols 



c~ 

CLOSE_ONE_REPLY 

CLOSE_ONE_REPLY 

FUNCTION: This procedure builds the target-LU's reply whenever the.verb issued at the 
source LU is RESET_SESSION_LIHIT (action field of the CNOS command is CLOSE) 
and only one mode name is affected. It optionally sets the reply-modifier 
field of the CNOS reply to HODE_NAHE_CLOSED if there is an error in 
DRAIN_SOURCE. 

INPUT: LU_NAHE of partner LU; HODE, for current state of CNOS parameters; CNOS com­
mand parameters 

OUTPUT: Updated_reply modifier and negotiated parameters 

Referenced procedures, FSMs, and data structures: 
MODE page A-3 

Create the CNOS reply according to the negotiation rules described on 
page 5.4-28 (when the action field in the CNOS command 
is CLOSE and only one mode name is affected) and the description of 
the DRAIN and RESPONSIBLE parameters of the RESET_SESSION_LIMITS verb in 
SNA Transaction Programmer's Reference Manual for LU Type ~· 

If the current session limit is o, the drain for the source LU 
IMODE.DRAIN_PARTNERJ is set to NO and the command specifies 
DRAIN_SOURCEIYESJ, the target LU may either issue a DEALLOCATE with 
TYPE=ABEND or send a CNOS reply with the HODIFIER field specifying an 
ILU,modeJ session limit of O. 

This condition occurs only when there is a design error in the source 
LU such that this ABEND condition is not recognized and the command is 
forwarded to the target LU. 

TARGET_REPLY_CONVERSATION 

FUNCTION: This procedure sends the CNOS reply. 

INPUT: Resource ID of the conversation with the partner (source) 
change-number-of-sessions record, in this case, a CNOS reply 

LU; the 

OUTPUT: outcome of conversation (reply and DEALLOCATE NORMAL sent; DEALLOCATE ABEND 
.sent or DEALLOCATE received) 

NOTE: See SNA Transaction Programmer's Reference Manual for ~ Type ~ for conver­
sation-verbs. 

Referenced procedures, FSMs, and data structures: 
RESULT_CHECK_SEND_REPLY 

Issue a SEND DATA verb lwith the resource ID of the attaching conversation) 
to send the-CNOS reply to the source LU. 

Call RESULT_CHECK_SEND_REPLY (page 5.4-65) to examine 

page 5.4-65 

the parameters returned on the verb and perform a DEALLOCATE of the conversation, 
if appropriate. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-65 



RESULT_CHECK_SEND_REPLY 

RESULT_CHECK_SEND_REPLY 

...--------------.('', 

5.4-66 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the SEND_DATA verb that sends the CNOS reply, and it determines 
...tlether to issue DEALLOCATE, and what TYPE to specify. 

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED 

Select based on the RETURN_CODE parameter returned from the SEND_DATA verb: 
Hhen OK 

If the REQUEST_TO_SEND_RECEIVED parameter from the SEND_DATA verb is NO then 
Issue a DEALLOCATE verb with TYPE=SYNC_LEVEL to deallocate the conversation normally. 

Else 
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 

Hhen RESOURCE_FAILURE_RETRY, RESOURCE_FAILURE_NO_RETRY, DEALLOCATE_ABEND_PROG, 
DEALLOCATE NORMAL, DEALLOCATE ABEND SVC, DEALLOCATE ABEND TIHER 

Issue a DEALLOCATE verb with TYPE;LOCAL to deall~ate the conversation locally. 
Otherwise 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 

SNA LU 6.2 Reference: Peer Protocols 

c 



(~_/ 

() 

SESSION_LIHIT_DATA_LOCK_MANAGER 

SESSION_LIMIT_DATA_LOCK_MANAGER 

FUNCTION: This procedure determines whether the specified MODEs exist, and if so, sets 
or resets the session-limit-data lock in the MODE entry to prevent simultane­
ous access by another CNOS transaction initiated at this or the partner LU. 

INPUT: The operation to be performed, identification of whether source or target LU 
issued the request, partner LU name and mode name, PARTNER_LU_LIST, and 
MODE_LIST 

OUTPUT: The state of the lock in affected MODE entries is updated 

NOTE: This procedure locks the MODE. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 

Select based on the requested locking operation: 

Hhen LOCK 
Change the state of the lock !or locks) as described on page 5.4-30. 

The four resulting lock states depend upon their previous lock 

page A-1 
page A-2 
page A-3 

state !if applicable! and the input that caused the transition to that state. 
For any input operation and current lock state combination not explicitly 
described, the state of the lock does not change. 

If the CNOS command affects all MODEs for the PARTNER LU 
then the lock is to be placed on all affected ILU,mod;J entries. 
If any of the affected ILU,modeJ entries has been previously 
LOCKED_BY_SOURCE, LOCK_DENIED is set for that mode name, 
but the others are left unlocked. 

Hhen UNLOCK 
The state of the ILU,modeJ-entry lock can be changed to the UNLOCK state 
only when the UNLOCK is attempted by the transaction program at the LU 
that currently has the entry locked. 

Note that, in the LOCK_DENIED state, the transaction program at the 
source LU has the lock on the ILU,modeJ entry. 

If the CNOS command affects ALL MODEs, the UNLOCK is performed for all 
affected ILU,modeJ entries. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-67 



This page intentionally left blank 

.~ 
' 

(_~ 

S.4-68 SNA LU 6.2 Reference: Peer Protocols 



c~.' CHAPTER 6. 0. 
HALF-SESSION 

GENERAL DESCRIPTION 

LU 
Session 
Manager 

ISHl 

< 
< 

1 
~ 

IInitializerl 

Resource 
Manager 

IRH> 

1 
1 

l 
v v ~ 

->I 

HS 
Router 

->I 

A 

Data 

Presentation 
Services 

IPSl 
A 

Flow Control 

I A 
v I 

IDFC) 

Buffer 
Manager 

IBH) 
.J A A 

I-" 

Transmission Control ITC)I---" 

Half-session IHS) 

v 
Path Control IPC) 

() 

Figure 6.0-1. Overview of Half-Session 

The half-session component I see Figure 6.0-1) 
resides in the LU and represents a session 
with another LU, which is an LU-LU session. 
The half-session's primary function is to 
control the data traffic flow for a session. 
It also performs initialization when acti­
vated and, when necessary, causes itself to 
be deactivated. 

The components of the half-session are an 
initializer, a router, data flow control 
I DFC--see "Chapter 6 .1. Data Flow Control"), 
and transmission control ( TC--see "Chapter 
6.2. Transmission Control"). The initializer 
records information from the session acti­
vation request (e.g., BIND> for later use by 
DFC and TC. The router distributes message 
units to DFC and TC. A record received from 
the LU session manager ISH--see "Chapter 4. 
LU Session Manager"), and message uni ts 
received from the LU resources manager 
( RH--see "Chapter 3. LU Resources Manager" ) 
and from presentation services ( PS--see 
"Chapter 5.0. Overview of Presentation Serv-

ices") are routed to DFC. Message uni ts 
received from path control IPCl are routed to 
TC. The primary functions of DFC are to 
translate between basic information units 
IBIUs) and records produced from transaction 
program verbs, and to control the flow of 
data between the half-session IHS) and PS, 
RM, and the buffer manager IBH). The primary 
function of TC is to control the flow of data 
between the half-session and path control. 

The LU half-session is created by SH when a 
session-activation request (e.g., BIND) has 
been successfully processed. The 
half-session is destroyed by SH when 11) a 
session-deactivation RUl-RSPIBIND) or UNBIND) 
has been processed, or ( 2) a session route 
outage has occurred. 

The half-session, RH, PS, SH, and PC are all 
separate processes. Message uni ts are sent 
to HS by RH, PS, and PC. Hhen a message unit 
arrives, HS may receive and process it. 
Another message unit cannot be received by HS 

Chapter 6.0. Half-Session 6.0-1 



"8"1til the current one is completely proc­
essed. 

HS can selectively receive from these proc­
esses~ e.g., when HS is waiting for a 
required reply or response from the partner 
HS, HS may elect to ignore messages from PS 
and process messages from only RH, SH, BH, 
and PC. 

The protocol boundary between HS and BH is: 

• 

• 

GET BUFFER 
obt;in buffer 

FREE BUFFER 
rele;se buffer 

(from HS to BHJ - to 

lfrom HS to BHJ - to 

PROTOCOL BOUNDARIES BETHEEN HS AND OTHER COMPONENTS 

Following is a list of the message units that 
flow between HS and other components. 

• 

• 

ADJUST BUF POOL I from HS to BHJ - to 
change -buffer pool size C' 
BUFFERS RESERVED I from BH to HS J - to -- . 
notify the buffer owner about the buffer 
allocation change 

Hith each call from HS to the BH, appropriate 
parameters are also passed. The buffer man­
ager IBHJ sends a BUFFERS_RESERVED signal to 
HS, which contains the identifier of the 
buffer assigned. Upon receiving the signal 
from BH, transmission control updates the 
appropriate pacing counts and builds and 
sends the appropriate session-level pacing 
response ( IPR or IPM J . See Appendix B for 
more details on buffer manager function and 
services. 

c 

Message "8"1its that flow from HS to RH: Message units that flow from RH to HS: 
FH_HEADER !Attach or Security) 
BID 
BID_RSP 
FREE_ SESSION 
BIS_RQ 
BIS_REPLY 
RTR_RQ 
RTR_RSP 

Message units that flow from HS to PS: 
CONFIRMED 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 

Message units that flow from HS to SH: 
INIT_HS_RSP 
ABEND_NOTIFICATION 
ABORT_HS 

Message "8"1its that flow from HS to PC: 
HU information containing session data to 

PC for transmission. The MU also 
contains the LFSID and the transmission 
priority. 

Message units (modeled in this book as 
parameters in Call invocations) that flow 
from HS to BH: 

GET_BUFFER signal 
FREE_BUFFER signal 
ADJUST_BUF_POOL signal 

BID_HITHOUT_ATTACH 
RH_HS_CONNECTED 
BRACKET_FREED 
BID_RSP 
YIELD_SESSION 
BIS_RQ 
BIS_REPLY 
RTR_RQ 
RTR_RSP 
HS_PS_CONNECTED 
ENCIPHERED_RD2 

Message units that flow from PS to HS: 
CONFIRMED 
SEND_ERROR 
REQUEST_TO_SEND 
SEND_DATA_RECORD 

Message units that flow from SH to HS: 
INIT_HS 

Message units that flow from PC to HS: 
MU information containing session 

information to the appropriate HS. 

Message units that flow from BH to HS: 

BUFFERS_RESERVED signal 

Figure 6.0-2. Message Units Exchanged Between HS And Other Components. 

6.0-2 SNA LU 6.2 Reference: Peer Protocols 



C' --·' 

(_, 

c 

() 

FORMAL DESCRIPTION 

HS 

FUNCTION: This procedure causes the half-session to be initialized and invokes the 
half-session router. On completion the HS process is destroyed. 

INPUT: At creation time, HS_CREATE_PARHS containing HS_ID !half-session identifier) 
and LU_ID ILU identifier)} at run time, INIT_HS received from SH 

OUTPUT: INIT HS RSP sent to SH, HS ID and LU ID recorded for other procedures in the 
half:se;sion. The half-ses;ion role (primary or secondary) is recorded from 
HS_CREATE_PARHS for use by other procedures in the half-session 

Referenced procedures, FSHs, and data structures: 
SH 
RH 
TC.INITIALIZE 
DFC_INITIALIZE 
PROCESS_LU_LU_SESSION 
HS_CREATE_PARHS 
INIT_HS 
INIT_HS_RSP 
RH_HS_CONNECTED 
LOCAL 

Record the HS ID and LU ID in the LOCAL data structure 
information ;vailable to all half-session procedures. 

to make the 

From INIT HS.TYPE, record an indication that this half-session is 
primary lPRIJ or secondary ISECJ. 

Set LOCAL.SENSE_CODE to 0 I the no-error state). 
From INIT_HS; record PERHANENT_BUFFER_POOL_ID in the LOCAL data structure. 

Call TC.INITIALIZEIINIT_HS record) lpage 6.2-131. 
Call DFC_INITIALIZEIINIT_HS record) lpage 6.1-191. 

Initialize INIT_HS_RSP with LOCAL.SENSE_CODE and LOCAL.HS_ID. 

If LOCAL.SENSE_CODE is 0 indicating that TC and DFC 
initialization were successful then 

Set the TYPE field of INIT HS RSP to POS and send the record to SH. 
Receive RH_HS_CONNECTED fr~m RH. 
Call PROCESS_LU_LU_SESSIONlpage 6.0-51. 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

Else I initialization unsuccessful--LOCAL.SENSE_CODE indicates the type of error) 
Set the TYPE field of INIT_HS_RSP to NEG and send the record to SH. 

Hait for the half-session to be destroyed. 

4-48 
3-19 
6.2-13 
6.1-19 
6.0-5 
A-26 
A-13 
A-10 
A-18 
6.0-7 

Chapter 6.0. Half-Session 6.0-3 



HS 

6.0-4 

During the processing in this chapter, a nunber of error conditions 
may be encountered. The following logic executes only if one of the 
detectable errors listed have been recognized. The following error 
condition may be detected: 

• There is no buffer (permanent and demandJ available to allow HS to 
send session data 

SH 
ABEND_NOTIFICATION 

Create and initialize an ABEND_NOTIFICATION record indicating HS abended. 
Send the ABEND_NOTIFICATION reeord to SH. 

SNA LU 6.2 Reference: Peer Protocols 

page 4-48 
page A-25 

c 

c~ 

c 



c .. 

PROCESS_LU_LU_SESSION 

PROCESS_LU_LU~SESSION 

FUNCTION: Does processing for half-session IFM profile 19). Message units received from 
RM and PS are routed to DFC. Message units received from PC are routed to TC. 
The half-session continues to operate until an error condition occurs or the 
half-session process is destroyed. If an error condition occurs, 
LOCAL.SENSE CODE is set lby DFC or TCJ with the sense data indicating what 
kind of error occurred. Hhen this field is set, the half-session sends an 
ABORT message to SM. This causes SM to send an UNBINDlprotocol error) for 
this session. HS receives BUFFERS_RESERVED signals from buffer manager IBM) 
and builds and sends the appropriate pacing response. 

INPUT: Message units received from PS, RM, BM, and PCJ and LOCAL.SENSE_CODE may be 
set 

OUTPUT: ABORT_HS sent to SM if an error has been detected 

Referenced procedures, FSMs, and data structures: 
DFC_SEND_FROM_RM 
DFC_SEND_FROM_PS 
TRY_TO_RCV_SIGNAL 
TC.RCV 
BUFFERS_RESERVED_PROCESSING 
FSM_BSM_FMP19 
FSM_CHAIN_SEND_FMP19 
ABORT_HS 
LOCAL 

Do the following checks while no error has been detected. 

page 6.1-21 
page 6.1-20 
page 6.1-23 
page 6.2-23 
page 6.2-31 
page 6.1-50 
page 6.1-53 
page A-9 
page 6.0-7 

Hait for a record to be received on PS_TO_HS_Q, RM_TO_HS_Q, PC_TO_HS_Q or BM_TO_HS_Q. 
Check for a record on the PS_TO_HS_Q: 
If the PS TO HS Q contains a record then 

If the-se;si~n is not between bracketslFSM BSM FMP19 = BETBJ or 
half-session is not expecting a responselFSM_CHAIN_SEND_FMP19 = PEND_RSPJ or 
half-session is not expecting a reply1FSM_CHAIN_SEND_FMP19 ~ PEND_RCV_REPLYJ then 

Remove the first entry from the PS_TO_HS_Q. 
Call DFC_SEND_FROM_PSlrecord from PS) lpage 6.1-20) to route 

the record to DFC. 
Else 

Hait for a record to be received on the RM_TO_HS_Q, PC_TO_HS_Q, 
or BM_TO_HS_Q. 

Check for a record on the RM_TO_HS_Q: 
If the RM TO HS Q contains a record and no errors have been found then 

Receiv; the ;ecord from the RM_TO_HS_Q. 
Call DFC_SEND_FROM_RMlrecord from RM) lpage 6.1-21) 

to route the record to DFC. 

Check for a record on the PC_TO_HS_Q: 
If the PC TO HS Q contains a record and no errors have been found then 

Receiv; the ;ecord from the PC TO HS Q. 
Call TC.RCVlrecord from PCJ lp;ge-6.Z-23) 

to route the record to TC. 
IThe input to those procedures is the received record.) 

Call TRY_TO_RCV_SIGNAL lpage 6.1-23) to r> 

try to process a queued SIGNAL request. Hhether or not a queued SIGNAL 
request is processed depends on the state of the half-session. 
The state of the half-session may change each time a record is 
received and processedJ therefore, the TRY_TO_RCV_SIGNAL 
procedure is called after each record is received so that it can check 
the current half-session state and process a SIGNAL request if necessary. 

Check for a record on the BM TO HS Q: 
If the BM_TO_HS_Q contain; a-siQnal and no errors have been found then 

Receive the signal from the BM_TO_HS_Q. 
Call BUFFERS_RESERVED_PROCESSINGlsignal from BM, LOCAL.COMMON_CBJ 

lpage 6.2-31). 

Chapter 6.0. Half-Session 6.0-5 



PROCESS_LU_LU_SESSION 

6.0-6 

tf1en LOCAL.SENSE_CODE is not 0 (error fOU1dJ then 
Send an ABORT_HS record to SH. (The ABORT HS.SENSE CODE comes from 

LOCAL.SENSE_CODEJ ABORT_HS.HS_ID is the HS_ID saved during HS initialization.) 
(SH sends an lliBIND.J 

SNA LU 6.2 RaferW1C11: · Peer Protocols 

c 



DATA STRUCTURES 

LOCAL 

This is the definition of the process data used by the half-session. This data may be 
accessed by any procedure in the half-session process. 

LOCAL 
COMMON: fields shared by all HS components 

HS_ID: ID of this HS 
LU ID: the LU for this HS 
HALF_SESSION: possible values: PRI. SEC 
SENSE CODE: contains all O's• if no error was detectedJ otherwise. 
contains a nonzero sense data value 

PERHANENT_BUFFER_POOL_ID: ID of the permanent buffer pool shared by all HSs 
within an LU 

RQ_CODE: possible values: CRY, BIS, LUSTAT, RTR, SIG, OTHER 

DFC: fields used only by DFC 
LU_LU: fields used for LU-LU sessions IFH profile 19) 

PS ID: ID of the PS associated with this HS 
BRACKET ID: ID of the current bracket 
FIRST_SPEAKER: possible values: YES, NO 
DIRECTION: possible values: HS_SEND, HS_RECEIVE 
CT_RCV: contains correlation tables (see page 6.0-8) 
CT_SEND: contains correlation tables (see page 6.0-8) 
SQN_SEND_CNT: contains SNF lsee page A-33) 
PHS_BB_REGISTER: contains SNF I see page A-33) 
SHS_BB_REGISTER: contains SNF lsee page A-33) 
CURRENT_BRACKET_SQN: contains SNF (see page A-33) 
RQD_REQUIRED_ON_CEB: possible values: YES, NO 
NORHAL_FLOH_RQ_COUNT: the number of normal-flow requests sent by 
this HS 

SIG_RECEIVED: possible values: YES, NO 
SIG_SNF: contains SNF (see page A-33) 
BETC: possible values: YES, NO 
SEND ERROR RSP STATE: indicates if a SEND ERROR negative response is owedJ 
pos;ible ~alu;s: RESET, NEG_OHED 

BB_RSP_STATE: indicates if a BB response is owedJ 
possible values: RESET, POS_OHED, NEG_OHED 

BB_RSP_SENSE: contains the sense data carried in a BB response, 
this field is valid only when BB_RSP_STATE=NEG_OHED 

RTR_RSP_STATE: indicates if a RTR response is owedJ 
possible values: RESET, POS_OHED, NEG_OHED 

RTR_RSP_SENSE: contains the sense data carried in a RTR response, 
this field is valid only when RTR_RSP_STATE=NEG_OHED 

SIG_RQ_OUTSTANDING: possible values: YES, NO 
ALTERNATE_CODE: possible values: HILL_NOT_BE_USED, HAY_BE_USED 
SESSION_JUST_STARTED: possible values: YES, NO 
SAVED_HU_PTR: pointer to the HU containing the RH and two bytes of RU data from 

the received RU 
TC: fields used only by TC 

TCCB: transmission control control block 
HAX_RCV_RU_SIZE: the maximum RU size that can be received by this half-session 
SQN_RCV_CNT: the nunber of normal-flow requests received by 
this half-session 

COHHON CB: contains the common control block for session-level 
pacin9 (see page 6.0-8) 

SEGHENTING_SUPPORTED: the flag used to indicate BIU segmenting support 
CRYPTOGRAPHY: possible values: YES, NO 

Chapter 6.0. Half-Session 6.0-7 



CT 

6.0-8 

CT 

Correlation table ICTl defines the send/receive RU operation. CT is contained in the 
half-session process data I LOCAL). 

CT: fields used by DFC 
ENTRY_PRESENT: possible values: YES, NO 
SNF: contains the SNF of the latest RU received or sent for this chain 

(see page A-33) 
NEG_RSP_SENSE: 0 means no negative response received or sent; otherwise, 
contains the sense data from the negative response 

RH: contains request/response header (see sNA Formats). 
Rll_CODE: contains the valid RU request codE!S"that can be received by the 
half-session; possible values: CRV, BIS, LUSTAT, RTR, SIG, OTHER 

COMMON_ CB 

This is the definition of the common control block passed to 
session-level pacing. The calling process initializes the COMMON_CB 
ization processing !except for the RESERVE_FLAG and UNSOLICITED_NNS). 

COMMON CB 
CALLER: the calling process 
PATH_CONTROL_ID: ID of the path control instance used by this LU 

the routines for 
during its initial-

LFSID: local-form session identifier associated with the HS (see page A-28) 
PERM_POOL_ID: ID of the permanent buffer pool to be used by HSs within this LU 
DYNAMIC_BUFFER_POOL_ID: ID of the dynamic buffer pool to be used by the 
half-session to receive normal-flow requests 

LIMITED_BUFFER_POOL_ID: ID of the limited buffer pool to be used by the 
half-session to send normal-flow requests 

TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
NUH BUFS PER RU: number of buffers needed for each RU (always set to 1 by HS) 
RESERVE_FLAG7 possible values: NO, ALL, MORE 
SEND_PACING: information needed for sending data from this LU to the partner LU 

TYPE: possible values: NONE, FIXED, ADAPTIVE 
RPC: number of MUs that can still be sent in this window 
NHS: size of the next window 
FIRST HS: size of the first window when the session started I fixed window size 
when-fixed pacing is used) 

SET_RLHI: indicates if the RLHI should be set to 1 IRLH) when the next pacing 
request is sent !always set to NOT_RLH for fixed pacing) 

RECEIVE_PACING: information needed for receiving data from the partner LU 
TYPE: possible values: NONE, FIXED, ADAPTIVE 
RPC: number of MUs that can still be received in this window 
NHS: size of the next window 
UNSOLICITED_IPM_OUTSTANDING: indicates if an IPM ACK is expected on from the 
partner LU; set to TRUE when waiting for an IPM ACK 

ADJUST FOR IPM ACK OUTSTANDING: indicates IPM ACK has been received but the 
limit;d b~ffe; po~! hasn't been adjusted yet 

UNSOLICITED NHS: window size in an unsolicited IPM received from the 
partner LU-

SNA LU 6.2 Reference: Peer Protocols 

c 



c 

c~: 

CHAPTER 6 .1. DATA FLOH CONTROL 

INTRODUCTION 

The basic function of data flow control IDFCl 
component is to control the flow of data 
between half-sessions. DFC and FMD RUs flow 

OVERVIEH OF DFC FUNCTIONS 

DFC performs the following functions: 

• 

• 

• 

• 

• 

• 

DFC STRUCTURE 

Request/Response Formatting: DFC 
enforces correct RH parameter settings 
for FMD and DFC requests and responses. 

Chaining Protocol: Chaining is a means 
of sending or receiving a group of RUs 
for which there will be at most one 
response. DFC enforces the chaining pro­
tocol. 

Request/Response Correlation: 
lates responses with their 
requests. 

DFC corre­
associated 

Request/Response Mode Protocols: Immedi­
ate request and immediate response modes 
are enforced by DFC. 

Send/Receive Mode Protocols: The 
normal-flow send/receive mode 
!half-duplex flip-flop) specifies a par­
ticular form of coordination between 
sending and receiving of normal-flow 
requests and responses. 

Bracket Protocols: Bracket protocols 
provide a means of sending or receiving a 

The DFC structure is shown in Figure 6.1-1 on 
page 6.1-2. 

INITIALIZATION 

The DFC initialization procedure is called by 
the half-session router I see "Chapter 6. 0. 
Half-Session") at the activation of each ses­
sion. It initializes FSMs and other protocol 
related parameters to be used during the ses­
sion. 

through the DFC component} network control 
INCJ and session control ISC) RUs do not. 
All sessions use FM profile 19. 

• 

• 

SEND 

sequence of chains as a delimited trans­
action entity. 

Purging: Hhen a bracket error negative 
response is sent for an incoming begin 
bracket IBBJ chain, the remainder of that 
chain is purged. 

Buffer Management: 

DFC specifies FREE_BUFFER in the Call 
to the buffer manager to release the 
buffer in which an MU was received or 
an error was detected. 

DFC specifies ADJUST_BUF_POOL to 
allow the buffer manager to reduce 
the size of a limited buffer pool to 
reflect the correct send pacing 
count. 

DFC specifies ADJUST _BUF _POOL to 
request the buffer manager to keep 
the same size of a dynamic buffer 
pool. 

DFC specifies GET_BUFFER to request 
the buffer manager to allocate a per­
manent buffer for building an MU. 

DFC procedures receive records le.g., from 
presentation services and the resources man­
ager), process the records, and send them on 
to transmission control ITCJ. The send proc­
essing consists of setting RH bits and MU 
header fields, and updating the states of DFC 
send FSMs. 

Chapter 6.1. Data Flow Control 6.1-1 



I 

HS Router 
I 
I 
I 
I 

-y 

DFC 
INITIALIZATION 
(Note) 

Presentation 
Services (PS J 

t 
v 

DFC 

Resources 
Manager ( RM J 

A 

v 

<--> 
SEND Procedures 

v 

Buffer Manager (BMJ I < 

v 

c 

DFC_RCV 

A 

DFC 

(~ 
Transmission Control CTCJ 

Note: DFC is called by the half-session router !See "Chapter 6.0. Half-Session") at 
session-activation time. 

Figure 6.1-1. Overview of DFC 

RECEIVE 

The DFC receive procedures (page 6.1-24, page 
6.1-25 J receive MU records from TC, process 
them, and send them on to PS or RM. Hhen DFC 
receives records from RM or PS, it creates 
MUs to carry the information and sends to the 
DFC send procedure (page 6. l-27 J. DFC_RCV 
optionally checks the MU records for receive 
error conditions. These are conditions that 
occur only when the other half-session has 
violated the architecture. Hhen DFC_RCV 
detects an error condition, it sets the sense 
code to indicate the error and returns to the 

PROTOCOL BOUNDARIES 

6.1-2 

DFC sends, receives, and processes records. 
The records DFC sends to, and receives from, 
RM and PS represent commands and replies 
unique to DFC 's protocol boundaries with RM 
and PS. DFC maps the commands and replies it 
receives from RM and PS into MU records suit­
able for its processingJ similarly, it maps 
MU records into commands and replies suitable 
for processing by RM and PS. The records DFC 
sends to, and receives from, TC are MU 
records that represent RU chains. See SNA 
Formats for details. 

SNA LU 6.2 Reference: Peer Protocols 

half-session router. The router will then f"­
cause the half-session to be deactivated. If\'-- , 
no receive errors are detected, the DFC RCV _ _.., 
processing consists mainly of updating -the 
states of DFC receive FSMs (page 6.1-251. 

TERMINATION 

DFC and other half-session components stay 
active until a deactivation RU (UNBIND or 
-RSP( BIND I J flows. DFC causes an UNBIND to 
be sent when an error is detected. See Chap­
ter 6.0. 

The protocol boundary information C records 
exchanged J is summarized in Figure 6 .1-2 on 
page 6.1-3. The detailed specifications of 
the protocol boundaries with PS, RM, BM, and 
TC appear in the individual DFC procedures. 

Throughout this chapter, references to 
request RUs and response RUs pertain to the 
MU records that represent the requests and 
responses. References to the sending or 
receiving of requests and responses pertain 
to the protocol boundary with TC, unless 
stated otherwise. c 



( -

.. -· 

CONFIRMED RM CONFIRMED 
SEND_DATA_RECORDL 

SEND ERROR ~~~~~~~~~~~~~~~~~-A~~~~--' RECEIVE_ ERROR 
REQUEST_TO_SEND 

BRACKET_FREED 
HS_PS_CONNECTED 
BIS_RQ 
BIS_REPLY 
YIELD_SESSION 
RTR_RQ 
ENCIPHERED_RD2 
BID_HITHOUT_ATTACH 

CV 
v 

Half-session Router I 
r-

I 
[;:FC_SEND_ 

FROM_PS 
rFC_SEND_ 

FROM_RM 

FREE_ SESSION 
BID 
BID_RSP_NEG 
BID_RSP_POS 
RTR_RQ 
RTR_RSP 
BIS_RQ 
BIS_REPLY 
FM HEADER 
CFMH5IFMH12) 

_TO_SEND 
REQUEST_TO_SEND 

REQUEST 
RSP_TO_ 

SEND_T~~ I DFC_SEND_TO_PS 
A 

r-
l 

DFC_RCV_FSMS 
A 

() 
I 

LUST AT LUSTAT,BB,RQDl 
(SEN~_RSP_IF_REQUIRED I FMD LUSTAT,CEB,RQEl 

SIG FMD,SECURITY I +RSPCRQD2l3l BIS 
-RSPC0846l BIS 
FMD,ATTACH,BB RTR 

[v v--, 
DFC_SEND_FSMS < 

___J 

RQ 
RSP 

v 

l ISEND_MUJ 

"REQUEST" 
"REPLY" 

~~RSP_M~ 
A 

EXP_RQ 
ISIGl 

+RSP I -RSP 

I DFC_RCV 
A 

RQ 
RSP 

Transmission Control ITC) ITCg 

NOR_RQ 
RSP 

[;o 
STRAY_RSP -1 J 

Buff 

DFC 
1------' 

FREE BUFFER 
IADJUST_BUFFER 
v 
er Manager CBMJ 

Note: DFC is called by the half-session router !See "Chapter 6.0. Half-Session") at session-activation 
time. 

Figure 6.1-2. Detailed Structure and Protocol Boundaries of DFC 

()FUNCTION MANAGEMENT PROFILE 19 

Chapter 6.1. Data Flow Control 6.1-3 



FM profiles are used to convey information 
about the protocols used on a session. FM 
profile 19 is used for half-sessions using LU 
6.2 protocols. The DFC requests for this 
profile are BRACKET INITIATION STOPPED CBISJ, 
LOGICAL UNIT STATUS C LUSTATl, READY TO 
RECEIVE CRTRJ, and SIGNAL CSIGJ. These 
requests are used to control the flow of data 
between the paired half-sessions and are 
described in "DFC Request and Response 
Descriptions" on page 6.1-16. 

The FM usage settings in BIND are as follows: 

• 

• 

• 

• 

• 

• 

Chaining use !primary and secondary): 
multiple RU chains. 

Request control mode selection C primary 
and secondary): immediate. 

Form of response requested (primary and 
secondary): RQE or RQD. 

Compression indicator C primary and sec­
ondary): no compression. 

Send CEB indicator C primary and second­
ary): either end may send CEB. 

FM header usage: FMH-121 Security), 
FMH-5CAttachJ, and FMH-7CError 
Description l. 

USAGE ASSOCIATED HITH FM PROFILE 19 

6.1-4 

CONDITIONAL END BRACKET CCEBJ 

The CEB is used to indicate bracket termi­
nation. It is allowed only on an RH with EC. 
The bracket is terminated in all cases except 
when a -RSP to a C CEB, RQD2 I 3 l cha in leaves 
the session in-bracket C INB l. The bracket 
terminates in all other circumstances. CSee 
"Bracket Protocols" on page 6 .1-10 for more 
details on bracket termination.) 

FM HEADER USAGE 

The Format indicator CFIJ, set to FMH, and RU 
Category CRU_CTGYJ field, set to FMD, in the 
RH are used to indicate the presence of an FM 
header immediately following the RH. The FM 
headers for LU 6. 2 are FMH-5C Attach J, 
FMH-7C Error Description J, and 
FMH-12CSecurityJ; See SNA Formats for 
details. 

The FMH-51 Attach l may be carried in an RU 
with the Begin Chain indicator I BCI l set to 
BC. It may also be sent with BCI set to ~BC 
when it is sent in an RU immediately follow­
ing an FMH-12 that was c~Ec,~CEBJ. 

The FMH-71Error Description) may appear in 
any RU in a chain at any time during the life 
of a bracket; it may be followed by data 
ci.e., it does not terminate the chainJ or it 

SNA LU 6.2 Reference: Peer Protocols 

• 

• 

• 

• 

• 
• 

• 

Brackets: brackets are used and the 
reset state is in-brackets. 

Bracket termination rule: 
termination. 

conditional 

Alternate Code Set Allowed indicator: 
may or may not be used. 

Normal-flow send/receive mode: 
half-duplex flip-flop. 

Recovery responsibility: symmetric. 

Contention winner/loser: primary 
half-session I BIND sender J or secondary 
half-session IBIND receiver). The state 
is determined at BIND time (for parallel 
sessions, it is not negotiated J. (See 
"Chapter 4. LU Session Manager" J This 
determines who is bidder (contention 

loser) and who is first speaker Icon- C ... ~ ... · 
tention winner). _ 

Half-duplex flip-flop reset states: BIND 
sender is in send state after +RSPIBINDJ. 

More detail of FM usage settings, and the 
formats and protocols implied by them, appear 
in the following pages. 

may terminate a chain. The FMH-7 is not 
related to or bound by the chain state; it 
may be sent in a CBC, ~EC l, ( ~BC, ~EC l, 
C~BC,ECJ, or IBC,ECJ request. 

The FMH-121Securityl may flow only as the 
first RU after the session is initiated. If 
cryptography is in effect, the FMH-12 flows 
after the CRY exchange is complete. FMH-12 
is always sent in a IBC,RQEll request. The ( 
request may indicate either I EC ,CEB l or "'­
l~EC,~CEBJ; the latter is used when the next -~ 

request carries an FMH-5 with ~BC. 

USAGE OF ORI 

DRl is sent in a positive response to an RQDl 
request in order to indicate that the 
requested function has been performed. The 
following are the only uses of DRl in +RSP. 

1. Hhen the sender of Attach elects to bid 
for the session without sending an 
Attach, it may do so with an IRQDl,BBJ 
LUSTATI0006J. The receiver sends the 
+DRl when the session has been "allo­
cated" to the sender. The only request 
that may follow this sequence is an 
FMH-51Attachl to attach a transaction c 
program or LUSTAT with IRQEl,CEBJ to can-
cel the bid. (See "Chapter 3. LU ' 
Resources Manager" for more details on 
bidding. l 



2. Hhen RTR flows IRTR is always sent RQDl. J 

3. Hhen CRQDl,BB,CEB,Attach,data ••• J is 
received, i.e •• a Bid with data 

4. Hhen IRQDl,CEBJ is received as a result 
of the remote transaction program issuing 
the DEALLOCATE verb with the ABEND option 

S. Hhen CRQDl,CEBJ is received at sequence 
numbering wrap points• as part of the 
stray SIGNAL and stray response logic 
Csee "Stray SIGNALs and Responses") 

SENDING RQE HITH BB FROM CONTENTION LOSER 

The contention loser is allowed to send 
IRQE*•BB,CD,FMH-S,dataJ as a Bid. 

USAGE OF RQEl, CEB, LUSTATC0006J 

Sessions are activated in the in-brackets 
CINBJ state. If, for some reason, RM decides 
a newly activated session is not needed, it 
sends a YIELD_SESSION signal to DFC C see 
"Chapter 3. LU Resources Manager" J. This 
results in an RQEl • CEB, LUSTATI 0006 J being 
sent to terminate the unused bracket. 

USAGE OF SIGNALIX'OOOlOOOl'J 

PS issues the REQUEST TO SEND command to DFC 
when the conversation- i;;: in receive state, 
requesting that the conversation be placed in 
send state (see "Send/Receive Mode Protocols" 
on page 6.1-llJ. SIGNAL always uses the 
REQUEST TO SEND code IX'OOOlOOOl'J. DFC then 
sends SIGNAL to the.other half-session. Hhen 
+RSPI SIG J is received, DFC passes the 
RSP _TO_REQUEST_TO_SEND reply up to PS. The 
conversation enters the send state when an RU 
carrying CD is received. 

SEQUENCE NUMBERING OF REQUESTS AND RESPONSES 

DFC assigns sequence numbers to DFC and FMD 
requests and responses, as follows: 

• For normal-flow requests, the send 
sequence number count is incremented by 1 
and then assigned to the request. 

• A normal-flow BB response is assigned the 
sequence number of the corresponding BB 
request. The high-order bit is 0 if the 

• 

• 

bracket was started by the secondary 
half-session, or 1 if the bracket was 
started by the primary half-session. 

SIGNAL C the only expedited-flow DFC 
request J and all responses are assigned 
the sequence number of the current brack­
et. 

A normal-flow RTR response is assigned 
the sequence number of the corresponding 
RTR request. 

Figure 6. l-3 on page 6 .1-6 illustrates an 
example of the use of sequence nunbers. In 
this figure, some session control RUs IBIND, 
UNBIND, and CRVJ are also illustrated. 

STRAY SIGNALS AND RESPONSES 

Hhen a request is sent CRQEl,CEBJ or 
I RGID*,CEB J • a stray SIGNAL or response can 
occur. This happens because SIGNALs are 
expedited and are sent in receive state. A 
stray SIGNAL or response is one that is 
received outside the bracket it is intended 
for, and that could be disruptive if not 
eliminated or not recognized as a stray. 
SIGNALs received outside the intended bracket 
may be "early" or "late." "Early" SIGNALs 
are those received in a bracket that was 
started prior to the bracket in which the 
SIGNAL was generated. "Late" SIGNALS are 
those received in a bracket that was started 
after the bracket in which the SIGNAL was 
generated. Responses received outside the 
current bracket are always "late." Examples 
are shown in the following figures. 

SIGNAL or -RSP 

RQEl,CEB 

BB 

Bracket B gets the SIGNAL intended for A. 

Figure 6.1-4. Case 1: "Late" SIGNAL or 
Response 

Chapter 6.1. Data Flow Control 6.1-S 



Sending Receiving 
Sequence Sequence 
Nunber Number LUa LUb 

(Note 1) BIN >o 
(Note 2) o< RSPIBIND) 

(Note l) RV >o 
(Note 2) o< RSPICRV) 

l (Note 3) Normal-flow RU >o 
(Note 4) o< RSPINormal-flow RU) 

2 Normal-flow RU >o 
INote 4) o< RSPINormal-flow RU) 

3 Normal-flow RU >o 
INote 4) o< RSPINormal-flow RU) 

mote 4) o< SIGNAL 
INote 4) RSPISIGNAL) >o 

4 ormal-flow RU >o 
INote 4) o< RSPINormal-flow RU) 

I Note 1) NBIND >o 
INote 2) o< RSPIUNBIND) 

(Note 1) BIND >o 
I Note 2) o< RSPIBIND) 

l Normal-flow RU >o 
INote 4) o< RSPINormal-flow RU) 

2 Normal-flow RU >o 
I Note 41 o< RSPINormal-flow RUl 

3 Normal-flow RU >o 
I Note 4) o< RSPINormal-flow RU) 

• 
• 
• 

Notes 

l. The sequence number in this case is an identifier, which can have any value 0-65535. 

2. The sequence number in this case is an identifier, which has the same value as the request. 

3. The first normal-flow RU following the BIND begins the first bracket. The session comes up in 
bracket for efficiency. The implicit bracket sequence number is O, the sequence number of the 
first data RU is 1. After the first bracket is ended, subsequent brackets begin with a BB 
request. The bracket sequence number is the sequence number that flowed on the BB request. 

4. The sequence number in this case is an identifier, which has the following properties: 

• The low-order 15 bi ts are the same as the low-order 15 bi ts of the sequence number that 
started the bracket. 

• The high-order bit is O if the bracket was started by the secondary half-session, or l if the 
bracket was started by the primary half-session. 

Figure 6.1-3. Use of Sequence Numbers 

6.1-6 SNA LU 6.2 Reference: Peer Protocols 

c-



( I 

"---) 

RQEl,CEB 

SIGNAL 

Bracket A gets the SIGNAL intended for B. 

Figure 6.1-5. Case 2: "Early" SIGNAL 

The following subsections discuss how prob­
lems with strays are avoided. 

Sending SIGNAL and Responses 

Each LU eliminates problems with stray 
SIGNALs and stray responses by keeping three 
16-bi t "bracket ID" registers, a 1-bi t 
switch, and a 15-bit normal-flow request 
counter: 

• PHS_BB_REGISTER 

Bit O: 
Bits 1-15: 

1 
Low-order 15 bi ts of TH 
sequence number· of last BB 
request sent by tor received 
from) primary ha! f-session 
IPHS) 

• SHS BB_REGISTER 

• 

• 

• 

Bit 0: 
Bits 1-15: 

0 
Low-order 15 
sequence number 
request sent by 
from) secondary 
ISHS) 

bits of TH 
of last BB 

I or received 
half-session 

CURRENT_BRACKET_SQN 

Bit 0: 1 = Bracket started by PHS 
0 = Bracket started by SHS 

Bits 1-15: Low-order 15 bits of TH 
sequence number of current 
bracket 

An indication that a definite response is 
required on the next CEB 

Bit 0: 0 = No RQO required on next 
CEB sent 
1 = RQO required on next CEB 
sent 

A count of normal-flow requests 

Bits 0-14: A count of the number of 
normal-flow requests sent and 
received since the last-sent 
IRQO,CEBJ 

Hhen a normal-flow response (except for 
RSPIRTRJ) or a SIGNAL is sent, OFC places the 
contents of the CURRENT_BRACKET_SQN register 
in the sequence number field I SNF J of the 
response or SIGNAL. The current bracket 
sequence is not used for RSPIRTRJ because it 
does not flow within a bracket. 

RQO required on CEB 

RQD is required on some CEB requests to ena­
ble proper recognition of stray SIGNALs and 
stray responses. Since the CUR­
RENT_BRACKET_SQN field is 15 bits, an identi­
cal value can occur after 2**15 RUs flow, 
causing the field to wrap. This can lead to 
confusion when recognizing stray SIGNALs and 
stray responses. In order to avoid this con­
fusion, the normal flow is cleaned out peri­
odically by the use of an I RQD ,CEB J request 
and its response. This results in the fol­
lowing: 

1. Hhenever the count of normal-flow 
requests reaches 2**14, the indication 
that a definite response is required on 
the next CEB is set to YES. 

2. Hhenever the indication that a definite 
response is required on the next CEB is 
set to YES, the next CEB request is sent 
using RQDl, RQD2, or RQD3. The indi­
cation that a definite response is 
required on the next CEB is then reset to 
NO and the count of normal-flow requests 
is reset to 0. If DFC receives the CEB 
with an indication to send it RQEl le.g., 
the transaction program issued DEALLOCATE 
with the FLUSH option), DFC will change 
it to RQDl in order to comply with this 
rule. Hhen a response is received to an 
IRQDl,CEB) request, no information is 

Chapter 6.1. Data Flow Control 6.1-7 



6.1-8 

forwarded to PS because the transaction 
program is no longer communicating with 
the half-session. 

Receiving SIGNAL Requests 

Hhen SIGNAL is received, the DFC component of 
the half-session does the following: 

1. Validates the SIGNAL code--if it is other 
than request_to_send IX'OOOlOOOl' J, an 
UNBIND indicating protocol error 
(X'FE,10050000') is sent. The SIGNAL 
response is sent immediately. This cre­
ates the potential for receiving further 
SIGNALs before this one is processed. A 
1-deep queue for SIGNAL is defined, so 
later SIGNALs overlay earlier ones. If 
overlaying occurs, the receiving trans­
action program gets only a single indi­
cation that a SIGNAL has been received, 
even though more than one SIGNAL has been 
sent. This is sufficient since all 
SIGNALs indicate request-to-send. 

2. Places the SIGNAL in the correct brack­
et--the TH identifier field ISNFJ is com­
pared against the CURRENT_BRACKET_SQN 
register. 

• 

• 

If they are equal, the SIGNAL is 
accepted and processed. 

If the SIGNAL lS early I see Fig-
ure 6.1-5 on page 6.1-7 and Fig-
ure 6.1-6 on page 6.l-7J, it lS 
pushed into the correct bracket by 
saving the SIGNAL value until the 
correct BB arrives, which can be 
several brackets in the future. 

• If the SIGNAL is late lsee Fig­
ure 6.1-4 on page 6.1-5), it is dis­
carded because the transaction 
program is no longer communicating 
with the half-session li.e., the con­
versation has ended). 

3. Reports receipt of the SIGNAL, via a 
REQUEST_TO_SEND record, to the PS compo­
nent of the transact ion• s process. See 
"Chapter 5.1. Presentation Serv­
ices--Conversation Verbs" for further 
discussion of the PS logic. 

Receiving Responses 

Hhen a response is received, the DFC compo­
nent: 

SNA LU 6.2 Reference: Peer Protocols 

1. 

2. 

3. 

Identifies failures--format checking and 
invalid sense code values are detected 
and a conversation failure is reported to 
PS and RM. An UNBIND(X'FE •••• ') with 
sense data from the negative response is 
sent to terminate the session itself. 

Detects stray negative responses--the TH 
identifier field ISNFl of the response is 
compared against the CURRENT_BRACKET_SQN 
register. If they are equal, the -RSP is 
intended for the current chain. If the 
-RSP is late (see Figure 6.1-4 on page 
6.1-5), it is discarded because the 
transaction program the response is 
intended for 1s no longer communicating 
with the half-session. IIf a positive 
response, other than +RSPISIGJ, is not in 
the correct bracket, an UNBIND protocol 
error IX'FE,200EOOOO' l is sent; +RSP(SIGJ 
is discarded. J 

Reports RTR responses--responses to RTR 
are reported to RM without regard for the 
bracket boundaries. 

4. Reports responses to RQDl requests--in 
general, responses to RQDl requests, such 
as a Bid request ILUSTAT with IRQDl,BBJJ, 
are reported to RM; an exception 1s 
RSPISIGJ, which is reported to PS. 

5 . Reports responses to RQD2 
requests--responses to RQD2 
requests are reported to PS. 

SEND_ERROR PROCESSING 

and 
and 

RQD3 
RQD3 

PS issues the SEND_ERROR command to DFC when 
PS is in HDX receive state, in order to 
change to send state so that it IPSJ can send 
FMH-71Error Description). IIf already in 
send state, PS sends the FMH-7 without issu-
ing the SEND_ERROR command; see "Chapter 5.0. 
Overview of Presentation Services" for more 
details. J Issuing SEND_ERROR in receive ,,------., 
state causes DFC to send -RSPI ERP message \ 
forthcoming--X'0846' J if some data has been "­
received. If no data has been received, DFC 
waits until a chain is received and then 
responds with -RSPIX'0846' J. 

After the EC request is received, PS can send 
the FMH-71Error Description!; the FMH-7 
includes sense data for PS's use and is not 
processed by DFC. If the EC request ended 
the bracket, PS does not send the FMH-7. 



DETAILED DESCRIPTION OF DFC FUNCTIONS 

C,i --

/ 

(_j 

C: 

REQUEST/RESPONSE FORMATTING 

DFC optionally checks that the requests and 
responses it receives are formatted correct­
ly. The formatting checks involve: 

• 

• 

Enforcing that invalid RH bit combina­
tions are not used, e.g., BBI=BB and 
BCI=~Bc, or CDI=CD and ECI=~EC. 

Enforcing that the FM profile 19 rules 
are noi violated, e.g., the receiving of 

CHAINING PROTOCOL 

Chaining provides a means to send land 
receive) a sequence of requests as one entity 
in the context of error recovery. At most 
one response is sent per chain. 

A chain consists of a single response RU or 
one or more request RUs with the following 
properties: 

• The requests belong to the same flow (ex­
pedited or normal). 

• The requests flow in the same direction . 

• The first request is marked BC I Begin 
Chainl in the RH. 

• The last request is marked EC !End Chain) 
in the RH. 

• All requests that are neither first nor 
last are marked l~BC, ~ECJ in the RH. 

The checking of received requests for proper 
chaining is provided for each half-session. 

Each response and each expedited-flow request 
is a single-RU chain, i.e., the RH indicates 
I BC ,EC l. 

REQUEST/RESPONSE CORRELATION 

C-~! 
/ 

In order to remember the information on 
normal-flow chains that DFC sends or 
receives, DFC maintains two correlation 
entries: one for sent chains and one for 
received chains. There can never be more 
than one sent or received chain outstanding 
at any point in time I FM profile 19 protocol 
rules do not allow it), hence the need for 
only two entries. A correlation entry is 

an expedited-flow DFC request other than 
SIGNAL, or the receiving of a request 
with BB that is neither LUSTAT nor FMH-5 
I Attach). 

Format checks occur before the use of 
finite-state machines IFSMsl. !State checks 
are checks that involve FSMs.) FSMs require 
the BIU record to be formatted correctly 
before processing it. 

Only chains of the following types are sent: 

• 

• 

Exception-response 
request in the 
exception-response. 

IRQE l 
chain 

chain: Each 
is marked 

Definite-response ( RQD l chain: The last 
request in the chain is marked 
definite-responseJ all other requests in 
the chain are marked exception-response. 

See SNA Formats for details of the possible 
variations within each type. 

The sender of the chain sets the Form of 
Response Requested bits properly in each 
request of the chain. Thus, the receiver of 
a chain need examine the Form of Response 
Requested bits only in the last request in a 
chain, or in a request in error. 

Normal-flow DFC requests are not sent while 
sending a normal-flow FMD multiple-request 
chain. 

If a chain sender receives 
response to a chain being sent, 
be ended prematurely by 
end-of-chain IECJ request. 

a negative 
the chain may 
sending the 

established when the first RU in a chain is 
sent or received. The entry is reset when 
the chain has been completely processed, that 
is, when the end-of-chain request and its 
response, if any, have been processed. A 
correlation entry includes such information 
as selected RH parameters needed by DFC 
le.g., RU category, BBI, and CEBIJ, and the 
DFC request code. 

Chapter 6.1. Data Flow Control 6.1-9 



Some examples of how the correlation entry is 
used are: 

• Hhen receiving a response, the entry for 
the sent chain is checked to verify that 
the RU category in the response is the 
same as the RU category of the sent 
chain. 

REQUEST/RESPONSE MODE PROTOCOLS 

Every half-session issues requests and 
responses according to the immediate request 
mode and the immediate response mode. Imme­
diate request mode means that all request 
chains are sent under the constraint that no 
request may be sent by a given half-session 
when a previously sent request is still 
awaiting a response or reply. (A reply is a 
request sent in reaction to a received RQE 
request unit.J Request chains are replied or 
responded to in order of receipt. DFC 
enforces immediate request and response mode 
in the chaining FSMs. 

Only two expedited RUs are used (SIG and CRVJ 
and both use the immediate request mode. The 
two RUs flow at different times (when in use, 

BRACKET PROTOCOLS 

6.1-10 

A bracket is a sequence of normal-flow 
request chains and their responses, exchanged 
in either or both "directions between two 
half-sessions. Bracket protocols allow con­
tention for session resources and assist in 
resolving the race condition that can result 
from that contention. 

The primary use of brackets is to carry con­
versations between transaction programs. A 
transaction program requests a conversation 
with another transaction program by issuing 
the ALLOCATE verb. ALLOCATE causes the 
resources manager (RMJ to select a 
half-session (based on ALLOCATE parameters J 
and attempt to initiate a bracket on it. If 
the bracket is successful, that half-session 
is used to carry the conversation. (See 
"Chapter 3 • LU Resources Manager" for more 
details.) A transaction program ends a con­
versation by issuing a DEALLOCATE verb. This 
causes the half-session to terminate the 
bracket carrying the conversation. Hhen the 
bracket terminates, the half-session becomes 
available again for selection by RM. 

A bracket is delimited by setting BBI to 
Begin Bracket IBBJ in the first request of 
the first chain, and CEBI to Conditional End 
Bracket (CEBJ in the last request of the last 
chain in the bracket. 

BIND parameters specify one of the 
half-sessions as first speaker and the other 
as bidder. The first speaker has the freedom 

SNA LU 6.2 Reference: Peer Protocols 

• l'fien sending a response, the entry for 
the received chain is examined to deter­
mine whether a bracket has begi.n Ci .e., 
the first RU in the chain was FMD with 
881=88, or the single-RU chain was LUSTAT 
with BBl=BB J. 

the · CRV exchange is complete before SIG is 
ever sentJ, and therefore the protocol can be 
enforced by the initiating components--DFC 
enforces the protocol for SIG, and TC 
enforces it for CRV. 

(' 

The immediate response mode requires that 1·, 
responses be sent in the order the requests \ 
are received Ci .e., requests are processed ''··-' 
and responses issued first-in, first-out J. 
Hhen a response to a particular request is 
received, it means that all requests in the 
same flow sent before the responded-to 
request have been processed by the receiver, 
and that their responses, if any, have been 
sent. 

to begin a bracket without requesting permis­
sion from the other half-session to do so. 
Any request carrying BB sent by the first 
speaker will begin a bracket. The bidder 
must request and receive permission from the 
first speaker to begin a bracket. The brack­
et protocols are verified by the bracket 
state manager in the receiving half-session. 

The bidder may attempt to initiate a bracket c .. · 
Ci.e., BidJ by sending an FMD request chain 
with CRQD,BB,QRJ or with IRQE,88,CD,QRJ. 
(See "Queued Response Protocol" on page 
6.1-12 for description of QR usage. J The 
first speaker grants the attempt via a reply 
to an (RQE,CDJ (see "Send/Receive Mode Proto­
cols" on page 6.1-11 for definition of reply) 
or a positive or negative response (other 
than X • 0813' , X • 0814 • , or X • 0888 • J or refuses 
the attempt via negative response (X'0813', 
X'0814', or X'088B' J. 

A negative response with sense code X'0813', 
X'0814', or X'088B' indicates that the first 
speaker has denied permission for the bidder 
to begin a bracket. A Ready_To_Receive IRTRJ 
request may be sent later by the first speak-
er when permission to start a bracket is 
granted. (The first speaker may or may not 
have the capability to s':lbsequently send RTR. ~ 
The X' 0814 • sense code is used only when the · 
first speaker has the capability to send . 
RTR. J If the first speaker will send RTR ,_.,; 
later, the sense code with the negative 
response is X'0814' !Bracket Bid Reject--RTR 



C. ;' .. 

c\ ) 

Forthcoming). In this case, the bidder waits 
for the RTR before sending another BB. If 
the RTR will not be sent, the sense code is 
either X'0813' (Bracket Bid Reject--No RTR 
Forthcoming) or X'088B' (BB Not Accepted--BIS 
Reply Requested). In the X'0813' case, the 
bidder will send BB again, if it still wants 
to begin a bracket. In the X'088B' case, the 
BB is not sent again because no more conver­
sations will be allowed to start. A BIS 
request will be received shortly and a BIS 
reply will be sent. 

Expedited requests and responses are not 
affected by bracket indicators on normal-flow 
requests, nor by the states of the bracket 
FSMs. 

BRACKET RULES 

The following rules apply to the bracket 
indicators: 

• BB may be indicated only on the first (or 
only) request of the first chain. 

• 

• 

• 

• 

• 

CEB may be indicated only on the last (or 
only) request of the last chain. It 
indicates the last chain in the bracket. 
IIf CEB is set, CD must not be indicated 
because CEB overrides CD.) 

BB and CEB may both be indicated within 
the same chain. 

BB or CEB may be indicated by either 
half-session. 

BB or CEB may be indicated on FMD 
requests. · 

Neither BB nor CEB may be indicated on 
any normal-flow DFC request except 
LUSTAT. 

• Neither BB nor CEB may be indicated on 
responses or on expedited requests. 

The following bracket termination rule is 
used: 

• Bracket Termination Rule: Bracket termi­
nation is influenced by whether the RU 

SEND/RECEIVE MODE PROTOCOLS 

Once a bracket has started, the normal-flow 
send/receive mode protocol is half-duplex 
flip-flop IHDX-FF). One half-session is des­
ignated HDX-FF bidder, and the other, HDX-FF 
first speaker. Parameters in BIND specify 
which half-session is first speaker and which 
is bidder. The bidder may send a request 
containing BB, but its bid for the bracket is 
pending until it receives a response. 

Once a bracket is begun, a half-duplex 
flip-flop state is established, and the send-

carrying CEB is an RQE, RQDl, or RQDZj3, 
request • If the request is RQDZ j 3 the 
bracket terminates only upon receipt of a 
positive response~ a negative response to 
the chain causes the session to remain in 
bracket. If the RU is sent as RQE, the 
bracket terminates unconditionally upon 
the sending of that RU. A negative 
response to an (RQE,CEB) request will not 
find an entry in the receive correlation 
entity, and therefore is logged and dis­
carded. If the RU is specified as RQDl, 
the bracket terminates unconditionally 
upon receipt of a response to the chain, 
whether the response is positive or nega­
tive. RQDl is generated by DFC for the 
sequence number wrap case I unless the 
request is already RQDZl3> and for the 
DEALLOCATE TYPEIABEND *) verb. Hhen DFC 
uses RQDl, PS and the-transaction program 
consider the conversation to be termi­
nated when the DEALLOCATE TYPE I ABEND *) 

or DEALLOCATE TYPE( FLUSH) verb is issu;d: 
PS and the TP don' t expect a response. 
DFC waits for a response before informing 
RM that the session is available for a 
new conversation. 

No more than one BB can be outstanding from a 
half-session unless the LU is the first 
speaker and is not waiting for any type of 
response or reply. 

The normal-flow DFC requests, RTR and BIS, 
may be sent only between brackets and do not 
carry bracket bits. FMD requests always car­
ry BB when flowing between brackets. LUSTAT 
is treated exactly like an FMD request con­
taining IBC,ECJ, and may be used with BB to 
bid for, or·with CEB to end, a bracket. 

The following types of error conditions are 
detected in the management of brackets: 

• 

• 

Bracket protocol errors detected at the 
receiver and caused by sender error. 

Errors detected at the receiver and 
caused by race conditions. The appropri­
ate action is for the receiver to send a 
Bracket Bid Reject· sense code IX'0813', 
X'0814', or X'088B') on a negative 
response to the other half-session. A 
retry of the operation may be necessary. 

er issues normal-flow requests and the 
receiver issues responses. Hhen the sender 
completes its transmission of normal-flow 
requests, it transfers control of sending to 
the other half-session by setting the Change 
Direction indicator to CD on the last request 
sent. See "Bracket Protocols" on page 6.1-10 
for additional details. 

The Change Direction indicator (CD!) is used 
in the HDX-FF protocols. Only a request on 
the normal flow that is marked Encl Chain may 

Chapter 6.1. Data Flow Control 6.1-11 



carry CDI=CD. Hhen the sending half-session 
includes CD in a request, it indicates that 
it is prepared to receive and that its paired 
half-session may send. CD is not conveyed in 
a response or on a request that carries CEB. 

An exception-response IRQE) chain always has 
CD indicated on the last RU of the chain, 
unless that RU carries CEB, in which case it 
does not indicate CD. 

QUEUED RESPONSE PROTOCOL 

DFC enforces the setting of the Queued 
Response Indicator IQRIJ bit Cin RH) on 
requests. The setting of the QRI bit is the 
same for all RUs in a chain. See SNA Formats 
for a discussion of this RH indicator. 

QR is always indicated on a chain carrying BB 
that is sent by the bidder. When QR is indi­
cated in a response, that response will not 

PS SEND AND RECEIVE RECORDS 

6.1-12 

This section describes how the 
SEND_DATA RECORD (sent from PS to HSJ and the 
MU (sent from HS to PS l are mapped to and 
from the RH portion of a BIU containing a 
request RU. The SEND_DATA_RECORD is used by 
PS to send data in accordance with the verbs 
issued by a transaction program. This record 
(see "Chapter 5. 0. Overview of Presentation 
Services" for details. l is mapped into a 

SNA LU 6.2 Reference: Peer Protocols 

A "reply" is the request sent by a 
half-session immediately after receiving an /-'­
C RQE ,CD l chain. A reply is treated as( 
implicitly containing a positive response. "­
That is, once an IRQE,CD) chain is replied 
to, a negative response to that chain is not 
permitted. A BIS, RTR, or an RU carrying BB 
is not treated as a reply. 

pass any other RUs flowing through the net­
work on the same session. It is used so that 
a positive response to the bidder's BB chain 
will not interfere with a bracket sent earli-
er by the first speaker. The positive ,,.-----, 
response will be received after the first I 
speaker's bracket ends. QR is not indicated\, _ ___. 
on any other chain. 

request BIU by DFC before being sent. The MU 
sent from the half-session to PS carries the 
data received on the half-session and isl~"­
mapped from a received BIU containing a1\ 
request. Figure 6.1-7 on page 6.1-13 summa- ' _ ___, 
rizes the SEND_DATA_RECORD to RH mapping and 
Figure 6.1-8 on page 6.1-13 summarizes the RH 
to MU (send from HS to PSJ mapping. 

c~ 



Parameters in SEND_DATA_RECORD Request RH indicators 
I from PS to HS ) 

ALLOCATE=YES (see Note ll BB 
FMH=YES (see Note ll FMH 

FLUSH ~EC,RQEl 

CONFIRM EC,RQD3 
PREPARE_TO_RECEIVE_CONFIRM_SHORT EC,CD,RQD3 
PREPARE_TO_RECEIVE_CONFIRM_LONG EC,CD,RQE3 

PREPARE_TO_RECEIVE_FLUSH EC,CD,RQEl 
DEALLOCATE_ CONFIRM EC,CEB,RQD3 
DEALLOCATE_FLUSH with EC,CEB, RQDl 

DEALLOCATE_ABEND_* FM header 
(see Note 3) 

DEALLOCATE_FLUSH without EC,CEB, RQEl 
DEALLOCATE ABEND * FM header c/ (see Note 3) -

Notes: 

1. This parameter is used in conjunction with the rest of the parameters (e.g., if ALLOCATE is YES and 
FMH is YES, specified with DEALLOCATE_CONFIRM, the request RH indicators are BB,FMH,EC,CEB,RQD3). 

2. RH indicators not shown (e.g., QRI) are set independently from the SEND_DATA_RECORD parameters. 

3. To indicate a DEALLOCATE_ABEND_* action, FMH is set to YES and DATA (offset 2 through 4) is set to 
x' 070864'. 

c;igure 6.1-7. Mapping from SEND_DATA_RECORD to request RH 

Request RH indicators Parameters set in MU 
!sent from HS to PS) 

FMH FMH=YES (see Note ll 

~EC NOT_END_OF_DATA 

EC,RQD2l3 CONFIRM 
EC,CD,RQ*2l3 PREPARE_TO_RECEIVE_CONFIRM 
EC,CD,RQEl PREPARE_TO_RECEIVE_FLUSH 

EC,CEB,RQD2l3 DEALLOCATE_ CONFIRM 
EC,CEB,RQEl or RQDl DEALLOCATE_FLUSH 

Notes: 

1. This parameter is set in conjunction with the rest of the parameters (e.g., if FMH,EC,CEB,RQD2l3 
are indicated in the RH, FMH is YES and DEALLOCATE_CONFIRM is indicated in the MU sent to PS). 

2. Other RH indicators (e.g., QRI) have no effect on the MU parameter settings. 

Figure 6.1-8. Mapping from request RH to MU (sent to PSl 

() 

Chapter 6.1. Data Flow Control 6.1-13 



~ REQUEST ~ RESPONSE FORMATS 

This section describes the DFC request and 
response formats} the RH formats are shown in 
this section} the RU formats are shown in SNA 
Formats. Figure 6.1-9 and Figure 6.1-10 m 
page 6.1-1.5 show the format of DFC requests 

DFC Request -----> BIS RTR 
Header Indicators 

TH EFI Normal Normal 

RH Byte 0 Bit 0 RRI RQ RQ 
Bits 1-2 RU category DFC DFC 
Bit 3 reserved 0 0 
Bit 4 FI l l 
Bit .5 SDI !IESD !IESD 
Bit 6 BCI BC BC 
Bit 7 ECI EC EC 

RH Byte l Bit 0 DRlI DRl DRl 
Bit l reserved 0 0 
Bit 2 DR2I *DR2 ~DR2 

Bit 3 ERI ER ~ER 

Bit 4 reserved 0 0 
Bit .5 reserved 0 0 
Bit 6 QRI ~QR ~QR 

Bit 7 PI *PAC *PAC 

RH Byte 2 Bit 0 BBI ~BB ~BB 

Bit l EBI ~EB ~EB 

Bit 2 CDI ~co ~co 

Bit 3 reserved 0 0 
Bit 4 reserved 0 0 
Bit .5 reserved 0 0 
Bit 6 reserved 0 0 
Bit 7 CEBI ~CEB ~CEB 

Notes: 

1. *XX means either XX or ~xx. 

2. See SNA Formats for complete RH description. 

and responses, respectively. The Expedited 
Flow indicator ( EFI in the TH J shows which 
flow, expedited or normal, the DFC request or 
response flows on. 

LUSTAT SIGNAL 

Normal Exp 

RQ RQ 
DFC DFC 
0 0 
l l 
*SD *SD 
BC BC 
EC EC c 
*DRl DRl 
0 0 
!IEDR2 ~DR2 

*ER ~ER 

0 0 
0 0 
*QR ~QR 

*PAC ~PAC 

*BB ~BB 

~EB ~EB 

*CD ~co 

0 0 
0 0 
0 0 
0 0 
*CEB ~CEB 

3. For LUSTAT: If CEBI is set to CEB, CDI is set to ~CD. 

4. For LUSTAT: IDR1I,DR2IJ = 10,lJ I ll,OJ I (l,lJ. 

S. For LUSTAT: QRI is set to QR when BBI is set to BB. 

6. The SNF and DCF TH fields are also set by DFC. 

7. See SNA Formats for a complete TH description. 

Figure 6.1-9. DFC Request Formats 

c: 
6.1-14 SNA LU 6.2 Reference: Peer Protocols 



DFC Response-----> RSPIBISJ RSPIRTRJ 
Header Indicators 

TH EFI Normal Normal 

RH Byte 0 Bit 0 RRI RSP RSP 
Bits 1-2 RU category DFC DFC 
Bit 3 reserved 0 0 
Bit 4 FI 1 1 
Bit 5 SDI *SD *SD 
Bit 6 BCI BC BC 
Bit 7 ECI EC EC 

RH Byte 1 Bit 0 DRlI DRl DRl 
Bit 1 reserved 0 0 
Bit 2 DR2I *DR2 ~DR2 

Bit 3 RTI ± ± 
Bit 4 reserved 0 0 
Bit 5 reserved 0 0 
Bit 6 QRI ~QR ~QR 

() Bit 7 PI *PAC *PAC 

RH Byte 2 Bit 0-7 reserved o ... o o ... o 

Notes: 

1. 

2. 

3. 

*XX means either XX or ~xx. 

See SNA Formats for complete RH description. 

For LUSTAT: DRlI, DR2I, and QRI are set the same as they were 
on the request. 

The SNF and DCF TH fields are also set by DFC. 

See ~ Formats for a complete TH description. 

Figure 6.1-10. DFC Response Formats 

RSPILUSTATJ RSPlSIGNALJ 

Normal Exp 

RSP RSP 
DFC DFC 
0 0 
1 1 
*SD ~so 

BC BC 
EC EC 

*DRl DRl 
0 0 
*DR2 ~DR2 

± + 
0 0 
0 0 
*QR ~QR 

*PAC ~PAC 

o ... o o ... o 

Chapter 6.1. Data Flow Control 6.1-15 



DFC REQUEST AND RESPONSE DESCRIPTIONS 

6.1-16 

The DFC requests for FM profile 19 are 
described below. 

BIS !BRACKET INITIATION STOPPED I 

Flow: Primary to secondary and secondary to primary INormall 

Principal FSM: 
None in DFC 

BIS is sent by a half-session to indicate 
that it will not attempt to begin any more 
brackets Ci .e., send any more BB requests J. 

LUSTAT !LOGICAL UNIT STATUS) 

The use of BIS and its principal FSMs a;'"-" 
described in "Chapter 3. LU Resources Mana< 
er". \,~ 

Flow: Primary to secondary and secondary to primary INormall 

Principal FSM: 
Uses same FSMs as normal-flow data 

LUSTAT is used to accompany RH bits. The sta­
tus value is set to X'0006'. Specifically, 
LUSTAT is used in place of a null RU; that 
is, when it is time to send an RU to DFC, and 
the RU is marked CBC,ECJ and has RU length = 
0, an LUSTATC 0006 J is sent instead. This 
results in the following RH encoding with 
LUSTATC 0006 J: 

1. ( RQDl ,BB J: Sending half-session bids 
without data. 

2. C RQE2,CD J: Sending half-session trans­
fers send control to the other 
half-session, specifies that a Confirm be 
taken, and that completion of the Confirm 
be indicated by receipt of the next 
request from the other half-session. 
Confirm--means that the transaction pro-

SNA LU 6.2 Reference: Peer Protocols 

gram connected to the other half-session 
has received and processed the RU data 
successfully. 

3. I RQD2 ,CD J: Same as 2, except that com­
pletion of the Confirm will be indicated 
by receipt of +RSP. 

4. IRQEl,CDJ: Sending half-session transf';,r~, 
send control to the other hal f-sessi( 
specifying no Confirm. , __ _ 

5. CRQD2,CEBJ: Same as 3, plus the bracket 
will be terminated when a +RSP is 
received. 

6. IRQEl,CEBJ: Same as 4, plus the bracket 
is terminated unconditionally. 



c/ 

C.,} 
/ 

() 

C: 

C' 
) 

RTR IREADV TO RECEIVEJ 

Flow: First speaker to bidder INormall 

Principal FSM: 
None in DFC 

RTR indicates to the bidder that the bidder 
can now initiate a bracket. An RTR request 
is sent only by the first speaker (see 
"Bracket Protocols" on page 6.1-lOJ. The use 

SIG ISIGNALJ 

of RTR and the RTR bit lin SCBJ setting are 
described in "Chapter 3. LU Resources Manag-
er". 

Flow: Primary to secondary and secondary to primary !Expedited) 

Principal FSH: 
None in DFC 

SIG is an expedited request that can be sent 
between half-sessions, regardless of the sta­
tus of the normal flows. It is the only 
expedited DFC request defined for FM profile 
19. It carries a four-byte value, of which 
the first two bytes are the signal code and 
the last two bytes are the signal extension 
value. 

The only signal code defined for use with FM 
profile 19 is X'00010001'. This signal code 
is used in conjunction with the PS command 
REQUEST_TO_SEND. See "Chapter 5.1. Presenta­
tion Services--Conversation Verbs" for more 
details. 

Chapter 6.1. Data Flow Control 6.1-17 



HIGH-LEVEL PROCEDURES 

c 

c 

(~ 

6.1-18 SNA LU 6.2 Reference: Peer Protocols 



c 
DFC_INITIALIZE 

DFC_INITIALIZE 

FUNCTION: This procedure initializes fields in the half-session's local storage (for 
process data! that are used by DFC. 

This procedure is called by the half-session router 
Half-Session") when the half-session is created. 

!"Chapter 6.0. 

INPUT: INIT_HS, indicating that the half-session is first speaker or bidder 

OUTPUT: DFC local process data fields are initialized and MU information is recorded 
locally 

NOTES: 1. LOCAL.HALF_SESSION is set to indicate that the half-session is primary or sec­
ondary 

2. Hhen a half-session is activated, it comes up in-bracket IINBJ. The first 
data BIU sent on the session uses a value of X'OOOl' in the TH sequence number 
field and does not carry BB. The first BB was implied rather than sent. 
Therefore, the current bracket sequence number ILOCAL.CURRENT_BRACKET_SQNJ 
associated with the first bracket on a session is initialized to 0. 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_BSM_FMP19 
FSM_RCV_PURGE_FMP19 
FSM_QRI_CHAIN_RCV_FMP19 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
LOCAL 
INIT_HS 
MU 

!Record information from the input INIT_HS record that 
will be used by DFC throughout the life of this session.) 

page 
page 
page 
page 
page 
page 
page 
page 
page 

Set LOCAL.FIRST_SPEAKER to indicate if this HS is a first speaker or bidder. 
Set LOCAL.ALTERNATE_CODE to indicate if an alternate code is allowed. 
Reset correlation table entries. 
Set LOCAL.SQN SEND CNT.SQN to 0. 
Set LOCAL.CURRENT BRACKET SQN.BRACKET STARTED BY to PRI. 
Set LOCAL.CURRENT=BRACKET=SQN.NUMBER to 0. IN~te 21 
Set LOCAL.PHS BB REGISTER.BRACKET STARTED BY to PRI. 
Set LOCAL.PHS-BB-REGISTER.NUMBER to 0. -
Set LOCAL.SHS=BB=REGISTER.BRACKET_STARTED_BY to SEC. 
Set LOCAL.SHS BB REGISTER.NUMBER to 0. 
Set LOCAL.RQD-RE~UIRED ON CEB to NO. 
Set LOCAL.NORMAL_FLOH_RQ_COUNT to 0. 
Set LOCAL.SIG_RECEIVED to NO. 
Set LOCAL.SIG_SNF.SQN to 0. 
Set LOCAL.PS ID to NULL. 
Reset all th; FSMs in this chapter to FSM state 1. 
Set LOCAL.BETC to YES. 
Set LOCAL.SEND_ERROR_RSP_STATE to RESET. 
Set LOCAL.BB RSP STATE to RESET. 
Set LOCAL.RTR_RSP_STATE to RESET. 
Set LOCAL.SIG_RQ_OUTSTANDING to NO. 

If LOCAL.HALF_SESSION is PRI then 

6.0-3 
6.1-50 
6.1-56 
6.1-55 
6.1-51 
6.1-53 
6.0-7 
A-13 
A-29 

Set LOCAL.SESSION JUST STARTED to YES I indicates t~at the current bracket sequence number 
has already been-initialized). 

Else I secondary half-session) 
Set LOCAL.SESSION JUST STARTED to NO. 

Save addressability to th; MU in LOCAL for later us$, before passing it on to PS. 

Chapter 6.1. Data Flow Control 6.1-19 



DFC_SEND_FROM_PS 

6.1-20 

DFC_SEND_FROM PS 

FUNCTION: Process the record received from presentation services IPS) and determine the 
proper response (positive or negative) or MU ldata or signal) that needs to be 
sent to the partner HS via transmission control ITCJ. If an error is found 
while processing the PS_TO_HS record, the buffer will be freed by this proce­
dure. 

INPUT: MU, containing a PS_TO_HS record I the record type may be SEND_DATA_RECORD, 
CONFIRMED, SEND_ERROR, or REQUEST TO SEND); LOCAL.CT RCV, indication of the 
form-of-response-requested for the-la~t chain received~ if the record type is 
CONFIRMED; FSM CHAIN RCV FMP19, indication of the state of the FSM; 
LOCAL.BRACKET_ID, if the ;ecord type is SEND_ERROR 

OUTPUT: LOCAL.SEND_ERROR_RSP_STATE may be set to indicate that a negative response may 
be sent to the next chain, a response (negative or positive), data or an MU 
contains REQUEST_TO_SEND signal may be sent to TC 

NOTE: PS initializes the appropriate fields in an MU before sending it to the HS 

Referenced procedures, FSMs, and data structures: 
HS 
SEND_RSP_MU 
SEND_FMD_MU 
INITIALIZE_ TH_RH 
DFC_SEND_FSMS 
FSM_CHAIN_RCV_FMP19 
MU 
LOCAL 
SIGNAL RQ RU 

page 6.0-3 
page 6.1-45 
page 6.1-43 
page 6.1-38 
page 6.1-27 
page 6.1-51 
page A-29 
page 6.0-7 
SNA Formats 

If MU.PS TO HS.BRACKET_ID ~ LOCAL.BRACKET_ID then 
Log i~formation concerning the error in the system log. 
Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous MU. 

Else 
Select based on PS_TO_HS record type: 

When SEND_DATA_RECORD 
Call SEND_FMD_MUIMU) lpage 6.1-43) to send the MU. 

When CONFIRMED 
If LOCAL.CT_RCV shows that the last request received indicated RQD2 or RQD3 
(short lock, need to response immediately) then 

Call SEND_RSP_MUINULL,NORMAL,POS,X'OOOOOOOO') lpage 6.1-45) 
to send a normal-flow positive response. 

Else llong lock, the response is delayed) 
Call buffer manager IFREE_BUFFER, buffer address) to release 

the buffer containing the MU. (Appendix BJ 
When SEND ERROR 

If the-state of FSM_CHAIN_RCV_FMP19 is BETC 
(while between chains, no response may be sent) then 

Set LOCAL.SEND_ERROR_RSP_STATE to NEG_OWED to indicate that a negative 
response should be sent to the next RU received. 

Call buffer manager IFREE_BUFFER, buffer address) to release 
the buffer containing the MU. (Appendix BJ 

Else lwithin the INC state, send -RSP to chain currently being processed) 
Call SEND_RSP_MUINULL,NORMAL,NEG,X'08460000') (page 6.1-45) 

to send a normal-flow negative response. 

When REQUEST TO SEND 
Call INITIALIZE_TH_RHIMUJ (page 6.1-38) to 
set the TH and RH fields to default values. 

Set the TH and RH fields as described in Figure 6.1-9 on page 6.1-14 for a 
SIGNAL request. 

Set RU to SIGNAL RQ RU las described under SIG request in SNA Formats). 
Set MU.DCF to ttie length of IRH + RU). 
Set LOCAL.COMMON.RQ_CODE to SIG. 
Call DFC_SEND_FSMSIMUJ (page 6.1-27) to maintain states while sending 

request or response. 

SNA LU 6.2 Reference: Peer Protocols 

( 
'- , 

(-~ 

~~.j 



/~ 

\___ .. 

c/ 

DFC_SEND_FROM_RM 

DFC_SEND_FROM_RM 

FUNCTION: 

INPUT: 

OUTPUT: 

Process records received from the resources manager IRMl. This procedure is 
called by the half-session router ("Chapter 6.0. Half-Session"). 

Record from RM IBID HITHOUT ATTACH, BIS REPLY, BIS RQ, HS PS CONNECTED, BRACK­
ET_FREED, RTR_RQ, YIELD_SESSION, or ENCIPHERED_RDZJ; indication that session 
just started, LOCAL.SESSION_JUST_STARTED; primary or secondary half-session 
indicator, LOCAL.HALF_SESSION; LOCAL.SQN_SEND_CNT.NUMBER; possibly, an 
HS_PS_CONNECTED or BRACKET_FREED record from RM 

The following RUs may be sent: Bid with Attach (carrying BB), Bid with LUSTAT 
(carrying BBJ, BIS, RTR, or a Yield Session with LUSTAT (carrying CEBJ. 

In addition, the PS_ID is recorded to identify the PS that is using this HS, 
and an indication that the session just started is also recorded. 

NOTE: The records received from RM are not MU records. Half-session builds an MU 
record and copies the information from the non-MU record I received from RM) 
and sends it to TC. Limited buffers are used to send normal-flow requests. 
However, half-session uses a permanent buffer for building and sending this MU 
instead of requesting a limited buffer because this MU cannot be held (waiting 
for a limited buffer to become available). However, the limited buffer pool 
needs to be adjusted (decremented by ll to reflect the correct size of the 
send pacing count. 

Referenced procedures, FSMs, and data structures: 
SEND_FMD_MU 
DFC_SEND_FSMS 
INITIALIZE_TH_RH 
FSM_BSM_FMP19 
LOCAL 
MU 
BID_HITHOUT_ATTACH 
BRACKET_FREED 
ENCIPHERED_RD2 
HS_PS_CONNECTED 
BIS_REPLY 
BIS_:.RQ 
YIELO_SESSION 
RTR_RQ 

Select based on type of the record from RM: 
Hhen BID HITHOUT ATTACH 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

Call buffer m~nager CGET_BUFFER, permanent buffer pool ID, no waitl to 
get a buffer for building an MU (containing the LUSTATJ. !Appendix Bl 

Create an MU and Call INITIALIZE TH RHIMUJ to set the TH and RH fields 
to default values !page 6.l-38J. -

6.1-43 
6.1-27 
6.1-38 
6.1-50 
6.0-7 
A-29 
A-17 
A-18 
A-18 
A-18 
A-12 
A-12 
A-19 
A-12 

Call buffer manager IADJUST_BUF_POOL, limited buffer pool ID, change amount) 
to reduce the size of the limited buffer pool !Appendix Bl. 
The change amount is a negative value of 1 (see note). 

Set the RH fields as described in Figure 6.1-9 on page 6.1-14 for 
an LUSTAT request. 

Set the RU to LUSTAT RQ RU as described in SNA Formats. 
Call DFC_SEND_FSMSIMUJ (page 6.1-271. 

Hhen BIS REPLY 
Call buffer manager IGET_BUFFER, permanent buffer pool ID, no waitl to 
get a buffer for building an MU (containing the BIS). !Appendix Bl. 

Create an MU and Call INITIALIZE TH RHIMUJ to set the TH and RH fields 
to default values. !page 6.l-3Bl.-

Call buffer manager IADJUST_BUF_POOL, limited buffer pool ID, change amount) 
to reduce the size of the limited buffer pool !Appendix Bl. 
The change amount is a negative value of 1. 

Set the RH fields as described in Figure 6.1-10 on page 6.1-15 for 
a BIS reply. 

Set the RU to BIS RQ RU as described in SNA Formats. 
Call DFC_SEND_FSMSIMUJ lpage 6.1-27). -

Chapter 6.1. Data Flow Control 6.1-21 



DFC_SEND_FROM_RM 

6.1-22 

Hhen BIS_RQ 
Call buffer manager CGET_BUFFER, permanent buffer pool ID, no waiO to 
get a buffer for building an MU C containing the BIS l. C Appendix 8) 

Create an MU and Call INITIALIZE_TH_RHCMU) to set the TH and RH fields 
to default values. Cpage 6.1-38). 

Call buffer manager CADJUST_BUF_POOL, limited buffer pool ID, change amount) 
. to reduce the size of the limited buffer pool (Appendix 8). 
The change amount is a negative value of 1. 

Set the RH fields as described in Figure 6.1-9 on page 6.1-14 for 
a BIS request • 

Set the RU to BIS RQ RU as described in SNA Formats. 
Call DFC_SEND_FSMSCMUl Cpage 6.l-27l. -

Hhen BRACKET FREED 
For each Mu on the PS_TO_HS_Q with a BRACKET_ID equal to BRACKET_FREED.BRACKET_ID 

Remove the MU from the PS_TO_HS queue. 
Call buffer manager CFREE_BUFFER, buffer address) to release the buffer 

that containing the MU. !Appendix Bl 

Hhen HS PS CONNECTED 
Reco~d PS ID and BRACKET ID (from HS_PS_CONNECTED record) 

in the c~rresponding LOCAL fields. 
Call FSM_BSM_FMP19 Cpage 6.1-50) with an INB signal to indicate that 
this half-session is connected to a PS. 

If LOCAL.SESSION JUST STARTED is YES then 
(current bracket se~ence number was initialized at session start-up) 

Set LOCAL.SESSION JUST STARTED to NO. 
Else (set the current bra~ket sequence number and BB_REGISTER) 

The following calculates the value for the current bracket sequence number and 
the BB_REGISTER before the BB request Cto be sent) is received by DFC. 

Set LOCAL.CURRENT_BRACKET_SQN.NUMBER to LOCAL.SQN_SEND_CNT.NUMBER + 1 !taking 
into account that the number wraps at 327671. 

Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to the value of 
LOCAL.HALF_SESSION CPRIISECJ. 

Based on the value of LOCAL.HALF_SESSION CPRIISECl set 
LOCAL.PHS_BB_REGISTER.NUMBER or LOCAL.SHS_BB_REGISTER.NUMBER to 
LOCAL.CURRENT_BRACKET_SQN.NUMBER. 

Hhen RTR RQ 
Call buffer manager CGET_BUFFER, permanent buffer pool ID, no waitl to 
get a buffer for building an MU (containing the RTR). !Appendix B) 

Create an MU and Call INITIALIZE_TH_RHCMUJ to set the TH and RH fields 
to default values. (page 6.1-38). 

Call buffer manager CADJUST_BUF_POOL, limited buffer pool ID, change amount) 
to reduce the size of the limited buffer pool !Appendix B). 
The change amount is a negative value of 1. 

Set the RH fields as described in Figure 6.1-9 on page 6.1-14 for 
a RTR request • 

Set the RU to RTR RQ RU as described in SNA ·Formats. 
Set LOCAL.COMMON.RQ_CODE to RTR. -
Call DFC_SEND_FSMSCMU) (page 6.1-271. 

SNA LU 6.2 Reference: Peer Protocols 



(_j 

c_) 

DFC_SEND_FROH_RM 

Hhen YIELD_SESSION 
If LOCAL.SESSION_JUST_STARTED is YES then (session has just started) 

Set LOCAL.SESSION_JUST_STARTED to NO !reset so current bracket SQN will 
be updated on future brackets) 

Call buffer manager CGET_8UFFER, permanent buffer pool ID, no wait) to 
get a buffer for building an MU !containing the LUSTAT). !Appendix 8) 

Create an MU and Call INITIALIZE_TH_RHCMU) to set the TH and RH fields 
to default values. (page 6.1-38). 

Call buffer manager CADJUST_8UF_POOL, limited buffer pool ID, change amount) 
to reduce the size of the limited buffer pool !Appendix 8). 
The change amount is a negative value of 1. 

Set the RH fields as described in Figure 6.1-9 on page 6.1-14 for 
a LUSTAT request. 

Set the RU to LUSTAT RQ RU as described in SNA Formats. 
Set LOCAL.COMMON.RQ_CODE to LUSTAT. 
Call DFC_SEND_FSMSCMU) !page 6.1-27). 

Nhen ENCIPHERED RDZ 
If ENCIPHERED_RDZ.SEND_PARM.TYPE is DEALLOCATE_FLUSH then 

Set LOCAL.SESSION JUST STARTED to NO. 
Call buffer manager lGET_BUFFER, permanent buffer pool ID, no wait> to 
get a buffer for building an MU (containing the ENCIPHERED_RDZ). !Appendix 8) 

Create an MU and set the MU.HEADER to indicate PS_TO_HS, SEND_DATA_RECORD, 
ENCIPHERED_RDZ.SEND_PARM.ALLOCATE, ENCIPHERED_RDZ.SEND_PARM.FMH, 
ENCIPHERED_RDZ.SEND_PARM.TYPE. 

Set RU to ENCIPHERED ROZ.SEND PARM.DATA as 
described in SNA Fo;mats. -

Call SEND_FMD_MU!MUl !page 6.1-43). 

TRY_TO_RCV_SIGNAL 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure determines if a REQUEST_TO_SEND record should be sent to PS to 
indicate a SIGNAL has been received. This procedure is called by the 
half-session router !"Chapter 6.0. Half-Session"). 

None 

REQUEST_TO_SEND sent to PS if required, indication that a SIGNAL has been 
received !LOCAL.SIG_RECEIVEDJ altered if stray or current SIGNAL detected 

NOTE: LOCAL.SIG RECEIVED is set to indicate that a SIGNAL has been received before 
this proc;dure is called. 

Referenced procedures, FSMs, and data structures: 
DFC_SEND_TO_PS 
SIGNAL_ STATUS 
FSM_BSM_FMP19 
REQUEST_TO_SEND 
LOCAL 

If the state of FSM_BSM_FMP19 is INB and LOCAL.SIG RECEIVED = YES then 
Call SIGNAL_STATUS !page 6.1-47) to determine 

the type of signal received. 
Select, based on the result returned from SIGNAL STATUS: 

Hhen CURRENT signal -
Call DFC SEND TO PSCNULL, REQUEST TO SENDJ !page 6.1-30). 
Set LOCAL.SIG=RECEIVED to NO. - -

Hhen STRAY signal 
Log error or informational message in the system log. 
Set LOCAL.SIG_RECEIVED to NO. 

Hhen FUTURE signal 
Do nothing. !The signal will remain in LOCAL until the bracket in 
which it was sent becomes the current bracket.) 

page 6.1-30 
page 6.1-47 
page 6.1-SO 
page A-10 
page 6.0-7 

Chapter 6 .1. Data Flow Control 6.1-23 

~ 



DFC_RCV 

6.1-24 

DFC_RCV 
r-~, 

.------------------------------------.\___ .. · 
FUNCTION: Process HUs received from TC. This procedure is called by TC ("Chapter 6.2. 

Transmission Control"). 

INPUT: HU, containing either a request !normal or expedited) ·or a responseJ 
LOCAL.COMMON_RQ_CODEJ ir.dication whether the alternate code may be used, 
LOCAL.ALTERNATE_CODE 

OUTPUT: LOCAL.SIG RECEIVED is set if SIGNAL is receivedJ the SNF of the SIGNAL is 
saved in LOCAL.SIG_SNFJ LOCAL.DIRECTION is set. 

Referenced procedures, FSHs, and data structures: 
DFC_RCV_FSHS 
FORHAT_ERROR 
SEND_RSP_HU 
STRAY_RSP 
TRANSLATE 
LOCAL 
HU 

Set LOCAL.DIRECTION to RECEIVE state. 
If an alternate code may be used then 

Call TRANSLATElHUl !page 6.1-49). 
If LOCAL.SENSE CODE is set to X'OOOOOOOO' then 

If HU.RH.RU-CTGY is DFC then 
Set the LOCAL.COHHON.RQ_CODE to the HU request code. 
IF LOCAL.COHHON.RQ_CODE is ~!CRY, BIS, LUSTAT, RTR, SIG) then 

Set LOCAL.COHHON.RQ_CODE to OTHER. 
Else 

Set LOCAL.COHHON.RQ_CODE to OTHER. 

Page 6.1-25 
page 6.1-31 
page 6.1-45 
page 6.1-48 
page 6.1-49 
page 6.0-7 
page A-29 

Call FORHAT_ERRORIHU) to perform optional format error checks !page 6.1-31). 
If a format error was found in the HU then 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous HU !Appendix 8). 

Return to the HS router !Chapter 6.0) with LOCAL.SENSE_CODE set 
to a nonzero value. This will cause the session to be deactivated and the 
half-session to be destroyed. 

Else !no format error) 
If request then 

If HU.TH.EFI indicates normal-flow then 
Call DFC_RCV_FSHSIHU) !page 6.1-25). 

Else (expedited-flow SIGNAL request) 
Set LOCAL.SIG_RECEIVED to YES. 
Recard the HU sequence number in LOCAL.SIG_SNF (used in determining the 
bracket the SIGNAL was intended for). 

Call SEND_RSP_HU!HU,EXP,POS,X'OOOOOOOO') lpage 6.1-45) to 
send an expedited positive response to the SIGNAL request innediately. 

Call buffer manager lFREE_BUFFER, buffer address) to release the buffer 
containing the SIGNAL request HU. !Appendix 8) 

Else ( response ) 
Call STRAY_RSPIMU) to determine if the response is stray (page 6.1-48) 
If the response is not stray then 

Call DFC_RCV_FSMSIMUl (page 6.1-25). 
Else lit is a stray response) 

Call buffer manager lFREE_BUFFER, buffer address) to release the buffer 
containing the stray response HU. !Appendix 8) 

SNA LU 6.2 Reference: Peer Protocols 

(~ 
........... _,... 

c 



C-·\ 
\ 
) 

,' 

C' 
; 

C') 
/ 

DFC_RCV_FSHS 

DFC_RCV_FSMS 

FUNCTION: Enforce data flow control protocols for received requests and responses. 

INPUT: MU, containing either a response or a normal-flow request 

OUTPUT: The request or response is sent to RM or PS. Data is recorded (from MU to 
LOCALJ for later use before passing the MU to RM or PS. 

Referenced procedures, FSMs, and data structures: 
CT_UPDATE 
RCV_STATE_ERROR 
GENERATE_RM_PS_INPUTS 
SEND_RSP_IF_REQUIRED 
SEND_RSP_TO_RM_OR_PS 
FSM_RCV_PURGE_FMP19 
FSM_QRI_CHAIN_RCV_FMP19 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
MU 
LOCAL 

Call RCV_STATE_ERRORIMUJ !page 6.1-411. These checks are optional. 
If a state error is found then 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous MU !Appendix BJ. 

Else lno state error) 
Record MU header, header type, MU.DCF, MU.RH in LOCAL fields. 
If RU is present in the MU then 

Save the addressability to the MU.RU in LOCAL fields. 
Select anyorder: 

Hhen normal-flow request 
If LOCAL.RQD_REQUIRED_ON_CEB = NO then 

Increment LOCAL.NORMAL_FLOH_RQ_COUNT by 1. 
If LOCAL.NORMAL FLOH RQ COUNT exceeds 2**14 then 

set LOCAL.RQD REQUIRED ON CEB to YES. 
Call CT_UPDATEIMU, LOCAL.CT_RCVJ lpage 6.1-291. 
If BBI = BB then 

If half-session is in send state then 
If primary half-session then 

Set LOCAL.PHS BB REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT_SEND.SNF.BRACKET_STARTED_BY to PRI. 

Else 
Set LOCAL.SHS_BB_REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT SEND.SNF.BRACKET STARTED BY to SEC. 

Else I in receive state J - -
If primary half-session then 

Set LOCAL.SHS BB REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT Rcv:sNF.BRACKET STARTED BY to SEC. 

Else - - -
Set LOCAL.PHS_BB_REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT RCV.SNF.BRACKET STARTED BY to PRI. 

If the state of FSM RCV PURGE FMP19 t-PURGE then 
Call GENERATE_RM=PS_INPUTSlMUJ lpage 6.1-36). 

Else 

page 6.1-29 
page 6.1-41 
page 6.1-36 
page 6.1-44 
page 6.1-46 
page 6.1-56 
page 6.1-55 
page 6.1-51 
page 6.1-53 
page A-29 
page 6.0-7 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the MU. !Appendix BJ 

Call FSM RCV PURGE FMP191MUJ to maintain a purging state for received 
BB chai~s lpage 6:1-561. 

If the state of FSM CHAIN SEND FMP19 = PEND RCV REPLY then 
Call FSM_CHAIN_SEND_FMP191MU, NOT_SPECIFIEDJ-lpage 6.1-53). 

If BCI = BC then 
Call FSM_CHAIN_RCV_FMP191MU, BEGIN_CHAINJ (page 6.1-511. 

If ECI = EC then 
Call FSM_CHAIN_RCV_FMP191MU, END_CHAINJ lpage 6.1-511. 

Call FSM_QRI_CHAIN_RCV_FMP191MUJ !page 6.1-551. 
Call SEND_RSP_IF_REQUIREDCMUJ !page 6.1-441. 

Chapter 6.1. Data Flow Control 6.1-25 



DFC_RCV_FSHS 

l>fien normal-flow response 
Call CT_UPDATEIMU, LOCAL.CT_SENDJ !page 6.l-Z9J. 
Call SEND_RSP_TO_RM_OR_PSIMUJ lpage 6.1-46). 
Call Fst1_CHAIN_SEND_FMP191MU, NOT_SPECIFIEDJ lpage 6.1-53). 

Hhen expedited-flow response li.e., a positive RSP[SIG]l 
Set LOCAL.SIG_RQ._OUTSTANDING to NO. 
Call SEND_RSP_TO_RM_OR_PSIMUl lpage 6.1-46). 

6.l-Z6 SNA LU 6.Z Reference: Peer Protocols 

c. 



C·. 
.. 

C· .. 
' 

~/ 

DFC_SEND_FSMS 

FUNCTION: 

INPUT: 

Maintain states by invoking the appropriate FSM while sending requests and 
responses. 

MU containing request or response; alternate code allowed indicator, 
LOCAL.ALTERNATE_CODE 

OUTPUT: Request/response to TC; possible update of the following fields: 
LOCAL.DIRECTION; LOCAL.SIG_Rll_OUTSTANDING; sequence number for request or 
response, LOCAL.SQN_SEND_CNT 

Referenced procedures, FSMs, and data structures: 
SEND_MU 
CT_UPDATE 
TRANSLATE 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
MU 
LOCAL 

Set LOCAL.DIRECTION to SEND. 
Calculate the proper sequence number to use in the request or response and 
place the value in MU.TH.SNF. 

Select anyorder: 
Hhen normal-flow request 

If LOCAL.RQD_REQUIRED_ON_CEB = NO then 
Increment LOCAL.NORMAL_FLOH_Rll_COUNT by 1. 
If LOCAL.NORMAL_FLOH_Rll_COUNT exceeds 2**14 then 

set LOCAL.RQD REQUIRED ON CEB to YES. 
Call CT_UPDATE(MU, LOCAL.CT_SENDJ (page 6.l-29J. 
If CEBI is CEB then 

If a definite response is required on a RQEl request then 
Change RQEl to RQDl. 

page 6.2-20 
page 6.1-29 
page 6.1-49 
page 6.1-51 
page 6.1-53 
page A-29 
page 6.0-7 

IThis allows stray SIGNALs and responses to be accurately recognized. 
If RQD request then 

Reset LOCAL.RQD_REQUIRED_ON_CEB to No and LOCAL.NORMAL_FLOH_Rll_COUNT to 0. 
If LOCAL.FSM_CHAIN_RCV_FMP19 is in PEND_SEND_REPLY state then 

Call FSM_CHAIN_RCV_FMP19CMU, NOT_SPECIFIEDJ Cpage 6.1-51). 
CThis request is an implicit response). 

If BBi is BB then 
If half-session is in send state then 

If primary half-session then 
Set LOCAL.PHS BB REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT_SEND.SNF.BRACKET_STARTED_BY to PRI. 

Else 
Set LOCAL.SHS BB REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT SEND.SNF.BRACKET STARTED BY to SEC. 

Else (in receive state J - -
If primary half-session then 

Set LOCAL.SHS_BB_REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT RCV.SNF.BRACKET STARTED BY to SEC. 

Else - - -
Set LOCAL.PHS BB REGISTER.NUMBER to MU.TH.SNF.NUMBER. 
Set LOCAL.CT_Rcv:sNF.BRACKET_STARTED_BY to PRI. 

If BCI is BC then 
Call FSM CHAIN SEND FMP191MU, BEGIN_CHAINJ Cpage 6.1-53). 

If ECI is EC then- -
Call FSM_CHAIN_SEND_FMP19CMU, END_CHAINJ (page 6.1-53). 

Hhen normal-flow response 
Call CT_UPDATECMU,LOCAL.CT_RCVJ Cpage 6.l-29J. 
Call FSM_CHAIN_RCV_FMP191MU, NOT_SPECIFIEDJ !page 6.1-511. 

Hhen expedited-flow request li.e., a SIGNAL request) 
Set the LOCAL.SIG_Rll_OUTSTANDING to YES. 

If an alternate code may be used then 
Call TRANSLATEIMUJ lpage 6.1-49). 

Call SEND_MUI MU, LOCAL. COMHON_CB l I page 6. 2-20 l. 

Chapter 6. l. Data Flow Control 6.1-27 



LOH-LEVEL PROCEDURES .!..!!::! ALPHABETICAL ~ 

6.1-28 

BUILD_HS_TO_PS_HEADER 

FUNCTION: Fill in HU.HS_TO_PS_HEADER based on the contents of MU.RH. 

INPUT: HU containing data that needs to be passed to PS and information about the 
type of HS_TO_PS header that needs to be built 

OUTPUT: HU fields may be set properly to reflect the contents of HU. RH 

Referenced procedures, FSHs, and data structures: 
HU 

Set HU.HEADER_TVPE to HS_TO_PS. 
Set HU.HS_TO_PS.FHH to NO. 

If FI = FHH then 
If RU_CTGV = FHD I FHD request) then 

Set HU.HS_TO_PS.FHH to YES. 
Else ILUSTAT request) 

Set HU.DCF to the length of HU.RH. 
If ECI = EC then 

Select in any order 

Else 

thin IRQEl and CDI=CD) 
Set HU.HS_TO_PS.TVPE to PREPARE TO RCV_FLUSH. 

thin IRQ•l and CEBI=CEB) 
Set HU.HS_TO_PS.TVPE to DEALLOCATE_FLUSH. 

thin IRQD213 and CDI=~co and CEBI=~CEB) 
Set HU.HS_TO_PS.TVPE to CONFIRM. 

thin IRQ•213 and CDI=CD) 
Set HU.HS_TO_PS.TVPE to PREPARE_TO_RCV_CONFIRH. 

thin IRQD213 and CEBI=CEB) 
' Set HU.HS_To_PS. TYPE to DEALLOCATE_CONFIRH. 

Set HU.HS_TO_PS.TVPE to NOT_END_OF_DATA. 

SNA LU.6.2 Rafe.-...: Pear Protocols 

page A-29 c 

0 



C., 
I 

/ 

CT_UPDATE 

CT_UPDATE 

FUNCTION: Record information about the last chain sent or received. This is done by 
updating the correlation table entry ICT). 

INPUT: MU, containing the information to save about a sent or received chainJ CT may 
be updated, either CT_SEND or CT_RCVJ 

OUTPUT: Information from the input MU added to the information that was saved from the 
earlier RUs of the chain, this information is saved in the input correlation 
table ICT_RCV or CT_SENDl 

NOTE: LOCAL.COHMON.RQ_CODE is set properly before this procedure is called. 

Referenced procedures, FSMs, and data structures: 
CT 
MU 

If MU contains a request then 
If BCI = BC then 

Record the following information relating to the chain in the input 
correlation table ICTl: 
Set the ENTRY_PRESENT to YES. 
Set SNF to MU.SNFJ 
Set NEG RSP SENSE to X'OOOOOOOO'. 
Set RU_CTGY-to MU.RU_CTGY. 
Save the value of DRlI, DRZI, ERI, QRI, BBI. ~ces, ~co in the 

CT.RH fields. 
If the RU_CTGY = DFC then 

Record the MU request code in CT.RQ_CODE. 
Else 

Set CT.RQ_CDDE to OTHER. 
If MU.ECI = EC then 

Save the value of DRlI, DR2I, ERI, CEBI and CDI in the CT.RH fields. 
Else IMU contains a response) 

If MU.SDI = SD then 

page 6.0-8 
page A-29 

Record that an error was found for this chain by saving the sense data from 
the response in CT.NEG_RSP_SENSE. 

Chapter 6.1. Data Flow Control 6.1-29 



DFC_SEND_TO_PS 

DFC_SEND_TO_PS 

6.1-30 

FUNCTION: Send a record to PS. This procedure may locally create the record to send, 
depending on record type. 

INPUT: HU address (may be NULL if record type ~= MIJ)J record type to specify the type 
of record to sendJ the bracket ID that identifies this conversation, 
LOCAL.BRACKET_ID 

OUTPUT: Appropriate record or an HU is sent to PS. 

Referenced procedures, FSHs, and data structures: 
HS 
PS 
HU 
LOCAL 
CONFIRMED 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 

If the input record type is HU then 
Set the HU.HS_TO_PS.BRACKET_ID to LOCAL.BRACKET_ID. 

Else (record type ~= tlJ) 
Create the requested record type ICONFIRHED, REQUEST_TO_SEND, 

RSP _TO_REQUEST_TO_SEND, or RECEIVE_ERRORJ with BRACKET_ID 
set to LOCAL.BRACKET_ID. 

Send the record to the PS that is using this session. 
If the PS is no longer receiving then 

If the record is an HU then 
Call buffer manager (FREE_BUFFER, buffer address) to release the 
buffer containing the 11U. (Appendix BJ 

Else 
Destroy the record. 

SNA LU 6.2 Reference: Peer Protocols 

page 6.0-3 
page S.0-8 
page A-29 
page 6.0-7 
page A-10 
page A-10 
page A-10 
page A-11 c 

(~. 

_.) 
~--/ 

,--------. 
( . 
\ ____ , 



(_ 

(_ 

c! 

c: 

FORMAT_ERROR 

FORMAT_ERROR 

FUNCTION: Perform format checks on all requests and responses for LU-LU session. These 
checks are optional. If an error is detected, the LOCAL .SENSE_CODE is set to 
the appropriate sense data. None, some, or all of these checks may be done. 

INPUT: MU, containing a request o~ response 

OUTPUT: TRUE for format error detectedJ otherwise, FALSE 

Referenced procedures, FSHs, and data structures: 
FORHAT_ERROR_RQ_FHD 
FORHAT_ERROR_RQ_DFC 
FORHAT_ERROR_NORH_RSP 
FORHAT_ERROR_EXP_RSP 
HU 
LOCAL 

Set return code to FALSE. 
Select based on one of the following conditions: 

Hhen request 
If RU_CTGY = FHD 

Call FORHAT_ERROR_RQ_FHDIMUJ lpage 6.1-341. 
Else IHhen request with RU category of DFCJ 

Call FORHAT_ERROR_RQ_DFCIHUJ !page 6.1-33). 

Hhen normal-flow response 
Call FORHAT_ERROR_NORH_RSPIHUJ !page 6.1-321. 

Hhen expedited-flow response 
Call FORMAT_ERROR_EXP_RSPIHUJ !page 6.1-32). 

ILOCAL.SENSE_CODE is set with the sense data indicating the type of error 
if an error is found by any of the above called procedures. J 

If LOCAL.SENSE_CODE ~ X'OOOO 0000' then 
Set the return code to TRUE. !Format error found.) 

Pass the return code to the calling procedure. 

page 6.1-34 
page 6.1-33 
page 6.1-32 
page 6.1-32 
page A-29 
page 6.0-7 

Chapter 6 .1. Data Flow Control 6.1-31 



FORMAT_ERROR_EXP_RSP 

FORHAT_ERROR_EXP_RSP 

6.1-32 

FUNCTION: Perform format checks on expedited-flaw responses. ·These checks are optional. 

INPUT: MU, containing an expedited-flaw response 

OUTPUT: For an error, LOCAL.SENSE_CODE is set to the appropriate sense data. 

Referenced procedures, FSMs, and data structures: 
MU 
LOCAL 

Select, in order, based on fields in the MU: 
Hhen RU_CTGY i DFC 

Set LOCAL.SENSE CODE to X'40110000'. 
Hhen FI = ~FMH -

Set LOCAL.SENSE_CODE to X'400FOOOO'. 
Hhen (SDI = SD arid RTI = POS) or (SDI = ~so and RTI = NEG) 

Set LOCAL.SENSE_CODE to X'40130000'. 
Hhen BCI = ~BC or ECI = ~EC 

Set LOCAL.SENSE_CODE to X'400BOOOO'. 
Hhen QRI = QR 

Set LOCAL.SENSE_CODE to X'40150000'. 
Hhen RQ_CODE i SIG 

Set LOCAL.SENSE_CODE to X'40120000'. 
Nhen RTI =NEG 1-RSP to expedited request) 

Set LOCAL.SENSE_CODE to the sense data in the MU (first 4 bytes). 

FORMAT_ERROR_NORH_RSP 

page A-29 
page 6.0-7 

FUNCTION: Perform format checks on normal-flaw responses. These checks are optional. 

INPUT: MU, containing a normal-flaw response 

OUTPUT: For an error, LOCAL.SENSE_CODE is set to the appropriate sense data. 

Referenced procedures, FSMs, and data structures: 
MU 
LOCAL 

Select, in order, based on fields in the MU: 
Hhen BCI = ~BC or ECI = ~EC 

Set LOCAL.SENSE CODE to X'400BOOOO'. 
Hhen ISDI = SD and RTI = POS) or ISDI = ~so and RTI = NEG) 

Set LOCAL.SENSE CODE to X'40130000'. 
Hhen RU CTGY = DFC-and FI = ~FMH 

Set LOCAL.SENSE_CODE to X'400FOOOO'. 
Hhen RU_CTGY = FMD, RTI = POS, and FI = FMH 

Set LOCAL.SENSE_CODE to X'400FOOOO'. 

page A-29 
page 6.0-7 

Hhen RTI = NEG (negative response) and the sense data in the MU (first 4 bytes) 
is not IX'08130000', X'08140000', X'08190000', X'08460000', or X'08880000'J 

·Set LOCAL.SENSE_CODE to the response sense data. 

SNA LU 6.2 Reference: Peer Protocols 

0 

/---...__, ,. 
\_ ___ . 



cl 

C_/ 

c, 

FORHAT_ERROR_RQ_DFC 

FORMAT_ERROR_RQ_DFC 

FUNCTION: Perform format checks for data flow control ( DFC) requests. These checks are 
optional. 

INPUT: MU, containing DFC request 

OUTPUT: If error, LOCAL.SENSE_CODE is set to the appropriate sense data 

Referenced procedures, FSMs, and data structures: 
FORMAT_ERROR_RQ_FMD 
MU 
LOCAL 
LUSTAT RQ RU 
SIGNAL ~)l(RU 

Select, in the following order, based on one of the following conditions: 
Hhen normal-flow and the request code is not (BIS, LUSTAT, or RTRl 

Set LOCAL.SENSE CODE to X'l0030000'. 
Hhen expedited-floW and request code is not SIGNAL 

Set LOCAL.SENSE CODE to X'l0030000'. 
Hhen expedited-floW and the request code is SIGNAL and 

(MlJ.DCF is too short for SIGNAL or 

page 6,1-34 
page A-29 
page 6.0-7 
SNA Formats 
SNA Formats 

SIGNAL_CODE in the SIGNAL_RQ_RU does not match the LU 6.2 defined format) 
Set LOCAL.SENSE CODE to X'l0050000'. 

Hhen FI i FMH -
Set LOCAL.SENSE CODE to X'400FOOOO'. 

Hhen BCI = ~Be or ECI = ~EC 
Set LOCAL.SENSE CODE to X'400BOOOO'. 

Hhen CSI = CODEl -
Set LOCAL.SENSE CODE to X'40100000'. 

Hhen EDI = ED -
Set LOCAL.SENSE CODE to X'40160000'. 

Hhen POI = PD -
Set LOCAL.SENSE CODE to X'40170000'. 

Otherwise -
If LUSTAT request then 

If MU.DCF is too long for a LUSTAT request MU and 
MU.RU contains LUSTAT_RQ_RU.STATUS_VALUE then 

Call FORMAT_ERROR_RQ_FHDIMUJ !page 6.1-34). 
ILOCAL.SENSE_CODE set by called procedure if an error is detected. J 

Else ltoo short for LUSTATI 
Set LOCAL.SENSE CODE to X'l0050000'. 

Else <~LUSTAT request} · 
Select, in order, based on one of the following: 

Hhen (BIS request with RQD21RQD3 setJ or 
<~BIS request with ~RQDl setJ 

Set LOCAL.SENSE_CODE to X'40140000'. 
Hhen QRI = QR 

Set LOCAL.SENSE_CODE to X'40150000'. 
Hhen BBi = BB or EBI = EB or CEBI = CEB 

· Set LOCAL. SENSE_CODE to X '400COOOO ' • 
Hhen CDI = CD 

Set LOCAL.SENSE_CODE to X'40090000', 

Chapter 6.1. Data Flow Control 6.1-33 



FORMAT_ERROR_Rq__FMD 

FORMAT_ERROR_Rq__FMD 

6.1-34 

FUNCTION: Perform format checks on FM data I FMD J requests. These checks are optional. 

INPUT: MU, containing FMD request 

OUTPUT: For an error, LOCAL.SENSE_CODE is set to the appropriate sense data. 

NOTES: l. FMH field is only 7 bits and the concatenation bit is a reserved bit (set to 
0 J. 

2. LOCAL.ALTERNATE_CODE is set before this procedure is called. 

Referenced procedures, FSMs, and data structures: 
MU 
LOCAL 

Record FMH type (from MU.RUJ for later use (see note lJ. 
Select, in order, based on the TH or RH settings in the MU: 

Hhen expedited-flow 
Set LOCAL.SENSE_CODE to X'40110000'. 

Hhen the form-of-response-requested is not RQE or RQD 
Set LOCAL.SENSE_CODE to X'40140000'. 

Hhen the form-of-response-requested is RQD and ECI = -EC 
Set LOCAL.SENSE_CODE to X'40070000'. 

Hhen BBI = BB and BCI = -BC 
Set LOCAL.SENSE_CODE to X'40030000'. 

page A-29 
page 6.0-7 

Hhen BBI =BB, RU CTGY = FMD, and -IFI = FMH and FM header type= ATTACH_FMHJ 
Set LOCAL.SENSE_CODE to X'40030000'. 

Hhen CSI = CODEl and alternate code will not be used 
Set LOCAL.SENSE_CODE to X'40100000'. 

Hhen EBI = EB IEB not allowed with FM profile 19. J 
Set LOCAL. SENSE_ CODE to X '40040000' • 

Hhen CDI = CD and ECI = -EC ICD allowed only with ECJ 
Set LOCAL.SENSE_CODE to X'40090000'. 

Hhen CDI = CD and form-of-response-requested is RQDl ICD may not· be sent with RQDlJ 
Set LOCAL.SENSE_CODE to X'40090000'. 

Hhen CEBI = CEB and ECI = -EC 
Set LOCAL.SENSE_CODE to X'40040000'. 

Hhen BCI =BC and II the request is received from the bidder with BBI=BB and QRI=-QRJ 
or I the request is received from the first speaker with BBI =BB or QRI = QRJJ 

Set LOCAL.SENSE CODE to X'40180000'. 
Hhen CEBI = CEB and CDI = CD I Transaction program verbs cannot generate this combination. J 

Set LOCAL.SENSE_CODE to X'40090000'. 

Hhen CEBI = CEB and form-of-response-requested is RQE2 or RQE3 
I DEALLOCATE-CONFIRM ICEB,RQD2l3J and DEALLOCATE-FLUSH ICEB,RQEll are valid! 

Set LOCAL.SENSE_CODE to X'40040000'. 

Hhen CEBI = -CEB, CDI = -co, ECI = EC, and form-of-response-requested is RQE 
Set LOCAL.SENSE_CODE to X'40190000'. 

Hhen FI = FMH, CEBI = -CEB, and form-of-response-requested is RQDl 
Set LOCAL.SENSE_CODE to X'40190000'. 

Hhen BBI = BB, CEBI = CEB, form-of-response-requested is RQEl, and this 
half-session is the first speaker 188, CEB, RQEl not allowed from the bidder) 

Set LOCAL.SENSE_CODE to X'40040000'. 

SNA LU 6.2 Reference: Peer Protocols 

(\ 
I I 

·"-__ .... / 

(~ 



C. 

c/ 

C·. 
·' 

FORMAT_ERROR_Rll_FMD 

Hhen FI = FMH, CEBI = CEB, FM header type = ERROR_FHH, and ERI = ER 
Set LOCAL.SENSE_CODE to X'40060000'. 

tflen FI = FHH, RU_CTGY = FHD, and FH header type is not (ATTACH_FHH or ERROR_FHH) 
If FH header type is SECURITY_FHH then 

If IECI = EC and CEBI = ~CEB) or BCI =BC then 
Set LOCAL.SENSE_CODE to X'080F6051'. 

Else 
Set LOCAL.SENSE_CODE to X'l0084001'. 

Chapter 6.1. Data Flow Control 6.1-35 



6.1-36 

GENERATE_RM_PS_INPUTS 

FUNCTION: Generate the appropriate records for RM and PS based on the passed MU's con­
tent. 

INPUT: MU containing normal-flow request; information about the last request sent, 
LOCAL.CT_SEND; possibly in addition, a BID_RSP or an RTR_RSP record from RM 

OUTPUT: Appropriate records sent to RH and PS, LOCAL.CURRENT_BRACKET_SQN, ID of the PS 
connected to this HS 

Referenced procedures, FSHs, and data structures: 
DFC_SEND_TO_PS 
RH 
PROCESS_RU_DATA 
OK_TO_REPLY 
FSH_RCV_PURGE_FMP19 
BID 
BID_RSP 
BIS_RQ 
BIS_REPLY 
RTR_RQ 
BRACKET_FREED 
RTR_RSP 
HU 
LOCAL 

Select, in order, based on one of the following conditions: 
When BBI = BB 

Create a BID record with HS_ID 
Receive the BID_RSP from RM. 

set to LOCAL.HS_ID and send it to RH. 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

Check the RH TO HS Q to see if a BIS, RTR, or BRACKET_FREED record has 
been receiv;d fro; RM. If so, send the record now (a BID race may 
have occurred l . 

If a positive Bid response is received then 
If RU category is FMD then 

Call PROCESS_RU_DATACMUl Cpage 6.1-40). 
Else 

6.1-30 
3-19 
6.1-40 
6.1-39 
6.1-56 
A-11 
A-11 
A-12 
A-12 
A-12 
A-18 
A-13 
A-29 
6.0-7 

Set LOCAL.BB RSP STATE to POS OWED to record that a positive response is owed. 
Call buffer ;anager CFREE_BUFFER, buffer address) to release the buffer 
containing the received MU (Appendix Bl. 

Else (negative response to Bidl 
Call FSM_RCV_PURGE_FMP19 SIGNALIPURGEJ (page 6.1-561 to cause the 

remainder of this BB chain to be purged. 
Set LOCAL.BB_RSP_STATE to NEG_OWED to record that a negative response is owed. 
Set LOCAL.BB RSP SENSE to BID RSP.SENSE CODE to record the sense data. 
Call buffer ;anager IFREE_BUFFER, buffe; address) to release the buffer 
containing received MU (Appendix BJ. 

Destroy the BID_RSP record from RM. 

When RU_CTGY is DFC and request code is BIS 
If the form-of-response-requested is RQEl then 

Create a BIS_RQ record with HS_ID set to LOCAL.HS_ID and send it to RM. 
Else CRQE2(3J 

Create a BIS REPLY record with HS ID set to LOCAL.HS ID and send it to RM. 
Call buffer man;ger IFREE_BUFFER, buffer address) to release the buffer 
containing received MU (Appendix BJ. 

When RU_CTGY is DFC and request code is RTR 
Create an RTR RQ record with HS ID set to LOCAL.HS_ID and send it to RH. 
Receive RTR RSP from RH. -
If a positi~e RTR response is received then 

Set LOCAL.RTR_RSP_STATE to POS_OWED to record that a positive response is owed. 
Else (negative response to RTRJ 

Set LOCAL.RTR RSP STATE to NEG OWED to record that a negative response is owed. 
Set LOCAL.RTR:RsP:SENSE to RTR:RSP.SENSE_CODE to record the sense data. 

Call buffer manager !FREE_BUFFER, buffer address) to release the buffer 
containing received MU !Appendix Bl. 

Destroy the RTR_RSP record. 

SNA LU 6.2 Reference: Peer Protocols 

(~ 

\ , __ _..,.. 

c: 

c 



c/ 

0 

( ----
, 
I 

_ _,/ 

C--, 
/ 

Otherwise 
Call OK_TO_REPLYIMUJ lpage 6.1-39) to determine if MU is a reply. 
If MU is a reply and the last chain sent was RQE2 or RQE3 then 

Call DFC_SEND_TO_PSIMU pointer, CONFIRMED) lpage 6.1-301. 

Call PROCESS_RU_DATAIMUJ lpage 6.1-40). 

GENERATE_RM_PS_INPUTS 

Chapter 6.1. Data Flow Control 6.1-37 



INITIALIZE_TH_RH 

INITIALIZE_TH_RH 

6.1-38 

FUNCTION: Initialize the TH and RH fields of an t1U record. 

INPUT: A newly created t1U 

OUTPUT: Initialized RH and selected TH bits, LOCAL.COtl10N.RQ_CODE 

Referenced procedures, FSMs, and data structures: 
MU 

Set default values for the TH fields in the MU as follows: 
EFI to normal-flow, SNF.SQN to O, BBIUI to BBIU, and EBIUI to EBIU. 

Set default values for the RH fields in the MU as follows: 
RRi to RQ, RU CTGY to FMD, FI to -FMH, SDI to -SD, RTI to POS, 
BCI to -BC, ECI to -Ee, RQEl, RLHI to -RLH, QRI to -QR, 
PI to -PAC, BBI to -BB, EBI to -EB, CDI to -CD, 
CSI to CODEO, EDI to -ED, PDI to -PD, CEBI to -CEB 

Set LOCAL.COMMON.RQ_CODE to OTHER. 

INVALID_SENSE_CODE 

FUNCTION: Determine if sense data on negative response is valid. 

page A-29 

INPUT: MU containing negative response; information about the last chain sent, 
LOCAL.CT_SEND; first-speaker indicator, LOCAL.FIRST_SPEAKER 

OUTPUT: TRUE for invalid sense data; otherwise, FALSE 

Referenced procedures, FSMs, and data structures: 
HS 
MU 
LOCAL 

If this is a response to a BB chain then 
If this half-session· is first speaker then 

page 6.0-3 
page A-29 
page 6.0-7 

If the sense data in the response is not X'08460000' or X'088BOOOO' then 
Return with a value of TRUE I invalid sense dataJ. 

Else !bidder) 
If the sense data in the response is not X'08130000', X'08140000', 
or X'088BOOOO' then 

Return with a value of TRUE I invalid sense data). 

Else I response to -BB chain) 
If response to RTR then 

If the sense data in the response is not X'08190000' then 
Return with a value of TRUE I invalid sense data). 

Else (not response to RTRJ 
If response to BIS then !negative response to BIS not allowed) 

Return with a value of TRUE I invalid sense data). 
Else 

If the sense data in the response is not X'08460000' then 
Return with a value of TRUE I invalid sense dataJ. 

Return with a value of FALSE !valid sense dataJ. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 



( 

OK_TO_REPLV 

OK_TO_REPLV 

FUNCTION: Determine whether or not a request is a valid reply. A reply is a request 
sent (or received) after receiving lor sending) an IRQE,CD> request. 

INPUT: MU, containing a 
LOCAL.CURRENT_BRACKET_SQN; 
LOCAL.CT_SEND 

normal-flow 
information 

request; 
about the 

LOCAL. DIRECTION; 
last chain sent, 

OUTPUT: TRUE if valid reply; otherwise, FALSE 

Referenced procedures, FSMs. and data structures: 
LOCAL 
MU 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 

Select, in order, based on one of the following conditions: 
Hhen the request is BIS or RTR 

Return with a value of FALSE lnot a valid reply). 

Hhen the request indicates BBI = BB or BCI = ~BC 
Return with a value of FALSE lnot a valid reply>. 

page 6.0-7 
page A-29 
page 6.1-51 
page 6.1-53 

Hhen I sending and the state of FSM_CHAIN_RCV_FMP19 is not PEND SEND REPLY) or 
I receiving and the state of FSM_CHAIN_SEND_FMP19 is not PEND_RCV_REPLY) 
lpage 6.1-51 and page 6.1-53) 

Return with a value of FALSE lnot a valid replyJ. 

Hhen receiving and the state of FSM_BSM_FMP19 lpage 6.l-50) is INB and the 
last chain sent carried BB and LOCAL.CURRENT BRACKET SQN i the SNF of that chain 

Return with a value of FALSE lnot a valid ;eplyJ. -

Otherwise 
Return with a value of TRUE (valid reply). 

Chapter 6.1. Data Flow Control 6.1-39 



PROCESS_RU_DATA 

PROCESS_RU_DATA 

6.1-40 

FUNCTION: Process an RU and, based on the content of the RU, send the appropriate 
records to RM and PS. 

INPUT: MU containing a normal-flow requests LOCAL.SHS_BB_REGISTERJ 
LOCAL.PHS_BB_REGISTERJ LOCAL.HALF SESSION I indication that half-session is 
primary or secondaryh possibly- in addition, an HS_PS_CONNECTED record 
received from RM. 

OUTPUT: Appropriate records sent to RM or PSJ if an FMH-51AttachJ is present, 
LOCAL.CURRENT_BRACKET_SQN is set. 

Referenced procedures, FSMs, and data structures: 
DFC_SEND_TO_PS 
FSM_BSM_FMP19 
BID_RSP 
HS_PS_CONNECTED 
BUILD_HS_TO_PS_HEADER 
MU 
LOCAL 

IF FI = FMH and RU CTGY = FMD then 
Select, based o~ FMH type in RU: 

Hhen X'OS' IAttachl 
Call BUILD_Hs_ro_PS_HEADERIMUJ (page 6.1-28). 
Set MU.HS TO RM.HS ID to LOCAL.HS ID. 
Send the ;eq~est MU to RM. -
Receive the HS_PS_CONNECTED record from RM. 

page 6.1-30 
page 6.1-50 
page A-11 
page A-18 
page 6.1-28 
page A-29 
page 6.0-7 

Save the PS_ID and the BRACKET_ID from the HS_TO_PS_CONNECTED record 
in the corresponding LOCAL fields. 

Else 

Call FSM_BSM_FMP19 with an INB signal (page 6.1-50) 
to indicate that the HS is connected to a PS. 

Destroy the HS_PS_CONNECTED record from RM. 
If primary half-session then 

Set LOCAL.CURRENT_BRACKET_SQN to LOCAL.SHS_BB_REGISTER. 
Else 

Set LOCAL.CURRENT_BRACKET_SQN to LOCAL.PHS_BB_REGISTER. 
Hhen X'07' (Error Description) 

Call BUILD_HS_TO_PS_HEADERIMUl (page 6.1-28). 
Call DFC_SEND_TO_PSIMU pointer, MUl lpage 6.1-30). 

Hhen X'OC' !Security) 
Build an HS_TO_PS MU header. 
Set MU.HS TO RM.HS ID to LOCAL.HS ID. 
Send the ;ec~rd to-RM. -

If ECI = EC or MU.RU is present then 
Call BUILD_HS_TO_PS_HEADERIMUl lpage 6.1-28). 
Call DFC_SEND_TO_PSIMU pointer, MU) (page 6.1-30). 

Else 
Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the MU. !Appendix Bl 

SNA LU 6.2 Reference: Peer Protocols 

( 
'-..._ __ / 

c 

c 

C~--

/ 



0 

c 

0 

RCV_STATE_ERROR 

RCV_STATE_ERROR 

FUNCTION: Perform state error checking on received requests and responses. The types of 
errors found here are protocol violations by the sender of the request or 
response. These checks are optional. None, some, or all of the checks may be 
made. 

INPUT: MU containing request or response; indication of whether a response to a SIG­
NAL is expected, LOCAL.SIG_RQ_OUTSTANDING 

OUTPUT: TRUE if a state error was encountered; otherwise, 
LOCAL.SENSE_CODE is set to the appropriate sense data 

FALSE. If TRUE, 

Referenced procedures, FSMs, and data structures: 
INVALID_SENSE_CODE 
FSM_BSM_FMP19 
FSM_QRI_CHAIN_RCV_FMP19 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
MU 
LOCAL 

Select based on EFI and RRI: 
Hhen normal-flow request 

Select, in order, based on the following conditions: 
Hhen a IRQE,88,CEBJ chain is received from the bidder 

page 6.1-38 
page 6.1-50 
page 6.1-55 
page 6.1-51 
page 6.1-53 
page A-29 
page 6.0-7 

Set LOCAL.SENSE CODE to X'40040000' llRQE,BB,CEBI not allowed from bidder). 
Return with a vilue of TRUE. 

Hhen executing FSM_BSM_FMP191MUJ lpage 6.1-501, 
FSM_CHAIN_RCV_FMP191MUI lpage 6.1-51), or 
FSM_QRI_CHAIN_RCV_FMP191MUI lpage 6.1-551 would cause a state 
check l>J condition 

Execute the corresponding output code in the first FSM that encountered 
a state-check condition Ito set LOCAL.SENSE_CODEI. 

Return with a value of TRUE. 

Hhen normal-flow response 
Select· based on the following conditions: 

Hhen RU category of the response ~ RU category of the request 
Set LOCAL.SENSE CODE to X'40110000'. 
Return with a vilue of TRUE. 

Hhen RU category of the response = DFC and 
the request code of the response ~ the request code of the request 

Set LOCAL.SENSE_CODE to X'40120000'. 
Return with a value of TRUE. 

Hhen the QRI field of the response ~ the QRI of the request 
Set LOCAL.SENSE CODE to X'40210000'. 
Return with a vilue of TRUE. 

Hhen response is negative and contains an invalid sense data 
(call INVALID_SENSE_CODEIMUI [page 6.1-38]1 

Set LOCAL.SENSE CODE to X'20120000'. 
Return with a vilue of TRUE. 

Hhen executing FSM_CHAIN_SEND_FMP191MUl lpage 6.1-531. 
would cause a state-check l>I condition 

Execute the corresponding output code Ito set LOCAL.SENSE_CODEJ. 
Return with a value of TRUE. 

Hhen expedited-flow response Ii.a., a positive response to SIGNAL) 
If a SIGNAL request is not outstanding lnot waiting for response to SIGNAL! then 

Set LOCAL.SENSE_CODE to X'ZDOEOOOO' I response correlation error). 
Return with a value of TRUE. 

Return with a value of FALSE. 

Chapter 6.1. Data Flow Control 6.1-41 



REPLY_TO_BID 

REPLY_TO_BID 

6.1-42 

FUNCTION: Determine if a normal-flow request is a reply to a BID request. A reply is a 
request sent (or received) immediately after receiving Cor sending) a request 
carrying CRQE,CD). A reply implies a positive response to the CRQE,CD) 
request. 

INPUT: HU containing a normal-flow requestJ information about the last chain sent, 
LOCAL. CT _SEND 

OUTPUT: TRUE if HU is reply to a bidJ FALSE, otherwise 

Referenced procedures, FSHs, and data structures: 
OK_TO_REPLY 
MU 
LOCAL 
FSH_BSM_FHP19 

Call OK_TO_REPLYCHUl Cpage 6.1-39). 
If it is OK to reply and 

the state of FSM_8SM_FHP19 = 8ETB (page 6.1-50) and 
the last chain sent was a 88 chain then 

Return with a value of TRUE. 
Else 

Return with a value of FALSE. 

SEND_8ID_POS_RSP 

page 6.1-39 
page A-29 
page 6.0-7 
page 6.1-50 

FUNCTION: Send RH a positive response to a Bid, and receive the HS_PS_CONNECTED record 
that will result in this half-session being connected to a PS. 

INPUT: HU; information about the last chain sent, LOCAL.CT_SEND 

OUTPUT: BID_POS_RSP sent to RM, LOCAL.CURRENT_BRACKET_SQN 

Referenced procedures, FSMs, and data structures: 
FSM_BSM_FHP19 
HU 
HS_PS_CONNECTED 
LOCAL 

page 6.1-50 
page A-29 
page A-18 
page 6.0-7 

Create a positive 8ID_RSP record with HS_ID set to LOCAL.HS_IS and SENSE_CODE set to O. 
Send the record to RM. 

Receive the HS_PS_CONNECTED record associated with the 8ID_POS_RSP from RM. 
Save the PS ID and the BRACKET ID from the HS TO PS CONNECTED in the 
corresponding LOCAL fields. - - - -

Call FSM_BSH_FMP19 with an INB signal !page 6.1-50) 
to indicate that the HS is connected to a PS. 

Destroy the HS_PS_CONNECTED record from RM. 

Set LOCAL.CURRENT_BRACKET_SQN to the SNF of the last chain sent. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 



(-. 

-

0 

c 

c 

SEND_FHD_HU 

SEND_FHD_HU 

FUNCTION: Send an MU according to passed instructions. 

INPUT: MU, containing a PS_TO_HS record Cit informs this procedure how to set the 
BBI, FI, BETC, BCI, ECI, ERI, DRlI, and DR2I bits in the RH) 

OUTPUT: The HU is created and initializedJ HU.RH bits, LOCAL.COHMON.RQ_CODE, MU.RU are 
set (according to the PS_TO_HS record); and the MU is sent to PS, BETC 

Referenced procedures, FSMs, and data structures: 
INITIALIZE_TH_RH 
DFC_SEND_FSMS 
LOCAL 
LUSTAT RQ RU 
MU - -

Call INITIALIZE_TH_RHIHUl to set the TH and RH fields of the input HU 
to default values. 

If input MU contains an FMH header then 
Set MU.RH.FI to FMH. 

If starting a new chain I the last RU sent indicated EC) then 
Set MU.RH.BC! to BC and LOCAL.BETC to NO. 
If PS TO HS.ALLOCATE = YES then 

Set MU.RH.BB! to BB to indicate that this is a BB chain. 
If MU.PS TO HS.TYPE is not FLUSH then 

page 6.1-38 
page 6.1-27 
page 6.0-7 
SNA Formats 
page A-29 

Set the RH indicators as described in Figure 6.1-7 on page 6.1-13 based on the value 
of MU.PS TO HS.TYPE. 

Set LOCAL:BETC to YES to indicate between-chain state. 
If this MU indicates IBC, EC) and there is no data in the RU then 

Convert the RU to an LUSTAT request lset RH bits to indicate FMH and DFCl. 
Set RU to LUSTAT_RQ_RU I see SNA Formats I. 

Call DFC_SEND_FSMSIMU) !page 6.1-27). 

Chapter 6.1. Data Flow Control 6.1-43 



SEND_RSP_IF_REQUIRED 

SEND_RSP_IF_RE~IRED 

6.1-44 

FUNCTION: Send a response to the passed MU if required. 

INPUT: MU containing a normal-flow request; information about the last received 
request; indication that a response is owed; the type (positive or negative) 
response to a BB request or RTR request or negative response to the next 
chain; when a negative response is owed, the sense data Cincluclecl in the 
response). 

OUTPUT: Response sent if required, indication that a response is owed 

Referenced procedures, FSMs, and data structures: 
SEND_RSP_MU 
FSM_CHAIN_RCV_FMP19 
MU 
LOCAL 

page 6.1-45 
page 6.1-51 
page A-29 
page 6.0-7 

Select in order, based on the following conditions: 
Hhen a response is owed to a BB request 

If a positive response is owed then Cit can be only an [LUSTAT,BB]l 
Call SEND_RSP_MUIMU, NORMAL, POS, X'OOOOOOOO'l (page 6.1-451. 

Else 1-RSP owed to [BB,FMDILUSTATll 
Call SEND_RSP_MUCMU, NORMAL, NEG, LOCAL.BB_RSP_SENSEl !page 6.1-451. 

Reset LOCAL.BB_RSP_STATE to indicate that a response is no longer owed 
·to the BB request. 

Hhen a response is owed to an RTR request 
If a positive response is owed then 

Call SEND_RSP_MUIMU, NORMAL, POS, X'OOOOOOOO') !page 6.1-45). 
Else C-RSP owed to RTRl 

Call SEND_RSP_MUIMU, NORMAL, NEG, LOCAL.RTR_RSP_SENSEl !page 6.1-45). 

Reset LOCAL.RTR RSP STATE to indicate that a response is no longer owed 
to the RTR req~est~ 

Hhen a negative response is owed to the next RU received 
If MU.BC! = BC and IMU.RU_CTGY = FMD or [RU_CTGY 
= DFC and a LUSTAT request]) and the MU.BB! ~BB then 

Call SEND_RSP_MUIMU, NORMAL, NEG, X'08460000') !page 6.1-45). 
Reset LOCAL.SEND_ERROR_RSP_STATE to indicate that a negative response 

longer owed to the next RU. 

Hhen the state of FSM CHAIN RCV FMP19 = PEND_RSP la response is owed) and 
the last chain recei~ed wa; CEB,RQDl 

Call SEND_RSP_MUCMU, NORMAL, POS, X'OOOOOOOO' l !page 6.l-451. 

SNA LU 6.2 Reference: Peer Protocols 

is no 

(' 
\ ., ___ .. " 

c 



c 

0 

c 

0 

SEND_RSP_MU 

SEND_RSP_MU 

FUNCTION: Create and send a response. The response is based on the request MU lif 
passed by the caller) or on information about the last chain received lif a 
null MU is passed). 

INPUT: Request MU lif any), flow type !expedited or normal), response type !positive 
or negative), sense data. I Information about the last chain received is used, 
ILOCAL.CT_RCV), when the input request MU has a null value.) 

OUTPUT: A RSP_MU is built and sent to TC. 

NOTE: Hhen PS sends an MU that indicates a -RSP is to be sent, the RU must be at 
least 4 bytes I for the sense data). 

Referenced procedures, FSMs, and data structures: 
DFC_SEND_FSMS 
INITIALIZE_TH_RH 
FSM_CHAIN_RCV_FMP19 
RSP_MU, see MU 
LOCAL 
MU 

If no MU is passed by the caller then 
Call buffer manager IGET_BUFFER, permanent buffer pool ID, no wait) 

a buffer for building a response MU IRSP_MU). (Appendix Bl 
Create a response MU and Call INITIALIZE_TH_RH !page 6.1-38). 

Else I reuse the buffer to build a response MU) 
Call INITIALIZE_TH_RHIRSP_MUl lpage 6.1-38). 

Set RSP_MU.DCF to the length of RSP_MU.RH. 
Set the RH fields of the RSP MU to IRSP, BC, EC). 
If a negative response need to send then 

Set RSP MU.SDI to SD, RSP MU.RTI to NEG. 
Add the-length of RU !contains sense data) to RSP_MU.DCF. 
Copy the input sense data to the RSP.MU. 

Else !positive response) 
Set RTI to POS I indicate a positive response to be sent). 

If input flow type indicates normal-flow then 

page 6.1-27 
page 6.1-38 
page 6.1-51 
page A-29 
page 6.0-7 
page A-29 

to get 

If input request MU has a null value (no request MU passed by the caller) then 
Copy the RU_CTGY, DRlI, DR2I, QRI from the correlation table ICTJ. 
If the RH.RU CTGY = DFC then 

Add the l;ngth of request code to RSP_MU.DCF. 
Set the last byte of the RSP_MU.RU to the RQ_CODE from correlation table. 
Record the RQ_CODE from correlation table in LOCAL.COMMON.RQ_CODE. 

Else la request MU was passed as input! 
Copy the RH.RU_CTGY, DRlI, DR2I, QRI from the input request MU. 
Set LOCAL.COMMON.RQ_CODE to the request CODE value from input request MU. 
If the RU category = DFC then 

Add the length of request code to RSP_MU.DCF. 
Set the last byte of the RSP_MU.RU to the RQ_CODE from correlation table. 

Else (expedited, the only expedited-flow response is for SIGNAL) 
Set EFI to expedited, RH.RU_CTGY to DFC, DRl, ~DR2, and request code to SIGNAL 

in the RSP MU. 
Add the length of request code to RSP_MU.DCF. 
Set the last byte of the RSP_MU.RU to the RQ_CODE from correlation table. 

If the RH.RU CTGY = DFC then 
Set FI to-FMH. 

Save the current value of DIRECTION. 
Set the DIRECTION to SEND. 
If executing FSM_CHAIN_RCV_FMP191response MUJ (page 6.1-51) 
would not cause a state-check l>J condition then 

Call DFC_SEND_FSMSCRSP_MU) lpage 6.1-271 to send the response. 
Else 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous MU !Appendix BJ. 

Reset DIRECTION indicator to the saved DIRECTION value. 

Chapter 6.1. Data Flow Control 6.1-45 



SEND_RSP_TO_RM_OR_PS 

6.1-46 

SEND_RSP_TO_RM_OR_PS 

FUNCTION: This procedure builds and sends records to RM or PS based on the received 
response MU. 

INPUT: MU containing a responseJ indicator that session is first speakerJ information 
about the last sent request 

OUTPUT: The appropriate "response" record is sent to RM or PS. 
LOCAL.CURRENT_BRACKET_SQN is set to the sequence number of the last sent BB 
request. The ID of the PS connected to this HS may be saved. 

Referenced procedures, FSMs, and data structures: 
DFC_SEND_TO_PS 
SEND_BID_POS_RSP 
FSM_BSM_FMP19 
CONFIRMED 
RECEIVE_ERROR 
BID_RSP 
RTR_RSP 
RSP_TO_REQUEST_TO_SEND 
MU 
LOCAL 

page 6.1-30 
page 6.1-42 
page 6.1-50 
page A-10 
page A-10 
page A-11 
page A-13 
page A-11 
page A-29 
page 6.0-7 

If the input MU contains an RTR response then 
Create an RTR_RSP record with HS_ID set to LOCAL.HS_ID and send it to RM. 

Else 
If the input MU contains a SIG response then 

Call DFC_SEND_TO_PSIMU pointer, RSP_TO_REQUEST_TO_SEND) lpage 6.1-30). 
Else 

If the response is positive IRTI = POS) then 
If last chain sent was a BB chain and the state of FSM_BSM_FMP19 

lpage 6.1-501 is BETB then 
Call SEND_BID_POS_RSPIMUJ lpage 6.1-42). 

If the form-of-response-requested of the last chain sent was RQD2 or RQD3 then 
Call DFC_SEND_TO_PSIMU pointer, CONFIRMED) lpage 6.1-30). 

Else (response is negative) 
If the response sense data is X'08460000' then 

Call DFC_SEND_TO_PSIMU pointer, RECEIVE_ERRORJ lpage 6.1-301. 

Else !bracket reject, i.e., X'08130000', X'08140000', or X'088BOOOO'J 
Create a BID_RSP record I indicates negative response and contains the 

sense data from the response) with HS_ID set to LOCAL.HS_ID and send it to RM. 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the received MU I Appendix BJ. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c 



SIGNAL_ STATUS 

SIGNAL_ STATUS 

FUNCTION: Determine if a SIGNAL is for a past, current, or future bracket. 
in-bracket IINBl state exists when this procedure is called. 

The 

INPUT: LOCAL.SIG_SNF, LOCAL.CURRENT_BRACKET_SQN, LOCAL.PHS_BB_REGISTER, 
LOCAL.SHS_BB_REGISTER 

OUTPUT: Either CURRENT, FUTURE, or STRAY return code is set 

Referenced procedures, FSHs, and data structures: 
LOCAL page 6.0-7 

If the sequence number of the last SIGNAL received ~ LOCAL.CURRENT_BRACKET_SQN then 
Select based on the high-order bit of the SIGNAL SNF I indicates 

whether the primary or secondary half-session started the bracket): 
Hhen PRI 

Use LOCAL.PHS_BB_REGISTER.NUHBER for the following calculation. 

Hhen SEC 
Use LOCAL.SHS_BB_REGISTER.NUMBER for the following calculation. 

Calculate ISIG SNF - (PHSISHSJ BB REGISTER.NUMBER) modulo 2**15. 
If result is <-0 then - -

Set the result to the result plus 2**15 lfull_wrap) to determine the 
wrap condition. 

Select based on result of above calculation: 
Hhen result = 0 

Return STRAY signal. 
Hhen result ~ 2••14 lhalf_wrap) 

Return FUTURE signal. 
Hhen result > 2••14 lhalf_wrap) 

Return STRAY signal. 

Else (sequence number of the last SIGNAL received = LOCAL.CURRENT_BRACKET_SQN) 
Return CURRENT signal. 

Chapter 6 .1. Data Flow Contro,l 6.1-~7 



STRAY_RSP 

6.1-48 

STRAY_RSP 

FUNCTION: Determines if a response is stray. IA stray response is one that was sent in 
a bracket (conversation) but received in a different !later) bracket.) Logs 
responses. 

INPUT: MU containing a response, information about the last 
LOCAL.CURRENT_BRACKET_SQN, LOCAL.COHMON.R~CODE 

request sent, 

OUTPUT: TRUE if stray responseJ otherwise, FALSE. If stray response represents a 
response correlation error, LOCAL.SENSE_CODE is set and a stray-response mes­
sage is logged. 

NOTE: An outstanding request is a request that has not been responded or replied to. 

Referenced procedures, FSMs, and data structures: 
FSM_BSM_FMP19 
LOCAL 
MU 

page 6.1-50 
page 6.0-7 
page A-29 

If the response is RTR, there is an outstanding request chain, and the response SNF = the 
sequence number of the outstanding (awaiting a response) request then 

Set LOCAL.SENSE_CODE to X'200EOOOO' I response correlation error). 
Indicate that the response is stray. 

If the response is SIGNAL and its SNF = LOCAL.CURRENT_BRACKET_SQN then 
Indicate that the response is stray. 

If the response is LUSTAT or the RU category is FMD then 
If there is an outstanding request chain then 

If the outstanding chain carried BB and the BB SNF does not match 
that in the response then 

Indicate that the response is stray. 
Else 

If the response SNF = LOCAL.CURRENT_BRACKET_SQN or the state of 
FSM_BSM_FMP19 (page 6.1-50) is BETB then 

Indicate that the response is stray. 
Else (no outstanding request chain) 

Indicate that the response is stray. 

If the response is stray then 
If the response is positive IRTI = POSl and it is not a SIGNAL 

lno positive response other than SIGNAL can be stray! then 
Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlation error). 

Else 
Optionally log the stray response to the system log. 

Return with a value of TRUE (stray response). 
Else 

Return with a value of FALSE lnot a stray response). 

SNA LU 6.2 Reference: Peer Protocols 

c, 



(,, 

0 

C. 
J 

/ 

TRANSLATE 

FUNCTION: 

INPUT: 

Translate FMD requests, if necessary, to and from the alternate 
ASCIIJ. Hhen receiving, translation is from the alternate code 
Hhen sending, translation is from EBCDIC to the alternate code. 

HU untranslated, LOCAL.DIRECTION 

TRANSLATE 

code le.g., 
to EBCDIC. 

OUTPUT: HU, translated if necessary and, if data is to be sent, MU.RH.CS! set to CODEl 

Referenced procedures, FSMs, and data structures: 
HU 
LOCAL 

If HU is an FHD request containing RU data other than sense data then 
Select based on LOCAL.DIRECTION: 

Hhen SEND 
If ~ata should be sent as the alternate code !The way the decision 
is made is not architecturally defined) then 

Translate the HU RU data from EBCDIC· to the alternate code. 
Translation details are not formally defined. 

Set HU.CS! to CODEl. 

Hhen RECEIVE 
If MU.CS! = CODEl then IRU is encoded as the alternate code) 

Translate the MU RU data from the aternate code to EBCDIC. 
Translation details are not formally defined. 

page A-29 
page 6.0-7 

Chapter 6 .1. Data Flow Control. 6.1-49 



FINITE-STATE MACHINES 

6.1-50 

These are the FSH input definitions used for 
all the FSHs in this chapter: 

• BIS: HU contains a BIS RU • 

• 

• 

• 

• 
• 
• 

R or S: HU that is being processed is 
being received or sent, respectively. 

RQ, RSP, BC, EC, CO, CEB, FHO, QR: Refer 
to the RH of the HU. 

BEGIN CHAIN or END CHAIN: Refer to val­
ues of CHAIN INDICATOR. CHAIN INDICATOR 
does not hav; to be specified:- In that 
case, it is neither BEGIN_CHAIN nor 
END_CHAIN. 

RQD: RH set to RQDl, RQD2, or RQD3. 

RQE: RH set to RQEl, RQE2, or RQE3. 

REPLY: A call to OK_TO_REPLYIHUJ I page 
6.1-39) returns TRUE. 

• RTR: HU cotains an RTR RU. 

• FHH5: HU contains an FHH5 • 

• FHH12: HU contains an FHH12 . 

• LUSTAT: HU contains an LUSTAT request or 
response. 

• 

• 

NOT_BID_REPLY: RH set to IBC, -BBJ and 
either the last sent chain did not carry 
BB or a call to OK_TO_REPLY lpage 6.1-391 
returns a value of FALSE. 

CEB_UNCOND: RH set to ICEB, RQ*l l. 

c 

FSH_BSH_FHP19 

FUNCTION: Enforce the bracket protocol. 
signals INB (go in brackets) 
RQ, ••. are used for error 
half-session) is connected to 
PS. 

State transitions are forced via the input 
and BETB Igo between bracket). The inputs R, 
checking only. INB state means DFC lthe 

a PS; BETB state means DFC is not connected to a 

INPUT: HU or a signal that the FSH should be set to the specified state 

OUTPUT: If an error is discovered, LOCAL.SENSE_CODE is set. 

NOTE: The state names mean the following: 

• BETB: between brackets 

• INB: in bracket 

Referenced procedures, FSHs, and data structures: 

INPUTS 

HU 
LOCAL 

SIGNAL! INB J 
SIGNAL! BETB l 

STATE 
STATE 

R,RQ,IFHDILUSTATJ,NOT_BID_REPLY,-FHH5,-FHH12,-CEB_UNCOND 

OUTPUT FUNCTION 
CODE 

NAMES----> 
NUMBERS--> 

R Set LOCAL.SENSE_CODE to X'20030000' I bracket error l. 

SNA LU 6.2 Reference: Peer Protocols 

page A-29 
page 6.0-7 

BETB 
01 

2 
-
>IR l 

INB 
02 

-
1 

-

'----------



C) 
/ 

() 

FSM_CHAIN_RCV_FMP19 

FSM_CHAIN_RCV_FMP19 

FUNCTION: Enforce the chaining protocol for received chains. A chain is "complete" when 
the end-of-chain (ECJ request has been received and any required associated 
response or reply has been sent. A reply is a request sent after receiving an 
IRQE,CD) chain that has not been negatively responded to. A reply implies a 
positive response to the IRQE,CDJ chain. 

INPUT: 

OUTPUT: 

NOTE: 

MU, CHAIN_INDICATOR !possible values are BEGIN CHAIN, END_CHAIN 
NOT_SPECIFIEDJ, information about the last received request 

and 

If the bracket was ended by the request, 
information recorded about the last 
LOCAL.SENSE_CODE may be set. 

The state names mean the following: 

• BETC: between chains 

• INC: in the middle of a chain 

the HS will be disconnected from PS; 
received request may be erased; 

• NEG RSP SENT: in the middle of a chain and a negative response has been 
sent 

• 

• 

PEND RSP: 
sent 

has received CEC,RQDJ and is waiting for the response to be 

PEND SEND REPLY: has received CEC,RQE,CDJ and is waiting for the reply or 
negative response to be sent 

Referenced procedures, FSMs, and data structures: 
OK_TO_REPLY 
FSM..:,BSM_FMPl 9 
MU 
FREE_ SESSION 
LOCAL 

page 6.1-39 
page 6.1-50 
page A-29 
page A-12 
page 6.0-7 

Chapter 6.1. Data Flow Control 6.1-51 



FSH_CHAIN_RCV_FHP19 

STATE NAMES----> BETC INC NEG PEND PEND 
RSP RSP SEND 
SENT REPLY 

c 
INPUTS STATE NUMBERS--> 01 oz 03 04 05 

R,RQ,BEGIN_CHAIN z / / / / 
R,RQ,END_CHAIN,RQD / 4 lCAJ / / 
R,RQ,END_CHAIN,RQE,CEB / lCAJ lCAJ / / 
R,RQ,END_CHAIN,RQE,CD / 5 lCBJ / / 
R,RQ,END_CHAIN,BIS / l / / / 

S,-RSP,CFHDILUSTATJ > 3 > lCAJ lCA J 
S,+RSP,CFHDILUSTATJ > / > lCAJ / 
S,:!:RSP,RTR / / / l / 

S,RQ,REPLV / / / / l 

R,RQ,BC - >CRll >IRll >( RZ) >IR3J 
R,RQ,~BC >IRll - - >( RZ J >IRll 

SIGNAU RESET J - l l 1 l c ~ 
OUTPUT FUNCTION 

CODE 

A If the last chain received did not carry BB or 
lit carried BB and it was accepted, i.e., there was no negative response to the 
BB chain with sense data X'08130000', X'08140000', or X'088BOOOO') then 

If the bracket has ended Cthe last received chain carried CEB and either (1) 
the form-of-response-requested was RQE or RQDl, or [Z] no negative response 
was sent to the chain) then 

Create and send a FREE_SESSION record to RH. 
Call buffer manager IADJUST_BUF_POOL, dynamic buffer pool ID, , 

REPLENISHED pool size) to keep the same pool size 
(see Appendix Bl. 

Call FSH_BSH_FHP19 with a BETB signal Cpage 6.1-50). 
\.....__) 

Reset LOCAL.BRACKET_ID to a null value. 
Reset correlation table CT_RCV entry to NO. 

B Reset correlation table CT_RCV entry to NO. 

Rl Set LOCAL.SENSE_CODE to X'ZOOZOOOO' !chaining error). 

RZ Set LOCAL.SENSE_CODE to X'ZOOAOOOO' !immediate request mode error). 

R3 Set LOCAL.SENSE_CODE to X'Z0040000' !half-duplex error) • 

6.1-52 SNA LU 6.2 Reference: Peer Protocols 



( 
\ ' '-----/ 

FSM_CHAIN_SEND_FMP19 

FSM_CHAIN_SEND_FMP19 

FUNCTION: Enforce the chaining protocol for sending chains. A chain is "complete" when 
the end-of-chain IEC) request has been sent and any required associated 
response or reply has been received. A reply is a request received after 
sending an IRQE,CDJ chain that has not received a negative response. A reply 
implies a positive response to the IRQE,CDl chain. 

INPUT: MU, CHAIN_INDICATOR !possible values are BEGIN_CHAIN, END_CHAIN 
NOT_SPECIFIEDl, information about the last received request. 

and 

OUTPUT: If the bracket was ended by the request, 
information recorded about the last 
LOCAL.SENSE_CODE may be set. 

the HS will be disconnected from PSJ 
received request may be erasedJ 

NOTE: The state names mean the following: 

• BETC: between chains 

• INC: in the middle of a chain 

• NEG RSP RCVD: in the middle of a chain and a negative response has been 
received 

• PEND RSP: has sent IEC,RQDJ and is waiting for the response to be 
received 

• PEND RCV REPLY: has sent IEC,RQE,CDl and is waiting for the reply or neg­
ative response to be received 

Referenced procedures, FSMs, and data structures: 
OK_TO_REPLY 
FSM_BSM_FMP19 
FREE_ SESSION 
MU 
LOCAL 

STATE NAMES----> 

INPUTS STATE NUMBERS--> 

S,RQ,BEGIN_CHAIN 
S,RQ,END_CHAIN,RQD 
S,RQ,END_CHAIN,RQE,CEB 
S,RQ,END_CHAIN,RQE,CD 
S,RQ,END_CHAIN,BIS 

R,-RSP,IFMDILUSTATl 
R,+RSP,IFMDILUSTATl 
R,±RSP,RTR 

R,RQ,REPLY 

SIGNALIRESETl 

BETC INC 

01 02 

2 / 
/ 4 
/ llAl 
/ 5 
/ 118) 

>IRl 3 
>IRl >I Rl 
>IRl >IRl 

/ / 

- 1 

page 6.1-39 
page 6.1-50 
page A-12 
page A-29 
page 6.0-7 

NEG PEND PEND 
RSP RSP RCV 
RCVD REPLY 
03 04 05 

/ / / 
llA l / / 
llA l / I 
118) / / 
/ / / 

>IRl llAl llAl 
>IRl 11 Al >IR l 
>IR l 118) >I Rl 

/ / 118) 

1 1 1 

Chapter 6.1. Data Flow Control 6.1-53 



FSH_CHAIN_SEND_FHP19 

OUTPUT FUNCTION 
CODE 

A If the last chain sent did not carry BB or 
lit carried BB and it was accepted, 1.e., there was no negative response to the 
BB chain with sense data X'08130000', X'08140000', or X'08880000' J then 

If the bracket has ended I the last sent chain carried CEB and either [l] 
the form-of-response-requested was RQE or RQDl, or [2] no negative response 
was received for the chainJ then 

Create and send a FREE_SESSION record to RH. 
Call FSH_BSH_FHP19 with a BETB signal (page 6.1-SOJ. 
Set LOCAL.BRACKET_ID to NULL. 

Set correlation entry to indicate no request chain outstanding. 

B Set correlation entry to indicate no request chain outstanding. 

R Set LOCAL.SENSE_CODE to X'200FOOOO' I response protocol error). 

6.1-54 SNA LU 6.2 Reference: Peer Protocols 



( 
~/ 

FSM_QRI_CHAIN_RCV_FMP19 

FSM_QRI_CHAIN_RCV_FMP19 

FUNCTION: 

INPUT: 

OUTPUT: 

NOTE: 

Enforce the setting of the QRI indicator in the RH. 
same for all MUs in a chain; i.e., all MUs in a 
QRI=~QR. 

MU and information about the last received request 

This indicator is set the 
chain have QRI=QR or have 

If a QRI state error is detected, LOCAL.SENSE_CODE is set. 

1) The state names mean the following: 

• RESET: no chain is currently being received. 

• INC QR: the chain that is being received is a QR chain. 

• INC NOT QR: the chain that is being received is not a QR chain. 

2) The implementation of this FSH is optional because it is used only to 
detect receive error conditions. 

Referenced procedures, FSHs, and data structures: 

INPUTS 

R,RQ, 
R,RQ, 

QR, 

MU 
LOCAL 

EC 
QR,~EC 

R,RQ,~QR, EC 
R,RQ,~QR,~EC 

SIGNAL! RESET ) 

OUTPUT FUNCTION 
CODE 

R Set LOCAL.SENSE_CODE 

STATE NAMES----> RESET 

STATE NUMBERS--> 01 

-
2 

-
3 

-

to X'200BOOOO' IQRI state error). 

page A-29 
page 6.0-7 

INC INC 
QR NOT 

QR 
02 03 

l >IR) 
- >IR) 

>IR) l 
>IR) -

l l 

Chapter 6.1. Data Flow Control 6.1-55 



FSH_RCV_PURGE_FMP19 

FSH_RCV_PURGE_FMP19 

6.l-S6 

FUNCTION: 

INPUT: 

OUTPUT: 

Maintain a purging state for received BB chains that have been negatively 
responded to indicating a bracket error (0813, 0814, 088BJ. It is called with 
a PURGE signal when the negative response is sent and reset when the 
end-of-chain IECJ RU is received. Hhen in the purging state, no records are 
generated for PS or RM as a result of receiving a request RU in the BB chain 
li.e., the remainder of the BB chain is purged). 

MU and information about the last received request 

None 

Referenced procedures, FSMs, and data structures: 
MU page A-29 

STATE NAMES----> RESET PURGE 
INPUTS STATE NUMBERS--> 01 02 

R, EC - l 
SIGNAL! PURGE ) 2 -

SIGNALIRESETJ - l 

SNA LU 6.2 Reference: Peer Protocols 

C' 



CHAPTER 6.2. TRANSMISSION CONTROL 

INTRODUCTION 

The basic function of the transmission con­
trol ITC) component is to control the flow of 
data between the half-session and path con­
trol. Transmission control participates in 
two activities: 

• Initialization: 

Variable initialization 
Cryptography initialization 

• Normal operation: 

Sending data from data flow control 
IDFCl to path control IPC) 
Receiving data from PC and sending it 
to DFC 

TC. INITIALIZE I page 6. 2-B l, the procedure 
for session initialization, is invoked after 

(_) 

(_ 

the LU session manager (SHI processes a 
+RSP I BIND l . TC. INITIALIZE provides 
session-specific sul?port for starting data 
flows in the session. Hhen session-level 
cryptography is used, TC.INITIALIZE checks 
that the enciphering and deciphering func­
tions are operative before any user data is 
permitted to flow. 

The SEND_HU and TC.RCV procedures manage the 
expedited and normal flows, and control 
sequence-number updating, receive-checking, 
session-level pacing, and data enciphering 
and deciphering. 

The relationship of transmission control to 
the other elements of the half-session, after 
initialization, is shown in Figure 6.2-1 on 
page 6.2-2. 

Chapter 6.2. Transmission Control 6.2-1 



Resource Manager IRMJ 
(See Chapter 3) 

A 
Session 
Manager CSMJ 

A 

Presentation Services IPSJ 
(See Chapter 5.0) 

J A 

'---> 

l.---t-~~~~~~~~~ 

v 

Half-Session 
Router 

(See Note 1) 

C Receive Data l 

A 

l 
Data Flow Control 

ISee Note 2) 

---> IDFC_INITIALIZEI 

-> 

IDFC_SEND_FSMSll IDFC_Rcvl 

A 

Transmission Control 

ITC.INITIALIZE I 
v 

I SEND_MU TC.RCV 

I 
v 

I SEND_TO_PC 

I 
v 

I SEND_PACING I 

Half-Session 

(Send Data! 
v 

A 

t 
_l_ 

Path Control CPCl 

1 GET BUFFER 
IFREE_BUFFER 
ADJUST BUF POOL I - -

v 
Buffer Manager CBMJ 

CSee Note 3 ) 
Notes: 

1. See "Chapter 6.0. Half-Session" for details. 
2. See "Chapter 6.1. Data Flow Control" for details. 
3. HS Router and DFC also interact with the BM, but this is not shown 

in the figure. See HS, DFC chapters for details. 

Figure 6.2-1. Structure of TC and Flow of Data within the Half-Session 

6.2-2 SNA LU 6.2 Reference: Peer Protocols 



INITIALIZATION PHASE 

TC.INITIALIZE lpage 6.2-13) is called by 
HS_INITIALIZATION I "Chapter 6.0. 
Half-Session") during initialization when a 
half-session is being activated. 
TC. INITIALIZE sets up session-level pacing 
and cryptography verification variables. 

CRYPTOGRAPHY VERIFICATION ICRVJ 

For sessions that support cryptography, the 
initialization procedure calls 
TC.EXCHANGE_CRV lpage 6.2-15) to perform the 
message-unit exchanges necessary to enable 
data enciphering and deciphering. 

I 

Flow: From primary LU to secondary LU !Expedited) 

I c/ 

0 

Hhen session-level cryptography is specified 
in the BINO, CRV is sent by the primary LU TC 
to the secondary LU TC to enable sending and 
receiving of enciphered FHD requests by both 
half-sessions. CRV is a valid request only 
when session-level cryptography is selected 
in BIND. CRV carries an 8-byte field I see 
SNA Formats) that contains a transform of the 
deCiphered test value (enciphered under the 
session cryptography key). The test value is 
received by the primary LU in the +RSPIBINDJ; 
the transform in CRV is the test value with 
each bit of its first four bytes inverted 
li.e., a l becomes a 0 and a 0 becomes a lJ. 
IThe test value is also used as the session 
seed, or initial chaining value, when enci­
phering and deciphering FHD RUs while the 
session is active.) The secondary TC element 
obtains the returned test value by decipher­
ing the aforementioned 8-byte field in CRV 

and inverting the first four bytes; it then 
compares it with the test value sent I enci­
phered) in +RSPIBINDJ. If the values donot 
match the session cryptography key and the 
session seed, the session is deactivated. 

Valid cryptography options are defined under 
the BIND format in SNA Formats, which also 
describes the RH bits-USed for cryptography. 

Hhere session cryptography is used, session 
key distribution is managed by the CP of the 
primary LU; session keys are conveyed (enci­
phered under LU master cryptography keys) to 
the PLU in a CINIT RU and then to the second­
ary LU in a BIND request I see SNA Formats and 
Figure 6.2-2 on page 6.2-4r:- The flows 
involved in distributing the session seed to 
the LU are shown in Figure 6. 2-2 on page 
6.2-4. 

Chapter 6.2. Transmission Control 6.2-3 



CP PRIMARY LU SECONDARY LU r 
CINIT IMKp [SK] O, MKs [SK] OJ [1] 

> 
BIND IMKs [SK] OJ [ 2] 

> 
RSPIBIND, SK [SS] OJ [3] 
< 
CRVISK [transformed SS] OJ [4] 

> 
RSPICRVJ [5] 
< 
FMD requestlSK [RU data] SSJ [6] 

> 

FMD requestlSK [RU data] SSJ [6] 
< 

LEGEND: 

MKp master cryptography key for primary LU (obtained from 
installation and implementation dependent system definition). 

MKs master cryptography key for secondary LU !obtained from 
installation and implementation dependent system definition). 

SK session cryptography key 
SS session seed 

NOTE: Enciphered data is represented in the diagram as follows: 

cryptography key [ data l initial chaining value 

For example, to show an RU that was enciphered using the session key 
as the cryptography key and 0 as the initial chaining value, 
the following string is used: 

SK [RU data] 0. 

Figure 6.2-2. Distributing the Session Cryptography Key and Session Seed to the LU 

6.2-4 

The comments below correspond to the numbers 
in Figure 6.2-2. 

1. In the CINIT RU, the session cryptography 
key is distributed to the primary LU in 
two enciphered formats: it is enciphered 
using the master cryptography key of the 
primary LU and in another field it is 
enciphered using the master cryptography 
key of the secondary LU. The initial 
chaining value is 0 for both cases. 

2. In the BIND RU, the primary LU sends the 
session cryptography key to the secondary 
LU as it was received in the CINIT RU: 
enciphered using the master cryptography 
key of the secondary LU as the 
cryptography key and 0 as the initial 
chaining value. 

3. The secondary LU deciphers the session 
cryptography key using its master 
cryptography key as the cryptography key 
and 0 as the initial chaining value. The 
secondary LU then generates a 
pseudo-random value, retains it for use 

SNA LU 6.2 Reference: Peer Protocols 

as the session seed, and enciphers it(~' 
using the session cryptography key as the\ 
cryptography key and 0 as the initial ""---· 
chaining value. This enciphered value is 
returned on the response to BIND. The 
value serves two purposes: it is used as 
a test value <i.e., when returned in CRV 
discussed belowJ, and is subsequently 
used as the session seed, or initial 
chaining value, in enciphering and deci­
phering FMD requests within the session. 

4. The primary LU deciphers the test value 
received in the RSPIBINDJ using the ses­
sion cryptography key as the deciphering 
key and 0 as the initial chaining value. 
The resulting value is retained for use 
as the session seed and then transformed 
by exclusive-ORing it with 
X'FFFFFFFFOOOOOOOO'. This inverts the 
bit settings in the first four bytes. 
The transformed value is then enciphered(~~. 
using the session cryptography key as the 
key and 0 as the initial chaining value. , 
This transformed, enciphered value is ~­
sent on the CRV request. 



(~ 
5. The secondary LU deciphers the enci­

phered, transformed test value using the 
session cryptography key as. the key and O 
as the initial chaining value. The 
result is then exclusive-ORed with 
X'FFFFFFFFOOOOOOOO' to recreate the ori­
ginal pseudo-random value sent by the 
secondary LU in RSPIBINDJ. The recreated 
value is compared with the actual value 
that was created by the secondary LU. If 
the recreated value matches the original 
value, a positive response is sent to 
CRV. The test value can then be used as 
the session seed. 

6. From then on, all FMD requests are enci­
phered using the session cryptography key 
as the key and the session seed as the 
initial chaining value. 

Data Flow Control IDFC) 

J 
RQ&RSP 

v 

EJ 
Exped!ted-flow I Normal-flow 

I RQ&RSP 

..,.RSP ~ ~ pacing ..,...,, 

I 
v v 

SEND_TD_PC 

Cryptography verification is the only session 
control I SC) request handled by TC. SC 
requests for session activation and deacti­
vation I for example, BIND and UNBIND) are 
routed from PC to SM lsee "Chapter 4. LU Ses­
sion Manager") without passing through TC. 
Session control requests and responses have 
the header bit-settings described below. 

All session control requests are issued by TC 
or by SM. The following fields of the TH and 
RH are set for session control RUs. 

TC.RCV 

TH: All session control requests and 
responses are sent expedited I the EFI bit 
is on in the THJ. 

RH: The RH settings for session control 
requests are defined in TC.BUILD_CRV on 
page 6.2-17 . 

RQ&RSP 

RQ&RSP 
< Half-Session 

Router 

Transmission Control 

v 
Path Control 

Figure 6.2-3. SEND_MU and TC.RCV Request/Response Flow 

Chapter 6.2. Transmission Control 6.2-5 



NORMAL OPERATION 

6.2-6 

The request and response flow with SEND_MU 
and TC. RCV protocol machines are shown in 
Figure 6.2-3. Detailed definitions for 
SEND_MU and TC.RCV, the major TC procedures, 
are shown on page 6. 2-20 and page 6. 2-23 , 
respectively. 

The protocols supported by TC include: 

• Checking of sequence numbers on received 
normal-flow requests (Sequence numbers 
are assigned to normal-flow requests by 
DFC, see "Chapter 6.1. Data Flow Con­
trol") 

• 

• 

• 

• 

Proper separation of the normal flows 
from the expedited flows with respect to 
sequencing and pacing 

Sending of normal-flow requests using 
pacing, which involves a queue ILO­
CAL.Q_PACJ for temporarily holding outgo­
ing requests 

Proper routing of requests and responses 
to PC and DFC 

Enciphering and deciphering control for 
all LU-LU FMD request RUs on sessions 
using session-level mandatory 
cryptography (see TC.DECIPHER_RU [page 
6.2-32)) 

TC PROCEDURES INVOKED FROM OTHER COMPONENTS 
OF THE HALF-SESSION 

Procedure TC.RCV (page 6.2-23) is invoked by 
the half-session router (see "Chapter 6.0. 
Half-Session" for details!. 

When the half-session router receives a mes­
sage unit C MU l from path control, it calls 
TC.RCV to initiate TC processing of the mes­
sage unit. 

SEND_MU I page 6. 2-20 l is called by DFC when 
DFC has a full buffer to send or when DFC is 
flushing a partially filled buffer. The 
buffer is considered full when it reaches the 
maximum RU size as specified in BIND. 

SEQUENCE NUMBERING OF REQUESTS AND RESPONSES 

For TS profile 7 (see SNA Formats), each 
request that is sent on the normal flow is 
assigned a sequence number. The sequence 
number is initialized to 0 when a 
half-session is activated C BIND is sent or 
received l; it is incremented by l before 
sending each request. Thus, the sequence 
number for the first request is 1. After 
reaching 65,535, the sequence number wraps to 
0. I A sequence number of 0 is sent in the 
wrap situation only. l Sequence numbers are 
assigned in the sending half-session by DFC 

SNA LU 6.2 Reference: Peer Protocols 

and are checked in the receiving half-session 
by TC. 

For the expedited flow, an identifier is 
assigned to each request sent. The identifi­
er is not necessarily managed as a sequence 
number, but is used to uniquely identify each 
outstanding expedited-flow request sent. The 
expedited-flow DFC request SIGNAL is assigned 
an identifier by DFC; the expedited-flow SC 
request CRV is assigned an identifier by TC; 
expedited-flow session-activation CBINDl and 
session-deactivation IUNBINDl requests are 
assigned identifiers by SM (see "Chapter 4. 
LU Session Manager"). 

The sequence number or the identifier, as 
appropria~e, is given to pat~ co_ntrol with ~· 
the associated BIU, to be carried in the TH. i 

The sequence number or identifier generated 
by the sending component is retained for use 
in correlating responses to requests la 
response carries the sequence number·or iden­
tifier of the corresponding request!. 

See "Sequence Numbering of Requests and 
Responses" in "Chapter 6 .1. Data Flow Con­
trol". for further information on sequence 
numbering. 

SESSIONS WITH CRYPTOGRAPHY 

If session-level mandatory cryptography is 
selected when the session is activated, TC 
enciphers all FMD request RUs being sent and 
deciphers all those being received. The 
process of enciphering involves the following 
actions: 

• 

• 

The RU is padded, when necessary, to an 
integral multiple of eight bytes. The 
padding bytes are added at the end and 
contain unpredictable values, except for 
the last pad byte, which contains an 
unsigned 8-bi t binary count of the pad 
bytes. If only one byte of pad is 
required, that byte is the pad byte and 
it contains a l. If padding is per­
formed, the padded data indicator I POI l 
in the RH is set to PD. I The LU control 
operator checks that the system defined 
maximum RU size is a multiple of 8 during 
initialization time. See "Chapter 5.4. 
Presentation Services--Control-Operator 
Verbs" for details. l 

Prior to enciphering, the first eight 
bytes of an RU are exclusive-ORed with 
the session seed !i.e., the initial 
chaining value); the result is then enci­
phered. Each subsequent 8-byte block 
within the same RU is exclusive-ORed with 

\__ 

the output of the previously enciphered(' 
block. Thi;> _techn~que ~s referred to as\"-._ . 
"block chaining with cipher text feed- ./ 
back." When an enciphered RU is sent, 



C,: __ , 

c.-

(,: 

• 

the Enciphered Data indicator I EDI) in 
the RH is set to ED. 

Enciphering employs an 8-byte block chain 
algorithm and an 8-byte key, the session 
cryptography key, and is in accordance 
with the Data Encryption Standard IDES) 
algorithm described in Federal Informa­
tion Processing.Standards Publication 46, 
dated January 15, 1977. -

The deciphering process is simply the inverse 
of enciphering. 

REQUEST AND RESPONSE CONTROL MODES 

TC enforces the immediate request mode during 
cryptography verification I CRV) exchange as 
part of TC initialization. The last thing 
that the primary TC does during ini tializa­
tion is to send a CRV request and receive the 
CRV response. The last thing that the sec­
ondary TC does during initialization is to 
receive -the CRV request and send the CRV 
response. TC accepts no other records from 
HS components, and nothing from path control 
(PC) except CRV, during this time. (See "Re­
quest/Response Mode Protocols" in Chapter 6.1 
for details. ) 

TC is not involved in enforcing immediate 
request mode at any other time, and it is not 
involved in enforcing immediate response mode 
at any time. 

BUFFER MANAGEMENT 

On sending a ·normal-flow request, path con­
trol lor data link control, if segment gener­
ation is not supported l frees the limited 
buffer which the normal-flow request was in 
and sends the request to the partner LU. On 
rece1v1ng a normal-flow request, data link 
control stores the request in a link buffer. 
The data remains in the link buffer until TC 
receives it. TC frees the link buffer after 
moving the data to a fixed/varying dynamic 
buffer. !Dynamic buffers are used to receive 
normal-flow requests.) 

TC calls the buffer manager (BM) to obtain 
buffer management services and specifies the 
following signals: (see Appendix B for more 
details) 

• 

• 

• 

TC specifies FREE BUFFER 
the buffer manag;r to 
buffer in which session 
IPM l was received. 

in the Call to 
release a link 
data (i.e. MU, 

TC specifies ADJUST_BUF_POOL 1n the Call 
to allow the BM to decrease the the num­
ber of limited buffers in a limited buff­
er pool when an unsolicited IPM (i.e. 
next-window size = 0) is received. 

TC specifies ADJUST_BUF_POOL in the Call 
to allow the BM to increase the number of 
limited buffers in a limited buffer pool 

• 

• 

when a solicited IPM (i.e. next-window 
size > 0) is received. 

TC specifies GET_BUFFER in the Call to 
get a permanent buffer to send IPM 
acknowledgment to its partner. 

TC specifies GET BUFFER in the Call to 
get a fixed/varying dynamic buffer to 
store a received normal-flow request. 

SESSION-LEVEL PACING 

Session-level pacing allows TC to control the 
rate at which it receives requests on the 
normal flow. If pacing is selected when the 
session is activated, all normal-flow 
requests are paced. Send pacing controls the 
outbound flow of data. Receive pacing con­
trols the inbound flow of data. The SEND MU 
procedure (page 6.2-20) performs send pacing 
requ~sts and has a session partner TC.RCV 
procedure (page 6.2-23) that is doing receive 
pacing requests. Requests and responses on 
the expedited flow are not paced and are 
unaffected by pacing on the normal flow. 
Pacing is generally used when the sending TC 
is capable of sending requests faster than 
the receiving TC can process them. A 
normal-flow response with the QR bit (in RH) 
set is also paced. 

The pacing environment assumes that the 
receiving TC is able to accept no more than a 
certain number of requests at a time. This 
number, called the window size, is defined 
initially when the session is being acti­
vated. 

For fixed pacing, the window size remains 
constant; for adaptive pacing, it varies from 
window to window, as explained later. Pacing 
operates according to the following cycle. 
At the start of a session, the sending TC may 
send a window whose size is 1 for adaptive 
pacing, or whose size is set in BIND or 
RSPCBINDl for fixed pacing !depending on 
whether nonnegotiable or negotiable BIND, 
respectively, is used). On the first request 
of any window, the sending TC turns on the 
Pacing Request indicator (PI). After the 
receiving TC receives the request that con­
tains the Pacing Request indication, it can 
signal the sending TC (by using the Pacing 
Response indication) when it is ready to 
receive another group of requests. 

The sending TC keeps a count of the residual 
number of requests that it can send before 
receiving a pacing response. !This value and 
all others related to session-level pacing 
and the maximum RU size are maintained in the 
transmission-control control block [LO­
CAL. TC.COMMON CB] which is a substructure of 
the page 6. o: 7. ) Assume the current window 
size is N. When a pacing response is 
received, the sending TC is informed by the 
BM that additional window is available and 
therefore increases the pacing count by N for 
fixed pacing, or the value N' indicated by 
the pacing response (i.e. solicited IPM) for 
adaptive pacing. This makes the pacing count 

Chapter 6.2. Transmission Control 6.2-7 



6.2-8 

equal to the new window size IN or N' J plus 
the residual pacing count !the remaining 
requests not yet sent from the previous win­
dow). If the pacing count drops to o, the 
sender waits until a pacing response is 
received before sending any more requests. 
The value of the pacing count can range from 
0 to 2N-l !for fixed pacing) or N-l+N' !for 
adaptive pacing). 

The pacing response may be returned as fol­
lows: for fixed pacing, on a normal-flow 
response header or on an ISOLATED PACING 
RESPONSE IIPR )J for adaptive pacing, on an 
ISOLATED PACING MESSAGE IIPM J, either solic­
ited or unsolicited. 

1. For fixed pacing, only one IPR is gener­
ated for each pacing request. the IPR 
may be used at any time when fixed pacing 
is supported; however, it is especially 
useful when no other response to a 
request is available in which to send the 
pacing response or when the available 
response is blocked on the pacing queue. 
IPR can be sent on the normal or expe­
dited flow. 

2. For adaptive pacing, a solicited or unso­
licited IPM is returned for the pacing 
request. If it is necessary, an unsolic­
ited IPM may be used even without receiv­
ing a pacing request previously. A reset 
acknowledgment IPM is generated as a 
response for each unsolicited IPM. The 
next unsolicited IPM can be used only 
when the reset acknowledgment IPM is 
returned for the current unsolicited IPM. 
If an unsolicited IPM carries a next win­
dow size INHSJ of o, the sending TC uses 
a solicited IPM after receiving a IPM 
acknowledgement in order to allow paced 
normal-flow requests to resume flowing. 
An IPM is sent on the expedited-flow. 

The decision on whether there are sufficient 
resources for sending a pacing response is 
implementation-dependent. 

Normal-flow responses that have the Queued 
Response indicator IQRIJ set to QR are placed 
on the pacing queue IQ._PACJ, but do not cause 
the pacing count to be decremented when they 
are sent. Hhen normal-flow responses indi­
cate ~QR, they can pass requests and 
responses marked QR at the queuing point in 
TC. If a request is held up by pacing, all 
responses marked QR and queued behind the 
request are also held up. 

A Pacing Response indication is never added 
to a response held in Q PACJ it is added only 
to a response( i.e., a ''piggy backed" pacing 
response) with QRI=QR as it is dequeued from 
Q._PAC or to a response with QRI=~QR when it 
is sent. An IPR can be generated and sent 
directly to PC to prevent session deadlock, 
which could occur when both TC pacing queues 
contain a request that cannot flow and that 
blocks the flow of the only available 
responses that might be used to carry the 
Pacing Response indication. 

SNA LU 6.2 Reference: Peer Protocols 

Although the no-pacing option exists, only T5 (', 
node LUs support receipt of unpaced data. \ 

'-­Hhen a T2.l node LU sends a BIND, it sets the 
staging indicators to specify one-stage in 
both directions, and sets the pacing window 
sizes to values determined by 
installation-dependent considerations. Hhen 
a subarea LU sends an SSCP-mediated BIND, the 
values for the staging indicators and pacing 
windows are contained in the BIND image sent 
to the LU in CINIT, which the PLU may or may 
not place in the BIND RU. For the format and 
meanings of the pacing parameters in BIND, 
see SNA Formats for details. 

An IPR or IPM is sent to return a Pacing 
indication as discussed in the preceding sec­
tion. For IPR, no RU accompanies the TH and 
RH. The format of the IPR and IPM are 
defined in SNA Formats 

~. 

Solicited and unsolicited IPMs flow at net- ( 
work priority between T2 .1 nodes. Reset '-~ 
acknowledgment IPMs flow at the priority of 
the session !between T2.l nodes or in a sub­
area network.) so that it does not overtake 
any BIUs en route, thereby truly delimiting 
the end of the reset window. ISee page 
6.2-22 for priority setting, and see SNA ~ 
2 .1 Node Reference for details on trans­
mission priority.I 

SESSION-LEVEL PACING ALGORITHMS 1'-~, 

\-., / 
A session can be viewed as a succession of -­
adjacent pairs of session-level processing 
points I involving half-sessions and boundary 
function components J. The connection between 
a pair of these processing points is called a 
session stage. 

Hhile adaptive pacing is the preferred mode, 
the session pacing algorithm is able to sup­
port fixed-pacing protocols when the other 
partner of a session stage does not support 
adaptive pacing. 

The session-level pacing modes for both send­
er and receiver are determined during the 
BIND negotiation time for each session stage. 
The sender TC sends data, pacing requests, 
and IPM acknowledgments. The receiver TC 
receives data and pacing requests, generates 
appropriage pacing responses, has its buffer 
manager reserve buffers, and determine the 
next-window size I NHS J. 

Session-Level Adaptive Pacing Algorithm 

Session-level adaptive pacing uses the fol­
lowing flow-control messages: 

• Pacing Requests 

• ISOLATED PACING MESSAGES IIPMsJ 

Solicited 

Unsolicited 

( 
\-. .• _ . ./, 



( 
~· 

c:/ 

Reset Acknowledgments 

A pacing request is a normal-flow request 
that has the pacing indicator lPil in the RH 
set to PAC. A pacing request indicates that 
an RU is the first RU in the last window 
allowed, and requests that a new window be 
allowed. 

A solicited IPM is generated by the receiver 
when the receiver has reserved the buffers 
for a new window in response to a pacing 
request sent by the sender. A solicited IPM 
informs the sender what its new pacing window 
size is that it can send following the cur­
rent window it is sending. 

An unsolicited IPM is generated by the 
receiver as a result of congestion in the 
node and is used to reset to 0 the residual 
pacing count in the sender and to start a new 
pacing window if the next-window size speci­
fied in the IPM is not 0. The sender imme­
diately sends a reset acknowledgment IPM when 
an unsolicited IPM arrives; this delimits the 
end of the window being reset and allows the 
sender of the unsolicited IPM to reallocate 
resources. 

A reset acknowledgment IPM is an immediate 
acknowledgment that an unsolicited IPM has 
reset the residual pacing count. The reset 
acknowledgment IPM also echoes the 
next-window size specified in the unsolicited 
IPM. 

OPERATION OF THE SENDER 

The following algorithm is implemented in all 
nodes that use adaptive pacing. The sender 
mechanism is unaffected by the algorithm used 
to determine the pacing window sizes. 

Hhenever the remaining number of the current 
window !hereafter referred to as the residual 
pacing count J is non 0 and a normal-flow 
request is at the head of the pacing queue, 
it is sent and the residual pacing count is 
decremented by l. If, at any time, the resi­
dual pacing count is 0 and the next-window 
size is non o, the residual pacing count is 
set to the next-window size, the next-window 
size is reset to o, and the Pacing indicator 
is set to PAC in the RH of the next request 
sent. Hhenever anything besides a 
normal-flow request is at the head of the 
queue it is sent right away. 

Hhen a solicited or unsolicited IPM is 
received, the new next-window size is 
obtained from the IPM. 

Hhen it is an unsolicited IPM, a reset 
acknowledgment IPM is returned immediately 
and the residual pacing count is reset to O. 
The reset window indicator ( RHI J bit in an 
unsolicited IPM is always set to l !indicat­
ing a reset action is needed). 

The Request Larger Hindow indicator !RLHIJ in 
the request RH is used by the pacing request 

sender to indicate to the receiver that it 
would like a larger window size. The RLHI 
has meaning only in pacing requests and is 
reserved in responses. Hhen the sender 
receives a solicited IPM and the residual 
pacing count is 0 !the entire previous pacing 
window has been sent J and the send pacing 
queue is not empty (more requests are avail­
able to send), the sender will send the next 
pacing request with RU~I set to request a 
larger window (set to a value of l, or RLHJ. 
Otherwise, the sender sends a pacing request 
with RLHI set to ~RLH, indicating a larger 
window size is not needed. 

The pacing request receiver uses the RLHI 
value in calculating the next-window size 
value to be sent in the next solicited IPM. 

The sender is initialized by the session man­
ager with a next-window size of l and a resi­
dual pacing count of 0 when the session is 
activated. 

OPERATION OF THE RECEIVER 

The receiver has control and responsibility 
for session-level pacing, as necessary to 
manage its buffers. 

An unsolicited IPM with the RHI set to l is 
sent whenever the node becomes congested. 
The receiver may not have more than l out­
standing unsolicited IPM. Another IPM (so­
licited or unsolicited) may not be sent until 
the reset acknowledgment IPM is received. 
lllhen an unsolicited IPM is outstanding, the 
receiver's buffer manager does not reserve 
buffers for the next window as a result of a 
pacing request that was received before the 
reset acknowledgment IPM. (A solicited IPM 
will not be sent for pacing requests that are 
received before the reset acknowledgment 
IPM. l 

Fixed pacing is implemented as a special case 
of adaptive pacing. The "piggybacked" pacing 
response I i.e. on a regular response--1 with 
( ORlI, DR2I )tOO--occurs only for fixed pac­
ing. 

lllhen the data sender receives an unsolicited 
IPM with a next-window size of 0, it is 
stopped from sending normal-flow requests. 
lllhen the data receiver gets the reset 
acknowledgment IPM lin response to the unso­
licited IPM) the sender's window size land 
its residual pacing count) has been reset to 
0 and no further normal-flow requests may be 
sent by the sender. In order to allow the 
sending of more normal-flow requests, a 
solicited IPM, which always contains a non 0 
next-window size, is sent by the receiver. 
The sender may resume sending requests when 
this solicited IPM has been received. The 
next-window size value used in this solicited 
IPM is typically small (e.g., lJ. 

Hindow sizes can vary from l to 32767 in 
solicited IPMs and 0 to 32767 in unsolicited 
IPMs. 

Chapter 6.2. Transmission Control 6.2-9 



l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Figure 6.2-4 and Figure 6.2-5 illustrate 
adaptive session-level pacing, with session 
data traffic flowing from left to right on a 
given session stage. See "Appendix 8. Buffer 
Manager" for details of how buffers are man­
aged to perform session-level pacing. An 

(sender) 
NHS RPC 

l 0 

0 0 

2 0 

0 l 

0 0 

3 0 

0 2 

2 2 

2 l 

2 0 

0 l 

0 0 

< 

BIND 

+RSPIBIND) 

RlhPAC,RLH 

IPH (solicited, NNS=2l 

RlhPAC,RLH 

IPH (solicited, NHS=3) 

RO,•PAC 1------> 
~~~~~~~~~~~~>· 

IPH (solicited, NHS=2) 

LEGEND 

NHS 
RPC 
RQ 
PAC 
~PAC 

RLH 
~RLH 

next-window size 
residual pacing count 
request 
Pacing indicator set to 1 
Pacing indicator set to 0 
Request Larger Hindow indicator set to 1 
Request Larger Hindow indicator set to 0 

Figure 6.2-4. Session-Level Pacing with Solicited IPHs 

6.2-10 

The comments below correspond to the numbers 
in Figure 6.2-4 on page 6.2-10. 

l. 

2. 

3. 

Hhen a session using adaptive pacing is 
initialized, it starts with a next-window 
size of 1 and a residual pacing count of 
o. 

The first request in a window has the 
Pacing indicator set to PAC. The RLHI is 
set to RLH in this example. 

The receiver increases the sender's 
next-window size to 2. The sender's res­
idual pacing count is at 0 and the pacing 

SNA LU 6.2 Reference: Peer Protoc:ols 

analogous set of exchanges could occur in the 
opposite direction. See "Chapter 4. LU Ses- ('' 
sion Manager" for details of how\_ 
session-level pacing is set up before these -
flows occur. 

I receiver) 
NNS RPC 

1 

0 

2 

0 

3 

3 

0 

2 

2 

2 

0 

0 

4. 

5. 

6. 

0 
0 
0 

0 

1 

1 

0 

2 

2 

1 

0 

1 

0 

queue is not empty when this IPH is 
received, so the RLHI is set to RLH in 
the next pacing request sent. 

The first request in a window has the 
Pacing indicator set to PAC. The Request 
Larger Hindow indicator is set to RLH 
!determined when the last solicited IPH 
was received). 

The receiver increases the sender's next 
window to 3. ~ 
This is not the first RU in a window so 
the Pacing indicator is set to ~PAC. 



7. The solicited IPM is received. The send­
er's residual pacing c0U1t was at o, but 
the pacing queue was empty when this IPM 
was received, so the RLHI will be set to 
~RLH in the next pacing request sent. 

8. The first . request in a window sets the 
Pacing indicator to PAC. The RLHI is set 
to ~RLH (determined when the last solic­
ited IPM was received). 

9. The receiver decreases the sender's next 
window to 2. (The receiver decreases or 

(sender) 
NHS RPC 

3 0 

l 0 

3 0 l 

4 0 0 

5 0 0 

6 2 0 

7 

8 0 l 

9 0 0 

10 0 0 

11 l 0 

LEGEND 

~~~~~~~~~~~~-> 

< 

IPM !unsolicited, NHS=O) 

RO,•PACI------> 

IPM !reset acknowledgment) 
> 

IPM (solicited, NHS=2) 

IPM (unsolicited, NHS=O) 

< RO,PAC,RLH1~~~~~~> 

IPM !reset acknowledgment> 
> 

IPM !solicited, NHS=l) 

next-window size 
residual pacing count 
request 
Pacing indicator set to l 
Pacing indicator set to 0 

increases the sender's next-window size 
according to the availability of its 
buffer storage. The sender's residual 
pacing count was not at 0 when this IPM 
was received, so the RLHI will be sat to 
~RLH in the next pacing request sent. 

10. The first request in a window sets the 
P;;icing indicator to PAC.. The RLHI is set 
to ~RLH (determined when the last solic­
ited IPM was received). 

(receiver) 
NHS RPC 

3 0 

0 

0 

0 l 

0 0 

2 0 

2 0 

0 l 

0 0 

l 0 

NHS 
RPC 
RQ 
PAC 
~PAC 

RLH 
~RLH 

Request Larger Hindow indicator set to l 
Request Larger Hindow indicator set to 0 

Figure 6.2-5. Session-Level Pacing with Unsolicited IPMs 

The comments below correspond to the numbers 
in Figure 6.2-5 on page 6.2-11. 

1. The session has been active for a while. 

2. The first request in a window sets the 
pacing indicator to PAC. 

3. The receiver is congested and sends an 
unsolicited IPM with a next-window size 
of O. 

4. The sender sends, and the receiver 
receives, another request before the 
unsolicited IPM arrives at the sender. 

5. The sender receives the unsolicited IPM 
causing it to reset its residual pacing 
count, use the value 0 in the IPM for its 
next-window size, and send a reset 
acknowledgment IPM. The sender cannot 
send anything more until it receives 
another IPM. 

6. Hhen the IPM reset acknowledgment is 
received, the receiver can then free the 

Chapter 6.2. Transmission Control 6.2-11 



6.2-12 

buffers ( 1 in this case) that were not 
used by the sender by resetti.ng the resi­
dual pacing count to 0. By having sent 
an unsolicited IPM with a next-window 
size of o, the reset acknowledgment IPM 
acts as a request by the sender to allow 
it to send a new window; when the receiv­
er node is no lon9er congested, it will 
send a solicited IPM to the sender. 

7. The sender is restarted when it receives 
a solicited IPM with a next-window size 
of 2. 

8. The receiver goes back into a congested 
state shortly after sending the solicited 
IPM, and sends an unsolicited IPM. The 
unsolicited IPM specifies a next-window 
size of O. 

9. The sender sends, and the receiver 
receives, a request before the unsolicit­
ed IPM is received. The receiver ignores 
the Pacing indicator because an unsolic­
ited IPM is outstanding. 

10. The sender receives the unsolicited IPM 
causing it to reset its next-window size, 
use the value I 0 l in the IPM for its 
next-window size, and send a reset 
acknowledgment IPM. The sender cannot 
send anything more until it receives 
another IPM. 

11. Hhen it receives the reset acknowledgment 
IPM, the receiver can free the buffers 
11, in this case) that were not used by 
the sender by resetting the residual pac­
ing count to 0. 

12. The sender is restarted when it receives 
a solicited IPM with a next-window size 
of 1. 

Session-Level Fixed Pacing Algorithm 

The session-level fixed pacing algorithm is 
similar to the adaptive pacing algorithm, but 

SNA LU 6.2 Refer~: Peer Protocols 

with the following differences: 

1. The buffer manager always generates the r __ ·. 
same fixed number for the next-window \_ _ 
size, as determined at session activation 
time. 

2. Hhen the receiver would generate an IPM, 
it generates an IPR or a "piggybacked" 
pacing response instead. 

3. The sender saves the value for the fixed 
window size determined at session acti­
vation time. 

4. The sender receives an IPR instead of an 
IPM and takes its next-window size to be 
the value it saved at session activation 
time. 

5. The buffer manager cannot cause an unso-
1 ic ited IPM to be sent. The window size 
is fixed and IPR is always sent as a 
solicited pacing response. 

SEGMENT REASSEMBLY FUNCTION 

Conceptually, segment reassembly is a path 
control I PC J function; however, the inbound 
segment reassembly function is modeled in 
this book (see page 6. 2-28). If the 
half-session supports segment reassembly, it 
reassembles segments (associated with the 
same BIU) into a whole BIU. Hhen segments (--.., 
are received, the half-session checks for the ·, 
maximum receive RU size I See .._ __ / 
TC.SEGMENT_RCV_CHECKS lpage 6.2-241). 

See SNA Type 2. l Node Reference for more 
detai~on BIU segmentation. 

c 



(_j 

FORMAL DESCRIPTION 

TC.INITIALIZE 

FUNCTION: This procedure sets up session parameters needed by TC. 

This procedure is called by the half-session initialization procedure (see 
Chapter 6.01 when the session is being activated. The LOCAL data structure 
fields that are used only by TC are initialized by this procedure. 

INPUT: INIT_HS from SM, containing BIND information 

OUTPUT: The LOCAL fields used only by TC are initialized 

NOTES: 1. The identifier of the path control with which this half-session is associated, 
the role (primary or secondary! of the half-session, and LOCAL.SENSE_CODE are 
initialized prior to calling this procedure. 

2. LOCAL.SENSE CODE is set to x•oooooooo• by called routines, if the TC initial­
ization was-successful. Otherwise, it is set to a nonzero sense data value by 
called routines. 

3. RCV_PACING.NHS is not set to 0 by SM in any case. Send pacing queue IQ_PACJ 
should be created in this procedure. This queue is used to send normal-flow 
requests to path control. 

Referenced procedures, FSMs, and data structures: 
HS 
TC.EXCHANGE_CRV 
LOCAL 
INIT_HS 

If this is a primary half-session then 

page 6.0-3 
page 6.2-15 
page 6.0-7 
page A-13 

Set LOCAL.MAX RCV RU SIZE to INIT HS.SHORT BINO IMAGE.SEC SEND MAX RU SIZE. 
Else I secondary half:se;sion I - - - -

Set LOCAL.MAX RCV RU SIZE to INIT_HS.SHORT_BIND_IMAGE.PRI_SEND_MAX_RU_SIZE. 
Set LOCAL.SQN_RCV_CNT t~ o. 

Initialize LOCAL.COMMQN_CB fields to the following values: 
Set CALLER to HS, LFSID to INIT HS.LFSID. 
Set PATH CONTROL ID to INIT HS.PATH CONTROL ID. 
Set DYNAMIC BUFFER POOL ID to INIT HS.DYNAMIC BUFFER POOL ID. 
Set LIMITED-BUFFER-POOL-ID to INIT-HS.LIMITED-BUFFER-POOL-ID. 
Set TRANSMISSION PRIORITY to INIT HS.TRANSMISSION PRIORITY. 
Set NUM BUFS PER-RU to 1, SET RLHI to ~RLH. -
Set SEND PACING.RPC and RECEIVE PACING.RPC to 0. 
If this Is a primary half-sessi~n then 

Set SEND PACING.NHS to INIT HS.SHORT BIND IMAGE.PR! SEND HINDOH SIZE. 
Set RECEIVE_PACING.NHS to INIT_HS.SHORT_BIND_IMAGE.PRI_RCV_HINDOH_SIZE. 

Else I this is a secondary half-session! 
Set SEND PACING.NHS to !NIT HS.SHORT BIND IMAGE.SEC SEND HINDOH SIZE. 
Set RECEIVE_PACING.NHS to INIT_HS.SHORT_BIND_IMAGE.SEC_RCV_HINDOH_SIZE. 

Chapter 6.2. Transmission Control 6.2-13 



TC.INITIALIZE 

Following are valid send/receive pacing type combinations: 

SENDER 

adaptive 
fixed 
none 

RECEIVER 

adaptive 
fixed 
fixed 

If INIT_HS.SHORT_BIND_IMAGE.ADAPTIVE_PACING = SUPPORTED then 
Set SEND PACING.TYPE and RECEIVE PACING.TYPE to ADAPTIVE 

Else - -
Set RECEIVE PACING.TYPE to FIXED. 
If LOCAL.COMMoN_CB.SEND_PACING.NHS > 0 then 

Set SEND PACING.TYPE to FIXED. 
Else -

Set SEND PACING.TYPE to NONE. 
Set FIRST_HS t~ SEND_PACING.NHS. 
Set UNSOLICITED_IPM_OUTSTANDING to FALSE. 
Set ADJUST FOR IPM ACK OUTSTANDING to FALSE. 
Set UNSOLICITED NHS to-0. 
Set RESERVE_FLAG to NO. 
If INIT HS.SHORT BIND IMAGE.HHOLE BIU REQUIRED = YES then 

Set LOCAL.SEQMENTING SUPPORTED-to FALSE. 
Else -

Set LOCAL.SEQMENTING_SUPPORTED to TRUE. 
Set LOCAL.CRYPTOGRAPHY to NO. 
If INIT_HS.SHORT_BIND_IMAGE.CRYPTO_SESSION_LEVEL = MANDATORY then 

Set LOCAL.CRYPTOGRAPHY to YES. 
Call TC.EXCHANGE_CRVIINIT_HSJ lpage 6.2-15) 

to exchange cryptography verification ICRVJ information. 

6.2-14 SNA LU 6.2 Reference: Peer Protocols 

c 

c 



(~··· 

\"-....__,/ 

TC.EXCHANGE_CRY 

TC.EXCHANGE_CRY 

FUNCTION: This procedure handles the exchange of cryptography verification ICRY). 

INPUT: 

OUTPUT: 

This procedure is called from a primary half-session to initiate the exchange 
CRY request with a secondary and receive RSPICRYJ, or called from a secondary 
half-session to receive CRY request from a primary and return RSPICRYJ. 

INIT_HS, containing the enciphered pseudo-random value to be used as a test 
value land later as the session seed) 

This value is enciphered using the session key as the cryptography key and 0 
as the initial chaining value. 

LOCAL.SENSE CODE is set to the sense data carried on the negative RSPICRY), if 
CRY exchang; failed; else it is set to X'OOOOOOOO' 

The secondary half-session sends a RSPICRY) to the primary. A positive 
RSPICRY), if CRY exchange successful; else a negative RSPICRY) 

NOTES: 1. LOCAL.HALF_SESSION is initialized before this procedure is called. 
LOCAL.SENSE_CODE may be changed by the procedures called from this procedure. 

2. The initialization of a primary TC instance involves sending an MU containing 
a CRY request and receiving an MU containing a RSPICRYJ. The initialization 
of a secondary TC instance involves sending an MU containing a RSPICRY) and 
receiving an MU containing a CRY request. 

3. The buffer that the CRY request was in is reused by secondary half-session 
(with appropriate RH bit settings) to send a RSPICRYJ. 

Referenced procedures, FSMs, and data structures: 
HS 
SEND_MU 
TC.BUILD_CRY 
TC.CRY_FORMAT_CHECK 
LOCAL 
INIT_HS 
MU · 

page 6.0-3 
page 6.2-20 
page 6.2-17 
page 6.2-18 
page 6.0-7 
page A-13 
page A-29 

PATH CONTROL T2.l Node Reference 

If primary half-session then 
Call TC.BUILD CRVIINIT HS,MU PTRJ lpage 6.2-17) 

to build a CRY exchange req~est. 
Call SEND_MUIMU, LOCAL.COMMON_CBJ !page 6.2-201 

to send CRY exchange request to path control Ito secondary half-session). 
Receive RSPICRYJ from path control (sent from secondary half-session). 
Call TC.CRY_FORMAT_CHECKIMUJ lpage 6.2-18). 
If LOCAL.SENSE CODE = X'OOOOOOOO' and MU.RH.RTI = NEG then 

Set LOCAL.SENSE_CODE to the sense data carried on the negative RSPICRYl. 
Call buffer manager IFREE_BUFFER, buffer address) 

to release the buffer containing the RSPICRYJ. !Appendix Bl 

Chapter 6.2. Transmission Control 6.2-15 



TC.EXCHANGE_CRY 

6.2-16 

Else (secondary half-session) 
Receive CRY request from path control I sent from primary half-session J. 
Call TC.CRY_FORHAT_CHECKIMUJ !page 6.2-18). 
If LOCAL.SENSE CODE = x•oooooooo• then 

!Check that-the CRY test value was correctly encoded by the session partner) 
Decipher the test value !bytes 2-9 of MU.RUJ. The cryptography key is the 
session key. the initial chaining value is O. 

Invert the bi ts in the first 4 bytes of the deciphered test value 
!i.e., exclusive-OR the deciphered test value with X'FFFFFFFFOOOOOOOO'J. 

Compare the resulting value with the value 
that was generated by the session manager in the positive RSPIBINDJ. 

If values are not equal then 
Set LOCAL.SENSE_CODE to X'08350001' I indicating Invalid Parameter). 

Else 
Set LOCAL.SENSE CODE to X'OOOOOOOO' I test value was correctly encoded by 

primary half-s;ssionJ. 

If LOCAL.SENSE CODE = x•oooooooo• then 
Set RH.RRI to RSP, RH.RTI to POS to indicate a positive response. 
Call SEND_HUIHU, LDCAL.COHHON_CBJ (page 6.2-20) 

to send a positive RSPICRYJ to path control Ito primary half-session). 
Else 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous CRY request. !Appendix BJ 

!The half-session router will cause UNBIND to be sent.J 

SNA LU 6.2 Reference: Peer Protocols 



cj 

C··, 
,,/ 

TC.BUILD_CRY 

TC.BUILD_CRY 

FUNCTION: This procedure builds an MU (containing the CRY request) by appropriately ini­
tializing the TH, RH and RU fields. 

INPUT: INIT_HS, containing the enciphered pseudo-random value to be used as a test 
value 

OUTPUT: The address of the MU, it contains a CRY request 

The MU is initialized by this procedure (MU.RU contains the cryptography 
seed). 

NOTES: 1. For the actual TH and RH bit settings see SNA Formats. 

2. If a permanent buffer is not available, a demand buffer is requested by this 
procedure instead. 

3. Both CRY request and RSPICRYJ are sent expedited. 

4. The session cryptography seed is retained from INIT_HS record. 

Referenced procedures, FSMs, and data structures: 
HS 
CRY_RQ_RU 
INIT_HS 
MU 

Call buffer manager IGET_BUFFER, permanent buffer pool ID, no waitJ 
to request a permanent buffer to build an MU. (Appendix BJ 

If permanent buffer is not available then 
Call buffer manager IGET_BUFFER, demand buffer size, no waitl 

to request a demand buffer. The demand buffer size is maximum RU size 
plus MU overhead. (Appendix BJ 

If demand buffer is not available then 
Perform half-session ABEND processing. 

Initialize MU.TH reserved fields and constant fields. 
Set EFI to EXP, SNF to any 16-bit unique value limplementation-dependentl. 
ICRY is sent expedited- rather than normal-flow, so is not related to the 

HS normal-flow send sequence number [LOCAL.SQN_SEND_CNTJ. J 
Set BBIUI to BBIU, EBIUI to EBIU. 
I Expedited-flow request [or response] should be sent as a whole BIU. I 

Initialize MU.RH reserved fields, constant fields and set the rest of 
RH bits to the following values: 

page 6.0-3 
page A-27 
page A-13 
page A-29 

RQ, sc, FMH, ~so, BC, EC, RQDl, ~RLH, ~QR, ~PAC, ~BB, ~co, CODEO, ~ED, ~PD, ~CEB 

Decipher the test value in the INIT_HS record. Use the session key 
as the cryptography key, and O as the initial chaining value. 

Transform the result by inverting the bits in the first four bytes li.e., 
exclusive-OR the test value with X'FFFFFFFFOOOOOOOO' J. 

Enciphering above transformed value. Use the session key as the cryptography key 
and 0 as the initial chaining value. 

Set CRY_RQ_RU.CRYPTO_SEED to above enciphered value. 
Set RU to CRY_RQ_RU. !page A-271 
Set the MU.DCF to indicate the length of RH and RU (CRY_RQ_RUJ. 

Chapter 6.2. Transmission Control 6.2-17 



TC.CRV_FORMAT_CHECK 

TC.CRV_FORMAT_CHECK 

6.2-18 

FUNCTION: This procedure checks the RH bits of the CRV request or RSPICRVl received from 
path control I from the partner half-session). 

All of these checks are optional. An implementation may choose to do all, 
some, or none of them. 

INPUT: MU, containing a CRV request or RSPICRVl 

OUTPUT: LOCAL.SENSE CODE is set to X'OOOOOOOO' if all RH bits are properly seh other­
wise, it is-set to a nonzero value which indicates error. 

Referenced procedures, FSMs, and data structures: 
HS 
LOCAL 
MU 
PATH CONTROL 

Calculate the length of RU data. 
If RRI = RQ then 

Select in the following order, based on the RH bits: 
Hhen LOCAL.HALF_SESSION = PRI 

Set LOCAL.SENSE CODE to X'20090000'. 
Hhen RU CTGY ~ SC -

Set LOCAL.SENSE_CODE to X'20090000'. 
Hhen ISDI t SD and the length of RU data < 1) or 

ISDI = SD and the length of RU data < 5) 
Set LOCAL.SENSE CODE to X'l0020000'. 

Hhen ISDI t SD and-CRV request code t X'CO') or 
!SDI = SD and CRV request code ~ X'CO' J 

Set LOCAL.SENSE_CODE to X'20090000'. 
Hhen FI ~ FMH 

Set LOCAL.SENSE_CODE to X'400FOOOO'. 

page 6.0-3 
page 6.0-7 
page A-29 
T2.l Node Reference ---- ---- ---------

A request containing sense code is an exception request. Hhen path 
control receives an anonymous request and not be able to pass the 
response back to the anonymous request sender, path control sets the 
sense code and appends it to RU data to inform the receiver about the 
error. 

Hhen SDI = SD 
Set LOCAL.SENSE CODE to the sense code 
carried in the-RU. 

Hhen BCI ~ BC 
Set LOCAL.SENSE CODE to X'400BOOOO'. 

Hhen ECI ~ EC -
Set LOCAL.SENSE CODE to X'400BOOOO'. 

Hhen response category t RQDl 
Set LOCAL.SENSE CODE to X'40140000'. 

Hhen EFI ~ EXP -
Set LOCAL.SENSE_CODE to X'40110000'. 

Hhen QRI = QR 
Set LOCAL.SENSE_CODE to X'40150000'. 

SNA LU 6.2 Reference: Peer Protocols 

(' 

c 



( 
\__) 

Hhen PI = PAC 
Set LOCAL.SENSE_CODE to X'40080000'. 

Hhen BBI = BB 
Set LOCAL.SENSE_CODE to X'400COOOO'. 

Hhen EBI = EB 
Set LOCAL.SENSE_CODE to X'400COOOO'. 

Hhen CDI = CD 
Set LOCAL.SENSE_CODE to X'400DOOOO'. 

Hhen CSI = CODE! 
Set LOCAL.SENSE_CODE to X'40100000'. 

Hhen EDI = ED 
Set LOCAL.SENSE_CODE to X'40160000'. 

Hhen POI = PD 
Set LOCAL.SENSE_CODE to X'40170000'. 

Hhen CEBI = CEB 
Set LOCAL.SENSE_CODE to X'400COOOO'. 

Else (CRV response) 
Select in the following order, based on the RH bits: 

Hhen LOCAL.HALF SESSION = SEC 
Set LOCAL.SENSE CODE to X'20090000'. 

Hhen RU_CTGY t SC - . 
Set LOCAL.SENSE CODE to X'20090000'. 

Hhen <RTI = POS and the length of RU data < 1) or 
<RTI = NEG and the length of RU data < 5) 

Set LOCAL.SENSE_CODE to X'l0020000'. 
Hhen ISDI t SD and CRV request code t X'CO') or 

ISDI = SD and CRV request code t X'CO' l 
Set LOCAL.SENSE_CODE to X'20090000'. 

Hhen FI t FMH 
Set LOCAL.SENSE_CODE to X'400FOOOO'. 

Hhen BCI t BC 
Set LOCAL.SENSE_CODE to X'400BOOOO'. 

Hhen ECI t EC 
Set LOCAL.SENSE_CODE to X'400BOOOO'. 

Hhen EFI t EXP 
Set LOCAL.SENSE_CODE to X'40110000'. 

Hhen DRII t ORI or DR2I = DR2 
Set LOCAL.SENSE_CODE to X'40140000'. 

Hhen IRTI = POS and SDI = SDl or 
IRTI = NEG and SDI = NOT_SDl 

Set LOCAL.SENSE_CODE to X'40130000'. 
Hhen QRI = QR 

Set LOCAL.SENSE_CODE to X'40150000'. 
Hhen PI = PAC 

Set LOCAL.SENSE_CODE to X'40080000'. 

TC.CRV_FORHAT_CHECK 

Chapter 6.2. Transmission Control 6.2-19 



SEND_MU 

6.2-20 

SEND_MU 

FUNCTION: This procedure sends the input MU to path control. 

INPUT: MU, containing normal-flaw or expedited-flow request lor 
LOCAL.COMMON_CB, containing appropriate pacing bits setting 

response)J 

OUTPUT: The MU is sent to PC or placed on ll_PAC, if no errors are found. If send pac­
ing is active, the send pacing counts in the CB may be updated. 

NOTES: 1. If pacing is supported, the MU may be placed on ll_PAC (send pacing queue) 

rather than sent directly to path control. 

2. If required the MU data is enciphered before sending out. 

3. The pacing counts in the LOCAL.COMMON_CB lpage 6.0-8) are set before this pro­
cedure is called. 

Referenced procedures, 
SEND_TO_PC 
MU 
LOCAL 
PATH CONTROL 

FSMs, and data structures: 

Select, in the following order, based on the TH and RH bits: 
Hhen TH.EFI =EXP I indicating the MU is sent expedited-flow) 

Call SEND_TO_PCIMU, LOCAL.COMMON_CBJ lpage 6.2-221 

page 6.2-22 
page A-29 
Chapter 6.0 
T2.1 Node Reference 

to send the MU to path control directly (expedited-flow is not paced!. 
Hhen TH.BBIUI = ~BBIU or RH.RRI = RQ !normal-flow request! 

If RH.RU_CTGY=FMD, RU data is present and cryptography is required then 
If the RU length is not an even multiple of 8 then 

Pad the RU to an integral number of eight bytes. The padding bytes are 
padded to the end and contain unpredictable values, except for the last 
pad byte, which contains an unsigned 8-bit binary count of the pad bytes 
preceding it. If only one byte of pad is required, it is the count byte 
itself and contains 1. 

Set RH.POI to PD I indicating pad character string is present!. 
Else (multiple of 8) 

Set RH.POI to ~PD. 

Encipher the RU data. 
(Execute the Data Encryption Standard [DES] algorithm, using the session key 
as the cryptography key and the session seed as the initial chaining value. 
The manner in which the session key and the session seed are made available 
to this procedure is implementation-defined.) 

If data enciphering fails then 
Set LOCAL.SENSE_CODE to X'08480000' (cryptography function inoperative!. 
Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous MU. (Appendix Bl 

Else 
Set LOCAL.SENSE CODE to X'OOOOOOOO'. 
Set RH.EDI to ED I indicating RU data is enciphered). 
If LOCAL.COMMON_CB.SEND_PACING.TYPE ~NONE I indicating pacing is active) then 

If the ll_PAC contains any MUs or TH.BBIUI = BBIU then 

Else 

If the sum of LOCAL.COMMON CB.SEND PACING.RPC and 
LOCAL.COMMON_CB.SEND_PACING.NHS i; 0 then 

Put the request MU on the pacing queue I the send pacing count 
has gone to zero). 

Call SEND_TO_PCIMU, LOCAL.COMMON_CB) (page 6.2-22). 

Hhen RRI = RSP 
If LOCAL.COMMON CB.SEND PACING.TYPE =NONE or 

the ll_PAC does-not contain any MUs or 
QRI = ~QR then 

Call SEND TO PCIMU, LOCAL.COMMON CBJ (page 6.2-22). 
Else - - -

Put the response MU on the send pacing queue. 

SNA LU 6.2 Reference: Peer Protocols 

C' , 



G 

0 

c: 

c 

SEND_PACING 

SEND_PACING 

FUNCTION: This procedure updates the send pacing counts in the cannon control block and 
sets the pacing bits !RH.PI and RH.RLHI of the MU being sentJ to the appropri­
ate value. 

This procedure will never be called when both the residual pacing count and 
the next window size are 0 (see page 6.Z-ZOJ. 

INPUT: MU, containing a normal-flow request (beginning BIUJ; LOCAL.COHMON_CB, con­
taining appropriate pacing bits setting 

OUTPUT: The pacing bits in the request MU may be changeds the SET_RLHI bit and pacing 
counts in the LOCAL.COMMON_CB may be changed. 

Referenced procedures, FSMs, and data structures: 
MU 
LOCAL 

If LOCAL.COMMON CB.SEND PACING.RPC > 0 then 
Decrement LoCAL.COMMON_CB.SEND_PACING.RPC by 1. 

Else (start the next window) 

page A-Z9 
Chapter 6.0 

Set LOCAL.COMMON_CB.SEND_PACING.RPC to ILOCAL.COMMON_CB.SEND_PACING.NHS - lJ. 
Set LOCAL.COMMON_CB.SEND_PACING.NHS to 0. 
Set PI to PAC Ito show a pacing response is required). 
Set MU.RLHI to LOCAL.COMMON_CB.SET_RLHI ISET_RLHI value was stored in the 

LOCAL.COMMON_CB when the pacing respons~ was received). 
Reset LOCAL.COMMON_CB.SET_RLHI to ~RLH. 

Chapter 6.Z. Transmission Control 6.Z-Zl 



SEND_TO_PC 

s_E_N_D ___ T_o __ P_c ________________________________________________________________________ ~ ~' 

6.2-22 

FUNCTION: This procedure sends an MU to path control. 

INPUT: MU, LOCAL.COMMON_CB 

OUTPUT: The input MU is sent to path control with the HS_TO_PC header filled in and. 
if necessary, the send pacing counts in LOCAL.COMMON_CB may also be updated. 

Referenced procedures. FSMs. and data structures: 
SEND_PACING 
MU 
IPM_RU 
LOCAL 
PATH CONTROL 

Set MU.HEADER TYPE to HS TO PC. 
Fill in HS TO-PC header ;ith the LFSID and TRANSMISSION_PRIORITY 
values fr~m the LOCAL.COMMON CB 
ITRANSMISSION_PRIORITY indicites the priority of the session). 

If this is the beginning of a BIU IBBIUI = BBIUJ then 
If this MU contains an IPM IMU.RH.RRI=RSP, RH.PI=PAC, ~DRl, ~DR2 and 

LOCAL.COMMON_CB.SEND_PACING.TYPE is ADAPTIVE then 

page 6.2-21 
page A-29 
page 6.2-33 
Chapter 6.0 
T2.l Node Reference ----

If IPM_RU.TYPE is not set to indicate an IPM reset acknowledgement then 
Set HS TO PC.TRANSMISSION PRIORITY to NETHORK. 
(Solicited or unsolicited-IPM flows at network priority). 

Else IMU doesn't contain an IPMJ 
If this is a normal-flow request and 
is being paced ILOCAL.COMMON_CB.SEND_PACING.TYPE ~ NONEJ then 

Call SEND_PACINGIMU, LOCAL.COMMON_CBJ (page 6.2-21). 

Send the MU to path control. 
If sending MU failed li.e., the path control doesn't exist any morel then 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
that the MU was in. (Appendix BJ 
IThe session will be brought down soon by SMJ. 

SNA LU 6.2 Reference: Peer Protocols 

c 



c 

(_) 

TC.RCV 

TC.RCV 

FUNCTION: This procedure receives MUs sent from path control. 

INPUT: 

OUTPUT: 

The format and state checks are made in this procedure. 

MU, containing a request or response is received from the HS router !see Chap­
ter 6.0 J 

If a pacing response is received, it is processed in TC and will not be passed 
to DFC. TC updates the send pacing counts in the LOCAL.COMMON_CB and the pac­
ing response is discarded; else, DFC is called to receive and process the MU 

NOTES: 1. If the RU data (received from path control process) has been segmented, the 
segments are reassembled in this procedure. The data that goes out (from 
half-session process) is not segmented. 

2. The receive pacing counts in the CB may be changed according to the pacing 
bits CRH.PI, RH.RLHI setting in the request. 

3. Upon receiving the request MU, the sequence number ILOCAL.SQN_RCV_CNTI may be 
updated. 

4. If an error is encountered, LOCAL.SENSE CODE is set to a nonzero value by a 
called routine, the HS router causes an UNBIND to be generated; otherwise, it 
is set to x·oooooooo·. 

Referenced procedures, FSMs, and data structures: 
HS 
TC.DECIPHER_RU 
TC.SEGMENT_RCV_CHECKS 
SEGMENT_REASSEMBLY 
TC.BIU_RCV_CHECKS 
RECEIVE_PACING 
RCV_PACING_RSP 
DFC_RCV 
LOCAL 
MU 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

6.0-3 
6.2-32 
6.2-24 
6.2-28 
6.2-25 
6.2-27 
6.2-29 
6.1-24 
6.0-7 
A-29 

PATH CONTROL T2.1 Node Reference 

Call TC.SEGMENT_RCV_CHECKSIMUI (page 6.2-241. 
If LOCAL.SENSE CODE = X'OOOOOOOO' then 

If normal-flow request and BBIUI = BBIU then 
Call RECEIVE_PACINGIMU, LOCAL.COMMON_CBI !page 6.2-271 

If normal-flow (request or response) MU then 
If (request MU and BBIUI = BBIUJ or (BBIUI = ~BBIUJ then 

Call SEGMENT_REASSEMBLYlthe MU address) !page 6.2-28). 
If LOCAL.SENSE CODE = X'OOOOOOOO' then 

If a reasse;bled MU is present then 
Call TC.BIU_RCV_CHECKSIMUJ (page 6.2-251. 
If LOCAL.SENSE CODE = X'OOOOOOOO' then 

If normal-flow request then 
If cryptography is required, RU data is present, 

RH.RU_CTGY = FMD and no sense data is present then 
Call TC.DECIPHER_RUIMUJ !page 6.2-32). 
If LOCAL.SENSE CODE = X'OOOOOOOO' then 

If LOCAL.SQN RCV CNT = 65535 then 
(max sequen~e n~er is [2**16 - 111 

----

Set LOCAL.SQN_RCV_CNT to 0. (sequence number wrapped) 
Else 

Increment LOCAL.SQN_RCV_CNT by 1. 
Call DFC_RCVCMUI (page 6.1-241. 

Else 
If response MU and RH.PI = PAC then 

Call RCV_PACING_RSP(MU_PTR, LOCAL.COMMON_CBI 
(page 6.2-291 
If an MU is present then 

Call DFC_RCVIMUI !page 6.1-241. 

Chapter 6.2. Transmission Control 6.2-23 



TC.SEGMENT_RCV_CHECKS 

6.2-24 

TC.SEGHENT_RCV_CHECKS 

FUNCTION: This procedure performs receive checks on all segments received from PC. 

INPUT: HU, containing a segment (perhaps the only segment in a BIUl 

OUTPUT: LOCAL.SENSE_CODE is set to reflect the receive checks. 

NOTE: Expedited-flow HU may not be segmented. 

Referenced procedures, FSHs, and data structures: 
HS 
HU_PACING_CHECKS 
LOCAL 
HU 

Select, in the following order, based on the following conditions: 

page 6.0-3 
page 6.2-26 
page 6.0-7 
page A-29 

Hhen -LOCAL.SEGMENTING_SUPPORTED and HU contains one of the segments 1-[BBIU and EBIU]l 
Set LOCAL.SENSE_CODE to X'80070001' I receipt of segment not supported). 

Hhen BBIU, -EBIU, -INORHAL, RQl 
Set LOCAL.SENSE_CODE to X'80070003' (cannot reassemble response or expedited-flow 

request}. 
Hhen NORMAL, RQ, BBIU and segment reassembly is in progress 

Set LOCAL.SENSE CODE to X'80070000' IBBIU segment not preceded by EBIU segment!. 
Hhen -BBIU and (segment reassembly is not in progress or this HU flows expedited) 

Set LOCAL.SENSE_CODE to X'80070000' 1-BBIU segment not preceded by BBIU segment}. 
Hhen -BBIU and HU.TH.SQN lin the BBIU segment)= HU.TH.SQN lin the -BBIU segmentl 

1-BBIU segment has a sequence number different from the BBIU segment's 
sequence number.) 

Set LOCAL.SENSE CODE to X'80070000'. 
Hhen BBIU, -EBIU a~d DCF < 10 I first in segment must have at least 10 bytes) 

Set LOCAL.SENSE_CODE to X'80070000'. 

If BBIU, LOCAL.SENSE_CODE = X'OOOOOOOO' then 
Call HU_PACING_CHECKSIHU, COHHON_CB, LOCAL.SENSE_CODEl lpage 6.2-261. 

SNA LU 6.2 Reference: Peer Protocols 

c 



( 
\_ / __ _,, 

c/ 

TC.BIU_RCV_CHECKS 

TC.BIU_RCV_CHECKS 

FUNCTION: This procedure performs receive checks on BIUs. 

INPUT: MU, containing a BIU 

OUTPUT: LOCAL.SENSE_CODE is set to reflect the receive checks. 

NOTE: LOCAL.CRYPTOGRAPHY is properly set before this procedure is called. 

Referenced procedures,, FSMs, and data structures: 
HS 
LOCAL 
MU 

page 6.0-3 
page 6.0-7 
page A-29 

PATH CONTROL T2.l Node Reference 

If MU.RH.RU CTGY is not set to FMD or DFC then 
Set LOCAL.SENSE_CODE to X'lOO?OOOO'. 

Else IFMD or DFCJ 
Set RU length to 0 I If RU data is not present in the receiving MU, 

then 0 is the minimum RU length!. 
If sense data is present !MU.RH.SDI = SDJ then 

Increment RU length by 4 I the length of sense datal. 
If MU.RH.RU CTGY = DFC then 

Increment RU length by 1 I the length of request code). 
If DCF < length of IRU + RHJ then 

Set LOCAL.SENSE_CODE to X'l0020000'. 
Else 

If sense data is present then 
If received MU contains a request then 

Else 

A request containing a sense code is an exception request. Hhen path 
control receives an anonymous request and is not be able to pass the 
response back to the anonymous request sender, path control sets the 
sense code and appends it to RU data to inform the receiver about the 
error. 

Set LOCAL.SENSE_CODE to the sense data from input MU. 

If normal-flow request then 
If sequence number from the input MU does not match 
current sequence number ILOCAL.SQN_RCV_CNT + ll then 
(The current sequence number must be a multiple of 65536.) 

Set LOCAL.SENSE_CODE to X'20010000' (sequence number check). 

If cryptography is active then 
If MU.RH.RU_CTGY = FMD then 

If RU data is present and LOCAL.SENSE_CODE = X'OOOOOOOO' then 
If encryption bit is not set I RH.EDI = ~EDJ then 

Set LOCAL.SENSE_CODE to X'08090000'. 
Else 

If RU data length is not a multiple of 8 then 
Set LOCAL.SENSE_CODE to X'l0010000'. 
!the maximum RU size must be a multiple of 8) 

Chapter 6.2. Transmission Control 6.2-25 



HU_PACING_CHECKS 

6.2-26 

HU_PACING_CHECKS 

FUNCTION: This procedure performs the format checks for pacing responses and checks that 
the receive pacing Counts are acceptable for begin SIU normal-flow requests. 

This procedure is called only when the BBIUI bit in TH is set to BBIU. The 
checks in this procedure are required checks. 

INPUT: HU, LOCAL.COMHON_CB 

OUTPUT: LOCAL.SENSE_CODE is set if an error is found; else, remains unchanged 

Referenced procedures, FSHs, and data structures: 
HU 
IPH_RU 
LOCAL 

If normal-flow request then 
If LOCAL.CottHDN CB.RECEIVE PACING.RPC = 0 then 

If LOCAL.COMMON CB.RECEIVE PACING.NHS = 0 then 
Set LOCAL.SENSE_CODE to-X'ZOllOOOO'. 
(Sending node has overrun the pacing count.) 

Else 
If pacing indicator is set to ~PAC.IPI =~PAC) then 

Set LOCAL.SENSE CODE to X'20110000'. 

page A-29 
page 6.2-33 
Chapter 6.0 

I In the first r;quest of a new window, PI should be set to PAC.) 
Else 

If pacing indicator is set to PAC IPI = PAC) then 
Set LOCAL.SENSE_CODE to X'2011000Z'. 
IIn ~first request in a new window, PI should be set to ~PAC) 

Else I response ) 
If adaptive pacing is being used and 

the HU contains a response with pacing indicator set to PAC then 
If this HU is an IPH IRSP, ~DRl, ~DR2l then 

If HU.DCF contains a length that is too short for 
an IPH lRH + IPH_RUl then 

Set LOCAL.SENSE CODE to X'lOOZOOOO'. 
Else -

If IPH RU.FORMAT INDICATOR is not set to FORMATO then 
Set-LOCAL.SENSE_CODE to X'l0010003'. 

Else 
Select, based on IPH_RU.TYPE: 

Hhen SOLICITED IPH 
If IPH RU.NHS = 0 or IPH RU.RHI = RESET HINDOH then 

Set-LOCAL.SENSE_CODE t~ X'l0010003'. -
Else 

If LOCAL.COHHDN CB.SEND PACING.NHS > 0 then 
Set LOCAL.SENsE_CODE-to X'20110001'. 

Hhen UNSOLICITED IPH 
If IPH_RU.RHI = ~RESET_HINDOH then 

Set LOCAL.SENSE CODE to X'l0010003'. 
Hhen RESET_ACKNOHLEDGEHENT IPH 

If ~LOCAL.COHHON_CB.UNSOLICITED_IPH_OUTSTANDING then 
Set LOCAL.SENSE_CODE to X'20110001'. 

Otherwise I invalid IPH type) 
Set LOCAL.SENSE_CODE to X'l0010003'. 

Else I this is not an IPHl 
Set LOCAL.SENSE_CODE to X'Z0110003'. 

SNA LU 6. 2 Reference: Peer Protocols 

(, 

c 

c. 



c. 

RECEIVE_PACING 

RECEIVE_PACING 

FUNCTION: This procedure updates the receive pacing counts in the LOCAL.COMMON_CB and 
determines the type of buffer reserve action to request of the buffer manager. 
This procedure is never called when the residual pacing count and the 
next-window size are both O. 

INPUT: HU, LOCAL.COMMON_CB 

OUTPUT: The receive pacing counts and the RESERVE_FLAG in the LOCAL.COMMON_CB may be 
changed. 

Referenced procedures, FSMs, and data structures: 
HU 
LOCAL 

If pacing indicator in the RH is not set to PAC then 
(Current window is not exhausted.) 

Decrement LOCAL.COMMON_CB.RECEIVE_PACING.RPC by 1. 
Set LOCAL.COHMON_CB.RESERVE_FLAG to NO !don't reserve a new window). 

Else lthis is the first request in a new window) 

page A-29 
Chapter 6.0 

Set LOCAL.COMMON_CB.RECEIVE_PACING.RPC to LOCAL.COMMON_CB.RECEIVE_PACING.NHS minus 1. 
Set LOCAL.COMMON_CB.RECEIVE_PACING.NHS to O. 
If larger window is required IRH.RLHI = RLHJ then 

Set LOCAL.COMMON_CB.RESERVE_FLAG to MORE I request a larger new window). 
Else 

Set LOCAL.COMMON_CB.RESERVE_FLAG to ALL I request a new window). 

Chapter 6.2. Transmission Control 6.2-27 



SEGMENT_REASSEMBLY 

SEGMENT_REASSEMBLY 

..---------------.(' 

6.2-28 

FUNCTION: This procedure copies normal-flow request MUs from link buffer to dynamic 
buffer. If segment reassembly is supported, this procedure is called to reas­
semble segments into a whole BIU. 

INPUT: 

OUTPUT: 

A pointer to MU (the MU contains a segment that received from path control) 

Hhen segment reassembly is complete, all segments (for the same BIUJ are reas­
sembled and stored in the dynamic buffer. The dynamic buffer address is 
returned to the calling procedure. If there is an IPM reset acknowledgment 
outstanding, dynamic buffer pool may be adjusted and 
ADJUST_FOR_IPM_ACK_OUTSTANDING bit in the LOCAL.COMMON_CB may be changed. If 
an error is detected, LOCAL.SENSE_CODE is set to indicate the error 

NOTES: 1. SM reserves the first buffer for HS. 

2. MUs received from path control are stored in link buffers. A link buffer is a 
special type of permanent buffer that the buffer manager allocates to DLC to 
send network data between two LUs. The receiving LU calls buffer manager to ~ 
get a dynamic buffer to copy data from the link buffer to dynamic buffer, and 
releases the link buffer. The dynamic buffer size is set to maximum RU size "----­
by SM at buffer pool create time. (See Appendix B for details.) 

Referenced procedures, FSMs, and data structures: 
HS 
SM 
LOCAL 
MU 

page 
page 
page 
page 

6.0-3 
4-48 
6.0-7 
A-29 

PATH CONTROL T2.l Node Reference 

If TH.BBIUI = BBIU then 
If RU length of the input MU is greater than the maximum RU size then 

Set LOCAL.SENSE_CODE to X'l0020000' !RU length in error). 
Else 

Call buffer manager lGET_BUFFER, dynamic buffer pool ID, no wait, 

----

buffer rereserve indication) to get a dynamic buffer for segment reassembly. 
Copy MU data from link buffer to dynamic buffer. !Appendix 8) 

Call buffer manager lFREE_BUFFER, link buffer address) to release the link buffer 
containing the MU. (Appendix 8) 

Else lTH.BBIU ~ BBIU) 
!The segments are reassembled in the same order they are received, i.e., the starting 
offset of the 2nd segment is immediately after the first segment.) 
If ending offset of a segment is greater than the maximum receive RU size than 

Set LOCAL.SENSE_CODE to X'l0020000'. 
Else 

Update the MU.DCF after each data copy !from link buffer to dynamic buffer). 

Call buffer manager lFREE_BUFFER, link buffer address) to release 
the link buffer containing the MU. !Appendix 8) 

If reassembly is complete lTH.EBIUI = EBIUJ then 
Set TH.EBIUI to EBIU. 
!Hhen the first segment was copied from link buffer 
to dynamic buffer, the whole segment [containing TH, RH and RU] 
was copied. The TH bits setting indicates BBIU and ~EBIU. Hhen the 
second segment arrives, only the RU portion was copied to dynamic buffer 
not TH and RH. If the second segment is the last segment for this BIU, 
after copying the RU this procedure needs to update the TH bits setting to 
indicate EBIU. l 

If LOCAL.COMMON CB.ADJUST FOR IPH ACK OUTSTANDING is set to TRUE then 
Call buffer manager IADJUST_BUF_POOL, dynamic buffer pool ID, REDUCED 

pool size) to reduce the size of the dynamic buffer pool. 
The REDUCED pool size is sent by the buffer manager via a BUFFERS_RESERVED signal. 
!Appendix Bl 

Set LOCAL.COMMON_CB.ADJUST_FOR_IPH_ACK_OUTSTANDING to FALSE. 

Return the address of the dynamic buffer to the calling procedure. 
IThe dynamic buffer contains the reassembled whole BIU.) 

SNA LU 6.2 Reference: Peer Protocols 

c 



cj 

(_) 

c 

c ' ; 

RCV_PACING_RSP 

RCV_PACING_RSP 

FUNCTION: This procedure updates pacing counts in the LOCAL.COMMON_CB, sends reset 
acknowledgments to unsolicited IPMs and sends MUs to path control if possible. 

INPUT: 

OUTPUT: 

A pointer to the MU; LOCAL.COMMON_CB, the common control block for the pacing 
routines 

The pacing response is discarded after being processed and the MU is freed) 
LOCAL.COMMON_CB, the pacing counts, SET_RLHI, UNSOLICITED_IPM_OUTSTANDING, and 
ADJUST_FOR_IPM_ACK_OUTSTANDING may be updated> IPM ACK may be sent to path 
control; MUs from the pacing queue sent to path control; the dynamic buffer 
pool and the limited buffer pool sizes may be adjusted 

Referenced procedures, FSMs, and data structures: 
SEND_TO_PC 
I PM_ RU 
LOCAL 
MU 

Select, in the following order, based on the pacing type: 
Hhen adaptive pacing 

Select, based on the type of IPM_RU: 
Hhen reset acknowledgment IPM 

Set LOCAL.COMMON CB.RECEIVE PACING.RPC to 0. 
Set LOCAL.COMMON-CB.RECEIVE-PACING.NHS to 

LOCAL.COMMON_cB:UNSOLICITED_NHS !the next window size 
carried in the previous unsolicited IPMJ. 

Set LOCAL.COMMON CB.UNSOLICITED IPM OUTSTANDING to FALSE. 

page 6.2-22 
page 6.2-33 
Chapter 6.0 
page A-29 

Call buffer manager IFREE_BUFFER, b~ffer address) to release the buffer 
containing the reset acknowledgment IPM. !Appendix BJ 

If segment reassembly is not in progress then 
Call buffer manager IADJUST_BUF_POOL, dynamic buffer pool ID, REDUCED 
pool size) to adjust the dynamic buffer pool size to the size informed by 
the buffer manager !via a BUFFERS_RESERVED signalJ. 
(Appendix BJ 

Else (segment reassembly is taking place) 
Set LOCAL.COMMON_CB.ADJUST_FOR_IPM_ACK_OUTSTANDING to TRUE 

Hhen solicited IPM 
If data waiting on the pacing queue IQ_PACJ to be sent then 

If LOCAL.COMMON CB.SEND PACING.RPC = D then 
(the queued data is waiting for the NHS carried in this IPMJ 

Set LOCAL.COMMON CB.SET RLHI to RLH. 
(Request a large; wind~ on the next pacing request. J 

Call.buffer manager IADJUST_BUF_POOL, limited buffer pool ID, change amount) 
to increase the size of the limited buffer pool based on IPM_RU.NHS. The 
change amount is IPM_RU.NHS. !Appendix BJ 

Set LOCAL.COMMON CB.SEND PACING.NHS to IPM RU.NHS. 
Call buffer mana9er IFREE_BUFFER, buffer address) to release the 
buffer containing the solicited IPM. !Appendix BJ 

Chapter 6.2. Transmission Control 6.2-29 



RCV_PACING_RSP 

6.2-30 

Hhen unsolicited IPH 
Call buffer manager IGET_BUFFER, permanent buffer pool ID, no waitl 

to request a permanent buffer to store the unsolicited IPH. 
!Appendix BJ 
If permanent buffer is not available then 

Call buffer manager IGET_BUFFER, demand, buffer size, no wait ) 
to request a demand buffer to store the unsolicited IPH 

If demand buffer is not available then 
Perform half-session ABEND processing. 

Copy HU data from the link buffer I the unsolicited IPH was inJ to 
the permanent lor demand) buffer. 

Call buffer manager IFREE_BUFFER, link buffer address) 
to release the link buffer containing unsolicited IPH. 

Call buffer manager IADJUST_BUF_POOL, limited buffer pool ID, change amount) 
to reduce the size of the limited buffer pool to no buffers. 
The change amount is a negative value of INHS plus RPC). 
!Appendix BJ 

Set LOCAL.COMMON CB.SEND PACING.NHS to IPH RU.NHS. 
Reset LOCAL.COMMON_CB.SEND_PACING.RPC to o: 
Set IPM RU.TYPE to RESET ACKNOHLEDGMENT. 
Set IPM-RU.RHI to -RESET-HINDOH. 
Call SEND_TO_PC (page 6.Z-22) 

to send reset acknowledgment IPM to path control Ito the partner LU). 

Hhen no pacing 
If -DR1,-DR2 I received MU is a pacing response) then 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the erroneous MU. 

Hhen fixed pacing 
Set LOCAL.COMMON CB.SEND PACING.NHS to LOCAL.COMMON CB.SEND PACING.FIRST HS. 
If -DR1,-DR2 {re~eived MU is a pacing response) the~ 

Call buffer manager IFREE_BUFFER, buffer address) to release the buffer 
containing the pacing response. 

Call buffer manager IADJUST_BUF_POOL, limited buffer pool ID, change amount) 
to increase the size of the limited buffer pool. The change amount 1s 
LOCAL.COMMON_CB.SEND_PACING.FIRST_Hs. !Appendix BJ 

If LOCAL.COMMON CB.SEND PACING.TYPE ~NONE then 
Do the foll~ing while the pacing queue is not empty and the first MU is not a BBIU 
or the first HU is a response or 
ILOCAL.COMMON_CB.SEND_PACING.RPC + LOCAL.COMMON_CB.SEND_PACING.NHSl >O. 

Remove the next MU from «l_PAC (pacing queue). 
Call SEND_TO_PC IMU, LOCAL.COHMON_CBJ to send the MU just removed from pacing queue. 

SNA LU 6.2 Reference: Peer Protocols 

c 

c 

c 



(_ 

( 

BUFFERS_RESERVED_PROCESSING 

BUFFERS_RESERVED_PROCESSING 

FUNCTION: This procedure receives BUFFERS_RESERVED signals from the buffer manager IBMJ, 
updates the appropriate pacing counts in the LOCAL.COMMON_CB, builds and sends 
the appropriate pacing response. 

The BUFFERS_RESERVED signal will have a reserve action of REDUCED. REPLEN­
ISHED, or RESTART I reserve action of ADJUSTED will never be received by this 
routine!; REDUCED is for an unsolicited IPM, while REPLENISHED and RESTART are 
for solicited IPMs 

INPUT: BUFFERS_RESERVED signal, LOCAL.COMMON_CB 

OUTPUT: The pacing counts in the LOCAL.COMMON_CB are updated; pacing response is sent 
to the appropriate path control 

Referenced procedures, FSMs, and data structures: 
SEND_TO_PC 
LOCAL 

page 6.2-22 
Chapter 6.0 

PATH CONTROL 
MU 

T2.l Node Reference 
page A-29 

I PM_ RU page 6.2-33 

If the reserved buffer pool size needs to be reduced I reserve action is assigned! then 
Set LOCAL.COMMON CB.UNSOLICITED IPM OUTSTANDING to TRUE. 
Set LOCAL.COMMON-CB.UNSOLICITED-NHS-to the value las 

received in the-BUFFERS_RESERVED signal! that will be sent in the IPM. 
Set MU.DCF for a unsolicited IPM IRH + IPM_RUJ. 
Set IPM_RU.TYPE to UNSOLICITED. 
Set IPM_RU.RHI to RESET_HINDOH. 
Set IPM_RU.FORMAT_INDICATOR to FORMATO. 
Set IPM_RU.NHS to CB.UNSOLICITED_NHS. 

Else (solicited IPM or IPRJ 
Set LOCAL.COMMON CB.RECEIVE PACING.NHS to the value that will be sent in the IPM. 
If LOCAL.COMMON CB.RECEIVE PACING.TYPE =ADAPTIVE then 

Set MU.DCF f~r an solicited IPM IRH + IPM_RUJ. 
Set IPM_RU.TYPE to SOLICITED. 
Set IPM_RU.RHI to -RESET_HINDOH. 
Set IPM_RU.FORMAT_INDICATOR to FORMATO. 
Set IPM_RU.NHS to CB.RECEIVE_PACING.NHS. 

Else Ian IPRJ 
Set MU.DCF to the length of the RH IIPR contains no RU data!. 

Set MU.TH bits to indicate BBIU, EBIU. 
Set TH.EFI to EXP I this bit can be set to either expedited or normal for IPRsl. 
Set TH.SNF.SQN to O. 
Set RH bits to indicate the following: 

RSP, FMD, -FMH, -SD, BC, EC, -DRl, -DR2, POS, -RLH, -QR, PAC, -BB, -EB, -CD, 
CODEO. -ED, -PD, -CEB. 

Call SEND_TO_PCIMU.LOCAL.COMMON_CBJ (page 6.2-221 
to send a pacing response IIPM or IPRJ to path control. 

Chapter 6.2. Transmission Control 6.2-31 



TC.DECIPHER_RU 

TC.DECIPHER_RU 

6.2-32 

FlH:TION: Deciphers an enciphered message. 

INPUT: Enciphered MU, session seed 

OUTPUT: Deciphered HU is returned or nonzero sense data. is set in LOCAL.SENSE_CODE, 
and if the HU was padded, pad bytes are dropped and Padded Data indicator set 
to ~PD 

Referenced procedures, FSHs, and data structures: 
HS 
LOCAL 
MU 

Decipher the RU data using the DES algorithm. Use the session key 
as the cryptography key. Use either the session seed or 0 as the 
initial chaining value. If DES deciphering fails, the RC is set 
to NGJ otherwise, OK. 

If DES deciphering RC :: NG then 

page 6.0-3 
page 6.0-7 
page A-29 

Set LOCAL.SENSE_CODE to X'08480000' to indicate cryptography function inoperative. 
Else 

If POI = PD !data was padded) then 
Save the length of RU data IMU.DCF - [the length of RH]). 
Extract the pad count from the last byte of the RU and assign it to PAD_COUNT. 
If IPAD_COUNT < l) or IPAD_COUNT > 7) then 

Set LOCAL.SENSE CODE to X'l0010000' to indicate RU data length in error. 
Else -

Decrement MU.DCF by PAD_COUNT (drop pad bytes from RU). 
Set POI to ~PD. 

SNA LU 6.2 Reference: Peer Protocols 

c 

r 
\ ' 

"-~/ 

c 



( __ _ 

IPH 

This defines the RU format for an IPH 

IPM_RU 
TYPE: possible values: SOLICITED, UNSOLICITED, RESET_~CKNOHLEDGHENT 
RHI: possible values: RESET_HINDOH, NOT_RESET_HINDOH 
FORMAT_INDICATOR: possible value: FORMATO 
NHS: next-window size 

Chapter 6.2. Transmission Control 

I PH_ RU 

6.2-33 



This page intentionally left blank 

6.2-34 SNA LU 6.2 Reference: Peer Protocols 

c 

r 
~--J/ 



(-,, 

APPENDIX A. NODE DATA STRUCTURES 

This appendix contains the shared data struc­
tures for LU 6.2. 

LUCB 

The LUCB_LIST contains information about local LUs. One LUCB_LIST exists per node and one 
LUCB per local LU. 

The LUCB_LIST is created at system-definition time. The initial values of the fields in 
each LUCB entry are implementation-specific. 

NOTES: 1. Network-qualified LU names consist of type-A symbol strings. Transaction pro­
gram names consist of type-AE up through type-GR symbol strings, depending on 
the implementation. See SNA Formats for symbol-string definitions. 

LUCB 

2. If the LU name is not present, the FULLY QUALIFIED LU NAME field is null. 
Subarea LUs, LUs doing sync point, and LUs u;ing parallel-sessions always know 
their own names. 

3. The FULLY_QUALIFIED_LU_NAME contains no trailing space CX'40') characters. 

Shared Data 

LU ID: identifier of the local LU 
FULLY_QUALIFIED_LU_NAME: network-qualified name of the local LU (see Notes) 
PARTNER_LU_LIST: list of PARTNER_LU data structures (see page A-2) 
TRANSACTION_PROGRAM_LIST: list of TRANSACTION_PROGRAM data structures (see page A-5) 
PENDING RANDOM DATA LIST: list of random data (used for LU-LU verification) that 
has be;n sent-on a-BIND to a partner 

''--/ Data Unique to PS.COPR 

LU_SESSION_LIMIT: maximum number of LU-LU sessions the local LU can have 

Appendix A. Node Data Structures A-1 



PARTNER_ LU 

PARTNER_ LU 

The PARTNER_LU_LIST is a list contained within each LUCB entry. There is one PART­
NER_LU_LIST per local LU and one PARTNER_LU entry for each LU name known by a given local 
LU. Each PARTNER_LU entry contains information that is LU name specific li.e., informa­
tion that is constant across all mode names for a given LU name!. 

The PARTNER LU LIST is created at system-definition time. 
fields in ea~ PARTNER_LU entry are implementation specific. 

The initial values of the 

NOTES: 1. The lpartnerl LOCAL_LU_NAME is the name that a transaction program specifies 
in conjunction with the MODE_NAME when requesting the allocation of a conver­
sation. It is a local name by which one local LU knows another lpartnerl LU 
and is not sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

2. 

There may be an entry in the PARTNER LU LIST whose LOCAL LU NAME is the same 
as the LU name of this I local! LU. This allows for cases when the partner 
transaction program is located in the same LU as the local transaction pro­
gram. 

Local LU names consist of type-G symbol strings. Fully-qualified LU names 
consist of type-A symbol strings. See SNA Formats for symbol-string defi­
nitions. 

3. The lpartnerl FULLY_QUALIFIED_LU_NAME is the LU name that is sent on external 
flows, e.g., BIND. 

4. The LOCAL_LU_NAME and FULLY_QUALIFIED_LU_NAME fields contain no trailing space 
IX'40' I characters. 

PARTNER_ LU 

Shared Data 

LOCAL_LU_NAME: local name of the partner LU I see Notes 1, 2, and 41 
FULLY_QUALIFIED_LU_NAME: network-qualified name of the partner LU 
lsee Notes z, 3, and 41 

MODE_LIST: list of MODE data structures lsee page A-3) used with 
this partner LU 

ACTIVE SESSION PARAMETERS: 
PARALLEL_SESsIONS: possible values: SUPPORTED, NOT_SUPPORTED 

A-2 SNA LU 6.2 Reference: Peer Protocols 

!,.,--~ 

( 
\___ ___ . 

c 



(~/ 

() 

c/ 

MODE 

MODE 

The MODE LIST is a list contained within each PARTNER_LU entry. One MODE entry exists in 
the MODE-LIST for each mode name that is associated with PARTNER_LU.LOCAL_LU_NAME. Each 
MODE ent;y contains mode-name-specific information. 

The MODE LIST is created at system-definition time. The initial values of the fields in 
each MODE entry are implementation specific. 

NOTES: 1. The WAITING_REQUEST_LIST contains requests for sessions sent by PS.CONY 
("Chapter 5.1. Presentation Services--Conversation Verbs") that the resources 
manager cannot presently fulfill, because no free sessions are available. 
Entries are removed from the list when an existing session becomes free or 
when a new session is activated. 

2. The FREE SCB LIST is a list of sessions that are currently not in use by any 
conversation. The list is an ordered list in that all first-speaker 
half-sessions are grouped at the front of the list with all bidder 
half-sessions following. A new first-speaker entry is inserted at the begin­
ning of the list, while a new bidder entry is inserted at the end. 

The FREE SCB LIST and the WAITING_REQUEST_LIST are 
entry in the FREE_SCB_LIST precludes there being 
ING_REQUEST_LIST, and vice versa. 

mutually exclusive. An 
an entry in the WAIT-

3. Mode names consist of type-A symbol strings. See SNA Transaction Programmer's 
Reference Manual for LU Type 6.2 for a list of valid symbol-string types for 
the Transaction program naiiie:" --se!e SNA Formats for symbol-string definitions. 

4. TERMINATION_COUNT is the count of the number of sessions that this local LU is 
responsible for deactivating. PENDING_TERMINATION_* counts sessions that are 
pending termination. A session is pending termination from the time that RM 
("Chapter 3. LU Resources Manager") sends BISCRQEll or BISCRQE3l to the time 
that RM sends DEACTIVATE_SESSION or receives SESSION_DEACTIVATED. 

5. ACTIVE_*_COUNT counts active sessions, These counts are maintained by RM 
("Chapter 3. LU Resources Manager"). A session is active from the time that 
RM receives SESSION_ACTIVATED or +ACTIVATE_SESSION_RSP to the time that RM 
sends DEACTIVATE_SESSION or receives SESSION DEACTIVATED. ACTIVE * COUNT 

'includes sessions that are pending -termination (see -b;lowl. 
ACTIVE_SESSION_COUNT is the sum of ACTIVE_CONWINNERS_COUNT and 
ACTIVE_CONLOSERS_COUNT. 

6. PENDING_*_COUNT counts pending-active sessions. These counts are maintained 
by RM ("Chapter 3. LU Resources Manager"), A session is pending active from 
the time that RM sends ACTIVATE_SESSION to the time that RM receives ACTI­
VATE_SESSION_RSP. PENDING_SESSION_COUNT is the sum of PEND­
ING_CONWINNERS_COUNT and PENDING_CONLOSERS_COUNT. 

7. The SESSION DEACTIVATED TP is started when an UNBIND is sent or received. The 
related half-session and any PS that was using the session may still be active 
when the SESSION_DEACTIVATED_TP actually runs. The SESSION_DEACTIVATED_TP 
must take this into account. 

8. The range of possible maximum RU sizes is delimited at the high end by the 
values that can be encoded in BIND byte 9 or 10. At the low end, the archi­
tectural limit is determined by the BIND encoding, but the implementation lim­
it is determined by the requirement that an FM header fit entirely in one RU. 
This is to avoid deadlock complications that could occur if an incomplete 
FMH-5 arrives at the half-session because it is sent spanning more than one 
RU. 

Appendix A. Node Data Structures A-3 



MODE 

MODE 

Shared Data 

NAHE: mode name (see Note 3) 
SESSION_LIHIT: maxiftll.ln number of sessions allowed for this partner (LU, mode) pair 
HIN_CONHINNERS_LIHIT: miniftll.ln number of contention winner sessions 
HIN_CONLOSERS_LIHIT: minimum nunber of contention loser sessions 
CNOS_NEGOTIATIDN_IN_PROGRESS: possible values: TRUE, FALSE 
LIHIT_BEING_NEGOTIATED: when CNOS negotiation is in progress, the tentative new 
session limit 

ACTIVE_SESSION_COUNT: (see Note SJ 
ACTIVE_CONHINNERS_COUNT: 
ACTIVE_CONLOSERS_COUNT: 

PENDING_SESSION_COUNT: (see Note 6J 
PENDING_CONHINNERS_COUNT: 
PENDING_CONLOSERS_COUNT: 

DRAIN_SELF: possible values: YES, NO 
DRAIN_PARTNER: possible values: YES, NO 
AUTO_ACTIVATIONS_LIHIT: 

Data Unique to Resources Manager 

TERHINATION_COUNT: (see Note 4J 
PENDING_TERHINATION_CONHINNERS: 
PENDING_TERHINATION_CONLOSERS: 
SINGLE_SESSION_POLARITY: possible values: FIRST_SPEAKER, BIDDER 
LOCAL_HAX_SESSION_LIHIT: maximum HODE session limit value 

A-4 SNA LU 6.2 Reference: Peer Protocols 

~· ...... / 



(,- ' 

~-

(_, 

( _ _,/ 

TRANSACTION_PROGRAM 

TRANSACTION_ PROGRAM 

Each LUCB contains a TRANSACTION_PROGRAM_LIST. This list contains one entry for each 
transaction program known at the local LU. Each TRANSACTION PROGRAM entry in the TRANS­
ACTION_PROGRAM_LIST contains information describing one trans;ction program. 

The TRANSACTION_PROGRAM_LIST is created at system-definition time . The initial values of 
the fields in each TRANSACTION_PROGRAM entry are implementation-defined. 

NOTE: See SNA Transaction Programmer's Reference Manual for LU Type 6.2 for a list 
of vaITd symbol-string types for the Transaction prograiilna.iie:" 

TRANSACTION_ PROGRAM 

Shared Data 

TRANSACTION_PROGRAM_NAME: lup to 64 bytes long) 
PRIVILEGED_FUNCTIONS_LIST: possible values: ATTACH_SERVICE TP, CHANGE_NUMBER_OF_SESSIONS, 

DEFINE LU PARAMETERS, DISPLAY LU PARAMETERS, SESSION CONTROL 
RESOURCES_SUPPORTED_LIST: pos;ible values: BASIC_CONvERSATION, MAPPED_CONVERSATION 
VERIFY_PIP: possible values: YES, NO 
NUMBER_OF_PIP_SUBFIELDS: number of PIP subfields required by the TP 

Data Unique to RM 

SYNC_LEVELS SUPPORTED_LIST: possible values: NONE, CONFIRM, SYNCPT 
INSTANCE_LIMIT: maximum number of TPs that can be brought up 11 is the minimum) 
INSTANCE_COUNT: current number of TPs executing I initialized to 0) 
STATUS: possible values: ENABLED, DISABLED_TEMPORARY, DISABLED_PERMANENT 
HAITING_INITIATION_RQ_LIST: possible values: ATTACH_RECEIVED, START_TP 

Data Unique to PS.MC 

MC_FUNCTIONS_SUPPORTED_LIST: possible values: MAPPING, FMH_DATA 

Appendix A. Node Data Structures A-5 



RCB 

RCB 

The RCB_LIST contains information about resources. There is one RCB_LIST per local LU and 
one RCB per resource known by that LU. The RCB_LIST is managed by RH ("Chapter 3. LU 
Resources Manager"). Entries are added to, and deleted from, the RCB_LIST by the 
resources manager. The RCB_LIST is also referenced by presentation services, e.g., 
PS.CONY I "Chapter 5.1. Presentation Services--Conversation Verbs"). The RCB_LIST contains 
entries for all the resources associated with all the transaction program instances active 
at a particular LU. 

NOTES: 1. The !partner) LU_NAHE is the name that a transaction program specifies in con­
junction with the HODE_NAHE. when requesting the allocation of a conversation. 
It is a local name by which one local LU knows another (partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAHE is 
implementation-defined. 

z. LU names consist of type-G symbol strings. Mode names consist of type-A symbol 
strings. See SNA Formats for symbol string definitions. 

3. Hhen the resources manager receives a GET_SESSION lpage A-16) from PS.CONY and 
determines that only a bidder half-session is available li.e., all 
first-speaker half-sessions are in use), it has to request permission to use 
the half-session. Because permission may be denied, SESSION_PARHS_PTR points 
to the GET_SESSION record while the request for permission to use the session 
is outstanding. If permission is denied, the GET_SESSION record is used to 
issue a new request for a session. After permission has been granted, or if a 
first-speaker session can be allocated, SESSION_PARHS~PTR has a value of NULL. 

4. Used to purge Attaches from the TRANSACTION_PROGRAM.HAITING_INITIATION_RQ_LIST 
when HS terminates. 

RCB 

Shared Data 

RCB_ID: ID of this RCB 
TCB_ID: ID of the transaction that owns this RCB 
HS_ID: ID of the half-session associated with this RCB 
SESSION_IDENTIFIER: session ID assigned to the conversation 
LU_NAME: partner LU name (see Notes 1 and ZJ 
MODE_NAME: lsee Note ZJ 
CONVERSATION CORRELATOR: I see Note Zl 
BRACKET_ID: -unique value generated by RM to identify all records for a 

given conversation. 
SYNC_LEVEL: possible values: NONE, CONFIRM, SYNCPT 
SECURITY_SELECT: possible values: NONE, SAME, PGM 

Data Unique to RM 

SESSION_PARMS_PTR: lsee Note 3) 
TP_NAME: TP name sent on ALLOCATE or received on Attach (see Note 4) 

A-6 SNA LU 6.Z Reference: Peer Protocols 

c 



cj Data Unique to PS.CONV 

CONVERSATION_TYPE: possible values: BASIC_CONVERSATION, MAPPED_CONVERSATION 
LIMITED_BUFFER_POOL_ID: buffer pool ID 
PERMANENT_BUFFER_POOL_ID: buffer pool ID 
POST CONDITIONS: 

FILL: possible values: BUFFER, LL 
MAX_LENGTH: maximum number of bytes in incoming logical record or buffer 

LOCKS: possible values: SHORT, LONG 
SEND_RU_SIZE: maximum number of bytes for outgoing MU record 
R~TO_SEND_RCVD: possible values: YES, NO 
HS_TO_PS_BUFFER_LIST: list of MU data structures !see page A-29) 

Data Unique to PS.MC 

MC RECEIVE_BUFFER: contains RECEIVED_INFO !see page A-7) 
MAPPER_SAVE_AREA: contains information used in mapping 
MC_MAX_SEND_SIZE: maximum number of bytes in a mapped-conversation logical record 
MC_RQ_TO_SEND_RCVD: possible values: YES, NO 

RECEIVED_INFO 

RECEIVED_INFO is the structure that is inserted into the MC_RECEIVE_BUFFER_LIST. The 
MC_RECEIVE_BUFFER_LIST is contained within an RCB and consists of information received by 
PS.MC ("Chapter 5.2. Presentation Services--Mapped Conversation Verbs") but not yet passed 
to the transaction program. 

RECEIVED INFO 
TYPE:- possible values: MAP_NAME, MAP_NAME_AND_DATA_CONTINUED, 

DATA_CONTINUED, MAPPED_DATA, INDICATOR, RC 

RCB 

Appendix A. Node Data Structures A-7 



SCB 

SCB 

There is one SCB per half-session. SCBs are maintained by the resources manager. 

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one local LU knows another (partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

SCB 

2. LU names consist of type-G symbol strings. Network-qualified LU names and 
mode names consist of type-A symbol strings. See SNA Formats for 
symbol-string definitions. 

Data Unique to RM 

HS ID: unique SCB identifier 
SESSION_IDENTIFIER: ID used to identify session in BIND 
LU_NAME: partner LU name Csee Notes) 
MODE_NAME: mode name I see Note 21 
RCB_ID: ID of RCB representing the conversation that is using this session; null 
if no conversation is using this session 

FIRST_SPEAKER: possible values: YES, NO 
SEND_RU_SIZE: maximum number of bytes for an outgoing MU record 
LIMITED_BUFFER_POOL_ID: buffer pool ID 
PERMANENT_BUFFER_POOL_ID: buffer pool ID 
BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

RTR_OHED: possible values: TRUE, FALSE 
FULLY_QUALIFIED_LU_NAME: partner network-qualified LU name lsee Note 21 
RANDOM_DATA: used to validate FMH-12 

A-8 SNA LU 6.2 Reference: Peer Protocols 

c~ 

c:~ 

c 



() 

C-' 
) 

I .~­.Li 

TCB 

TCB 

The TCB_LIST contains information about active transaction program instances. There is 
one TCB_LIST per local LU and one TCB per active transaction program instance rl.l'Vling at 
that LU. The TCB_LIST is managed by RM !"Chapter 3. LU Resources Manager"). Entries are 
added to and deleted from the TCB_LIST by the resources manager. The TCB_LIST is also 
referenced by presentation services, e.g., PS.CONY I "Chapter 5.1. Presentation Serv­
ices--Conversation Verbs"). 

Each TCB contains an embedded RESOURCES_LIST, which contains one lpointerl entry for each 
resource associated with a particular transaction program instance. 

NOTES: 1. See SNA Transaction Pr~rammer's Reference Manual for LU~ 6.2 for a list 
of vaITd sylilbOl-string ypes for th8 Transachon program name an<rAccess Secu­
rity Information. 

TCB 

2. Each entry in the RESOURCES_LIST has a corresponding entry in the RCB_LIST. 
The RCB_LIST contains entries for all the resources associated with all the 
transaction program instances running at the LU. In contrast, the 
RESOURCES_LIST contains entries for only those resources associated with a 
particular transaction program instance. 

Shared Data used by Rl1 and PS. Initialized by RM. 

TCB_ID: identifies the PS process 
TRANSACTION_PROGRAl1_NAl1E: lsee Note 11 
OHN_LU_ID: 
LUH_IDENTIFIER 

FULLY_QUALIFIED_LU_NAME: 
LUH_INSTANCE: 
LUH_SEQUENCE_NUMBER: 

RESOURCES LIST: (see Note 2) 
CONTROLLING_COMPONENT: possible values: TP, SERVICE COMPONENT 
INITIATING_SECURITY: initiating security information Ts received on the Attach 
that started this TP lsee Note lJ 

PROFILE: 
USERID: 

ABORT_HS 

ABORT_HS indicates to the session manager that the half-session has fol.nd a severe error 
and cannot continue processing. This will cause an UNBIND to be sent for the aborted 
half-session. 

ABORT HS 
Hs:ID: identifies the half-session sending this record 
SENSE_CODE: indicates the reason the half-session aborted 

Appendix A. Node Data Structures A-9 



INIT_HS_RSP 

INIT_HS_RSP 

This record is a response to the INIT_HS record that was sent from the session manager to 
the half-session to initialize the half-session. The response indicates whether or not 
the initialization was successful IPOSJ or not INEGJ. Hhen NEG, the reason is indicated 
by the sense data in SENSE_CODE. 

INIT_HS_RSP 
TYPE: possible values: POS, NEG 
SENSE_CODE: indicating the type of error (reserved when TYPE=POSJ 
HS_ID: identifies the half-session sending the record 

CONFIRMED 

CONFIRMED is sent by the half-session to PS_CONV to inform PS CONV that a positive 
response to the previous request for confirmation has been received: 

CONFIRMED 
BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

RECEIVE_ERROR 

RECEIVE_ERROR is sent by the half-session to PS_CONV to inform PS_CONV that a -RSPI0846l 
has been received. 

RECEIVE ERROR 
BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

REQUEST_TO_SEND 

REQUEST_TO_SEND is sent by the half-session to PS_CONV to inform PS_CONV that the trans­
action program at the partner LU has requested to enter the send state for the conversa­
tion. 

REQUEST_TO_SEND 
BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

A-10 SNA LU 6.2 Reference: Peer Protocols 

C~' 

c 



C .. ·, 
/ 

G 

RSP_TO_REQUEST_TO_SEND 

RSP_TO_REQUEST_TO_SEND 

RSP_TO_REQUEST_TO_SEND is sent by the half-session to PS_CONV to inform PS_CONV that the 
response to the previous l1U (with PS_TO_HS.PS_TO_HS_VARIANT=REQUEST_TO_SEND -- page A-29 J 
has been received. 

RSP_TO_REQUEST_TO_SEND 
BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

BID 

BID is sent by the half-session to the resources manager to inform the resources manager 
that the partner LU has requested permission to use the half-session for a conversation. 
The resources manager replies with a BID_RSP record !page A-llJ. The half-session sends a 
BID record to the resources manager even if the partner LU is the first-speaker. 

BID 
HS_ID: identifies the half-session sending this record 

BID_RSP 

BID_RSP is sent by the half-session to the resources manager to inform the resources man­
ager of the partner LU's response to the local LU's request to use the session (see 
BID_HITHOUT_ATTACH [page A-17)). BID_RSP is sent by the half-session only if the local LU 
is the bidder. If RTI = NEG, SENSE_COD~ contains the sense data carried on the negative 
response. 

BID_RSP is also sent by the resources manager to the half-session in response to a previ­
ous BID record (page A-llJ from the half-session. If RTI = POS, the partner LU is granted 
permission to use the session. If RTI = NEG, permission is denied and SENSE_CODE contains 
the sense data to be sent on the negative response. 

BID_RSP 
HS_ID: identifies the half-session sending this record 
RTI: type of response--possible values: POS, NEG 
SENSE_CODE: indicates the type of error (reserved when RTI=POSJ 

Appendix A. Node Data Structures A-11 



BIS_RQ 

BIS_RQ 

BIS_RQ is sent by the half-session to the resources manager to inform the resources manag­
er that a BISIRQEll request unit was received. 

BIS RQ is also sent by the resources manager to the half-session to request the half ses­
sio~ to send a BISIRQEll request unit. 

BIS_RQ 
HS_ID: identifies the half-session sending this record 

BIS_REPLY 

BIS REPLY is sent by the half-session to the resources manager to inform the resources 
man;ger that a BISIRQE3) request unit was received. 

BIS_REPLY is also sent by the resources manager to the half-session to request the 
half-session to send a BISIRQE3) request unit. 

BIS_REPLY 
HS_ID: identifies the half-session sending this record 

FREE_ SESSION 

FREE SESSION is sent by the half-session to the resources manager to inform the resources 
manager that the half-session has become free li.e., not in use by a conversation). 

FREE_ SESSION 
HS_ID: identifies the half-session sending this record I the half-session that 

has become free ) 

RTR_RQ 

RTR_RQ is sent by the half-session to the resources manager to inform the resources manag­
er that an RTR request unit was received. 

RTR_RQ is also sent by the resources manager to the half-session to request the 
half-session to send an RTR request unit. 

RTR_RQ 
HS_ID: identifies the half-session sending this record 

A-12 SNA LU 6.2 Reference: Peer Protocols 

r 
\ __ _ 

c\ 



c. 

c_:-

/-----. 

\_____) 

(_~-

RTR_RSP 

RTR_RSP 

RTR_RSP is sent by the half-session to the resources manager to inform the resources man­
ager that an RTR response unit was received. If RTI = NEG, SENSE_CODE contains the sense 
data carried on the negative response. 

RTR_RSP is also sent by the resources manager to the half-session to request the 
half-session to send an RTR response unit. If RTI = NEG, SENSE_CODE contains the sense 
data to be sent with the negative response. 

RTR RSP 
HS ID: identifies the half-session sending this record 
RTI type of response: possible values: POS, NEG 
SENSE_CODE: indicates the type of error I reserved when RTI=POSJ 

INIT_HS 

This record contains the information necessary for the half-session to initialize itself. 
It is sent when a successful session activation occurs and contains information from the 
BIND RU. 

INIT HS 
PATH_CONTROL_ID: identifies the path control the half-session communicates with 
TYPE of half-session: possible values: PRI, SEC 
DYNAMIC_BUFFER_POOL_ID: buffer pool ID 
LIMITED_BUFFER_POOL_ID: buffer pool ID 
LSFID: see page A-28 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
SHORT_BIND_IMAGE: the first 26 bytes of the negotiated BIND image 

(see BIND in SNA Formats) 

ACTIVATE_SESSION_RSP 

ACTIVATE_SESSION_RSP is sent by the session manager to the resources manager in reply to 
an ACTIVATE_SESSION record lpage A-20). ACTIVATE_SESSION_RSP records need not be sent in 
the same order as the ACTIVATE SESSION records, so CORRELATOR is used to correlate the 
ACTIVATE SESSION RSP to the ACTIVATE_SESSION. If TYPE = POS la session was activated), 
SESSION_INFORMATION specifies session characteristics. If TYPE = NEG la session was not 
activated), ERROR_TYPE contains a retry/no-retry indication. 

ACTIVATE_SESSION_RSP 
CORRELATOR: as supplied in ACTIVATE_SESSION I see page A-20) 
TYPE of response: possible values: POS, NEG 

- SESSION_INFORMATION: (reserved when TYPE=NEG--see page A-32) 
ERROR_TYPE: possible values: RETRY, NO_RETRY I reserved when TYPE=POSJ 

Appendix A. Node Data Structures A-13 



SESSION_ACTIYATED 

SESSION_ACTIVATED 

SESSION_ACTIVATED is sent by the session manager to the resources manager to notify the 
resources manager that the partner LU named by LU_NAHE and MODE_NAME has activated a ses­
sion to this LU. The characteristics of the session are specified in SESSION_INFORHATION. 

NOTES: 1. The !partner) LU_NAHE is the name that a transaction program specifies in con­
junction with MODE_NAME when requesting the allocation of a conversation. It 
is a local name by whiCh one local LU· knows another (partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

2. LU names consist of type-G symbol strings. Hoda names consist of type-A sym­
bol strings. See SNA Formats for symbol-string definitions. 

SESSION_ACTIVATED 
SESSION_INFORHATION: (see page A-32) 
LU_NAME: I see Notes l and 21 
MODE_NAME: (see Note 21 

SESSION_DEACTIVATED 

SESSION_DEACTIVATED is sent by the session manager to the resources manager to notify the 
resources manager that the session identified by HS_ID has been deactivated. It is also 
used internally in the resources manager. 

SESSION_DEACTIVATED 
HS ID: identifies the half-session that was deactivated 
REASON for deactivation: possible values: NORMAL, ABNORMAL_RETRY, ABNORHAL_NO_RETRY 
SENSE_CODE: provides additional information on 

session deactivation I reserved when REASON= NORMAL). 

SEND_ERROR 

SEND_ERROR is sent by PS_CONV to the half-session to request the half-session to send a 
-RSPI 0846 J. 

SEND_ERROR 

A-14 SNA LU 6.2 Reference: Peer Protocols 

C. 



(- . 
\____._../ 

l-----\. 
/ 

() 

ALLOCATE_RCB 

ALLOCATE_RCB 

ALLOCATE_RCB is sent by PS.CONY to the resources manager to request creation and 1nitial­
ization of a resource control block. The resources manager also attempts to reserve a 
first-speaker session if IMMEDIATE_SESSION = YES. The resources manager replies to the 
ALLOCATE_RCB with an RCB_ALLOCATED record lpage A-21). 

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one local LU knows another (partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See SNA Formats for symbol-string definitions. 

ALLOCATE_RCB 
TCB_ID: ID of PS process that sent ALLOCATE_RCB 
LU_NAME: Csee Notes l and 2) 
MODE_NAME: Csee Note 2J 
IMMEDIATE_SESSION: possible values: YES, NO 
SYNC_LEVEL: possible values: NONE, CONFIRM, SYNCPT 
SECURITY_SELECT: possible values: NONE, SAME, PGM 

CHANGE_ SESSIONS 

CHANGE_SESSIONS is sent by PS.COPR to the resources manager to inform the resources manag­
er of a change in the session limits for CLU_NAME, MODE_NAMEl. PS.COPR changes theses­
sion limits in the MODE control block (page A-3) before sending this record to the 
resources manager. RESPONSIBLE = YES if this LU is responsible for deactivating sessions 
to satisfy ·the new session limits. DELTA contains the lsignedl difference between the 
current MODE.SESSION_LIMIT and the previous MODE.SESSION_LIMIT. 

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one local LU knows another (partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See SNA Formats for symbol string definitions. 

CHANGE_ SESSIONS 
TCB_ID: ID of the PS process that sent CHANGE_SESSIONS 
RESPONSIBLE: possible values: YES, NO 
LU_NAME: (see Notes l and 2J 
MODE_NAME: I see Note 2) 
DELTA: change in MODE.SESSION_LIMIT 

Appendix A. Node Data Structures A-15 



DEALLOCATE_RCB 

DEALLOCATE_RCB 

DEALLOCATE_RCB is sent by PS.CONV to the resources manager to request destruction of the 
resource control block identified by RCB_ID. The resources manager replies to the DEALLO­
CATE_RCB with an RCB_DEALLOCATED record lpage A-21). 

DEALLOCATE_RCB 
TCB_ID: ID of the PS process that sent DEALLOCATE_RCB 
RCB_ID: ID of the RCB to deallocate 

GET_SESSION 

GET_SESSION is sent by PS.CONV to the resources manager to request the allocation of a 
session to the conversation identified by RCB_ID. The resources manager replies to the 
GET_SESSION with a SESSION_ALLOCATED record lpage A-22). 

GET_SESSION 
TCB_ID: 
RCB_ID: 

ID of the PS process that sent GET_SESSION 
ID of the conversation 

RM_ACTIVATE_SESSION 

RM_ACTIVATE_SESSION is sent by PS.COPR to the resources manager to request activation of a 
new session with the partner LU identified by LU_NAME on the mode name identified by 
MODE_NAME. This record is sent as a result of the ACTIVATE_SESSION control operator verb. 

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one local LU knows another (partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See SNA Formats for symbol-string definitions. 

RM ACTIVATE SESSION 
-TCB_ID: -ID of the PS process that sent RM_ACTIVATE_SESSION 

LU_NAME: (see Notes l and 2) 
MODE_NAME: (see Note 2) 

A-16 SNA LU 6.2 Reference: Peer Protocols 

(_-, 

c 



RH_DEACTIVATE_SESSION 

RM_DEACTIVATE_SESSICN 

RH_DEACTIVATE_SESSION is sent by PS.COPR to the resources manager to request deactivation 
of the session identified by SESSION_ID. This record is sent as a result of the DEACTI­
VATE_SESSION control-operator verb. 

RM_DEACTIVATE_SESSION 
TCB_ID: ID of the PS process that sent RM_DEACTIVATE_SESSION 
SESSION ID: identifies the session 
TYPE: possible values: NORMAL. CLEANUP 

TERHINATE_PS 

TERHINATE_PS is sent by PS_INITIALIZE to the resources manager to request termination of 
the process that comprises presentation services and the transaction program. 

TERHINATE_PS 
TCB_ID: ID of the PS process to be terminated 

UNBIND_PROTOCOL_ERROR 

UNBIND_PROTOCOL_ERROR is sent by PS_CONV or PS_INITIALIZE to the resources manager to 
request abnormal termination of the session identified by HS_ID. The record is sent when 
the partner LU commits a serious protocol error. The sense data to be carried on the 
UNBIND is in SENSE_CODE. 

UNBIND PROTOCOL ERROR 
TCB_ID: ID ~f the PS process that sent UNBIND_PROTOCOL_ERROR 
HS_ID: ID of the half-session to be deactivated 
SENSE_CODE: 

BID_HITHOUT_ATTACH 

BID_HITHOUT_ATTACH is sent by the resources manager to the half-session to request permis­
sion I from the partner LUJ to use the session. The request for permission is not accompa­
nied by any other data. The resources manager sends BID_HITHOUT_ATTACH only if this LU is 
the bidder, since it does not need permission from the partner LU to use a first-speaker 
session. The half-session informs the resources manager of the partner LU's response with 
a BID_RSP record lpage A-llJ. 

BID_HITHOUT_ATTACH 

Appendix A. Node Data Structures A-17 



I 
'' I', 

BRACKET_FREE,D 
I 

I 

BRACKET_FREED 

BRACKET_FREED is sent by the resources manager to the half-session 
half-session that it may purge records from PS with a matching BRACKET_ID. 
sent after PS has sent DEALLOCATE_RCB for the bracket. 

to inform the 
This signal is 

BRACKET FREED 
BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

ENCIPHERED_RDZ 

ENCIPHERED_RDZ is sent by RM to the half-session to request the half-session to send an 
FMH-lZ. 

ENCIPHERED_RDZ 
SEND_PARM: I see page A-3Z) 

HS_PS_CONNECTED 

HS_PS_CONNECTED is sent by the resources manager to the half-session to inform the 
half-session that it has been connected to a presentation services process. This occurs 
as a result of the allocation of a session to a conversation. 

HS PS CONNECTED 
-ps:ID: ID of a presentation services process 

BRACKET_ID: unique value generated by RM to identify all records for a 
given conversation. 

RM_HS_CONNECTED 

RM_HS_CONNECTED is sent by the resources manager to the half-session to inform the 
half-session that it may forward incoming data (e.g., FMH-5s) to RM. This occurs after 
the session manager has informed RM that HS has been successfully initialized. 

RM_HS_CONNECTED 

A-18 SNA LU 6.2 Reference: Peer Protocols 

() 

c 



0 

c: 

YIELD_SESSION 

YIELD_SESSION 

YIELD_SESSION is sent by the resources manager to the half-session to end the open bracket 
in a newly activated session. Hhen a session is activated, the session comes up in the 
"in-bracket" state, with the primary LU in control. If the resources manager at the pri­
mary LU does not have a waiting session-allocation request (see GET_SESSION, page A-16 ), 
it sends YIELD SESSION to the· half-session; the half-session then reverts to contention 
state. -

YIELD_SESSION 

START_TP 

START TP is sent from a local node component to the resources manager to request initi­
ation-of a transaction program. It is also sent from the resources manager to presenta­
tion services during the initiation processing. 

NOTES: 

START_TP 

1. The local LU name is the name by which the receiver of the START TP knows the 
originator of the START_TP. This field is used for security- "come-from" 
checking of START_TP records. If come-from checking is not required by the 
target transaction program, this field is not referenced by the receiver. 

2. The network-qualified LU name is specified by the issuer of START_TP. The 
name specified uniquely identifies an LU. If the receiver of the START TP has 
a network-qualified LU name, the name specified is always network-qualified. 

·This LU name is used to generate logical-unit-of-work identifiers CLUH IDs). 
The non-LU 6.2 request originator never generates its own LUH IDs. The LUH ID 
is used for sync point conversations, network problem determination, and net­
work accounting functions. Node component procedures that are able to send 
START_TP records to RM are considered privileged, protected processes with 
content security li.e., integrity). These procedures may supply the 
network-qualified LU name of the requester or an Already-Verified indication 
for security li.e., a user ID indicated as already verified, thus eliminating 
the need for a password). 

REPLY: possible values: YES, NO 
TARGET TP NAME: name of the TP to be started 
SECURITY_SELECT: possible values: NONE, PGM, ALREADY_VERIFIED 
SECURITY (reserved when SECURITY_SELECT=NONE) 

PROFILE: 
PASSHORD: 
USER ID: 

TCB ID:- transaction program instance identifier 
PIP=LIST: list of PIP_DATA 
FULLY_QUALIFIED_LU_NAME: initiator network-qualified LU name 

Appendix A. Node Data Structures A-19 



START_TP_REPLY 

START_TP_REPLY (" 

START TP REPLY is sent by the resources manager to the local node component that sent the 
START:TP-record. 

START_TP_REPLY 
RESPONSE_CODE: possible values: OK, PIP_NOT_ALLOHED, PIP_NOT_SPECIFIED_CORRECTLY, 

TPN_NOT_RECOGNIZED, TRANS_PGH_NOT_AVAILABLE_RETRY, INVALID_FULLY_~ALIFIED_LU_NAME, 
PS_CREATION_FAILURE, TRANS_PGM_NOT_AVAIL_NO_RETRY, SECURITY_NOT_VALID 

TCB_ID: transaction program instance identifier 

SEND_RTR 

SEND RTR is sent to the resources manager to prompt the resources manager to send an RTR 
requ;st on the session specified by HS_ID. 

SEND_RTR 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\ 
\ ___ ) ACTIVATE_ SESSION 

ACTIVATE_SESSION is sent by the resources manager to the session manager to request the 
activation of a session of type SESSION_TYPE with the partner LU identified by LU_NAME and 
mode name identified by MODE_NAME. Session manager replies to ACTIVATE_SESSION with an 
ACTIVATE_SESSION_RSP record !page A-13) that has the same CORRELATOR value as that in the 
ACTIVATE_SESSION. 

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one local LU knows another !partner) LU and is not 
sent outside the local LU. The maximum length of the LU_NAME is 
implementation-defined. 

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See SNA Formats for symbol-string definitions. 

ACTIVATE_SESSION 
CORRELATOR: 
SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER 
LU NAME: (see Notes 1 and 2) 
MODE_NAME: !see Note 2) 

A-20 SNA LU 6.2 Reference: Peer Protocols 

c 



DEACTIVATE_SESSION 

DEACTIVATE_SESSION 

DEACTIVATE SESSION is sent by the resources manager to session manager to request the 
deactivati~n of a session. If STATUS = ACTIVE, the session is identified by HS_ID. If 
STATUS = PENDING, the session is identified by CORRELATOR, which contains the same value 
used in the ACTIVATE_SESSION request. 

DEACTIVATE SESSION 
STATUS:- possible values: ACTIVE, PENDING 
CORRELATOR: I reserved when STATUS=ACTIVE) 
HS ID: I reserved when STATUS= PENDING) 
TYPE of deactivation: possible values: NORMAL, CLEANUP, ABNORMAL 

(CLEANUP or ABNORMAL imply STATUS=ACTIVE) 
SENSE_CODE: reason for deactivation 

CONVERSATION_FAILURE 

CONVERSATION FAILURE is sent by the resources manager to PS_CONV to notify presentation 
services of the failure of the conversation identified by RCB_ID. 

CONVERSATION FAILURE 
RCB_ID: ID of failed conversation 
REASON: possible values: SON, PROTOCOL_VIOLATION 

RCB_ALLOCATED 

RCB ALLOCATED is sent by the resources manager to PS_CONV in reply to an ALLOCATE RCB 
lpage A-15). RETURN_CODE indicates the success of the allocation. If RETURN CODE = OK, 
RCB_ID contains the ID of the newly created resource control block. -

RCB_ALLOCATED 
RETURN CODE: possible values: OK, UNSUCCESSFUL, SYNC_LEVEL_NOT_SUPPORTED 
RCB_ID~ ID of newly created resource control block (reserved when RETURN_CODE~OKl 
SEND RU SIZE: maximum size of an RU on this session 
LIMITED=BUFFER_POOL_ID: buffer pool ID 
PERMANENT_BUFFER_POOL~ID: buffer pool ID 

RCB_DEALLOCATED 

RCB DEALLOCATED is sent by the resources manager to PS_CONV in reply to a DEALLOCATE_RCB 
rec~rd lpage A-16). 

RCB_DEALLOCATED 

Appendix A. Node Data Structures A-21 



RM_SESSION_ACTIVATED 

RM_SESSION_ACTIVATED 

RM SESSION_ACTIVATED is sent by the 
RM_ACTIVATE_SESSION record (page A-161. 
is indicated in the RETURN_CODE field. 

RM SESSION ACTIVATED 

resources manager to PS_COPR in reply to an 
The success or failure of the session activation 

-RETURN_CODE: possible values: OK, ACTIVATION_FAILURE_NO_RETRY, 
ACTIVATION_FAILURE_RETRY, LU_MODE_SESSION_LIMIT_EXCEEDED 

SESSION_ALLOCATED 

SESSION_ALLOCATED is sent by the resources manager to PS_CONV in reply to a GET SESSION 
record (page A-16). RETURN_CODE indicates the success or failure of the sessi~n allo­
cation. 

SESSION_ALLOCATED 
SEND RU SIZE: maximum size or an RU on this session 
LIMITED=BUFFER_POOL_ID: buffer pool ID 
PERMANENT_BUFFER_POOL_ID: buffer pool ID 
IN_CONVERSATION: possible values: YES, NO 
RETURN_CODE: possible values: OK, UNSUCCESSFUL_RETRY, UNSUCCESSFUL_NO_RETRY, 

SYNC_LEVEL_NOT_SUPPORTED 

c 

.--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.,~ 
ASSIGN_PCID 1, 

SM sends this message to SS to request the assignment of a FQPCID. The FQPCID that is 
assigned is returned in an ASSIGN_PCID_RSP message. 

If the DUPLICATE_PCID field in the ASSIGN_PCID message has a value of YES, it indicates 
that the last FQPCID assigned by SS to the requesting SM had the same value as another 
FQPCID already being used by that SM. This can occur when two nodes in the network have 
the same CP names. 

ASSIGN_PCID 
SM_PROCESS_ID: 
DUPLICATE_PCID: 

requesting SM process ID 
possible values: YES, NO 

A-22 SNA LU 6.2 Reference: Peer Protocols 



( 
"'-..__ ... /' 

ASSIGN_PCID_RSP 

ASSIGN_PCID_RSP 

SS returns this message in response to an ASSIGN_PCID message, received from SH. It con­
tains the FQPCID that is assigned. 

ASSIGN_PCID_RSP . 
FQPCID: fully qualified procedure correlator identifier 

INIT_SIGNAL_NEG_RSP 

SS sends this message in response to an INIT_SIGNAL message received from SH. It is sent 
when the session initiation request in the INIT_SIGNAL message cannot be satisfied. 

INIT SIGNAL NEG RSP 
FQPCID: -fully qualified procedure correlator identifier 

CINIT_SIGNAL 

SS sends this message in response to an INIT_SIGNAL message received from SH. It contains 
the information that SH needs to build and send a BIND. 

CINIT_SIGNAL 
FQPCID: fully qualified procedure correlator identifier 
PATH_CONTROL_ID: session path control ID 
PC_CHARACTERISTICS: see page A-32 
COS_TPF_PRESENT: possible values: YES, NO 
COS TPF: see SNA Formats for format 

INIT_SIGNAL 

SH sends this message to SS in order to obtain the information necessary to build and send 
a BIND. SS sends either an INIT_SIGNAL_NEG_RSP message or a CINIT_SIGNAL message in 
response. 

INIT SIGNAL 
SM_PROCESS_ID: requesting SH process identifier 
FQPCID: fully qualified procedure correlator identifier 
SLU_NAHE: secondary LU name 
PLU_NAHE: primary LU name 
HODE_NAHE: mode name 

Appendix.A. Node Data Structures A-23 



SESSST_SIGNAL 

SESSST_SIGNAL 

SH sends this message to SS whenever it successfully processes a received BIND. 

SESSST_SIGNAL 
PATH_CONTROL_ID: pa.th control identifier 

.------------~C' 
SESSEND_SIGNAL 

SH sends this message to SS whenever a session is terminated. 

The SENSE_CODE field has a nonzero value only when the session terminated abnonnally. 

SESS_END_SIGNAL 
SENSE_CODE: nonzero when session terminated abnormally 
FQPCID: fully qualified procedure correlator identifier 
PATH_CONTROL_ID: path control identifier 

PC_HS_DISCONNECT 

PC_HS_DISCONNECT instructs path control to detach the half-session. 

PC_HS_DISCOl'f\IECT 
PATH_CONTROL_ID: path control identifier 
LFSID: see page A-28 

SESSION_ROUTE_INOP 

SESSION_ROUTE_INOP informs all the SHs that a particular route (identified by 
PATH_CONTROL_IDJ is lost and that all sessions (active and pending) using that route must 
be taken down. 

SESSION_ROUTE_INOP 
PATH_CONTROL_ID: path control identifier 

A-24 SNA LU 6.2 Reference: Peer Protocols 

0 

c· 

c 



c) 

ABEND_NOTIFICATION 
ABENDING PROCESS: name of the abending process 
PROCESS_ID: ID of the abending process 
REASON: cause of abend 

ASSIGN_LFSID 

ABEND_NOTIFICATION 

ASSIGN_LFSID requests the procurement of a local LFSID from the specified address space. 
The LFSID is to be associated with the specified SH. The assigned LFSID is returned to SM 
in the ASSIGN_LFSID_RSP signal. 

ASSIGN_LFSID 
PATH_CONTROL_ID: path control identifier 
SH_PROCESS_ID: SH identity for the LFSID 
PROCESS_ID_TYPE: possible values: SH 
SENSE_CODE: 
LFSID: see page A-28 

FREE_LFSID 

FREE_LFSID requests that a previously assigned LFSID be freed (marked not in-use). No 
response is returned. 

FREE_LFSID 
PATH CONTROL ID: path control identifier 
LFSID: ID to be freed--see page A-28 

LFSID_IN_USE_RSP 

The LFSID_IN_USE_RSP signal resolves the question of whether or not another node has tried 
to use a LFSID already marked in-use by ASH. The LFSID_IN_USE signal has chased any work 
queued to the SH, and by the time ASH gets this LFSID_IN_USE_RSP, the question of dupli­
cate LFSID usage has been correctly ascertained (any UNBIND processing that was in 
progress has been completed). 

LFSID_IN_USE_RSP 
PATH_CONTROL_ID: path contol identifier 
LFSID: see page A-28 
ANSHER: possible values: YES, NO 

Appendix A. Node Data Structures A-25 



ASSIGN_LFSID_RSP 

ASSIGN_LFSID_RSP 

ASM sends this message in response to an ASSIGN_LFSID message, requesting the assigrvnent 
of an LFSID to a particular SM. It contains the LFSID that was assigned. 

If the SENSE_CODE field has a nonzero value,- it indicates that an LFSID was not assigned. 

ASSIGN LFSID RSP 
PATH_CONTROL_ID: path control identifier 
SM_PROCESS_ID: SM identity for the LFSID 
PROCESS_ID_TYPE: possible values: SM 
SENSE_CODE: 
LFSID: see page A-28 

LFSID_IN_USE 

The LFSID_IN_USE signal asks the SM if an LFSID is still in-use. A BIND was received wHh 
an LFSID that appears to be still in-use. However, the node on the other end of the link 

c 

may just be faster. This signal will chase any work queued to the SM, and by the time ASM /-----.__\ 
gets the LFSID_IN_USE_RSP, the question of duplicate LFSID usage can be correctly ascer-
tained. , ____ .,/ 

LFSID_IN_USE 
PATH_CONTROL_ID: path control identifier 
LFSID: see page A-28 
ANSWER: possible values: YES, NO 

HS_CREATE_PARMS 

This signal contains the data that HS requires to initialize itself. 

HS_CREATE_PARMS 
LU_ID: LU, RM, and SM process ID 
HS_ID: ID of the newly created half-session 

A-26 SNA LU 6.2 Reference: Peer Protocols 



() 

PS_CREATE_PARHS 

This signal contains the data that PS requires to initialize itself. 

PS_CREATE_PARHS 
LUCB_LIST_PTR: pointer to the LUCB_LIST 
LU_ID: ID of this PS's LU and RM process 
TCB_LIST_PTR: pointer to the TCB_LIST 
TCB_ID: ID of this PS process 
RCB_LIST_PTR: pointer to the RCB_LIST 

RM_CREATE_PARMS 

This signal contains the data that RM requires to initialize itself. 

RM_CREATE_PARMS 
LUCB_LIST_PTR: pointer to the LUCB_LIST 
LU_ID: LU process ID 

SM_CREATE_PARMS 

This signal ·contains the data that SM requires to initialize itself. 

SM_CREATE_PARMS 
LU_ID: LU process ID 
LUCB_LIST_PTR: pointer to the list of LUCBs 

RM_CREATED 
LU_ID: ID of the created RM 

CRV_R<l_RU 

CRV_R<l_RU 
R<l_CODE: possible values: X'CO' (signifying CRVJ 
CRYPTO_SEED: enciphered transform of test value from RSP!BINDJ 

PS_CREATE_PARHS 

Appendix A. Node Data Structures A-27 



LFSID 

A-28 

LFSID 

Local-Form Session Identifier ILFSIDJ associated with a half-session. 

LFSID 
SESSION_ID: 

SIDH: high-order byte of session identifier 
SIDL: low-order byte of session identifier 

ODAI: 

SNA LU 6.2 Reference: Peer Protocols 

c 



,...--, 

·L-· 

() 

MU 

A message unit (MU) is an interprocess signal that always contains a PIU ITH-RH-RU). The 
MU contains two types of PIUs: 

• session traffic: regular data flow 

• nonsession traffic: BIND, ±RSPIBIND>, UNBIND, and ±RSPIUNBIND) 

The MU contains a header that varies depending upon the type of PIU. 

MU 
HEADER_TYPE: possible values: BIND_Rll_SEND, BIND_RSP_SEND, UNBIND_Rll_SEND, 

UNBIND_Rll_RCV, UNBIND_RSP_SEND, BIND_Rll_RCV, BIND_RSP_RCV, HS_TO_RM, RM_TO_PS, 
HS_TO_PS, PS_TO_HS 

BIND_Rll_SEND 
LU_ID: LU identifier 
SENDER: 

Header type BIND_Rll_SEND fields. 

ID: sending p~ocess ID 
TYPE: possible values: SH 

HS_ID: half-session ID for the session 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
LFSID: see page A-28 
PATH_CONTROL_ID: path control identifier 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

BIND_RSP SEND 
SENDER: 

Header type BIND_RSP_SEND fields. 

ID: sending process ID 
TYPE: possible values: SM 

LFSID: see page A-28 
HS ID: half-session ID for the session 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
PATH_CONTROL_ID: path control identifier 
FREE LFSID: 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

UNBIND_Rll_SEND 
SENDER: 

Header type UNBIND_Rll_SEND fields. 

ID: sending process ID 
TYPE: possible values: SM 

LFSID: see page A-28 
HS ID: 
TRANsMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
FREE_LFSID: possible values: YES, NO 
PATH_CONTROL_ID: path control identifier 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

HU 

Appendix A. Node Data Structures A-Z9 



MU 

UNBIND_RQ_RCV 
SENDER: 

Header type UNBIND_RQ_RCV fields. 

ID: sending process ID 
TYPE: possible values: SM 

LFSID: see page A-28 
HS ID: 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
FREE_LFSID: possible values: YES, NO 
PATH_CONTROL_ID: path control identifier 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

UNBIND_RSP_SEND 
LU_ID: 
SENDER: 

Header type UNBIND_RSP_SEND fields. 

ID: sending process ID 
TYPE: possible values: SM 

HS_ID: half-session ID for the session 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
FREE_LFSID: possible values: YES, NO 
PATH_CONTROL_ID: -path control identifier 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

BIND_RQ_RCV 
SENDER: 

Header type BIND_RQ_RCV fields. 

ID: sending process ID 
TYPE: possible values: SM 

LFSID: see page A-28 
HS_ID: half-session ID for the session 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
FREE_LFSID: possible values: YES, NO 
PATH_CONTROL_ID: path control identifier 
PC_CHARACTERISTICS: see page A-32 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

BIND_RSP RCV 
SENDER: 

Header type BIND_RSP_RCV fields. 

ID: sending process ID 
TYPE: possible values: SM 

LFSID: see page A-28 
HS_ID: half-session ID for the session 
TRANSMISSION_PRIORITY: possible values: LOH, MEDIUM, HIGH, NETHORK 
FREE_LFSID: possible values: YES, NO 
PATH_CONTROL_ID: path control identifier 
PARALLEL_SESSIONS: parallel session support indicator 
ADAPTIVE_PACING: adaptive pacing support indicator 

A-30 SNA LU 6.2 Reference: Peer Protocols 



c, 

c: 

HS_TO_RH 
HS_ID: 

RH_TO_PS 

Header type HS_TO_RH fields. 

identifies the half-session that sent the record to RH 

Header type RH_TO_PS fields. 

HS_ID: half-session ID associated with the conversation 
TCB_ID: PS id 
RCB_ID: conversation ID 
SEND_RU_SIZE: maximum number of bytes for outgoing MU record 
LIHITED_BUFFER_POOL_ID: buffer pool ID 
PERHANENT_BUFFER_POOL_ID: buffer pool ID 
RETURN_CODE: result of the RH checks of the Attach 

Header type HS_TO_PS fields. 

HS TO PS 
-BRACKET_ID: unique value generated by RH to identify all records for a 

given conversation. 
FHH: possible values: YES, NO 
TYPE: possible values: NOT_END_OF_DATA, CONFIRM, PREPARE_TO_RCV_CONFIRH, 

PREPARE_TO_RCV_FLUSH, DEALLO~ATE_CONFIRH, DEALLOCATE_FLUSH 

Header type PS_TO_HS fields. 

PS TOHS 
-BRACKET_ID: unique value generated by RH to identify all records for a 

given· conversation. 
PS_TO_HS_VARIANT: possible values: CONFIRMED, REQUEST_TO_SEND, 

SEND_DATA_RECORD, SEND_ERROR 
ALLOCATE: possible values: YES, NO 
FHH: possible values: YES, NO 
TYPE: possible values: CONFIRM, DEALLOCATE_CONFIRH, DEALLOCATE_FLUSH, 

FLUSH, PREPARE_TO_RECEIVE_FLUSH, PREPARE_TO_RECEIVE_CONFIRH_SHORT, 
PREPARE_TO_RECEIVE_CONFIRH_LONG 

Fields present on all header types. 

DCF: data count field, length of RH and data fields 
BTU: 

PIU: 
TH: see SNA Formats for additional information 
BIU: bas!Cinformation unit 

RH: see SNA Formats for additional information 
RU: dita being sent or received 

HU 

Appendix A. Node Data Structures A-31 



PC_CHARACTERISTICS 

PC_CHARACTERISTICS. 

Defines the characteristics of path control. 

PC_CHARACTERISTICS 
HAX_SEND_BTU_SIZE: maximum basic transmission unit send size 
HAX_RCV_BTU_SIZE: maximum basic transmission unit receive size 
ADJACENT_NODE_BIND_REASSEHBLY: possible values: SUPPORTED, NOT_SUPPORTED 

SEND_PARH 

SEND PARH is a substructure that is embedded in ENCIPHERED_RD2 (page A-18). It contains 
the data to be sent to the half-session as well as an encoding of the RH bit-settings. If 
ALLOCATE = YES, this data is the first to be sent ori a conversation. If FHH = YES, DATA 
begins with an FH header (fHH-5 or FHH-71. 

SEND_PARH 
ALLOCATE: possible values: YES, NO Cif ALLOCATE=YES, DATA is first in bracket) 
FHH: possible values: YES, NO (if FHH=YES, DATA begins with FM header) 
TYPE: possible values: NOT_END_OF_DATA, FLUSH, CONFIRM, DEALLOCATE_CONFIRH, 

DEALLOCATE_FLUSH, PREPARE_TO_RCV_FLUSH, PREPARE_TO_RCV_CONF1RH_SHORT, 
PREPARE_TO_RCV_CONFIRH_LONG 

DATA: data to be sent on the session 

SESSION_INFORHATION 

SESSION_INFORHATION is a substructure that is embedded in SESSION_ACTIVATED !page A-141 
and ACTIVATE_SESSION_RSP (page·A-13). Sent from the session manager to the resources man-

c 

() 

.___a_ge_r_,_s_E_ss_I_ON ___ I_N_F_o_R_H_A_T_I_ON_c_on_t_a_i_n_s_da_t_a_abo_u_t_t_h_e_s_e_s_s_i_on __ th_a_t_ha_s_j_u_s_t_be_en_a_c_t_i_·v_a_t_e_d_. __ _, (~ 

SESSION_INFORHATION 
HS_ID: half-session identifier 
HALF_SESSION_TYPE: possible values: PRI, SEC 
BRACKET_TYPE: possible values: FIRST_SPEAKER, BIDDER 
SEND_RU_SIZE: maximum send RU size for this session 
LIHITED_BUFFER_POOL_ID: buffer pool ID 
PERHANENT_BUFFER_POOL_ID: buffer pool ID 
SESSION_IDENTIFIER: unique (for this LUJ 8-byte session identifier 
RANDOH_DATA: used to validate FHH-12 

A-32 SNA LU 6.2 Reference: Peer Protocols 

"- / 



C. 
) 

SNF 

This data structure defines the Sequence Number field in the TH. 

SNF: a 16-bit sequence number field. 
S~N: a 16-bit sequence number whose value wraps to 0 after 65535. 

BRACKET_STARTED_BY: possible values are PRI Ill or SEC 10). 
The high-order bit of the sequence number field is set when the bracket is started 
by the primary half-session and reset when the bracket is started by the secondary 
half-session. This is done so that sequence numbers on BB requests are unique. 

NUMBER: a 15-bit sequence number whose value wraps to 0 after 32767. 

SNF 

Appendix A. Node Data Structures A-33 



This page intentionally left blank 

c 

A-34 SNA LU 6.2 Reference: Peer Protocols 



(_
- - , APPENDIX B. 

') -
/ 

BUFFER MANAGER 

0 

() 

INTRODUCTION 

Each node has a buffer manager (BM), which 
controls the buffers used for the storage of 
data that flows to and from the network. 
This appendix describes the buffer manager 
functions, services, and protocol boundary 
with LU components. I Other node components 
that interact with BM generally are not dis­
cussed in this book.) 

BM provides the following functions: 

1. Controls allocation and deallocation of 
storage used for buffers 

2. Limits allocation of buffers when avail­
able storage runs low. 

3. Allows components to reserve storage in 
buffer pools to guarantee availability of 
enough blitfers to complete distinct 
tasks. 

4. Allows processes to suspend processing 
pending availability of storage for buff­
ers. 

Two pacing indicators are used by BM. 

1. Pacing indicator IPI): A pacing request 
is a normal-flow request that has the PI 
bit lin the RH) set to PAC. Hhen it is 
set, it indicates that an RU is the first 
RU in the last window granted permissroii 
to be sent, and a new send window is 
requested. Otherwise, the PI bit is set 
to· ~PAC, indicating a new send window is 
not needed. 

TYPES OF BUFFERS 

BM provides five different types of buffers, 
four of which it organizes in buffer pools: 

• Demand buffers 

• Limited buffers 

• Permanent buffers 

• Fixed dynamic buffers 

• Varying dynamic buffers 

All except demand buffers are in pools. 

2. Request Larger Hindow indicator I RLHI): 
The RLHI field in the RH is used by the 
sending side to indicate to the receiving 
side that it would like to have a larger 
window I i.e., larger than the current 
window). The RLHI bit has meaning only 
in a pacing request and is reserved in a 
response. Hhen the HS I send side ) 
receives a solicited IPM, the send resi­
dual pacing count gets updated !see Fig­
ure B-4 on page B-16 and Figure B-5 on 
page B-17 as an example). If the send 
pacing queue has more requests to be sent 
li.e., more than the current send pacing 
window), the HS (send side) sends the 
next pacing request with RLHI set I to 
RLH) to request a larger window. Other­
wise, the RLHI is set to ~RLH, indicating 
a larger window is not needed. 

Hhen a new pacing window is needed, HS sends 
a normal-flow request to its partner HS; this 
request is flagged with PAC I and RLH, if a 
larger window is requested). Hhen this 
normal-flow request is received by HS, HS 
requests a buffer from a dynamic buffer pool 
to store this normal-flow request and later 
sends it to PS. HS I on the receive side) 
passes the PI and RLHI values to BM when 
issuing the GET_BUFFER cali. to inform BM 
that a new send window land larger window, if 
RLH is set) has been requested by HS on the 
send side. (See Figure B-2 on page B-12, 
Figure B-3 on page B-13, and the GET_BUFFER 
call in this appendix for more details. ) BM 
then replenishes the pool when the same buff­
er is subsequently freed. 

A buffer pool is a set of buffers with the 
same characteristics le.g., size, use, owner, 
pool identification). BM creates a buffer 
pool upon request from SM, but HS is desig­
nated the owner of the buffer pool. After SM 
requests that BM create a buffer pool, LU 
components can get buffers from the created 
buffer pool, free buffers that they have 
removed from the buffer pool, adjust the size 
of the buffer pool, return (release) buffers 
to BM, and destroy a buffer pool or a speci­
fied number I l to all J of the buffers in a 
buffer pool. !Destroying a buffer means 
removing the buffer from the pool and making 
it unavailable to the LU components from that 

Appendix B. Buffer Manager B-1 



pool. Destroying the buffer pool means mak­
ing the pool itself no longer available to 
the LU components.) 

For three of the four types of buffer pools 
(permanent, fixed dynamic, and varying dynam­
ic), BM reserves buffers for the associated 
buffer pool when it creates the buffer pool. 
Creation of these three pools involves set­
ting the size of each buffer in the pool Ito 
some fixed value) and the number of buffers 
initially reserved for the pool in accordance 
with parameters in the CREATE_BUF _POOL used 
to create the pool, e.g., for adaptive pac­
ing, l buffer, and, for fixed pacing, the 
number of buffers in the pacing window (nego­
tiated during session initiation J. 

BM allocates storage for demand and limited 
buffers individually at GET_BUFFER time. 

The following sections describe the different 
types of buffers and pools provided by BM. 

• DEMAND BUFFERS 

Demand buffers are not reserved ahead of 
time and are not associated with a pool. 
Demand buffers are requested when 
requests for other buffer cal'V\Ot be met. 
For example, normally, HS requests a per­
manent buffer to send expedited-flow 
requests I i.e., a CRVJ and PS will 
request a permanent buffer to send 
normal-flow and expedited-flow responses. 
If no permanent buffer is available, they 
will request a demand buffer instead. 
Hhen BM receives a request for a demand 
buffer and sufficient storage exists, BM 
allocates a demand buffer to the buffer 
requester. ·u the buffer is not avail­
able, and the buffer requester is willing 
to wait las specified on the GET_BUFFER 
call l , BM queues the request I and the 
requesting process is suspended) until a 
demand buffer is available; otherwise, 
the request is rejected. 

• LIMITED BUFFER POOLS 

SH sets up a limited buffer pool for the 
session when it is created. SH creates 
the pool, designating HS as its owner, 
and initializes its limit count to the 
number of buffers neecred f~e first 
send pacing window. Buffers "belonging" 
to a limited buffer pool are allocated on 
demand like demand buffers; the differ­
ence is that the limit count can be used 
to limit those allocated for a given pur­
pose, as represented by the associated 
limited buffer pool ID. 

SH passes the limited buffer pool ID to 
HS. Hhen HS receives a pacing response 
from its pacing partner with a new send 
pacing window size, it adjusts the limit­
ed P<>ol limit count to include the new 
send pacing window size. 

RH passes the limited buffer pool identi­
fier to PS after receiving it from SH. 
PS uses a limited buffer to send a 
normal-flow request to HS. If the limit-

B-2 SNA LU 6.2 Reference: Peer Protocols 

• 

ed pool is empty I i.e., the limit count . 
is OJ, PS waits until permission to send c·, 
a new pacing window is received for the 
session and HS adjusts the pool. This ·· 
keeps PS from flooding HS with 
normal-flow requests that cannot be sent. 

The limited pool is set up to allow 
limited-buffer requests (from PS). Hhen 
PS recjuests a limited buffer and the send 
residual pacing count lwhich the limit 
count represents l has gone to O, the 
request is queued until HS adjusts the 
send residual pacing count to a value 
greater than o, which occurs when HS get 
a pacing response from its partner HS. 

PERMANENT BUFFER POOL 

The unique characteristic of the perma­
nent buffer pool is that, after a buffer 
is gotten from a permanent buffer pool,~ 
it is returned to that pool when it is\ 
freed. If all the buffers in the pool'-._./ 
are in use, no more buffers can be taken 
from the pool until one of the buffers is 
freed. After a permanent buffer pool is 
created, the number of buffers associated 
with it is adj1.1sted,· by SH, when HS 
instances are created lincreasedl or 
destroyed ldecreasedl. 

Link buffers are a special kind of perma-
nent buffer with additional restrictions. 
Hhen a DLC is created, it is assigned a,,-'"" 
pool of link buffers. Hhen a BTU is 
received from the link connection, it i~·'-...__./· 
placed in a link buffer from the assigned 
pool and sent to path control. Hhen the 
buffer is freed, it is returned to the 
pool assigned to the DLC I the same as 
other permanent buffers). Link buffers 
cannot be sent to a process that waits 
for an external event to occur Cfor this 
could potentially cause a deadlock l. The 
process always has to be able to run, 
process the link buffer, and free it 
without waiting on any outside event to~ 
occur. Received link buffers are not 
reused for responses or acknowledgments, _ ./ 
since the DLC may delay sending them. -
link buffers are used within the session 
layers whenever they will be quickly 
freed. 

The LU uses other permanent buffers for 
sending responses, expedited-flow 
requests, and IPH acknowledgments. A 
node component may call BM to get a per­
manent buffer first; if the buffer is not 
available, it may then ask for a demand 
buffer instead. In such a case, if the 
demand buffer is not available either, 
the calling process lif it does not waitl 
ends abnormally. 

• FIXED AND VARYING DYNAMIC BUFFER POOLS 

Fixed and varying dynamic buffers are 
used for session-level fixed and adaptive~' 
pacing, respectively. HS uses dynamid'- / 
buffers to store normal-flow requests 
that it receives from PC in link buffers. 



c~: 

Hhen a normal-flow request is received, a 
dynamic buffer is taken from the pool and 
the request is copied to this buffer by 
HS. 

For adaptive pacing, when the buffer 
flagged PAC is freed by PS, BM will then 
(when sufficient storage exists) send a 
BUFFERS_RESERVED signal to HS indicating 
how many new buffers have been reserved 
for its pacing partner to fill. Based on 
the BUFFERS_RESERVED signal, HS builds 
and sends a pacing response (i.e., IPMl 
to its pacing partner, informing it that 
it now has permission to send another 
pacing window. IAn IPM carries the 
next-window size, corresponding to the 
number of buffers reserved by BM, which 
reflects the availability of storage and 
the RLHI setting BM detected in the freed 
buffer carrying PAC.) The pacing partner 
updates its send residual pacing count 
upon receiving the pacing response. (See 
"Chapter 6.Z. Transmission Control" for 
details.) 

The new window size reserved by BM for 
adaptive pacing can change from one 
FREE BUFFER time to the next. At 
FREE - BUFFER time, if the buffer freed is 
flagged with PAC and RLH, it actually 
notifies BM to not only allocate a new 
window but also a bigger one than the 
current one. Depending upon the avail­
ability of dynamic buffers, BM may delay 
the reservation of the new window, it may 
decrease the size of the new window, it 
may maintain the size of the new window, 
or, if buffers are available and the 

buffer freed is flagged with PAC and RLH, 
it may increase the size of the new win­
dow. Hhen BM runs critically short of 
varying dynamic buffers, it notifies HS 
via the REDUCED version of BUFF­
ERS RESERVED. This causes TC to reset to 
0 the size of the current window by send­
ing an unsolicited pacing message (see 
"Chapter 6. Z. Transmission Control" in 
Chapter 6.Z for details). 

For fixed pacing, when the buffer flagged 
with PAC is freed by PS, BM sends a BUFF­
ERS_RESERVED signal to HS indicating that 
enough dynamic buffers are reserved to 
receive another window from its partner 
HS. The size of the window is fixed dur­
ing session initiation. Hhen a shortage 
of fixed dynamic buffers exists, BM 
delays sending BUFFERS_RESERVED to HS 
until enough buffers are again available. 
Having received the BUFFERS_RESERVED sig­
nal, HS builds and sends a pacing 
response to its partner HS informing it 
that it now has a grant for another send 
window. 

For either adaptive or fixed pacing, the 
partner HS updates its send residual pac­
ing count after receiving the pacing 
response and increases the number of 
buffers in its limited buffer pool by the 
size of the new (varying or fixed) pacing 
window (see "Chapter 6. Z. Transmission 
Control"). 
Hhen a dynamic buffer is freed, it is not 
returned to the pool it was taken from~ 
instead, BM makes it available for real­
locating wherever it is then needed. 

Appendix B. Buffer Manager B-3 



Figure B-1 summarizes the different types of 
session-managed data and the usage of buff­
ers. 

Buffer Usage Component 
Requesting Buffers 

Buffer Type 
Required 

Sending normal-flow data requests: PS 
PS uses limited buffers to 
send normal-flow data requests 
to HS, and HS passes them on 
to other processes. 

Sending expedited-flow requests: 
HS uses permanent buffers to HS, PS 
send CRV. 

PS uses permanent buffers to 
send SIGNAL RUs to HS for 
forwarding to the partner LU. 

Sending responses: HS, PS 
All buffers for sending responses 

come from the permanent buffer 
pool (e.g., IPM, IPR, IPM_ACK, 
RTR_RSP, SIGNAL_RSP, SENO_ERROR, 
CONFIRMED) 

Sending normal-flow DFC requests: HS 
Special normal-flow requests 
!i.e., BIS, RTR, and LUSTAT) 
are sent using permanent buffers. 
Hhen each such request needs to 
be sent out and limited buffers 
are not available, HS cannot wait 
for a buffer; hence, HS uses a 
permanent buffer to send the record 
instead of a limited buffer. 
However, the limited buffer pool 
size is adjusted by HS to reflect the 
correct send residual pacing count. 

Receiving normal-flow requests: HS 
HS uses a fixed or varying dynamic 
buffer to hold the received 
normal-flow request received 
from PC so that the link 
buffer can be released. 

NOTES: 

1. If a limited buffer is not available, PS suspends 
buffer pool has been destroyed. IA race condition 
all buffer pools HS owned were also destroyed. ) 
requests a demand buffer instead. 

limited 
(Note 1) 

permanent 
!Notes 2, 3) 

permanent 
(Notes 2, 3) 

permanent 
(Note 2) 

dynamic 

processing and waits for one unless the limited 
may have occurred in which HS was destroyed and 
In the absence of the limited buffer pool, PS 

2. If no permanent buffer is available, a demand buffer is requested instead. If that fails, the 
calling process ends abnormally !which causes an UNBIND to flow). 

3. Upon receipt, these RUs remain in the link buffers from DLC until they are processed and freed, 
or HS transfers them to local (not paced) storage that is not managed by the buffer manager. 

Figure B-1. Send/Receive Buffer Usage (for Session Data) 

B-4 SNA. LU 6.2 Reference: Peer Protocols 

c 



BUFFER MANAGER PROTOCOL BOUNDARY 

( ' 
~) 

() 

LU components (i.e., RM, SM, PS, HSJ and BM 
c01111111.1"1icate using the following protocol 
boundary. 

LU TO BM 

The following signals are included as parame­
ters in synchronous (Calli invocations of BM: 

• ADJUST_BUF_POOL 

• CREATE_BUF_POOL 

• DESTROY_BUF_POOL 

• FREE_BUFFER 

• GET_BUFFER 

Hith each call to BM, other appropriate 
parameters are also passed. Hhen BM adds 
buffers to a fixed or varying dynamic pool as 
part of a FREE_BUFFER or ADJUST_BUF_POOL 
action, BM notifies HS by sending a BUFF­
ERS_RESERVED signal, indicating that the nun­
ber of buffers available in the pool has 
changed. If the HS instance no longer exists 
at FREE BUFFER time, BM does not send the 
BUFFERS_RESERVED signal. 

Following are detailed descriptions of the 
LU-BM calls. 

Appendix 8. Buffer Manager 8-5 



ADJUST BUF POOL 

The ADJUST_BUF _POOL call to BH is a request 
to change the capacity of an existing pool, 
or to change the nunber of buffers in a pool 
without changing the pool capacity. The new 
capacity can be specified to be larger or 
smaller than the current pool capacity, to be 
restored to its original capacity lat pool 
creation time J, or I for varying dynamic 
pools) to reduce the capacity to the amount 
requested by BM to conserve system dynamic 
storage. 

ADJUST_BUF _POOL can also request immediate 
replenishment action in order to bring the 
number of buffers available in the pool up to 
the current pool capacity. 

An ADJUST BUF POOL call to BM contains the 
following para~eters: 

• Pool ID 

• The number of buffers to be added to or 
subtracted from the pool capacity I for 

B-6 SNA LU 6.2 Reference: Peer Protocols 

permanent pools J or the limit couit I for 
limited pools). If buffer resources arec 
limited and cannot be allocated to the 
process at ADJUST_BUF _POOL time, the -' 
ADJUST _BUF _POOL Call fails with no change 
to the number of buffers associated with 
the pool. 

• An indication to reset the number of 
buffers in the pool land capacity) to the 
initial value set by CREATE_BUF_POOL, and 
canceling any pending replenishment 
action triggered by a previous GET_BUFFER 
specifying PAC, but whose buffer has not 
yet been freed; or to leave the current 
pool size I for fixed and varying dynamic 
pools) unchanged, but to perform a pend-
ing replenishment action immediately 
I rather than at the later FREE_BUfFER 
time J; or I for varying dynamic pools J an 
indication that the pool size may be 
reduced to the size specified by BM in(" 
its previous BUFFERS_RESERVED signal,\ 
e.g., because an IPH acknowledgment has\___ _ _.,­
since been received. 

0 

c:, 



C_) 

c 

() 

CREATE BUF POOL 

The CREATE_BUF_POOL call to BM requests BM to 
create a buffer pool of a specified type: 
permanent, fixed dynamic, varying dynamic, or 
limited. For permanent, fixed, and varying 
pools, BM creates the specified number and 
size of buffers, and holds them until they 
are called for I see GET BUFFER call). For 
limited pools, the buffer; are created (allo­
cated) at GET_BUFFER time. 

The BUFFERS_RESERVED signal is not sent for 
this initial reserve action. 

~hen a process is destroyed for any reason, 
all buffer pools owned by that process are 
automatically unreserved. If a buffer pool 
is being reserved by one process for another 
process, the latter process already exists 
I has already been created J when the CRE­
ATE_BUF _POOL call is made. 

A CREATE_BUF_POOL call to the BM contains the 
following parameters: 

• 

• 

Pool type (permanent, fixed, varying, or 
limited). 

The capacity I pool size) of the buffer 
pool. This pool size does not represent 
the number of buffers in the pool at any 
one time but rather the capacity of the 
pool to hold buffers I analogous to the 
size of a swimming pool versus the amount 
of water in it). 

For permanent and fixed pools, it is 
the number of buffers initially put 
in the pool. 

For fixed pools, this is also the 
number of buffers that BM adds to the 
pool when replenishing it. 

For varying pools, this parameter is 
a performance-related "target," not a 
minimum or maximum pool size. 

• 

• 

• 

For limited pools, this pool size is 
used to set an initial value in a 
limit count field, N. If N = o, BM 
suspends the caller, if the Hait 
option on the GET_BUFFER call was 
specified, until it can supply the 
buffer; otherwise, the GET_BUFFER 
call fails to return a buffer. Each 
GET_BUFFER call decrements N by 1. 
An ADJUST_BUF_POOL call to BM is used 
to increment or decrement N. The 
rurning value of N is equal to the 
current send residual pacing COlnt. 

For limited pools, "no-limit" may be 
specified, in which case BM does not 
limit the number of buffers that can 
be associated with, and thus obtained 
from, the limited pool. Any 
ADJUST BUF POOL call for the limited 
pool i; i~red. 

The size of each buffer (e.g., 256 bytes) 
to be reserved by the BM for the pool, 
where all buffers in a pool are the same 
size. 

For varying pools, an initial number lor 
"increment") of reserved buffers (default 
of 11 in the pool. IThe model described 
in this book sets this to 1. l A multiple 
of this increment value is used at pool 
replenishment time. 

The pool owner, which becomes the recipi­
ent of the BUFFERS_RESERVED signal (from 
BMJ. The specified owning process 
instance exists at reserve time. The 
pool is deleted when the owning process 
issues a DESTROY BUF POOL call lwith All 
specified). - -

BM sets a return code indicating whether the 
buffer pool was created successfully or not 
(e.g., buffer storage not available); if suc­
cessful, BM returns the pool IO. 

Appendix B. Buffer Manager B-7 



DESTROY BUF POOL 

The DESTROY_BuF_POOL call to the BM requests 
that a specified buffer pool or all buffer 
pools owned by the caller be destroyed. 

B-8 SNA LU 6.2 Reference: Peer Protocols 

A DESTROY BUF POOL call contains the follow-
ing parameters: . r· 
• A speci fie pool ID, or an indication that -- , 

the request applies to all owned pools. 

c 

c 



(_--,. 
/ 

c! 

FREE BUFFER 

The FREE_8UFFER call to BM notifies BM that 
the specified buffer is no longer required 
and needs to be released. A process does not 
have to "own" the pool to free a buffer from 
it. Any process with addressability to the 
buffer can free it. For example, 

• 

• 

• 

If the buffer is a demand buffer, it is 
returned to general system storage (de­
stroyed!. 

If the buffer is a permanent buffer, it 
is immediately returned to its permanent 
pool lrereservedl. 

If the buffer is from a fixed or varying 
dynamic pool, it is returned to the sys­
tem. Hhen the buffer being freed is one 

that held a pacing request, BM adds a 
number of buffers to the pool from which 
the freed buffer was obtained, where the 
number is the size of the new pacing win­
dow that can be received. BM informs the 
process le.g., HS) owning the pool of the 
new buffers by sending it a BUFF­
ERS_RESERVED signal. 

• If the buffer is a limited buffer, its 
freeing does not increment the limit 
count being maintained for its limited 
pool. I The value of the limit count is 
incremented only with the ADJUST_BUF_POOL 
call to the BM.) 

A FREE_BUFFER call to BM 
to the buffer that needs 
pointer was returned 
GET_BUFFER call to BM. 

contains a pointer 
to be freed. This 
from a previous 

Appendix B. Buffer Manager B-9 



GET BUFFER 

The GET_BUFFER call to BM requests one or 
more buffers for use. The calling process 
becomes the owner of the buffer. However, HS 
is the owner of all buffer pools used by the 
LU. 

A GET_BUFFER call to BM contains the follow­
ing parameters: 

• A pool ID, returned from a previous CRE­
ATE_BUF _POOL call, which is used to iden­
tify the pool from which the buffer is to 
be allocatedJ or a demand buffer request 
I including buffer size needed). 

• For fixed and varying dynamic pools, 
information specifying the Pacing !PAC or 
~PAC) and Reserve Larger Hindow I RLH or 
~RLH) indicator values in the MU for 
which the buffer is to be used. If PAC 
is specified, it means that when the 
buffer is later freed, BH should reserve 
buffers for the next pacing window and 
add them to the pool. For fixed pools, 
if the required number of buffers cannot 
be created at free-buffer time, the 
requested replenishment action is delayed 
until they are available. For varying 
pools, the number of buffers BH adds to 

B-10 SNA LU 6.Z Reference: Peer Protocols 

the pool depends on multiple factors: 
the availability of general system stor­
age, the status (held or freed) of buff­
ers previously obtained from the pool, 
the setting of RLHI, and the value of the 
increment II J specified in the call cre­
ating the pool. Hhen general system 
storage is low, BM may reduce the number 
of new buffers added to the pool by a 
multiple of I, to allow immediate replen­
ishment of the pool. Hhen sufficient 
storage exists, BM adds C buffers to the 
pool IC = current window size) if RLHI = 
~RLH, or C + nI buffers !where n is some 
positive integer) if RLHI = RLH. Hhen BH 
does replenish a pool follow1ng the sub­
sequent freeing of the corresponding 
buffer, it sends a BUFFERS_RESERVED sig­
nal to the pool owner. 

• An indication ("wait" or "no wait") 
whether or not the calling process may be 
suspended pending availability of a buff­
er to honor the request. Hhen the proc­
ess may not be suspended, BH returns an 
appropriate return code to indicate that 
the pool is empty or that a demand buffer 
cannot be created. 

Hhen the requested buffer is available, BH 
returns the buffer pointer to the calling 
process. 

c 

c. 

("· 
.....__ .. -~ 

c 



c 

() 

BM TO LU 

The BUFFERS_RESERVED signal is sent asynchro­
nously from BH to HS. A detailed description 
follows. 

BUFFERS RESERVED 

The BUFFERS_RESERVED signal is sent by BM to 
a dynamic buffer pool owner I e.g. , HS J to 
report a change, other than as a result of a 
GET_BUFFER, in the number of buffers avail­
able in a dynamic buffer pool. The BUFF­
ERS_RESERVED signal contains the following 
parameters: 

• 
• 

• 

• 

The pool ID 

The number of buffers added to the pool 
if this signal follows a FREE BUFFER of a 
pacing request buffer, or -to be sub­
tracted from the pool if a REDUCED action 
is being reported lsee below! 

The number of buffers currently in the 
pool (available for GET_BUFFERsJ 

The type of action being reported: 

ADJUSTED: An ADJUST_BUF_POOL request 
has been honored. 

REPLENISHED: A dynamic buffer pool 
has been replenished as a result of a 
FREE_BUFFER of a pacing request buff-
er. 

REDUCED: BM has detected a critical 
scarcity of system storage and will 
reduce the number of buffers assigned 
to the varying dynamic pool (possibly 
to OJ when the pool owner issues an 
ADJUST_BUF_POOL (following exchange 
of unsolicited and reset acknowledg­
ment IPMs with the partner LU). 

RESTART: BM has changed the number 
of buffers in the varying dynamic 
pool from 0 to a positive value 
I i.e., the value of the increment 
specified in the CREATE_BUF_POOL for 
the pool!; this signal follows the 
REDUCED Ito OJ type BUFFERS_RESERVED 
signal when node congestion eases. 

The BUFFERS_RESERVED message is of sufficient 
size that it can itself be reused to send an 
IPR or IPM. If this message is not reused to 
send an IPR or IPM, it is freed by the mes­
sage receiver . 

Appendix B. Buffer Manager B-11 



1 

2 

3 

4 

LUIAJ 

TP LU.PS LU.HS BM 

SEND DATA 
180 bytes) GET_BUFFERllimited pool ID, waitJ 
---->o--------------- >o 

ll80 bytes copied into the limited buffer) 
•••• RUllsize=200) 

SEND DATA 
180 bytes) 
---->o • 

ll 80 J I 80 l . 
• • • •.J.• • • •.J.._J RUll RU 

SEND DATA 
180 bytes) 

size=200) 

PC 

5 ---->o 
(80) 180) 140) . 

6 ••••.J.••••.l.••JRUllRU size=200J 
MUISEND_DATA_RECORDJ MUISEND_DATA_RECORD, PAC, RLHJ 

7 >-------~> >o 

demand buffer size) 1100 bytes) 

Node A 

DLC 

8 

9 
10 
11 
12 

GET BUFFERlno wait, I 
GET_BUFFERl.:.:~:;ed pool ID, ~<- - - - - - - ~•••::::·~·::OJ 

l I 40 ) . >o--> 

13 

14 
15 

16 

Notes: 

•• RU2 _ , FREE_BUFFERlpointer to demand bufferlJ 
IRU s1ze=200) o<- - - - - - - - - - - - - - -

GET BUFFERlno wait, . 
de;and buffer size). 1100) 

o<- - - - - - - o-•••••JIBTU size=lOOJ 

data segment #2 
FREE_BUFFERlpointer to limited buffer) >o--> 

FREE_:~~F~R;p~i~t~r~t~ ~e~a~d-b~f~e~JJ 

1. The signal names (e.g., GET_BUFFERl above the dashed lines 
refer to parameters I identifying request types) passed in Call 
invocations of the buffer manager; the additional parameters 
in parentheses are also passed to BM. 

2. The symbol "••••" denotes the data stored in the buffer. 

Figure B-2. LU Interactions with BM Hhen Sending Data 

B-12 SNA LU 6.2 Reference: Peer Protocols 

( 
\. 

c 



0 

,,---.. , 
( . 
"-....-/ 

0 

Node B LUCB) 

DLC PC BH LU.HS LU.PS 

data segment 11 MU I PAC, RLH J 
-> >o 

GET_BUFFERldynamic pool ID, ~ 
no wait, PAC, RLH> 

o<------
ICopy record from link 

. buffer to dynamic buffer. J 
o<- - - - - - -J-HHaJ seg #1 

FREE_BUFFERlpointer to link buffer) 
o<------.....J 

data segment #2 MU . seg #2 seg 11. 
-> > >o-•••••-L••••aJ . data 

FRE~-~UFFERlpointer !~-1~~ ~~f~r2.J >I 
FREE_BUFFERlpointer to dynamic buffer) 

o<- - - - - - - - - - - - - - .....J 

BUFFERS_RESERVEDIREPLENISHED, 
total number in pool, pool ID, 
number of new buffers reserved). 
n------->o 

Figure B-3. LU Interactions with BH Hhen Receiving Data 

TP 

.10 

.11 

.12 

.13 

.14 
>ol5 

.16 

.17 

.18 

Appendix B. Buffer Manager B-13 



B-14 

The comments below correspond to the numbers 
in Figure B-2 on page B-12 and Figure B-3 on 
page B-13. 

l. In node A, a transaction program ITPJ 
issues a SEND_DATA verb; this causes PS 
to call BM to request a limited buffer to 
store the data from TP. If a limited 
buffer is not available at this time, PS 
will request a demand buffer instead (see 
Chapter 5.1). The amount of data that PS 
can copy to its limited buffer depends on 
the size of the limited buffer, which 
cannot be greater then the maximum RU 
size. !The session manager [SM] previ­
ously created, via a CREATE_BUF_POOL Call 
to BM, a limited buffer pool for the ses­
sion components to send normal-flow 
requests, and set the buffer size to the 
maximum RU size obtained from the BIND.) 
In :!:his example, the maximum RU size is 
200 bytes. 

2. In node A, PS copies the data from the TP 
storage to the PS-owned limited buffer 
obtained from the limited buffer pool. 
(In this example, 80 bytes have been sent 
by the TP. l PS copies the 80 bytes of 
data to its limited buffer but does not 
send it until the whole buffer is full. 

3. 

4. 

5. 

6. 

7. 

The TP requests more data be sent to its 
partner TP in node B. 

In node A, PS copies another 80 bytes of 
data from the TP storage to the limited 
buffer I the same buffer as above). In 
this example, 160 bytes of data have now 
been stored in the limited buffer. 

The TP requests more data be sent to its 
partner TP in node·B. 

In node A, PS copies another 40 bytes of 
data from TP storage to the same limited 
buffer as above. The limited buffer now 
contains 200 bytes of data and is full. 
Any additional data I i.e. , 40 bytes in 
this example) in the TP storage is copied 
to a new limited buffer; PS sends the 
full buffer first> then gets a new buffer 
to copy the rest of data. (If no more 
data is left in the TP storage when the 
limited buffer is filled, PS does not 
send the contents of the filled buffer 
until the end-of-chain indication is 
received from the local TP.) 

In node A, PS sends the RU, 
MUISEND DATA RECORDJ, to HS. In this 
example: HS ;ets the Pacing indicator and 
Request Larger Hindow indicator to PAC 
and RLH (see "Chapter 6. 2. Transmission 
Control"), respectively. The RLH value 
requests that the new send pacing window 
be larger than the current one. 

8. In node A, PC receives the MU from HS and 
calls BM, requesting the first demand 
buffer to begin segment generation. The 
number of segments that are generated 
depends on what the maximum send BTU size 
is I i.e., 100 bytes in this example). 
( See SNA Type !.:..! Node Reference for more 

SNA LU 6.2 Reference: Peer Protocols 

details on segment generation.) This 
example assumes that segment generation (""" 
is supported. If segment generation is ' 
not supported, the HU will remain in the _ _,. 
same buffer (i.e., the PS-owned limited 
buffer J and be sent to DLC by PC. DLC 
then frees that limited buffer after the 
data is sent to node 8. 

CJ. In node A, PS calls BM to obtain another 
limited buffer to store i:he remaining TP 
data. 

10. In node A, PC sends the first BTU (which 
contains 100 bytes of data l to DLC, and 

11. 

12. 

13. 

DLC sends it to node 8. In node e, when 
the first segment !which contains the 
first 100 bytes of the record, 
MUCSEND_DATA_RECORD l is received by PC 
I in a link buffer allocated by DLC, a 
process not defined in detail in this 
book), the data remains in the link buff-(~ 
er la DLC-owned buffer) and is passed to · 
HS. Note: Segment reassembly is a PC\.. .. _,. 
function I on the receive side J and is 
done only when segment generation is done 
by the PC on the send side. Segment 
reassembly function is actually done in 
the transmission control ITC) process 
(see "Chapter 6. 2. Transmission Control" 
for more details on segment reassembly>. 

In node A, PS copies and stores in a new 
limited buffer the unsent 40 bytes of 
data. This RU will be sent to HS when 
its buffer becomes full. In node. B, HS~ 
calls BM to request a dynamic buffer td ,' 
store the record, MU( SEND DATA RECORD J, '-.___. . ./ 
and sends it to PS later:- Th; dynamic 
buffer pool was previously created by SM 
for the session. In node B, the size of 
the dynamic buffer I receiving the paced 
normal-flow request) is the same as the 
size of the limited buffer (.sending the 
paced normal-flow request) in node A. HS 
also informs BM that node A has requested 
a new and larger send pacing window by 
passing the PAC and RLH indications in 
its GET_BUFFER request. ~ 

In node A, the demand buffer that the BTU 
was in is freed (returned to BMJ by DLC 
after the first BTU is sent. This free­
ing action is asynchronous with the PC 
allocation of the demand buffer for the 
next segment. The order of their occur­
rence may vary from the example. l In 
node B, HS copies the record I in this 
example, it contains 100 bytes) from the 
link buffer to the newly obtained 
HS-owned dynamic buffer. 

In node A, PC calls BM for another demand 
buffer to send the remaining 100 bytes. 
In node B, the link buffer is released 
(not reused by HSJ. · 

'---. 

14. In node A, PC sends the second BTU to 
DLC. In node B, when the second segment 
that contains the last 100 bytes of the~ 
record is received by PC, the data : 
remains in the link buffer I a DLC-owned \.__/ 
buffer J and is passed to HS. HS copies 
the second segment fr<>111 the link buffer 



( __ ) 

(__j 

(
-~ ... 

\ 
/ 

to the same dynamic buffer lwhich con­
tains the first segment). The buffer 
contains 200 bytes and is now full. 

15. In node A. PC returns the limited buffer 
that the MUI SEND_DATA_RECORD) was in to 
8H. In node 8, HS sends the Nhole RU 
(which was reassembled from the first and 
second segments) to PS. PS then passes 
it to TP. 

16. In node A• the demand buffer that the 
seconc;I BTU was in is returned to 8H by 

DLC after the second BTU has been sent. 
In node 8, the link buffer is released. 

17. In node B, PS retums the dynamic buffer 
to 8H after passing the Nhole RU to TP. 

18. In node 8, 8H sends a BUFFERS_RESERVED 
signal to HS, which indicates a net send 
window for node A. This is because the 
buffer freed in step 17 was the one that 
received the PAC and RLH indications. 

Appendix 8. Buffer Manager B-lS 



LUIAJ Node A 

TP LU.PS LU.HS BM PC DLC 

.GET_BUFFERllink pool ID, no waitJ IPH 
1 o<- - - - - - - - - - - - - - - o<--

• IPHlsolicited, 
l'IUIIPH, solicited, NHS=2J NHS=2J 

2 o< <:------"""" 

3 
l ~D~~T:~F:P~~llimited pool I~, + t""5 buffers) 

4 
l ~R~E:~F~E~l~~nter to link buffer) 

. 
Note: 

The signal names (e.g., GET_BUFFER, ADJUST_BUF_POOL, FREE_BUFFERJ 
above the dashed lines refer to parameters !identifying request types) 
passed in Call invocations of the buffer managerJ the additional 
parameters in parentheses are also passed to BM. 

Figure B-4. Receiving a Solicited IPH 

B-16 SNA LU 6.2 Reference: Peer Protocols 

C'. 
. 

c 



L/ 

( . 
'-._,... 

c:, 

c) 

Node B 

DLC PC 

IPM!solicited, N~S=2l MUIIPM, 

LUI Bl 

BM LU.HS LU.PS 

BUFFERS_RESERVEDIREPLENISHED, 
total number in pool, pool ID, 
number of new buffers reserved) 
o------->o 
solicited,N~S=2ll 

<--o< o<--------------~-

1_ ~R~E:B~F~E~l~o~n~e~ ~o-d~m=~~ buffer) 

Note: 

The signal names (e.g., FREE_BUFFERJ above the dashed lines refer to 
parameters !identifying request types) passed in Call invocations of the 
buffer manager; the additional parameters in parentheses are also passed 
to BM. 

Figure B-5. Sending a Solicited IPM 

TP 

1 

2 

3 

Appendix B. Buffer Manager B-17 



Figure B-4 on page B-16 and Figure B-5 on 
page B-17 show receiving and sending a 
solicited IPM. In this example, BM has 
been informed previously that HS in node 
A requested a larger send pacing window 
(see Figure B-3 on page B-13). 

The comments below correspond to the nun­
bers in Figure B-4 on page B-16 and Fig­
ure B-5 on page B-17. 

1. In node B, BM sends a BUFFERS_RESERVED 
signal to HS to indicate more buffers are 
reserved for the buffer pool used to 
receive paced data from node A. In node 
A, the IPM received from its partner in 
node B is stored in a link buffer by DLC. 

2. In node B, HS reuses the demand buffer 
that the BUFFERS_RESERVED signal was in 

B-18 SNA LU 6.2 Reference: Peer Protocols 

and builds a solicited IPM. HS sends the 
IPM to node A through PC and DLC. The (" .. 
IPM contains a next-window size INHS>. 
In node A, the solicited IPM is sent to 
HS via PC. 

3. In node B, the demand buffer is returned 
to BM after the IPM is sent to node A. 
In node A, upon receiving the solicited 
IPM, HS adjusts the limited pool limit 
count to the new send residual pacing 
count I via AD.JUST_BUF _POOL) to reflect 
that a grant for a new send window has 
been received. 

4. In node A, the link buffer is returned to 
BM after the IPM is processed. Now oode 
A can use the new window grant to send 
more normal-flow requests to node B. 

C: , 



C: 

APPENDIX N~ FSM NOTATION 

A finite-state machine IFSMJ is a combination of processing and memory, where the memory con­
sists of the state of tfie'""F"SM. The state can take one of a small number of named values I the 
state names). ~FSM is defined by a matrix that lists the states and specifies the processing 
~ performed when the FSM is called. This processing typically depends on the current state 
of the FSM and on the input passed to the FSM, and may change the FSM state (resulting in a 
state transition) and produce output. Hithin this matrix definition, each state is given a num­
ber as well as its name, for notational convenience. 

A number of alternative FSM definitions ma¥ be grouped together as a generic FSM, the definition 
to be used being assigned dynamically. The assignment of a particular definition to be used at 
a given time is called the binding of the generic FSM. A generic FSM can also be assigned to be 
a "no operation." A generic FSM is identified by the pound sign (#)prefix, e.g., #FSM_BIS. 

The following operations are performed on an FSH: 

• Call. Processing is performed as defined in the FSM definition for the existing combination 
of current state and input. This may involve a state transition. 

• State check. Validity checking is performed for the existing combination of current state 
and input. 

• State test. The current state of the FSM is tested for equality or inequality with a speci­
fied value. 

An FSM. is represented by a state-transition matrix. 

The syntax of the state-transition matrix FSH definition is shown in Figure N-1 on page N-2. 
The column headings give the FSH state names, while the row headings name the inputs to the 
FSHs. The matrix elements~(row,columnl intersections~define the state transitions and output 
actions. 

Horizontal lines are used to group input lines together to improve readability. Their location 
has no bearing on the FSM function. For compactness, mnemonic abbreviations are used in the 
matrices. 

The input lines within the matrix are scanned from top to bottom at execution time. The first 
input line found with all its conditions true is used to address the matrix for the next state 
and the output code. No more than one inpl:rt""Tine in a matrix has all its conditions true during 
a scan. 

An FSH comes into existence initialized to state l. If another state is to be the initial 
state, the FSH is initialized explicitly by calling the FSM with an appropriate signal. 

Calling an FSM executes the FSM~ i.e., an FSH action code is selected based on the current state 
of the FSM and the input line that is true. The input line evaluation uses the parameters or 
signal passed to the FSM. The FSM is scanned for a true input line from top to bottom of the 
matrix. --

If the next-state indicator is a number n, the FSH enters state n. If the next-state indicator 
is a state-check indicator l>J, the call of the FSM would act as if a no-state-change indicator 
1-J were encountered. IIn practice, the formal description checks for such conditions prior to 
calling an FSM in order to perform special error handling.) If the next-state indicator is a 
cannot-occur indicator l/J, this is an execution-time errorJ calls of the FSH cannot encounter 
this indicator because previous logic has filtered out the input for that state of the FSM. 

If no input line is true, the call acts as if a no-state-change indicator 1-1 were encountered. 

Appendix N. FSM Notation N-1 



fname: 

STATE NAMES----> 

INPUTS STATE NUMBERS--> 

ic [ ,ic ] 

lC [ ,ic ] 

lC [ ,ic ] 

ic [ ,ic ] 

OUTPUT FUNCTION 
CODE 

oc-1 Output logic statements 

[ oc-n Output logic statements 

Legend: 

= optional parameter 
fname = FSM name 
snam = state name component 
snum = state number 
ic input condition name 
ac = action code 

An action code lac) has the syntax: 

ns = next-state indicator 

snam 

[ ] . 
snum 

ac 

ac 

ac 

ac 

ns[(oc)], where: 

oc output code !The parentheses around the oc are 
sometimes omitted to save space.) 

. 

Possible next-state indicators and associated action code 
formats are: 

n[(oc)] normal state transition to state n !corresponding 
to some snum ) 

-[(oc)] same-state transition--remain in the same state 
>[(oc)] error condition, no state change 

/ "cannot occur" condition, no state change 

Figure N-1. Syntax of an FSM State-Transition Matrix 

N-2 SNA LU 6.2 Reference: Peer Protocols 

(' 

l 

l 



() 

APPENDIX T. TERHINOLOGY: ACRONYHS AND ABBREVIATIONS 

ACT 

API 

ASCII 

activate 

application programming interface 

American Standard Code for Informa­
tion Interchange 

ASH address space manager 

BB Begin Bracket 

BBI Begin Bracket indicator 

BBIU Begin Basic Information Unit 

BBIUI BBIU indicator 

BC Begin Chain 

BCI Begin Chain indicator 

BETB between brackets 

BIND BIND SESSION 

BIS BRACKET INITIATION STOPPED 

BIU basic information unit 

BH buffer manager 

CD Change Direction 

CDI Change Direction indicator 

CEB Conditional End Bracket 

CEBI Conditional End Bracket indicator 

CINIT CONTROL INITIATE 

CNOS change number of sessions 

CONLOSER contention-loser 

CONHINNER contention-winner 

COPR control operator services 

COS class of service 

CP control point 

CRV CRYPTOGRAPHY VERIFICATION 

CT correlation table 

OAF Destination Address field 

DES Data Encryption Standard 

DFC data flow control 

DIA Document Interchange Architecture 

DLC data link control 

ORI Definite Response 1 

DRII Definite Response 1 indicator 

DR2 Definite Response 2 

DR2I Definite Response 2 indicator 

DSU distribution service unit 

EB End Bracket 

EBI End Bracket Indicator 

EBIU End Basic Information Unit 

EBIUI EBIU indicator 

Appendix T. Terminology: Acronyms and Abbreviations T-1 



EC End Chain 

ECI End Chain indicator 

ED Enciphered Data 

EDI Enciphered Data indicator 

EFI Expedited Flow indicator 

ERI Exception Response indicator 

ERP error recovery procedures 

ESD extended sense data 

EXP expedited 

EXR EXCEPTION REQUEST 

FOX full-duplex 

FF flip-flop 

FI Format indicator 

FIC first in chain IBC, ~EC> 

FM function management 

FMD function management data 

FMH FM header 

FHP FM profile 

FQPCID Fully Qualified Procedure Corre­
lation Identifier 

FSM finite-state machine 

FSP first speaker 

GOS general data stream 

HDX half-dJplex 

T-2 SNA LU 6.2 Reference: Peer Protocols 

HDX-FF HDX flip-flop c 
HS half-session 

HSID half-session identification 

ID identifier, identification 

INB In Bracket 

INIT-SELF INITIATE-SELF 

IPM ISOLATED PACING MESSAGE 

IPR ISOLATED PACING RESPONSE 

LFSID local-form session identifier 

LIC last in chain l~BC, EC> 

LL logical record length I prefix) 

LLID logical 
I prefix) 

("', 
record length and GOS II , 

\..._ _ _..../ 

LU logical unit 

LUCB LU control block 

LUST AT LOGICAL UNIT STATUS 

LUH logical unit of work 

MC mapped conversation 

MCR mapped conversation record 

MGR manager 

MSG message 

MU message unit 

NAU network addressable unit c 
NC network control 



C') 
/ 

NEG negative 

NG no good 

NOF node operator facility 

NTHK 

NHS 

OAF 

ODAI 

OIC 

PAC 

PB 

PC 

PCID 

PD 

POI 

Pl 

PIP 

network 

next-window size 

Origin Address field 

OAF-OAF Assignor indicator 

only in chain IBC, ECl 

Pacing Request, Pacing Response 
(value of PI in RHl 

protocol boundary 

path control 

procedure correlation identifier 

Padded Data 

Padded Data indicator 

Pacing indicator 

program initialization parameters 

PIU path information unit 

PLU primary LU 

POS positive 

PRI primary 

PS 

PS.CONV 

PS.COPR 

presentation services 

presentation services for lbasicJ 
conversation 

presentation services for the con­
trol operator 

PS.CRPM 

PS.SPS 

PS.MC 

PTR 

PU 

Q 

QR 

QRI 

R 

RC 

RCB 

RCV 

RE SYNC 

RH 

RUH 

RM 

presentation services--conversation 
services resource manager 

presentation services--sync point 
services 

presentation services for mapped 
conversations 

pointer 

physical unit 

queue 

Queued Response 

Queued Response indicator 

receive, receiving 

return code 

resource control block 

receive 

sync point resynchronization serv­
ice TP 

request/response header 

Request Larger Hindow indicator 

resources manager 

RPC residual pacing count 

RQ 

RQD 

RQE 

RQN 

request 

RQ indicating 
required 

definite-response 

RQ indicating exception-response 
requested 

RQ indicating no-response required 

RRI Request/Response indicator 

Appendix T. Terminology: Acronyms and Abbreviations T-3 



RSP response 

RTI Response Type indicator 

RTR READY TO RECEIVE 

RU request/response unit 

SC session control 

SCB session control block 

SD Sense Data Included 

SDI Sense Data Included indicator 

SEC secondary 

SESS session 

SESSEND SESSION ENDED 

SESSST SESSION STARTED 

SIG SIGNAL 

SLDLM session-limit data-lock manager 

SLU secondary LU 

SM session manager 

SNA Systems Network Architecture 

SNA/DS SNA Distribution Services 

SNASVCMG SNA services manager ILU-LU session 
mode name) 

SNF Sequence Number field 

SON session-outage notification 

T-4 SNA LU 6.2 Reference: Peer Protocols 

sequence number 

SS session services 

SSCP system services control point 

SSLS source-LU session-limit services 

SVC service; services 

SYNC PT synchronization point 

TC transmission control 

TCB transaction control block 

TCCB transmission control control block 

TERM terminate, terminating, termi-
nation, terminal 

TH transmission header 

TP transaction program 

TPF transmission priority 

TPN transaction program name 

TS transmission services 

TSLS target-LU session-limit services 

TSP TS profile 

UNBIND UNBIND SESSION 

UPM l.ndefined protocol machine 

URC user request correlation 

VR virtual route 



0 

SPECIAL CHARACTERS 

lperiodJ, to separate name qualifiers 
denoting decomposition 1-5 

_ !underscore), in name phrases 1-5 
I !vertical stroke), to mean "ei­
ther .•• or" 1-5 

& (ampersand), to indicate composition in 
names 1-5 

* (asterisk), to mean "any value" or "don't 
care" 1-6 

ABEND_NOTIFICATION 4-5, 4-7 
ABEND_NOTIFICATION structure A-25 

referenced by 
FSM_STATUS 4-87 
HS 6.0-4 
PROCESS_ABEND_NOTIFICATION 4-74 
PROCESS_PS_TO_RM_RECORD 3-22 
PROCESS_RECORD_FROM_HS 4-50 
PROCESS_RECORD_FROM_RM 4-49 
PS 5.0-9 
PS_ABEND_PROC 3-54 

ABORT_HS 4-7 
ABORT_HS structure A-9 

referenced by 
FSM_STATUS 4-87 
PROCESS_ABORT_HS 4-74 
PROCESS_LU_LU_SESSION 6.0-5 
PROCESS RECORD FROM HS 4-50 

action codes In FSMs- -
calling result N-1 

ACTIVATE_NEEDED_SESSIONS procedure 3-24 
referenced by 

CHANGE_SESSIONS_PROC 3-39 
SESSION_DEACTIVATED_PROC .3-72 
UNSUCCESSFUL_SESSION_ACTIVATION 3-83 

ACTIVATE_SESSION 4-5 
ACTIVATE SESSION PROC procedure 5.4-37 

refer~ed by-
PS_COPR 5.4-33 

ACTIVATE_SESSION_RSP 4-5 
ACTIVATE_SESSION_RSP_PROC procedure 3-25 

referenced by 
PROCESS SM TO RM RECORD 3-23 

ACTIVATE_SESSION=RSP structure A-13 
referenced by 

ACTIVATE_SESSION_RSP_PROC 3-25 
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-58 
BUILD_AND_SEND_ACT_SESS_RSP_POS 4-58 
PROCESS SM TO RM RECORD 3-23 

ACTIVATE SESSION-st~cture A-20 
refer;nced by 

ACTIVATE_NEEDED_SESSIONS 3-24 
ACTIVATE_SESSION_RSP_PROC 3-25 
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-58 
DEACTIVATE_PENDING_SESSIONS 3-47 
FSM_STATUS 4-87 
INITIALIZE_LULU_CB_ACT_SESS 4-70 
PROCESS_ACTIVATE_SESSION 4-75 

PROCESS_RECORD_FROM_RM 4-49 
SEND_ACTIVATE_SESSION 3-65 
SEND DEACTIVATE SESSION 3-68 

ACTIVATE SESSION verb- 5.4-6, 5.4-21 
proce;sing by PS.COPR 5.4-26 

activation, session 
LU-LU 4-19 

adaptive pacing 
See session-level pacing 

ADJUST_BUF_POOL 
See buffer manager IBMJ, protocol boundary 

agent 
See sync point, roles, agent 

ALLOCATE_PROC procedure 5.1-11 
referenced by 

MC_ALLOCATE_PROC 5.2-21 
PS CONY 5.1-10 

ALLOCATE=RCB_PROC procedure 3-26 
referenced by 

PROCESS_PS_TO_RM_RECORD 3-22 
ALLOCATE RCB structure A-15 

ref er;nced by 
ALLOCATE_PROC 5.1-11 
ALLOCATE_RCB_PROC 3-26 
CREATE_RCB 3-43 
PROCESS_PS_TO_RM_RECORD 3-22 
TEST FOR FREE FSP SESSION 3-82 

Already Ve;ifi;d indicator 
See conversation-level security, Already 

Verified indicator 
API 

See application program interface IAPIJ 
application program interface IAPIJ 2-4 

See also protocol boundary 
closed 2-12 
open 2-12 

application transaction program 2-1 
See also transaction program 

ASSIGN_LFSID 4-12 
ASSIGN LFSID RSP 4-12 
ASSIGN=LFSID=RSP structure A-26 

referenced by 
PREPARE TO SEND BIND 4-73 

ASSIGN_LFSID ;tr~ctu~ A-25 
referenced by 

PREPARE_TO_SEND_BIND 4-73 
ASSIGN_PCID 4-9 
ASSIGN PCID RSP 4-9 
ASSIGN-PCID-RSP structure A-23 

ref;reric;d by 
GET FQPCID 4-70 

ASSIGN_PCID structure A-22 
referenced by 

GET_FQPCID 4-70 
asynchronous transfer 2-7, 2-36 

See also SNA Distribution Services 
ISNA/DSJ 

ATTACH_CHECK procedure 3-26 
referenced by 

ATTACH_PROC 3-30 
ATTACH_ERROR_PROC procedure 5.0-15 

referenced by 
PROCESS FMH5 5.0-10 

Attach FM header IFMH-5J 
See FM header, type 5 I Attach ) 

ATTACH_LENGTH_CHECK procedure 3-28 
referenced by 

Index X-1 



ATTACH CHECK 3-26 
ATTACH_PROC procedure 3-30 

referenced by 
PROCESS_HS_TO_RM_RECORD 3-20 
PS_ABENO_PROC 3-54 

ATTACH_SECURITY_CHECK procedure 3-32 
referenced by 

ATTACH CHECK 3-26 
attaching tr~nsaction programs 2-36, 2-44 

See also transaction program, invoking 
remote 

autoactivation 
See session limits, automatic activation 

automatic session activation 
See session limits, automatic activation 

availability of an LU 
for session initiation 4-9 

back-out 
See sync point, back-out 

Backed Out 
See sync point, commands, Backed Out 

base function set 2-12 
CNOS functions 5.4-22 
control operator functions 5.4-21 

basic conversation 2-3, 2-12 
See also conversation 

basic conversation message 2-14 
basic information unit tBIUl 2-15 
Begin Bracket indicator tBBil 

use 6.1-1, 6.1-4, 6.1-5, 6.1-7, 
6.1-11, 6.1-12, 6.1-13, 6.1-14, 

Begin Chain indicator IBCil 
use 6.1-9, 6.1-14, 6.1-15 

bid 
See bracket, bid 

BID_PROC procedure 3-"33 
referenced by 

PROCESS_HS_TO_RM_RECORD 3-20 
BID_RSP_PROC procedure 3-35 

referenced by 
PROCESS HS TO RM RECORD 3-20 

BID_RSP structur; A-ll 
referenced by 

BID_PROC 3-33 
BID RSP PROC 3-35 
GENERATE_RM_PS_INPUTS 6.i-36 
PROCESS_HS_TO_RM_RECORD 3-20 
PROCESS_RU_DATA 6.1-40 
SENO RSP TO RM OR PS 6.1-46 

BID struct~re -A-ll - -
referenced by 

BID_PROC 3-33 
GENERATE_RM_PS_INPUTS 6.1-36 
PROCESS HS TO RM RECORD 3-20 

BID HITHOUT ATTACH ;t~cture A-17 
;:eferenc;d by 

BIDDER_PROC 3-37 
DFC SEND FROM RM 6.1-21 

bidder 2:8, 2:32 -
See also bracket, bidder 
See also contention loser 

BIDDER_PROC procedure 3-37 
referenced by 

GET SESSION PROC 3-52 
bidding Z-33, 3-6, 3-11 

See also bracket, bidding 
bidding with data 

See bracket, bidding 

X-2 SNA LU 6.2 Reference: Peer Protocols 

6.1-10, 
6.1-16 

BIND 2-8, 2-15, 2-33, 4-19 
BIND image 

derived from mode name 4-18 
BIND negotiation 2-33 
BIND_RQ_STATE_ERROR procedure 4-52 

referenced by 
PROCESS BIND RQ 4-76 

BIND_RSP_STATE_ERROR procedure 4-54 
referenced by 

PROCESS_BIND_RSP 4-78 
BIND_SESSION_LIMIT_EXCEEDED procedure 4-57 

referenced by 
BIND_RQ_STATE_ERROR 4-52 

BIS 2-15, 2-34 
BIS !BRACKET INITIATION STOPPED) 6.1-16 
BIS_RACE_LOSER procedure 3-38 

referenced by 
FSM_BIS_BID~ER 3-87 

BIS_REPLY structure A-12 
referenced by 

BIS_RACE_LOSER 3-38 
DFC_SEND_FROM_RM 6.1-21 
GENERATE_RM_PS_INPUTS 6.1-36 
PROCESS_HS_TO_RM_RECORD 3-20 
SEND_BIS_REPLY 3-67 

BIS_RQ structure A-12 

BIU 

referenced by 
DFC_SEND_FROM_RM 6.1-21 
GENERATE_RM_PS_INPUTS 6.1-36 
PROCESS_HS_TO_RM_RECORD 3-20 
SEND_BIS_RQ 3-67 

See basic information unit IBIUl 
blanks 

See space IX'40'l characters 
block chaining cryptography 6.2-6 
block diagram representation 1-1 
block diagram, arrow and line conventions 
within 1-6 

blocking of message units 
See reblocking 

BM 
See buffer manager tBMJ 

bracket 2-15, 2-17, 2-33 
See also message unit tMU), session 

sequences 
bid 6.1-4, 6.1-10, 6.1-12, 6.1-16 
bidder 6.1-4, 6.1-10, 6.1-11, 6.1-12, 
6.1-17 

bidding 6.1-5, 6.1-10 
bracket termination rule 6.1-4, 6.1-11 
error conditions 6.1-11 
first on session 2-33 
first speaker 6.1-4, 6.1-10, 6.1-11 
initiation 6.1-10 
protocols 6.1-1, 6.1-10 
relationship to conversation 6.1-10 
RH indicators 6.1-10, 6.1-12 

BRACKET FREED structure A-18 
refe;:enced by 

DFC_SEND_FROM_RM 6.1-21 
FREE_SESSION_PROC 3-50 
GENERATE_RM_PS_INPUTS 6.1-36 
PROCESS_PS_TO_RM_RECORD 3-22 

BRACKET INITIATION STOPPED IBIS) 3-17, 
5.3-12, 6.1-4, 6.1-11, 6.1-14, 6.1-15, 
6.1-16 

bracket state 2-32, 2-33, 2-34 
bracket termination rule 

See bracket, bracket termination rule 
buffer 

See also buffer manager tBMl 
pools B-2 

fixed dynamic B-2 



limited B-2 
permanent B-2 
varying dynamic B-2 

types B-1, B-2 
demand B-2 
fixed dynamic B-2 
limited B-2 
link B-2 
permanent B-2 
varying dynamic B-2 

usage B-2, B-4 
buffer manager (BM) 2-35, 3-3, 4-31, 4-32, 
4-35, 4-36, 5.0-4, 5.1-1, 6.1-1, B-1 

See also buffer 
function B-1 
protocol boundary B-2, B-5 

ADJUST_BUF_POOL B-6 
BUFFERS_RESERVED B-11 
CREATE_BUF_POOL B-7 
DESTROY_BUF_POOL B-8 
FREE_BUFFER B-9 
GET_BUFFER B-10 

protocol boundary with LU 2-46, 2-47 
sequence flows B-12 
signals 6.2-7 
state 5.1-6 

buffer record 2-14, 2-15 
BUFFERS_RESERVED 

See buffer manager IBM), protocol boundary 
BUFFERS RESERVED PROCESSING procedure 6.2-31 

refe;:enced by-
PROCESS_LU_LU_SESSION 6.0-5 

BUILD AND SEND ACT SESS RSP NEG proce-
dure - 4-S8 - - - -

referenced by 
FSM_STATUS 4-87 
PROCESS_ACTIVATE_SESSION 4-75 

BUILD_AND_SEND_ACT_SESS_RSP_POS proce­
dure 4-58 

referenced by 
FSM_STATUS 4-87 

BUILD AND SEND· BIND RQ procedure 4-59 
refere~ced by -

PROCESS_CINIT_SIGNAL 4-79 
BUILD_AND_SEND_BIND_RSP_NEG procedure 4-60 

referenced by 
PROCESS_BIND_RQ 4-76 

BUILD_AND_SEND_FREE_LFSID procedure 4-60 
referenced by 

FSM_STATUS 4-87 
BUILD AND SEND !NIT HS procedure 4-61 

refere~ced by -
PROCESS_BIND_RQ 4-76 
PROCESS_BIND_RSP 4-78 

BUILD_AND_SEND_INIT_SIG procedure 4-61 
referenced by 

FSM_STATUS 4-87 
BUILD AND SEND PC HS DISCONNECT proce­
dure - 4-62 - -

referenced by 
FSM_STATUS 4-87 

BUILD AND SEND SESS ACTIVATED procedure 4-63 
refere~ced by -

FSM_STATUS 4-87 
BUILD_AND_SEND_SESS_DEACTIVATED proce-
dure 4-64 

referenced by 
FSM_STATUS 4-87 

BUILD_AND_SEND_SESSEND_SIG procedure 4-64 
referenced by 

CLEANUP_LU_LU_SESSION 4-67 
BUILD_AND_SEND_SESSST_SIG procedure 4-65 

referenced by 
FSM_STATUS 4-87 

BUILD AND SEND UNBIND RQ procedure 4-65 
refere~ced by -

FSM_STATUS 4-87 
PROCESS_BIND_RQ 4-76 

BUILD_AND_SEND_UNBIND_RSP procedure 4-66 
referenced by 

PROCESS_UNBIND_RQ 4-83 
BUILD_BIND_RSP_POS procedure 4-67 

referenced by 
PROCESS_BIND_RQ 4-76 

BUILD_HS_TO_PS_HEADER procedure 6.1-28 
referenced by 

PROCESS_RU_DATA 6.1-40 

CALL statement 
finite-state machines N-1 

input signal N-1 
next-state indicator N-1 

cascaded agent 
See sync point, roles, cascaded agent 

cascaded protocol 
See sync point, roles, cascaded agent 

chain 2-15, 2-17 
relationship to verbs 2-18 

chaining 
definite-response chain 6.1-9 
exception-response chain 6.1-9 
general description 6.1-1, 6.1-9 
RH indicators 6.1-9 
use in FM profiles 6.1-4 

CHANGE_ACTION procedure 5.4-44 
referenced by 

LOCAL_SESSION_LIMIT_PROC 5.4-42 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
RESET_SESSION_LIMIT_PROC 5.4-35 
SOURCE SESSION LIMIT PROC 5.4-46 

Change Direction indicator-(CDI) 
use 6.1-5, 6.1-10, 6.1-11, 6.1-12, 

6.1-13, 6.1-14, 6.1-16 
change number of sessions ICNOS) 2-36, 
5.4-3, 5.4-5 

See also presentation services for the 
control operator IPS.COPR) 

component relationship 5.4-6 
source-LU services 5.4-26 
target-LU services 5.4-29 

conversation 5.4-7 
allocating 5.4-28 
Attach processing 5.4-23 
basic conversation verbs used 5.4-9 
mode name 5.4-21, 5.4-28 

error recovery 
See error recovery, CNOS 

locking ILU,mode) entry 5.4-15, 5.4-31 
message unit flows 5.4-11 
privilege 5.4-25, 5.4-28 
processes 5.4-11 

concurrency 5.4-12 
race resolution 

action race 5.4-15 
command race 5.4-15 
double command failure 5.4-16, 5.4-20 
LU name comparison 5.4-21 
no race 5.4-17 
single command failure 5.4-17 

relationship to HS 5.4-12 
relationship to RM 5.4-8, 5.4-29 
relationship to SM 5.4-8 
retry 

Index X-3 



See change number of sessions ICNOSl, 
race resolution, double command fail­
ure 

See error recovery, CNOS 
security 

See change number of sessions ICNOS), 
privilege 

transaction 5.4-9, 5.4-13 
Change Number of Sessions GOS variable 5.4-7 

CNOS command 5.4-7, 5.4-28 
Close action 5.4-31 
Set action 5.4-29, 5.4-30 

CNOS reply 5.4-8, 5.4-28, 5.4-29 
See also Change Number of Sessions GOS 
variable, CNOS command 

Accepted reply modifier 5.4-29 
Command Race reply modifier 5.4-16, 
5.4-31 

Mode Name Closed reply modifi­
er 5.4-30, 5.4-31 

Mode Name Not Recognized reply modifi­
er 5.4-31 

Negotiated reply modifier 5.4-29 
reply modifier field 5.4-31 

change-number-of-sessions service transaction 
program 5.4-1, 5.4-5, 5.4-12, 5.4-22, 
5.4-23 

name 5.4-23, 5.4-28 
relationship to PS.COPR 5.4-1, 5.4-29 

CHANGE_SESSION_LIMIT_PROC procedure 5.4-36 
referenced by 

PS COPR 5.4-33 
CHANGE_sESSION_LIMIT verb 5.4-6, 5.4-16, 
5.4-22 

processing by PS.COPR 5.4-30 
CHANGE_SESSIONS 5.4-8, 5.4-25, 5.4-26, 
5.4-29 

CHANGE_SESSIONS_PROC procedure 3-39 
referenced by 

PROCESS_PS_TO_RM_RECORD 3-22 
CHANGE_SESSIONS structure A-15 

referenced by 
CHANGE_ACTION 5.4-44 
CHANGE_SESSIONS_PROC 3-39 
PROCESS PS TO RM RECORD 3-22 

CHECK_CNOS_COMMAND pro~edure 5.4-63 
referenced by 

PROCESS SESSION LIMIT PROC 5.4-58 
CHECK_CNOS_REPLY proc;dure -5.4-56 

referenced by 
SOURCE SESSION LIMIT PROC 5.4-46 

CHECK_FOR_BIS_REPLY proced~re 3-40 
referenced by 

FSM_BIS_BIDDER 3-87 
FSM_BIS_FSP 3-88 

CINIT SIGNAL 4-10 
CINIT-SIGNAL structure A-23 

referenced by 
FSM_STATUS 4-87 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS RECORD FROM SS 4-50 

class of service 2-3, 4-l8 
CLEANUP_LU_LU_SESSION procedure 4-67 

referenced by 
FSM_STATUS 4-87 
PROCESS_BIND_RQ 4-76 

CLOSE_ONE_REPLY procedure 5.4-65 
referenced by 

NEGOTIATE_REPLY 5.4-64 
CNOS 

See change number of sessions ICNOS) 
CNOS service TP 

See change-number-of-sessions service 
transaction program 

X-4 SNA LU 6.2 Reference: Peer Protocols 

commit 
See sync point 

commitment 
See sync point 

Committed 
See sync point, commands, Committed 

COMMON CB structure 6.0-8 
Compar; States 

See sync point, commands, Compare States 
COMPLETE_CONFIRM_PROC procedure 5.1-28 

referenced by 
CONFIRM_PROC 5.1-12 

COMPLETE_DEALLOCATE_ABEND_PROC proce-
dure 5.1-29 

referenced by 
DEALLOCATE_ABEND_PROC 5.1-31 
HAIT_FOR_SEND_ERROR_DONE_PROC 5.1-64 

COMPLETE_LUH_ID procedure 3-41 
referenced by 

CREATE_TCB_AND_PS 3-45 
PS_CREATION_PROC 3-55 
PS TERMINATION PROC 3-57 

conditio~al bracket termination 
See bracket, bracket termination rule 

Conditional End Bracket indicator ICEBil 
use ~.1-4, 6.1-5, 6.1-7, 6.1-10, 6.1-11, 
6.1-13, 6.1-16 

CONFIRM_PROC procedure 5.1-12 
refer.enced by 

MC_CONFIRM_PROC 5.2-21 
-PS CONV 5.1-10 

CONFIRMED_PROC procedure 5.1-14 
referenced by 

MC_CONFIR~ED_PROC 5.2-22 
PS CONV 5.1-10 

CONFIRMED structure A-10 
referenced by 

DFC_SEND_TO_PS 6.1-30 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
SEND_RSP_TO_RM_OR_PS 6.1-46 
HAIT_FOR_CONFIRMED_PROC 5.1-61 

conloser 
See contention loser 

CONNECT_RCB_A~D_SCB procedure 3-42 
referenced by 

ATTACH_PROC 3-30 
BID_RSP_PROC 3-35 

0 

FIRST_SPEAKER_PROC 3-49 c 
SESSION_ACTIVATED_ALLOCATION 3-70 
TEST_FOR_FREE_FSP_SESSION 3-82 

contention loser 2-8, 2-32, 5.4-3 
See also bidder 
See also bracket, bidder 
See also session, contention polarity 

contention winner 2-8, 2-32, 5.4-3 
See also bracket, first speaker 
See also first speaker 
See also session, contention polarity 

contention, bracket 
See bracket, protocols 

continuation bit in length prefix 2-13 
See also length prefix ILL) 

control mode 
immediate request 6.1-1, 6.1-4, 6.1-10 
immediate response 6.1-1, 6.1-4, 6.1-10 

control modes 
immediate request mode 6.2-7 
immediate response mode 6.2-7 

control operator 2-3, 2-36, S.4-1, 5.4-23 ~ 
See also control-operator transaction pro-, 

gram \. __ / 
control-operator transaction program 2-3, 

2-34, 2-36, 2-43, 5.4-1, 5.4-5, 5.4-7, 
5.4-12> 5.4-21, 5.4-22, 5.4-23 



c 

relationship to PS.COPR 5.4-1, 5.4-26 
control-operator verbs 2-3, 2-8, 2-36, 5.4-2 

CNOS 5.4-6, 5.4-22 
See also change number of sessions 

ICNOSJ 
distributed function 5.4-3, 5.4-5, 5.4-6 
local function 5.4-3, 5.4-5, 5.4-25 
local session control 5.4-5 
LU definition 5.4-5, 5.4-21 
processing by PS.COPR 5.4-25 

control point ICPJ, in T2.l nodes 1-3, 1-5, 
2-4, 2-6, 2-8, 2-10, 2-11, 2-33 

relationship to LU 2-17, 2-27, 2-34, 
2-35, 2-46 

conversation 2-1, 2-3, 6.1-10 
See also bracket 
allocation to transaction program 2-32, 
3-5, 5.1-7 

basic 
See basip conversation 

deallocation 2-33 
mapped 

See mapped conversation 
relationship to bracket 6.1-10 
termination 3-13 

conversation correlator 5.3-3, 5.3-18 
conversation exchange 2-14 

See also message unit IHUJ, conversation 
sequences 

conversation failure 
See errors, conversation failure 

CONVERSATION_FAILURE_PROC procedure 5.1-29 
referenced by 

GET_END_CHAIN_FROH_HS 5.1-36 
RECEIVE_RH_OR_HS_TO_PS_RECORDS 5.1-51 
HAIT_FOR_CONFIRHED_PROC 5.1-61 
HAIT_FOR_RH_REPLY 5.1-62 
HAIT_FOR_RSP_TO_R~TO_SEND_PROC 5.1-63 

CONVERSATION FAILURE structure A-21 
referenced by 

CONVERSATION_FAILURE_PROC 5.1-29 
RECEIVE_RH_OR_HS_TO_PS_RECORDS 5.1-51 
SESSION_DEACTIVATED_PROC 3-72 
HAIT_FOR_CONFIRHED_PROC 5.1-61 
HAIT_FOR_RH_REPLY 5.1-62 
HAIT_FOR_RSP_TO_R~TO_SEND_PROC 5.1-63 

conversation-level security 2-9, 2-10, 2-32, 
2-33, 2-35, 3-2, 3-10 

access authorization list 2-10 
already verified Attach 2-10 
Already Verified indicator 2-10, 2-32 
downgrade 5.1-4, 5.1-7 
password 2-10, 2-35 
profile 2-10, 5.0-3 
user ID 2-10, 5.0-3 

conversation message 2-14, 2-15 
See also basic conversation message 
See also message unit IHUJ 

conversation resource 2-32, 2-40 
See also conversation 

conwinner 
See contention winner 

CORRELATE_BIND_RSP procedure 4-68 
referenced by 

PROCESS BIND RSP 4-78 
CORRELATE_UNBIND_Rij procedure 4-69 

referenced by 
PROCESS UNBIND RQ 4-83 

correlation - -
See request/response correlation 

correlation entries 

See request/response correlation 
cos 

See class of service 
CP 

See control point ICPJ, in T2.l nodes 
CREATE AND INIT LIMITED HU procedure 5.1-30 

ref;ren~ed by -
COMPLETE_CONFIRM_PROC 5.1-28 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-29 
CONFIRM_PROC 5.1-12 
DEALLOCATE_CONFIRM_PROC 5.1-32 
DEALLOCATE_FLUSH_PROC 5.1-33 
FLUSH_PROC 5.1-16 
OBTAIN_SESSION_PROC 5.1-37 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42. 
RCB_ALLOCATED_PROC 5.1-48 
RECEIVE AND HAIT PROC 5.1-19 
SEND_DATA_sUFFER=MANAGEMENT 5.1-54 
SEND_DATA_PROC 5.1-24 

CREATE BUF POOL 
See-buffer manager IBMJ, protocol boundary 

CREATE_RCB procedure 3-43 
referenced by 

ALLOCATE_RCB_PROC 3-26 
TEST FOR FREE FSP SESSION 3-82 

CREATE_SCB-pro~edur; 3=44 
referenced by 

SUCCESSFUL_SESSION_ACTIVATION 3-80 
CREATE_TCB_AND_PS procedure 3-45 

referenced by 
START_TP_PROC 3-77 

CRV 
See CRYPTOGRAPHY VERIFICATION ICRVl 

CRV_R~RU structure A-27 
referenced by 

TC.BUILD_CRV 6.2-17 
cryptography 6.2-1, 6.2-3, 6.2-4, 6.2-5, 
6.2-6 

See also session cryptography 
block chaining 6.2-6 
control modes 6.2-7 
CRY 6.2-3, 6.2-4 

initial chaining value 6.2-3, 6.2-4 
session cryptography key 6.2-3 
session seed 6.2-3 
test value 6.2-3 

Data Encryption Standard IDESl 6.2-7 
initial chaining value 6.2-3, 6.2-4 
initialization 6.2-3 
parameters in BIND 4-22 
session cryptography key 6.2-3, 6.2-7 
session key distribution 6.2-5 
session-level cryptography 4-22, 6.2-1 
session seed 6.2-3, 6.2-6 
session seed distribution 6.2-5 

CRYPTOGRAPHY VERIFICATION ICRVJ 6.2-3 
session cryptography key 6.2-3 
session seed 6.2-3 
test value 6.2-3 

CT structure 6.0-8 
referenced by 

CT UPDATE 6.1-29 
CT_UPDATE procedure 6.1-29 

referenced by 
DFC_RCV_FSMS 6.1-25 
DFC_SEND_FSMS 6.1-27 

current bracket ID 
See current bracket sequence nunber 

current bracket sequence number 6.1-5, 
6.1-7, 6.1-8 

Index X-5 



data-base resources 2-4, 2-37 
consistency of updates 

See sync point, data-base update con­
sistency 

Data Encryption Standard IDES) 6.2-7 
data flow control IDFCJ 

BIS 6.1-4, 6.1-11, 6.1-14, 6.1-15, 6.1-16 
initialization 6.1-1 
LUSTAT 6.1-4, 6.1-5, 6.1-11, 6.1-14, 
6.1-15, 6.1-16 

protocol boundaries 6.1-3 
request formats 6.1-14, 6.1-15 
response formats 
RTR 6.1-4, 6.1-5, 6.1-8, 6.1-10, 6.1-11, 
6.1-14. 6.1-15. 6.1-17 

SIG 6.1-4, 6.1-5, 6.1-7, 6.1-8, 6.1-14, 
6.1-15, 6.1-17 

structure 6.1-1 
data record 2-13, 2-30, 2-36 
data structures 2-40 

system definition 2-40 
data traffic 

activation 6.2-1 
deactivation 6.2-1 

data traffic protocols 
CRV 6.2-3 

session cryptography key 6.2-3 
session seed 6.2-3 
test value 6.2-3 

session cryptography key 6.2-3 
session seed 6.2-3 

DEACTIVATE_FREE_SESSIONS procedure 3-46 
referenced by 

CHANGE SESSIONS PROC 3-39 
DEACTIVATE_PENDING_SESSIONS procedure 3-47 

referenced by 
CHANGE_SESSIONS_PROC 3-39 

DEACTIVATE_SESSION 4-5 
DEACTIVATE_SESSION_PROC procedure 5.4-38 

referenced by 
PS_COPR 5.4-33 

DEACTIVATE SESSION structure A-21 
referen;;ed by 

FSH_STATUS 4-87 
PROCESS_DEACTIVATE_SESSION 4-80 
PROCESS_RECORD_FROH_RH 4-49 
PS_ABEND_PROC 3-54 
PURGE_QUEUED_REQUESTS 3-59 
SEND_DEACTIVATE_SESSION 3-68 

DEACTIVATE_SESSION verb 5.4-6, 5.4-21, 
5.4-26 

deactivation, session 
LU-LU 4-2 

deadlock 6.2-8 
DEALLOCATE_ABEND_PROC procedure 5.1-31 

referenced by 
DEALLOCATE_PROC 5.1-15 

DEALLOCATE_CONFIRM_PROC procedure 5.1-32 
referenced by 

DEALLOCATE_PROC 5.1-15 
DEALLOCATE FLUSH PROC procedure 5.1-33 

referen;;ed by-
DEALLOCATE PROC 5.1-15 

DEALLOCATE_PROC procedure 5.1-15 
referenced by 

HC_DEALLOCATE_PROC 5.2-23 
PROTOCOL_ERROR_PROC 5.2-47 
PS_CONV 5.1-10 

DEALLOCATE RCB structure A-16 
referen;;ed by 

X-6 SNA LU 6.2 Reference: Peer Protocols 

END_CONVERSATION_PROC 5.1-34 
PROCESS_PS_TO_RH_RECORD 3-22 

DEALLOCATION_CLEANUP_PROC procedure 5.0-18 
referenced by 

PS 5.0-8 
deciphering 6.2-1, 6.2-6 

block chaining 6.2-6 
CRV 6.2-3 

See also data traffic protocols 
session cryptography key 6.2-3 
session seed 6.2-3 
test value 6.2-3 

Data Encryption Standard IDES) 6.2-7 
session cryptography key 6.2-3, 6.2-7 
session seed 6.2-3 

DEFINE_PROC procedure 5.4-39 
referenced by 

PS_COPR 5.4-33 
definite-response chain 

See chaining, definite-response chain 
DELETE_PROC procedure 5.4-41 

referenced by 
PS COPR 5.4-33 

demand b;:;ffers 
See buffer, types 

DEQUEUE_FMH7_PROC procedure 5.1-34 
referenced by 

CONFIRH_PROC 5.1-12 
DEALLOCATE_CONFIRM_PROC 5.1-32 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
RECEIVE_AND_HAIT_PROC 5.1-19 
RECEIVE_IMMEDIATE_PROC 5.1-21 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_IN_SEND_STATE 5.1-57 
TEST_PROC 5.1-26 
HAIT_FOR_CONFIRMED_PROC 5.1-61 

DEQUEUE_HAITING_REQUEST procedure 3-48 
referenced by 

FREE_SESSION_PROC 3-50 
RTR RSP PROC 3-64 

DES algorithm- 4-18 
destination transaction program 2-7 
DESTROY BUF POOL 

See buff;r manager IBM), protocol boundary 
DFC_INITIALIZE procedure 6.1-19 

referenced by 
HS 6.0-3 

DFC_RCV_FSMS procedure 6.1-25 
referenced by 

DFC_RCV 6.1-24 
DFC_RCV procedure 6.1-24 

referenced by 
TC.Rev 6.2-23 

DFC_SEND_FROM_PS procedure 6.1-20 
referenced by 

PROCESS LU LU SESSION 6.0-5 
DFC_SEND_FROM=RH-pr~cedure 6.1-21 

referenced by 
PROCESS_LU_LU_SESSION 6.0-5 

DFC_SEND_FSMS procedure 6.1-27 
referenced by 

DFC_SEND_FROM_PS 6.1-20 
DFC_SEND_FROM_RH 6.1-21 
SEND_FMD_MU 6.1-43 
SEND RSP HU 6.1-45 

DFC_SEND_TO_PS-procedure 6.1-30 
referenced by 

GENERATE_RM_PS_INPUTS 6.1-36 

~· 
( 
''-.......__.-

PROCESS_RU_DATA 6.1-40 
SEND_RSP_TO_RH_OR_PS 6.1-46 
TRY_TO_RCV_SIGNAL 6.1-23 c 

DIA 
See Document Interchange Architecture 

I DIA) 



0 

DISPLAY_PROC procedure 5.4-40 
referenced by 

PS COPR 5.4-33 
distributed operator control 2-3 

See also control-operator verbs, distrib­
uted function 

distributed processing 2-1 
distributed transaction 2-1, 2-36, 2-43 

CNOS 5.4-9 
distributed transaction program 

See logical unit of work ILUH), distrib­
uted 

distribution service unit IDSUJ 
Document Interchange Architecture 
domain, definition of 1-5 
drain 2-34, 2-43 

2-36 
IDIAJ 2-36 

drain of session allocation requests 3-17, 
5.4-4, 5.4-8, 5.4-22, 5.4-26, 5.4-31 

negotiation by CNOS 5.4-31 
DSU 

See distribution service unit IDSUJ 

EDI 
See Enciphered Data indicator IEDII 

enciphered data 4-26 
See also LU-LU verification 
See also session-level security, enci­

phered data 
Enciphered Data indicator !EDI) 6.2-6 
ENCIPHERED RD2 structure A-18 

referen~ed by 
DFC_SEND_FROM_RM 6.1-21 
SUCCESSFUL_SESSION_ACTIVATION 3-81 

enciphering 6.2-1, 6.2-6 
block chaining 6.2-6 
CRV 6.2-3 

See also·data traffic protocols 
session seed 6.2-3 
test value 6.2-3 

Data Encryption Standard IDES) 6.2-7 
session cryptography key 6.2-3, 6.2-7 
session seed 6.2-3 

End Chain indicator IECIJ 
use 6.1-9, 6.1-13 

END_CONVERSATION_PROC procedure 5.1-34 
referenced by 

ATTACH_ERROR_PROC 5.0-15 
DEALLOCATE_ABEND_PROC 5.1-31 
DEALLOCATE_FLUSH_PROC 5.1-33 
DEALLOCATE_PROC 5.1-15 
FLUSH_PROC 5.1-16 
HAIT FOR CONFIRMED PROC 5.1-61 

end-of-chain type 5.1-7-
end-of-conversation message 2-14, 2-19, 

2-30, 2-31 
ERROR_DATA_STRUCTURE structure 5.2-48 

referenced by 
PROCESS_ERROR_DATA 5.2-43 
RCVD_svc_ERROR_PURGING 5.2-42 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41 
SEND_SVC_ERROR_PURGING 5.2-45 

Error Description FM header IFMH-7) 
See FM header, type 7 (Error Description) 

error recovery 
See also errors 
CNOS 5.4-28, 5.4-31 

conversation failure 5.4-21, 5.4-28 
protocol violation 5.4-31 
unrecognized command parameters 5.4-31 

confirmation 2-11, 2-14 
control operator 2-12 
conversation deallocation 2-11 
distributed 

See sync point 
LU 2-12 
program 2-11, 2-14 
session deactivation 2-12 
sync point 

See sync point 
transaction program 2-11 

errors 2-10 
See also error recovery 
See also errors and failures 
application-detected 2-10 
conversation failure 2-11, 2-34 7 5.1-9 
local resource 2-10 
LU failure 2-11, 2-38 
program failure 2-11 
protocol 5.1-9 
session failure 2-11 
system recoverable 2-11 

errors and failures 5.3-1, 5.3-19, 5.3-24 7 

5.3-25, 5.3-30, 5.3-31, 5.3-32, 5.3-33, 
5.3-41 

application errors 5.3-1 
conversation failures 5.3-1, 5.3-2, 
5.3-18, 5.3-19, 5.3-22, 5.3-32 

local resource failures 5.3-1 
LU failures 5.3-1, 5.3-2, 5.3-20 
program failures 5.3-1, 5.3-2 
recoverable system errors 5.3-1 

errors during sync point 
See sync point, errors during sync point 

exception-response chain 
See chaining, exception-response chain 

Exchange Log Name 
See sync point, commands, Exchange Log 

Name 
expedited flow 

in contrast to normal flow 6.2-6, 6.2-7 
TC 6.2-1, 6.2-6, 6.2-7 

failures 
See errors and failures 

files 
See sync point, local resources 

finite-state machine IFSMJ, basic notion 
of 1-1 

finite-state machines N-1 
call N-1 
generic finite-state machines N-1 
initialization N-1 
no-op finite-state machines N-1 
state N-1 
state check N-1 
state name N-1 
state test N-1 
state transition N-1 

first speaker 2-8, 2-32 
See also bracket, first speaker 
See also contention winner 

FIRST_SPEAKER_PROC procedure 3-49 
referenced by 

GET SESSION PROC 3-52 
fixed dyn;mic buffer pool 

See buffer, pools 
fixed dynamic buffers 

See buffer, types 

Index X-7 



fixed pacing 
See session-level pacing 

flip-flop, half-duplex 
See send/receive mode, half-duplex 
flip-flop CHDX-FF) 

flow control messages 
adaptive pacing responses 6.2-8 

reset acknowledgments 6.2-8 
solicited IPHs 6.2-8 
unsolicited IPHs 6.2-8 

pacing requests 6.2-8 
flow sequences 4-30 
FLUSH_PROC procedure 5.1-16 

referenced by 
HC_FLUSH_PROC 5.2-23 
PS CONV 5.1-10 

FH heade; 2-14, 2-15, 2-17, 2-38 
relationship to verbs 2-18 
type 12 (Security) 2-10, 2-14, 2-33, 
2-35, 3-15, 6.1-4 

type 5 !Attach) 2-10, 2-14, 2-31, 2-32, 
3-2, 3-10, 5.0-4, 5.1-7, 5.3-12, 6.1-4 

type 7 !Error Description) 2-14, 5.1-7, 
5.3-6, 5.3-7, 6.1-4, 6.1-8 

use in FH profile 19 6.1-4 
FH profile 

See also profiles 
in BIND 4-20 

FH profile 0 6.1-1 
FH profile 19 6.1-1, 6.1-4, 6.1-9, 6.1-16 
FH profile 6 6.1-1 
FH Usage field 

in BIND 4-20 
FHH-12 

See FH header, type 12 (Security) 
FHH-5 

See FH header, type 5 !Attach) 
FHH-7 

See FH header, type 7 !Error Description) 
FORCE parameter 

See RESET_SESSION_LIHIT verb, processing 
by PS.COPR, FORCE.parameter 

Forget 
See sync point, commands, Forget 

formal description, definition of 1-1 
FORMAT_ERROR_EXP_RSP procedure 6.1-32 

referenced by 
FORMAT_ERROR 6.1-31 

FORMAT_ERROR_NORM_RSP procedure 6.1-32 
referenced by 

FORMAT_ERROR 6.1-31 
FORMAT_ERROR procedure 6.1-31 

referenced by 
DFC_RCV 6.1-24 

FORMAT ERROR RQ DFC procedure 6.1-33 
ref;renced by 

FORMAT_ERROR 6.1-31 
FORMAT_ERROR_RQ_FHD procedure 6.1-34 

referenced by 
FORMAT_ERROR 6.1-31 
FORMAT_ERROR_RQ_DFC 6.1-33 

Format indicator (fl) 
use 6.1-4 

FREE_BUFFER 
See buffer manager CBM), protocol boundary 

FREE LFSID 4-12 
FREE=LFSID structure A-25 

referenced by 
BUILD AND SEND FREE LFSID 4-60 

free-sessio~ po~l 3:12 -
FREE_SESSION_PROC procedure 3-50 

referenced by 
PROCESS HS TO RM RECORD 3-20 

FREE_SESSION ;tr~ct~re- A-12 

X-8 SNA LU 6.2 Reference: Peer Protocols 

referenced by 
FREE_SESSION_PROC 3-50 
FSM_CHAIN_RCV_FHP19 6.1-51 
FSM_CHAIN_SEND_FMP19 6.1-53 
PROCESS_HS_TO_RH_RECORD 3-20 

FSM_BIS_BIDDER 3-87 
FSM_BIS_BIDDER FSH 

referenced by 
BID_PROC 3-33 
CREATE_SCB 3-44 
FREE_SESSION_PROC 3-50 
PROCESS_HS_TO_RH_RECORD 3-20 
RM_DEACTIVATE_SESSION_PROC 3-62 
RTR_RSP_PROC 3-64 
SEND_BIS 3-66 
SEND_BIS_REPLY 3-67 
SEND_BIS_RQ 3-67 
SHOULD_SEND_BIS 3-76 

FSM_BIS_FSP 3-88 
FSM BIS FSP FSM 

;efe;enced by 
BID_PROC 3-33 
CREATE_SCB 3-44 
FREE_SESSION_PROC 3-50 
PROCESS_HS_TO_RH_RECORD 3-20 
RM_DEACTIVATE_SESSION_PROC 3-62 
RTR_RSP_PROC 3-64 
SEND_BIS 3-66 
SEND_BIS_REPLY 3-67 
SEND_BIS_RQ 3-67 
SHOULD_SEND_BIS 3-76 

FSH_BSH_FHP19 6.1-50 
FSH_BSH_FHP19 FSM 

referenced by 
DFC_INITIALIZE 6.1-19 
DFC_SEND_FROM_RH 6.1-21 
FSM_CHAIN_RCV_FMP19 6.1-51 
FSM_CHAIN_SEND_FMP19 6.1-53 
PROCESS_LU_LU_SESSION 6.0-5 
PROCESS_RU_DATA 6.1-40 
RCV_STATE_ERROR 6.1-41 
REPLY_TO_BID 6.1-42 
SEND_BID_POS_RSP 6.1-42 
SEND_RSP_TO_RM_OR_PS 6.1-46 
STRAY_RSP 6.1-48 
TRY_TO_RCV_SIGNAL 6.1-23 

FSH_CHAIN_RCV_FMP19 6.1-51 
FSM_CHAIN_RCV_FMP19 FSM 

referenced by 
DFC_INITIALIZE 6.1-19 
DFC_RCV_FSMS 6.1-25 
DFC_SEND_FROM_PS 6.1-20 
DFC_SEND_FSMS 6.1-27 
OK_TO_REPLY 6.1-39 
RCV_STATE_ERROR 6.1-41 
SEND_RSP_IF_REQUIRED 6.1-44 
SEND_RSP_MU 6.1-45 

FSM_CHAIN_SEND_FMP19 6.1-53 
FSM CHAIN SEND FMP19 FSH 

;efere~ced by 
DFC_INITIALIZE 6.1-19 
DFC_RCV_FSMS 6.1-25 
DFC_SEND_FSMS 6.1-27 
OK_TO_REPLY 6.1-39 
PROCESS_LU_LU_SESSION 6.0-5 
RCV_STATE_ERROR 6.1-41 

FSM_CONVERSATION 5.1-65 
FSM CONVERSATION FSM 

;eferenced by 
COMPLETE_CONFIRM_PROC 5.1-28 
CONFIRM_PROC 5.1-12 
CONFIRMED_PROC 5.1-14 
DEALLOCATE_ABEND_PROC 5.1-31 
DEALLOCATE_CONFIRM_PROC 5.1-32 

,,---
I 
\ ......___ .. · 

c 



(j 

C_j 

0 

DEALLOCATE_FLUSH_PROC 5.1-33 
DEALLOCATE_PROC 5.1-15 
DEALLOCATION_CLEANUP_PROC 5.0-18 
DEQUEUE_FMH7_PROC 5.1-34 
FLUSH_PROC 5.1-16 
GET_ATTRIBUTES_PROC 5.1-17 
GET_DEALLOCATE_FROM_HS 5.1-35 
GET_END_CHAIN_FROM_HS 5.1-36 
PERFORM_RECEIVE_EC_PROCESSING 5.1-38 
PERFORM_RECEIVE_PROCESSING 5.1-40 
POST_ON_RECEIPT_PROC 5.1-17 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42 
PREPARE_TO_RECEIVE_PROC 5.1-18 
PROCESS_FMH7_PROC 5.1-46 
RCB_ALLOCATED_PROC 5.1-48 
RECEIVE_AND_HAIT_PROC 5.1-19 
RECEIVE_IMMEDIATE_PROC 5.1-21 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
REQUEST_TO_SEND_PROC 5.1-23 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC 5.1-55 
SEND_ERROR_IN_RECEIVE_STATE 5.1-56 
SENO_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_PROC 5.1-25 
SET_FMH7_RC 5.1-59 
TEST_PROC 5.1-26 
HAIT_FOR_CONFIRMED_PROC 5.1-61 
HAIT_FOR_RSP_TO_RQ_TO_SENO_PROC 5.1-63 
HAIT_FOR_SEND_ERROR_DONE_PROC 5.1-64 

FSM_ERROR_OR_FAILURE 5.1-67 
FSM ERROR OR FAILURE FSM 

;efere;:;ced by 
CONFIRM_PROC 5.1-12 
CONFIRMED_PROC 5.1-14 
CONVERSATION_FAILURE_PROC 5.1-29 
DEALLOCATE_ABEND_PROC 5.1-31 
DEALLOCATE_CONFIRM_PROC 5.1-32 
DEALLOCATE_FLUSH_PROC 5.1-33 
FLUSH_PROC 5.1-16 
FSM_CONVERSATION 5.1-65 
GET_DEALLOCATE_FROM_HS 5.1-35 
PERFORM_RECEIVE_PROCESSING 5.1-40 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42 
PROCESS_FMH7_LOG_DATA_PROC 5.1-44 
PROCESS_FMH7_PROC 5.1-46 
RECEIVE_AND_HAIT_PROC 5.1-19 
RECEIVE_IMMEDIATE_PROC 5.1-21 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
REQUEST_TO_SEND_PROC 5.1-23 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_PROC 5.1-25 
SET_FMH7_RC 5.1-59 
TEST_PROC 5.1-26 
HAIT_FOR_CONFIRMED_PROC 5.1-61 
HAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-63 
HAIT_FOR_SEND_ERROR_DONE_PROC 5.1-64 

FSM_POST 5.1-68 
FSM POST FSM 

;eferenced by 
CONVERSATION_FAILURE_PROC 5.1-29 
DEQUEUE_FMH7_PROC 5.1-34 
POST_ON_RECEIPT_PROC 5.1-17 
RECEIVE_AND_TEST_POSTING 5.1-50 
RECEIVE_IMMEDIATE_PROC 5.1-21 
TEST_FOR_POST_SATISFIED 5.1-60 
TEST_PROC 5.1-26 

FSM_QRI_CHAIN_RCV_FMP19 6.1-55 
FSM_QRI_CHAIN_RCV_FMP19 FSM 

referenced by 
DFC_INITIALIZE 6.1-19 
DFC_RCV_FSMS 6.1-25 

RCV_STATE_ERROR 6.1-41 
FSM_RCB_STATUS_BIDDER 3-89 
FSM RCB STATUS BIDDER FSM 

;efe;enced by 
BID_RSP_PROC 3-35 
BIDDER_PROC 3-37 
CREATE_RCB 3-43 
FREE_SESSION_PROC 3-50 
PS_ABEND_PROC 3-54 
PS_CREATION_PROC 3-55 
QUEUE_ATTACH_PROC 3-60 
SESSION_ACTIVATED_ALLOCATION 3-70 
SESSION_DEACTIVATED_PROC 3-72 
SET_RCB_AND_SCB_FIELDS 3-75 

FSM_RCB_STATUS_FSP 3-90 
FSM_RCB_STATUS_FSP FSM 

referenced by 
BID_RSP_PROC 3-35 
BIDDER_PROC 3-37 
CREATE_RCB 3-43 
FREE_SESSION_PROC 3-50 
PS_ABEND_PROC 3-54 
PS_CREATION_PROC 3-55 
QUEUE_ATTACH_PROC 3-60 
SESSION_ACTIVATED_ALLOCATION 3-70 
SESSION_DEACTIVATED_PROC 3-72 
SET_RCB_AND_SCB_FIELDS 3-75 

FSM_RCV_PURGE_FMP19 6.1-56 
FSM RCV PURGE FMP19 FSM 

;efe;enced-by 
DFC_INITIALIZE 6.1-19 
DFC_RCV_FSMS 6.1-25 
GENERATE_RM_PS_INPUTS 6.1-36 

FSM_SCB_STATUS_BIDDER 3-85 
FSM_SCB_STATUS_BIDDER FSM 

referenced by 
ATTACH_PROC 3-30 
BID_PROC 3-33 
CREATE_SCB 3-44 
FREE_SESSION_PROC 3-50 
PS_ABEND_PROC 3-54 
QUEUE_ATTACH_PROC 3-60 
SECURITY_PROC 3-65 
SESSION_DEACTIVATED_PROC 3-72 
SET_RCB_AND_SCB_FIELDS 3-75 
SUCCESSFUL_SESSION_ACTIVATION 3-80 

FSM_SCB_STATUS_FSP 3-86 
FSM SCB STATUS FSP FSM 

;efe;enced by 
ATTACH_PROC 3-30 
BID_PROC 3-33 
CREATE_SCB 3-44 
FREE_SESSION_PROC 3-50 
PS_ABEND_PROC 3-54 
QUEUE_ATTACH_PROC 3-60 
SECURITY_PROC 3-65 
SESSION_DEACTIVATED_PROC 3-72 
SET_RCB_AND_SCB_FIELDS 3-75 
SUCCESSFUL_SESSION_ACTIVATION 3-80 

FSM_STATUS 4-86 
FSM_STATUS FSM 

referenced by 
PROCESS_ABEND_NOTIFICATION 4-74 
PROCESS_ABORT_HS 4-74 
PROCESS_ACTIVATE_SESSION 4-75 
PROCESS_BIND_RQ 4-76 
PROCESS_BIND_RSP 4-78 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS_DEACTIVATE_SESSION 4-80 
PROCESS_INIT_HS_RSP 4-81 
PROCESS_INIT_SIGNAL_NEG_RSP 4-81 
PROCESS_SESSION_ROUTE_INOP 4-83 
PROCESS_UNBINO_RQ 4-83 

full-duplex send/receive mode 

Index X-9 



See send/receive mode, full-duplex CFDXJ 
fully qualified LU name 

See LU name, network-qualified 
function shipping 

See sync point, function shipping 

GOS header 
See general data stream header 

GOS ID 
See general data stream variable identifi­
er 

GOS variable 
See general data stream variable 

general data stream header 2-13, 2-30, 2-31 
general data stream variable 2-13, 2-36, 
5.2-5 

Application Data 5.2-5, 5.2-11 
Change Number of Sessions 2-36 

See also Change Number of Sessions GOS 
variable 

Compare States 2-40 
Error Data 5.2-14, 5.2-15 
Exchange Log Name 2-40 
Map Name 2-37, 5.2-9, 5.2-11 
Null Data 5. 2-5 
User Control Data 5.2-5, 5.2-11, 5.2-14 

general data stream variable identifier 2-13 
general data stream variables 

for mapped conversations 2-15, 2-37 
for resynchronization 2-40 

GENERATE_RM_PS_INPUTS procedure 6.1-36 
referenced by 

DFC_RCV_FSMS 6.1-25 
generic finite-state machines N-1 

initialization N-1 
no-op finite-state machines N-1 

GET_ATTRIBUTES_PROC procedure 5.1-17 
referenced by 

MC_GET_ATTRIBUTES_PROC 5.2-24 
PS_CONV 5.1-10 

GET BUFFER 
See buffer manager CBMJ, protocol boundary 

GET_DEALLOCATE_FROM_HS procedure 5.1-35 
referenced by 

PROCESS_FMH7_LOG_DATA_PROC 5.1-44. 
PROCESS_FMH7_PROC 5.1-46 

GET_END_CHAIN_FROM_HS procedure 5.1-36 
referenced by 

ATTACH_ERROR_PROC 5.0-15 
GET_DEALLOCATE_FROM_HS 5.1-35 
HAIT_FOR_SEND_ERROR_DONE_PROC 5.1-64 

GET_FQPCID procedure 4-70 
referenced by 

INITIALIZE_LULU_CB_BIND 4-71 
PROCESS_ACTIVATE_SESSION 4-75 

GET_SEND_INDICATOR procedure 5.2-44 
referenced by 

RCVD_SVC_ERROR_PURGING 5.2-42 
GET_SESSION_PROC procedure 3-52 

referenced by 
BID_RSP_PROC 3-35 
DEQUEUE_HAITING_REQUEST 3-48 
PROCESS_PS_TO_RM_RECORD 3-22 
RTR_RQ_PROC 3-63 
SESSION DEACTIVATED PROC 3-72 

GET_SESSION structure A-l6 
referenced by 

BID_RSP_PROC 3-35 
BIDDER_PROC 3-37 

X-10 SNA LU 6.2 Reference: Peer Protocols 

CHANGE_SESSIONS_PROC 3-39 
CHECK_FOR_BIS_REPLY 3-40 
DEQUEUE_HAITING_REQUEST 3-48 
FIRST_SPEAKER_PROC 3-49 
FREE_SESSION_PROC 3-50 
GET_SESSION_PROC 3-52 
OBTAIN_SESSION_PROC 5.1-37 
PROCESS_PS_TO_RM_RECORD 3-22 
PS_ABEND_PROC 3-54 
RTR_RQ_PROC 3-63 
SEND_DEACTIVATE_SESSION 3-68 
SESSION_ACTIVATED_ALLOCATION 3-70 
SESSION_DEACTIVATED_PROC 3-72 
SUCCESSFUL_SESSION_ACTIVATION 3-81 
UNSUCCESSFUL SESSION ACTIVATION 3-83 

GET_TP_PROPERTIES_PROC pro~edure 5.0-18 
referenced by 

PS_VERB_ROUTER 5.0-16 

half-duplex flip-flop send/receive mode 2-6 
See also send/receive mode, half-duplex 
flip-flop CHDX-FFl 

See also two-way alternate send/receive 
protocol 

half-session !HSl 2-1 
activation and deactivation 6.0-1 
components 6.0-1 
function summary 2-35 
process 2-32, 2-34, 2-40, 2-44 
process queues 6.0-1 
processes 6.0-1 
protocol boundaries 2-46, 2-47, 6.0-2 

half-session ID 2-6 
HS 

See half-session !HSJ 
HS_CREATE_PARMS structure A-26 

referenced by 
HS 6.0-3 

HS_ID structure 3-91 
referenced by 

BIDDER_PROC 3-37 
BIS_RACE_LOSER 3-38 

I~ 
'\_ __ 

CHECK_FOR_BIS_REPLY 3-40 c~-
CONNECT_RCB_AND_SCB 3-42 , 
DEQUEUE_HAITING_REQUEST 3-48 
FIRST_SPEAKER_PROC 3-49 
FSM_BIS_BIDDER 3-87 
FSM_BIS_FSP 3-88 
PS_PROTOCOL_ERROR 5.0-20 
SEND_BIS 3-66 
SEND_BIS_REPLY 3-67 
SEND_BIS_RQ 3-67 
SESSION_ACTIVATED_ALLOCATION 3-70 
SET_RCB_AND_SCB_FIELDS 3-75 
SHOULD_SEND_BIS 3-76 

HS process 6.0-3 
referenced by 

ATTACH_ERROR_PROC 5.0-15 
BID_PROC 3-33 
BID_RSP_PROC 3-35 
BIDDER_PROC 3-37 
BIS_RACE_LOSER 3-38 
BUILD_AND_SEND_INIT_HS 4-61 
COMPLETE_CONFIRM_PROC 5.1-28 C' 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-29 , 
CONFIRM_PROC 5.1-12 -
CONNECT_RCB_AND_SCB 3-42 
DEALLOCATE_CONFIRM_PROC 5.1-32 
DEALLOCATE_FLUSH_PROC 5.1-33 



(_j 

l .. ) 
/ 

C·-. 
J 

DFC_INITIALIZE 6.1-19 
DFC_SEND_FROM_PS 6.1-20 
DFC_SEND_TO_PS 6.1-30 
END_CONVERSATION_PROC 5.1-34 
FLUSH_PROC 5.1-16 
FREE_SESSION_PROC 3-50 
FSM_CONVERSATION 5.1-65 
INVALID_SENSE_CODE 6.1-38 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42 
PROCESS_HS_TO_RM_RECORD 3-20 
PROCESS_PS_TO_RM_RECORD 3-22 
PS_TERMINATION_PROC 3-57 
RCB_ALLOCATED_PROC 5.1-48 
RECEIVE_AND_HAIT_PROC 5.1-19 
RTR_RQ_PROC 3-63 
SEGMENT_REASSEMBLY 6.2-28 
SEND_BIS_REPLY 3-67 
SEND_BIS_RQ 3-67 
SEND CONFIRMED PROC 5.1-53 
SEND=DATA_BUFFER_MANAGEMENT 5.1-54 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC 5.1-55 
SEND_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_TO_HS_PROC 5.1-58 
SEND_REQUEST_TO_SEND_PROC 5.1-58 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
TC.BIU_RCV_CHECKS 6.2-25 
TC.BUILD_CRV 6.2-17 
TC.CRV_FORMAT_CHECK 6.2-18 
TC.DECIPHER~RU 6.2-32 
TC.EXCHANGE_CRV 6.2-15 
TC.INITIALIZE 6.2-13 
TC.RCV 6.2-23 
TC.SEGMENT_RCV_CHECKS 6.2-24 

HS PS_CONNECTED structure A-18 
referenced by 

CONNECT_RCB_AND_SCB 3-42 
DFC_SEND_FROM_RM 6.1-21 
PROCESS_RU_DATA 6.1-40 
PS_TERMINATION_PROC 3-57 
SEND_BID~POS_RSP 6.1-42 

identification of session 
in BIND 4-23 

immediate request mode 6.1-10 
See also control mode, immediate request 

immediate response mode 6.1-10 
See also control mode, immediate response 

implementation-dependent parameters 4-18 
implementation-determined functions 

See also non-SNA functions 
AP! 2-4 

closed 2-12 
control operator 2-3 
control operator TP 2-36 
error recovery 2-11 
logging 2-38 
mapping 2-36 
names 2-5 
network configuration 2-4 
optional function sets 2-12 
record length and format con-
straints 2-13, 2-30 

resources 2-2·9, 2-38 
system definition 2-43 

implied Forget 
See sync point, commands, implied Forget 

INIT_HS 4-7 

INIT_HS_RSP 4-7 
INIT_HS_RSP structure A-10 

referenced by 
FSM_STATUS 4-87 
HS 6.0-3 
PROCESS_INIT_HS_RSP 4-81 
PROCESS_RECORD_FROM_HS 4-50 

!NIT HS structure A-13 
r;ferenced by 

BUILD_AND_SEND_INIT_HS 4-61 
DFC_INITIALIZE 6.1-19 
HS 6.0-3 
TC.BUILD_CRV 6.2-17 
TC.EXCHANGE_CRV 6.2-15 
TC.INITIALIZE 6.2-13 

INIT_SIGNAL 4-9 
INIT_SIGNAL_NEG_RSP 4-10 
INIT_SIGNAL_NEG_RSP structure A-23 

referenced by 
FSM_STATUS 4-87 
PROCESS_INIT_SIGNAL_NEG RSP 4-81 
PROCESS_RECORD_FROM_SS 4-50 

!NIT SIGNAL structure A-23 
r;ferenced by 

BUILD_AND_SEND_INIT_SIG 4-61 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS !NIT SIGNAL NEG RSP 4-81 

initial chaining v;lue 6~2-3: 6.2-4 
initialization 

See transmission control 
initialization of generic finite-state 
machines N-1 

INITIALIZE_ATTACHED_RCB procedure 5.0-20 
referenced by 

PROCESS_PMH5 5.0-10 
INITIALIZE LULU CB ACT SESS procedure 4-70 

ref eren~ed by -
PROCESS_ACTIVATE_SESSION 4~75 

INITIALIZE_LULU_CB_BIND procedure 4-71 
referenced by 

PROCESS_BIND_RQ 4-76 
INITIALIZE_SESSION_LIMIT_PROC proce-
dure 5.4-34 

referenced by 
PS_COPR 5.4-33 

INITIALIZE_SESSION_LIMIT verb 5.4-6, 5.4-22 
processing by PS.COPR 

parallel-session mode name 5.4-30 
single-session mode name 5.4-25 
SNASVCMG mode name 5.4-25 

INITIALIZE_TH_RH procedure 6.1-38 
referenced by 

DFC_SEND_FROM_PS 6.1-20 
DFC SEND FROM_RM 6.1-21 
SEND_FMD_MU 6.1-43 
SEND_RSP_MU 6.1-45 

initiating process !IPJ 2-36, 3-3, 3-5 
protocol boundary 2-47 
SEND_RTR 3-5 
START_TP 3-5 

initiator 
See sync point, roles, initiator 

installation-specified parameters 4-18 
instance limit 2-5 

See also transaction program instance 
!TPJ, limit 

intermediate routing 1-4 
INVALID_SENSE_CODE procedure 6.1-38 

referenced by 
RCV_STATE_ERROR 6.1-41 

!PM 
See ISOLATED PACING MESSAGE !IPMJ 

IPM_RU structure 6.2-33 
referenced by 

Index X-11 



BUFFERS_RESERVED_PROCESSING 6.2-31 
MU_PACING_CHECKS 6.2-26 
RCV_PACING_RSP 6.2-29 
SEND_TO_PC 6.2-22 

IPR 
See ISOLATED PACING RESPONSE IIPRJ 

ISOLATED PACING MESSAGE IIPMJ 
See also session-level pacing 
reset acknowledgment IPM 6.2-8 
solicited IPM 6.2-8 
unsolicited IPM 6.2-8 

ISOLATED PACING RESPONSE IIPRJ 
See session-level pacing 

last resource 
See sync point, flows, last resource opti­
mization 

layer of SNA 2-4, 2-27 
length prefix ILL) 2-3, 2-13, 2-15, 2-30, 
5.1-6 

accumulation and checking 2-30, 2-31 
LFSID_IN_USE 4-12 
LFSID IN USE RSP 4-13 
LFSID-IN-USE-RSP structure A-25 

refer;nced by 
PROCESS LFSID IN USE 4-82 

LFSID IN USE ;truct~re- A-26 
refer;nced by 

PROCESS_LFSID_IN_USE 4-82 
PROCESS_RECORD_FROM_ASM 4-51 

LFSID structure A-28 
limited buffer pool 

See buffer, pools 
limited buffers 

See buffer, types 
link buffers 

See buffer, types 
LL 

See length prefix ILL) 
LLID 

See general data stream header 
local LU characteristics 2-40 
local LU name 

See LU name, local 
local resources 

See resource, local 
See sync point, local resources 

LOCAL SESSION LIMIT PROC procedure 5.4-42 
referenced-by -

INITIALIZE_SESSION_LIMIT_PROC 5.4-34 
RESET_SESSION_LIMIT_PROC 5.4-35 

LOCAL structure 4-89, 6.0-7 
referenced by 

BIND_RQ_STATE_ERROR- 4-52 
BIND_RSP_STATE_ERROR 4-54 
BIND_SESSION_LIMIT_EXCEEDED 4-57 
BUILD_AND_SEND_BIND_RSP_NEG 4-60 
BUILD_AND_SEND_INIT_HS 4-61 
BUILD_AND_SEND_SESSEND_SIG 4-64 
BUILD_AND_SEND_UNBIND_RQ 4-65 
BUILD_BIND_RSP_POS 4-67 
DFC_INITIALIZE 6.1-19 
DFC_RCV 6 .1-24 
DFC_RCV_FSMS 6.1-25 
DFC_SEND_FROH_PS 6.1-20 
DFC_SEND_FROH_RM 6.1-21 
DFC_SEND_FSHS 6.1-27 
DFC_SEND_TO_PS 6.1-30 
FORMAT_ERROR 6.1-31 

X-12 SNA· LU 6.2 Reference: Peer Protocols 

FORMAT_ERROR_EXP_RSP 6.1-32 
FORMAT ERROR NORM_RSP 6.1-32 
FORMAT_ERROR_RQ_DFC 6.1-33 
FORMAT_ERROR_RQ_FHD 6.1-34 
FSM_BSM_FMP19 6.1-50 
FSM_CHAIN_RCV_FMP19 6.1-51 
FSM_CHAIN_SEND_FMP19 6.1-53 
FSH_QRI_CHAIN_RCV_FMP19 6.1-55 
FSM_STATUS 4-87 
GENERATE_RM_PS_INPUTS 6.1-36 
HS 6.0-3 
INITIALIZE_LULU_CB_BIND 4-71 
INVALID_SENSE_CODE 6.1-38 
LU_HODE_SESSION_LIHIT_EXCEEDED 4-72 
OK_TO_REPLY 6.1-39 
PREPARE_TO_SEND_BIND 4-73 
PROCESS_ABEND_NOTIFICATION 4-74 
PROCESS ABORT HS 4-74 
PROCESS-BIND RQ 4-76 
PROCESS=BIND=RSP 4=78 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS_LU_LU_SESSION 6.0-5 
PROCESS_RU_DATA 6.1-40 
RCV_STATE_ERROR 6.1-41 
REPLY_TO_BID 6.1-42 
RESERVE_CONSTANT_BUFFERS 4-84 
RESERVE_VARIABLE_BUFFERS 4-84 
SEGHENT_REASSEHBLY 6.2-28 
SEND_BID_POS_RSP 6.1-42 
SEND_FHD_MU 6.1-43 
SEND_RSP_IF_REQUIRED 6.1-44 
SEND_RSP_MU 6.1-45 
SEND_RSP_TO_RM_OR_PS 6.1-46 
SIGNAL_STATUS 6.1-47 
SM 4-48 
STRAY_RSP 6.1-48 
TC.BIU_RCV_CHECKS 6.2-25 
TC.CRV_FORMAT_CHECK 6.2-18 
TC.DECIPHER_RU 6.2-32 
TC.EXCHANGE_CRV 6.2-15 
TC.INITIALIZE 6.2-13 
TC.RCV 6.2-23 
TC.SEGMENT_RCV_CHECKS 6.2-24 
TRANSLATE 6.1-49 
TRY TO RCV SIGNAL 6.1-23 

LOCAL_VERB_PARAHETER_CHECK procedure 5.4-43 
referenced by 

LOCAL SESSION LIMIT PROC 5.4-42 
local, role-of LU a~d TP -2-5 
lock manager 

See sync point, heuristic decision, and 
lock manager 

log manager 5.3-3, 5.3-19, 5.3-20, 5.3-25, 
5.3-32, 5.3-33, 5.3-34 

log mismatch 5.3-33, 5.3-34 
See also sync point, log 

log name 
See sync point, log 

logging 2-4 
See also sync point, logging 

logical record 2-13, 2-15, 2-30, 5.1-6 
logical unit ILUl 

See LU !logical unitl 
logical unit of work 

See sync point 
logical unit of work ILUHl 5.3-1, 5.3-3, 
5.3-16, 5.3-19, 5.3-24, 5.3-25, 5.3-30, 
5.3-32 

delimiting 5.3-1, 5.3-20, 5.3-32 
distributed 5.3-4 
local 5.3-4 
state of 5.3-4, 5.3-18, 5.3-20, 5.3-22, 
5.3-24, 5.3-25, 5.3-30, 5.3-32 

c 

0 

c 



LOGICAL UNIT STATUS ILUSTATJ 6.1-4, 6.1-5, 
6.1-11. 6.1-14, 6.1-15, 6.1-16 

loser, contention 
See bracket, bidder 

LU !logical unit) 2-1 
association with end users 1-3 
component interaction 2-48 
control block ILUCBJ 5.1-2 
creation 2-43 
definition 1-3 
parallel-session 5.4-3 
peripheral 1-5 
single-session 5.4-3 
structure 2-27 
subarea 1-5 

LU data structures 
LU control block ILUCBJ 5.2-4 
transaction program control block 

ITPCBJ 5.2-4 
LU definition 5.4-3 
LU-LU password 4-18 

See also session-level security, LU-LU 
password 

LU-LU session 
See session 

LU-LU verification 4-18 
See also session-level security, LU-LU 
verification 

LU mode 2-4 
LU-mode entry 5.4-5, 5.4-12 

locking for CNOS 
See change number of sessions ICNOSJ, 

locking ILU,modeJ entry 
processing by PS.COPR CCNOSJ 5.4-8, 
5.4-28 

LU_MODE_SESSION_LIMIT_EXCEEDED proce-
dure 4-72 

referenced by 
BIND_RSP_STATE_ERROR 4-54 
BIND_SESSION_LIMIT_EXCEEDED 4-57 
PROCESS_ACTIVATE_SESSION 4-75 
PROCESS_CINIT_SIGNAL 4-79 

LU name 2-6, 2-32 
fully qualified 

See LU name, network-qualified 
local 2-6, 2-40 
network-qualified 2-6, 2-40 
uninterpreted 2-40 

LU_NAME structure 3-91 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-24 
BIS_RACE_LOSER 3-38 
CREATE_SCB 3-44 
DEACTIVATE_FREE_SES5IONS 3-46 
DEACTIVATE_PENDING_SESSIONS 3-47 
SEND_ACTIVATE_SESSION 3-65 
SESSION_ACTIVATION_POLARITV 3-71 
SESSION_DEACTIVATION_POLARITV 3-74 
SHOULD_SEND_BIS 3-76 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
UNSUCCESSFUL SESSION ACTIVATION 3-83 

LU services manage; -
See resources manager IRMJ 
See session manager ISM) 

LU services record 
See Change Number of Sessions GOS variable 

LU session manager ISM) 
See session manager CSMJ 

LUCB_LIST_PTR structure 5.0-24 
LUCB structure 2-40, A-1 

referenced by 
BIND_RQ_STATE_ERROR 4-52 
BUILD_AND_SEND_BIND_RQ 4-59 
BUILD_AND_SEND_INIT_SIG 4-61 

CHECK_CNOS_REPLV 5.4-56 
CREATE_TCB_AND_PS 3-45 
DEFINE_PROC 5.4-39 
DELETE_PROC 5.4-41 
DISPLAV_PROC 5.4-40 
GET_TP_PROPERTIES_PROC 5.0-18 
LOCAL_VERB_PARAMETER_CHECK 5.4-43 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
PS 5.0-8 
PS_CREATION_PROC 3-55 
PS_TERMINATION_PROC 3-57 
SECURITV_PROC 3-65 
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-67 
SM 4-48 
SOURCE_CONVERSATION_CONTROL 5.4-49 
START_TP_PROC 3-77 
SVCMG_VERB_PARAMETER_CHECK 5.4-44 
VERB_PARAMETER_CHECK 5.4-48 

LULU_CB structure 4-90 
referenced by 

BIND_RSP_STATE_ERROR 4-54 
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-58 
BUILD_AND_SEND_ACT_SESS_RSP_POS 4-58 
BUILD_AND_SEND_BIND_RQ 4-59 
BUILD_AND_SEND_FREE_LFSID 4-60 
BUILD_AND_SEND_INIT_HS 4-61 
BUILD_AND_SEND_INIT_SIG 4-61 
BUILD_AND_SEND_PC_HS_DISCONNECT 4-62 
BUILD_AND_SEND_SESS_ACTIVATED 4-63 
BUILD_AND_SEND_SESSEND_SIG 4-64 
BUILD_AND_SEND_SESSST_SIG 4-65 
BUILD_AND_SEND_UNBIND_RQ 4-65 
BUILD_AND_SEND_UNBIND_RSP 4-66 
BUILD_BIND_RSP_POS 4-67 
CLEANUP_LU_LU_SESSION 4-67 
FSM_STATUS 4-87 
GET_FQPCID 4-70 
INITIALIZE_LULU_CB_ACT_SESS 4-70 
INITIALIZE_LULU_CB_BIND 4-71 
PREPARE_TO_SEND_BIND 4-73 
PROCESS_ABEND_NOTIFICATION 4-74 
PROCESS_ABORT_HS 4-74 
PROCESS_ACTIVATE_SESSION 4-75 
PROCESS_BIND_RQ 4-76 
PROCESS_BIND_RSP 4-78 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS_DEACTIVATE_SESSION 4-80 
PROCESS_INIT_HS_RSP 4-81 
PROCESS_INIT_SIGNAL_NEG_RSP 4-81 
PROCESS_SESSION_ROUTE_INOP 4-83 
PROCESS_UNBIND_RQ 4-83 
RESERVE_CONSTANT_BUFFERS 4-84 
RESERVE_VARIABLE_BUFFERS 4-84 
SM 4-48 

LUSTAT I LOGICAL UNIT STATUS) 6.1-16 
LUH 

See logical unit of work CLUHJ 

map 2-36 
map name 2-36 

globally known 2-37 
receiver locally known 2-37 
sender locally known 2-37 

mapped conversation 2-3, 2-12, 5.2-3, 5.2-5 
See also conversation 
data stream format 5.2-5 
errors 5.2-14, 5.2-16, 5.2-17 
function summary 5.2-1 
initiation 5.2-7 

Index X-13 



protocol boundary 5.2-1 
termination 5.2-7 

mapped-conversation message 2-14 
mapped-conversation record 2-13, 2-15, 2-30 
mapper 2-37 
mapping 2-7, 2-12, 2-15, 2-30, 2-36, 5.2-1, 
5.2-8 

errors 5.2-15 
map names 5.2-8, 5.2-9, 5.2-12 
mapper 5.2-8, 5.2-11, 5.2-12, 5.2-14 

parameters 5.2-10 
save area 5.2-4, 5.2-8, 5.2-9 

receive mapping 5.2-11 
receive-buffer list 5.2-4 

send mapping 5.2-9, 5.2-10 
maximum send size 5.2-5, 5.2-4 

MC_ALLOCATE_PROC procedure 5.2-21 
referenced by 

PS MC 5.2-20 
MC_CONFIRM_PROC procedure 5.2-21 

referenced by 
PS MC 5.2-20 

MC_CONFIRMED_PROC procedure 5.2-22 
referenced by 

PS_MC 5.2-20 
MC_DEALLOCATE_PROC procedure 5.2-23 

referenced by 
PS MC 5.2-20 

MC_FLUSH=PROC procedure 5.2-23 
referenced by 

PS_MC 5.2-20 
MC_GET_ATTRIBUTES_PROC procedure 5.2-24 

referenced by 
PS_MC 5. 2-20 

MC_POST_ON_RECEIPT_PROC procedure 5.2-25 
referenced by 

PS_MC 5. 2-20 
MC_PREPARE_TO_RECEIVE_PROC procedure 5.2-26 

referenced by 
PS_MC 5. 2-20 

MC_RECEIVE_AND_HAIT_PROC procedure 5.2-27 
referenced by 

PS_MC 5. 2-20 
MC_REQUEST_TO_SEND_PROC procedure 5.2-37 

referenced by 
PS MC 5.2-20 

MC_SEND_DATA_PROC procedure 5.2-38 
referenced by 

PS MC 5.2-20 
MC_SEND_ERROR_PROC procedure 5.2-40 

referenced by 
PS MC 5.2-20 

MC_TEST_PROC procedure 5.2-28 
referenced by 

PS_MC 5. 2-20 
TEST FOR RESOURCE POSTED 5.0-21 

message unit IMU) 2-13: 2-30, 4-11 
basic conversation 2-13 
conversation sequences 2-14 
data record 

See data record 
header 2-13 
length limitations 2-13, 2-14 
mapped conversation 2-13 
session 2-14 
session sequences 2-15 

message-unit transformation 
basic conversation 2-15, 2-30 
mapped conversation 2-15, 2-30 

See also mapping 
message units 

CNOS 
See Change Number of Sessions GDS vari­
able 

X-14 SNA LU 6.2 Reference: Peer Protocols 

mode 
control block 3-4, 5.1-3 

mode name 2-6, 2-32, 2-40, 4-18 
deriving BIND image from 4-18 
in INIT SIGNAL 4-9 

MODE NAME ;tructure 3-91 
r;ferenced by 

ACTIVATE_NEEDED_SESSIONS 3-24 
BIS_RACE_LOSER 3-38 
CREATE_SCB 3-44 
DEACTIVATE_FREE_SESSIONS 3-46 
DEACTIVATE_PENDING_SESSIONS 3-47 
SEND_ACTIVATE_SESSION 3-65 
SESSION_ACTIVATION_POLARITY 3-71 
SESSION_DEACTIVATION_POLARITY 3-74 
SHOULD_SEND_BIS 3-76 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
UNSUCCESSFUL SESSION ACTIVATION 3-83 

MODE structure 2-40, A-3 -
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-24 
ACTIVATE_SESSION_RSP_PROC 3-25 
ALLOCATE_PROC 5.1-11 
BID_PROC 3-33 
BIND_RQ_STATE_ERROR 4-52 
BIND_RSP_STATE_ERROR 4-54 
BIND_SESSION_LIMIT_EXCEEDED 4-57 
BIS_RACE_LOSER 3-38 
CHANGE_ACTION 5.4-44 
CHANGE_SESSIONS_PROC 3-39 
CHECK_CNOS_COMMAND 5.4-63 
CHECK_CNOS_REPLY 5.4-56 
CHECK_FOR_BIS_REPLY 3-40 
CLOSE_ONE_REPLY 5.4-65 
DEACTIVATE_PENDING_SESSIONS 3-47 
DEFINE_PROC 5.4-39 
DELETE_PROC 5.4-41 
DEQUEUE HAITING REQUEST 3-48 
DISPLAY=PROC 5~4-40 
LOCAL_VERB_PARAMETER_CHECK 5.4-43 
LU_MODE_SESSION_LIMIT_EXCEEDED 4-72 
NEGOTIATE_REPLY 5.4-64 
PROCESS_ACTIVATE_SESSION 4-75 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
PS_ABEND_PROC 3-54 
SEND_ACTIVATE_SESSION 3-65 
SEND_BIS_REPLY 3-67 
SEND_BIS_RQ 3-67 
SEND_DEACTIVATE_SESSION 3-68 
SESSION_ACTIVATED_PROC 3-70 
SESSION_ACTIVATION_POLARITY 3-71 
SESSION_DEACTIVATED_PROC 3-72 
SESSION_DEACTIVATION_POLARITY 3-74 
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-67 
SHOULD_SEND_BIS 3-76 
SM 4-48 
SOURCE_CONVERSATION_CONTROL 5.4-49 
SOURCE_SESSION_LIMIT_PROC 5.4-46 
SVCMG_VERB_PARAMETER_CHECK 5.4-44 
UNSUCCESSFUL_SESSION_ACTIVATION 3-83 
VERB_PARAMETER_CHECK 5.4-48 

MODE, CONTROL 
See CONTROL MODE 

mode, LU 2-3, 2-4, 2-6, 2-40 
See also transport characteristics 

MU 
See message unit IMU) 

MU_PACING_CHECKS procedure 6.2-26 
referenced by 

TC.SEGMENT_RCV_CHECKS 6.2-24 
MU structure A-29 

referenced by 
ATTACH_ERROR_PROC 5.0-15 

c 

0 

c 



0 

(/ 

() 

ATTACH_PROC 3-30 
BIND_R~STATE_ERROR 4-52 
BIND_RSP_STATE_ERROR 4-54 
BUFFERS_RESERVED_PROCESSING 6.2-31 
BUILD_AND_SEND_BIND_RQ 4-59 
BUILD_AND_SEND_BIND_RSP_NEG 4-60 
BUILD_AND_SEND_UNBIND_RQ 4-65 
BUILD_AND_SEND_UNBIND_RSP 4-66 
BUILD_BIND_RSP_POS 4-67 
BUILD_HS_TO_PS_HEADER 6.1-28 
COMPLETE_CONFIRM_PROC 5.1-28 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-29 
CONFIRM_PROC 5.1-12 
CORRELATE_BIND_RSP 4-68 
CORRELATE_UNBIND_RQ 4-69 
CREATE_AND_INIT~LIMITED_MU 5.1-30 
CT_UPDATE 6.1-29 
DEALLOCATE_CONFIRM_PROC 5.1-32 
DEALLOCATE_FLUSH_PROC 5.1-33 
DFC_INITIALIZE 6.1-19 
DFC_RCV 6.1-24 
DFC_RCV_FSMS 6.1-25 
DFC_SEND_FROM_PS 6.1-20 
DFC_SEND_FROM_RM 6.1-21 
DFC_SEND_FSMS 6.1-27 
DFC_SEND_TO_PS 6.1-30 
END_CONVERSATION_PROC 5.1-34 
FLUSH_PROC 5.1-16 
FORMAT_ERROR 6.1-31 
FORMAT_ERROR_EXP_RSP 6.1-32 
FORMAT_ERROR_NORM_RSP 6.1-32 
FORMAT_ERROR_R~DFC 6.1-33 
FORMAT_ERROR_R~FMD 6.1-34 
FSM_BSM_FMP19 6.1-50 
FSM_CHAIN_RCV_FMP19 6.1-51 
FSM_CHAIN_SEND_FMP19 6.1-53 
FSM_CONVERSATION 5.1-65 
FSM_ERROR_OR_FAILURE 5.1-67 
FSM_QRI_CHAIN_RCV_FMP19 6.1-55 
FSM_RCV_PURGE_FMP19 6.1-56 
FSM_STATUS 4-87 
GENERATE~RM_PS_INPUTS 6.1-36 
GET_END_CHAIN_FROM_HS 5.1-36 
INITIALIZE_LULU_CB_BIND 4-71 
INITIALIZE_TH_RH 6.1-38 
INVALID_SENSE_CODE 6.1-38 
MU_PACING_CHECKS 6.2-26 
OBTAIN_SESSION_PROC 5.1-37 
OK_TO_REPLY 6.1-39 
PERFORM_RECEIVE_PROCESSING 5.1-40 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42 
PROCESS_BIND_RQ 4-76 
PROCESS_BIND_RSP 4-78 
PROCESS_FMH5 5.0-10 
PROCESS_FMH7_PROC 5.1-46 
PROCESS_HS_TO_RM_RECORD 3-20 
PROCESS_MU 4-82 
PROCESS_RECORD_FROM_ASM 4-51 
PROCESS_RU_DATA 6.1-40 
PROCESS_UNBIND_RQ 4-83 
PS 5.0-8 
PS_ABEND_PROC 3-54 
PS_ATTACH_CHECK 5.0-12 
PS_CREATION_PROC 3-55 
PS_TERMINATION_PROC 3-57 
PURGE_QUEUED_REQUESTS 3-59 
QUEUE_ATTACH_PROC 3-60 
RCB_ALLOCATED_PROC 5.1-48 
RCV_PACING_RSP 6.2-29 
RCV_STATE_ERROR 6.1-41 
RECEIVE_PACING 6.2-27 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
REPLY_TO_BID 6.1-42 

RESERVE_VARIABLE_BUFFERS 4-84 
SECURITY_PROC 3-65 
SEGMENT_REASSEMBLY 6.Z-Z8 
SEND_ATTACH_TO_PS 3-66 
SEND_BID_POS_RSP 6.1-42 
SEND_CONFIRMED_PROC 5.1-53 
SEND_DATA_BUFFER_MANAGEMENT 5.1-54 
SEND_DATA_PROC 5.l-Z4 
SEND_ERROR_DONE_PROC 5.1-55 
SEND_ERROR_IN_RECEIVE_STATE 5.1-56 
SEND_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_TO_HS_PROC 5.1-58 
SEND_FMD_MU 6.1-43 
SEND_MU 6.Z-ZO 
SEND_PACING 6.Z-21 
SEND_REQUEST_TO_SEND_PROC 5.1-58 
SEND_RSP_IF_REQUIRED 6.1-44 
SEND_RSP_MU 6.1-45 
SEND_RSP_TO_RM_OR_PS 6.1-46 
SEND_TO_PC 6.Z-2Z 
SESSION_DEACTIVATED_PROC 3-7Z 
STRAY_RSP 6.1-48 
TC.BIU_RCV_CHECKS 6.2-25 
TC.BUILD_CRV 6.2-17 
TC.CRV_FORMAT_CHECK 6.2-18 
TC.DECIPHER_RU 6.2-32 
TC.EXCHANGE_CRV 6.2-15 
TC.RCV 6.2-23 
TC.SEGMENT_RCV_CHECKS 6.Z-Z4 
TEST_FOR_POST_SATISFIED 5.1-60 
TRANSLATE 6.1-49 
HAIT_FOR_RSP_TO_R~TO_SEND_PROC 5.1-63 

multiple-session LU 
See session, parallel 

name 2-4 
fully qualified LU 

See LU name, network-qualified 
local alias 2-5 
LU 

See LU name 
mode 

See mode name 
network-qualified LU 

See LU name, network-qualified 
name translation Z-5 
naming conventions 

using periods 1-5 
using underscores 1-5 

NAU 
See network addressable unit INAU) 

NAU (network addressable unit) 
definition 1-3 

negotiable BIND 4-20, 4-Z4 
NEGOTIATE_REPLY procedure 5.4-64 

referenced by 
PROCESS_SESSION_LIMIT_PROC 5.4-58 

nested nodes 1-4 
network 

path control 1-3, 1-5 
SNA 1-3 

network addressable unit !NAU) Z-17 
network ID 2-6 
network LU name 2-6 
network name of LU 

See network qualified name 
network-qualified LU name 

See LU name, network-qualified 
network qualified name 4-18 

Index X-15 



no-op finite-state machines N-1 
node 

definition 1-3 
SNA 1-3, 1-4 
SNA product 1-3, 1-4 
synonymous with "SNA node" 1-3 
type 

1 1-3 
2.0 1-3 
2.1 1-3 
4 1-3 
5 1-3 

user-application 1-3, 1-4 
node operator facility INOFJ 2-29, 2-36, 

2-43, 3-3 
nodes 

nesting of 1-3> 1-4 
NOF 

See node operator facility INOFJ 
non-SNA functions 

See also implementation-determined func-
tions 

API 2-4 
error recovery 2-10 
mapping 2-36 
names 2-5 
resources 2-10, 2-29, 2-38 

local 2-4 
normal flow 6.2-1 

TC 6.2-6 
normal-flow send/receive mode 

See send/receive mode 
notational conventions, general 1-5 

OBTAIN_SESSION_PROC procedure 5.1-37 
referenced by 

RCB_ALLOCATED_PROC 5.1-48 
OK_TO_REPLV procedure 6.1-39 

referenced by 
FSM_CHAIN_RCV_FMP19 6.1-51 
FSM_CHAIN_SEND_FMP19 6.1-53 
GENERATE_RM_PS~INPUTS 6.1-36 
REPLV_TO_BID 6.1-42 

one-way conversation 2-6 
operation 

receiver 6.2-9 
sender 6.2-9 

operator 
See control operator 

operator messages, sync point 
See sync point, operator messages 

optimized flows 
See sync point, flows 

optional function sets 2-12, 2-36, 2-40 
CNOS 5.4-22 
receive options 2-12 
send options 2-12 

origin transaction program 2-7 

X-16 SNA LU 6.2 Reference: Peer Protocols 

pacing 
See also ini tializa.tion 
See also session-level pacing 
initialization 6.2-3 
pacing queue 6.2-8 
queued response indicator IQRIJ 6.2-8 
session-level 6.2-1, 6.2-6 

IPM 6.2-8 
IPR 6.2-8 

pacing algorithms 
adaptive 6. 2-8 
fixed 6.2-8 

Pacing Request indicator IPIJ 6.2-7 
Pacing Response indicator IPIJ 6.2-7, 6.2-8 
Padded Data indicator IPDIJ 6.2-6 
parallel session 

See session, parallel 
parallel session LU 2-7, 2-36 

See also session, parallel 
partner LU 2-4, 2-40 

See also remote, role of LU and TP 
control block 5.1-3 

PARTNER_LU structure 2-40, A-2 
referenced by 

BIND_RQ_STATE_ERROR 4-52 
BIND_RSP_STATE_ERROR ·4-54 
BIND_SESSION_LIMIT_EXCEEDED 4-57 
CHANGE_ACTION 5.4-44 
CHECK_CNOS_REPLV 5.4-56 
DEFINE_PROC 5.4-39 
DELETE_PROC 5.4-41 
DISPLAV_PROC 5.4-40 
GET_ATTRIBUTES_PROC 5.1-17 
GET_SESSION_PROC 3-52 
INITIALIZE_LULU_CB_ACT_SESS 4-70 
INITIALIZE_LULU_CB_BIND 4-71 
NEGOTIATE_REPLV 5.4-64 
PROCESS_ACTIVATE_SESSION 4-75 
PROCESS_BIND_RQ 4-76 
PROCESS_BIND_RSP 4-78 
PROCESS_CINIT_SIGNAL 4-79 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
SESSION_ACTIVATION_POLARITV 3-71 
SESSION_DEACTIVATED_PROC 3-72 
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-67 
SHOULD_SEND_BIS 3-76 
SM 4-48 
SOURCE_CONVERSATION_CONTROL 5.4-49 
SOURCE_SESSION_LIMIT_PROC 5.4-46 

password 
See conversation-level security 
See session-level security 

path control network 1-3, 1-5, 2-1, 2-27 
protocol boundary with LU 2-47 

PC 
See path control network 

PC_CHARACTERISTICS structure A-32 
PC HS DISCONNECT 4-11 
PC-HS-DISCONNECT structure A-24 

-referenced by 
BUILD_AND_SEND_PC_HS_DISCONNECT 4-62 

POI 
See Padded Data indicator IPDIJ 

PERFORM_RECEIVE_EC_PROCESSING proce­
dure 5.1-38 

c 

referenced by c 
PERFORM RECEIVE PROCESSING 5.1-40 

PERFORM_RECEIVE_PROCESsING procedure 5.1-40 --' 
referenced by 

RECEIVE_AND_TEST_POSTING 5.1-50 



(_j 

(, 

C' ' ) 
/ 

( -- .. 
·, 

_) 

RECEIVE_IMMEDIATE_PROC 5.1-21 
performance-related options 2-12 
periods, separating name qualifiers denoting 

decomposition 1-5 
peripheral LU 1-5 
peripheral node 1-4 

See also node 
peripheral node to peripheral node communi­
cation 2-1 

peripheral node to subarea node communi­
cation 2-1 

peripheral PU 1-5 
permanent buffer pool 

See buffer, pools 
permanent buffers 

See buffer, types 
phases, sync point 

See sync point, commands 
physical unit IPU) 

PI 
See PU !physical unit> 

See Pacing Request or Pacing Response 
indicator I PI ) 

PIP 

PLU 

See program initialization parameters 
IPIP> 

See primary LU IPLU) 
PLU name 

in BIND 4-22 
POST_ON_RECEIPT_PROC procedure 5.1-17 

referenced by 
MC_POST_ON_RECEIPT_PROC 5.2-25 
MC_TEST_PROC 5.2-28 
PS_CONV 5.1-10 

Prepare 
See sync point, commands, Prepare 

PREPARE_TO_RECEIVE_CONFIRM_PROC proce­
dure 5.1-41 

referenced by 
PREPARE_TO_RECEIVE_PROC 5.1-18 

PREPARE TO RECEIVE FLUSH PROC proce-
dure S.1:42 - -

referenced by 
PREPARE TO RECEIVE PROC 5.1-18 

PREPARE_TO_RECEIVE_PROC procedure 5.1-18 
referenced by 

MC_PREPARE_TO_RECEIVE_PROC 5.2-26 
PS_CONV 5.1-10 
SEND SVC ERROR PURGING 5.2-45 

PREPARE_To:sENO_BIND-procedure 4-73 
referenced by 

PROCESS CINIT SIGNAL 4-79 
presentation ;ervic;s IPS) 5.0-1, 5.2-1 

creation 3-18 
data structures 5.2-4 
function summary 2-34 
process 2-32, 5.0-4, 5.0-5, 5.0-6 
protocol boundaries 2-47, 5.0-2 
structure 2-29, 5.0-2, 5.1-1 
termination 3-18 

presentation services IPSl headers 2-38, 
5.1-6, 5.3-6, 5.3-7, 5.3-8, 5.3-35 

presentation services !PS) initialize 2-29, 
5.0-4 

See also presentation services IPS) 
protocol boundaries 5.0-3, 5.0-4 

presentation services !PS) verb router 2-29, 
5.0-7 

See also presentation services IPSl 
presentation services for conversations 

!PS.CONY) 2-29 
See also presentation services IPS) 
function sunmary 5.1-1 

protocol boundaries 2-46, 5.1-1 
structure 5.1-1 

presentation services for mapped conversa-
tions IPS.MCl 2-29, 2-36 

See also mapped conversation 
See also mapping 
See also presentation services IPS) 
protocol boundaries 2-46 

presentation services for sync point services 
IPS.SPS) 2-29, 2-38 

See also presentation services IPS) 
See also sync point 
protocol boundaries 2-38 

presentation services for the control opera-
tor IPS.COPRl 2-29, 5.4-1, 5.4-22 

See also change number of sessions ICNOSl 
See also presentation services IPSl 
local-verb services 5.4-25 
protocol boundaries 2-46 
session-limit-data lock 5.4-12, 5.4-32 
session-limit-data-lock manager 5.4-12, 
5.4-15, 5.4-31 

shared data 5.4-12 
See also LU-mode entry 

source-LU session-limit services 5.4-12, 
5.4-15, 5.4-26 

See also change number of sessions 
ICNOSJ, component relationship, 
source-LU services 

structure 5.4-1, 5.4-24 
target-LU session-limit services 5.4-12, 
5.4-15, 5.4-29 

See also change number of sessions 
ICNOS), component relationship, 
target-LU services 

verb router 5.4-25 
presentation services verb router 5.2-3 
presentation space 2-7 
PREVIOUS_TIHE structure 3-92 

referenced by 
COMPLETE_LUH_ID 3-41 
RM. 3-19 

primary LU IPLUl 2-8, 2-33 
See also session, activation polarity 

primary LU name 
in BIND 4-22 

process 2-40 
PROCESS ABEND NOTIFICATION procedure 4-74 

refe;enced-by 
PROCESS_RECORD_FROM_HS 4-50 
PROCESS RECORD FROM RM 4-49 

PROCESS_ABORT:Hs pro~edur; 4-74 
referenced by 

PROCESS RECORD FROM HS 4-50 
PROCESS_ACTIVATE_SESSION procedure 4-75 

referenced by 
PROCESS RECORD FROM RM 4-49 

PROCESS_BIND_RQ proc;dure- 4-76 
referenced by 

PROCESS_MU 4-82 
PROCESS_BIND_RSP procedure 4-78 

referenced by 
PROCESS MU 4-82 

PROCESS_CINIT:SIGNAL procedure 4-79 
referenced by 

PROCESS_RECORD_FROM_SS 4-50 
process connection 2-32, 2-34 
PROCESS_DATA_COMPLETE procedure 5.2-33 

referenced by 
RECEIVE_INFO_PROC 5.2-30 

PROCESS_DATA_INCOMPLETE procedure 5.2-36 
referenced by 

RECEIVE_INFO_PROC 5.2-30 
PROCESS_DATA_PROC procedure 5.1-43 

Index X-17 



referenced by 
PERFORM_RECEIVE_PROCESSING 5.1-40 

PROCESS_DEACTIVATE_SESSION procedure 4-80 
referenced by 

PROCESS_RECORD_FROM_RM 4-49 
PROCESS_ERROR_DATA procedure 5.2-43 

referenced by 
RCVD_svc_ERROR_PURGING 5.2-42 

PROCESS ERROR OR FAILURE RC procedure 5.2-31 
refe;enced-by- -

MC_TEST_PROC 5.2-28 
RECEIVE INFO PROC 5.2-30 

PROCESS_FMH5 procedure 5.0-10 
referenced by 

PS 5.0-8 
PROCESS_FMH7_LOG_DATA_PROC procedure 5.1-44 

referenced by 
PROCESS_FMH7_PROC 5.1-46 

PROCESS_FMH7_PROC procedure 5.1-46 
referenced by 

DEQUEUE_FMH7_PROC 5.1-34 
PERFORM_RECEIVE_PROCESSING 5.1-40 

PROCESS_HS_TO_RM_RECORD procedure 3-20 
referenced by 

RM 3-19 
PROCESS_INIT_HS_RSP procedure 4-81 

referenced by 
PROCESS_RECORD_FROM_HS 4-50 

PROCESS_INIT_SIGNAL_NEG_RSP procedure 4-81 
referenced by 

PROCESS_RECORD_FROM_SS 4-50 
PROCESS_INITIATOR_TO_RM_RECORD proce-
dure 3-20 

referenced by 
RM 3-19 

PROCESS_LFSID_IN_USE procedure 4-82 
referenced by 

PROCESS_RECORD_FROM_ASM 4-51 
PROCESS_LU_LU_SESSION procedure 6.0-5 

referenced by 
HS 6.0-3 

PROCESS_MAPPER_RETURN~CODE procedure 5.2-35 
referenced by 

PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_MU procedure 4-82 

referenced by 
PROCESS_RECORD_FROM_ASM 4-51 

PROCESS_PS_TO_RM_RECORD procedure 3-22 
referenced by 

RM 3-19 
PROCESS_RECORD_FROM_ASM procedure 4-51 

referenced by 
SM 4-48 

PROCESS_RECORD_FROM_HS procedure 4-50 
referenced by 

SM 4-48 
PROCESS_RECORD_FROM_RM procedure 4-49 

referenced by 
SM 4-48 

PROCESS_RECORD_FROM_SS procedure 4-50 
referenced by 

SM 4-48 
PROCESS_RU_DATA procedure 6.1-40 

referenced by 
GENERATE_RM_PS_INPUTS 6.1-36 

PROCESS_SESSION_LIMIT_PROC procedure 5.4-58 
referenced by 

PS_COPR 5.4-33 
PROCESS_SESSION_LIMIT verb 5.4-6 

processing by PS.COPR 5.4-23, 5.4-29 
PROCESS_SESSION_ROUTE_INOP procedure 4-83 

referenced by 
PROCESS_RECORD_FROM_ASM 4-51 

PROCESS_SM_TO_RM_RECORD procedure 3-23 

X-18 SNA LU 6.Z Reference: Peer Protocols 

referenced by 
RM 3-19 

PROCESS_START_TP procedure 5.0-11 
referenced by 

PS 5.0-8 
PROCESS_UNBIND_RQ procedure 4-63 

referenced by 
PROCESS MU 4-82 

profile, secu;ity 
See conversation-level security 

profiles 2-9 
FM (function management) profile 19 2-9 
TS !transmission services) profile 7 2-9 

program initialization parameters 
CPIPJ 2-lZ, 5.0-4, 5.0-5 

program-to-program communication ·2-1 
protection 

See sync point 
protection manager 

See sync point, protection manager 
protocol boundary Z-4, 2-46 

See also application program interface 
CAPIJ 

See also session manager !SMJ, protocol 
boundary 

See also under individual component 
between layers Z-4 
between peer components 2-4 
general definition 1-1 
in BIND 
internal 2-27, 2-46 
partitioned 2-4 

PROTOCOL_ERROR_PROC procedure 5.2-47 
referenced by 

GET_SEND_INDICATOR 5.2-44 
MC_TEST_PROC 5.2-28 
PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_DATA_INCOMPLETE 5.2-36 
PROCESS_ERROR_DATA 5.2-43 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
PROCESS_MAPPER_RETURN_CODE 5.2-35 
RCVD_SVC_ERROR_PURGING 5.2-42 
RCVD_svc_ERROR_TRUNC_NO_TRUNC 5.2-41 
RECEIVE_INFO_PROC 5.2-30 
SEND SVC ERROR PURGING 5.Z-45 

protocol m;chi~e, definition of 1-1 
PS 

See presentation services CPS} 
PS_ABEND_PROC procedure 3-54 

referenced by 
PROCESS_PS_TO_RM_RECORD 3-22 

PS_ATTACH_CHECK procedure 5.0-12 
referenced by 

PROCESS_FMH5 5.0-10 
PS.CONV 

See presentation services for conversa­
tions CPS.CONVJ 

PS_CONV procedure 5.1-10 
referenced by 

PS_VERB_ROUTER 5.0-16 
PS.COPR 

See presentation services for the control 
operator !PS.COPRJ 

PS_COPR procedure 5.4-33 
referenced by 

PS_VERB_ROUTER 5.0-16 
PS_CREATE_PARMS structure A-Z7 

referenced by 
CREATE_TCB_AND_PS 3-45 
PS 5.0-8 
PS_CREATION_PROC 3-55 

PS_CREATION_PROC procedure 3-55 
referenced by 

ATTACH_PROC 3-30 

(~ 



(_ ·.· 

r···..., ( '• 

' ,1 

~· 

C· 

PS header 
See presentation services IPSl headers 

PS.MC 
See presentation services for mapped con­
versations IPS.MCl 

PS_MC procedure 5.2-20 
referenced by 

PS_VERB_ROUTER 5.0-16 
PS_PIP_CHECKS procedure 5.0-13 

referenced by 
PROCESS_FMH5 5.0-10 

PS process 5.0-8 
referenced by 

ALLOCATE_PROC 5.1-11 
ALLOCATE_RCB_PROC 3-26 
BID_RSP_PROC 3-35 
CHANGE_SESSIONS_PROC 3-39 
CREATE_TCB_AND_PS 3-45 
DEACTIVATE_PENDING_SESSIONS 3-47 
DFC_SEND_TO_PS 6.1-30 
FIRST_SPEAKER_PROC 3-49 
GET_SESSION_PROC 3-52 
PS_ABEND_PROC 3-54 
PS_CREATION_PROC 3-55 
PS_TERMINATION_PROC 3-57 
RM_ACTIVATE_SESSION_PROC 3-61 
SEND_ATTACH_TO_PS 3-66 
SEND_DEACTIVATE_SESSION 3-68 
SESSION_ACTIVATED_ALLOCATION 3-70 
SESSION_DEACTIVATED_PROC 3-72 
START_TP_PROC 3-77 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
UNSUCCESSFUL_SESSION_ACTIVATION 3-83 
HAIT FOR CONFIRMED PROC 5.1-61 

PS_PROCESS=DATA structur; 5.0-3, 5.0-24, 
5.1-3 

referenced by 
ACTIVATE SESSION PROC 5.4-37 
DEACTIVATE~SESSION_PROC 5.4-38 
PS 5.0-8 
PS_PROTOCOL_ERROR 5.0-20 

PS profile 
in BIND 4-21 

PS_PROTOCOL_ERROR procedure 5.0-20 
referenced by 

PS.SPS 

ATTACH_ERROR_PROC 5.0-15 
CONFIRMED_PROC 5.1-14 
DEQUEUE_FMH7_PROC 5.1-34 
GET_DEALLOCATE_FROM_HS 5.1-35 
GET_END_CHAIN_FROM_HS 5.1-36 
PERFORM_RECEIVE_EC_PROCESSING 5.1-38 
PROCESS_FMH7_LOG_DATA_PROC 5.1-44 
PROCESS_FMH7_PROC 5.1-46 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
SET_FMH7_RC 5.1-59 
HAIT_FOR_CONFIRMED_PROC 5.1-61 
HAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-63 

See also presentation services for sync 
point services IPS.SPSl 

See also sync point, manager 
logic 5.3-9, 5.3-16, 5.3-18, 5.3-20, 
5.3-22, 5.3-25, 5.3-30, 5.3-31, 5.3-32, 
5.3-34, 5.3-35 

PS_SPS procedure ·5.3-35 
referenced by 

MC_CONFIRM_PROC 5.2-21 
MC_SEND_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC 5.2-40 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
PS_VERB_ROUTER 5.0-16 

PS_TERMINATION_PROC procedure 3-57 
referenced by 

PROCESS_PS_TO_RM_RECORD 3-22 

PS Usage field 
in BIND 4-21 

PS_VERB_ROUTER procedure 5.0-16 
referenced by 

PROCESS_DATA_INCOMPLETE 5.2-36 
PU !physical unitl 1-3 

peripheral 1-5 
subarea 1-5 

PU type 1-5 
corresponding to node type 1-5 

PURGE_QUEUED_REQUESTS procedure 3-59 
referenced by 

ATTACH_PROC 3-30 
START TP PROC 3-77 

purging of ~hains 2-11, 2-14, 6.1-1 

QRI 
See Queued Response indicator IQRil 

queue 2-4 
See also SEND/RECEIVE process interaction 

QUEUE_ATTACH_PROC procedure 3-60 
referenced by 

ATTACH PROC 3-30 
Queued Respo~se indicator IQRIJ 6.2-8 

use 6.1-10, 6.1-12 

random data 4-22, 4-26 

RCB 

See also LU-LU verification 
See also session-level security, random 
data 

See resource control block IRCBJ 
RCB_ALLOCATED_PROC procedure 5.1-48 

referenced by 
ALLOCATE PROC 5.1-11 

RCB_ALLOCATED ;tructure A-21 
referenced by 

ALLOCATE_PROC 5.1-11 
ALLOCATE_RCB_PROC 3-26 
CREATE_RCB 3-43 
RCB_ALLOCATED_PROC 5.1-48 
TEST FOR FREE FSP SESSION 3-82 

RCB_DEALLOCATED str~ctu~e A-21 
referenced by 

END_CONVERSATION_PROC 5.1-34 
PROCESS_PS_TO_RM_RECORD 3-22 

RCB_ID structure 3-91 
referenced by 

ATTACH_PROC 3-30 
CONNECT_RCB_AND_SCB 3-42 
PS_CREATION_PROC 3-55 
SEND_ATTACH_TO_PS 3-66 
SET RCB AND SCB FIELDS 3-75 

RCB_LIST_PTR ;tru~tur; 5.0-24 
RCB structure A-6 

referenced by 
ATTACH_ERROR_PROC 5.0-15 
BID_RSP_PROC 3-35 
BIDDER_PROC 3-37 
COMPLETE_CONFIRM_PROC 5.1-28 
CONFIRM_PROC 5.1-12 
CONFIRMED_PROC 5.1-14 
CONNECT_RCB_AND_SCB 3-42 
CONVERSATION_FAILURE_PROC 5.1-29 

Index X-19 



CREATE_AND_INIT_LIMITED_MU 5.1-30 
CREATE_RCB 3-43 
DEALLOCATE_ABEND_PROC 5.1-31 
DEALLOCATE_CONFIRM_PROC 5.1-32 
DEALLOCATE_FLUSH_PROC 5.1-33 
DEALLOCATE_PROC 5.1-15 
DEALLOCATION_CLEANUP_PROC 5.0-18 
DEQUEUE_FMH7_PROC 5.1-34 
END_CONVERSATION_PROC 5.1-34 
FLUSH_PROC 5.1-16 
FREE_SESSION_PROC 3-50 
FSM_CONVERSATION 5.1-65 
FSM_ERROR_OR_FAILURE 5.1-67 
GET_ATTRIBUTES_PROC 5.1-17 
GET_DEALLOCATE_FROM_HS 5.1-35 
GET_END_CHAIN_FROM_HS 5.1-36 
GET_SEND_INDICATOR 5.2-44 
GET_SESSION_PROC 3-52 
INITIALIZE_ATTACHED_RCB 5.0-20 
MC_ALLOCATE_PROC 5.2-21 
MC_CONFIRM_PROC 5.2-21 
MC_DEALLOCATE_PROC 5.2-23 
MC_POST_ON_RECEIPT_PROC 5.2-25 
MC_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_RECEIVE_AND_HAIT_PROC 5.2-27 
MC_SEND_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC 5.2-40 
MC_TEST_PROC 5.2-28 
OBTAIN_SESSION_PROC 5.1-37 
PERFORM_RECEIVE_EC_PROCESSING 5.1-38 
PERFORM_RECEIVE_PROCESSING 5.1-40 
POST_ON_RECEIPT_PROC 5.1-17 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42 
PREPARE_TO_RECEIVE_PROC 5.1-18 
PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_DATA_INCOMPLETE 5.2-36 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
PROCESS_FMH5 5.0-10 
PROCESS_FMH7_LOG_DATA_PROC 5.1-44 
PROCESS_FMH7_PROC 5.1-46 
PROCESS_MAPPER_RETURN_CODE 5.2-35 
PROCESS_PS_TO_RM_RECORD 3-22 
PROTOCOL_ERROR_PROC 5.2-47 
PS_ABEND_PROC 3-54 
PS_ATTACH_CHECK 5.0-12 
PS_CREATION_PROC 3-55 
PS_TERMINATION_PROC 3-57 
PS_VERB_ROUTER 5.0-16 
PURGE_QUEUED_REQUESTS 3-59 
QUEUE_ATTACH_PROC 3-60 
RCB_ALLOCATED_PROC 5.1-48 
RCVD_SVC_ERROR_PURGING 5.2-42 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41 
RECEIVE_AND_TEST_POSTING 5.1-50 
RECEIVE_AND_HAIT_PROC 5.1-19 
RECEIVE_IMMEDIATE_PROC 5.1-21 
RECEIVE_INFO_PROC 5.2-30 
RECEIVE_PIP_FIELD_FROM_HS 5.0-12 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
REQUEST_TO_SEND_PROC 5.1-23 
SEND_CONFIRMED_PROC 5.1-53 
SEND_DATA_BUFFER_MANAGEMENT 5.1-54 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC 5.1-55 
SEND_ERROR_IN_RECEIVE_STATE 5.1-56 
SEND_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_PROC 5.1-25 
SEND_ERROR_TO_HS_PROC 5.1-58 
SEND_REQUEST_TO_SEND_PROC 5.1-58 
SEND_SVC_ERROR_PURGING 5.2-45 
SESSION_DEACTIVATED_PROC 3-72 
SET_FMH7_RC 5.1-59 
SET_RCB_AND_SCB_FIELDS 3-75 

X-20 SNA LU 6.2 Reference: Peer Protocols 

TEST_FOR_FREE_FSP_SESSION 3-82 
TEST_FOR_RESOURCE_POSTED 5.0-21 
TEST_PROC 5.1-26 
HAIT_FOR_CONFIRMED_PROC 5.1-61 
HAIT_FOR_RSP_TO_RQ._TO_SEND_PROC 5.1-63 
HAIT_FOR_SEND_ERROR_DONE_PROC 5.1-64 
HAIT PROC 5.0-19 

RCV_PACING=RSP procedure 6.2-29 
referenced by 

TC.RCV 6.2-23 
RCV_STATE_ERROR procedure 6.1-41 

referenced by 
DFC_RCV_FSMS 6.1-25 

RCVD_SVC_ERROR_PURGING procedure 5.2-42 
referenced by 

MC_CONFIRM_PROC 5.2-21 
MC_DEALLOCATE_PROC 5.2-23 
MC_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_SEND_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC 5.2-40 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 

RCVD_SVC_ERROR_TRUNC_NO_TRUNC proce-
dure 5.2-41 

referenced by 
PROCESS_DATA_INCOMPLETE 5.2-36 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 

READY TO RECEIVE CRTRJ 3-11, 6.1-4, 6.1-5, 
- 6.1-8, 6.1-10, 6.1-11, 6.1-14, 6.1-15, 

6.1-17 
reblocking 2-13, 2-17, 2-31 
RECEIVE_AND_TEST_POSTING procedure 5.1-50 

referenced by 
PROCESS_FMH7_LOG_DATA_PROC 5.1-44 
RECEIVE_AND_HAIT_PROC 5.1-19 
RECEIVE_PIP_FIELD_FROM_HS 5.0-12 

RECEIVE~AND_HAIT_PROC procedure 5.1-19 
referenced by 

GET_SEND_INDICATOR 5.2-44 
PS_CONV 5.1-10 
RCVD_SVC_ERROR_PURGING 5.2-42 
RCVD SVC ERROR TRUNC NO TRUNC 5.2-41 

receive ch;ck -5.1-9- - -
RECEIVE_ERROR structure A-10 

referenced by 
DFC_SEND_TO_PS 6.1-30 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
SEND_RSP_TO_RM_OR_PS 6.1-46 
HAIT FOR CONFIRMED PROC 5.1-61 
HAIT-FOR-RSP TO R~TO SEND PROC 5.1-63/-~ 

RECEIVE_IMMEDIATE_PRoC proc;dure- 5.1-21 ~ 
referenced by / 

PS CONV 5.1-10 
RECEIVE_INFO_PROC procedure 5.2-30 

referenced by 
MC_RECEIVE_AND_HAIT_PROC 5.2-27 
MC_TEST_PROC 5.2-28 

RECEIVE_PACING procedure 6.2-27 
referenced by 

TC.RCV 6.2-23 
RECEIVE_PIP_FIELD_FROM_HS procedure 5.0-12 

referenced by 
PROCESS_FMH5 5.0-10 

RECEIVE_RM_OR_HS_TO_PS_RECORDS proce-
dure 5.1-51 

referenced by 
CONFIRM_PROC 5.1-12 
CONFIRMED_PROC 5.1-14 
DEALLOCATE_ABEND_PROC 5.1-31 
DEALLOCATE_CONFIRM_PROC 5.1-32 
DEALLOCATE_FLUSH_PROC 5.1-33 
FLUSH_PROC 5.1-16 
POST_ON_RECEIPT_PROC 5.1-17 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-42 



c 

(~ 

Ci 

RECEIVE_AND_TEST_POSTING 5.1-50 
RECEIVE_AND_HAIT_PROC 5.1-19 
RECEIVE_IMMEDIATE_PROC 5.1-21 
REQUEST_TO_SEND_PROC 5.1-23 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_PROC 5.1-25 
TEST_PROC 5.1-26 
HAIT_FOR_CONFIRMED_PROC 5.1-61 
HAIT_PROC 5.0-19 

RECEIVED_INFO structure A-7 
receiving data 2-31 
recovery 

See errors and failures 
remote, role of LU and TP 2-5, 2-40 
reply in HDX-FF protocol 

See send/receive mode, half-duplex 
flip-flop IHDX-FFJ 

REPLY_TO_BID procedure 6.1-42 
Request Commit 

See sync point, commands, Request Commit 
request control mode 6.2-7 

See also control mode 
immediate request mode 6.1-10 

request/response correlation 6.1-1, 6.1-9 
request/response header IRHJ 2-15, 2-17, 
2-19, 2-30 

relationship to verbs 2-18 
session control 6.2-5 

request/response units IRUsJ 2-15 
maximum RU size 6.2-7 
maximum size 2-8, 2-17, 2-30, 2-40 

REQUEST_TO_SEND_PROC procedure ·5.l-23 
referenced by 

MC_REQUEST_TO_SEND_PROC 5.2-37 
PS_CONV 5.1-10 

REQUEST_TO_SEND structure A-10 
referenced by 

DFC_SEND_TO_PS 6.1-30 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
TRY_TO_RCV_SIGNAL 6.1-23 
HAIT_FOR~CONFIRMED_PROC 5.1-61 
HAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-63 

RESERVE_CONSTANT_BUFFERS procedure 4-84 
referenced by 

PREPARE_TO_SEND_BIND 4-73 
PROCESS_BIND_RQ 4-76 

RESERVE_VARIABLE_BUFFERS procedure 4-84 
referenced by 

PROCESS_BIND_RQ 4-76 
PROCESS_BIND_RSP 4-78 

RESET_SESSION_LIMIT_PROC procedure 5.4-35 
referenced by 

PS_COPR 5.4-33 
RESET_SESSION_LIMIT verb 5.4-6, 5.4-22 

processing by PS.COPR 5.4-21 
all mode names 5.4-6, 5.4-28, 5.4-29, 
5.4-31 

FORCE parameter 5..4-21 
parallel-session mode name 5.4-31 
single-session mode name 5.4-26 
SNASVCMG mode name 5.4-26 

resource 2-3, 2-43 
dynamic 2-40 
local 2-4 
network, LU-accessed 2-3, 2-4, 2-36, 

2-40, 2-43, 5.4-1, 5.4-3, 5.4-5 
local LU 5.4-5 
mode 5.4-5 
partner LU 5.4-5 
transaction program 5.4-5 

posting 5.0-7, 5.1-7 
protected 2-4, 2-37 

~\ :-

resource control block IRCBJ 5.2-4, 2-40, 
3-4, 5.0-3, 5.1-4, 5.2-4, 5.3-7, 5.3-8, 
5.3-18, 5.3-20 

resource ID 2-6 
resources manager IRMJ 2-38, 3-1 

function summary 2-35, 3-2 
process 2-43 
protocol boundary ;· 2'-47, 3-2 

resources, local · · · 
See sync point, local resources 

RESPONSE_CODE structure 3-92 
referenced by 

START_TP_PROC 3-77 
response control mod~.2-7 

~ee also control '. ..... ·. · 
11M1ediate response mode 6.1-10 

response correlation 2-31 
response to chain 

See request/response units (RUsJ 
responsible parameter 3-17 

See also session, .deactivation, responsi­
bility 

negotiation by CNOS 5.4-31 
RESULT_CHECK_ALLOCATE procedure 5.4-52 

referenced by 
SOURCE_CONVERSA~~ON 5.4-50 

RESULT_CHECK_RECEIVE~~pt!MAND proce-
dure 5.4-62 ·::_, .. 

referenced by 
TARGET_COMMAND_CONVERSATION 5.4-61 

RESULT_CHECK_RECEIVE_DEALLOCATE proce-
dure 5.4-55 

referenced by 
SOURCE_CONVERSATION 5.4-50 

RESULT_CHECK_RECEIVE_REPLY procedure 5.4-54 
referenced by 

SOURCE_CONVERSATION 5.4-50 
RESULT_CHECK_RECEIVE_SEND procedure 5.4-62 

referenced by . ...'.\·( 
TARGET_COMMANDiCONVERSATION 5.4-61 

RESULT_CHECK_SEND_COMMAND procedure 5.4-53 
referenced by 

SOURCE CONVERSATION 5.4-50 
RESULT_CHECK=SEND_REPLY procedure 5.4-66 

referenced by 
TARGET_REPLY_CONVERSATION 5.4-65 

resync service transaction program 
See sync point, resynchronization 

resynchronization 
See sync point 

RH '''·"';· See request/respo"1~header IRHJ 
RM .'.'.''.:~· 

See resources mana~~·r I RM J 
RM_ACTIVATE_SESSION_PROC procedure 3-61 

referenced by 
PROCESS_PS_TO_RM_RECORD 3-22 

RM_ACTIVATE_SESSION structure A-16 
referenced by 

ACTIVATE_SESSION_PROC 5.4-37 
DEACTIVATE_PENDING_SESSIONS 3-47 
PROCESS_PS_TO_RM_RECORD 3-22 
RM_ACTIVATE_SESSION_PROC 3-61 
SESSION_DEACTIVATED_PROC 3-72 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
UNSUCCESSFUL SESSION ACTIVATION 3-83 

RM CREATE PARMS st;ucture -A-27 
-refere;:;ced by 

SM 4-48 
RM CREATED 4-8 
RM=CREATED structure.411ri27 

referenced by ~ 
SM 4-48 

RM_DEACTIVATE_SESSION:_:PROC procedure 3-62 

Index X-21 



referenced by 
PROCESS_PS_TO_RM_RECORD 3-22 

RM DEACTIVATE SESSION structure A-17 
-referenced-by 

DEACTIVATE_SESSION_PROC 5.4-38 
PROCESS_PS_TO_RM_RECORD 3-22 
RM_DEACTIVATE_SESSION_PROC 3-62 
SEND_BIS_RQ 3-67 
SHOULD_SEND_BIS 3-76 

RM HS CONNECTED structure A-18 
-referenced by 

HS 6.0-3 
SUCCESSFUL_SESSION_ACTIVATION 3-80 

RM process 3-19 
referenced by 

ACTIVATE_SESSION_PROC 5.4-37 
ALLOCATE_PROC 5.1-11 
BUILD_AND_SENO_ACT_SESS_RSP_NEG 4~58 

BUILD_AND_SEND_ACT_SESS_RSP_POS 4-58 
BUILD AND SEND SESS ACTIVATED 4-63 
BUILD=AND=SEND=SESS=DEACTIVATED 4-64 
CHANGE_ACTION 5.4-44 
DEACTIVATE_SESSION_PROC 5.4-38 
DEALLOCATION_CLEANUP_PROC 5.0-18 
END_CONVERSATION_PROC 5.1-34 
GENERATE_RM_PS_INPUTS 6.1-36 
HS 6.0-3 
OBTAIN_SESSION_PROC 5.1-37 
PS 5.0-9 
PS_PROTOCOL_ERROR 5.0-20 
SM 4-48 
HAIT FOR RM REPLY 5.1-62 

RM SESSION-ACTIVATED structure A-22 
-referen;;ed by 

ACTIVATE_SESSION_PROC 5.4-37 
DEACTIVATE_PENDING_SESSIONS 3-47 
RM_ACTIVATE_SESSION_PROC 3-61 
SESSION_DEACTIVATED_PROC 3-72 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
UNSUCCESSFUL SESSION ACTIVATION 3-83 

route 2-40 - -
routing and checking logic, representation 
within the formal description 1-1 

RSP_TO_REQUEST_TO_SEND structure A-11 
referenced by 

DFC_SEND_TO_PS 6.1-30 
RECEIVE_RM_OR_HS_TO_PS_RECORDS 5.1-51 
SEND_RSP_TO_RM_OR_PS 6.1-46 
HAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-63 

RSPIBINDl 4-24 
RSPIUNBINDl 4-28 
RTR !READY TO RECEIVE) 6.1-17 
RTR_RQ_PROC procedure 3-63 

referenced by 
PROCESS_HS_TO_RM_RECORD 3-20 

RTR RQ structure A-12 
;eferenced by 

DFC_SEND_FROM_RM 6.1-21 
FREE_SESSION_PROC 3-50 
GENERATE_RM_PS_INPUTS 6.1-36 
PROCESS_HS_TO_RM_RECORD 3-20 
RTR_RQ_PROC 3-63 
SEND RTR PROC 3-69 

RTR_RSP_PROC p;ocedure 3-64 
referenced by 

PROCESS_HS_TO_RM_RECORD 3-20 
RTR_RSP structure A-13 

RU 

referenced by 
GENERATE_RM_PS_INPUTS 6.1-36 
PROCESS_HS_TO_RM_RECORD 3-20 
RTR_RQ_PROC 3-63 
RTR_RSP_PROC 3-64 
SEND_RSP_TO_RM_OR_PS 6.1-46 

X-22 SNA LU 6.2 Reference: Peer Protocols 

See request/response units IRUs) 
RU parameters 

implementation-dependent 4-18 
installation-specified 4-18 
specification of 4-18 

rule l I conditional termination) 
See bracket, bracket termination rule 

SCB structure A-8 
referenced by 

ATTACH_PROC 3-30 
BID_RSP_PROC 3-35 
CONNECT_RCB_AND_SCB 3-42 
CREATE,...SCB 3.-44 
DEACTIVATE_FREE_SESSIONS 3-46 
FIRST_SPEAKER_PROC 3-49 
FREE_SESSION_PROC 3-50 
GET_SESSION_PROC 3-52 
PROCESS_HS_TO_RM_RECORD 3-20 
PROCESS_PS_TO_RM_RECORD 3-22 
PS_ABEND_PROC 3-54 
PS_CREATION_PROC 3-55 
PURGE_QUEUED_REQUESTS 3-59 
QUEUE_ATTACH_PROC 3-60 
RM_DEACTIVATE_SESSION_PROC 3-62 
RTR_RQ_PROC 3-63 
SECURITY_PROC 3-65 
SEND_ATTACH_TO_PS 3-66 
SEND_DEACTIVATE_SESSION 3-68 
SEND_RTR_PROC 3-69 
SESSION_ACTIVATED_ALLOCATION 3-70 
SESSION_DEACTIVATED_PROC 3-72 
SET_RCB_AND_SCB_FIELDS 3-75 
SUCCESSFUL_SESSION_ACTIVATION 3-80 
TEST_FOR_FREE_FSP_SESSION 3-82 

secondary LU ISLU) 2-33 
See also session, activation polarity 

secondary LU name 
in BIND 4-23 

security 2-9, 2-12 
See also conversation-level security 
See also session cryptography 
See also session-level security 

security downgrade 
See conversation-level security 

Security F~ header 4-18 
See also FM header, type 12 ISecurityl 

SECURITY_PROC procedure 3-65 
referenced by 

PROCESS HS TO RM RECORD 3-20 
segment reass;mbly -6.l-12 
SEGMENT_REASSEMBLY proce,dure 6.2-28 

referenced by 
TC.RCV 6.2-23 

SEND_ACTIVATE_SESSION procedure 3-65 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-24 
GET_SESSION_PROC 3-52 
RM ACTIVATE SESSION PROC 3-61 

SEND_ATTACH_TO_PS-procedu;e 3-66 
referenced by 

ATTACH PROC 3-30 
SEND_BID_POS=RSP procedure 6.1-42 

referenced by 
SEND_RSP_TO_RM_OR_PS 6.1-46 

SEND_BIS procedure 3-66 
referenced by 

DEACTIVATE_FREE_SESSIONS 3-46 
FREE_SESSION_PROC 3-50 

(' 
"'-- .· 



CJ 

/,,,..--., \ 

\__ ____ / 

0 

GET_SESSION_PROC 3-52 
RTR_RQ_PROC 3-63 
RTR RSP PROC 3-64 

SEND_BIS_REPLY procedure 3-67 
referenced by 

CHECK_FOR_BIS_REPLY 3-40 
SEND BIS 3-66 

SEND_BIS_RQ procedure 3-67 
referenced by 

BIS_RACE_LOSER 3-38 
RM_DEACTIVATE_SESSION_PROC 3-62 
SEND_BIS 3-66 

SEND_BUFFER structure 5.2-48 
referenced by 

MC_SEND_DATA_PROC 5.2-38 
SEND_CONFIRMED_PROC procedure 5.1-53 

referenced by 
CONFIRMED_PROC 5.1-14 

SEND_DATA_BUFFER_MANAGEMENT procedure 5.1-54 
referenced by 

ATTACH_ERROR_PROC 5.0-15 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-29 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC 5.1-55 

SEND_DATA_PROC procedure 5.1-24 
referenced by 

MC_SEND_DATA_PROC 5.2-38 
PS_CONV 5.1-10 
SEND_SVC_ERROR_PURGING 5.2-45 

SEND_DEACTIVATE_SESSION procedure 3-68 
referenced by 

ATTACH_PROC 3-30 
BID_PROC 3-33 
BID_RSP_PROC 3-35 
DEACTIVATE_PENDING_SESSIONS 3-47 
FREE_SESSION_PROC 3-50 
FSM_BIS_BIDDER 3-87 
FSM_BIS_FSP 3-88 
PROCESS_PS_TO_RM_RECORD 3-22 
RM_DEACTIVATE_SESSION_PROC 3-62 
RTR_RQ_PROC 3-63 
SECURITY 'PROC 3-65 

SEND_ERROR_DONE_PROC procedure 5.1-55 
referenced by 

SEND_ERROR_IN_SEND_STATE 5.1-57 
SEND_ERROR_PROC 5.1-25 
HAIT_FOR_SEND_ERROR_DONE_PROC 5.1-64 

SEND_ERROR_IN_RECEIVE_STATE procedure 5.1-56 
referenced by 

SEND_ERROR_PROC 5.1-25 
SEND_ERROR_IN_SEND_STATE procedure 5.1-57 

referenced by 
SEND_ERROR_PROC 5.1-25 

SEND_ERROR_PROC procedure 5.1-25 
referenced by 

MC_SEND_ERROR_PROC 5.2-40 
PS_CONV 5.1-10 
SEND SVC ERROR PURGING 5.2-45 

SEND_ERROR-str~cture- A-14 
SEND_ERROR_TO_HS_PROC procedure 5.1-58 

referenced by 
ATTACH_ERROR_PROC 5.0-15 
DEALLOCATE_ABEND_PROC 5.1-31 
SEND_ERROR_IN_RECEIVE_STATE 5.1-56 
SEND_ERROR_PROC 5.1-25 

SEND_FMD_MU procedure 6.1-43 
referenced by 

DFC_SEND_FROM_PS 6.1-20 
DFC_SEND_FROM_RM 6.1-21 

SEND_MU procedure 6.2-20 
referenced by 

DFC_SEND_FSMS 6.1-27 
TC.EXCHANGE_CRV 6.2-15 

SEND_PACING procedure 6.2-21 

referenced by 
SEND TO PC 6.2-22 

SEND_PARM ;tr~cture A-32 
send/receive concurrency 2-6 
send/receive mode 

full-duplex IFDXJ 
half-duplex flip-flop IHDX-FFJ 6.1-1, 
6.1-4, 6.1-11 

SEND/RECEIVE process interaction 2-40 
send/receive state of conversation 2-6, 

2-30, 2-32 
See also half-duplex flip-flop 
send/receive mode 

SEND_REQUEST_TO_SEND_PROC procedure 5.1-58 
referenced by 

REQUEST TO SEND PROC 5.1-23 
SEND_RSP_IF_REQUIRED procedure 6.1-44 

referenced by 
DFC RCV FSMS 6.1-25 

SEND_RSP_MU p;ocedure 6.1-45 
referenced by 

DFC_RCV 6.1-24 
DFC_SEND_FROM_PS 6.1-20 
SEND RSP IF REQUIRED 6.1-44 

SEND_RSP_TO_RM=OR=PS procedure 6.1-46 
referenced by 

DFC_RCV_FSMS 6.1-25 
SEND_RTR_PROC procedure 3-69 

referenced by 
PROCESS INITIATOR TO RM RECORD 3-20 

SEND_RTR stru~ture A-20 - -
referenced by 

PROCESS_INITIATOR_TO_RM_RECORD 3-20 
SEND_RTR_PROC 3-69 

SEND_SVC_ERROR_PURGING procedure 5.2-45 
referenced by 

PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_MAPPER_RETURN_CODE 5.2-35 

SEND_TO_PC procedure 6.2-22 
referenced by 

BUFFERS_RESERVED_PROCESSING 6.2-31 
RCV_PACING_RSP 6.2-29 
SEND MU 6.2-20 

sending data 2-30 
SENSE CODE structure 3-92 

referenced by 
SEND_DEACTIVATE_SESSION 3-68 

sense data 
in FMH-7 2-19 

SENSE DATA structure 5.0-25 
referenced by 

ATTACH_ERROR_PROC 5.0-15 
PROCESS_FMH5 5.0-10 
PS_ATTACH_CHECK 5.0-12 
PS_PIP_CHECKS 5.0-13 
PS_PROTOCOL_ERROR 5.0-20 
RECEIVE_PIP_FIELD_FROM_HS 5.0-12 

sequence flows 
abbreviations 2-48 
basic conversation 2-48 
conventions 2-48 
external protocol boundaries 2-18 

application-detected error cases 2-24 
error-free cases 2-19 
REQUEST TO SEND case 2-24 

internal p;ot~col boundaries 2-48 
notations 2-48 
session activation and deactivation 2-50, 

2-52 
sequence numbers and IDs 

use in data flow control 6.1-5 
sequence numbers, TH 2-15, 2-30, 2-31, 6.2-6 

checking 6.2-1 
expedited flow 6.2-6 

Index X-23 



identifiers 6.2-6 
initialization 6.2-6 
normal flow 6.2-6 
see='transmission control lTC) 
wrapping 6.2-6 

se..Vice transaction program 2-3, 2-36 
See also transaction program 
CNOS 2-3 
DIA 2-3 
resync lX'06F2') 

See sync point, resynchronization 
resynchronization 2-3 
SNA/OS 2-3, 2-7 

SESSEND_SIGNAL 4-10 
SESSEND SIGNAL structure A-24 

refe;enced by 
BUILD_AND_SEND_SESSEND_SIG 4-64 
PROCESS_CINIT_SIGNAL 4-79 

session 2-1, 2-3 
activation 2-8, 2-33, 2-36, 2-43, 2-44, 

3-15, 5.4-4, 5.4-8 
LU-LU 4-19 
newly active session 2-33 
relation to PS.COPR 5.4-8 

activation polarity 2-8 
allocation to conversation 2-7, 2-32, 3-5 

session selection 2-7, 2-32, 3-6 
contention polarity 2-7, 2-32, 5.4-3, 
5.4-8 

See also SESSION LIMITS, minimum con­
tention winner 

processing by PS.COPR--mode name 
SNASVCMG session 5.4-26 

processing by PS.COPR--single ses­
sion 5.4-26 

cryptography 
See cryptography, session-level 

cryptography 
deactivation 2-8, 2-31, 2-34, 2-36, 2-43, 
5.4-4, 5.4-8 

LU-LU 4-2 
operator controlled 2-34 
relation to PS.COPR 5.4-8, 5.4-26 
responsibility 5.4-4, 5.4-8, 5.4-22, 
5.4-29 

specific session 2-34 
identification 5.4-3 

See also identification of session 
initiation 2-8, 2-33, 5.4-4 
multiplicity 2-7 
parallel 2-1, 2-7, 5.4-3, 5.4-22 
shutdown 2-8, 2-34, 2-43, 5.4-4, 5.4-8 
single 2-7, 5.4-3, 5.4-22 
state 2-30 
termination 2-8, 4-2, 5.4-4 

SESSION ACTIVATED 4-6 
SESSION:ACTIVATED_ALLOCATION procedure 3-70 

referenced by 
SUCCESSFUL_SESSION_ACTIVATION 3-80 

SESSION_ACTIVATED_PROC procedure 3-70 
referenced by 

PROCESS SM TO RM RECORD 3-23 
SESSION ACTIVATED stru~ture A-14 

refe;enced by 
BUILD_AND_SEND_SESS_ACTIVATED 4-63 
PROCESS_SM_TO_RM_RECORD 3-23 
SESSION_ACTIVATED_PROC 3-70 

SESSION_ACTIVATION_POLARITY procedure 3-71 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-24 
GET_SESSION_PROC 3-52 
RM ACTIVATE SESSION PROC 3-61 

SESSION_ALLOCATED-structu;e A-22 
referenced by 

X-24 SNA LU 6.2 Reference: Peer Protocols 

BID_RSP_PROC 3-35 
CHANGE_SESSIONS_PROC 3-39 
FIRST_SPEAKER_PROC 3-49. 
GET_SESSION_PROC 3-52 
OBTAIN_SESSION_PROC 5.1-37 
SEND_DEACTIVATE_SESSION 3-68 
SESSION_ACTIVATED_ALLOCATION 3-70 
SESSION_DEACTIVATED_PROC 3-72 
SUCCESSFUL_SESSION_ACTIVATION 3-81 
UNSUCCESSFUL_SESSION_ACTIVATION 3-83 

session control block lSCBl 3-4 
session control RUs 2-17, 4-19 

BIND 4-19 
CRV 6.2-3, 6.2-5 
RH 6.2-5 
RSPIBINDl 4-24 
RSPIUNBINDl 4-28 
TH 6.2-5 
UNBIND 4-27 

session counts 5.4-4, 5.4-8 
See also session limits 

c 

relationship to CNOS 5.4-6, 5.4-29 /~. 
termination count 3-17, 5.4-4, 5.4-8 f 

session cryptography 2-9, 2-10, 2-30, 2-31, \ __ , 
2-40 

key 2-10 
session seed 2-10 
verification 2-33 

SESSION_DEACTIVATED 4-6 
SESSION~DEACTIVATED_PROC procedure 3-72 

referenced by 
PROCESS_SM_TO_RM_RECORD 3-23 
PS_ABEND_PROC 3-54 
PURGE_QUEUED_REQUESTS 3-59 
SEND DEACTIVATE SESSION 3-68 

SESSION DEACTIVATED structure A-14 
refe"i=enced by 

BUILD_AND_SEND_SESS_DEACTIVATED 
PROCESS_SM_TO_RM_RECORD 3-23 
PS_ABEND_PROC 3-54 

c 4-64 ./ 

PURGE_QUEUED_REQUESTS 3-59 
SEND_DEACTIVATE_SESSION 3-68 
s.ESSION_DEACTIVATED_PROC 3-72 

SESSION_DEACTIVATION_POLARITY procedure 3-74 
referenced by 

BIS_RACE_LOSER 3-38 
DEACTIVATE_FREE_SESSIONS 3-46 
DEACTIVATE_PENDING_SESSIONS 3-47 
SHOULD SEND BIS 3-76 

SESSION_INFORMATION structure A-32 
referenced by 

CREATE_SCB 3-44 
SUCCESSFUL_SESSION_ACTIVATION 3-80 

session-level pacing 2-8, 2-31, 6.2-1, B-1, 
B-2, B-3 

See also pacing 
adaptive pacing 4-21, 4-24, 4-25, 6.2-8 
algorithms 6.2-8 
deadlock 6.2-8 
fixed pacing 6.2-8 
IPM 6.2-8 
IPR 6.2-8 
pacing count 6.2-7 
pacing queue 6.2-8 
parameter set up 6.2-3 
PI 6.2-7, 6.2-8 
queued response indicator IQRI) 6.2-8 
response 2-8, 2-31 
stages 6.2-7 
window 2-8, 2-31 c·· 
window size 2-3, 2-8, 2-31, 2-40, 6.2-7 

session-level security 2-9, 2-33, 2-35, 3-2, _/· 
3-15 

DES IData Encryption Standard) 2-9 



enciphered data 2-9, 2-33 
FMH-12 

See FM header, type 12 (Security) 
LU-LU password 2-9, 2-33 
LU-LU verification 2-9, 2-35, 3-2, 3-15 
LU-LU verification sequence 2-9 
physical security 2-10 
random data 2-9, 2-33 

SESSION_LIMIT_DATA_LOCK_MANAGER proce­
dure 5.4-67 

referenced by 
PROCESS_SESSION_LIMIT PROC 5.4-58 
SOURCE_SESSION_LIMIT_PROC 5.4-46 

session limits 2-8, 3-15, 3-16, 5.4-4, 5.4-8 
automatic activation 2-8, 2-34, 3-16, 
3-17, 5.4-4, 5.4-8 

initialization 2-8, 2-33, 2-36, 2-43, 
5.4-4 

LU-mode 2-8, 5.4-4, 5.4-8 
minimum contention winner 2-8, 3-16, 
5.4-4, 5.4-8, 5.4-22, 5.4-26 

negotiation by CNOS 5.4-7, 5.4-29 
reset 2-8, 2-34, 2-43, 5.4-4 
total LU-LU 2-8, 5.4-4 

session manager ISMJ 4-1 
creation 2-29, 2-43 
formal description 4-47 
function summary 2-35 
general description 4-1 
process 2-43 
protocol boundaries 2-46, 2-47 
protocol boundary 4-4 

with address space manager (ASMJ 4-11 
with half session IHSJ 4-7 
with node-operator INOFJ 4-8 
with resources manager IRMJ 4-5 
with session services ISSl 4-9 

session outage 3-18 
See also errors and failures 

session outage notification ISONl 2-11, 
2-34, 4-3 

See also errors, conversation failure 
CNOS recovery 5.4-21 

See also error recovery, CNOS, conver­
sation failure 

session pool 2-7 
See also session, allocation to conversa­

tion 
SESSION_ROUTE_INOP 4-11 
SESSION_ROUTE_INOP structure A-24 

referenced by 
FSM_STATUS 4-87 
PROCESS_RECORD_FROM_ASM 4-51 
PROCESS_SESSION_ROUTE_INOP 4-83 

session seed 6.2-3 
SESSST SIGNAL 4-10 
SESSST=SIGNAL structure A-24 

referenced by 
BUILD_AND_SEND_SESSST_SIG 4-65 

SET_FMH7_RC procedure 5.1-59 
referenced by 

PROCESS_FMH7_LOG_DATA_PROC 5.1-44 
PROCESS FMH7 PROC 5.1-46 

SET_RCB_AND_SCB_FIELDS procedure 3-75 
referenced by 

BID_RSP_PROC 3-35 
FIRST_SPEAKER_PROC 3-49 
SESSION_ACTIVATED_ALLOCATION 3-70 
TEST_FOR_FREE_FSP_SESSION 3-82 

sharing sessions 
See session, allocation ta conversation 

SHOULD_SEND_BIS procedure 3-76 
referenced by 

FREE_SESSION_PROC 3-50 

RTR_RQ_PROC 3-63 
RTR RSP PROC 3-64 

shutdown ~f LU 2-43, 2-45 
shutdown of sessions 

See session, shutdown 
SIG ISIGNALl 2-24, 6.1-17 
SIGNAL ISIGl 6.1-4, 6.1-5, 6.1-7, 6.1-8, 

6.1-14, 6.1-15, 6.1-17 
SIGNAL_STATUS procedure 6.1-47 

referenced by 
TRY_TO_RCV_SIGNAL 6.1-23 

single-instance transaction program 
See transaction program instance ITPJ, 
limit 

single session 
See session, single 

single-session LU 2-7 
See also session, single 

SLU 
See secondary LU (SLUl 

SLU name 
in BIND 4-23 

SM 
See session manager ISM! 

SM CREATE PARMS structure A-27 
-refere~ced by 

SM 4-48 
SM process 4-48 

referenced by 
ACTIVATE_NEEDED_SESSIONS 3-24 
HS 6.0-3, 6.0-4 
PS_ABEND_PROC 3-54 
PURGE_QUEUED_REQUESTS 3-59 
SEGMENT_REASSEMBLY 6.2-28 
SEND_ACTIVATE_SESSION 3-65 
SEND DEACTIVATE SESSION 3-68 

SNA-defined mode name-for CNOS 
ISNASVCMGl 2-43, 5.4-5, 5.4-22, 5.4-28 

SNA Distribution Services ISNA/DSl 2-7, 2-36 
SNA/DS 

See SNA Distribution Services ISNA/DSl 
SNA network, definition of 1-3 
SNA node 1-3, 1-4 

See also node 
SNA product node 1-3, 1-4 

See also node 
SNASVCMG 

See SNA-def ined mode name for CNOS 
ISNASVCMGl 

SNF structure A-33 
SON 

See session outage notification ISONl 
SOURCE_CONVERSATION_CONTROL procedure 5.4-49 

referenced by 
SOURCE SESSION LIMIT PROC 5.4-46 

SOURCE_CONVERSATION proced~re 5.4-50 
referenced by 

SOURCE_CONVERSATION_CONTROL 5.4-49 
SOURCE_SESSION_LIMIT_PROC procedure 5.4-46 

referenced by 
CHANGE_SESSION_LIMIT_PROC 5.4-36 
INITIALIZE_SESSION_LIMIT_PROC 5.4-34 
RESET SESSION LIMIT PROC 5.4-35 

source, rol; of TP ;nd LU- 2-5, 5.4-3 
space IX'40'l characters 

trailing 
in LU name comparison 5.4-20 

SSCP (system services control point! 1-3 
START_TP_PROC procedure 3-77 

referenced by 
PROCESS_INITIATOR_TO_RM_RECORD 3-20 
PS_ABEND_PROC 3-54 

START TP REPLY structure A-20 
refer;nced by 

Index X-25 



X-26 

PS_TERMINATION_PROC 3-57 
PURGE_QUEUED_REQUESTS 3-59 
START_TP_PROC 3-77 

START_TP_SECURITY_VALID procedure 3-79 
referenced by 

START_TP_PROC 3-77 
START_TP structure A-19 

referenced by 
CREATE_TCB_AND_PS 3-45 
PROCESS_INITIATOR_TO_RM_RECORD 3-20 
PROCESS_START_TP 5.0-11 
PS 5.0-8 
PS_ABEND_PROC 3-54 
PS_TERMINATION_PROC 3-57 
PURGE_QUEUED_REQUESTS 3-59 
START_TP_PROC 3-77 
START TP SECURITY VALID 3-79 

startup of LU -2-43 -
state name N-1 
state transition N-1 
state-transition matrix N-1 

action codes 
calling result N-1 

calling N-1 
input signal N-1 
next-state indicator N-1 

initialization N-1 
inputs to N-1 
output actions N-1 
state name N-1 
state transitions N-1 

state, FSM N-1 
statements 

Call 
finite-state machines N-1 

stray responses 6.1-5 
STRAY_RSP procedure 6.1-48 

referenced by 
DFC RCV 6.1-24 

stray SIGNALs 6.1-5 
subarea 1-4 
subarea LU 1-5 
subarea node 1-4 

See also node 
subarea node to peripheral node communcation 

See peripheral node to subarea node commu­
nication 

subarea node to subarea node communi-
cation 2-1 

subarea PU 1-5 
sublayers of PS 2-4 
SUCCESSFUL_SESSION_ACTIVATION procedure 3-80 

referenced by 
ACTIVATE_SESSION_RSP_PROC 3-25 
SESSION ACTIVATED PROC 3-70 

SVCMG_VERB_PARAMETER_CHECK procedure 5.4-44 
referenced by 

LOCAL_SESSION_LIMIT_PROC 5.4-42 
sync point 2-4, 2-11, 2-12, 2-37, 5.3-1 

back-out 2-38 
commands 5.3-2 

Backed Out 5.3-3, 5.3-16, 5.3-17, 
5.3-32, 5.3-41 

Committed 5.3-3, 5.3-9, 5.3-35, 5.3-36 
Compare States 5.3-2, 5.3-7, 5.3-8, 
5.3-9, 5.3-15, 5.3-18, 5.3-20, 5.3-22, 
5.3-25, 5.3-32, 5.3-33, 5.3-34 

Exchange Log Name 5.3-2, 5.3-18, 
5.3-31, 5.3-33, 5.3-34 

SNA LU 6.2 Reference: Peer Protocols 

Forget 5.3-3, 5.3-9, 5.3-32, 5.3-35, 
5.3-36 

Heuristic Mixed 
implied Forget 
Prepare 5.3-3, 
Request Commit 
5.3-35, 5.3-36 

committed 2-38 

5.3-26, 5.3-35, 5.3-37 
5.3-5, 5.3-12, 5.3-30 
5.3-9, 5.3-22, 5.3-35 
5.3-3, 5.3-9, 5.3-22, 

conversation resources 5.3-7 
conversation resource protection manag­
er 5.3-7 

data-base update consistency 2-37 
errors during sync point 5.3-9, 5.3-15, 
5.3-20, 5.3-22, 5.3-24, 5.3-32, 5.3-34 

failures and recovery 5.3-24, 5.3-25, 
5.3-30, 5.3-31, 5.3-32, 5.3-33, 5.3-41 

relationships among 5.3-2 
flows 5.3-37, 5.3-39, 5.3-40, 5.3-41 

general case 5.3-11 
last resource optimization 5.3-5, 
5.3-9, 5.3-13, 5.3-20, 5.3-25, 5.3-32, 
5.3-36, 5.3-38 

no changes optimization 5.3-5, 5.3-14, { 
5.3-36, 5.3-39 

function shipping 5.3-8 
heuristic decision 5.3-15, 5.3-16, 
5.3-18, 5.3-22, 5.3-24, 5.3-25, 5.3-30, 
5.3-32, 5.3-34, 5.3-37 

and lock manager 5.3-16, 5.3-30 
local resources 5.3-5, 5.3-7, 5.3-18, 
5.3-20 

log 5.3-3, 5.3-6, 5.3-18, 5.3-31 
See also log manager 
forcing 5.3-7, 5.3-8 

logging 2-37, 2-38 
logical unit of work 2-38 
manager 5.3-3, 5.3-25, 5.3-30, 5.3-32, 
5.3-35 

operator messages 5.3-25, 5.3-30 
phases 

See also sync point, commands 
classification 5.3-9 

presentation services header 
See presentation services IPSl headers 

protection manager 2-38, 5.3-6, 5.3-15, 
5.3-18, 5.3-20 

protocol 2-38 
resynchronization 2-38, 5.3-2, 5.3-15, 
5.3-16, 5.3-18, 5.3-19, 5.3-20, 5.3-22, 
5.3-25, 5.3-30, 5.3-31, 5.3-32, 5.3-33, 
5.3-34 

roles 5.3-2, 5.3-18, 5.3-22, 5.3-25 
agent 5.3-2, 5.3-3, 5.3-18, 5.3-22 
cascaded agent 5.3-2, 5.3-3, 5.3-18, 
5.3-20, 5.3-28, 5.3-32 

initiator 5.3-2, 5.3-3, 5.3-9, 5.3-18, 
5.3-32 

structure 2-38 
synchronization point 2-38 
unit of work 

See sync point, logical unit of work 
synchronized unit of work 

See sync point, logical unit of work 
synchronous transfer 2-6, 2-36 
SYNC PT 

See sync point 
system services control point ISSCPJ 

See SSCP (system services control pointl 

\-..... ... -/ 

C' 
, 



(_) 
TARGET_COMMAND_CONVERSATION procedure 5.4-61 

referenced by 
PROCESS_SESSION_LIMIT_PROC 5.4-58 

TARGET_REPLY_CONVERSATION procedure 5.4-65 
referenced by 

PROCESS SESSION LIMIT PROC 5.4-58 
target, role ~f TP and LU 2-5, 5.4-3 
TC 

See transmission control <TCJ 
TC.BIU_RCV_CHECKS procedure 6.2-25 

referenced by 
TC.RCV 6.2-23 

TC.BUILD_CRV procedure 6.2-17 
referenced by 

TC.EXCHANGE_CRV 6.2-15 
TC.CRV_FORMAT_CHECK procedure 6.2-18 

referenced by 
TC.EXCHANGE_CRV 6.2-15 

TC.DECIPHER_RU procedure 6.2-32 
referenced by 

TC.RCV 6.2-23 
TC.EXCHANGE_CRV procedure 6.2-15 

referenced by 
TC.INITIALIZE 6.2-13 

TC.INITIALIZE procedure 6.2-13 
referenced by 

HS 6.0-3 
TC.RCV procedure 6.2-23 

referenced by 
PROCESS_LU_LU_SESSION 6.0-5 

TC.SEGMENT_RCV_CHECKS procedure 6.2-24 
referenced by 

TC.RCV 6.2-23 
TCB 

See transaction control block (TCBJ 
TCB_ID structure 3-91 

referenced by 
ATTACH_PROC 3-30 
PS_CREATION_PROC 3-55 
SEND_ATTACH_TO_PS 3-66 

TCB_LIST_PTR structure 5.0-24 
TCB structure A-9 

referenced by 
COMPLETE_LUH_ID 3-41 
CREATE_RCB 3-43 
CREATE_TCB_AND_PS 3-45 
DEALLOCATION_CLEANUP_PROC 5.0-18 
GET_TP_PROPERTIES_PROC 5.0-18 
PROCESS_FMH5 5.0-10 
PROCESS_START_TP 5.0-11 
PS 5.0-8 
PS_ABEND_PROC 3-54 
PS_ATTACH_CHECK 5.0-12 
PS_CREATION_PROC 3-55 
PS_PIP_CHECKS 5.0-13 
PS_TERMINATION_PROC 3-57 
PS_VERB_ROUTER 5.0-16 
RCB_ALLOCATED_PROC 5.1-48 
HAIT_PROC 5.0-19 

terminal 2-1, 2-4 
See also resource, local 

TERMINATE PS structure A-17 
refere;:;ced by 

DEALLOCATION_CLEANUP_PROC 5.0-18 
PROCESS_PS_TO_RM_RECORD 3-22 
PS_TERMINATION_PROC 3-57 

termination count 
See SESSION COUNTS, termination count 

termination rule, bracket 

See bracket, bracket termination 
TEST_FOR_FREE_FSP_SESSION procedure 

referenced by 

rule 
3-82 

ALLOCATE_RCB_PROC 3-26 
TEST_FOR_POST_SATISFIED procedure 5.1-60 

referenced by 
RECEIVE_AND_TEST_POSTING 5.1-50 
TEST_PROC 5.1-26 

TEST_FOR_RESOURCE_POSTED procedure 5.0-21 
referenced by 

HAIT_PROC 5.0-19 
TEST_PROC procedure 5.1-26 

TH 

referenced by 
MC_TEST_PROC 5.2-28 
PS_CONV 5.1-10 
TEST_FOR_RESOuRCE_POSTED 5.0-21 

See transmission header <THJ 
TH and RH parameters 4-14 
TP 

See transaction program instance CTPJ 
TP-PS process 

See presentation services CPSJ, process 
See transaction program, process 

TPN 
See transaction program name CTPNJ 

transaction control block CTCBJ 3-4, 5.0-3, 
5.1-3, 5.2-4, 5.3-7, 5.3-8, 5.3-18, 5.3-20 

TRANSACTION_PGM_VERB structure 
processing by PS.COPR 5.4-25, 5.4-29 

transaction program 2-1, 2-4, 2-40 
See also transaction program code 
See also transaction program instance (TPJ 
invoking initial ClocalJ 2-2, 2-32, 2-44, 
3-5 

invoking remote 2-32, 3-5, 3-10 
process 2-40, 2-44 
protocol boundary 2-4, 2-27 

See also presentation services for con­
versations CPS.CONVJ, protocol bounda­
ries 

See also presentation services for 
mapped conversations CPS.MCJ, protocol 
boundaries 

See also presentation services for the 
control operator IPS.COPRJ, protocol 
boundaries 

terminating 2-32, 5.0-4, 5.0-5 
transaction program code 2-32 

See also transaction program 
transaction program instance CTPJ 2-40, 3-10 

See also transaction program 
identifying 2-6 
limit 2-5, 3-2, 3-10, 5.0-6 

transaction program name CTPNJ 2-5, 2-32, 
2-36, 2-40 

TRANSACTION_PROGRAM structure 2-40, 5.1-2, 
A-5 

referenced by 
ATTACH_PROC 3-30 
CREATE_TCB_AND_PS 3-45 
DEFINE_PROC 5.4-39 
DELETE_PROC 5.4-41 
DISPLAY_PROC 5.4-40 
PS_ABEND_PROC 3-54 
PS_CREATION_PROC 3-55 
PS_PIP_CHECKS 5.0-13 
PS_TERMINATION_PROC 3-57 
PURGE_QUEUED_REQUESTS 3-59 
START TP PROC 3-77 

transaction-pr~gram verbs 2-3, 2-4, 2-30, 
2-46, 5.1-4 

See also basic conversation 

Index X-27 



See also presentation services for mapped 
conversations CPS.MC), protocol bounda­
ries 

See also presentation services for the 
control operator lPS.COPRJ, protocol 
boundaries 

See also transaction program, protocol 
boundary 

examples 2-18 
GET TYPE verb 5.0-7 
iss~ed by LU 2-30, 2-32, 2-36 
parameter checks 5.1-6 
POST_ON_RECEIPT 5.1-7 
REQUEST_TO_SEND 5.1-7 
SEND_ERROR 5.1-7 
state 5.1-6 
HAIT verb 5.0-7 

transaction services 2-36 
See also transaction program, protocol 

boundary 
transformation of uninterpreted name 4-18 
TRANSLATE procedure 6.1-49 

referenced by 
DFC_RCV 6.1-24 
DFC SEND FSMS 6.1~27 

transmission c~ntrol ITC) 
CRV 6.2-3 

initial chaining value 6.2-3, 6.2-4 
session cryptography key 6.2-3 
session seed 6.2-3 
test value 6.2-3 

cryptography 6.2-1, 6.2-6 
block chaining 6.2-6 
Data Encryption Standard CDESl 6.2-7 
enciphering/deciphering 6.2-1, 6.2-6 
initial chaining value 6.2-3, 6.2-4 
session cryptography key 6.2-7 
session seed 6.2-3 

data traffic protocols 6.2-1 
deadlock 6.2-8 
deciphering 6.2-1, 6.2-6 
enciphering 6.2-li 6.2-6 
expedited flow 6.2-1, 6.2-6 
HS-initiated procedure 6.2-6 
initial chaining value 6.2-3, 6.2-4 
ISOLATED PACING MESSAGE IIPMJ 6.2-8 
ISOLATED PACING RESPONSE CIPR) 6.2-8 
normal flow 6.2-6 
pacing 

pacing queue 6.2-8 
Queued Response indicator CQRil 6.2-8 
session-level 6.2-1 

QRI 6.2-8 
queued response indicator (QRIJ 6.2-8 
receiving 6.2-1 
request control mode 6.2-7 
SEND MU 6.2-6 
sending 6. 2-1 
sequence numbers, TH 6.2-6 

assignment 6.2-6 
checking 6.2-1 
expedited flow 6.2-6 
identifiers 6.2-6 
initialization 6.2-6 
normal flow 6.2-6 
wrapping 6.2-6 

session cryptography key 6.2-3 
session-level pacing 6.2-1, 6.2-6, 6.2-7 

IPM 6.2-8 
IPR 6.2-8 
pacing count 6.2-7 
PI 6.2-7, 6.2-8 
stages 6.2-7 
window size 6.2-7 

X-28 SNA LU 6.2 Reference: Peer Protocols 

session seed 6.2-3, 6.2-6 
solicited pacing response 6.2-8 
structure 

relation to the half-session 6.2-2 
SEND_MU and TC.RCV Request(Response 

Flow 6.2-5 
TC initialization 6.2-1 
TC normal operation 6.2-1 
TC.RCV 6.2-6 
transmission header CTHJ 6.2-5 
transmission priority 6.2-8 
TS profile 7 6.2-6 
unsolicited pacing response 6.2-8 

transmission header CTH) 2-15, 2-17, 2-30 
session control 6.2-5 

transport characteristics 2-3 
See also mode, LU 

tree 
See logical unit of work CLUHJ, distrib­
uted 

truncation of logical records 2-11, 2-14 
TRY_TO_RCV_SIGNAL procedure 6.1-23 

referenced by 
PROCESS LU LU SESSION 6.0-5 

TS Ctransmission-se~vices) profile 
in BIND 4-20 

TS profile 
See profiles 

TS profile 7 6.2-6 
TS Usage field 

in BIND 4-21 
two-way alternate send/receive protocol 

See half-duplex flip-flop send/receive 
mode 

type of session termination 4-28 
type, node 1-3 

See also node 
type, PU 1-5 

See also PU type 

UNBIND 2-15, 2-34, 4-27 
session failure 2-31 

UNBIND PROTOCOL ERROR structure A-17 
ref;renced by 

PROCESS_PS_TO_RM_RECORD 3-22 
PS PROTOCOL ERROR 5.0-20 

undefined protocol machine CUPMl, definition 
of 1-5 

underscores, separating multiple terms of a 
name phrase 1-5 

uninterpreted LU name 4-18 
See also LU name 
interpretation of 4-18 

unit of work 
See sync point, logical unit of work 

UNRESERVE_BUFFERS procedure 4-85 
referenced by 

CLEANUP_LU_LU_SESSION 4-67 
UNSUCCESSFUL_SESSION_ACTIVATION proce­
dure 3-83 

referenced by 
ACTIVATE SESSION RSP PROC 3-25 

UPM (undefined-protocol ma~hine), definition 
of 1-5 

UPM_ATTACH_LOG procedure 5.0-22 
referenced by 

ATTACH_ERROR_PROC 5.0-15 
UPM_EXECUTE procedure 5.0-22 

referenced by 



(_/ 
PROCESS_FMH5 5.0-10 
PROCESS_START_TP 5.0-11 

UPM_MAPPER procedure 5.2-46 
referenced by 

MC_CONFIRM_PROC 5.2-21 
MC_DEALLOCATE_PROC 5.2-23 
MC_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_SEND_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC 5.2-40 
PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
RCVD_SVC_ERROR_PURGING 5.2-42 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41 
RECEIVE_INFO_PROC 5.2-30 
SEND_SVC_ERROR_PURGING 5.2-45 

UPM_RETURN_PROCESSING procedure 5.0-23 
referenced by 

DEALLOCATION_CLEANUP_PROC 5.0-18 
URC 

See user request correlation IURCl 
user-application node 1-3, 1-4 

See also node 
User Data field 

in BIND 4-22 
user ID, security 

See conversation-level security 
user of LU 2-1 
user request correlation CURCl 

in BIND 4-23 

varying dynamic buffer pool 
See buffer, pools 

varying dynamic buffers 
See buffer, types 

VERB_PARAMETER_CHECK procedure 5.4-48 
referenced by 

SOURCE_SESSION_LIMIT_PROC 5.4-46 

HAIT_FOR_CONFIRMED_PROC procedure 5.1-61 
referenced by 

COMPLETE_CONFIRM_PROC 5.1-28 
DEALLOCATE_CONFIRM_PROC 5.1-32 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 

HAIT_FOR_RM_REPLY procedure 5.1-62 

referenced by 
ALLOCATE_PROC 5.1-11 
END_CONVERSATION_PROC 5.1-34 
OBTAIN_SESSION_PROC 5.1-37 

HAIT_FOR_RSP_TO_Rll_TO_SEND_PROC proce­
dure 5.1-63 

referenced by 
REQUEST_TO_SEND_PROC 5.1-23 

HAIT_FOR_SEND_ERROR_DONE_PROC proce-
dure 5.1-64 

referenced by 
DEALLOCATE_ABEND_PROC 5.1-31 
SEND_ERROR_IN_RECEIVE_STATE 5.1-56 

HAIT_PROC procedure 5.0-19 
referenced by 

PS_VERB_ROUTER 5.0-16 
window size 

session-level pacing 6.2-7 
adaptive pacing 6.2-7 
fixed pacing 6.2-7 

winner, contention 
See bracket, first speaker 

workstation 
See resource, local 

X06Fl procedure 5.4-57 

YIELD SESSION structure A-19 
referenced by 

DFC_SEND_FROM_RM 6.1-21 
SUCCESSFUL_SESSION_ACTIVATION 3-81 

Index X-29 





(~; 

Reader's Comment Form 

Systems Network Architecture 
LU 6.2 Reference 
Peer Protocols 

Publication No. SC31-6808-0 

This manual is part of a library that serves as a reference source for systems 
analysts, programmers, and operators of IBM systems. You may use this form to 
communicate your comments about this publication, its organization, or subject 
matter, with the understanding that IBM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM Publications are not stocked at the location to which this form 
is addressed. Please direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM 
branch office serving your locality. 

Possible topics for comment are: clarity, accuracy, completeness, organization, 
coding, retrieval, and legibility. 

Comments: 

What is your occupation? 

If you wish a reply, give your name, company, mailing address, and date: 

Thank you for your cooperation. No postage stamp necessary if mailed in the 
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your 
comments or you may mail directly to the address in the Edition Notice on the back 
of the title page.) 



SC31-6808-0 

Reader's Comment Form 

Fold and tape Please Do Ndi Staple 

BUSINESS REPLY MAIL 

Fold and tape 

--.,.- ------ - ·- ---- - -- -.. ---- -------- --_ _.._,._ 
® 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POST AGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Networking Architecture 
Dept. E96 
P.O. Box,J;.~~95 
Researct\V'friangle Park, N.C. 27709-9990 

Please Do Not Staple 

Fold and tape l ................ . NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

Fold and tape 

'\ .. 



r· Reader's Comment Form 
\ .. __ .. · 

Systems Network Architecture 
LU 6.2 Reference 
Peer Protocols 

Publication No. SC31-6808-0 

This manual is part of a library that serves as a reference source for systems 
analysts, programmers, and operators of IBM systems. You may use this form to 
communicate your comments about this publication, its organization, or subject 
matter, with the understanding that IBM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM Publications are not stocked at the location to which this form 
is addressed. Please direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM 
branch office serving your locality. 

Possible topics for comment are: clarity, accuracy, completeness, organization, 
coding, retrieval, and legibility. 

Comments: 

What Is your occupation? 

If you wish a reply, give your name, company, mailing address, and date: 

Thank you for your cooperation. No postage stamp necessary if mailed in the 
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your 
comments or you may mail directly to the address in the Edition Notice on the back 
of the title page.) 



SC31-6808-0 

Reader's Comment Form 

Fold and tape Please Do Ndt Staple 

BUSINESS REPLY MAIL 

Fold and tape 

----- ..... ----- - ·- _._.. ---- -.. ---- ----------_ _....._' -
® 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Networking Architecture 
Dept. E96 
P.O. Box 12195 
Research Triangle Park, N.C. 27709-9990 

Please Do Not Staple 

Fold and tape 

l ........... "%ii~:;:;~ IF MAILED 
IN THE 

UNITED STATES 

Fold and tape 

,/----." 

( ., _____ ,·· 



-;~ ~ Publication Number 

.:....::: :S~5: SC31-6808-0 
<I> 

Printed in USA 

SCJl-6808-00 

11111111111111 


