 EE

.

Nu Machine UNIX Programmer’s Manual
- Volume 2
TI-2242809-0001
Novembe:, 1683

Distributed by LMI 6033 W. Century Blvd. Los Angeles CA 90045
o ' : Usa

EN

“weo

-

-

Copyright © 1983 Texas Instruments All rights reserved.

The information and/or drawings set forth in this document and all rights in and to
inventions disclosed herein and patents which might be granted therein disclosing or
employing the materials, methods, techniques of apparatus described herein, are the
exclusive property of Texas Instruments Incorporated.

Portions of this document were copyrighted 1979 Bell Laboratories Incorporated, 1980
Western Electric Company Incorporated, 1983 Western Electric Company Incorporated.

UNIX*™ is a trademark of American Telephone & Telegraph.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIX?T operating system. Its features inciude control-flow primitives, parameter
passing, variabies and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, whzch allows command procedures to be
stored for later use.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

S. R. Bourn.e

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.

The first section covers most of the everyday requirements of terminal users. Some familiarity -

with UNIX is an advantage when reading this section; see, for example, "UNIX for beginners".!
Section 2 describes those features of the shell primarily intended for use within shell pro-
. cedures. These include the control-flow. primitives and string-valued variables provided by the
shell. ‘A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "see
_pipe’ (2)" are to a section of the UNIX manual.?

1.1 Sirllple commands

1 ' .
Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For exampie, !

who
is a command that prints the names of users logged in. The command
| Is —-1

prints a list of files in the current directory. The argument —/ tells /s to print status informa-
tion, size and the creation date for each file.

1.2 Ba#kgmund commands
To execute 2 command the shell normaily creates a new process and waits for it to finish. A
comma&xd may be run without waiting for it to finish. For example,

ccpgmec &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports| its process number following its creation. A list of currently active processes may be
obtainjd using the ps command.

1.3 Input output 'r_edirection

Most c}omm'ands produce output on the standard output that is initially connected to the termi-
nal. This output may be sent to a file by writing, for example,

Is =1 >file

The notation > file is interpreted by the shell and is not passed as an argument to /s. If file does.

not exist then the shell creates it; otherwise the original contents of file are replaced with the
output from /s. Output may be appended to a file using the notation

~

Is =i >>file

In this case file is also created if it does not alréady exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for exampie,

we <file

The command we reads its standard input (in this case redirected from file) and prints the -
number of characters, words and lines found. If only the number of lines is required then

could be used.

1.4 Pipelines and fiters
The standard output of one command may be connected to the standard -input of another by

writing the ‘pipe’ operator, indicated by 1, as in,
Is—1 1 we

Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is =1 >file; we <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by haiting we when
there is nothing to read and haiting /s when the pipe is full. : :

A filter is a command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

Is | grep old

prints those lines, if any, of the output from /s that céntain the string o/d. Another useful filter
is sorr. For example, '

who | sort

will prini an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is | grep oid | wc -I
prints the number of file names in the current directory containing the string o/d.

1.5 File name generation ‘ .
Many commands accept arguments which are file names. For example,
Is ~1 main.c
prints information relating to the file main.c. _
The shell provides a2 mechanism for generating a list of file names that match a pattern. For
example,
Is -l =*c

generates, as arguments 10 /s, ail file names in the current directory that end in .c. The charac-
ter * is a pattern that will match any string including the null string. In general patterns are
specified as follows. '

-3-

Matches any string of characters including the null string.
Matches any single character.

Matches any one of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

3 %

—
.
-
.
S

For example,
“ [a-z]»
matche§ all names in the current directory beginning with one of the letters a through -.
‘ /usr/fred/test/? ‘
matches all names in the directory /usr/fred/test that consist of a single character. If no file

name is found that matches the pattem then the pattern is passed, unchanged, as an argument.

This m%chamsm is useful both to save typing and to select names according to some. pattem It
may also be used to find files. For example,

echo /usr/fred/*/core

finds alld prints the names of all core files in sub-directories of /usr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requmng a scan of all sub-directories of /ust/fred.

There x§ one exception to the general rules given for patterns. The character ‘.’ at the start of a

file name must be explicitly matched.
'T ~ echo*
will therefore echo all file names in the current directory not beginning with *.’.
w echo .»

will eclllo all those file names that begin with ‘.. This avoids inadvertent matching of the
names .’ and ‘..’ which mean ‘the current directory’ and ‘the parent directory’ respectively.
(Notice’ that /s suppresses information for the files ‘.’ and *..".)

1.6 QuI)tmg .

Characters that have a special meaning to the shell, such as < > » ? | &, are called metachar-

acters. | A complete list of metacharacters is given in appendix B. Any character preceded by a
\is quoted and loses its special meaning, if any. The \ is elided so that

\
‘ echo \?
will echo a single ?,and
' echo \\

will echo a single \. To allow long stnngs to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos-
ing the‘ string between single quotes. For example,

’ echo xx s»»»'xx
will echo
‘ XXSRBBYX

The q oted string may not contain a single quote but may contain newlmes, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

<4

-A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not ail metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is ‘S . It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string vesdear. If a newline is typed and further input is needed
then the shell will issue the prompt *> ’. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com-
mand. This prompt may be changed by saying, for exampie,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If
the user’s login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

® Is
Print the names of files in the current directory.
L] Is > file)

Put the output from /s into file.
® Is| wec-—i
Print the number of files in the current dxrectory

e Is | grepold
Print those file names containing the string o/d.

® Is | grepold | we —I
Print the number of files whose name contains the string o/d.

® cc pgm.c &
Run c¢c in the background.

2.0 Sh ‘ll procedures _
The sh%ll may be used to read and execute commands contained in a file. For example,
sh file {args ...]

calls mg shell to read commands from file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi-
tional parameters $1, $2, For example, if the file wqcontams

who | grep $1
then
‘ sh wg fred
is equi\)alent to
who | grep fred

UNIX files have three independent attributes, read, write and execue. The UNIX command
chimod (l) may be used to make a file executable.. For.example,. - . Ce

chmod +x wg
will ensure that the file wg has execute status. Following this, the command
wg fred

is equivalent to
sh wg fred

This all‘ows shell procedures and programs to be used interchangeably. In either case a new
process |is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as $0.

A specxal shell parameter $# is used to substitute for all positional parameters except 80 A
typical use of this is to provide some default arguments, as in,

| nroff =T450 —ms $*

which sTmply prepends some arguments to those already given.

2.1 Control flow - for

A freqqent use of shell procedures is to loop through the arguments (S$1, $2, ...) executing

commands once for each argument. An example of such a procedure is ref that searches the file
/usr/liﬂ/telnos that contains lines of the form

l fred mh0123
bert mh0789

ce

The texi of tel is

fori
do grep Si /usr/lib/teinos; done

The command
tel fred -

prints t 10se lines in /usr/lib/telnos that contain the string fred.

tel fred bert

prints those lines containing fred followed by those for berr.
The for loop notation is recognized by the shell and has the general form
for name in wi w2 ...

do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. name is a shell variable that is set to the words w/ w2 ... in
turn each time the command-list following do is executed. If in w/ w2 ... is omitted then the
loop is executed once for each positional parameter; that is, in $*is assumed.

Another example of the use of the for loop is the creare command whose text is
for i do >3Si; done

The command
create alpha beta“

ensures that two empty files a/pia and bera exist and are empty. The notation > file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new-
line) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For exampie,
case $# in
1) cat >>81 :;
2) cat >>82 <31 :;

*) echo ‘usage: append [from] to" ;;
esac

is an append command. When called with one argument as
append file
$# is the string / and the standard input is copied onto the end of file using the car command.
append filel file2
appends the contents of file/ onto file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.
The general form of the case command is
case word in
pattern) command-list 33

esac

The shell attempts to match word with each patrern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com-
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

case $# in
*) ...
*) .0
esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

fori
do case $i in
~{ocs]) Jee
—=) echo ‘unknown flag $i’ ;:
=) /lib/c0 $i ...
s) echo ‘unexpected argument $i’ i;
esac
done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a | . For example,
case Si in
—xl=-y) ...
esac

is equivalent to
case $i in
—ixyD cee

esac

The usual quoting conventions apply so that

case Si in

D e | :

will match the character 2.

The shell procedure ref in section 2.1 uses the file Jusr/lib/telnos to supply the data for grep.

2.3 Here documents
i
An alte%’native is to include this data within the shell procedure as a here document, as in,

for i
do grep Si <<!
fred mh0123
. bert mh0789

o

1
; done
In this iexample the shell takes the lines between <<! and ! as the standard input for grep.

The string ! is arbitrary, the document being terminated by a line that consists of the string foi-
lowinng<< . - :

Parameters are substituted in the document before it is made availabie to grep as illustrated by
~ the following procedure called edg.

ed $3 <<%
g8/S1/s//82/g
w

%
The call

edg stringl string?2 file
is then equivaient to the command

ed file <<% .
g/stringl/s//string2/g
w

%

and changes all occurrences of stringl in file to siring?2. Substitution can be prevemed ‘using \-to
quote the special character $ as in

ed 83 <<+
1,\8s/81/82/g

w
+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i <<\#

#
The document is presented without modification to grep. If parameter substitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box =m000 acct =mh0000

which assigns values to the variables user, box and acct. A vanable may be set to the null
string by saying, for example,

nujl =
The value of a variable is substituted by preceding its name with $; for example,
echo Suser

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b==/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen-
eral notation is available for parameter (or variable) substitution, as in,

echo ${user}
which is equivalent to

echo Suser

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmpla

will direct the output of ps to the file /tmp/psa, whereas,

ps a >3tmpa

would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initially by the shell. $? is set after executing each com-

mand.
$?

a

sv

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). .Used,. for example, in-the

append command to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/ps$S

rm /tmp/psS$SS

The process number of the last process run in the background (in decimal).
The current shell flags, such as ~x and -v.

Some anables have a special meaning to the shell and shouid be avoided for general use.

SMAIL

When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last

looked at the shell prints the message vou have mail before prompting for the

next command. This variable is typically set in the file .profile, in the user’s
login directory. For example,

MAIL = /usr/mail/fred

SHOME The default argument for the cd command. The current dlrectory is used to

SPATH

resolve file name references that do not begin with a /, and is changed using the
¢d command. For example,)

cd /usr/fred/bin
makes the current directory /usr/fred/bin.
cat wn

- will print on the terminal the file wn in this directory. The command c¢d with no

argument is equivalent to
cd SHOME

This variable is also typically set in the the user’s login profile.

A list of directories that contain commands (the search path). Each time a com-
mand is executed by the shell a list of directories is searched for an executable

-10 -

file. If SPATH is not set then the curreﬁl directory, /bin, and /usr/bin are

searched by default. Otherwise SPATH consists of directory names separated by

:. For example, ‘
PATH == :/usr/fred/bin:/bin /usr/bin

specifies that the current directory (the null string before the first :),
/ust/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own ‘private’ commands that are accessible
independently of the current directory. If the command name contains a / then
this directory search is not used:; a single attempt is made to execute the com-
mand.

8PSt The primary shell prompt string, by default, *§".

$PS2 The shell prompt when further input is needed, by defauit, *> °.

SIFS The set of characters used by hlank interpretation (see section 3.4).

2.5 The test command .
The 1est command, aithough not part of the shell, is intended for use by shell programs. For
example,)

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general resr evaluates
a predicate and returns the result as its exit status. Some of the more frequently used ress argu-
ments are given here, see resr (1) for a complete specification.

tests true if the argument s is not the null string
test —{ file true if file exists '
test —r file true if file is readable

test —w file true if file is writable
test —d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data. available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

while command-lisi,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list, is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

while test $1
do...

shift
done

is equivalent to

for i
do...
done

shifi is a shell command that renames the positional parameters $2, $3, ... as $1, $2, ... and
loses $1.

-11-

Another kind of use for the while/until loop is to wait until some external event occurs and

ple,

until test —f file
do sleep 300; done
commands

will 1001‘: until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presum’ably another process will eventually create the file.)

2.7 Control flow - if

Also available is a general conditional branch of the form,

if command-list

then command-list
else command-list
fi

that tests the value returned by the last simple command foilowing if.

The if command may be used in conjunction with the /esr command to test for the existence of
a file as in
if test —f file

then process file

w else do something else
1 fi

An example of the use of if, case and for constructions is given in section 2.10.

A multiple test if command of the form
\

ir LR

then ces

else if ...
then ...
else if voo

fi

fi

fi

may be |written using an extension of the if notation as,

if L 2

then *e 0

elif ves

then ...

elif ces

A

The fol}owing example is the rouch command which changes the ‘last modified’ time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

then run some commands. In an until loop the termination condition is reversed. For exam-

o

i

-12-

flag=
for i
do case $i in _
—c) flag=N :; -
*) if test —f Si
‘ then In S$i junkS$$; rm junk3$
elif test $flag
then echo file \'Si\’ does not exist
else >8i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not

already exist. Otherwise, if the file does not exist, an error message is printed.. The shell. vari-. -

able flag is set to some non-null string if the —¢ argument is encountered. The commands
In...om...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written
| commandl && command2
Conversely,
commandl | | command2
executes command2 only if command! fails. In each case the value returned is that of the last
simple command executed. o

2.8 Command grouping
Commands may be grouped in two ways,

{ command-list 3}
and

(command-list)

In the first comunand-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands ’

cd x; rm junk
have the same effect but leave the invoking shell in the directory x.

-13-

|

|
2.9 Defbugging shell procedures
The stie!l provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

‘ ©set —v , _

(v for iverbose) and causes lines of the procedure to be printed as they are read. It is useful to
help is}olate syntax errors. It may be invoked without modifying the procedure by saying

sh —v proc ...

1
\
|
where proc is the name of the shell procedure. This flag may be used in conjunction with the
—~n flag which prevents execution of subsequent commands. (Note that saying ser —n at a ter-
minal will render the terminal useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set —
and thl; current setting of the shell flags is available as $~—.

2.10 ﬁhe man command

The fdllowing is the man command which is used to print sections of the UNIX manual. It is
called,j for exargple. as :

man sh
man —t ed
man 2 fork

In the first the manual section for sk is printed. Since no section is specified, section 1 is used.
The second example will typeset (—t option) the manual section for ed. The last prints the fork
manual page from section 2.

-14-

cd /usr/man

: “colon is the comment command’
: “default is nroff (SN), section 1 (Ss)°
Nmp g=e]

for i
do case Ji in

[1-9]*) s=S$i;;

~1) Na=t;;

=n) N=n;

~#*) echo unknown flag \"$i\" ;;

*) if test —f manSs/3i.8s
then S${Njroff man0/${N}aa man$s/$i.Ss
else :’look through all manual sections’
found=no
forjin123456789
do if test —=f man$;j/$i.5j
then man $j $i
found=yes
" fi
done
case $found in
_ no) echo “Si: manual page not found’
esac

esac
done

Figure 1. A version of the man command

3.0 Keyword parameters

Sheil ‘vanables may be given values by assxgnmem, or when a shell procedure is invoked. An
argument to a sheil procedure of the form name=value that precedes the command name
causes value to be assigned t0 name before execution of the procedure begins. The vaiue of

name in the invoking shell is not affected. For example,
user=fred command

will execute command with user set to fred The —k flag causes arguments of the form
name ™value to be interpreted in this way anywhere in the argument list. Such names are some-
times |called keyword parameters. If any arguments remain they are available as positional
parameters S, %2,....

The ser command may aiso be used to set positional parameters from within a procedure For
example,

| set —

will se.‘t $1 to the first file name in the current directbry, $2 to the next, and so on. Note that

the first argument, —, ensures correct treatment when the first file name begins with a —.

|

3.1 Parameter transmission

When| a shell procedure is invoked both positional and keyword paraméters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

4

export user box

marks‘ the variables user and box for export. When a shell procedure is invoked copies are
made ‘oi‘ all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request.
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. 'I'he form of this
commrnd is the same as that of the exporr command,

readonly name ...

Subsechuent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari-
able d|is not set

echo $d
or
echo ${d}

will echo n_othiné. A default string may be given as in
echo ${d-.}

which will echo the value of the variable d if it is set and ‘.” otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d—"*"}
will echo # if the variable d is not set. Similarly

-16 -

echo ${d—$1} : i}

will echo the value of d if it is set and the vaiue Gf ény) of $1 otherwise. A variabie may be
assigned a default value using the notation

echo S{d=.}
which substitutes the same string as
echo 3{d-.}

and if d were not previously set then it will be set to the string *.’. (The notation ${...=...} is
not available for positional parameters.)

" If there is no sensible default then the notation
echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the sheil and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: ${user?} S{acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variabies user, acct or bin are not set then the shell will abandon -
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command -

d="pwd’
is equivalent to
d=/usr/fred/bin
The entire string between grave accents (...") is taken as the command to be executed and is

replaced with the output from the command. The command is written using the usual quoting
conventions except that a * must be escaped using a \ . For example,

. Is “echo "$1"
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a cc command.
case SA in

;':c) B="basename SA .c’

tee

€sac

i
°
|
!

-17-

that sets: B to the part of SA with the suffix .¢ stripped.
Here aref. some composite examples. '

|
|
|

foriin’ls —t;do...
The variable i is set to the names of files in time order, most recent first.

set ‘date’; echo $6 $2 $3, 4
will print, exg., /977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substmmon, command substitution and
file name generation for the arguments to commands. This section discusses the order in which

these eva

luations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com-

mand is
°

executed the following substitutions occur.

parameter substitution, e.g. Suser
command substitution, e.g. ‘pwd’
Only one evaluation occurs so that if, for example, the value of the variable X is the
string Sy then
echo $X

will echo Jy.
blank interpretation

Following the above substitutions the resuiting characters are broken into non-blank
words (blank interpretation). For this purpose ‘blanks’ are the characters of the
string SIFS. By default, this string consists of blank, tab and newiine. The null
string is not regarded as a word unless it is quoted. For example,

o

echo
will pass on the null string as the first argument to echo, whereas
echo 3null

will call echo with no arguments if the variable nuill is not set or set to the null
string.

file name generation B

Each word is then scanned for the file pattern characters », ? and [...] and an alpha-
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associdted with a for loop. Only
substitution occurs in the word used for a case branch.

As well as

the quoting mechanisms described earlier using \ and "..." a third quoting mechan-

ism is p&'owded using double quotes. Within double quotes parameter and command substitu-
tion occurs but file name generation and the: interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

S parameter substitution
' command substitution
ends the quoted string
\ quotes the special characters $° " \

For example,

echo "$x"

-18 -

will pass the value of the variable x as a single argument to echo. Similarly,

’ echo "S**

will pass the positional parameters as a single argument and is equivalent to
echo "S1 82 ..."

The notation $@ is the same as $* except when it is quoted.
echo "S@" :

will pass the positional parameters, unevailuated, o echo and is equivalent to
echo "S1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated. '

meracharacter

\ $ - . " ’
: n n n n n t
' y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mé.chanisms

In cases where more than one evaluation of a string is required the built-in command eval/ may
be used. For example, if the variable X has the value 3y, and if y has the value pgr then

eval echo $X '
will echo the string pgr.

In general the eva/ command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For exampie,

wg="eval wholgrep’
Swg fred

is equivalent to
wholgrep fred

In this example, eval is required since there is no interpretation of metacharacters, such as |,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con-

nected to a terminal (as determined by gryy (2)). A shell invoked with the —i flag is also
interactive.

Execution of a command (see also 3.7) may fail fc;r any of the following reasons.

e Input output redirection may fail. For example, if a file does not exist or cannot be
created.

-19-

e Th¢ command itself does not exist or cannot be executed.

° Th¢ command terminates abnormaily, for example, with a "bus error” or "memory fauit".
See Figure 2 below for a compiete list of UNIX signals. .

® The command terminate's normally but returns a non-zero exit status.

In all of ‘these cases the shell will go on to execute the next command. Except for the last case
an error ‘message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter-
minal. Such errors include the followmg

® Syztax errors. e.g., if ... then ... done

® A signal such as interrupt. The shell waits for the current command, if any, to finish exe-
cm on and then either exits or returns to the terminal.

e Faxlure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any error is detected.

1 hangup

2 interrupt

3 quit

4* illegal instruction

5* trace trap

6 IOT instruction

7' EMT instruction

8* floating point exception

9 kill (cannot be caught or 1gnored)

10* bus error
1* segmentation violation
2* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (from kil (1))

Figure 3. UNIX signals

Those sihnals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this

list of pTemial interest to sheil programs are 1, 2, 3, 14 and 15.

3.6 Faul‘t handling

Shell pr?cedures normally terminate when an interrupt is received from the terminal. The wrap
command is used if some cleaning up is required, such as removing temporary files. For exam-

ple,
trap ‘rm /tmp/ps33; exit® 2

sets a trap for s:gnal 2 (termmal interrupt), and if this signal is received will execute the com-
mands

rm /tmp/psSS; exit

exit is ahother built-in command that terminates execution of a shell procedure. The exit is
reqmred otherwise, after the trap has been taken, the shell will resume executing the pro-

cedure a‘t the place where it was interrupted.
UNIX sxgnals can be handled in one of three ways. They can be ignored, in which case the sig-

nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

-20-

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com-
mands (and the signal) are ignored.

The use of ap is illustrated by this modified version of the rouck command (Figure 4). The
cleanup action is to remove the file junk$S.
trap ‘rm —f junk3S$; exit’ 123 15
for i
do case 3i in
—¢) flag=N :;
*) if test —f $i
then In $i junk$S; rm junk$$

elif test Sflag
then echo file \"$i\" does not exist
else >Si
fi
‘esac

done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise .it would be pos-
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the sheil to indicate the commands to be exe-
cuted on exit from the sheil procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the noAup command.

trap "12315
which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
commands. ;
Traps may be reset by saying

trap 2 3

which resets the traps for Signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of wrap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

-21 -

. d="pwd’
foriin®*
do if test —d Sd/$i
then cd 3d/3i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval 3x; done
fi
done

Figure 5.. The scan command

read x is :a\ built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received 5

3.7 Command execution

To run a/command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
commanq exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like
trap” 12315

exec 3*

The trap turns off the signals specified so that they are ignored by subsequently created com-

mands ar‘xd exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the foilowing word is
only subject to parameter and command substitution. No file name generation or blank

mterpreu‘mon takes place so that, for example,

i echo ... >*.¢

| .
will write; its output into a file whose name is *.c. Input output specifications are evaluated left
to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist.

>> word The standard output is sent to file word If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word

<< word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub-

* stitution occur and \ is used to quote the characters \ $ ° and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

C <& digit The standard input is duplicated from file descriptor digit.

[

22 -

<&— The standard input is closed.
>&—~ The standard output is closed.
Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the defauit 0 or 1. For example,
ees 2>file
runs a command with message output (file descriptor 2) directed to Jile.
eee 22&1

runs a command with its standard dutput and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as
list*c !l lpr&

is modified in two ways.- Firstly, the default standard input for such a command is the empty
file /dev/null. This prevents two processes (the sheil and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signais so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the sheil command rap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

—=C siring ‘
If the —c flag is present then commands are read from swing.

—s If the —s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

—i If the —i flag is present or if the sheil input and output are attached to a terminal (as told
by gry) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not Kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell. :

Acknowledgements

The design of the shell is based in part on the original UNIX shell® and the PWB/UNIX shell, 4
some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access System’ and of CTSS.6 .

1 would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. | am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

.23.

Refereﬁces

1. BJW. Kernighan, UNIX for Beginners, Bell Laboratories internal- memorandum (1978).

. K

Thompson and D. M. Riwchie. U~y Programmer's Manual, Bell Laboratories (1978).

Seventh Edition.

3. K

Thompson, **The UNix Command Language,” pp. 375-384 in Sructured

_ Programming—Infowch Swate of the Art Report, Infotech International Ltd., Nicholson

Ho

use, Maidenhead. Berkshire, England (March 1975).

4.). R. Mashey, PWBIUNIX Shell Tumnal. Beil Laboratories internal memorandum (Sep-
tember 30, 1977).

F. Hartley (Ed.). The Cambridge Multiple Access Svstem — Users Reference Manual,

University Mathematical Laboratory, Cambridge, England (1968).

. A. Crisman (Ed.), The Compaitible Time-Sharing System, M.1.T. Press, Cambndge. Mass.

(1965).

;W":\l

-2%.

Appendix A - Grammar .

item: word
input-output
name = value

simple-<command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline | command

andor: pipefine
andor && pipeline
andor | | pipeline ,

command-list: andor
command-{ist ;
' command-list &
command-list 3 andor
command-list & andor

input-output: > file

< file
>> word
<< word
Jile: word
& digit
& -
case-part: patiern) command-list 33
patiern: word
patern | word
else-part: elif command-list then command-list eise-part
else command-list
empty
empuy:
word: a sequence of non-blank characters
name: a sequence of letters, digits or underscores starting with a letter

digit: 0123456789

a)%

<25 .

Appendix B - Meta-characters and Reserved Words

yntactic
| pipe symbol
&& ‘andf” symbol
1 ‘orf” symbol _
; command separator

33 case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document
> output creation

>> output append

b) patterns

- match any character(s) including none
match any single character
l...] match any of the enclosed characters

-~

¢) substitution

${...] substitute shell variable

. .

.« Substitute command output

uoting
\ quote the next character
‘.. quote the enclosed characters except for

«" quote the enclosed characters except for $ '\ *

eserved words

if then else elif fi
case in esac
fmi while until do done

A

A Tutorial Introduction to the UNIX Text Editor

Brian W. K ernz‘glréin

Bell Laboratories ‘ 4 s
Murray Hill, New Jersey 07974 S

ABSTRACT

Almost all text input on the UNiXxt operating system is done with the text-
editor e This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users’ day-to-day needs. This includes printing, appending, changing, deleting,
moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; the global commands;
and the use of special characters for advanced editing.

September 21, 1978

TUNIX is a Trademark of Bell Laboratories.

lmroductjion

£d is a ““text editor™, that is, an interactive

program §for creating and. modifying ‘‘text™,
using directions provided by a user at a terminal.

The text is often a document like this one; or a -

program or perhaps data for a program.
|

This introduction is meant to simplify learn-
ing ed. The recommended way to learn ed is to
read this /document, simultaneously using ed 0
follow the examples, then to read the description
in section 1 of the UNIX Programmer's Manual, all
the while‘experimeming with ed. . (Solicitation of
advice fro;m experienced users is also useful.)

Do the exercises! They cover material not
completely discussed in the actual text. An
appendix ‘summarizes the commands.

Dischim:er

This is an introduction and a tutorial. For
this reascim, no attempt is made o cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and freqhenlly used parts). When you have
mastered | the Tutorial, try Advanced Editing on
UNIX. A}so, there is not enough space to explain
basic UNI‘X procedures. We will assume that you
know hov‘.v to log on to UNIX, and that you have
at least a vague understanding of what a file is.

For more} on that, read UNIX for Beginners.

You must also know what character o type
as the end-of-line on your particular terminal.
This cha}racxer is the RETURN key on most ter-
minals. ‘il'hroughout, we will refer to this charac-
ter, whatever it is, as RETURN.

|

|
Getting Started

We'll assume that you have logged in to your
" system apd it has just printed the prompt charac-
ter, usually either a $ or a %. The easiest way to

getedis ‘to type

ed (followed by a return)

You are now ready to go — ed is waiting for you
to teil it what to do.’

~ A Tautorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Creating Text — the Append command **a”

As your first problem, suppose you want to
create some lext starting from scrawch. Perhaps
you are typing the very firsi draft of a paper:
clearly it will-have to start somewhere, and
undergo modifications later. This section will
show how to get some text in, just to get started.

. Later we'll talk about how to change it.

When e¢d is first staried, it is Tather like work-
ing with a blank piece of paper — there is no
lext or information present. This must be sup-
plied by the person using ¢d; it is usually done by
typing in the text, or by reading it into ed from a
file. We will start by typing in some texi, and
return shortly to how to read files.

. First a bit of terminology. In ed jargon, the
text being worked on is said to be “‘kept in a
buffer.”” Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what 10 do to his text by
typing instructions called ‘‘commands.”” Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separale line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected — we will discuss these
shortly.) Ed makes no response (0 most com-
mands — there is- no prompling or typing of
messages like “‘ready™. (This silence is preferred

by experienced users, but sometimes a hangup)

for beginners.)

The first command is append, written as. the
letter

all by itself. It means “‘append (or add) text
lines to the buffer, as | type them in.”" Append-

"ing is rather like writing fresh malerial on a piece

of paper.

So to enter lines of text into the buffer, just
type an a followed by a RETURN, followed by

the lines of text you want, like this:

a
Now is the time

for all good men :

to come to the aid of their party.

The only way lo siop appending is to type a
line that contins only a period. The **.”" is used
to tell ed that you have fnished appending.
(Even experienced users forget that ierminalting
. sometimes. If ed seems to be ignoring you,
type an extra line with just **."" on it. You may
then find you've added some garbage lines to
your text, which you'll have 1o ake out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The **a2” and **."” aren’t there, because they are
not text.

To add more text to what you already have,
just issue another 2 command, and continue typ-
ing.

Error Messages = **?**

If at any time you make an error in the com-
mands you lype (0 ed, it wiil tell you by typing.

?

This is about as cryptic as it can be. but with
practice, you can usually figure out how you
goofed.

Writing text out as a file — the Write command
R ‘Qw,'
It’s likely that you'll want to save your text
for later use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the filename you want {0 write on.
This will copy the buffer’'s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named junk, for example, type

w junk

Leave a space between w and the file name. Ed
will respond by printing the number of characters
it wrote out. In this case, ed would respond with

68

{Remember that blanks and the return character
at the end of each line are included in the char-
acter count.) Writing a file just makes a copy of

the text — the bulfer’s contents are not dis-
turbed, so you can go on adding lines to it. This
is an importani point. £d at all iimes works on a
copy of a file, not the file itself. No change in
the contents of a file takes place uatil you give a
w command. (Writing out the text onio a file
from time to time as it is being created is a good
idea, since if the system crashes or il you make
some horrible mistake, you will lose all the text
in the buffer but any ext that was written onto a
file is relatively safe.)

Leaving ed — the Quit command *q”’

To terminate a session with ed, save the text '
you're working on by writing it onto a file using
the w command, and then type the command

q

which stands for quic The system: will respond
with the prompt character ($ or %). Al this
point your buffer vanishes, with all its text,
which is why you want to write it out before
quitting.t

Exercise 1:
Enter ¢d and create some text using

a
cootext. ..

Write it out using w. Then leave ed with the q
command, and print the file, 0 see that every-
thing worked. (To print a file, say

pr filename
or
cat filename
in response 10 the prompt character. Try both.)

Reading text from a file — the Edit command
b‘e”

A common way to get text into the buffer is
(o read it from a file in the file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edir com-
mand e fetches the entire contents of a file into
the buffer. So if you had saved the three lines
*Now is the time'", etc., with a w command in
an earlier session, the edcommand

e junk

would fetch the entire contents of the file junk
into the buffer, and respond

t Acwally, ed will print ? if you try 10 quit without writ-
ing. At that point. write il you want; if not, another g
will get you out regardiess.

68

which is the number of characters in junk. /f
anything \was already in the byffer, it is delerwed first.

If you use the e command to read a file into
the buffer, then you need not use a file name
after a subsequent w command; ed remembers
the last file name used in an e command, and w
will wnﬁ‘e on this file. Thus a good way to

operate is

ed -
e file-
[editing session]
w
q

This way, you can simply say w from time to
time, and be secure in the knowiedge that if you
got the ﬁle name right at the beginning, you are

writing |Tto the proper file each time.

You can find out at any time what file name
edis ren‘xembermg by typing the file command f.
In this erample, if you typed

£
ed woulﬁ reply

junk

Reading| text from a file = the Read command
Otr"

Sometimes you want to read a file into the
buffer without destroying anything that is already
there. This is done by the readcommand r. The
command

rjan
will read the file junk into the buffer; it adds it

to the end of whatever is already in the buffer.
Soif you doa read after an edit:

e junk

r junk
_the buffer will contain wo copies of the text (six
lines). |

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for} all good men
to come to the aid of their party.

kae the’ w and e commands, r prints the number
of characters read in, after the reading operauon
is complete.

Generally speaking, r is much less used than
e

Exercisé 2:

Experiment with the e command — try read-
ing and printing various files. You may get an
error ?name, where name is the name of a file;
this means that the file doesn't exist, typicaily
because you spelled the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

ed filename
is exactly equivalent to

ed
¢ filename

What does -
f filename
do?

Printing the contents of the buffer — ~ the Print
command *‘p”*

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print com-
mand

p

The way this is done is as follows. Specify the
lines where you want printing to begin and where
you want it to end, separated by a comma, and
followed by the letter p. Thus to print the first
two lines of the buffer, for example, (that is,
lines 1 through 2) say

1,2p (starting line=1, ending line=2 p)
Ed will respond with

Now is the time
for all good men

Suppose you want to print a/ the lines in the
buffer. You could use 1,3p as above if you knew
there were exactly 3 lines in the buffer. But in
general, you don’t know how many there are, so
what do you use for the ending line number? Ed
provides a shorthand symbol for ‘‘line number
of last line in buffer” — the dollar sign §. Use it
this way:

1,%p

This will print a/l the lines in the buffer (line 1 to0
last line.) If you want to stop the printing before

it is finished, push the DEL or Delete key; ed will

type
?
and wait for the next command.

To print the Asr line of the buffer, you could
use

$.5p
but ed lets you abbreviate this to

S
You can print any single line by typing the line
number followed by a p. Thus

Ip
produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing Jjust the
line number — no need 0 type the letter p. So
if you say

ed will print the last line of the buffer.
You can also use $ in combinations !ike

$-1,%

which prints the last two lines of the buffer.
This helps when you want to see how far you got
in typing.

Exercise 3:

As before, create some text using the a com-
mand and experiment with the pcommand. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that
attempis to print a buffer in reverse order by say-
ing

3.1p
don’t work.

The current line — “Dot” or *.”

Suppose your buffer siill contains the six
lines as above, that you have just typed

1,3p
and ed has printed the three lines for you. Try
typing just

p (no line numbers)
This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case, line 3, which you just printed) so that it

can be used instead of an explicit line number.
This most recent line is referred to by the short-
hand symbol ’

(pronounced ‘‘dot’*).

Dot is a line number in the same way that $ is; it
means exacily ‘‘the current line', or loosely,
*‘the line you most recenily did something 10.”
You can use it in several ways — one possibility
is to say

- 3p

This will print all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com-
mand will set both . and $ to 6.

Dot is most useful when used in combina-
tions like this one:

1 (or equivalently, .+1p)

This means “‘print the next line' and is a handy
way {0 step slowly through a buffer. You can
also say

.~1
which means ‘‘print the line before the current

line.”” This enables you to go backwards if you
wish. Another useful one is something like

(or .~1p)

~3,.=~1p
which prints the previous three lines.

Don’t forget that all of these change the
value of dot. You can find out what dot is at any
time by lyping

Ed will respond by printing the vailue of dot.

Let’'s summarize some things about the p
command and dot. Essentially p can be preceded
by 0, 1, or 2 line numbers. If there is no line
number given, it prints the ‘‘current line”, the
line that dot refers to. If there is one line
number given (with or without the letter p), it
prints that line (and dot is set there); and .if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line
printed.) If two line numbers are specified the
first can't be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line — it's equivalent to .+1p. Try it.
Try typing a =; you will find that it’s equivalent
to .~1p.

Deleting lines: the **d’’ command

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
delete command

d

Except that d deletes lines instead of printing
them, its action is similar to that of p. The lines
to be deleted are specified for 'd exactly as they
are for p:

swarting line, ending line d
Thus the command
4,%d

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1,5p

And notice that $ now is line 3! Dot is set 10 the
next line after the last line deleted, uniess the
last line deleted is the last line in the buffer. In
that case, dot is set to §.

Exercise 4:

‘Experimcm with a, e, r, w, p and d until you
are sure that you know what they do, and until

you understand how dot, $, and line numbers

are used.

If you are adventurous, try using line
numbers with a, r and w as well. You will find
that a will append linies affer the line number that
you specify (rather than after dot); that r reads a
file in affer the line number you specify (not
necessarily at the end of the buffer); and that w

will write out exactly the lines you specify, not.

necessarily the whole buffer. These variations
are sometimes handy. For instance you can
insert a file at the beginning of a buffer by saying

Or filename

and you can enter lines at the beginning of the
buffer by saying

0a _
... text. ..

Notice that .w is very different {from

w

Modifying text: the Substitute command *s’*

We are now ready to try one of the most
important of all commands — the substitute
command

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting spelling mistakes and typing errors.

Suppose that by a typing error, line | says
Now is th time

= the e has been left off she. You can use s (0
fix this up as follows:

1s/th/the/

This says: **in line 1, substitute for the characters
th the characters re.”” To verify that it works (ed
will not print the resuit automatically) say

p
and get '
Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com-
mand.

The general way to use the substitute com-
mand is

. starting-line, ending-line s/ change this/ 1o this/

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between swurring-
lineand ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5. The
rules for line numbers are the same as those for
p, except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi-
tution took place, dot is not changed. This
causes an error ? as a warning.)

Thus you can say »
1,8s/speling/spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspellers!)

If no line numbers are given, the s command
assumes we mean ‘‘make the substitution on line
dot™, so it changes things only on the current
fine. This leads to the very common sequence

g/something/something eise/p

which makes some correction on the current
fine, and then prints it, to make sure it worked
out right. If it didn’t, you can try again. (Notice
that there is a p on the same line as the s com-

mand. With few exceptions, p can follow any -

command; no other multi-command lines are
legal.) .

It’s also legal to say
s/... !

which means ‘“‘change the first string of charac-
ters to “nothing”. i.e., remove them. This is
useful for deleting extra words in a line or
removing extra letters from words. For instance,
if you had

Nowxx is the time
you can say

s/xx//p
to get

Now is the time

Notice that // (two adjacent siashes) means *‘no
characters™, not a blank. There /s a difference!
(See below for another meaning of //.)

Exercise 5:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes oniy the first
occurrence of the first string. You can change all
occurrences by adding a g (for “global™) o the s
command, like this:

s/...

Try other characters instead of slashes to delimit
the two sets of characters in the s command —
anything shouid work except blanks or tabs.

(If you get funny results using any of the
characters

L. s I =\ &
read the section on *‘Special Characters™.)

/.../gp

~ Context searching = */.../"

With the substitute command mastered, you
can move on to another highly important idea of
ed — context searching.

Suppose you have the originai three line text
in the buiffer:

Now is the time
for all good men
to come to the aid of their pany

Suppose you want to find the line that contains
their s0 you can change it 10 /#e. Now with only
three lines in the buffer, it’s pretty easy to keep
track of what line the word rhewr is on. But if the
buffer contained several hundred lines, and
you'd been making changes, deleting and rear-
ranging lines. and so on, you would no longer
reaily know what this line number wouid be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its.
aumber is, by specifying some context on it.

The way to say ‘‘search for a line that con-
tains this particular string of characters™ is to
type

/ swing of characters we want w find/
For example, the edcommand
/their/

is a context search which is sufficient to find the
desired line — it will locate the next occurrence
of the characters between slashes (“‘their’”). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

*Next occurrence” means that ed starts looking
for the string at line .1, searches to the end of
the buffer, then continues at line | and searches
to line dot. (That is, the search “‘wraps around™
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line, ed types the error
message ‘

b 4

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution ail at once, like this:

/their/s/theic/the/p
which will yield
to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression /their/ is a context search
expression. In their simplest form, ail context
search expressions are like this — a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the exampies above.

Suppose the buffer containsg the three familiar
lines

Now is the time.
for ail good men
to come to the aid of their party.

Then the ed line numbers
/Now/+1
/good/
/party/ —~1
are all context search expressions, and they all

refer 10 the same line (line 2). To make a
change in line 2, you couid say

/Now/ +1s/good/bad/
or ’
/good/s/good/bad/
or
/party/ —1s/good/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

/Now/ ,/party/p
or
~/Now/,/Now/+2p

or by any number of similar combinations. The

first one of these might be better if you don't
know how many lines are involved. (Of course,
if there were only three lines in the buffer, you'd
use

1,9p
but not if there were several hundred.)

The basic rule is: 2 context search expression
is the same as a line number, so it can be used
wherever a line number is needed.

E_xercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w, and a.)

Try context searching using Ttext? instead
of /text/. This scans lines in the buffer in
reverse order rather than normal. This is: some-
times useful if you go too far while looking for
some string of characters — it’s an easy way to
back up.

(If you get funny results with any of the
characters

. S I s\ &
read the section on **Special Characters™.)

£d provides a shorthand for repeating a con-
text search for the same string. For example
the ed line number '

/string/

will find the next occurrence of string. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typing merely

l/

This shorthand stands for ‘‘the most recently
used context search expression.” It can also be
used as the first string of the substitute com-
mand, as in

/stringl/s//string2/

which will find the next occurrence of stringl
and replace it by string2. This can save a lot of
typing. Similarly

??

means ‘‘scan backwards for the same expres-
sion.”

Change and Insert — *‘c” and *‘i”
This section discusses the c/ange command
i c‘ .
which is used to change or replace a group of
one or more lines, and the inserr command

which is used for inserting a group of one or
more lines.

**Change’, written as
c

is used to replace a number of lines with
different lines, which are typed in at the termi-
nal. For example, to change lines .+1 through $
to something eise, type

.+1,8¢
ype the lines of text you want here . . .

The lines you type between the ¢ command and
the . will take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
have errors in them.

If only one line is specified in the ¢ com-
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of . 0 end the input — this
works just like the . in the append command

~

LN

and must appear by itself on a new line. If no
line number is given. line dot is replaced. The
value of dot is set to the last line you typed in.

*Insert™ is similar to append - for instance

/string/i

. . . ype the lines 10 be inserted here . . .

will insert the given text before the next line that
contains “*string”. The text between i and . is
inserted before the specified line. If no line
number is specified dot is used. Dot is set 10 the
last line inserted.

Exercise 7:

**Change’™ is rather like a combination of
delete foilowed by insert. Experiment to verify
that

swart, endd
i
... fOXt. ..

.

is almost the same as

suart, end
... lext. ..

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with 2 and i, t0 see that they are
similar, but not the same. You will observe that

line-number a
.. lext. ..

appends afier the given line, while

line-number i
oo lext. ..

inserts before it. Observe that if no line number
is given, 1 inserts before line dot, while a
appends after line dot.

Moving text around: the ‘**m’* command

The move command m is used for cutting
and pasting — it lets you move a group of lines
from one place to another in the buffer. Sup-
pose you want (o put the first three lines of the
buffer at the end instead. You couid do it by
saying:

1,3w temp
$r temp
1,3d

(Do you see vwhy?) but you can do it a lot easier
with the m command:

1,3m$
The general case is
start line, end line m afier this line

Notice that there is a third line to be specified ~
the place where the moved stuff gets put. Of
course the lines 10 be moved can be specified by
context searches; if you had

F‘im paragraph
end of first paragraph.
Second paragraph
end of second paragraph.
you could reverse the two paragraphs like this:
/Second/,/end of second/m/First/ =1
Notice the —1: the moved text goes afier the line -

mentioned. Dot gets set to the last line moved.

The global commands *‘g’’ and *v”

The global command g is used to execute one
or more ed commands on all those lines in the
buffer that match some specified string. For -
example

g/peling/p

prints all lines that contain peling.
fully,

g/peling/s//pelling/gp

More use-

‘makes the substitution everywhere on the line,

then prints each corrected line. Compare this to
1,3s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, ¢, I, r, w, but not g); in that case, every line
except the last must end with a backslash \:

g/xxx/.—1s/abc/def/B
.+2s/ghi/jki/B :
=2,.p

makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does not match the string following v:

v/ /d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that lhmgs just dom't
work right when you used some characters like .
s, $, and others in context searches and the sub—
stitute command. The reason is rather compiex,
although the cure is simple. Basicaily, ed treats
- these characters as special, with special mean-
ings. For instance, in a context search or the first
siring of ‘the substituie command only, . means
*‘any character,” not a period, so

I1x.y/

means *‘a line with an x, any character, and a3 y,”’
not just **a line with an x, a period. and 2 y."" A
complete list of the special characters lhat can
cause trouble is the following:

.8 b e\

Warning: The backslash character \ is special to
ed. For safety’s sake, avoid it where possible. If
you have 10 use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

s/\\\.*/backslash dot star/

will change \.* into ‘*backslash dot star™.

Here is a hurried synopsis of the other special
characters. First, the circumflex " signifies the
beginning of a line. Thus :

/" string/
finds string only if it is at the beginning of a
line: it will find

string
but not

the string...

The dollar-sign $ is just the opposite of the
circumilex; it means the end of a line:

/steing$/

will only find an occurrence of string that is at
the end of some line. This lmphes, of course,
that

/"string$/

will find only a liné that contains juét string, and
"8l

finds a line containing exactly one character.

The character ., as we mentioned above,
matches anything;

I/x.y/

matches any of

x+y

X~y

Xy

x.y
This. is useful in conjunction with =, which is a
repetition character; ae is a shorthand for **any
number of a's,” so .» maiches any number of
anythings. This is used like this:

8/.¢/stuff/
which changes an entire line, or
s/.s//

which deletes all characters in the line up to and
including the last comma. (Since .+ finds the
longest possible malich, this goes up to the last
comma.)

| is used with } to form ‘‘character classes’:
for example,

1101234567891/
matches any single digit — any one of the char-

acters inside the braces will cause a match. This
can be abbreviated to [0—91.

Finally, the & is another shorthand character
— it is used only on the right-hand part of a sub-

stitute command where it means ‘‘whatever was

maiched on the lefi-hand side™. It is used to
save typing. Suppose the current line contained

Now is the time
and you wanted to put parentheses around it.

You couid just retype the line, but this is tedi-
ous. Or you could say

s/*/({/
sisN/

using your knowledge of " and $. But the easiest
way uses the &:

s/.o/(&)/

This says ‘*match the whole line, and replace it
by itself surrounded by parentheses.” The & can
be used several times in a line; consider using

s/.+/&? &Y/
to produce »

Now is the time? Now is the time!!

You don‘t have to match the whole line, of

course: if the buffer contains

the end of the worid
you could type

/world/s// & is at hand/
to produce

i

the end of the world is at hand

Observe this expression carefully, for it illus-
trates how o take advantage of ed to save typing.
The string /worid/ found the desired line; the
shorthand // found the same word in the line;
and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
a\:

s/ampersand/\&/

will convert the word ‘‘ampersand”™ into the
literal symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, w and q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Append-
ing continues until . is typed on a new line. Dot
is set to the last line appended.

¢: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to §.

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

g: The command
g/---/commands

will execute the commands on those lines that
contain ---, which can be any coniext search
expression.

i: Insert lines before specified line (or dot) until
‘a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dol is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivaient to
line-number p. A single return prints .41, the

- 10-

next line.

q: Quit ed Wipes out all text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end unless specified
eisewhere.) Dot set to last line read.

s: The command
s/stringl/string2/

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set 0
last line in which a substitution ook place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence -
of stringl on a line; to change all of them, type
a g after the final slash.

v: The command

v/---/commands
executes commands on those lines that do nor
CONLAIN ~ee,

w: Write out buffer onto a file. Dot is not
changed.

.= Print value of dot
value of $.)

!: The line

-lcommand-line

(= by itseif prints the

causes command-line 10 be executed as a UNIX
command.

/e=eeef: Context search. Search for next line
which contains this string of characters. Print it.
Dot is set to the line where string was found.
Search starts at .+1, wraps around from $ to 1,
and continues to dot, if necessary.

Context search in reverse direction.
Start search at .~1, scan to 1, wrap around 0 $.

j Jr—
: °:

[Nis

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories :
Murray Hill. New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make

effective use of the UNIxt facilities for preparing and editing text. It provides: = - -~ -

explanations and examples of

e special characters, line addressing and global commands in the editor ed:

® commands for ‘‘cut and paste’ operations on files and parts of files,

including the mv, cp, cat and rm commands, and the r, w, m and t com-
mands of the editor;

® editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

August 4, 1978

tUNIX is a Trademark of Beil Laboratories.

Advanced Editing on UNIX

* Brian W. Kérhighdn
-Bell Laboratories .
Mu;ray}_Hill_, New Jersey 07974

1. INTRODUCTION

Although unixt provides remarkably
effective tools for text editing, that by itself is no

guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists’ - typ-

ists, secretaries, casual users — often use the
system less effectively than they might. . |

This document is intended as a sequel to 4. . -
Twioriai Introduction 10 the UNIX Text Editor {1], =

providing explanations and examples of how to

edit with less effort. (You should also be famij-
liar with the material in UNIX. For Beginners-[2].)
Further information on all commands discussed.
here can be found in The UNIX Programmer's.

Manuai {3].

Examples are based on observations of
users and the difficulties they encounter: Topics
covered include special characters in searches
and -substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one shouid give
you ideas about what to try, but until you actu-
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort. '

The next few sections will discuss
shortcuts and labor-saving devices. Not ail of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,

+UNIX is a Trademark of Beil Laboratories.

they will remain theoreticai knowledge, not
something you have confidence in.

The List command ‘I’
ed provides two commands for printing the

| Eontems of the lines you're editing. Most people

are familiar with p, in combinations like
1,Sp

"to print all the lines-you’re editing, or

s/abc/def/p

~ to-change ‘abc’ to ‘def” on the current line. Less

familiar. is the liss command 1 (the letter */°),

. which gives slightly more information than p. In-

particular, | makes visible characters that are
normally invisibie, such as tabs and backspaces.
If you list a line that contains some of these, 1
will print each tab as > and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja-
cent to tabs, or inserts a backspace followed bya
space.

The 1 command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on muitiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the | command will print in a

line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don’t

print, like form feed or vertical tab or bell. Each ,

such combination is a single character. When
you see such characters, be wary — they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you aimost
never want them. ' :

The Substitute Command: ;s’ '

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

L

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of 2 trailing g after a substitute com-
mand. With .

s/this/that/
and '
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on
the line, the second form with the trailing g
changes a/l of them.

Either form of the s command can be fol-
lowed by p or 1 to *print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/1

_ s/this/that/gp
s/this/that/gi

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre-
ceded by one or two ‘line numbers’ to specify
that the substitution is to take place on a group
of lines. Thus '

1,Ss/mispeil/ misspeil/

changes the first occurrence of ‘mispell’ to
‘misspeil’ on every line of the file. But

1,83/ mispell/misspeil/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You shouid aiso notice that if you add 2 p
or 1 to the end of any of these substitute com-
mands, only the last line that got-changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘un’

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

The Metacharscter *.’

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-
lar line. In the next several sections, we will talk
about these special characters, which are often
called *‘metacharacters’.

The first one is the period °*.". On the left
side of a substitute command, or in a search with
*1..1°, 2 stands for any single character. Thus
the search '

Ix.y/

finds any line where ‘x’ and 'y’ occur separated
by a single character, as in

Xy
Xy
Xay
Xey

and so on. (We will use g to stand for a space
whenever we need to make it visibie.)

Since ‘.’ matches a single character, that
gives you a way to deal with funny characters

printed by L. Suppose you have a line that, when
printed with the | command, appears as

th\07is ...

osee

and you want to get rid of the \07 (which

represents the beil character, by the way).
The most obvious solution is to try

s/\07//

but this wiil fail. (Try it.) The brute force solu-
tion, which most peopie would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar-
acter *." comes in handy. Since \07" really
represents 3 single character, if we say

s/th.is/this/
the job is done. The ‘.’ matches the mysterious

character between the ‘h’ and the ‘i’, whatever it
is.

Bear in mind that since ‘.’
single character, the command
s/JdJ
converts the first character on a line into a *,°,
which very often is not what you intended.

As is true of many characters in ed, the ‘.’
has several meanings, depending on its context.
This line shows ail three:

matches any

S/dd

The first ‘.’ is a line number, the number of the
line we are editing, which is called ‘line dot’.
(We will discuss line dot more in Section 3.) The

second ‘.’ is a metacharacter that matches any

single character on that line. The third *.’ is the
only one that reaily is an honest hteral penod
On the right side of a substitution, *.’ is not spe-
cial. If you apply this command to _the line

Now is the time.
the result will be
Ow is the time.

which is probably not what you intended.

The Backslash *\’

Since a period means ‘any character’, the
question naturally arises of what to do when you
really want a period. For exampie, how do you
convert the line

Now is the time.
into
Now i ns the time?

The backsiash *\’ does: the Job A backslash
turns off any special meaning that the next char-
acter might have; in particular, ‘\.’ converts the
+.' from a ‘match anything’ into a period, so you
can use it to replace the period in

Now is the time.
like this:

siNJ)
The pair of characters ‘\.’ is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac-
ter. Suppose you are. lookmg for a line that con-
tains :

PP

The search
/1.pp/

isn’t adequate, for it will find a line like
THE APPLICATION OF ...

because the ‘. matches the letter ‘A’. But if you

say
/\.PP/

you will find only lines that contain *.PP’.
The backslash can also-be used to turn off

L) 1

special meanings for characters other than °.
For exampie, consider finding a line that con-

tains a backslash. The search,

N -

won’t work, because the ‘\' isn’t a literal *\', but
instead means that the second ‘/° no longer
delimits the search. But by preceding a backslash

with another one, you can search for 3 literal
backslash. Thus

IA\Y _
does work. Similarly, you can search for a for-
ward slash ‘/° with

Nt
The backslash turns off the meaning of the

immediately following */° so that it doesn’t ter-
minate the /.7 constructxon prematurely

As an. exercise, before reading funher,
find two substitute commands each of whnch will
convert the line

\x\.\y

into the line
\x\y

. Here are several soluttons. venfy that each
works as advertised,

s\
s/X.JIX!
s/ .yly/

A couple of misceilaneous notes about
backslashes and special characters. First, you

can use any character to delimit the pieces of an -

s command: there is nothing sacred about
siashes. (But you must use siashes for .context
searching.) For instance, in a line that contains a
lot of slashes already, like-

//exec //sys.fort.go // etc...

you could use a colon as the dehmtter - to
delete all the slashes, type

sJ/:8

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you’re talking to
ed or any other program.

When you are addmg text wrth aoriore

-backslash is not special, and you shouild only put

in one backsiash for each one you reaily want.

The Dollar Sign ‘S

* The next metacharacter, the ‘$’, stands for
‘the end of the line’. As its most ocbvious use,
suppose you have the line

]

Now is the

and vou wish o add the word ‘time’ to the end.
Use the $ like this:

s/8/ :time/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command. or you will get

Now is thetime
As another example, replace the second

comma in the following line with a period
without altering the first:

Now is the time, for ail good men,
The command needed is
s/.8/./

The $ sign here provides context to make specific
which- comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

Now is the time. for all good men,

As another example, to convert
Now is the time.

into
Now is the time?

as we did earlier; we can use

s/ 81?1

.

Like *.°, the ‘'$' has multiple meanings
depending on context. In the line

Ss/$/8/

the first 'S’ refers 10 the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex *°°

" The circumflex (or hat or caret) ** stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

you will in ail likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/"the/

The other use of ‘™ is of course to enable
you lo insert something at the beginning of a
line:

s/*/=/
places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains onlv the characters

PP
you c¢an use the command
/"\.PP$/

The Star *»°

Suppose you have a line that looks like
this:

text x v text

where /ext stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.

~ The line is too long to retype, and there are too

many spaces to count. What now?

This is where the metacharacter *s’ comes
in handy. A character followed by a star stands

for as many consecutive occurrences of that

character as possible. To refer to all the spaces
at once, say

s/ixcey/xcyl

The construction ‘s+" means ‘as many spaces as
possible’. Thus ‘xcsy’ means ‘an x, as many
spaces as possible, thena y’. -

The star can be used with any character,
not just space. If the original exampie was -
instead .

1eX] X ===y fex

A

then all *—" signs can be replaced by a singie
space with the command

s/x=sy/Xay/

Finally, suppose that the line was
’e.w xl'...........‘.l..y ’e.“

Can you see what trap lies in wait for the
unwary? If you blindly type

S/Xoy/xay/
what will happen? The answer, naturaily, is that

" it depends. If there are no other x’s or y's on

you narrow the context, and thus arrive at the

desired one more easily.

the line, then everything works, but it's blind
luck, not good management. Remember that *.’
matches any single character? Then *.¢’ matches
as many single characters as possible, and unless

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

18X X 10XI Xeseesseocssesessy [0XI ¥ foXI
then saying -
s/x.-y/xny/

- will take. everything from the first *x’ to the. last
‘y', which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of *.” with *\."

s/x\.oy/xay/
Now everything works, for *\.+" means ‘as many
periods as possibie’.

There are times when the pattern ‘.o’ is
exactly what you want. For example, to change

Now is the time for all. good men ...
into

Now is the time.
use ‘*.»’ to eat up-everything after the ‘for’:

s/ chf.‘/ .l

There are a couple of additional pitfalls
associated with *s* that you should be aware of.
Most notable is the fact that ‘as many as possi-
ble’ means zero or more. The fact that zero is a
legitimate possibility is sometimes. rather surpris-
ing. For example, if our line contained

lext Xy rext x . .y lext
and we said)
s/xgey/xayl

the first *xy’ matches this pattern, for it consists
of an °x’, zero spaces, and a ‘y". The result is
that the substitute acts on the first ‘xy’, and does
not touch the.later one that actually contains
some intervening spaces.

The way ‘around this, il it matters, is to
specify a pattern like
Ixaasy/

which says ‘an x, a space, then as many more
spaces as possible, then-a y’, in other words, one
or more spaces.

The other startling behavior of *»' is again
related to the fact that zero is a legitimate

number of occurrences of somethmg followed by .

a star. The command
s/xs/ylg .
when applied to the ling '

-called a‘character class’.

abédef
produces
yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x’s at
the beginning of the line (so that gets converted

‘into a ‘y’), nor between the ‘a’ and the ‘b’ (so

that gets converted into a ‘y’), nor ... and so on.
Make sure you reaily want zero matches; if not,
in this case write '

 s/xxslylg
*xx+' is one or more x’s.

The Brackets *{ I’

Suppose that you want to delete any
numbers that appear at the beginning of all lines
of a file. You might first think of trying a senes
of commands like

1,8s/°1s//
1,8s/°2+//
1,8s/°3+//

and so on, but this is clearly going to take for-
ever if the numbers are at ail: long. Unless you
want to repeat the commands over and. over until
finally all numbers are gone, you must get all the
digits on one pass.’ This is the purpose of the
brackets [and .

The construction
[0123456789]

matches any single digit — the whole thing is
With a character class,
the job is easy. The.pattern *{0123456789]»"
matches zero or more digits (an entire number),
SO : :

1,8s/°{01234567891=//

deletes all dikits from the beginning of all lines..

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack-
ets; even the:backslash doesn’t have a special
meaning.. To search for special characters, for
example, you can say

1t\$° 11/
Within [...], the ‘[’ is not special. To get a ‘)’
into a character class, make it the first character.

It’s a nuisance to have to spell out the
digits, so you can abbreviate: them as [0—9];
similarly, [a—z] stands for the lower case letters,
and [A—2Z] for upper case.

As a final frill on character classes, you can

specify a class that means ‘none of the following
characters’. This is done by beginning the class

s,

with a *™":
-["0-9]
stands for ‘any character excepr a digit’. Thus

you might find the first line that doesn’t begin
with a tab or space by a search like

/°["(space) (tab)}/
Within a character class, the circumflex has

a special meaning only if it occurs at the begin-
ning. Just to convince yourseif, verify that

1°u
finds a line that doesn't begin with a circumflex.

The Ampersand ‘&’
The ampersand ‘&' is used primarily to
save typing. Suppose you have the line
Now is the time
and you want to make it
Now is the best time
of coﬁrse you can always say
s/the/the best/

but it seems silly to have to repeat the ‘the’.
The ‘&' is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means ‘whatever was just matched’, so you can
say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this
isn't much of a saving if the thing matched is
just ‘the’, but if it is something truly long or
awful, or if it is something like ‘.»’ .which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, to- parenthesize a line, regardless of its
length,

s/ ool (&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/
makes
~ Now is the best and the worst time
and
s/ o/ & &Y/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturaily the
backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the right side.

Sabstituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substitut-
ing in a newline’. As the simplest exampie, sup-
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text Xy lext

you can break it between the *x’ and the 'y’ like
this:

s/xy/x\
y/

This is actually a single command, aithough it is
typed on two lines. Bearing in mind that '\’
turns off special meanings, it seems relatively
intuitive that a *\" at the end of 2 line would
make the newiine there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
‘very’ in a long line by splitting ‘very’ onto a
separate line, and preceding it by the roff or nroff
formatting command ‘.ul’.

text a very big rext
The command

8/ averya/\

i\

very\

/ ,
converts the line into four shorter lines, preced-
ing the word ‘very’ by the line ‘.ul’, and elim-
inating the spaces around the ‘very’, all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given -
the lines

Now is
athe time

and supposing that dot is set to the first of them,

then the command
j
joins them together. No blanks are added, which

is why we carefully showed a blank at the begin-
ning of the second line.

All by itseif, a j command joins line dot to
line dot+1, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

1.8ip
joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \ (... \)
(This section should be skipped on first

reading.) Recall that ‘&’ is a shorthand that -

stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file-

of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \(and \), whatever matched
that part is remeémbered, and availabie for use on
-the right side. On the right side, the symbol ‘\1”
refers to whatever matched the first \(...\) pair,
‘A2’ to the second \(...\), and so on.

The command.
1 935/‘\([.'] .\) 'Y= ‘\(0'\)/\2D\ 1/

aithough hard to read, does the job. The first
\(...\) matches the last name, which is any string
up to the comma; this is referred to on the right
side with ‘\1’. The second \(...\) is whatever
follows the comma and any spaces, and is
referred to as ‘\2’.

Of course, with any editing sequence this
complicated, it’s foolhardy to simply run it and

hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you

specify what lines are to be affected by editing

commands. We have already used constructions
like

1,8s/x/yl/

“to specify a change on ail lines. And most users

are long since familiar with using a single new-
line (or return) to print the next line, and with

/thing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

2thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you real-

.ize that the thing you want to operate on is back

up the page from where you are currently edit-
ing. :

" The slash and question mark are the only

characters you can use to delimit a context

search, though you can use essentially any char-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like *.’, ‘S°, */.../" and *?...2?° with ‘+°
and ‘~'. Thus

5-1

is a command to print the next to last line of the

current file (that is, one line before line ‘S’).
For example, to recall how far you got in a previ-
ous editing session,-

$—-5.9p _ _
prints the last six lines. (Be sure you understand

why it’s six, not five.) If there aren’t six, of
course, you'll get an error message.

As another example,

0—3’0+3p
prints from three lines before where you are now
(at line dot) to three lines after, thus giving you

a bit of context. By the way, the ‘+’ can be
omitted:

- 3 ’ 03 P
is absolutely identical in meaning.

A

Another area in which you can save typing
effort in specifying lines is to use *~=' and *+' as
line numbers by themseives.

by itself is 2 command to move back up one line
in the file. In fact., you can string several minus
signs together to move back up that many lines:

moves up three lines, as does *—3". Thus
-3,+3p
is also identical to the examples above.
Since ‘=" is shorter than *.—1", construc-
tions like
—..s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.

*+' and '~ can be used in combination
with searches using */../° and *2...7°, and with
*$’. The search

/thing/ = —
finds the line containing ‘thing’, and positions
you two lines before it.

Repeated Searches ,
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn’t the horrible thing that you wanted, so it is
necessary to repeat the search again. You don’t
have to re-type the search, for the construction

1/

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You.can
also go backwards:

2?
searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use ‘//° as the left side of a substitute
command, to mean ‘the most recent pattern’.

" /horrible thing/
ieee ed prints line with ‘horrible thing’ ...
s//good/p

To go backwards and change a line, say
27s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever

got matched:
1151/8&c&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Defauit Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con-
tains ‘thing’. Then no address is required with
commands like s to make a substitution on that
line, or -p to print it, or 1 to list it, or d to delete
it, or a to append text after it, or ¢ to change it,
or i to insert text before it.

What happens if there was no ‘thing'?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
*?..7%, the only difference is the direction in
which you search. :

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘S’ gets deleted, however, dot points
at the zew line ‘S°,

The line-changing commands a, ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the cusrent line, ¢ changes the current line, and i
inserts text before the current line.

a, ¢ and i behave identically in one
respect - when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

a

. text ...

... botch ... (mincr error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-

stitute command or for the second append com-

mand. Or you can say

a
. teXt ...
.. horrible botch ... (major error)

¢ (replace entire line)
.. fixed up line ...

You shouid experiment to determine what
happens if you add #o lines with a, cor i.

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot. points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say 0a or li to start adding text at the begin-
ning.)

The w command writes out the entire file.
If you precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does nor change dot:

" the current line remains: the same, regardless of .

what lines are written. This is true even if you
say something like

/"\.AB/./"\.AE/w abstract

which involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simpie —
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

x1
x2
x3

Then the command »
-, +s/x/ylp

prints the third line, which is the last one
changed. But if the three lines had been

x1
y2
y3

and the same command had been issued while

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon *;’

Searchos with */.../° and *2...7" start at the
current line and move: forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

Starting at line 1, one would expect that the
command

. lal./blp

prints all the lines from the ‘ab’ to the. ‘be’
inclusive. Actually this is not what happens.
Borh searches (for ‘a’ and for ‘b’) start from the
same point, and thus they both find the line that
contains ‘ab’. The result is to print a single line.
Worse, if there had been a line with a *b’ in it
before the ‘ab’ line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn’t set dot as each address is
processed; each search starts from. the same
piace. In ed, the semicolon *;’ can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon ‘moves’ dot. Thus in our
example above, the command

/al;/b/p

prints the range of lines from ‘ab’ to ‘be’,
because after the ‘a’ is found, dot is set to that
line, and then ‘b’ is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of ‘thing’. You could say

/thing/
!

but this'prints the first occurrence as well as the

T

second, and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/.//

This says to find the first occurrence of ‘thing’,
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

7something?;??

Printing the third or fourth or ... in either direc-

tion is left as an exercise.

Finaily, bear in mind that if you want to
. find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1:/thing/

because this fails if ‘thing’ occurs on line 1. But
it is possible to say

0:/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and

" your state is restored as much as possible to what
it was before the command began. WNaturally,
some changes are irrevocable — if you are read-
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are nor sitting on that line or even

- 10 -

anything that could be used in a line search or in
a substitute command; exactly the same rules

and limitations apply.

near it. Dot is left where it was when the pcom- -

mand was started.

4. GLOBAL COMMANDS

The global commands g and: v are used to
perform one or more editing commands on all
lines that either contain (g) or don’t contain (v)
a specified pattern.

As the simplest example, the command
g/UNIX/p

prints all lines that contain the word ‘UNIX’.
The pattern that goes between the slashes can be

As another exampie, then,
8/"\Jp

prints all the formatting commands in a file
(lines that begin with *.").

The v command is identical to g, except
that it operates on those line that do nor contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter *v'.)
So ' o

v/*\./p

prints all the lines that don’t begin with ‘.’ — the
actual text lines.

The command that follows g or v can be
anythi_ng:

g/"\Jd

deletes all lines that begin with .
g/°S/d

deletes all empty lines.

Probably the most useful command that
can follow a giobal is the substitute command.
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word ‘Unix’ to ‘UNIX’
everywhere, and verify that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//° in the substitute com-
mand to mean ‘the previous pattern’, in this -
case, ‘Unix’. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam-
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

8/"\.PP/+

prints the line that follows each ‘.PP’ command
(the signal for a new paragraph in some format-
ting packages). Remember that ‘-’ means ‘one
line past dot’. And

g/topic/ 7"\ .SH?1

, and

_ searches for each line that contains ‘topic’, scans

backwards uatil it finds a line that begins ‘.SH’
(a section heading) and prints the line that foi-
lows that, thus showing the section headings

under which ‘topic’ is mentioned. Finally,.
g"\-EQ/ +‘/.\.EN, -p .

prints ail the lines that lie between lines begin-
ning with ‘. EQ’ and *.EN" formatting commands.

The g and v commands can also be pre-
ceded by line ‘numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com-
mand under the control of a global command,
although the syntax for expressing the: operation
is not especially natural or pleasant. As an
exampie, suppose the task is to change ‘x’ to ‘y’
and ‘a’ to ‘b’ on all lines that contain ‘thing’.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The ‘\ signais the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with *\'. (As a minor blemish, you can't use a
substitute command to insert a newline within a
g command.)

You should watch out for this problem:
the command

g/x/s//yi\
s/a/b/

does nor work as you expect. The remembered
pattern is the last pattern that was actually exe-
cuted, so sometimes it will be ‘x* (as expected),
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

g/x/s/x/y/\
s/a/b/

. It is also possible to execute a, ¢ and i
commands under a global command; as with
other muiti-line constructions, ail that is needed
is to add a.‘\’ at the end of each line except the
last.- Thus to add a ‘.nf’ and ‘.sp’ command
before each *.EQ’ line, type

&/ "\.EQ/i\
.nf\
Sp

There is no need for a final line containing a *.’
to terminate the i command, uniess there are
further commands being done under the global.
On the other hand, it does no harm to put it in
either.

<11 -

5. CUT AND PASTE WITH UNIX COM-
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be called ‘cut and paste’ operations —
changing the name of a file, making a copy of a
file somewhere eilse, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actuaily
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the uNix

-commands for moving entire files around, then

discuss ed commands for operating on pieces of
files. '

Changing the Name of a Fi.le

You have a file named ‘memo’ and you
want it to be called ‘paper’ instead. How is it
done?

The UNIX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from
one name to another, like this:

mv memo paper

That’s ail there is to it: my from the oid name to
the new name.

mv oldname newname

Warning: if there is aiready a file around with the
new name, its present- contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itseif —

mv X Xx
is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file = an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you’re paranoid.

In any case, the way to do it is with the cp
command. (cp stands for ‘copy’; the system is
big on short command names, which are appreci-
ated by heavy users, but sometimes a strain for
novices.) Suppose you have a file called ‘good’
and you want to save a copy before you make
some dramatic editing changes. Choose 2 name
- ‘savegood’ might be acceptable — then type

cp good savegood
This copies ‘good’ onto ‘savegood’, and you now

- 12

have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it'

gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv savegood good

(if you're not interested in ‘savegood’ any
more), or

cp savegood good
if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the ‘target’ file if it already exists, so you had
better be sure that's what you want to do before
you do it. '

Removing a File

If you decide you are reaily done with a
. file forever, you can remove it with the rm com-
mand:

rm savegood

throws away (irrevocably) the file cailed

*savegood’.

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not all programs have
two-letter names.) cat is-short for ‘concatenate’,
which is exactly what we want to do.

Suppose the job is to combine the files
‘filel” and ‘file2’ into a single file cailed ‘bigfile’.
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If you say

cat filel file2

the contents of ‘filel’ and then the contents of
‘file2’ will borh be printed on your terminal, in
that order. So cat combines the files, all right,
but it’s not much help to print them on the ter-
minal — we want them in ‘bigfile’.

Fortunately, there is a way. You can tell
the system that instead of printing on your ter-
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

where you want the output to go. Then you can
say

cai filel file2 >bigfile

and the job is done. (As with cp and mv. you're
puiting something into ‘bigfile’, and anything
that was aiready there is destroyed.)

This ability to ‘capture’ the output of a
program is one of the most useful aspects of the
system. Fortunately it’s not limited to the cat
program — you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturailly, you can combine several files,
not just two:

cat filel file2 filed ...

coliects a whole bunch.
Question: is there any difference between

> bigfile

cp good savegood
and
cat good >savegood

Answer: for most purposes, no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourseif by
reading the manual. For now we'll stick to sim-
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and/or cat to add the file ‘goodl’ to the end of
the file ‘good’?

You could try

cat good- goodl >temp
mv temp good

which is probably most direct. You shouid also
understand why

cat good good! >good
doesn’t work.
‘good’!)

The easy way is to use a variant of >,
called >>. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

(Don’t practice with a good

cat goodl > >good
and ‘good!’ is added to the end of ‘good’. (And

if ‘good’ didn't exist, this makes a copy of
*good 1" called *good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can’t go very far without knowing
r and w. Equaily useful, but less well known, is
the ‘edit’ command e. Within ed, the command

e newifile

says ‘I want to edit a new file called newfile.
without leaving the editor.” The e command dis-
cards whatever you're currently working on and
starts over on newfile. It's exactly the same as if
you had quit with the q command, then re-
entered ed with a new file name, except that if
you have a pattern remembered. then a com-
mand like // will still work.

If you enter ed with the command
ed file

ed remembers the name of the file, and any sub-
sequent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

ed filel

... (editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use eas a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can also change the
name of the remembered file name with £, a use-
ful sequence is

ed precious
f junk ,
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the original.

-13-

Inserting Oune File into Another

Suppose you have a file called ‘memo’,
and you want the file called ‘table’ to be inserted
just after the reference to Table 1. That is, in
‘memo’ somewhere is a line that says -

Tablg 1 shows that ...

and the data contained in. ‘table’ has to go there,
probably so it will be formatted properly by nroff
or troffl. Now what?

This one is easy. Edit ‘memo’, find ‘Table
1’, and a_dd the file ‘table’ right there:

ed memo

/Table 1/

Table | shows that ... [response from ed]
o+ table

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as $r.

Writing out Part of a File

The. other side of the coin is writing out
part of the document you're editing. For exam-
pie, maybq you want to spiit out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

.Ts
...[lots of stuff]
.TE

which is the way a table is set up for the tbl pro-
gram. To isolate the tabie in a separate file
cailed ‘table’, first find the start of the table (the
* TS line), then write out the interesting part:

I°\.TS/
TS [ed prints the line it found]
o/ “\.TE/w table

and the job is done. If you are confident, you
can do it all at once with '

/"\.TS/;/"\.TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like;
just give one line number instead of two. For

- example, if you have just typed a horribly com-

plicated line and you know that it (or something
like it) is going to be needed later, then save it
- don’t re-type it. In the editor, say

a
...Jots of stuff...
...horrible line...
W temp

a

.« more stuff...
£ temp ‘
a

«.more stuff...

This last exampie is worth studying, to be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in 2 paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command *.PP*. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
~ delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the *.PP’ command that begins
the paragraph, this is the sequence of commands:

o/ "\.PP/ =w temp
o/l =d
Sc temp

That is, from where you are now (‘.") until one
line before the next ‘PP’ (*/"\.PP/~") write
onto ‘temp’. Then delete the same lines.
Finally, read ‘temp’ at the end.

As we said, that’s the brute force way.
The easier way (often) is to use the move com-
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
“temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in froant that teil what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

linel, line2 m line3

says tc move all the lines between ‘linel’ and
‘line2’ after ‘line3’. Naturally, any of ‘linel’
etc., can be patterns between slashes, $ signs, or
other ways to specify lines. _
Suppose again that you're sitting at the
first line of the paragraph. Then you can say

o/ \.PP/—m$
That’s all.

-14 -

As another example of a frequent opera-
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second.
Suppose that you are positioned at the first.
Then

m+
does it. It says to move line dot to after one line

after line dot. If you are positioned on the
second line,

m - ame
does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re-
reading. When is brute -force “better anyway? -
This is a matter of personal taste — do what you
have most confidence in. The main difficuity
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It's also a good idea to
issue a w command before doing anything com-
plicated: then if you goof, it’s easy to back up to
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move, The mark
command is k; the command

kx

marks the current line with the name *x’. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

e,

X

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with 2. Then find the last
line and mark it with 5. Now position yourself
at the place where the stuff is to go and say

'a,’bm.
Bear in mind that only one line can have a

particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course thi$ could
be more than one line; then the saving is
presumably even greater.

ed provides another command, called t
(for ‘transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

- The t command is identical to the m com-

mand. except that instead of moving lines it sim-
ply dupiicates them at the place you named.
Thus

1,5t

duplicates the entire contents that you are edit-

ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example, you can say

a
.......... X ceneee. (lONG line)
t. (make a copy)
s/xlyl (change it a bit)
t. (make third copy)
s/ylzl (change it a bit)
and so on.

The Temporary Escape *!’

Sometimes it is convenient to be abie to
temporarily escape from -the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section §,
without leaving the editor. The ‘escape’ com-
mand ! provides a way to do this.

If you say
lany UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by
printing another ! at that point you can resume
editing.

You can really do anmy uNix command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another ..

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela-
tively easy once you know how ed works,
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools, more to indicate their existence
than to provide a compiete tutorial. More infor-

<15 -

mation on each can be found in [3],

Grep

Sometimes you want to find ajl
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possibie to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are reaily big, it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns
that we have described in the paper are often
called ‘regular expressions’, and ‘grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particu-
lar pattern. Thus

grep 'thing’ filel file2 ﬁle3

finds ‘thing’ wherever it occurs in any of the files
‘filel®, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can:later edit n
if you like.

The pattern represented by ‘thing’ can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always to enclose the
pattern in the single quotes '..." if it contains any
non-aiphabetic characters, since many such char-
acters also mean something special to the UNIX
command interpreter (the ‘sheil’). If you don’t
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is aiso a way to find lines that don
contain a pattern: :

grep —v ‘thing’ filel file2 ...

finds all lines that don’t contains ‘thing’. The
-v must occur in the position shown. Given
grep and grep —v, it is possible to do things like
selecting ail lines that contain some combination
of patterns. For example, to get all lines that
contain ‘x’ but not ‘y’:

grep x file.. | grep —v y

(The notation | is a ‘pipe’. which causes the out-
put of the first command to be used as input to
the second command; see (2].)

Editing Scripts

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files, the
easiest thing to do is to make up a ‘script’, i.e., a
file that contains the operations you want to per-
form, then apply this script to each file in turn.

o

For example. suppose you want to change
every ‘Unix’ to 'UNIX" and every ‘Gceos’ io
*GCOS” in a large number of files. Then put
into the file *script’ the lines

g/ Unix/s//UNIX/g
2/ Geos/s//GCOS/g

w
q

Now vou can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance. .

And of course by using the UNiX command
interpreter, you can cycle through a set of files
automatically. with varving degrees of ease.

Sed

sed (‘stream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applving. one or more editing commands to each
line of input.

As an example, suppose that we want to
do the ‘Unix’ to ‘UNIX" part of the example
given above, but without rewriting the files.
Then the command '

-sed 's/Unix/UNIX/g' filel file2 ..

applies the command ‘s/Unix/UNIX/g' to all
lines from “filel’, ‘file2’, etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col-
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed —f cmdfile input—files...
sed has further capabilities, including con-

ditional testing and branching, which we cannot
go into here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
readmg and valuable suggestions.

- {6 -

References

(1l

(2l
3]

Brian W. Kernighan, 4 Tworial Introduction
o the UNIX Texi Editor, Bell Laboratories
internal memorandum.

Brian W. Kernighan, UNIX For Beginners,
Beil Laboratories internal memorandum.
Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer’s Manual. Bell
Laboratories.

UNIX Programmer’sAManual
Volume 2 — Supplementary Documents

Seventh Edition
January 10, 1979

This volume contains documents which supplement the information contained in Volume
1 of The UNixt Programmer’s Manual. The documents here are grouped roughly into the areas
of basics, editing, language tools, document preparation, and system maintenance. Further
‘general information may be found in the Bell System Technical Journal special issue on UNIX,
July-August, 1978. .

Many of the documents cited within this volume as Bell Laboratories internal memoranda
_ or Computing Science Technical Reports (CSTR) are aiso contained here.

These documents contain occasional localisms, typically references to other operating sys-
tems like GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

+UNIX is a Trademark of Bell Laboratories.

-

The UNIX Time-Sharing System’

D. M., Ritchie and K. Thompson

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

i A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process 1/0,

iii The ability to initiate asynchronous processes,

iv. System command language selectable on a per-user basis,

v Over 100 subsystems-including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
-style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual materiai, the collection and pro-
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as 340,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver-
sion of an article that appeared in Communications of the AcM, /7, No. 7 (July 1974), pp. 365-375. That arti-
cle was a revised version of a paper presented at the Fourth acM Symposium on Operating Systems Princi-
ples, 18M Thomas J. Watson Research Center, Yorktown Heights, New York, QOctober 15-17, 1973.

+UNIX is a Trademark of Beil Laboratories.)

.2.

characteristics of the system are its simplicity, elegance, and ease of use.
Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs? 3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6,
TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, ail written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. It is worth noting that the system is totally seif-supporting. All UNIX
software is maintained on the system; likewise, this paper and ail other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is instailed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for I/0 buffers and system
tables; a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core aitogether. There are even larger installations; see the description of the
PWB/UNIX systems,* 3 for example. There are also much smaller, though somewhat restricted,
versions of the system.5

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces. attached to 300- and 1200-baud data
sets, and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfaces
used for machine-to-machine file transfer. - Finally, there is a variety of miscellaneous devices
including nine-track magnetic tape, a line printer, a voice synthes;zer, a phototypesetter, a digi-
tal switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.” Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify
but also included many functional improvements, including multiprogramming and the ability
to share reentrant code among several user programs, we consider this increase in size quite
acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files -

A file contains whatever information the user places on it, for example, symbolic or
binary (rbject) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with more structure; for example, the assem-
bler generates, and the loader expects, an object file in a particular format. However, the struc-
ture of files is controlled by the programs that use them, not by the system.

I

.3.

3.2 Directories

Directories provide the mapping between the names of files and the files themseives. and
thus induce a structure on the file system as a whole. Each ‘user has a directory of his own
files: he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controis the contents of directories. However, any-
one with appropriate permission may read a directory just like any other fiie.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for generai use; that is, all the commands As will
be seen. however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, **/"", and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
tem to°search the root for directory alpha, then to search aipha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case. the
name ‘*/"" refers to the root itself.

A path name not starting with **/*" causes the system to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
~-alpha of the current directory. The simplest kind of name, for exampie, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory. ’

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for-a file is sometimes called a link. The
UNIX system differs from other“systems in which linking is permitted in that all links to a file
have equal status. That is. a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name **." in each directory refers to
the directory itself. Thus a program may read the current directory under the name ‘.’
without knowing its complete path name. The name *“.."" by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries ** .>’ and *“..", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
I/0 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write resuit in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may t0 an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

-4.

There is a threefold advantage in treating [/O devices this way: file and device 1/0 are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are sub-
ject to the same protection mechanism as reguiar files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not neces- -

sary that the entire file system hierarchy reside on this device. There is 2 mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of mount is to cause refer-
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable voiume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per-
manent file system. In our instailation, for example, the root directory resides on a smail parti-
tion of one of our disk drives, while the other drive, which contains the user’s files, is mounted
by the system initialization sequence. A mountabie file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file'system, or one
may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable voiume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some ‘'unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.

Nine of these specify independently read, write, and execute permission for the owner of the -

file, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls

for it. The set-user-iD feature provides for privileged programs that may use files inaccessibie

to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itseif. If the set-user-iD bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program’s user. Since the actual user ID of the invoker of any program is always available, set-
user-iD programs may take any measures desired to satisfy themseives as to their invoker’s.
credentials. This mechanism is used to allow users to execute the carefuily written commands
that call privileged system entries. For example, there is a system entry invokable oniy by the
“super-user’” (below) that creates an empty directory. As indicated above, directories are
expected to have entries for **.”" and **.."". The command which creates a directory is owned
by the super-user and has the set-user-iD bit set. After it checks its invoker’s authorization to
create the specified directory, it creates it and makes the entries for *“.”” and **..".

Because anyone may set the set-user-(D bit on one of his own files, this mechanism is
generaily available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by **Aleph-null.”3

The system recognizes one particular user ID (that of the *‘super-user’) as exempt from
the usuai constraints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference from the protection system.

[

3.6 1/0 calls

The system calls to do [/O are designed to eiiminate the differences between the various
devices and styles of access. There is no distinction between ‘‘random’” and ‘‘sequential’’ /O,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of I/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist aiready, it must be opened by the following call:
filep = open (name, flag)

-where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or ‘‘updated,’ that is, read and writ-
ten simultaneously.

The returned value filep is called a file descripror. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file. -

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible fo the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac-
tice difficuities do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simuitaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next 1/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the foilowing calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 1/0 errors or end of physi-
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read cail returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used.

-6-

Bytes written affect only those parts of a file implied by the position of the write pointer .

and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed. :

To do random (direct-access) /0 it is only necessary to move the read .or write poinier to
the appropriate location in the file.

location == Iseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with I/0 and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec-

tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file. -

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ-
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-/ist) stored in a known part of the device on which the directory resides. The entry
found thereby (the file’s i-node) contains the description of the file:

i the user and group-iD of its owner

i its protection bits

iii the physical disk or tape addresses for the file contents

iv its size ' :

v time of creation, last use, and last modification.

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that

contains the name of the file and the i-node number. Making a link to an existing file involves -

creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc-
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-ailocated. ' '

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from O up to a limit that depends on the device. There is space in

‘the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device)

addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev-
ice address points to an indirect block containing up to 128 addresses of additional blocks in the
file. Still larger files use the twelfth device address of the i-node to point to a double-indirect
block naming 128 indirect blocks, each pointing to 128 biocks of the file. If required, the thir-
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+128+1282+128%)-512] bytes. Once opened, bytes numbered below 5120 can be read
with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the

Ly

-7-

range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file
~ (1,082,201,088) require four accesses. In practice, a device cache mechanism (see beiow)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an [/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/O on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This tabie is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user’s workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of [/O operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/O may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system'’s buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead. :

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz-
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file, It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equaily
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behaif of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory uniess the appearance of an active, higher-priority process forces it to
be swapped out to the disk. : ‘

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates. '

5.1 Processes
Except while the system is bootstrapping itself into operation, a new process can come
into existence only by use of the fork system call:
processid = fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the

returned processid actually identifies the child process and is never 0, while in the child, the

returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes
’ Processes may communicate with related processes using the same system read and write
calls that are used for file-system 1/0. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),
it is not a completely general mechanism, because the pipe must be set up by a common ances-
tor of the processes involved. :

5.3 Execution of programs
Another major system primitive is invoked by

execute (file, arg,, arg,, ... » arg,)

which requests the system to read in and execute the program named by file, passing it string
arguments arg,, args, ..., AL, All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are
unaitered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive; it

.9.

resembles a ‘‘jump’’ machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. - An erfror return is taken if the calling
process has no descendants. Certain status from the child precess is also avatiable.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signais (Section VII
below). ,

V1. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fuily elsewhere,?
so this section will discuss only the theory of its operation.) In simplest. form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be-a path name including the **/*° character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character. ’

If file command cannot be found, the sheil generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory /bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.) (

6.1 Standard 1/0

The discussion of I/0 in Section III above seems to imply that every file used by a pro-
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user’s
terminal. Thus programs that wish to write informative information ordinarily use file descrip-
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the .
user’s terminal printer and keyboard. If one of the arguments to a command is prefixed by
“>* file descriptor 1 will, for the duration of the command, refer to the file named after the
> For example:

-10 -

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com-
mand:

Is >there

creates a file called there and places the listing there. Thus the argument > there means *‘place
output on there.”” On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The com-
mand

ed <script

interprets script as a file of editor commands; thus <script means ‘“‘take input from script.”

Although the file name following *‘ <’ or ‘“>’ appears to be an argument to the com-
mand, in fact it is interpreted completely by the sheil and is not passed to the command at all.
Thus no special coding to handle I/O redirection is needed within each command; the com-
mand need merely use the standard file descriptors 0 and | where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with “*>’" is specified, file 2 remains attached to the termi-
nal, so that commands may produce diagnostic messages that do not silently end up in the out-
put file.

6.2 Filters

An extension of the standard 1/0 notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each com-
mand be delivered to the standard input of the next.command in the sequence. Thus in the
command line:

is | pr =2 | opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument ‘‘=2"’ requests double-column output.) Likewise,
the output from pr is input to opr; this command spools its input onto a file for off-line print-
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr -2 <templ >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user
requests to paginate its output, to print in multi-column format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as s to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process-
ing) is called a filter. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

-11-

6.3 Command separators; muititasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is foilowed by *‘&,’" the shelil will not
.wait for the command to finish before prompting agam, instead, it is ready immediately to
accept a new command. For exampie:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the sheil does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The"
&’ may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:
(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as 2 command; command files

The shell is nself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.0ut testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembiler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command: '

sh <tryout

would cause the shell sh to execute the commands sequehtially.

The shell has further capabilities, including the ability to substitute parameters and to con-
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the newline character ending the line is
typed, the sheil’s read call returns. The shell analyzes the command line, putting the argu-
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the

-12-

child process to die. When this happens, the sheil knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the impiementation of background processes is trivial; whenever a
command line contains “‘&,”” the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and

output files. When a process is created by the fork primitive, it inherits not only the memory

image of its parent but also all the files currently open in. its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files to read command lines and to
write its prompts and diagnostics, and in the ordinary case its children—the command
programs—inherit them automatically. When an argument with ‘<’ or >’ is given, how-
ever, the offspring process, just before it performs execute, makes the standard 1/0 file descrip-
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smai-

lest unused file descriptor is assigned when a new file is opened (or created); it is only neces- -

sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through, the association between a file specified after
“<™ or > and file descriptor 0 or 1 is ended automatically when the process dies. There-
fore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them. ’ '

Filters are straightforward extensions of standard I/0 redirection with pipes used instead
of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter-
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe-
cuted as a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance
of the shell invoked by sh will terminate. Because this shell process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single pro-
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal channel. The various subinstances of init open the appropriate termi-
nals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user’s name is found, and if he is able to supply
the correct password, init changes to the user’s default current directory, sets the process’s user
ID to that of the person logging in, and performs an execute of the shell. At this point, the
shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that
will later become shells) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out-
put files and types another log-in message. Thus a user may log out simply by typing the end-
of-file sequence to the shell.

-13-

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro-
gram is free to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the sheil. Thus when users of the editing sys-
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir-
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus-
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The pDP-11 hardware detects a number of program faults. such as references to non-
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such fauits cause the processor to trap to a system routine. Uniess other arrange-
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used L0 determine the state
of the program at the time of the fauit.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the ‘‘delete’ character. Unless special action has been taken, this signal simply causes the pro-
gram to cease execution without producing a core file. There is also a quit signai used to force
an image file to be produced. Thus programs that loop unexpectedly may be haited and the
remains inspected without prearrangement. _

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the sheil ignores quits to prevent a quit from log-
ging the user out. The editor catches interrupts and returns to its command level. This is use-
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting
system. When in turn the 11/20 was outgrown, the system had proved useful enough to per-
suade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32
machines, upon which it developed to- its present form. Our goals throughout the effort, when

-14-

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas and inventions in operating systems and other software. We have not been faced
with the need to satisfy someone eise’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. - The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver-
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a ‘‘batch’ system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not oniy economy, but also a certain elegance of

design. This may be a thinly disguised version of the *‘salvation through suffering’’ philosophy, =

but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail-
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large ‘‘access method’’ routines are required to insulate the programmer from the system calls;
in fact, all user programs either call the system directly or use a small library program, less*than
a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no ‘“‘control
blocks’® with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking, the contents of a program’s address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space. ‘

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamicaily linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

~ Likewise, the process-control scheme and the command interface have proved both con-
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no ‘‘wired-down’® space in the system proper, and it may be made as powerful as
desired at little cost. In particuiar, given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of I/0 redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

.15 -

The fork operation, essentially as we implemented it, was present in the GENIE time-
sharing system.!® On a number of points we were influenced by Muitics, which suggested the
particular form of the 1/0 system calls!! and both the name of the sheil and its general func-
tions. The notion that the shell should create a process for each command was aiso suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.!2

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important “‘applications™ programs.

Overall, we have today:

125 user population
33 maximum simultaneous users -
1,630 directories
28,300 files
301,700 512-byte secondary storage blocks used

There is a ‘“*background’’ process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a miilion-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours

62 different users
240 log-ins

X. ACKNOWLEDGMENTS :

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys-
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcllroy, and J. F. Ossanna.

References
1. L. P. Deutsch and B. W. Lampson, ‘“‘An online editor,” Comm. Assoc. Comp. Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,”” Comm.
Assoc.- Comp. Mach. 18 pp. 151-157 (March 1975). -

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, “UNIX Time-Sharing System: Docu-
ment Preparation,” Bell Sys. Tech. J. 57(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’s Workbench,”
Proc. 2nd Int. Conf. on Sofiware Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, “UNIX Time-Sharing System: The
Programmer’s Workbench,” Bell Sys. Tech. J. 57(6) pp. 2177-2200 (1978).

10.

11

12

.16 -

H. Lycklama, *“UNIX Time-Sharing System: UNIX ona Microprocessor,’” Befl Sys. Tech. J.
57(6) pp. 2087-2101 (1978).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Aleph-null, ““Computer Recreations,’”” Software Practice and Experience 1(2) pp. 201-204
(April-June 1971).

- S.R. Bourne, “UNix Time-Sharing System: The UNIX Shell,” Bell Sys. Tech. J. §7(6) pp.

1971-1990 (1978).

L. P, Deutsch and B. W. Lampson, ‘‘SDS 930 time-sharing system preliminary reference
manual,” Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

R. J. Feiertag and E. I. Organick, ‘“The Mulitics input-output system,’” Proc. Third Sympo-
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX, a Paged
Time Sharing System for the PDP-10,” Comm. Assoc. Comp. Mach. 15(3) pp. 135-143

- (March 1972).

N

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is ‘meant to help new users get started on the UNiXt operating
system. [t includes:

@ basics needed for day-to-day use of the system - lyping commands, correct-
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting 1/0, pipes, and the shell.

e document preparation — a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software.

® UNIX programming — using the editor, programming the shell, program-
ming in C, other languages and tools.

e An annotated UNIX bibliography.

September 30, 1978

tUNIX is a Trademark of Bell Laboratories.

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

-INTRODUCTION

From the user’s point of view, the UNIX
operating system is easy {o learn and use, and
presents few of the usual impediments to getting
the job done. It is hard, however, for the
beginner to know where to start, and how lo
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu-
ments with you for casy reference as you read
this one. The most important is The UNIX
Programmer’s Manual;, it's oflen easier to tell you
to read about something in the manual than to
repeat its contents here. The other useful docu-
ment is 4 Tuwrial Inroduction to the UNIX Text
Editor, which will tell you how to use the editor
10 get iext — programs, data, documents - into
the computer.

A word of warning: the UNIX system has
become quite popular, and there ure several
major variants in widespread use. Of course
details also change with time. So although the
busic structure of UNIX and how to use it is com-
mon to all versions, there will certainly be a few

- things which are different on your system from
what is described here. We have tried to minim-
ize the problem, but be aware of it. In cases of
doubt, this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
exampie) and what terminal you use, so this
section must necessarily be supplemented by
local information.

2. Day-to-day Use: Things you need every day
to use the system effectively: generally use-
- ful commands: the file system.

3. Document Preparation: Preparing manu-
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

S. A UNIX Reading List. An annotated
bibliography of documents that new users
shouid be awure of. :

I. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys-
tem. You also need to know the phone number.
unless your system uses permanently connected
terminals. The UNIX system is capable of deal-
ing with a wide variety of terminals: Terminet
300°s; Execuport,.TI and similar portables: video
(CRT) terminals like the HP2640. etc.. high-
priced graphics terminals like the Tektronix
4014; plotting terminals like those from GSI and
DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with /lower case. If your
terminal produces only upper case (e.g., model
33 Teletype. some video and portable terminals),
life will be so difficult that you shouid look for
another terminal.

Be sure 10 set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed. upper/lower case
mode. full duplex, even parity, and any others
that local wisdom advises. Establish a connec-
tion using whatever magic is needed for your ter-
minal; this may involve dialing a telephone calil
or merely flipping a switch. In either case, UNIX
should type **login:™ at you. If it types garbage,
you may be uat the wrong speed: check the
switches. If that fails, push the ‘‘break’™ or

*interrupt’” key a few times, slowly. If that fails
1o produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possibie) printing
will be turned off while you type it. Don't forget
RETURN. '

The culmination of your login efforts is a
*prompt character,” a single character that indi-
cates that the system is ready to accept com-
mands from you. The prompt character is usu-
ally a dollar sign $ or a percent sign %. (You
may also get 2 message of the day just before the
prompt character, or a notification that you have
mail.)

Typing Commands

Once you've seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You shouid get back
something like

Mon Jan 16 14:17:10 EST 1978

Don"t forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap-
pen. RETURN won't be mentioned again, but

Strange Terminal Behavior

don’t forget it — it has to be there at the end of

each line.

Another command you might try is whe,
which tells you everyone who is currently logged
in:

who

gi\)es something like
mb tty0l - Jan 16 09:11
ski tty0S Jan16 09:33
gam ttyll Jan16 13:07

The time is when the user logged in; *“ttyxx™ is
the system's idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious resuits.

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar-
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section [of the manual.
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn't have tabs, type the command

stty —tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-setiable tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly. you
can corect as you go:

dd#atte#+#e

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line, so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a
backslash. Don’t worry — the at-gsign has been
recorded.

To erase a backslash, you have to type iwo
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

°

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. If you type during output, your input char-

-acters will appear intermixed with the output

characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “DEL™ (perhaps called ‘‘deiete™ or
rubout’ on your terminal). The “‘interrupt’™ or
“break’® key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out
The easiest way to log out is to hang up the
phone. You can also type
login

and let someone else use the terminal you were
on. [t is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com-

municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes-
sage, and RETURN, which does not (so it will
still be there the next time you read your mail-
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one) message at a time, but are otherwise simi-
lar.

How do you send mail to someone eise?
Suppose it is to go to “joe" (assuming “‘joe™ is
someone’s login name). The easiest way is this:

mail joe -

now gype in the text of the letter

on as many lines as you like ...

After the last line of the letrer

oype the character “‘control—d",

that is, hold down “‘control’’ and type
a leter “'d”".

And that's it. The *‘control-d™ sequence, often
called “EOF™ for end-of-file, is used throughout
the system to mark the end of input from a ter-
minal, so you might as weil get used to it.

For practice, send mail to yourself. (This
isn’t as strange as it might sound — mail to one-

self is a handy reminder mechanism.)

There are other ways to send mail - you
can send a previously prepared letter, and you
can mail to a number of people ail at once. For
more details see mail(l). (The notation mail(1)
means the command mail in section 1 of the
UNIX Programmer's Manual)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe ttyd7...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like taiking to the moon. (If you are
in the middle of something, you have to get to a
state where you cin type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor - read
the editor tutorial.)

A-protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it's like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines
as he likes). When he’s ready for a reply,
he signals it by typing (e), which stands
for **over™.

Now Smith types a reply, also terminated
by (0).

This cycle repeats until someone gets
tired; he then signals his intent to quit
with (00), for “*over and out™.

To terminate the conversation, each side
must type a ‘‘control-d’ character alone
on a line. (*Delete™ also works.) When
the other person types his ‘‘control-d™,
you will get the message EOF on your
terminal.

If you write to someone who isn’t logged in,
or who doesn't want to be disturbed, you'll be
told. If the target is logged in but doesn’t answer
after a decent interval, simply type ‘*control-d™.

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type ‘“‘man command-
name™. Thus to read up on the whe command.
type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learm, which provides computer
aided instruction on the file system and basic
commands. the editor, docum nt preparation,
and even C programming. Try typing the com-
mand

learn

if learn exists on your system, it will tell you
what to do from there.

Il. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a
program. how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX ‘‘text editor™ ed. Since ed is
thoroughly documented in ed(1) and explained
in A Turorial Inroduction 10 the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file called junk with some text in

correcting spelling mistakes, - rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the
information is lost.t But afier w the information
is there permanently: you can re-access it any
time by typing

ed junk
Type a q command to quit the editor. (If you try

to quit without writing, ed will print a ? to rem-
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You shouid now have (wo files,
junk and temp.

What files are out there?

The Is (for *‘list"*) command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

is

the response will be
‘junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is =t

causes the files to be listed in the order in which
they were last changed, most recent first. The
=1 option gives a *‘long’" listing:

Is —~1
will produce something like

=tw—rw—rw~ 1 bwk 41 Jul 22 2:56 junk
=rw=rw~rw— 1bwk 78 Jul 22 2:57 temp

it, do the following:

ed junk (invokes the text editor) ‘

a (command to *‘ed”, to add text) The date and time are of the last change to the
now ype in file. The 41 and 78 are the number of characters
whatever text you want ... (which should agree with the numbers you got
. (signals the end of adding text) from ed). bwk is the owner of the file, that is,

The *.” that signals the end of adding text must
be at the beginning of a line by itself. Don’t for-
get it, for until it is typed, no other ed com-
mands will be recognized -~ everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as

the person who created it. The =rw=rw=—rw=—

“tells who has permission to read and write the

file, in this case everyone.

t This is not strictly true — if you hang up while editing,
the dawa you were working on is saved in a file cailed
ed.hup, which you can continue with at your next session.

Options can be combined: Is —It gives the
same thing as Is =1, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in Is(1).

The use of optional arguments that begin
with a minus sign. like =t and =it, is a com-
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: Is—1 is not the same as Is —1.

Printing Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed. “

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You-can say

ed junk
1,.5p

ed will reply with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives. :

First is cat, the simplest of ail the printing
programs. cat simply prints on the terminai the
contents of all the files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two.
(hence the name ‘‘cat’’) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints ail the files named in a list.
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and exira lines to skip over the
fold in the paper. Thus,

pr junk temp

[

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can aiso produce muiti-column output:

The files are simply concatenated

pr =3 junk

prints junk in 3-column format. You can use
any reasonable number in place of **3*° and pr
will do its best. pr has other capabililies as weil;
see pr(l).

It should be noted that pr is nora formatting

* program in the sense of shuffling lines around

and justifying margins. The true formatters are

- nroff and troff, which we will get to in the sec-

tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and lpr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys-
tem and some experience in printing them. you
can try bigger things. For example, you can
move a file from one place 10 another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be “‘junk™ is now
**precious”. If you do an ls command now, you
will get

precious
temp

‘Beware that if you move a file to another one

that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something), you can use
the cp command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system, called rm.

rm temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What's in a Filename

So far we have used filenames without ever
saying what’s a legal name, so it’s time for a
couple of rules. First, filenames are limited to0
14 characters, which is enough to be descriptive.

Second, although you can use aimost any charac-
ter in a filename, common sense says you shouid
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have aiready seen, for
example, that in the Is command. Is —t means
to list in time order. So if you had a file whose
name was =t, you would have a tough time list
ing it by name. Besides the minus sign. there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam-
iliar with the situation.

On to some more positive suggestions. Sup-
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed wiil not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2

etc...

Or, if each chapter were broken into several files,
you might have

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

You can now teil at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print. the
whole book? You could say

pr chapl.l chapl.2 chapl.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap®

The * means ‘‘anything at all." so this translates
into “print all files whose names begin with
chap”, listed in alphabetical order.

This shorthand notation is not a property of

the pr command, by the way. It is system-wide,
a service of the program that interprets com-
mands (the *‘shell,” sh(l)). Using that fact,
you can see how to list the names of the files in
the book:

Is chap®
produces
chapl.1

chapi.2
chapl.d

°"e

The * is not limited to the last position in a
filename =~ it can be anywhere and can occur
several times. Thus

rm *junk® *temp®
removes all files that contain junk or temp as
any part of their name. As a special case, *® by
itself matches every filename, so

")
prints all your files (alphabetical order), and

™m L
removes all files. (You had better be very sure
that's what you wanted to say!)

The ® is not the only patiern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapi12349(*
The [...] means to match any of the characters
inside the brackets. A range of consecutive

letters or digits can be abbreviated, so you can
also do this with

pr chapll—49]*
Letters can also be used within brackets: {a=zl
matches any character in the range a through z.

The ? pattern maiches any singie character,
so

Is ?

lists all files which have single-character names,
and

Is —1 chap?.1
lists information about the first file of each
chapter (chapl.1, chap2.1, etc.).

Of these niceties, ® is certainly the most use-
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of *, ?, etc, enclose the entire
argument in single quotes, as in

ls l?‘

We'll see some more examples of this shortly.

What’s in a Filename, Continued

When you first made that file cailed junk,
how did the system know that there wasn’t
another junk somewhere else, especially since
the person in the next office is also reading this
tutoriai? The answer is that generally each user
has a private direcrory, which contains only the
files that belong to him. When you log in, you
are “in"" your directory. Unless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone else’s directory.

The set of all files is organized into a (usu-
ally big) tree, with your files located several
branches into the tree. [t is possible for you to
“walk'® around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con-
versely, you can start where you are and walk
toward the root.

Let’s try the latter first. The basic tools is
the command pwd (*‘print working directory’’),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory

/usr, which is in turn in the root directory called

by convention just /. (Even if it's not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type
1s /usr/your-name

you should get exactly the same list of file names
as you get from a plain ls: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, try
1s /usr

This should print a long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that contains
the directories of all the normal users of the sys-
tem, like you.

The next step is to try
Is/

You should get a response something like this
(although again the details may be different):

bin
dev
ete
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try
cat /usr/your-name/junk

(if junk is still around in your directory). The
name

/usr/your-name/junk

is called the pathname of the file that you nor-
mally think of as “‘junk’. *‘Pathname’ has an
obvious meaning: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu-
lar file. [t is a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can use a pathname.

Here is a picture which may make this
clearer:

adam eve m
/ “
junk
junk temp
Notice that Mary's junk is unrelated to Eve's.

This isn't too exciting if all the files of
interest are in your own directory, but if you
work with someone eise or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr /ust/your-name/chap®

Similarly, you can find out what files your neigh-
bor has by saying

1s /usr/neighbor-name
or make your own copy of one of his files by
cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See Is(1) and chmod(l) for details. As a maiter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try
Is /bin /use/bin

Do some of the names look familiar? When you
run a program, by lyping its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn’t find it), then
in /bin and finally in /usr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say ‘‘{ want to
work on his files insiead of my own™. This is
done by changing the directory that you are
currently in:

cd /usr/your-friend

(On some systems, cd is spelled chdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend’s directory.
Changing directories doesn’t affect any permis-
sions associated with a file — if you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd
to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want 10 keep all the text in a directory called
book. So make one with

mkdir book
then go to it with
cd book -

then start typing chapters. The book is now
found in (presumably)

/usr/your-name/book
To remove the directory book, type

rm book/*
rmdir book

The first. command removes all files from the
directory; the second removes the empty direc-
tory.

You can go up one level in the tree of files
by saying

cd ..
.. is the name of the parent of whatever direc-

e 9

tory you are currently in. For completeness, .
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

makes a list of files on your terminal. But if you
say

Is > filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn't already exist,
or overwritten if it does). The symbol > means
“‘put the output on the following file, rather than
on the terminal.’” Nothing is produced on the
terminal. As another example, you could com-
bine several files into one by capturing the out-
put of cat in a file:

cat f1 f2 £3 >temp

The symbol > > operates very much like >
does, except that it means ‘‘add to the end of.™
That is,

cat fl £2 £3 > >temp

means to concatenate f1, {2 and f3 to the end of
whatever is aiready in temp, instead of overwrit-
ing the existing contents. As with >, if temp
doesn’t exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
couid make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several peopie
with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes — a pipeline.

For exampie,
prfgh

will print the files f, g, and h, beginning each on
a new page. Suppose you want them run
together instead. You couid say '

cat fg h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So lei us use a
pipe:

catfghlpr

The vertical bar | means to take the output from
cat, which would normally have gone to the ter-
minal, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For exampie,

Is|pr =3

prints a list of your files in three columns. The
program wc counts the number of lines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged on peopie,
one per line. Thus

who | we

tells how many people are logged on. And of
course

Is | we

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they wiil take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pris one example:

pr =3abe

prints files a, b and ¢ in order in three columns.
But in

catabelpr =3

pr prints the information coming down the pipe-
line, still in three columns.

The Shell

We have aiready mentioned once or iwice
the mysterious *‘shell,”’ which is in fact sh(l).
The shell is the program that interprets what you
type as commands and arguments. [t also looks
after translating *, etc., into lists of filenames,
and <, >, and | into changes of input and out-
put streams.

The shell has other capabilities t00. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a- =

prompt character.

You can also have more than one program
running simuitaneously if you wish. For example,
if you are doing something time-consuming, like:
the editor script of an earlier section, and you
don’t want to wait around for the results before
starting something eise, you can say

ed file <script &

The ampersand at the end of a command line
says ‘‘start this command running, then take
further commands from the terminal immedi-
ately,”” that is, don't wait for it to complete.
Thus the script will begin, but you can do some-
thing else at the same time. Of course, to keep
the output from interfering with what you're
doing on the terminal, it would be better to say

ed file <script >script.out &

which saves the output lines in a file called
script.out.

When you initiate a command with &, the
system replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command
ps will tell you about everything you have run-
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you’re curious about
other people, ps a will tell you about af/ pro-
grams that are currently running.

You can say
(command-1; command-2; command-3) &

to start three commands in the background, or
you can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some simi-~

lar program to take its input from a file instead

of from the terminal, you can teil the shell to

<10 -

read a file to get commands. (Why not? The -

- shell, after all, is just a program, albeit a clever

one.) For instance, suppose you want to set tabs

on your terminal, and find out the date and

who's on the system every time you log in.

Then you can put the three necessary commands

(tabs, date, who) into a file, let's call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con-
tents of startup on the terminal.

If this is to be a regular thing, you can elim-
inate the need to type sh: simply type, once only,
the command

chmod +x startup
and thereafter you need only say
startup

to run
chmod(l) command marks the file executabie;
the chell revognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in.your login
directory called .profile, and place in it the line
startup. When the sheil first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We'll get back
to the shell in the section on programming.

1. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major format-
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminais and line-printers. troff (pro-
nounced ‘‘tee-roff””) instead drives a photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it **format-
ting commands’® that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

the sequence of commands. The-

Because nroff and troff are relatively hard to
learn to use effectively, several “‘packages™ of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn aroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the “‘manuscript’” package known as —ms.
Formatting requests typically consist of a period
and two upper-case letters, such as .TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

IL

title of document

AU

auther name

SH

section heading

PP

paragraph ...

PP .

another paragraph ...

SH

- another section heading

i g

ete.
The lines that begin with a period are the for-
matting requests. For exampile, .PP calls for
starting 2 new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, =ms normally assumes that a
paragraph is preceded by a space (one line in
oroff, 2 line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard
format using —ms, use the command

troff —ms files ...
for the typesetter, and
nroff —ms files ...
for a terminal. The —ms argument tells troff

. and nroff to use the manuscript package of for-

matting requests.

There are several similar packages: check
with a local expert to determine which ones are
in common use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-to-learn
language that closely resembies. the way you

would speak it aloud. For exampie, the eqn

input
sum from {=*0 to n x sub i =" pi over 2

produces the output
" .
™
=

The program tbl provides an analogous ser-
vice for preparing tabular materiai; it does all the
computations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for-
matting package. It looks after ail the details of
numbering references in sequence, filling in page
and voiume numbers, getting the author’s initials
and the journal name right, and so on.

spell and typo detect possible speiling mis-
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are ‘‘unusual’’, and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor’s context search does, but on a bunch
of files). For example,

grep ‘ing$’ chap*

will find all lines that end with the letters ing in
the files chap®. (It is almost always a good prac-
tice to put single quotes around the pattern
you're searching for, in case it contains charac-
ters like * or $ that have a special meaning to the
sheil.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand).

-11-

we counts the words, lines and characters in
a set of files. tr transiates characters into other
characters; for example it will convert upper to
lower case and vice versa. This transiates upper
into lower:

tr A=Z a—z <input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both patiern matching and numeric
computations, and to conveniently process fieids
within lines. These programs are for more

advanced users, and they are not limited to -

document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen-

dently documented (like eqn and tbl), or are
sufficiently simple that the description in the
UNIX Programmer's Manual is adequate explana-
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

 First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural piaces, such as after commas and semi-
colons, rather than randomly. Since most people
change documents by rewriting phrases and

adding, deleting and rearranging sentences, these

precautions simplify any editing you have to do
{ater. '

Keep the individual files of a document

down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
stowly, and of course if you make a dumb mis-

take it's better to have clobbered a small file

than a big one. Split into files at natural boun-
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourseif to formatting details too
early. One of the advantages of formatting pack-
ages like —ms is that they permit you to delay
decisions to the last possible moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all bui the most
trivial jobs. you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packuges (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systemalic
way, il can always be cleaned up and re-
formatied by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made (0 teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, [/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that

that already exist

-12-

already exist. For example, the first draft of the

spell program was (roughly)

cat ... collect the files

Itr... put each word on a new line
|tr ... delete punctuation, etc.

| sort into dictionary order

| uniq discard duplicates

|comm print words in text

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ed

e chapl.l
1p

e chapi.z
1p :
Sp

etc.

But you can do the job much more easily. One
way is to type '

Is chap® > temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

“Ritchie (Prentice-Hall, 1978).

commands (using the global commands of ed),
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,
case), subroutines, and interrupt handling. Since
there are many building-block programs., you can
sometimes avoid writing 2 new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam-
ples and rules can be found in An /nroduction to
the UNIX Shell, by S. R. Bourne.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itseif is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program-
ming Language by B. W. Kernighan and D. M.
Several sections
of the manual describe the system interfaces,
that is, how you do 1/0 and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard I/0 library, which provides a
set of [/0 functions that exist in compatible
form on most machines that have C compilers.
In general, it's wisest to confine the system
interactions in a program to the facilities pro-
vided by this library.

C programs that don’t depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com-
pilers. The list of such machines grows daily; in
addition to the original PDP-11, it currently

includes at least Honeywell 6000, [BM 370,
Interdata 8/32, Data Generali Nova and Eclipse,
HP 2100, Harris /7, VAX 11/780, SEL 86, and
Zilog Z80. Calis to the standard 1/O library will
work on ail of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismalched argument types and unini-
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the. dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling L0 create a consistent updated ver-

- sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru-
mentation service, so you can find out where
programs. spend their lime and what parts are
worth optimizing. Compile the routines with the
=p option: after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro-
gram, but they are not super accurate or repro-
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free-
form input that characterize C, yet lets you write
code that is still portabie to other environments.
Bear in mind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro-
grams. There may also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yace compiler-compiler,
which helps you deveiop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpter languages that can be expressed

-13-

as regular expressions. It can be used by itself,
or as a front end lo recognize inputs for a
yace-based program. Both yace and lex require
some sophistication lo use, but the initial effort
of learning them can be repaid many limes over
in programs thai are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic,
Lisp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more troubie
than it's worth.

V...UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer’s Manual, Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro-
cedures. You can’t live without this, although
you will probably only need to read section 1.

Documents for Use with the UNIX Time-sharing

System. Volume 2 of the Programmer's Manual.
This contains more extensive descriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men-
tioned above.

D. M. Riwchie and K. L. Thompson, “The UNIX
Time-sharing System,”” CACM, July 1974. An
overview of the system, for peopie interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right. }

The Bell System Technical Journal (BSTJ) Spe-
cial Issue on UNIX, July/August, 1978, contains
many papers describing recent developments,
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer's
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, **A Tutorial Introduction to
the UNIX Text Editor’” and ‘*Advanced Editing
on UNIX," Beil Laboratories. 1978. Beginners
need the introduction: the advanced material will
help you get the most out of the editor.

M. E. Lesk, “Typing Documents on UNIX,™ Bell
Laboratories, 1978. Describes the —ms macro
package, which isolates the novice from the
vagaries of nroff and. troff, and takes care of

Tl

™

most formatting situations. If this specific pack-
age isn't available on your system, something
similar probably is. The most likely aiternative is
the PWB/UNIX macro package —mm: see your
local guru if you use PWB/UNIX.

o 14-

B. W. Kemighan and L. L. Cherry, ““A System '

for Typesetting Mathematics,” Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, “Thi = A Program to Format
Tables,’ Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., “NROFF/TROFF User's
Manual,”” Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by —ms, eqn
and tbl. The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, **A TROFF Tutorial,” Beil
Laboratories, 1976. An attempt to unravel the
intricacies of troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hail, 1978. Con-
tains a tutorial introduction, complete discussions
of ail language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, *“UNIX Pro-
gramming,’’ Bell Laboratories, 1978. Describes
how to interface with the system from C pro-
grams: 1/0 calls, signals, processes.

S. R. Bourne, ‘*An Introduction to the UNIX
Shell,” Beil Laboratories, 1978. An introduction
and reference manual for the Version 7 sheil.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, “Yacc - Yet Another Compiler-
Compiler,” Bell Laboratories. CSTR 32, 1978.

M. E. Lesk, “*Lex = A Lexical Analyzer Gen-

erator,’” Bell Laboratories CSTR 39, 1975.

S. C. Johnson, *‘Lint, a C Program Checker,”
Bell Laboratories CSTR 65, 1977.

S. . Feidman, **“MAKE -~ A Program for Main-
taining Computer Programs,” Beil Laboratories
CSTR 57, 1977. '

J. F. Maranzano and S. R. Bourne, **A Tutorial

Introduction to ADB,"” Beil Laboratories CSTR
62, 1977. An introduction to a powerful but
compiex debugging tool.

S. I. Feldman and P. J. Weinberger, ‘*A Portable
Fortran 77 Compiler,” Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems.

A

al

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros-for preparing docu-
ments on the UNIX system. Documents may be produced on either the photo-
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering). page titles, footnotes, esquations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the ‘“Guide to Preparing
Documents with —ms’ which contains additional examples of features of
-ms. L .

This manual is a revision of, and replaces, “Typing Documents on
UNIX,” dated November 22, 1974,

November 13, 1978

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to-produce papers
using the /roff and nroff formatting programs on the UNIX system. As with other roff-derived
programs, text is prepared interspersed with formatting commands. However, this package,

which itself is written in troff commands, provides higher-level commands than those provided -

with the basic troff program. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting. for paragraphs, place a line reading
.PP before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para-
graph. The paragraph spacing can be changed: see below under “‘Registers.”

Beginning. For a document with a paper-type cover sheet, the input should start as fol-
lows: . . :

[optional overall format .RP — see below]

.TL g .

Title of document (one or more lines)

AU ' -

Author(s) (may aiso be several lines)

Al

Author’s institution (s)

.AB

Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .ll here to change.
.AE (abstract end)

text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author’s institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
‘“.AB no” for *.AB”. Several interspersed .AU and .Al lines can be used for muitiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can’t just begin a document with a line of
text. Some —ms command must precede any text input. When in doubt, use .LP to get
proper initialization, aithough any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signalg the general format of
the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts. .

In general —ms is arranged so that only one form of a document need be stored, contain-
ing all information; the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don’t put extraneous material between the .TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don’t forget that some —ms command must precede any input text.

Page headings. The —ms macros. by defauit, will print a page heading containing a page -
number (if greater than 1). A default page footer is provided only in nroff, where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH, CH. and RH which are the left. center and right portions of the page headings.
respectively; and the strings LF, CF, and RF, which are the left. center and right portions of
the page footer. For more complex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful not to change parameters such as point size or font without resetting them to default

values.

Multi-column formats. If you place
the command **.2C™* in your document, the
document will be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out-
put, but is often desirable on the typesetter.
The command *‘.1C" will go back to one-
column format and also skip to a new page.
The *.2C™ command is actually a special
case of the command

.MC [column width [gutter widthl]

which makes muitiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple, quadruple, ... column pages can
be printed. Whenever the number of

columns is changed (except going from fuil

width to some larger number of columns) a
new page is started.

Headings. To produce a special head-
ing, there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section ‘

headings (1, 2, 3, ..), in boldface. For
example, '

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads
Altematiwiely.

SH
Care and Feeding of Directors

will print the heading with no number
added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more
compiex numbering schemes. If a numeri-
cal argument is given, it is taken to be a
‘“level”” number and an appropriate sub-
section number is generated. Larger level
numbers indicate deeper sub-sections, as in
this example:

NH
Erie-Lackawanna
" .NH2
Morris and Essex Division
.NH 3 '
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1 Morris and Essex Division
2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit *“.NH 0" will reset the
numbering of level 1 to one, as here:

.NHO
Penn Central

1. Penn Central

-3-

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references.) The
sequence :

P 1}
Text for first paragraph, typed
normally for as long as you would

_ like on as many lines as needed.

AP 2]

Text for second paragraph, ...

produces
[1] Text for first paragraph, typed nor-

maily for as long as you would like on

as many lines as needed.
[2]1 Text for second paragraph,

A series of indented paragraphs may be fol-
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam-
ple, a plain block indent is produced.

P

This material will

just be turned into a

block indent suitable for quotations or
such matter.

.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
. required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example, '

JP first:9 | :

Notice the longer label, requiring larger

indenting for these paragraphs.
P second:

And so forth.

.LP '

produces. this:

. ﬁrs;: "~ Notice the longer label, requiring

larger indenting for these para-
graphs.
second: And so forth.

It is also possible to produce multiple nested
indents; the command .RS indicates that the
next .IP starts from the current indentation
levei. Each .RE will eat up one level of
indenting so you should balance .RS and
.RE commands. The .RS command should
be thought of as ‘‘move right™ and the .RE
command as ‘‘move left”’...As an example

JP 1.
Bell Laboratories
~RS -
JP L1
Murray Hiil
P 1.2
Hoimdel
AP 1.3
Whippany
.RS
JP1.3.1
Madison
.RE
P 14
"~ Chester
" .RE
LP
will result in
1. Bell Laboratories
1.1 Murray Hiil
1.2 Holmdel
1.3 Whippgny
1.3.1 Madison
1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur-
poses such as setting off a quotation, a para-
graph indented on both right and left is
required.

A single paragraph like this is
obtained by preceding it with
QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

A

as much text as you want
can be typed here

R

as was done for rhese three words. The .R -
command restores the normal (usually

Roman) font. If only one word is to be ital-

icized, it may be just given on the line with
the .l command, '

I word

and in this case no .R is needed to restore
the previous font. Boldface can be pro-
duced by ‘

.B
Text to be set in boldface

goes here
.R

and also will be underlined on the terminal
or line printer. As with .I, a single word can
be placed in boidface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger), .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased eme (here one .NL canceled two
.SM commands).

If actual underlining as opposed to ital-
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underline muitiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finaily placed at the bot-
tom of the current page®. By default, foot-
notes are 11/12th the length of normal text,
but this can be changed using the FL regis-
ter (see below).

Displays and Tables. To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

* Like this.

DS

table lines, like the
examples here, are placed
between .DS and .DE
DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack-
eted by .DS L and .DE are left-adjusted, not
indented. and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus,

these lines were preceded
by .DS C and followed by
a .DE command;

whereas

these lines were preceded
by .DS L and followed by
a .DE command..

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of
the commands .DS C, .DS L, or .DS | -
respectively. An extra argument to the .DS
I or .DS command is taken as an amount to
indent. Note: it is tempting to assume that

".DS R will right adjust lines, but it doesn’t

work.
Boxing words or lines. To draw rec-
tangular boxes around words the command
.BX word

will print as shown. The boxes will
not be neat on a terminal, and this shouid
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text...
.B2

as has been done here.

Keeping blocks together. If you wish
to keep a tabie or other block of lines
together on a page, there are ‘‘keep -

release’’ commands. If a biock of lines pre-
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a
‘keep floating” command: if the block to be
kept together is preceded by .KF instead of
.KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be introduced in the docu-
ment,

NroffiTroff commands. Among the
useful commands from the basic formatting

programs are the following. They all work .

with both. typesetter and computer terminal
output:

.bp - begin new page.

.br - *‘break’’, stop running text
from line to line.

.Sp n - insert n blank lines.

.na - don’t adjust right margins.

Date. By default, documents produced
-on computer terminals have the date at the
bottom of each page; documents produced
on the typesetter don’t. To force the date,
say ‘“.DA™. To force no date, say ‘“. ND”.
To lie about the date, say “.DA July 4,
1776 which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945

in ".RP" format places the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig-
nature line by placing the command .SG in
the document. The authors’ names will be
output in place of the .SG line. An argu-
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SG command is ignored in released paper
format. - ~

Registers. Certain of the registers

used by —ms can be altered to change .

default settings. They should be changed
with .nr commands, as with

arPS9

to make the default boint size 9 point. If
the effect is needed immediately, the normal

troff command should be used in addition to

_ changing the number register.

Register Defines - Takes Default
effect
PS point size next para. 10
VS line spacing next para. 12 pts

LL line length
LT title length
PD para. spacing next para. 0.3 VS

Pl para. indent next para. Sens

FL footnote length next FS 11712 LL
CW column width next 2C /15 LL
GW intercolumn gap next 2C /1S LL
PO page offset - next page 26/27"
HM top margin ‘next page 1"

FM bottom margin next page 1"

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
The page number on output is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier.

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede the
letter over which the mark is to appear.
Here are the strings:

next para. 6"
next para. 6"

Input OQutput Input Output
*e é *"a i
*'e é *Ce €
*u i *c ¢
*"e é

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command*

nroff =ms file

and you can print it on the typesetter with
the command

troff —ms file

(many options are possible). In each case,
if your document is stored in several files,
just list all the filenames where we have
used “file’”. If equations or tables are used,
eqn and/or 15/ must be invoked as prepro-
cessors.

* If .2C was used, pipe the nroff output through
col; make the first line of the input ‘‘.pi

~ /usr/bin/col.™

2

References and further study. If you
have to do Greek or mathematics, see egn
(1] for equation setting. To aid eqm users,
—ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be an equation number and placed in the
right margin near the equation. In addition,
there are three special arguments to EQ: the
letters C, I, and L indicate centered
(default), indented, and left adjusted equa-
tions, respectively. If there is both a format
argument and an equation number, give the
format argument first, as in

.EQL (1.32)

for a left-adjusted equation numbered

(1.32).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long table with a
heading may be broken across pages by
beginning it with .TS H instead of .TS, and
placing the line .TH in the table data after
the heading. If the table has no heading
repeated from page to page, just use the
ordinary .TS and .TE macros.

To learn more about troff see [3] for a
general introduction, and [4] for the full
details (experts only). Information on
related UNIX commands is in {5]. For jobs
that do not seem well-adapted to —ms, con-
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks as imitating particular journals
than to try to adapt —ms.

Acknowledgment. Many thanks are
due to Brian Kemnighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

B. W. Kemighan and L. L. Cherry,
Typesetting Mathematics —- Users Guide
(2nd edition), Beil Laboratories Com-
puting Science Report no. 17.

M. E. Lesk, 76/ — A Program to For-
mat Tables, Bell Laboratories Comput-
ing Science Report no. 45.

f1]

(21

(31
[4]

(s

B. W. Kernighan, 4 Troff Tutorial, Beli
Laboratories, 1976.

J. F. Ossanna, Nroff/Troff Reference .

Manual, Beil Laboratories Computing
Science Report no. 51.

K. Thompson and D. M. Ritchie,

UNIX Programmer’s Manual, Bell
Laboratories, 1978.

1C
2C
AB
AE
Al
AU

DA
DE
DS
EN
EQ
FE

FS

IP

KE
KF
KS

Begin italics.

Begin indented paragraph.
Release keep.
Begin floating keep.
Start keep.

LG Increase type size.
LP Left aligned block paragraph.
ND Change or cancel date.
NH Specify numbered heading.
NL Return to normali type size.
PP Begin paragraph.
R Return to regular font (usually Roman).
RE End one level of relative indenting.
RP Use released paper format.
RS Relative indent increased one level.
SG Insert signature line.
SH Specify section heading.
SM Change to smaliler type size.
TL Specify title.
UL Underline one word.
Register Names

-7.

Appendix A
List of Commands

Return to single column format.
Start double column format.
Begin abstract.
End abstract. -
Specify author’s institution.
Specify author.
Begin boldface.
Provide the date on each page.
End display.
Start dispiay (also CD, LD, ID).
End equation.
Begin equation.
End footnote.
Begin footnote.

The following register names are used by —ms internally. Independent use of these

names in one’s own macros may produce incorrect output. Note that no lower case letters are
used in any —ms internal name. :

#T
1T

AV
cw

1C
2C
Al
A2
A3
A4

SERE]S

AS
AB
AE

AU

BG
BT

Cl
C2
CA

H1
H3
H4
HS5

GwW

Number registers used in —ms
LL
LT
MM
MN
MO

HM IQ
HT IR
IK KI
IM L1
IP LE

NA oJ PO T . TV
NC PD PQ TB Vs
NF PF PX TD YE
NS PI RO N YY
o) | PN ST TQ ZN

String registers used in —ms

Dw EZ
DY FA
El FE
E2 FJ

E3 FK
E4 FN
E5 FO
EE FQ
EL FS

EM Fv
EN FY
EQ HO

I
I1
12
I3
14
IS
ID
IE
M
P
1IZ
KE

KF MR Rl RT TL
KQ ND R2 SO . ™
KS NH R3 S1 TQ
LB NL R4 S2 TS
LD NP RS SG T
LG oD RC SH UL
LP OK RE SM WB
ME PP RF SN WH
MF PT RH SY wT
MH PY RP " TA XD
MN QF RQ TE XF
MO R RS TH XK

Order of Commands in Input

N
NH, SH-

Figure 1

=

A Guide to Preparing
Documents with —ms

M. E. Lesk

Beil Laboratories August 1978

This guide gives some simple examples of do-" -

cument preparation on Bell Labs computers,
emphasizing the use of the —ms macro pack-
age. It enormously abbreviates information in
1. Typing Documents on UNIX and GCOS, by
M. E. Lesk;
2. Typesetting Mathematics — User’s Guide,
by B. W. Kernighan and L. L. Cherry; and
3. Tbi — A Program to Format Tables, by M.
E. Lesk. '
These memos are all included in the UNIX
Programmer’s Manual, Volume 2. The new
user should also have A Tutorial Introduction to
the UNIX Text Editor, by B. W. Kernighan.

For more detailed information, read Advanced
Editing on UNIX and A Troff Tutorial, by B. W.
Kernighan, and (for experts) Nroff/Troff Refer-
ence Manual by J. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kernighan and
the UNIX Programmer’'s Manual by K. Thomp-
son and D. M. Ritchie.

Contents
ATMo il 2
Areleasedpaper 3
An internal memo, and headmgs .4
Lists, displays, and footnotes 5
Indents, keeps, and double column . 6
Equations and registers 7
Tablesand usage e e 8

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

2
Commands for a TM
.TM 1978-5b3 99999 99999-11

.ND April 1, 1976

JL

The Role of the Allen Wrench in Modern
Electronics

AU "MH 2G-111" 2345

J. Q. Pencilpusher

AU "MH 1K-222" 5432

X. Y. Hardwired

Al

MH

.OK

Tools

Design

AB

This abstract should-be short enough-to -
tit on a single page cover sheet.

It. must attract the reader into sending for
the complete memorandum.

AE

£8S10212567

NH

Introduction.

PP

Now the first paragraph of actual text ...

Last line of text.

SG MH-1234-JQP/XYH-unix
NH

References ...

Commands not needed in a particular format are ig-
nored. .

. Title-The Role of the Allen Wrench

@Bcllhhomoﬁa

This mformanion - is for emplovees of Bell Laboraiories. (GEl 13.93)

Cover Sheet for TM

Date-April 1, 1976
T™- 1978-5b3

in Modern Electronics

 Other Keywords- Toois
Design
Author Location Ext. Charging Case- 99999

J. Q. Pencilpusher MH 2G-111 2345 Filing Case- 999992
X. Y. Hardwired MH 1K-222 5432

ABSTRACT

This abstract shouid be short enough to
fit on a single page cover sheet. It must
attract the reader into sending for the com-
plete memorandum.

Pages Text - 10 Other A2 Total 12 v
No. Figures 5 No, Tabies 6 No.Refs. 7

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

3

A Released Paper with Mathematics

EQ
delim $3
EN
.RP

... {as for a TM)

£810212567

.NH

Introduction

PP .

The solution to the torque handle equation

EQ (1)

sumfromOtoinfF{xsubi) = G(x)

".EN .

is found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and $theta$
is derived

4

‘An Internal Memorandum

M .
.ND January 24, 1956 ZMT
TL .

The 1956 Consent Decree

AU

Able, Baker &

Charley, Attys.

PP

Plaintiff, United States of America, having filed
its complaint herein on January 14, 1949; the
defendants having appeared and filed their
answer to such complaint denying the
substantive aliegations thereof; and the parties,

The Role of the Allen Wrench
in Modern Electronics

J. Q. Penciipusher
X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This abstract shouid be short enough to fiton a
single page cover sheet. It must attract the
reader-into sending for the complete memoran-
dum.

April 1, 1976

" Subject: The 1956 Consent Decree date: January 24, 1956

“herein, and without trial or adjudication of any issue of fact

The Roie of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher
X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
The solution 1o the torque handle equation

3 Flx)=G(x) 1§}
0

is found with the transformation x-% where p=G‘(x) and
4 is derived from weil-known principles.

by their attorneys, ...

Bell Laboratories

‘from: Able, Baker &
Charley, Attys.

Plaintiff, United States of America. having filed its com-
plaint herein on January 14, 1949; the defendants having
appeared and filed their answer t0 such complaint denying
the substantive allegations thereof’ and the parties, by their
attorneys, having severally consented to the entry of this
Final Judgment without trial or adjudication of any issues
of fact or law herein and without this Final Judgment con-
stituting any evidence or admission by any parly in respect
of any such issues;

Now, therefore before any testimony has been taken

or law herein, and upon the consent of all parties hereto, it
is ‘hereby
Ordered, adjudged and decreed as follows:

1. [Sherman Actl

This Court has jurisdiction of the subject matter herein
and of ail the parties hereto. The complaint states a claim
upon which relief may be granted against each of the
defendants under Sections |, 2 and 3 of the Act of
Congress of July 2; 1890, entitied **An act 10 protect trade
and commerce against unlawful restraints and monopo-
lies,” commonly known as the Sherman Act, as amended.

il. [Definitions]
For the purposes of this Final Judgment:

(a) “‘Western' shall mean the defendant Western Elec-
tric Company, Incorporated.

Other formats possible (specify before .TL) are: .MR
(**memo for record”’), .MF (**‘memo for file"), .EG
(**engineer’s notes™) and .TR (Computing Science
Tech. Report).

Headings
.NH SH
Introduction. Appendix |
PP PP

text text text text text text

Appendix I
text text text

1. Introduction
text text text

5

A Simple List

P 1,

J. Pencilpusher and X. Hardwired,
A .

A New Kind of Set Screw,

R

Proc. |EEE

B75

(19786), 23-258.

AP 2.

H. Nails and R. irons,

Jd

Fasteners for Printed Circuit Boards,
R

Proc. ASME

B 23

(1974), 23-24.

.LP (terminaltes list)

t. J. Pencilpusher and X. Hardwired, 4 New Kind
ol Ser Screw, Proc. IEEE 75 (1976), 23-255.

2. H. Nuails and R. lrons, Fasteners for Primted Cir-
ctit Boards, Proc. ASME 23 (1974), 23-24.

Displays
text text text text text text
.DS

and now

for something

completely different

.DE

text text text text text text

hoboken harrison newark roseville avenue grove
street east orange brick church orange highland ave-
nue mountain station south orange mapiewood
millburn short hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling milling-
ton lyons basking ridge bernardsville far hills
peapack gladsione

Options: .DS L: left-adjust; .DS C: line-by-line
center. .DS B: make block, then center.

Footnotes

Among the most important occupants

of the workbench are the long-nosed pliers.
Without these basic tools*

.FS

* As first shown by Tiger & Leopard

(1975).

.FE .

few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the work-
bench are the long-nosed pliers. Without these basic
tools® few assemblies couid be compieted. They
may lack the popular appeal of the sledgehammer

* As first shown by Tiger & Leopard (1975).

Mulitiple Indents

This is ordinary text to point out

the margins of the page.

AP 1, :
First lavei item
RS

1P a)

Second lavel.
AP D) -

Continued here with another second
levei item, but somewhat longer.

RE
AP 2,

Return to previous value of the

indenting at this point.
AP 3.

Another

line.

This is ordinary 1ext 10 point out the margins of the

page.
1. First level item
a) Second level.

b) Continued here with another second level
item, but somewhat longer.
2. Return to previous value of the indenting at this

point,
3. Another line.

Keeps

Lines bracketed by the following commands are kept
together, and will appear entirely on one page:

.KS not moved
KE through text

KF may float
KE in text

Double Column

TJL

The Declaration of Independence

2C
PP

When in the course of human events, it becomes
necessary for one people to dissoive the
political bonds which have connected them with
another, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature's God entitle
them, a decent respect to the opinions of

The Declaration of Independence

When in the course of
human events, it be-
comes necessary for one
people to dissolve the
political bonds which
have connected them
with another, and to as-
sume among the powers
of the earth the separate
and equal station to
which the laws of Nature
and of Nature’s God an-
title them, a decent
respect to the opinions
of mankind requires that

they shouid declare the
causes which impel them
to the separation.

We hold these truths
10 be seif-evident, that
all men are created
equal, that they are en-
dowed by their creator
with certain unalienable
rights, that among these
are life, liberty, and the
pursuit of happiness.
That to secure these
rights, governments are
instituted among men,

7

Equations

A displayed equation is marked

with an equation number at the right margin

by adding an argument to the EQ line:

£Q (1.3)

x Sup 2 over a sup 2 “="sqrt {p z sup 2 +qz+r}
.EN

A displayed equation is marked with an equation
number at the right margin by adding an argument

to the EQ line:
2
%-2- - pzigz+r C(13)

EQ 1 (2.2a)

bold V bar sub nu~="left [pile {a above b above
¢ | right] + left [matrix { col { A(11) above .
above . | col { . above . above .} col {. above .
above A(33) }} right] cdot left [pile { alpha
above beta above gamma |} right |

.EN
_ al 1401 . a
V, = lbl+] . . . 1B (2.2a)
¢ . AQD) ly
EQ L
F hat (chi) “mark = ~|del V|sup 2
EN
EQ L

lineup ="~ {left ((partial V} over {partial x} right)
) sup 2 + { left ({partial V] over |partial y} right
) | sup 2 """~ lambda -> inf

.EN ’

Filx) = |TV|?
av)’
- (3]

$ adot$, $bdotdots, 3 xitilde times y vecs:

2
av
9y

A ~—=co

a, b, Exy. (with delim S8 on, see panef 3).
See also the equations in the second table, panel 8.

Some Registers You Can Change

Line length Paragraph spacing
.nr LL 7i aarPDO
Title length Page offset
.ar LT 7i .nr. PO 0.5i
Point size Page heading
.nrPSH .ds(CH Ap)pendix
Vertical spacing center
ar Vs 11 .ds RH 7-25-76
] (right)
. Column width .ds LH Private
.nr CW 3i (left)
Intercolumn spacing Page footer
-r GW 5i .ds CF Draft
Margins — head and foot dsLF . .
nr HM .75 .ds RF Similar
.nr FM .75i Page numbers
Paragraph indent .nr % 3

.ar Pl 2n

8

Tables
.TS (@ indicates a ab)
allbox;
css AT&T Common Siock ‘
g ﬁ ‘; _Y_ez_lr Price | Dividend
AT&T Common Stock 1971]41-54 | $2.60
Year @ Price ® Dividend 2141-541 2.70
1971 041-54 ©32.60 3146-35 2.87
2041-5402.70 4140-53 1 3.24
3046-5502.87 -
4©40-5303.24 : ‘;f'sg 340
5®45-5203.40 -5 95

6051-590.95" * (first quarier only)
.TE

* (first quarter only)

The meunings of the key-letters describing the align-
ment of each entry are:

¢ center n numerical
r right-adjust a subcolumn
I left-adjust S spanned

The global table options are center, expand, box,
doublebox, aillbox, tab (x) and linesize (n).

TS (with delim S$ on, see panel 3)
doubiebox, center;
cc

tL
Name @ Definition
.Sp
Gamma @ SGAMMA (z) = int sub O sup inf \

t sup {z-1} @ sup -t dt$
Sine @ $sin (x) = 1 over 2i (e sup ix - @ sup -ix)$
Error @8 roman erf (z) = 2 over sqrt pi \

int sub O sup z e sup {-t sup 2} dt$
Bessel®$ J sub 0 (z) = 1 over pi \

int sub O sup picos (z sin theta) d theta $
Zeta®$ zeta (s) = \ :

sum from k=1 to inf k sup -s ~(Re’s > 1)$

.TE
Name Definition

Gamma F(:)-J; e 'dr

Sine sin(x)-_l—,(e“-e"")
2i

Error érf(:)--‘Tz-;-L_‘t.’"zdl
1 7 .
Bessel Jo(z)m— f cos(zsind)do
. wYyo

Zeta Us)=F k™ (Res>1)

k=i

Usage

Documents with just text:
troff -ms files

With equations only:
eqn files| troff -ms

With tables only:
bt files | troff -ms

" With both tables and equations:

bl files|egqn|troff -ms

The above generates STARE output on GCOS: replace
—st with —ph for typesetter output.

=)

l

Thl — A Program to Format Tables

Murray Hill, New Jersey 07974

- Tbl is a document formatting preprocessor for ‘troff or nroff which. makes
even fairly complex tables easy to specify and enter. It is available on the PDP.
I UNIX* system. and on Honeywell 6000 GCos. Tables are made up of columns
which may be independently centered, right-adjusted, left-adjusted, or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table, and

M. E. Lesk

Bell Laboratories

ABSTRACT

any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollars) ’
Taxes Money
State. collected | spent Net

New York 22.91 2135 | —1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 | —1,02
Maine 0.74 0.67 | —0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

January 16, 1979

* UNIX is a Trademark/Service Mark of the Bell System

Tbl — A Program to Format Tables
M. E. Lesk

Beil Laboratories
Murray Hill, New Jersey 07974

Introduction.

Thl turns a simple description of a table into a troff or nroff [1}- program - (list of com-.
mands) that prints the table. Tb/ may be used on the PDP-11 UNIX [2] system and on the
Honeywell 6000 Gcos system. It attempts to isolate a portion of a job that it can successfully
handle and leave the remainder for other programs. Thus b/ may be used with the equation
formatting program egn [3] or various layout macro packages [4,5,6], but does not duplicate
their functions.

This memorandum is divided into two parts. First we give the rules for preparing 1b/
input; then some examples are shown. The description of ruies is precise but technical, and the
beginning user may prefer to read the examples first, as they show some common table
arrangements. A section explaining how to invoke b/ precedes the examples. To avoid repeti-
tion, henceforth read troffas “troff or nroff.”’

The input to b/ is text for a document, with tables preceded by a *‘.TS” (table start)
command and followed by a “.TE” (table end) command. Tb/ processes the tables, generating
troff formatting commands, and leaves the remainder of the text unchanged. The ““.TS” and
“ TE” lines are copied, too, so that troff page layout macros (such as the memo formatting
macros [4]) can use these lines to delimit and place tables as they see fit. In particular, any
arguments on the **.TS” or **.TE” lines are copied but otherwise ignored, and may be used by
document layout macro commands.

The format of the input is as follows:

text
-.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
‘options 3
format .
dara

.TE

Each table is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by a few options that affect the entire table. A detailed
description of tables is given in the next section.

T

Input commands.

As indicated above, a table contains, first, global options, then a format section describing

the layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The various parts of the table are entered as follows:

1)

2

OrpTiONS. There may be a single line of options affecting the whole table. If present, this
line must follow the .TS line immediately and must contain a list of option names
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The
allowable options are:

center — center the table (default is left-adjust);

expand — make the table as wide as the current line length;
box - enclose the table in a box;

allbox — enclose each item in the table in a box;
doublebox — enclose the table in two boxes;

tab (x) — use x instead of tab to separate data items.

linesize (n) — set lines or rules (e.g. from bex) in » point type;
delim (xy) — recognize x and y as the egn delimiters.

The bl program tries to keep boxed tables on one page by issuing appropriate ‘“‘need”
(.ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu-
rate; use normal rroff procedures, such as keep-release macros, in that case. The user who
must have a multi-page boxed table should use macros designed for this purpose, as
explained below under ‘Usage.’

FORMAT. The format section of the table specxﬁes the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next .T&, if any — see below), and each line contains a key-
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key-letter is one of the following:

Lor 1 toindicate a left-adjusted column entry;
.Ror r toindicate a right-adjusted column entry;
Cor ¢ to indicate a centered column entry;

-Norn to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits of numbers line up;

Aor a to indicate an alphabetic subcolumn; all corresponding entries are aligned on
the left, and positioned so that the widest is centered within the column (see
example on page 12);

Sors to indicate a spanned heading, i.e. to indicate that the entry from the previous
, column continues across this column (not allowed for the first column, obvi-
ously); or

A ~ to-indicate a vertically spanned heading, i.e. to indicate that the entry from the
previous row continues down through this row. (Not allowed for the first row
of the table, obviously).

When numerical alignment is specified, a location for the decimal point is sought. The
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is
centered in the column. However, the special non-printing character string \& may be
used to override unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dot normally would, and then disappears from the final output. In the
example below, the items shown at the left will be aligned (in a numerical column) as

shown on the right:

13 13

4.2 4.2
26.4.12 26.4.12
abc abc
abc\& abc -
43\&3.22 433.22
749.12 749.12

Note: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider L or ritems (L is used instead of 1 for
readability; they have the same meaning as key-letters). Alignment within the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However, alphabetic subcolumns (requested by the a key-letter) are always slightly

indented relative to L items; if necessary, the column width is increased to force this.

This is not true for n type entries.
Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for-
mat might appear as:

css

lnn.
which specifies a table of three columns. The first line of the table contains a heading cen-
tered across all three columns; each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample table in this format
might be:

Overall title

Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines — A key-letter may be replaced by ¢’ (underscore) to indicate a hor-
izontal line in place of the corresponding column entry, or by ‘=’ to indicate a dou-
ble horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is ignored and a warn-
ing message is printed.

Vertical lines — A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. If two vertical bars appear between key-letters, a double vertical
line is drawn. :

Space between columns — A number may follow the key-letter. This indicates the
amount of separation between this column and the next column. The number nor-
mally specifies the separation in ens (one en is about the width of the letter ‘n’).* If
the “‘expand’’ option is used, then these numbers are multiplied by a constant such
that the table is as wide as the current line length. The default column separation

* More precisely, an en is a number of points (1 point = 1/72 inch) equal to half the current type size.

b

-4- -

number is 3. If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning — Normally, vertically spanned items extending over several rows of -
the table are centered in their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes — A key-letter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters; a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for
fB and fl. Font change commands given with the table entries override these
specifications.

Point size changes — A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a

signed digit, in which case it is taken as an increment or decrement from.the current

point size. If both a point size and a column separation value are given, one or
more blanks must separate them.

Vertical spacing changes — A Kkey-letter may be followed by the letter v or V and a
number to indicate the vertical line spacing to be used within a muiti-line
corresponding table entry. The number may be a signed digit, in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation. value must be separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below). :

Column width indication — A key-letter may be followed by the letter w or W and a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the larg-
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal troff units can be used to scale the.
width value; if none are used, the default is ens. If the width specification is a unit-
less integer the parentheses may be omitted. If the width value is changed in a
column, the /ast one given controls.

Equal width columns — A Kkey-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns. '

Note: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

npl2w(2.50f1 6

Alternative notation — Instead of listing the format of successive lines of a table on con-
secutive lines of the format section, successive line formats may be given on the
same line, separated by commas, so that the format for the example above might
have been written:

css,Ilnn.

Default — Column descriptors missing from the end of a format line are assumed to be
L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

3)

-5-

DATA. The data for the table are typed after the format. Normally, each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac-
ter is \ is combined with the following line (and the \ vanishes). The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option rabs option. There are a few special cases:

Troff commands within tables — An input line beginning with a .’ foliowed by anything
but a number is assumed to be a command to froff and is passed through unchanged,
retaining its position in the table. So, for example, space within a table may be pro-
duced by *“.sp’> commands in the data.

Full width horizontal lines — An input line containing only the character _ (underscore)
= (equal sign) is taken to be a single or double line, respectively, extending the
full width of the rqble.

Single column horizontal lines — An input table entry containing only the character _or =
is taken to be a single or double line extending the full width of the column. Such
lines are extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by \& or follow
them by a space before the usual tab or newline.

Short horizontal lines — An input table entry containing only the string _ is taken to be a
single line as wide as the contents of the column. It is not extended to meet adjoin-
ing lines.

Repeated characters — An input table entry containing only a string of the form \Rx
where x is any character is replaced by repetitions of the character x as wide as the
data in the column. The sequence of x’s is not extended to meet adjoining
columns.

Vertically spanned items — An input table entry containing only the character string *
indicates that the table entry immediately above spans downward over this row. It is
equivalent to a table format key-letter of *

Text blocks — In order to include a block of text as a table entry, precede it by T{ and

follow it by T}. Thus the sequence

... T

block of

text

T}. ..
is the way to enter, as a single entry in the table, something that cannot con-
veniently be typed as a simple string between tabs. Note that the T} end delimiter
must begin a line; additional columns of data may follow after a tab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table, various limits in
the troff program are likely to be exceeded, producing diagnostics such as ‘too many
string/macro names’ or ‘t00 many number registers.’ :

Text blocks are pulled out from the table, processed separately by troff; and replaced
in the table as a solid block. If no line length is specified in the block of text itself,
or in the table format, the default is to use L XxC/(N+1) where L is the current line
length, C is the number of table columns spanned by the text, and N is the total
number of columns in the table. The other parameters (point size, font, etc.) used
in setting the block of text are those in effect at the beginning of the table (including
the effect of the “*. TS’ macro) and any table format specifications of size, spacing
and font, using the p, v and f modifiers to the column key-letters. Commands
within the text block itself are also recognized, of course. However, troff commands
within the table data but not within the text block do not affect that block.

-6-

‘Warnings: — Although any number of lines may be present in a table, only the first 200
lines are used in calculating the widths of the various columns. A multi-page table,
of course, may be arranged as several single-page tables if this proves to be a prob-
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the . TS’ command was encountered, except for font and size changes indi-
cated (a) in the table format section and (b) within the table data (as in the entry
\s+3\fIdata\fP\s0). Therefore, aithough arbitrary troff requests may be sprinkled in
a table, care must be taken to avoid confusing the width calculauons, use requests
such as ‘.ps’ with care.

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi-
lar lines, as with sub-headings or summarizations, the *.T&” (table continue) command
can be used to change column parameters. The outline of such a table input is:

IS
options ;
Jormat .
data
T&
JSormat .
data
T&
Jormat .
data
.TE

as in the examples on pages 10 and 12. Using this procedure, each table line can be close
~ to its corresponding format line.

Warning: it is not possible to change the number of columns, the space between columns,
the giobal options such as box, or the selection of columns to be made equal width.

Usage.
On UNIX, b/ can be run on a simple table with the command

tbl input-file | troff

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

- tbl file-1 file-2 . . . |eqn | troff —ms

and, of course, the usual options may be used on the rroff and eqn commands. The usage for
nroff is similar to that for troff; but only TELETYPE® Model 37 and Diablo-mechanism (DAsI or
GSI) terminals can print boxed tables directly. '

For the convenience of users employing line printers without adequate driving tables or
post-filters, there is a special —TX command line option to rb/ which produces output that does
not have fractional line motions in it. The only other command line options recognized by tb/
are —ms and —mm which are turned into commands to fetch the corresponding macro files;
usually it is more convenient to place these arguments on the roff part of the command line,
but they are accepted by b/ as well, '

Note that when egn and b/ are used together on the same file 15/ should be used first. If
there are no equations within tables, either order works, but it is usually faster to run b/ first,
since egn normally produces a larger expansion of the input than (bl However, if there are
equations within tables (using the delim mechanism in egn), tb/ must be first or the output will
be scrambled. Users must also beware of using equations in n-style columns; this is nearly

-7-

always wrong, since bl attempts to split numerical format items into two parts and this is not
possible with equations. The user can defend against this by giving the delim(xx) table option;
this prevents splitting of numerical columns within the delimiters. For example, if the egn del-
imiters are $8, giving de/im(38) a numerical column such as ““1245 $+- 168> will be divided
after 1245, not after 16.

Th! limits tables to twenty columns; however, use of more than 16 numerical columns
may fail because of limits in rroff, producing the ‘too many number registers’ message. Troff
number registers used by rb/ must be avoided by the user within tables; these include two-digit
" names from 31 to 99, and names of the forms #x, x+, x|, ~x, and x—, where x is any lower
case letter. The names ##, #—, and #" are also used in certain circumstances. To conserve
number register names, the n and a formats share a register; hence the restriction above that
they may not be used in the same column.

For aid in writing layout macros, tb!/ defines a number register TW which is the table
width: it is defined by the time that the ‘. TE™ macro is invoked and may be used in the
expansion of that macro. More importantly, to assist in laying out multi-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In
particular, the ms macros can be used to print a multi-page boxed table with a repeated headmg
by giving the argument H to the **.TS” macro. If the table start macro is written

.TS H
a line of the form
~ .TH
must be given in the table after any table heading (or at the start if none). Material up to the
“ . TH” is placed at the top of each page of table; the remaining lines in the table are placed on
several pages as required. Note that this is not a feature of rb/, but of the ms layout macros. -

Examples.

Here are some examples illustrating features of rbl. The symbol @ in the input
represents a tab-character.

_ Input: ' Output:
TS Language Authors Runs on
box;
cce Fortran Many Almost anything
11 _ 1 PL/1 IBM 360/370
Language @ Authors ®Runs on C BTL 11/45,H6000,370

BLISS Carnegie-Mellon PDP-10,11

Fortran @ Many @ Almost anything ' IDS Honeywell - H6000
PL/1®IBM ®360/370 Pascal Stanford 370

C@®BTL ®11/45,H6000,370

BLISS ® Carnegie-Mellon @ PDP-10,11
IDS @ Honeywell @ H6000

Pascal @ Stanford @370

.TE

Input:

TS

allbox;

cSss

ccc

nnn.

AT&T Common Stock
Year @ Price ® Dividend
1971 @41-54®$2.60
2041-54®2.70
3®46-55®2.87
4®40-53®3.24
5@45-52®3.40
6®51-59®.95*

.TE

* (first quarter only)

Input:

.TS

box;

cSs

clele

II!a.

Major New York Bridges

Bridge @ Designer @ Length

Erooklyn @J. A. Roebling® 1595
Manhattan @ G. Lindenthal ®1470
Williamsburg ®L. L. Buck ® 1600

(—Queensborough @Palmer & ®1182
@ Hornbostel

D ®1380
Triborough ®0. H. Ammann @_
@ @383

Bronx Whitestone ®0. H. Ammann ®2300
Throgs Neck ®0. H. Ammann ® 1800

-8-

Output:

AT&T Common Stock
Year | Price | Dividend
1971 | 41.54 $2.60

2141-54 - 270
3 | 46-55 2.87
4 | 40-53 3.24
5 | 45-52 3.40
6 | 51-59 95*

* (first quarter only)

Output:
Major New York Bridges
" Bridge " Designer Length
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel :
. 1380
Triborough O. H. Ammann
; 383
Bronx Whitestone O. H. Ammann 2300
Throgs Neck 0. H. Ammann 1800
George Washington | O. H. Ammann 3500

f}eorge Washington ®0. H. Ammann ® 3500

.TE

Input:

TS

box;

LLL
LL_
LL|LB
LL _
LLL.

january @ february @ march

april ® may

june @july ® Months

august @september

october ® november @december

.TE

Output:

Stack
46
23
15

6.5
2.1

wn S W N e

Output:

january february
april may

june july
august september

october november

march

Months

december

I

Input:
-TS
~Composition of Foods
T,
clcss
cless
c leilc e
Food @ Percent by Weight
\"o_
7 \"®Protein ® Fat ® Carbo-
\"®\"®\" ®hydrate
T&
IIn|n |n.
Apples®@.4@.5®13.0

Halibut®18.4®5.2%. ..
Lima beans ®7.5®.8®22.0
Milk®3.394.0®5.0
Mushrooms ®3.5® .4®6.0
Rye bread ®9.0®.6®52.7
.TE

Input:

.TS

allbox;

cfl s s

¢ cw(li) cw(li)

1p9 Ip9 ip9.

New York Area Rocks

Era ® Formation @ Age (years)
Precambrian ® Reading Prong ® >1 billion
Paleozoic @ Manhattan Prong ®400 million
Mesozoic ® T

.na o

Newark Basin, incl.

Stockton, Lockatong, and Brunswick
formations; also Watchungs

and Palisades.

T} ®200 million-

Cenozoic ® Coastal Plain ® T{

On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.

.ad

T}

.TE

10 -

Output:
Composition of Foods
Percent by Weight
Food . Carbo-
Protein | Fat hydrate
Apples 4 5 13.0
Halibut -18.4 5.2
Lima beans 7.5 .8 22.0
Milk 33 4.0 5.0
Mushrooms 3.5 4 6.0
Rye bread 9.0 .6 52.7
Output:
’ - New York Area Rocks
Era Formation Age (years)
Precambrian | Reading Prong >1 billion
Paleozoic Manhattan Prong | 400 million
Mesozoic Newark Basin, 200 miltion
incl. Stockton,
Lockatong, and
Brunswick for- .
mations; also
Watchungs and
Palisades.
Cenozoic Coastal Plain On Long Island
: 30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent
glaciation.

-11-

Input: Output:

.EQ [Name ~ Definition

delim $$

-EN Gamma F(z)=_£) 1:"le " dr
Sine sin(x)=%(e"‘—e"’"‘)

TS ' Error erf (z)=?/2——j;:e" 2t

doublebox;) "

cc Bessel Jo(z)=;£) cos(zsinf)d#

i1, o

Name @ Definition Zeta {(s)=% k™ (Res>1)

.Sp k=1

.vs +2p

Gamma ®$GAMMA (z) = int sub O sup inf t sup {z-1} ¢ sup -t dt$

Sine ®$sin (x) = 1 over 2i (e supix - e sup -ix)$

Error®$ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$
Bessel ®$ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta®$ zeta (s) = sum from k=1 to inf k sup -s ~"(Re’s > 1)$

Vs -2p
.TE
Input: Output:

.TS Readability of Text

box, tab(:); Line Width and Leading for 10-Point Type

cbssss o Line | Set | 1-Point | 2-Point | 4-Point

cr?l-2 ‘S Sl s ls Width || Solid | Leading | Leading | Leading

g"gﬁlaz 9 Pica|—93] —6.0 | =53 | =171

21n2 | n2|n2|n. 14 P!Cf{ —4.5| —0.6 -0.3 -1.7
- 19 Pica jj —5.0 | -5.1 0.0 -2.0

Readablllty Of Text 31 Pica _3 7 __3 8 —2.4 _3 6

[;me Width and Leading for 10-Point Type 43 Pica ll =9.1 | —9.0 —-59 -3.8

Line: Set : 1-Point : 2-Point : 4-Point
Width : Solid : Leading : Leading : Leading

9 Pica:\-9.3:\-6.0:\-5.3:\-7.1

14 Pica:\-4.5:\-0.6:\-0.3:\-1.7
19 Pica:\-5.0:\-5.1: 0.0:\-2.0
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6
43 Pica:\-9.1:\-9.0:\-5.9:\-8.8

.TE

Input:

TS
cs
cip-2 s
In
an.

Some London Transport Statistics

(Year 1964)

Railway route miles ® 244
Tube @66

Sub-surface ® 22

Surface @156

.Sp .5

T&

Ir

ar.

Passenger traffic \- railway
Journeys @674 million
Average length ®4.55 miles
Passenger miles @ 3,066 million
T&

“Ir

ar.
Passenger traffic \- road
Journeys ® 2,252 million
Average length @2.26 miles
Passenger miles @ 5,094 million
T&

In

an.

.Sp .5

Vehicles ®12,521

Railway motor cars 2,905
Railway trailer cars 1,269
Total railway ®4,174
Omnibuses @ 8,347

T&

In

) an'

.Sp .S

Staff 73,739
Administrative, etc. ®5,582
Civil engineering® 5,134
Electrical eng. ®1,714
Mech. eng. \- railway ©4,310
Mech. eng. \- road 9,152
Railway operations @ 8,930
Road operations @ 35,946
Other©2,971

.TE

-12-

Output:

Some London Transport Statistics

(Year 1964)

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic — railway

Journeys

Average length

Passenger miles
Passenger traffic — road

Journeys

Average length

Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
-Civil engineering
Electrical eng.
Mech. eng. — railway
Mech. eng. — road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.55 miles
3,066 million

2,252 million
2.26 miles
5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,97

-13-

Input:

.ps 8
.vs 10p
.TS
center box;
cSs
ciss
ccc
IBln.
New Jersey Representatives
(Democrats)
.Sp .5
Name @ Office address @ Phone
.Sp .5 -
James J. Florio ®23 S. White Horse Pike, Somerdale 08083 @ 609-627-8222
William J. Hughes ®2920 Atlantic Ave., Atlantic City 08401 ®609-345-4844
James J. Howard ® 801 Bangs Ave., Asbury Park 07712®201-774-1600
Frank Thompson, Jr. ® 10 Rutgers Pl., Trenton 08618 ®609-599-1619
Andrew Maguire ®115 W. Passaic St., Rochelle Park 07662 ®201-843-0240
Robert A. Roe®U.S.P.O., 194 Ward St., Paterson 07510®201-523-5152
Henry Helstoski ® 666 Paterson Ave., East Rutherford 07073 ® 201-939-9090
Peter W. Rodino, Jr. ®Suite 1435A, 970 Broad St., Newark 07102 ®201-645-3213
Joseph G. Minish ® 308 Main St., Orange 07050 ®201-645-6363 :
Helen S. Meyner @ 32 Bridge St., Lambertville 08530 ®609-397-1830
Dominick V. Daniels ®895 Bergen Ave., Jersey City 07306 ®201-659-7700
Edward J. Patten ® Natl. Bank Bldg., Perth Amboy 08861 ®201-826-4610
.sp .5
T&
" ciss
IB1n.
(Republicans)
.Sp .5v : .
Millicent Fenwick ®41 N. Bridge St., Somerville 08876 ®201-722-8200
Edwin B. Forsythe ®301 Mill St., Moorestown 08057 @ 609-235-6622
Matthew J. Rinaldo® 1961 Morris Ave., Union 07083 ®201-687-4235
.TE '
.ps 10
.vs 12p

AT

-14-

Name

James J. Florio
William J. Hughes
James J. Howard

Frank Thompsen, Jr.

Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodino, Jr.
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Miilicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

New Jersey Representatives
(Democrats)

Office address

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
801 Bangs Ave., Asbury Park 07712

10 Rutgers PlL., Trenton 08618 -

115 W. Passaic St., Rochelle Park 07662
U.S.P.O., 194 Ward St., Paterson 07510
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102
308 Main St., Orange 07050

32 Bridge St., Lambertville 08530

895 Bergen Ave., Jersey City 07306

Natl. Bank Bidg., Perth Amboy 08861

(Republicans)

41 N. Bridge St., Somerville 08876
301 Mill St., Moorestown 08057
1961 Morris Ave., Union 07083

Phone

" 609-627-8222

609-345-4844
201-774-1600

" 609-599-1619

201-843-0240
201-523-5152
201-939-9090
201-645-3213
201-645-6363
609-397-1830
201-659-7700
201-826-4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables, and
observe how such tables are formatted.

Input:

.TS
expand;
cCsss
cccec
linn.

Bell Labs Locations _
Name @ Address @ Area Code @ Phone

Holmdel ® Holmdel, N. J. 07733 ®201 ®949-3000
Murray Hill ® Murray Hill, N. J. 07974 ®201 ®582-6377
Whippany @ Whippany, N. J. 07981 ®201 ® 386-3000
Indian Hill ® Naperville, Illinois 60540 @312 ®690-2000

.TE N

Output:
Beil Labs Locations

Name Address Area Code Phone
Holmdel Hoimdel, N. J. 07733 201 949-3000
.Murray Hill Murray Hill, N. J. 07974 201 582-6377
Whippany Whippany, N. J. 07981 201 386-3000
Indian Hill Naperville, Illinois 60540 312 690-2000

-15-

Input:

.TS

box;

¢cb s s s

clele s

1tiw(1i) | 1tw(2i) | 1p8 | Iw(1.6i)p8.
Some Interesting Places

Name @ Description @ Practical Information

Ti

American Museum of Natural History

TI®T{

The collections fill 11.5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world’s largest star sapphire (stolen in 1964).
TI® Hours® 10-5, ex. Sun 11-5, Wed. to 9

\"®\"@ Location D T

C;,ntral Park West & 79th St.

T

\"®\" @ Admission @ Donation: $1.00 asked
\"@\" @ Subway® AA to 8ist St.

\"@\" @ Telephone @ 212-873-4225

Bronx Zoo @ T{

About a mile long and. .6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds

of meut a day while a sea lion eats 15 pounds of fish.
TI® Hours® T|

1?~4:30 winter, to 5:00 summer

T

\"®\" @ Location® T

18}5th St. & Southern Bivd, the Bronx.

T

\"®\"® Admission D $1.00, but Tu,We,Th free
\"@\" @ Subway®D 2, 5 to East Tremont Ave.
\"@\" @ Telephone @ 212-933-1759

Brookiyn Museum @ T{ _

Five floors of galleries contain American and ancient art.

There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station.
T} @ Hours @ Wed-Sat, 10-5, Sun 12-5

\"®\" @ Location D T{

Ez;stern Parkway & Washington Ave., Brookiyn.

T

\"@\" @ Admission D Free

\"®\" @ Subway® 2,3 to Eastern Parkway.

\"®@\" @ Telephone @ 212-638-5000

T{
New-York Historical Society
TIOT|

All the original paintings for Audubon’s

Birds of America

are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights.

TI® Hours @ T{

Tues-Fri & Sun, 1-5; Sat 10-5

T}

\"O\" @ Location D T{

Cfntral Park West & 77th St.

T

\:@\’ @ Admission @ Free
\"@\" @ Subway® AA 1o 81st St.

\‘%\‘@Telephone&) 212-873-3400

- 16 -
Output:
’ Some Interesting Places
h Name Description Practical Information
" [American Muse- | The collections fill 11.5 acres | Hours 10-5, ex. Sun 11-5, Wed. to0 9

um of Narural | (Michelin) or 25 acres,(MTA) Location Central Park West & 79th St.

Hisiory of exhibition halls —on four | Admission | Donation: $1.00 asked
floors. There is a full-sized re- | Subway AA to 81st St.
plica of a blue whale and the | Telephone | 212-873-4225
world’s largest star sapphire
(stolen in 1964). _)

Bronx Zoo About a mile long and .6 mile | Hours 10-4:30 winter, to 5:00 summer
wide, this is the largest zoo in | Location 185th St. & Southern Bivd, the
America. A lion eats 18 Bronx.
pounds of meat a day while a | Admission | $1.00, but Tu,We,Th free
sea lion eats 15 pounds of fish. Subway 2. 5 to East Tremont Ave.

» Telephone 212-933-1759

Brooklyn Museum | Five floors of galleries contain | -Hours Wed-Sat, 10-5, Sun 12-5
American and ancient art. | Location Eastern Parkway & Washington
There are American period Ave., Brookiyn.
rooms and architectural orna- | Admission | Free
ments- saved from wreckers, | Subway 2,3 to Eastern Parkway.
such as: a classical figure from | Telephone | 212-638-5000

. Pennsylvania Station.

New-York Histor- | All the original paintings for | Hours Tues-Fri & Sun, 1-5; Sat 10-5
ical Society Audubon’s Birds of America are | Location Central Park West & 77th St.
here, as are exhibits of Ameri- | Admission | Free

can decorative arts, New York | Subway AA to 8lst St.
history, Hudson River school | Teiephone | 212-873-3400
paintings, carriages, and glass
paperweights.

Acknowledgments.

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work of the late J. F. Ossanna, whose assistance with this program in particular had been
most helpful. This program is patterned on a table formatter originally written by J. F. Gimpel.
The assistance of T. A. Dolotta B. W. Kernighan, and J. N. Sturman is gratefully ack-

nowledged.

References.

{11 1. F. Ossanna, NROFF/ITROFF User’s Ménual, Computing Science Technical Report No. 54,

Bell Laboratories, 1976.

[2] K. Thompson and D. M. Ritchie, “The UNix Time-Sharing System,”” Comm. ACM. 17,

pp. 365—75 (1974).

[3] B. W. Kernighan and L. L. Cherry, “A System for Typesettmg Mathematics,”> Comm.

ACM. 18, pp. 151-57 (1975)
[4] M. E. Lesk, Typing Documents on UNIX, UNIX Programmer’s Manual Volume 2.

-17-

[51 M. E. Lesk and B. W. Kernighan, Computer Typesetting of Technical Journals on UNiX, Proc.
AFIPS NCC, vol. 46, pp. 879-888 (1977).

[6] J. R. Mashey and D. W. Smith, ‘“Documentation Tools and Techniques,’’ Proc. 2nd Int.
Conf. on Software Engineering, pp. 177-181 (October, 1976).

List of Tbi Command Characters and Words

Command Meaning Section
aA Alphabetic subcolumn 2
allbox Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width 1
fF Font change 2
il © lalic item 2
1L Left adjusted column 2
nN Numerical column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T} Text block 3
vV Vertical spacing change 2
w W Minimum width value 2
oXX Included froff command 3
| Vertical line 2
] Double vertical line 2
~ Vertical span 2
* : Vertical span 3
= Double horizontal line 2,3
_ Horizontal line 2,3
_ Short horizontal line 3
\Rx Repeat character 3

NROFF/TROFF User’s Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

NROFF and TROFF are text processors under the PDP-11 UNIX Time-Sharing System! that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu-
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes; muitipie automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik-
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
~ input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capabie of utilizing the full resolution of each terminal.

Usage
The general form of invoking NROFF (or TROFF) at UNIX command level is
nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con-
taining the document to be formatted. An argument consisting of a single minus (=) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan-
dard input. The options, which may appear in any order so long as. they appear before the files, are:

Option Effect

—aolist Print only pages whose page numbers appear in /isz, which consists of comma-
separated numbers and number ranges. A number range has the form N—AM and
means pages N through M; a initial —N~N means from the beginning to page N; and
a final N— means from N to the end.

~nN Number first generated page N.

~3sN Stop every N pages. NROFF will halt prior to every N pages (default N=1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

—mname Prepends the macro file /usr/lib/tmac.ame to the input files.
«raN Register a (one-character) is set to N.

-1 Read standard input after the input files are exhausted.

-q {nvoke the simuitaneous input-output mode of the rd request.

NROFF/TROFF User’s Manual
’October 11, 1976

NROFF Only

=Tname Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Modei 37 Teletype®, tn300 for the GE TermiNet 300 (or any ter-
minal without haif-line capabilities), 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm).

- Produce equally-spaced words in adjusted lines, using full terminal resolution. . .
TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-1 Refrain from feeding out paper and stopping phototypesetter at the end of the run.

- Wait until phototypesetter is available, if currently busy.

-h TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done.

-2 Send a printable (ASCII) approximation of the resuits to the standard output.

-pN Print all characters in point size N while retaining all prescribed. spacings and
motions, to reduce phototypesetter elasped time.

-g Prepafe output for the Murray Hill Computation Center phototypesetter and direct

it to the standard output.

Each option is invoked as a separate argument; for example,
nroff —04,8—10 ~T300S ~mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named filel and file2,
specifies the output terminal as a DASI-300S, and invokes the macro package abc.

Various pre- and post-processors are available for use withh NROFF and TROFF. These include the
‘“equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table-

construction preprocessor TBL3. A reverse-line postprocessor COL* is available for muitiple-column

NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape

sequences that NROFF produces by default. TK* is a 37 Teletype simulator postprocessor for printing

NROFF output on a Tektronix 4014. TCAT¢ is phototypesetter-simulator postprocessor for TROFF that

produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbl files | eqn | troff —t options | tcat

the first | indicates the piping of TBL’s output to EQN’s input; the second the piping of EQN’s output to
TROFF's input; and the third indicates the piping of TROFF’s output to TCAT. GCAT* can be used to
send TROFF (=g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References
{1} K. Thompson, D. M. Ritchie, UNLY Programmer’'s Manual, Sixth Edition (May 1975).

{2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics — User's Guide (Second Edition), Bell Laboratories
internal memorandum.

{31 M. E. Lesk, T8 — A Program to Format Tables, Bell Laboratories internal memorandum.
{4] Internal on-line documentation, on UNIX.
{51 B. W. Kernighan, 4 TROFF Tutorial, Bell Laboratories internal memorandum.

TN
AT

—

NROFF/TROFF User’s Manual
October 11, 1976

SUMMARY AND INDEX
Request Initial If No
Form Vailue® Argument Notes# Explanation
1. General Explanation
2. Font and Character Size Control

pPSEN 10 point previous E Point size; also \s+N.t
S8 N 12/36em ignored E Space-character size set to AN/36em.t"
S FNM off . P Constant character space (width) mode (font F).t
bd FN off - P Embolden font Fby N—1 units.t '
bdS FN off - P Emboliden Speciai Font when current font is Ft
St F Roman previous E Change to font F = x, xx, or 1-4. Also \fx, \f(xx, \fN.
pNF R,1,B,S ignored - Font named F mounted on physical position 1< N4
3. Page Control '
pl=N 1lin 1lin v Page length,
bp =N No=] - B%,v Eject current page; next page number N.
pn =N Nl ignored - Next page number N,
po =N 0; 26/27in previous v Page offset.
.ne N - N=1V D,y Need N vertical space (¥ = vertical spacing).
.mk R none internal D Mark current vertical place in register R.
gt =N none internal D.v Return (upward only) 1o marked vertical place.
4. Text Filling, Adjusting, and Centering
br - - B Break.
i fill - - B,E Fill output lines.
.af fill - B,E No filling or adjusting of output lines.
.ad ¢ adj,both adjust E -~ Adjust output lines with mode c.
.na adjust - E No output line adjusting.
ce N off N B.E Center following ¥ input text lines.
5. Vertical Spacing
s N 1/6in;12pts previous - E,p Vertical base line spacing ().
s N N1 previous E Output N—1 Vs after each text output line.
SpN - : N1V B,y Space vertical distance N in either direction.
-SY N - N=lV v Save vertical distance N.
.08 - - - Output saved vertical distance.
.ns space - D Turn no-space mode on.
IS - - D Restore spacing; turn no-space mode off.
6. Line Length and Indenting
J =N 6.5in previous E.m Line length.
Jn =N N=(previous B,E.m Indent.
A =N - ignored B,E,m Temporary indent.
7. Macros, Strings, Diversion, and Position Traps
dexcyy - Jym=-,, - Define or redefine macro xx; end at call of yy.
Amxyy - Jy=,, - Append to a macro. _
.ds xx string - ’ ignored - ~ Define a string xx containing string,
.as xx string - : ignored - Append string to string xx.

*Values separated by ";" are for NROFF and TROFF respectively.

#Notes are explained at the end of this Summary and Index

tNo effect in NROFF. ‘

#The use of " * " as control character (instead of ".”) suppresses the break function.

-3-

NROFF/TROFF User’s Manual
October 11, 1976

Request
Form

Jm x
Jn XX yy
Jdi xx
da x
.wh N xx
.chxx N
Jdt N xx
it N xx
.em xx

8. Number Registers

Initial
Value

.

none

If No

- Argument

ignored
ignored
end
end

off
off
none

Notes

<

‘'mog<<go’

Explanation | ' IH

Remove request, macro, or string.

Rename request, macro, or string xx to yy.
Divert output to macro xx.

Divert and append to xx.

Set location trap; negative is w.r.t. page bottom.
Change trap location.

Set a diversion trap.

Set an input-line count trap.

End macro is xx.

Define and set number register R; auto-increment by M.
Assign format to register R (c=1, 1,1, a, A).
Remove register R.

Tab settings; left type, unless t-R(nght) C(centered).
Tab repetition character.

Leader repetition character.

Set field delimiter g and pad character b

10. Input and Output Conventions and Character Translations

arRENM -

af Rc arabic -

JIr R - -

9. Tabs, Leaders, and Fields
.ta Nt ... 0.8; 0.5in none
tec none none
Jdec . none
fcab off off
.ec ¢ \ \

.e0 on -

Jdg N -,on on
al N off Ne=1
cu N off N=]
af F Italic Italic
.£Cc ¢ .

2 c : :

.tr abcd.... none -

Omm* mm'

Set escape character.

Turn off escape character mechanism.

Ligature mode on if N>0. ‘

Underline (italicize in TROFF) N input lines.
Continuous underline in NROFF; like ul in TROFF.
Underline font set to F (to be switched to by ul).
Set controi character to c.

‘Set nobreak controi character to ¢

Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function
12. Overstrike, Bracket, Line-drawing, and Zero-width Functions
13. Hyphenation.

.nh
by N
he ¢

hyphenate
hyphenate

\%

Jhw wordl ...

14, Three Part Titles.
tl “left’ center’ right’

peec
Jt =N

%
6.5in

hyphenate

\%
ignored

off
previous

15. Output Line Numbering.
.aom =NMSI

.nn N

16. Conditional Acceptanc_e of Input

.if ¢ anything

off
Na=1

¢ mmm

No hyphenation.

Hyphenate; N = mode.
Hyphenation indicator character ¢
Exception words.

Three part title.
Page number character.
Length of title.

Number mode on or off, set parameters.
Do not number next N lines.

If condition c true, accept anything as input,
for multi-line use \{anything\}.

NROFF/TROFF User’s Manual
October 11, 1976

‘Request Initial If No

Form Value Argument Notes
Af ¢ anything - -

il N anything - u

Af !N anything -]

Af “stringl’string2’ anything .

JAf ' stringl’ string2’ any:hmg -

.ie ¢ anything a
.el’anything - -

17. Environment Switching.

ev N N=(previous -
18. Insertions from the Standard Input
.rd prompt - prompt=BEL -
.ex - - -
19. Input/Output File Switching

.50 filename - -
.nxX filename end-of-file -
.pi program ' - -
20. Miscellaneous

meccN - off E.m
.tm string - newline -
'ig .yy - .W -, -
.pm ¢ - vall -
1 - - B

21. Output and Error Messages

Explanation

If condition c false, accept anything.

If expression N > 0, accept anything.

If expression N < 0, accept anything,

If stringl identical to string2, accept anything.

If stringl not identical to string2, accept anything.
If portion of if-else; all above forms (like if).
Else portion of if-else.

Environment switched (push down).

Read insertion.
Exit from NROFF/TROFF.

Switch source file (push down),
Next file.
Pipe output to program (NROFF only).

Set margin character ¢ and separation N.

Print string on terminal (UNIX standard message output)

Ignore till call of yy.

Print macro names and sizes;

if ¢ present, print only total of sizes.
Flush output buffer.

Notes-
B Request normaily causes a break.

‘D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
O Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.
v,p,m,u Default scale indicator; if not specified, scale indicators are ignored,

Alpluhedul Request and Section Number Cross Reference

ad 4 cc 10 ds 7 fc 9 ie 16
al 8 ¢ 4 dt 7 g8 4 if 16
am 7 ch 7 ec 10 1 20 ig 20
as 7 s 2 el 16 fp 2 in 6
bd 2 cu 10 em 7 ft 2 it 7
bp 3 ds 7 eo 10 he 13 le 9
br 4 de 7 ev 17 hw 13 g 10
c2 10 di 7 ex 18 hy 13 i 10

t 6 nh 13 pi 19 m 7 ta 9
Is § oml$ pi 3 rr 8 tc 9 wh
It 14 mn 1§ pm 20 s 5 - i 6
mc 20 ar $§ pn 3 t 3 it 14
mk 3 ns 5 po 3 so 19 tm 20
na 4 nx 19 ps 2 sp § tr 10
ne 3 os § rd 18 ss 2 uf 10
of 4 pc 14 m 7 sv § ul 10

NliOFF/TROFF User’s Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

Section
Reference

10.1

11.3
12.4
12.4

12.1
4.1
11.1
23
9.1
111
1.1
11.2
5.2
12.2
16
16
10.7

The escape sequences \\, \., \", \$, \», \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2).

Escape
Sequence

\e

\’

\Q

\—-

\.
\(space)

\S$N

\ Gex

\ex, \o(xx
\a
\b’abe...”
\¢

\d
M\ (e \fN
\h’'N’

\kx
\1"Ne¢’
\L’N¢’
\nx,\n (xx
\o’'abe...”
\p

\r
\sN,\s=N
\t

\u

\v'N
\w’string’
\x’N’

\z¢

\{

\}
\(newline)
\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.

* (acute accent); equivalent to \(aa

* (grave accent); equivaient to \(ga

— Minus sign in the current font

Period (dot) (see de)

Unpaddable space-size space character

Digit width space

1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character

Transparent line indicator

Beginning of comment

Interpoiate argument 1 S N9

Default optional hyphenation character

Character named xx

Interpolate string x or xx

Non-interpreted leader character

Bracket building function

Interrupt text processing :

Forward (down) 1/2em vertical motion (1/2 line in NROFF)
Change to font named x or xx, or position N

Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x

Horizontal line drawing function (optionaily with ¢)
Vertical line drawing function (optionally with ¢)
Interpolate number register x or xx

Overstrike characters a, b, ¢, ...

Break and spread output line

Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function

Non-interpreted horizontal tab

Reverse (up) 1/2em vertical motion (1/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string

Extra line-space function (negative before, posztive after)
Print ¢ with zero width (without spacing)

Begin conditional input

End conditional input

Concealed (ignored) newline

X, any character not listed above

-

NROFF/TROFF User’s Manual
October 11, 1976

< Predefined General Number Registers
Section Register :
Reference Name Description
3 % Current page number.
11.2 ct Character type (set by width function).
7.4 dl Width (maximum) of last completed diversion.
7.4 dn Height (vertical size) of last completed diversion.
- dw Current day of the week (1-7).
- dy Current day of the month (1-31).
11.3 hp Current horizontal place on imput line.
15 In QOutput line number.
. mo Current month (1-12).
4.1 ni Vertical position of last printed text base-line.
11.2 sb Depth of string below base line (generated by width function).
11.2 st Height of string above base line (generated by width function).
- yr Last two digits of current year.

Predefined Read-Only Number Registers

Section .
Reference

73
A 111
1L
5.2
74
2.2

W O

<Hbb

.

NeMygemrbbbbibhmani

Description

Number of arguments available at the current macro level.

Set to 1 in TROFF, if —a option used; always 1 in NROFF.
Available horizontal resolution in basic units.

Set to 1 in NROFF, if =T option used: always 0 in TROFF.
Avaiiable vertical resolution in basic units.

Post-line extra line-space most recently utilized using \x’N".
Number of lines read from current input file. :
Current vertical place in current diversion; equal to nl, if no diversion.
Current font as physical quadrant (1-4). ' .
Text base-line high-water mark on current page or diversion.
Current indent. .

Current line length. :

Length of text portion on previous output line.

Current page offset.

Current page length.

Current point size.

Distance to the next trap.

Equal to 1 in fill mode and 0 in nofill mode.

Current vertical line spacing.

Width of previous character.

Reserved version-dependent register.

Reserved version-dependent register.

Name of current diversion.

NROFF/TROFF User’s Manual
October 11, 1976

REFERENCE MANUAL

1. General Explanation

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con-
trol character—normally . (period) or * (acute accent)—followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character * suppresses the break function—the forced output of a partially filled line—caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis-
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis-
introduced, two-character name as in \n(xx.

1.2. Formarter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common muitiple of the
horizontal and vertical resolutions of various typewriter-like output devices. TROFF rounds

" horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resoiution of the output dev-
ice indicated by the —T option (defauit Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, Vis the current verti-
cal line spacing in basic units, and Cis a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning - TROFF NROFF
i Inch i 432 240
¢ Centimeter 432x50/127 | 240x50/127
P Pica = 1/6 inch 72 240/6
m Em = S points 6xS C ,
n En = Em/2 xS C, same as Em
p Point = 1/72inch | 6 240/72
u Basic unit 1 1
v Vertical line space Vv 4
none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as —> (=) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta, It, pe, me, \h, and \l; Vs for the vertically-
oriented reguests and functions pl, wh, ch, dt, sp, sv, ne, rt, \v, \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. A/l other requests ignore any scale indicators. When a number regis-
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to ptevent an additional inappropriate default scaling.

-8-

|

NROFF/TROFF User’s Manual
Qctober 11, 1976

The number, N, may be specified in decimal-fraction form but the parameter ﬁnally stored is rounded
to an integer number of basic units.

The absolute position indicator | may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, | ¥ becomes the distance in basic
units"from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, | ¥ becomes the distance from the current horizontal place on the input
line to the horizontal plag\:e N. For example,

sp [3.2¢
will space in the reduired direction to 3.2 centimeters from the top of the page.
1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,

' the arithmetic operators +, —, /, », % (mod), and the logical operators <, >, <=, D= = (or =m),

& (and), : (or) may be used. Except where controiled by parentheses, evaluation of expressions is

left-to-right; there is no operator precedence. In the case of certain requests, an initial + or —is -

stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current -
point size is 10, then

J1 (4.25i+\nxP+3)/2u
will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. =N means that the
argument may take the forms N, +N, or —N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini-
tial algebraic sign is 7ot an increment indicator, but merely the sign of M. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect 10 set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, vs, Is, 1, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set—each having 102 characters. These character sets
are shown in the attached Table 1. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themseives, and non-ASCII characters are input
in the form \(xx where xx is a two-character name given in the attached Table II. The threes ASCII
exceptions are mapped as follows:

ASCIHI Input Printed by TROFF
Character Name: Character Name
‘ acute accent ? close quote
* grave accent ¢ open quote
- minus - hyphen

The characters °, *, and — may be input by \°, \', and \= respectively or by their names (Table II).
The ASCH characters @, #, ", ", °, <, >, \, [, }, =, %, and _ exist only on the Special Font and are
printed as a 1-em space if that Font is not mounted. :

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other -
printable characters. The exact behavior is determined by a driving table prepared for each device. The

-9-

NROFF/TROFF User’s Manual
October 11, 1976

characters °, °, and _ print as themselves.

2.2. Fonts. The defauit mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(:cx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is instailation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normaily underlines Italic characters (see §10.5).

~ 2.3. Character size. Character point sizes available on the Graphic Systems typesetter are6;-7; 8, 97107+ =+~

11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. :The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two

characters by imbedding a \sN at the desired point to set the size-to--N, -or-a \sN(1<NL9) to” —~ ~

increment/decrement the size by N, \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Request Initial If No ‘
Form Value Argument Notes®* Explanation

.ps =N 10 point previous E Point size set to £ N. Alternatively imbed \s¥ or \s+ N,
: Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence +N, —N will work because the previ-
ous requested- value. is also remembered. Ignored in
NROFF.

SSN . 12/36em ignored E ' Space-character size is set to N/36ems. This size is the
: minimum word spacing in adjusted text. Ignored in
NROFF. :

.cs FNM off — P Constant character space (width) mode: is set on. for font
F (if mounted); the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of
the character’s point size; if M is given, the em is M-
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

Jbda FN off - P The characters in font F will be artificially emboldened by
printing each one twice, separated by N-~1 basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the emboiden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

*Notes are expiained at the end of the Summary and Index above.

-10-

NROFE/TROFF User’s Manuali .
October 11, 1976 :

bdS FN off - P The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd SB3. The mode must be still or again in effect
when the characters are physically printed.

ft F Roman previous E Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.
JfpNF R,IB,S ignored - Font position. This is a statement that a font named Fis

mounted on position N (1-4). It is a fatal error if Fis
niot known. The phototypesetter has four fonts physicaily
mounted. Each font consists of .a film strip which can be
mounted on a numbered quadrant of a wheel. The
defauit mounting sequence assumed by TROFF is R, I, B,
and S on positions 1, 2, 3 and 4.

3. Page control

Top and bottom margins are not automaticaily provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and —N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the firsz page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion levei).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical hmxtauons on
NROFF output are output-device dependent

Request Initial If No

Form Value Argument Notes Explanation

pl N 1lin 1lin v Page length set to = N. The internal limitation is a.bout
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register..

Jbp =N Ne=] - B*,vy Begin page. The current page is ejected and a new page

is begun. If =N is given, the new page number will be
+=N. Also see request ns.

pn =N N1 ignored - Page number. The next page (when it occurs) will have
the page number =N. A pn must occur before the ini-
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the %
register. |

Jpo N 0; 26/27int previous v Page offset. The current left margin is set to =N. The
_ TROFF initial value provides about 1 inch of paper mar-
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length) + (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .o register.

.ne ¥ - N=1V D,y Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

*The use of " * " as control character (instead of ".") suppresses the break function.
$+Values separated by ;" are for NROFF and TROFF respectively. -

“11-

NROFF/TROFF User’s Manual
Qctober 11, 1976

distance to the bottom of the page. If D< V, another
line could still be output and spring the trap.” In a diver-
sion, D is the distance to the diversion trap, if any, or is
very large.

.mk R none internal D Mark the curremt vertical place in an internal register
(both associated with the current diversion level), or in
register R, if given. See rt request.

at =N none internai D,v Return upward only to a marked vertical place in the
current diversion. If =N (w.r.t. current place) is given,
the place is = N from the top of the page or diversion or,

if N is absent, to a place marked by a previous mk. Note .

that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absoiute place stored in a
explicit register; e, g. using the sequence .mk R ..
.sp |\nRu.

4, Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out-
put text line until some word doesn’t fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character "\ " (backslash-
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controiled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command iine option —e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can ail be prevented or controlled. The
text length on the last line output is available in the .n register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with ., ?, or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or _attaéhed to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a controil
line by prefacing it with the non-printing, zero-width filler character \&. Stiil another way is to specify
output transiation of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminat-
ing the partial line with a \c. The next encountered input text line will be considered to be a continua-
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat-
ing the word (and line) with \¢c; the next encountered text will be taken as a continuation of the inter-
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Request Initial If No
Form Value Argument Notes Explanation
br - - B Break. The filling of the line currently being collected is

stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

-12 -

NROFF/TROFF User’s Manual
Qctober 11, 1976

i fill on - B,.E Fill subsequent output lines. The register .u is 1 in fill
' mode and 0 in nofill mode. :
.onf fill on - B.E Nofill. Subsequent output lines are neither filled nor

adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

.ad ¢ adj,both adjust E Line adjustment is begun. If fill mode is not on, adjust-
ment will be deferred until fill mode is back on. If the
type indicator ¢ is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
| adjust left margin only
r adjust right margin only
c center
born adjust both margins
absent unchanged

.na adjust - E Noadjust. Adjustment is turned off;; the right margin will "
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

ce N off N=1} B.E Center the next N input text lines within the current
(line-length minus indent). If M=0, any residual count

is cleared. A break occurs after each of the N input

. lines. If the input line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144 inch = 1/2 point in TROFF, and to the output device
resolution in NROFF. ¥ must be large enough to accommodate the character sizes on the affected out-
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set ¥ to 2 points
greater than the point size; TROFF defauit is 10-point type on a 12-point spacing (as in this document).
The current ¥ is availabie in the .v register. Multiple- ¥ line separation (e.g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x’N "’ can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame-
ter (here °), the delimiter choice is arbitrary, except that it can’t look like the continuation of a number
expression for N, If N is negative, the output line containing the word will be preceded by N extra
vertical space; if is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv. .

Request Initial If No

Form Value Argument Notes Explanation

VSN 1/6in;12pts previous E,p Set vertical base-line spacing size V. Transient extra
vertical space available with \x’'N * (see above).

Js N Ne=1 previous E Line spacing set to =N. N-1 Vs (blank lines) are

appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

-13-

NROFF/TROFF User’s Manual
October 11, 1976

Sp N - N=lVy
SY N - Nl V
-03 - -
.ns space -
IS space -
Blank text line. . -

6. Line Length and Indenting

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis-
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis-
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os). Subse-
quent sv requests will overwrite any still remembered N,

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page

number. The no-space mode is turned off when a line of

output occurs, or with rs.
Restore spacing. The no-space mode is turned off,

Causes a break and output of a blank line exactly like
sp 1.)

The maximum line length for fill mode may be set with II. The indent may be set with in; an indent
applicable to only the nexz output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of 11,
in, or ti is delayed, if a partially collected line exists, uatil after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .1 and .i respectively. The length of three-part titles pro-
duced by tl (see §14) is independently set by It.

Request Initial If No

Form Value Argument
A =N 6.5in _previous
dn =N N=0 previous
S =N - ignored

- Notes

E.m
B.Em

B.E.m

Explanation

Line length is set to =M. In TROFF the maximum

(line-length) + (page-offset) is about 7.54 inches.

Indent is set to =N. The indent is prepended to each
output line. .

Temporary indent. The next output text line will be
indented a distance =N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo-
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and di, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

-14 -

11

NROFF/TROFF User’s Manual
October 11, 1976

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \sx and
*{xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation excepr that:

« The contents of number registers indicated by \n are interpolated.
« Strings indicated by \s are interpoiated. .

» Arguments indicated by \$ are interpolated.

« Concealed newlines indicated by \(newline) are eliminated.

« Comments indicated by * are eliminated.

¢\t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
* \\ is interpreted as \.

e \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single doubie-quote. If the desired arguments won’t fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is compietely read and the previous level is restored. A
macro’s own arguments can be interpolated at any point within the macro with \$¥, which interpolates
the Nth argument (1< N<9). If an invoked argumem doesnt exist, a null string results. For exam-
ple, the macro xx may be defined by

Jde xx \"begin definition
Today is \\$1 the \\$2.
. \"end definition

and called by
.XX Monday 14th
to produce the text .
Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently availabie
arguments is in the .$ register.

&

No arguments are available at the top (non-macro) level in this 1mplementatxon Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan-
ism does not allow an argument to contain a direct reference to a Jong string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

-15-

NROFF/TROFF User’s Manual
QOctober 11, 1976

ta do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion

level (the top non-diversion level may be thought of as the Oth diversion level). These are the diver-
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available—page traps, a diversion trap, and an input-
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one

is moved (see Tutorial Exampies §T3). - If the first one is moved back, it again- conceals-the second-

trap. The macro associated with a page. trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the

top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail-~ -

able in the .t register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Request Initial If No :
Form Vailue Argument Notes Explanation

dexxy - Jy=-., - Define or redefine the macro xx. The contents of the
macro begin on the next input line.: Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the absence of yy, the definition is terminated
by a line beginning with "..". A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. "..” can be
concealed as \\.. which will copy as \.. and be reread as

am xxyy - : Y=, - Append to macro (append version of de). A

.ds xx string - ignored - Define a string xx containing string. Any initial double-
- quote in string is stripped off to permit initial blanks.

.as xx string - ignored - Append string to string xx (append version of ds).

Jm Xxx - ignored - Remove request, macro, or string. The name xx is

removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

JA XYY - ignored - Rename request, macro, or string xx to yy. If yy exists, it
is first removed.
A xx - end D Divert output to macro xx. Normal text processing

occurs during diversion except that page offsetting is not
done. The diversion ends when the request di or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used.

-16 -

NROFE/TROFF User’s Manual
October 11, 1976

da x - end D | Divert, appending to xx (append version of di).
-wh N xx

.
»
<

Install a trap to invoke xx at page position N: a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx A zero
N refers to the top of a page. In the absence of xx, the
first found trap at W, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

off D, Install a diversion trap at position N in the current diver-
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

ch xx N

.
[
«

dt Nxx

Jdt N xx off E Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don’t count). The text may be in-line text or text

interpolated by inline or trap-invoked macros.

.em xx none none - The macro xx will be invoked when ail input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

8. Number Registers

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain ¥ and have the auto-increment size M, the following access
sequences have the effect shown:

: Effect on Value
Sequence Register Interpolated
\nx ' none N
\n(ex none N

\n+x x incremented by M N+M
\n=—x x decremented by M N-M
\n+(xx | xxincremented by M N+M
\n=(xx | xxdecremented by M N-M

When interpolated, a- number register is converted to decimal (default), decimal with leading zeros, -
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha-
betic according to the format specified by af.

Request Initial If No
Form Value Argument Notes Explanation

MrRE=NM -] The number register R is assigned the value =N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M.

-17-

NROFF/TROFF User’s Manual
October 11, 1976

.af Rc¢ = arabic - - Assign format c to register R. The available formats are:
_ , Numbering
| Format Sequence

1 0,1,2,3.4,5,...
001 | 000,001,002,003,004,005....
i 0,1,ii,iii,iv,v,... '
I OLILHOLIV,V,..
2 0.a,b.c,...,2,aa,ab.,...,zz,aaa,...
A 0,A,B.C.....Z,AA,AB,....ZZ,AAA,...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

JT R - ignored - Remove register R. If many registers are being created

longer used registers to recapture mtemal storage space
for newer registers.

‘9. Tabs, Leaders, and Fields

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charac-
ters. The length of the generated entity is governed by internal 1ab stops specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods; tc and lc offer
the choice of repeated character or motion. There are three types of internal tab stops—lef? adjusting,
right adjusting, and centering. In the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac-
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the width of
next-string.

Tab Length of motion or Location of

type repeated characters next-string

Left D Following D

Right D—-w Right adjusted within D
Centered D—-w/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual.tabs and leaders in copy mode.

9.2. Flelds. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is *, #“xxx"right# specifies a right-adjusted string with the
string xx centered in the remaining space. .

-18-

dynamically, it may become necessary to .remove .no. ...

NROFF/TROFF User’s Manual
Qctober 11, 1976

Request Initial If No _

Form Value Argument Notes Explanation

da M. 08;05n none E.m Set tab stops and types. (=R, right adjusting; :=C,
centering; ¢t absent, left adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by <+ is
treated as an. increment to the previous stop vaiue.

Jpge ¢ none none E The tab repetition character becomes ¢, or is removed
specifying motion.

Jdee . none E The leader repetition character becomes ¢, or is removed
specifying motion.

fcab off off - The field delimiter is set to a; the padding indicator is set

to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations -

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCIHI control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
eisewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences—causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \\. The escape character can be changed with
ec, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan-
ism may be turned off with eo, and restored with ec.

Request Initial If No

Form Value Argument Notes [Explanation

.ec ¢ \ \ - Set escape character to \, or to ¢, if given.
€0 on - . Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set — fi, fl, ff, fii, and fl.
They may be input (even in NROFF) by \(fi, \(f1, \(ff, \(Fi, and \(F1 respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial If No
Form Value Argument Notes Explanation

Jg N - off;, on on - Ligature mode is turned on if N is absent or non-zero,
: . and turned off if N=0. If N=2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \fF, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

-19 -

NROFF/TROEF User’s Manual
QOctober 11, 1976

Request Initial If No
Form Value , Argument Notes Explanation

al N off Ne=] E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora-
tion will undo the. last change. Output generated by tl
(§14) is affected by the font change, but does not decre-
ment N. If N> 1, there is the risk that a trap interpo-
lated macro may provide text lines within the span;
environment switching can prevent this.

cu N off Nom] E A variant of ul that causes every character to be under-
lined in NROFF. Identical to ul in TROFF.

af F Italic Italic - Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character ° may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Regquest Initial If No

Form Value Argument Notes Explanation
e ¢ . . E The basic control character is set to ¢, or reset to ".".
e2c : : E The nobreak control character is set to ¢, or reset to ™",

10.5. Output transiation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (inciud-
ing diversion).

Request Initial If No
Form Vaiue Argument Notes Explanation
.Ar abcd.... none - o) Translate g into b, ¢ into 4, etc. If an odd number of

characters is given, the last one will be mapped into the
space character. To be consistent, a particular transiation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of the line’s presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one
with the escape \. The sequence \(newline) is always ignored—except in a comment. Comments may
be imbedded at the end of any line by prefacing them with *. The newline at the end of a comment
cannot be concealed. A line beginning with * will appear as a blank line and behave like .sp 1; a com-
ment can be on a line by itself by beginning the line with .\". :

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \v'N” and \h’N’ can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero:
The above and certain other escape sequences providing local motion are summarized in the following
table.

«20-

NROFF/TROFF User's Manual
October 11, 1976

Vertical Effect in Horizontal . Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF
\v'N’ Move distance N \h’N" Move distance ¥
\(space} | Unpaddable space-size space
\u %2 em up Y line up \UJ Digit-size space
\d %2 em down | Y line down
\r 1 emup 1 line up \| - 1/6 em space | ignored
* 1/12 em space | ignored

As an example, E2 could be generated by the sequence E\s=2\v'=0.4m’2\v’0.4m"\s-+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w’string" generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ-
ment. For example, .ti =\w"l. “u could be used to temporarily indent leftward a distance equal to the
size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu=\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e); 1 means
that at least one character has a descender (like y); 2 means that at least one character is tall (like H);
and 3 means that both tall characters and characters with descenders are present.’

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h’|\nxu<2u’word will
embolden word by backing up to almost its beginning and ovgrpriming it, resulting in word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over-
strike function \o’string’. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o’e\"”” pro-
duces é, and \o"\(mo\(sl” produces §£.

12.2. Zero-width characters. The function \zc¢ will output ¢ without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce @, and
\(br\2\ (rn\ (ul\ (br will produce the smallest possible constructed box [J.

12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
CfOVJEHELITT) that can be combined into various bracket styles. The function \b’string” may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2em above the current base-

line (% line in NROFF). For example, \b’\(Ic\{(f "E\|\b’\ (re\ (zf " \x* =0.5m"\x'0.5m" produces [E]

12.4. Line drawing. The function \1°Nc’ will draw a string of repeated ¢’s towards the right for a dis-
tance N. (\l is \(lower case L). If ¢looks like a continuation of an expression for ¥, it may insulated
from N with a \&. If cis not specified, the . (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made before drawing the string. Any space

" resuiting from N/(size of ¢) having a remainder is put at the beginning (left end) of the string. In the

case of characters that are designed to be connected such as baseline-rule _, underrule _, and root-
en , the remainder space is covered by over-lapping. If Nis less than the width of ¢, a single ¢ is cen-
tered on a distance N. As an example, a macro to underscore a string can be written

.de us

\\$1\ 170\ (ul’

-21-

NROFF/TROFF User’s Manual
October 11, 1976

or one to draw a box around a string

.de bx
\rANSI\\ B\ 1°|O\ (rm "\ 1|0\ (ul’

such that
.ul "underlined words”
and
~ .bx "words in a box”
yield underlined words and {words in a box|
The function \L° N¢” will draw a vertical line consisting of the (optional) character ¢ stacked vertically

apart 1em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu- == e

ous line. The default character is the box rule | (\(br); the other suitable character is the bold vertical |
(\(bv). The line is begun without any initial motion relative to the current base line. A positive ¥

specifies a line drawn downward and a negative N specifies a line drawn- upward. ' After the line is drawn- = -

no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical liné drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the s2-em wide underrule were designed to form corners when using l-em
vertical spacings. For example the macro

.de eb :

sp —1 \"compensate for next automatic base-line spacing

.nf \"avoid possibly overflowing word buffer
\h*=.5n"\L’|\\nau—=1\1"\\n(.lu+ 1o\ ul\L’ = [\\nau+1\I'|0u=.5n\(ul’ \"draw box
A ' '

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.

using .mk a) as done for this paragraph.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with hy, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena-
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters—such as mother-in-law—are aiways
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No

Form Vaiue Argument Notes Explanation

.nh hyphenate - E Automatic hyphenation is turned off.

Sy N on,N=1 on,N=1 E Automatic hyphenation is turned on for N2 1, or off for
N=Q. If N=2, last lines (ones that will cause a trap)
are not hyphenated. For N=4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive; i. e. N=14 will invoke all

PR three restrictions.

Jhec \% \% E Hyphenation indicator character is set to ¢ or to the
defauit \%. The indicator does not appear in the output.

Jw wordl ... ignored - Specify hyphenation points in words with imbedded

minus signs. Versions of a word with terminal s are

«22-

NROFF/TROFF User’s Manual
October 11, 1976

implied; i. e. dig—it implies dig—its. This list is exam-
ined initially and after each suffix stripping. The space
available is small-—about 128 characters.

14. Three Part Titles.

The titling function t] provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with 1t. tl may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros. '

Request Initial If No
Form Value Argument Notes Explanation

.l ‘left’center’right” - L. The strings left, center, and right are respectively left-
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over-
lapping is permitted. If the page-number character (ini-
tially %) is found within any of the fields it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string del-

imiter.

pec % off - The page number character is set to ¢, or removed. The
page-number register remains %.

Jt =N 6.5in previous E,m = Length of title set to =M The line-length and the title-

length are independent. Indents do not apply to titles;
page-offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a

three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are
3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length

may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical

spaces, and lines generated by tl are not numbered. Numbering can be temporarily suspended with
6 nn, or with an .nm followed by a later .anm 0. In addition, a line number indent /, and the

number-text separation S may be specified in digit-spaces. Further, it can be specified that only

those line numbers that are multiples of some number M are to be printed (the others will appear
9 as blank number fields).

Request Initial If No
Form Value Argument Notes Explanation

.nm =NMSI off E Line number mode. If =N is given, line numbering is
' turned on, and the next output line numbered is num-
bered = N. Default values are M=1, §=1, and /=0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss-
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

an N - Nw=] E The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M=3: .nm 13 was

placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +0 was placed
12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by

\w’0000"u) to keep the right side aligned. Another example is .am +5 5 x 3 which turns on

numbering with the line number of the next line to be 5 greater than the last numbered line, with
15 M=35, with spacing S untouched, and with the indent /set to 3. o

.23 -

NROFF/TRCFF User’'s Manuai
October 11..1976

16. Conditional Acceptance of Input | ”W

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres-
sion, stringl and string2 are strings delimited by any non-blank, non-numeric character nor in the
strings, and anything represents what is conditionally accepted.

Request Initial If No
Form - Value Argument Notes Explanation
Af ¢ anything - - If condition c true, accept anything as mput in multi-line
_ case use \{anything\}.
.if !¢ anything - - If condition ¢ false, accept anything.
.if N anything - n If expression N > 0, accept anything.
Af !N anything - a If expression N < 0, accept anything.
Af “stringl’string2” anything - If stringl identical to string2, accept anything.
JAf Vstringl’string2” anything - If stringl not identical to string2, accept anything.
.ie ¢ anything - u If portion of if-else; all above forms (like if).
el anything - - Else portion of if-else.
The built-in condition names are:
Condition
Name True If
0 Current page number is odd
e Current page number is even
t Formatter is TROFF —
n Formatter is NROFF -

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. Ifa! precedes the condi-
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:
.if e .tl “Even Page %"
which outputs a title if the page number is even; and.

“Jde \n%>1\{\
¢ ‘sp 0.5
4l “Page %"~
‘sp|1.21\}
.el .sp |2.5i_

which treats page 1 differently from other pages.
17. Envrronment Switching.

A number of the parameters that control the text processmg are gathered together into an enwronmem

which can be switched by the user. The environment parameters are those assocrated with requests M
noting E in their Notes column; in addition, partially collected lines and words are in the environment. i
Everything eise is global; examples are page-oriented parameters, diversion-oriented parameters,

-24.

NROFF/TROFF User’s Manual
QOctober 11, 1976

number registers, and macro and string definitions. All environments are initialized with default
parameter values.

Reguest Initial U No
Form Value Argument Notes Explanation

v N N=() previous - Environment switched to environment 0 N2, Switch-
: ing is done in push-down fashion so that restoring a pre-
vious environment must be done with .ev rather than

specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system srandard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be. the user’s key-
board, a pipe, or a file.

Reqicest Initial If No
Form Value Argument Notes Explanation

.rd prompt - prompt=8EL - Read insertion from the standard input until two new-
lines in a row are found. If the standard input is the
user’s keyboard, prompt (or a BEL) is written onto the
user’s terminal. rd behaves like a macro, and arguments
may be placed after prompt.

.ex - - - Exit from NROFF/TROFF. Text processing is terminated .
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option —q will turn off the echoing of keyboard input and promgt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would uitimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Reguest Initial If No

Form Value Argument Notes Explanation

.80 filename - - Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in

. a macro is not felt until the input level returns to the file

level. When the new file ends, input is again taken from
the original file. so’s may be nested.

.nx filename end-of-file - Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

.pi program . - Pipe output to program (NROFF only). This request

must occur before any printing occurs. No arguments are
transmitted to program. ‘

20. Miscellaneous

Request Initial If No
Form Value Argument Notes Explanation
mecN - off E,m Specifies that a margin character ¢ appear a distance. N to . |-

the right of the right margin after each non-empty text
line (except those produced by tl). If the output line is
too-long (as can happen in nofill mode) the character will

-25-

NROFF/TROFF User’s Manual
October 11, 1976

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and lem
in TROFF. The margin character used with this para-
graph was a 12-point box-rule.

newline” - After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user’s terminal.

tm string

Jdg - Yy=. - Ignore input lines. ig behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

.pm ¢t - ail - Print macros. The names and sizes of all of the defined
macros and strings are printed on the user’s terminal; if ¢
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Rl - - B Flush output buffer. Used in interactive debugging to
force output.

21. Output and Error Messages.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX’s standard message output. The latter is different from the szandard output, where NROFF format-
ted output goes. By default, both are written onto the user’s terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors having only local impact do not cause processing to terminate. Two exampies are word overfiow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
‘an output line that grew too large to fit in the line buffer;. in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a »
in NROFF and a “w in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output uniikely to be useful.

-26-

NROFF/TROFF User’s Manual
October 11, 1976

TUTORIAL EXAMPLES

T1. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors*
with the intent of easing their use, it is aimost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won’t neces-
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con-
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

T2. Page Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at =N (N
from the page bottom) for the footer. The sim-
plest such definitions might be

.de hd \"define header
‘sp 1i

. \"end definition
de fo \"define footer
dp

- \"end definition
.wh 0 hd

.wh —1i fo

which provide blank 1 inch top and bottom mar-
gins. The header will occur on the first page,
only if the definition and trap exist prior to the

*For example: P. A. Crisman, Ed., The Compatible Time-
Sharing System, MIT Press, 1965, Section AH9.01 (Descrip-
tion of RUNOQFF program on MIT's CTSS system).

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn’t fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break con-
trol character to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \"header

Jdft.th \(m"\(m" \"troff cut mark
4 \a%>1\(\
‘sp |0.5i~1

Al - =

\"tl base at 0.5i
\"centered page number

-ps \"restore size

gt \"restore font

s \} \"restore vs

“sp |1.01 \"space to 1.0i

.ns \"turn on no-space mode
.de fo \"footer

.ps 10 \"set footer/header size
JtR° \"set font

.vs 12p \"set base-line spacing

Jf \\n%=1 \{\

‘sp [\\n(.pu=0.5i=1 \"tl base 0.5i up
Al 7= % —"\} \"first page number
‘bp

.wh 0 hd

.wh —1i fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en’s at each
margin. The sp’s refer to absolute positions to
avoid dependence on the base-line spacing.

- Another reason for this in the footer is that the

footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

-27.

NROFF/TROFF User’s Manual
October 11, 1976

much as the base-line spacing. The no-space
" mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow-
ing:

.de fo

.ar si \\n(.s \"current size

.ps ,

.ar s2 \\n(.s \"previous size

. v \"rest of footer

:;ie hd

JR— \"header stuff

.ps \\n(s2 \"restore previous size
.ps \\n(sl \"restore current size

Page numbers may be printed in the bottom mar-
gin by a separate macro triggered during the
footer’s page ejection:

.de bn \"bottom number
.l "= % =" \"centered page aumber

.wh —0.5i—1v bn \"tl base 0.5i up .

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

.de pg \"paragraph
br \"break
JtR \"force font,
.ps 10 \"size,

.vs 12p \"spacing,
in 0 \"and indent
.sp 0.4 \"prespace

.ne 1+\\n(.Vu \"want more than 1 line
.t 0.21 \"temp indent

The first break in pg will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec-
tion heading macros to set parameters only once.

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one)line (the .V is the available vertical resolu-
tion).

" A macro to automatically number section head-

ings might look like:

.de sc \"section

. v \"force font, etc.

.sp 0.4 \"prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines
.ﬁ

\\a+S.

.arS01 \"init S

The usage is .s¢, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the following pg,
and one line of the paragraph text. A word con-
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled, indentec

_paragraph, where the label protrudes left into the
".indent space.

delp \"labeled paragraph
.” .

.in 0.51 \"paragraph indent
.ta 0.2 0.51 \"label, paragraph
41 0 ‘
\t\\$1\t\e \"flow into paragraph

The intended usage is ".1p label"; label will begin
at 0.2inch, and cannot exceed a length of
0.3inch without intruding into the paragraph.
The label could be right adjusted against 0.4inch
by setting the tabs instead with .ta 0.4iR 0.5i.
The last line of Ip ends with \¢ so that it will
become a part of the first line of the text that fol-
lows.

T4. Muitiple Column Output

The production of muitiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro-
duce the bottom margin. The header can initial-
ize a_column register that the footer will incre:
ment and test. The following is arranged for two
columns, but is easily modified for more.

.28 -

NROFF/TROFF User’s Manual
Qctober 11, 1976

.de hd \"header

:nr ell1 \"init column count
.mk \"mark top of text
.de fo \"footer

Jde\\n+ (cl<2\{\

.po +3.4i \"next column; 3.1+0.3
It \"back to mark
.ns\} \"no-space mode

el \{\

.pe \\nMu \"restore left margin
bp \}

ll 3.1 \"column width
.ar M\\n(.0 \"save left margin

Typicaily a portion of the top of the first page
contains full width text; the request for the nar-
rower line length, as well as another .mk would
be made where the two column output was to
begin. -

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Foortnote textr and control lines...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn’t com-
pletely fit in the available space.

.de hd \"header

.arx01 \"init footnote count
.ary 0—=\\nb \"current footer place
.ch fo —=\\nbu \"reset footer trap
.if\\n(dn .fz \"leftover footnote

.de fo \"footer

.ardn 0 \"zero last diversion size
4f \\ax \{\ ‘

evl \"expand footnotes in evi
.nf \"retain vertical size

.FN - \"footnotes

.rm FN \"delete it

A "\\n(.z"fy" .di \"end overflow diversion
arx0 \"disable fx

ev \} \"pop environment
'hp
.de fx \"process footnote overflow
.if\\nx .di fy \"divert overflow
“.de fn \"start footnote
.da FN *divert (append) footnote
ev 1 \"in environment 1
JAf\\n+x=1 .fs \"if first, include separator
i \"fill mode
de ef \"end footnote

.br \"finish output

.nar z\\n(.v \"save spacing

.ev \"pop ev

Jdi \"end diversion

.ary =\\n(dn \"new footer pdsition,

Jf\\nx=1.nry = (\\n(.v=\\n2) \
\"uncertainty correction

.ch fo\\nyu \"y is negative

4 \\n(ni+1v)> \\n(p+\\ny) \

.ch fo\\n(nlu+1v \"it didn’t fit

.defs

\"separator
\I"1{’ \"1 inch rule
br
defz \"get leftover footnote
fn . :
.nf \"retain vertical size
fy \"where fx put it
ef
.nr b 1.04 \"bottom margin size
.wh O hd \"header trap
.wh 12i fo. \"footer trap, temp position

.wh =\\nbu fx\"fx at footer position
.ch fo —\\nbu \"conceal fx with fo

The header hd initializes a footnote count regis-
ter x, and sets both the current footer trap posi-
tion register y and the footer trap itself to a nom-
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ-
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated.
The separator is kept in a separate macro to per-
mit user redefinition. The footnote end macro ef

restores the previous environment and ends the -~ -

diversion after saving the spacing size in register.
zZ. y is then decremented by the size of the

-29-

NROFF/TROFF User’s Manual
October 11, 1976

footnote, available in dn; then on the first foot-
note, y is further decremented by the difference
in vertical base-line spacings of the two environ-
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower {(on the page) of y or the current
page position (ml) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment 1, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish-
ing before reaching the fx trap.

A good exercise for the student is to combine

the multipie-column and footnote mechanisms.
T6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro-
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.deen \"end-macro
\e
bp

will deposit a null partial word, and effect
. another last page.

-30-

=

NROFF/TROFF User’s Manual
October 11, 1976

Table 1

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non-
alphanumeric characters separated by "4 em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, ltalic, and Bold are among the many standard fonts available from that company.

Times Roman

abcedefghijklmnopqrstuvwxyz
ABCDEFGHIJIKLMNOPQRSTUVWXYZ
1234567890

1SUh&() "*+—../:;=2[1]

e —-_bhAUfifIfffifl°T ' ¢c®O

Times lialic

abcedefzhijkimnopgrstuvwxys
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890 |
ISH& ()t =) =2(]] -
e —-_ YUl HhfingHMAt ¢2®

Times Bold

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVYWXYZ
1234567890

1SN&O) 0+~ /= 2]]]

o0 —--_YWhrfilfMM T ¢®"

Special Mathematical Font

AT/ <> #@+—=-
afBydelnfiklpuvéomrpostvdxyvdo
FTAGAZNIZY DOV QO

V 2SE~=F—=—]|x+2UNCDEC2x=)
§V-[=octmwm@IO(N{HLIINI

-31-

NROFF/TROFF User’s Manual
October 11, 1976

Table I1

Input Naming Cdnventions for °, ‘,and -
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the ‘standard fonts.

Input Character Input Character

Char Name Name Char Name Name

A close quote i \(1

¢t open quote 1 \@ 1

— \(em 3/4 Em dash f \(F f

. - hyphen or fi \(Fi fi

- \(hy hyphen i \(Ft M

— \-= current font minus > \(de degree"

e \(bu bullet + \(dg dagger

O \(sq square * \(fm foot mark

- \ru rule ¢ \(ct centsign

e \(14 1/4 ® \(rg registered

v o \12 1/2 ® \(co copyright

% \(34 3/4

Non-ASCII characters and °, °, _, +, —, =, and ¢ on the special font.

The ASCII characters @, #, ", ", *, <, >, \, [, }, =, °, and _ exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math pius, minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts. ' '

Input Character . Input Character

Char Name Name _ Char Name Name

+ \(pl math plus « \(*k kappa

- \(mi math minus A \(*1 lambda

= \(eq math equals w \(*m mu

+ \(** mathstar vy \(*n nu

§ \(sc section & \(c «xi

* \(aa acute accent o \(*o omicron

* \(ga grave accent = \(p pi

_ \(ul underrule p \(r rho

/ \(sl slash (matching backslash) o \(*s sigma

a \(*a alpha ¢ \(ts terminal sigma

B \(*b beta r \(*t tau

y \(*s gamma v \(*u upsilon

3 \(*d delta ¢ \(*f phi

¢ \(*e epsilon x \(*x chi

 \(*z zea g \(*q psi

n \(*y eta o \(*w omega

8 \(*h theta A \(*A Alphat

¢ *i iota B \(*B Betat

-32-

=

NROFF/TROFF User’s Manual
October 11, 1976

Input Character
Char Name Name

\(*G Gamma
\(*D Delta
\(*E Epsilont
\(*Z Zeiat
\(*Y Etat
\(*H Theta
\(*T lotat
\(*K Kappat
\(*L Lambda
\(*M Mut

- \(*N Nut
*C Xi
\(*O Omicront
\(*P Pi
\(*R Rhot
\(*S Sigma
\(*T Taut
\(*U Upsilon
\(*F Phi
\(*X Chit
\(*Q Psi
\(*W Omega

" \(sr square root
\(rn root en extender
\(>m= >m=
(K= <=
\ (== jdentically equal
\("= approx =
\(ap approximates
\(!= not equal
\(=> right arrow
\(<— left arrow
\(ua up arrow
\(da down arrow
\(mu multiply
\(di divide
\(+~- plus-minus
\(cu cup (union)
\(ca cap (intersection)
\(sb - subset of
\(sp superset of
\(ib improper subset
\(ip improper superset
\Gf infinity
\(pd partial derivative
\(gr gradient
\(no not
\(is integral sign
\(pt proportional to
\(es empty set
\(mo member of

K OEHRE<X-MOIOONMZZ>PR~OINmP"T

naf—i1dqeiuNUNDCH+x——1 IHILILTNAV

-33-

Input Character
Char Name Name

\(br
\(dd
\(rh
\(lh

\(bs

\(or
\(ci
\(1t
\(@b
\(rt
\(rb
\(k
\(rk
\(bv
\(f

\(f
\(¢
\(rc

box vertical rule

doubie dagger

right hand

left hand

Beli System logo

or

circle

left top of big curly bracket

left bottom

right top

right bot

left center of big curly bracket
right center of big curly bracket
boid vertical '
left floor (left bottom of big
square bracket) -

right floor (right bottom)
left ceiling (left top)

right ceiling (right top)

May 15, 1977

Options

-h

Old Requests

adc

SO name

Summary of Changes.to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s
and diagnostics).

~ The adjustment type indicator "¢" may now aiso be a number previously obtained from

the " j" regxster (see below).

" The contents of file "name" will be interpolated at the point the "so" is encountered.

Previously, the interpolation was done upon return to the file-reading input level.

New Request _‘

.ab text

fzFN

Prints "text” on the message output and terminates without further processing. If "text”

is missing, "User Abort.” is printed. Does not cause a break. The output buffer is .

flushed.

forces font "F" to be in size N. N may have the form N, +N, or -N. For example,

fz3-2
will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s+2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

fzSFN
may be used to specify the size treatment of special characters dunng font F. For
example,

fz3-3

fz2S83-0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ““.fp’° request specifying a font on some position must precede
““fz”° requests relating to that position.

New Predefined Number Registers.

k

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode.

Read-only. ! if the current page is being printed, and zero otherwise.
Read-only. Contains the current line~spaeing parameter ("Is").

General register access to the input line-number in the current input file. Contains the
same value as the read-only ".c" register.

A TROFF Tutorial

Brian W. K er'nighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems photo-
typesetter on the UNIXT and GCOS operating systems. This device is capable of
producing high quality text; this paper is an exampie of troff output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub- -
stantial number of special characters and mathematical symbols. Characters can
be printed in a range of sizes, and piaced anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, .
as well as the usual features of a formatter — right-margin justification,
automatic hyphenation, page titling and numbering, and so on. It also provides
macros, arithmetic variables and operations, and condmonal testing, for compln—
cated formatting tasks.

This document is an mtroducuon to the most basic use of troff. It
presents just enough information to enable the user to do simple formatting
tasks like making viewgraphs, and to make incremental changes to existing
packages of troff commands. In most respects, the UNIX formatter nroff is
identical to troff, so this document also serves as a tutorial on aroff.

August 4, 1978

$tUNIX is a Trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories -
Murray Hill, New Jersey 07974

1. Introduction

troff (1] is a text-formatting program, writ-
ten by J. F. Ossanna, for producing high-quality
printed output from the phototypesetter on the
UNIX and. GCOS operating systems. This docu-
ment is an example of troff output.

The single most important rule of using
troff is not to use it directly, but through some
intermediary. In many ways, troff resembles an
" assembly language -~ a remarkably powerful and
flexible one — but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most peopie to
use effectively.

- For two special applications, there are pro-
grams that provide an interface to troff for the
" majority of users. eqn [2] provides an easy to
learn language for typesetting mathematics; the

eqn user need know no troff whatsoever to
typeset- mathematics. tbl [3] provides the same:

convenience for producing tables of arbitrary
complexity. .

For producing straight text (which may
well contain mathematics or tables), there are a
number of ‘macro packages’ that define format-
ting rules and operations for specific styles of
documents, and reduce the amount of direct
contact with troff. In particular, the *‘—ms’ (4]
and PWB/MM [5] packages for Bell Labs inter-
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu-
ment preparation. (This memo was prepared
with *—ms’.) There are aiso packages for view-
graphs, for simulating the older roff formatters
on UNIX and GCOS, and for other special applica~
tions. Typically you will find these packages
easier to use than troff once you get beyond the
most trivial operations; you should always con-
sider them first. ’

In the few cases where existing packages
don't do the whole job, the solution is not to
write an entirely new set of troff instructions
from scratch, but to make smail changes to adapt
packages that already exist.

In accordance with this philosophy of let-
ting someone eise do the work, the part of troff
described here is only a small part of the whoie,
although it tries to concentrate on the more use-
ful parts. In any case, there is no attempt to be

=

complete. Rather, the emphasis-is- on-showing-— -~ -

how to do simple things, and how to make incre-
mental changes to what aiready exists. The con-
tents of the remaining sections are:

2. Point sizes and line spacing
Fonts and special characters
Indents and line length
Tabs.

e
.

Local motions: Drawing lines and characters

Introduction to macros
Titles, pages and numbering
10. ‘Number registers and arithmetic
11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions .
Appendix: Typesetter character set

4

L)

6.

7. Strings.
8.

9

The troff described here is the C-language ver-
sion running on UNIX at Murray Hill, as docu-
mented in {1].

To use troff you have to prepare not only
the actual text you want printed, but some infor-
mation that tells how you want it printed.
(Readers who use roff will find the approach
familiar.) For troff the text and the formatting
information are often intertwined quite inti-
mately. Most commands to troff are placed on a
line separate from the text itseif, beginning with
a period (one command per line). For exampie,

" Some text.
.ps 14
Some more text.

will change the ‘point size’, that is, the size of
the letters being printed, to ‘14 point’ (one point
is 1/72 inch) like this:

Some text. SOmMe more text.

Qccasionally, though, something special
occurs in the middle of a line — to produce

Area = wr2

you have (o type
Area = \ (sp\fIA\fR\[\s8\u2\d\s0

(which we will explain shoruy). The backsiash
character \ is used to introduce troff commands
and special characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the point size. One point is 1/72 inch, so
6-point characters are at most 1/12 inch high,
and 36-point characters are 'z inch. There are 15
point sizes, listed below.

6 point: Pack my box with live dosen liyuor jugs.

7 puint: Pack my box with tive dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.

9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor

11 point: Pack my box with five dozen

12 point. Pack my box with five dozen

14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36

If the number after .ps is not one of these
legal sizes, it is rounded up to the next valid
value, with a maximum of 36. If no number fol-
lows .ps, troff reverts to the previous size, what-
ever it was. troff begins with point size 10,
which is usually fine. This document is in 9
pOiﬂL '

The point size can also be changed in the
middle of a line or even a word with the in-line
command \s. To produce

UNIX runs on a PDP-11/45

type
\s8UNIX\s10 runs on a \s8PDP-\s101 1745

As above, \s should be followed by a legal point
size, except that \sQ causes the size to revert to
its previous value. Notice that \s1011 can be
understood correctly as ‘size 10, followed by an
11°, if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and
useful:

\s—=2UNIX\s+2

temporarily decreases the size, whatever it is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relaiive
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
one line to the bottom of the next. The com-
mand to control vertical spacing is .vs. For runs+-
ning text, it is usually best_to set the vertical
spacing about 20% bigger than the character size. -
For example, so far in this document, we have.
used “9 on 11, that is,

ps9
~.vs 1lp

If we changed to

.ps 9

.vs 9p
the running text would look like this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
laste, depending on how much text you want to
squeeze into a given space, and partly a matter
of traditional printing siyle. By defauit, troff
uses 10 on 12. .

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

Poimt size and vertical spacing make 4 subsiantial difference in
the amount of ext per square inch. For exampie. 10 on i2 uses about
twice as much space as 7 on 8. This is 6 on 7. which is even smaller. 1t
packs a !0t more words per line. but you can go blind trying to read it

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vert-
ical space. Unadorned, it gives you one extra
blank line (one .vs, whatever that has been set
to). Typically, that's more or less than you
want, so .sp can be followed by information
about how much space you want —

sp 2i
means ‘two inches of vertical space’.
sp 2p '
means ‘two points of vertical space’; and
.sp 2
means ‘two vertical spaces’ — two of whatever

.vs is set to (this can aiso be made explicit with
.sp 2v); troff also understands decimal fractions
in most places, so

.sp 1.5i

is a space of 1.5 inches. These same scale fac-
tors can be used after .vs to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that ail size numbers
are converted internally to ‘machine units’,
which are 1/432 inch (1/6 point). For most pur-
poses, this is enough resoiution that you don’t
have to worry about the accuracy of the
representation. The situation is not quite so
good: vertically, where resolution is 1/144 inch
(1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at any one time. Normally three fonts
(Times roman, italic and bold) and one collec-
tion of special characters are permanently
mounted. :

abedefghijkimnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefzhijkimnopgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWX:2Z
abedefghijkimnopqrsturwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are listed in Appendix A.

troff prints in roman uniess told otherwise.
To switch into bold, use the .ft command

ftB
and for italics,
ftl

To return to roman, use .ft R; to return to the
previous font, whatever it was, use either ft P or
just .ft. The ‘underline’ command

ul

causes the next input line to print in italics. .ul
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

bold face text
is produced by
\fBbold\fIface\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed, insert extra
\fP commands, like this:

\fBbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp telis troff
what fonts are physically mounted on the
typesetter:

fp3H

says that the Helvetica font is mounted on posi--
tion 3. (For a complete list of fonts and what
they look like, see the troff manual.) Appropriate
fp commands should appear at the beginning of .
your document if you do not use the standard
fonts.

It is possible to make a document rela-
tively independent of the actual fonts used to
print it by using font numbers instead of names;
for exampie, \f3 and .ft"3 mean ‘whatever font
is mounted at position 3°, and thus work for any
setting. Normal settings are roman font on 1,

italic on 2, bold on 3, and special on 4.

There is also a way to get ‘synthetic’ boid
fonts by overstriking letters with a slight offset.

‘Look at the .bd command in (1l

Special characters have four-character
names beginning with \(, and they may be
inserted anywhere. For example,

Yo + 1= Hh
is produced by
\(14 +\(12 = \(34

In particular, greek letters are all of the form
\(s—, where — is an upper or lower case roman
letter reminiscent of the greek. Thus to get

Z(axp) = oo
in bare troff we have to type

\(+SQ(\ (+a\(mu\ (sb) \(~> \(if
That line is unscrambied as follows:

\(sS
-
\(sa
\(mu
\ (b
)
\(=>
\Gf

A complete list of these special names occurs in
Appendix A. L

g8 | " XR~M

In eqn (2] the same effect can be achieved
with the input : :

SIGMA (alpha times beta) —> inf

which is less concise, but clearer to the unini-
tiated.

Notice that each four-character name is a
single characier as far as troff is concerned — the
‘translate’ command

Ar \(mi\(em
is perfectly clear, meaning
Af ==

that is, to translate — into —.

Some characters are automatically
transiated into others: grave and acute °
accents (apostrophes) become open and close
single quotes ‘™", the combination of **..."" is gen-
eraily preferable to the doubie quotes "...". Simi-
larly a typed minus sign becomes a hyphen -. To
print an. explicit ~ sign, use \-.. To get a
backslash printed, use \e.

4. Indents and Line Lengths

trofl starts with a line length of 6.5 inches,
100 wide for 8%2x1l paper. To reset the line
length, use the .ll command, as in

6i
As with .sp, the actual length can be specified in

several ways; inches are probably the most intui-
tive.

The maximum line length provided by the

ypesetter is 7.5 inches, by the way. To use the
full width, you will have to reset the default phy-
sical left margin (‘*page offset’'), which is nor-
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com-
mand.

.po 0
sets the offset as far to the left as it will go.

The indent command .in causes the left
margin to be indented by some specified amount

from the page offset. If we use .in to move the '

left margin in, and .1I to move the right margin
to the left, we can make offset blocks of text:

.in 0.3i

J1-=0.3i

text to be set into a biock
1 +0.3i

.in =0.3i

will create a block that looks like this:

Pater noster qui est in caelis.
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut
in caelo, et in lerra. ... Amen.

Notice the use of *+' and ‘=" to specify the
amount of change. These change the previous

" setting by the specified amount, rather than just

overriding it. The distinction is quite important:
JI +1i makes lines one inch longer; .11 1i makes

. them one inch /ong.

With-.in, .1l and .po, the previous value is
used if no argument is specified.

To indent a single line, use the ‘temporary .
indent’ command .ti. For example, all paragraphs
in this memo effectively begin with the com-
mand »

A3

Three of what? The default unit for .ti, as for
most horizontally oriented commands (.1, .in,
.po), is ems; an em is roughly the width of the
letter ‘m’ in the current point size. (Precisely, a
em in size p is p points.) Although inches are
usually clearer than ems 10 people who don’t set
type for a living, ems have a piace: they are a
measure of size that is proportional to the
current point size. If you want to make text that
keeps its proportions regardless of point size, you
shouid use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 2.5m.

Lines can aiso be indented negatively if the
indent is already positive:

i =0.3i

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then move the letter ‘P’ back with a .ti com-
mand:

ater noster qui est in caelis
sanctificetur nomen tuum; ad-
veniat regnum tuum; fiat volun-

tas tua, sicut in caelo, et in terra. ...
Amen.

Of course, there is also some trickery to make
the ‘P° bigger (Gust a “\s36P\s0’), and to move it
down from its normal position (see the section
on local motions).

s. Tabs

Tabs (the ASCII ‘horizontal tab’ character)
can be used to produce output in columns, or 1o
set the horizontal position of output. Typicaily
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .ta command.
To set stops every inch, for exampie,

.1a 1i 2i 3i 4i i 6i

Unfortunately the stops are left-justified
only (as on a typewriter), so lining up columns
of right-justified numbers can be painful. If you
have many numbers, or if.you need more com-
plicated table layout, don’r use troff directly; use
the tbl program described in (3].

For a handful of numeric columns, you
can do it this way: Precede every number by
enough blanks to make it line up when typed.

af
.ta 1i 2i 3i

1rab 2 wmb 3
40 @b 50 rap 60
700 tab 800 wb 900
B

Then change each leading blank into the string
\0. This is a character that does not print, but

that has the same width as a digit. When
printed, this will produce
1 2 3
40 50 60
700 . 800 900

It is. also possible to fill up tabbed-over
space with some character other than blanks by
setting the ‘tab replacement character’ with the
.lc command:

Ja 1.5i 2.5i
te\(ru A(euis ")
Name b Age ab

produces

Name Age

To reset the tab replacement