ICON/UXV
User
Guide

ICON
INTERNATIONAL

764 East Timpanogos Parkway
Orem, Utah 84057
(801) 225-6888

USER GUIDE

ICON/UXV
Operating
System

© Copyright 1988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This SN
manual shall not be reproduced in whole nor in part without prior written approval from Icon v/
International, Inc. N

Icon International, Inc. reserves the right to make changes, without notice, to the specifications
and materials contained herein, and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical, arithmetic, and listing errors.

The UNIX® Software and Text Source for this manual is under license from AT&T.

Order No. 172-036-003 A (Manual Assembly)
Order No. 171-063-003 A (Manual Pages only)

Trademarks

The Icon logo is a registered trademark of Icon International, Inc.

UNIX is a registered trademark of AT&T.

DEC, PDP, UNIBUS, and MASSBUS are trademarks of Digital Equipment Corporation.
HP is a trademark of Hewlett-Packard, Inc.

DIABLO is a trademark of Xerox Corporation.

TEKTRONIX is a registered trademark of Versatec Corporation.

TELETYPE is a trademark of AT&T Teletype Corporation.

3B and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.

2

] ICON INTERNATIONAL

Change Record Page

ICON/UXV User Guide
Manual Pages Part No. 171-063-003

Date Revision Description Pages Affected
Mar. 1988 AO Initial production release | All
Aug. 1988 A1 Add Appendix G “An ix, Appendices contents,
Introduction to the C Appendix G, Glossary
- Shell” and renumber the
(Glossary

,//

ICON/UXV USER GUIDE

ICON INTERNATIONAL

NS

_

CONTENTS

HOW TO READ THIS GUIDE

PART 1. UNIX SYSTEM OVERVIEW

CHAPTER 1. WHAT IS THE UNIX SYSTEM?

What The UNIX System Is

How The UNIX System Works

CHAPTER 2. BASICS FOR UNIX SYSTEM USERS

Getting Started

About The Terminal

Obtaining A Login Name

Establishing Contact With The UNIX System

CHAPTER 3. USING THE FILE SYSTEM

Introduction

How The File System Is Structured

Your Place In The File System Structure

Organizing A Directory Structure

Accessing And Manipulating Files

Summary

CHAPTER 4. UNIX SYSTEM CAPABILITIES

Introduction

Text Editing

Working In The Shell

Communicating Electronically

Programming In The System

ICON/UXV USER GUIDE

1-2

2-1
2-2

2-8

2-8

3-1
3-3
3-4
3-11
3-22

. 3-50

4-1
4-1
4-5

- 4-14

4-15

CONTENTS

PART 2. UNIX SYSTEM TUTORIALS

CHAPTER 5. LINE EDITOR TUTORIAL (ed)

Introducing The Line Editor

5-1
How To Read This Tutorlal 5-2
Getting Started 5-3
Exerclse 1 5-11
General Format Of ed Commands 5-12
Line Addressing 5-13
Exerclse 2 5-26
Display Lines In A Flle 5-27
Creating Text 5-30
Exerclse 3 5-36
Deleting Text 5-37
Substituting Text 5-43
Exercise 4 5-50
Speclal Characters 5-51
Exercise § 5-62
Moving Text vees 5-63
Exercise 6 5-72
Other Useful Commands And Information 5-73
Exerclse 7... . 5-81
Answers to Exerclses 5-82

CHAPTER 6. SCREEN EDITOR TUTORIAL (vi)

Getting Acquainted With vi . 6-1
How To Read This Tutorial 6-2
Getting Started 6-4
Exercise 1 6-13
Positioning The Cursor In The Window 6-14
Positioning The Cursor In The File 6-31
Exerclse 2 . 6-42
Creating Text 6-43
Exercise 3 6-46
Deleting Text 8-47
Exercise 4 8-56
Changing Text 6-57
Cutting And Pasting Text Electronically e 8-62
Exerclse § 6-66
Special Commands 6-68
Line Editing Commands 6-69
Quitting vi 6-74
Special Options For vi 6-76
Exercise 0 weee B-78
Changing Your Environment 8-79
Answers to Exercises 6-80

ICON INTERNATIONAL

C

CONTENTS

CHAPTER 7. SHELL TUTORIAL

Making Life Easier In The Shell

7-1

How To Read This Tutorial 7-1
Shell Command Language 7-3
Command Language Exercises 7-27
Shell Programming 7-28
Shell Programming Exerclises 7-72
Answers to Exerclses 7-73

CHAPTER 8. COMMUNICATION TUTORIAL
Introduction 8-1
Communicating On The UNIX System 8-1
How Can You Communicate? 8-2
Sending And Receiving Messages 8-3
Sending And Recelving Flles 8-14
Advanced Message And File Handling 8-25

PART 3. SHELL COMMANDS

CHAPTER 9. USING SHELL COMMANDS
Introduction veeee 9-1
Executing Simple Shell Commands 9-1
Input/Output Redirection ceeesanes 9-1
Pipelines and Filters 9-2
Permission Modes 9-3
File Name Generation 9-4
Quoting 9-5
Executing Commands In The Background vevess 9-06
Shell Varlables 9-8
Special Commands e 9-15
Restricted Shell 9-19

CHAPTER 10. SHELL PROGRAMMING
Introduction 10-1
Invoking The Shell 10-1
Input/Output 10-1
Shell Varlables 10-3
Conditional Substitution 10-6
Control Commands 10-8
Special Commands . 10-18
Command Grouping 10-30
A Command’s Environment eeses 10-31
Debugging Shell Procedures . 10-32

vii
ICON/UXV USER GUIDE "

CONTENTS

CHAPTER 11. EXAMPLES OF SHELL PROCEDURES

4)
‘\J

copypairs 11-1

copyto 11-2

distinct 11-2

draft 11-3

edfind 11-4

edlast 11-4

fsplit 11-5

initvars 11-6

merge 11-7

mkflles 11-8

mmt 11-9

null 11-10

phone 11-11

writemall 11-11

PART 4. GRAPHICS

CHAPTER 12. GRAPHICS OVERVIEW

Chapter Introduction 12-1

Basic Concepts 12-1 P

Getting Started 12-3 \

Examples Of What You Can Do 12-4 -

‘Where To Go From Here 12-8
CHAPTER 13. STAT-A TOOL FOR ANALYZING DATA

Chapter Introduction 13-1

Basic Concepts 13-1

Node Descriptions 13-9

Examples 13-23
CHAPTER 14. GRAPHICS EDITOR

Chapter Introduction 14-1

Commands 14-2

Command Summary 14-16

Some Examples of What Can Be Done 14-190

=
\

ICON INTERNATIONAL

C

CHAPTER 15. ADMINISTRATIVE INFORMATION

Chapter Introduction

CONTENTS

Graphics Structure

Installing Graphics
Hewlett-Packard Plotter

TEKTRONIX Terminal

Miscellaneous Information

PART 5. SUPPLEMENTARY INFORMATION AND REFERENCE TOOLS

Appendix A. Sclected UNIX System Documentation

Appendix B. File System Organization

Appendix C. Summary of UNIX System Commands

Appendix D. Quick Reference to ed Commands.

Appendix E. Quick Reference to vi Commands

sesse

......

Appendix F. Summary of Shell Programming Ingredients

Appendix G. An Introduction to the C Shell

G1oSSATY ceveceenense

ICON/UXV USER GUIDE

cersssenercasansinsane cesasesseasessnsanse F-1
eeeesernannne cerrssnenereseessnnnens ceerernnene G-1
[ceasee ceeseernenes secesesense GL-1
ix

CONTENTS

ICON INTERNATIONAL

“\\\d/

_

C

HOW TO READ THIS GUIDE

The UNIX® system is a family of computer operating systems developed by AT&T Bell Laboratories
and licensed by AT&T Technologies, Inc. Because it can run on many sizes and types of computers
and because of all it can do, the UNIX system has gained wide popularity since it was introduced in
the late 1960s. Now, either by choice or by fate, you are interested in learning something about it.

This guide is written to help you, the user, understand how the ICON/UXV 'system works and what
it can do for you. It introduces you to ICON/UXV, Release 3.2. New versions of the ICON/UXV
system, called releases, will be offered as changes are made or as improvements are added.

Who Should Read This Guide

Whether you are a newcomer to the world of computers or an experienced computer user who is
unfamiliar with the ICON/UXV system, this guide is for you. Although it contains technical
material, it can be understood by either a newcomer or an expert. You will find that learning to
use the ICON/UXV system requires some thought and time, but you will be rewarded with power
and flexibility unattainable with other operating systems.

This guide assumes that you are one of a number of people using a tomputer on which the
ICON/UXV system is running, and that there is a person responsible for monitoring and controlling
the ICON/UXV system you are using. This person is the system administrator. If necessary, you
also act as the system administrator. In this case, in addition to this guide, you should consult the
documents you received when the ICON/UXV system programs were delivered to you. (See
Appendiz A for information on how to order additional copies.)

How This Guide Is Organized

The material in this guide is organized into three major parts: ICON/UXV System Overview,
ICON/UXV System Tutorials, and Supplementary Information and Reference Tools. Both the major
parts and the chapters in each part are separated by tab dividers.

The following list summarizes the contents of each major part:

o I[CON/UXV System Overview—This part introduces you to the basic principles of the
ICON/UXV operating system. The material in this part is organized into four chapters, each
chapter building on information presented in preceding chapters. Therefore, it is recommended
that you read chapters 1 through 4 in order. The chapters that make up this part are:

— Chapter 1, What is the ICON/UXV System?-- Acquaints yoﬁ with the ICON/UXV
system and explains how it works.

— Chapter 2, Basics for ICON/UXV System Users-- Covers topics related to using your

terminal, obtaining a system account, and establishing contact with the ICON/UXV
system.

ICON/UXV USER GUIDE xi

HOW TO READ THIS GUIDE

— Chapter 8, Using the File System--Explains what the file system is, how you can
organize information (data, text, and programs) using the file system, and how you can
store and retrieve this information using appropriate commands.

— Chapter 4, ICON/UXV System Capabilities--Builds on material and terminology
presented in the first three chapters. It highlights ICON/UXV system capabilities, such
as command execution, text editing, electronic communication, programming, and aids
to software development.

o ICON/UXV System Tutorials—-Each chapter in this part takes a step-by-step approach to
teach you about one aspect of the ICON/UXV system. You will gain the greatest benefit from
them if you work through the examples and exercises at a terminal connected to the
ICON/UXV system you will be using. The tutorials assume that you understand the concepts
introduced in chapters 1 through 4. For example, before reading either the Line Editor
Tutorial or the Screen Editor Tutortal, read the explanation of text editors in Chapter 4. The
chapters that make up this part are:

— Chapter 5, Line Editor Tutorial-- Teaches you how to use the ed text editor to create
and to modify text on a paper printing or a video display terminal.

— Chapter 6, Screen Editor Tutorial-- Teaches you how to use the vi* text editor to
create and to modify text on a video display terminal.

— Chapter 7, Shell Tutorial-- Teaches you how to use the shell to automate repetitive
jobs. The shell is the part of the ICON/UXV system that interprets the commands you
type.

— Chapter 8, Communication Tutorial-- Teaches you how to send information to others,
whether they are working on your ICON/UXV system or on a different ICON/UXV
system.

e Shell Commands--Each chapter in this part is intended to provide information on how to use
the shell provided with ICON/UXV based on UNIX System V Release 2. Knowledge of another
programming language is not required when reading this document. Some examples are based
on the DOCUMENTER’S WORKBENCH® Software which is available independently for the
ICON/UXV system. Make sure that the system has DOCUMENTER’S WORKBENCH
Software available before trying any of those examples. The chapters that uake up this part
are:

— Chapter 9, Using Shell commands--Builds on Chapter 7 of this guide or the "hands-on"
experience some have acquired. It is intended for those users who have some basic
familiarity with shell but desire more detailed information.

— Chapter10, Shell Programming--Provides information for programming with shell.

Those users that intend to do shell programming should read Chapter 9 as well as
Chapter 10.

xii ICON INTERNATIONAL

(

C

HOW TO READ THIS GUIDE

— Chapter 11, Ezamples of Shell Procedures-- Contains examples of shell programs.

It is important to note a few things about shell. The shell functions as a

— Command language—The shell reads command lines entered at a terminal and
interprets the lines as requests to execute other programs.

— Programming language—The shell is a programming language just like BASIC,
COBOL, Fortran, and other languages. The shell is a high-level programming
language that is easy to learn. The programs written using the shell programming
language are called shell scripts, procedures, or commands. These programs are stored
in files and executed just like commands. The shell provides variables, conditional
constructs, and iterative constructs.

— Working environment—The shell also provides an environment that can be tailored to
an individual’s or group’s needs by manipulating environment variables.

All command names in this document are in bold font.

Normally when the system is ready for a command from a terminal, a prompt is displayed on
the terminal (? by default). With certain commands, the system expects more than one line of
terminal input. When this is the case, a secondary prompt is displayed (> by default). To
avoid confusion with what the system displays and what the user types, this document does not
show prompts displayed by the system unless noted otherwise.

Graphics-- This part provides numerical and graphical commands used to construct and edit
numerical data plots and hierarchy charts. This part is designed for individuals experienced in
using the ICON/UXV system, in a variety of ways, within the office environment (electronic
mail, document preparation, data analysis, and so on). These individuals are not expected to
know programming languages to use the JCON/UXV Graphics, but may write shell procedures
for general purposes.

— Chapter 12, QOverview--Provides a general description of and an introduction to the
ICON/UXV system graphic facility.

— Chapter 18, Statistical Network (stat)--Describes a collection of routines that. can be

interconnected using the ICON/UXV operating system shell to form numerical
processing networks.

— Chapter 14, Graphics Editor (ged)-- Describes an interactive editor used to display, edit,
and construct drawings on TEKTRONIXt 4010 series display terminals.

— Chapter 15, Administrative Information-Is a reference guide for system administrators.
Specific information is contained about directory structure, installation, makefiles,
hardware requirements, and miscellaneous facilities of the graphics package.

ICON/UXV USER GUIDE xiii

HOW TO READ THIS GUIDE

o Supplementary Informaetion and Reference Tools— This part is organized into six appendices, a
glossary, and an index. This material contains additional information that you may find useful
in learning about the ICON/UXV system. The appendices are:

— Appendiz A, Selected ICON/UXV System Documentation-Lists additional ICON/UXV
system documentation that enhances or elaborates on the information presented in this
guide. This appendix gives document titles, reference numbers, and information on how
to obtain the documents.

— Appendiz B, File System Organization--Illustrates how information is stored in the
ICON/UXYV operating system. '

— Appendiz C, Summary of ICON/UXV System Commands—Describes, in alphabetical
order, each ICON/UXV system command discussed in this guide.

— Appendiz D, Quick Reference to ed Commands--Describes the commands used with the
line editor (ed), first in alphabetical order, and then organized by topic, such as
creating text, deleting text, and displaying text.

— Appendiz E, Quick Reference to vi Commands-- Describes the commands used with the
screen editor (vi), first in alphabetical order, and then organized by topics, such as
creating text, changing text, and cutting and pasting text.

— Appendiz F, Summary of Shell Programming Ingredients--Describes shell command
language concepts and shows how 1o use shell programming language statements.

Other sections in this part of the guide are:
— Glossary--Defines technical words and terms used in this book.

— Indez--Gives an alphabetical listing of topics, together with the page numbers on which
they appear in this guide.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to
entries in the JCON/UXV Administrator Reference Manual. Each reference of the form name(1)
and name(6) refers to entries in the JCONJUXV User Reference Manual. All other references to

entries of the form name(N), where a letter, refer to entry name in section N of the ICON/UXV
Programmer Reference Manual.

The text of this guide was prepared using ICON/UXV system text editors described in this guide,
formatted using the ICON/UXV System DOCUMENTER’S WORKBENCH troff, tbl, and mm
macros, and produced on an IMAGEN, 800/5 laser printer operating under the ICON/UXV system.

* The visual editor is based on software developed by The University of California,
Berkeley, California; Computer Service Division, Department of Electrical
Engineering and Computer Science, and such software is owned and licensed by the
Regents of the University of California.

.

xiv ~ ICON INTERNATIONAL

C

Chapter 1

WHAT IS THE ICON/UXV SYSTEM?

PAGE

WHAT THE ICON/UXV SYSTEMIS 1-1
HOW THE ICON/UXV SYSTEM WORKS 1-2
Kernel 1-3

Shell 1-7
Commands 1-7

What Commands Do.. 1-8

How Commands Execute 1-8

RN

~_ 7

«

Chapter 1
WHAT IS THE ICON/UXV SYSTEM?

WHAT THE ICON/UXV SYSTEM IS

The ICON/UXYV system is a set of programs, called software, that acts as the link between
a computer and you, its user. The ICON/UXV system is designed to control the computer
on which it is running so the computer can operate efficiently and smoothly and to provide
you with an uncomplicated, efficient, and flexible computing environment.

ICON/UXV system software does three things:
o It controls the computer,
o It acts as an interpreter between you and the computer, and

o It provides a package of programs or tools that allows you to do your work.

The ICON/UXYV system software that controls the computer is referred to as the operating
system. The operating system coordinates all the details of the computer’s internals, such
as allocating system resources and making the computer available for general purposes.
The nucleus of this operating system is called the kernel.

In the ICON/UXV system, the software that acts as a liaison between you and the
computer is called the shell. The shell interprets your requests and, if valid, retrieves
programs from the computer’s memory and executes them.

The ICON/UXV system software that allows you to do your work includes programs and
packages of programs called tools for electronic communication, for creating and changing
text, and for writing programs and developing software tools.

Put simply, this package of services and utilities called the ICON/UXYV system offers:

e A general purpose system that makes the resources and capabilities of the computer
available to you for performing a wide variety of jobs or applications, not simply one
or a few specific tasks.

e A computing environment that allows for an tnteractive method of operation so you
can directly communicate with the computer and receive an immediate response to
your request or message.

e A technique for sharing what the system has to offer with other users, even though you
have the impression that the ICON/UXV system is giving you its undivided attention.
This is called timesharing. The ICON/UXV system creates this feeling by allowing you
and other users—multiusers—slots of computing time measured in fractions of seconds.

ICON/UXV USER GUIDE 1-1

WHAT IS THE ICON/UXV SYSTEM?

The rapidity and effectiveness with which the ICON/UXV system switches from
working with you to working with other users makes it appear that the system is
working with all users simultaneously.

e A system that provides you with the capability of executing more than one program
simultaneously, this feature is called multitasking.

The ICON/UXYV system, like other operating systems, gives the computer on which it runs
a certain profile and distinguishing capabilities. But unlike other operating systems, it is
largely machine-independent; this means that the ICON/UXV system can run on
mainframe computers as well as microcomputers and minicomputers.

From your point of view, regardless of the size or type of computer you are using, your
computing environment will be the same. In fact, the integrity of the computing
environment offered by the ICON/UXV system remains intact, even with the addition of
optional ICON/UXV system software packages that enhance your computing capabilities.

HOW THE ICON/UXV SYSTEM WORKS

After reading the past few pages, you know that the ICON/UXV system offers you a set of
software that performs services--some automatically, some you must request. You also
know that the system creates a certain environment in which you can use its software. But
before you can ask the ICON/UXV system to do something, you need to know what it is
capable of doing.

Look at Figure 1-1. It shows a set of layered circles in graduated sizes. Each circle
represents specific ICON/UXV system software, such as:

« Kernel,
o Shell, and

« Programs/tools that run on command.

1-2 ICON INTERNATIONAL

o
N\
. v

HOW THE ICON/UXV SYSTEM WORKS

Programming
Environment

Electronic
Communication [

Additional
Utility
Programs

Information
Management

Figure 1-1. ICON/UXV system model

You should know something about the major components of ICON/UXV system software to
communicate with the ICON/UXV system. Therefore, the remainder of this chapter
introduces you to each component: the kernel, the shell, and user programs or commands.

Kernel

The heart of the ICON/UXV system is called the kernel. Figure 1-2 gives an overview of
the kernel’s activities. Essentially, the kernel is software that controls access to the
computer, manages the computer’s memory, and allocates the computer’s resources to one
user, then to another. From your point of view, the kernel performs these tasks
automatically. The details of how the kernel accomplishes this are hidden from you. This
arrangement lets you focus on your work, not on the computer’s. '

On the other hand, you will become increasingly familiar with another feature of the
kernel; this feature is referred to as the file system.

The file system is the cornerstone of the ICON/UXV operating system. It provides you
with a logical, straightforward way to organize, retrieve, and manage information
electronically. If it were possible to see this file system, it might look like an inverted tree
or organization chart made up of various types of files Figure 1-3. The file is the basic unit
of the ICON/UXV system and it can be any one of three types:

e An ordinary file is simply a collection of characters. Ordinary files are used to store
information. They may contain text or data for the letters or reports you type, code
for the programs you write, or commands to run your programs. In the ICON/UXV
system, everything you wish to save must be written into a file.

ICON/UXV USER GUIDE 1-3

WHAT IS THE ICON/UXV SYSTEM?

1-4

Allocates
system
resources

Maintains
file system

Figure 1-2. Functional view of kernel

QO - Directories
[0 = Ordinary Files
W = Special Files

Figure 1-3. Branching directories and files give the ICON/UXV system
its treelike structure

In other words, a file is a place for you to put information for safekeeping until you
need to recall or use its contents again. You can add material to or delete material

from a file once you have created it, or you can remove it entirely when the file is no
longer needed. :

A directory is a file maintained by the operating system for organizing the treelike
structure of the file system. A directory contains files and other directories as
designated by you. You can build a directory to hold or organize your files on the
basis of some similarity or criterion, such as subject or type.

For example, a directory might hold files containing memos and reports you write
pertaining to a specific project or client. Or a directory might hold files containing
research specifications and programming source code for product development. A

ICON INTERNATIONAL

O

.
N
/

-

HOW THE ICON/UXV SYSTEM WORKS

directory might hold files of executable code allowing you to run your computing jobs.
Or a directory might contain files representing any combination of these possibilities.

o A special file represents a physical device, such as the terminal on which you do your
computing work or a disk on which ordinary files are stored. At least one special file
corresponds to each physical device supported by the ICON/UXV system.

In some operating systems, you must define the kind of file you will be working with and
then use it in a specified way. You must consider how the files are stored since they can be
sequential, random-access, or binary files. To the ICON/UXV system, however, all files are
alike. This makes the ICON/UXV system file structure easy to use. For example, you need
not specify memory requirements for your files since the system automatically does this for
you. Or if you or a program you write needs to access a certain device, such as a printer,
you specify the device just as you would another one of your files. In the ICON/UXV
system, there is only one interface for all input from you and output to you; this simplifies
your interaction with the system.

The source of the ICON/UXV system file structure is a directory known as root, which is
designated with a slash (/). All files and directories in the file system are arranged in a
hierarchy under root. Root normally contains the kernel as well as links to several
important system directories that are shown in Figure 1-4:

/bin Many executable programs and utilities reside in this directory.

/dev This directory contains special files that represent peripheral devices, such
as the console, the line printer, user terminals, and disks.

/etc Programs and data files for system administratiom can be found in this
directory.

/lib This directory contains available program and language libraries.

/tmp This directory is a place where anyone can create temporary files.

Jusr This directory holds other directories, sﬁch as mail (which further holds

files storing electronic mail), news (which contains files holding
newsworthy items), rje (which contains files needed to send data via
something called the remote job entry communication link), and games
(which contains files holding electronic games).

In summary, the directories and files you create comprise the portion of the file system that
is structured and, for the most part, controlled by you. Other parts of the file system are
provided and maintained by the operating system, such as bin, dev, etc, lib, tmp and
usr, and have much the same structure on all ICON/UXV systems.

Chapter 3 shows how to organize a file system directory structure and how to access and
manipulate files. Chapter 4 gives an overview of ICON/UXV system capabilities. The
effective use of these capabilities depends on your familiarity with the file system and your
ability to access information stored within it. Chapter 5 and Chapter 6 are tutorials
designed to teach you how to create and edit files to meet your computing and information

ICON/UXV USER GUIDE 1-5

WHAT IS THE ICON/UXV SYSTEM!?

QO = Directories
[=Ordinary Files
\/ = Special Files

date

cat

1-6

Figure 1-4. Sample of typical file system structure

ICON INTERNATIONAL

‘// o
__

HOW THE ICON/UXV SYSTEM WORKS
management needs.

Shell

The shell is a unique ICON/UXV system program or tool that is central to most of your
interactions with the ICON/UXV system. Figure 1-1 illustrates how the shell works. The
drawing shows the shell as a circle containing arrows pointing away from the kernel and
the file system to the outer circle that contains programs and then back again. The arrows

indicate that a two-way flow of communication is possible between you and the computer
via the shell.

When you enter a request to the ICON/UXV system by typing on the terminal keyboard,
the shell translates your request into language the computer understands. If your request
is valid, the computer honors it and carries out an instruction or set of instructions.
Because of its job as translator, the shell is called the command language interpreter.

As the command language interpreter, the shell can also help you to manage information.
The shell’s ability to manage information stems from the design of the ICON/UXV system.
Each program in the ICON/UXV system is designed to do one thing well. In a sense, a
ICON/UXV system program is a building block or module that you can use in tandem with
other programs to create even more powerful tools.

In addition to acting as a command language interpreter, the shell is a programming
language complete with variables and control flow capabilities.

A section of Chapter 4 describes each of the shell’s capabilities. Chapter 7 teaches you how
to use these capabilities to write simple shell programs called shell scripts and how to
custom-tailor your computing environment.

Commands

A program is a set of instructions that the computer follows to do a specific job. In the
ICON/UXV system, programs that can be executed by the computer without need for
translation are called executable programs or commands.

As a typical user of the ICON/UXV system, you have many standard programs and tools
available to you. If you also use the ICON/UXV system to write programs and to design
and develop software, you have system calls, subroutines, and other tools at your disposal.
And you have, of course, the programs you write.

This book introduces you to approximately 40 of the most frequently used programs and
tools that you will probably use on a regular basis when you interact with the ICON/UXV
system. If you need additional information on these or other standard ICON/UXYV system
programs, check the ICON/UXV System User Reference Manual. If you want to use tools
and routines that relate to programming and software development, you should consult the
ICON/UXV System Programmer Reference Manual and the ICON/UXV System Support
Tools Guide. Appendiz A provides you with information on how to obtain copies of these
manuals.

ICON/UXV USER GUIDE 1-7

WHAT IS THE ICON/UXV SYSTEM?

The details contained in the two reference manuals may also be available via your terminal
in what is called the on-line version of the ICON/UXV system reference manuals. This on-
line version is made up of formatted text files that look exactly like the printed pages in
the manuals. You can summon pages in this electronic manual using the command man,
which stands for manual page. If the electronic version of the manuals is available on your
computer, the man command is documented in your copy of the JCON/UXV System User
Reference Manual.

What Commands Do

The outer circle of Figure 1-1 organizes ICON/UXV system programs and tools into
general categories according to what they do. The programs and tools allow you to:

e Process text. This capability includes programs, such as, line and screen editors (which
create and change text), a spelling checker (which locates spelling errors), and optional
text formatters (which produce high-quality paper copies that are suitable for
publication).

e Manage information. The ICON/UXV system provides many programs that allow you
to create, organize, and remove files and directories.

e Communicate electronically. Several programs, such as mail, provide you with the
capability to transmit information to other users and to other ICON/UXV systems.

e Use a productive programming and software development environment. A number of
ICON/UXV system programs establish a friendly programming environment by
providing ICON /UXV-to-programming-language interfaces and by supplying numerous
utility programs.

o Take advantage of additional system capabilities. These programs include graphics, a
desk calculator package, and computer games.

How Commands Execute

Figure 1-5 gives a general idea of what happens when the ICON/UXV system executes a
command.

YOUR

SHELL DIRECTORY SouncE
SEARCH v
INPUT

(COMMAND DATA
TPUT __/
OUTPUT | LANGUAGE
INTERPRETER) PROGRAM PROGRAM TEXT
EXECUTION RETRIEVAL N

EXECUTABLE
ROGRAMS

C

Figure 1-5. Flow of control between you and computer when
you request program to run

When the shell signals it is ready to accept your request, you type in the command you
wish to execute on the keyboard. The command is considered input, and the shell searches

1-8 ICON INTERNATIONAL

HOW THE ICON/UXV SYSTEM WORKS

one or more directories to locate the program you specified. When the program is found,

N the shell brings your request to the attention of the kernel. The kernel then follows the

(program’s instructions and executes your request. After the program runs, the shell asks
you for more information or tells you it is ready for your next command.

This is how the ICON/UXV system works when your request is in a format that the shell
understands. The structure that the shell understands is called a command line. Chapter 8

explains what you need to know about the command line so you can request a program to
run.

This chapter has outlined some basic principles of the ICON/UXV operating system and
explained how they work. The following chapters will help you begin to apply these
principles according to your computing needs.

s

ICON/UXV USER GUIDE 1-9

Chapter 2

BASICS FOR ICON/UXV SYSTEM USERS

PAGE

GETTING STARTED. 2-1
ABOUT THE TERMINAL 2-2
Required Terminal Settings 2-3
Keyboard Characteristics 2-3
Typing Conventions 2-5
Responding to the Command Prompt 2-5

Correcting Typing Errors 2-5

Typing Speed 2.7

Stopping a Command 2-7

Using Control Characters 2-7
OBTAINING A LOGIN NAME 2-8
ESTABLISHING CONTACT WITH THE ICON/ UXV SYSTEM 2-8
Login Procedure 2-9
Password 2-9
External Security Code 2-11
Possible Problems When LOZZING INcuiceceircrereecectasecrosesnececnnes 2-11
Simple Commands 2-12
Logging Off . 2-13

C

Chapter 2
BASICS FOR ICON/UXV SYSTEM USERS

GETTING STARTED

There are general rules and guidelines with which you should be familiar before you begin
to work on the ICON/UXV operating system. For example, you need information about

your terminal and how to use its keyboard and about how to begin and end a computing
session.

This chapter acquaints you with these rules and guidelines and presents you with
information to help to make your first encounter with the ICON/UXV operating system
understandable and to lay the groundwork for future computing sessions. Since the best
way to learn about the ICON/UXV operating system is to use it, this chapter helps to get
you started by providing examples of how to use these rules and guidelines to establish
contact with the ICON/UXV operating system and to respond to its requests and prompts.

For your convenience, an outline of a terminal display screen is ased to set off examples of
interactions between you and the ICON/UXV operating system. These examples apply
regardless of the type of terminal you use. Inside the screen, what the ICON/UXV
operating system prompts and its responses are printed in ttalic. The commands you type
in response to the system prompts and your other input and data are printed in boldface
type. These include the commands you type that do not appear on the screen (such as, a
carriage return), which are enclosed in angle brackets < >. The following screen
summarizes these conventions.

ttalicICON/UXV system. prompts and

responses)
bold(Your commands)
<>(Your commands or parts

of commands that do not
appear on the screen)

Without further ado, let’s begin.
ICON/UXV USER GUIDE 2-1

BASICS FOR ICON/UXV USERS

To establish contact with the ICON/UXV operating system, you need:

e A terminal,

e An identification name, called a login name, by which the ICON/UXV operating
system recognizes you as one of its authorized users,

e A password with which the ICON/UXV operating system double-checks and verifies
your identity after you log in and before it allows you to use its resources, and

e The telephone number to the ICON/UXV operating system to which your login name
is assigned if your terminal is not directly connected or wired to the computer.

ABOUT THE TERMINAL

A terminal is an input/output device: through it you input a request to the ICON/UXV
operating system and the system, in turn, outputs a response to you. The terminal is
equipped with a keyboard, a monitor or display unit (much like the screen on a television
set), a control unit, and a link that allows it to communicate with the computer (Figure 2-

1).

Figure 2-1. Video display terminal (DT1200®);

These terminals differ in how they monitor or display input/output. The video display
terminal uses a display screen, whereas the printing terminal uses continuously fed paper.

Trademark of ICON International

2-2 ICON INTERNATIONAL

ABOUT THE TERMINAL

Required Terminal Settings

Regardless of the type of terminal you use, you must set it up or configure it in a certain
way to insure proper communication with the ICON/UXV operating system.

If you have not set terminal options before, you might feel more comfortable seeking help
from someone who has. Or you can, of course, be adventurous.

How you configure a terminal depends on the type of terminal that you are using. Some
terminals are configured with switches, whereas other terminals are configured directly
from the keyboard using a set of function keys. To determine how to configure your
terminal, consult the owner’s manual provided by the manufacturer.

Following is a list of configuration checks to be performed on any terminal before
attempting to establish contact with the ICON/UXV operating system.

Turn on the power.

e Set the terminal to ON-LINE or REMOTE operation. This setting insures that the
terminal is under direct control of the computer. .

e Set the terminal to FULL DUPLEX mode. The full duplex mode insures two-way
communication or input/output between you and the ICON/UXV operating system.

o If your terminal is not directly connected or hard wired to the computer, make sure

the acoustic coupler or data phone set you are using is set to the FULL DUPLEX
mode.

o Set character generation to LOWERCASE. If the terminal, however, generates only
uppercase letters, the ICON/UXV operating system will accommodate it by printing
everything that transpires during the computing session in uppercase letters.

e Set the terminal to NO PARITY.

o Set the speed or rate at which the computer communicates with the terminal. This
rate of communication is called the baud rate. Typical terminal speeds are 30 and 120
characters per second or 300 and 1,200 baud, respectively. Occasionally, speeds such
as 240, 480, and 960 characters per second or 2,400, 4,800, and 9,600 baud,
respectively, are available.

Keyboard Characteristics

If you have seen or had some experience with a typewriter, the keyboard shown in
Figure 2-2 should look somewhat familiar.

ICON/UXV USER GUIDE 2-3

BASICS FOR ICON/UXV USERS

:
%
U

O
O
O

LOuE
@
)

B0
EeEE
'0)
EOEA O
@] 2] BB
o000

b/

L)l

Figure 2-2. Example of keyboard layout (DT1200)

Its keys correspond to:
o Letters of the English alphabet a through z and A through Z when you are holding
down a shift key,
« Numeric characters O through 9,
N
« A variety of symbols, such as ' @#$% “ & ()-—+=~ {}[] \:;"'<>,?/

« Words, such as RETURN and BREAK, and abbreviations, such as DEL (delete), CTRL
(control), and ESC (escape).

ICON INTERNATIONAL

AN

ABOUT THE TERMINAL

Many of the keys corresponding to symbols, words, and abbreviations have been added to

the keyboard layout and the placement of these characters or symbols on a keyboard may
vary from terminal to terminal.

Consequently, there is not a truly standard layout for terminal keyboard characters.
There is, however, a standard set of characters that keyboards hade, consisting of 128
characters, called the ASCII character set. ASCII is pronounced " as kee" and is the
abbreviation for American Standard Code for Information Interchange. When you depress
a key or combination of keys, the appropriate ASCII code is sent to the computer for
translation from the alphabetic and numeric characters that we understand to electronic
signals that the computer can decode.

Typing Conventions

To interact effectively with the ICON/UXV system, you should be familiar with certain
typing conventions. An example of a ICON/UXV typing convention is using lowercase
letters when you issue commands. Other typing conventions require that you use specific
characters to erase letters and delete lines, or combinations of characters to stop the
ICON/UXV from printing output on your terminal monitor temporarily.

The next few pages introduce you to these conventions. Table 2-1 lists these special
characters, keystrokes, and their meanings for your quick reference.

Responding to the Command Prompt

The standard ICON/UXV operating system command prompt is the dollar sign, $. When the $
appears on your terminal monitor, it means that ICON/UXV is waiting for you to tell it to do
something. Your response to the $ prompt is to issue commands followed by depressmg the carriage
return key, designated as <CR> throughout this guide.

The $ is the default value for the command prompt. Chapter 7 explains how to change the default
value to another prompt.

Correcting Typing Errors

You can correct typing errors in two ways providing you have not pressed <CR>. The # symbol
allows you to erase previously typed characters on a line, and the @ sign allows you to delete the

line on which you are working. The # and the @ characters are default values for character and
line deletion, respectively.

Pressing the # key erases the character previously typed, whereas repetitive use of the # sign erases
any number of characters back to the beginning of the line, but not beyond that. For example,
typing

helo#lo

on your terminal keyboard is interpreted by the ICON/UXV operating system as "hello” correctly
typed.

ICON/UXV USER GUIDE 2-5

BASICS FOR ICON/UXYV USERS

TABLE 2-1
ICON/UXV Typing Conventions

Key(s) Meaning

$ System’s command prompt (your cue to respond)

Erase a character

@ Erase or kill an entire line

BREAK* Stop execution of a program or command

DEL* Delete or kill the current command line

ESC* Use with another character to perform specific
function (called escape sequence)

OR

Use to indicate end of create mode when using
screen editor (vi)

RETURN* End a line of typing; designated as <CR>

Control d* Stop input to system or log off; designated as
<*d>

Control h* Backspace for terminals without a backspace key;
designated as <“h>

Control i* Horizontal tab for terminals without a tab key;
designated as <“*i>

Control s* Temporarily stops output from printing on screen;
designated as <"s> »

Control q* Resumes printing after typing <“s>; designated as

<“q>

NOTE: All control characters are sent by holding down the control key and pressing the appropriate letter.

* Nonprinting characters.

To delete the entire line on which you are working, press the @ key. When you do, the ICON/UXV

system moves you to the beginning of the next line.

If you want to use the # or the @ characters literally, that is, you would like a file to contain the

line

2-6

ICON INTERNATIONAL

ABOUT THE TERMINAL

Only one # appears on this sheet of music.

or

1 purchased three books @ $15.75 per book.

you would have to press the backslash (\) key before pressing the # key. Otherwise, the # would
erase the space after the word "one” and the line would print as

Only one appears on this sheet of music.

If you press the @ key without first pressing the \ key while typing the second example, the @
would erase the entire line. On the other hand, the leading \ removes the special meaning attached
to characters like # and @ so that they can be understood literally by the computer.

Typing Speed

After the $ appears on your terminal monitor you can type as fast as you want, even during periods
when the ICON/UXV system is responding to or executing a command. The printout on your
terminal monitor will appear garbled because your input is intermixed with the system’s output.
The ICON/UXV system, however, has what is referred to as read-ahead capability, which allows it
to separate input from output and to respond to your command properly.

With read-ahead capability, the ICON/UXV system stores your next request while the system is
outputting information on your terminal monitor in response to a previous.request.

Stopping a Command

If you wish to stop the execution of a command, simply depress the BREAK or DEL key. In turn,
you will receive the $ prompt indicating that the ICON/UXV system terminated the running of the
program and is ready to accept your next command.

Using Control Characters

Locate the control key on your terminal keyboard. The key may be labeled CTRL or CONTROL
and is probably to the left of the A key or below the Z key. The control character is used in
combination with other keyboard characters to initiate a physical controlling action across a line of
typing, such as backspacing or tabbing. In addition, some control characters define ICON/UXV-
system-specific commands, such as temporarily halting output from printing on a terminal monitor.

Type a control character by holding down the CTRL key and depressing an appropriate alphabetic
key. Control characters do not print on the terminal when typed. In this book, control characters
are designated with a preceding carat (), such as <"s> for control s, to help identify them.

Let’s take a look at the capabilities of the control character combinations you will be using
regularly when working with the ICON/UXV system.

Temporarily Stopping Owntput. At times, you may wish to stop the ICON/UXV system
temporarily from printing output on your terminal monitor. This could surely be the case when
you wish to keep information from rolling off the screen monitor on a video display terminal. If you

ICON/UXV USER GUIDE 2-7

BASICS FOR ICON/UXV SYSTEM USERS
type <“s>, printing of output ceases; typing <" q> causes the printing to resume.

Terminating ¢ Computing Session. When you have completed a session with the ICON/UXV
operating system, you should type <“d>. This is the recommended way to log off the system and is
described in detail later in this chapter.

Additional Control Character Capabilities. The ICON/UXV system furnishes other control
character capabilities. For instance, if your terminal keyboard does not have a backspace key,
typing <“h> gives you a backspace. Typing <*i> gives you a tab key if your terminal is set
properly. (Refer to the section entitled Possible Problems When Logging In for information on how
to set the tab key.)

After you configure the terminal and survey its keyboard, you are ready to establish communication
with the ICON/UXV system if you have a login name.

OBTAINING A LOGIN NAME

Generally speaking, a log contains a record of information or data that notes a series of events or
measures progress or performance.

The ICON/UXV system procedure for logging in is based on this idea. When you attempt to
establish contact with the system, the ICON/UXV system verifies that you are an authorized user.
If you pass the system’s security checks, the ICON/UXV system allows you to log in. After you are
logged in, the system maintains a record of the resources you use, the way in which you use them,
and for how long. This log helps the people who manage and maintain the system by giving them
complete user and resource allocation information.

To receive a login name, set up a ICON/UXV system account through your local system
administrator or the person in charge of your ICON/UXV system installation. When the account is

approved you should receive notification of your login name and the telephone number of the system
to which your login is assigned.

Your login name is determined by local practices. Possible examples are your last name, your
nickname, or a ICON/UXV system account number. Typically, a login name is three to eight
characters in length. It can contain any combination of alphanumeric characters, as long as it
starts with a letter. It cannot, however, contain any symbols. According to these rules, the
following examples are legal ICON/UXV system login names: starship, mary2, and jmrs.

ESTABLISHING CONTACT WITH THE ICON/UXV SYSTEM

When you attempt to contact the ICON/UXV system, you will typically be using a terminal that is
directly wired to a computer or a terminal that communicates with the system via a telephone
connection.

If your terminal has a direct-wired connection, turn on the power and the message login should
appear on the upper left side of the screen monitor or paper display.

2-8 ICON INTERNATIONAL

(

\\

/

S

ESTABLISHING CONTACT WITH THE ICON/UXV SYSTEM

Login Procedure

When the connection is made and the ICON/UXV system prompts for your login name, type in your
login name and depress <CR>. In the following examples, starship is the login name.

login: starship<CR>

Remember to type in lowercase letters. If you use uppercase letters, the ICON/UXV system will
also use uppercase letters until you log out and log in again.

Password

After typing in your login name, the ICON/UXV system prompts you for your password. In a
typical session, you would simply type in your password followed by <CR>. For security reasons,
the ICON/UXV system will not print (echo) your password on the terminal monitor.

If both your login name and password are acceptable to the ICON/UXV system, the system prints
newsworthy messages for users. These items might include details about a new system tool or
furnish a schedule for system maintenance. The news items are followed by the ICON/UXV system
command prompt, which is the $ symbol.

Your terminal monitor should look something like the one that follows when you complete the login
sequence successfully:

login: starship<CR>
password:

ICON/UXV system news
$

If you made a typing mistake that you did not correct before depressing <CR>, the ICON/UXV
system displays the message login fncorrect on your terminal monitor and asks you to try again by
printing the login prompt. It is also possible that your communication link with the ICON/UXV
system might be dropped in which case you would have to try to log in again.

ICON/UXV USER GUIDE 2-9

BASICS FOR ICON/UXV SYSTEM USERS

/’

login: ttarship<CR>
password:

login tneorrect

login:

If you have never logged into the ICON/UXV system, your login procedure will differ somewhat
from the typical one just described. This is because as a first-time user you were probably assigned

a temporary password when your system account was set up and the system will not allow you to
access its resources until you choose a new one.

This extra step maintains a security requirement, which is that you choose a password for your

exclusive use. Protection of system resources and your personal files depends on you keeping the
password you select private.

The actual procedure you will follow is determined according to administration procedures at your
computer installation site. A typical example of what you might be expected to do if you have a
new ICON/UXV system account and you are logging in for the first time follows.

©

The ICON/UXV system displays the login prompt when you establish contact with it. You
should type in your login name followed by <CR>.

When the ICON/UXYV system prints the password prompt, you should type in your temporary
password and depress <CR>.

At this point, the system tells you the temporary password has expired and that it is time to
select a new one.

The ICON/UXV system asks you to input the old password again. Type in your temporary
password.

The system prompts you to input your new password. Type in the password you choose.

The password you select is usually six to eight characters in length and contains at least one
numeric character. In addition, you can also use special characters. Examples of valid
passwords are: mar84ch, JonathOn, and BRAVSS.

The ICON/UXV system you are using may have different requirements to consider when
choosing a password. Ask another system user or contact the system administrator if you are
not sure of the specifics.

For verification, the system requests that you re-enter your new password. Type in the new
password once again.

This is a valuable check for you and the ICON/UXV system since a password is not printed on
the terminal monitor.

2-10 ICON INTERNATIONAL

a

&

ESTABLISHING CONTACT WITH THE ICON/UXV SYSTEM

7. If you do not re-enter the new password exactly as you typed it the first time, the system tells
you that the passwords do not match and asks you to try the procedure again. On some
systems, however, the communication link may be dropped if you do not re-enter the password

exactly as you typed it the first time. If this is the case, you must begin the login procedure
again.

When the passwords match, the system displays the $ command prompt.

The following screen summarizes this procedure for first-time ICON/UXV system users.

login: starship <CR>
password: <CR>
Your password has ezpired.
Choose a new one.

Old password: <CR>
New password: <CR>
Re-enter new password: <CR>
ICON/UXV system news

$

External Security Code

If you are able to access the ICON/UXV system from outside your computer installation site, you
may need additional information to establish contact with the ICON/UXV system, such as a special
telephone number or another security code. To determine if this feature is available to you, contact
your system administrator.

Possible Problems When Logging In

A terminal usually behaves predictably providing you have configured it properly. Sometimes,
however, it may act peculiarly. For example, each character you type may appear twice on the
terminal monitor or the carriage return may not work properly.

Some problems can be corrected by simply logging off the system and logging on again. If logging on
a second time does not remedy the problem, you should first check the following and try logging in
once again:

e Keyboard--Keys that are marked CAPS, LOCAL, BLOCK, and so on should not be enabled,
that is, in the locked position. You can usually disable these keys simply by depressing them.

e Data phone set or modem--If your terminal is connected to the computer via telephone lines,
verify that the baud rate and duplex settings are correctly specified.

o Switches-- Some terminals have several switches that must be set to be compatible with the

ICON/UXV system. If this is the case with the terminal you are using, make sure they are set
properly.

ICON/UXV USER GUIDE 2-11

BASICS FOR ICON/UXV SYSTEM USERS

Refer to the section Requtred Terminal Settings in this chapter if you need information to verify the
terminal configuration. If you need additional information about the keyboard, terminal, and data
phone or modem, check the owner’s manuals for the equipment.

Table 2-2 presents a list of procedures you can follow to detect, diagnose, and correct some problems
you may experience when trying to establish contact with the ICON/UXV system. If none of the
possibilities covered in the table helps you, contact the system administrator or the person in charge

of the ICON/UXYV installation at your location.

TABLE 2-2

Troubleshooting Problems When Logging in*

Problem?

Possible Cause

Action/Remedy

Stream of meaningless characters when
logging in

Input and output is printed in
uppercase letters

Input is printed in UPPERCASE letters,
output in LOWERCASE

Input is printed (echoed) twice

Tab key does not work properly
Communication link cannot be

established in spite of receiving high
pitched tone when dialing in

Communication link between terminal
and UNIX system is repeatedly
dropped on logging in

UNIX system attempting to
communicate at wrong speed

Terminal configuration includes
UPPERCASE setting

Key marked CAPS or CAPS LOCK is
locked or enabled

Terminal is set to HALF DUPLEX mode
Tabs are not set to advance to next

Terminal is set to LOCAL or OFF-LINE
mode

Terminal is set to LOCAL or OFF-LINE
mode

Depress RETURN or BREAK key

Log off, set character generation to
LOWERCASE, and log in again

Depress the CAPS or CAPS LOCK key
to disable setting

Change setting to FULL DUPLEX mode
Type stty -tabs}

Set terminal to ON-LINE operation and
try logging in again

Call system administrator

* Numerous problems can occur if your terminal is not configured properly. To eliminate these possibilities before attempting to log in,
perform the configuration checks listed on page 2-4.

t Some problems may be specific to your terminal, data set, or modem, check the owner’s manual for this equipment if suggested actions do

not remedy the problem.

$ Typing stty -tabs corrects tab setting only for your current computing session. To insure correct tab setting for all sessions, add the line

stty -tabs to your profile (see Chapter 7).

Simple Commands

When the $ command prompt is displayed on your monitor, you know that the ICON/UXV system
recognizes you as an authorized user. Your response to the $§ command prompt is to request
ICON/UXV system programs to run.

Type in the command date and press <CR> after the command prompt,.A When you do this, the
ICON/UXV system retrieves the date program and executes it. As a result, your terminal monitor
should look something like the following.

2-12 ICON INTERNATIONAL

ESTABLISHING CONTACT WITH THE ICON/UXV SYSTEM

$ date<CR>

Wed Oct 12 09:49:44 CDT 1988
$

As you can see, the ICON/UXV system prints the date and the time. In this example, the CDT

stands for Central Daylight Time. Your terminal monitor will display the appropriate time for your
geographical location.

Now type the command who and depress <CR>. Your screen will look something like this.

$ who<CR>

starship tty000ct 12 8:58
mary? tty02 Oct 12 8:56
acctl23 tty050ct 12 8:54
jmrs tty06 Oct 12 8:56

$

The who command lists the login names of everyone currently working on your system. The tty
designations refer to the names of the special files that correspond to the terminals on which you
and other users are currently working. The login date and time for each are also given.

Logging Off

When you have completed a session with the ICON/UXV system, you should type <~d> after the §
command prompt. (Remember that control characters such as the <*d> are typed by holding
down the control key and depressing the appropriate alphabetic key.) Since they are nonprinting
characters, they do not appear on the terminal monitor. In a few seconds, the ICON/UXV system
should display the login message again. This indicates you have logged off successfully and someone
else can log in at this time. Your terminal monitor should look like the one that follows.

ICON/UXV USER GUIDE 2-13

BASICS FOR ICON/UXV SYSTEM USERS

$ < d>
login:

It is strongly recommended that you log off the system using <“d> before turning off the terminal
or hanging up the phone. It is the only way to assure you have been logged off the ICON/UXV
system.

2-14 ICON INTERNATIONAL

Chapter 3

USING THE FILE SYSTEM

PAGE

INTRODUCTION 3-1
HOW THE FILE SYSTEM IS STRUCTURED 3-3
YOUR PLACE IN THE FILE SYSTEM STRUCTURE 3-4
Your Home Directory 3-4

Your Working Directory 3-4

Path Names 3-7

Full Path Names 3-7

Relative Path Names 3-8
ORGANIZING A DIRECTORY STRUCTURE 3-11
Creating Directories (mkdir) 3-12
Listing the Contents of a Directory (ls) 3-14
Frequently Used /s Options 3-16

Changing Your Working Directory (cd) . 3-19
Removing Directories (rmdir) 3-21
ACCESSING AND MANIPULATING FILES 3-22
Basic Commands 3-23
Displaying a File’s Contents (cat, pg, pr) 3-23

Requesting a Paper Copy of a File (lp) 3-30

Making a Duplicate Copy of a File {cp) . 3-32

Moving and Renaming a File (mvj...... veenneees 3-34

Removing a File (rm) resenees . 3-36

Counting Lines, Words, and Characters in a File (wc).. 3-37

Protecting Your Files (chmod) 3-40

Advanced Commands 3-44
Identifying Differences Between Files (diff) 3-44

Searching a File for 3 Pattern [grep)iccccciceseeccseeeecsesenccenccsesisernassestsansonescssossrsnsssnassaces 3-46

Sorting and Merging Files (sort) 3-48

SUMMARY .ocireiteesnscessacssssesasssassassesssssssssssesessssssesssssssssssessssssesssssssssssesssssesssnssssssssssessssassnsassssssssssasssssssssssases 3-50

7

//\
\
A

Chapter 3
USING THE FILE SYSTEM

INTRODUCTION

To use the file system effectively you must be familiar with its structure, know something
about your relationship to this structure, and understand how the relationship changes as

you move around within it. Reading this chapter serves as preparation to use this file
system.

The first ten or so pages should help to give you a working perspective of the file system.
These pages contain information on the makeup of the file system and on how you fit into
its organization. The remainder of the chapter introduces you to a number of ICON/UXV
commands. Some you can use to build your own directory structure, whereas others allow
you to access and manipulate the subdirectories and files you organize within it. And
others still allow you to examine the contents of other directories in the system that you
have permission to look at or to use.

Each command is discussed in a separate subsection in a way that will allow you to use it
effectively. Many of the commands presented in this section have additional, sophisticated
uses; these, however, are left for more experienced users and are described in other
ICON/UXV documentation. You can choose to read these sections in the order in which
they are presented in the text or you can opt to read about the commands and their
capabilities in the order that best suits your interests and purpose. Nevertheless, all the
commands presented are basic to using the file system efficiently and easily. It is
recommended that you read through them thoroughly and then try them out. Before

viewing how the file system is structured, however, let’s take a look at the structure of a
command.

For the ICON /UXV operating system to understand your intentions when using commands,
you must take care to see that you input commands using the correct format, called the
command line syntax. The command line syntax provides a procedure for ordering
elements in a command line. It serves the same purpose as putting words in a certain
sequence or order so that you can meaningfully express your ideas and thoughts to others.
Without sentence structure, people would have difficulty interpreting what you mean.

Similarly, without command line syntax, the ICON/UXV shell cannot interpret your
request.

Command line syntax consists of one or more of the following elements separated by a
blank or blanks and followed by pressing the carriage return <CR> key:

command option(s) argument(s)

where

command is the name of the program you wish to run,

ICON/UXV USER GUIDE 3-1

USING THE FILE SYSTEM

option modifies how the command runs, and

argument specifies data on which the command is to focus or operate (usually a S~
directory or file name).

A command line can simply contain a command name followed by <CR>, or it can list
options and/or arguments in addition to the command. If you specify options and
arguments on the command line, you must separate them with at least one blank. Blanks
can be typed by pressing the space bar or the tab key. If a blank is part of the argument
name, enclose the argument in double quotation marks, for example, "sample 1".

Some commands allow you to specify multiple options and/or arguments on a command
line. Consider the following command line:

Command '
Arguments

Options
AN—A
wc—1 —wilel file2 file3
In this example, we is the name of the command and two options —1 and —w have been
specified. (The ICON/UXV system usually allows you to group options such as these to

read —lw if you prefer.) In addition, three files-- filel, file2, and file3--are specified as
arguments. Although most options can be grouped together, arguments cannot.

The following examples show the proper sequence and spacing in command line syntax:

Incorrect Correct
wecfile we file
we—lfile we —] file
we —1 w file we —lw file
or
we =1 —w file
we filelfile2 we filel file2

You can refer back to the ground rules on command line syntax as you read and work
through the chapter.

3-2 ICON INTERNATIONAL

HOW THE FILE SYSTEM IS STRUCTURED

HOW THE FILE SYSTEM IS STRUCTURED

(N The file system is comprised of a set of directories, ordinary files, and special files. These

- components provide you with a way to organize, retrieve, and manage information
electronically. Chapter 1 introduced you to directories and files, but let’s review what they
are before learning how to use them to tap the resources of the file system.

In general, a directory is a collection of files and other directories. Specifically, it contains
the names of these files and directories. You can build a directory to organize the files you
create on the basis of some similarity. An ordinary file is a collection of characters that is
stored on a disk. Such a file may contain text for a status report you type or code for a
program you write. Any information you wish to save must be written into a file. And a
special file represents a physical device, such as your terminal.

The set of all the directories and files is organized into a treelike structure. Figure $8-1
helps you to visualize this. It shows a single directory called root as the source of a sample
file structure. By descending the branches that extend from root, several other major
system directories can be reached. By branching down from these, you can, in turn, reach
all the directories and files in the file system. In this hierarchy, files and directories that
are subordinate to a directory have what is called a parent/child relationship. This type of
relationship is possible for many generations of files and directories, giving you the
capability to organize your files in a variety of ways.

f’(. (O = Directories
[J =Ordinary Files
Y = Special Files

A AVAVAROEIol0

Figure 3-1. Sample file system

C

ICON/UXV USER GUIDE 3-3

USING THE FILE SYSTEM

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

When you are interacting with the ICON /UXV system, you will be doing so from a location
in its file system structure. The ICON/UXV system automatically places you at a specific
point in its file system every time you log in. From that point, you can move through the
hierarchy to work in any of the directories and files you own and to access those belonging
to others that you have permission to use.

The following sections describe your place in relation to the file system structure and how
this relationship changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the ICON/UXV system positions you
at a specific point in its file system structure called your login or home directory. The login
name that was assigned to you when your ICON/UXV account was set up is usually the
name of this home directory. In fact, every user with an authorized login name has a
unique home directory in the file system.

The ICON/UXV system is able to keep track of all these home directories by maintaining
one or more system directories that organize them. For example, let’s say that the name of
one of these system directories is userl, and that it contains the home directories of the
login names starship, mary2, and jmrs. Figure 8-2 shows you how a system directory like

userl ranks in relation to the other important ICON/UXV directories you read about in
Chapter 1.

Within your home directory, you can create files and additional directories (sometimes
called subdirectories) to organize them, you can move and delete these files and directories,
and you can control who can access your files and directories. You have full responsibility
for everything you create in your home directory because you own it. Your home directory
is a vantage point from which to view all the files and directories it holds. It is also a point
from which to view the file system all the way up to root.

Your Working Directory

As long as you continue to work in your home directory, it is considered your current or
working directory. If you move to another directory, that directory becomes your new
working directory.

There is a ICON/UXV command called pwd, which stands for print working directory,
that you can use to verify the name of the directory in which you are currently working.
For example, if your login name is starship and you issue the pwd command in response to
the first $ prompt after logging in, the ICON/UXV system should respond as follows:

3-4 ICON INTERNATIONAL

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

QO = Directories
[J = Ordinary Files
V = Special Files

OEESOICIOCIOIONON

2OVAVAVSCIONCOOle

Fshnson display list @

outline | | table ||sanders

Figure 3-2. A directory that organizes home directories is equivalent
to directories like bin and tmp in the file system

ICON/UXV USER GUIDE 3-5

USING THE FILE SYSTEM

$ pwd<CR>
é userl/starship

The system reply indicates that your working directory is [userl/starship. Technically,
[user1/starship is the full or complete name of the working directory. The name of a
directory like /userl/starship or a file is also referred to as a path name.

Printing the complete or full path name of your working directory in response to a pwd
command is a courtesy that the ICON/UXV system extends to you. The full path name
indicates your exact position in terms of the file system structure.

We will analyze and trace this path name in the next few pages so you can start to move
around in the file system. For now, it is sufficient to say that what /userl/starship tells
you is that the root directory / (indicated by the leading slash in the line) contains the
directory userl, which in turn contains the current working directory, which is starship. All
other slashes in the path name are simply used to separate names of directories and files.

Remember, you are never more than issuing a pwd command away from determining
where you are in the file system. Issuing the pwd command will be especially helpful if you
try to read or copy a file and the ICON/UXV system tells you that the file you are trying

to access does not exist. You may be surprised to find that you are in a different directory
than you thought.

To provide you with a quick summary of what you can expect the pwd command to do, a
recap of how to use it follows.

3-8 ICON INTERNATIONAL

N

«

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

Command Recap

pwd - print full name of working directory

command options arguments
pwd none none
Description: pwd prints the full path name of the directory in

which you are currently working.

Remarks: If the system responds with messages, such as,
cannot open directory or read error tn directory,
there may be problems with the file system. Inform
the system administrator.

Path Names

Every file and directory in the ICON/UXV system is identified by a unique path name. The path
name tracks or indicates the location of the file or directory relative to the structure of the system.
In addition to identifying the location of a file or directory in the file system structure, a path name
provides directions to that file or directory. Knowing how to follow the directions the path name
gives is your key to moving around the directory structure successfully.

In the file system, there are two types of path names--full and relative. Let’s take a closer look at
both types.

Full Path Names

A full path name (sometimes called an absolute path name) gives you directions that take you from
the root directory down through a unique sequence of directories that leads to a particular directory
or file. You can use a full path name to reach any file or directory in the ICON/UXV system in
which you are working. A full path name always starts at the root of the file system and its leading
character is a / (slash). The final name in a full path name can be either a file name or a directory
name. All other names in the path must be directories.

To understand how a full path name is constructed and where it can lead you, let’s use the sample
file system (Figure $-£) and say that you are in the directory starship. If you issue the pwd

command, the system responds by printing the full path name of your working directory, which is
Juserl/starship.

We can analyze the elements of this path name using the following diagram.

ICON/UXV USER GUIDE 3-7

USING THE FILE SYSTEM

System
Directory Home
Root Directory
Delimiter
\user 15tarship
where:
/ (leading) = Root of the file system when it is the first character in the path name,
userl =

System directory one level below root in the hierarchy to which root points or
branches,

/ (subsequent) = Slash that separates or delimits the directory names, user! and starship, and

starship = Current working directory, which is also the home directory.

Now look at Figure 3-3, it traces the full path to /userl/starship through the sample file system we
are using.

Relative Path Names

A relative path name is the name of a file or directory that varies with relation to the directory in
which you are currently working. From your working directory, you can move "down" in the file
system structure to access files and directories you own or you can move "up" in the hierarchy
through generations of parent directories to the grandparent of all system directories, the root. A
relative path name begins with a directory or file name, with a . (dot), which is a shorthand
notation for the directory in which you are currently located, or a .. (dot dot), which is a shorthand
notation for the directory immediately above your current working directory in the file system

hierarchy. The .. (dot dot) is called the parent directory of the one in which you are currently
located, which is the current directory or . (dot).

For example, if you are in the home directory starship in the sample system and starship contains
directories named draft, letters, and bin and a file named mboz, the relative path name to any of

these is simply its name, be it draft, letters, bin, or mboz. Figure $-4 traces the relative path name
from starshtp to draft. ’

Now, let’s say the draft directory belonging to starship contains the files outltne and table. Then, the
relative path name from starship to the file outline is written as draft/outline.

Figure 8-5traces this relative path. Notice that the slash in this path name separates the directory
named draft from the file named outline. Here, the slash is a delimiter that indicates that outline is
subordinate to draft; that is, outline is a child of its parent, draft.

3-8 ICON INTERNATIONAL

—_—

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

QO = Directories
] =Ordinary Files
v = Special Files

OB OCICICIO0N0:
aavavay/eTlofioClolo

outline | | table ||sanders||johnson ||display || list @

Figure 3-3. Heavy bold lines trace the full path name
of the directory /userl/starship

Thus far, the discussion of relative path names covered how to specify names and directories of files
that belong to, or are children of, your current directory--in other words, to descend the system
hierarchy level by level until you reach your destination. You can also, however, ascend the levels
in the system structure or ascend and subsequently descend into other files and directories.

To ascend to the parent of your working directory, you can use the .. notation. This means that if
you are in the directory named draft in the sample file system, .. is the path name to starship, and
«/.. is the path name to starship’s parent directory userl. From draft, you could also trace a path
to the file sanders in the sample system by using the path name ../letters/sanders (.. brings you up
to starship, then down to letters, and finally sanders).

Keep in mind that you can always use a full path name in place of a relative one.

ICON/UXV USER GUIDE 3-9

USING THE FILE SYSTEM

O = Directories
[0 =Ordinary Files

list mbox

Figure 3-4. Relative path name for the draft directory is
traced with heavy bold lines

QO = Directories
D = Ordinary Files

list mbox

Figure 3-5. The relative path draft/outline is traced in bold lines

3-10 ICON INTERNATIONAL

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

In summary, some examples of full and relative path names would be:

Path Name Meaning

/ Full path name of the root directory for
the file system.

/bin Full path name of the bin directory
that contains most executable programs
and utilities.

[userl/starship/bin/tools Full path name of the directory called
tools belonging to the directory bin that
belongs to the directory starship
belonging to user! that belongs to root.

bin/tools Relative path name to the file or
directory tools in the directory bin. If
the current directory is /, then the
ICON/UXV system searches for
/bin/tools. But, if the current directory
is starship, then the system searches the
full path /user1/starship/bin/tools.

tools Relative path name of a file or
directory tools in the working directory.

Knowing how to follow path names, such as in these examples, and move about in the file system is
a skill tantamount to being able to read and follow a map when you are traveling in a new or
unfamiliar place.

It might take some practice to move around in the file system with confidence. But this is to be
expected when learning a new concept and the techniques to use it.

To give you a chance to try your hand at moving about in the system’s structure, the remainder of
the chapter introduces you to the ICON/UXV commands that make it possible for you to peruse the
file system. If you lose track of where you are in the system’s structure, use the pwd command to
1dentify your location.

ORGANIZING A DIRECTORY STRUCTURE

This section introduces you to four ICON/UXV commands that make it possible for you to organize
and use a directory structure. These commands and what you can expect them to do are as follows:

mkdir -- Allows you to create or make new directories and subdirectories within your current
directory,

ICON/UXV USER GUIDE 3-11

USING THE FILE SYSTEM

Is - Allows you to list the names of all the subdirectories and files in a directory,

cd — Provides you with the ability to change your location from one directory to another
in the file system, and ’

rmdir -- Lets you remove a directory when you no longer have a need for it.

All of the commands can be used with path names--full or relative-- when organizing a directory
structure and when moving to the directories and subdirectories you organize, as well as when
navigating to directories in the file system that belong to others that you have permission to access.
Two of the commands--1s and ed--can also be used without a path name.

Each of the commands is described more fully in the four sections that follow. In addition, a
summary called a command recap is given for each command. The command recaps allow you to
review quickly the command line syntax and the capabilities of each command.

Creating Directories (mkdir)

It is recommended that you create subdirectories in your home directory according to some logical
and meaningful scheme to help you retrieve information you will keep in files. A convenient way to
organize your files is to put all files pertaining to one subject together in a directory.

To create a directory, the ICON/UXV system provides you with the mkdir command, which stands
for make directory. In the sample file system, the draft subdirectory in the home directory starship,
for example, may have been built by inputting the following while located in starship:

$ mkdir draft<CR>
$

The $ response to the mkdir command indicates that a directory named draft was successfully
created. :

Similarly, the other subdirectories named letters and bin were created with the same command, as
indicated in the following screen:

$ mkdir letters<CR>
$ mkdir bin<CR>
$

3-12 ICON INTERNATIONAL

ORGANIZING A DIRECTORY STRUCTURE

All the subdirectories (draft, letters, bin) could have been created in one command with the same
(- - results, as the following screen shows:

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional directories if necessary and
reasonable. When you build directories, or create files for that matter, you can name them
anything you wish as long as you keep in mind the guidelines presented in the following list.

The name of a directory (or file) can be from one to fourteen characters in length.

All characters other than / are legal.

e Some characters are best avoided, such as a blank or space, a tab, or a backspace, and the
following:
AN

@#$ " &*() [I\N 1} s5°"<>

- If you use a blank or tab in a directory or file name, you must enclose the name in quotation
[(marks on the command line.

¢ Avoid using the +, — or . as the first character in names.

e Uppercase and lowercase characters are distinct to the ICON/UXV system. For example, the
directory or file named draft would not be the same as the directory or file named DRAFT.

Examples of legal directory or file names would be:

memo MEMO section?2 ref:list
file.c chap3+4 item1-10 outline

See the command recap that follows for a quick reference to mkdir’s capabilities.

Command Recap
mkdir - make a new directory

command options arguments
mkdir none directoryname(s)
Description: mkdir creates a new directory (subdirectory).
Remarks: The system returns the $ prompt if the directory is
(ﬁ\ successfully created.

ICON/UXV USER GUIDE 3-13

USING THE FILE SYSTEM

Listing the Contents of a Directory (ls)

All directories in the file system have information about the files and directories they contain, such
as name, size, and the date last modified. You can obtain this information about what your
working directory and other system directories contain by using the Is command.

The 1s command, which stands for list, lists the names of the files and subdirectories of the directory
you specify by path name. If you do not specify a path name, ls lists the names of files and
directories in your working directory. To demonstrate how the Is command works, let’s use the
sample file system (Figure $-2) once again.

You are logged into the ICON/UXV system and the shell responds to your pwd command with the
line /userl/starship. To display the names of files and directories in the working directory, you
would type Is<CR>. After this sequence, your terminal should read:

$ pwd<CR>

$ /userl/starship
$ Is<CR>

bin

draft

letters

lust

mboz

$

As you can see, the system responds by listing the names of files and directories in the working
directory starship in alphabetical order. If the first character of any of the file or directory names
was a number, or a capital letter, it would have been printed first.

Now, if you want to print the names of files and subdirectories in a directory other than your

working directory without moving from your working directory, you should use the command
format:

Is directoryname<CR>

where the directory name is the full or relative path name of the desired directory. This means that
you can print the contents of draft while you are working in starship by inputting Is draft<CR>.

3-14 ICON INTERNATIONAL

ORGANIZING A DIRECTORY STRUCTURE

$ Is draft<CR>
outline

table

$

In the example, draft is a relative path name from starship to draft. By the same token, you could
print the contents of the user! directory, which is the parent of the starship by typing:

$Is ..<CR>
jmrs

mary?2
starship

$

where .. is the relative path name from starship to userl. You could also list the contents of userl

by typing ls /user1<CR> (since fuserl is the full path name from root to userl) and get the
identical listing.

Similarly, you can list the contents of any system directory that you have permission to access using
the Is command and a full or relative path name.

The Is command is particularly useful if you have a long list of files and you are trying to determine
whether one of them exists in your working directory. For example, if you are in the directory draft
and you wish to determine if the files named outline and notes are there, you can use the ls
command as follows:

$ Is outline notes<CR>
outline
notes not found

$

The output on the terminal monitor shows that the system acknowledges the existence of outline by
printing its name, but says that the file notes is not found.

ICON/UXV USER GUIDE 3-15

USING THE FILE SYSTEM

By the way, the Is command will not print the contents of a file. If you wish to see what a file

contains, you can use the cat, pg, or pr command, which are described in the section of this
chapter entitled Accessing and Manipulating Files.

Frequently Used Ils Options

The Is command also accepts options that cause specific attributes of a file or subdirectory to be
listed. There are more than a dozen available options for the ls commands. Of these, the —a and
—1 will probably be most valuable in your basic use of the ICON/UXV system. Refer to the
ICON/UXV User Reference Manual for information and details on the other options.

Listing All Names in a File. Some important file names in your home directory begin with a .
(dot), such as .profile, . (the current directory), and .. (the parent directory). The ls command
will not print these names unless you use the —a option in the command line. Thus, to list all files
in your working directory starship, including those that start with a . (dot), type Is —a<CR>.
The terminal should look something like this:

$ Is —a<CR>

.profile
bin
draft
letters
list
mboz

$

Listing Contents in Long Format. Probably the most informative Is option is —1. If you type
Is —I<CR> while in the starship directory, you would get the following:

3-16 ICON INTERNATIONAL

o/

ORGANIZING A DIRECTORY STRUCTURE

$ Is —-I<CR>

total 80

drwzr-zr-z 8 starship project 960ct 2708:16bin
drwzr-zr-z 2 starship project 64Nov 114:19draft
drwzr-zr-z 2 starship project 80Nov 808:41letters
- rwz------ 2 starship project 12801Nov 210:15list

- rWe------ 1 starship project 400ct 2710:00mboz
$

After the command line, the first line of output, total 80, shows the amount of memory used, which

is measured in chunks called blocks. Next is one line for each directory and file. The first character
in each of these lines tells you what kind of file is listed, where:

d = Directory,
— = Ordinary disk file,
b = Block special file, and

¢ = Character special file.

The next several characters, which are either letters or hyphens, describe who has permission to
read and use the file or directory. (Permissions are discussed with the chmod command in the
section entitled Accessing and Manipulating Files in this chapter.) The following number is the link
count, which in the case of a file, equals the number of directories it is in, or in the case of a
directory, also includes the number of directories immediately under it in the file system structure.
Next is the login name of the owner of the file, which is starship, and then the group name of the file
or directory, which is project. The following number indicates the length of the file or directory
entry measured in units of information (or memory) called bytes. Then there is the month, day, and
time that the file was last modified. Finally, the file or directory name is given.

Figure 8-6 sums up what you get when you list the contents of a directory in long format.

O

ICON/UXV USER GUIDE 3-17

USING THE FILE SYSTEM

Number of Owner
blocks used name
Number of
Number Group characters

of links name . / Name
| | !

total‘.'S’O
rwzr-zr-z 8 stership project 96 Oct 27 08:16 bin
File o |d|rwar-zr-z 2 starship project 64 Nov 1 14:19 draft
type rwzr-zr-z 2 starship project 80 Nov 8 08:41 letters
rWE------ 2 starship project 12801 Nov 2 10:15 list
FW-n-mnnn 1 starship project 40 Oct 27 10:00 mbox

! !

Time/date last
Permissions modified

Figure 3-8. Description of output produced by the ls —1 command

Command Summary. Following is a recap of capabilities provided by the ls command and two
available options. See the ICON/UXV User Reference Manual for information on other available
options.

3-18 ICON INTERNATIONAL

N

ORGANIZING A DIRECTORY STRUCTURE

Command Recap

Is - list contents of a directory

command options arguments
Is —a, —l, and others* directoryname(s)
Description: Is lists the names of the files and subdirectories in

the specified directories. If no directory name is
given as an argument, the contents of your
working directory are listed.

Options: —a Lists all entries, including those beginning with
. (dot).

—1 Lists contents of a directory in long format
furnishing mode, permissions, size in bytes, and
time of last modification.

Remarks: If you want to read the contents of a file, use the
cat command.

* See the JCON/UXV User Reference Manual for all available options and an explanation of their capabilities.

Changing Your Working Directory (cd)

When you first log into the ICON/UXV system, you are placed in your home directory, which
becomes your current or working directory. You may, however, wish to work in a different directory
for any number of reasons. For example, you might want to create a file in a specific directory, you
may need to make corrections to a file in another directory, or you may wish to obtain information
by reading a file in a different directory.

Whatever the reason, the ICON/UXV system provides you with the ed command that allows you to
move around in its directory structure. When you use the e¢d command to move to a new directory,
that directory becomes your working directory.

To use the ed command, enter the command:

c¢d newdirectory-pathname<CR>

where the path name, whether full or relative, to the new directory is optional. Any valid path
name of a directory can be used as an argument to the ed command. If you use the ed command
without specifying a path name, it will move you to your login directory regardless of where you are
in the file system.

When you specify a valid directory path name on the command line, the ICON/UXV system moves
you to that directory. For example, to move from the starship directory to the child directory draft
in the sample file system, type ed draft<CR>. In this example, draft is the relative path name to
the desired directory. When you get the $ prompt, verify your new location by typing pwd<CR>.
Your terminal monitor should look something like the following after going through this sequence:

ICON/UXV USER GUIDE 3-19

USING THE FILE SYSTEM

$ cd draft<CR>

$ pwd<CR>
[userl/starship/draft
$

Now that you are in the draft directory you can access the files and directories in it, in this case, the
files outline and table. You can also create subdirectories in draft with mkdir and additional files
with the ed and vi commands. (See Chapter 4 for general information on the ed and vi commands
and Chapter 5 and Chapter 6 for tutorials on using the ed and vi commands, respectively.)

You may also use full path names with the ed command. For example, to move to the letters
directory from the draft directory, you could use the command

cd /userl/starship/letters<CR>

where /userl/starship/letters is the full path name to letters.

Or, since letters and draft are both children of starship, you could use the ed command with the

relative path name ../letters. The .. notation moves you to the directory starship, and the
remainder of the path name moves you to letters.

If you wish to return to your home directory after perusing the file system, simply type ecd<CR>.
The e¢d command with no arguments returns you to your login directory.

3-20 ICON INTERNATIONAL

.

ORGANIZING A DIRECTORY STRUCTURE

Command Recap

cd - change your working directory

command options arguments
cd none directoryname
_Description: cd changes your position in the file system from
the current directory to the directory specified. If
no directory name is given as an argument, the cd
command places you in your home directory.
Remarks: When the shell places you in the directory

specified, the $ prompt is returned to you. You will
also receive a $ prompt when you issue the cd
command with no argument. To access a directory
that is not in your working directory, you must
substitute the full or relative path name in place of
a simple directory name.

Removing Directories (rmdir)

If you decide you no longer need a directory, you can remove it with the rmdir command. The
rmdir command, which stands for remove a directory, removes a directory if that directory does
not contain subdirectories and files, or, in other words, if the directory is empty.

If the directory you are attempting to remove is not empty, rmdir will not remove it unless you
remove the contents of the directory first. In addition, you are not allowed to remove directories
belonging to other system users unless you have permission to do so.

The standard format for the rmndir command is:

rmdir directoryname(s)<CR>

where one or more directory names can be specified.

If you were to attempt to remove the directory bin in the sample file system, the ICON/UXV system
would respond in the following manner:

ICON/UXV USER GUIDE

3-21

USING THE FILE SYSTEM

$ rmdir bin<CR>
rmdir: bin not empty

$

To remove the directory bin with the rmdir command, you would first have to remove the files
display and list and the subdirectory tools. If you wish to remove files, see the section entitled
Accessing and Manipulating Files in this chapter. To remove any subdirectories like tools, use the

rmdir command. The system will return the $ prompt in response to the rmdir command when
the directory specified in the command line is empty.

The command recap that follows summarizes how rmdir works.

Command Recap

rmdir - remove a directory

command options arguments
rmdir none directoryname(s)
Description: rmdir removes named directories if they do not

contain files and/or subdirectories.

Remarks: If the directory is empty, the system returns the $
prompt when the directory is removed. If the
directory contains files or subdirectories, the
message, rmdir: directory name not empty is
returned to you.

ACCESSING AND MANIPULATING FILES

This section introduces you to several ICON/UXV commands that access and manipulate files in the
file system structure. Information in this section is organized into two parts-- basic and advanced.
The part devoted to basic commands is fundamental to your using the file system; the advanced
commands offer you more sophisticated information processing techniques when working with files.
You may skip reading the advanced section if you do not need to use the commands it covers.

3-22 ICON INTERNATIONAL

A‘

ACCESSING AND MANIPULATING FILES

Basic Commands

This section discusses ICON/UXV commands that are important to your being able to access and
use the files in your directory structure. Specifically, these commands and their capabilities are:

cat -- Outputs the contents of a file you name,

pPg — Prints on a video display terminal the contents of a file you name in chunks or pages,
pr -- Prints on your terminal a partially formatted version of the file you name,

Ip - Allows you to request a paper copy of a file from a device called the line printer,

cp -- Makes a duplicate copy of an existing file,

mv -- Moves and renames a file,

rm -- Permanently removes a file when you no longer need it,

wc -- Counts the lines, words, and characters in a file, and

chmod --Changes permission modes for a file (and a directory).

Each command is covered in one of following sections. A command recap follows the discussion of
each command allowing you to review quickly the command line syntax and command capabilities.

Displaying a File’s Contents (cat, pg, pr)

The ICON/UXV system provides three commands that allow you to display and print the contents
of a file or files--cat, pg, and pr. The cat command, which stands for concatenate, outputs the
contents of files you specify by name on the command line, and displays the result on your terminal
unless you tell cat to direct the output to another file or a new command. The pg command is
particularly useful when you wish to read the contents of a lengthy file or a number of files because
the command displays the text of a file in chunks or pages, a screenful at a time at your direction
on a video display terminal. The pr command partially formats and outputs the files you specify on

your terminal unless you direct the output to a paper printing device (see the lp command in this
chapter).

The following three sections describe how to use these commands.

Concatenate and Print Contents of a File (cat). The cat command displays the contents of a file
or files. For example, if you are located in directory letters in the sample file system and you wish

to display the contents of the file johnson, you would type cat johnson<CR> and the following
output would appear on the terminal.

ICON/UXV USER GUIDE 3-23

USING THE FILE SYSTEM

$ cat johnson<CR>

This file contains a letter

to Mr. Johnson on the topic of
office automation.

$

As you can see, the contents of the file are displayed after the command line and are followed by
the $ prompt.

To display the contents of two (or more) files, like jokhnson and sanders, simply type
$ cat johnson sanders<CR> and the cat command reads johnson and sanders and displays
their contents in that order on your terminal.

$ cat johnson sanders<CR>
This file contains a letter

to Mr. Johnson on the topic of
office automation.

This file contains a letter

to Mrs. Sanders tnviting her to
speak at our departmental
meeting.

$

To direct the output of the cat command to another file or to a new command, see the section in
Chapter 7 that discusses redirecting input and output. :

The command recap that follows summarizes what you can expect the cat command to do.

3-24 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

Command Recap

cat - concatenate and print a file's contents

command options arguments
cat available* filename(s)
Description: cat reads the name of each file given on the
command line and displays the contents of the files.
Remarks: If the file(s) exist, the contents are displayed on the

terminal monitor; if not, the message cat: cannot
open filename is returned to you.

If you wish to display the contents of a directory,
use the 1s command.

* See the JCON/UXV User Reference Manual for all available options and an explanation of their capabilities.

Paging Through the Contenis of a File (pg). The pg command, short for page, allows you to
examine the contents of a file or files screenful by screenful on a video display terminal. The pg

command displays the text of a file in chunks or pages followed by a colon (:). After displaying the
colon, the system pauses and waits for your instructions to proceed. For example, your instructions
can request pg to continue displaying the file’s contents a page at a time or you can ask pg to
search through the file(s) to locate a specific character pattern. Table 3-1 summarizes some of the
instructions you can give pg after the colon is displayed.

ICON/UXV USER GUIDE

3-25

USING THE FILE SYSTEM

TABLE 3-1

Summary of Selected Commands for pg*

Commandt Meaning

h Help; display list of available pg commands

q or Q Quit pg perusal mode

<CR> Display next page of text

1 Display next line of text

d or “d Display additional half page of text

.or "l Redisplay current page of text

f Skip next page of text, and display following one

n Begin displaying next file you specified
on command line

P Display previous file specified on command line

$ Display last page of text in file currently displayed

/pattern/ Search forward in file for specified character
pattern

“pattern” Search backward in file for specified character
pattern

* See the JCONJ/UXV User Reference Manual for a detailed explanation of all available pg commands.

t Most commands can be typed with a number preceding them: +1 (display next page), —1 (display previous page), or
1 (display first page of text).

The pg command is especially useful when you wish to peruse a long file or a series of files because
the system pauses after displaying each page allowing you as much time as you need to examine it.
The size of the page displayed depends on the terminal you are using. For example, on a video
display terminal with a window capable of showing 24 lines, 23 lines of text and a line containing
the colon will be displayed as a page. However, if the file is less than 23 lines long, the page size
will be the number of lines in the file plus the line containing the colon.

To peruse the contents of a file with pg, use the following command line format:

pg filename(s)<CR>

For example, to display the contents of the file outline in the sample file system, type
pg outline<CR> and the first page of the file will appear on the screen. Since the file has more
lines in it than can be displayed in one page, the colon indicates there is more to be looked at when
you are ready. Pressing the <CR> key will print the next page of the file.

The following screen summarizes what has been done thus far.

3-26 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

$ pg outline<CR>

report, you must consider organizing

writing tt.

An outline s an effective method of
organizing the material.
ts a type of blueprint or skeleton,

a framework for you the butlder-writ

<LCR>

N

After you analyze the subject for your

arranging the material you wish to use in

The outline

of the report; in a sense it is a recipe

~

and

er

/

After pressing the <CR> key, the pg program
screen as follows:

will resume outputting the file’s contents on the

that contatns the names
to use them.
Your outline need not b

if need be, when additio

(EOF):

\

tngredients and the order in which

overly detailed; it s stmply a guide you
may consult as you write, to be varied,

tdeas are suggested in the actual writing.

of the

e elaborate or

nal fmportant

J

In addition to the remainder of the file’s contents, a line with the output (EOF): is displayed. The
EOF designates that you have reached the end of the file and the colon is your cue for the next

instruction.

When you have completed examining the file, you

ICON/UXV USER GUIDE

can type q or Q followed by pressing the <CR>

key and the $ prompt will appear on your screen. Or you can choose to use one of the other

3-27

USING THE FILE SYSTEM

available commands given in Table 8-1 depending on your needs.

In addition, there are a number of options that can be specified on the pg command line. Refer to
the ICON/UXYV User Reference Manual if you are interested in learning more about them.

The following command recap summarizes the highlights of pg’s capabilities.

Command Recap

pg - display a file’s contents in chunks or pages

command options arguments
PE available* filename(s)
Description: pg reads the name of each file given on the

command line and displays the contents of the
file(s) in chunks or pages, screenful by screenful.

Remarks: After displaying a screenful of text, the pg
command awaits your instruction to continue to
display text, to search for a pattern of characters,
or to exit the pg perusal mode. In addition, a
number of options are available for you to use with
pg on the command line. For example, you can
start to display the contents of file at a specific
line or at a line containing a certain sequence or
pattern or you can opt to go back and review text
that has already been displayed.

* See the ICON/UXV User Reference Manual for all available options and an explanation of their capabilities.

Print Partially Formatted Contents of a File (pr). The pr command is typically used to prepare
files for printing. You can expect the pr command to title, paginate, supply headings, and print a
file according to varying page lengths and widths on your terminal monitor unless you specify that
it prints on another output device, such as a line printer (read the discussion on the lp command in

this section), or you direct the printing to a different file (see the section on redirecting input and
output in Chapter 7).

If you choose not to specify any of the available options, the pr command produces output that is in
a single column with 66 lines per page and is preceded by a short heading. . The heading consists of
five lines--two blank lines; a line containing the date, time, file name, and page number; and two
more blank lines. And the formatted file is followed by five blank lines. (Complete sets of text
formatting tools, called nroff and troff, are available on ICON/UXV systems equipped with the

appropriate application software. Check with your system administrator to see if this software is
available to you.)

Typically, the pr command is used in tandem with the lp command to provide a paper copy of text
as it was entered into a file. (See the section discussing the Ip command for details.) However, you
can also use the pr command to format partially and print the contents of a file on your terminal.

3-28 ICON INTERNATIONAL

N

ACCESSING AND MANIPULATING FILES

For example, to review the contents of the file johnson in the sample file system, type in the
(command pr johnson<CR>. The following screen summarizes this activity.

$ pr johnson<CR>
Nov 29 09:19 1988 johnson Pagel
This file contains a letter

to Mr. Johnson on the topic of
office automation.

Note that the ellipses after the last line in the file stand for the remaining 58 lines (all blanks in

this case) that pr formatted into the output. If you are working on a videe display terminal, which

typically allows you to view about 24 lines at a time, the entire 66 lines ©f the formatted file will

, print continuously and rapidly to the end of file. This means that the first 41 lines will "roll"” off the
{ top of your screen making it impossible for you to read them unless you have the ability to "roll" or

"page" back a screen or two. If you are looking at a particularly long file, this feature might not
solve the problem.

In this case, you should use the control-s <”s8> combination to stop printing on your terminal
temporarily and control-q <~ q> to resume the printing.

The command recap that follows summarizes what you can expect the pr command to do.

ICON/UXV USER GUIDE 3-29

USING THE FILE SYSTEM

Command Recap

pr - print partially formatted contents of a file

command options arguments
pr available* filename(s)
Description: pr produces a partially formatted copy of a file(s)

on your terminal monitor unless otherwise
specified. The program prints the text of the file(s)
on 66-line pages and places five blank lines at the
bottom of each page and a five-line heading at the
top of each page. The heading consists of two
blank lines; a line containing the date, time, file
name and page number; and two additional blank
lines.

Remarks: If the specified file(s) exists, the contents are
partially formatted and displayed on the screen; if
not, the message pr: can’t open filename is returned
to you.

The pr command is most commonly used with the
Ip command when a paper copy of a file is needed.
However, when using the pr command to review a
file on a video display terminal, use <"“s> and
<"q> to temporarily stop and start printing the
file.

* See the JCON/ UXV User Reference Manual for all available options and an explanation of their capabilities.

Requesting a Paper Copy of a File (Ip)

At some point in time, you may want a paper copy of a file. Some terminals have built-in printers
that allow you to get paper copies of files. In this case you simply need to turn the printer on and
then use cat or pr to print the file. If, however, you wish to obtain a higher quality paper copy,
you should consider using the lp command. The lp command, which stands for line printer, allows
you to request a line-printing device to furnish you with a paper copy of a file or files.

The line printer or types of line printers that you have access to depends on what your UNIX
system facility has to offer. You should ask your system administrator for the names of the line

printers available to you. Or you can type lpstat —v<CR> to obtain a complete listing of every
accessible line-printing device.

The basic format for the command is:

Ip file<CR>

For example, to print the file letters on a line printer, you would type lp letters<CR> on the
command line. In turn, the system would provide you with the name of the device or type of device
on which the file will be printed and an identification (id) number indicating your request. The

3-30 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

following screen summarizes this activity.

(

$ Ip letters<CR>
Request id is laser-6885 1 file
$

The system response indicates that your job is to be printed on a laser line-printing device (the
system default), has a request id number of 6885, and is to include the printing of one file.

Using the —ddest (destination) option on the command line would cause your file to be printed on
another available device that you name in place of dest. Using the —m option would cause mail to
be sent to you indicating when the job is completed.

If you would like to cancel the request to lp to print the file letters, type cancel laser-8885<CR>,
where laser-6885 is the request id. The lpstat command gives the status and request id of the line
printer jobs.

A command recap follows that summarizes what you can expect of the Ip command.

(

ICON/UXV USER GUIDE 3-31

USING THE FILE SYSTEM

Command Recap

Ip - request paper copy of file from a line printer

command options arguments
Ip —d, —m, and others* file(s)
Description: Ip requests that specified files be printed by a line
printer, thus providing paper copies of the
contents.
Options: —ddest Allows you to choose dest as the printer or

type of printer that is to produce the
paper copy. If you do not use this option,
the lp program specifies the printer for
you.

—m Sends a message to you via mail after the
printing is complete.

Remarks: You can cancel a request to the line printer by
typing cancel and the request id furnished to you
by the system when the request was acknowledged.

Check with the system administrator for
information on additional and/or different
commands for printers that may be available at
your location.

* See the ICONJ/UXV User Reference Manual for all available options and an explanation of their capabilities.

Making a Duplicate Copy of a File (cp)

When using the ICON/UXV system, you may wish to make a copy of a file. For example, you might
want to revise a file while leaving the original version intact. The ICON/UXV system provides you
with the ep command, short for copy, which copies the complete contents of one file into another.
The cp command also allows you to copy one or more files from one directory into a different
directory while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample directory, simply type
cp outline new.outline<CR>. The system returns the $ prompt when the copy is made. To
verify the existence of the new file, you can type Is<CR>, which lists the names of all files and
directories in the current directory, in this case draft. The following screen summarizes the activity.

3-32 ICON INTERNATIONAL

_/
S

ACCESSING AND MANIPULATING FILES

$ cp outline new.outline<CR>
$ Is<CR>

new.outline

outline

table

$

You know from looking at the sample file system that the file new.outline did not exist before the e¢p
command to copy outline to new.outline was given. However, if it had, it would have been replaced
by a copy of the file outline and the previous version of new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in the same directory, the
system would have told you that the file names were identical and returned the $ prompt to you. If
you listed the contents of the directory to determine exactly how many copies of outline exist, the
terminal monitor would look something like the following:

$ cp outline outline<CR>

cp: outline and outline are tdentical
$ 1s<CR>

outline

table

$

As you can see, the ICON/UXV system does not allow you to have two files with the same name in
a directory. .

You could, however, copy the file named outline from the directory draft to another file named

outline in the directory named letters by using any of the following command lines assuming you are
currently in draft:

cp outline ../letters/outline<CR>

cp outline ../letters<CR>

cp outline /userl/starship/letters/outline<CR>
cp outline /userl/starship/letters<CR>

A copy of the file outline would reside in both directories draft and letters after using one of these
commands since each of them contains a legal path name to the file outline. From this example, you
can see that the ICON/UXV system allows you to have files with identical names as long as they

ICON/UXV USER GUIDE 3-33

USING THE FILE SYSTEM

are in different directories.

If you would like to copy the file outline in the directory draft to a file named outline.vers2 in the
directory letters, you could use either of the following command lines:

cp outline ../letters/outline.vers2<CR>
cp outline /userl/starship/letters/outline.vers2<CR>

Keep in mind the conventions for naming directories and files given in the section entitled Creating
Directories in this chapter.

The following recap summarizes how the ¢p command works.

Command Recap

cp - make a copy of a file

command options arguments
filel file2
cp none file(s) directory
Description: cp allows you to make a copy of filel and call it

file2 leaving filel intact, or to copy one or more
files into a different directory.

Remarks: When copying filel to file2 and file2 already exists,
the €p command will overwrite the first version of
file2 with a copy of filel calling it file2. The first
version of file2 is deleted.

You cannot copy directories with the ep command.

Moving and Renaming a File (mv)

The mv command allows you to rename a file in the same directory or to move a file from one
directory to another. If you move a file to a different directory, the file can be renamed or it can
retain its original name.

To rename a file in a directory, use the following command:

mv filel file2<CR>

The mv command changes a file’s name from filel to file2. Remember that the names filel and file2
can be any valid names, including path names.

3-34 ICON INTERNATIONAL

C

ACCESSING AND MANIPULATING FILES

For example, if you are in the directory draft in the sample file system and you would like to rename
the file table as new.table, simply type mv table new.table<CR>. You should receive the $
command prompt if the command executed successfully. To verify that the file new.table exists, you
can list the contents of the directory by typing Is<CR>. In turn, the terminal should read:

$ mv table new.table<CR>
$ Is<CR>

new.table
outline

$

You can also move a file from one directory to another keeping the file’s name the same or changing
it to a different one. To do so, use the following command line.

mv file(s) directory<CR>

where the file and directory names can be any valid names, including path names.

To move the file table from the current directory named draft (whose full path name is
Juserl/starship/draft) to a file with the same name in the directory letters (whose relative path

name from draft is ../letters and whose full path name is /userl/starship/letters), any one of several
command lines can be used, including the following:

mv table /userl/starship/letters<CR>

mv table /userl/starship/letters/table<CR>
mv table ../letters<CR>

mv table ../letters/table<CR>

mv /userl/starship/draft/table /userl/starship/letters/table<CR>

The file table could have been renamed table2 when moving it to the directory letters using any of
the following: :

mv table /userl/starship/letters/table2<CR>
mv table ../letters/table2<CR>

mv /[userl/starship/draft/table2 /userl/starship/letters/table2<CR>

You can verify that the command worked by listing the contents of the directory with the Is
command. '

Refer to the recap that follows for a summary of how the mv command works.

ICON/UXV USER GUIDE 3-35

USING THE FILE SYSTEM

Command Recap

mv - move or rename files

command options arguments
filel file2
mv none file(s) directory
Description: mv allows you to change the name of a file or to

move a file(s) into another directory.

Remarks: When changing the name of filel to file2 and file2
already exists, the mv command will overwrite the
first version of file2 with filel and rename it file2.
The first version of file2 is deleted.

Removing a File (rm)

When you no longer need a file, you can get rid of it by using the rm command, which is short for
remove.

To remove one or more files, use the format:

rm file(s)<CR>
After the command executes, the file(s) you specified are removed permanently.

To remove a file named new.outline in the current directory type rm new.outline<CR> and list

the contents of the directory with the ls command to verify that the file new.outline no longer
exists.

To remove more than one file, such as the files outline and table, type rm outline table<CR>
and list the contents of the directory by typing Is<CR>.

$ rm outline table<CR>
$ Is<CR>
$

The $ response indicates that the files named outline and table were removed permanently.

The following recap summarizes how the rm command works.

3-36 ICON INTERNATIONAL

(O

—
(\\

ACCESSING AND MANIPULATING FILES

Command Recap

rm - remove a file

command options arguments
rm available* file(s)
Description: rm allows you to remove one or more files.
Remarks: Files specified as arguments to the rm command

are removed permanently.

* See the ICON/UXV User Reference Manual for all available options and an explanation of their capabilities.

Counting Lines, Words, and Characters in a File (wc)

The we command, which stands for word eount, reports the number of lines, words, and characters
there are in a file that you specify by name on the command line. If you name more than one file,
the we program counts the number of lines, words, and characters in each specified file and then
totals the counts. In addition, you can direct the we program to give you only a line, a word, or a
character count by using the —I, —w, or —c¢ options, respectively.

To determine the number of lines, words, and characters in a file, use the following format on the
command line:

we filel<CR>

When you do, the system responds with a line in the format:

l w ¢ filel

where
{ = Number of lines in filel,
w = Number of words in filel, and

¢ = Number of characters in filel.

For example, to count the lines, words, and characters in the file johnson in the current directory
letters, type we johnson<CR>. The terminal monitor would show the following output:

ICON/UXV USER GUIDE 3-37

USING THE FILE SYSTEM

$ wc johnson<CR>
8 14 78 johnson
$

The system response displays the line count (8), the word count (14), and the character count (78)
for the file johnson.

To determine the number of lines, words, and characters in more than one file, use the following
format:

we filel file2<CR>

In turn, the system responds with the following format:

I w ¢ filel
I w ¢ file?
I w ¢ total

where line, word, and character counts are displayed for filel and file2 on separate lines and the
combined counts appear on the last line called total.

If you request that the we program count lines, words, and characters in the files johnson and
sanders in the current directory, the system would respond as follows:

$ wc johnson sanders<CR>
8 14 78 johnson
4 16 95 sanders
7 80 178 total

In this case, the first line of the system response shows the line, word, and character counts for the
file johnson. The second line of output gives line, word, and character counts for sanders. The last

line of output shows combined line, word, and character counts for both files in the line labeled
total.

If you prefer to get only a line, a word, or a character count, select the appropriate format from the
following lines:

3-38 ' ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

we -1 filel<CR> (line count)
o we -—w filel<CR> (word count)
) we —c filel<CR> (character count)

For instance, by typing we —l sanders<CR> on the command line you would obtain the
following output:

$ wc -1 sanders<CR>
4 sanders
$

The system tells you that the number of lines in the file sanders is 4 in answer to specifying —1. If
the —w or —c¢ option was specified for that file, the ICON/UXV system would have responded with
the number of words or number of characters, respectively, in the file.

The command recap that follows summarizes how the we command works.

Command Recap

wc - count lines, words, and characters in a file

(/ command options arguments
we -1, —w, —c file(s)
Description: we counts lines, words, and characters in the file(s)

named keeping a total count of all tallies when
more than one file is specified.

Options —1 Counts the number of lines in the specified
file(s).

—w Counts the number of words in the specified
file(s).

—c¢ Counts the number of characters in a specified
file(s).

Remarks: When a file name is specified in the command line,

it is printed with the count(s) requested.

ICON/UXV USER GUIDE 3-39

USING THE FILE SYSTEM

Protecting Your Files (chmod)

The chmod command, short for change mode, allows you to decide who can read, alter, and use
your files and who cannot. Because the ICON/UXV operating system is a multiuser system, you are
not working alone in the file system: you and other system users can follow path names and run

system commands to move to various directories and to read and use files belonging to one another
if you have permission to do so.

If you own a file, then you are able to determine who has the right to read that file, to make

changes to or write the file, and to run or execute the file if it is a program. These permissions are
defined as:

r = Allows system users to read a file or to copy its contents,
w = Allows system users to write changes into a file or copy of a file, and

z = Permits system users to run an executable file.

Specifically, you can determine who in the population of ICON/UXV users is entitled to these
various permissions and who is not according to the following classifications:

u = You, the user and login owner of your files and directories,

g = Members of the group to which you belong (the group could consist of team members
working on a project, members of a department, or a group arbitrarily designated
by the person who set up your ICON/UXV account), and

o = All other system users.

When you create a file or a directory, the system automatically grants or denies permission
specifically to you, members of your group, and other system users. You can alter this automatic
action to some extent by modifying your environment, which is discussed in Chapter 7. Regardless
of how the permissions are granted when a file is created, as the owner of the file or directory it is
up to you to allow current permissions to remain in effect or to change them to suit your purposes
and the situation. For example, you may wish to keep certain files private and for your use only.
Or you may wish to grant permission to read and to write changes into a file to members of your

group and all other system users as well. Or you may share a program with members of your group
by granting them permission to execute it.

How to Determine Ezisting Permissions. You can determine what permissions are currently in
effect on a file or a directory by using the command that produces a long listing of a directory’s
content, which is Is —1. For example, typing Is —I<CR> while in the directory named starship/bin
in the sample file system would produce the following output:

3-40 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

$ Is —I<CR>

total 85

- rwzrr-zr-z 1 starship project9846Nov 108:06display
- rwzr--1--1 1 starship project6428Dec £210:24list
drwz--z--2 2 starship project S82Nov 815:82tools
$

Permissions for the files display and list and the directory tools are shown on the left of the terminal
monitor under the line total 85, and look like:

FWXT-XT-X (file display)
IWX--X--X (file list)
IWX--X--X (directory tools)

These nine characters represent three groups of three characters. The first set of three characters
refers to your (or the user’s/owner’s) permissions, the second set to members of the group, the last
set to all other system users. Within each set of characters, the r, w, and z indicate the permission

currently enabled for the groups. If a dash appears instead of an r, w, or z, permission to read,
write, or execute is denied.

The following diagram summarizes this breakdown for the file named display.

User Group Others

[autun suten suten
rwXr-xXr-x

\ Permisston to write to
/ the file dented to

read group and other

write
ezecule

As you can see, the owner has r, w, and z permissions and members of the group and other system
users have r and z permissions.

ICON/UXV USER GUIDE 3-41

USING THE FILE SYSTEM

How to Change Ezisting Permissions. After you have determined what permissions are in effect,
you can change them using the following format:

chmod who + (or —) permission file(s)<CR>

where:

chmod = Name of program,

who = One of three user groups u, g, o:
u = User,
g = Group, and
o = Other.
+ — = Instruction that grants (+) or denies (—) permission.

permission = Authorization to r, w, or z:
r = Read,
w = Write, and
z = Execute.

file(s) = File (or directory) name(s) listed; assumed to be branches from your working
directory, unless you use full path (names).

This may sound a bit confusing. But, a few examples on how to use the chmod command should
help to make permission possibilities clear.

Let’s use the permissions for the file display to experiment with chmod. You can see from the
permissions that as the user and owner of display you can read, write, and run this executable file.
You can protect the file against accidentally changing it by denying yourself write (w) permission by
typing the command line chmod u—w display<CR>. After receiving the $ prompt, type in
Is —1<CR> to verify the permission has changed.

$ chmod u—w display<CR>

$ 1s —I<CR>

total 85

-r-Tr-Ir-I 1 starship project9846Nov 108:06display
-rwz--r--2 1 starship project6428Dec 210:24list
drwz--z--z 2 starship project 82Nov 815:32tools
$

From this output, you can see that you no longer have permission to write changes into the file, that
is, unless you change the mode back to include write permission.

Now, let’s consider another example. Notice that permission to write into the file display has been
denied to members of your group and other system users. These users, however, have read

3-42 ICON INTERNATIONAL

C

ACCESSING AND MANIPULATING FILES

permission, which means that any of these users can copy the file into their own directories and then
make changes to it. To prevent all system users from copying this file, you could deny them read
permission by typing chmod go—r display<CR>. The g and o stand for group members and all

other system users, respectively, and the —r denies them permission to read or copy the file. Check
the results with the Is —] command.

$ chmod go-r display<CR>

$ Is —I<CR>

total 85

-rwz--z--1 1 starship project9846Nov 108:06display
-rwz--z--T 1 starship project6428Dec 210:24list
drwz--z--z 2 starship project 82Nov 815:82to0ls
$

A Note on Permissions and Directories. If you read the preceding pages describing the chmod
command, you might have gathered that you can use this command to grant or deny permission for

directories as well as files. It is true, you can. To do so, simply use the directory name instead of a
file name on the command line.

The impact, however, of granting or denying permissions for directories to various system users is
worth considering. For example, if you grant read permission for a directory to yourself (u),
members of your group (g), and other system users (0), every user who has access to the system can
read the names of the files that directory contains by using the Is —l command. Similarly, granting
write permission allows the designated users to create new files in the directory and change and
remove existing ones. And granting permission to execute the directory allows the designated users
the ability to move to that directory (and make it their working directory) by using the cd
command.

An Alternate Method. The chmod method described in the preceding pages is one of two ways to
change permissions to read, write, and execute files and directories. The method previously

described uses symbols, such as r, w, z and u, g, o, to specify instructions to chmod. Hence, it is
called the symbolic method.

The alternate method uses a number system called octal that is different than the decimal number
system we typically use on a day-to-day basis. This method uses three octal numbers ranging from
0 through 7 to assign permissions. If you wish to use the octal method when changing permission,
see the description of chmod in the JCON/UXV User Reference Manual.

Summary. The command recap that follows provides a quick reference on how chmod works.

ICON/UXV USER GUIDE 3-43

USING THE FILE SYSTEM

Command Recap

chmod - change permission modes for files (and directories)

command tnstruction arguments
chmod who + — permission filename(s)
' directoryname(s)
Description: chmod gives (+) or removes (—) read, write, and

ezecule permissions for three types of system users:
user (you), group (members of your group), and
other (all other users able to access the system on
which you are working).

Remarks: The instruction set can be represented in either
octal or symbolic terms.

Advanced Commands

You will become more and more familiar with the file system as you use the commands thus far
discussed in this chapter. As this familiarity increases so might your need or interest for more
sophisticated information processing techniques when working with files. This section introduces you

to three commands that give you just that. These commands and their capabilities are listed as
follows:

diff -- Finds difference between two files,
grep -- Searches a file for a pattern, and

sort -- Sorts and merges files.

The following discussion only scratches the surface on information processing techniques available

with the ICON/UXV system. You may refer to the JCON/UXV User Reference Manual for
additional information.

Identifying Differences Between Files (d:iff)

The diff command locates all the differences between two files and proceeds to tell you how to
change the first file to be a carbon copy of the second. It reports all differences between the files.

The basic format for the command is:

diff filel file2<CR>
3-44 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

If filel and file2 are identical, the system returns the $ prompt to you. If not, the diff command
instructs you on how to bring the first file into agreement with the second by using line editor (ed)
commands. (See Chapter 5 for details on the line editor.) The ICON/UXV flags lines in file with
the < symbol and file2 with the > symbol.

For example, if you use the diff command to identify differences between the files johnson and
sanders, the system would respond as follows:

$ diff johnson sanders<CR>
2,8¢c2,4

< to Mr. Johnson on the topic of
< office automation.

> to Mrs. Sanders tnviting her to
> speak at your departmental

> meeting.

$

The first line of the system response is
2,8¢c2 4

which means lines 2 through 3 in the file johnson must be changed (designated by c¢) to lines 2

through 4 in the file sanders. The system then displays lines 2 through 3 in the file johnson as
follows:

< to Mr. Johnson on the topic of
< office automation.

and lines 2 through 4 in the file sanders

> to Mrs. Sanders tnviting her to
> speak at our departmental
> meeting.

If you make these changes (using the ed or the vi text editing program), the file johnson will be
identical to the file sanders. Remember, the diff command tells you exactly what the differences are
between the named files. If you simply want an identical copy of a file, use the ¢p command. Refer
to the recap that follows for a summary of what you can expect the diff command to do when no
options are specified. See the reference to the ICON/UXV User Reference Manual for details on
available options.

ICON/UXV USER GUIDE 3-45

USING THE FILE SYSTEM

Command Recap

P
diff - finds differences between two files \
S
command options arguments
diff available* filel file2
Description: diff reports what lines are different in two files and
what you must do to make the first file identical
with the second.
Remarks: Instructions on how to change a file to bring it into
agreement with another file are line editor (ed)
commands: a (append), ¢ (change), or d (delete).
Numbers given with e, ¢, or d indicate the lines to
be modified. Also used are the symbols <
(indicating a line from the first file) and >
(indicating a line from the second file).
* See the JCON/UXV User Reference Manual for all available options and an explanation of their capabilities.
Searching a File for a Pattern (grep)
You can request the ICON/UXV system to search through files for a specific word, phrase, or group
of characters by using the grep command. Technically, grep means globally search through a file
or files to locate a regular expression and print the lines that contain the regular expression. A
regular expression is the pattern of characters--be it a word, a phrase, or an equation--that you
stipulate. N
The basic format for the command line is:
grep pattern file(s)<CR>
Thus, to locate the line containing the word automation in the file johnson, you would type:
grep automation johnson<CR>
and the system would respond as follows:
$ grep automation johnson<CR>
office automation
$
The output gives you all the lines in the file johnson that contain the pattern for which you were
searching, which is the word automation. P
i\\ﬁ/

3-46 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

If the pattern contains multiple words or any characters that have a special meaning to the
ICON/UXV operating system, such as §, |, *, ?, and so on, the entire pattern must be enclosed in
single quotes. (For an explanation of the special meaning for these and other characters see the
section entitled Metacharacters in Chapter 7, Shell Tutorial.) For example, if you are interested in

locating the lines containing the pattern office automation, the command line and system response
would read:

N\

$ grep office automation’ johnson<CR>
office automation.

$

But what if you could not recall to whom you sent a letter on the topic of office automation in the
first place--Mr. Johnson or Mrs. Sanders? You could type:
N\

grep office automation’ johnson sanders<CR>
If you did, the system would respond in the following manner:

N

$ grep office automation’ johnson sanders<CR>
Jjohnson:office automation.

$

The output tells you that the pattern office automation is found once in the file johnson.

In addition to the capabilities of the grep command that are summarized in the recap that follows,
the ICON/UXV system provides variations to the basic grep command, called egrep and fgrep,
along with several options that further enhance the searching powers of the command. See the
ICON/UXV User Reference Manual if you are interested in learning more.

ICON/UXV USER GUIDE 3-47

USING THE FILE SYSTEM

Command Recap

grep - searches a file for a pattern

command options arguments
grep available* pattern file(s)
Description: grep searches the file or files you name for lines

containing a pattern and then prints the lines that
match. If you name more than one file, the name
of the file containing the pattern is given also.

Remarks: If the pattern you give contains multiple words or
special characters, enclose the pattern in single
quotes on the command line.

* See the ICON/UXV User Reference Manual for all available options and an explanation of their capabilities.

Sorting and Merging Files (sort)
The ICON/UXV system provides you with an efficient tool called sort for sorting and merging files.
The basic form of the command line is:

sort file(s)<CR>

which causes lines in the specified files to be sorted and merged in the order defined by the ASCII
representations of the characters in the lines.
¢ Lines beginning with numbers are sorted by digit and listed before letters in the output,

o Lines beginning with uppercase letters are listed before lines beginning with lowercase letters,
and

e Lines beginning with symbols, such as *, 9%, or @, are sorted on the basis of the symbol’s ASCII
representation.

To get an idea of how the sort command works, let’s say that you have two files, named phasel and
phase2, each containing a list of names that you wish to sort alphabetically and finally interfile into
one list. First, display the contents of each file using the cat command.

3-48 ICON INTERNATIONAL

ACCESSING AND MANIPULATING FILES

$ cat phasel<CR>
Smith, Allyn

Jones, Barbara

Cook, Karen

Moore, Peter

Wolf, Robert

$ cat phase2<CR>
Frank, M. Jay
Nelson, James

West, Donna

Hill, Charles
Morgan, Kristine

$

(Note: we could have used the command line cat phasel phase2<CR> instead of listing the
contents of each file separately.)

Now, sort and merge the contents of the two files using the sort command. Note that the output of
the sort program will print on the terminal monitor unless you specify otherwise.

$ sort phasel phase2<CR>
Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert

$

In addition to putting together simple listings as in the previous examples, the sort command can
rearrange the lines and parts of lines (called fields) according to a number of other specifications you
can designate on the command line. The possible specifications are complex and are not within the
scope of this text. You should consult the ICON/UXV User Reference Manual for a full rundown on
the available options.

ICON/UXV USER GUIDE 3-49

USING THE FILE SYSTEM

However, the following command recap summarizes the capabilities of the sort program.

Command Recap
sort - sorts and merges files

command optlions

grgaments
sort available* file(s)
Description: sort sorts and merges lines from the file or files you

name and displays:the result on your terminal.
Remarks: If no options are specified on the command line,
lines are sorted and merged in the order defined by

the ASCII representations of the characters in the
lines.

* See the ICON/UXV User Reference Manual for all available options and an explanation of their capabilities.

SUMMARY

This chapter described the structure of the file system and presented ways to use and to navigate
through the file system via ICON/UXV commands. The next chapter gives you an overview of a
variety of ICON/UXV capabilities, such as text editing, using the shell as a command language,
communicating electronically with other system users, and programming and developing software.

3-50 ICON INTERNATIONAL

N/

(Chapter 4

ICON/UXV SYSTEM CAPABILITIES

PAGE

INTRODUCTION 4-1
TEXT EDITING 4-1
What Is a Text Editor? 4-1

How Does a Text Editor Work? 4-2

Text Editing Buffers 4-2

Modes of Operation 4-3

Line Editor 4-3
Screen Editor 4-3
WORKING IN THE SHELL 4-5
Using Shell Shorthand 4-5
Redirecting the Flow of Input and Output 4-6
Redirecting the Standard Output (>) 4-7
Redirecting and Appending the Standard Output (>>) 4-9

Redirecting the Standard Input (<) 4-9

Connecting Commands with the Pipe (|) 4-10

Summary ceee 4-11

Running Multiple Programs 4-11

T Executing Commands in Sequence 4-11
‘ Executing Commands Simultaneously 4-13
Customizing Your Computing Environment 4-13
COMMUNICATING ELECTRONICALLY 4-14
PROGRAMMING IN THE SYSTEM 4-15
Programming in the Shell 4-15
Programming in the C Language 4-16
Other Programming Languages 4-17
Tools to Aid Software Development 4-17
Source Code Control System 4-18

Remote Job Entry 4-18
Maintaining Programs 4-18

Generating Programs for Lexical Tasks . 4-19

Generating Parser Programs 4-19

C

Chapter 4
ICON/UXV SYSTEM CAPABILITIES

INTRODUCTION

This chapter serves as a transition between the first three chapters in the overview part of
this guide and the four tutorials that follow. The material in this chapter combines basic,
fundamental concepts about the ICON/UXV system covered in the first three chapters of
this guide with information about system capabilities that you may use to do your
computing work efficiently and effectively.

This chapter provides an overview of the following ICON/UXV capabilities: text editing,
working in the shell, communicating electronically, and programming in the ICON/UXV
environment. In addition, it serves as an introduction to chapters 5, 6, 7, and 8-- Line
Editor Tutorial, Screem Editor Tutorial, Shell Tutorial and Communication Tutorial,
respectively.

TEXT EDITING

You have read a good deal about files up to this point simply because using the file is a way
of life in a ICON/UXV environment. The information in this section will enhance your
knowledge about manipulating files by introducing you to a software tool called a text
editor. A text editor provides you with the ability to create and modify files: it will help
you to fare well in the ICON/UXV system since a considerable amount of your computing

time may be spent writing and revising letters, memos, reports, or source code for programs
that will be stored in files.

This section contains information that tells you what a text editor is and how it works. In
addition, this section acquaints you with two types of text editors supported on the
ICON/UXV system: the line editor and the visual, or screen, editor. Since you will
probably come to prefer one of these editing programs over the other--even if you learn to
use them equally well--the line editor and the screen editor are briefly compared to help
you to assess their capabilities. For detailed information on the line editor and the screen
editor, see Chapter 5 and Chapter 6.

What Is a Text Editor?

When you write or type letters, memos, and reports and then decide to change what you
have written or typed, you will use skills required in text editing. These skills include
inserting new or additional material, deleting unneeded material, transposing material
(sometimes called cutting and pasting), and finally preparing a clean, corrected copy. Text
editors perform these tasks at your direction making writing and revising text much easier
and quicker than if done by hand or on a typewriter.

ICON/UXV USER GUIDE 4-1

ICON/UXV SYSTEM CAPABILITIES

In the ICON/UXYV system, a text editor is much like the ICON/UXV shell. Both a text
editor and the shell are programs that accept your commands and then perform the
requested functions--essentially, they are both interactive programs. A major difference
between a text editor and the shell, however, is the set of commands that each recognizes.
All the commands you have learned up to this point belong to the shell’s command set. A
text editor, on the other hand, has its own distinct set of commands that allow you to
create, move, add, and delete text in files, as well as acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works you need information about the environment

created when you use an editing program and the modes of operation understood by a text
editor.

Text Editing Buffers

To create a new file, you must ask the shell to put the editor in control of your computing
session. When you do, a temporary work space is allocated to you by the editor. This

work space is called the editing buffer, in it you can enter information you want the file to
hold and modify it if you wish.

Because you are in a temporary work space when using a text editor, the file you are
creating along with the changes you make to it are also temporary. This work space
allotment and what it is holding will exist only as long as you work in the editing program.
If you wish to save the file, you must tell the text editor to write the contents of the buffer
into a storage area. If you do not tell the editor to write or record what you have done
during the editing session, the buffer’s contents will disappear when you leave the editing
program. If you forget to write a new file or update an existing one, the text editors
remind you to do so when you attempt to leave the editing environment.

To modify an existing file, the procedure is almost identical to the one you follow when
creating a new file. First, call the editor and give it the name of the file you wish to

change. In turn, the editor makes a copy of the file that is in the storage area and places it
in the buffer so you can work on it.

When you finish editing the file, you can write the buffer’s contents into storage and leave
the editing program knowing the file is updated and ready to be recalled when you need it
again. Or you can chose to leave the editor without writing the file if you have made a
critical mistake or you are unhappy with the edited version. This step leaves the original
file intact and the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing one, the text you
put in the buffer is organized into lines. A line of text is simply the series of characters
that appears horizontally across a row of typing that is ended by pressing the <CR> key.
Occasionally, files may contain a line of text that is too long to fit on the terminal monitor.
Some terminals will automatically display the continuation of the line on the next row of
the monitor, whereas others will not.

4-2 ICON INTERNATIONAL

\/

TEXT EDITING

Modes of Operation

Text editors are capable of understanding two modes of operation: the command mode and
the text input mode.

When you begin an editing session, you will automatically be placed in command mode. In
command mode, all your input is interpreted as a command. Typical editing commands
allow you to move about in a file, search for patterns in the file’s contents, or print a
portion of a file on the terminal monitor. The input mode is entered when you use a
command to create text. Once in input mode, what you type on the keyboard is placed
into the buffer as part of the text file until you send the appropriate instruction to the
editor that returns you to command mode.

You may occasionally lose track of the mode in which you are working by attempting to
enter text while in command mode or by trying to enter a command while in input mode.
This is something even experienced users do from time to time. It will not take long to
recognize the mistake and it will be apparent what to do to remedy these situations as you
work through the tutorials in Chapter 5 and Chapter 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile program for preparing text
files. This editor gets its name because it operates on the lines of text a file holds. For
example, to change a single character in a file, you specify the line of the file that contains
the character you wish to change and then specify the change.

Put simply, you manipulate text on a line-by-line basis with the line editor. Commands for
this text editor can change lines, print lines, read and write files, and initiate text entry. In
addition, you can specify the line editor to run from a shell program; something you cannot
do with the screen editor. (See Chapter 7 for information on basic shell programming
techniques.)

The line editor works equally well on paper printing terminals and video display terminals.
It will also obligingly accommodate you if you are using a slow-speed telephone line.

Refer to Chapter 5, Line Editor Tutorial, for instructions on how to use this editing tool.
Also see Appendiz D for a summary of line editor commands. If you are interested in a
comparison of line editor (ed) and screen editor (vi) features, see Table 4-1.

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented, interactive software tool.
When you use the screen editor, your terminal acts as a window to let you view the file you are
editing a screenful or page at a time. This editor works most efficiently and effectively when used
on a video display terminal operating at 1,200 or higher baud.

For the most part, modifications to a file (such as, additions, deletions, and changes) are
accomplished by positioning the cursor at the point in the window where the modification is to be
made and then making the change. In other words, the screen editor displays the effects of editing

ICON/UXV USER GUIDE 4-3

ICON/UXYV SYSTEM CAPABILITIES

TABLE 4-1

Comparison of Line (ed) and Screen (vi) Editors

Feature Line Editor (ed) Screen Editor (vi)

Recommended Paper-printing or VDT* VDT

terminal type

Speed Accommodates high- Works best via high-
and low-speed data speed data
transmission lines. transmission lines

(1,200+ baud).

Versatility Can be specified to run Must be used
from shell scripts as interactively during
well as used during editing sessions.
editing sessions.

Sophistication Changes text quickly. Changes text easily.
Uses comparatively However, can make
small amounts of heavy demands on
processing time. computer resources.

Power Provides a full set of Provides its own

editing commands.

editing commands

Standard ICON/UXV and recognizes all line
text editor. editor commands as
well.

* VDT = video display terminal

changes in the context in which you make them. Because of this feature, the screen editor in
considered to be much more sophisticated than the line editor.

Furthermore, the screen editor offers a replete collection of commands. For example, a number of
screen editor commands allow you to move the cursor around within the window to a file. Other
commands move the window up or down through a page or more of the file. Still other commands
allow you to change existing text or to create new text. In addition to its own set of commands, the
screen editor has access to all the commands offered by the line editor. This arsenal of commands
accounts for the screen editor’s tremendous power.

There is, however, a trade-off for the screen editor’s speed, visual appeal, efficiency, and power,
which is the heavy demand that it places on the computer’s processing time. For example, a simple
change might cause an entire screen to need updating. Moreover, if simple changes lead to long
delays while you wait for a screen to be updated, the pleasant experience of using a visual-oriented
editor can be somewhat diminished.

Refer to Chapter 6, Screen Editor Tutortal, for instructions on how to use this software. And see
Appendiz E, which contains a summary of screen editor commands. If you wish to compare the
features of the line editor (ed) and the screen editor (vi) see Table 4-1.

4-4 ICON INTERNATIONAL

WORKING IN THE SHELL

WORKING IN THE SHELL

Every time you log into the ICON/UXV system you will be communicating directly with a program
called the shell. You will continue to interact with the shell until you log off the system, unless you
use a program, such as a text editor, that temporarily suspends your dealings with the shell until
you are finished using that particular program.

The shell is much like other programs, except that instead of performing one job, as cat or Is does,
it is central to most of your interactions with the ICON/UXV system. This is because the shell’s
primary function is to act as an interpreter between you and the computer on which the
ICON/UXV system is running. As an interpreter, the shell translates your requests into language
the computer understands, calls requested programs into memory, and executes them.

This section acquaints you with some of the ways you can use the shell as the command language
interpreter to simplify a computing session and to enhance your ability to use system features. In
addition to running a single program for you, you can also use the shell to:

o interpret the name of a file or a directory you input in an abbreviated way using a type of
"shell shorthand,”

o redirect the flow of input and output of the programs you run,

s execute multiple programs, and

o tailor your computing environment to meet your individual needs and preferences.

In addition to being the command language interpreter, the shell is also a programming language.
If you would like an overview of shell programming capabilities, see the section entitled
Programming in the System at the end of this chapter. Or refer to Chapter 7, Shell Tutorial, for
detailed information on how to use the shell as a command language interpreter and as a

programming language. For complete, unabridged information on shell programming Part 8 of this
manual should be consulted.

Using Shell Shorthand

Many ICON/UXV commands require that you name a file or a directory as an argument to it on a
command line, such as mkdir directory name(s)<CR> or rm filename(s)<CR>. Easy enough!
But suppose you have 12 files to remove corresponding to monthly reports for 1983 named reptl,
rept2, rept3, rept4, and so on? Or suppose you need to move 24 files corresponding to file names
sectl, sect?, ... sect?4 to a different directory?

Typing the file name for each monthly report after the rm command or the file name for each
section after the mv command is still easy, but all the repetition gets tedious after inputting four or
five names.

In instances like these, you should consider using shorthand notation when specifying file or
directory names. If the file or directory names have some part in common, you can use a type of
shorthand to tell the shell that you are referring to all of them on the basis of the similarity without
specifying each one individually. Or, if a file has a unique character or sequence of characters
within a group of similarly named files, you can use this shorthand notation to locate the file on the
basis of the difference.

The ICON/UXV operating system recognizes several characters as having special meanings when
they are used in place of a directory name or when they appear as part of a file or directory name

ICON/UXV USER GUIDE 4-5

ICON/UXYV SYSTEM CAPABILITIES

on a command line. These characters allow you to specify the names of files and directories in a

rapid, abbreviated way. Some of the characters are referred to as metacharacters because of their
special meanings to the shell.

The special characters are . .. ? ®* [] — \ and their meanings are summarized in Table 4-2. When
you specify file or directory names, you can substitute various characters within them with the

appropriate shorthand abbreviation. Any part of the name that is not a special character is taken
at its literal value.

TABLE 4-2
Shorthand Notation for File and Directory Names

Special Detailed
Character Meaning Reference
. Current directory Chapter 8
.- Parent directory Chapter 8
? Match any single character Chapter 7
* Match any number of characters Chapter 7
[] Designate a sequence of characters to
be matched, such as [abc] or [628] Chapter 7
- Specify a character range within
[], such as A-Z Chapter 7
\ Remove meaning of special characters Chapters 2, 7

For example, for the possibilities described at the beginning of this section, typing rm rept*<CR>
would remove all the files in the current directory starting with the characters rept followed by any
other characters corresponding to monthly reports for 1983, and typing
mv sect® ../chapter3<CR> would move all the files from the current directory beginning with

the letters sect and followed by any other characters to another directory named chapter8 belonging
to its parent directory.

Details on how to use the special characters appear in other chapters of this guide as indicated in
Table 4-2. Refer to that chapter for the information you need.

Redirecting the Flow of Input and Output

Up to this point in the ICON/UXV User Guide, any request to ask the shell to execute a command
was done by inputting the command and the necessary argument(s) on the terminal keyboard. In
turn, the output, if any, was displayed on the terminal monitor. This pattern illustrates the idea of
standard input and standard output.

In general, the place from which a program expects to receive its input is called the standard input.
A ICON/UXV command called mail, which you will learn more about in Chapter 8, provides a good
example of this and warrants mentioning here. For example, to use mail, you would simply type
mail jmrs<CR> and the mail command takes everything you type on your keyboard after
<CR> until you type <d> as input. After you type <d>, mail sends your input to the person

4-8 ICON INTERNATIONAL

WORKING IN THE SHELL

with the login name jmrs. The place to which a program writes its results, in this case the login
name jmrs, is referred to as the standard output.

In the ICON/UXV system, most commands expect to receive their input from the keyboard and
then display output on the terminal monitor. By default, then, the standard input is the keyboard
and the standard output is the terminal monitor (Figure 4-1).

Figure 4-1. Standard input/output flow. A program’s standard
input and standard output are usually assigned to your terminal.

You can, if you wish, use a feature called redirection to change these defaults. Put simply,

redirection is a ICON/UXV feature that allows you to request the shell to reassign standard input
and/or standard output to other files or devices.

With the redirection feature, you can request the shell to do the following:
e reassign to a file any output that a program would ordinarily send to your terminal,
¢ have a program take its input from a file rather than from your terminal keyboard, or

o use a program as the source of data for another program.

You request the shell to redirect input and output using a set of operators, which are > (greater

than sign), >> (two greater than signs), < (less than sign), and | (a pipe). Now let’s take a look at
what each of these operators can do for you.

Redirecting the Standard Output (>)

The > operator allows you to redirect the output of a command (or program)} into a file (Figure 4-
2).

ICON/UXV USER GUIDE 4-7

ICON/UXYV SYSTEM CAPABILITIES

Figure 4-2. Standard output can be redirected
from your terminal to a file.

To use the > operator, follow the command line format:

command > newfile<CR>

in which you can choose to surround the > operator with spaces as indicated in the command line
or leave the spaces out (command>newfile<CR>>); either method is correct.

For example, if you have two files, named group! and group?2 each containing a list of names with
telephone extension numbers that you would like to sort alphabetically and then interfile into a

separate file called members, you would type:

sort groupl group2 > members<CR>

When you do, the ICON/UXV system first alphabetically sorts and then interfiles the contents of
the files groupl and group? and redirects the output into the file called members rather than
displaying it on your terminal. If you wish to read the contents of the members file, you could use

the cat or pg command.

Therefore, if the contents of the file group! is:

Smith, Allyn
Jones, Barbara
Cook, Karen
Moore, Peter
Wolf, Robert

and the contents of the file group? is:

Frank, M. Jay
Nelson, James
West, Donna
Hill, Charles
Morgan, Kristine

4-8

101
203
521
180
125

118
210
333
256
175

ICON INTERNATIONAL

WORKING IN THE SHELL

then the file members would appear as follows on your terminal when displayed with the cat
command.

/

$ sort phasel phase2 > members<CR>
$ cat members<CR>
Cook, Karen 521
Frank, M. Jay 118
Hill, Charles 256
Jones, Barbara 208
Moore, Peter 180
Morgan, Kristinel?5
Nelson, James 210
Smith, Allyn 101
West, Donna 888
Wolf, Robert 125

$

Keep in mind that if the file to which you are redirecting the standard output already exists, its
contents will be replaced with the output of the redirection command.

Redirecting and Appending the Standard Output (>>)

Occasionally, you might like to add information to the end of an existing file. You can use the >>
operator to do so. Simply input the following command line:

command >> file<CR>

For example, if the file members that was created in the previous section was subject to additions
and deletions, it might be a good idea to date the list so you know at a glance what version of the
list you are using. You could do so by typing

date >> members<CR>

on the command line and the date and time would be printed at the end of the file members. Or
instead of adding the date to the end of the file members, you could have appended another file
containing even more names.

Redirecting the Standard Input (<)

Standard input can be redirected as well as standard output with the < operator. The general
command line format for input redirection is:

command < file<CR>

in which the < operator informs the command (or program) to take input from the file you specify
rather than from the terminal keyboard (Figure 4-8).

ICON/UXV USER GUIDE 4-9

ICON/UXY SYSTEM CAPABILITIES
>

program

S
e

Figure 4-3. You can ask the shell to take a program'’s
input from a file rather than from your terminal.

For example, if you would like to send a copy of the file members to co-workers who work on your
ICON/UXYV system and who have the login names mary2 and ymrs, typing

mail mary2 jmrs < members<CR>

will accomplish the task. The mail command, however, does not know whether it received its input
from the file members (which it did) or from your keyboard. Rather, input/output redirection is a

service provided by the ICON/UXV shell and is available to every program. (You will learn more
about the mail command in Chapter 8.)

Connecting Commands with the Pipe (|)

The pipe operator is a powerful, yet flexible, mechanism for doing computing tasks quickly and
without the need to develop special purpose tools. You can use it to redirect the standard output of
one program to be the standard input of another (Figure 4-4). Generally, the format for using the
pipe is:

command | command<CR>

4-10 ICON INTERNATIONAL

)

WORKING IN THE SHELL

TANDARD
rogan: D o

Figure 4-4. You can use the output from one
program to be the input for another.

A popular example of this is taking the output of the who command (which you were introduced to
in Chapter 2) and using it as input to the wc command (which counts lines, words, and/or
characters) as follows:

who | we -I<CR>

This example shows that the standard output of the who command was passed to the wc -1
command (-l is the option that counts the number of lines output by the who command, each
corresponding to a user who is logged into your ICON/UXV system.)

Summary

Table 4-8 summarizes which operator performs which redirection task and what general format
should be followed in using it. Refer to the section on redirection in Chapter 7 for details on how to
use them.

Running Multiple Programs

There are two methods for running multiple programs: you can specify more than one command to
execute in sequence from a single command line or you can run commands simultaneously.

Executing Commands in Sequence

Up to this point, the command lines to which you have been introduced and examples for using
them have dealt with asking the shell to run a single request or program. For example, each of the
command lines cat filename<CR>, date<CR>, and ls -l directoryname<CR> requests the
shell to perform one task. You can, however, ask the shell to execute more than one request per
command line. Sequential execution allows you to enter as many commands as you wish on one
command line and have them execute in the order in which you input them.

ICON/UXV USER GUIDE 4-11

ICON/UXV SYSTEM CAPABILITIES

TABLE 4-3 | -
\ -

Options for Redirecting Input and /or Outputt S
Action Operator General Format
Redirecting output to a file > command > filename

Redirecting and appending
output to a file >> command >>> filename

Redirecting input from a file < command < filename

Redirecting output of first
command to be input for

second ! command | command

* See Chapter 7 for complete details on how to use these options.

t Blank spaces immediately before and after redirection operatore are optional.

To do so, you should first be familiar with the general rules for command line syntax given in
Chapter 8. Briefly, command line syntax orders elements in the command line so that the command
name, any options you wish to specify, and the data on which the command is to operate (usually
the name of a file or directory) follow one another.

To execute more than one command on a line, simply separate the request sequences with
semicolons (;) as follows:

command option(s) argument(s); command option(s) argument(s); ...<CR>

For example, to determine where you are in the file system and then list the contents of the

directory in which you are working, you can type pwd; Is<CR> and the terminal monitor might
read:

(Spwd; Is<CR>
[userl/starship/bin
dir

list

tools

$

As you can see, the output of the multiple commands is ordered the same way the input is: first,

the current working directory is given (in response to pwd) and, then, the names of the files and/or
directories it holds follow (in response to ls).

You could just as easily type who am i; date; who<CR> or mkdir directoryabe; cd
directoryabc; pwd<CR> or any combination of commands that you wish to use. e

4-12 ICON INTERNATIONAL

WORKING IN THE SHELL

Executing Commands Simultaneously

In addition to running programs sequentially, you can choose to run them simultaneously. To do so,
you need to know the difference between foreground and background commands. When a program
runs in the background, the computer is executing that program concurrently with the commands
that you enter or with the program that you run in the foreground. However, the computer
considers your foreground work more important, in a sense, than your background program. This
difference has no perceivable effect on the execution of most programs, but running a job in the

background is a useful technique when you wish to run a lengthy or time-consuming job without
tying up your terminal.

All the command lines used in this guide until now have been examples of foreground commands.
This means that they were initiated and run to completion before other commands could be
executed and before the shell would return the $ prompt for you to continue. However, you also

have the option of running a command in the background so you can continue to work in the
foreground.

You can run a command in the background by placing an ampersand (&) at the end of the
command line as follows:

command option(s) argument(s) £<CR>

When the shell reads the &, it starts running the program, prints an identification number, and
displays the $ prompt so you can use the terminal immediately for other work.

To save the output from the job you are running in the background, you must redirect the results of
the execution into another file so you can look at or use the output when you are ready. For
example, if you input the command cat filel file2 > file3 &<CR>, the shell would first give
you an identification number, and then the prompt. It will also save the results of cat filel file2
in a file named file3. When you are ready to peruse file3, simply use cat or pg. If you do not
redirect the output, then no output is saved.

When a program is running in the background, it ignores interrupt and break signals, but if you log
off, the shell terminates the background program along with the computing session. If you would
like to stop a background command while you are still logged into the ICON/UXV system, type
kill id<CR>, where id is the identification number of the command. On the other hand, to have a

program continue to run after you log off, you can use the nohup command (which stands for "no
hang up") in the following way :

nohup command &<CR>
When you do, the command will continue to Tun until completion and its output is saved in a file

called nohup.out (which stands for nohup output).

Customizing Your Computing Environment

The information in this section deals with another dimension of control provided to you by the shell
called your environment. When you log into the ICON/UXV system, the shell automatically sets up
a computing environment for you. You can choose to use it as supplied by the system or you can
tailor it to meet your needs.

By default, the environment set up by the shell includes the variables:

ICON/UXV USER GUIDE 4-13

ICON/UXYV SYSTEM CAPABILITIES

HOME = your login directory,

PATH = route the shell takes to search for executable files or commands (typically
PATH=:/bin:/usr/bin), and

LOGNAME = your login name.

If you find the default environment satisfactory, simply leave it as it is and go on with your work.
However, if you would like to modify it, you must have a file in your login directory named .profile.
If you do not, you can create one with a text editor like ed or vi.

To determine if you have a .profile, move to your login directory and type cat .profile<CR> and
its contents should appear on the terminal monitor. Typically, the .profile tests for mail and sets
data parameters, system variables, and terminal settings.

Possible modifications to your login environment might include changing your login prompt, setting
tab stops, and changing erase and kill characters. If you would like to customize your .profile, see
the section entitled Modifying Your Login Environment, in Chapter 7.

COMMUNICATING ELECTRONICALLY

Before the days of office automation, you would probably have thought of relaying a message or
information to someone either personally or by way of a letter, note, or telephone conversation.

Now as a ICON/UXV user, you can choose to communicate electronically with other ICON/UXV
users by way of the computer.

You can send messages or transmit information stored in files to other users who work on your
system or on another ICON/UXV system. To do so, your ICON/UXV system must be able to

communicate with the ICON/UXV system to which you wish to send information. In addition, the
command you use to send information depends on what you are sending.

This guide introduces you to these communication programs:

matl -- This command is typically used for sending messages to others and reading the
messages sent to you. You can use mail to send messages or files to other
TCON/UXV users using their login names as addresses. And, at your convenience,
you can use the mail command to read messages sent to you by other users. With
mail, the recipient can choose when to read it.

uuto/uupick — These commands are used to send and retrieve files. You use the uuto command to
send a file(s) to a public directory; when its available to the recipient, the person is
sent mail telling him/her that the file(s) has arrived. The recipient then can use the

uupick command to copy the file(s) from the public directory to the directory of
choice.

matlz -- This command is a sophisticated, more powerful spin-off of mail. It offers a number
of options for managing the electronic mail you send and receive.

Chapter 8 teaches you how to use the mail, uuto, and uupick commands. It also introduces you to
the mailx command so you can begin to use it.

4-14 ICON INTERNATIONAL

—

-

PROGRAMMING IN THE SYSTEM

PROGRAMMING IN THE SYSTEM

The ICON/UXV system provides an efficient, effective, and convenient environment for
programming and software development. This section briefly describes the environment and your
programming options when working in it.

If you are not a programmer, your immediate reaction might be to skip this section. But you need

not be a programmer or software developer to enjoy some of the capabilities that fall under the
realm of programming.

For example, you can use the shell as a command level programming language as well as the
command line interpreter. Shell programming capabilities are useful and usable techniques that
allow you to take simple, existing programs and make them more powerful. So why not read on.

On the other hand, if you’re interested in sophisticated programming and software development
capabilities, this section can serve as a springboard to using them.

What you can expect to find in the next few pages is an overview of shell and C language
programming and a mention of other languages that can be used on the ICON/UXV system. In
addition, an overview of some ICON/UXV tools for software development is included.

Programming in the Shell

Most interactive users of the ICON/UXV system think of the shell solely as the command language
interpreter. The shell, however, is also a command level programming language. What this means
is that you can let the shell continue to act as your liaison with the computer or you can program
the shell to repeat sequences of instructions and to test certain considerations for you automatically.
When you program the shell to perform a task, you use the shell to read and to execute commands

that you place in an executable file. These files are sometimes called shell scripts or shell
procedures.

When you use the shell in this manner, it provides you with features, like variables, control
structures, subroutines, and parameter passing that are very similar to those offered by
programming languages. These features provide you with the ability to create your own tools by
linking together system commands.

For example, you can write a simple shell procedure from existing ICON/UXV system programs that
tells you the date and time along with the number of users working on your ICON/UXV system.
One way to do so is illustrated in the following screen:

/3 cat > users<CR>
date; who | we -I<KCR>
<*d>
$ chmod u+x users<CR>
3

ICON/UXV USER GUIDE 4-15

ICON/UXYV SYSTEM CAPABILITIES

A file called users is created using the > redirection operator. In the example, cat is taking as
input everything you type after <CR> on the command line and placing it in a file named users.
Then the file is made executable with the chmod command. If you type the command
users<CR>, your terminal monitor would look something like the next screen.

Ks users<CR>
Tues May 22 10:29:09 CDT 1984

7
$

The output tells you that seven users were logged into the system when you typed the command at
approximately 10:30 AM. on Tuesday, May 22.

For additional information on shell procedures and for more sophisticated shell programming
techniques, see Chapter 7, Shell Tutorial, for step-by-step instructions.

Programming in the C Language

C is a general purpose programming language. It is a relatively "low level" language, which means
that C deals with the same sort of objects that most computers do, namely characters, numbers,

and addresses. These may be combined and moved about with the usual arithmetic and logic
operators.

C is closely associated with the ICON/UXV system because it was developed on the ICON/UXV
system and because ICON/UXYV system software is largely written in C.

Although the C programming language is implemented on many computers, it is independent of any
particular machine architecture. With a little care, it is easy to write portable programs, that is,

programs that can be run without change on a variety of computers if the machine supports a
C compiler.

The C programming language comprises the following main elements:

o Types, operators, and ezpressions--Constants and variables are the basic data objects
manipulated in a program. Constants are data objects that do not change during the
execution of a program, while variables are assigned new values throughout execution.
Declarations list variables, state type, and perhaps initial values. Operators specify what is to
be done on them. Expressions combine variables and constants to produce new values.

o Control flow--Control flow statements of a language specify the order in which computations
are done. In C, these include tf-else, else-tf, and switch statements, and while, for, and do-while

loops. In addition, break, continue, and goto statements can be used. Labels can be used as
well.

4-16 ICON INTERNATIONAL

(/‘\\

«

PROGRAMMING IN THE SYSTEM

o Functions and program structure—C programs generally consist of numerous small functions
rather than a few big ones. These functions break large computing tasks into smaller ones and
enable you to build on what others have done.

o Pointers and arrays—A pointer is a variable that contains the address of another variable.
Pointers are frequently used when programming in C because oftentimes they provide the only
way to express a computation and partly because their use typically leads to more compact and
efficient code than can be obtained in other ways.

e Structures—A structure is a collection of one or more variables, possibly of different types, that
are grouped together under a single name for convenient handling. Structures help to organize

complicated data because they permit a group of related variables to be treated as a unit
instead of separate entities.

o Input and output--A standard I/O library containing a set of functiors designed to provide a
standard input and output system is avaiiable for C programs. This Tirary is a ICON/UXV
feature available for programming in C. '

These elements are covered in detail in The C Programming Language by B. W. Kernighan and

D. M. Ritchie (Prentice-Hall, 1978). Additional information is also availablie in the JCON/UXV
Programming Gutide.

Other Programming Languages

In addition to C, other programming languages mre available for use on the ICON/UXV system,
such as FORTRAN-77, BASIC, Pascal, COBOL, APL, LISP, and SNOBOL.

You can obtain details on FORTRAN and its wariations in the JCON/UXYV Programming Guide. Or

contact your AT&T Technologies Account Representative for document availability and ordering
information on the others. ,

Tools to Aid Software Development

This section highlights some sophisticated software development tools available on the ICON/UXV
system. The tools are designed to make development of software easier and to provide you with a
systematic approach to programming.

There are numerous software development aids provided by the ICON/UXV operating system. This

section introduces you to five of them to give you an idea of what yon can expect development
utilities to do. They are:

SCCS -- Source Code Control System,
RJE -- Remote job entry,
make -- Maintaining programs,
lez -- Generating programs for simple lexical tasks, and

yace - Generating parser programs.

Refer to the JCON/UXV Support Tools Guide and the ICON/UXV Programming Guide for more
information.

ICON/UXV USER GUIDE 4-17

ICON/UXY SYSTEM CAPABILITIES

Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a collection of ICON/UXV system commands that helps
you to control and report changes to source code files or text files. SCCS allows you to access
different versions of the same file while maintaining only one file. The way this works is that SCCS
stores the original file on a disk. Whenever modifications are made to the file SCCS stores only
those changes as a set in something called a delta. Each delta or set of changes is numbered to

reflect the different versions of a file. You can then choose to retrieve either the original file or a
version of the original file.

By allowing SCCS to store and control all iterations of a file, space allocations for storage are
minimized and administration of different versions of the same program or document is efficient and

simplified. Updates to files can be made quickly and the original version of a program or document
is retained if you should need to recall it later.

For additional information, see the JCON/UXV Support Tools Gutde. Most of the commands needed
to use SCCS are documented in the ICON/UXV User Reference Manual.

Remote Job Entry (RJE)

Remote job entry (RJE) is a software package designed to facilitate communication between a
ICON/UXV operating system and an IBM System/360 or an IBM System/370 computer. The RJE
software allows the ICON/UXV operating system to communicate with the IBM Job Entry
Subsystem by mimicking an IBM System/360 remote multileaving work station. A set of

background processes support RJE, and the ICON/UXV system uses these processes to submit jobs
for remote execution on the networked IBM system.

When RJE software runs, it does so in the background. It transmits jobs (consisting of job control
statements [JCL] and input data) that you queue with the send command and status reports you
request with the rjestat command. In turn, the RJE software subsystem receives print and punch
data sets and message output from the IBM system.

For more information on RJE software, see the ICON/UXV Support Tools Guide. Commands to be
used with RJE are covered in the JCON/UXV User Reference Manuval and the ICON/UXV

Administrator Reference Manual.

Maintaining Programs (make)

The make command is a tool for maintaining, supporting, and regenerating large programs or
documents on the basis of smaller ones. Since it is easier to handle and modify small programs, it is
recommended that if you wish to develop a large program, you start by creating a series of smaller
ones that work together to produce the large one.

The make command provides you with a method to store all the information you need to assemble
small programs or modules into a large, more sophisticated one. A file called a makefile holds the

file names of the small programs, the steps necessary to generate the large program, and specifies
the dependencies among the files.

When make executes the makefile, the date and time you last modified any of the small programs
are checked and the operations needed to update them are performed in sequence. Then, make
goes on to create the overall large program.

4-18 ICON INTERNATIONAL

PROGRAMMING IN THE SYSTEM

For details on the operation of make, see the JCON/UXV Support Tools Guide. Or, for a quick
reference, see the entry for make in the JCON/UXV User Reference Manual.

Generating Programs for Lexical Tasks (lez)

The lex utility generates programs to be used in simple lexical analysis of text. Lexical analysis is
done by evaluating a stream of characters and constructing the forms that are acceptable to the
language. Proper forms are defined in the lex program and usable forms can be defined by lex
defaults or by you. Lex produces a subroutine as output that must be compiled and combined with
other programs to use the lexical analyzer.

The processing done by the lex command can be the first step in creating a compiler-type program.
In addition, it can be useful as a preprocessing tool for many different software generation functions.

For additional information on the lex command, see the JCON/UXV Support Tools Guide. A brief

description of how lex operates and an explanation of its options can be found in the JCON/UXV
User Reference Manual.

Generating Parser Programs (yacc)

The yacc program, short for yet another compiler ecompiler, is primarily used in the generation of
software compilers. Essentially, yacc is a utility for creating parser subroutines. The way this
works is that first yace uses specified syntax and produces source code for a parser subroutine.
Then, the parser subroutine is compiled, and finally used with a program that calls it to parse
input. In this way, structure can be imposed on the input to a program and the desired language
can be created from defined rules.

See the ICON/UXV Support Tools Guide for details on the yace command. Or refer to the
ICON/UXYV User Reference Manual for some general guidelines on how to use it.

ICON/UXV USER GUIDE 4-19

(/ ™
\\w— '/,‘

Chapter 5

LINE EDITOR TUTORIAL (ed)

PAGE

INTRODUCING THE LINE EDITOR. 5-1
HOW TO READ THIS TUTORIAL 5-2
GETTING STARTED. 5-3
How to Access ed 5-3

How to Create Text 5-4

How to Display a Line of Text 5-5

How to Delete a Line of Text 5-7

How to Move Up or Down a Line in the File 5-8

How to Save the Buffer Contents in a File 5-9

How to Quit the Editor 5-10
EXERCISE 1 5-11
GENERAL FORMAT OF ed COMMANDS 5-12
LINE ADDRESSING 5-13
Number Line Addresses 5-13
Special Symbols Addresses 5-14
Current Line Address Character...... 5-14

Last Line Address Character 5-15

Address {or the First Line Through the Last Line 5-16

Address for the Current Line Through the Last Line 5-16

Relative Addressing, Adding or Subtracting Lines from the Current Line 5-17
Character String Addresses 5-19
Specifying a Range of Lines 5-22
Specifying a Global Search 5-23
EXERCISE 2 5-26
DISPLAY LINES IN A FILE 5-27
Display Lines of Text 5-27
Display Lines of Text Preceded by the Line Address Number 5-28
CREATING TEXT 5-30
Appending Text 5-30
Inserting Text 5-33
Changing Text 5-34
EXERCISE 3 5-36
DELETING TEXT. 5-37
Deleting Lines of Text 5-37

Undo the Last Command 5-39
Deleting Commands in the Text Input Mode 5-40
Deleting the Current Line 5-40

Deleting the Last Characters Typed 5-41
SUBSTITUTING TEXT. . 5-43
Substituting on the Current Line 5-44
Substituting on One Line ceveres 5-45
Substituting on a Range of Lines cee 5-46

Global Substitution

5-47

EXERCISE 4

SPECIAL CHARACTERS

EXERCISE 5

MOVING TEXT

Move Lines of Text

Copy Lines of Text

Joining Contiguous Lines

Write Lines of Text to a File

Read in the Contents of a File

EXERCISE 6

OTHER USEFUL COMMANDS AND INFORMATION

Help Commands

Display Nonprinting Characters

The Current File Name

Escape to the Shell

Recover From a System Interrupt

Conclusion

EXERCISE 7

ANSWERS TO EXERCISES

Exercise 1

Exercise 2

Exercise 3

Exercise 4

Exercise 5

Exercise 6

Exercise 7

5-50
5-51
5-62
5-63
5-64
5-67
5-69
5-70
5-71

5-72

5-73
$-73
5-76
5-77
5-79
5-80
5-80

5-81

5-82
5-82
5-83
5-85
5-88
5-89
5-01
5-93

C

Chapter 5
LINE EDITOR TUTORIAL (ed)

INTRODUCING THE LINE EDITOR

This tutorial is an introduction to the line editor, ed. The advantages of the line editor are
speed and versatility. ed requires very little computer time to perform editing tasks. The
line editor commands can be typed in by you at a terminal, or they can be used in a shell
program. (See Chapter 7, Shell Tutorial.)

When you enter ed, you are placed in a temporary buffer. The buffer is like a piece of
scratch paper for you to work on until you have finished creating or correcting your text in
this scratch pad buffer. If you are creating a new file, you enter commands from your
terminal that tell ed how to create or modify your text in this scratch pad buffer. If you
are editing an existing file, a copy of that file is placed in the buffer. Changes are made to
the copy of the file. The changes have no effect on the original file until you instruct ed,
using the "write command", to move the contents of the scratch pad buffer into the file.

You can create text in a file line by line, just as you would on a typewriter. However, ed is
easier to use than a typewriter because it gives you commands that allow you to change,
delete, or add text on several lines in the file, and then display those lines of text on your
terminal. You can also add text from another file.

After you have read through this tutorial and have done the examples and exercises, you
will have a good working knowledge of ed. The following basics will be covered:

e A brief introduction to ed, accessing the line editor, creating some text, displaying the
lines of text, deleting lines, writing the text to a ICON/UXB file, and quitting ed,

How to address those lines of the file that you want to work on,

How to display lines of text,

« How to create text,

How to delete text,

How to substitute new text for old text,

How to use special characters as shortcuts for search and substitute patterns,

How to move text around in the file, and

Some other useful commands and information.

ICON/UXYV USER GUIDE 5-1

LINE EDITOR TUTORIAL (ed)

HOW TO READ THIS TUTORIAL

In this tutorial, commands printed in bold should be typed into the system exactly as
shown. The system responses to those commands are shown in ttalic. Text that you type
into a file is not shown in bold. You should assume that each line you type in at your
terminal ends in a carriage return unless the text directs you to do something else. The
carriage return is denoted by <CR>. As you read the text, you may want to glance back
to this section for a quick recap of these conventions.

bold command(Type in exactly as shown.)
ttalic response(The system’s response to the command.)

roman (Text that is being typed into a file.)
<CR> (Carriage return.)

A display screen or partial screen, like the one above, will be used to illustrate the
commands. Because ed is versatile and can be used on any type of terminal, you may not
be working on a video display terminal. However, the lines you type in, and the system
responses are the same whether you are working with a video display terminal or a paper
printing terminal.

The ed commands are introduced by depicting the corresponding key on your keyboard.
The key will appear as shown below in the example of the "a" key.

Notice that the letter on the key appears as it does on your keyboard. However, when you
press the key, the letter will appear in lowercase on your terminal. If you need an
uppercase letter, the example will include the SHIFT key.

The commands discussed in each section are reviewed at the end of that section. A
summary of the ed commands discussed in this chapter is found in Appendiz D, where they
are listed in alphabetical order, as well as by topic.

5-2 ICON INTERNATIONAL

AN

"

GETTING STARTED

(- At the end of some sections, exercises are given so you can experiment with the commands.
/ The answers to all of the exercises are at the end of this chapter.

GETTING STARTED

Let’s get started. The best way to learn ed is to log into the ICON/UXB system and try
the examples as you read this tutorial, do the exercises, and do not be afraid to experiment
with the ed commands. The more you experiment with ed commands, the sooner these

commands will become second nature to you, and you will have a fast and versatile method
of editing text.

In this section, you will learn the bare essentials on how to:

e Access ed,

Append some text,

Move up or down in the file to display a line of text,

Delete a line of text,

o Write the buffer to a file, and

(e Quit ed.

How to Access ed

To access the line editor, type in ed and then a file name. The general format for the ed
command line is:

ed filename<CR>

Choose a file name that reflects what will be in the file. The system will respond with a
question mark if this is a new file.

$ ed new-file<CR>
? new-file

C If you are going to edit an existing file, ed will respond with the number of characters in
the file.

ICON/UXV USER GUIDE 5-3

LINE EDITOR TUTORIAL (ed)

$ ed old-file<CR>
285

In the above example, the existing file, old-file, has 235 characters.

How to Create Text

If you have just accessed ed, you are in the command mode of the line editor. ed is
waiting for your commands. How do you tell ed to create some text? Press the "a" key
and then a carriage return.

Append text.

If a is the only character on a line, it tells the editor that the next characters typed in
from the terminal are text for the file. You are now in the text input mode of ed. After
you have added all the text that you want to the file, type in a period on the line by itself.
This takes you out of the text input mode and returns you to the command mode of ed, so
that you can give ed other commands.

The next example shows how to enter ed and begin creating text in the new file, try-me.
The text input mode is then ended with a period. '

f$ ed try-me<CR>

? try-me

a<CR>

This i1s the first line of text. <CR>
This is a second line,<CR>

and this is the third line. <CR>
<CR>

5-4 ICON INTERNATIONAL

~

«

GETTING STARTED

Notice that ed does not give you a response to the period. It just waits for you to enter a
new command. If ed is not responding to your commands, you may have forgotten to type
in the period. Even experienced users sometimes forget to end the text input mode with a
period. Type in a period at the beginning of the line. Now ed should respond to your
commands. If you have added some unwanted characters or lines to your text, you can
delete them once you are back in the command mode.

How to Display a Line of Text ’
How can you display what is in the file? Type in p, for print, on a line by itself.

Display text.

Since you have not specified any line number, or line address, p will display the current
line, that is, the line that was last touched or worked on by ed.

/$ ed try-me<CR>

? try-me

a<CR>

This is the first line of text. <CR>
This is a second line, <CR>

and this is the third line. <CR>
LCR>

p<CR>

and this is the third line.

ICON/UXV USER GUIDE 5-5

LINE EDITOR TUTORIAL (ed)

If you want to see all the lines of text in the file, type in 1,$p. The 1 and the $ are the line

addresses for the first line and the last line of the file. These will be discussed in detail in
the section on Line Addressing.

4

/

1,$p<CR>

This is the first line of text.
This is a second line,

and this is the third line.

Problem:

If you forgot to end the text input mode with the period, you would have added a line of
text that you did not want. Try to make this mistake. Add another line of text to your
try-me file and then try the p command without ending the text input mode. Now, end the
text input mode and press "p". What did you get? How do you get rid of that line?

/

p<CR>

and this is the third line.
a<CR>

This is the fourth line. <CR>
p<CR>

<CR>

1,$p<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This s the fourth line.

p

ICON INTERNATIONAL

GETTING STARTED

How to Delete a Line of Text

If you are in the command mode of ed, press d to delete the current line.

Delete text.

To get rid of the line with the "p" on it, in the last example, delete the line with the d

command. The next example displays the current line, deletes the current line, and then
displays all the lines in the file.

f

p<CR>

P

d<CR>

1,$p<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This 15 the fourth line.

After you press d, ed deletes the current line, but it does so quickly and quietly. It is not

evident to you that anything has happened unless you press p and find that the current line
has been deleted.

ICON/UXV USER GUIDE 5-7

LINE EDITOR TUTORIAL (ed)

How to Move Up or Down a Line in the File

To display the line below the current line, press <CR>.

RETURN]\

AN \

Display the next line
of text.

If there is no line below the current line, ed will respond with a ? and the current line will
remain the last line of file. Pressing <CR> is a good way to move down through the

buffer.

How do you display the line above the current line? Use the minus key, — .

Display the line of text above the
current line.

The next screen demonstrates how to display a line of text, above or below the current line

in the file.
(p<CR>
This ts the fourth line.
—<CR>
and this is the third line.
—<CR>
This 1s a second line,
—<CR>
This s the first line of text.
<CR>
This 1s a second line,
<CR>
and this is the third line.
5-8

ICON INTERNATIONAL

GETTING STARTED

If you pressed the —<CR> or <CR>, you noticed that the line was displayed without
having to press the "p" key. You were addressing a line. If you give a line address and do
not follow it with a command, ed assumes you want the p command, which is the default
command for a line address.

Experiment with these commands, create some text, delete a line, and display your file.

How to Save the Buffer Contents in a File

If you have finished editing your text, how do you move it from the buffer, your scratch
pad, into a file? To save your text, write the contents of the buffer into a file with the w
command.

A" ‘Write the contents of the buffer to
a file.

ed will remember the file name you gave when you accessed ed, and will write the contents
of the buffer to a file with that name. If the file did not already exist, ed will create it and
then write the contents of the buffer into it.

w<CR>
107

If the write command is successful, the character count is displayed. In the last example,
there are 107 characters of text. When you write a file, you copy the contents of the buffer
into the file. The text in the buffer is not disturbed. You can add more text to it. It is a
good idea to write the buffer text into your file frequently. If an interrupt occurs (such as
an accidental loss of power to your terminal), you may lose the material in the buffer, but
you will not lose the copy written to your file. You can also write to another file name that
is different from the one you entered in the ed command line. The file name will be a
parameter to the w command. In the following example, the new file name is stuff.

ICON/UXV USER GUIDE 5-9

LINE EDITOR TUTORIAL (ed)

w stuff <CR>
107

When you return to the shell command mode, display the contents of stuff and try-me. Are
they the same file?

How to Quit the Editor

You have completed editing your file, and have written the editing buffer to the file. To
leave the editor and return to the shell command mode, type in the quit command, q.

n Quit the editing buffer.

w<CR>
107
§<0R>

The system responds with your shell prompt. At this point, the editing buffer vanishes.
Unless you have used the write command, your text in the buffer has also vanished. Since
this could be a serious problem, ed warns you with a ¢ the first time you type in q without
having written any new changes to a file.

5-10 ICON INTERNATIONAL

M

Y

GETTING STARTED

q<CR>
?

w<CR>
107
§<CR>

If you insist on typing in a second q, ed assumes you do not want to write the changes to
the buffer into your file, and returns you to the shell command mode. Your file is left
unchanged and the buffer contents are wiped out.

You now know the basic commands to create and edit a file.

SUMMARY OF COMMANDS FOR GETTING STARTED

ed filename Enter ed to edit the file called filename.
a Append text after the current line.

End the text input mode, and return to the
command mode of ed.

P Display text on your terminal.
d Delete text.
<CR> Display the next line in the buffer.
- Display the line above the current line in
the buffer.
w Write the buffer to the file.
q Quit ed and return to shell command mode.
EXERCISE 1

The answers to all the exercises throughout this chapter are found at the end of this
chapter. However, if your method works, if it performs the task even though it does not
match the answer given, it is a correct answer.

1-1. Enter ed with the file named junk. Create a line of text "Hello World", write to the
file and quit ed.

ICON/UXV USER GUIDE v 5-11

LINE EDITOR TUTORIAL (ed)

1-2. Reenter ed with the file named junk. What was the system response? Was it the
same character count as the response to the w command in Exercise 1-1.?

Display the contents of the file. Is that your file junk?

How do you get back to the shell command mode? Try q without writing the file.
Why do you think the editor allowed you to quit without writing to the buffer?

1-3. Enter ed with the file junk. Add a line:
This is not Mr. Ed, there is no horsing around.

Since you did not specify a line address, where do you think the line was added to the
buffer? Display the contents of the buffer. Try quitting the buffer without writing to
the file. Try writing the buffer to a different file stuff. Notice that ed does not warn
you that the file stuff already exists. You have erased the contents of stuff and
replaced it with new text.

GENERAL FORMAT OF ed COMMANDS

The commands in ed have a simple and regular format. Commands are of the form:
[addressl,address2]command[parameter]<CR>

The brackets around the addresses and parameter denote that these are optional. The
brackets are not part of the command line.

addressl,address2

The addresses give the position of lines in the buffer. Addressl through
address2 gives you a range of lines that will be affected by the command.

command
The command is one character and tells the editor what task to perform.

parameter

The parameters to a command are those parts of the text that will be
modified, or a file name, or another line address.

This general format will become clearer to you when you begin to experiment with the
commands in ed. ’

5-12 ICON INTERNATIONAL

N

(«

LINE ADDRESS

LINE ADDRESSING

Line addresses are very important to ed. To add text before or after a line, to delete,
move, or change a line, ed must know the line address.

[address1,address2]Jcommand<CR>

Address2 is given only if you are specifying a range of lines. If addressl is not given, ed
assumes that the line address is the current line.

A line address is a character or group of characters that identify a line of text. The most
common ways to address a line in ed are:

Line numbers, 1 being the first line of the file,

Special symbols for the current line, last line, and a range of lines,

Adding or subtracting a number of lines from the current line, and

A character string or word on that line.

You can access one line, a range of lines, or make a global search for all lines containing a

specified character string. A character string is a group of successive characters, such as a
word.

Number Line Addresses

ed gives a number address to each line in the buffer. The first line of the buffer is 1, the
second line of the buffer is 2 and so on for each line in the buffer. Each line can be accessed
by ed with the line address number. If you want to see how line numbers address a line,
enter ed with the file fry-me and type in a number of a line.

e

$ ed try-me<CR>

107

1<CR>

This is the first line of text.
3<CR>

and this ts the third line.

Remember that p is the default command for ed. Since you gave a line address, ed
assumes you wanted that line displayed on your terminal.

ICON/UXV USER GUIDE 5-13

LINE EDITOR TUTORIAL (ed)

Problem:

Later in this tutorial you will create lines in the middle of the text, or delete lines, or move {
a line to a different position. This will change the address number of a line. The number of o
a specific line is always the current position of that line in the editing buffer. If you add

five lines of text between line 5 and line 6, once the lines have been added, line 6 becomes

line 11. If you delete line 5, line 6 becomes line 5.

Special Symbols Addresses

Current Line Address Character

The address of the current line.

The current line is the line that was most recently acted upon by ed, either displayed, o
created, or moved. If you have just accessed ed with an existing file, the current line is the 4

last line of the buffer. The address for the current line is a period. If you want to display R
the current line, type in:

If you access ed with your file try-me, you will find that the current line is the last line.
Try it.

$ ed try-me<CR>
107

<CR>

This ts the fourth line.

The "." is the address. Since no command is given, ed assumes the default command p
and displays the line addressed by " . ".

If you want to know the line number of the current line, you can type in the command:

&

ed will respond with the line number. In the last example the current line is 4.

5-14 ICON INTERNATIONAL

LINE ADDRESS

<CR>

This 1s the fourth line.
=<CR>
4

Last Line Address Character

n The address of the last line.

The last line of the file can be addressed by $§. It does not matter how many lines are in

' the file, the last line can always be addressed by $. If you access ed with the try-me file,
5{ you can see that when you first enter ed the current line is the last line.

/$ ed try-me<CR>
107

<CR>

This is the fourth line.
$<CR>

This is the fourth line.

Remember that the $ address within ed is not the same as the $ prompt of the shell. If

this gets confusing and you want to change your prompt, see Changing Your Environment in
Chapter 7, Shell Tutorial.

ICON/UXV USER GUIDE 5-15

LINE EDITOR TUTORIAL (ed)

Address for the First Line Through the Last Line

The , used as an address will refer to all lines of the file, the first line through the last
line.

Address all lines of the file.

If you wanted to display all lines of the file, you could use , as a shortcut address for 1,$

/

,p<CR>

This s the first line of text.
This is a second line,

and this is the third line.
This 1s the fourth line.

Address for the Current Line Through the Last Line
The ; addresses the current line through the last line of the file.

Address the range of lines from the
current line through the last line.

The ; is the same as addressing .,$.

5-16 ICON INTERNATIONAL

LINE ADDRESS

/.<CR>

This ts a second line,
;p<CR>
This is a second line,
and this is the third line.
This s the fourth line.

Relative Addressing, Adding or Subtracting Lines from the Current Line

If you are in a long file, you may want to address lines with respect to the current line.

You can do this by adding or subtracting the number of lines from the current line, thus
giving a relative line address.

+ Add a number of lines to
the current line address.

_ Subtract a number of lines from
the current line address.

To see relative line addressing, add several more lines to your file try-me. Each line should
contain the number of the line.

ICON/UXV USER GUIDE 5-17

LINE EDITOR TUTORIAL (ed)

(5 ed try-me<CR>
107

LCR>

This s the fourth line.
a<CR>

five

six

seven

eight

nine

ten

<CR>

Now try adding and subtracting line numbers from the current line.

/4<CR>

This is the fourth line.
+3<CR>

seven

—5<CR>

This 1is a second line,

What happens if you ask for a line address that is greater than the last line, or you try to
subtract a number greater than the current line number? Experiment with a relative line
addressing. See what happens.

(N

5-18 ICON INTERNATIONAL

LINE ADDRESS

/

5<CR>
five
—8<CR>
?
=<CR>

5
+7<CR>
2

Notice in the above example that the current line remains at line 5 of the buffer. The
current line only changes if you give ed a correct address. The ¢ response indicates an
error. The section on Other Useful Commands and Information at the end of this chapter,
will discuss getting a help message which describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a specified character
string. The line address is the search delimiter and the character string.

A delimiter gives the boundaries of the character string. Delimiters tell ed where a
character string starts and ends. The most common delimiter is /. You may also use ?. If
/ is used at the beginning of an address ed will search forward or down the buffer for the
next line containing the specified character string.

/ Search down or forward in the buffer and
address the first line with a specified
pattern of characters.

Type in: /pattern

ed will search the current line and then down the buffer for the first line that contains the
characters pattern. If the search reaches the last line of the buffer, ed will then wrap
around and start searching down the buffer from line 1.

The rectangle below represents the editing buffer. The path of the arrows shows the search
initiated by / .

ICON/UXV USER GUIDE 5-19

LINE EDITOR TUTORIAL (ed)

r=---
! H
1
' First Line
: .
3
! v
4 Current line
!
]
]
)
' V Last line
1
Lecea

If ? is used at the beginning of an address, ed will search backward or up in the buffer for
the specified character string.

Search up or backward in the buffer and
address the first line containing a specified
pattern of characters.

Type in: ?pattern

ed searches backward from the current line for the first line containing the characters
pattern. If the search reaches the first line of the file, it will wrap around and continue
searching upward from the last line of the file. The next rectangle represents the editing
buffer. The path of the arrows shows the search initiated by ? .

5-20

ICON INTERNATIONAL

h

LINE ADDRESS

-
[}
[}
[}

4

T First line

Current line

Last line

e = - -

r
!
1
}
L

Experiment with these two search address requests on the file try-me. What happens if ed
does not find the search pattern?

$ ed try-me<CR>

107

<CR>

ten

Pirst<CR>

This is the first line of text.
/fourth<CR>

This is the fourth line.
/junk<CR>

?

Once again, since no command was given, ed assumes it is the p command and displays the
line. In the above example when ed was asked to search for the pattern junk, it could not
find junk and responded with a 2.

ICON/UXV USER GUIDE 5-21

LINE EDITOR TUTORIAL (ed)

Try the following sequence of commands.

Type in: /line<CR>
J<CR>

What happened?

<CR>

This is the first line of text.
/line<CR>

This is the second line,
/<CR>

and this is the third line.
/<CR>

This is the fourth line.

ed remembers the pattern of the last search and looks for that pattern until it is given a
new pattern.

Specifying a Range of Lines

There are two ways to address a range of lines. You can specify a range of lines such as
addressl through address2, or you can specify a global search for all lines containing a
specified pattern.

The simplest way to specify a range of lines is to use the line number of the first line
through the line number of last line of the range. These numbers are separated by a
comma and placed before the command. If you want to display lines four through ten of
the editing buffer, you would give addressl as 4 and address2 as 10.

Type in: 4,10p<CR> If you are editing the file try-me, how would you display lines one
through five?

5-22 ICON INTERNATIONAL

™

LINE ADDRESS

1,5p<CR>

This ts the first line of text.
This is a second line,

and this is the third line.
This is the fourth line.

five

Did you try typing in 1,5 without the p? What happened? If you do not add the p
command, ed only prints out address2, the last line of the range of addresses.

You can also use relative line addressing for a range of lines. Be careful, addressl must
come before address2 in the buffer. The relative addresses are calculated from the current
line.

<CR>

This is the fourth line
—2,+3p<CR>

This is a second line,
and this is the third line.
This ts the fourth line.
Sfive

SiT

seven

Specifying a Global Search

There are two commands that do not follow the general format of the ed commands. They
are the global search commands that specify the addresses with a character string.

ICON/UXV USER GUIDE 5-23

LINE EDITOR TUTORIAL (ed)

G The global search command searches the entire
file for lines that contain a specified pattern
of characters.

A" The global search command searches the entire
file for lines that do NOT contain a specified
pattern of characters.

The general format for these two commands gives the command, a delimiter, the search
pattern, a delimiter, and a command.

g/pattern/command<CR>
v/pattern/command<CR>

Try out these commands on try-me.

g/line/p<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line

5-24 ICON INTERNATIONAL

LINE ADDRESS

v/line/p<CR>
ve

six

seven

eight

nine

ten

p will act as a default command for the lines addressed by g or v. If you just want to
display the lines, you do not need the last delimiter or p.

g/line<CR>

This is the first line of text.
This is a second line,

and this ts the third line.
This is the fourth line

If the lines are used as addresses for other ed commands, you will need the beginning and

ending delimiters. All of these methods of addressing a line can be used as addresses for ed
commands.

ICON/UXV USER GUIDE 5-25

LINE EDITOR TUTORIAL (ed)

SUMMARY OF LINE ADDRESSING

1,2...

/abc/

tabc?

g/abc/

v/abc/

The number of the line in the buffer.

The current line, the last line ed touched.

The command that gives the line number of the
current line.

The last line of the file.

Addresses lines 1 through the last line.

Addresses the current line through the last line.
Add a number of lines n to the current line address.

Subtract a number of lines n from the current line
address.

Search forward in the buffer and address the first
line containing the pattern of characters abc.

Search backward in the buffer and address the first
line containing the pattern of characters abec.

Address all lines containing the pattern abc.

Address all lines that do NOT contain the pattern
abe.

EXERCISE 2

2-1. Create a file towns with the following lines:

My kind of town is

Chicago

Like being no where at all in

Toledo

I lost those little town blues in

New York

I lost my heart in

San Francisco
I lost $$ in
Las Vegas

5-26

ICON INTERNATIONAL

2-7.

EXERCISE 2

Display line 3.
What lines are displayed for the relative address range —2,+3p ?
The current line number is? Display the current line.
The last line says?
What line is displayed by the search:
ftown<CR>
Now type in:
t<CR>
alone on a line. What happened?

Address all lines that contain the pattern "in". Then address all lines that do NOT
contain the pattern "in".

DISPLAY LINES IN A FILE

The two commands that display lines of text in the editing buffer are p and n.

Display Lines of Text

Print or display lines of text in the editing buffer
on your terminal. :

You have already used the p command in several examples.

The general form of the print command is:

addressl,address2p<CR>

p does not have parameters. However, it can be combined with the substitute command
line. This will be discussed later in this chapter.

ICON/UXV USER GUIDE 5-27

LINE EDITOR TUTORIAL (ed)

Experiment with different line addresses and the p command on a file in your directory.
Try out the following types of addresses.

Type in: 1,$p<CR>

The entire file should have been displayed on your terminal.

Type in: —5p<CR>

The editor should have subtracted 5 from the current line and displayed that line.

Type in: +2p<CR>

The editor should have added 2 to the current line and displayed that line.

Type in: 1,/a/p<CR>

Did you figure out what happened? The editor searched for the next "a" from the current

line, and then displayed lines 1 through the first line that contained "a" after the current
line.

It is very important to delimit the search pattern to avoid errors in ed. You have to
delimit the search pattern "a" (enclose "a" between slashes) so that ed can tell the
difference between the search pattern address "a" and an ed command a.

Display Lines of Text Preceded by the Line Address Number

N Display the line address number with
the line of text.

The n command is a convenient command when you are deleting, creating, or changing

lines. Besides displaying the lines of text, m precedes each line with the line address
number. :

The general format for n is the same as p.
[addressl,address2ln<CR>

Also, like p, n does not have parameters, but it can be combined with the substitute
command. Try out n on your test file try-me.

5-28 ICON INTERNATIONAL

DISPLAY LINES IN A FILE

$ ed try-me<CR>

187

1,$n<CR>
This 1s the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.
five
Stz
seven
eight
nine

0 ten

M © 003D Lrd. WO =

Experiment with n using different line addresses. In the next example, the relative line
addresses —5 and +2 are used. Also, the range of lines addressed from line 1 through the
first line after the current line that contains an "ne" is also displayed.

—5n<CR>

5 Sfive

+2n<CR>

7 seven

1,/ne/n<CR>

This is the first line of text.
This is a second line,
and this is the third line
This is the fourth line.
five

six

seven

etght

nine

© 00 =3 D Lide Co 2O M

ICON/UXV USER GUIDE 5-29

LINE EDITOR TUTORIAL (ed)

SUMMARY OF DISPLAY COMMANDS S

P Displays on your terminal the specified lines of text
in the editing buffer.

n Displays on your terminal the line address numbers
with the specified lines of text in the editing buffer.

CREATING TEXT

ed has three basic commands for creating new lines of text:

a Append text,
i Insert text, and
c Change text.
Appending Text 2
o«
A Create text after the specified line
in the buffer.
You have already used the append command in the Getting Started section of this tutorial.
The general format for the append command is:
[address1]a<CR>
The default for addressl is the current line. If you do not give a an address, ed will make
addressl the current line.
You have used the default address for a, now try using different line numbers for addressl.
In the next example, a new file called new-file is created. The first append command uses
the default address. The second append command uses addressl as 1. The lines are
displayed with n so that you can see the line addresses. I
_/"

5-30 ICON INTERNATIONAL

CREATING TEXT

$ ed new-file<CR>
new-file

a<CR>

Create some lines

of text in

this file.

<CR>

1,$n<CR>

1 Create some lines

2 of text in

8 this file.

1a<CR>

This will be line 2<CR>
This will be line 3<CR>

<L<CR>

1,$n<CR>

1 Create some lines
2 This will be line 2
8 This will be line 8
4 of text in

5 this file.

Notice that the address of the line "of text in" changes from two to four after you append
the two new lines.

Try out the following special addresses.

.a<CR> Append after the current line.
$a<<CR> Append after the last line of the file.
0a<CR> Append text before the first line of the file.

Each of these addresses is used to append text in the following examples.

ICON/UXV USER GUIDE 5-31

LINE EDITOR TUTORIAL (ed)

/'

<CR>
This is the current line
a<CR>

This line is after the current line. <CR>
LCR>

—1,.p<CR>
This 1s the current line.
This line is after the current line.

$a<CR>

This is the last line now.<CR>
<LCR>

$<CR>

This ts the last line now.

f

0a<CR>

This is the first line now.<CR>
This is the second line now.<CR>
The line numbers change<CR>

as lines are added. <CR>
LCR>

1,4n<CR>

1 This is the first line now.
This is the second line now.
The line numbers change

as lines are added.

S ot

5-32 ICON INTERNATIONAL

N

CREATING TEXT

The O0a command can be replaced by the next command, the insert command.

Inserting Text

The insert command creates text before a specified line in the editing buffer.

Insert text before the specified line.

The general format for i is the same as for a.
[address1]i<CR>

As with the append command, you can insert one or more lines of text. The text input
mode is always ended with a period alone on a line.

The example that follows inserts a line of text above line two; inserts a line of text above
the first line; and displays all the lines of the buffer with n.

ICON/UXV USER GUIDE 5-33

LINE EDITOR TUTORIAL (ed)

@
/'2i<CR>
Now this is line 2.<CR>
LCR>
1,$n<CR>
1 Line 1
2 Now this is line 2
8 Line 2
4 Line 8
5 Line 4
1i<CR>
In the beginning<CR>
1,$n<CR>
1 In the beginning
2 Line 1
8 Now this is line 2
4 Line 2
5 Line 8
6 Line 4
Take a few minutes to experiment with the insert command. Try out the special line
addresses.
Type in: Ji<CR> "
or
Type in: $i<CR>
Changing Text
The change text command erases all of the specified lines and creates new text beginning at
addressl. You can create one or more lines of text. The change command puts you in the
text input mode, so you must end the text input mode by a period alone on a line.
C Erase specified lines and
create new text.
Since ¢ can erase a range of lines, the general format for the change command gives both
addressl and address2. P
\/

5-34 ICON INTERNATIONAL

CREATING TEXT

[address1,address2]c<CR>

Addressl is the first line to be erased, and address2 is the last line of the range of lines to
be replaced by new text. If you only want to erase one line of text, you would use only
addressl. If you do not type in addressl, ed assumes the current line is addressl.

The next example changes a range of lines. The first five lines are displayed with n. Then

lines one through four (1,4c) are changed. The lines in the buffer are displayed after the
change.

r

1,5n<CR>
1 Line 1
2 Line 2
8 Line 8
4 Line 4
5 Line 5
1,4c<CR>

Change line 1<CR>

and hne 2 through 4<CR>
<CR>

1,$n<CR>

1 Change line 1

2 and line 2 through 4

8 Line 5

Now experiment with ¢. Try changing the current line.

/.<CR>

This 1s the current line.

c<CR>

I am changing the current line. <CR>
LCR>

<L<CR>

I am changing the current line.

If you are not sure you have left the text input mode, it is a good idea to type in the period

a second time. If the current line is displayed, you know you are in the command mode of
ed.

ICON/UXV USER GUIDE 5-35

LINE EDITOR TUTORIAL (ed)

-

SUMMARY OF CREATE COMMANDS

a Append text after the specified line in the buffer.
i Insert text before the specified line in the buffer.
c Change the text on the specified lines to new text

End the text input mode with a period alone on a line,
and return to ed command mode.

EXERCISE 3

3-1. As an experiment, create a new file ez8. Instead of using the append command to
create new text in the empty buffer, try the insert command. What happened?

3-2. Enter the file towns into ed. What is the current line?
Insert above the third line:
Nlinois<CR>
Insert above the current line:

or<CR>
Naperville<CR>

Insert before the last line:
hotels in<CR>
Display the text in the buffer preceded by line numbers.

3-3. In the file towns, display lines one through five and replace lines two through five
with:

London<CR>
Display lines one through three.
3-4. After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

N

Replace:
5-36 ICON INTERNATIONAL

EXERCISE 3

Toledo
with:
Peoria

Display the current line.

3-5. With one command line search for and replace:

New York
with:
Iron City

DELETING TEXT

This section of the tutorial discusses the delete commands:
d Delete lines in the command mode;
u Undo the last command;

or <BACK SPACE> Delete characters in the text input mode; and

@ Delete a line of text in the text input mode or delete the
current command line.

Deleting Lines of Text

You have already deleted lines of text with the delete command d in the section of Getting
Started.

Delete one or more lines of text.

The general format for d is:
[address1,address2]d<CR>

You can delete a range of lines, addressl through address2, or you can delete one line using
only addressl. If no address is given, ed assumes you want to delete the current line.

ICON/UXV USER GUIDE 5-37

LINE EDITOR TUTORIAL (ed)

The next example displays lines one through five and then deletes the range of lines two ;/
through four. N

1,5n<CR>

1 1 horse

2 2 chickens

8 8 ham tacos

4 4 cans of mustard
5 5 bails of hay
2,4d<CR>
1,$n<CR>

1 1 horse

2 5 bails of hay

How would you delete only the last line of a file?

O
($d<CR> o

How would you delete the current line? One of the most common errors in ed is forgetting
to end the create mode with a period. A line or two of text that you do not want may be
added to the buffer. In the next example, the print command is accidentally added to the
text before the create mode is ended. Then the current line, the print command, is deleted.

a<CR>

Last line of text<<CR>
1,$p<CR>

<L<CR>

p<CR>

1,%p

d<CR>

p<CR>

Last line of tezt.

Remember that 1,$p prints every line of the buffer. R

5-38 ICON INTERNATIONAL

[e

DELETING TEXT

Before you do much experimenting with the delete command, you may first want to learn
about the u command.

Undo the Last Command

The undo command will erase the effect of the last command and restore any text that had
been added, changed, or deleted by that command.

Undo the last command.

If you create new text, change lines of text, delete lines of text, or read new lines into the
file, u undoes the eflect of these commands. (The read command will be discussed in the

section on Moving Text). Since u undoes the last command, it does not have any addresses
or arguments. The general form is:

u<CR>

u does not undo the write command or the quit command. However, u will undo an undo
command.

One example of the u command is restoring deleted lines. If you delete all the lines in the
file and then type in p, ed will respond with a ¢ since there are no more lines in the file.
Type in u and all lines of the file will be restored.

(1,$d<CR>
p<CR>
?

u<CR>
p<CR>
This is the last line

Now try u on the append command.

ICON/UXV USER GUIDE 5-39

LINE EDITOR TUTORIAL (ed)

/.<CR>
This is the only line of text
a<CR>
Add this line<CR>
<CR>
1,$p<CR>
This is the only line of text
Add this line
u<CR>
1,$p<CR>
This is the only line of text

Deleting Commands in the Text Input Mode

Deleting the Current Line

The @ will delete the current line of typing. The line will not be erased from your
terminal, but will end with an @ sign and the cursor will move to the next line. When you
end the create mode and display the lines of text, the deleted line will not appear.

@ Delete the current line
in the text input mode.

5-40 ‘ ICON INTERNATIONAL

DELETING TEXT

[

a<CR>

I don’t want to add this @
a new line of text<CR>
<CR>

1,$p<CR>

a new line of text

The above example begins creating a new file. The first line is deleted in the text input
mode, therefore, only the second line is displayed by the 1,$p command. @ will also delete
the current command line. If you make an error typing in a command, type in @ instead
of <CR> and ed will ignore the command. In the next example, an incorrect address is
given, so the command line is cancelled with @.

\‘ 1,$d@
1d<CR>

Deleting the Last Characters Typed

If you only made a mistake in typing the last few characters, the # or
<BACK SPACE> can delete those characters if you have not pressed <CR>.

F# Delete the last character
just typed into the buffer.

ICON/UXV USER GUIDE 5-41

LINE EDITOR TUTORIAL (ed)

g?gg Delete the last character just

typed into the buffer.

The <BACK SPACE> key will delete characters if you have changed your environment
to include this command. (See Chapter 7, Shell Tutorial for changing your environment.)

/a<CR>

This is a typoo#<CR>
<CR>

<CR>

This 1s a typo

In the above example, the extra o in typo was deleted by #. When the line is displayed the
error is gone.

You must enter a # for each character that needs to be erased or retyped. In the following

example, the error is corrected and new characters follow the last #. (The
<BACK SPACE> will back up over the characters.)

/

a<CR>

To the IRS, I mail a check<CR>

for one hun##+#thousand dollars. <CR>
<CR>

<CR>

for one thousand dollars.

If you press <CR> before you correct the error, it is too late to correct the error in the
text input mode. However, once you have left the text input mode, the substitute
command, discussed in the next section, can solve your problem.

5-42 ICON INTERNATIONAL

DELETING TEXT

Create a junk file and practice each of these four commands until you are comfortable with |

(A) them.

SUMMARY OF DELETE COMMANDS

In the command mode:

d Delete one or more lines of text.
u Undo the last command.
@ Delete the current command line.

In the text input mode:

@ Delete the current line.

or
<BACK SPACE> Delete the last character typed in.

SUBSTITUTING TEXT

q You can modify your text with the substitute command s.

Replace a pattern of characters with new text.

The substitute command replaces the first occurrence of a string of characters with new
text. The general format is:

[address1l,address2]s/old text/new text/[command]<CR>

Since this is a more complicated format than the preceding commands, let’s look at it piece
by piece.

address 1 and address2
The range of lines being addressed by s. The address can be one line,
addressl, a range of lines addressl through address2 or the global search

(address. If no address is given, ed will make the substitution on the
- current line.

ICON/UXV USER GUIDE 5-43

LINE EDITOR TUTORIAL (ed)

The substitute command, which is positioned right after the line address. (

/old text/

The text to be replaced. It is usually delimited by backslashes, however, it
can be delimited by other symbols such as ? or a period. The old text
matches the first occurrence of the words or characters to be replaced.

/new text/
The text that replaces the old text. It is placed between the second and

third delimiters and replaces the old text between the first and second
delimiters.

command
This may be one of four commands that can be placed after the last
delimiter. The commands are:
g Change all occurrences of old text on the specified lines.
1 Display the last line of substituted text including nonprinting
characters. (See last section of this chapter entitled Other Useful

Commands and Information.)

n Display the last line of the substituted text preceded by the line o
number. e

p Display the last line of substituted text.

Substituting on the Current Line

The simplest example of the substitute command is making a change to the current line.
You do not need to give the line address for the current line.

s/old text/new text/<CR>

In the next example, a typing error was made on the current line. The example displays
the current line, then makes the substitution to correct the error. The old text is the ai of
airor, the new text is er.

5-44 ICON INTERNATIONAL

SUBSTITUTING TEXT

Pp<CR>

In the beginning, I made an airor
s/ai/er /<CR>

p<CR>

In the beginning, I made an error

Did you try out the example? Did you notice ed was quiet and gave no response to the
substitute command? You either have to display the line with p or n, or place p or n on
the substitute line. The example below substitutes file for toad.

p<CR>

This is a test toad

s/toad /file/n<CR>

1 This 1s a test file

ed has a short cut for you. If you leave off the last delimiter of the substitute command,
the line will automatically be displayed.

Pp<CR>

This is a test file
s/file/frog<CR>
This 1s a test frog

Substituting on One Line

To substitute on a line that is not the current line, use addressl.

[addressl]s/old text/new text/<CR>

In this example, the current line is line three. Line one will be corrected.
ICON/UXV USER GUIDE 5-45

LINE EDITOR TUTORIAL (ed)

1,3p<CR> -
Thas is a pest toad - -
testing testing

come in toad
<CR>

come in toad

1s /pest /test <CR>
This is a test toad

Notice that the last delimiter was omitted and ed printed out the line.

Substituting on a Range of Lines

If you want to make a substitution on a range of lines, you can specify the first address,
address], through the last address, address2.

[addressl,address2]s/old text/new text/<CR>

If ed does not find the pattern to be replaced on one of the lines, no changes are made to
that line. In the next example, all the lines in the file are addressed for the substitute
command. However, only the lines that contain the old text, es, are changed.

1,$p<CR>

This 1s a test toad
testing testing

come in toad

testing 1, 2, 8
1,$s/es /ES /n<CR>

4 tESting 1, 2, 8

When you specify a range of lines, p or n on the substitute line only prints out the last line
changed.

To display all the text that was changed use n or p alone in a command line.

5-46 ICON INTERNATIONAL

SUBSTITUTING TEXT

1,$n<CR>

1 Thss ts a tESt toad
2 tESting testing

8 come in toad

4 tESting 1, 2, 8

Notice only the first occurrence of "es" is changed on line 2. How do you change every
occurrence?

Global Substitution

One of the most versatile tools in ed is global substitution.

Global substitution or search.

If you place the g command after the last delimiter of the substitute command, you will
change every occurrence on the specified lines. Try changing every occurrence of es in the
last example. If you are following along, doing the examples as you read this, remember
you can use u to undo the last substitute command.

«

ICON/UXV USER GUIDE 5-47

LINE EDITOR TUTORIAL (ed)

u<CR>
1,$p<CR>

This s a test toad
testing, testing
come in toad
testing 1, 2, 8
1,3s/es /ES /g<CR>
1,$p<CR>

This ts a tESt toad
tESting tESting
come in toad
tESting 1, 2, 8

Another way to do the above example is to use the global search as an address instead of

the range of lines one through the last line (1,$).

1,$p<CR>

This is a test toad
testing testing
come in toad
te/sting /1,/2, 7E /
g/test /s /es [ES /g<CR>
1,$p<CR>

This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 8

If the global search pattern is unique, and is the same as the old text to be replaced, you
can use an ed shortcut. You do not need to repeat the pattern for the old text. ed
remembers the search pattern and uses it again as the pattern to be replaced.

g/old text/s//new text/g<CR>

5-48

ICON INTERNATIONAL

()

SUBSTITUTING TEXT

1,$p<CR>

This ts a test toad
testing testing
come m toad
testin

s/esf //ES/g<CR>

Thzs isa tESt toad
tESting tESting
come in toad
tESting 1, 2, 8

Experiment with the other search pattern addresses:

/pattern<CR>
?pattern<CR>
v/pattern<CR>

See how they react with the substitute command. In the example below, the v/pattern is
used to locate the characters in that are NOT in the word testing.

v /testing/s/in /out<CR>
This ts a test toad
come out toad

If you leave off the last delimiter all search addresses will print out including the ones
where no substitution occurs.

g/testing/s//jumping<CR>
]umpmg testing
jumping 1, 2, 8

Notice that the global search substitutes for only the first occurrence of testing in each

ICON/UXV USER GUIDE 5-49

LINE EDITOR TUTORIAL (ed)

line. The lines are displayed on your terminal because the last delimiter is missing.

EXERCISE 4

4-1. In your file towns change town to city on all lines but the line with little town on it.

The file should read:

My kind of city is

London

Like being no where at all in
Peoria

I lost those little town blues in
Iron City

I lost my heart in

San Francisco

I lost $$ in

hotels in

Las Vegas

4-2. Try using ? as a delimiter. Change the current line
Las Vegas

to
Toledo

You could also use the change command ¢, since you were changing the whole line.
4-3. Try searching backward in the file for the word
lost
and substitute
found
using the ? as the delimiter. Did it work? (The last line of the file is the current line.)
4-4. Search forward in the file for
no
and substitute

NO

for it. What happens if you try to use ! as a delimiter?

5-50 ICON INTERNATIONAL

N

EXERCISE 4

Experiment with the various combinations of addressing a range of lines and global
searches.

What happens if you try to substitute for the $$? Try to substitute for the § on line nine
of your file.

Type in: 98/$/Big $<CR>

What happened?

9s/$/Big$<CR>
I found $$ in Big $

The substitution did not work correctly because $ is a special character in ed. It will be
discussed next in the section on special characters.

SPECIAL CHARACTERS
If you tried to substitute for the $ in the line

I lost my $§ in Las Vegas

you would find that instead of replacing the $, the new text was placed at the end of the
line. The § is a special character meaning the end of the line.

ed has several special characters that give you a shorthand for search patterns and
substitution patterns. The characters act as wild cards. If you have tried to type in any of
these characters, the result was probably different than what you had expected.

ICON/UXV USER GUIDE 5-51

LINE EDITOR TUTORIAL (ed)

The special characters are:<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>