
UCRL- 102663
PREPRINT

The Livermore Distributed Storage System:
Implementation and Experiences

Joy Foglesong
George Richmond
Loellyn Cassell
Carole Hogan
John Kordas

Michael Nemanic

This paper was prepared for the
Tenth IEEE Symposium on Mass Storage Systems

Monterey California
May 1990

January 1990

fJU NO I MICROFILM
COVER

OF THIS 00C«»T ISW*

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful­
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

THE LIVERMORE DISTRIBUTED STORAGE SYSTEM;
IMPLEMENTATION AND EXPERIENCES

Joy Foglesong, George Richmond, Loellyn Cassell,
Carole Hogan, John Kordas, Michael Nemanic

UCRL—102663

DE90 007257

Lawrence Livermore National Laboratoiy
Livermore, California

ABSTRACT

The LINGS Storage System (LSS) has been in
production at Lawrence Livermore National
Laboratory since January, 1988. In the devel­
opment of the LSS, the designers made key
architectural decisions which included the
separation of data and control messages, a
network-wide locking mechanism, and the
separation of the naming mechanism from
other object managers. Other important issues
of the system deal with space management,
descriptor management, and system adminis­
tration. This paper outlines the LSS software
system and then focuses on these key design
decisions and issues with the intent of providing
some insight into the types of difficulties
designers face in developing a distributed
storage system.

OVERVIEW OF THE SOFTWARE SYSTEM

The LINGS Storage System (LSS) is based on
the IEEE Mass Storage Reference Model1 and
integrates host, central, and archival storage
systems into one transparent, logical system
(see Figure 1). The host system storage media
consists of solid state and rotating disks on lo­
cal machines. The central system medium is a
collection of magnetic disks on the storage ma­
chine. The archival system medium is
cartridge tape kept either in on-line robotic
devices or in off-line vaults.

The software components of the LSS were de­
signed to operate as servers on a distributed

network.2 Their design extends the classic
client-sever model through the use of multitask­
ing within servers and clients to support con­
current access to objects. The two main types of
LSS servers are name servers, which translate
human-oriented names to machine-oriented ob­
ject identifiers, and bitfile servers, which man­
age access to bitfiles on disk or on archival me­
dia (currently model 3480 tape cartridges). Host
machines and the storage computer have name
servers that manage name/object identifier
pairs, bitfile servers that manage bitfiles on the
various storage media, and bitfile movers that
move bitfiles between archival tape and central
disk and between host bitfile servers and the
central server.**

In the remainder of this section we briefly out­
line the abstract objects managed by the storage
system and the major components of the system.
The two main abstract objects of the LSS are the
bitfile, implemented by the bitfile servers, and
the directory, implemented by the name servers.
A bitfile is viewed as a descriptor and a body.
The descriptor contains attributes of the bitfile,
such as the time the bit segment was last written
and the bitfile size. The body is a sequence of
uninterpreted, logically contiguous bits. The
operations that can be performed on the body
include functions such as create, destroy, read,
and write. Fields of the bitfile descriptor can be
read with the interrogate operation and, when
allowed, written with the change operation. A
directory is viewed as a descriptor and a list of
entries. The descriptor contains attributes of the
directory such as the time an entry was last
inserted or deleted and the number of entries
contained in the directory. An entry is a
human-name/object-identifier pair. Directo­
ries may be created, destroyed, or listed and

In Figure 1, the bitfile movers are repre­
sented by the arrows between the servers.

entries may be created, deleted, fetched or
renamed. As with the bitfile descriptor, fields
in the directory descriptor may be read with the
interrogate operation and written with the
change operation.

The name servers provide a transparent nam­
ing service based on the use of unique, network­
wide object identifiers for all resources. Object
identifiers in the system have the same struc­
ture regardless of the type of object they identify.
This allows objects of varying types to be cata­
loged in the same directory, providing a uni­
form naming mechanism across all objects.
Since the directory object identifiers are also
globally unique and can be stored in directo­
ries, a logically single, hierarchical, directed-
graph directory structure can be built. This
structure supports name transparency; transla­
tion of a pathname initiated from any site in the
network always references the same object.
Furthermore, there is no necessary relationship
between the directory location and the location of
the objects cataloged in the directory. To help
reduce network delay when accessing a direc­
tory, it is planned that the host name servers
will cooperate with the central name server to
cache and migrate directories.

The bitfile servers provide network-wide ran­
dom access to bitfiles. The design model for the
integrated network bitfile system is to have
fully integrated host, central, and archival bit-
file servers and movers which support auto­
matic migration throughout the entire storage
hierarchy. The connection between the central
and host bitfile servers is not yet fully imple­
mented. However, the current bitfile system
hierarchy is integrated from the central bitfile
server through the archive's off-line vault vol­
umes. When the bitfile system is fully inte­
grated, a client on a host will request a bitfile
access from his local server. If the local server
has no knowledge of the bitfile being requested it
will contact the central server. The central
server will find the bitfile, which may reside on
another host machine or on central media or in
the archive, and send a copy to the requesting
host bitfile server. Until the hierarchy is fully
connected, a client on a host machine may ac­
cess a bitfile managed either by the central or by
the archival bitfile server through direct com­
munication with the central server or by invok­

ing a utility that copies the bitfile to a local bit-
file server.

The central and archival levels of the storage
hierarchy are integrated, using a 200-gigabyte
disk cache as a front-end to tape. As new bitfiles
accumulate, they are automatically written to
tape. The descriptors for all bitfiles on tape are
maintained on disk for easy access. On a read
request, a bitfile is automatically cached from
tape to the disk cache. Bitfiles are purged from
the disk cache using a bitfile-size-time-of-last-
access algorithm.

Using this overview as background, we now fo­
cuses on several key design decisions and is­
sues.

SEPARATION OF CONTROL AND DATA

The separation of control and data messages in
the LSS improves transfer rates and allows
third-party copies during which data does not
pass through bitfile server buffers. Data asso­
ciated with reads or writes is received or sent on
a data communication association (source-
destination address pair) separate from the con­
trol communication associations; see Figure
2a. The third-party copy model is illustrated in
Figure 2b. This design can create a pipe-line of
services as shown in Figure 2c.

The optimization of third-party copies is sup­
ported by receive-any and send-any mecha­
nisms in the LINGS message-system interface.
These mechanisms use association capabilities
called stream numbers to make communica­
tions secure; associations are defined by the
triple (source address, destination address,
stream number). The receive-any and send-
any mechanisms allow a process to declare that
it is willing to receive or send messages with
one or more members of the triple unspecified—
i.e., any source, or any destination, or any
stream number. For example, the third-party
copy protocol uses the receive-any by indicating
a specific destination address and a specific
stream number but an unspecified source ad­
dress; a rendezvous occurs when a message ar­
rives matching the receive-any's specific desti­
nation address and specific stream number.
The third-party copy protocol uses the send-any
by indicating a specific source address and a
specific stream number but an unspecified des­

tination address. The message is flow-blocked
at the source machine until an ack with the spe­
cific source address and stream number is re­
ceived by the source machine, completing the
rendezvous by matching the acknowledging
destination address with the any-destination
address.

The third-party copy utilizes these mechanisms
in the following protocol. When a controlling
process requires data to be moved between sec­
ond and third processes, it first sends a message
to the second, over a control association, that in­
cludes: an indication that the process is to use
the send- or receive-any mechanism in the data
transfer, an indication whether the process will
send or receive data, and a stream number. In
response, the second process will: 1) invoke a
receive-any, if receiving data, or a send-any, if
sending data, using the stream number re­
ceived from the controlling process and 2) send
a message back to the controlling process con­
taining its local data address used in invoking
the receive- or send-any. The controlling pro­
cess then sends a message to the third process
that includes: an indication that the process is to
use a send- or receive-specific in the data trans­
fer, an indication whether the process will send
or receive data, the data address received from
the second process, and the stream number. In
response, the third process invokes a receive-
specific, if receiving data, or a send-specific, if
sending data, using the data address and
stream number received from the controlling
process. The any message of the second process
will rendezvous with the specific data message
or specific ack of the third process and the data
will flow directly between these processes.
When the data transfer is complete both source
and sink processes send a message to the con­
trolling process acknowledging completion of
the transfer (see Figure 3).

The LSS utilizes bitfile movers to actually
transfer the data. A bitfile mover performs data
transfer directly between channels such as
memory or networks or devices such as disk or
tape. In our UNIX implementations, the bitfile
movers have been implemented as either nor­
mal user processes or as kernel entities, the
former for portability and the latter for perfor­

mance. All bitfile movers use the same com­
munication and lightweight tasking libraries,
whether in kernel or user space. On a single
machine, data is transferred by the mover be­
tween a device and application memory; over a
network, data is actually moved directly be­
tween bitfile movers. For a full discussion of
the bitfile movers, see reference 3.

Because the LSS separates data and control mes­
sages and utilizes the mover processes, the bit-
file servers never touch the sequence of bits in
the bitfile body. This not only avoids data copy­
ing when only one machine is involved in a
transfer, but it is also important when a pro­
gram on machine A invokes a transfer of all or
part of a bitfile from machine B to machine C.
The program on machine A controls the move­
ment of the data but the data flows directly from
machine B to machine C. This architecture
gives designers the flexibility to place data
movement control on lower-performance ma­
chines without impacting the performance of the
system.

The LSS experience with separation of data and
control messages has shown this mechanism to
be valuable for both performance and modular­
ity.

ARCHIVAL SPACE MANAGEMENT

Storage technology is failing to keep pace with
the rapid growth of supercomputer memory ca­
pacities. It has been the experience at Lawrence
Livermore National Laboratory (LLNL) that a
small number of large bitfiles can occupy a
large part of the system's storage resources.
These bitfiles are the results of scientific simu­
lations and their sizes are proportional to super­
computer memory size. The capacity of new
robotic libraries, such as the STC 4400, once
thought to be adequate, will soon be insufficient
to handle the data produced at a large scientific
laboratory. To fully utilize available on-line
robotic devices, the LSS completely fills each
tape cartridge by writing data until an end-of-
file error is received. A tape may hold many
files or a file may span many tapes. The LSS
also manages the on-line archive as a level in
the storage hierarchy. Inactive bitfiles migrate
to lower-level, off-line vault volumes when on­
line archival space is needed; bitfiles in the

3

vault are moved up to the on-line robotic devices
as they are accessed.

Algorithms used to manage space on magnetic
disks cannot be used to manage archival media
that do not provide random write access. To
reuse free space on a magnetic tape the active
data on the tape must first be copied to a new vol­
ume, an operation called repacking. Since
copying is an expensive operation, only vol­
umes with a considerable amount of free space
should be repacked.

The necessity of repacking to reclaim unrefer­
enced space affects the criteria by which LSS bit-
files are chosen to migrate to the vault. While it
is desirable to use a space-time product algo­
rithm that allows smaller bitfiles to remain
higher in the hierarchy longer than larger bit-
files, it is not desirable to migrate a few short
bitfiles from many robotic tape cartridges to
vault cartridges if the space released by these
bitfiles does not make any of the robotic tapes
candidates for repacking. Only bitfiles that to­
gether account for enough free space on their
volumes should be migrated to the vault.

In the LSS, the archival server maintains a
table of the current number of referenced blocks
on each archival volume. The server main­
tains a minimum number of free volumes by
repacking volumes on which less than half of
the data blocks are referenced. If there are not
enough free blocks on candidate volumes, it mi­
grates bitfiles to the vault according to a space-
time algorithm, except that bitfiles are migrated
only if they result in volumes becoming candi­
dates for repacking. Migrating bitfiles rather
than volumes to the vault minimizes the number
of active bitfiles in the vault and minimizes the
number of cartridges handled manually
(particularly convenient since LLNL's vault
and on-line facilities are located in different
buildings).

ARCHIVAL FILE DESCRIPTOR
MANAGEMENT

In the LSS, bitfile descriptors for bitfiles man­
aged by the archival server are kept on dedi­
cated, redundant disk for fast queries and up­
dates and to add flexibility in assigning the
physical location of the bitfile body. Because the
bitfile descriptors are vital to the system, great

care is taken to ensure their integrity and re­
covery.

To ensure the integrity of the bitfile descriptors,
atomic transactions are used to perform updates
to the duplicated disks. To protect against mul­
tiple disk failures, a log of all descriptor inser­
tions, deletions, and modifications is main­
tained. Sixteen descriptor updates (contents of
one physical disk sector) are collected in an in­
ternal buffer before being atomically written to
disk. The buffer is also flushed to disk every
two minutes if not enough updates have been col­
lected. The log is also written to tape periodi­
cally to guard against the loss of the log disks.
Since recovery after many months of updates
from an incremental log would be slow, a com­
plete tape backup of all the archival server disks
is performed weekly. To recover from a catas­
trophic failure, the incremental log from the last
week is applied to the latest full backup.

File descriptor management in the LSS ensures
fast access and data integrity at a moderate cost.
In twenty-five years of operation of the LSS and
the predecessor system, no failures occurred that
required accessing the backup tapes.

FILE SYNCHRONIZATION

To preserve a bitfile’s consistency when it is ac­
cessed concurrently by multiple applications,
the LSS uses a distributed locking mechanism
with notification instead of lifetime timeout; an
application maintains a lock until it is finished
accessing the bitfile or it is notified that another
application is interested in accessing the bitfile.
When an application receives a notification it
may release the lock and allow access to the bit-
file by the other application or it may refuse to
give up the lock. An application might reason­
ably keep bitfiles locked for months if no other
application wishes to access them, so locks do
not timeout. If an application holding a lock
does not respond to a request to release the lock, a
lock-breaking mechanism can be used by the
requesting application to recover the lock.

The LSS locking mechanism is based on classic
read/write locks,4 with extensions for notifica­
tion and lock breaking. A lock held by a user
application may span many read and write ac­
cesses, whereas the bitfile servers lock objects
only for individual accesses. There are three

4

types of locks: no-lock, read-lock and write-
lock. A write-lock allows both reading and
writing by the client holding the lock. There
may be multiple concurrent read-locks on a bit-
file allowing multiple readers, but a write-lock
excludes all other readers and writers. Locks
may be categorized into levels, with the highest
level being a write-lock and the lowest level be­
ing a no-lock. Each bitfile server manages
locks for its own clients.

The lock operations on a bitfile include set-lock,
reduce-lock and break-lock. Set-lock is used by
clients either to set a lock or to lower the level of
a lock on a bitfile. Reduce-lock is used to ask a
client to lower or release its lock on a bitfile. A
client sends a break-lock request to a bitfile
server to break a lock held by a client that is
down. The granularity of locking is a bitfile. A
lock request includes a bitfile identifier, a lock
type, and a notification address, which is the re­
questing client's address in the case of a set-
lock, and the lock holder's address as well in
the case of a reduce- or break-lock. The notifi­
cation address in a lock is used to identify the
lock holder.

Crash recovery considerations for locking in­
clude: 1) how to proceed when a bitfile server is
unavailable, and 2) how to restore lock state
when a bitfile server reinitializes after a crash.
If a bitfile server fails to respond to a reduce lock
request, causing the requesting bitfile server to
refuse an application access to a bitfile, then the
application may send a break lock request. In
the LSS, breaking a lock invalidates changes
that were made while the lock was in effect. A
client would choose this action only when losing
updates is preferable to waiting for the bitfile
server to return to service.

ADMINISTRATIVE REQUIREMENTS OF A
DISTRIBUTED FILE SYSTEM

We have identified six administrative require­
ments for the LSS: 1) to ensure fair use of stor­
age, 2) to ensure efficient use of storage, 3) to
achieve high performance, 4) to minimize cost,
5) to provide for accountability of storage re­
sources, and 6) to permit cost recovery. The pro­
posed method for meeting these requirements is
a combination of charging and allocation.
Charging refers to a mechanism by which users
are charged for the storage resources (space and

transfers) they consume. Allocation refers to a
mechanism for ensuring that each user or group
of users has an appropriate share of the avail­
able storage resources.5 In this section, we will
focus on the difficulty of designing mecha­
nisms that are consistent with the administra­
tive requirements and with the design goal of
location transparency and with user expecta­
tions.

The predecessor system to the LSS, which con­
trolled only central and archival storage,
lacked adequate administrative measures. It
allowed unrestricted, free use of storage, and
provided no incentive for users to restrict the
amount of data they generated, or to delete un­
wanted data. On the host disks, storage was also
free, but an attempt was made to restrict the
amount of data on disks by purging idle bitfiles.
This measure proved to be ineffective. To pre­
vent their bitfiles from being purged, users sim­
ply ran applications that periodically touched
their bitfiles to keep them active.

To dispel the notion of free storage, a new charg­
ing policy was implemented in the early days of
the LSS. The motivation behind this initial pol­
icy was to recover the cost of the system and to
discourage users from maintaining all of their
bitfiles on expensive fast-access storage. The
algorithm for computing charges was [bitfile-
length times bitfile-age times charge-rate],
where the charge rate varied from one storage
device to another. The bitfile age was the
smaller of the time since last charged or the
time since creation. The information needed to
compute the charge was collected weekly as each
bitfile server traversed its descriptors. A sepa­
rate utility computed charges based on the re­
ports from each LSS server, decremented user
bank accounts accordingly, and produced
billing reports.

The problem with this scheme is that the same
bitfile is multiply charged if it happens to reside
on more than one bitfile server. This is the case,
for example, when a central bitfile is cached on
a host disk. The appearance of multiple charges
for the same bitfile, and of charges that reflect
the location of bitfiles in the system, clearly de­
feats the system design goal of transparency.
Mechanisms to remedy this problem are being
considered. One such mechanism allows users
to classify bitfiles as active, archival, etc., to

5

help them control their costs and to improve the
effectiveness of migration algorithms. We are
also considering a fixed rate that is independent
of the storage medium. As an interim fix, the
system has been changed to charge only for bit-
files stored on archival volumes.

Charging alone does not meet all of the admin­
istrative requirements. Because there are phys­
ical limits to a storage system and because
purely economic factors do not seem to be ade­
quate, we are considering allocation limits to
ensure fair sharing of storage resources and to
ensure good performance of the system. The
proposal we have adopted, though not yet imple­
mented, includes two types of allocation, global
and disk. Global allocation applies to the total
space acquired at all levels of storage, includ­
ing host disk, central disk, and archival tape.
Each user has a global allocation, which is an
upper limit on the total amount of data a user
may store. Once this limit is reached, the user
may not create more bitfiles, or extend existing
bitfiles, until he generates free space by destroy­
ing bitfiles.

Disk allocations apply only to host and central
disk. Users have maximum disk allocations
but are allowed to exceed their allocations if
space allocated to other users is not in use.
When space is needed, bitfiles belonging to
users who have exceeded their allocations are
migrated first. For host disk, users also have
minimum disk allocations. Users’ bitfiles will
not migrate if their space utilization falls below
this amount.

Designing adequate charging and allocation
schemes for a transparent system poses a diffi­
cult challenge. Charging schemes that strive to
do accurate cost recovery are inherently incon­
sistent with the goal of transparency. There is
much to learn about selecting and implement­
ing effective administrative policies in these
areas.

NETWORK-WIDE NAMING MECHANISM
AND USER EXPECTATIONS

Before we implemented a network-wide nam­
ing mechanism, the LSS was a distributed sys­
tem but not a transparent one. Users were aware
of object location and had to explicitly invoke
transfer routines to move bitfiles between host

machines and the central server. Inactive host
bitfiles were automatically destroyed, and ac­
cess to archival bitfiles was relatively slow.
The central name server and each host main­
tained separate, unconnected directory struc­
tures which did not migrate between machines.
As a result of this environment, users wrote pro­
grams to keep bitfiles on host disks by periodi­
cally accessing bitfiles stored on the hosts.
Users resisted the idea of location transparency
because it meant they would lose control of ac­
cess time.

Location transparency was achieved in two
phases. The first included creation of a net­
work-wide directory structure, for name trans­
parency; and the second implemented caching
and migration of directories, for performance.
In the first phase, we connected the directory
structures stored on the host machines with the
directory structure in central. Central and
archival bitfiles and central directories could
then be cataloged in directories on the host ma­
chines and vice versa, creating a transparent,
cross-machine naming structure. Because bit-
files and directories have globally unique
identifiers, the storage system could locate the
resources regardless of the directory in which
they were cataloged and regardless of which
server managed the resource.

In this strange, new storage world, users be­
came frustrated when they unknowingly
crossed machine boundaries in perusing
through their directory structures because per­
formance suddenly declined. Yet, many re­
sisted the idea of caching and migration of bit-
files and directories to improve performance;
these users desired to control location of their
bitfiles and directories to ensure fast access.
We believe, however, that the system can best
manage object location, much as demand pag­
ing systems manage virtual memory.

There are two significant lessons to be learned
from our experience. First, when creating a
transparent storage system it is important to
achieve transparency in all aspects before
putting the system on-line. Second, in present­
ing a new storage system to users, system de­
signers need to carefully consider what the
users expect and educate them about the differ­
ences in the new system.

SEPARATION OF HUMAN NAMING FROM
OTHER OBJECT SERVERS

When considering a human-oriented naming
mechanism for a distributed storage system, de­
signers must choose between one that is integral
to the object managers, such as UNIX and CFS,
and one that is isolated in separate name man­
agers, such as XDFS and ALPINE.6 We chose
the latter design, recognizing that it has both ad­
vantages and disadvantages. The advantages
of a separate naming mechanism include:
1) providing a uniform mechanism for naming
many different types of objects, not just bitfiles;
2) providing all other servers independence
from human-oriented naming conventions, al­
lowing them to function in a variety of user en­
vironments;7 3) permitting the other servers to
be optimized to manage their own objects without
the need to deal with human-oriented naming
issues;8 4) permitting new types of objects to be
named in the same way as existing objects, fa­
cilitating extensibility;9 5) permitting several
forms of application-dependent and general-
purpose higher-level name services to be pro­
vided in addition to a particular directory ser­
vice;8 and 6) permitting applications to create,
access, and destroy objects without storing the
object identifiers in any name service.9

The disadvantages of a separate naming mech­
anism, discussed below, include: 1) compli­
cating certain aspects of storage management;
2) requiring additional security mechanisms;
and 3) causing performance degradation in a
particular class of applications.

We believe that the advantages of a separate
naming mechanism outweigh the disadvan­
tages and that the LSS has achieved those advan­
tages. In particular, a separate naming mech­
anism allows the bitfile servers of the LSS to be
integrated with the naming mechanism of any
existing operating system. We are now work­
ing on minimizing the effects of its disadvan­
tages, as described below.

Storage Management

The LSS servers will perform functions given a
valid object identifier containing the appropri­
ate access rights. The general availability of
certain server functions, in combination with
the separation of the name servers from the other

object servers, has consequences for storage
management. Specifically, clients have the po­
tential of creating lost objects, objects for which
there are no extant identifiers, and of creating
dangling pointers, identifiers no longer point­
ing to valid objects. Lost objects are created
when a client deletes all references to the object
without destroying the object. Dangling point­
ers are created when a client destroys an object
but does not delete all the references to it.

The problems of lost objects and dangling point­
ers can be solved by correctly managing refer­
ence counts and by prohibiting explicit destroys
of objects. A count of all references to it is kept
with each object as part of its storage manage­
ment state. When the count becomes zero,
meaning the object is no longer referenced, the
space it occupies can be reclaimed for further
use. All applications in the LSS environment
that store identifiers to objects need to increment
and decrement reference counts correctly to
protect against lost objects and delete object
references before destroying objects to protect
against dangling pointers. For example, name
servers should send increment and decrement
messages to the object servers when objects are
inserted and deleted from directories. When
the reference count goes to zero, the object can be
implicitly destroyed.

However, the increment- and decrement-
reference-count functions are not controlled by
the current LSS access control mechanism and
therefore may be invoked by any client possess­
ing a valid machine-oriented identifier.
There is no way to ensure that clients will in­
voke the reference-count functions correctly.
Furthermore, there is no way to guarantee that
all naming services or applications that store
object identifiers will correctly increment and
decrement the reference counts as objects are in­
serted and deleted from their databases.
Similarly, there is no way to guarantee that all
object references are deleted before the object is
explicitly destroyed. In these circumstances,
reference counts cannot be relied upon to re­
claim storage space.

One solution to these problems is to allow only
trusted naming applications to invoke the incre­
ment- and decrement-reference-count and de­
stroy functions and to require clients to store
machine-oriented identifiers only in these ap­

7

plications. The additional access control nec­
essary to implement trusted applications could
be obtained through several mechanisms in­
cluding rights amplification capabilities, rights
verification servers, or access lists. The LSS
name servers would be the initial set of trusted
applications, but it would be reasonable to in­
clude any naming service that could establish
its correct use of reference-count and destroy
functions. Of course, a requirement to use a re­
stricted set of applications to catalog object iden­
tifiers would restrict clients’ ability to use their
own naming services.

Security

Security is affected in two ways by the separate
naming mechanism. First, it is hampered
when a client, possessing a valid object identi­
fier, maliciously or inadvertently destroys an
object still being referenced by other clients by
sending repeated decrement-reference-count
functions to the object server. Likewise, too
many increment requests can prevent an ob­
ject's implicit destruction, leaving the object
available for continued access after it should
have been destroyed. This problem is solved by
the same trusted-naming-application mecha­
nism suggested above that solves the storage
management problems.

Second, in an environment with a separate
naming mechanism, clients can obtain,
through several server functions, a machine-
oriented object identifier for use as parameters
in subsequent function requests to the servers
(e.g., read and write). Because clients can pos­
sess machine-oriented identifiers, there must be
security mechanisms to prevent the client from
changing the identifier to another valid identi­
fier and to protect identifiers against the threats
of forgery, theft, and reuse. In the LSS, the ma­
chine-oriented identifiers are encrypted by
servers using a DES10 cryptographic checksum,
to prevent client tampering and to protect
against forgery. Encryption algorithms exist
which also protect against theft and reuse,11 but
they are not used in the LSS because they were
determined to be unnecessary in LLNL's secure
physical environment. Because the LSS does
not protect against theft and reuse, users must
exercise care in storing the machine-oriented
identifiers: storing indentifiers in trusted

name servers is safe; storing them on worksta­
tions may be unsafe.

Performance

Separation of the naming mechanism from the
other object servers has both a positive and a
negative impact on performance. Separation of
human naming from other object servers has
had a positive impact on performance through
modularity. The modularity gained from sepa­
rating the naming mechanism from the object
servers is observed in two important areas.
First, software errors pertaining directly to the
name translation code do not affect the object
servers. Additionally, hardware failures af­
fecting a given name server do not disturb other
object servers on remote machines. If a name
server were to go down for a period of time due to
either of these causes, all applications which had
previously translated their human-oriented
names into machine identifiers could continue
processing. Moreover, if the period of down time
for the name server were short, an application
may not even notice that the naming service had
been interrupted.

The second modularity advantage of a separate
naming mechanism is the efficiency gained in
other object servers by being independent of
human-oriented naming conventions. The
name server acts as an intermediary between
the human world and machine processes. No
other object server need contain algorithms
which parse the strings of human names or
package them for passing in messages.
Instead, the object servers deal only with
machine-oriented identifiers which can be
easily interpreted and utilized.

However, performance suffers when an applica­
tion requires the attributes of the objects con­
tained in a directory. This type of application,
such as the UNIX Is utility, first must contact the
name server to obtain a list of machine-oriented
object identifiers. Because the name server does
not contain other information about the objects,
the application must then contact the object
servers to obtain the desired attributes. Since the
name server has been generalized to store ob­
jects of many different types, the application
may have to contact several object servers.
Performance improvement techniques to limit
this disadvantage are being designed and im-

pletnented. For example, the caching and mi­
gration of objects will help improve perfor­
mance by causing both directories and other ob­
jects to be locally cached, resulting in faster ac­
cess times.

The separation of the naming mechanism from
the other object servers in the LSS has given the
system and its clients flexibility, extensibility,
and modularity not found in integral naming
mechanisms. Although this separation has dis­
advantages, techniques exist to lessen their im­
pact. Moreover, the system’s flexibility and
modularity allow it to be used under client inter­
faces that present the conventional, integrated
view. In this environment, the user applica­
tions would not suffer from most of the disad­
vantages discussed above, yet the system would
benefit from most of the advantages of a separate
naming mechanism.

CONCLUSION

This paper discusses several key design goals
and implementation areas of the LSS that sup­
port its extensibility, its modularity, and its
flexibility. The separation of data and control
messages has had a positive impact on perfor­
mance and modularity by allowing third-party
copies without the actual passing of data through
the bitfile servers. Efficient management of
storage media and bitfile headers has increased
storage utilization and provided integrity of the
header information. A network-wide locking
mechanism has been designed that preserves an
object's consistency when accessed concur­
rently by multiple applications. The separation
of the human-oriented naming mechanism
from the other object servers has given the sys­
tem and its clients flexibility, extensibility, and
modularity not found in an integral naming
mechanism.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contributions of
Samuel S. Coleman, and Richard W. Watson
in the design of the LSS and in helping us bring
this paper to fruition. We also thank Mark R.
Gary, and Richard P. Ruef for their invaluable
work in the development of the LSS. This work
was performed by Lawrence Livermore
National Laboratory under contract number

W-7405-Eng-48 under auspices of the U.S.
Department of Energy.

REFERENCES

1. Stephen W. Miller, "A Reference Model for
Mass Storage Systems", Advances In
Computers, Vol. 27, 1988, pp. 157 - 209.

2. Carole Hogan, Loellyn Cassell, Joy
Foglesong, John Kordas, Michael
Nemanic, and George Richmond, “The
Livermore Distributed Storage System:
Requirements and Overview,” DIGEST OF
PAPERS, Tenth IEEE Symposium on Mass
Storage Systems, May 1990.

3. Mark Gary, “Overcoming Unix Kernel
Deficiencies in a Portable, Distributed
Storage System,” DIGEST OF PAPERS,
Tenth IEEE Symposium on Mass Storage
Systems, May 1990.

4. Andrew S. Tanenbaum, “File Systems,”
Operating Systems: Design and Imple­
mentation, Prentice-Hall, Englewood
Cliffs, New Jersey, 1987, pp. 273-277.

5. Ralph Carlson and Carole Hogan, “A
Model Recharge System for the LCC,”
Lawrence Livermore National Laboratory,
internal publication, May 5, 1988.

6. Liba Svobodova, “File Servers for Network-
Based Distributed Systems,” Computing
Surveys, Vol. 16, No. 14, December 1984,
pp.353-398.

7. Samuel S. Coleman, “Storage in
Supercomputer Environments,” Proceed­
ings, Cray User Group, June 1988, pp.
423-428.

8. R. W. Watson, “Identifiers (naming) in
distributed systems,” in B. W. Lamp son,
M. Paul, and H. J. Siegert (eds.),
Distributed Systems: Architecture and
Implementation, Springer-Verlag, New
York, 1981, pp. 191-210.

9. Samuel S. Coleman and Richard W.
Watson, “Designing Archival Storage
Systems for Distributed Supercomputer

9

Environments,” submitted for Computer,
May 1990.

10. National Bureau of Standards, Federal
Information Processing Standards, Publ.
46,1977.

11. J. E. Donnelley and J. G. Fletcher,
“Resource Access Control in a Network
Operating System,” Proceedings, ACM
Pacific Conference, November 1980.

FIGURES

ProcessProcess

Control

Association

Association

Process
Control

Association

Figure 2b. Third-Party Copy

HostBHost A

Bitfile
Server ServerServer

Central
Bitfile
Server

Central
Name
Server

Storage
Machine

Archival
Bitfile
Server

Figure 1. LSS Hierarchy

---------- —

Process
1

^ Control ^
Process

2
^ Association^

Data AssociationJ
Figure 2a. Separation of Control and Data

Process

Source .ompresi

Encrypt

Figure 2c. Pipeline

Process

Process

Association

Figure 3. Third-Party Copy Protocol

